WorldWideScience

Sample records for nano-phase structure characterization

  1. Fabrication of Conductive Macroporous Structures Through Nano-phase Separation Method

    Science.gov (United States)

    Kim, Soohyun; Lee, Hyunjung

    2018-02-01

    Thermoelectric power generation performance is characterized on the basis of the figure of merit, which tends to be high in thermoelectric materials with high electrical conductivity and low thermal conductivity. Porous structures cause phonon scattering, which decreases thermal conductivity. In this study, we fabricated porous structures for thermoelectric devices via nano-phase separation of silica particles from a polyacrylonitrile (PAN) matrix via a sol-gel process. The porosity was determined by control of silica particle size with various the mixing ratio of tetraethylorthosilicate as the precursor of silica particles to PAN. High electrical conductivity was maintained by subsequent carbonization of the PAN matrix in spited of a high porosity. As the results, the conductive porous structures having porosity from 13.9 to 83.3 (%) was successfully fabricated, keeping their electrical conductivities.

  2. Defect Clustering and Nano-Phase Structure Characterization of Multi-Component Rare Earth Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    2003-01-01

    Advanced oxide thermal barrier coatings have been developed by incorporating multi-component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma-sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), electron energy-loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia- yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging from 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.

  3. Defect Clustering and Nano-phase Structure Characterization of Multicomponent Rare Earth-Oxide-Doped Zirconia-Yttria Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    2004-01-01

    Advanced thermal barrier coatings (TBCs) have been developed by incorporating multicomponent rare earth oxide dopants into zirconia-based thermal barrier coatings to promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nanophases within the coating systems. In this paper, the defect clusters, induced by Nd, Gd, and Yb rare earth dopants in the zirconia-yttria thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The TEM lattice imaging, selected area diffraction (SAD), and electron energy-loss spectroscopy (EELS) analyses demonstrated that the extensive nanoscale rare earth dopant segregation exists in the plasma-sprayed and electron-physical-vapor-deposited (EB PVD) thermal barrier coatings. The nanoscale concentration heterogeneity and the resulting large lattice distortion promoted the formation of parallel and rotational defective lattice clusters in the coating systems. The presence of the 5-to 100-nm-sized defect clusters and nanophases is believed to be responsible for the significant reduction of thermal conductivity, improved sintering resistance, and long-term high temperature stability of the advanced thermal barrier coating systems.

  4. Nano-Phase Powder Based Exothermic Braze Repair Technology For RCC Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II project will advance innovative, cost effective and reliable nano-phase exothermic RCC joining processes (ExoBrazeTM) in order to be able to reinforce...

  5. Characterization of Injection Molded Structures

    DEFF Research Database (Denmark)

    Sun, Ling; Søgaard, Emil; Andersen, Nis Korsgaard

    and limitations. Therefore, it would be difficult to characterize complex, especially hierarchical structures by using only one method. Here we present a combined optical microscopy, scanning electron microscopy (SEM), and scanning probe microscopy study on injection molded structures. These structures are used......-properties relationship of the injection molded polymer samples. These results are very important in optimizing injection molding parameters....

  6. Nano-phases of ZrO2 doped with Y2O3

    International Nuclear Information System (INIS)

    Duteanu, Narcis; Monty, Claude

    2001-01-01

    This work reports the method of obtaining oxygen sensors by using nano-phases of ZrO 2 doped with Y 2 O 3 95% molar in thin layers. In the first phase it is necessary to prepare a substratum based on La 1-x Sr 30 MnO 3 . This substratum is obtained by grinding powders of base, followed by mixing and then by baking of the product. The nano-phases of ZrO 2 doped with Y 2 O 3 95% molar are obtained using solar energy in a solar furnace; in the focus the temperature has value of 3000 deg. C. Such temperatures are enough to realize the process of vapor condensation. The nano-phases obtained will have used in thin layers, representing the active element. This layers are obtained directly through the process of vapor condensation in solar focus or using the spray method. The goal of this work was obtaining oxygen sensors which function at low temperatures (below 300 deg. C), because the sensors which are found on market, operate at a temperature of 800 deg. C. Those sensors are used to obtain a good combustion with engines with internal combustion. (authors)

  7. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction ...

  8. Characterization of genetic structure of Podophyllum hexandrum ...

    African Journals Online (AJOL)

    Characterization of genetic structure of Podophyllum hexandrum populations, an endangered medicinal herb of Northwestern Himalaya, using ISSR-PCR markers and its relatedness with podophyllotoxin content.

  9. MOLECULAR STRUCTURE AND MATERIALS CHARACTERIZATION

    Science.gov (United States)

    monocarboxylic acids and organosulfur compounds; solid state mass spectrometric studies; and the characterization of polyurethane elastomers with special reference to those used as binders for solid propellants.

  10. Preparation of CMC-modified melamine resin spherical nano-phase change energy storage materials.

    Science.gov (United States)

    Hu, Xiaofeng; Huang, Zhanhua; Zhang, Yanhua

    2014-01-30

    A novel carboxymethyl cellulose (CMC)-modified melamine-formaldehyde (MF) phase change capsule with excellent encapsulation was prepared by in situ polymerization. Effects of CMC on the properties of the capsules were studied by Fourier transformation infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electronic microscopy (SEM), X-ray diffractometry (XRD), and thermogravimetric analysis (TGA). The results showed that the CMC-modified capsules had an average diameter of about 50nm and good uniformity. The phase change enthalpy of the capsules was increased and the cracking ratio decreased by incorporating a suitable amount of CMC. The optimum phase change enthalpy of the nanocapsules was 83.46J/g, and their paraffin content was 63.1%. The heat resistance of the capsule shells decreased after CMC modification. In addition, the nanocapsule cracking ratio of the nanocapsules was 11.0%, which is highly attractive for their application as nano phase change materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURES ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    The V atoms in the complexes are in octahedral coordination. Thermal stabilities of the complexes have also been studied. KEY WORDS: Oxovanadium complex, Aroylhydrazone ligand, Crystal structure, X-ray diffraction, Thermal property. INTRODUCTION. Coordination chemistry of vanadium has attracted considerable ...

  12. Structural, physicochemical characterization and antimicrobial ...

    Indian Academy of Sciences (India)

    Abstract. Tetraaqua bismaleato iron(II) [Fe(C4H3O4)2(H2O)4], (1) is a new synthetic antimicrobial agent. Thermal analysis shows that the dehydration of the compound occurs in agreement with the structure. The sin- gle crystal salt crystallizes in the triclinic space group P-1 with a = 5.171(2) Å, b = 7.309(3) Å, c = 9.731(3).

  13. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    Preferred Customer

    Cg1, Cg2 and Cg3 are the centroids of Mo1-O2-C8-N2-N1, C9-C14 and. C1-C6 benzene rings. Figure 1. Molecular structure of the complex at 30% probability displacement. IR spectra. The hydrazone ligands showed stretching bands attributed to C=O, C=N, C–OH and NH at. 1656, 1637, 1155 and 1237, and 3211 cm–1, ...

  14. Structural, physicochemical characterization and antimicrobial ...

    Indian Academy of Sciences (India)

    Tetraaqua bismaleato iron(II) [Fe(C4H3O4)2 (H2O)4], (1) is a new synthetic antimicrobial agent. Thermal analysis shows that the dehydration of the compound occurs in agreement with the structure. The single crystal salt crystallizes in the triclinic space group -1 with = 5.171(2) Å, = 7.309(3) Å, = 9.731(3) Å, ...

  15. Synthesis, crystal structures, spectroscopic characterization and in ...

    Indian Academy of Sciences (India)

    Both the complexes were structurally characterized by single crystal XRD. The crystal structure of complex 1 displays a distorted square pyramidal geometry in which Schiff base is coordinated to the Cu(II) ion via ONO-donor in the axial mode, whereas, the chelating diamine displays axial and equatorial mode of binding via ...

  16. Fabrication and characterization of woodpile structures

    DEFF Research Database (Denmark)

    Zalkovskij, Maksim; Malureanu, Radu; Andryieuski, Andrei

    2011-01-01

    In this paper we present the whole fabrication and characterization cycle for obtaining 3D metal-dielectric woodpile structures. The optical properties of these structures have been measured using different setups showing the need of considering e.g. border effects when planning their use in real...

  17. Structural and morphological characterization of cellulose pulp

    CSIR Research Space (South Africa)

    Ocwelwang, A

    2015-09-01

    Full Text Available International Symposium on Wood, Fibre and Pulping Chemistry, BOKU University, Vienna, Austria, 09-11th September 2015 9-11 September 2015 Structural and morphological characterization of cellulose pulp Atsile Ocwelwang1,2,*Bruce Sithole1,2, Deresh...

  18. Characterization of nano structured metallic materials

    International Nuclear Information System (INIS)

    Marin A, M.; Gutierrez W, C.; Cruz C, R.; Angeles C, C.

    1997-01-01

    Nowadays the search of new materials with specific optical properties has carried out to realize a series of experiments through the polymer synthesis [(C 3 N 3 ) 2 (NH) 3 ] n doped with gold metallic nanoparticles. The thermal stability of a polymer is due to the presence of tyazine rings contained in the structure. The samples were characterized by High Resolution Transmission Electron Microscopy, X-ray diffraction by the Powder method, Ft-infrared and its thermal properties by Differential Scanning Calorimetry (DSC) and Thermogravimetry (TGA). One of the purposes of this work is to obtain nano structured materials over a polymeric matrix. (Author)

  19. Synthesis, structural and electrical characterizations of thermally ...

    African Journals Online (AJOL)

    Synthesis, structural and electrical characterizations of thermally evaporated Cu 2 SnS 3 thin films. ... The surface profilometer shows that the deposited films are rough. The XRD spectra identified the ... The electrical resistivity of the deposited Cu2SnS3 film is 2.55 x 10-3 Ωcm. The conductivity is in the order of 103 Ω-1cm-1.

  20. Multiscale Persistent Functions for Biomolecular Structure Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Kelin [Nanyang Technological University (Singapore). Division of Mathematical Sciences, School of Physical, Mathematical Sciences and School of Biological Sciences; Li, Zhiming [Central China Normal University, Wuhan (China). Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics; Mu, Lin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division

    2017-11-02

    Here in this paper, we introduce multiscale persistent functions for biomolecular structure characterization. The essential idea is to combine our multiscale rigidity functions (MRFs) with persistent homology analysis, so as to construct a series of multiscale persistent functions, particularly multiscale persistent entropies, for structure characterization. To clarify the fundamental idea of our method, the multiscale persistent entropy (MPE) model is discussed in great detail. Mathematically, unlike the previous persistent entropy (Chintakunta et al. in Pattern Recognit 48(2):391–401, 2015; Merelli et al. in Entropy 17(10):6872–6892, 2015; Rucco et al. in: Proceedings of ECCS 2014, Springer, pp 117–128, 2016), a special resolution parameter is incorporated into our model. Various scales can be achieved by tuning its value. Physically, our MPE can be used in conformational entropy evaluation. More specifically, it is found that our method incorporates in it a natural classification scheme. This is achieved through a density filtration of an MRF built from angular distributions. To further validate our model, a systematical comparison with the traditional entropy evaluation model is done. Additionally, it is found that our model is able to preserve the intrinsic topological features of biomolecular data much better than traditional approaches, particularly for resolutions in the intermediate range. Moreover, by comparing with traditional entropies from various grid sizes, bond angle-based methods and a persistent homology-based support vector machine method (Cang et al. in Mol Based Math Biol 3:140–162, 2015), we find that our MPE method gives the best results in terms of average true positive rate in a classic protein structure classification test. More interestingly, all-alpha and all-beta protein classes can be clearly separated from each other with zero error only in our model. Finally, a special protein structure index (PSI) is proposed, for the first

  1. Structural characterization of MAPLE deposited lipase biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Ausanio, Giovanni; Bloisi, Francesco [CNR-SPIN and Department of Physics, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Calabria, Raffaela [Istituto Motori-CNR, via G. Marconi 8, 80125 Napoli (Italy); Califano, Valeria, E-mail: v.califano@im.cnr.it [Istituto Motori-CNR, via G. Marconi 8, 80125 Napoli (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Massoli, Patrizio [Istituto Motori-CNR, via G. Marconi 8, 80125 Napoli (Italy); Vicari, Luciano R.M. [CNR-SPIN and Department of Physics, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy)

    2014-11-30

    Highlights: • Lipase from Candida Rugosa was deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) on KBr pellets, mica and glass substrate. • The deposited film was characterized morphologically and structurally by optical microscopy, SEM and FTIR analysis. • Results of characterization underlined a phenomenon of aggregation taking place. • The aggregation phenomenon was reversible since lipase showed activity in the transesterification reaction between soybean oil and isopropyl alcohol once detached from the substrate. - Abstract: Lipases (triacylglycerol ester hydrolases) are enzymes used in several industrial applications. Enzymes immobilization can be used to address key issues limiting widespread application at industrial level. Immobilization efficiency is related to the ability to preserve the native conformation of the enzyme. MAPLE (Matrix Assisted Pulsed Laser Evaporation) technique, a laser deposition procedure for treating organic/polymeric/biomaterials, was applied for the deposition of lipase enzyme in an ice matrix, using near infrared laser radiation. Microscopy analysis showed that the deposition occurred in micrometric and submicrometric clusters with a wide size distribution. AFM imaging showed that inter-cluster regions are uniformly covered with smaller aggregates of nanometric size. Fourier transform infrared spectroscopy was used for both recognizing the deposited material and analyzing its secondary structure. Results showed that the protein underwent reversible self-association during the deposition process. Actually, preliminary tests of MAPLE deposited lipase used for soybean oil transesterification with isopropyl alcohol followed by gas chromatography–mass spectrometry gave results consistent with undamaged deposition of lipase.

  2. Structural characterization of copolymer embedded magnetic nanoparticles

    Science.gov (United States)

    Nedelcu, G. G.; Nastro, A.; Filippelli, L.; Cazacu, M.; Iacob, M.; Rossi, C. Oliviero; Popa, A.; Toloman, D.; Dobromir, M.; Iacomi, F.

    2015-10-01

    Small magnetic nanoparticles (Fe3O4) were synthesized by co-precipitation and coated by emulsion polymerization with poly(methyl methacrylate-co-acrylic acid) (PMMA-co-AAc) to create surface functional groups that can attach drug molecules and other biomolecules. The coated and uncoated magnetite nanoparticles were stored for two years in normal closed ships and than characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, vibrating sample magnetometry, and electron paramagnetic resonance spectroscopy. The solid phase transformation of magnetite to maghemite, as well as an increase in particle size were evidenced for the uncoated nanoparticles. The coated nanoparticles preserved their magnetite structure and magnetic properties. The influences of monomers and surfactant layers on interactions between the magnetic nanoparticles evidenced that the thickness of the polymer has a significant effect on magnetic properties.

  3. Optical and Structural Characterizations of GaN Nano structures

    International Nuclear Information System (INIS)

    Shekari, L.; Abu Hassan, H.; Thahab, S.M.

    2011-01-01

    We have grown wurtzite GaN nano wires (NWs) on polished silicon (Si) either with or without Au as catalyst, using commercial GaN powder by thermal evaporation in an atmosphere of argon (Ar) gas. Structural and optical characterizations were performed using high resolution X-ray diffraction (HR-XRD), scanning electron microscopy (SEM), photoluminescence (PL) and energy-dispersive X-ray spectroscopy (EDX) spectroscopy. Results indicate that the nano wires are of single-crystal hexagonal GaN and the nano wires on Si with Au catalyst are more oriented than those without Au catalyst; and using catalyst make the NWs grow much faster and quite well-ordered. The compositional quality of the grown nano wires on the substrates are mostly same, however the nano wires on the Au coated silicon are of low density, while the nano wires on the Si are of high density. (author)

  4. Gold-copper nano-alloy, "Tumbaga", in the era of nano: phase diagram and segregation.

    Science.gov (United States)

    Guisbiers, Grégory; Mejia-Rosales, Sergio; Khanal, Subarna; Ruiz-Zepeda, Francisco; Whetten, Robert L; José-Yacaman, Miguel

    2014-11-12

    Gold-copper (Au-Cu) phases were employed already by pre-Columbian civilizations, essentially in decorative arts, whereas nowadays, they emerge in nanotechnology as an important catalyst. The knowledge of the phase diagram is critical to understanding the performance of a material. However, experimental determination of nanophase diagrams is rare because calorimetry remains quite challenging at the nanoscale; theoretical investigations, therefore, are welcomed. Using nanothermodynamics, this paper presents the phase diagrams of various polyhedral nanoparticles (tetrahedron, cube, octahedron, decahedron, dodecahedron, rhombic dodecahedron, truncated octahedron, cuboctahedron, and icosahedron) at sizes 4 and 10 nm. One finds, for all the shapes investigated, that the congruent melting point of these nanoparticles is shifted with respect to both size and composition (copper enrichment). Segregation reveals a gold enrichment at the surface, leading to a kind of core-shell structure, reminiscent of the historical artifacts. Finally, the most stable structures were determined to be the dodecahedron, truncated octahedron, and icosahedron with a Cu-rich core/Au-rich surface. The results of the thermodynamic approach are compared and supported by molecular-dynamics simulations and by electron-microscopy (EDX) observations.

  5. Characterization of 2d Lattice Structures Using Laser Ultrasonics

    Science.gov (United States)

    Samala, Praveen R.; Smith, James A.; Shi, Zhiqiang

    2009-03-01

    As requirements for structural performance increases with time, engineered structures and materials are becoming much more complex. Lattice structural elements are a prime example of high performance structural elements that maintain structural rigidity, resistance to vibration, and functionality while keeping weight down. Unfortunately, the lattice network makes characterizing the structure for material and structural defects very challenging. The focus of this paper is to understand the ultrasonic wave propagation through 2D lattice structures for characterization purposes. Understanding the response of ultrasonic waves to lattice structures will help to optimize the design of ultrasonic/acoustic testing techniques as well as outline the boundaries of applicability for ultrasonic testing.

  6. Polarization Characterization of a Multi-Moded Feed Structure

    Data.gov (United States)

    National Aeronautics and Space Administration — The Polarization Characterization of a Multi-Moded Feed Structure projects characterize the polarization response of a multi-moded feed horn as an innovative...

  7. Structure Characterization calculation of Tetragonal Zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Feng, J; Wang, X Y; Ren, X R; Huang, Z C; Pan, W [State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Zhou, R, E-mail: fengj09@mails.tsinghua.edu.cn, E-mail: panw@mail.tsinghua.edu.cn [Key Laboratory of Advanced Materials of Precious-Nonferrous Metals, Education Ministry of China, Kunming University of Science and Technology, Kunming 650093 (China)

    2011-10-29

    Structure characterization and elastic properties of tetragonal phase of zirconia have been investigated by density functional theory (DFT). The XRD spectrums and vibration properties of Raman active modes of T-ZrO{sub 2} were calculated and the results were compared with references. The calculated results have showed researchers may distinguish cubic and tetragonal phases used XRD spectrums in the 2 range of 72.5{sup 0}-75.5{sup 0}, 122{sup 0}-129{sup 0} and 138{sup 0}-148{sup 0}. The calculated vibrated properties of Raman active modes as follows: the modes of Zr-O stretching are 262.6, 486.2, and 641.6 cm{sup -1} the modes of Zr-O bending and O-O coupling are 344.4 and 606.9 cm{sup -1} and the modes of Zr-O-Zr or O-Zr-O bending is 141.2 cm{sup -1}.

  8. Characterization of Forest Structure and an Assessment of Litter ...

    African Journals Online (AJOL)

    Characterization of Forest Structure and an Assessment of Litter Production, Accumulation and Litter-asscociated Invertebrates in Two Naturally Occuring Rhizophora mucronata Stands in Mauritius (Indian Ocean)

  9. Hydrothermal synthesis, structure and characterization of new ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Hydrothermal; crystal structure; solid electrolyte; iron (III) pyrophosphate. 1. Introduction ... tion, structure and electrical conductivity and the higher values of ..... type cavity structure. Acknowledgements. The authors would like to express their thanks to DST,. New Delhi, for financial assistance under the projects.

  10. SDSL-ESR-based protein structure characterization

    NARCIS (Netherlands)

    Strancar, J.; Kavalenka, A.A.; Urbancic, I.; Ljubetic, A.; Hemminga, M.A.

    2010-01-01

    As proteins are key molecules in living cells, knowledge about their structure can provide important insights and applications in science, biotechnology, and medicine. However, many protein structures are still a big challenge for existing high-resolution structure-determination methods, as can be

  11. Soil structure characterized using computed tomographic images

    Science.gov (United States)

    Zhanqi Cheng; Stephen H. Anderson; Clark J. Gantzer; J. W. Van Sambeek

    2003-01-01

    Fractal analysis of soil structure is a relatively new method for quantifying the effects of management systems on soil properties and quality. The objective of this work was to explore several methods of studying images to describe and quantify structure of soils under forest management. This research uses computed tomography and a topological method called Multiple...

  12. Hydrothermal synthesis, structure and characterization of new ...

    Indian Academy of Sciences (India)

    Unknown

    The structure has tunnel-type cavities and are congenial for ion transportation through them. The compound exhibits moderate thermal stability. Keywords. Hydrothermal; crystal structure; solid electrolyte; iron (III) pyrophosphate. 1. Introduction. NASICON and related compounds belong to the well known family of solid ...

  13. Powder diffraction in structural characterization of ...

    Indian Academy of Sciences (India)

    Administrator

    qualitative and quantitative phase analysis, and an important method for ... Its crystal structure solved from single-crystal data is also presented here. 2. Experimental. 2.1 Synthesis. Compounds 1–5 were synthesized following the reported method. 22 ..... used the same approach in structural characteriza- tion of nine new ...

  14. Structural and Luminescent Characterization of Uraniferous ...

    Indian Academy of Sciences (India)

    68

    devised based on the presence of uranium as a substituent in the structure and also on its adsorption on silica and other clay minerals. Due to the entrapment of the uranium in the structure of haematite and FAP, leaching with mild complexing agents such as sodium bicarbonate solutions and citric acid will not serve the ...

  15. Preparation, Structure Characterization and Thermal Decomposition ...

    African Journals Online (AJOL)

    NJD

    m-Methylbenzoic acid, 1,10-phenanthroline, dysprosium complex, crystal structure, thermal analysis. 1. Introduction. The complexes of rare earth ions and aromatic carboxylic acids have various coordination modes, and various crystal structures, which show interesting polymeric networks or chain struc- tures.1–3 They are ...

  16. Syntheses and structural characterization of new dithiophosphinato ...

    Indian Academy of Sciences (India)

    L4) and 2-propyl, (L5). To the best of our knowledge, this is the first report on the preparation and characterization of the n-butyl- derivative. The acid forms of the ligands were obtained by treatment of the Lawesson reagent, (LR) [2,4-bis(4-.

  17. Structuring a cost-effective site characterization

    International Nuclear Information System (INIS)

    Berven, B.A.; Little, C.A.; Swaja, R.E.

    1990-01-01

    Successful chemical and radiological site characterizations are complex activities which require meticulously detailed planning. Each layer of investigation is based upon previously generated information about the site. Baseline historical, physical, geological, and regulatory information is prerequisite for preliminary studies at a site. Preliminary studies then provide samples and measurements which define the identity of potential contaminants and define boundaries around the area to be investigated. The goal of a full site characterization is to accurately determine the extent and magnitude of contaminants and carefully define the site conditions such that the future movements of site contaminants can be assessed for potential exposure to human occupants and/or environmental impacts. Critical to this process is the selection of appropriate measurement and sampling methodology, selection and use of appropriate instrumentation and management/interpretation of site information. Site investigations require optimization between the need of information to maximize the understanding of site conditions and the cost of acquiring that information. 5 refs., 1 tab

  18. Advanced Structural Characterization of Organic Thin Films

    DEFF Research Database (Denmark)

    Gu, Yun

    by optical, surface and X-ray method. We describe the production of Langmuir-Blodgett film and how the absorption spectroscopy is a powerful tool to identify layer of monomer and dimer. X-ray refelctometry has been applied as a method for the study of the multilayer film and interface structure. A separation...

  19. Synthesis, characterization and crystal structure of a ...

    African Journals Online (AJOL)

    The Mo atom in the complex is in octahedral coordination. Thermal stability of the complex has also been studied. KEY WORDS: Molybdenum complex, Hydrazone ligand, Crystal structure, X-ray diffraction, Thermal property. Bull. Chem. Soc. Ethiop. 2014, 28(3), 409-414. DOI: http://dx.doi.org/10.4314/bcse.v28i3.10 ...

  20. Synthesis, spectroscopic characterization and electronic structure of ...

    Indian Academy of Sciences (India)

    Unknown

    Copper(I) carbene complex; carbene complex synthesis; Cu(I)–carbene electronic structure. 1. Introduction. Metal carbene complexes are arguably the most ver- satile organometallic reagents that have been devel- oped for organic synthesis.1 Different reactions of these complexes have been reported since their dis-.

  1. Structural and ethnobotanical characterization of velvet tamarind ...

    African Journals Online (AJOL)

    The velvet tamarind (Dialium guineense Willd) is one of the key species for domestication in Sub-Saharan Africa. In order to help the sustainable management and conservation of this species, its structural characteristics and ethnobotanical traits were studied in the 4 vegetation types (typical dense forest, degraded dense ...

  2. Structural characterization of vegetation in the fynbos biome

    CSIR Research Space (South Africa)

    Campbell, BM

    1981-08-01

    Full Text Available A proposed system for the standardization of descriptive terminology for structural characterization of vegetation in the Fynbos Biome is presented in tabular form. Specific applications of the system are described and illustrations of some...

  3. Synthesis, characterization, x-ray structure and antimicrobial activity ...

    African Journals Online (AJOL)

    Purpose: To synthesize thiosemicarbazide and determine its antimicrobial properties. Methods: Pyridine-based thiosemicarbazide was synthesized, characterized and evaluated for antimicrobial activity. The structure of the synthesized compound was established by spectral analysis, namely, Fourier transform infrared ...

  4. Structural characterization of some substituted azolidine molecules

    International Nuclear Information System (INIS)

    Andreocci, M.V.; Bossa, M.; Furlani, C.; Mattogno, G.; Zanoni, R.; Consiglio Nazionale delle Ricerche, Rome; Devillanova, F.A.; Verani, G.

    1981-01-01

    The electronic structure of a series of organic molecules of general formula RN - (CH 2 ) 2 - X - C = Y, which are also of interest in inorganic chemistry because of their properties as ligands towards metals, have been investigated by X-ray photoelectron spectroscopy. The results suggest a general picture of atomic charge distribution within the investigated molecules, and allow an assessment of the effect of the different substituent groups X, Y, R (X = NR', O, S, CH 2 ; Y = O, S, Se; R, R' = H, alkyl) on the electronic structure of the ligands. Satisfactory correlation is found between experimental binding energies and computed CNDO/2 atomic charges, after correction for intramolecular Madelung potentials. (orig.)

  5. Syntheses and structural characterization of new dithiophosphinato ...

    Indian Academy of Sciences (India)

    six-coordination.13 The nickel(II) complexes are exclu- sively mono-nuclear and generally of a square-planar topology as is the case with other soft ligands; whereas,. DTPA complexes of manganese(II), cobalt(II), Zinc(II) and cadmium(II) are known to display four coordi- nated, dimeric structures.14 In the case of the latter ...

  6. Characterization of graphene quantum dot hybrid structures

    Science.gov (United States)

    Chung, Ting-Fung; Hu, Jiuning; Jauregui, Luis A.; Chen, Liangliang; Zhao, Qing; Ruan, Xiulin; Chen, Yong P.

    2012-02-01

    We report electrical transport, photo-electric response and Raman spectroscopy measurements in macroscopic samples of graphene decorated with inorganic quantum dots (CdSe QDs). QDs are deposited on chemical vapor deposition (CVD) graphene by spin-coating. Raman measurements of graphene decorated with QDs on Si wafer show very similar spectra with clear G and 2D peaks that reveal no degradation of graphene during the QDs deposition process. Furthermore, two types of device architectures (QDs-graphene and graphene-QDs-graphene) are fabricated with graphene as a transparent electrode and QD as a light absorbent for electrical photoresponse characterization. Upon application of either a broadband light source or a 532-nm monochromatic laser source, graphene-QDs-graphene devices demonstrate photoconducting response, but not in the case of QDs-graphene devices.

  7. Characterization of Steel Foams for Structural Components

    Directory of Open Access Journals (Sweden)

    Sanjay R. Arwade

    2012-11-01

    Full Text Available Experimentally measured mechanical properties of hollow sphere steel foam are the subject of this paper. The characterization of the hollow sphere foam encompasses compressive yield stress and densification strain, compressive plastic Poisson’s ratio, and compressive unloading modulus, as well as tensile elastic modulus, tensile unloading modulus, tensile yield stress, and tensile fracture strain. Shear properties are also included. These tests provide sufficient information to allow calibration of a macroscopic, continuum constitutive model. Calibrated foam plasticity parameters are tabulated, and unique feature of foam plasticity are explained. Also, initial development of mesoscale simulations, which explicitly model voids and sintered hollow spheres, is reported. This work is part of a larger effort to help the development of steel foam as a material with relevance to civil engineering applications.

  8. Structural characterization of water-metal interfaces

    Science.gov (United States)

    Ryczko, Kevin; Tamblyn, Isaac

    2017-08-01

    We analyze and compare the structural, dynamical, and electronic properties of liquid water next to prototypical metals including Pt, graphite, and graphene. Our results are built on Born-Oppenheimer molecular dynamics (BOMD) generated using density functional theory (DFT) which explicitly include van der Waals (vdW) interactions within a first principles approach. All calculations reported use large simulation cells, allowing for an accurate treatment of the water-electrode interfaces. We have included vdW interactions through the use of the optB86b-vdW exchange correlation functional. Comparisons with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional are also shown. We find an initial peak, due to chemisorption, in the density profile of the liquid water-Pt interface not seen in the liquid water-graphite interface, liquid water-graphene interface, nor interfaces studied previously. To further investigate this chemisorption peak, we also report differences in the electronic structure of single water molecules on both Pt and graphite surfaces. We find that a covalent bond forms between the single water molecule and the Pt surface but not between the single water molecule and the graphite surface. We also discuss the effects that defects and dopants in the graphite and graphene surfaces have on the structure and dynamics of liquid water.

  9. Continuous Dimensionality Characterization of Image Structures

    DEFF Research Database (Denmark)

    Felsberg, Michael; Kalkan, Sinan; Krüger, Norbert

    2009-01-01

    Intrinsic dimensionality is a concept introduced by statistics and later used in image processing to measure the dimensionality of a data set. In this paper, we introduce a continuous representation of the intrinsic dimension of an image patch in terms of its local spectrum or, equivalently, its...... is the representation of confidences as prior probabilities which can be used within a probabilistic framework. To show the potential of our continuous representation, we highlight applications in various contexts such as image structure classification, feature detection and localisation, visual scene statistics...... and optic flow evaluation....

  10. Crystal structure, characterization and magnetic properties of a 1D ...

    Indian Academy of Sciences (India)

    Single crystal X-ray structural characterization revealsthat the side arm carboxylate group of the coordinated Schiff base exhibits a μ 1 , 3 -bridging mode and connectsthe neighbouring copper(II) ions leading to a zigzag 1D chain structure where the copper(II) ions displaydistorted square pyramidal geometries. Variable ...

  11. Structural characterization of MAPLE deposited lipase biofilm

    Science.gov (United States)

    Aronne, Antonio; Ausanio, Giovanni; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Fanelli, Esther; Massoli, Patrizio; Vicari, Luciano R. M.

    2014-11-01

    Lipases (triacylglycerol ester hydrolases) are enzymes used in several industrial applications. Enzymes immobilization can be used to address key issues limiting widespread application at industrial level. Immobilization efficiency is related to the ability to preserve the native conformation of the enzyme. MAPLE (Matrix Assisted Pulsed Laser Evaporation) technique, a laser deposition procedure for treating organic/polymeric/biomaterials, was applied for the deposition of lipase enzyme in an ice matrix, using near infrared laser radiation. Microscopy analysis showed that the deposition occurred in micrometric and submicrometric clusters with a wide size distribution. AFM imaging showed that inter-cluster regions are uniformly covered with smaller aggregates of nanometric size. Fourier transform infrared spectroscopy was used for both recognizing the deposited material and analyzing its secondary structure. Results showed that the protein underwent reversible self-association during the deposition process. Actually, preliminary tests of MAPLE deposited lipase used for soybean oil transesterification with isopropyl alcohol followed by gas chromatography-mass spectrometry gave results consistent with undamaged deposition of lipase.

  12. Characterization of fluid transport in microscale structures

    Energy Technology Data Exchange (ETDEWEB)

    Paul, P.H.

    1998-01-01

    A new tool for imaging both scalar transport and velocity fields in liquid flows through microscale structures is described. The technique employs an ultraviolet laser pulse to write a pattern into the flow by uncaging a fluorescent dye. This is followed, at selected time delays, by flood illumination with a pulse of visible light which excites the uncaged dye. The resulting fluorescence image collected onto a sensitive CCD camera. The instrument is designed as an oil immersion microscope to minimize the beam steering effects. The caged fluorescent dye is seeded in trace quantities throughout the active fluid, thus images with high contrast and minimal distortion due to any molecular diffusion history can be obtained at any point within the microchannel by selectivity activating the dye in the immediate region of interest. The author reports images of pressure- and electrokinetically-driven steady flow within round cross section capillaries having micron scale inner diameters. The author also demonstrates the ability to recover the velocity profile from a time sequence of these scalar images by direct inversion of the conserved scalar advection-convection equation.

  13. Structural and Geophysical Characterization of Oklahoma Basement

    Science.gov (United States)

    Morgan, C.; Johnston, C. S.; Carpenter, B. M.; Reches, Z.

    2017-12-01

    Oklahoma has experienced a large increase in seismicity since 2009 that has been attributed to wastewater injection. Most earthquakes, including four M5+ earthquakes, nucleated at depths > 4 km, well within the pre-Cambrian crystalline basement, even though wastewater injection occurred almost exclusively in the sedimentary sequence above. To better understand the structural characteristics of the rhyolite and granite that makeup the midcontinent basement, we analyzed a 150 m long core recovered from a basement borehole (Shads 4) in Rogers County, NE Oklahoma. The analysis of the fracture network in the rhyolite core included measurements of fracture inclination, aperture, and density, the examination fracture surface features and fill minerology, as well as x-ray diffraction analysis of secondary mineralization. We also analyzed the highly fractured and faulted segments of the core with a portable gamma-ray detector, magnetometer, and rebound hammer. The preliminary analysis of the fractures within the rhyolite core showed: (1) Fracture density increasing with depth by a factor of 10, from 4 fractures/10m in the upper core segment to 40 fracture/10m at 150 m deeper. (2) The fractures are primarily sub-vertical, inclined 10-20° from the axis of the vertical core. (3) The secondary mineralization is dominated by calcite and epidote. (4) Fracture aperture ranges from 0.35 to 2.35mm based on the thickness of secondary filling. (5) About 8% of the examined fractures display slickenside striations. (6) Increases of elasticity (by rebound hammer) and gamma-ray emissions are systematically correlated with a decrease in magnetic susceptibility in core segments of high fracture density and/or faulting; this observation suggests diagenetic fracture re-mineralization.

  14. Modal analysis application for dynamic characterization of simple structures

    International Nuclear Information System (INIS)

    Pastorini, A.J.; Belinco, C.G.

    1987-01-01

    The knowledge of the dynamic characteristics of a structure helps to foresee the vibrating behaviour under operating conditions. The modal analysis techniques offer a method to perform the dynamic characterization of a studied structure from the vibration modes of such structure. A hammer provided with a loaded cell to excite a wide frequency band and accelerometer and, on the basis of a measurement of the transfer function at different points, various simple structures were given with a dynamic structures analysis (of the type of Fourier's rapidly transformation) and the results were compared with those obtained by other methods. Different fields where these techniques are applied, are also enumerated. (Author)

  15. Carbon nano structures: Production and characterization

    Science.gov (United States)

    Beig Agha, Rosa

    L'objectif de ce memoire est de preparer et de caracteriser des nanostructures de carbone (CNS -- Carbon Nanostructures, en licence a l'Institut de recherche sur l'hydrogene, Quebec, Canada), un carbone avec un plus grand degre de graphitisation et une meilleure porosite. Le Chapitre 1 est une description generale des PEMFCs (PEMFC -- Polymer Electrolyte Membrane Fuel Cell) et plus particulierement des CNS comme support de catalyseurs, leur synthese et purification. Le Chapitre 2 decrit plus en details la methode de synthese et la purification des CNS, la theorie de formation des nanostructures et les differentes techniques de caracterisation que nous avons utilises telles que la diffraction aux rayons-X (XRD -- X-ray diffraction), la microscopie electronique a transmission (TEM -- transmission electron microscope ), la spectroscopie Raman, les isothermes d'adsorption d'azote a 77 K (analyse BET, t-plot, DFT), l'intrusion au mercure, et l'analyse thermogravimetrique (TGA -- thermogravimetric analysis). Le Chapitre 3 presente les resultats obtenus a chaque etape de la synthese des CNS et avec des echantillons produits a l'aide d'un broyeur de type SPEXRTM (SPEX/CertiPrep 8000D) et d'un broyeur de type planetaire (Fritsch Pulverisette 5). La difference essentielle entre ces deux types de broyeur est la facon avec laquelle les materiaux sont broyes. Le broyeur de type SPEX secoue le creuset contenant les materiaux et des billes d'acier selon 3 axes produisant ainsi des impacts de tres grande energie. Le broyeur planetaire quant a lui fait tourner et deplace le creuset contenant les materiaux et des billes d'acier selon 2 axes (plan). Les materiaux sont donc broyes differemment et l'objectif est de voir si les CNS produits ont les memes structures et proprietes. Lors de nos travaux nous avons ete confrontes a un probleme majeur. Nous n'arrivions pas a reproduire les CNS dont la methode de synthese a originellement ete developpee dans les laboratoires de l'Institut de

  16. Three-dimensional structural characterization of nonwoven fabrics.

    Science.gov (United States)

    Venu, Lalith B Suragani; Shim, Eunkyoung; Anantharamaiah, Nagendra; Pourdeyhimi, Behnam

    2012-12-01

    Nonwoven materials are found in a gamut of critical applications. This is partly due to the fact that these structures can be produced at high speed and engineered to deliver unique functionality at low cost. The behavior of these materials is highly dependent on alignment of fibers within the structure. The ability to characterize and also to control the structure is important, but very challenging due to the complex nature of the structures. Thus, to date, focus has been placed mainly on two-dimensional analysis techniques for describing the behavior of nonwovens. This article demonstrates the utility of three-dimensional (3D) digital volumetric imaging technique for visualizing and characterizing a complex 3D class of nonwoven structures produced by hydroentanglement.

  17. Morphological and structural characterization of fly ash powders

    OpenAIRE

    Gabriel Peña-Rodríguez; Luis René Ortega-Triana

    2014-01-01

    Morphological and structural characterization of fly ash powder's reports are obtained from coal  combustion supplied by the thermal - electrical plant Termotasajero S.A. The morphological study consisted in the superficial analysis, using Scanning electron microscopy (SEM). The basic chemical composition was found using X ray energy dispersion spectrums (EDX - SEM) whereas structural characterization was developed by X-ray diffraction (XRD). The software Image tool V. 3.0. was used for the p...

  18. Characterizations of identified sets delivered by structural econometric models

    OpenAIRE

    Chesher, Andrew; Rosen, Adam M.

    2016-01-01

    This paper develops characterizations of identified sets of structures and structural features for complete and incomplete models involving continuous and/or discrete variables. Multiple values of unobserved variables can be associated with particular combinations of observed variables. This can arise when there are multiple sources of heterogeneity, censored or discrete endogenous variables, or inequality restrictions on functions of observed and unobserved variables. The models generalize t...

  19. STRUCTURAL CHARACTERIZATION OF LITHIUM DOPED NZP Na1

    African Journals Online (AJOL)

    DR. AMIN

    2011-06-01

    Jun 1, 2011 ... Pet'kov et al, (2003) characterized the structure and thermal properties of the composition Na1-xLixZr2(PO4)3, x=0.0,0.3 and 0.5. In this work we report in detail the structure, lattice ... inside a gas-heated furnace for eight hours at successive .... electrical conductivity of the sample. Fig. 9 is a plot of the ...

  20. Characterization of Structure and Damage in Materials in Four Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, I. M. [Univ. of Illinois, Urbana, IL (United States); Schuh, C. A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Vetrano, J. S. [U.S. Department of Energy, Washington, DC (United States); Browning, N. D. [Univ. of California, Davis, CA (United States); Field, D. P. [Washington State Univ., Pullman, WA (United States); Jensen, D. J. [Technical Univ. of Denmark, Roskilde (Denmark); Miller, M. K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baker, I. [Darmouth College, Hanover, NH (United States); Dunand, D. C. [Northwestern Univ., Evanston, IL (United States); Dunin-Borkowski, R. [Technical Univ. of Denmark, Lyngby (Denmark); Kabius, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Kelly, T. [Cameca Instruments Corp., Madison, WI (United States); Lozano-Perez, S. [Univ. of Oxford (United Kingdom); Misra, A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rohrer, G. S. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Rollett, A. D. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Taheri, M. [Drexel Univ., Philadelphia, PA (United States); Thompson, G. B. [Univ. of Alabama, Tuscaloosa, AL (United States); Uchic, M. [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States); Wang, X. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Was, G. [Univ. of Michigan, Ann Arbor, MI (United States)

    2010-09-30

    The materials characterization toolbox has recently experienced a number of parallel revolutionary advances, foreshadowing a time in the near future when materials scientists can quantify material structure across orders of magnitude in length and time scales (i.e., in four dimensions) completely. This paper presents a viewpoint on the materials characterization field, reviewing its recent past, evaluating its present capabilities, and proposing directions for its future development. Electron microscopy; atom-probe tomography; X-ray, neutron and electron tomography; serial sectioning tomography; and diffraction-based analysis methods are reviewed, and opportunities for their future development are highlighted. Particular attention is paid to studies that have pioneered the synergetic use of multiple techniques to provide complementary views of a single structure or process; several of these studies represent the state-of-the-art in characterization, and suggest a trajectory for the continued development of the field. Based on this review, a set of grand challenges for characterization science is identified, including suggestions for instrumentation advances, scientific problems in microstructure analysis, and complex structure evolution problems involving materials damage. The future of microstructural characterization is proposed to be one not only where individual techniques are pushed to their limits, but where the community devises strategies of technique synergy to address complex multiscale problems in materials science and engineering.

  1. DNA binding and cleavage activity of a structurally characterized Ni ...

    Indian Academy of Sciences (India)

    1375–1381. c Indian Academy of Sciences. DOI 10.1007/s12039-015-0900-4. DNA binding and cleavage activity of a structurally characterized Ni(II). Schiff base complex. SARAT CHANDRA KUMARa, ABHIJIT PALa, MERRY MITRAa,. V M MANIKANDAMATHAVANb, CHIA -HER LINc, BALACHANDRAN UNNI NAIRb,∗.

  2. Structural, magnetic and photocatalytic characterization of Bi1 ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 1. Structural, magnetic and photocatalytic characterization of Bi 1 − x La x FeO 3 nanoparticles synthesized by thermal decomposition method. S M MASOUDPANAH S M MIRKAZEMI R BAGHERIYEH F JABBARI F BAYAT. Volume 40 Issue 1 February 2017 pp ...

  3. Syntheses, characterization and crystal structures of potassium and ...

    Indian Academy of Sciences (India)

    Syntheses, characterization and crystal structures of potassium and barium complexes of a Schiff base ligand with different anions. Bhavesh Parmar Kamal Kumar Bisht Pratyush Maiti Parimal Paul Eringathodi Suresh. Special issue on Chemical Crystallography Volume 126 Issue 5 September 2014 pp 1373-1384 ...

  4. Synthesis, characterization and crystal structure of new nickel ...

    Indian Academy of Sciences (India)

    Abstract. A novel nickel molybdenum complex with the 2,6-pyridine dicarboxylic acid ligand was successfully synthesized and characterized by thermogravimetric analysis and single crystal X-ray crystallography. The single-crystal X-ray data revealed that the structure is a hydrated 1-D polymer with two different Ni sites.

  5. Characterization of Forest Structure and an Assessment of Litter ...

    African Journals Online (AJOL)

    Nafiisah

    Many studies have cited mangroves as being among the most productive ecosystems of the world in terms of gross primary productivity and litter turnover, which forms a major food source for most estuarine animals. The present study aimed at characterizing the forest structure and assessing litter production, accumulation ...

  6. Structural and biochemical characterization of 3-hydroxybenzoate 6-hydroxylase

    NARCIS (Netherlands)

    Montersino, S.

    2012-01-01

    The thesis deals with the characterization of a new flavoprotein hydroxylase 3 hydroxybenzoate 6-hydroxylase (3HB6H) from Rhodococcus jostii RHA1. 3HB6H is able to insert exclusively oxygen in para-position and the enzyme has been chosen to study the structural basis of such regioselectivity. As

  7. Characterization of chicken riboflavin carrier protein gene structure ...

    Indian Academy of Sciences (India)

    Unknown

    chicken RCP gene regulation, the structure and the 5′ flanking region of the gene have been characterized. 2. Methods. 2.1 Isolation of RCP genomic clones ..... The work was supported by the Department of Science and Tech- nology, New Delhi by a grant to PK. References. Adiga P R 1994 Riboflavin Carrier Protein in ...

  8. Characterizing Thematized Derivative Schema by the Underlying Emergent Structures

    Science.gov (United States)

    Garcia, Mercedes; Llinares, Salvador; Sanchez-Matamoros, Gloria

    2011-01-01

    This paper reports on different underlying structures of the derivative schema of three undergraduate students that were considered to be at the trans level of development of the derivative schema (action-process-object-schema). The derivative schema is characterized in terms of the students' ability to explicitly transfer the relationship between…

  9. DNA binding and cleavage activity of a structurally characterized Ni ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 8. DNA binding and cleavage activity of a structurally characterized Ni(II) Schiff base complex. Sarat Chandra Kumar Abhijit Pal Merry Mitra V M Manikandamathavan Chia -Her Lin Balachandran Unni Nair Rajarshi Ghosh. Regular Articles Volume 127 ...

  10. Synthesis, characterization, X-ray crystal structure, electrochemical ...

    Indian Academy of Sciences (India)

    DOI 10.1007/s12039-015-0978-8. Synthesis, characterization, X-ray crystal structure, electrochemical evaluation and anti-cancer studies of a mixed ligand Cu(II) complex of (E)-N -((2-hydroxynaphthalen-1-yl)methylene)acetohydrazide. IRAN SHEIKHSHOAIEa, S YOUSEF EBRAHIMIPOURa,∗, MAHDIEH SHEIKHSHOAIEa,.

  11. Characterization and global analysis of a family of Poisson structures

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Bermejo, Benito [Escuela Superior de Ciencias Experimentales y Tecnologia, Edificio Departamental II, Universidad Rey Juan Carlos, Calle Tulipan S/N, 28933 (Mostoles), Madrid (Spain)]. E-mail: benito.hernandez@urjc.es

    2006-06-26

    A three-dimensional family of solutions of the Jacobi equations for Poisson systems is characterized. In spite of its general form it is possible the explicit and global determination of its main features, such as the symplectic structure and the construction of the Darboux canonical form. Examples are given.

  12. Structural and electrical characterization of zinc oxide doped with antimony

    Directory of Open Access Journals (Sweden)

    G. Juárez Díaz

    2014-08-01

    Full Text Available In this work we report the results of structural and electrical characterization realized on zinc oxide single crystal samples with (001 orientation, which were doped with antimony. Doping was carried out by antimony thermal diffusion at 1000 °C for periods of 1 and 2 hours under nitrogen environment from a solid source formed by antimony oxide. Electrical characterization by I-V curves and Hall effect shown an increase in acceptor concentration which demonstrates that doping is effective and create holes in zinc oxide samples.

  13. Seismic site characterization for nuclear structures and power plants

    International Nuclear Information System (INIS)

    Boominathan, A.

    2004-01-01

    Seismic site characterization is carried out for the construction of nuclear structures and power plants in earthquake-prone areas to establish the occurrence of severe seismic hazards such as tectonic rupture, surface faulting, large scale liquefaction, sliding and seismic settlement which may alter the overall stability of the site. Seismic characterization is required to finalize the design earthquake parameters including choosing input seismic data. As a part of the investigation, measurements of relevant dynamic parameters both in laboratory and in situ have been made for carrying out dynamic soil structure interaction analysis, for determination of dynamic deformation, seismic settlement and dynamic response spectrum of the site, and for calculating dynamic earth pressure acting on retaining structures. We discuss here the seismic investigation components and methods, measurement of P- and S- wave velocities in the field and estimation of important dynamic parameters such as maximum shear modulus, modulus reduction curve, damping ratio, seismic site classification, predominant site period, liquefaction analysis through case studies for nuclear structures at Kalpakkam and Kudankulam and power plant structures at New Delhi and Konaseema. (author)

  14. Preparation, crystal structure, and characterization of an inorganic ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 120; Issue 3. Preparation, crystal structure, and characterization of an inorganic-organic hybrid polyoxoniobate [Cu(en)2]3[Cu(en)2(H2O)]1.5[K0.5Nb24O72H14.5]2.25H2O. Jing-Ping Wang Hong-Yu Niu Jing-Yang Niu. Volume 120 Issue 3 May 2008 pp 309-313 ...

  15. Characterization of electronic structure of periodically strained graphene

    Energy Technology Data Exchange (ETDEWEB)

    Aslani, Marjan; Garner, C. Michael, E-mail: mcgarner@stanford.edu; Nishi, Yoshio [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Kumar, Suhas [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304 (United States); Nordlund, Dennis [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Pianetta, Piero [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States)

    2015-11-02

    We induced periodic biaxial tensile strain in polycrystalline graphene by wrapping it over a substrate with repeating pillar-like structures with a periodicity of 600 nm. Using Raman spectroscopy, we determined to have introduced biaxial strains in graphene in the range of 0.4% to 0.7%. Its band structure was characterized using photoemission from valance bands, shifts in the secondary electron emission, and x-ray absorption from the carbon 1s levels to the unoccupied graphene conduction bands. It was observed that relative to unstrained graphene, strained graphene had a higher work function and higher density of states in the valence and conduction bands. We measured the conductivity of the strained and unstrained graphene in response to a gate voltage and correlated the changes in their behavior to the changes in the electronic structure. From these sets of data, we propose a simple band diagram representing graphene with periodic biaxial strain.

  16. Dimensional characterization of biperiodic imprinted structures using optical scatterometry

    KAUST Repository

    Gereige, Issam

    2013-12-01

    In this paper, we report on the characterization of biperiodic imprinted structures using a non-destructive optical technique commonly called scatterometry. The nanostructures consist of periodic arrays of square and circular dots which were imprinted in a thermoplastic polymer by thermal nanoimprint lithography. Optical measurements were performed using spectroscopic ellipsometry in the spectral region of 1.5-4 eV. The geometrical profiles of the imprinted structures were reconstructed using the Rigorous Coupled-Wave Analysis (RCWA) to model the diffraction phenomena by periodic gratings. The technique was also adapted for large scale evaluation of the imprint process. Uniqueness of the solution was examined by analyzing the diffraction of the structure at different experimental conditions, for instance at various angles of incidence. © 2013 Elsevier B.V. All rights reserved.

  17. Porous Structure Characterization in Titanium Coating for Surgical Implants

    Directory of Open Access Journals (Sweden)

    M.V. Oliveira

    2002-09-01

    Full Text Available Powder metallurgy techniques have been used to produce controlled porous structures, such as the porous coatings applied for dental and orthopedic surgical implants, which allow bony tissue ingrowth within the implant surface improving fixation. This work presents the processing and characterization of titanium porous coatings of different porosity levels, processed through powder metallurgy techniques. Pure titanium sponge powders were used for coating and Ti-6Al7Nb powder metallurgy rods were used as substrates. Characterization was made through quantitative metallographic image analysis using optical light microscope for coating porosity data and SEM analysis for evaluation of the coating/substrate interface integrity. The results allowed optimization of the processing parameters in order to obtain porous coatings that meet the requirements for use as implants.

  18. A structurally characterized nitrous oxide complex of vanadium.

    Science.gov (United States)

    Piro, Nicholas A; Lichterman, Michael F; Harman, W Hill; Chang, Christopher J

    2011-02-23

    Nitrous oxide (N(2)O), a widespread greenhouse gas, is a thermodynamically potent and environmentally green oxidant that is an attractive target for activation by metal centers. However, N(2)O remains underutilized owing to its high kinetic stability, and the poor ligand properties of this molecule have made well-characterized metal-N(2)O complexes a rarity. We now report a vanadium-pyrrolide system that reversibly binds N(2)O at room temperature and provide the first single-crystal X-ray structure of such a complex. Further characterization by vibrational spectroscopy and DFT calculations strongly favor assignment as a linear, N-bound metal-N(2)O complex.

  19. Characterization structural and morphology ZSM-5 zeolite by hydrothermal synthesis

    International Nuclear Information System (INIS)

    Silva, V.J.; Crispim, A.C.; Queiroz, M.B.; Laborde, H.M.; Rodrigues, M.G.F.; Menezes, R.R.

    2009-01-01

    Solid acids are catalytic materials commonly used in the chemical industry. Among these zeolites are the most important business processes including water treatment, gas separation, and cracking long hydrocarbon chains to produce high octane gasoline. Its synthesis, characterization and applications have been widely studied. The objective this study was to synthesize the ZSM-5 zeolite for future use in separation processes and catalysis. The zeolite ZSM-5 was prepared by hydrothermal synthesis at 170°C, using silica, deionized water and the director of structures (TPABr - tetrapropylammonium bromide). The materials were characterized by X ray diffraction (XRD), scanning electron microscopy (SEM) and semiquantitative chemical analysis by X ray fluorescence (XRF). According to the XRD was possible to observe the formation of ZSM-5 zeolite, with peaks intense and well defined. The SEM showed the formation of individual particles, clean, rounded shapes. (author)

  20. Characterizing structural transitions using localized free energy landscape analysis.

    Directory of Open Access Journals (Sweden)

    Nilesh K Banavali

    Full Text Available Structural changes in molecules are frequently observed during biological processes like replication, transcription and translation. These structural changes can usually be traced to specific distortions in the backbones of the macromolecules involved. Quantitative energetic characterization of such distortions can greatly advance the atomic-level understanding of the dynamic character of these biological processes.Molecular dynamics simulations combined with a variation of the Weighted Histogram Analysis Method for potential of mean force determination are applied to characterize localized structural changes for the test case of cytosine (underlined base flipping in a GTCAGCGCATGG DNA duplex. Free energy landscapes for backbone torsion and sugar pucker degrees of freedom in the DNA are used to understand their behavior in response to the base flipping perturbation. By simplifying the base flipping structural change into a two-state model, a free energy difference of upto 14 kcal/mol can be attributed to the flipped state relative to the stacked Watson-Crick base paired state. This two-state classification allows precise evaluation of the effect of base flipping on local backbone degrees of freedom.The calculated free energy landscapes of individual backbone and sugar degrees of freedom expectedly show the greatest change in the vicinity of the flipping base itself, but specific delocalized effects can be discerned upto four nucleotide positions away in both 5' and 3' directions. Free energy landscape analysis thus provides a quantitative method to pinpoint the determinants of structural change on the atomic scale and also delineate the extent of propagation of the perturbation along the molecule. In addition to nucleic acids, this methodology is anticipated to be useful for studying conformational changes in all macromolecules, including carbohydrates, lipids, and proteins.

  1. Rapid Characterization of Vegetation Structure with a Microsoft Kinect Sensor

    Directory of Open Access Journals (Sweden)

    George Azzari

    2013-02-01

    Full Text Available The importance of vegetation structure and biomass in controlling land-atmosphere exchange is widely recognized, but measurements of canopy structure are challenging, time consuming, and often rely on destructive methods. The Microsoft Kinect is an infrared sensor designed for video gaming that outputs synchronized color and depth images and that has the potential to allow rapid characterization of vegetation structure. We compared depth images from a Kinect sensor with manual measurements of plant structure and size for two species growing in a California grassland. The depth images agreed well with the horizontal and vertical measurements of plant size made manually. Similarly, the plant volumes calculated with a three-dimensional convex hulls approach was well related to plant biomass. The Kinect showed some limitations for ecological observation associated with a short measurement range and daytime light contamination. Nonetheless, the Kinect’s light weight, fast acquisition time, low power requirement, and cost make it a promising tool for rapid field surveys of canopy structure, especially in small-statured vegetation.

  2. Gold–Copper Nano-Alloy, “Tumbaga”, in the Era of Nano: Phase Diagram and Segregation

    Science.gov (United States)

    2015-01-01

    Gold–copper (Au–Cu) phases were employed already by pre-Columbian civilizations, essentially in decorative arts, whereas nowadays, they emerge in nanotechnology as an important catalyst. The knowledge of the phase diagram is critical to understanding the performance of a material. However, experimental determination of nanophase diagrams is rare because calorimetry remains quite challenging at the nanoscale; theoretical investigations, therefore, are welcomed. Using nanothermodynamics, this paper presents the phase diagrams of various polyhedral nanoparticles (tetrahedron, cube, octahedron, decahedron, dodecahedron, rhombic dodecahedron, truncated octahedron, cuboctahedron, and icosahedron) at sizes 4 and 10 nm. One finds, for all the shapes investigated, that the congruent melting point of these nanoparticles is shifted with respect to both size and composition (copper enrichment). Segregation reveals a gold enrichment at the surface, leading to a kind of core–shell structure, reminiscent of the historical artifacts. Finally, the most stable structures were determined to be the dodecahedron, truncated octahedron, and icosahedron with a Cu-rich core/Au-rich surface. The results of the thermodynamic approach are compared and supported by molecular-dynamics simulations and by electron-microscopy (EDX) observations. PMID:25338111

  3. Chemical and structural characterization of natural phosphate of Hahotoe (Togo

    Directory of Open Access Journals (Sweden)

    Jean Louis Lacout

    2003-12-01

    Full Text Available Chemical and structural characterizations of natural phosphates of Hahotoe (Togo have been performed. From chemical analysis and FTIR study, it can be concluded that the material is carbonated fluoroapatite with poor substitution of calcium by cadmium and manganese. From these results, the molecular formula proposed is: Ca9.925Cd0.004Mn0.013[(PO45.886 (CO30.113]F2.Powder X-ray diffraction fitting results confirm that compound belongs to the apatite family crystallising in the hexagonal system, space group P63/m. The cell parameters are: a = 9.3547(5 Å; c = 6.8929(4 Å.

  4. Use of thermal imaging in characterization of ceramic fiber structures

    International Nuclear Information System (INIS)

    Järveläinen, Matti; Keskinen, Lassi; Levänen, Erkki

    2013-01-01

    Fibrous bodies that contain open porosity can have a very heterogeneous structure that is difficult to characterize in terms of local flow resistance changes within the same sample. This article presents a method that is applicable for a quick analysis of flow distribution even with large samples. In this first attempt to understand how our flow distribution thermal imaging works, we present how the measuring parameters and the results correlate with sample's thickness and density. The results indicate that our method can quickly make a distinction between areas that have different flow resistances because of variations in the sample's density or wall thickness

  5. Structural and optical characterization of the propolis films

    Energy Technology Data Exchange (ETDEWEB)

    Drapak, S.I. [Frantsevich Institute of Materials Science Problems, National Academy of Sciences of Ukraine, Chernivtsi Department, 5 Iryna Vilde Str., 58001 Chernivtsi (Ukraine)]. E-mail: drapak@unicom.cv.ua; Bakhtinov, A.P. [Frantsevich Institute of Materials Science Problems, National Academy of Sciences of Ukraine, Chernivtsi Department, 5 Iryna Vilde Str., 58001 Chernivtsi (Ukraine); Gavrylyuk, S.V. [Frantsevich Institute of Materials Science Problems, National Academy of Sciences of Ukraine, Chernivtsi Department, 5 Iryna Vilde Str., 58001 Chernivtsi (Ukraine); Drapak, I.T. [Chernivtsi National University, 2 Kotsyubynskii Str., 58012 Chernivtsi (Ukraine); Kovalyuk, Z.D. [Frantsevich Institute of Materials Science Problems, National Academy of Sciences of Ukraine, Chernivtsi Department, 5 Iryna Vilde Str., 58001 Chernivtsi (Ukraine)

    2006-10-31

    We have performed structural and optical characterizations of the propolis (an organic entity of biological nature) films grown on various non-organic substrates. The films were grown from a propolis melt or a propolis alcohol solution. The crystal structure has been observed in the films precipitated from the solution onto substrates such as an amorphous glass and sapphire or semiconductor indium monoselenide. For any growth method, the propolis film is a semiconductor with the bandgap of 3.07 eV at 300 K that is confirmed by a maximum in photoluminescence spectra at 2.86 eV. We argue that propolis films might be used in various optoelectronic device applications.

  6. Modulation spectroscopy characterization of MOCVD semiconductors and semiconductors structures

    Science.gov (United States)

    Pollak, Fred H.; Shen, H.

    1989-11-01

    This paper reviews recent developments in the use of contactless modulation spectroscopy to yield important information about MOCVD growth as well as the properties of MOCVD fabricated semiconductors and semiconductor microstructures. The method of reflectance difference spectroscopy can be used to gain significant insights into chemical and structural parameters during actual growth conditions. The electromodulation technique of photoreflectance (PR) probes the electronic states of the material. It has many applications for in-situ post-growth characterization of crystal quality, very thin Ga 1-xAl xAs/GaAs epitaxial layers, Ga 1-xAl xAs alloy composition, deep trap states, surface electric fields and carrier concentrations, lattice-mismatch strain, etc, as well as the determination of relevant parameters of heterojunction structures. In addition, recent PR experiments at 600°C on GaAs and Ga 0.82Al 0.18As show potential for in-situ monitoring during growth.

  7. Structural and functional characterization of two alpha-synuclein strains

    Science.gov (United States)

    Bousset, Luc; Pieri, Laura; Ruiz-Arlandis, Gemma; Gath, Julia; Jensen, Poul Henning; Habenstein, Birgit; Madiona, Karine; Olieric, Vincent; Böckmann, Anja; Meier, Beat H.; Melki, Ronald

    2013-01-01

    α-synuclein aggregation is implicated in a variety of diseases including Parkinson’s disease, dementia with Lewy bodies, pure autonomic failure and multiple system atrophy. The association of protein aggregates made of a single protein with a variety of clinical phenotypes has been explained for prion diseases by the existence of different strains that propagate through the infection pathway. Here we structurally and functionally characterize two polymorphs of α-synuclein. We present evidence that the two forms indeed fulfil the molecular criteria to be identified as two strains of α-synuclein. Specifically, we show that the two strains have different structures, levels of toxicity, and in vitro and in vivo seeding and propagation properties. Such strain differences may account for differences in disease progression in different individuals/cell types and/or types of synucleinopathies. PMID:24108358

  8. Amyloid oligomer structure characterization from simulations: A general method

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Phuong H., E-mail: phuong.nguyen@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France); Li, Mai Suan [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Derreumaux, Philippe, E-mail: philippe.derreumaux@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France); Institut Universitaire de France, 103 Bvd Saint-Germain, 75005 Paris (France)

    2014-03-07

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ{sub 9−40}, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  9. Characterization of adhesive from oysters: A structural and compositional study

    Science.gov (United States)

    Alberts, Erik

    The inability for man-made adhesives to set in wet or humid environments is an ongoing challenging the design of biomedical and marine adhesive materials. However, we see that nature has already overcome this challenge. Mussels, barnacles, oysters and sandcastle worms all have unique mechanisms by which they attach themselves to surfaces. By understanding what evolution has already spent millions of years perfecting, we can design novel adhesive materials inspired by nature's elegant designs. The well-studied mussel is currently the standard for design of marine inspired biomimetic polymers. In the work presented here, we aim to provide new insights into the adhesive produced by the eastern oyster, Crassostrea virginica. Unlike the mussel, which produces thread-like plaques comprised of DOPA containing-protein, the oyster secretes an organic-inorganic hybrid adhesive as it settles and grows onto a surface. This form of adhesion renders the oyster to be permanently fixed in place. Over time, hundreds of thousands of oyster grow and agglomerate to form extensive reef structures. These reefs are not only essential to survival of the oyster, but are also vital to intertidal ecosystems. While the shell of the oyster has been extensively studied, curiously, only a few conflicting insights have been made into the nature of the adhesive and contact zone between shell and substrate, and even lesfs information has been ascertained on organic and inorganic composition. In this work, we provide microscopy and histochemical studies to characterize the structure and composition of the adhesive, using oyster in the adult and juvenile stages of life. Preliminary work on extracting and characterizing organic components through collaborative help with solid-state NMR (SSNMR) and proteomics are also detailed here. We aim to provide a full, comprehensive characterization of oyster adhesive so that in the future, we may apply what we learn to the design of new materials.

  10. Function Discovery and Structural Characterization of a Methylphosphonate Esterase

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dao Feng [Texas A & M Univ., College Station, TX (United States); Patskovsky, Yury [Einstein College of Medicine, Bronx, NY (United States); Nemmara, Venkatesh V. [Texas A & M Univ., College Station, TX (United States); Toro, Rafael [Einstein College of Medicine, Bronx, NY (United States); Almo, Steven C. [Einstein College of Medicine, Bronx, NY (United States); Raushel, Frank M. [Texas A & M Univ., College Station, TX (United States)

    2015-05-12

    Pmi1525, an enzyme of unknown function from Proteus mirabilis HI4320 and the amidohydrolase superfamily, was cloned, purified to homogeneity, and functionally characterized. The three-dimensional structure of Pmi1525 was determined with zinc and cacodylate bound in the active site (PDB id: 3RHG). We also determined the structure with manganese and butyrate in the active site (PDB id: 4QSF). Pmi1525 folds as a distorted (β/α)8-barrel that is typical for members of the amidohydrolase superfamily and cog1735. Moreover, the substrate profile for Pmi1525 was determined via a strategy that marshaled the utilization of bioinformatics, structural characterization, and focused library screening. The protein was found to efficiently catalyze the hydrolysis of organophosphonate and carboxylate esters. The best substrates identified for Pmi1525 are ethyl 4-nitrophenylmethyl phosphonate (kcat and kcat /Km values of 580 s–1 and 1.2 × 105 M–1 s–1, respectively) and 4-nitrophenyl butyrate (kcat and kcat /Km values of 140 s–1 and 1.4 × 105 M–1 s–1, respectively). Pmi1525 is stereoselective for the hydrolysis of chiral methylphosphonate esters. The enzyme hydrolyzes the (SP)-enantiomer of isobutyl 4-nitrophenyl methylphosphonate 14 times faster than the corresponding (RP)-enantiomer. The catalytic properties of this enzyme make it an attractive template for the evolution of novel enzymes for the detection, destruction, and detoxification of organophosphonate nerve agents.

  11. Solid state synthesis and structural characterization of zinc titanates

    Energy Technology Data Exchange (ETDEWEB)

    Ayed, Sarra, E-mail: ayedsarra1@gmail.com [Laboratory of Composite Ceramic and Polymer Materials, Scientific Faculty of Sfax (Tunisia); Abdelkefi, Helmi; Khemakhem, Hamadi [Laboratory of Ferroelectric Materials, Scientific Faculty of Sfax (Tunisia); Matoussi, Adel [Laboratory of Composite Ceramic and Polymer Materials, Scientific Faculty of Sfax (Tunisia)

    2016-08-25

    Zinc titanate composite materials were synthesized via solid state sintering process using high-purity metal oxide powders (purity ∼99.99%). The titanium incorporation into ZnO matrix was investigated by X-ray diffraction which revealed the coexistence of spinel Zn{sub 2}TiO{sub 4} and hexagonal ZnTiO{sub 3} with the ZnO wurtzite structures. No reflection peaks of rutile TiO{sub 2} phase were detected. The IR spectroscopy and Raman scattering spectroscopy were used to characterize the structural and chemical properties of the ZnO/TiO{sub 2} composites. The IR bands and vibrational modes of all crystalline phases were detected. The effect of TiO{sub 2} doping rates (x = 3, 5 and 7 wt%) on bands shifting, Raman intensity and structural quality was discussed. - Highlights: • Zinc titanates materials were synthesized via solid state sintering process. • XRD measurements reveal the formation of Zn{sub 2}TiO{sub 4}, hexagonal ZnTiO{sub 3} and ZnO phases. • IR analysis provokes the presence of Ti−O stretching vibration bands. • Raman study provokes the appearance of new zinc titanates vibrational peaks. • The TiO{sub 2} effect into ZnO is sensed by the shift and intensity changes of peaks.

  12. A structural framework for anomalous change detection and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Lakshman [Los Alamos National Laboratory; Theiler, James P [Los Alamos National Laboratory

    2009-01-01

    We present a spatially adaptive scheme for automatically searching a pair of images of a scene for unusual and interesting changes. Our motivation is to bring into play structural aspects of image features alongside the spectral attributes used for anomalous change detection (ACD). We leverage a small but informative subset of pixels, namely edge pixels of the images, as anchor points of a Delaunay triangulation to jointly decompose the images into a set of triangular regions, called trixels, which are spectrally uniform. Such decomposition helps in image regularization by simple-function approximation on a feature-adaptive grid. Applying ACD to this trixel grid instead of pixels offers several advantages. It allows: (1) edge-preserving smoothing of images, (2) speed-up of spatial computations by significantly reducing the representation of the images, and (3) the easy recovery of structure of the detected anomalous changes by associating anomalous trixels with polygonal image features. The latter facility further enables the application of shape-theoretic criteria and algorithms to characterize the changes and recognize them as interesting or not. This incorporation of spatial information has the potential to filter out some spurious changes, such as due to parallax, shadows, and misregistration, by identifying and filtering out those that are structurally similar and spatially pervasive. Our framework supports the joint spatial and spectral analysis of images, potentially enabling the design of more robust ACD algorithms.

  13. Tensile Characterization of FRP Rods for Reinforced Concrete Structures

    Science.gov (United States)

    Micelli, F.; Nanni, A.

    2003-07-01

    The application of FRP rods as an internal or external reinforcement in new or damaged concrete structures is based on the development of design equations that take into account the mechanical properties of FRP material systems.The measurement of mechanical characteristics of FRP requires a special anchoring and protocol, since it is well known that these characteristics depend on the direction and content of fibers. In this study, an effective tensile test method is described for the mechanical characterization of FRP rods. Twelve types of glass and carbon FRP specimens with different sizes and surface characteristics were tested to validate the procedure proposed. In all, 79 tensile tests were performed, and the results obtained are discussed in this paper. Recommendations are given for specimen preparation and test setup in order to facilitate the further investigation and standardization of the FRP rods used in civil engineering.

  14. Synthesis and Structural Characterization of ZnS Quantum Dots

    International Nuclear Information System (INIS)

    Selim, H.; Khalil, M.M.H.; Al-Kotb, M.S.; Kotkata, M.F.; Amer, H.H.

    2013-01-01

    Zinc sulfide QDs have been synthesized via a simple reaction of Zn (CH 3 COO) 2 and Na 2 S in the presence of sodium dodecyl sulphate (SDS) acting as an anionic capping material. The structure as well as characterization of the synthesized materials has been studied by XRD, EDX, SEM, TEM, TGA and FT-IR spectroscopy. Analysis of the obtained results revealed products of zinc blende ZnS nanoparticles with an average size of 5.3±0.2 nm in diameter distributed spherically and uniformly. The UV-visible absorption spectrum of the synthesized ZnS nanoparticles reflects an energy gap of 4.30 eV

  15. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE OF BIS-(2-HYDROXYBENZALDEHYDEDIAMINOGUANIZONE

    Directory of Open Access Journals (Sweden)

    Diana Dragancea, Vladimir B. Arion, Sergiu Shova

    2008-12-01

    Full Text Available The new ligand, bis(2-hydroxybenzaldehydediaminoguanizone (1 has been synthesized and characterized by elemental analysis, IR and 1H NMR spectroscopies. The crystal structure of the compound was determined by X-ray diffraction. The ligand C15H15N5O2·C2H5OH crystallizes in the monoclinic space group P21/c with unit cell parameters a = 8.9102(3, b = 10.0357(3, c = 19.7618(6 Å, β = 98.385(2°, Z = 4, V = 1748.21(9 Å3, R1 = 0.040. The amino form of the ligand adopts a planar conformation stabilized by two intramolecular hydrogen bonds of the type O–H···N, in which the H atoms of the central amino group are directed to the lone-pair regions of the azomethine nitrogen atoms.

  16. [Structural characterization and spectroscopic analysis of the aloin].

    Science.gov (United States)

    Xie, Yun-Fei; Huan, Nan; Cao, Yuan-Yuan; Wang, He-Ya; Zhong, Ying; Yao, Wei-Rong; Qian, He

    2014-02-01

    Aloe is widely used in various fields for its rich polysaccharides, proteins, amino acids, vitamins, active enzymes and trace beneficial elements to human body. However, the main active ingredient aloin is also an allergenic ingredient, which even may cause a severe allergic reaction In this study, infrared spectroscopy, Raman spectroscopy applied to the structural characterization of the aloin Density functional theory (DFT) is applied to the theoretical calculations using the B3LYP/6-31G (d) basis set vibration, which was helpful to understand the aloin molecular vibrational frequency. By comparing we choose the optimal experimental condition for water as solvent under alkaline conditions, the detection limit of the Aloin can reach a level of 5 ppm, which can be considered the theoretical basis for rapid detection of aloin content.

  17. Characterization of photonic structures using visible and infrared polarimetry

    Directory of Open Access Journals (Sweden)

    Kral Z.

    2010-06-01

    Full Text Available Photonic Crystals are materials with a spatial periodic variation of the refractive index on the wavelength scale. This confers these materials interesting photonic properties such as the existence of photonic bands and forbidden photon frequency ranges, the photonic band gaps. Among their applications it is worth mentioning the achievement of low-threshold lasers and high-Q resonant cavities. A particular case of the Photonic Crystals is well-known and widely studied since a long time: the periodic thin film coatings. The characterization of thin film coatings is a classical field of study with a very well established knowledge. However, characterization of 2D and 3D photonic crystals needs to be studied in detail as it poses new problems that have to be solved. In this sense, Polarimetry is a specially suited tool given their inherent anisotropy: photonic bands depend strongly on the propagation direction and on polarization. In this work we show how photonic crystal structures can be characterized using polarimetry equipment. We compare the numerical modeling of the interaction of the light polarization with the photonic crystal with the polarimetry measurements. With the S-Matrix formalism, the Mueller matrix of a Photonic Crystal for a given wavelength, angle of incidence and propagation direction can be obtained. We will show that useful information from polarimetry (and also from spectrometry can be obtained when multivariate spectra are considered. We will also compare the simulation results with Polarimetry measurements on different kinds of samples: macroporous silicon photonic crystals in the near-IR range and Laser-Interference-Lithography nanostructured photoresist.

  18. Structural Characterization of Myotoxic Ecarpholin S From Echis carinatus Venom

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.; Tan, T; Valiyaveettil, S; Go, M; Kini, R; Velazquez-Campoy, A; Sivaraman, J

    2008-01-01

    Phospholipase A2 (PLA2), a common toxic component of snake venom, has been implicated in various pharmacological effects. Ecarpholin S, isolated from the venom of the snake Echis carinatus sochureki, is a phospholipase A2 (PLA2) belonging to the Ser49-PLA2 subgroup. It has been characterized as having low enzymatic but potent myotoxic activities. The crystal structures of native ecarpholin S and its complexes with lauric acid, and its inhibitor suramin, were elucidated. This is the first report of the structure of a member of the Ser49-PLA2 subgroup. We also examined interactions of ecarpholin S with phosphatidylglycerol and lauric acid, using surface plasmon resonance, and of suramin with isothermal titration calorimetry. Most Ca2+-dependent PLA2 enzymes have Asp in position 49, which plays a crucial role in Ca2+ binding. The three-dimensional structure of ecarpholin S reveals a unique conformation of the Ca2+-binding loop that is not favorable for Ca2+ coordination. Furthermore, the endogenously bound fatty acid (lauric acid) in the hydrophobic channel may also interrupt the catalytic cycle. These two observations may account for the low enzymatic activity of ecarpholin S, despite full retention of the catalytic machinery. These observations may also be applicable to other non-Asp49-PLA2 enzymes. The interaction of suramin in its complex with ecarpholin S is quite different from that reported for the Lys49-PLA2/suramin complex, where the interfacial recognition face (i-face), C-terminal region, and N-terminal region of ecarpholin S play important roles. This study provides significant structural and functional insights into the myotoxic activity of ecarpholin S and, in general, of non-Asp49-PLA2 enzymes.

  19. Structural and chemical characterization of complex nanomaterials at atomic resolution

    Science.gov (United States)

    Sanchez, Sergio I.

    Catalytic and energetic nanomaterials are analyzed chemically and structurally in atomistic detail. Examination of the prototypical industrial catalyst Pt catalysts supported on gamma-Al2O3 using X-ray absorption spectroscopy (XAS) and scanning transmission electron microscopy (STEM) revealed non-bulk-like behavior. Anomalous, temperature-dependent structural dynamics were characterized in the form of negative thermal expansion (NTE) and abnormal levels of disorder. To examine a less complex system, electrocatalytically-active, core-shell nanostructures assembled from Pt and Pd were synthesized and subsequently examined using spherical aberration-corrected STEM (Cs-STEM) and high-energy X-ray diffraction (XRD). Atomically resolved micrographs provide significant insight into the differences in crystallinity and metal-atom bonding between Pt and Pd. The apparent structural dichotomy between Pt and Pd was extended to studying the differences in nanostructure between other third row fcc transition metals (3M -- Ir, Pt, and Au) and their second row counterparts (2M -- Rh, Pd, and Ag). With the use of Cs-STEM and atomic pair distribution function (PDF) measurements it was determined that the Au, Pt and Ir nanocrystals were more crystalline than their Ag, Pd and Rh analogues and that the 3M series was capable of imparting its crystal structure onto the atoms from the 2M series. Lastly, we looked at highly-reactive Al crystals and their successive passivation by secondary transition metals (Cu, Ni, Ag, Pd, Au and Pt). Rather than affording a uniform, monolayer coverage, C s-STEM, XRD and energy dispersive X-ray spectroscopy revealed unalloyed, particulate deposits of the secondary metal on the Al.

  20. Rufinamide: Crystal structure elucidation and solid state characterization.

    Science.gov (United States)

    Salunke, Nita; Thipparaboina, Rajesh; Chavan, Rahul B; Lodagekar, Anurag; Mittapalli, Sudhir; Nangia, Ashwini; Shastri, Nalini R

    2018-02-05

    Rufinamide (R) is a triazole derivative approved for the management of partial seizures and seizures associated with Lennox-Gastaut Syndrome, in November 2007. Crystal structure, solid state characterization, drug-excipient compatibility and solubility play a pivotal role in formulation development. This work deals with the crystal structure elucidation of R by single crystal X-ray diffraction and solid state characterization by thermal, spectroscopic and crystallographic techniques. Drug- excipient compatibility was assessed by differential scanning calorimetry (DSC). New RP-HPLC method for quantification of R was developed with improved retention time. Solubility and dissolution of drug in different media was determined. Additionally, the flow behavior of the drug was evaluated by measuring Carr's index and Hausner's ratio, while the compressibility behavior was studied using Well's protocol. R crystallized from dimethylformamide (R-DMF) was utilized for single crystal analysis. The drug crystallized in triclinic crystal system with P-1 space group. Asymmetric unit cell consists of two molecules of R held by intermolecular hydrogen bond (connected by NH⋯O, which forms the catemeric chain). Analytical outcomes from DSC, thermogravimetric analysis (TGA) and powder X-ray diffraction (PXRD) revealed that the drug was present in pure crystalline form and was devoid of any polymorphic or pseudopolymorphic impurities. Influence of pH on the solubility and dissolution of R-DMF was found to be insignificant. The drug exhibited poor aqueous solubility, which was improved nearly 4.6 fold with the addition of 2% sodium lauryl sulphate (SLS). The drug exhibits poor flow and elastic compression nature. Excipients such as poly ethylene glycol (PEG) 8000, SLS, lactose monohydrate, starch and Hydroxypropyl methylcellulose (HPMC) E15 were incompatible with R-DMF as identified by thermal analysis. It is envisaged that these information regarding solid state properties of R

  1. Structural characterization of genomes by large scale sequence-structure threading

    Directory of Open Access Journals (Sweden)

    Cherkasov Artem

    2004-04-01

    Full Text Available Abstract Background Using sequence-structure threading we have conducted structural characterization of complete proteomes of 37 archaeal, bacterial and eukaryotic organisms (including worm, fly, mouse and human totaling 167,888 genes. Results The reported data represent first rather general evaluation of performance of full sequence-structure threading on multiple genomes providing opportunity to evaluate its general applicability for large scale studies. According to the estimated results the sequence-structure threading has assigned protein folds to more then 60% of eukaryotic, 68% of archaeal and 70% of bacterial proteomes. The repertoires of protein classes, architectures, topologies and homologous superfamilies (according to the CATH 2.4 classification have been established for distant organisms and superkingdoms. It has been found that the average abundance of CATH classes decreases from "alpha and beta" to "mainly beta", followed by "mainly alpha" and "few secondary structures". 3-Layer (aba Sandwich has been characterized as the most abundant protein architecture and Rossman fold as the most common topology. Conclusion The analysis of genomic occurrences of CATH 2.4 protein homologous superfamilies and topologies has revealed the power-law character of their distributions. The corresponding double logarithmic "frequency – genomic occurrence" dependences characteristic of scale-free systems have been established for individual organisms and for three superkingdoms. Supplementary materials to this works are available at 1.

  2. Structural characterization of an equilibrium unfolding intermediate in cytochrome c.

    Science.gov (United States)

    Latypov, Ramil F; Cheng, Hong; Roder, Navid A; Zhang, Jiaru; Roder, Heinrich

    2006-03-31

    Although the denaturant-induced unfolding transition of cytochrome c was initially thought to be a cooperative process, recent spectroscopic studies have shown deviations from two-state behavior consistent with accumulation of an equilibrium intermediate. However, little is known about the structural and thermodynamic properties of this state, and whether it is stabilized by the presence of non-native heme ligands. We monitored the reversible denaturant-induced unfolding equilibrium of oxidized horse cytochrome c using various spectroscopic probes, including fluorescence, near and far-UV CD, heme absorbance bands in the Soret, visible and near-IR regions of the spectrum, as well as 2D NMR. Global fitting techniques were used for a quantitative interpretation of the results in terms of a three-state model, which enabled us to determine the intrinsic spectroscopic properties of the intermediate. A well-populated intermediate was observed in equilibrium experiments at pH 5 using either guanidine-HCl or urea as a denaturant, both for wild-type cytochrome c as well as an H33N mutant chosen to prevent formation of non-native His-heme ligation. For a more detailed structural characterization of the intermediate, we used 2D 1H-15N correlation spectroscopy to follow the changes in peak intensity for individual backbone amide groups. The equilibrium state observed in our optical and NMR studies contains many native-like structural features, including a well-structured alpha-helical sub-domain, a short Trp59-heme distance and solvent-shielded heme environment, but lacks the native Met80 sulfur-iron linkage and shows major perturbations in side-chain packing and other tertiary interactions. These structural properties are reminiscent of the A-state of cytochrome c, a compact denatured form found under acidic high-salt conditions, as well as a kinetic intermediate populated at a late stage of folding. The denaturant-induced intermediate also resembles alkaline forms of

  3. Empirical pseudo-potential studies on electronic structure of ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Theoretical investigations of electronic structure of quantum dots is of current interest in nano- phase materials. Empirical theories such as effective mass approximation, tight binding methods and empirical pseudo-potential method are capable of explaining the experimentally observed optical properties.

  4. Structural Characterization of Iron Meteorites through Neutron Tomography

    Directory of Open Access Journals (Sweden)

    Stefano Caporali

    2016-02-01

    Full Text Available In this communication, we demonstrate the use of neutron tomography for the structural characterization of iron meteorites. These materials prevalently consist of metallic iron with variable nickel content. Their study and classification is traditionally based on chemical and structural analysis. The latter requires cutting, polishing and chemical etching of large slabs of the sample in order to determine the average width of the largest kamacite lamellae. Although this approach is useful to infer the genetical history of these meteorites, it is not applicable to small or precious samples. On the base of different attenuation coefficient of cold neutrons for nickel and iron, neutron tomography allows the reconstruction of the Ni-rich (taenite and Ni-poor (kamacite metallic phases. Therefore, the measure of the average width of the largest kamacite lamellae could be determined in a non-destructive way. Furthermore, the size, shape, and spatial correlation between kamacite and taenite crystals were obtained more efficiently and accurately than via metallographic investigation.

  5. Production and Structural Characterization of Lactobacillus helveticus Derived Biosurfactant

    Science.gov (United States)

    Sharma, Deepansh; Saharan, Baljeet Singh; Chauhan, Nikhil; Bansal, Anshul; Procha, Suresh

    2014-01-01

    A probiotic strain of lactobacilli was isolated from traditional soft Churpi cheese of Yak milk and found positive for biosurfactant production. Lactobacilli reduced the surface tension of phosphate buffer saline (PBS) from 72.0 to 39.5 mNm−1 pH 7.2 and its critical micelle concentration (CMC) was found to be 2.5 mg mL−1. Low cost production of Lactobacilli derived biosurfactant was carried out at lab scale fermenter which yields 0.8 mg mL−1 biosurfactant. The biosurfactant was found least phytotoxic and cytotoxic as compared to the rhamnolipid and sodium dodecyl sulphate (SDS) at different concentration. Structural attributes of biosurfactant were determined by FTIR, NMR (1H and 13C), UPLC-MS, and fatty acid analysis by GCMS which confirmed the presence of glycolipid type of biosurfactant closely similar to xylolipids. Biosurfactant is mainly constituted by lipid and sugar fractions. The present study outcomes provide valuable information on structural characterization of the biosurfactant produced by L. helveticus MRTL91. These findings are encouraging for the application of Lactobacilli derived biosurfactant as nontoxic surface active agents in the emerging field of biomedical applications. PMID:25506070

  6. Synthesis and structural characterization of actinide oxalate compounds

    International Nuclear Information System (INIS)

    Tamain, C.

    2011-01-01

    Oxalic acid is a well-known reagent to recover actinides thanks to the very low solubility of An(IV) and An(III) oxalate compounds in acidic solution. Therefore, considering mixed-oxide fuel or considering minor actinides incorporation in ceramic fuel materials for transmutation, oxalic co-conversion is convenient to synthesize mixed oxalate compounds, precursors of oxide solid solutions. As the existing oxalate single crystal syntheses are not adaptable to the actinide-oxalate chemistry or to their manipulation constrains in gloves box, several original crystal growth methods were developed. They were first validate and optimized on lanthanides and uranium before the application to transuranium elements. The advanced investigations allow to better understand the syntheses and to define optimized chemical conditions to promote crystal growth. These new crystal growth methods were then applied to a large number of mixed An1(IV)-An2(III) or An1(IV)-An2(IV) systems and lead to the formation of the first original mixed An1(IV)-An2(III) and An1(IV)-An2(IV) oxalate single crystals. Finally thanks to the first thorough structural characterizations of these compounds, single crystal X-ray diffraction, EXAFS or micro-RAMAN, the particularly weak oxalate-actinide compounds structural database is enriched, which is essential for future studied nuclear fuel cycles. (author) [fr

  7. Nanostructured Polypyrrole Powder: A Structural and Morphological Characterization

    Directory of Open Access Journals (Sweden)

    Edgar A. Sanches

    2015-01-01

    Full Text Available Polypyrrole (PPY powder was chemically synthesized using ferric chloride (FeCl3 and characterized by X-ray diffraction (XRD, Le Bail Method, Fourier Transform Infrared Spectrometry (FTIR, and Scanning Electron Microscopy (SEM. XRD pattern showed a broad scattering of a semicrystalline structure composed of main broad peaks centered at 2θ = 11.4°, 22.1°, and 43.3°. Crystallinity percentage was estimated by the ratio between the sums of the peak areas to the area of amorphous broad halo due to the amorphous phase and showed that PPY has around 20 (1%. FTIR analysis allowed assigning characteristic absorption bands in the structure of PPY. SEM showed micrometric particles of varying sizes with morphologies similar to cauliflower. Crystal data (monoclinic, space group P 21/c, a=7.1499 (2 Å, b=13.9470 (2 Å, c=17.3316 (2 Å, α=90 Å, β=61.5640 (2 Å and γ=90 Å were obtained using the FullProf package program under the conditions of the method proposed by Le Bail. Molecular relaxation was performed using the density functional theory (DFT and suggests that tetramer polymer chains are arranged along the “c” direction. Average crystallite size was found in the range of 20 (1 Å. A value of 9.33 × 10−9 S/cm was found for PPY conductivity.

  8. Production and Structural Characterization of Lactobacillus helveticus Derived Biosurfactant

    Directory of Open Access Journals (Sweden)

    Deepansh Sharma

    2014-01-01

    Full Text Available A probiotic strain of lactobacilli was isolated from traditional soft Churpi cheese of Yak milk and found positive for biosurfactant production. Lactobacilli reduced the surface tension of phosphate buffer saline (PBS from 72.0 to 39.5 mNm−1 pH 7.2 and its critical micelle concentration (CMC was found to be 2.5 mg mL−1. Low cost production of Lactobacilli derived biosurfactant was carried out at lab scale fermenter which yields 0.8 mg mL−1 biosurfactant. The biosurfactant was found least phytotoxic and cytotoxic as compared to the rhamnolipid and sodium dodecyl sulphate (SDS at different concentration. Structural attributes of biosurfactant were determined by FTIR, NMR (1H and 13C, UPLC-MS, and fatty acid analysis by GCMS which confirmed the presence of glycolipid type of biosurfactant closely similar to xylolipids. Biosurfactant is mainly constituted by lipid and sugar fractions. The present study outcomes provide valuable information on structural characterization of the biosurfactant produced by L. helveticus MRTL91. These findings are encouraging for the application of Lactobacilli derived biosurfactant as nontoxic surface active agents in the emerging field of biomedical applications.

  9. Biochemical and structural characterization of Plasmodium falciparum glutamate dehydrogenase 2.

    Science.gov (United States)

    Zocher, Kathleen; Fritz-Wolf, Karin; Kehr, Sebastian; Fischer, Marina; Rahlfs, Stefan; Becker, Katja

    2012-05-01

    Glutamate dehydrogenases (GDHs) play key roles in cellular redox, amino acid, and energy metabolism, thus representing potential targets for pharmacological interventions. Here we studied the functional network provided by the three known glutamate dehydrogenases of the malaria parasite Plasmodium falciparum. The recombinant production of the previously described PfGDH1 as hexahistidyl-tagged proteins was optimized. Additionally, PfGDH2 was cloned, recombinantly produced, and characterized. Like PfGDH1, PfGDH2 is an NADP(H)-dependent enzyme with a specific activity comparable to PfGDH1 but with slightly higher K(m) values for its substrates. The three-dimensional structure of hexameric PfGDH2 was solved to 3.1 Šresolution. The overall structure shows high similarity with PfGDH1 but with significant differences occurring at the subunit interface. As in mammalian GDH1, in PfGDH2 the subunit-subunit interactions are mainly assisted by hydrogen bonds and hydrophobic interactions, whereas in PfGDH1 these contacts are mediated by networks of salt bridges and hydrogen bonds. In accordance with this, the known bovine GDH inhibitors hexachlorophene, GW5074, and bithionol were more effective on PfGDH2 than on PfGDH1. Subcellular localization was determined for all three plasmodial GDHs by fusion with the green fluorescent protein. Based on our data, PfGDH1 and PfGDH3 are cytosolic proteins whereas PfGDH2 clearly localizes to the apicoplast, a plastid-like organelle specific for apicomplexan parasites. This study provides new insights into the structure and function of GDH isoenzymes of P. falciparum, which represent potential targets for the development of novel antimalarial drugs. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Structural and magnetic characterization of (Ba,Sr-hexaferrite Powders

    Directory of Open Access Journals (Sweden)

    Palomares-Sánchez, S.

    1999-06-01

    Full Text Available Results on magnetic and structural characterization of ferrimagnetic compounds of BaxSr1-xFe12O19 (x=0.0, 0.25, 0.50, 0.75 and 1.0 prepared by the conventional ceramic method are reported. The samples were systematically examined using atomic force microscopy (AFM, X-ray diffraction and vibrating sample magnetometer. Structural and magnetic differences among the specimens were observed. The relations between structural features and magnetic properties are discussed. The presintering temperatures of the samples were 800°C and 1,000°C. The specimens were sintered at 1,200°C for one hour.

    Se presentan resultados de la caracterización estructural y magnética de compuestos ferrimagnéticos BaxSr1-xFe12O19 (x=0,0, 0,25, 0,50, 0,75 y 1,0 preparados por el método cerámico convencional. Las muestras fueron examinadas por microscopía de fuerza atómica, difracción de rayos X y magnetometría de muestra vibrante. Se observaron diferencias tanto estructurales como magnéticas en las muestras analizadas. Se discuten las relaciones entre los aspectos estructurales y los parámetros magnéticos medidos. Las temperaturas de presinterización de las muestras fueron de 800°C y 1.000°C y fueron sinterizadas a 1.200°C durante una hora.

  11. Characterization of strained semiconductor structures using transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oezdoel, Vasfi Burak

    2011-08-15

    Today's state-of-the-art semiconductor electronic devices utilize the charge transport within very small volumes of the active device regions. The structural, chemical and optical material properties in these small dimensions can critically affect the performance of these devices. The present thesis is focused on the nanometer scale characterization of the strain state in semiconductor structures using transmission electron microscopy (TEM). Although high-resolution TEM has shown to provide the required accuracy at the nanometer scale, optimization of imaging conditions is necessary for accurate strain measurements. An alternative HRTEM method based on strain mapping on complex-valued exit face wave functions is developed to reduce the artifacts arising from objective lens aberrations. However, a much larger field of view is crucial for mapping strain in the active regions of complex structures like latest generation metal-oxide-semiconductor field-effect transistors (MOSFETs). To overcome this, a complementary approach based on electron holography is proposed. The technique relies on the reconstruction of the phase shifts in the diffracted electron beams from a focal series of dark-field images using recently developed exit-face wave function reconstruction algorithm. Combining high spatial resolution, better than 1 nm, with a field of view of about 1 {mu}m in each dimension, simultaneous strain measurements on the array of MOSFETs are possible. Owing to the much lower electron doses used in holography experiments when compared to conventional quantitative methods, the proposed approach allows to map compositional distribution in electron beam sensitive materials such as InGaN heterostructures without alteration of the original morphology and chemical composition. Moreover, dark-field holography experiments can be performed on thicker specimens than the ones required for high-resolution TEM, which in turn reduces the thin foil relaxation. (orig.)

  12. Characterization of structural relaxation in inorganic glasses using length dilatometry

    Science.gov (United States)

    Koontz, Erick

    The processes that govern how a glass relaxes towards its thermodynamic quasi-equilibrium state are major factors in understanding glass behavior near the glass transition region, as characterized by the glass transition temperature (Tg). Intrinsic glass properties such as specific volume, enthalpy, entropy, density, etc. are used to map the behavior of the glass network below in and near the transition region. The question of whether a true thermodynamic second order phase transition takes place in the glass transition region is another pending question. Linking viscosity behavior to entropy, or viewing the glass configuration as an energy landscape are just a couple of the most prevalent methods used for attempting to understand the glass transition. The structural relaxation behavior of inorganic glasses is important for more than scientific reasons, many commercial glass processing operations including glass melting and certain forms of optical fabrication include significant time spent in the glass transition region. For this reason knowledge of structural relaxation processes can, at a minimum, provide information for annealing duration of melt-quenched glasses. The development of a predictive model for annealing time prescription has the potential to save glass manufacturers significant time and money as well as increasing volume throughput. In optical hot forming processes such as precision glass molding, molded optical components can significantly change in shape upon cooling through the glass transition. This change in shape is not scientifically predictable as of yet though manufacturers typically use empirical rules developed in house. The classification of glass behavior in the glass transition region would allow molds to be accurately designed and save money for the producers. The work discussed in this dissertation is comprised of the development of a dilatometric measurement and characterization method of structural relaxation. The measurement and

  13. Characterization of Large Structural Genetic Mosaicism in Human Autosomes

    Science.gov (United States)

    Machiela, Mitchell J.; Zhou, Weiyin; Sampson, Joshua N.; Dean, Michael C.; Jacobs, Kevin B.; Black, Amanda; Brinton, Louise A.; Chang, I-Shou; Chen, Chu; Chen, Constance; Chen, Kexin; Cook, Linda S.; Crous Bou, Marta; De Vivo, Immaculata; Doherty, Jennifer; Friedenreich, Christine M.; Gaudet, Mia M.; Haiman, Christopher A.; Hankinson, Susan E.; Hartge, Patricia; Henderson, Brian E.; Hong, Yun-Chul; Hosgood, H. Dean; Hsiung, Chao A.; Hu, Wei; Hunter, David J.; Jessop, Lea; Kim, Hee Nam; Kim, Yeul Hong; Kim, Young Tae; Klein, Robert; Kraft, Peter; Lan, Qing; Lin, Dongxin; Liu, Jianjun; Le Marchand, Loic; Liang, Xiaolin; Lissowska, Jolanta; Lu, Lingeng; Magliocco, Anthony M.; Matsuo, Keitaro; Olson, Sara H.; Orlow, Irene; Park, Jae Yong; Pooler, Loreall; Prescott, Jennifer; Rastogi, Radhai; Risch, Harvey A.; Schumacher, Fredrick; Seow, Adeline; Setiawan, Veronica Wendy; Shen, Hongbing; Sheng, Xin; Shin, Min-Ho; Shu, Xiao-Ou; VanDen Berg, David; Wang, Jiu-Cun; Wentzensen, Nicolas; Wong, Maria Pik; Wu, Chen; Wu, Tangchun; Wu, Yi-Long; Xia, Lucy; Yang, Hannah P.; Yang, Pan-Chyr; Zheng, Wei; Zhou, Baosen; Abnet, Christian C.; Albanes, Demetrius; Aldrich, Melinda C.; Amos, Christopher; Amundadottir, Laufey T.; Berndt, Sonja I.; Blot, William J.; Bock, Cathryn H.; Bracci, Paige M.; Burdett, Laurie; Buring, Julie E.; Butler, Mary A.; Carreón, Tania; Chatterjee, Nilanjan; Chung, Charles C.; Cook, Michael B.; Cullen, Michael; Davis, Faith G.; Ding, Ti; Duell, Eric J.; Epstein, Caroline G.; Fan, Jin-Hu; Figueroa, Jonine D.; Fraumeni, Joseph F.; Freedman, Neal D.; Fuchs, Charles S.; Gao, Yu-Tang; Gapstur, Susan M.; Patiño-Garcia, Ana; Garcia-Closas, Montserrat; Gaziano, J. Michael; Giles, Graham G.; Gillanders, Elizabeth M.; Giovannucci, Edward L.; Goldin, Lynn; Goldstein, Alisa M.; Greene, Mark H.; Hallmans, Goran; Harris, Curtis C.; Henriksson, Roger; Holly, Elizabeth A.; Hoover, Robert N.; Hu, Nan; Hutchinson, Amy; Jenab, Mazda; Johansen, Christoffer; Khaw, Kay-Tee; Koh, Woon-Puay; Kolonel, Laurence N.; Kooperberg, Charles; Krogh, Vittorio; Kurtz, Robert C.; LaCroix, Andrea; Landgren, Annelie; Landi, Maria Teresa; Li, Donghui; Liao, Linda M.; Malats, Nuria; McGlynn, Katherine A.; McNeill, Lorna H.; McWilliams, Robert R.; Melin, Beatrice S.; Mirabello, Lisa; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M.; Prokunina-Olsson, Ludmila; Purdue, Mark; Qiao, You-Lin; Rabe, Kari G.; Rajaraman, Preetha; Real, Francisco X.; Riboli, Elio; Rodríguez-Santiago, Benjamín; Rothman, Nathaniel; Ruder, Avima M.; Savage, Sharon A.; Schwartz, Ann G.; Schwartz, Kendra L.; Sesso, Howard D.; Severi, Gianluca; Silverman, Debra T.; Spitz, Margaret R.; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael; Stram, Daniel; Tang, Ze-Zhong; Taylor, Philip R.; Teras, Lauren R.; Tobias, Geoffrey S.; Viswanathan, Kala; Wacholder, Sholom; Wang, Zhaoming; Weinstein, Stephanie J.; Wheeler, William; White, Emily; Wiencke, John K.; Wolpin, Brian M.; Wu, Xifeng; Wunder, Jay S.; Yu, Kai; Zanetti, Krista A.; Zeleniuch-Jacquotte, Anne; Ziegler, Regina G.; de Andrade, Mariza; Barnes, Kathleen C.; Beaty, Terri H.; Bierut, Laura J.; Desch, Karl C.; Doheny, Kimberly F.; Feenstra, Bjarke; Ginsburg, David; Heit, John A.; Kang, Jae H.; Laurie, Cecilia A.; Li, Jun Z.; Lowe, William L.; Marazita, Mary L.; Melbye, Mads; Mirel, Daniel B.; Murray, Jeffrey C.; Nelson, Sarah C.; Pasquale, Louis R.; Rice, Kenneth; Wiggs, Janey L.; Wise, Anastasia; Tucker, Margaret; Pérez-Jurado, Luis A.; Laurie, Cathy C.; Caporaso, Neil E.; Yeager, Meredith; Chanock, Stephen J.

    2015-01-01

    Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 × 10−31) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population. PMID:25748358

  14. Magnetic structures synthesized by controlled oxidative etching: Structural characterization and magnetic behavior

    Directory of Open Access Journals (Sweden)

    Álvaro de Jesús Ruíz-Baltazar

    Full Text Available A facile strategy for the fabrication Fe3O4 nanostructures at room temperature and with well-defined morphology is proposed. In this methodology, the iron precursors were reduced by sodium borohydride. Subsequently an oxidative etching process promotes the formation of Fe2O3 nanostructures. Magnetic measurements revealed a well-defined superparamagnetic behavior for the material. The Zero-Field-Cooled (ZFC and Field-Cooled (FC magnetization curves reveals that critical and blocking temperature were 24 and 350 °C respectively. The Fe3O4 nanostructures were characterized using aberration-corrected (Cs scanning transmission electron microscopy (STEM and energy dispersive spectroscopy (EDS. Additionally, Raman spectra support the Fe3O4 presence and corroborate the efficiency of the synthesis process to obtain magnetite. Keywords: Chemical synthesis, Fe3O4 nanoparticles, Structural characterization, Magnetic properties

  15. Structural characterization and mechanical properties of polypropylene reinforced natural fibers

    Science.gov (United States)

    Karim, M. A. A.; Zaman, I.; Rozlan, S. A. M.; Berhanuddin, N. I. C.; Manshoor, B.; Mustapha, M. S.; Khalid, A.; Chan, S. W.

    2017-10-01

    Recently the development of natural fiber composite instead of synthetics fiber has lead to eco-friendly product manufacturing to meet various applications in the field of automotive, construction and manufacturing. The use of natural fibers offer an alternative to the reinforcing fibers because of their good mechanical properties, low density, renewability, and biodegradability. In this present research, the effects of maleic anhydride polypropylene (MAPP) on the mechanical properties and material characterization behaviour of kenaf fiber and coir fiber reinforced polypropylene were investigated. Different fractions of composites with 10wt%, 20wt% and 30wt% fiber content were prepared by using brabender mixer at 190°C. The 3wt% MAPP was added during the mixing. The composites were subsequently molded with injection molding to prepare the test specimens. The mechanical properties of the samples were investigated according to ISO 527 to determine the tensile strength and modulus. These results were also confirmed by the SEM machine observations of fracture surface of composites and FTIR analysis of the chemical structure. As the results, the presence of MAPP helps increasing the mechanical properties of both fibers and 30wt% kenaf fiber with 3wt% MAPP gives the best result compare to others.

  16. Characterizing unknown systematics in large scale structure surveys

    International Nuclear Information System (INIS)

    Agarwal, Nishant; Ho, Shirley; Myers, Adam D.; Seo, Hee-Jong; Ross, Ashley J.; Bahcall, Neta; Brinkmann, Jonathan; Eisenstein, Daniel J.; Muna, Demitri; Palanque-Delabrouille, Nathalie; Yèche, Christophe; Pâris, Isabelle; Petitjean, Patrick; Schneider, Donald P.; Streblyanska, Alina; Weaver, Benjamin A.

    2014-01-01

    Photometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data, we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study

  17. Characterizing unknown systematics in large scale structure surveys

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Nishant; Ho, Shirley [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Seo, Hee-Jong [Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720 (United States); Ross, Ashley J. [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Bahcall, Neta [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States); Brinkmann, Jonathan [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Eisenstein, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Muna, Demitri [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); Palanque-Delabrouille, Nathalie; Yèche, Christophe [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette (France); Pâris, Isabelle [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Petitjean, Patrick [Université Paris 6 et CNRS, Institut d' Astrophysique de Paris, 98bis blvd. Arago, 75014 Paris (France); Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Streblyanska, Alina [Instituto de Astrofisica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Weaver, Benjamin A., E-mail: nishanta@andrew.cmu.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2014-04-01

    Photometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data, we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study.

  18. Structural characterization of semicrystalline polymer morphologies by imaging-SANS

    International Nuclear Information System (INIS)

    Radulescu, A; Fetters, L J; Richter, D

    2012-01-01

    Control and optimization of polymer properties require the global knowledge of the constitutive microstructures of polymer morphologies in various conditions. The microstructural features can be typically explored over a wide length scale by combining pinhole-, focusing- and ultra-small-angle neutron scattering (SANS) techniques. Though it proved to be a successful approach, this involves major efforts related to the use of various scattering instruments and large amount of samples and the need to ensure the same crystallization kinetics for the samples investigated at various facilities, in different sample cell geometries and at different time intervals. With the installation and commissioning of the MgF 2 neutron lenses at the KWS-2 SANS diffractometer installed at the Heinz Maier-Leibnitz neutron source (FRMII reactor) in Garching, a wide Q-range, between 10 −4 Å −1 and 0.5Å −1 , can be covered at a single instrument. This enables investigation of polymer microstructures over a length scale from lnm up to 1μm, while the overall polymer morphology can be further examined up to 100μm by optical microscopy (including crossed polarizers). The study of different semi-crystalline polypropylene-based polymers in solution is discussed and the new imaging-SANS approach allowing for an unambiguous and complete structural characterization of polymer morphologies is presented.

  19. Pore- and micro-structural characterization of a novel structural binder based on iron carbonation

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sumanta, E-mail: Sumanta.Das@asu.edu [School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ (United States); Stone, David, E-mail: dajstone@gmail.com [Iron Shell LLC, Tucson, AZ (United States); Convey, Diana, E-mail: Diana.Convey@asu.edu [LeRoy Eyring Center for Solid State Science, Arizona State University, Tempe, AZ (United States); Neithalath, Narayanan, E-mail: Narayanan.Neithalath@asu.edu [School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ (United States)

    2014-12-15

    The pore- and micro-structural features of a novel binding material based on the carbonation of waste metallic iron powder are reported in this paper. The binder contains metallic iron powder as the major ingredient, followed by additives containing silica and alumina to facilitate favorable reaction product formation. Compressive strengths sufficient for a majority of concrete applications are attained. The material pore structure is investigated primarily through mercury intrusion porosimetry whereas electron microscopy is used for microstructural characterization. Reduction in the overall porosity and the average pore size with an increase in carbonation duration from 1 day to 4 days is noticed. The pore structure features are used in predictive models for gas and moisture transport (water vapor diffusivity and moisture permeability) through the porous medium which dictates its long-term durability when used in structural applications. Comparisons of the pore structure with those of a Portland cement paste are also provided. The morphology of the reaction products in the iron-based binder, and the distribution of constituent elements in the microstructure are also reported. - Highlights: • Carbonation of iron produces a dense microstructure. • Pore volume in iron carbonate lower, critical size higher than those in OPC pastes • Reaction product contains iron, carbon, silicon, aluminum and calcium. • Power-law for porosity-moisture permeability relationship was established.

  20. Structural characterization of the Actinides (III) and (IV) - DOTA complexes

    International Nuclear Information System (INIS)

    Audras, Matthieu

    2014-01-01

    The polyamino-carboxylate anions have been identified as compounds of interest in the operations of actinide separation, in actinide migration in the environment and in human radio-toxicology. The structural characterization of complexes formed between actinides and polyamino-carboxylates ligands is essential for a better understanding of actinide-ligands interactions. Among the polyamino-carboxylate anions, the DOTA ligand (1,4,7,10-tetraaza-cyclododecane tetraacetic acid) is described as a very strong complexing agent of the lanthanides(III), but has been little studied with actinides. The objective of this thesis is to describe the complexes formed between the actinides (III) and (IV) and the DOTA ligand, and compare them with the lanthanide complexes. For this, an approach has been introduced to characterize the complexes by complementary analytical techniques (spectrophotometry, electro-spray ionization mass spectrometry, NMR, EXAFS, electrochemistry), but also by calculations of theoretical chemistry to help the interpretation of the experimental data. The formation of a 1:1 complex is observed with the actinides(III) (plutonium and americium) as for lanthanides(III): rapid formation of intermediate species which evolves slowly towards the formation of a limit complex. Within this complex, the cation is located inside the cavity formed by the ligand. Four nitrogen atoms and four oxygen atoms from the carboxylate functions are involved in the coordination sphere of the cation. However, differences were observed in the bond lengths formed between the cation and the nitrogen atoms (the bonds are somewhat shorter in the case of actinide complexes) as well as the complexation kinetics, which is slightly faster for the actinides(III) than for lanthanide(III) ions of equivalent radius. The same behavior was observed in solution upon complexation of actinides(IV) (uranium, plutonium and neptunium): slow formation of a 1:1 complex (actinide(IV):ligand) in wherein the

  1. Characterization of the passivation processes for PIN structures

    Energy Technology Data Exchange (ETDEWEB)

    Avila Garcia, Alejandro; Reyes Barranca, Mario Alfredo [Instituto Politecnico Nacional, Mexico, D.F (Mexico); Zarate Corona, Oscar [Universidad Autonoma de Puebla, Puebla (Mexico)

    2001-02-01

    Result on the evaluation of PIN structures made on crystalline silicon, processed in our laboratory, which underwent several gettering treatments are reported. Structures were evaluated through the measurement of lifetime {tau} and I-V characteristic. Also, deep levels due to defects were characterized; the activation energy (E{sub c} -E{sub t}), capture cross section {sigma} and relative concentration (N{sub t} / N{sub d}) were obtained. Techniques used in the characterization were Output Circuit Voltage Decay (OCVD), Current-Voltage measurements (I-V) and Deep Level Transient Spectroscopy (DLTS), respectively. These measurements show variations in the parameters, as a result of the gettering techniques applied. The best results were achieved for two types of samples: the first having high phosphorus concentration, no backside damage and annealed at 850 Celsius degrees without HCI atmosphere; the second having low phosphorus concentration, no backside damage and annealed at 850 Celsius degrees without HCI atmosphere. For these samples, the minority carrier lifetime was near 3{upsilon}s, the I-V characteristics imply that conductivity modulation takes place within the intrinsic region even for low voltages, as in commercial diodes. Two defects were observed to remain after the gettering processes: one is related to the phosphorus-vacant pair and the other to the divacancy. Concentrations could be decreased from {approx}4 x 10{sup 1}1cm{sup -3} down to 3 x 10{sup -9} cm{sup -3} for the first and down to 2 x 10{sup 1}0 cm{sup -3} for the second one. [Spanish] Se reportan resultados de la evaluacion de estructuras PIN en silicio procesadas en nuestro laboratorio, las cuales fueron sometidas a diversos tratamientos de gettering. Las estructuras fueron evaluadas a traves de la medicion de tiempo de vida {tau} y la caracteristica I-V. Se caracterizaron tambien los defectos que introducen niveles profundos en la region activa del dispositivo, obteniendo energia de

  2. Underground structure characterization using motor vehicles as passive seismic sources

    Science.gov (United States)

    Kuzma, H. A.; Liu, Y.; Zhao, Y.; Rector, J.; Vaidya, S.

    2009-12-01

    The ability to detect and characterize underground voids will be critical to the success of On-Site Inspections (OSI) as mandated by the nuclear Comprehensive Test Ban Treaty (CTBT). OSIs may be conducted in order to successfully locate the Ground Zero of underground tests as well as infrastructure related to testing. Recently, our team has shown the potential of a new technique to detect underground objects using the amplitude of seismic surface waves generated by motor vehicles. In an experiment conducted in June, 2009 we were able to detect an abandoned railroad tunnel by recognizing a clear pattern in the surface waves scattered by the tunnel, using a signal generated by driving a car on a dirt road across the tunnel. Synthetic experiments conducted using physically realistic wave-equation models further suggest that the technique can be readily applied to detecting underground features: it may be possible to image structures of importance to OSI simply by laying out an array of geophones (or using an array already in place for passive listening for event aftershocks) and driving vehicles around the site. We present evidence from a set of field experiments and from synthetic modeling and inversion studies to illustrate adaptations of the technique for OSI. Signature of an abandoned underground railroad tunnel at Donner Summit, CA. To produce this image, a line of geophones was placed along a dirt road perpendicular to the tunnel (black box) and a single car was driven along the road. A normalized mean power-spectrum is displayed on a log scale as a function of meters from the center of the tunnel. The top of the tunnel was 18m below ground surface. The tunnel anomaly is made up of a shadow (light) directly above the tunnel and amplitude build-up (dark) on either side of the tunnel. The size of the anomaly (6 orders of magnitude) suggests that the method can be extended to find deep structures at greater distances from the source and receivers.

  3. Structural and functional characterization of Delphinus delphis hemoglobin system.

    Science.gov (United States)

    Manconi, Barbara; Messana, Irene; Maggiani, Federica; Olianas, Alessandra; Pellegrini, Mariagiuseppina; Crnjar, Roberto; Castagnola, Massimo; Giardina, Bruno; Sanna, Maria Teresa

    2009-11-01

    Structural analysis of the hemoglobin (Hb) system of Delphinus delphis revealed a high globin multiplicity: HPLC-electrospray ionization-mass spectrometry (ESI-MS) analysis evidenced three major beta (beta1 16,022 Da, beta2 16,036 Da, beta3 16,036 Da, labeled according to their progressive elution times) and two major alpha globins (alpha1 15,345 Da, alpha2 15,329 Da). ESI-tandem mass and nucleotide sequence analyses showed that beta2 globin differs from beta1 for the substitution Val126 --> Leu, while beta3 globin differs from beta2 for the isobaric substitution Lys65 --> Gln. The alpha2 globin differs from the alpha1 for the substitution Ser15 --> Ala. Anion-exchange chromatography allowed the separation of two Hb fractions and HPLC-ESI-MS analysis revealed that the fraction with higher pI (HbI) contained beta1, beta2 and both the alpha globins, and the fraction with lower pI (HbII) contained beta3 and both the alpha globins. Both D. delphis Hb fractions displayed a lower intrinsic oxygen affinity, a decreased effect of 2,3-BPG and a reduced cooperativity with respect to human HbA(0), with HbII showing the more pronounced differences. With respect to HbA(0), either the substitution Probeta5 --> Gly or the Probeta5 --> Ala is present in all the cetacean beta globins sequenced so far, and it has been hypothesized that position 5 of beta globins may have a role in the interaction with 2,3-BPG. Regarding the particularly lowered cooperativity of HbII, it is interesting to observe that the variant human HbA, characterized by the substitution Lysbeta65 --> Gln (HbJ-Cairo) has a decreased cooperativity with respect to HbA(0).

  4. Structural level characterization of base oils using advanced analytical techniques

    KAUST Repository

    Hourani, Nadim

    2015-05-21

    Base oils, blended for finished lubricant formulations, are classified by the American Petroleum Institute into five groups, viz., groups I-V. Groups I-III consist of petroleum based hydrocarbons whereas groups IV and V are made of synthetic polymers. In the present study, five base oil samples belonging to groups I and III were extensively characterized using high performance liquid chromatography (HPLC), comprehensive two-dimensional gas chromatography (GC×GC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) equipped with atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) sources. First, the capabilities and limitations of each analytical technique were evaluated, and then the availed information was combined to reveal compositional details on the base oil samples studied. HPLC showed the overwhelming presence of saturated over aromatic compounds in all five base oils. A similar trend was further corroborated using GC×GC, which yielded semiquantitative information on the compound classes present in the samples and provided further details on the carbon number distributions within these classes. In addition to chromatography methods, FT-ICR MS supplemented the compositional information on the base oil samples by resolving the aromatics compounds into alkyl- and naphtheno-subtituted families. APCI proved more effective for the ionization of the highly saturated base oil components compared to APPI. Furthermore, for the detailed information on hydrocarbon molecules FT-ICR MS revealed the presence of saturated and aromatic sulfur species in all base oil samples. The results presented herein offer a unique perspective into the detailed molecular structure of base oils typically used to formulate lubricants. © 2015 American Chemical Society.

  5. Structural characterization by Nuclear Magnetic Resonance of ozonized triolein

    Directory of Open Access Journals (Sweden)

    F. Díaz, Maritza

    2008-09-01

    Full Text Available In the present study ozonized triolein with 739 mmolequiv/ kg peroxide index is characterized by NMR.The triolein and ozonized triolein show very similar 1H NMR spectra except for the resonances at δ 9.74 ppm, which correspond to aldehydic protons and δ 5.14 ppm (ozonides methylic protons. Other new signal assignments are based on the connectivities provided by the proton scalar coupling constants δ 2.41 ppm (methylenic group allylic to aldehydic protons and ozonides methynic protons and δ 1.67 ppm (methylenic protons in position with respect to ozonides methylic protons. From the 13C and 1H-13C spectrum of the ozonized triolein, the presence of ozonides was confirmed by the signals δ 104.2 and 104.3 ppm, respectively. Other new signals in δ 43.9 ppm confirm the presence of methylenic carbon ozonides. From the structural elucidation of ozonated triglycerides, relevant chemical information about ozonated vegetable oil can be found .En el presente estudio ha sido caracterizada por RMN la trioleina ozonizada con índice de peróxidos de 739 mmolequiv/ kg. La trioleina y la trioleina ozonizada muestran espectros muy similares exceptuando los valores de las resonancias δ 9,74 ppm de los protones aldehídicos, y δ 5,14 ppm (protones metínicos de los ozónidos. Otras nuevas asignaciones fueron basadas en las conectividades obtenidas por las constantes de acoplamiento escalar como δ 2,41 ppm (grupo metilénico alilico a los protones aldehídicos y protones metínicos de los ozónidos y δ 1,67 ppm (protones metilénicos en posición βcon respecto a los protones metínicos de los ozónidos. En los espectros 13C y 1H-13C de la trioleina ozonizada la presencia de ozónidos fue atribuida, respectivamente, por las señales δ 104,2 y δ 104,3 ppm. Una nueva señal en δ 43,9 ppm confirma la presencia de carbono metilénico de ozónidos. Estos resultados indican que la elucidación estructural de triglicéridos ozonizados, ofrece información qu

  6. Structural characterization and lipid composition of acquired cholesteatoma

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Svane-Knudsen, Viggo; Sørensen, Jens A

    2012-01-01

    noninvasive structural and lipid compositional study of acquired cholesteatoma and control human skin using multiphoton excitation fluorescence microscopy-related techniques and high-performance thin-layer chromatography. RESULTS: The structural arrangement of the cholesteatoma is morphologically invariant...

  7. Structural and morphological characterization of CdSe:Mn thin films

    Indian Academy of Sciences (India)

    Sarika Singh

    2017-06-24

    Jun 24, 2017 ... C. The annealed samples were subjected to morphological and structural characterization using scanning electron microscope and XRD. XRD was used for structural characterization whereas scanning electron microscope shows the surface morphology of the films. XRD spectra reveal that the grown ...

  8. Growth and structural characterization of III-V semiconductor nanowires

    OpenAIRE

    Rieger, Torsten

    2015-01-01

    In this thesis, the growth and structural properties of III-V semiconductor nanowires and nanowire heterostructures are studied. These nanowires represent structures suitable for both fundamental physics and applications in electronic devices such as (tunnel) field effect transistors. The III-V nanowires are grown with molecular beam epitaxy, high κ dielectric layers are deposited conformally around the nanowires by atomic layer deposition. The morphological and structural characteristics of ...

  9. Isolation, Characterization and X-ray Structure Determination of the ...

    African Journals Online (AJOL)

    NICO

    2014-12-20

    Dec 20, 2014 ... varied both sterically and electronically. On the other hand, the aminothiazole ring system is a useful structural element in medicinal chemistry.5 We have reported substituted pyrazolones with various amino thiazoles and their molecular structures were determined.6 The ligands can exist in three tautomeric.

  10. Structural characterization of bacteriophage M13 solubilization by amphiphiles

    NARCIS (Netherlands)

    Stopar, D.; Spruijt, R.B.; Wolfs, C.J.A.M.; Hemminga, M.A.

    2002-01-01

    The structural properties of bacteriophage M13 during disassembly were studied in different membrane model systems, composed of a homologue series of the detergents sodium octyl sulfate, sodium decyl sulfate, and sodium dodecyl sulfate. The structural changes during phage disruption were monitored

  11. Synthesis, characterization and crystal structure of new nickel ...

    Indian Academy of Sciences (India)

    School of Chemistry, University College of Science, University of Tehran, Tehran, Iran. Email: alnema@khayam.ut.ac.ir ... nation polymers and coordination complexes, is a suit- able building block for supramolecular ..... Kianpour G, Salavati-Niasari M and Emadi H 2013. Precipitation synthesis and characterization of cobalt.

  12. Detection and characterization of near surface structures using ...

    African Journals Online (AJOL)

    A geophysical investigation was carried out at Shika, using seismic refraction method. The aim was to delineate, map and characterize the different strata of the subsurface within the flanks of a dam. In order to achieve this aim, varying geometric spreads were used with geophone spacings of 5m, 4m, 3m and 2m ...

  13. Synthesis, characterization, crystal structure and DNA-binding study ...

    Indian Academy of Sciences (India)

    BOLIN

    SYNOPSIS. Synthesis and characterization of four mononuclear eight coordinated cadmium(II) complexes with newly explored carboxamide derivatives and study of interaction with calf-thymus DNA are reported. The results suggest that neutral complexes 2a and 2b bind to DNA in an intercalative mode. On the other hand, ...

  14. Structural and surface compositional characterization of silver thin ...

    African Journals Online (AJOL)

    Silver thin films were deposited on microscope glass slides by the electroless Solution Growth Technique (SGT). The films were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and x-ray photoelectron spectroscopy (XPS). The films were found to exhibit a random orientation with peak positions ...

  15. Structural and optical characterization of thick and thin ...

    Indian Academy of Sciences (India)

    The grown polycrystalline films were characterized by micro-Raman, transmission electron microscope (TEM), spectrophotometer and atomic force microscope (AFM). The results were compared with that of a thicker diamond film grown elsewhere in a same make MWPACVD system at relatively higher power densities.

  16. Structural characterization and complex impedance studies on fast ...

    Indian Academy of Sciences (India)

    This paper deals with preparation and physico-chemical characterization of a new mixed system, (SbI3)–(Ag2CrO4)1− (0.1 ≤ ≤ 0.9), undertaken with a view to evaluate silver ion transport properties and identify those fast ion conducting compositions. Polycrystalline samples of various compositions were synthesized ...

  17. Synthesis and structural characterization of a novel peroxo bridged ...

    Indian Academy of Sciences (India)

    Administrator

    pound 1 was characterized by elemental analysis, IR, visible spectra and magnetic susceptibility studies. The explosive nature of ... In the centrosymmetric dinuclear complex 1, two Co(III) centres are linked by a planar peroxide bridge. Each cobalt ... a vital role in many biological systems. Extensive research has focused on ...

  18. Synthesis, structural characterization and biological activity of a ...

    Indian Academy of Sciences (India)

    3.1 Synthesis and formulation. Schiff base ligand H2L was synthesized by 1:1 conden- sation of O-aminophenol and O-vanillin in dehydrated alcohol. 1 was prepared using reaction among Zn(II) salt and the ligand in methanol. Coordination geo- metry of 1 was determined by different spectroscopic characterization.

  19. Extraction, structural and physical characterization of type I collagen ...

    African Journals Online (AJOL)

    The acid soluble collagen (ASC) and pepsin soluble collagen (PSC) were extracted from the outer skin of Sepiella inermis and further characterized partially. The yield of ASC was low (0.58% on dry weight basis); whereas the yield of PSC was comparatively more (16.23% on dry weight basis). The protein content in ASC ...

  20. Characterization and mediation of microbial deterioration of concrete bridge structures.

    Science.gov (United States)

    2013-04-01

    Samples obtained from deteriorated bridge structures in Texas were cultured in growth medium containing thiosulfate as an energy source and investigated for acid production, type of acid produced by microbes and the bio-deterioration of concrete cyli...

  1. Characterization and recognition of intraflow structures, Grande Ronde Basalt

    International Nuclear Information System (INIS)

    Long, P.E.

    1978-09-01

    This investigation was carried out as part of a feasibility study for long-term storage of nuclear waste at depth in the Pasco Basin. Three general types of intraflow structures were found at Sentinel Gap: flows with stubby, irregular columns that lack a well-developed entablature; flows consisting of multiple tiers of largely entablature-type columns; and flows with a well-developed colonnade and entablature showing a sharp break between the two. Certain features occur locally in all three types of intraflow structures: variations in fracture morphology, primary platey fracture zones, pillow-palagonite zones, and tectonically induced zones of closely spaced fractures. Fractures in each of the three types of flows were logged both at the surface and in core from Core Hole DH-5, and petrographic textures of basalt sampled from surface exposures were examined. The textures of the basalt correlate with the intraflow structures and provide a technique for identifying flows as to their general type of intraflow structure, locating internal contacts between intraflow structures and possibly estimating fracture density within flows. Fracture logging, on the other hand, does not accurately delimit intraflow structures

  2. Structural characterization of lignin from grape stalks (Vitis vinifera L.).

    Science.gov (United States)

    Prozil, Sónia O; Evtuguin, Dmitry V; Silva, Artur M S; Lopes, Luísa P C

    2014-06-18

    The chemical structure of lignin from grape stalks, an abundant waste of winemaking, has been studied. The dioxane lignin was isolated from extractive- and protein-free grape stalks (Vitis vinifera L.) by modified acidolytic procedure and submitted to a structural analysis by wet chemistry (nitrobenzene and permanganate oxidation (PO)) and spectroscopic techniques. The results obtained suggest that grape stalk lignin is an HGS type with molar proportions of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) units of 3:71:26. Structural analysis by (1)H and (13)C NMR spectroscopy and PO indicates the predominance of β-O-4' structures (39% mol) in grape stalk lignin together with moderate amounts of β-5', β-β, β-1', 5-5', and 4-O-5' structures. NMR studies also revealed that grape lignin should be structurally associated with tannins. The condensation degree of grape stalks lignin is higher than that of conventional wood lignins and lignins from other agricultural residues.

  3. Synthesis and structural characterization of a novel peroxo bridged ...

    Indian Academy of Sciences (India)

    The explosive nature of [Co(en)2(suc)(-O2)Co(en)2(suc)](NO3)2.2H2O, 1, precluded its thermal characterization. Compound 1 crystallises in the monoclinic space group 21/ and a half of the molecule, constitutes its asymmetric unit. In the centrosymmetric dinuclear complex 1, two Co(III) centres are linked by a planar ...

  4. Structural characterization and complex impedance studies on fast ...

    Indian Academy of Sciences (India)

    Abstract. This paper deals with preparation and physico-chemical characterization of a new mixed system,. (SbI3)x–(Ag2CrO4)1−x (0·1 ≤ x ≤ 0·9), undertaken with a view to evaluate silver ion transport properties and iden- tify those fast ion conducting compositions. Polycrystalline samples of various compositions were ...

  5. Synthesis, characterization and crystal structure of four new ...

    Indian Academy of Sciences (India)

    zene (3) and [1-(4-ethoxyphenyl)-3-(2-nitro-4-methylphenyl)]triazene (4), were synthesized. The reaction of the ligand (3) with HgCl2 in methanol resulted in the formation of the [HgL2] complex, (5). All compounds were characterized by means of CHN analysis, FT-IR, 1H NMR, 13C NMR spectroscopy. In addition, the crys-.

  6. Synthesis and structural characterization of polyaniline/cobalt chloride composites

    Energy Technology Data Exchange (ETDEWEB)

    Asha, E-mail: arana5752@gmail.com [Department of Basic and Applied Sciences, Bhagat Phool Singh Mahilla Vishwavidyalaya, Khanpur Kalan, Sonipat-131305 (India); Goyal, Sneh Lata; Kishore, Nawal [Department of Applied Physics, Guru Jambheshwar University of Science and Technology, Hisar-125001 (India)

    2016-05-23

    Polyaniline (PANI) and PANI /cobalt chloride composites were synthesized by in situ chemical oxidative polymerization of aniline with CoCl{sub 2}.6H{sub 2}O using ammonium peroxidisulphate as an oxidant. These composites were characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The XRD study reveals that both PANI and composites are amorphous. The XRD and SEM results confirm the presence of cobalt chloride in the composites.

  7. Characterization of physical structure of silica nanoparticles encapsulated in polymeric structure of polyamide films.

    Science.gov (United States)

    Singh, Puyam S; Aswal, Vinod K

    2008-10-01

    Polyamide nanocomposite films were prepared from nanometer sized silica particles and trimesoyl chloride-m-phenylene diamine based polyamides. The type of silica nanoparticles used is commercial LUDOX HS-40 and the particle size characterized by the radius of gyration (R(g)) is about 66 A. The immediately prepared films were easily broken into particles to form colloidal-like dilute suspension of the silica-polyamide composite particles in D(2)O-H(2)O solutions for SANS measurements, that in this dilute system SANS data the complication of scattering data from the interacting particles is minimized. At about 60% D(2)O of the sample solution, the silica is contrasted out, therefore the SANS profiles are predominantly from the organic polyamide scattering. The SANS profile of the sample solutions measured at 90% D(2)O clearly indicates scattering from both silica and polymer. The scattering heterogeneities for two-phase system were evident from the validity of the Debye-Bueche expression in case of the nanocomposite with high silica loading. At limited silica loading of the nanocomposite, interaction between the silica and polymer chains forming core-shell morphology was observed. The transport properties of the membranes made from the nanocomposite films were measured on a batch type test kit with an aqueous solution of 500 ppm dioxane concentration at pressures ranging from 50 to 200 psig, and correlated to their composite structure.

  8. Characterization of crystalline structures in Opuntia ficus-indica.

    Science.gov (United States)

    Contreras-Padilla, Margarita; Rivera-Muñoz, Eric M; Gutiérrez-Cortez, Elsa; del López, Alicia Real; Rodríguez-García, Mario Enrique

    2015-01-01

    This research studies the crystalline compounds present in nopal (Opuntia ficus-indica) cladodes. The identification of the crystalline structures was performed using X-ray diffraction, scanning electron microscopy, mass spectrometry, and Fourier transform infrared spectroscopy. The crystalline structures identified were calcium carbonate (calcite) [CaCO3], calcium-magnesium bicarbonate [CaMg(CO3)2], magnesium oxide [MgO], calcium oxalate monohydrate [Ca(C2O4)•(H2O)], potassium peroxydiphosphate [K4P2O8] and potassium chloride [KCl]. The SEM images indicate that calcite crystals grow to dipyramidal, octahedral-like, prismatic, and flower-like structures; meanwhile, calcium-magnesium bicarbonate structures show rhombohedral exfoliation and calcium oxalate monohydrate is present in a drusenoid morphology. These calcium carbonate compounds have a great importance for humans because their bioavailability. This is the first report about the identification and structural analysis of calcium carbonate and calcium-magnesium bicarbonate in nopal cladodes, as well as the presence of magnesium oxide, potassium peroxydiphosphate and potassium chloride in these plants. The significance of the study of the inorganic components of these cactus plants is related with the increasing interest in the potential use of Opuntia as a raw material of products for the food, pharmaceutical, and cosmetic industries.

  9. Characterization of Enzyme Structure-Function Relationship of Adenylosuccinate Lyase

    Science.gov (United States)

    Ray, Stephen; Patterson, David; Ghosh, Kingshuk; Wilkinson, Terry; Shaheen, Sean

    2009-10-01

    Adenylosuccinate lyase (ADSL) is an enzyme involved in de novo purine biosynthesis required for several important biological functions. Occasionally disturbances within the enzyme occur, causing a disorder known as ADSL deficiency. It is likely these mutations affect the formation of the tetramer structure by protein misfolding or aggregation. We are beginning to study fundamental properties of the enzyme structure-function relationship of Wild-Type ADSL compared to mutants associated with ADSL Deficiency with two major studies: i) Stability and formation of multimeric complexes in a heterogeneous pool of other structures, ii) Enzymatic activity and reaction kinetics studies by measuring reaction rates of the conversion of substrate into products and enzyme substrate complex formation equilibrium. Our group has successfully expressed Wild-Type (WT) and the mutants R426H and A291V in a protein expression vector and have measured their respective enzyme activity after purification. Modelling approaches for molecular interactions of monomer subunits show the trimer structure could be problematic. We have also carried out our preliminary analysis of the structure-function relationship using microscopic model for the A291V mutant compared to the WT protein.

  10. A characterization of structural proteins expressed by Bombyx mori bidensovirus.

    Science.gov (United States)

    Lü, Peng; Xing, Yali; Hu, Zhaoyang; Yang, Yanhua; Pan, Ye; Chen, Kangmin; Zhu, Feifei; Zhou, Yajing; Chen, Keping; Yao, Qin

    2017-03-01

    Bombyx mori bidensiovirus (BmBDV) is a species of Bidensovirus that has been was placed into a new genus within the new family Bidnaviridae by the International Committee on Taxonomy of Viruses. BmBDV causes fatal flacherie disease in silkworms, which causes large losses to the sericulture industry. BmBDV contains two sets of complementary linear single-stranded DNAs of approximately 6.5kb (viral DNA 1, VD1) and 6.0kb (viral DNA 2, VD2). VD1 and VD2 are encapsidated in separate icosahedral non-enveloped capsids, which are similar in size and shape. However, the strategies used to express BmBDV structural proteins remains unclear. In this work, a total of six structural proteins were separated by two-dimensional electrophoresis and shown to be encoded by the BmBDV VP gene via mass spectrometry. The transmission electron microscopy results showed that co-expression of the BmBDV VP and SP structural proteins in Spodoptera frugiperda sf9 cells resulted in the formation of 22-24nm virus-like particles. Furthermore, a mutation of the major structural protein-encoding VP gene, in which the second in-frame ATG codon was mutated to GCG, abrogated the production of several structural proteins, indicating that this strategy of expressing BmBDV VP is dependent on a leaky scanning translation mechanism. Copyright © 2016. Published by Elsevier Inc.

  11. A structurally characterized organometallic plutonium(IV) complex

    Energy Technology Data Exchange (ETDEWEB)

    Apostolidis, Christos; Walter, Olaf [European Commission, Joint Research Centre, Directorate G - Nuclear Safety and Security, Karlsruhe (Germany); Vogt, Jochen; Liebing, Phil; Edelmann, Frank T. [Chemisches Institut, Otto-von-Guericke-Universitaet Magdeburg (Germany); Maron, Laurent [Laboratoire de Physique et Chimie des Nanoobjets (LPCNO), Universite de Toulouse/INSA/CNRS (UMR5215), Toulouse (France)

    2017-04-24

    The blood-red plutonocene complex Pu(1,3-COT'')(1,4-COT'') (4; COT''=η{sup 8}-bis(trimethylsilyl)cyclooctatetraenyl) has been synthesized by oxidation of the anionic sandwich complex Li[Pu(1,4-COT''){sub 2}] (3) with anhydrous cobalt(II) chloride. The first crystal structure determination of an organoplutonium(IV) complex revealed an asymmetric sandwich structure for 4 where one COT'' ring is 1,3-substituted while the other retains the original 1,4-substitution pattern. The electronic structure of 4 has been elucidated by a computational study, revealing a probable cause for the unexpected silyl group migration. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Near Surface Characterization Of Concrete Structures Using Rayleigh Waves

    Science.gov (United States)

    Al Wardany, R.; Ballivy, G.; Saleh, K.; Rhazi, J.; Gallias, J.

    2004-05-01

    The deterioration of the near surface concrete minimises the structural behaviour, capacity, and working lifespan for civil engineering structures and dams. Repair strategy and maintenance require careful examination and determination of the degraded depth. In this aim, dispersive properties of Rayleigh waves are used to detect concrete stratification and cracks. Current work focuses on an experimental study and application of multichannel Rayleigh wave methods on high concrete volumes. The method considers a wavefield in the frequency-wavenumber domain to separate existing Rayleigh modes and determine the appropriate shear wave velocity profile. The classical phase unwrapping analysis technique is also used to localise near surface cracks and defects. This new way in concrete nondestructive testing lead to a best evaluation of near surface stiffness and properties from the surface of concrete structures.

  13. Nanodomain wall film structure and its magnetic characterization

    International Nuclear Information System (INIS)

    Hai Jiang

    2006-01-01

    In this letter, we report on a nanodomain wall thin-film structure and its fabrication. The core unit of this structure consists of a magnetic nanodot layer sandwiched between a magnetically free layer and a pinned layer. When the magnetizations of the free layer and the pinned layer are unparallel, a nanodomain wall is formed in the magnetic nanodot. Based on this concept, a nanodomain wall film structure with a Ni/Al 2 O 3 nanodot layer is prepared. Since the free and pinned layers are coupled through magnetic nanodots, a displacement of free layer M-H loop from zero field is observed. By measuring the displacement field of the free layer, the nanodomain wall energy is estimated

  14. Raman scattering characterization of space solar cell structures

    Science.gov (United States)

    Mintairov, Alexander M.; Khvostikov, V. P.; Paleeva, E. V.; Sorokina, S. V.

    1995-01-01

    A contactless method for the determination of the free-carrier density and the composition distribution across the thickness of 3-5 multi-layer solar cell structures, using the Raman scattering method, is developed. The method includes a step analysis of Raman spectra from optical phonons and phonon-plasmon modes of different layers. The method provides simultaneous measurements of the element composition and the thickness of the structure's layers together with the free-carrier density. The results of measurements of the free-carrier density composition distributions of the liquid phase epitaxy grown AlGaAs/GaAs and GaSb solar cell structures are presented and discussed.

  15. Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures.

    Science.gov (United States)

    Siddiqui, Wei Gao Muhammad Kamran; Naeem, Muhammad; Rehman, Najma Abdul

    2017-09-07

    Graph theory is used for modeling, designing, analysis and understanding chemical structures or chemical networks and their properties. The molecular graph is a graph consisting of atoms called vertices and the chemical bond between atoms called edges. In this article, we study the chemical graphs of carbon graphite and crystal structure of cubic carbon. Moreover, we compute and give closed formulas of degree based additive topological indices, namely hyper-Zagreb index, first multiple and second multiple Zagreb indices, and first and second Zagreb polynomials.

  16. Structural characterization of ammonium uranate by infrared spectroscopy

    International Nuclear Information System (INIS)

    Rodriguez S, A.

    1994-01-01

    Infrared spectroscopy have been used to investigate the chemical composition of some ammonium uranates. In this study, I have attempted to establish the interrelationship between the structure of the products, the character of their infrared spectra and x-ray diffraction data capable of consistent interpretation in terms of defining the compounds. (Author)

  17. Characterization of nanoscale multilayer structures upon thermal annealing

    NARCIS (Netherlands)

    Makhotkin, Igor Alexandrovich; Zameshin, Andrey; van de Kruijs, Robbert Wilhelmus Elisabeth; Yakshin, Andrey; Bijkerk, Frederik

    2015-01-01

    Obtaining a high quality physical description of the layered structure of multilayer based optical coatings is an essential part of the optimization of their optical performance. Grazing incidence X-ray reflectivity (GIXR) is one of the most informative and easy-to-use non-destructive tools for the

  18. Chemical and structural characterization of natural phosphate of ...

    African Journals Online (AJOL)

    Powder X-ray diffraction fitting results confirm that compound belongs to the apatite family crystallising in the hexagonal system, space group P63/m. The cell parameters are: a = 9.3547(5) Å; c = 6.8929(4) Å. KEY WORDS: Natural phosphate, Fluoroapatite, Infrared, X-Ray diffraction, Rietveld structure refinement. Bull. Chem ...

  19. Synthesis and structural characterization of CsNiP crystal

    Indian Academy of Sciences (India)

    Unknown

    Fluck and Issleib 1965). However, studies of these alka- line metal phosphides gained momentum since last three decades (Johnson and Jeitschlo 1972; Barz et al 1983;. Muller et al 1983; Schnering et al 1999). In recent years, structural data of phosphides also were reported (Shan- non 1976; Jeitschlo and Braun 1977; ...

  20. Syntheses and Structural Characterization of the Alkaline Earth and ...

    Indian Academy of Sciences (India)

    dell

    checkCIF/PLATON report. You have not supplied any structure factors. As a result the full set of tests cannot be run. THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE. FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED. CRYSTALLOGRAPHIC ...

  1. Synthesis, Crystal structure and Characterization of a New Oxalate ...

    Indian Academy of Sciences (India)

    O, N–H...O hydrogen bonds which connect ionic entities and water molecules and also by π–π stack- ing interactions between the rings of 3,5-dimethylpyrazole cations. Hence, both coordinated and uncoordinated water molecules play an important role in the hydrogen-bonding system and stabilize the structure. Keywords.

  2. Synthesis, characterization and crystal structure of new nickel ...

    Indian Academy of Sciences (India)

    ductive, luminescent, magnetic, porous, chiral or nonlinear optical materials. The most useful strategy to construct such materials is to employ appropriate bridging ..... C and 8 h were nanoparticles with size of 35–45 nm and confirmed by TEM. Further increase in thermal decomposition time led to nanosheet-like structures.

  3. Structural and magnetic characterization of YIG particles prepared using microemulsions

    International Nuclear Information System (INIS)

    Teijeiro, A.G.; Baldomir, D.; Rivas, J.; Paz, S.; Vaqueiro, P.; Lopez Quintela, A.

    1995-01-01

    Yttrium-iron-garnet (YIG) particles have been synthesized using the microemulsion technique. A comparison of ferrite powders obtained by this method and those prepared by sol-gel and solid state reactions is reported. We have studied both the magnetic and structural properties and have found a dependence on annealing temperatures. ((orig.))

  4. Towards the structural characterization of proteins involved in peptidoglycan biosynthesis

    NARCIS (Netherlands)

    Nikolaidis, I.

    2015-01-01

    The cell wall is an essential structure for bacterial survival and unique to bacteria. It is responsible for maintenance of cellular shape and allows the bacterium to withstand high differences in osmotic pressure between the inner and outer leaflet of the cell. Consequently, the bacterial cell wall

  5. Synthesis and structural characterization of a calcium coordination ...

    Indian Academy of Sciences (India)

    pounds showed a Ca:water ratio of 1:3 or less. A recent study based on the analysis of the crystal structures of 131 Ca-carboxylates has shown that the coordina- tion number of calcium ranges from three to ten, with octacoordination being the most favoured.5 Due to the larger ionic radius of 106 pm for Ca2+, the carboxy-.

  6. Synthesis, characterization, X-ray structure, optical properties and ...

    Indian Academy of Sciences (India)

    ESMA LAMERA

    Also, the values of dipole moment μ, the average polarizability ¯α, and the first static hyperpolarizability (β0) were computed. The theoretical and experimental results confirm the NLO behavior of both compounds. Keywords. Condensed phthalazine; DFT calculations; spectroscopic analysis; X-ray structure; NLO. 1.

  7. Synthesis, crystal structure and characterization of new biologically ...

    Indian Academy of Sciences (India)

    Sulfonamide; Cu(II) complexes; crystal structure; oxidative DNA cleavage; cytotoxic activity. 1. Introduction. The continuous demand for new ... between the base stacks of double-stranded DNA, thus showing cytotoxic effects on several ... proteins.11,12 The toxicity of Cu(II) complexes seems to be lower than classic cancer ...

  8. Direct characterization of states and modes in defect grating structures

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Sopaheluwakan, A.; Andonowati, A.

    2004-01-01

    For one-dimensional optical structures consisting of gratings surrounding a defect region, optical field solutions inside the bandgap are investigated that are steady states or fully transmitted modes. The observation that a mode is a suitable combination of two states, and that each state is a

  9. Synthesis, Characterization, Crystal Structure and Keto-enol Kinetics

    African Journals Online (AJOL)

    A crystal structure determination of Hbth (orthorhombic, Pbca, Z=8, R=0.0290) shows asymmetrical enolization on the side of the phenyl group. The preferred enol isomer of β-diketones containing more than one aromatic moiety that crystallizes in the solid state is determined by the resonance driving force stabilization of the ...

  10. Syntheses and structural characterization of the alkaline earth and ...

    Indian Academy of Sciences (India)

    13 The structures were solved by Direct Methods (SHELXS-97)14 and refined by full- matrix least-square methods against F2 (SHELXL-97). All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms ...

  11. Structural characterization of suppressor lipids by high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Rovillos, Mary Joy; Pauling, Josch Konstantin; Hannibal-Bach, Hans Kristian

    2016-01-01

    RATIONALE: Suppressor lipids were originally identified in 1993 and reported to encompass six lipid classes that enable Saccharomyces cerevisiae to live without sphingolipids. Structural characterization, using non-mass spectrometric approaches, revealed that these suppressor lipids are very long...... chain fatty acid (VLCFA)-containing glycerophospholipids with polar head groups that are typically incorporated into sphingolipids. Here we report, for the first time, the structural characterization of the yeast suppressor lipids using high-resolution mass spectrometry. METHODS: Suppressor lipids were...... isolated by preparative chromatography and subjected to structural characterization using hybrid quadrupole time-of-flight and ion trap-orbitrap mass spectrometry. RESULTS: Our investigation recapitulates the overall structural features of the suppressor lipids and provides an in-depth characterization...

  12. Morphology Characterization of PP/Clay Nanocomposites Across the Length Scales of the Structural Architecture

    NARCIS (Netherlands)

    Szazdi, Laszlo; Abranyi, Agnes; Pukansky Jr, Bela; Vancso, Gyula J.; Pukanszky, B.; Pukanszky, Bela

    2006-01-01

    The structure and rheological properties of a large number of layered silicate poly(propylene) nanocomposites were studied with widely varying compositions. Morphology characterization at different length scales was achieved by SEM, TEM, and XRD. Rheological measurements supplied additional

  13. Characterizing core-periphery structure of complex network by h-core and fingerprint curve

    Science.gov (United States)

    Li, Simon S.; Ye, Adam Y.; Qi, Eric P.; Stanley, H. Eugene; Ye, Fred Y.

    2018-02-01

    It is proposed that the core-periphery structure of complex networks can be simulated by h-cores and fingerprint curves. While the features of core structure are characterized by h-core, the features of periphery structure are visualized by rose or spiral curve as the fingerprint curve linking to entire-network parameters. It is suggested that a complex network can be approached by h-core and rose curves as the first-order Fourier-approach, where the core-periphery structure is characterized by five parameters: network h-index, network radius, degree power, network density and average clustering coefficient. The simulation looks Fourier-like analysis.

  14. Fabrication and characterization of nanometric SiOx/SiOy multilayer structures obtained by LPCVD

    Energy Technology Data Exchange (ETDEWEB)

    Román-López, S.; Aceves-Mijares, M.; Pedraza-Chávez, J. [National Institute for Astrophysics, Optics and Electronics, L. Erro 1, Tonatzintla Puebla (Mexico); Carrillo-López, J. [Center of Res. on Semiconductors Dev. BUAP, Av. San Claudio y 14 Sur CU, Puebla Puebla (Mexico)

    2014-05-15

    This work presents the fabrication of nanometric multilayer structures and their characterization by Atomic Force Microscopy, Photoluminescence and Fourier Transform Infra Red spectroscopy. The structures were deposited by Low Pressure Chemical Vapor Deposition (LPCVD). Three types of multilayer structure were fabricated. After the deposition some samples were annealed in N{sub 2} ambient for three hours. It was found that the structures keep the characteristics of each layer.

  15. Structural characterization of hog iron oxide content glasses obtained from zinc hydrometallurgy wastes

    International Nuclear Information System (INIS)

    Romero, M.; Rincon, J.M.; Musik, S.; Kozhujharov, W.

    1997-01-01

    It has been carried out the structural characterization of high oxide content glasses obtained by melting of a goethite industrial waste from the zinc hydrometallurgy with other raw materials as dolomite and glass cullet. The structural characterization has been carried out by X-ray Diffraction (XRD), X-Ray Diffraction by Amorphous Dispersion (RDF) and Mossbauer spectroscopy. It has been determined the interatomic distance, the oxidation state and the coordination of iron atoms in these glasses. (Author) 16 refs

  16. Structural characterization of the ceruloplasmin: lactoferrin complex in solution.

    Science.gov (United States)

    Sabatucci, Annalaura; Vachette, Patrice; Vasilyev, Vadim B; Beltramini, Mariano; Sokolov, Alexey; Pulina, Maria; Salvato, Benedetto; Angelucci, Clotilde B; Maccarrone, Mauro; Cozzani, Ivo; Dainese, Enrico

    2007-08-24

    Ceruloplasmin is a copper protein found in vertebrate plasma, which belongs to the family of multicopper oxidases. Like transferrin of the blood plasma, lactoferrin, the iron-containing protein of human milk, saliva, tears, seminal plasma and of neutrophilic leukocytes tightly binds two ferric ions. Human lactoferrin and ceruloplasmin have been previously shown to interact both in vivo and in vitro forming a complex. Here we describe a study of the conformation of the human lactoferrin/ceruloplasmin complex in solution using small angle X-ray scattering. Our ab initio structural analysis shows that the complex has a 1:1 stoichiometry and suggests that complex formation occurs without major conformational rearrangements of either protein. Rigid-body modeling of the mutual arrangement of proteins in the complex essentially yields two families of solutions. Final discrimination is possible when integrating in the modeling process extra information translating into structural constraints on the interaction between the two partners.

  17. Structural and functional characterization of barium zirconium titanate / epoxy composites

    Directory of Open Access Journals (Sweden)

    Filiberto González Garcia

    2011-12-01

    Full Text Available The dielectric behavior of composite materials (barium zirconium titanate / epoxy system was analyzed as a function of ceramic concentration. Structure and morphologic behavior of the composites was investigated by X-ray Diffraction (XRD, Fourier transformed infrared spectroscopy (FT-IR, Raman spectroscopy, field emission scanning electron microscopy (FE-SEM and transmission electron microscopy (TEM analyses. Composites were prepared by mixing the components and pouring them into suitable moulds. It was demonstrated that the amount of inorganic phase affects the morphology of the presented composites. XRD revealed the presence of a single phase while Raman scattering confirmed structural transitions as a function of ceramic concentration. Changes in the ceramic concentration affected Raman modes and the distribution of particles along into in epoxy matrix. Dielectric permittivity and dielectric losses were influenced by filler concentration.

  18. High-Resolution Reciprocal Space Mapping for Characterizing Deformation Structures

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang; Wejdemann, Christian; Jakobsen, Bo

    2014-01-01

    With high-angular resolution three-dimensional X-ray diffraction (3DXRD), quantitative information is gained about dislocation structures in individual grains in the bulk of a macroscopic specimen by acquiring reciprocal space maps. In high-resolution 3D reciprocal space maps of tensile-deformed ......With high-angular resolution three-dimensional X-ray diffraction (3DXRD), quantitative information is gained about dislocation structures in individual grains in the bulk of a macroscopic specimen by acquiring reciprocal space maps. In high-resolution 3D reciprocal space maps of tensile...... dynamics is followed in situ during varying loading conditions by reciprocal space mapping: during uninterrupted tensile deformation, formation of subgrains is observed concurrently with broadening of Bragg reflections shortly after the onset of plastic deformation. When the traction is terminated, stress...

  19. Structural Characterization of Highly Corrosion-resistant Steel

    Directory of Open Access Journals (Sweden)

    Adriana Lančok

    2015-12-01

    Full Text Available Structural features of novel corrosion-resistant LC 200N steel were investigated. Mössbauer spectrometry was chosen as a principal method of investigation. Surface as well as bulk properties were studied using Conversion Electron Mössbauer Spectrometry and transmission technique, respectively. Complex behaviour of magnetic and non-magnetic phases was identified in the samples by these two techniques. Chemical composition was checked by neutron activation analysis and X-ray fluorescence technique. Structural arrangement was studied by scanning electron microscopy with energy dispersive spectrometry and transmission electron microscopy. They unveiled regions with fairly varied Cr concentrations. Basing on a simple model of two different Cr concentrations, the relative areas of the Mössbauer sextets were modelled by a linear combination of two binomial distributions.

  20. Synthesis, characterization, x-ray structure and antimicrobial activity ...

    African Journals Online (AJOL)

    intermolecular N3—H1N1•••O1 hydrogen bonds. (Table 2), resulting in the formation of zigzag layers lying parallel to (100) (Fig. 2b). The existence of π•••π interactions involving the centroid of the N4/C9-C13 pyridine ring (π•••π distance = 3.5108(18) Å) further stabilize the molecular packing. The structure of compound 2.

  1. Structural behaviour characterization of existing adobe constructions in Aveiro

    OpenAIRE

    Varum, H.; Costa, A.; Martins, T.; Pereira, H.; Almeida, J.; Rodrigues, H.; Silveira, D.

    2007-01-01

    Adobe was a widely used construction material in Aveiro, Portugal, till the middle of the 20th century. Nowadays, adobe can still be found in varied types of constructions, many of which are of cultural, historical, and also architectural recognized value. The existing adobe buildings present an important level of structural damage and, in many cases, are even near to ruin, having the majority a high vulnerability to seismic actions. To face the lack of information concerning the mechanica...

  2. A Quantitative Characterization of Weighted Kripke Structures in Temporal Logic

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Thrane, Claus Rørbæk; Fahrenberg, Uli

    2009-01-01

    We extend the usual notion of Kripke Structures with a weighted transition relation, and generalize the usual Boolean satisfaction relation of CTL to a map which assigns to states and temporal formulae a real-valued distance describing the degree of satisfaction. We describe a general approach to...... to obtaining quantitative interpretations for a generic extension of the CTL syntax, and show that, for one such interpretation, the logic is both adequate and expressive with respect to quantitative bisimulation....

  3. Structural and Histone Binding Ability Characterizations of Human PWWP Domains

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Zeng, Hong; Lam, Robert; Tempel, Wolfram; Amaya, Maria F.; Xu, Chao; Dombrovski, Ludmila; Qiu, Wei; Wang, Yanming; Min, Jinrong (Toronto); (Penn)

    2013-09-25

    The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical {beta}-barrel core, an insertion motif between the second and third {beta}-strands and a C-terminal {alpha}-helix bundle. Both the canonical {beta}-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.

  4. Quantitative characterization of semiconductor structures with a scanning microwave microscope.

    Science.gov (United States)

    Korolyov, S A; Reznik, A N

    2018-02-01

    In this work, our earlier method for measuring resistance R sh of semiconductor films with a near-field scanning microwave microscope [A. N. Reznik and S. A. Korolyov, J. Appl. Phys. 119, 094504 (2016)] is studied in a 0.1 kΩ/sq microscope model in the form of a monopole or dipole antenna interacting with an arbitrary layered structure. The model fitting parameters are determined from the data yielded by calibration measurements on a system of etalon samples. The performance of the method was analyzed experimentally, using strip-probe and coaxial-probe microscopes in the frequency range of 1-3 GHz. For test structures, we used doped GaN films on the Al 2 O 3 substrate and also transistor structures based on the AlGaN/GaN heterojunction and AlGaAs/GaAs/InGaAs/GaAs/AlGaAs quantum well with a conducting channel. The obtained microwave microscope data were compared with the results of measurements by the van der Pauw method. At the first stage of the experiment, the calibration etalons were bulk homogeneous samples with different permittivity/conductivity values. In this case, satisfactory agreement between the microscope and the van der Pauw data was obtained with a strip probe on all tested samples in the entire range of R sh . With a coaxial probe, such accordance was observed only in high-ohmic samples with R sh > 1 kΩ/sq. The use of GaN film structures as a calibration system helped to increase the accuracy of the coaxial-probe-aided measurement of R sh to a level of ∼10%.

  5. Vibrational spectroscopy for structural characterization of bioactive compounds

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, K.S.; Majik, M.S.; Tilvi, S.

    , it is worthy to determine the structure for further understanding the physiochemical properties of the molecule. Several spectroscopic tools were employed for this purpose such as NMR, mass spectrometry and IR spectroscopy. Among these techniques, IR is one... differ not only in the nature of their components but also in the length of the chain and in the amount of chain branching. Several polysaccharides are found in marine organisms mainly in brown algae and sea weeds. They have wide value in medicine, food...

  6. Processing and structural characterization of porous reforming catalytic films

    International Nuclear Information System (INIS)

    Hou Xianghui; Williams, Jey; Choy, Kwang-Leong

    2006-01-01

    Nickel-based catalysts are often used to reform methanol into hydrogen. The preparation and installation of these catalysts are costly and laborious. As an alternative, directly applying catalytic films onto the separator components can improve the manufacturing efficiency. This paper reports the successful deposition of adherent porous NiO-Al 2 O 3 -based catalytic films with well-controlled stoichiometry, using a single-step Aerosol Assisted Chemical Vapour Deposition (AACVD) method. The microstructure, composition and crystalline phase of the as-deposited catalytic films are characterized using a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared (FTIR) Spectrometer. The results have demonstrated the capability of AACVD to produce porous NiO-Al 2 O 3 -based catalytic films

  7. Structural Characterization of Pharmaceutical Heparins Prepared from Different Animal Tissues

    Science.gov (United States)

    FU, LI; LI, GUOYUN; YANG, BO; ONISHI, AKIHIRO; LI, LINGYUN; SUN, PEILONG; ZHANG, FUMING; LINHARDT, ROBERT J.

    2013-01-01

    Although most pharmaceutical heparin used today is obtained from porcine intestine, heparin has historically been prepared from bovine lung and ovine intestine. There is some regulatory concern about establishing the species origin of heparin. This concern began with the outbreak of mad cow disease in the 1990s and was exacerbated during the heparin shortage in the 2000s and the heparin contamination crisis of 2007–2008. Three heparins from porcine, ovine, and bovine were characterized through state-of-the-art carbohydrate analysis methods with a view profiling their physicochemical properties. Differences in molecular weight, monosaccharide and disaccharide composition, oligosaccharide sequence, and antithrombin III-binding affinity were observed. These data provide some insight into the variability of heparins obtained from these three species and suggest some analytical approaches that may be useful in confirming the species origin of a heparin active pharmaceutical ingredient. PMID:23526651

  8. Structural characterization of clays commercially used in red ceramics

    International Nuclear Information System (INIS)

    Brito, E.M.; Moura, J.K.L.; Souza, R.B.; Brandim, A.S.

    2014-01-01

    The use of clays hills being an alternative to clay floodplain, due to environmental protection laws. The research project aims at the morphological and chemical characterization of hills clays used industrially for the production of ceramic tiles and blocks. Therefore, two types of methods were known commercially in the region of Teresina-PI through diffraction of X-rays (X-DR), scanning electron microscopy (SEM) and energy dispersive spectrometry X-ray (EDS). It can be observed that the samples have a high percentage of quartz, hematite still having in its constitution aluminum oxide, zirconium oxide and titanium oxide. The results show that the clays are clays and montmorillonites may be used for the production of ceramic tiles and blocks, but as the proportion of using the same will be focusing the next job. (author)

  9. Structural characterization of chemically deposited PbS thin films

    International Nuclear Information System (INIS)

    Fernandez-Lima, F.A.; Gonzalez-Alfaro, Y.; Larramendi, E.M.; Fonseca Filho, H.D.; Maia da Costa, M.E.H.; Freire, F.L.; Prioli, R.; Avillez, R.R. de; Silveira, E.F. da; Calzadilla, O.; Melo, O. de; Pedrero, E.; Hernandez, E.

    2007-01-01

    Polycrystalline thin films of lead sulfide (PbS) grown using substrate colloidal coating chemical bath depositions were characterized by RBS, XPS, AFM and GIXRD techniques. The films were grown on glass substrates previously coated with PbS colloidal particles in a polyvinyl alcohol solution. The PbS films obtained with the inclusion of the polymer showed non-oxygen-containing organic contamination. All samples maintained the Pb:S 1:1 stoichiometry throughout the film. The amount of effective nucleation centers and the mean grain size have being controlled by the substrate colloidal coating. The analysis of the polycrystalline PbS films showed that a preferable (1 0 0) lattice plane orientation parallel to the substrate surface can be obtained using a substrate colloidal coating chemical bath deposition, and the orientation increases when a layer of colloid is initially dried on the substrate

  10. The synthesis and structural characterization of novel transition metal fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Casteel, W.J. Jr.

    1992-09-01

    High purity KMF[sub 6] and K[sub 2]MF[sub 6] salts (M = Mo,Re, Ru, Os, Ir, Pt) are obtained from reduction hexafluorides. A rhombohedral unit cell is observed for KReF[sub 6]. Fluoride ion capture by Lewis acids from the hexafluorometallate (IV) salts affords high purity tetrafluorides for M = Mo, Re, Ru, Os, and Pd. The structure of RuF[sub 4] is determined from X-ray synchrotron and neutron powder data. Unit cells based on theorthorhombic PdF[sub 4] type cell are derived from X-ray powder data for ReF[sub 4] and OsF[sub 4]. Fluoride ion capture from KAgF[sub 4] provides the thermally unstable trifluoride as a bright, red, diamagnetic solid. The structure solution of AgF[sub 3] and redetermination of the AuF[sub 3] structure from X-ray synchrotron and neutron powder data demonstrate that the two are isostnictural. Thermal decomposition product of AgF[sub 3] is the mixed valence compound Ag[sup II]Ag[sub 2][sup III]F[sub 8]. Several new salts containing the (Ag - F)[sub n][sup n+] chain cation are prepared. The first linear (Ag - F)[sub n][sup n+] chain is observed in AgF[sup +]BF[sub 4 [sup [minus

  11. Characterization of irradiated test structures for the CMS tracker upgrade

    Science.gov (United States)

    Lutzer, Bernhard

    2013-12-01

    The CMS collaboration is currently conducting a campaign to identify radiation-hard materials for an upgrade of the CMS tracker. This upgrade is needed to be able to cope with the higher radiation background of the future HL-LHC; additionally the performance of the current tracker will be significantly degraded at the time of the upgrade, requiring a replacement. Several different test structures (TSs) and sensors have been designed for a 6 in. wafer layout. These wafers were produced by an industrial supplier (Hamamatsu Photonics K.K.) and differ by their bulk material (Float Zone, Magnetic Czochralski and CVD-Epi), thickness (from 50 μm to 320 μm) and N-P type doping. These TSs consist of different microelectronic devices including diodes, resistors or MOS structures. They enable the extraction of parameters which are not accessible in a silicon detector and allow the assessment of the quality of the sensors produced on the same wafer. The TSs have been irradiated with protons and neutrons to emulate the radiation damage caused by the particle fluence inside the future CMS tracker after 10 years of operation. This contribution will present measurements of non-irradiated and irradiated test structures at different fluences. The changes of the properties of the microelectronic devices will be discussed as well as the design of the TSs.

  12. Sol-Gel Titanium Dioxide Nanoparticles: Preparation and Structural Characterization

    Directory of Open Access Journals (Sweden)

    Oon Lee Kang

    2016-01-01

    Full Text Available Titanium dioxide (TiO2 nanoparticle was achieved in an alternative sol-gel route, as involved in 1 M acidic solution: HCl-tetrahydrofuran (HCl-THF, HNO3-tetrahydrofuran (HNO3-THF, and ClHNO2-tetrahydrofuran (ClHNO2-THF solution. Resultant TiO2 nanoparticle was further investigated in a systematic analytical approach. Nanoscale TiO2 structure was observed at a moderate hydrolysis ratio (8≤RH≤16. Particle size range was much narrower in an aprotic HNO3-THF medium, as compared to a differential HCl-THF medium. Biphasic TiO2 structure was detected at a certain hydrolysis ratio (RH≥16. Even so, relative anatase content was rather insignificant in an aprotic HCl-THF medium, as compared to a differential HNO3-THF medium. Tetragonal TiO2 structure was observed in the entire hydrolysis ratio (4≤RH≤32. Interstitial lattice defect was evident in an aprotic HNO3-THF medium but absent in a differential ClHNO2-THF medium.

  13. Cryo-Electron Tomography for Structural Characterization of Macromolecular Complexes

    Science.gov (United States)

    Cope, Julia; Heumann, John; Hoenger, Andreas

    2011-01-01

    Cryo-electron tomography (cryo-ET) is an emerging 3-D reconstruction technology that combines the principles of tomographic 3-D reconstruction with the unmatched structural preservation of biological material embedded in vitreous ice. Cryo-ET is particularly suited to investigating cell-biological samples and large macromolecular structures that are too polymorphic to be reconstructed by classical averaging-based 3-D reconstruction procedures. This unit aims to make cryo-ET accessible to newcomers and discusses the specialized equipment required, as well as the relevant advantages and hurdles associated with sample preparation by vitrification and cryo-ET. Protocols describe specimen preparation, data recording and 3-D data reconstruction for cryo-ET, with a special focus on macromolecular complexes. A step-by-step procedure for specimen vitrification by plunge freezing is provided, followed by the general practicalities of tilt-series acquisition for cryo-ET, including advice on how to select an area appropriate for acquiring a tilt series. A brief introduction to the underlying computational reconstruction principles applied in tomography is described, along with instructions for reconstructing a tomogram from cryo-tilt series data. Finally, a method is detailed for extracting small subvolumes containing identical macromolecular structures from tomograms for alignment and averaging as a means to increase the signal-to-noise ratio and eliminate missing wedge effects inherent in tomographic reconstructions. PMID:21842467

  14. From Nano Structure to Systems: Fabrication and Characterization

    International Nuclear Information System (INIS)

    Uda Hashim

    2011-01-01

    Currently, the interest in nano technology research has been grown rapidly. With the latest technology, it is possible to arrange atoms into structures that are only a few nanometers in size. Dimension for nano structure is between 0.1 and 100nm where the actual size of 1nm is equal to 10-9 m or just about a few atoms thick. In other word, a nano structure is an object which it size is about four atom diameters or 1/50000 of a human hair. Due to the connecting of a patterned silicon substrate with biomolecules and the small size and large surface-to-volume ratio, it opens much new possibility for assembling nano structures.The ultimate goal is to fabricate devices that have every atom in the right place. Such technology would give the opportunity to minimize the size of a device and to reduce the material, energy and time necessary to perform its task. Potential applications include electrical circuits, mechanical devices and medical instruments. There are two most important nano structures that are extensively studied and researched in various organizations which are nano wire and nano gap. Nano wires is a new class of nano structure that have attracted attention and great research interest in the last few years because of their potential applications in nano technology such as nano electronic, nano mechanical and biomedical engineering. Fabrication of Nano wires is one of the great challenges today. Conventional lithography methods are not capable to produce Nano wires and even with advance nano lithography sizes below 100 nm may not easily be achieved. Nano wire can be produced in two approaches, which are top down and bottom-up method. Very small nano wires which can be produced by using top-down nano fabrication methods are Scanning Electron Microscope (SEM) based Electron Beam Lithography (EBL) method, and Spacer Patterning Lithography (SPL) method. The top-down nano fabrication method based on EBL was the design of the Nano wires Pattern Design (NPD). The

  15. Structural characterization of the Salmonella typhimurium LT2 umu operon

    International Nuclear Information System (INIS)

    Thomas, S.M.; Crowne, H.M.; Pidsley, S.C.; Sedgwick, S.G.

    1990-01-01

    The umuDC operon of Escherichia coli encodes functions required for mutagenesis induced by radiation and a wide variety of chemicals. The closely related organism Salmonella typhimurium is markedly less mutable than E. coli, but a umu homolog has recently been identified and cloned from the LT2 subline. In this study the nucleotide sequence and structure of the S. typhimurium LT2 umu operon have been determined and its gene products have been identified so that the molecular basis of umu activity might be understood more fully. S. typhimurium LT2 umu consists of a smaller 417-base-pair (bp) umuD gene ending 2 bp upstream of a larger 1,266-bp umuC gene. The only apparent structural difference between the two operons is the lack of gene overlap. An SOS box identical to that found in E. coli is present in the promoter region upstream of umuD. The calculated molecular masses of the umuD and umuC gene products were 15.3 and 47.8 kilodaltons, respectively, which agree with figures determined by transpositional disruption and maxicell analysis. The S. typhimurium and E. coli umuD sequences were 68% homologous and encoded products with 71% amino acid identity; the umuC sequences were 71% homologous and encoded products with 83% amino acid identity. Furthermore, the potential UmuD cleavage site and associated catalytic sites could be identified. Thus the very different mutagenic responses of S. typhimurium LT2 and E. coli cannot be accounted for by gross differences in operon structure or gene products. Rather, the ability of the cloned S. typhimurium umuD gene to give stronger complementation of E. coli umuD77 mutants in the absence of a functional umuC gene suggests that Salmonella UmuC protein normally constrains UmuD protein activity

  16. Structural characterization of lipidic systems under nonequilibrium conditions

    DEFF Research Database (Denmark)

    Yaghmur, Anan; Rappolt, Michael

    2012-01-01

    manipulation techniques including, for instance, stop-flow mixing or rapid temperature-jump perturbation is given. Second, our recent synchrotron SAXS findings on the dynamic structural response of gold nanoparticle-loaded vesicles upon exposure to an ultraviolet light source, the impact of rapidly mixing...... and the possible formation of intermediate states in the millisecond to second range. The need for investigating self-assembled systems, mainly stimuli-responsive drug nanocarriers, under nonequilibrium conditions is discussed. For pharmaceutically relevant applications, it is essential to combine...

  17. Characterization, Microstructure, and Dielectric properties of cubic pyrochlore structural ceramics

    KAUST Repository

    Li, Yangyang

    2013-05-01

    The (BMN) bulk materials were sintered at 1050°C, 1100°C, 1150°C, 1200°C by the conventional ceramic process, and their microstructure and dielectric properties were investigated by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Transmission electron microscopy (TEM) (including the X-ray energy dispersive spectrometry EDS and high resolution transmission electron microscopy HRTEM) and dielectric impedance analyzer. We systematically investigated the structure, dielectric properties and voltage tunable property of the ceramics prepared at different sintering temperatures. The XRD patterns demonstrated that the synthesized BMN solid solutions had cubic phase pyrochlore-type structure when sintered at 1050°C or higher, and the lattice parameter (a) of the unit cell in BMN solid solution was calculated to be about 10.56Å. The vibrational peaks observed in the Raman spectra of BMN solid solutions also confirmed the cubic phase pyrochlore-type structure of the synthesized BMN. According to the Scanning Electron Microscope (SEM) images, the grain size increased with increasing sintering temperature. Additionally, it was shown that the densities of the BMN ceramic tablets vary with sintering temperature. The calculated theoretical density for the BMN ceramic tablets sintered at different temperatures is about 6.7521 . The density of the respective measured tablets is usually amounting more than 91% and 5 approaching a maximum value of 96.5% for sintering temperature of 1150°C. The microstructure was investigated by using Scanning Transmission Electron Microscope (STEM), X-ray diffraction (XRD). Combined with the results obtained from the STEM and XRD, the impact of sintering temperature on the macroscopic and microscopic structure was discussed. The relative dielectric constant ( ) and dielectric loss ( ) of the BMN solid solutions were measured to be 161-200 and (at room temperature and 100Hz-1MHz), respectively. The BMN solid

  18. Syntheses, structural characterization, and basic properties of unsymmetrically substituted biphenoquinones

    Science.gov (United States)

    Fujii, Ryotaro; Sugiura, Ken-ichi

    2018-03-01

    Unsymmetrically substituted biphenoquinones, 3,5-dimethyl-3‧,5‧-diphenylbiphenoquinone and 3,5-di-tert-butyl-3‧,5‧-diphenylbiphenoquinone, were prepared by a mixed oxidative coupling reaction of the corresponding phenols with potassium permanganate in CHCl3. The properties of the quinones such as reduction potential and visible light absorption were measured and positively shifted reduction potentials and bathochromic shifts as a result of light absorption were found to be characteristic of the π-expanded quinones. We also carried out single-crystal diffraction study and uncovered a unique packing motif attributable to their unsymmetrical structures.

  19. Structural and histone binding ability characterizations of human PWWP domains.

    Directory of Open Access Journals (Sweden)

    Hong Wu

    Full Text Available The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently.The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3.PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical β-barrel core, an insertion motif between the second and third β-strands and a C-terminal α-helix bundle. Both the canonical β-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the

  20. Multiple Approaches to Characterizing Pore Structure in Natural Rock

    Science.gov (United States)

    Hu, Q.; Dultz, S.; Hamamoto, S.; Ewing, R. P.

    2012-12-01

    Microscopic characteristics of porous media - pore shape, pore-size distribution, and pore connectivity - control fluid flow and chemical transport, and are important in hydrogeological studies of rock formations in the context of energy, environmental, and water resources management. This presentation discusses various approaches to investigating pore structure of rock, with a particular focus on the Barnett Shale in north Texas used for natural gas production. Approaches include imbibition, tracer diffusion, porosimetry (MIP, vapor adsorption/desorption isotherms, NMR cyroporometry), and imaging (μ-tomography, Wood's metal impregnation, FIB/SEM). Results show that the Barnett Shale pores are predominantly in the nm size range, with a measured median pore-throat diameter of 6.5 nm. But small pore size is not the major contributor to low gas recovery; rather, the low gas diffusivity appears to be caused by low pore connectivity. Chemical diffusion in sparsely-connected pore spaces is not well described by classical Fickian behavior; anomalous behavior is suggested by percolation theory, and confirmed by results of imbibition tests. Our evolving complementary approaches, with their several advantages and disadvantages, provide a rich toolbox for tackling the pore structure characteristics in the Barnett Shale and other natural rocks.

  1. Structural characterization of the mitomycin 7-O-methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shanteri; Chang, Aram; Goff, Randal D.; Bingman, Craig A.; Grüschow, Sabine; Sherman, David H.; Phillips, Jr., George N.; Thorson, Jon S. (Michigan); (UW)

    2014-10-02

    Mitomycins are quinone-containing antibiotics, widely used as antitumor drugs in chemotherapy. Mitomycin-7-O-methyltransferase (MmcR), a key tailoring enzyme involved in the biosynthesis of mitomycin in Streptomyces lavendulae, catalyzes the 7-O-methylation of both C9{beta}- and C9{alpha}-configured 7-hydroxymitomycins. We have determined the crystal structures of the MmcR-S-adenosylhomocysteine (SAH) binary complex and MmcR-SAH-mitomycin A (MMA) ternary complex at resolutions of 1.9 and 2.3 {angstrom}, respectively. The study revealed MmcR to adopt a common S-adenosyl-L-methionine-dependent O-methyltransferase fold and the presence of a structurally conserved active site general acid-base pair is consistent with a proton-assisted methyltransfer common to most methyltransferases. Given the importance of C7 alkylation to modulate mitomycin redox potential, this study may also present a template toward the future engineering of catalysts to generate uniquely bioactive mitomycins.

  2. Structural characterizations of As-Se-Te glasses

    Energy Technology Data Exchange (ETDEWEB)

    Delaizir, G., E-mail: delaizir@icmpe.cnrs.fr [Centre d' Elaboration de Materiaux et d' Etudes Structurales (CEMES-CNRS), 29 rue Jeanne Marvig, 31055 Toulouse (France); Dussauze, M. [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens (Greece); Nazabal, V. [Equipe ' Verres et Ceramiques' , UMR CNRS 6226, Universite de Rennes 1, 35042 Rennes (France); Lecante, P.; Dolle, M.; Rozier, P. [Centre d' Elaboration de Materiaux et d' Etudes Structurales (CEMES-CNRS), 29 rue Jeanne Marvig, 31055 Toulouse (France); Kamitsos, E.I. [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens (Greece); Jovari, P. [Research Institute for Solid State Physics and Optics, H-1525 Budapest, POB 49 (Hungary); Bureau, B. [Equipe ' Verres et Ceramiques' , UMR CNRS 6226, Universite de Rennes 1, 35042 Rennes (France)

    2011-01-21

    Research highlights: > First-neighbor Te-Te bonds are unlikely. > Te is homogeneously distributed in the glassy network. > The formation of mixed structural units AsSe{sub 3-x}Te{sub x} is confirmed. - Abstract: The atomic structure of chalcogenide glasses As{sub 3}Se{sub 7-x}Te{sub x} (0 {<=} x {<=} 3) and As{sub 2}Se{sub 3-x}Te{sub x} (0 {<=} x {<=} 2.5) has been investigated by different methods. Short-range order has been studied by Wide-Angle X-ray Scattering (WAXS). {sup 77}Se NMR as well as Raman and infrared measurements were also performed on the different compositions. We show that the progressive introduction of tellurium in As{sub 3}Se{sub 7-x}Te{sub x} or As{sub 2}Se{sub 3-x}Te{sub x} induces breaking of Se-Se bonds and the formation of AsSe{sub 3-x}Te{sub x} pyramidal units. Experimental data also reveal the absence of Te-Te bonds even in the tellurium richest composition which let suppose a homogeneous repartition of tellurium atoms in the glassy network.

  3. Structural characterization of anti-inflammatory Immunoglobulin G Fc proteins

    Science.gov (United States)

    Ahmed, Alysia A.; Giddens, John; Pincetic, Andrew; Lomino, Joseph V.; Ravetch, Jeffrey V.; Wang, Lai-Xi; Bjorkman, Pamela J.

    2014-01-01

    Immunoglobulin G (IgG) is a central mediator of host defense due to its ability to recognize and eliminate pathogens. The recognition and effector responses are encoded on distinct regions of IgGs. The diversity of the antigen recognition Fab domains accounts for IgG's ability to bind with high specificity to essentially any antigen. Recent studies have indicated that the Fc effector domain also displays considerable heterogeneity, accounting for its complex effector functions of inflammation, modulation and immune suppression. Therapeutic anti-tumor antibodies, for example, require the pro-inflammatory properties of the IgG Fc to eliminate tumor cells, while the anti-inflammatory activity of Intravenous Immunoglobulin G (IVIG) requires specific Fc glycans for activity. In particular, the anti-inflammatory activity of IVIG is ascribed to a small population of IgGs in which the Asn297-linked complex N-glycans attached to each Fc CH2 domain include terminal α2,6-linked sialic acids. We used chemoenzymatic glycoengineering to prepare fully di-sialylated IgG Fc and solved its crystal structure. Comparison of the structures of asialylated Fc, sialylated Fc, and F241A Fc, a mutant that displays increased glycan sialylation, suggests that increased conformational flexibility of the CH2 domain is associated with the switch from pro- to anti-inflammatory activity of the Fc. PMID:25036289

  4. Optical, electrical and structural characterization of novel phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Herpers, Anja; Woda, Michael; Wuttig, Matthias [1. Physikalisches Institut IA, RWTH Aachen University, Aachen (Germany)

    2009-07-01

    Phase Change Materials (PCM) are alloys, which can be used in a variety of applications in information technology. Information is stored using the transformation of small regions of a thin film between the crystalline and amorphous state. This phase change is accompanied by a remarkable change of properties such as the electrical resistivity and the optical reflectivity. Furthermore the transition between both states is extremely fast at elevated temperatures but negligible at room temperature. This property portfolio is attractive for storage applications. The corresponding materials are already used in rewriteable optical data storage media such as DVD and Blu-Ray-Discs, and are promising candidates for novel non-volatile electronic memory devices such as Phase Change Random Access Memories. In this study the structural, optical and electrical properties of two materials, i.e. Ag{sub 4}In{sub 3}Sb{sub 67}Te{sub 26} and GeSe are investigated. X-Ray diffraction and X-Ray reflection measurements reveal changes in the crystal structure and the film density upon crystallization. DSC measurements provide the crystallization temperature. The optical properties in an energy range of 0.025-5.3 eV are determined combining ellipsometry and FTIR experiments. Sheet resistance measurements in the van-der-Pauw-geometry enable the measurement of the electrical properties between 300 and 600 K.

  5. Chromosome Structural Alteration an Unusual Abnormality Characterizing Human Neoplasia

    Directory of Open Access Journals (Sweden)

    Abolfazl Movafagh

    2016-04-01

    Full Text Available Background and Aim: Ring chromosomes are rare cytogenetic abnormalities that occur in less than 10% of hematopoietic malignancies. They are rare in blood disorder. The present review has focused on the ring chromosome associated with oncology malignancies. Materials and Methods: By reviewing the web-based search for all English scientific peer review articles published, was initiated using Medline/PubMed, Mitelman database (http://cgap.nci.nih.gov/Chromosomes/Mitelman, and other pertinent references on websites about ring chromosomes in Oncology. The software program as End Note was used to handle the proper references for instruction to author. Karyotype descriptions were cited according to ISCN.Conclusion: Ring chromosomes are rare chromosomal aberrations, almost many times are of de novo origin, presenting a different phenotype regarding the loss of genetic material. The karyotype represents the main analysis for detection of ring chromosomes, but other molecular technics are necessary for complete characterization. The information of this review article adds to the spectrum of both morphology and genetic rearrangements in the field of oncology malignancies.

  6. Spectroscopic studies of anthracyclines: Structural characterization and in vitro tracking.

    Science.gov (United States)

    Szafraniec, Ewelina; Majzner, Katarzyna; Farhane, Zeineb; Byrne, Hugh J; Lukawska, Malgorzata; Oszczapowicz, Irena; Chlopicki, Stefan; Baranska, Malgorzata

    2016-12-05

    A broad spectroscopic characterization, using ultraviolet-visible (UV-vis) and Fourier transform infrared absorption as well as Raman scattering, of two commonly used anthracyclines antibiotics (DOX) daunorubicin (DNR), their epimers (EDOX, EDNR) and ten selected analogs is presented. The paper serves as a comprehensive spectral library of UV-vis, IR and Raman spectra of anthracyclines in the solid state and in solution. The particular advantage of Raman spectroscopy for the measurement and analysis of individual antibiotics is demonstrated. Raman spectroscopy can be used to monitor the in vitro uptake and distribution of the drug in cells, using both 488nm and 785nm as source wavelengths, with submicrometer spatial resolution, although the cellular accumulation of the drug is different in each case. The high information content of Raman spectra allows studies of the drug-cell interactions, and so the method seems very suitable for monitoring drug uptake and mechanisms of interaction with cellular compartments at the subcellular level. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Membrane Characterization by Microscopic and Scattering Methods: Multiscale Structure

    Directory of Open Access Journals (Sweden)

    Philippe Moulin

    2011-04-01

    Full Text Available Several microscopic and scattering techniques at different observation scales (from atomic to macroscopic were used to characterize both surface and bulk properties of four new flat-sheet polyethersulfone (PES membranes (10, 30, 100 and 300 kDa and new 100 kDa hollow fibers (PVDF. Scanning Electron Microscopy (SEM with “in lens” detection was used to obtain information on the pore sizes of the skin layers at the atomic scale. White Light Interferometry (WLI and Atomic Force Microscopy (AFM using different scales (for WLI: windows: 900 × 900 µm2 and 360 × 360 µm2; number of points: 1024; for AFM: windows: 50 × 50 µm2 and 5 × 5 µm2; number of points: 512 showed that the membrane roughness increases markedly with the observation scale and that there is a continuity between the different scan sizes for the determination of the RMS roughness. High angular resolution ellipsometric measurements were used to obtain the signature of each cut-off and the origin of the scattering was identified as coming from the membrane bulk.

  8. Zero-mode waveguide nanophotonic structures for single molecule characterization

    Science.gov (United States)

    Crouch, Garrison M.; Han, Donghoon; Bohn, Paul W.

    2018-05-01

    Single-molecule characterization has become a crucial research tool in the chemical and life sciences, but limitations, such as limited concentration range, inability to control molecular distributions in space, and intrinsic phenomena, such as photobleaching, present significant challenges. Recent developments in non-classical optics and nanophotonics offer promising routes to mitigating these restrictions, such that even low affinity (K D ~ mM) biomolecular interactions can be studied. Here we introduce and review specific nanophotonic devices used to support single molecule studies. Optical nanostructures, such as zero-mode waveguides (ZMWs), are usually fabricated in thin gold or aluminum films and serve to confine the observation volume of optical microspectroscopy to attoliter to zeptoliter volumes. These simple nanostructures allow individual molecules to be isolated for optical and electrochemical analysis, even when the molecules of interest are present at high concentration (µM–mM) in bulk solution. Arrays of ZMWs may be combined with optical probes such as single molecule fluorescence, single molecule fluorescence resonance energy transfer, and fluorescence correlation spectroscopy for distributed analysis of large numbers of single-molecule reactions or binding events in parallel. Furthermore, ZMWs may be used as multifunctional devices, for example by combining optical and electrochemical functions in a single discrete architecture to achieve electrochemical ZMWs. In this review, we will describe the optical properties, fabrication, and applications of ZMWs for single-molecule studies, as well as the integration of ZMWs into systems for chemical and biochemical analysis.

  9. The synthesis and structural characterization of novel transition metal fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Casteel, Jr., William Jack [Univ. of California, Berkeley, CA (United States)

    1992-09-01

    High purity KMF6 and K2MF6 salts (M = Mo,Re, Ru, Os, Ir, Pt) are obtained from reduction hexafluorides. A rhombohedral unit cell is observed for KReF6. Fluoride ion capture by Lewis acids from the hexafluorometallate (IV) salts affords high purity tetrafluorides for M = Mo, Re, Ru, Os, and Pd. The structure of RuF4 is determined from X-ray synchrotron and neutron powder data. Unit cells based on theorthorhombic PdF4 type cell are derived from X-ray powder data for ReF4 and OsF4. Fluoride ion capture from KAgF4 provides the thermally unstable trifluoride as a bright, red, diamagnetic solid. The structure solution of AgF3 and redetermination of the AuF3 structure from X-ray synchrotron and neutron powder data demonstrate that the two are isostnictural. Thermal decomposition product of AgF3 is the mixed valence compound AgIIAg2IIIF8. Several new salts containing the (Ag - F)$n+\\atop{n}$ chain cation are prepared. The first linear (Ag - F)$n+\\atop{n}$ chain is observed in AgF+BF4- which crystallizes in a tetragonal unit. AgFAuF4 has a triclinic unit cell and is isostructural with CuFAuF4. AgFAuF6 has an orthorhombic unit cell and appears to be isostructural with AgFAsF6. A second mixed valence silver fluoride, AgIIAgIIIF5, is prepared, which magnetic measurements indicate is probably an AgF+ salt. Magnetic data for all of the AgF+ salts exhibit low magnitude, temperature independent paramagnetism characteristic of metallic systems. Cationic AG(II) in acidic AHF solutions is a powerful oxidizer, capable of oxidizing Xe to Xe(II) and O2 to O2+. Reactions with C6F6 and C3F6 suggest an electron capture

  10. Chemical and structural characterization of copper adsorbed on mosses (Bryophyta)

    Energy Technology Data Exchange (ETDEWEB)

    González, Aridane G., E-mail: aridaneglez@gmail.com [GET (Géosciences Environnement Toulouse) UMR 5563CNRS, 14 Avenue Edouard Belin, F-31400 Toulouse (France); Jimenez-Villacorta, Felix [Instituto de Ciencia de Materiales Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Beike, Anna K. [Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg (Germany); State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart (Germany); Reski, Ralf [Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg (Germany); BIOSS—Centre for Biological Signalling Studies, 79104 Freiburg (Germany); FRIAS—Freiburg Institute for Advanced Studies, 79104 Freiburg (Germany); Adamo, Paola [Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples (Italy); Pokrovsky, Oleg S. [GET (Géosciences Environnement Toulouse) UMR 5563CNRS, 14 Avenue Edouard Belin, F-31400 Toulouse (France); BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk (Russian Federation); Institute of Ecological Problems of the North, Russian Academy of Science, Arkhangelsk (Russian Federation)

    2016-05-05

    Highlights: • Cu{sup 2+} was adsorbed on four mosses used in moss-bag pollution monitoring technique. • Thermodynamic approach was used to model Cu speciation based on XAS results. • All studied mosses have ∼4.5 O/N atoms at ∼1.95 Å around Cu likely in a pseudo-square geometry. • Cu(II)-carboxylates and Cu(II)-phosphoryls are the main moss surface binding groups. • Moss growing in batch reactor yielded ∼20% of Cu(I) in the form of Cu–S(CN) complexes. - Abstract: The adsorption of copper on passive biomonitors (devitalized mosses Hypnum sp., Sphagnum denticulatum, Pseudoscleropodium purum and Brachythecium rutabulum) was studied under different experimental conditions such as a function of pH and Cu concentration in solution. Cu assimilation by living Physcomitrella patents was also investigated. Molecular structure of surface adsorbed and incorporated Cu was studied by X-ray Absorption Spectroscopy (XAS). Devitalized mosses exhibited the universal adsorption pattern of Cu as a function of pH, with a total binding sites number 0.05–0.06 mmolg{sub dry}{sup −1} and a maximal adsorption capacity of 0.93–1.25 mmolg{sub dry}{sup −1} for these devitalized species. The Extended X-ray Absorption Fine Structure (EXAFS) fit of the first neighbor demonstrated that for all studied mosses there are ∼4.5 O/N atoms around Cu at ∼1.95 Å likely in a pseudo-square geometry. The X-ray Absorption Near Edge Structure (XANES) analysis demonstrated that Cu(II)-cellulose (representing carboxylate groups) and Cu(II)-phosphate are the main moss surface binding moieties, and the percentage of these sites varies as a function of solution pH. P. patens exposed during one month to Cu{sup 2+} yielded ∼20% of Cu(I) in the form of Cu–S(CN) complexes, suggesting metabolically-controlled reduction of adsorbed and assimilated Cu{sup 2+}.

  11. Mechanosynthesis, crystal structure and magnetic characterization of neodymium orthoferrite

    International Nuclear Information System (INIS)

    Serna, Pedro Vera; Campos, Cecilio Garcia; De Jesus, Felix Sanchez; Miro, Ana Maria Bolarin; Loran, Jose Antonio Juanico; Longwell, Jeffrey

    2016-01-01

    Neodymium orthoferrite NdFeO 3 was obtained at room temperature by mechanosynthesis with a stoichiometric ratio of Nd2O 3 and Fe 2 O 3 powders, whereas the traditional synthesis requires a temperature of approximately 1000 °C. The crystal structure was analyzed by X-ray diffraction analysis using Cu radiation and a LynxEye XE detector, whose strong fluorescence filtering enabled a high signal intensity. The analysis indicated that the obtained crystallites were nano-sized. The particle morphology was observed by scanning electron microscopy, and the magnetic saturation was tested by vibrating sample magnetometry. The synthesis of NdFeO 3 was detected after a few hours of milling, indicating that the milling imparted mechanical energy to the system. (author)

  12. Performance characterization of structured light-based fingerprint scanner

    Science.gov (United States)

    Hassebrook, Laurence G.; Wang, Minghao; Daley, Raymond C.

    2013-05-01

    Our group believes that the evolution of fingerprint capture technology is in transition to include 3-D non-contact fingerprint capture. More specifically we believe that systems based on structured light illumination provide the highest level of depth measurement accuracy. However, for these new technologies to be fully accepted by the biometric community, they must be compliant with federal standards of performance. At present these standards do not exist for this new biometric technology. We propose and define a set of test procedures to be used to verify compliance with the Federal Bureau of Investigation's image quality specification for Personal Identity Verification single fingerprint capture devices. The proposed test procedures include: geometric accuracy, lateral resolution based on intensity or depth, gray level uniformity and flattened fingerprint image quality. Several 2-D contact analogies, performance tradeoffs and optimization dilemmas are evaluated and proposed solutions are presented.

  13. Genetic structure characterization of Chileans reflects historical immigration patterns

    Science.gov (United States)

    Eyheramendy, Susana; Martinez, Felipe I.; Manevy, Federico; Vial, Cecilia; Repetto, Gabriela M.

    2015-01-01

    Identifying the ancestral components of genomes of admixed individuals helps uncovering the genetic basis of diseases and understanding the demographic history of populations. We estimate local ancestry on 313 Chileans and assess the contribution from three continental populations. The distribution of ancestry block-length suggests an average admixing time around 10 generations ago. Sex-chromosome analyses confirm imbalanced contribution of European men and Native-American women. Previously known genes under selection contain SNPs showing large difference in allele frequencies. Furthermore, we show that assessing ancestry is harder at SNPs with higher recombination rates and easier at SNPs with large difference in allele frequencies at the ancestral populations. Two observations, that African ancestry proportions systematically decrease from North to South, and that European ancestry proportions are highest in central regions, show that the genetic structure of Chileans is under the influence of a diffusion process leading to an ancestry gradient related to geography. PMID:25778948

  14. Low Dimensional Semiconductor Structures Characterization, Modeling and Applications

    CERN Document Server

    Horing, Norman

    2013-01-01

    Starting with the first transistor in 1949, the world has experienced a technological revolution which has permeated most aspects of modern life, particularly over the last generation. Yet another such revolution looms up before us with the newly developed capability to control matter on the nanometer scale. A truly extraordinary research effort, by scientists, engineers, technologists of all disciplines, in nations large and small throughout the world, is directed and vigorously pressed to develop a full understanding of the properties of matter at the nanoscale and its possible applications, to bring to fruition the promise of nanostructures to introduce a new generation of electronic and optical devices. The physics of low dimensional semiconductor structures, including heterostructures, superlattices, quantum wells, wires and dots is reviewed and their modeling is discussed in detail. The truly exceptional material, Graphene, is reviewed; its functionalization and Van der Waals interactions are included h...

  15. Structural characterization of Mumps virus fusion protein core

    International Nuclear Information System (INIS)

    Liu Yueyong; Xu Yanhui; Lou Zhiyong; Zhu Jieqing; Hu Xuebo; Gao, George F.; Qiu Bingsheng; Rao Zihe; Tien, Po

    2006-01-01

    The fusion proteins of enveloped viruses mediating the fusion between the viral and cellular membranes comprise two discontinuous heptad repeat (HR) domains located at the ectodomain of the enveloped glycoproteins. The crystal structure of the fusion protein core of Mumps virus (MuV) was determined at 2.2 A resolution. The complex is a six-helix bundle in which three HR1 peptides form a central highly hydrophobic coiled-coil and three HR2 peptides pack against the hydrophobic grooves on the surface of central coiled-coil in an oblique antiparallel manner. Fusion core of MuV, like those of simian virus 5 and human respiratory syncytium virus, forms typical 3-4-4-4-3 spacing. The similar charecterization in HR1 regions, as well as the existence of O-X-O motif in extended regions of HR2 helix, suggests a basic rule for the formation of the fusion core of viral fusion proteins

  16. Mechanosynthesis, crystal structure and magnetic characterization of neodymium orthoferrite

    Energy Technology Data Exchange (ETDEWEB)

    Serna, Pedro Vera; Campos, Cecilio Garcia [Division de Ingenierias, Universidad Politecnica de Tecamac (UPTECAMAC), Tecamac de Felipe Villanueva, Estado de Mexico (Mexico); De Jesus, Felix Sanchez; Miro, Ana Maria Bolarin [Area Academica de Ciencias de la Tierra y Materiales, Universidad Autonoma del Estado de Hidalgo (UAEH), Mineral de la Reforma, Hidalgo (Mexico); Loran, Jose Antonio Juanico [Division de Ingenieria Industrial Nanotecnologia, Universidad Politecnica del Valle de Mexico (UPVM), Tultitlan, Estado de Mexico (Mexico); Longwell, Jeffrey, E-mail: pedrovera.upt@gmail.com [Department of Languages and Linguistics, New Mexico State University (NMSU), Las Cruces, NM (United States)

    2016-03-15

    Neodymium orthoferrite NdFeO{sub 3} was obtained at room temperature by mechanosynthesis with a stoichiometric ratio of Nd2O{sub 3} and Fe{sub 2}O{sub 3} powders, whereas the traditional synthesis requires a temperature of approximately 1000 °C. The crystal structure was analyzed by X-ray diffraction analysis using Cu radiation and a LynxEye XE detector, whose strong fluorescence filtering enabled a high signal intensity. The analysis indicated that the obtained crystallites were nano-sized. The particle morphology was observed by scanning electron microscopy, and the magnetic saturation was tested by vibrating sample magnetometry. The synthesis of NdFeO{sub 3} was detected after a few hours of milling, indicating that the milling imparted mechanical energy to the system. (author)

  17. Microstructure characterization and magnetic properties of nano structured materials

    International Nuclear Information System (INIS)

    Sun, X.C.

    2000-01-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe 78 Si 9 B 13 ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy (Eds.); selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  18. Microstructure characterization and magnetic properties of nano structured materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.C

    2000-07-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe{sub 78}Si{sub 9}B{sub 13} ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy [eds.]; selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  19. Synthesis and structural characterization of alkali metal arsinoamides.

    Science.gov (United States)

    Chen, Xiao; Gamer, Michael T; Roesky, Peter W

    2017-12-20

    The aminoarsane Mes 2 AsN(H)Ph was prepared from Mes 2 AsCl and aniline in good yields. Deprotonation of Mes 2 AsN(H)Ph with suitable alkali metal bases resulted in the corresponding alkali metal derivatives. Thus, reaction of Mes 2 AsN(H)Ph with nBuLi, NaN(SiMe 3 ) 2 , or KH gave the metal complexes [(Mes 2 AsNPh){Li(OEt 2 ) 2 }], [(Mes 2 AsNPh){Na(OEt 2 )}] 2 , and [(Mes 2 AsNPh){K(THF)}] 2 . These are the first metal complexes ligated by an arsinoamide. All solid-state structures were established by single crystal X-ray diffraction. The lithium compounds form a monomer in the solid-state, whereas the sodium and the potassium derivatives are dimers. In the dimeric compounds intra- and intermolecular π-interaction of the aromatic rings with the metal atoms is observed.

  20. Structural Characterization of Clusterin-Chaperone Client Protein Complexes*

    Science.gov (United States)

    Wyatt, Amy R.; Yerbury, Justin J.; Wilson, Mark R.

    2009-01-01

    Clusterin (CLU) is a potent extracellular chaperone that inhibits protein aggregation and precipitation otherwise caused by physical or chemical stresses (e.g. heat, reduction). This action involves CLU forming soluble high molecular weight (HMW) complexes with the client protein. Other than their unquantified large size, the physical characteristics of these complexes were previously unknown. In this study, HMW CLU-citrate synthase (CS), HMW CLU-fibrinogen (FGN), and HMW CLU-glutathione S-transferase (GST) complexes were generated in vitro, and their structures studied using size exclusion chromatography (SEC), ELISA, SDS-PAGE, dynamic light scattering (DLS), bisANS fluorescence, and circular dichroism spectrophotometry (CD). Densitometry of Coomassie Blue-stained SDS-PAGE gels indicated that all three HMW CLU-client protein complexes had an approximate mass ratio of 1:2 (CLU:client protein). SEC indicated that all three clients formed complexes with CLU ≥ 4 × 107 Da; however, DLS estimated HMW CLU-FGN to have a diameter of 108.57 ± 18.09 nm, while HMW CLU-CS and HMW CLU-GST were smaller with estimated diameters of 51.06 ± 6.87 nm and 52.61 ± 7.71 nm, respectively. Measurements of bisANS fluorescence suggest that the chaperone action of CLU involves preventing the exposure to aqueous solvent of hydrophobic regions that are normally exposed by the client protein during heat-induced unfolding. CD analysis indicated that, depending on the individual client protein, CLU may interact with a variety of intermediates on protein unfolding pathways with different amounts of native secondary structure. In vivo, soluble complexes like those studied here are likely to serve as vehicles to dispose of otherwise dangerous aggregation-prone misfolded extracellular proteins. PMID:19535339

  1. Production and characterization of carbon structures derived from wood

    Science.gov (United States)

    Xie, Xinfeng

    The objective of this research was to produce structural carbon materials from wood, a renewable biomaterial, for advanced material application. A broad range of materials were produced for study including carbonized wood, resin infused carbon composites made from carbonized wood, and carbon nanotubes from wood fibers. The effect of slow heating on the properties of carbonized wood was studied and important carbonized wood properties were found to be produced over a range of heating rates and peak temperatures. Slow heating rates promoted the formation and growth of graphene sheets in turbostratic crystallites, which had a significant influence on the electrical resistivity and Young's modulus of the carbonized wood. A reduction in the rate of heating may be beneficial with respect to carbon properties and the prevention of crack production during the manufacture of large monolithic carbon specimens from wood and wood-based materials. Investigation of selected physical and mechanical properties of resin-infused porous carbon composites made from medium density fiberboard demonstrated that the infused material can be used in specific applications, where high mechanical strength is not required but high dimensional stability at elevated-use temperatures, fire safety, or static dissipation and shielding is required. A unique cyclic heating process has been developed to produce carbon nanotubes directly from wood fibers. Study on the oxidative behavior of carbons derived from cellulose and lignin showed that cellulose carbon ablates faster at a lower temperature in air than lignin carbon when they were prepared at temperatures lower than 500°C due to cellulose carbon's lower content of aromatic structures. It is hypothesized that the formation of carbon nanotubes during the cyclic heating process occurred via template synthesis, with the nanochannels formed from the ablation of cellulose fibrils functioning as a template. Evidence of formation of nanochannels has been

  2. Structural characterization of core-bradavidin in complex with biotin.

    Directory of Open Access Journals (Sweden)

    Nitin Agrawal

    Full Text Available Bradavidin is a tetrameric biotin-binding protein similar to chicken avidin and bacterial streptavidin, and was originally cloned from the nitrogen-fixing bacteria Bradyrhizobium diazoefficiens. We have previously reported the crystal structure of the full-length, wild-type (wt bradavidin with 138 amino acids, where the C-terminal residues Gly129-Lys138 ("Brad-tag" act as an intrinsic ligand (i.e. Gly129-Lys138 bind into the biotin-binding site of an adjacent subunit within the same tetramer and has potential as an affinity tag for biotechnological purposes. Here, the X-ray structure of core-bradavidin lacking the C-terminal residues Gly114-Lys138, and hence missing the Brad-tag, was crystallized in complex with biotin at 1.60 Å resolution [PDB:4BBO]. We also report a homology model of rhodavidin, an avidin-like protein from Rhodopseudomonas palustris, and of an avidin-like protein from Bradyrhizobium sp. Ai1a-2, both of which have the Brad-tag sequence at their C-terminus. Moreover, core-bradavidin V1, an engineered variant of the original core-bradavidin, was also expressed at high levels in E. coli, as well as a double mutant (Cys39Ala and Cys69Ala of core-bradavidin (CC mutant. Our data help us to further engineer the core-bradavidin-Brad-tag pair for biotechnological assays and chemical biology applications, and provide deeper insight into the biotin-binding mode of bradavidin.

  3. Structural characterization of core-bradavidin in complex with biotin.

    Science.gov (United States)

    Agrawal, Nitin; Määttä, Juha A E; Kulomaa, Markku S; Hytönen, Vesa P; Johnson, Mark S; Airenne, Tomi T

    2017-01-01

    Bradavidin is a tetrameric biotin-binding protein similar to chicken avidin and bacterial streptavidin, and was originally cloned from the nitrogen-fixing bacteria Bradyrhizobium diazoefficiens. We have previously reported the crystal structure of the full-length, wild-type (wt) bradavidin with 138 amino acids, where the C-terminal residues Gly129-Lys138 ("Brad-tag") act as an intrinsic ligand (i.e. Gly129-Lys138 bind into the biotin-binding site of an adjacent subunit within the same tetramer) and has potential as an affinity tag for biotechnological purposes. Here, the X-ray structure of core-bradavidin lacking the C-terminal residues Gly114-Lys138, and hence missing the Brad-tag, was crystallized in complex with biotin at 1.60 Å resolution [PDB:4BBO]. We also report a homology model of rhodavidin, an avidin-like protein from Rhodopseudomonas palustris, and of an avidin-like protein from Bradyrhizobium sp. Ai1a-2, both of which have the Brad-tag sequence at their C-terminus. Moreover, core-bradavidin V1, an engineered variant of the original core-bradavidin, was also expressed at high levels in E. coli, as well as a double mutant (Cys39Ala and Cys69Ala) of core-bradavidin (CC mutant). Our data help us to further engineer the core-bradavidin-Brad-tag pair for biotechnological assays and chemical biology applications, and provide deeper insight into the biotin-binding mode of bradavidin.

  4. Structural characterization of core-bradavidin in complex with biotin

    Science.gov (United States)

    Agrawal, Nitin; Määttä, Juha A. E.; Kulomaa, Markku S.; Hytönen, Vesa P.; Johnson, Mark S.; Airenne, Tomi T.

    2017-01-01

    Bradavidin is a tetrameric biotin-binding protein similar to chicken avidin and bacterial streptavidin, and was originally cloned from the nitrogen-fixing bacteria Bradyrhizobium diazoefficiens. We have previously reported the crystal structure of the full-length, wild-type (wt) bradavidin with 138 amino acids, where the C-terminal residues Gly129-Lys138 (“Brad-tag”) act as an intrinsic ligand (i.e. Gly129-Lys138 bind into the biotin-binding site of an adjacent subunit within the same tetramer) and has potential as an affinity tag for biotechnological purposes. Here, the X-ray structure of core-bradavidin lacking the C-terminal residues Gly114-Lys138, and hence missing the Brad-tag, was crystallized in complex with biotin at 1.60 Å resolution [PDB:4BBO]. We also report a homology model of rhodavidin, an avidin-like protein from Rhodopseudomonas palustris, and of an avidin-like protein from Bradyrhizobium sp. Ai1a-2, both of which have the Brad-tag sequence at their C-terminus. Moreover, core-bradavidin V1, an engineered variant of the original core-bradavidin, was also expressed at high levels in E. coli, as well as a double mutant (Cys39Ala and Cys69Ala) of core-bradavidin (CC mutant). Our data help us to further engineer the core-bradavidin–Brad-tag pair for biotechnological assays and chemical biology applications, and provide deeper insight into the biotin-binding mode of bradavidin. PMID:28426764

  5. Statistical Characterization of the Flow Structure in the Rhine Valley

    Science.gov (United States)

    Philippe, Philippe; Debas, Alain M.; Haeberli, Christian; Flamant, Pierre H.

    The flow structure at the intersection between the Rhine and the Seez valleys nearthe Swiss city of Bad Ragaz has been documented by means of wind and pressuremeasurements collected from 9 September to 10 November 1999 during the MesoscaleAlpine Programme (MAP) experiment. To understand better the dynamics of theageostrophic winds that develop in this part of the Rhine valley, some key questionsare answered in this paper including the following: (i) How does air blow at theintersection of the Rhine and Seez valleys? and (ii) what are the dynamical processes(mechanical or thermal) driving the flow circulations in the valleys?Statistical analysis of the wind and pressure patterns at synoptic scale and at the scaleof the valley shows that five main flow patterns, SE/S, NW/W, NW/N, NW/S, SE/N(wind direction in the Seez valley/wind direction in the Rhine valley) prevail. The SE/S regime is the flow splitting situation. It is mainly driven by a strong pressure gradient across the Alps leading to foehn, even though some nocturnal cases are generated bylocal thermal gradients. The NW/W and NW/N regimes are mechanically forced bythe synoptic pressure gradient (as the flow splitting case). The difference between thetwo regimes is due to the synoptic flow direction [westerly (northerly) synoptic flowfor the NW/W (NW/N) regime], showing that the Rhine valley (particularly from BadRagaz to Lake Constance) is less efficient in channelling the flow than the Seez valley.The NW/S (occurring mainly during nighttime) and SE/N (occurring mainly duringdaytime) regimes are mainly katabatic flows. However, the SE/N regime is also partlyforced at the synoptic scale during the foehn case that occurred between 18 October and 20 October 1999, with a complex layered vertical structure.

  6. Structural properties and hyperfine characterization of Sn-substituted goethites

    Energy Technology Data Exchange (ETDEWEB)

    Larralde, A.L. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Ramos, C.P. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Arcondo, B. [Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850 (C1063ACV), Bs. As. (Argentina); Tufo, A.E. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Saragovi, C. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Sileo, E.E., E-mail: sileo@qi.fcen.uba.ar [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Pure and tin-doped goethites were synthesized from Sn(II) solutions at ambient pressure and 70 Degree-Sign C. Black-Right-Pointing-Pointer The Rietveld refinement of PXRD data indicated that Sn partially substituted the Fe(III) ions. Black-Right-Pointing-Pointer The substitution provoked unit cell expansion, and a distortion of the coordination polyhedron. Black-Right-Pointing-Pointer {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV). Black-Right-Pointing-Pointer {sup 57}Fe Moessbauer spectroscopy showed a lower magnetic coupling as tin concentration increased. - Abstract: Tin-doped goethites obtained by a simple method at ambient pressure and 70 Degree-Sign C were characterized by inductively coupled plasma atomic emission spectrometry, scanning electron microscopy, Rietveld refinement of powder X-ray diffraction data, and {sup 57}Fe and {sup 119}Sn Moessbauer spectroscopy. The particles size and the length to width ratios decreased with tin-doping. Sn partially substituted the Fe(III) ions provoking unit cell expansion and increasing the crystallinity of the particles with enlarged domains that grow in the perpendicular and parallel directions to the anisotropic broadening (1 1 1) axis. Intermetallic E, E Prime and DC distances also change although the variations are not monotonous, indicating different variations in the coordination polyhedron. In general, the Sn-substituted samples present larger intermetallic distances than pure goethite, and the greatest change is shown in the E Prime distance which coincides with the c-parameter. {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV) in the samples. On the other hand, Fe(II) presence was not detected by {sup 57}Fe Moessbauer spectroscopy, suggesting the existence of vacancies in the Sn-doped samples. A lower magnetic coupling is also evidenced from the average magnetic hyperfine field values obtained as tin

  7. Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates

    Energy Technology Data Exchange (ETDEWEB)

    Zaki, Sahar, E-mail: saharzaki@yahoo.com [Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications, Alexandria, 21934 New Burgelarab City (Egypt); El Kady, M.F. [Fabrication Technology Department, Advanced Technology and New Materials Research Institute (ATNMRI), Mubarak City for Scientific Research and Technology Applications, Alexandria (Egypt); Abd-El-Haleem, Desouky [Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications, Alexandria, 21934 New Burgelarab City (Egypt)

    2011-10-15

    Graphical abstract: In this study five bacterial isolates belong to different genera were found to be able to biosynthesize silver nanoparticles. Biosynthesis and spectral characterization are reported here. Highlights: {yields} About 300 bacterial isolates were screened for their ability to produce nanosilvers {yields} Five of them were potential candidates for synthesis of silver nanoparticles {yields} Production of silver nanoparticles was examined using UV-Vis, XRD, SEM and EDS. {yields} The presence of nanoparticles with all five bacterial isolates was confirmed. -- Abstract: This study aimed to develop a green process for biosynthesis of silver nanomaterials by some Egyptian bacterial isolates. This target was achieved by screening an in-house culture collection consists of 300 bacterial isolates for silver nanoparticle formation. Through screening process, it was observed that strains belonging to Escherichia coli (S30, S78), Bacillus megaterium (S52), Acinetobacter sp. (S7) and Stenotrophomonas maltophilia (S54) were potential candidates for synthesis of silver nanoparticles. The extracellular production of silver nanoparticles by positive isolates was investigated by UV-Vis spectroscopy, X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results demonstrated that UV-visible spectrum of the aqueous medium containing silver ion showed a peak at 420 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy micrograph showed formation of silver nanoparticles in the range of 15-50 nm. XRD-spectrum of the silver nanoparticles exhibited 2{theta} values corresponding to the silver nanocrystal that produce in hexagonal and cubic crystal configurations with different plane of orientation. In addition, the signals of the silver atoms were observed by EDS-spectrum analysis that confirms the presence of silver nanoparticles (Ag

  8. Mechanical characterization and structural assessment of biocomposites for construction

    Science.gov (United States)

    Christian, Sarah Jane

    The objective of this dissertation is to assess whether or not two particular biocomposite materials, made from hemp fabric and cellulose acetate or polyhydroxybutyrate matrices, are capable of being used for structural and/or construction purposes within in the construction and building industry. The objective of this dissertation was addressed by conducting research to meet the following three goals: (1) to measure the basic mechanical properties of hemp/cellulose acetate and hemp/PHB biocomposites and evaluate if they suitable for use in construction applications, (2) to determine how quickly moisture diffuses into the biocomposite materials and how the moisture affects the mechanical behavior, and (3) to determine how well simple models can predict behavior of structural scale laminates in tension and flexure using biocomposite ply behavior. Compression molding was used to manufacturing the biocomposites from hemp fabric and the themoplastic matrices: cellulose acetate and polyhydroxybutyrate. Four methods for determining the fiber volume fraction were evaluated, and the dissolution method, using different solvents for each matrix type, was used to determine the fiber volume fraction for each composite plate manufactured. Both types of biocomposite were tested in tension, compression, shear, and flexure and the measured properties were compared to wood and engineered wood products to assess whether the biocomposite properties are suitable for use in the construction industry. The biocomposites were conditioned in a humid environment to determine the rate of moisture diffusion into the materials. Then saturated specimens and specimens that were saturated and then dried were tested in tension to evaluate how moisture absorption affects the mechanical behavior of the biocomposites. Finally, simple models of laminate behavior based on laminate plate theory were evaluated to determine if ply level behavior could be used to predict structural scale laminate behavior

  9. Structure characterization of Ni/NiO and Ti/TiO2 interfaces

    International Nuclear Information System (INIS)

    Lamine, Brahim

    1983-01-01

    This research thesis reports the structure characterization of Ni-NiO and Ti-TiO 2 interfaces through an in-situ investigation of thin blade oxidation, of oxide germination and growth, and through a determination of mutual metal/oxide orientation relationships. Thin films of TiO 2 have also been characterized and the study of the influence of vacuum annealing on TiO 2 layer structure and morphology has been attempted. The examination of metal-oxide interface reveals a duplex structure of NiO and TiO 2 layers, and a preferential grain boundary oxidation of the underlying metal [fr

  10. Methods to characterize the structure of food powders - a review.

    Science.gov (United States)

    Ho, Thao M; Truong, Tuyen; Bhandari, Bhesh R

    2017-04-01

    Food powders can exist in amorphous, crystalline or mixed structure depending on the order of molecular arrangement in the powder particle matrices. In food production, the structure of powders has a greatly effect on their stability, functionality, and applicability. The undesirable structure of powders can be accidentally formed during production. Therefore, characterization of powder structure as well as quantification of amorphous-crystalline proportions presenting in the powders are essential to control the quality of products during storage and further processing. For these purposes, many analytical techniques with large differences in the degree of selectivity and sensitivity have been developed. In this review, differences in the structure of food powders are described with a focus being placed on applications of amorphous powders. Essentially, applicability of common analytical techniques including X-ray, microscopic, vapor adsorption, thermal, and spectroscopic approaches for quantitative and qualitative structural characterization of food powders is also discussed.

  11. Towards the Structural Characterization of Intrinsically Disordered Proteins by SAXS and MD Simulation

    Science.gov (United States)

    Oroguchi, Tomotaka; Ikeguchi, Mitsunori; Sato, Mamoru

    2011-01-01

    Dynamical structures of intrinsically disordered proteins (IDPs) and multi-domain proteins that include large ID regions between the domains are unable to be determined by such conventional methods as X-ray crystallography and electron microscopy. Small-angle X-ray scattering (SAXS) is suitable to determine low-resolution structures of proteins and protein complexes in solution, but the structural data on protein dynamics are averaged over the structural ensemble in protein solution. To overcome this problem, we have developed a novel method, named MD-SAXS, of the combined use of SAXS and molecular dynamics (MD) simulation to analyze protein dynamics in solution of multi-subunit protein complexes and multi-domain proteins toward the structural characterization of IDPs. Here we show validity of the method through the structural characterization of restriction Endonuclease EcoO109I.

  12. Characterizing Facesheet/Core Disbonding in Honeycomb Core Sandwich Structure

    Science.gov (United States)

    Rinker, Martin; Ratcliffe, James G.; Adams, Daniel O.; Krueger, Ronald

    2013-01-01

    Results are presented from an experimental investigation into facesheet core disbonding in carbon fiber reinforced plastic/Nomex honeycomb sandwich structures using a Single Cantilever Beam test. Specimens with three, six and twelve-ply facesheets were tested. Specimens with different honeycomb cores consisting of four different cell sizes were also tested, in addition to specimens with three different widths. Three different data reduction methods were employed for computing apparent fracture toughness values from the test data, namely an area method, a compliance calibration technique and a modified beam theory method. The compliance calibration and modified beam theory approaches yielded comparable apparent fracture toughness values, which were generally lower than those computed using the area method. Disbonding in the three-ply facesheet specimens took place at the facesheet/core interface and yielded the lowest apparent fracture toughness values. Disbonding in the six and twelve-ply facesheet specimens took place within the core, near to the facesheet/core interface. Specimen width was not found to have a significant effect on apparent fracture toughness. The amount of scatter in the apparent fracture toughness data was found to increase with honeycomb core cell size.

  13. Structural versatility of Metal-organic frameworks: Synthesis and Characterization

    KAUST Repository

    Alsadun, Norah S.

    2017-05-01

    Metal-Organic Frameworks (MOFs), an emerging class of porous crystalline materials, have shown promising properties for diverse applications such as catalysis, gas storage and separation. The high degree of tunability of MOFs vs other solid materials enable the assembly of advanced materials with fascinating properties for specific applications. Nevertheless, the precise control in the construction of MOFs at the molecular level remains challenging. Particularly, the formation of pre-targeted multi-nuclear Molecular Building Block (MBB) precursors to unveil materials with targeted structural characteristics is captivating. The aim of my master project in the continuous quest of the group of Prof. Eddaoudi in exploring different synthetic pathways to control the assembly of Rare Earth (RE) based MOF. After giving a general overview about MOFs, I will discuss in this thesis the results of my work on the use of tri-topic oriented organic carboxylate building units with the aim to explore the assembly/construction of new porous RE based MOFs. In chapter 2 will discuss the assembly of 3-c linkers with RE metals was then evaluated based on symmetry and angularity of the three connected linkers. The focus of chapter 3 is cerium based MOFs and heterometallic system, based on 3-c ligands with different length and symmetry. Overall, the incompatibility of 3-c ligands with the 12-c cuo MBB did not allow to any formation of higher neuclearity (˃6), but it has resulted in affecting the connectivity of the cluster.

  14. Crystal structure and characterization of pyrroloquinoline quinone disodium trihydrate

    Directory of Open Access Journals (Sweden)

    Ikemoto Kazuto

    2012-06-01

    Full Text Available Abstract Background Pyrroloquinoline quinone (PQQ, a tricarboxylic acid, has attracted attention as a growth factor, and its application to supplements and cosmetics is underway. The product used for these purposes is a water-soluble salt of PQQ disodium. Although in the past, PQQ disodiumpentahydrates with a high water concentration were used, currently, low hydration crystals of PQQ disodiumpentahydrates are preferred. Results We prepared a crystal of PQQ disodium trihydrate in a solution of ethanol and water, studied its structure, and analyzed its properties. In the prepared crystal, the sodium atom interacted with the oxygen atom of two carboxylic acids as well as two quinones of the PQQ disodium trihydrate. In addition, the hydration water of the prepared crystal was less than that of the conventional PQQ disodium crystal. From the results of this study, it was found that the color and the near-infrared (NIR spectrum of the prepared crystal changed depending on the water content in the dried samples. Conclusions The water content in the dried samples was restored to that in the trihydrate crystal by placing the samples in a humid environment. In addition, the results of X-ray diffraction (XRD and X-ray diffraction-differential calorimetry (XRD-DSC analyses show that the phase of the trihydrate crystal changed when the crystallization water was eliminated. The dried crystal has two crystalline forms that are restored to the original trihydrate crystals in 20% relative humidity (RH. This crystalline (PQQ disodium trihydrate is stable under normal environment.

  15. Characterization and estimation of permeability correlation structure from performance data

    Energy Technology Data Exchange (ETDEWEB)

    Ershaghi, I.; Al-Qahtani, M. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-08-01

    In this study, the influence of permeability structure and correlation length on the system effective permeability and recovery factors of 2-D cross-sectional reservoir models, under waterflood, is investigated. Reservoirs with identical statistical representation of permeability attributes are shown to exhibit different system effective permeability and production characteristics which can be expressed by a mean and variance. The mean and variance are shown to be significantly influenced by the correlation length. Detailed quantification of the influence of horizontal and vertical correlation lengths for different permeability distributions is presented. The effect of capillary pressure, P{sub c1} on the production characteristics and saturation profiles at different correlation lengths is also investigated. It is observed that neglecting P{sub c} causes considerable error at large horizontal and short vertical correlation lengths. The effect of using constant as opposed to variable relative permeability attributes is also investigated at different correlation lengths. Next we studied the influence of correlation anisotropy in 2-D reservoir models. For a reservoir under five-spot waterflood pattern, it is shown that the ratios of breakthrough times and recovery factors of the wells in each direction of correlation are greatly influenced by the degree of anisotropy. In fully developed fields, performance data can aid in the recognition of reservoir anisotropy. Finally, a procedure for estimating the spatial correlation length from performance data is presented. Both the production performance data and the system`s effective permeability are required in estimating the correlation length.

  16. Structural and Electrochemical Characterization of Lithium Transition Metal Phosphates

    Science.gov (United States)

    Hashambhoy, Ayesha Maria

    The lithium ion battery has emerged as one of the most promising hybrid vehicle energy storage systems of the future. Of the potential cathode chemistries explored, lithium transition metal phosphates have generated a significant amount of interest due to their low-cost precursors, potential ease of synthesis, stability, and their environmentally friendly nature. This is in contrast to layered oxide systems such as LiCoO2, which have long been considered state of the art, but are now being reevaluated due to their structural instability at elevated temperatures, and higher cost. In particular, LiFePO4 has an operating potential comparable to those batteries available on the market (˜3.5V vs. Li/Li+), and higher theoretical specific capacity (170mAh/g vs. that of LiCoO2 which is 140mAh/g). The manganese analog to LiFePO4, LiMnPO4, exhibits a higher operating potential (˜4.1V v Li/Li+), and the same theoretical capacity, however Li-ion diffusion through this structure is much more rate limited and its theoretical capacity cannot be realized at rates suitable for commercial applications. The purpose of this work was threefold: 1) To explore the impact of Fe substitution on Mn sites in LiMnPO 4. 2) To examine the effects of alterations to the particle/electrolyte interface on rate capability. 3) To explore a novel fabrication route for LiMnPO4 using microwaves, and determine an optimal power and time combination for best performance. The coexistence of Fe and Mn on the transition metal site M, of LiMPO 4 resulted in an improved apparent Li-ion diffusivity in both Fe and Mn regimes as compared to that observed for LiFePO4 and LiMnPO 4 respectively. Calculations made from two different analysis methods, cyclic voltammetry (CV) and galvanostatic intermittent titration (GITT) drew this same conclusion. The signature characteristics observed from the CVs pertaining to single and dual phase reactions led to a delithiation model of LiFe0.5Mn0.5PO4 proposing the localization

  17. Posttraumatic Stress Disorder: Structural Characterization with 3-T MR Imaging.

    Science.gov (United States)

    Li, Shiguang; Huang, Xiaoqi; Li, Lingjiang; Du, Fei; Li, Jing; Bi, Feng; Lui, Su; Turner, Jessica A; Sweeney, John A; Gong, Qiyong

    2016-08-01

    Purpose To explore cerebral alterations related to the emergence of posttraumatic stress disorder (PTSD) by using three-dimensional T1-weighted imaging and also to explore the relationship of gray and white matter abnormalities and the anatomic changes with clinical severity and duration of time since the trauma. Materials and Methods Informed consent was provided, and the prospective study was approved by the ethics committee of the West China Hospital. Recruited were 67 patients with PTSD and 78 adult survivors without PTSD 7-15 months after a devastating earthquake in western China. All participants underwent magnetic resonance (MR) imaging with a 3-T imager to obtain anatomic images. Cortical thickness and volumes of 14 subcortical gray matter structures and five subregions of the corpus callosum were analyzed with software. Statistical differences between patients with PTSD and healthy survivors were evaluated with a general linear model. Averaged data from the regions with volumetric or cortical thickness differences between groups were extracted in each individual to examine correlations between morphometric measures and clinical profiles. Results Patients with PTSD showed greater cortical thickness in the right superior temporal gyrus, inferior parietal lobule, and left precuneus (P PTSD severity was positively correlated with cortical thickness in the left precuneus (r = 0.332; P = .008). The volumes of posterior corpus callosum were negatively correlated with PTSD ratings in all survivors (r = -0.210; P = .013) and with cortical thickness of the left precuneus in patients with PTSD (r = -0.302; P = .017). Conclusion Results indicate that patients with PTSD had alterations in both cerebral gray matter and white matter compared with individuals who experienced similar psychologic trauma from the same stressor. Importantly, early in the course of PTSD, gray matter changes were in the form of increased, not decreased, cortical thickness, which may have

  18. Preparation and structural characterization of salts of oxotetrachlorotechnetium(V)

    International Nuclear Information System (INIS)

    Cotton, F.A.; Davison, A.; Day, V.W.; Gage, L.D.; Trop, H.S.

    1979-01-01

    The reduction of pertechnitate(VII) ion, TeO 4 - , in aqueous HCl by hypophosphorous acid yields a dark green solution, as has been previously reported. From this solution olive green or gray-green crystalline solids can be isolated by addition of large cations such as (n-C 4 H 9 ) 4 N + or (Ph 3 P) 2 N + . Analytical and infrared data indicate that the anion in these crystalline solids is TcOCl 4 - , the tetrachlorooxotechnetate(V) ion. For the compound [(Ph 3 P) 2 N][TcOCl 4 ], 1, a complete x-ray crystallographic structure determination has been carried out to define fully the oxotechnetate anion. Compound 1 crystallizes in space group Pna2 1 (No. 33) with unit cell constants of a = 21.618 (5) A, b = 16.870 (5) A, c = 9.658 (3) A, and Z = 4. The formula unit is the crystallographic asymmetric unit, and no crystallographic symmetry is imposed on either cation or anion. The TcOCl 4 - ion is, to a first approximation, square pyramidal, as would be expected, but is appreciably distorted, mainly in the sense of having significantly different trans Cl-Tc-Cl angles, 139.2 (1) and 153.7 (1) 0 . The symmetry is C/sub 2v/ within the experimental errors, with a Tc==O distance of 1.610 (4) A and a mean Tc-Cl distance of 2.31 +- 0.01 A. The Ph 3 PNPPh 3 + ion has dimensions closely resembling those previously found for it in other compounds. Both compounds show a strong infrared absorption at ca. 1015 to 1020 cm -1 which may be assigned to stretching of the short Tc==O bond. Our conclusive identification of these green crystalline products as TcOCl 4 - salts is compared with previous reports in some of which a similar formulation was proposed while in others a different anionic species, Tc 2 Cl 8 2- , was postulated. 2 figures, 4 tables

  19. Comparison Study on Polysaccharide Fractions from Laminaria japonica: Structural Characterization and Bile Acid Binding Capacity.

    Science.gov (United States)

    Gao, Jie; Lin, Lianzhu; Sun, Baoguo; Zhao, Mouming

    2017-11-08

    Our previous study has suggested that the crude polysaccharide obtained from Laminaria japonica by acid assisted extraction (LP-A) have significant bile acid-binding capacity, which probably ascribed to its specific structure characterization. The relationship between structure characterization and bile acid-binding capacity of the purified LP-A fractions are still unknown. This paper conducted a comparison study on the structure characterization and bile acid-binding capacity of three LP-A fractions (LP-A4, LP-A6, and LP-A8). The results indicated that LP-A4, LP-A6, and LP-A8, characterized as mannoglucan, fucomannoglucan, and fucogalactan, had significantly different structure characterization. Furthermore, the bile acid-binding capacity of LP-A8 was obviously higher than the other fractions, which may be attributed to its highly branched structure, abundant sulfate, fucose, and galactose in chemical composition and denser interconnected macromolecule network in molecular morphology. This study provides scientific evidence for the potential utilization of LP-A8 as an attractive functional food supplement candidate for the hyperlipidemia population.

  20. Identification and Structural Characterization of Unidentified Impurity in Bisoprolol Film-Coated Tablets

    Directory of Open Access Journals (Sweden)

    Ivana Mitrevska

    2017-01-01

    Full Text Available The aim of this study is the identification, structural characterization, and qualification of a degradation impurity of bisoprolol labeled as Impurity RRT 0.95. This degradation product is considered as a principal thermal degradation impurity identified in bisoprolol film-coated tablets. The impurity has been observed in the stress thermal degradation study of the drug product. Using HPLC/DAD/ESI-MS method, a tentative structure was assigned and afterwards confirmed by detailed structural characterization using NMR spectroscopy. The structure of the target Impurity RRT 0.95 was elucidated as phosphomonoester of bisoprolol, having relative molecular mass of 406 (positive ionization mode. The structural characterization was followed by qualification of Impurity RRT 0.95 using several different in silico methodologies. From the results obtained, it can be concluded that no new structural alerts have been generated for Impurity RRT 0.95 relative to the parent compound bisoprolol. The current study presents an in-depth analysis of the full characterization and qualification of an unidentified impurity in a drug product with the purpose of properly defining the quality specification of the product.

  1. Structural and morphological characterization of CdSe:Mn thin films

    Science.gov (United States)

    Singh, Sarika; Shrivastava, A. K.

    2017-07-01

    CdSe:Mn thin films were grown by chemical bath deposition. The pH of the solution was maintained at 11. Dry films so obtained were annealed in vacuum (10^{-1} Torr) for about 2 h at 400°C. The annealed samples were subjected to morphological and structural characterization using scanning electron microscope and XRD. XRD was used for structural characterization whereas scanning electron microscope shows the surface morphology of the films. XRD spectra reveal that the grown CdSe films are polycrystalline in nature and have cubic structure. The average particle size decreases on doping CdSe with Mn ions. The FE-SEM images show spherical particles having uniform distribution. Optical characterization was done using PL studies and UV-Visible spectrophotometer. PL spectra show an increase in PL intensity on doping. Optical band gap also decreases on doping.

  2. An Enhanced Platform for Bioelectrochemical Systems: A Novel Approach to Characterize Lipid Structure on Graphene

    Science.gov (United States)

    Farell, Megan; Wetherington, Maxwell; Robinson, Joshua; Kumar, Manish

    Graphene is a two-dimensional material composed of a single carbon layer that offers several appealing properties including high conductivity, large surface area, and flexibility. Its unique properties make graphene an ideal substrate for several applications, including energy storage, optical electronics, and medical devices. Functionalizing graphene with a lipid bilayer both increases its biocompatibility and provides a platform for diverse bioelectrochemical systems. However, characterization of lipids on graphene is challenging since traditional fluorescent methods for characterization of supported lipid structures are ineffective on graphene due to its highly quenching nature. Furthermore, there are multiple conflicting models published for the structure of lipids on graphene. We demonstrate that a novel technique using Raman spectroscopy and photoluminescence (PL) allows for characterization of lipids on graphene while providing additional benefits over conventional setups. We use Raman-PL in conjunction with liquid-AFM and QCM-D to determine the structure, fluidity, and homogeneity of lipids on graphene. MRI-PSIEE Grant.

  3. Characterizing the geometric and electronic structure of defects in the "29" copper surface oxide

    Science.gov (United States)

    Therrien, Andrew J.; Hensley, Alyssa J. R.; Zhang, Renqin; Pronschinske, Alex; Marcinkowski, Matthew D.; McEwen, Jean-Sabin; Sykes, E. Charles H.

    2017-12-01

    The geometric and electronic structural characterization of thin film metal oxides is of fundamental importance to many fields such as catalysis, photovoltaics, and electrochemistry. Surface defects are also well known to impact a material's performance in any such applications. Here, we focus on the "29" oxide Cu2O/Cu(111) surface and we observe two common structural defects which we characterize using scanning tunneling microscopy/spectroscopy and density functional theory. The defects are proposed to be O vacancies and Cu adatoms, which both show unique topographic and spectroscopic signatures. The spatially resolved electronic and charge state effects of the defects are investigated, and implications for their reactivity are given.

  4. Optical and micro-structural characterizations of MBE grown indium gallium nitride polar quantum dots

    KAUST Repository

    Elafandy, Rami T.

    2011-12-01

    Comparison between indium rich (27%) InGaN/GaN quantum dots (QDs) and their underlying wetting layer (WL) is performed by means of optical and structural characterizations. With increasing temperature, micro-photoluminescence (μPL) study reveals the superior ability of QDs to prevent carrier thermalization to nearby traps compared to the two dimensional WL. Thus, explaining the higher internal quantum efficiency of the QD nanostructure compared to the higher dimensional WL. Structural characterization (X-ray diffraction (XRD)) and transmission electron microscopy (TEM)) reveal an increase in the QD indium content over the WL indium content which is due to strain induced drifts. © 2011 IEEE.

  5. Hierarchical Structure and Molecular Dynamics of Metal-Organic Framework as Characterized by Solid State NMR

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2016-01-01

    Full Text Available Metal-organic framework (MOF stands out as a promising material with great potential in application areas, such as gas separation and catalysis, due to its extraordinary properties. In order to fully characterize the structure of MOFs, especially those without single crystal, Solid State NMR (SSNMR is an indispensable tool. As a complimentary analytical technique to X-ray diffraction, SSNMR could provide detailed atomic level structure information. Meanwhile, SSNMR can characterize molecular dynamics over a wide dynamics range. In this review, selected applications of SSNMR on various MOFs are summarized and discussed.

  6. Characterizing human activity induced impulse and slip-pulse excitations through structural vibration

    Science.gov (United States)

    Pan, Shijia; Mirshekari, Mostafa; Fagert, Jonathon; Ramirez, Ceferino Gabriel; Chung, Albert Jin; Hu, Chih Chi; Shen, John Paul; Zhang, Pei; Noh, Hae Young

    2018-02-01

    Many human activities induce excitations on ambient structures with various objects, causing the structures to vibrate. Accurate vibration excitation source detection and characterization enable human activity information inference, hence allowing human activity monitoring for various smart building applications. By utilizing structural vibrations, we can achieve sparse and non-intrusive sensing, unlike pressure- and vision-based methods. Many approaches have been presented on vibration-based source characterization, and they often either focus on one excitation type or have limited performance due to the dispersion and attenuation effects of the structures. In this paper, we present our method to characterize two main types of excitations induced by human activities (impulse and slip-pulse) on multiple structures. By understanding the physical properties of waves and their propagation, the system can achieve accurate excitation tracking on different structures without large-scale labeled training data. Specifically, our algorithm takes properties of surface waves generated by impulse and of body waves generated by slip-pulse into account to handle the dispersion and attenuation effects when different types of excitations happen on various structures. We then evaluate the algorithm through multiple scenarios. Our method achieves up to a six times improvement in impulse localization accuracy and a three times improvement in slip-pulse trajectory length estimation compared to existing methods that do not take wave properties into account.

  7. Technical Decision Making With Higher Order Structure Data: Perspectives on Higher Order Structure Characterization From the Biopharmaceutical Industry.

    Science.gov (United States)

    Weiss, William F; Gabrielson, John P; Al-Azzam, Wasfi; Chen, Guodong; Davis, Darryl L; Das, Tapan K; Hayes, David B; Houde, Damian; Singh, Satish K

    2016-12-01

    Characterization of the higher order structure (HOS) of protein-based biopharmaceutical products is an important aspect of their development. Opinions vary about how best to apply biophysical methods, in which contexts to use these methods, and how to use the resulting data to make technical decisions as drug candidates are commercialized [Gabrielson JP, Weiss WF IV. J Pharm Sci. 2015;104(4):1240-1245]. The aim of this commentary is to provide guidance for the development and implementation of a robust and comprehensive HOS characterization strategy. We first consider important concepts involved in developing a strategy that is appropriately suited to a particular biologic, and then discuss ways industry can partner with academia, technology companies, government laboratories, and regulatory agencies to improve the consistency with which HOS characterization is applied across the biopharmaceutical industry. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq.

    Science.gov (United States)

    Watters, Kyle E; Abbott, Timothy R; Lucks, Julius B

    2016-01-29

    Many non-coding RNAs form structures that interact with cellular machinery to control gene expression. A central goal of molecular and synthetic biology is to uncover design principles linking RNA structure to function to understand and engineer this relationship. Here we report a simple, high-throughput method called in-cell SHAPE-Seq that combines in-cell probing of RNA structure with a measurement of gene expression to simultaneously characterize RNA structure and function in bacterial cells. We use in-cell SHAPE-Seq to study the structure-function relationship of two RNA mechanisms that regulate translation in Escherichia coli. We find that nucleotides that participate in RNA-RNA interactions are highly accessible when their binding partner is absent and that changes in RNA structure due to RNA-RNA interactions can be quantitatively correlated to changes in gene expression. We also characterize the cellular structures of three endogenously expressed non-coding RNAs: 5S rRNA, RNase P and the btuB riboswitch. Finally, a comparison between in-cell and in vitro folded RNA structures revealed remarkable similarities for synthetic RNAs, but significant differences for RNAs that participate in complex cellular interactions. Thus, in-cell SHAPE-Seq represents an easily approachable tool for biologists and engineers to uncover relationships between sequence, structure and function of RNAs in the cell. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Structural and Enzymatic Characterization of a Nucleoside Diphosphate Sugar Hydrolase from Bdellovibrio bacteriovorus.

    Directory of Open Access Journals (Sweden)

    Andres H de la Peña

    Full Text Available Given the broad range of substrates hydrolyzed by Nudix (nucleoside diphosphate linked to X enzymes, identification of sequence and structural elements that correctly predict a Nudix substrate or characterize a family is key to correctly annotate the myriad of Nudix enzymes. Here, we present the structure determination and characterization of Bd3179 -- a Nudix hydrolase from Bdellovibrio bacteriovorus-that we show localized in the periplasmic space of this obligate Gram-negative predator. We demonstrate that the enzyme is a nucleoside diphosphate sugar hydrolase (NDPSase and has a high degree of sequence and structural similarity to a canonical ADP-ribose hydrolase and to a nucleoside diphosphate sugar hydrolase (1.4 and 1.3 Å Cα RMSD respectively. Examination of the structural elements conserved in both types of enzymes confirms that an aspartate-X-lysine motif on the C-terminal helix of the α-β-α NDPSase fold differentiates NDPSases from ADPRases.

  10. Characterization and Lifetime Performance Modeling of Acrylic Foam Tape for Structural Glazing Applications

    OpenAIRE

    Townsend, Benjamin William

    2008-01-01

    This thesis presents the results of testing and modeling conducted to characterize the performance of 3Mâ ¢ VHBâ ¢ structural glazing tape in both shear and tension. Creep rupture testing results provided the failure time at a given static load and temperature, and ramp-to-fail testing results provided the ultimate load resistance at a given rate of strain and temperature. Parallel testing was conducted on three structural silicone sealants to compare performance. Using the time temperature ...

  11. Synthesis and structural characterization of some Pb (B $^{'} _ {1/3 ...

    Indian Academy of Sciences (India)

    Two-stage columbite solid state reaction route has been used for the preparation of Pb (B 1 / 3 ′ Nb2/3)O3 materials (B′ = Mg, Ni and Cd). The columbite precursor phase was structurally characterized using diffraction data. MgNb2O6, NiNb2O6 and CdNb2O6 show orthorhombic structures i.e. pure columbite phase.

  12. Characterization of Boroaluminosilicate Glass Surface Structures by B k-edge NEXAFS

    Energy Technology Data Exchange (ETDEWEB)

    R Schaut; R Lobello; K Mueller; C Pantano

    2011-12-31

    Techniques traditionally used to characterize bulk glass structure (NMR, IR, etc.) have improved significantly, but none provide direct measurement of local atomic coordination of glass surface species. Here, we used Near-Edge X-ray Absorption Fine Structure (NEXAFS) as a direct measure of atomic structure at multicomponent glass surfaces. Focusing on the local chemical structure of boron, we address technique-related issues of calibration, quantification, and interactions of the beam with the material. We demonstrate that beam-induced adsorption and structural damage can occur within the timeframe of typical measurements. The technique is then applied to the study of various fracture surfaces where it is shown that adsorption and reaction of water with boroaluminosilicate glass surfaces induces structural changes in the local coordination of boron, favoring B{sup IV} species after reaction.

  13. Structural and morphological characterization of CdSe: Mn thin films

    Indian Academy of Sciences (India)

    2017-06-24

    Jun 24, 2017 ... ... grown CdSe films are polycrystalline in nature and have cubic structure. The average particle size decreases on doping CdSe with Mn ions. The FE-SEM images show spherical particles having uniform distribution. Optical characterization was done using PL studies and UV–Visible spectrophotometer.

  14. DNA binding and cleavage activity of a structurally characterized Ni(II)

    Indian Academy of Sciences (India)

    1375–1381. c Indian Academy of Sciences. DOI 10.1007/s12039-015-0900-4. DNA binding and cleavage activity of a structurally characterized Ni(II). Schiff base complex. SARAT CHANDRA KUMARa, ABHIJIT PALa, MERRY MITRAa,. V M MANIKANDAMATHAVANb, CHIA -HER LINc, BALACHANDRAN UNNI NAIRb,∗.

  15. Preliminary structure characterization of DhaA mutants from Rhodococcus Rhodochrous

    Czech Academy of Sciences Publication Activity Database

    Stsiapanava, A.; Dohnálek, Jan; Kutý, Michal; Lapkouski, M.; Gavira, J. A.; Koudeláková, T.; Damborský, J.; Kutá-Smatanová, Ivana

    2008-01-01

    Roč. 15, 2a (2008), s. 33 ISSN 1211-5894. [Struktura 2008 - Colloquium of the Czech and Slovak Crystallographic Association. 16.06.2008-20.06.2008, Valtice] Institutional research plan: CEZ:AV0Z40500505 Keywords : preliminary structure characterization * DhaA mutants * Rhodococcus Rhodochrous Subject RIV: CD - Macromolecular Chemistry

  16. Structural characterization of ether lipids from the archaeon Sulfolobus islandicus by high-resolution shotgun lipidomics

    DEFF Research Database (Denmark)

    Jensen, Sara Munk; Brandl, Martin; Treusch, Alexander H

    2015-01-01

    The molecular structures, biosynthetic pathways and physiological functions of membrane lipids produced by organisms in the domain Archaea are poorly characterized as compared with that of counterparts in Bacteria and Eukaryota. Here we report on the use of high-resolution shotgun lipidomics...... to characterize, for the first time, the lipid complement of the archaeon Sulfolobus islandicus. To support the identification of lipids in S. islandicus, we first compiled a database of ether lipid species previously ascribed to Archaea. Next, we analyzed the lipid complement of S. islandicus by high......-resolution Fourier transform mass spectrometry using an ion trap-orbitrap mass spectrometer. This analysis identified five clusters of molecular ions that matched ether lipids in the database with sub-ppm mass accuracy. To structurally characterize and validate the identities of the potential lipid species, we...

  17. An integrated approach using orthogonal analytical techniques to characterize heparan sulfate structure.

    Science.gov (United States)

    Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Gunay, Nur Sibel; Wang, Jing; Sun, Elaine Y; Pradines, Joël R; Farutin, Victor; Shriver, Zachary; Kaundinya, Ganesh V; Capila, Ishan

    2017-02-01

    Heparan sulfate (HS), a glycosaminoglycan present on the surface of cells, has been postulated to have important roles in driving both normal and pathological physiologies. The chemical structure and sulfation pattern (domain structure) of HS is believed to determine its biological function, to vary across tissue types, and to be modified in the context of disease. Characterization of HS requires isolation and purification of cell surface HS as a complex mixture. This process may introduce additional chemical modification of the native residues. In this study, we describe an approach towards thorough characterization of bovine kidney heparan sulfate (BKHS) that utilizes a variety of orthogonal analytical techniques (e.g. NMR, IP-RPHPLC, LC-MS). These techniques are applied to characterize this mixture at various levels including composition, fragment level, and overall chain properties. The combination of these techniques in many instances provides orthogonal views into the fine structure of HS, and in other instances provides overlapping / confirmatory information from different perspectives. Specifically, this approach enables quantitative determination of natural and modified saccharide residues in the HS chains, and identifies unusual structures. Analysis of partially digested HS chains allows for a better understanding of the domain structures within this mixture, and yields specific insights into the non-reducing end and reducing end structures of the chains. This approach outlines a useful framework that can be applied to elucidate HS structure and thereby provides means to advance understanding of its biological role and potential involvement in disease progression. In addition, the techniques described here can be applied to characterization of heparin from different sources.

  18. Nanostructured PLD-grown gadolinia doped ceria: Chemical and structural characterization by transmission electron microscopy techniques

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Wang, Hsiang-Jen; Heiroth, Sebastian

    2011-01-01

    The morphology as well as the spatially resolved elemental and chemical characterization of 10 mol% gadolinia doped ceria (CGO10) structures prepared by pulsed laser deposition (PLD) technique are investigated by scanning transmission electron microscopy accompanied with electron energy loss...... spectroscopy and energy dispersive X-ray spectroscopy. A dense, columnar and structurally inhomogeneous CGO10 film, i.e. exhibiting grain size refinement across the film thickness, is obtained in the deposition process. The cerium M4,5 edges, used to monitor the local electronic structure of the grains...

  19. Small-angle neutron scattering measurements for the characterization of lithographically prepared structures

    International Nuclear Information System (INIS)

    Wu Wenli; Lin, Eric K.; Lin Qinghuang; Angelopolous, Marie

    2001-01-01

    The continuing decrease in feature sizes in the semiconductor and other nanofabrication industries has placed increasingly stringent demands on current microscopy-based techniques to precisely measure both the critical dimensions and the quality (i.e. line-edge roughness) of these structures. Small-angle neutron scattering (SANS) experiments provide a quick, non-destructive, and quantitative measurement of the three-dimensional shape and quality of lithographically prepared structures as fabricated on a silicon substrate. We demonstrate the application of SANS for the characterization of nanoscale structures using periodic 150 nm parallel lines prepared using standard 248 nm photolithographic processes

  20. Synthesis and Structural Characterization of ‘Non-VSEPR’ Structures of Oxo-Tungsten Complex

    OpenAIRE

    Ghammamy, Shahriare; Sahebalzamani, Hajar

    2011-01-01

    The crystal structure of [(CH3)4N]4 [WOCl4F][WO3Cl4] was determined by single crystal x-ray diffraction technique. The crystal is monoclinic, space group C 2/m, with a= 28.23(10) Å, b= 11.60(4) Å,c= 13.48(5) Å, β=118.43(7)°, V= 3886(2)Å3, Z=4. The structure was solved by direct methods and refined by least-squares methods to a final R = 0.0512 for 3825 observed reflections with I>2σ(I). In crystal there are two crystallographic distinct anions, both with cis geometry; the O-W-F and O-W-O angl...

  1. Characterization and evaluation of ceramic properties of clay used in structural ceramics

    International Nuclear Information System (INIS)

    Reis, A.S.; Oliveira, J.N.; Della-Sagrillo, V.P.; Valenzuela-Diaz, F.R.

    2014-01-01

    The clay used in the manufacture of structural ceramic products must meet quality requirements that are influenced by their chemical, physical, mineralogical and microstructural characteristics, which control the ceramic properties of the final products. This paper aims to characterize the clay used in the manufacture of ceramic roof tiles and bricks. The clay was characterized through XRF, XRD, thermogravimetry and differential thermal analysis, Atterberg limits and particle size distribution. Specimens were shaped, dried at 110°C, and burned at 900 deg C in an industrial kiln. After that, they were submitted to tests of water absorption, apparent porosity, bulk density and flexural strength. The results show that the chemical composition of clay has significant amount of silica and alumina and adequate levels of kaolinite for use in structural ceramic. The ceramic properties evaluated in the specimens partially meet the requirements of the Brazilian standard-clays for structural ceramics. (author)

  2. Structural characterization of a recombinant fusion protein by instrumental analysis and molecular modeling.

    Directory of Open Access Journals (Sweden)

    Zhigang Wu

    Full Text Available Conbercept is a genetically engineered homodimeric protein for the treatment of wet age-related macular degeneration (wet AMD that functions by blocking VEGF-family proteins. Its huge, highly variable architecture makes characterization and development of a functional assay difficult. In this study, the primary structure, number of disulfide linkages and glycosylation state of conbercept were characterized by high-performance liquid chromatography, mass spectrometry, and capillary electrophoresis. Molecular modeling was then applied to obtain the spatial structural model of the conbercept-VEGF-A complex, and to study its inter-atomic interactions and dynamic behavior. This work was incorporated into a platform useful for studying the structure of conbercept and its ligand binding functions.

  3. 3D soil structure characterization of Biological Soil Crusts from Alpine Tarfala Valley

    Science.gov (United States)

    Mele, Giacomo; Gargiulo, Laura; Zucconi, Laura; D'Acqui, Luigi; Ventura, Stefano

    2017-04-01

    Cyanobacteria filaments, microfungal hyphae, lichen rhizinae and anchoring rhizoids of bryophytes all together contribute to induce formation of structure in the thin soil layer beneath the Biological Soil Crusts (BSCs). Quantitative assessment of the soil structure beneath the BSCs is primarily hindered by the fragile nature of the crusts. Therefore, the role of BSCs in affecting such soil physical property has been rarely addressed using direct measurements. In this work we applied non-destructive X-ray microtomography imaging on five different samples of BSCs collected in the Alpine Tarfala Valley (northern Sweden), which have already been characterized in terms of fungal biodiversity in a previous work. We obtained images of the 3D spatial organization of the soil underneath the BSCs and characterized its structure by applying procedures of image analysis allowing to determine pore size distribution, pore connectivity and aggregate size distribution. Results has then been correlated with the different fungal assemblages of the samples.

  4. Synthesis and Structural Characterization of ‘Non-VSEPR’ Structures of Oxo-Tungsten Complex

    Directory of Open Access Journals (Sweden)

    Shahriare Ghammamy

    2011-01-01

    Full Text Available The crystal structure of [(CH34N]4 [WOCl4F][WO3Cl4] was determined by single crystal x-ray diffraction technique. The crystal is monoclinic, space group C 2/m, with a= 28.23(10 Å, b= 11.60(4 Å,c= 13.48(5 Å, β=118.43(7°, V= 3886(2Å3, Z=4. The structure was solved by direct methods and refined by least-squares methods to a final R = 0.0512 for 3825 observed reflections with I>2σ(I. In crystal there are two crystallographic distinct anions, both with cis geometry; the O-W-F and O-W-O angles are 97.5(3° and 103.1(3 ° respectively. All structures are cis configurations that confirm a preference for angles below 90° and 180° between cis and trans σ-donor ligands, respectively.

  5. A novel structure of gel grown strontium cyanurate crystal and its structural, optical, electrical characterization

    Science.gov (United States)

    Divya, R.; Nair, Lekshmi P.; Bijini, B. R.; Nair, C. M. K.; Gopakumar, N.; Babu, K. Rajendra

    2017-12-01

    Strontium cyanurate crystals with novel structure and unique optical property like mechanoluminescence have been grown by conventional gel method. Transparent crystals were obtained. The single crystal X-ray diffraction analysis reveals the exquisite structure of the grown crystal. The crystal is centrosymmetric and has a three dimensional polymeric structure. The powder X ray diffraction analysis confirms its crystalline nature. The functional groups present in the crystal were identified by Fourier transform infrared spectroscopy. Elemental analysis confirmed the composition of the complex. A study of thermal properties was done by thermo gravimetric analysis and differential thermal analysis. The optical properties like band gap, refractive index and extinction coefficient were evaluated from the UV visible spectral analysis. The etching study was done to reveal the dislocations in the crystal which in turn explains mechanoluminescence emission. The mechanoluminescence property exhibited by the crystal makes it suitable for stress sensing applications. Besides being a centrosymmetric crystal, it also exhibits NLO behavior. Dielectric properties were studied and theoretical calculations of Fermi energy, valence electron plasma energy, penn gap and polarisability have been done.

  6. Revised domain structure of ulvan lyase and characterization of the first ulvan binding domain.

    Science.gov (United States)

    Melcher, Rebecca L J; Neumann, Marten; Fuenzalida Werner, Juan Pablo; Gröhn, Franziska; Moerschbacher, Bruno M

    2017-03-22

    Biomass waste products from green algae have recently been given new life, as these polysaccharides have potential applications in industry, agriculture, and medicine. One such polysaccharide group called ulvans displays many different, potentially useful properties that arise from their structural versatility. Hence, performing structural analyses on ulvan is crucial for future applications. However, chemical reaction-based analysis methods cannot fully characterize ulvan and tend to alter its structure. Thus, better methods require well-characterized ulvan-degrading enzymes. Therefore, we analysed a previously sequenced ulvan lyase (Genebank TM reference number JN104480) and characterized its domains. We suggest that the enzyme consists of a shorter than previously described catalytic domain, a newly identified substrate binding domain, and a C-terminal type 9 secretion system signal peptide. By separately expressing the two domains in E. coli, we confirmed that the binding domain is ulvan specific, having higher affinity for ulvan than most lectins for their ligands (affinity constant: 10 5  M -1 ). To our knowledge, this is the first description of an ulvan-binding domain. Overall, identifying this new binding domain is one step towards engineering ulvan enzymes that can be used to characterize ulvan, e.g. through enzymatic/mass spectrometric fingerprinting analyses, and help unlock its full potential.

  7. Electronic and structural characterizations of unreconstructed {0001} surfaces and the growth of graphene overlayers

    International Nuclear Information System (INIS)

    Emtsev, Konstantin

    2009-01-01

    The present work is focused on the characterization of the clean unreconstructed SiC{0001} surfaces and the growth of graphene overlayers thereon. Electronic properties of SiC surfaces and their interfaces with graphene and few layer graphene films were investigated by means of angle resolved photoelectron spectroscopy, X-ray photoelectron spectroscopy and low energy electron diffraction. Structural characterizations of the epitaxial graphene films grown on SiC were carried out by atomic force microscopy and low energy electron microscopy. Supplementary data was obtained by scanning tunneling microscopy. (orig.)

  8. Structural characterization of nonactive site, TrkA-selective kinase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hua-Poo; Rickert, Keith; Burlein, Christine; Narayan, Kartik; Bukhtiyarova, Marina; Hurzy, Danielle M.; Stump, Craig A.; Zhang, Xufang; Reid, John; Krasowska-Zoladek, Alicja; Tummala, Srivanya; Shipman, Jennifer M.; Kornienko, Maria; Lemaire, Peter A.; Krosky, Daniel; Heller, Amanda; Achab, Abdelghani; Chamberlin, Chad; Saradjian, Peter; Sauvagnat, Berengere; Yang, Xianshu; Ziebell, Michael R.; Nickbarg, Elliott; Sanders, John M.; Bilodeau, Mark T.; Carroll, Steven S.; Lumb, Kevin J.; Soisson, Stephen M.; Henze, Darrell A.; Cooke, Andrew J. (Merck)

    2016-12-30

    Current therapies for chronic pain can have insufficient efficacy and lead to side effects, necessitating research of novel targets against pain. Although originally identified as an oncogene, Tropomyosin-related kinase A (TrkA) is linked to pain and elevated levels of NGF (the ligand for TrkA) are associated with chronic pain. Antibodies that block TrkA interaction with its ligand, NGF, are in clinical trials for pain relief. Here, we describe the identification of TrkA-specific inhibitors and the structural basis for their selectivity over other Trk family kinases. The X-ray structures reveal a binding site outside the kinase active site that uses residues from the kinase domain and the juxtamembrane region. Three modes of binding with the juxtamembrane region are characterized through a series of ligand-bound complexes. The structures indicate a critical pharmacophore on the compounds that leads to the distinct binding modes. The mode of interaction can allow TrkA selectivity over TrkB and TrkC or promiscuous, pan-Trk inhibition. This finding highlights the difficulty in characterizing the structure-activity relationship of a chemical series in the absence of structural information because of substantial differences in the interacting residues. These structures illustrate the flexibility of binding to sequences outside of—but adjacent to—the kinase domain of TrkA. This knowledge allows development of compounds with specificity for TrkA or the family of Trk proteins.

  9. Structural Characterization of an Historical Building by Means of Experimental Tests on Full-Scale Elements

    Directory of Open Access Journals (Sweden)

    Marco Bovo

    2017-01-01

    Full Text Available In order to properly design strengthening intervention of existing buildings, careful assessment of the structural behavior is certainly required. This is particularly important when dealing with historical constructions made of heterogeneous materials like masonry or stonework. In this context, this paper presents the results of knowledge process on a large monumental nineteenth century building located in Trieste. The traditional investigation approach considering a wide number of destructive tests for characterization of materials and evaluation of the structural details were not admissible due to the valuable cultural and historical importance of the building. Therefore, an alternative and not conventional investigation approach has been considered. After a wide historical research and a detailed structural survey, it has been possible to identify the main structural systems of the building. Then, to characterize the structural response, a limited number of nondestructive tests but on full-scale typological systems have been preferred to a larger number of destructive tests on specimens of the different materials. The selected experimental load tests have been conducted in order to assess the actual structural response of the main systems that constitute the building, thus allowing for a fine tuning of both the rehabilitation interventions and the numerical finite element models.

  10. Characterization of radon penetration of different structural domains of concrete. Final project report

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.

    1996-05-01

    This report documents the research activities by Rogers and Associates Engineering Corporation on grant DE-FG03-93ER61600 during the funded project period from August 1993 to April 1996. The objective of this research was to characterize the mechanisms and rates of radon gas penetration of the different structural domains of the concrete components of residential floor slabs, walls, and associated joints and penetrations. The research was also to characterize the physical properties of the concretes in these domains to relate their radon resistance to their physical properties. These objectives support the broader goal of characterizing which, if any, concrete domains and associated properties constitute robust barriers to radon and which permit radon entry, either inherently or in ways that could be remediated or avoided

  11. Wafer scale imprint uniformity evaluated by LSPR spectroscopy: a high volume characterization method for nanometer scale structures

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Lindstedt, Daniel Nilsson; Vig, Asger Laurberg

    2012-01-01

    numerical simulations of imprinted structures characterized by atomic force microscopy. There is a fair agreement between the two methods and the simulations enable the translation of optical spectra to critical dimensions of the physical structures, a concept known from scatterometry. The results...... demonstrate the potential of LSPR spectroscopy as an alternative characterization method to scanning electron microscopy, atomic force microscopy and scatterometry....

  12. Complex layered materials and periodic electromagnetic band-gap structures: Concepts, characterizations, and applications

    Science.gov (United States)

    Mosallaei, Hossein

    The main objective of this dissertation is to characterize and create insight into the electromagnetic performances of two classes of composite structures, namely, complex multi-layered media and periodic Electromagnetic Band-Gap (EBG) structures. The advanced and diversified computational techniques are applied to obtain their unique propagation characteristics and integrate the results into some novel applications. In the first part of this dissertation, the vector wave solution of Maxwell's equations is integrated with the Genetic Algorithm (GA) optimization method to provide a powerful technique for characterizing multi-layered materials, and obtaining their optimal designs. The developed method is successfully applied to determine the optimal composite coatings for Radar Cross Section (RCS) reduction of canonical structures. Both monostatic and bistatic scatterings are explored. A GA with hybrid planar/curved surface implementation is also introduced to efficiently obtain the optimal absorbing materials for curved structures. Furthermore, design optimization of the non-uniform Luneburg and 2-shell spherical lens antennas utilizing modal solution/GA-adaptive-cost function is presented. The lens antennas are effectively optimized for both high gain and suppressed grating lobes. The second part demonstrates the development of an advanced computational engine, which accurately computes the broadband characteristics of challenging periodic electromagnetic band-gap structures. This method utilizes the Finite Difference Time Domain (FDTD) technique with Periodic Boundary Condition/Perfectly Matched Layer (PBC/PML), which is efficiently integrated with the Prony scheme. The computational technique is successfully applied to characterize and present the unique propagation performances of different classes of periodic structures such as Frequency Selective Surfaces (FSS), Photonic Band-Gap (PBG) materials, and Left-Handed (LH) composite media. The results are

  13. Characterization and TCAD modelling of termination structures for silicon radiation detectors

    International Nuclear Information System (INIS)

    Dittongo, S.; Boscardin, M.; Bosisio, L.; Ciacchi, M.; Dalla Betta, G.-F.; Gregori, P.; Piemonte, C.; Rachevskaia, I.; Ronchin, S.; Zorzi, N.

    2004-01-01

    We have recently proposed a novel junction termination structure for silicon radiation detectors, featuring all-p-type multiguard and scribe-line implants, with metal field-plates completely covering the gap between the implanted rings. The structure is intended for detector long-term stability enhancement even in adverse ambient conditions and for fabrication-process simplification. A thorough static characterization, including stability measurements in varying humidity conditions, has been carried out on a variety of samples fabricated at ITC-irst. Comparisons with diodes featuring an n-type implant along the border - or no edge structure at all - have been performed. The new structures show stable behaviour at relatively high bias (∼200 V), also in the presence of wide humidity changes (1-90%). A good qualitative agreement has been obtained between experimental results and simulation predictions, allowing to gain deep insight into the physical behaviour of the device

  14. Preparation and Characterization of Nano-structured Ceramic Powders Synthesized by Emulsion Combustion Method

    International Nuclear Information System (INIS)

    Takatori, Kazumasa; Tani, Takao; Watanabe, Naoyoshi; Kamiya, Nobuo

    1999-01-01

    The emulsion combustion method (ECM), a novel powder production process, was originally developed to synthesize nano-structured metal-oxide powders. Metal ions in the aqueous droplets were rapidly oxidized by the combustion of the surrounding flammable liquid. The ECM achieved a small reaction field and a short reaction period to fabricate the submicron-sized hollow ceramic particles with extremely thin wall and chemically homogeneous ceramic powder. Alumina, zirconia, zirconia-ceria solid solutions and barium titanate were synthesized by the ECM process. Alumina and zirconia powders were characterized to be metastable in crystalline phase and hollow structure. The wall thickness of alumina was about 10 nm. The zirconia-ceria powders were found to be single-phase solid solutions for a wide composition range. These powders were characterized as equiaxed-shape, submicron-sized chemically homogeneous materials. The powder formation mechanism was investigated through the synthesis of barium titanate powder with different metal sources

  15. Human exonuclease 1 (EXO1) activity characterization and its function on FLAP structures

    DEFF Research Database (Denmark)

    Keijzers, Guido; Bohr, Vilhelm A; Juel Rasmussen, Lene

    2015-01-01

    Human exonuclease 1 (EXO1) is involved in multiple DNA metabolism processes, including DNA repair and replication. Most of the fundamental roles of EXO1 have been described in yeast. Here, we report a biochemical characterization of human full-length EXO1. Prior to assay EXO1 on different DNA flap...... structures, we determined factors essential for the thermodynamic stability of EXO1. We show that enzymatic activity and stability of EXO1 on DNA is modulated by temperature. By characterization of EXO1 flap activity using various DNA flap substrates, we show that EXO1 has a strong capacity for degrading...... double stranded DNA and has a modest endonuclease or 5' flap activity. Furthermore, we report novel mechanistic insights into the processing of flap structures, showing that EXO1 preferentially cleaves one nucleotide inwards in a double stranded region of a forked and nicked DNA flap substrates...

  16. Nondestructive techniques for characterizing mechanical properties of structural materials: An overview

    Science.gov (United States)

    Vary, A.; Klima, S. J.

    1985-01-01

    An overview of nondestructive evaluation (NDE) is presented to indicate the availability and application potentials of techniques for quantitative characterization of the mechanical properties of structural materials. The purpose is to review NDE techniques that go beyond the usual emphasis on flaw detection and characterization. Discussed are current and emerging NDE techniques that can verify and monitor entrinsic properties (e.g., tensile, shear, and yield strengths; fracture toughness, hardness, ductility; elastic moduli) and underlying microstructural and morphological factors. Most of the techniques described are, at present, neither widely applied nor widely accepted in commerce and industry because they are still emerging from the laboratory. The limitations of the techniques may be overcome by advances in applications research and instrumentation technology and perhaps by accommodations for their use in the design of structural parts.

  17. The N-terminal domain of apolipoprotein B-100: structural characterization by homology modeling

    Directory of Open Access Journals (Sweden)

    Khachfe Hassan M

    2007-07-01

    Full Text Available Abstract Background Apolipoprotein B-100 (apo B-100 stands as one of the largest proteins in humans. Its large size of 4536 amino acids hampers the production of X-ray diffraction quality crystals and hinders in-solution NMR analysis, and thus necessitates a domain-based approach for the structural characterization of the multi-domain full-length apo B. Results The structure of apo B-17 (the N-terminal 17% of apolipoprotein B-100 was predicted by homology modeling based on the structure of the N-terminal domain of lipovitellin (LV, a protein that shares not only sequence similarity with B17, but also a functional aspect of lipid binding and transport. The model structure was first induced to accommodate the six disulfide bonds found in that region, and then optimized using simulated annealing. Conclusion The content of secondary structural elements in this model structure correlates well with the reported data from other biophysical probes. The overall topology of the model conforms with the structural outline corresponding to the apo B-17 domain as seen in the EM representation of the complete LDL structure.

  18. Foam injection molding of thermoplastic elastomers: Blowing agents, foaming process and characterization of structural foams

    Science.gov (United States)

    Ries, S.; Spoerrer, A.; Altstaedt, V.

    2014-05-01

    Polymer foams play an important role caused by the steadily increasing demand to light weight design. In case of soft polymers, like thermoplastic elastomers (TPE), the haptic feeling of the surface is affected by the inner foam structure. Foam injection molding of TPEs leads to so called structural foam, consisting of two compact skin layers and a cellular core. The properties of soft structural foams like soft-touch, elastic and plastic behavior are affected by the resulting foam structure, e.g. thickness of the compact skins and the foam core or density. This inner structure can considerably be influenced by different processing parameters and the chosen blowing agent. This paper is focused on the selection and characterization of suitable blowing agents for foam injection molding of a TPE-blend. The aim was a high density reduction and a decent inner structure. Therefore DSC and TGA measurements were performed on different blowing agents to find out which one is appropriate for the used TPE. Moreover a new analyzing method for the description of processing characteristics by temperature dependent expansion measurements was developed. After choosing suitable blowing agents structural foams were molded with different types of blowing agents and combinations and with the breathing mold technology in order to get lower densities. The foam structure was analyzed to show the influence of the different blowing agents and combinations. Finally compression tests were performed to estimate the influence of the used blowing agent and the density reduction on the compression modulus.

  19. Quantitative Acoustic Emission Fatigue Crack Characterization in Structural Steel and Weld

    Directory of Open Access Journals (Sweden)

    Adutwum Marfo

    2013-01-01

    Full Text Available The fatigue crack growth characteristics of structural steel and weld connections are analyzed using quantitative acoustic emission (AE technique. This was experimentally investigated by three-point bending testing of specimens under low cycle constant amplitude loading using the wavelet packet analysis. The crack growth sequence, that is, initiation, crack propagation, and fracture, is extracted from their corresponding frequency feature bands, respectively. The results obtained proved to be superior to qualitative AE analysis and the traditional linear elastic fracture mechanics for fatigue crack characterization in structural steel and welds.

  20. Structural characterization of the nickel thin film deposited by glad technique

    Directory of Open Access Journals (Sweden)

    Potočnik J.

    2013-01-01

    Full Text Available In this work, a columnar structure of nickel thin film has been obtained using an advanced deposition technique known as Glancing Angle Deposition. Nickel thin film was deposited on glass sample at the constant emission current of 100 mA. Glass sample was positioned 15 degrees with respect to the nickel vapor flux. The obtained nickel thin film was characterized by Force Modulation Atomic Force Microscopy and by Scanning Electron Microscopy. Analysis indicated that the formation of the columnar structure occurred at the film thickness of 1 μm, which was achieved for the deposition time of 3 hours. [Projekat Ministarstva nauke Republike Srbije, br. III45005

  1. Computational Methods for Protein Structure Prediction and Modeling Volume 1: Basic Characterization

    CERN Document Server

    Xu, Ying; Liang, Jie

    2007-01-01

    Volume one of this two volume sequence focuses on the basic characterization of known protein structures as well as structure prediction from protein sequence information. The 11 chapters provide an overview of the field, covering key topics in modeling, force fields, classification, computational methods, and struture prediction. Each chapter is a self contained review designed to cover (1) definition of the problem and an historical perspective, (2) mathematical or computational formulation of the problem, (3) computational methods and algorithms, (4) performance results, (5) existing software packages, and (6) strengths, pitfalls, challenges, and future research directions.

  2. Study and structural and chemical characterization of human dental smalt by electron microscopy

    International Nuclear Information System (INIS)

    Belio R, I.A.; Reyes G, J.

    1998-01-01

    The study of human dental smalt has been subject to investigation for this methods with electron microscopy, electron diffraction, X-ray diffraction and image simulation programs have been used with the purpose to determine its chemical and structural characteristics of the organic and inorganic materials. This work has been held mainly for the characterization of hydroxyapatite (Ca) 10 (PO 4 ) 6 (OH 4 ) 2 , inorganic material which conforms the dental smalt in 97%, so observing its structural unity which is composed by the prisms and these by crystals and atoms. It was subsequently initiated the study of the organic material, with is precursor of itself. (Author)

  3. STRUCTURAL AND MECHANICAL CHARACTERIZATION OF DEFORMED POLYMER USING CONFOCAL RAMAN MICROSCOPY AND DSC

    Directory of Open Access Journals (Sweden)

    Birgit Neitzel

    2016-02-01

    Full Text Available Polymers have various interesting properties, which depend largely on their inner structure. One way to influence the macroscopic behaviour is the deformation of the polymer chains, which effects the change in microstructure. For analyzing the microstructure of non-deformed and deformed polymer materials, Raman spectroscopy as well as differential scanning calorimetry (DSC were used. In the present study we compare the results for crystallinity measurements of deformed polymers using both methods in order to characterize the differences in micro-structure due to deformation. The study is ongoing, and we present the results of the first tests.

  4. Characterization of nano structured metallic materials; Caracterizacion de materiales metalicos nanoestructurados

    Energy Technology Data Exchange (ETDEWEB)

    Marin A, M.; Gutierrez W, C.; Cruz C, R.; Angeles C, C. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    Nowadays the search of new materials with specific optical properties has carried out to realize a series of experiments through the polymer synthesis [(C{sub 3}N{sub 3}){sub 2} (NH){sub 3}]{sub n} doped with gold metallic nanoparticles. The thermal stability of a polymer is due to the presence of tyazine rings contained in the structure. The samples were characterized by High Resolution Transmission Electron Microscopy, X-ray diffraction by the Powder method, Ft-infrared and its thermal properties by Differential Scanning Calorimetry (DSC) and Thermogravimetry (TGA). One of the purposes of this work is to obtain nano structured materials over a polymeric matrix. (Author)

  5. Constitutional Isomers of Pentahydroxy-Functionalized Pillar[5]arenes: Synthesis, Characterization, and Crystal Structures.

    Science.gov (United States)

    Al-Azemi, Talal F; Vinodh, Mickey; Alipour, Fatemeh H; Mohamod, Abdirahman A

    2017-10-20

    We herein report the preparation of constitutional isomers of pentahydroxy-functionalized pillar[5]arenes via the deprotection of their benzylated derivatives by catalytic hydrogenation. The structures of the obtained isomers were then established using single crystal X-ray diffraction. We also found that the yield distribution of the different constitutional isomers was dependent on the nature of the substitution, as revealed by HPLC analysis of the crude mixture. Finally, further characterization of the separated constitutional isomers indicated that they possess different melting points, NMR spectra, crystal structures, and stacking patterns in the solid state.

  6. Unexpected structural complexity of supernumerary marker chromosomes characterized by microarray comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Hing Anne V

    2008-04-01

    Full Text Available Abstract Background Supernumerary marker chromosomes (SMCs are structurally abnormal extra chromosomes that cannot be unambiguously identified by conventional banding techniques. In the past, SMCs have been characterized using a variety of different molecular cytogenetic techniques. Although these techniques can sometimes identify the chromosome of origin of SMCs, they are cumbersome to perform and are not available in many clinical cytogenetic laboratories. Furthermore, they cannot precisely determine the region or breakpoints of the chromosome(s involved. In this study, we describe four patients who possess one or more SMCs (a total of eight SMCs in all four patients that were characterized by microarray comparative genomic hybridization (array CGH. Results In at least one SMC from all four patients, array CGH uncovered unexpected complexity, in the form of complex rearrangements, that could have gone undetected using other molecular cytogenetic techniques. Although array CGH accurately defined the chromosome content of all but two minute SMCs, fluorescence in situ hybridization was necessary to determine the structure of the markers. Conclusion The increasing use of array CGH in clinical cytogenetic laboratories will provide an efficient method for more comprehensive characterization of SMCs. Improved SMC characterization, facilitated by array CGH, will allow for more accurate SMC/phenotype correlation.

  7. Characterization and structural integrity tests of ex-service steam generator tubes at Ontario Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Pagan, Sandra [Ontario Power Generation, 889 Brock Road, Pickering, Ontario (Canada); Duan Xinjian [Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, Ontario (Canada)], E-mail: duanx@aecl.ca; Kozluk, Michael J. [Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, Ontario (Canada); Mills, Brian; Goszczynski, Guylaine [Kinectrics Inc., 800 Kipling Avenue, Toronto, Ontario (Canada)

    2009-03-15

    The Canadian Nuclear Standard CSA N285.4 requires the periodic metallurgical examination of removed ex-service steam generator tubes. This paper describes the practices used for the characterization and structural integrity tests of ex-service steam generator tubes at Ontario Power Generation (OPG). It shows that there is no degradation of mechanical properties of Monel 400 tubes after 7-18 effective full power years (EFPY) of operation and Incoloy 800 tubes after more than 10 EFPY of operation.

  8. Structural characterization and comparative analysis of human and piscine cartilage acidic protein (CRTAC1/CRTAC2)

    OpenAIRE

    Guerreiro, Marta Lúcia Amaro

    2014-01-01

    Dissertação de mestrado, Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014 CRTAC (Cartilage Acidic Protein) firstly identified as a chondrocyte marker in humans and implicated in a number of diseases. This ancient protein is present from prokaryotes to vertebrates and the teleost are the only group that contain duplicates (CRTAC1/CRTAC2). The structure of CRTACs is poorly characterized and was the starting point of the present study. To establi...

  9. Structure and Absolute Configuration of Ginkgolide B Characterized by IR- and VCD Spectroscopy

    DEFF Research Database (Denmark)

    Andersen, Niels Højmark; Christensen, N.J.; Lassen, Peter Rygaard

    2010-01-01

    Experimental and calculated (B3LYP/6-31G(d)) vibrational Circular dichroism (VCD) and IR spectra are compared, illustrating that the structure and absolute configuration of ginkgolide B (GB) may be characterized directly in solution. A conformational search for GB using MacroModel and subsequent ....... This is the first detailed investigation of the spectroscopic fingerprint region (850-1300 cm(-1)) of the natural product GB employing infrared absorption and VCD spectroscopy. Chirality 22:217-223, 2010....

  10. Structural Characterization of Silica Particles Extracted from Grass Stenotaphrum secundatum: Biotransformation via Annelids

    OpenAIRE

    Espíndola-Gonzalez, A.; Fuentes-Ramirez, R.; Martínez-Hernández, A. L.; Castaño, V. M.; Velasco-Santos, C.

    2014-01-01

    This study shows the structural characterization of silica particles extracted from Stenotaphrum secundatum (St. Augustine) grass using an annelid-based biotransformation process. This bioprocess starts when St. Augustine grass is turned into humus by vermicompost, and then goes through calcination and acid treatment to obtain silica particles. To determine the effect of the bioprocess, silica particles without biotransformation were extracted directly from the sample of grass. The characteri...

  11. Structural characterization of the lipid A component of pathogenic Neisseria meningitidis.

    OpenAIRE

    Kulshin, V A; Zähringer, U; Lindner, B; Frasch, C E; Tsai, C M; Dmitriev, B A; Rietschel, E T

    1992-01-01

    The lipid A component of meningococcal lipopolysaccharide was structurally characterized by using chemical modification methods, methylation analysis, 31P nuclear magnetic resonance, and laser desorption mass spectroscopy. It was shown that Neisseria meningitidis lipid A consists of a 1,4'-bisphosphorylated beta(1'----6)-linked D-glucosamine disaccharide (lipid A backbone), both phosphate groups being largely replaced by O-phosphorylethanolamine. This disaccharide harbors two nonsubstituted h...

  12. IR and UV Photodissociation as Analytical Tools for Characterizing Lipid A Structures

    OpenAIRE

    Madsen, James A.; Cullen, Thomas W.; Trent, M. Stephen; Brodbelt, Jennifer S.

    2011-01-01

    The utility of 193 nm ultraviolet photodissociation (UVPD) and 10.6 μm infrared multiphoton dissociation (IRMPD) for characterization of lipid A structures was assessed in an ion trap mass spectrometer. The fragmentation behavior of lipid A species was also evaluated by activated – electron photodetachment (a-EPD), which uses 193 nm photons to create charge reduced radicals that are subsequently dissociated by collisional activation. In contrast to collision induced dissociation (CID), IRMPD ...

  13. Structural characterization of genomes by large scale sequence-structure threading: application of reliability analysis in structural genomics

    Directory of Open Access Journals (Sweden)

    Brunham Robert C

    2004-07-01

    Full Text Available Abstract Background We establish that the occurrence of protein folds among genomes can be accurately described with a Weibull function. Systems which exhibit Weibull character can be interpreted with reliability theory commonly used in engineering analysis. For instance, Weibull distributions are widely used in reliability, maintainability and safety work to model time-to-failure of mechanical devices, mechanisms, building constructions and equipment. Results We have found that the Weibull function describes protein fold distribution within and among genomes more accurately than conventional power functions which have been used in a number of structural genomic studies reported to date. It has also been found that the Weibull reliability parameter β for protein fold distributions varies between genomes and may reflect differences in rates of gene duplication in evolutionary history of organisms. Conclusions The results of this work demonstrate that reliability analysis can provide useful insights and testable predictions in the fields of comparative and structural genomics.

  14. Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Ilke [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A. [Univ. of Alabama, Tuscaloosa, AL (United States); Gates, Bruce C. [Univ. of California, Davis, CA (United States); Katz, Alexander [Univ. of California, Berkeley, CA (United States)

    2015-09-30

    To understand the class of metal cluster catalysts better and to lay a foundation for the prediction of properties leading to improved catalysts, we have synthesized metal catalysts with well-defined structures and varied the cluster structures and compositions systematically—including the ligands bonded to the metals. These ligands include supports and bulky organics that are being tuned to control both the electron transfer to or from the metal and the accessibility of reactants to influence catalytic properties. We have developed novel syntheses to prepare these well-defined catalysts with atomic-scale control the environment by choice and placement of ligands and applied state-of-the art spectroscopic, microscopic, and computational methods to determine their structures, reactivities, and catalytic properties. The ligands range from nearly flat MgO surfaces to enveloping zeolites to bulky calixarenes to provide controlled coverages of the metal clusters, while also enforcing unprecedented degrees of coordinative unsaturation at the metal site—thereby facilitating bonding and catalysis events at exposed metal atoms. With this wide range of ligand properties and our arsenal of characterization tools, we worked to achieve a deep, fundamental understanding of how to synthesize robust supported and ligand-modified metal clusters with controlled catalytic properties, thereby bridging the gap between active site structure and function in unsupported and supported metal catalysts. We used methods of organometallic and inorganic chemistry combined with surface chemistry for the precise synthesis of metal clusters and nanoparticles, characterizing them at various stages of preparation and under various conditions (including catalytic reaction conditions) and determining their structures and reactivities and how their catalytic properties depend on their compositions and structures. Key characterization methods included IR, NMR, and EXAFS spectroscopies to identify

  15. Structure of dehaloperoxidase B at 1.58 Å resolution and structural characterization of the AB dimer from Amphitrite ornata

    International Nuclear Information System (INIS)

    Serrano, Vesna de; D’Antonio, Jennifer; Franzen, Stefan; Ghiladi, Reza A.

    2010-01-01

    The crystal structure of dehaloperoxidase (DHP) isoenzyme B from the terebellid polychaete A. ornata, which exhibits both hemoglobin and peroxidase functions, has been determined at 1.58 Å resolution. As members of the globin superfamily, dehaloperoxidase (DHP) isoenzymes A and B from the marine annelid Amphitrite ornata possess hemoglobin function, but they also exhibit a biologically relevant peroxidase activity that is capable of converting 2,4,6-trihalophenols to the corresponding 2,6-dihaloquinones in the presence of hydrogen peroxide. Here, a comprehensive structural study of recombinant DHP B, both by itself and cocrystallized with isoenzyme A, using X-ray diffraction is presented. The structure of DHP B refined to 1.58 Å resolution exhibits the same distal histidine (His55) conformational flexibility as that observed in isoenzyme A, as well as additional changes to the distal and proximal hydrogen-bonding networks. Furthermore, preliminary characterization of the DHP AB heterodimer is presented, which exhibits differences in the AB interface that are not observed in the A-only or B-only homodimers. These structural investigations of DHP B provide insights that may relate to the mechanistic details of the H 2 O 2 -dependent oxidative dehalogenation reaction catalyzed by dehaloperoxidase, present a clearer description of the function of specific residues in DHP at the molecular level and lead to a better understanding of the paradigms of globin structure–function relationships

  16. Characterization of a Novel Water Pocket Inside the Human Cx26 Hemichannel Structure

    Science.gov (United States)

    Araya-Secchi, Raul; Perez-Acle, Tomas; Kang, Seung-gu; Huynh, Tien; Bernardin, Alejandro; Escalona, Yerko; Garate, Jose-Antonio; Martínez, Agustin D.; García, Isaac E.; Sáez, Juan C.; Zhou, Ruhong

    2014-01-01

    Connexins (Cxs) are a family of vertebrate proteins constituents of gap junction channels (GJCs) that connect the cytoplasm of adjacent cells by the end-to-end docking of two Cx hemichannels. The intercellular transfer through GJCs occurs by passive diffusion allowing the exchange of water, ions, and small molecules. Despite the broad interest to understand, at the molecular level, the functional state of Cx-based channels, there are still many unanswered questions regarding structure-function relationships, perm-selectivity, and gating mechanisms. In particular, the ordering, structure, and dynamics of water inside Cx GJCs and hemichannels remains largely unexplored. In this work, we describe the identification and characterization of a believed novel water pocket—termed the IC pocket—located in-between the four transmembrane helices of each human Cx26 (hCx26) monomer at the intracellular (IC) side. Using molecular dynamics (MD) simulations to characterize hCx26 internal water structure and dynamics, six IC pockets were identified per hemichannel. A detailed characterization of the dynamics and ordering of water including conformational variability of residues forming the IC pockets, together with multiple sequence alignments, allowed us to propose a functional role for this cavity. An in vitro assessment of tracer uptake suggests that the IC pocket residue Arg-143 plays an essential role on the modulation of the hCx26 hemichannel permeability. PMID:25099799

  17. Structural characterization of pyoverdines produced by Pseudomonas putida KT2440 and Pseudomonas taiwanensis VLB120.

    Science.gov (United States)

    Baune, Matthias; Qi, Yulin; Scholz, Karen; Volmer, Dietrich A; Hayen, Heiko

    2017-08-01

    The previously unknown sequences of several pyoverdines (PVD) produced by a biotechnologically-relevant bacterium, namely, Pseudomonas taiwanensis VLB120, were characterized by high performance liquid chromatography (HPLC)-high resolution mass spectrometry (HRMS). The same structural characterization scheme was checked before by analysis of Pseudomonas sp. putida KT2440 samples with known PVDs. A new sample preparation strategy based on solid-phase extraction was developed, requiring significantly reduced sample material as compared to existing methods. Chromatographic separation was performed using hydrophilic interaction liquid chromatography with gradient elution. Interestingly, no signals for apoPVDs were detected in these analyses, only the corresponding aluminum(III) and iron(III) complexes were seen. The chromatographic separation readily enabled separation of PVD complexes according to their individual structures. HPLC-HRMS and complementary fragmentation data from collision-induced dissociation and electron capture dissociation enabled the structural characterization of the investigated pyoverdines. In Pseudomonas sp. putida KT2240 samples, the known pyoverdines G4R and G4R A were readily confirmed. No PVDs have been previously described for Pseudomonas sp. taiwanensis VLB120. In our study, we identified three new PVDs, which only differed in their acyl side chains (succinic acid, succinic amide and malic acid). Peptide sequencing by MS/MS provided the sequence Orn-Asp-OHAsn-Thr-AcOHOrn-Ser-cOHOrn. Of particular interest is the presence of OHAsn, which has not been reported as PVD constituent before.

  18. A model based bayesian solution for characterization of complex damage scenarios in aerospace composite structures.

    Science.gov (United States)

    Reed, H; Leckey, Cara A C; Dick, A; Harvey, G; Dobson, J

    2018-01-01

    Ultrasonic damage detection and characterization is commonly used in nondestructive evaluation (NDE) of aerospace composite components. In recent years there has been an increased development of guided wave based methods. In real materials and structures, these dispersive waves result in complicated behavior in the presence of complex damage scenarios. Model-based characterization methods utilize accurate three dimensional finite element models (FEMs) of guided wave interaction with realistic damage scenarios to aid in defect identification and classification. This work describes an inverse solution for realistic composite damage characterization by comparing the wavenumber-frequency spectra of experimental and simulated ultrasonic inspections. The composite laminate material properties are first verified through a Bayesian solution (Markov chain Monte Carlo), enabling uncertainty quantification surrounding the characterization. A study is undertaken to assess the efficacy of the proposed damage model and comparative metrics between the experimental and simulated output. The FEM is then parameterized with a damage model capable of describing the typical complex damage created by impact events in composites. The damage is characterized through a transdimensional Markov chain Monte Carlo solution, enabling a flexible damage model capable of adapting to the complex damage geometry investigated here. The posterior probability distributions of the individual delamination petals as well as the overall envelope of the damage site are determined. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Structural characterization of wind-sheared turbulent flow using self-organized mapping

    Science.gov (United States)

    Scott, Nicholas V.; Handler, Robert A.

    2016-05-01

    A nonlinear cluster analysis algorithm is used to characterize the spatial structure of a wind-sheared turbulent flow obtained from the direct numerical simulation (DNS) of the three-dimensional temperature and momentum fields. The application of self-organizing mapping to DNS data for data reduction is utilized because of the dimensional similitude in structure between DNS data and remotely sensed hyperspectral and multispectral data where the technique has been used extensively. For the three Reynolds numbers of 150, 180, and 220 used in the DNS, self-organized mapping is successful in the extraction of boundary layer streaky structures from the turbulent temperature and momentum fields. In addition, it preserves the cross-wind scale structure of the streaks exhibited in both fields which loosely scale with the inverse of the Reynolds number. Self-organizing mapping of the along wind component of the helicity density shows a layer of the turbulence field which is spotty suggesting significant direct coupling between the large and small-scale turbulent structures. The spatial correlation of the temperature and momentum fields allows for the possibility of the remote extrapolation of the momentum structure from thermal structure.

  20. Quantitative characterization of the atomic-scale structure of oxyhydroxides in rusts formed on steel surfaces

    International Nuclear Information System (INIS)

    Saito, M.; Suzuki, S.; Kimura, M.; Suzuki, T.; Kihira, H.; Waseda, Y.

    2005-01-01

    Quantitative X-ray structural analysis coupled with anomalous X-ray scattering has been used for characterizing the atomic-scale structure of rust formed on steel surfaces. Samples were prepared from rust layers formed on the surfaces of two commercial steels. X-ray scattered intensity profiles of the two samples showed that the rusts consisted mainly of two types of ferric oxyhydroxide, α-FeOOH and γ-FeOOH. The amounts of these rust components and the realistic atomic arrangements in the components were estimated by fitting both the ordinary and the environmental interference functions with a model structure calculated using the reverse Monte Carlo simulation technique. The two rust components were found to be the network structure formed by FeO 6 octahedral units, the network structure itself deviating from the ideal case. The present results also suggest that the structural analysis method using anomalous X-ray scattering and the reverse Monte Carlo technique is very successful in determining the atomic-scale structure of rusts formed on the steel surfaces

  1. Engineering characterization of ground motion. Task II. Effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects. Volume 2

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Kincaid, R.H.; Short, S.A.

    1985-03-01

    This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. Task I of the study, which is presented in NUREG/CR-3805, Vol. 1, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in four parts: (1) effects of ground motion characteristics on structural response of a typical PWR reactor building with localized nonlinearities and soil-structure interaction effects; (2) empirical data on spatial variations of earthquake ground motion; (3) soil-structure interaction effects on structural response; and (4) summary of conclusions and recommendations based on Tasks I and II studies. This report presents the results of the first part of Task II. The results of the other parts will be presented in NUREG/CR-3805, Vols. 3 to 5

  2. Structural and enzymatic characterization of the phosphotriesterase OPHC2 from Pseudomonas pseudoalcaligenes.

    Directory of Open Access Journals (Sweden)

    Guillaume Gotthard

    Full Text Available BACKGROUND: Organophosphates (OPs are neurotoxic compounds for which current methods of elimination are unsatisfactory; thus bio-remediation is considered as a promising alternative. Here we provide the structural and enzymatic characterization of the recently identified enzyme isolated from Pseudomonas pseudoalcaligenes dubbed OPHC2. OPHC2 belongs to the metallo-β-lactamase superfamily and exhibits an unusual thermal resistance and some OP degrading abilities. PRINCIPAL FINDINGS: The X-ray structure of OPHC2 has been solved at 2.1 Å resolution. The enzyme is roughly globular exhibiting a αβ/βα topology typical of the metallo-β-lactamase superfamily. Several structural determinants, such as an extended dimerization surface and an intramolecular disulfide bridge, common features in thermostable enzymes, are consistent with its high Tm (97.8°C. Additionally, we provide the enzymatic characterization of OPHC2 against a wide range of OPs, esters and lactones. SIGNIFICANCE: OPHC2 possesses a broad substrate activity spectrum, since it hydrolyzes various phosphotriesters, esters, and a lactone. Because of its organophosphorus hydrolase activity, and given its intrinsic thermostability, OPHC2 is an interesting candidate for the development of an OPs bio-decontaminant. Its X-ray structure shed light on its active site, and provides key information for the understanding of the substrate binding mode and catalysis.

  3. Tree Root System Characterization and Volume Estimation by Terrestrial Laser Scanning and Quantitative Structure Modeling

    Directory of Open Access Journals (Sweden)

    Aaron Smith

    2014-12-01

    Full Text Available The accurate characterization of three-dimensional (3D root architecture, volume, and biomass is important for a wide variety of applications in forest ecology and to better understand tree and soil stability. Technological advancements have led to increasingly more digitized and automated procedures, which have been used to more accurately and quickly describe the 3D structure of root systems. Terrestrial laser scanners (TLS have successfully been used to describe aboveground structures of individual trees and stand structure, but have only recently been applied to the 3D characterization of whole root systems. In this study, 13 recently harvested Norway spruce root systems were mechanically pulled from the soil, cleaned, and their volumes were measured by displacement. The root systems were suspended, scanned with TLS from three different angles, and the root surfaces from the co-registered point clouds were modeled with the 3D Quantitative Structure Model to determine root architecture and volume. The modeling procedure facilitated the rapid derivation of root volume, diameters, break point diameters, linear root length, cumulative percentages, and root fraction counts. The modeled root systems underestimated root system volume by 4.4%. The modeling procedure is widely applicable and easily adapted to derive other important topological and volumetric root variables.

  4. Molecular characterization of myoglobin from Sciurus vulgaris meridionalis: Primary structure, kinetics and spectroscopic studies.

    Science.gov (United States)

    Di Giuseppe, Antonella M A; Russo, Luigi; Russo, Rosita; Ragucci, Sara; Caso, J Valentina; Isernia, Carla; Chambery, Angela; Di Maro, Antimo

    2017-05-01

    Myoglobins (Mbs) are heme-proteins involved in dioxygen storage necessary for metabolic respiration. Mbs are intensely investigated as archetype to investigate structure/function relationship in globular proteins. In this work, the myoglobin from Sciurus vulgaris meridionalis has been for the first time isolated and purified with a high yield and homogeneity. The primary structure characterization has been performed by applying a strategy based on high resolution tandem mass spectrometry. Proximal (position 93, α-helix F8) and distal (position 64, α-helix E7) histidinyl residues as well as most of the amino acid residues (i.e., Leu29, Lys45, Thr67, Val68) involved in the autoxidation mechanism are conserved in the squirrel Mb. The structural and dynamical properties of the squirrel Mb have been also deeply investigated by CD, NMR. Furthermore, molecular dynamics studies of Mbs from different species have been performed. In addition, the functional properties of squirrel Mb have been characterized by determining its autoxidation kinetic and thermal stability in comparison with crested porcupine and reindeer Mbs. Interestingly, a higher autoxidation rate was revealed for squirrel Mb with respect to reindeer and crested porcupine Mbs. Even considering the very similar structural fold, molecular dynamics data show a higher conformational mobility of squirrel Mb with respect to reindeer and crested porcupine. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Biophysical characterization of recombinant proteins: A key to higher structural genomics success

    Science.gov (United States)

    Vedadi, Masoud; Arrowsmith, Cheryl H.; Allali-Hassani, Abdellah; Senisterra, Guillermo; Wasney, Gregory A.

    2010-01-01

    Hundreds of genomes have been successfully sequenced to date, and the data are publicly available. At the same time, the advances in large-scale expression and purification of recombinant proteins have paved the way for structural genomics efforts. Frequently, however, little is known about newly expressed proteins calling for large-scale protein characterization to better understand their biochemical roles and to enable structure–function relationship studies. In the Structural Genomics Consortium (SGC), we have established a platform to characterize large numbers of purified proteins. This includes screening for ligands, enzyme assays, peptide arrays and peptide displacement in a 384-well format. In this review, we describe this platform in more detail and report on how our approach significantly increases the success rate for structure determination. Coupled with high-resolution X-ray crystallography and structure-guided methods, this platform can also be used toward the development of chemical probes through screening families of proteins against a variety of chemical series and focused chemical libraries. PMID:20466062

  6. Structural characterization, electrochemical, photoluminescence and thermal properties of potassium ion-mediated coordination polymer.

    Science.gov (United States)

    Ceyhan, Gökhan; Köse, Muhammet; Tümer, Mehmet; Dal, Hakan

    2015-05-05

    A polymeric potassium complex of p-nitrophenol was synthesized and characterized by analytical and spectroscopic techniques. Molecular structure of the complex was determined by single crystal X-ray diffraction study. X-ray structural data show that crystals contain polymeric K(+) complex of p-nitrophenol. Asymmetric unit consists of one p-nitrophenolate, one K(+) ion and one water molecule. All bond lengths and angles in the phenyl rings have normal Csp2-Csp2 values and are in the expected ranges. The p-nitrophenolate is close to planar with small distortions by some atoms. Each potassium ion in the polymeric structure is identical and eight-coordinate, bonded to four nitro, two phenolate oxygen atoms from five p-nitrophenolate ligands and two oxygen atoms from two water molecules. Electronic, electrochemical, photoluminescence and thermal properties of the complex were also investigated. Copyright © 2015. Published by Elsevier B.V.

  7. Nanostructured PLD-grown gadolinia doped ceria: Chemical and structural characterization by transmission electron microscopy techniques

    International Nuclear Information System (INIS)

    Rodrigo, K.; Wang, H.J.; Heiroth, S.; Pryds, N.; Kuhn, L. Theil; Esposito, V.; Linderoth, S.; Schou, J.; Lippert, T.

    2011-01-01

    The morphology as well as the spatially resolved elemental and chemical characterization of 10 mol% gadolinia doped ceria (CGO10) structures prepared by pulsed laser deposition (PLD) technique are investigated by scanning transmission electron microscopy accompanied with electron energy loss spectroscopy and energy dispersive X-ray spectroscopy. A dense, columnar and structurally inhomogeneous CGO10 film, i.e. exhibiting grain size refinement across the film thickness, is obtained in the deposition process. The cerium M 4,5 edges, used to monitor the local electronic structure of the grains, indicate apparent variation of the ceria valence state across and along the film. No element segregation to the grain boundaries is detected. These results are discussed in the context of solid oxide fuel cell applications.

  8. Znx-1CuxMn2O4 spinels; synthesis, structural characterization and electrical evaluation

    International Nuclear Information System (INIS)

    Mendez M, F.; Lima, E.; Bosch, P.; Pfeiffer, H.; Gonzalez, F.

    2010-01-01

    This work presents the structural characterization and electrical evaluation of Zn x-1 Cu x Mn 2 O 4 spinels, which are materials presented as secondary phases into the vari stor ceramic systems. Samples were analyzed by X-ray diffraction, solid-state nuclear magnetic resonance, infrared spectroscopy, scanning electron microscopy and impedance spectroscopy. Although, the addition of copper to the ZnMn 2 O 4 spinel did not produce morphological changes, the structure and electrical behaviors changed considerably. Structurally, copper addition induced the formation of partial inverse spinels, and its addition increases significantly the electrical conductivity. Therefore, the formation of Zn x-1 Cu x Mn 2 O 4 spinels, as secondary phases into the vari stor materials, may compromise significantly the vari stor efficiency. (Author)

  9. Synthesis, structural characterization and myorelaxant activity of 4-naphthylhexahydroquinoline derivatives containing different ester groups

    Directory of Open Access Journals (Sweden)

    Gündüz Miyase Gözde

    2016-01-01

    Full Text Available The present study reports the synthesis, structural characterization and myorelaxant activity evaluation of a series of 16 novel 4-naphthyl-hexahydroquinoline derivatives. The compounds were achieved by one-pot microwave-assisted method via a modified Hantzsch reaction. The structures of the compounds were confirmed by various spectral methods like IR, 1D-2D NMR techniques and mass analysis. X-ray studies of compound 10 provided further evidence for the proposed structure. To evaluate their myorelaxant activities, the Emax and pD2 values of the compounds and nifedipine were determined on isolated rabbit gastric fundus smooth muscle strips. The obtained results indicated that introduction of long chain alkyl groups such as 2-methoxyethyl or 2-(methacryloyloxyethyl moiety to the ester group led to the most active compounds.

  10. Stand structure and dead wood characterization in cork forest of Calabria region (southern Italy

    Directory of Open Access Journals (Sweden)

    Barreca L

    2010-07-01

    Full Text Available The cork forests are one the most interesting forest ecosystems in the Mediterranean area. Their distribution and ecological characteristics have undergone a significant transformation after the significant changes following the development and establishment of agricultural crops. Currently, only a few stands, which survive in hard to reach places, prove the wide spread distribution of this species was also in the recent past. This study describes the stand structure of some cork forests in Calabria region (southern Italy. In order, to characterize the vertical structure Latham index has been applied, while for the description of the horizontal distribution NBSI group indices has been used. Detailed surveys on dead wood were also conducted determining the occurring volume and its decay stage according to the decay classes system proposed by Hunter. The aim of this study is to provide guidelines for sustainable management of cork forests, improving and promoting the structural complexity and functional efficiency of these forest stands.

  11. Metal-organic frameworks: structure, properties, methods of synthesis and characterization

    International Nuclear Information System (INIS)

    Butova, V V; Soldatov, M A; Guda, A A; Lomachenko, K A; Lamberti, C

    2016-01-01

    This review deals with key methods of synthesis and characterization of metal-organic frameworks (MOFs). The modular structure affords a wide variety of MOFs with different active metal sites and organic linkers. These compounds represent a new stage of development of porous materials in which the pore size and the active site structure can be modified within wide limits. The set of experimental methods considered in this review is sufficient for studying the short-range and long-range order of the MOF crystal structure, determining the morphology of samples and elucidating the processes that occur at the active metal site in the course of chemical reactions. The interest in metal-organic frameworks results, first of all, from their numerous possible applications, ranging from gas separation and storage to chemical reactions within the pores. The bibliography includes 362 references

  12. Synthesis, structural characterization and biological properties of phosphorescent iridium(III) complexes.

    Science.gov (United States)

    Bhat, Satish S; Shivalingegowda, Naveen; Revankar, Vidyanand K; Lokanath, N K; Kugaji, Manohar S; Kumbar, Vijay; Bhat, Kishore

    2017-12-01

    Two phosphorescent cyclometalated iridium(III)-triptycenyl-1,10-phenanthroline complexes [Ir(ppy) 2 (tpt-phen)] + (1) and [Ir(bhq) 2 (tpt-phen)] + (2) {ppy=2-phenylpyridine, bhq=Benzo[h]quinoline, tpt-phen=triptycenyl-1,10-phenanthroline} have been synthesized and structurally characterized. The structure of complex 2 has been studied by single crystal X-ray crystallography. The photophysical properties of complexes in a different solvent have also been investigated. The binding of complexes to the double stranded calf thymus (CT-DNA) has been investigated by spectroscopic techniques. These complexes condense originally circular plasmid DNA into particulate structures. The DNA-condensation induced by these complexes have been investigated by electrophoretic mobilty shift assay, dynamic light scattering, and fluorescence microscopy. Furthermore, the cytotoxicity of these complexes towards HeLa cells have been studied and their cellular localisation properties have been investigated by fluorescence microscopy. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Preparation and structural characterization of the thermoluminescent material CaSO4: Dy

    International Nuclear Information System (INIS)

    Sanchez R, A.; Azorin, J.; Gonzalez M, P.R.; Rivera, T.

    2005-01-01

    The grade of crystallinity of a material is important so that the one is presented the thermoluminescence phenomenon; for what is necessary to study those structural characteristic of a TL material and to correlate them with its TL response when being irradiated with ionizing radiation. The calcium sulfate activated with Dysprosium (CaSO 4 : Dy) it is a material that has demonstrated its efficiency in the dosimetry of the ionizing radiation for the thermoluminescence method. In this work the structural characterization of this prepared material for the recrystallization method by means of the evaporation of the solvent and their relationship with their TL response is presented. The results showed that the best material to be used in thermoluminescent dosimetry presents a crystalline structure in orthorhombic phase and a particle size in the interval of 80 μm to 200 μm. (Author)

  14. A Comparative Study of Theoretical Graph Models for Characterizing Structural Networks of Human Brain

    Directory of Open Access Journals (Sweden)

    Xiaojin Li

    2013-01-01

    Full Text Available Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY and scale-free gene duplication model (SF-GD, that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.

  15. Nuclear Magnetic Resonance-Based Structural Characterization and Backbone Dynamics of Recombinant Bee Venom Melittin.

    Science.gov (United States)

    Ramirez, Lisa; Shekhtman, Alexander; Pande, Jayanti

    2018-04-30

    In recent years, there has been a resurgence of interest in melittin and its variants as their therapeutic potential has become increasingly evident. Melittin is a 26-residue peptide and a toxic component of honey bee venom. The versatility of melittin in interacting with various biological substrates, such as membranes, glycosaminoglycans, and a variety of proteins, has inspired a slew of studies that aim to improve our understanding of the structural basis of such interactions. However, these studies have largely focused on melittin solutions at high concentrations (>1 mM), even though melittin is generally effective at lower (micromolar) concentrations. Here we present high-resolution nuclear magnetic resonance studies in the lower-concentration regime using a novel method to produce isotope-labeled ( 15 N and 13 C) recombinant melittin. We provide residue-specific structural characterization of melittin in dilute aqueous solution and in 2,2,2-trifluoroethanol/water mixtures, which mimic melittin structure-function and interactions in aqueous and membrane-like environments, respectively. We find that the cis-trans isomerization of Pro14 is key to changes in the secondary structure of melittin. Thus, this study provides residue-specific structural information about melittin in the free state and in a model of the substrate-bound state. These results, taken together with published work from other laboratories, reveal the peptide's structural versatility that resembles that of intrinsically disordered proteins and peptides.

  16. Structural characterization of the gallery forest of the Guisa Agroforestry Experimental Station

    Directory of Open Access Journals (Sweden)

    José Luis Rodríguez Sosa

    2018-01-01

    Full Text Available The work was carried out in the gallery forest of the Cupaynicú stream, belonging to the Guisa Agroforestry Experimental Station, with the objective of characterizing its structure. Eight parcels of 500 m2 were randomly raised, in them the species were identified, their height and diameter were measured. The flora was analyzed through the origin of the species and the frequency histogram. The structure of the forest was analyzed through the diametric structure and the Value Index of Ecological Importance, the vertical structure was described taking into consideration the forest strata as well as the preparation of the canopy diagram. A descriptive analysis of the parameters diameter, height and basal area was made to study the parametric structure. The richness of the riparian forest was evidenced by the registry of 25 families, 40 genera and 43 species, as well as the predominance of the Meliaceae family followed by Lauraceae, Mimosaceae and Sapindaceae, which reflects the high timber value, melliferous and ecological of the same. The species Roystonea regia, Sterculiaapetala, Dendropanaxarboreus, Andirainermis and Mangifera indica, determine the physiognomy of the gallery Forest. The trees reach 33 cm in diameter and 18.27 m in height on average, although the presence of trees with 30 m is the most frequent, which denotes the irregular structure of the forest.

  17. Materials-by-design: computation, synthesis, and characterization from atoms to structures

    Science.gov (United States)

    Yeo, Jingjie; Jung, Gang Seob; Martín-Martínez, Francisco J.; Ling, Shengjie; Gu, Grace X.; Qin, Zhao; Buehler, Markus J.

    2018-05-01

    In the 50 years that succeeded Richard Feynman’s exposition of the idea that there is ‘plenty of room at the bottom’ for manipulating individual atoms for the synthesis and manufacturing processing of materials, the materials-by-design paradigm is being developed gradually through synergistic integration of experimental material synthesis and characterization with predictive computational modeling and optimization. This paper reviews how this paradigm creates the possibility to develop materials according to specific, rational designs from the molecular to the macroscopic scale. We discuss promising techniques in experimental small-scale material synthesis and large-scale fabrication methods to manipulate atomistic or macroscale structures, which can be designed by computational modeling. These include recombinant protein technology to produce peptides and proteins with tailored sequences encoded by recombinant DNA, self-assembly processes induced by conformational transition of proteins, additive manufacturing for designing complex structures, and qualitative and quantitative characterization of materials at different length scales. We describe important material characterization techniques using numerous methods of spectroscopy and microscopy. We detail numerous multi-scale computational modeling techniques that complements these experimental techniques: DFT at the atomistic scale; fully atomistic and coarse-grain molecular dynamics at the molecular to mesoscale; continuum modeling at the macroscale. Additionally, we present case studies that utilize experimental and computational approaches in an integrated manner to broaden our understanding of the properties of two-dimensional materials and materials based on silk and silk-elastin-like proteins.

  18. Non-destructive testing for the structures and civil infrastructures characterization

    Science.gov (United States)

    Capozzoli, L.; Rizzo, E.

    2012-04-01

    This work evaluates the ability of non-conventional NDT techniques such as GPR, geoelectrical method and conventional ones such as infrared thermography (IRT) and sonic test for the characterization of building structures in laboratory and in-situ. Moreover, the integration of the different techniques were evaluated in order to reduce the degree of uncertainties associated. The presence of electromagnetic, resistivity or thermal anomalies in the behavior may be related to the presence of defects, crack, decay or moisture. The research was conducted in two phases: the first phase was performed in laboratory and the second one mainly in the field work. The laboratory experiments proceeded to calibrate the geophysical techniques GPR and geoelectrical method on building structures. A multi-layer structure was reconstructed in laboratory, in order to simulate a back-bridge: asphalt, reinforced concrete, sand and gravel layers. In the deep sandy layer, PVC, aluminum and steel pipes were introduced. This structure has also been brought to crack in a predetermined area and hidden internal fractures were investigated. GPR has allowed to characterize the panel in a non-invasive mode; radar maps were developed using various algorithms during post-process about 2D maps and 3D models with aerial acquisition of 400 MHz, 900MHz, 1500MHz, 2000MHz. Geoelectrical testing was performed with a network of 25 electrodes spaced at mutual distance of 5 cm. Two different configurations were used dipole-dipole and pole-dipole approaches. In the second phase, we proceeded to the analysis of pre-tensioned concrete in order to detect the possible presence of criticality in the structure. For this purpose by GPR 2GHz antenna, a '70 years precast bridge characterized by a high state of decay was studied; then were also analyzed a pillar and a beam of recent production directly into the processing plant. Moreover, results obtained using GPR were compared with those obtained through the use of

  19. Optical Fourier transform based in-plane vibration characterization for MEMS comb structure.

    Science.gov (United States)

    Gao, Yongfeng; Cao, Liangcai; You, Zheng; Zhao, Jiahao; Zhang, Zichen; Yang, Jianzhong

    2013-02-25

    On-line and on-wafer characterizations of mechanical properties of Micro-Electro-Mechanical-System (MEMS) with efficiency are very important to the mass production of MEMS foundry in the near future. However, challenges still remain. In this paper, we present an in-plane vibration characterizing method for MEMS comb using optical Fourier transform (OFT). In the experiment, the intensity distribution at the focal plane was captured to characterize the displacement of the vibrator in the MEMS comb structure. A typical MEMS comb was tested to verify the principle. The shape and the movement of MEMS comb was imitated and tested to calibrate the measurement by using a spatial light modulator (SLM). The relative standard deviations (RSD) of the measured displacements were better than 5%, where the RSD is defined as the ratio of the standard deviation to the mean. It is convinced that the presented method is feasible for on-line and on-wafer characterizations for MEMS with great convenience, high efficiency and low cost.

  20. Joint application of non-invasive techniques to characterize the dynamic behaviuor of engineering structures

    Science.gov (United States)

    Gallipoli, M. R.; Perrone, A.; Stabile, T. A.; Ponzo, F. C.; Ditommaso, R.

    2012-04-01

    The systematic monitoring of strategic civil infrastructures such as bridges, large dams or high-rise buildings in order to ensure their structural stability is a strategic issue particularly in earthquake-prone regions. Nevertheless, in areas less exposed to seismic hazard, the monitoring is also an important tool for civil engineers, for instance if they have to deal with structures exposed to heavy operational demands for extended periods of time and whose structural integrity might be in question or at risk. A continuous monitoring of such structures allows the identification of their fundamental response characteristics and the changes of these over time, the latter representing indicators for potential structural degradation. The aim of this paper is the estimation of fundamental dynamic parameters of some civil infrastructures by the joint application of fast executable, non-invasive techniques such as the Ambient Noise Standard Spectral Ratio, and Ground-Based microwave Radar Interferometer techniques. The joint approach combine conventional, non-conventional and innovative techniques in order to set up a non destructive evaluation procedure allowing for a multi-sensing monitoring at a multi-scale and multi-depth levels (i.e. with different degrees of spatial resolution and different subsurface depths). In particular, techniques based on ambient vibration recordings have become a popular tool for characterizing the seismic response and state-of-health of strategic civil infrastructure. The primary advantage of these approaches lies in the fact that no transient earthquake signals or even active excitation of the structure under investigation are required. The microwave interferometry radar technology, it has proven to be a powerful remote sensing tool for vibration measurement of structures, such as bridge, heritage architectural structures, vibrating stay cables, and engineering structures. The main advantage of this radar technique is the possibility to

  1. An FFT-accelerated fdtd scheme with exact absorbing conditions for characterizing axially symmetric resonant structures

    KAUST Repository

    Sirenko, Kostyantyn

    2011-01-01

    An accurate and efficient finite-difference time-domain (FDTD) method for characterizing transient waves interactions on axially symmetric structures is presented. The method achieves its accuracy and efficiency by employing localized and/or fast Fourier transform (FFT) accelerated exact absorbing conditions (EACs). The paper details the derivation of the EACs, discusses their implementation and discretization in an FDTD method, and proposes utilization of a blocked-FFT based algorithm for accelerating the computation of temporal convolutions present in nonlocal EACs. The proposed method allows transient analyses to be carried for long time intervals without any loss of accuracy and provides reliable numerical data pertinent to physical processes under resonant conditions. This renders the method highly useful in characterization of high-Q microwave radiators and energy compressors. Numerical results that demonstrate the accuracy and efficiency of the method are presented.

  2. Characterization of Giant Modular PKSs Provides Insight into Genetic Mechanism for Structural Diversification of Aminopolyol Polyketides.

    Science.gov (United States)

    Zhang, Lihan; Hashimoto, Takuya; Qin, Bin; Hashimoto, Junko; Kozone, Ikuko; Kawahara, Teppei; Okada, Masahiro; Awakawa, Takayoshi; Ito, Takuya; Asakawa, Yoshinori; Ueki, Masashi; Takahashi, Shunji; Osada, Hiroyuki; Wakimoto, Toshiyuki; Ikeda, Haruo; Shin-Ya, Kazuo; Abe, Ikuro

    2017-02-06

    Polyketides form many clinically valuable compounds. However, manipulation of their biosynthesis remains highly challenging. An understanding of gene cluster evolution provides a rationale for reprogramming of the biosynthetic machinery. Herein, we report characterization of giant modular polyketide synthases (PKSs) responsible for the production of aminopolyol polyketides. Heterologous expression of over 150 kbp polyketide gene clusters successfully afforded their products, whose stereochemistry was established by taking advantage of bioinformatic analysis. Furthermore, phylogenetic analysis of highly homologous but functionally diverse domains from the giant PKSs demonstrated the evolutionary mechanism for structural diversification of polyketides. The gene clusters characterized herein, together with their evolutionary insights, are promising genetic building blocks for de novo production of unnatural polyketides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Micro structural and magnetic characterization of Gd doped SnO2 nanoparticles

    International Nuclear Information System (INIS)

    Adhikari, R.; Das, A.K.; Karmakar, D.; Chandrasekhar Rao, T.V.; Ghatak, J.

    2008-01-01

    Gd doped SnO 2 nanoparticles were prepared by a chemical co-precipitation method. The prepared samples were calcined at 600 deg C. The annealed samples were characterized using XRD, TEM and SQUID magnetometry. The structural characterizations showed formation of particles in the nanometer regime. The M(T) and M(H) studies indicated an antiferromagnetic (AFM) interaction in 3 and 6% (at. wt.) Gd doped SnO 2 nanoparticles. The M(H) plot of both samples indicate a super paramagnetic (SPM) behavior at 7K as against the perfect AFM nature at 300K. The samples exhibit an insulating DMS nature, but we do not observe any ferromagnetism as was observed for other Gd doped systems like GaN and ZnO. (author)

  4. Benzocyclobutene as Substrate Material for Planar Millimeter-Wave Structures: Dielectric Characterization and Application

    Science.gov (United States)

    Costanzo, Sandra; Venneri, Ignazio; di Massa, Giuseppe; Borgia, Antonio

    2010-01-01

    The application of benzocyclobutene (BCB) polymer as dielectric substrate material for millimeter-wave microstrip structures is investigated in this paper to face the problem of large losses due to standard dielectrics in the high microwave range. Dielectric properties of BCB are characterized from S-parameter measurements on a conductor-backed coplanar waveguide (CBCPW) using the polymer as substrate material. Excellent features, with a low loss tangent and a stable dielectric constant, are demonstrated within the measurement range from 11 GHz to 65 GHz. As a validation of BCB high frequency performances, the design and experimental characterization of a V-band array on BCB substrate is presented. Measurement results on both matching and radiation characteristics of the millimeter-wave array are discussed.

  5. Novel polymeric potassium complex: Its synthesis, structural characterization, photoluminescence and electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ceyhan, Goekhan [Chemistry Department, K.Maras Suetcue Imam University, 46100 K.Maras (Turkey); Tuemer, Mehmet, E-mail: mtumer@ksu.edu.tr [Chemistry Department, K.Maras Suetcue Imam University, 46100 K.Maras (Turkey); Koese, Muhammet; McKee, Vickie [Chemistry Department, Loughborough University, LE11 3TU Leicestershire (United Kingdom)

    2012-03-15

    In this paper, we obtained a novel poly(vanillinato potassium) complex (PVP) as a single crystal and characterized by analytical and spectroscopic methods. A single crystal of the PVP was obtained from the acetone solution. X-ray structural data show that crystals contain polymeric K{sup +} complex of vanillin. Each potassium ion in the polymeric structure is identical and seven-coordinate, bonded to two methoxy, two phenoxy and three aldehyde oxygen atoms from four vaniline molecules. Two aldehyde oxygen atoms are bridging between potassium ions. It crystallizes in the monoclinic system, space group P2{sub 1}/c, with lattice parameters a=9.6215(10) A, b=17.4139(19) A, c=9.6119(10) A, {beta}=100.457(2) Degree-Sign and Z=4. Thermal properties of the PVP were investigated by TGA, DTA and DSC methods. The electrochemical properties of the complex were studied in different solvents and at various scan rates. The luminescence properties of the complex in different solvents and at different pH values have been investigated. The results show that the complex exhibits more efficient luminescence property in CH{sub 3}CN and n-butanol. - Highlights: Black-Right-Pointing-Pointer Novel polymeric potassium complex was prepared and fully characterized. Black-Right-Pointing-Pointer X-ray crystal structure of complex was reported. Black-Right-Pointing-Pointer Electrochemical properties of compound were investigated. Black-Right-Pointing-Pointer Thermal and DSC measurements of complex were examined.

  6. Synthesis by irradiation and mechanism and structural characterization study of high melt strength polypropylene

    International Nuclear Information System (INIS)

    Lugao, Ademar Benevolo

    2004-01-01

    Polypropylene molecular structure is made only by linear molecules interacting by weak forces. The resulting PP has very low melt strength (MS). MS is important to make feasible to process PP by all the transformation technologies based on the free expansion of the melt. The aim of this work was to develop a new process to synthesize PP with crosslinks and/or long chain branches, known as High Melt Strength Polypropylene (HMSPP) and to characterize its structure and synthesis mechanism. HMSPP was obtained by the irradiation of PP under a crosslinking (acetylene) atmosphere or inert or oxidative one, followed by thermal treatment for radical recombination and thermal treatment for annihilation of the remaining radicals under reactive or inert atmosphere. The results from rheological characterization showed that the highest levels of MS were obtained by conducting irradiation and thermal treatments under crosslinking atmospheres. The results for the elucidation of reaction mechanism by electron spin resonance (ESR) showed that acetylene irradiation is effective in promoting the creation of double bonds, based on the formation of polyenil radicals. The results of structural unraveling showed that radiation promotes predominantly the degradation of atactic molecules or molecules with atactic defects. These results support the hypothesis of formation of branched PP molecules based on the reaction of those fragments with the double bonds created in the PP molecules. (author)

  7. Structural characterization and aging of glassy pharmaceuticals made using acoustic levitation.

    Science.gov (United States)

    Benmore, Chris J; Weber, J K R; Tailor, Amit N; Cherry, Brian R; Yarger, Jeffery L; Mou, Qiushi; Weber, Warner; Neuefeind, Joerg; Byrn, Stephen R

    2013-04-01

    Here, we report the structural characterization of several amorphous drugs made using the method of quenching molten droplets suspended in an acoustic levitator. (13) C NMR, X-ray, and neutron diffraction results are discussed for glassy cinnarizine, carbamazepine, miconazole nitrate, probucol, and clotrimazole. The (13) C NMR results did not find any change in chemical bonding induced by the amorphization process. High-energy X-ray diffraction results were used to characterize the ratio of crystalline to amorphous material present in the glasses over a period of 8 months. All the glasses were stable for at least 6 months except carbamazepine, which has a strong tendency to crystallize within a few months. Neutron and X-ray pair distribution function analyses were applied to the glassy materials, and the results were compared with their crystalline counterparts. The two diffraction techniques yielded similar results in most cases and identified distinct intramolecular and intermolecular correlations. The intramolecular scattering was calculated based on the crystal structure and fit to the measured X-ray structure factor. The resulting intermolecular pair distribution functions revealed broad-nearest and next-nearest neighbor molecule-molecule correlations. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1290-1300, 2013. Copyright © 2013 Wiley Periodicals, Inc.

  8. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  9. Structural characterization of rhamnolipid produced by Pseudomonas aeruginosa strain FIN2 isolated from oil reservoir water.

    Science.gov (United States)

    Liu, Jin-Feng; Wu, Gang; Yang, Shi-Zhong; Mu, Bo-Zhong

    2014-05-01

    Biosurfactant-producing microorganisms inhabiting oil reservoirs are of great potential in industrial applications. Yet, till now, the knowledge about the structure and physicochemical property of their metabolites are still limited. The aim of this study was to purify and structurally characterize the biosurfactant from Pseudomonas aeruginosa strain FIN2, a newly isolated strain from an oil reservoir. The purification was conducted by silica gel column chromatography followed by pre-RP HPLC and the structural characterization was carried out by GC-MS combined with MS/MS. The results show that the biosurfactant produced by FIN2 is rhamnolipid in nature and its four main fractions were identified to be Rha-C10-C10(46.1 %), Rha-Rha-C10-C10(20.1 %), Rha-C8-C10 (7.5 %) and Rha-C10-C12:1(5.5 %), respectively. Meanwhile, the rarely reported rhamnolipid congeners containing β-hydroxy fatty acids of C6, C9, C10:1 and C11 were also proved to be present in the rhamnolipid mixture produced. The rhamnolipid mixture exhibited a strong surface activity by lowering the surface tension of distilled water to 28.6 mN/m with a CMC value of 195 mg/l.

  10. Mechanical characterization of auxetic stainless steel thin sheets with reentrant structure

    Science.gov (United States)

    Lekesiz, H.; Bhullar, S. K.; Karaca, A. A.; Jun, M. B. G.

    2017-08-01

    Smart materials in auxetic form present a great potential for various medical applications due to their unique deformation mechanisms along with durable infrastructure. Both analytical and finite element (FE) models are extensively used in literature to characterize mechanical response of auxetic structures but these structures are mostly thick enough to be considered as bulk material and 3D inherently. Auxetic plates in very thin form, a.e. foil, may bring numerous advantages such as very light design and better biodegradability when needed. However, there is a gap in literature on mechanical characterization of auxetic thin plates. In this study, structural analysis of very thin auxetic plates under uniaxial loading is investigated using both FE method and experimental method. 25 μm thick stainless steel (316L) plates are fabricated with reentrant texture for three different unit cell dimensions and tested under uniaxial loading using universal testing machine. 25 and 50 μm thick sheets with same cell dimensions were analyzed using implicit transient FE model including strain hardening and failure behaviors. FE results cover all the deformation schemes seen in actual tests and total deformation level matches with test results. Effect of plate thickness and cell geometry on auxetic behavior is discussed in detail using FE results. Finally, based on FE analysis results, an optimum geometry for prolonged auxetic behavior, high flexibility and high durability is suggested for future potential applications.

  11. Structural and functional characterization of a cold adapted TPM-domain with ATPase/ADPase activity.

    Science.gov (United States)

    Cerutti, María L; Otero, Lisandro H; Smal, Clara; Pellizza, Leonardo; Goldbaum, Fernando A; Klinke, Sebastián; Aran, Martín

    2017-03-01

    The Pfam PF04536 TPM_phosphatase family is a broadly conserved family of domains found across prokaryotes, plants and invertebrates. Despite having a similar protein fold, members of this family have been implicated in diverse cellular processes and found in varied subcellular localizations. Very recently, the biochemical characterization of two evolutionary divergent TPM domains has shown that they are able to hydrolyze phosphate groups from different substrates. However, there are still incorrect functional annotations and uncertain relationships between the structure and function of this family of domains. BA41 is an uncharacterized single-pass transmembrane protein from the Antarctic psychrotolerant bacterium Bizionia argentinensis with a predicted compact extracytoplasmic TPM domain and a C-terminal cytoplasmic low complexity region. To shed light on the structural properties that enable TPM domains to adopt divergent roles, we here accomplish a comprehensive structural and functional characterization of the central TPM domain of BA41 (BA41-TPM). Contrary to its predicted function as a beta-propeller methanol dehydrogenase, light scattering and crystallographic studies showed that BA41-TPM behaves as a globular monomeric protein and adopts a conserved Rossmann fold, typically observed in other TPM domain structures. Although the crystal structure reveals the conservation of residues involved in substrate binding, no putative catalytic or intramolecular metal ions were detected. Most important, however, extensive biochemical studies demonstrated that BA41-TPM has hydrolase activity against ADP, ATP, and other di- and triphosphate nucleotides and shares properties of cold-adapted enzymes. The role of BA41 in extracellular ATP-mediated signaling pathways and its occurrence in environmental and pathogenic microorganisms is discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures

    Science.gov (United States)

    Jackisch, Conrad; Angermann, Lisa; Allroggen, Niklas; Sprenger, Matthias; Blume, Theresa; Tronicke, Jens; Zehe, Erwin

    2017-07-01

    The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR) methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR trenches. We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study) and the hydrological processes (companion study Angermann et al., 2017, this issue).

  13. Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures

    Directory of Open Access Journals (Sweden)

    C. Jackisch

    2017-07-01

    Full Text Available The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR trenches. We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study and the hydrological processes (companion study Angermann et al., 2017, this issue.

  14. A non-local structural derivative model for characterization of ultraslow diffusion in dense colloids

    Science.gov (United States)

    Liang, Yingjie; Chen, Wen

    2018-03-01

    Ultraslow diffusion has been observed in numerous complicated systems. Its mean squared displacement (MSD) is not a power law function of time, but instead a logarithmic function, and in some cases grows even more slowly than the logarithmic rate. The distributed-order fractional diffusion equation model simply does not work for the general ultraslow diffusion. Recent study has used the local structural derivative to describe ultraslow diffusion dynamics by using the inverse Mittag-Leffler function as the structural function, in which the MSD is a function of inverse Mittag-Leffler function. In this study, a new stretched logarithmic diffusion law and its underlying non-local structural derivative diffusion model are proposed to characterize the ultraslow diffusion in aging dense colloidal glass at both the short and long waiting times. It is observed that the aging dynamics of dense colloids is a class of the stretched logarithmic ultraslow diffusion processes. Compared with the power, the logarithmic, and the inverse Mittag-Leffler diffusion laws, the stretched logarithmic diffusion law has better precision in fitting the MSD of the colloidal particles at high densities. The corresponding non-local structural derivative diffusion equation manifests clear physical mechanism, and its structural function is equivalent to the first-order derivative of the MSD.

  15. Synthesis, crystal structures and spectral characterization of chiral 4-R-1,2,4-triazoles

    Science.gov (United States)

    Gural'skiy, Il'ya A.; Reshetnikov, Viktor A.; Omelchenko, Irina V.; Szebesczyk, Agnieszka; Gumienna-Kontecka, Elzbieta; Fritsky, Igor O.

    2017-01-01

    1,2,4-triazoles attract attention as actively used medications and ligands for constructing coordination architectures. In this paper we describe four optically active 4-substituted 1,2,4-triazoles that have been prepared by Bayer's synthesis from the corresponding aliphatic chiral amines. This approach tends to be universal towards different triazoles and permits to conserve a homochirality of substrates. Novel asymmetric molecules have been characterized by spectroscopic techniques and their structures have been retrieved from the single crystal X-ray analysis. Chiro-optical studies of these heterocycles have been made by means of circular dichroism spectroscopy.

  16. Molecular characterization of pouched amphistome parasites (Trematoda: Gastrothylacidae) using ribosomal ITS2 sequence and secondary structures.

    Science.gov (United States)

    Ghatani, S; Shylla, J A; Tandon, V; Chatterjee, A; Roy, B

    2012-03-01

    Members of the family Gastrothylacidae (Trematoda: Digenea: Paramphistomata) are parasitic in ruminants throughout Africa and Asia. In north-east India, five species of pouched amphistomes, namely Fischoederius cobboldi, F. elongatus, Gastrothylax crumenifer, Carmyerius spatiosus and Velasquezotrema tripurensis, belonging to this family have been reported so far. In the present study, the molecular phylogeny of these five gastrothylacid species is derived using the second internal transcribed spacer (ITS2) sequence and secondary structure analyses. ITS2 sequence analysis was carried out to see the occurrence of interspecific variations among the species. Phylogenetic analyses were performed for primary sequence data alone as well as the combined sequence-structure information using neighbour-joining and Bayesian approaches. The sequence analysis revealed that there exist considerable interspecific variations among the various gastrothylacid fluke species. In contrast, the inferred secondary structures for the five species using minimum free energy modelling showed structural identities, in conformity with the core four-helix domain structure that has been recently identified as common to almost all eukaryotic taxa. The phylogenetic tree reconstructed using combined sequence-structure data showed a better resolution, as compared to the one using sequence data alone, with the gastrothylacid species forming a monophyletic group that is well separated from members of the other family, Paramphistomidae, of the amphistomid flukes group. The study provides the molecular characterization based on primary sequence data of the rDNA ITS2 region of the gastrothylacid amphistome flukes. Results also demonstrate the phylogenetic utility of the ITS2 sequence-secondary structure data for inferences at higher taxonomic levels.

  17. Structural and biochemical characterizations of an intramolecular tandem coiled coil protein.

    Science.gov (United States)

    Shin, Donghyuk; Kim, Gwanho; Kim, Gyuhee; Zheng, Xu; Kim, Yang-Gyun; Lee, Sangho

    2014-12-12

    Coiled coil has served as an excellent model system for studying protein folding and developing protein-based biomaterials. Most designed coiled coils function as oligomers, namely intermolecular coiled coils. However, less is known about structural and biochemical behavior of intramolecular coiled coils where coiled coil domains are covalently linked in one polypeptide. Here we prepare a protein which harbors three coiled coil domains with two short linkers, termed intramolecular tandem coiled coil (ITCC) and characterize its structural and biochemical behavior in solution. ITCC consists of three coiled coil domains whose sequences are derived from Coil-Ser and its domain swapped dimer. Modifications include positioning E (Glu) residue at "e" and K (Lys) at "g" positions throughout heptad repeats to enhance ionic interaction among its constituent coiled coil domains. Molecular modeling of ITCC suggests a compact triple helical bundle structure with the second and the third coiled coil domains forming a canonical coiled coil. ITCC exists as a mixture of monomeric and dimeric species in solution. Small-angle X-ray scattering reveals ellipsoidal molecular envelopes for both dimeric and monomeric ITCC in solution. The theoretically modeled structures of ITCC dock well into the envelopes of both species. Higher ionic strength shifts the equilibrium into monomer with apparently more compact structure while secondary structure remains unchanged. Taken together, our results suggest that our designed ITCC is predominantly monomeric structure through the enhanced ionic interactions, and its conformation is affected by the concentration of ionic species in the buffer. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Synthesis, molecular modeling and structural characterization of vanillin derivatives as antimicrobial agents

    Science.gov (United States)

    Sun, Juan; Yin, Yong; Sheng, Gui-Hua; Yang, Zhi-Bo; Zhu, Hai-Liang

    2013-05-01

    Two vanillin derivatives have been designed and synthesized and their biological activities were also evaluated for antimicrobial activity. Their chemical structures are characterized by single crystal X-ray diffraction studies, 1H NMR, MS, and elemental analysis. Structural stabilization of them followed by intramolecular as well as intermolecular H-bonds makes these molecules as perfect examples in molecular recognition with self-complementary donor and acceptor units within a single molecule. Docking simulations have been performed to position compounds into the FtsZ active site to determine their probable binding model. Compound 3a shows the most potent biological activity, which may be a promising antimicrobial leading compound for the further research.

  19. Functional and Structural Characterization of the Antiphagocytic Properties of a Novel Transglutaminase from Streptococcus suis.

    Science.gov (United States)

    Yu, Jie; Pian, Yaya; Ge, Jingpeng; Guo, Jie; Zheng, Yuling; Jiang, Hua; Hao, Huaijie; Yuan, Yuan; Jiang, Yongqiang; Yang, Maojun

    2015-07-31

    Streptococcus suis serotype 2 (Ss2) is an important swine and human zoonotic pathogen. In the present study, we identified a novel secreted immunogenic protein, SsTGase, containing a highly conserved eukaryotic-like transglutaminase (TGase) domain at the N terminus. We found that inactivation of SsTGase significantly reduced the virulence of Ss2 in a pig infection model and impaired its antiphagocytosis in human blood. We further solved the crystal structure of the N-terminal portion of the protein in homodimer form at 2.1 Å. Structure-based mutagenesis and biochemical studies suggested that disruption of the homodimer directly resulted in the loss of its TGase activity and antiphagocytic ability. Characterization of SsTGase as a novel virulence factor of Ss2 by acting as a TGase would be beneficial for developing new therapeutic agents against Ss2 infections. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Functional and Structural Characterization of the Antiphagocytic Properties of a Novel Transglutaminase from Streptococcus suis*

    Science.gov (United States)

    Yu, Jie; Pian, Yaya; Ge, Jingpeng; Guo, Jie; Zheng, Yuling; Jiang, Hua; Hao, Huaijie; Yuan, Yuan; Jiang, Yongqiang; Yang, Maojun

    2015-01-01

    Streptococcus suis serotype 2 (Ss2) is an important swine and human zoonotic pathogen. In the present study, we identified a novel secreted immunogenic protein, SsTGase, containing a highly conserved eukaryotic-like transglutaminase (TGase) domain at the N terminus. We found that inactivation of SsTGase significantly reduced the virulence of Ss2 in a pig infection model and impaired its antiphagocytosis in human blood. We further solved the crystal structure of the N-terminal portion of the protein in homodimer form at 2.1 Å. Structure-based mutagenesis and biochemical studies suggested that disruption of the homodimer directly resulted in the loss of its TGase activity and antiphagocytic ability. Characterization of SsTGase as a novel virulence factor of Ss2 by acting as a TGase would be beneficial for developing new therapeutic agents against Ss2 infections. PMID:26085092

  1. Structural characterization of the ternary compound Cu{sub 3}TaSe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Gerzon E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela)]. E-mail: gerzon@ula.ve; Mora, Asiloe J. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Duran, Sonia [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Munoz, Marcos [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Grima-Gallardo, Pedro [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela)

    2007-07-31

    The Cu{sub 3}TaSe{sub 4} compound crystallizes in the cubic P4bar 3m (No. 215) space group, Z=1, with a=5.6600(1)A, V=181.32(1)A{sup 3}. Its structure was refined from X-ray powder diffraction data using the Rietveld method. The refinement of 21 instrumental and structural variables led to R{sub p}=12.2%, R{sub wp}=14.7%, R{sub exp}=8.0%, R{sub B}=14.5% and S=1.8, for 4501 step intensities and 33 independent reflections. This compound is isostructural with the sulvanite mineral and is characterized for a three-dimensional arrangement of CuSe{sub 4} and TaSe{sub 4} tetrahedra connected by common edges, and the CuSe{sub 4} tetrahedra sharing vertexes among them.

  2. Ni(OH){sub 2} and NiO nano structures: Synthesis, characterization and electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Saghatforoush, Lotf Ali; Sanati, Soheila; Mehdizadeh, Robabeh [Payam Noor Univ., Tehran (Iran, Islamic Republic of); Hasanzadeh, Mohammad [Tabriz Univ. of Medical Sciences, Tabriz (Iran, Islamic Republic of)

    2012-04-15

    Hydrothermal route have been used in different conditions for preparation of Ni(OH){sub 2} nano structures. The NiO nanoparticles were obtained by calcining the Ni(OH){sub 2} precursor at 450 .deg. C for 2 h. The effect of sodium dodecyl sulfonate (SDS) as surfactant on the morphology and size of Ni(OH){sub 2} nanoparticles were discussed in detail. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy were used to characterize the products. The growth mechanism of the as-synthesized nano structures was also discussed in detail based on the experimental results. Coming up, the NiO nanoparticle modified carbon paste electrode was applied to the determination of captopril in aqueous solution.

  3. Structural and microstructural characterization of U3Si2 nuclear fuel using X-ray diffraction

    International Nuclear Information System (INIS)

    Ichikawa, Rodrigo U.; Garcia, Rafael H.L.; Silva, Andre S.B. da; Saliba-Silva, Adonis M.; Lima, Nelson B.; Martinez, Luis G.; Turrillas, Xavier

    2017-01-01

    In this work, two uranium silicide powdered samples, containing 67% and 42 mol% of Si, were analyzed using X-ray diffraction (named as 67 Si and 42 Si). For structural characterization, Rietveld refinement was used to estimate cell parameters, volume fraction (weight percent) of crystalline phases and atomic positions. For the main phases, X-ray line profile analysis (XLPA) was used to estimate mean crystallite sizes and micro strains. The 67 Si sample presents higher content of USi 2( tetragonal) and the 42 Si sample presents higher content of U 3 Si 2 (tetragonal) as identified and calculated from the XRD profiles. Overall there are no appreciable structural changes and the parameters refined are in good accordance with the ones reported in the literature. Mean crystallite sizes determined by XLPA revealed small crystallites of the order of 10 1 nm and low micro strain for all samples. (author)

  4. Structural and functional characterization of the bacterial translocation inhibitor GE82832.

    Science.gov (United States)

    Brandi, Letizia; Maffioli, Sonia; Donadio, Stefano; Quaglia, Fabio; Sette, Marco; Milón, Pohl; Gualerzi, Claudio O; Fabbretti, Attilio

    2012-09-21

    The structure of GE82832, a translocation inhibitor produced by a soil microorganism, is shown to be highly related to that of dityromycin, a bicyclodecadepsipeptide antibiotic discovered long ago whose characterization had never been pursued beyond its structural elucidation. GE82832 and dityromycin were shown to interfere with both aminoacyl-tRNA and mRNA movement and with the Pi release occurring after ribosome- and EF-G-dependent GTP hydrolysis. These findings and the unusual ribosomal localization of GE82832/dityromycin near protein S13 suggest that the mechanism of inhibition entails an interference with the rotation of the 30S subunit "head" which accompanies the ribosome-unlocking step of translocation. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Structure Characterization of Modified Polyimide Films Irradiated by 2 MeV Si Ions

    International Nuclear Information System (INIS)

    Tian-Xiang, Chen; Shu-De, Yao; Kun, Wang; Huan, Wang; Zhi-Bo, Ding; Di, Chen

    2009-01-01

    Structures of polyimide (6051) films modified by irradiation of 2.0 MeV Si ions with different fluences are studied in detail. Variations of the functional groups in polyimide are investigated by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Raman spectroscopy. The results indicate that the functional groups can be destroyed gradually with the increasing ion fluence. The variations of structure and element contents are characterized by x-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS) and x-ray photoelectron spectroscopy (XPS). The results indicate that the contents of N and O decrease significantly compared with the original samples, some graphite-like and carbon-rich phases are formed in the process of irradiation

  6. Structural characterization of nanoscale intermetallic precipitates in highly neutron irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Sprouster, D.J.; Sinsheimer, J.; Dooryhee, E.; Ghose, S.K.; Wells, P.; Stan, T.; Almirall, N.; Odette, G.R.; Ecker, L.E.

    2016-01-01

    Massive, thick-walled pressure vessels are permanent nuclear reactor structures that are exposed to a damaging flux of neutrons from the adjacent core. The neutrons cause embrittlement of the vessel steel that grows with dose (fluence), as manifested by an increasing ductile-to-brittle fracture transition temperature. Extending reactor life requires demonstrating that large safety margins against brittle fracture are maintained at the higher neutron fluence associated with beyond 60 years of service. Here synchrotron-based x-ray diffraction and small angle x-ray scattering measurements are used to characterize highly embrittling nm-scale Mn–Ni–Si precipitates that develop in the irradiated steels at high fluence. These precipitates lead to severe embrittlement that is not accounted for in current regulatory models. Application of the complementary techniques has, for the very first time, successfully identified the crystal structures of the nanoprecipitates, while also yielding self-consistent compositions, volume fractions and size distributions.

  7. Identification of inks and structural characterization of contemporary artistic prints by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oujja, M. [Instituto de Quimica Fisica Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Vila, A. [Departament de Pintura, Conservacio-Restauracio, Facultat de Belles Arts, Universitat de Barcelona, Pau Gargallo 4, 08028 Barcelona (Spain); Rebollar, E. [Instituto de Quimica Fisica Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Garcia, J.F. [Departament de Pintura, Conservacio-Restauracio, Facultat de Belles Arts, Universitat de Barcelona, Pau Gargallo 4, 08028 Barcelona (Spain); Castillejo, M. [Instituto de Quimica Fisica Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)]. E-mail: marta.castillejo@iqfr.csic.es

    2005-08-31

    Identification of the inks used in artistic prints and the order in which different ink layers have been applied on a paper substrate are important factors to complement the classical stylistic aspects for the authentication of this type of objects. Laser-induced breakdown spectroscopy (LIBS) is investigated to determine the chemical composition and structural distribution of the constituent materials of model prints made by applying one or two layers of several blue and black inks on an Arches paper substrate. By using suitable laser excitation conditions, identification of the inks was possible by virtue of emissions from key elements present in their composition. Analysis of successive spectra on the same spot allowed the identification of the order in which the inks were applied on the paper. The results show the potential of laser-induced breakdown spectroscopy for the chemical and structural characterization of artistic prints.

  8. Synthesis, characterization and crystal structures of oxovanadium(V complexes derived from similar aroylhydrazone ligands

    Directory of Open Access Journals (Sweden)

    X-Z Zhang

    2015-10-01

    Full Text Available Reaction of [VO(acac2] (acac = acetylacetonate with N’-(5-chloro-2-hydroxybenzylidene-3-methoxybenzohydrazide (H2L1 and N’-(2-hydroxy-4-methoxybenzylidene-4-nitrobenzohydrazide (H2L2 in methanol affords methanol-coordinated mononuclear oxovanadium(V complexes, [VOL1(OMe(MeOH] (1 and [VOL2(OMe(MeOH] (2, respectively. The complexes were characterized by elemental analysis, FT-IR, 1H NMR and 13C NMR spectra. Crystal and molecular structures of the complexes were determined by single crystal X-ray diffraction method. Single crystal X-ray structural studies indicate that the hydrazone ligands coordinate to the VO core through enolate oxygen, phenolate oxygen and azomethine nitrogen. The V atoms in the complexes are in octahedral coordination. Thermal stabilities of the complexes have also been studied. DOI: http://dx.doi.org/10.4314/bcse.v29i3.10

  9. Structural characterization and antioxidant activities of polysaccharides from Citrus aurantium L.

    Science.gov (United States)

    Wang, Qiu Hong; Shu, Zun Peng; Xu, Bing Qing; Xing, Na; Jiao, Wen Juan; Yang, Bing You; Kuang, Hai Xue

    2014-06-01

    Three polysaccharide fractions were obtained from Citrus aurantium L. (CAL) by sequential extraction with cold water, hot water, and 1.0M NaOH, respectively. The fractions were denoted CALA, CALB, and CALC. Structural characterization was conducted by physicochemical property, FTIR, and SEM analyses. Antioxidant activities in vivo and in vitro were also evaluated. CALB, which showed the highest activity, was further isolated to afford four purified polysaccharides (CALB-1-4) by various ion exchange and gel-filtration chromatography. Meanwhile, the purified polysaccharides were subjected to composition analysis and screened by antioxidant activity in vitro. Among the four purified polysaccharides, CALB-3 had the highest antioxidant activity and its structure was analyzed by FTIR, SEM and AFM microscopy. Overall, these results indicated that polysaccharides from CAL had potential therapeutic applications in the medical and food industries because of their antioxidant activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Synthesis and characterization of Al-TON zeolite using a dialkylimizadolium as structure-directing agent

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Christian Wittee; Pergher, Sibele Berenice Castella, E-mail: chriswittee@gmail.com [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Villarroel-Rocha, Jhonny [Laboratorio de Solidos Porosos, Instituto de Fisica Aplicada, Universidad Nacional de San Luis, Chacabuco, San Luis (Argentina); Silva, Bernardo Araldi Da; Mignoni, Marcelo Luis [Universidade Regional Integrada, Erechim, RS (Brazil)

    2016-11-15

    In this work, the synthesis of zeolites using 1-butyl-3-methylimidazolium chloride [C{sub 4}MI]Cl as a structure-directing agent was investigated. The organic cation shows effectiveness and selectivity for the syntheses of TON zeolites under different reaction conditions compared to the traditional structure directing agent, 1,8-diaminooctane. The 1-butyl-3-methylimidazolium cation lead to highly crystalline materials and its role as OSDA in our synthesis conditions has been confirmed by characterization techniques. ICP-OES confirms the presence of Al in the samples and {sup 27}Al MAS NMR analysis indicated that aluminum atoms were incorporated in tetrahedral coordination. Scanning electron microscopy indicated that changing the crystallization condition (static or stirring), zeolites with different crystal size were obtained, which consequently affects the textural properties of the zeolites. Moreover, varying some synthesis parameters MFI zeolite can also be obtained. (author)

  11. Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development

    DEFF Research Database (Denmark)

    Cuesta-Seijo, Jose A.; Ruzanski, Christian; Krucewicz, Katarzyna

    2017-01-01

    (HvPho1) for starch biosynthesis in barley endosperm, we analyzed HvPho1 protein production and enzyme activity levels throughout barley endosperm development and characterized structure-function relationships of HvPho1. The molecular mechanisms underlying the initiation of starch granule biosynthesis......,4-glucans using HvPho1 from G1P as the sole substrate. The structural properties of HvPho1 provide insights into the low affinity of HvPho1 for large polysaccharides like starch or amylopectin. Our results suggest that HvPho1 may play a role during the initiation of starch biosynthesis in barley.......The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose...

  12. Structure and biochemical characterization of proliferating cellular nuclear antigen from a parasitic protozoon

    Energy Technology Data Exchange (ETDEWEB)

    Cardona-Felix, Cesar S.; Lara-Gonzalez, Samuel; Brieba, Luis G. (LNLS)

    2012-02-08

    Proliferating cellular nuclear antigen (PCNA) is a toroidal-shaped protein that is involved in cell-cycle control, DNA replication and DNA repair. Parasitic protozoa are early-diverged eukaryotes that are responsible for neglected diseases. In this work, a PCNA from a parasitic protozoon was identified, cloned and biochemically characterized and its crystal structure was determined. Structural and biochemical studies demonstrate that PCNA from Entamoeba histolytica assembles as a homotrimer that is able to interact with and stimulate the activity of a PCNA-interacting peptide-motif protein from E. histolytica, EhDNAligI. The data indicate a conservation of the biochemical mechanisms of PCNA-mediated interactions between metazoa, yeast and parasitic protozoa.

  13. Structural and Functional Characterization of Human Stem-Cell-Derived Retinal Organoids by Live Imaging.

    Science.gov (United States)

    Browne, Andrew W; Arnesano, Cosimo; Harutyunyan, Narine; Khuu, Thien; Martinez, Juan Carlos; Pollack, Harvey A; Koos, David S; Lee, Thomas C; Fraser, Scott E; Moats, Rex A; Aparicio, Jennifer G; Cobrinik, David

    2017-07-01

    Human pluripotent stem cell (hPSC)-derived retinal organoids are a platform for investigating retinal development, pathophysiology, and cellular therapies. In contrast to histologic analysis in which multiple specimens fixed at different times are used to reconstruct developmental processes, repeated analysis of the same living organoids provides a more direct means to characterize changes. New live imaging modalities can provide insights into retinal organoid structure and metabolic function during in vitro growth. This study employed live tissue imaging to characterize retinal organoid development, including metabolic changes accompanying photoreceptor differentiation. Live hPSC-derived retinal organoids at different developmental stages were examined for microanatomic organization and metabolic function by phase contrast microscopy, optical coherence tomography (OCT), fluorescence lifetime imaging microscopy (FLIM), and hyperspectral imaging (HSpec). Features were compared to those revealed by histologic staining, immunostaining, and microcomputed tomography (micro-CT) of fixed organoid tissue. We used FLIM and HSpec to detect changes in metabolic activity as organoids differentiated into organized lamellae. FLIM detected increased glycolytic activity and HSpec detected retinol and retinoic acid accumulation in the organoid outer layer, coinciding with photoreceptor genesis. OCT enabled imaging of lamellae formed during organoid maturation. Micro-CT revealed three-dimensional structure, but failed to detect lamellae. Live imaging modalities facilitate real-time and nondestructive imaging of retinal organoids as they organize into lamellar structures. FLIM and HSpec enable rapid detection of lamellar structure and photoreceptor metabolism. Live imaging techniques may aid in the continuous evaluation of retinal organoid development in diverse experimental and cell therapy settings.

  14. Molecular modeling and structural characterization of a high glycine-tyrosine hair keratin associated protein.

    Science.gov (United States)

    Singh, Rakesh S; Palmer, Jeremy C; Pudney, Paul D A; Paul, Prem K C; Johannessen, Christian; Debenedetti, Pablo G; Raut, Janhavi; Lee, Ken; Noro, Massimo; Tiemessen, David

    2017-03-22

    High glycine-tyrosine (HGT) proteins are an important constituent of the keratin associated proteins (KAPs) present in human hair. The glassy state physics of hair fibres are thought to be largely regulated by KAPs, which exist in an amorphous state and are readily affected by environmental conditions. However, there are no studies characterizing the individual KAPs. In this paper, we present the first step to fill this gap by computational modeling and experimental studies on a HGT protein, KAP8.1. In particular, we have modeled the three-dimensional structure of this 63-residue protein using homology information from an anti-freeze protein in snow flea. The model for KAP8.1 is characterized by four strands of poly-proline II (or PPII) type helical secondary structures, held together by two cysteine disulphide bridges. Computer simulations confirm the stability of the modelled structure and show that the protein largely samples the PPII and β-sheet conformations during the molecular dynamics simulations. Spectroscopic studies including Raman, IR and vibrational circular dichroism have also been performed on synthesized KAP8.1. The experimental studies suggest that KAP8.1 is characterised by β-sheet and PPII structures, largely consistent with the simulation studies. The model built in this work is a good starting point for further simulations to study in greater depth the glassy state physics of hair, including its water sorption isotherms, glass transition, and the effect of HGT proteins on KAP matrix plasticization. These results are a significant step towards our goal of understanding how the properties of hair can be affected and manipulated under different environmental conditions of temperature, humidity, ageing and small molecule additives.

  15. Evaluation of depth distribution and characterization of nanoscale Ta/Si multilayer thin film structures

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, B.R., E-mail: brchak@yahoo.com; Halder, S.K.; Maurya, K.K.; Srivastava, A.K.; Toutam, V.K.; Dalai, M.K.; Sehgal, G.; Singh, S.

    2012-08-01

    A multilayer thin film structure of ten alternate Ta and Si layers with approximately 18 nm thickness for the combined (Ta + Si) layer, was evaluated to explore the individual layer thickness and the interface mixing behavior using different surface characterization techniques like Time-of-Flight Secondary Ion Mass Spectrometry (TOFSIMS), X-ray Reflectometry (XRR) and Kelvin Probe Force Microscopy (KPFM). These results were compared with measurements performed earlier using cross section Transmission Electron Microscopy (TEM). The TOFSIMS depth profile results indicate the individual thickness of Si and Ta layers to be 8.1 nm and 5.9 nm respectively which are less than the corresponding actual thickness measured by cross section TEM as 10.5 nm and 7.5 nm. The difference in thickness measurement has been explained in the light of ion bombardment induced atomic mixing in the interface during sputter depth profiling. A scanning electron micrograph shows the actual crater and its edges created due to the sputtering including the multilayer for real view of the structure. The XRR observations however reveal better agreement with the cross section TEM data, both being non-destructive in nature. Attempts were made to characterize the multilayer using KPFM technique which clearly elucidated the grating type cross section of the structure. - Highlights: Black-Right-Pointing-Pointer Precise depth evaluation of nanoscale multilayer thin film structure of Ta/Si. Black-Right-Pointing-Pointer Comparison of thickness measured by different surface analytical techniques. Black-Right-Pointing-Pointer Effect of ion beam induced atomic mixing during depth profiling. Black-Right-Pointing-Pointer Measurement limitations of different techniques.

  16. Characterization of structure of flaws in silicate glass surfaces by ion-exchange in lithium salt melts

    International Nuclear Information System (INIS)

    Kolitsch, A.; Richter, E.

    1978-03-01

    A method for characterization of flaws structure in silicate glass surfaces by ion-exchange in lithium salt melts is demonstrated. The possibilities and limits of the method are shown and several applications are discussed. (author)

  17. Growth, Characterization, and Optical Spectroscopy of Copper Cloride Quantum Well Structures

    Science.gov (United States)

    Shuh, David Kelly

    1990-01-01

    The first CuCl quantum well structures of the type CaF_2/CuCl/CaF_2 , in which the thicknesses of the confined CuCl layers are varied from bulk-like to 12A, have been grown on Si and Al_2O_3 (1102) substrates by molecular beam epitaxy. The quantum well structures were characterized by low-energy electron diffraction, Auger electron spectroscopy, x-ray photoelectron spectroscopy, transmission electron microscopy, and x-ray diffraction techniques. The optical properties of the CuCl films have been characterized by low-temperature absorption, excitation, and excitation-density dependent photoluminescence. Striking differences in the excitonic emission spectra are observed between the quantum well structures and a bulk single crystal sample of CuCl. Excitons were also formed by irradiation of these structures with UV frequencies above the CuCl bandgap, and the spectral and temporal dependences of the recombination radiation were compared to those of a bulk CuCl single crystal. The photoluminescence lineshapes of the free excitons in the thin films were characteristic of a much hotter exciton temperature and of much shorter lifetimes (A simple kinetic model is proposed to rationalize the exciton dynamics in the quantum well structures. Stimulated emission is observed from a 30A CuCl quantum well structure created by a two-photon resonant Raman dye laser excitation and attributed to the radiative recombination of the excitonic molecule to yield two photons. Photoluminescence measurements from a 12A CuCl quantum well structure, excited by a continuous wave Ar-ion laser, show a marked increase in emission from the region characteristic of excitonic molecule recombination compared to previous investigations. A Stokes shift of the free exciton photoluminescence is observed from the sample which arises from non-uniformities at the interfaces between the potential barriers and the semiconductor. Thin films of CuCl were deposited by molecular beam epitaxy directly onto a room

  18. Tetradentate Schiff base ligands and their complexes: Synthesis, structural characterization, thermal, electrochemical and alkane oxidation

    Science.gov (United States)

    Ceyhan, Gökhan; Köse, Muhammet; McKee, Vickie; Uruş, Serhan; Gölcü, Ayşegül; Tümer, Mehmet

    Three Schiff base ligands (H2L1-H2L3) with N2O2 donor sites were synthesized by condensation of 1,5-diaminonapthalene with benzaldehyde derivatives. A series of Cu(II), Co(II), Ni(II), Mn(II) and Cr(III) complexes were prepared and characterized by spectroscopic and analytical methods. Thermal, electrochemical and alkane oxidation reactions of the ligands and their metal complexes were investigated. Extensive application of 1D (1H, 13C NMR) and 2D (COSY, HETCOR, HMBC and TOSCY) NMR techniques were used to characterize the structures of the ligands and establish the 1H and 13C resonance assignments of the three ligands. Ligands H2L1 and H2L3 were obtained as single crystals from THF solution and characterized by X-ray diffraction. Both molecules are centrosymmetric and asymmetric unit contains one half of the molecule. Catalytic alkane oxidation reactions with the transition metal complexes investigated using cyclohexane and cyclooctane as substrates. The Cu(II) and Cr(III) complexes showed good catalytic activity in the oxidation of cyclohexane and cyclooctane to desired oxidized products. Electrochemical and thermal properties of the compounds were also investigated.

  19. Experimental Investigation on Pore Structure Characterization of Concrete Exposed to Water and Chlorides.

    Science.gov (United States)

    Liu, Jun; Tang, Kaifeng; Qiu, Qiwen; Pan, Dong; Lei, Zongru; Xing, Feng

    2014-09-16

    In this paper, the pore structure characterization of concrete exposed to deionised water and 5% NaCl solution was evaluated using mercury intrusion porosity (MIP), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of calcium leaching, fly ash incorporation, and chloride ions on the evolution of pore structure characteristics were investigated. The results demonstrate that: (i) in ordinary concrete without any fly ash, the leaching effect of the cement products is more evident than the cement hydration effect. From the experimental data, Ca(OH)₂ is leached considerably with the increase in immersion time. The pore structure of concrete can also be affected by the formation of an oriented structure of water in concrete materials; (ii) incorporation of fly ash makes a difference for the performance of concrete submersed in solutions as the total porosity and the pore connectivity can be lower. Especially when the dosage of fly ash is up to 30%, the pores with the diameter of larger than 100 nm show significant decrease. It demonstrates that the pore properties are improved by fly ash, which enhances the resistance against the calcium leaching; (iii) chlorides have a significant impact on microstructure of concrete materials because of the chemical interactions between the chlorides and cement hydrates.

  20. Fabrication, polarization, and characterization of PVDF matrix composites for integrated structural load sensing

    International Nuclear Information System (INIS)

    Haghiashtiani, Ghazaleh; Greminger, Michael A

    2015-01-01

    The focus of this work is to evaluate a new carbon fiber reinforced composite structure with integrated sensing capabilities. In this composite structure, the typical matrix material used for carbon fiber reinforced composites is replaced with the thermoplastic polyvinylidene difluoride (PVDF). Since PVDF has piezoelectric properties, it enables the structure to be used for integrated load sensing. In addition, the electrical conductivity property of the carbon fabric is harnessed to form the electrodes of the integrated sensor. In order to prevent the carbon fiber electrodes from shorting to each other, a thin Kevlar fabric layer is placed between the two carbon fiber electrode layers as a dielectric. The optimal polarization parameters were determined using a design of experiments approach. Once polarized, the samples were then used in compression and tensile tests to determine the effective d 33 and d 31 piezoelectric coefficients. The degree of polarization of the PVDF material was determined by relating the effective d 33 coefficient of the composite to the achieved d 33 of the PVDF component of the composite using a closed form expression. Using this approach, it was shown that optimal polarization of the composite material results in a PVDF component d 33 of 3.2 pC N −1 . Moreover, the Young’s modulus of the composite structure has been characterized. (paper)

  1. Characterizing changes in soil bacterial community structure in response to short-term warming

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Jinbo [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; School of Marine Sciences, Ningbo University, Ningbo China; Sun, Huaibo [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; Peng, Fei [Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou China; Zhang, Huayong [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; Xue, Xian [Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou China; Gibbons, Sean M. [Argonne National Laboratory Biosciences Division, Argonne IL USA; Graduate Program in Biophysical Sciences, University of Chicago, Chicago IL USA; Gilbert, Jack A. [Argonne National Laboratory Biosciences Division, Argonne IL USA; Department of Ecology and Evolution, University of Chicago, Chicago IL USA; Chu, Haiyan [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China

    2014-02-18

    High altitude alpine meadows are experiencing considerably greater than average increases in soil surface temperature, potentially as a result of ongoing climate change. The effects of warming on plant productivity and soil edaphic variables have been established previously, but the influence of warming on soil microbial community structure has not been well characterized. Here, the impact of 15 months of soil warming (both + 1 and + 2 degrees C) on bacterial community structure was examined in a field experiment on a Tibetan plateau alpine meadow using bar-coded pyrosequencing. Warming significantly changed (P < 0.05) the structure of the soil bacterial community, but the alpha diversity was not dramatically affected. Changes in the abundance of the Actinobacteria and Alphaproteobacteria were found to contribute the most to differences between ambient (AT) and artificially warmed conditions. A variance partitioning analysis (VPA) showed that warming directly explained 7.15% variation in bacterial community structure, while warming-induced changes in soil edaphic and plant phenotypic properties indirectly accounted for 28.3% and 20.6% of the community variance, respectively. Interestingly, certain taxa showed an inconsistent response to the two warming treatments, for example Deltaproteobacteria showed a decreased relative abundance at + 1 degrees C, but a return to AT control relative abundance at + 2 degrees C. This suggests complex microbial dynamics that could result from conditional dependencies between bacterial taxa.

  2. Structural and mechanical multi-scale characterization of white New-Zealand rabbit Achilles tendon.

    Science.gov (United States)

    Kahn, Cyril J F; Dumas, Dominique; Arab-Tehrany, Elmira; Marie, Vanessa; Tran, Nguyen; Wang, Xiong; Cleymand, Franck

    2013-10-01

    Multi-scale characterization of structures and mechanical behavior of biological tissues are of huge importance in order to evaluate the quality of a biological tissue and/or to provide bio-inspired scaffold for functional tissue engineering. Indeed, the more information on main biological tissue structures we get, the more relevant we will be to design new functional prostheses for regenerative medicine or to accurately evaluate tissues. From this perspective, we have investigated the structures and their mechanical properties from nanoscopic to macroscopic scale of fresh ex-vivo white New-Zealand rabbit Achilles tendon using second harmonic generation (SHG) microscopy, atomic force microscopy (AFM) and tensile tests to provide a "simple" model whose parameters are relevant of its micro or nano structure. Thus, collagen fiber's crimping was identified then measured from SHG images as a plane sine wave with 28.4 ± 5.8 μm of amplitude and 141 ± 41 μm of wavelength. Young's moduli of fibrils (3.0 GPa) and amorphous phases (223 MPa) were obtained using TH-AFM. From these investigations, a non-linear Zener model linking a statistical Weibull's distribution of taut fibers under traction to crimp fibers were developed. This model showed that for small strain (tendon observations under static or dynamic solicitations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Micro- and nano-structural characterization of six marine sponges of the class Demospongiae.

    Science.gov (United States)

    Şen, Elif Hilal; Ide, Semra; Bayari, Sevgi Haman; Hill, Malcolm

    2016-12-01

    The sponges produce their skeletal elements and silicateins are the key enzymes in this process. The mechanism underlying the formation of their silica skeleton and its structural properties are of exceptional interest for applications in technology. Micro- and nano-scale structural analysis of the six marine sponges belonging to Demospongiae [Callyspongia (Cladochalia) plicifera (Lamarck, 1814), Cervicornia cuspidifera (Lamarck, 1815), Cinachyrela sp., Niphates erecta (Duchassaing and Michelotti, 1864), Xestospongia muta (Schmidt, 1870) and Amphimedon compressa (Duchassaing and Michelotti, 1864)] were carried out by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) and Small-Angle X-ray Scattering (SAXS) techniques. The nano-structural characterizations give some informative evidence about the manner in which silica/silicatein in spicule skeletons is produced by the sponges. The sponge species were successfully discriminated using cluster analysis (HCA) based on FTIR spectra. This study demonstrates and detection of structural differences among sponges and their spicules using combined techniques.

  4. Magnetic and structural characterizations on nanoparticles of FePt, FeRh and their composites

    International Nuclear Information System (INIS)

    Ko, Hnin Yu Yu; Suzuki, Takao; Nam, Nguyen T.; Phuoc, Nguyen N.; Cao Jiangwei; Hirotsu, Yoshihiko

    2008-01-01

    The various compositions of FePt and FeRh nanoparticles, and their composite particles have been fabricated by the solution-phase chemical method and their magnetic properties characterized. High-resolution transmission electron microscopic observations indicate that mono-dispersed FeRh and FePt/FeRh nanoparticles are fabricated with the average size of 3-5 nm. However, larger size particles are distributed in the annealed state. From X-ray diffraction results, the as-deposited FeRh nanoparticles reveal a chemically disordered fcc structure which can be transformed into CsCl-type structure through thermal annealing. Similarly, the annealed FePt nanoparticles show the L1 0 -phase fct structure although the fcc structure is apparent in the as-deposited state. It is also found that the first time in the exchange bias effect in the composite of ferromagnetic (FePt) and anti-ferromagnetic (FeRh) nanoparticles; result in a shift of the hysteresis loop after field cooling process

  5. Structural and dynamic characterization of eukaryotic gene regulatory protein domains in solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Andrew Loyd [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    Solution NMR was primarily used to characterize structure and dynamics in two different eukaryotic protein systems: the δ-Al-ε activation domain from c-jun and the Drosophila RNA-binding protein Sex-lethal. The second system is the Drosophila Sex-lethal (Sxl) protein, an RNA-binding protein which is the ``master switch`` in sex determination. Sxl contains two adjacent RNA-binding domains (RBDs) of the RNP consensus-type. The NMR spectrum of the second RBD (Sxl-RBD2) was assigned using multidimensional heteronuclear NMR, and an intermediate-resolution family of structures was calculated from primarily NOE distance restraints. The overall fold was determined to be similar to other RBDs: a βαβ-βαβ pattern of secondary structure, with the two helices packed against a 4-stranded anti-parallel β-sheet. In addition 15N T1, T2, and 15N/1H NOE relaxation measurements were carried out to characterize the backbone dynamics of Sxl-RBD2 in solution. RNA corresponding to the polypyrimidine tract of transformer pre-mRNA was generated and titrated into 3 different Sxl-RBD protein constructs. Combining Sxl-RBD1+2 (bht RBDs) with this RNA formed a specific, high affinity protein/RNA complex that is amenable to further NMR characterization. The backbone 1H, 13C, and 15N resonances of Sxl-RBD1+2 were assigned using a triple-resonance approach, and 15N relaxation experiments were carried out to characterize the backbone dynamics of this complex. The changes in chemical shift in Sxl-RBD1+2 upon binding RNA are observed using Sxl-RBD2 as a substitute for unbound Sxl-RBD1+2. This allowed the binding interface to be qualitatively mapped for the second domain.

  6. Characterizing the structure and content of nurse handoffs: A Sequential Conversational Analysis approach.

    Science.gov (United States)

    Abraham, Joanna; Kannampallil, Thomas; Brenner, Corinne; Lopez, Karen D; Almoosa, Khalid F; Patel, Bela; Patel, Vimla L

    2016-02-01

    Effective communication during nurse handoffs is instrumental in ensuring safe and quality patient care. Much of the prior research on nurse handoffs has utilized retrospective methods such as interviews, surveys and questionnaires. While extremely useful, an in-depth understanding of the structure and content of conversations, and the inherent relationships within the content is paramount to designing effective nurse handoff interventions. In this paper, we present a methodological framework-Sequential Conversational Analysis (SCA)-a mixed-method approach that integrates qualitative conversational analysis with quantitative sequential pattern analysis. We describe the SCA approach and provide a detailed example as a proof of concept of its use for the analysis of nurse handoff communication in a medical intensive care unit. This novel approach allows us to characterize the conversational structure, clinical content, disruptions in the conversation, and the inherently phasic nature of nurse handoff communication. The characterization of communication patterns highlights the relationships underlying the verbal content of nurse handoffs with specific emphasis on: the interactive nature of conversation, relevance of role-based (incoming, outgoing) communication requirements, clinical content focus on critical patient-related events, and discussion of pending patient management tasks. We also discuss the applicability of the SCA approach as a method for providing in-depth understanding of the dynamics of communication in other settings and domains. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Flow cytometry as a novel tool for structural and functional characterization of isolated yeast vacuoles.

    Science.gov (United States)

    Rodrigues, Jorge; Silva, Rui D; Noronha, Henrique; Pedras, Andreia; Gerós, Hernâni; Côrte-Real, Manuela

    2013-05-01

    The yeast vacuole is functionally analogous to the mammalian lysosome. Both play important roles in fundamental cellular processes such as protein degradation, detoxification, osmoregulation, autophagy and apoptosis which, when deregulated in humans, can lead to several diseases. Some of these vacuolar roles are difficult to study in a cellular context, and therefore the use of a cell-free system is an important approach to gain further insight into the different molecular mechanisms required for vacuolar function. In the present study, the potentialities of flow cytometry for the structural and functional characterization of isolated yeast vacuoles were explored. The isolation protocol resulted in a yeast vacuolar fraction with a degree of purity suitable for cytometric analysis. Moreover, isolated vacuoles were structurally and functionally intact and able to generate and maintain electrochemical gradients of ions across the vacuolar membrane, as assessed by flow cytometry. Proton and calcium gradients were dissipated by NH4Cl and calcimycin, respectively. These results established flow cytometry as a powerful technique for the characterization of isolated vacuoles. The protocols developed in this study can also be used to enhance our understanding of several molecular mechanisms underlying the development of lysosome-related diseases, as well as provide tools to screen for new drugs that can modulate these processes, which have promising clinical relevance.

  8. Magnetic nanocomposites based on phosphorus-containing polymers—structural characterization and thermal analysis

    Science.gov (United States)

    Alosmanov, R. M.; Szuwarzyński, M.; Schnelle-Kreis, J.; Matuschek, G.; Magerramov, A. M.; Azizov, A. A.; Zimmermann, R.; Zapotoczny, S.

    2018-04-01

    Fabrication of magnetic nanocomposites containing iron oxide nanoparticles formed in situ within a phosphorus-containing polymer matrix as well as its structural characterization and its thermal degradation is reported here. Comparative structural studies of the parent polymer and nanocomposites were performed using FTIR spectroscopy, x-ray diffraction, and atomic force microscopy. The results confirmed the presence of dispersed iron oxide magnetic nanoparticles in the polymer matrix. The formed composite combines the properties of porous polymer carriers and magnetic particles enabling easy separation and reapplication of such polymeric carriers used in, for example, catalysis or environmental remediation. Studies on thermal degradation of the composites revealed that the process proceeds in three stages while a significant influence of the embedded magnetic particles on that process was observed in the first two stages. Magnetic force microscopy studies revealed that nanocomposites and its calcinated form have strong magnetic properties. The obtained results provide a comprehensive characterization of magnetic nanocomposites and the products of their calcination that are important for their possible applications as sorbents (regeneration conditions, processing temperature, disposal, etc).

  9. Magnetic nanocomposites based on phosphorus-containing polymers-structural characterization and thermal analysis.

    Science.gov (United States)

    Alosmanov, R M; Szuwarzyński, M; Schnelle-Kreis, J; Matuschek, G; Magerramov, A M; Azizov, A A; Zimmermann, R; Zapotoczny, S

    2018-04-03

    Fabrication of magnetic nanocomposites containing iron oxide nanoparticles formed in situ within a phosphorus-containing polymer matrix as well as its structural characterization and its thermal degradation is reported here. Comparative structural studies of the parent polymer and nanocomposites were performed using FTIR spectroscopy, x-ray diffraction, and atomic force microscopy. The results confirmed the presence of dispersed iron oxide magnetic nanoparticles in the polymer matrix. The formed composite combines the properties of porous polymer carriers and magnetic particles enabling easy separation and reapplication of such polymeric carriers used in, for example, catalysis or environmental remediation. Studies on thermal degradation of the composites revealed that the process proceeds in three stages while a significant influence of the embedded magnetic particles on that process was observed in the first two stages. Magnetic force microscopy studies revealed that nanocomposites and its calcinated form have strong magnetic properties. The obtained results provide a comprehensive characterization of magnetic nanocomposites and the products of their calcination that are important for their possible applications as sorbents (regeneration conditions, processing temperature, disposal, etc).

  10. Structural characterization and antimicrobial activities of transition metal complexes of a hydrazone ligand

    Science.gov (United States)

    Bakale, Raghavendra P.; Naik, Ganesh N.; Machakanur, Shrinath S.; Mangannavar, Chandrashekhar V.; Muchchandi, Iranna S.; Gudasi, Kalagouda B.

    2018-02-01

    A hydrazone ligand has been synthesized by the condensation of 2-nitrobenzaldehyde and hydralazine, and its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been reported. Structural characterization of the ligand and its metal complexes has been performed by various spectroscopic [IR, NMR, UV-Vis, Mass], thermal and other physicochemical methods. The structure of the ligand and its Ni(II) complex has been characterized by single crystal X-ray diffraction studies. All the synthesized compounds have been screened for in vitro antimicrobial activity. The antibacterial activity is tested against Gram-positive strains Enterococcus faecalis, Streptococcus mutans and Staphylococcus aureus and Gram-negative strains Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae using ciprofloxacin as the reference standard. Antifungal activity is tested against Candida albicans, Aspergillus fumigatus and Aspergillus niger using ketoconazole as the reference standard. The minimum inhibitory concentration (MIC) was determined for test compounds as well as for reference standard. Ligand, Cu(II) and Zn(II) complexes have shown excellent activity against Candida albicans.

  11. Structural and kinetic characterization of two 4-oxalocrotonate tautomerases in Methylibium petroleiphilum strain PM1.

    Science.gov (United States)

    Terrell, Cassidy R; Burks, Elizabeth A; Whitman, Christian P; Hoffman, David W

    2013-09-01

    Methylibium petroleiphilum strain PM1 uses various petroleum products including the fuel additive methyl tert-butyl ether and straight chain and aromatic hydrocarbons as sole carbon and energy sources. It has two operons, dmpI and dmpII, that code for the enzymes in a pair of parallel meta-fission pathways. In order to understand the roles of the pathways, the 4-oxalocrotonate tautomerase (4-OT) isozyme from each pathway was characterized. Tautomerase I and tautomerase II have the lowest pairwise sequence identity (35%) among the isozyme pairs in the parallel pathways, and could offer insight into substrate preferences and pathway functions. The kinetic parameters of tautomerase I and tautomerase II were determined using 2-hydroxymuconate and 5-(methyl)-2-hydroxymuconate. Both tautomerase I and tautomerase II process the substrates, but with different efficiencies. Crystal structures were determined for both tautomerase I and tautomerase II, at 1.57 and 1.64Å resolution, respectively. The backbones of tautomerase I and tautomerase II are highly similar, but have distinct active site environments. The results, in combination with those for other structurally and kinetically characterized 4-OT isozymes, suggest that tautomerase I catalyzes the tautomerization of both 2-hydroxymuconate and alkyl derivatives, whereas tautomerase II might specialize in other aromatic hydrocarbon metabolites. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Structural and Functional Characterization of Recombinant Interleukin-10 from Indian Major Carp Labeo rohita

    Directory of Open Access Journals (Sweden)

    Sweta Karan

    2016-01-01

    Full Text Available Interleukin-10, an important regulator of both the innate and adaptive immune systems, is a multifunctional major cytokine. Though it is one of the major cytokines, IL-10 from the Indian major carp, Labeo rohita, has not yet been characterized. In the present study, we report large scale production and purification of biologically active recombinant IL-10 of L. rohita (rLrIL-10 using a heterologous expression system and its biophysical and functional characterization. High yield (~70 mg/L of soluble rLrIL-10 was obtained at shake flask level. The rLrIL-10 was found to exist as a dimer. Far-UV CD spectroscopy showed presence of predominantly alpha helices. The tertiary structure of the purified rLrIL-10 was verified by fluorescence spectroscopy. Two-dimensional gel analysis revealed the presence of six isoforms of the rLrIL-10. The rLrIL-10 was biologically active and its administration significantly reduced serum proinflammatory cytokines, namely, interleukin 1β, TNFα, and IL-8, and augmented the NKEF transcript levels in spleen of L. rohita. Anti-inflammatory role of the rLrIL-10 was further established by inhibition of phagocytosis using NBT reduction assay in vitro. The data indicate that the dimeric alpha helical structure and function of IL-10 of L. rohita as a key regulator of anti-inflammatory response have remained conserved during evolution.

  13. Streptococcus pneumoniae TIGR4 Flavodoxin: Structural and Biophysical Characterization of a Novel Drug Target.

    Science.gov (United States)

    Rodríguez-Cárdenas, Ángela; Rojas, Adriana L; Conde-Giménez, María; Velázquez-Campoy, Adrián; Hurtado-Guerrero, Ramón; Sancho, Javier

    2016-01-01

    Streptococcus pneumoniae (Sp) strain TIGR4 is a virulent, encapsulated serotype that causes bacteremia, otitis media, meningitis and pneumonia. Increased bacterial resistance and limited efficacy of the available vaccine to some serotypes complicate the treatment of diseases associated to this microorganism. Flavodoxins are bacterial proteins involved in several important metabolic pathways. The Sp flavodoxin (Spfld) gene was recently reported to be essential for the establishment of meningitis in a rat model, which makes SpFld a potential drug target. To facilitate future pharmacological studies, we have cloned and expressed SpFld in E. coli and we have performed an extensive structural and biochemical characterization of both the apo form and its active complex with the FMN cofactor. SpFld is a short-chain flavodoxin containing 146 residues. Unlike the well-characterized long-chain apoflavodoxins, the Sp apoprotein displays a simple two-state thermal unfolding equilibrium and binds FMN with moderate affinity. The X-ray structures of the apo and holo forms of SpFld differ at the FMN binding site, where substantial rearrangement of residues at the 91-100 loop occurs to permit cofactor binding. This work will set up the basis for future studies aiming at discovering new potential drugs to treat S. pneumoniae diseases through the inhibition of SpFld.

  14. Unusual Lipid A from a Cold-Adapted Bacterium: Detailed Structural Characterization.

    Science.gov (United States)

    Casillo, Angela; Ziaco, Marcello; Lindner, Buko; Parrilli, Ermenegilda; Schwudke, Dominik; Holgado, Aurora; Verstrepen, Lynn; Sannino, Filomena; Beyaert, Rudi; Lanzetta, Rosa; Tutino, Maria Luisa; Corsaro, Maria Michela

    2017-09-19

    Colwellia psychrerythraea 34H is a Gram-negative cold-adapted microorganism that adopts many strategies to cope with the limitations associated with the low temperatures of its habitat. In this study, we report the complete characterization of the lipid A moiety from the lipopolysaccharide of Colwellia. Lipid A and its partially deacylated derivative were completely characterized by high-resolution mass spectrometry, NMR spectroscopy, and chemical analysis. An unusual structure with a 3-hydroxy unsaturated tetradecenoic acid as a component of the primary acylation pattern was identified. In addition, the presence of a partially acylated phosphoglycerol moiety on the secondary acylation site at the 3-position of the reducing 2-amino-2-deoxyglucopyranose unit caused tremendous natural heterogeneity in the structure of lipid A. Biological-activity assays indicated that C. psychrerythraea 34H lipid A did not show an agonistic or antagonistic effect upon testing in human macrophages. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: A review.

    Science.gov (United States)

    Mitić, Žarko; Stolić, Aleksandra; Stojanović, Sanja; Najman, Stevo; Ignjatović, Nenad; Nikolić, Goran; Trajanović, Miroslav

    2017-10-01

    A review of recent advances in instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue is presented in this paper. In recent years, biomaterials attracted great attention primarily because of the wide range of biomedical applications. This paper focuses on the practical aspects of instrumental methods and techniques that were most often applied (X-ray methods, vibrational spectroscopy (IR and Raman), magnetic-resonance spectroscopy (NMR and ESR), mass spectrometry (MS), atomic absorption spectrometry (AAS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES), thermogravimetry (TG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM)) in the structural investigation and physicochemical characterization of biomaterials and bone tissue. The application of some other physicochemical methods was also discussed. Hands-on information is provided about these valuable research tools, emphasizing practical aspects such as typical measurement conditions, their limitations and advantages, interpretation of results and practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Thermophysical characterization tools and numerical models for high temperature thermo-structural composite materials

    International Nuclear Information System (INIS)

    Lorrette, Ch.

    2007-04-01

    This work is an original contribution to the study of the thermo-structural composite materials thermal behaviour. It aims to develop a methodology with a new experimental device for thermal characterization adapted to this type of material and to model the heat transfer by conduction within these heterogeneous media. The first part deals with prediction of the thermal effective conductivity of stratified composite materials in the three space directions. For that, a multi scale model using a rigorous morphology analysis of the structure and the elementary properties is proposed and implemented. The second part deals with the thermal characterization at high temperature. It shows how to estimate simultaneously the thermal effusiveness and the thermal conductivity. The present method is based on the observation of the heating from a plane sample submitted to a continuous excitation generated by Joule Effect. Heat transfer is modelled with the quadrupole formalism, temperature is here measured on two sides of the sample. The development of both resistive probes for excitation and linear probes for temperature measurements enables the thermal properties measured up to 1000 C. Finally, some experimental and numerical application examples lead to review the obtained results. (author)

  17. Chemical and structural characterization of char development during lignocellulosic biomass pyrolysis.

    Science.gov (United States)

    Mafu, Lihle D; Neomagus, Hein W J P; Everson, Raymond C; Strydom, Christien A; Carrier, Marion; Okolo, Gregory N; Bunt, John R

    2017-11-01

    The chemical and structural changes of three lignocellulosic biomass samples during pyrolysis were investigated using both conventional and advanced characterization techniques. The use of ATR-FTIR as a characterization tool is extended by the proposal of a method to determine aromaticity, the calculation of both CH 2 /CH 3 ratio and the degree of aromatic ring condensation ((R/C) u ). With increasing temperature, the H/C and O/C ratios, X A and CH 2 /CH 3 ratio decreased, while (R/C) u and aromaticity increased. The micropore network developed with increasing temperature, until the coalescence of pores at 1100°C, which can be linked to increasing carbon densification, extent of aromatization and/or graphitization of the biomass chars. WAXRD-CFA measurements indicated the gradual formation of nearly parallel basic structural units with increasing carbonization temperature. The char development can be considered to occur in two steps: elimination of aliphatic compounds at low temperatures, and hydrogen abstraction and aromatic ring condensation at high temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Tunable mechanical monolithic sensors for large band low frequency monitoring and characterization of sites and structures

    Science.gov (United States)

    Barone, F.; Giordano, G.; Acernese, F.; Romano, R.

    2016-10-01

    Among the different mechanical architectures present in literature, the Watts linkage is one of the most promising ones for the implementation of a new class of mechanical accelerometers (horizontal, vertical and angular). In this paper, we present monolithic implementations of uniaxial and triaxial mechanical seismometers and accelerometers based on the UNISA Folded Pendulum mechanical configuration, optimized for low frequency characterization of sites (including underground sites) and structures as inertial sensor (seismometer). This mechanical architecture allows the design and implementation of very large band monolithic sensors (10-7Hz 102 Hz), whose sensitivities for the most common applications are defined by the noise introduced by their readouts (e.g. ¡ 10-12 m/sqrt(Hz) with classical LVDT readouts). These unique features, coupled other relevant properties like scalability, compactness, lightness, high directivity, frequency tunability (typical resonance frequencies in the band 10-1 Hz 102 Hz), very high immunity to environmental noises and low cost make this class of sensors very effective for the implementation of uniaxial (horizontal and/or vertical) and triaxial seismometers and accelerometers for ground, space and underwater applications, including UHV and cryogenics ones. Typical applications of this class of monolithic sensors are in the field of earthquake engineering, seismology, geophysics, civil engineering, characterization of sites (including underground sites), structures (e.g. buildings, bridges, historical monuments), and, in general, in all applications requiring large band-low frequency performances coupled with high sensitivities and compactness.

  19. Crystal structure and characterization of a novel L-serine ammonia-lyase from Rhizomucor miehei

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhen [College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center of Food Nutrition and Human Health, China Agricultural University, Beijing 100083 (China); Yan, Qiaojuan [College of Engineering, China Agricultural University, Beijing 100083 (China); Ma, Qingjun [Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Jiang, Zhengqiang, E-mail: zhqjiang@cau.edu.cn [College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center of Food Nutrition and Human Health, China Agricultural University, Beijing 100083 (China)

    2015-10-23

    L-serine ammonia-lyase, as a member of the β-family of pyridoxal-5′-phosphate (PLP) dependent enzymes, catalyzes the conversion of L-serine (L-threonine) to pyruvate (α-ketobutyrate) and ammonia. The crystal structure of L-serine ammonia-lyase from Rhizomucor miehei (RmSDH) was solved at 1.76 Å resolution by X-ray diffraction method. The overall structure of RmSDH had the characteristic β-family PLP dependent enzyme fold. It consisted of two distinct domains, both of which show the typical open twisted α/β structure. A PLP cofactor was located in the crevice between the two domains, which was attached to Lys52 by a Schiff-base linkage. Unique residue substitutions (Gly78, Pro79, Ser146, Ser147 and Thr312) were discovered at the catalytic site of RmSDH by comparison of structures of RmSDH and other reported eukaryotic L-serine ammonia-lyases. Optimal pH and temperature of the purified RmSDH were 7.5 and 40 °C, respectively. It was stable in the pH range of 7.0–9.0 and at temperatures below 40 °C. This is the first crystal structure of a fungal L-serine ammonia-lyase. It will be useful to study the catalytic mechanism of β-elimination enzymes and will provide a basis for further enzyme engineering. - Highlights: • The crystal structure of a fungal L-serine ammonia-lyase (RmSDH) was solved. • Five unique residue substitutions are found at the catalytic site of RmSDH. • RmSDH was expressed in Pichia. pastoris and biochemically characterized. • RmSDH has potential application in splitting D/L-serine.

  20. The synthesis, characterization, crystal structure and theoretical calculations of a new meso-BOBIPY substituted phthalonitrile

    International Nuclear Information System (INIS)

    Sen, Pinar; Yildiz, S. Zeki; Atalay, Yusuf; Dege, Necmi; Demirtas, Günes

    2014-01-01

    A novel 4-(2-meso-BOBIPY-phenoxy)phthalonitrile (6) derivative has been synthesized starting from BF 3 –OEt 2 complex and 4-(2-meso-dipyrromethene-phenoxy)phthalonitrile (5) which was prepared by the oxidation of 4-(2-meso-dipyrromethane-phenoxy)phthalonitrile (4). The final product exhibit noticeable spectroscopic properties which were examined by its absorption and fluorescence emission spectra. The original compounds prepared in the reaction pathway were characterized by the combination of FT-IR, 1 H and 13 C NMR, UV–vis, MS and HRMS spectral data. The final product (6) was obtained as single crystal which crystallized in the triclinic space group P-1 with a=7.9411 (6) Å, b=9.0150 (6) Å, c=14.419 (1) Å, α=74.917 (5)°, β=86.824 (6)°, γ=84.109 (5)° and Z=2. The crystal structure has intermolecular C–H···F–B and C–H···N interactions. These interactions construct bifurcated hydrogen bonds in the crystal structure. In this study, It has been calculated; molecular structure, vibrational frequencies, 1 H and 13 C NMR chemical shifts and HOMO and LUMO energies of the title compound by using B3LYP method with 6–311++G(dp) basis set, and the electronic spectral characterization was investigated for the target product, as well. - Highlights: • A novel 4-(2-meso-BOBIPY-phenoxy)phthalonitrile derivative has been synthesized. • The title product exhibit noticeable spectroscopic properties which were examined by its absorption and fluorescence emission spectra. • The final product (6) was obtained as single crystal which crystallized in the triclinic space group. • Molecular structure, vibrational frequencies, 1 H and 13 C NMR chemical shifts and HOMO and LUMO energies of the title compound were calculated theoretically. • The electronic spectral characterization was investigated, as well. • The title compound is also open to prepare further BODIPY substituted oligomeric molecules via on it

  1. Structural and morphological TEM characterization of GaAs based nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Soda, Marcello

    2012-02-03

    The question of a structural and morphological characterization of GaAs based nanowires is the research interest of this thesis. For this purpose standard and analytical transmission electron microscopy techniques were employed. New investigation methodologies are introduced in order to obtain a reliable interpretation of the results. The principal motivation on developing a new investigation method is the necessity to relate the results of crystal structure and morphology characterizations to microscopic and NW-specific parameters and not to macroscopic and general growth parameters. This allows a reliable comparison of NW characteristics and enhances the comprehension of their growth mechanism.The analysis of the results on crystal structure investigations, assuming this new perspective, delivers the fundamental finding that the axial growth of Au-assisted GaAs NWs can change in a pseudo Ga-assisted growth due to a non steady-state regime of the Ga accumulation process in the liquid droplet. The attempt to associate the observed crystal structures to one of these two growth modes reveals that zinc blende segments are most probably generated when a pseudo Ga-assisted growth occurs. This experimental evidence is in accordance with investigations developed by Glas et al. and Spirkoska et al. and with the current understanding of the NW growth mechanism and unifies the interpretation of catalytic growth of GaAs NWs. A Mn doped GaAs shell deposited at low temperature on core GaAs NWs is characterized for the first time. The growth is found to be epitaxial and to confer the quality of the core crystal to the shell crystal. As a consequence a high stacking fault density of the core NW limits the temperature of the shell growth due to the formation of clusters. Cross sections of (Ga,Mn)As shells are investigated. Simple kinetic and thermodynamical considerations lead to the conclusion of morphological instability of the low temperature radial growth. Analytical

  2. Characterization of μc-Si:H/a-Si:H tandem solar cell structures by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Murata, Daisuke; Yuguchi, Tetsuya; Fujiwara, Hiroyuki

    2014-01-01

    In order to perform the structural characterization of Si thin-film solar cells having submicron-size rough textured surfaces, we have developed an optical model that can be utilized for the spectroscopic ellipsometry (SE) analysis of a multilayer solar cell structure consisting of hydrogenated amorphous silicon (a-Si:H) and microcrystalline silicon (μc-Si:H) layers fabricated on textured SnO 2 :F substrates. To represent the structural non-uniformity in the textured structure, the optical response has been calculated from two regions with different thicknesses of the Si layers. Moreover, in the optical model, the interface layers are modeled by multilayer structures assuming two-phase composites and the volume fractions of the phases in the layers are controlled by the structural curvature factor. The polarized reflection from the μc-Si:H layer that shows extensive surface roughening during the growth has also been modeled. In this study, a state-of-the-art solar cell structure with the textured μc-Si:H (2000 nm)/ZnO (100 nm)/a-Si:H (200 nm)/SnO 2 :F/glass substrate structure has been characterized. The μc-Si:H/a-Si:H textured structure deduced from our SE analysis shows remarkable agreement with that observed by transmission electron microscopy. From the above results, we have demonstrated the high-precision characterization of highly-textured μc-Si:H/a-Si:H solar cell structures. - Highlights: • Characterization of textured μc-Si:H/a-Si:H solar cell structures by ellipsometry • A new optical model using surface area and multilayer models • High precision characterization of submicron-range rough interface structures

  3. Assessment of the excitelet algorithm for in-situ mechanical characterization of orthotropic structures

    Science.gov (United States)

    Ostiguy, Pierre-Claude; Quaegebeur, Nicolas; Masson, Patrice

    2012-04-01

    Damage detection and localization on composites can be impaired by inaccurate knowledge of the mechanical properties of the structure. This paper demonstrates the feasibility of using a chirplet-based correlation technique, called Excitelet, to evaluate the mechanical properties of orthotropic carbon fibre-based composite laminates. The method relies on the identification of an optimal correlation coefficient between measured and simulated dispersed signals measured on a structure using piezoceramic (PZT) transducers. Finite Element Model (FEM) is first conducted to demonstrate the capability of the approach to evaluate the mechanical properties of a composite structure. Experimental validation is then conducted on a unidirectionnal 2.30 mm thick laminate composed of unidirectional plies and a 2.35 mm thick laminate composed of unidirectional plies oriented at [0, 90]4s. Surface bonded PZT transducers were used both for actuation and sensing of guided waves bursts measured at 0° and 90° with respect to upper ply fibre orientation. The characterization is performed at various frequencies below 100 kHz using A0 or S0 modes and comparison with the material properties measured following ASTM standard testing is presented. The results indicate that large correlation coefficients are obtained between the measurements and simulated signals for both A0 and S0 modes when accurate properties are used as inputs for the model. Strategies based on multiple modes correlation are also assessed in order to improve the accuracy of the characterization approach. The results obtained using the proposed approach for the unidirectional plate and most of the results obtained using the proposed approach for the [0, 90]4s laminate are in agreement with the uncertainty associated with ASTM tests results while the proposed method is non destructive and can be performed prior to each imaging processing.

  4. Remote Characterization of Forest Structure Using 5 and 10m SPOT-5 Satellite Data

    Science.gov (United States)

    Wolter, P. T.; Townsend, P. A.; Sturtevant, B. R.

    2008-12-01

    Comprehensive understanding of forest dynamics at regional or biome scales is linked to our ability to accurately characterize forest ecosystems over increasingly large areas using remote sensing. LIDAR technology, although promising, is currently not yet viable for repeated regional accounting, necessitating the development of methods which take advantage of existing spaceborne assets. As such, our objective is to estimate a comprehensive set of forest structural attributes at a finer spatial grain size (10 m) over a broader area than is currently available. We employ neighborhood statistics (standard deviation, variance, sill variance, and ratios of these metrics at 5 and 10m) calculated from SPOT-5 data and derivatives to estimate and map forest structural characteristics. A partial least squares (PLS) regression approach was used with the local statistics and field data to produce models for pixel-wise estimation and mapping of mean values, respectively, for deciduous and coniferous forest canopy diameter (R2 = 0.82 and 0.93), tree height (R2 = 0.69 and 0.92), height of live crown (R2 = 0.58 and 0.81), canopy closure (R2 = 0.52 and 0.68), bole diameter at breast height (R2 = 0.82 and 0.90), and basal area (R2 = 0.71 and 0.74) for a 3,660 km2 area in northeast Minnesota. This approach for quantifying forest structure is robust in the sense that a detailed forest cover type map is not required at any step in the process. Hence, we show that multi-resolution SPOT-5 data may be used as a practical alternative to LIDAR for regional characterization of forest biophysical parameters.

  5. Geological heterogeneity: Goal-oriented simplification of structure and characterization needs

    Science.gov (United States)

    Savoy, Heather; Kalbacher, Thomas; Dietrich, Peter; Rubin, Yoram

    2017-11-01

    Geological heterogeneity, i.e. the spatial variability of discrete hydrogeological units, is investigated in an aquifer analog of glacio-fluvial sediments to determine how such a geological structure can be simplified for characterization needs. The aquifer analog consists of ten hydrofacies whereas the scarcity of measurements in typical field studies precludes such detailed spatial models of hydraulic properties. Of particular interest is the role of connectivity of the hydrofacies structure, along with its effect on the connectivity of mass transport, in site characterization for predicting early arrival times. Transport through three realizations of the aquifer analog is modeled with numerical particle tracking to ascertain the fast flow channel through which early arriving particles travel. Three simplification schemes of two-facies models are considered to represent the aquifer analogs, and the velocity within the fast flow channel is used to estimate the apparent hydraulic conductivity of the new facies. The facies models in which the discontinuous patches of high hydraulic conductivity are separated from the rest of the domain yield the closest match in early arrival times compared to the aquifer analog, but assuming a continuous high hydraulic conductivity channel connecting these patches yields underestimated early arrivals times within the range of variability between the realizations, which implies that the three simplification schemes could be advised but pose different implications for field measurement campaigns. Overall, the results suggest that the result of transport connectivity, i.e. early arrival times, within realistic geological heterogeneity can be conserved even when the underlying structural connectivity is modified.

  6. Synchrotron radiation based multi-scale structural characterization of CoPt{sub 3} colloidal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zargham, Ardalan

    2010-08-05

    Bimetallic CoPt{sub 3} nanoparticles represent a category of colloidal nanoparticles with high application potentials in, e.g., heterogeneous catalysis, sensor technology, and magnetic storage media. Deposition of this system on functionalized supports delivers opportunities for controlled immobilization of the nanoparticles. In this work, self-assembled monolayers (SAMs) of n-alkanethiol molecules served as functionalizing material for the Au covered Si substrates. Deposition of the ligand-terminated nanoparticles took place by means of spin and dip coating and has been optimized for each of the mentioned methods so that monolayers of nanoparticles on supports were fabricated with a well-controlled coverage The morphology of the nanoparticle film arranged is addressed by grazing-incidence small angle x-ray scattering (GISAXS). This together with x-ray standing waves in total external reflection (TER-XSW) enables a 3D structural characterization of such nanoparticle films, so that the mean particle size, mean distance of the arranged nanoparticle films to the substrate, as well as the mean particle-particle distance in lateral direction have been determined. TER-XSW, being an element-specific position-sensitive method, also reveals the elemental distribution of the particles which complementary provides a fundamental understanding of their internal structure. The CoPt{sub 3} nanoparticles investigated here exhibit a core-shell-like structure with cores of CoPt{sub 3} and shells mainly comprise Co. The results regarding the internal structure of the nanoparticles were then verified by extended X-ray absorption fine structure (EXAFS) measurements. (orig.)

  7. Structural characterization of complex O-linked glycans from insect-derived material.

    Science.gov (United States)

    Garenaux, Estelle; Maes, Emmanuel; Levêque, S; Brassart, Colette; Guerardel, Yann

    2011-07-01

    Although insects are among the most diverse groups of the animal kingdom and may be found in nearly all environments, one can observe an obvious lack of structural data on their glycosylation ability. Hymenoptera is the second largest of all insect orders with more than 110,000 identified species and includes the most famous examples of social insects' species such as wasps, bees and ants. In this report, the structural variety of O-glycans has been studied in two Hymenoptera species. In a previous study, we showed that major O-glycans from common wasp (Vespula germanica) salivary mucins correspond to T and Tn antigen, eventually substituted by phosphoethanolamine or phosphate groups. More detailed structural analysis performed by mass spectrometry revealed numerous minor O-glycan structures bearing Gal, GlcNAc, GalNAc and Fuc residues. Thus, in order to investigate glycosylation diversity in insects, we used common wasp nest (V. germanica) and hornet nest (Vespa cabro) as starting materials. These materials were submitted to reductive β-elimination and the released oligosaccharide-alditols further fractionated by multidimensional HPLC. Tandem mass spectrometry analyses combined with NMR data revealed the presence of various families of complex O-glycans differing accordingly to both core structures and external motifs. Glycans from wasp were characterized by the presence of core types 1 and 2, Lewis X and internal Gal-Gal motifs. We also observed unusual O-glycans containing a reducing GalNAc unit directly substituted by a fucose residue. In contrast, hornet O-glycans appeared as a rather homogeneous family of core 1 type O-glycans extended by galactose oligomers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Structural characterization of Bacillus subtilis membrane protein Bmr: an in silico approach.

    Science.gov (United States)

    Nargotra, Amit; Rukmankesh; Ali, Shakir; Koul, Surrinder

    2014-01-01

    Efflux pump--a membrane protein belonging to Major Facilitator (MF) family and associated with Multi Drug Resistance (MDR) has been a major factor in drug resistance of bacteria. In the era when no new effective antibiotic had been reported for years, the detailed study of these membrane proteins became imperative in order to improve the efficacy of existing drugs. The Bacillus subtilis membrane protein Bmr belongs to the super family of major facilitator proteins and is one of the first-discovered bacterial multidrug-efflux transporters. Development of Bmr inhibitors (B. subtilis) for least resistance, better drug sustainability and effective cellular activity requires three dimensional structure of this protein which has not yet been determined. In this communication structural characterization of this important efflux pump has been attempted using in silico approaches. The modeled structure of Bmr has been found to have 12 main helical segments interspersed by loops of variable lengths at regular intervals with both N- and C-termini on the same side of membrane. Docking of the known inhibitor reserpine on to the predicted structure of Bmr and its mutants signified the importance of the residues Phe143, Val286 and Phe306 in the interaction with the ligand. Besides this, the role of Arg313 and Phe309 in the H-bond formation and π-π interaction respectively, with reserpine was the new significant finding based on the interaction studies. The structure elucidation of Bmr and the role of these residues in binding to the ligand are expected to have a great impact on the efflux pump inhibition studies around the world and hence in the efficiency of the existing antibiotic drugs.

  9. A novel embeddable spherical smart aggregate for structural health monitoring: part I. Fabrication and electrical characterization

    Science.gov (United States)

    Kong, Qingzhao; Fan, Shuli; Bai, Xiaolong; Mo, Y. L.; Song, Gangbing

    2017-09-01

    Recently developed piezoceramic-based transducers, known as smart aggregates (SAs), have shown their applicability and versatility in various applications of structural health monitoring (SHM). The lead zirconate titanate (PZT) patches embedded inside SAs have different modes that are more suitable for generating or receiving different types of stress waves (e.g. P and S waves, each of which has a unique role in SHM). However, due to the geometry of the 2D PZT patch, the embedded SA can only generate or receive the stress wave in a single direction and thus greatly limits its applications. This paper is the first of a series of two companion papers that introduces the authors’ latest work in developing a novel, embeddable spherical smart aggregate (SSA) for the health monitoring of concrete structures. In addition to the 1D guided wave produced by SA, the SSA embedded in concrete structures can generate or receive omni-directional stress waves that can significantly improve the detection aperture and provide additional functionalities in SHM. In the first paper (Part I), the detailed fabrication procedures with the help of 3D printing technology and electrical characterization of the proposed SSA is presented. The natural frequencies of the SSA were experimentally obtained and further compared with the numerical results. In addition, the influence of the components’ thickness (spherical piezoceramic shell and epoxy) and outer radius (spherical piezoceramic shell and protection concrete) on the natural frequencies of the SSA were analytically studied. The results will help elucidate the key parameters that determine the natural frequencies of the SSA. The natural frequencies of the SSA can thus be designed for suitability in the damage detection of concrete structures. In the second paper (Part II), further numerical and experimental verifications on the performance of the proposed SSA in concrete structures will be discussed.

  10. Characterization of the Fe-Doped Mixed-Valent Tunnel Structure 2 Manganese Oxide KOMS-2

    Energy Technology Data Exchange (ETDEWEB)

    Hanson J. C.; Shen X.; Morey A.M.; Liu J.; Ding Y.; Cai J.; Durand J.; Wang Q.; Wen W.; Hines W.A.; Bai J.; Frenkel A.I.; Reiff W.; Aindow M.; Suib S.L.

    2011-11-10

    A sol-gel-assisted combustion method was used to prepare Fe-doped manganese oxide octahedral molecular sieve (Fe-KOMS-2) materials with the cryptomelane structure. Characterization of the nanopowder samples over a wide range of Fe-doping levels (0 {le} Fe/Mn {le} 1/2) was carried out using a variety of experimental techniques. For each sample, Cu K{alpha} XRD and ICP-AES were used to index the cryptomelane structure and determine the elemental composition, respectively. A combination of SEM and TEM images revealed that the morphology changes from nanoneedle to nanorod after Fe doping. Furthermore, TGA scans indicated that the thermal stability is also enhanced with the doping. Anomalous XRD demonstrated that the Fe ions replace the Mn ions in the cryptomelane structure, particularly in the (211) planes, and results in a lattice expansion along the c axis, parallel to the tunnels. Reasonable fits to EXAFS data were obtained using a model based on the cryptomelane structure. Moessbauer spectra for selected Fe-KOMS-2 samples indicated that the Fe is present as Fe{sup 3+} in an octahedral environment similar to Mn in the MnO{sub 6} building blocks of KOMS-2. Magnetization measurements detected a small amount of {gamma}-Fe{sub 2}O{sub 3} second phase (e.g., 0.6 wt % for the Fe/Mn = 1/10 sample), the vast majority of the Fe being in the structure as Fe{sup 3+} in the high-spin state.

  11. Characterizing the physical and genetic structure of the lodgepole pine × jack pine hybrid zone: mosaic structure and differential introgression.

    Science.gov (United States)

    Cullingham, Catherine I; James, Patrick M A; Cooke, Janice E K; Coltman, David W

    2012-12-01

    Understanding the physical and genetic structure of hybrid zones can illuminate factors affecting their formation and stability. In north-central Alberta, lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia) and jack pine (Pinus banksiana Lamb) form a complex and poorly defined hybrid zone. Better knowledge of this zone is relevant, given the recent host expansion of mountain pine beetle into jack pine. We characterized the zone by genotyping 1998 lodgepole, jack pine, and hybrids from British Columbia, Alberta, Saskatchewan, Ontario, and Minnesota at 11 microsatellites. Using Bayesian algorithms, we calculated genetic ancestry and used this to model the relationship between species occurrence and environment. In addition, we analyzed the ancestry of hybrids to calculate the genetic contribution of lodgepole and jack pine. Finally, we measured the amount of gene flow between the pure species. We found the distribution of the pine classes is explained by environmental variables, and these distributions differ from classic distribution maps. Hybrid ancestry was biased toward lodgepole pine; however, gene flow between the two species was equal. The results of this study suggest that the hybrid zone is complex and influenced by environmental constraints. As a result of this analysis, range limits should be redefined.

  12. Structural characterization of cellulosic materials using x-ray and neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Penttila, P.

    2013-11-01

    Cellulosic biomass can be used as a feedstock for sustainable production of biofuels and various other products. A complete utilization of the raw material requires understanding on its structural aspects and their role in the various processes. In this thesis, x-ray and neutron scattering methods were applied to study the structure of various cellulosic materials and how they are affected in different processes. The obtained results were reviewed in the context of a model for the cellulose nanostructure. The dimensions of cellulose crystallites and the crystallinity were determined with wide-angle x-ray scattering (WAXS), whereas the nanoscale fibrillar structure of cellulose was characterized with small-angle x-ray and neutron scattering (SAXS and SANS). The properties determined with the small-angle scattering methods included specific surface areas and distances characteristic of the packing of cellulose microfibrils. Also other physical characterization methods, such as x-ray microtomography, infrared spectroscopy, and solid-state NMR were utilized in this work. In the analysis of the results, a comprehensive understanding of the structural changes throughout a range of length scales was aimed at. Pretreatment of birch sawdust by pressurized hot water extraction was observed to increase the crystal width of cellulose, as determined with WAXS, even though the cellulose crystallinity was slightly decreased. A denser packing of microfibrils caused by the removal of hemicelluloses and lignin in the extraction was evidenced by SAXS. This resulted in the opening of new pores between the microfibril bundles and an increase of the specific surface area. Enzymatic hydrolysis of microcrystalline cellulose (MCC) did not lead to differences in the average crystallinity or crystal size of the hydrolysis residues, which was explained to be caused by limitations due to the large size of the enzymes as compared to the pores inside the fibril aggregates. The SAXS intensities

  13. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Halavaty, Andrei S. [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States); Kim, Youngchang [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Minasov, George; Shuvalova, Ludmilla; Dubrovska, Ievgeniia; Winsor, James [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States); Zhou, Min [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Onopriyenko, Olena; Skarina, Tatiana [Center for Structural Genomics of Infectious Diseases, (United States); University of Toronto, Toronto, Ontario M5G 1L6 (Canada); Papazisi, Leka; Kwon, Keehwan; Peterson, Scott N. [Center for Structural Genomics of Infectious Diseases, (United States); J. Craig Venter Institute, Rockville, MD 20850 (United States); Joachimiak, Andrzej [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Savchenko, Alexei [Center for Structural Genomics of Infectious Diseases, (United States); University of Toronto, Toronto, Ontario M5G 1L6 (Canada); Anderson, Wayne F., E-mail: wf-anderson@northwestern.edu [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States)

    2012-10-01

    The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS. Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS{sub SA}), Vibrio cholerae (AcpS{sub VC}) and Bacillus anthracis (AcpS{sub BA}) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS{sub BA} is emphasized because of the two 3′, 5′-adenosine diphosphate (3′, 5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′, 5′-ADP is bound as the 3′, 5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′, 5′-ADP–AcpS binary complexes. The position of the second 3′, 5′-ADP has never been described before. It is in close proximity to the first 3′, 5′-ADP and the ACP-binding site. The coordination of two ADPs in AcpS{sub BA} may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.

  14. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria

    International Nuclear Information System (INIS)

    Halavaty, Andrei S.; Kim, Youngchang; Minasov, George; Shuvalova, Ludmilla; Dubrovska, Ievgeniia; Winsor, James; Zhou, Min; Onopriyenko, Olena; Skarina, Tatiana; Papazisi, Leka; Kwon, Keehwan; Peterson, Scott N.; Joachimiak, Andrzej; Savchenko, Alexei; Anderson, Wayne F.

    2012-01-01

    The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS. Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS SA ), Vibrio cholerae (AcpS VC ) and Bacillus anthracis (AcpS BA ) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS BA is emphasized because of the two 3′, 5′-adenosine diphosphate (3′, 5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′, 5′-ADP is bound as the 3′, 5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′, 5′-ADP–AcpS binary complexes. The position of the second 3′, 5′-ADP has never been described before. It is in close proximity to the first 3′, 5′-ADP and the ACP-binding site. The coordination of two ADPs in AcpS BA may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP

  15. Active and passive infrared thermography applied to the detection and characterization of hidden defects in structure

    Science.gov (United States)

    Dumoulin, Jean

    2013-04-01

    Infrared thermography for Non Destructive Testing (NDT) has encountered a wide spreading this last 2 decades, in particular thanks to emergence on the market of low cost uncooled infrared camera. So, infrared thermography is not anymore a measurement technique limited to laboratory application. It has been more and more involved in civil engineering and cultural heritage applications, but also in many other domains, as indicated by numerous papers in the literature. Nevertheless, laboratory, measurements are done as much as possible in quite ideal conditions (good atmosphere conditions, known properties of materials, etc.), while measurement on real site requires to consider the influence of not controlled environmental parameters and additional unknown thermal properties. So, dedicated protocol and additional sensors are required for measurement data correction. Furthermore, thermal excitation is required to enhance the signature of defects in materials. Post-processing of data requires to take into account the protocol used for the thermal excitation and sometimes its nature to avoid false detection. This analysis step is based on signal and image processing tool and allows to carry out the detection. Characterization of anomalies detected at the previous step can be done by additional signal processing in particular for manufactured objects. The use of thermal modelling and inverse method allows to determine properties of the defective area. The present paper will first address a review of some protocols currently in use for field measurement with passive and/or active infrared measurements. Illustrations in various experiments carried out on civil engineering structure will be shown and discussed. In a second part, different post-processing approaches will be presented and discussed. In particular, a review of the most standard processing methods like Fast Fourier Analysis, Principal Components Analysis, Polynomial Decomposition, defect characterization using

  16. Kinetic and structural characterization of bacterial glutaminyl cyclases from Zymomonas mobilis and Myxococcus xanthus.

    Science.gov (United States)

    Carrillo, David Ruiz; Parthier, Christoph; Jänckel, Nadine; Grandke, Julia; Stelter, Marco; Schilling, Stephan; Boehme, Mathias; Neumann, Piotr; Wolf, Raik; Demuth, Hans-Ulrich; Stubbs, Milton T; Rahfeld, Jens-Ulrich

    2010-12-01

    Although enzymes responsible for the cyclization of amino-terminal glutamine residues are present in both plant and mammal species, none have yet been characterized in bacteria. Based on low sequence homologies to plant glutaminyl cyclases (QCs), we cloned the coding sequences of putative microbial QCs from Zymomonas mobilis (ZmQC) and Myxococcus xanthus (MxQC). The two recombinant enzymes exhibited distinct QC activity, with specificity constants k(cat)/K(m) of 1.47±0.33 mm⁻¹ s⁻¹ (ZmQC) and 142±32.7 mm⁻¹ s⁻¹ (MxQC) towards the fluorescent substrate glutamine-7-amino-4-methyl-coumarine. The measured pH-rate profile of the second order rate constant displayed an interesting deviation towards the acidic limb of the pH chart in the case of ZmQC, whereas MxQC showed maximum activity in the mild alkaline pH range. Analysis of the enzyme variants ZmQCGlu⁴⁶Gln and MxQCGln⁴⁶Glu show that the exchanged residues play a significant role in the pH behaviour of the respective enzymes. In addition, we determined the three dimensional crystal structures of both enzymes. The tertiary structure is defined by a five-bladed β-propeller anchored by a core cation. The structures corroborate the putative location of the active site and confirm the proposed relation between bacterial and plant glutaminyl cyclases.

  17. Structural defects in cubic semiconductors characterized by aberration-corrected scanning transmission electron microscopy.

    Science.gov (United States)

    Arroyo Rojas Dasilva, Yadira; Kozak, Roksolana; Erni, Rolf; Rossell, Marta D

    2017-05-01

    The development of new electro-optical devices and the realization of novel types of transistors require a profound understanding of the structural characteristics of new semiconductor heterostructures. This article provides a concise review about structural defects which occur in semiconductor heterostructures on the basis of micro-patterned Si substrates. In particular, one- and two-dimensional crystal defects are being discussed which are due to the plastic relaxation of epitaxial strain caused by the misfit of crystal lattices. Besides a few selected examples from literature, we treat in particular crystal defects occurring in GaAs/Si, Ge/Si and β-SiC/Si structures which are studied by high-resolution annular dark-field scanning transmission electron microscopy. The relevance of this article is twofold; firstly, it should provide a collection of data which are of help for the identification and characterization of defects in cubic semiconductors by means of atomic-resolution imaging, and secondly, the experimental data shall provide a basis for advancing the understanding of device characteristics with the aid of theoretical modelling by considering the defective nature of strained semiconductor heterostructures. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Structural characterization of amphiphilic homopolymer micelles using light scattering, SANS, and cryo-TEM.

    Science.gov (United States)

    Patterson, Joseph P; Kelley, Elizabeth G; Murphy, Ryan P; Moughton, Adam O; Robin, Mathew; Lu, Annhelen; Colombani, Olivier; Chassenieux, Christophe; Cheung, David; Sullivan, Millicent O; Epps, Thomas H; O'Reilly, Rachel K

    2013-08-13

    We report the aqueous solution self-assembly of a series of poly(N-isopropylacrylamide) (PNIPAM) polymers end-functionalized with a hydrophobic sulfur-carbon-sulfur (SCS) pincer ligand. Although the hydrophobic ligand accounted for structural details were investigated using light scattering, cryogenic transmission electron microscopy (cryo-TEM), and small angle neutron scattering (SANS). Radial density profiles extracted from the cryo-TEM micrographs suggested that the PNIPAM chains formed a diffuse corona with a radially decreasing corona density profile and provided valuable a priori information about the micelle structure for SANS data modeling. SANS analysis indicated a similar profile in which the corona surrounded a small hydrophobic core containing the pincer ligand. The similarity between the SANS and cryo-TEM results demonstrated that detailed information about the micelle density profile can be obtained directly from cryo-TEM and highlighted the complementary use of scattering and cryo-TEM in the structural characterization of solution-assemblies, such as the SCS pincer-functionalized homopolymers described here.

  19. Structural characterization of lignin from leaf sheaths of "dwarf cavendish" banana plant.

    Science.gov (United States)

    Oliveira, Lúcia; Evtuguin, Dmitry V; Cordeiro, Nereida; Silvestre, Armando J D; Silva, Artur M S; Torres, Isabel C

    2006-04-05

    Dioxane lignin (DL) isolated from leaf sheaths of banana plant (Musa acuminata Colla var. cavendish) and in situ lignin were submitted to a comprehensive structural characterization employing spectroscopic (UV, FTIR, solid state 13C CP-MAS NMR, liquid state 13C and 1H NMR) and chemical degradation techniques (permanganate and nitrobenzene oxidation). Results obtained showed that banana plant leaf sheath lignin is of HGS type with a molar proportion of p-hydroxyphenyl (H)/guaiacyl (G)/syringyl (S) units of 12:25:63. Most of the H units in DL are terminal phenolic coumarates linked to other lignin substructures by benzyl and Cgamma-ester bonds in contrast to ferulates that are mainly ether linked to bulk lignin. It is proposed that banana plant leaf sheath lignin is chemically bonded to suberin-like components of cell tissues by ester linkages via essentially hydroxycinnamic acid residues. beta-O-4 structures (0.31/C6), the most abundant in DL, comprise mainly S units, whereas a significant proportion of G units is bonded by beta-5, 5-5', and 4-O-5' linkages contributing to ca. 80% of condensed structures in DL.

  20. In Silico Characterization and Structural Modeling of Dermacentor andersoni p36 Immunosuppressive Protein

    Directory of Open Access Journals (Sweden)

    Martin Omulindi Oyugi

    2018-01-01

    Full Text Available Ticks cause approximately $17–19 billion economic losses to the livestock industry globally. Development of recombinant antitick vaccine is greatly hindered by insufficient knowledge and understanding of proteins expressed by ticks. Ticks secrete immunosuppressant proteins that modulate the host’s immune system during blood feeding; these molecules could be a target for antivector vaccine development. Recombinant p36, a 36 kDa immunosuppressor from the saliva of female Dermacentor andersoni, suppresses T-lymphocytes proliferation in vitro. To identify potential unique structural and dynamic properties responsible for the immunosuppressive function of p36 proteins, this study utilized bioinformatic tool to characterize and model structure of D. andersoni p36 protein. Evaluation of p36 protein family as suitable vaccine antigens predicted a p36 homolog in Rhipicephalus appendiculatus, the tick vector of East Coast fever, with an antigenicity score of 0.7701 that compares well with that of Bm86 (0.7681, the protein antigen that constitute commercial tick vaccine Tickgard™. Ab initio modeling of the D. andersoni p36 protein yielded a 3D structure that predicted conserved antigenic region, which has potential of binding immunomodulating ligands including glycerol and lactose, found located within exposed loop, suggesting a likely role in immunosuppressive function of tick p36 proteins. Laboratory confirmation of these preliminary results is necessary in future studies.

  1. Structural characterization, α-glucosidase inhibitory and DPPH scavenging activities of polysaccharides from guava.

    Science.gov (United States)

    Zhang, Ziling; Kong, Fansheng; Ni, Hui; Mo, Zhixian; Wan, Jian-Bo; Hua, Dehong; Yan, Chunyan

    2016-06-25

    To explore the chemicals responsible for the health benefits of guava, water-soluble polysaccharides were extracted including GP90 and P90. They exhibited excellent α-glucosidase inhibition activity with an EC50 of 2.27μg/mL and 0.18mg/mL. This suggests that their activities were 1379- and 17-fold higher than the positive control. The DPPH scavenging activities of GP90 was even higher than Vc at some concentrations. Upon further isolation, a novel polysaccharide termed GB90-1B was obtained. Monosaccharide analysis, methylation analysis, and NMR were used to analyze the structural characterization of GB90-1B. Structural analysis revealed that its backbone consisted of (1→5)-linked-α-l-arabinose, (1→2,3,5)-linked-α-l-arabinose and (1→3)-linked-α-l-arabinose. Branch linkages included (1→6)-linked-α-d-glucose, (1→)-linked-α-d-glucose and (1→)-linked-α-l-arabinose. The structure of the repeating unit of GP90-1B was predicted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Particle Size and Pore Structure Characterization of Silver Nanoparticles Prepared by Confined Arc Plasma

    Directory of Open Access Journals (Sweden)

    Mingru Zhou

    2009-01-01

    Full Text Available In the protecting inert gas, silver nanoparticles were successfully prepared by confined arc plasma method. The particle size, microstructure, and morphology of the particles by this process were characterized via X-ray powder diffraction (XRD, transmission electron microscopy (TEM and the corresponding selected area electron diffraction (SAED. The N2 absorption-desorption isotherms of the samples were measured by using the static volumetric absorption analyzer, the pore structure of the sample was calculated by Barrett-Joyner-Halenda (BJH academic model, and the specific surface area was calculated from Brunauer-Emmett-Teller (BET adsorption equation. The experiment results indicate that the crystal structure of the samples is face-centered cubic (FCC structure the same as the bulk materials, the particle size distribution ranging from 5 to 65 nm, with an average particle size about 26 nm obtained by TEM and confirmed by XRD and BET results. The specific surface area is 23.81 m2/g, pore volumes are 0.09 cm3/g, and average pore diameter is 18.7 nm.

  3. Stable anilinyl radicals coordinated to nickel: X-ray crystal structure and characterization.

    Science.gov (United States)

    Kochem, Amélie; Gellon, Gisèle; Leconte, Nicolas; Baptiste, Benoit; Philouze, Christian; Jarjayes, Olivier; Orio, Maylis; Thomas, Fabrice

    2013-12-02

    Two anilinosalen and a mixed phenol-anilinosalen ligands involving sterically hindered anilines moieties were synthesized. Their nickel(II) complexes 1, 2, and 3 were prepared and characterized. They could be readily one-electron oxidized (E(1/2)=-0.30, -0.26 and 0.10 V vs. Fc(+)/Fc, respectively) into anilinyl radicals species [1](+), [2](+), and [3](+), respectively. The radical complexes are extremely stable and were isolated as single crystals. X-ray crystallographic structures reveal that the changes in bond length resulting from oxidation do not exceed 0.02 Å within the ligand framework in the symmetrical [1](+) and [2](+). No quinoid bond pattern was present. In contrast, larger structural rearrangements were evidenced for the unsymmetrical [3](+), with shortening of one C(ortho)-C(meta) bond. Radical species [1](+) and [2](+) exhibit a strong absorption band at around 6000 cm(-1) (class III mixed valence compounds). This band is significantly less intense than [3](+), consistent with a rather localized anilinyl radical character, and thus a classification of this species as class II mixed-valence compound. Magnetic and electronic properties, as well as structural parameters, have been computed by DFT methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. In situ structure characterization of airborne carbon nanofibres by a tandem mobility-mass analysis.

    Science.gov (United States)

    Ku, Bon Ki; Emery, Mark S; Maynard, Andrew D; Stolzenburg, Mark R; McMurry, Peter H

    2006-07-28

    Carbon nanofibres aerosolized by the agitation of as-produced commercial powder have been characterized in situ by using the differential mobility analyser-aerosol particle mass analyser (DMA-APM) method to determine their structural properties such as the effective density and fractal dimension for toxicology study. The effective density of the aerosolized carbon nanofibres decreased from 1.2 to 0.4 g cm(-3) as the mobility diameters increased from 100 to 700 nm, indicating that the carbon nanofibres had open structures with an overall void that increased with increasing diameter, due to increased agglomeration of the nanofibres. This was confirmed by transmission electron microscopy (TEM) observation, showing that 100 nm mobility diameter nanofibres were predominantly single fibres, while doubly or triply attached fibres were seen at mobility diameters of 200 and 400 nm. Effective densities calculated using Cox's theory were in reasonable agreement with experimental values. The mass fractal dimension of the carbon nanofibres was found to be 2.38 over the size range measured and higher than that of single-walled carbon nanotubes (SWCNTs), suggesting that the carbon nanofibres have more compact structure than SWCNTs.

  5. Structural and Immunological Activity Characterization of a Polysaccharide Isolated from Meretrix meretrix Linnaeus.

    Science.gov (United States)

    Li, Li; Li, Heng; Qian, Jianying; He, Yongfeng; Zheng, Jialin; Lu, Zhenming; Xu, Zhenghong; Shi, Jinsong

    2015-12-29

    Polysaccharides from marine clams perform various biological activities, whereas information on structure is scarce. Here, a water-soluble polysaccharide MMPX-B2 was isolated from Meretrix meretrix Linnaeus. The proposed structure was deduced through characterization and its immunological activity was investigated. MMPX-B2 consisted of d-glucose and d-galctose residues at a molar ratio of 3.51:1.00. The average molecular weight of MMPX-B2 was 510 kDa. This polysaccharide possessed a main chain of (1→4)-linked-α-d-glucopyranosyl residues, partially substituted at the C-6 position by a few terminal β-d-galactose residues or branched chains consisting of (1→3)-linked β-d-galactose residues. Preliminary immunological tests in vitro showed that MMPX-B2 could stimulate the murine macrophages to release various cytokines, and the structure-activity relationship was then established. The present study demonstrated the potential immunological activity of MMPX-B2, and provided references for studying the active ingredients in M. meretrix.

  6. Characterization of Crystallographic Structures Using Bragg-Edge Neutron Imaging at the Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    Gian Song

    2017-12-01

    Full Text Available Over the past decade, wavelength-dependent neutron radiography, also known as Bragg-edge imaging, has been employed as a non-destructive bulk characterization method due to its sensitivity to coherent elastic neutron scattering that is associated with crystalline structures. Several analysis approaches have been developed to quantitatively determine crystalline orientation, lattice strain, and phase distribution. In this study, we report a systematic investigation of the crystal structures of metallic materials (such as selected textureless powder samples and additively manufactured (AM Inconel 718 samples, using Bragg-edge imaging at the Oak Ridge National Laboratory (ORNL Spallation Neutron Source (SNS. Firstly, we have implemented a phenomenological Gaussian-based fitting in a Python-based computer called iBeatles. Secondly, we have developed a model-based approach to analyze Bragg-edge transmission spectra, which allows quantitative determination of the crystallographic attributes. Moreover, neutron diffraction measurements were carried out to validate the Bragg-edge analytical methods. These results demonstrate that the microstructural complexity (in this case, texture plays a key role in determining the crystallographic parameters (lattice constant or interplanar spacing, which implies that the Bragg-edge image analysis methods must be carefully selected based on the material structures.

  7. Novel low-dose imaging technique for characterizing atomic structures through scanning transmission electron microscope

    Science.gov (United States)

    Su, Chia-Ping; Syu, Wei-Jhe; Hsiao, Chien-Nan; Lai, Ping-Shan; Chen, Chien-Chun

    2017-08-01

    To investigate dislocations or heterostructures across interfaces is now of great interest to condensed matter and materials scientists. With the advances in aberration-corrected electron optics, the scanning transmission electron microscope has demonstrated its excellent capability of characterizing atomic structures within nanomaterials, and well-resolved atomic-resolution images can be obtained through long-exposure data acquisition. However, the sample drifting, carbon contamination, and radiation damage hinder further analysis, such as deriving three-dimensional (3D) structures from a series of images. In this study, a method for obtaining atomic-resolution images with significantly reduced exposure time was developed, using which an original high-resolution image with approximately one tenth the electron dose can be obtained by combining a fast-scan high-magnification image and a slow-scan low-magnification image. The feasibility of obtaining 3D atomic structures using the proposed approach was demonstrated through multislice simulation. Finally, the feasibility and accuracy of image restoration were experimentally verified. This general method cannot only apply to electron microscopy but also benefit to image radiation-sensitive materials using various light sources.

  8. Preparation and structural characterization of regioselective 4-O/6-O-desulfated chondroitin sulfate.

    Science.gov (United States)

    Han, Wenwei; Li, Quancai; Lv, Youjing; Wang, QingChi; Zhao, Xia

    2018-05-02

    The sulfation pattern plays a crucial role in chondroitin sulfate (CS) biological activity, and preparation of CS with defined structure is essential for accurate pharmacological study. In this study, we focused on the preparation of regioselective 4-O/6-O-desulfated CS derived from porcine, employing a dimethyl sulfoxide-methanol (DMSO-MeOH) method and an N-methyl-N-(trimethylsilyl) -trifluoroacetamide (MTSTFA) method CS, respectively. Results showed that the sulfate at C4 position (4-O-S) of N-acetylgalactosamine (GalNAc) was selectively removed by the DMSO-MeOH method, and the sulfate at C6 position (6-O-S) of GalNAc was selectively removed by the MTSTFA method. Structures of desulfated CS were characterized by means of FT-IR, NMR and disaccharide composition analysis. The preparations of regioselective 4-O/6-O-desulfated CS are powerful for the study of structure-activity relationship of CS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Structural Characterization of Inhibitors with Selectivity against Members of a Homologous Enzyme Family

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovsky, Alexander G.; Liu, Xuying; Faehnle, Christopher R.; Potente, Nina; Viola, Ronald E. (Toledo)

    2013-01-31

    The aspartate biosynthetic pathway provides essential metabolites for many important biological functions, including the production of four essential amino acids. As this critical pathway is only present in plants and microbes, any disruptions will be fatal to these organisms. An early pathway enzyme, L-aspartate-{beta}-semialdehyde dehydrogenase, produces a key intermediate at the first branch point of this pathway. Developing potent and selective inhibitors against several orthologs in the L-aspartate-{beta}-semialdehyde dehydrogenase family can serve as lead compounds for antibiotic development. Kinetic studies of two small molecule fragment libraries have identified inhibitors that show good selectivity against L-aspartate-{beta}-semialdehyde dehydrogenases from two different bacterial species, Streptococcus pneumoniae and Vibrio cholerae, despite the presence of an identical constellation of active site amino acids in this homologous enzyme family. Structural characterization of enzyme-inhibitor complexes have elucidated different modes of binding between these structurally related enzymes. This information provides the basis for a structure-guided approach to the development of more potent and more selective inhibitors.

  10. New approach for extraction of cellulose from tucumã's endocarp and its structural characterization

    Science.gov (United States)

    Manzato, L.; Rabelo, L. C. A.; de Souza, S. M.; da Silva, C. G.; Sanches, E. A.; Rabelo, D.; Mariuba, L. A. M.; Simonsen, J.

    2017-09-01

    The recycling of plant wasted materials into useful products represents a green alternative to prevent environmental problems. Tucumã palm fruit (Astrocaryum aculeatum Meyer) is widely used in Amazon region for food and crafts. Due to the large amount of wasted Tucumã's endocarp, this work proposes a new approach for extraction of cellulose and its structural characterization. X-ray Diffraction (XRD), Rietveld Refinement, Scanning Electron Microscopy (SEM), Infrared-transform Fourier Spectroscopy (FTIR) and Thermal Analysis (TG/DSC) have been used for characterization of the extracted cellulose. XRD patterns of the in natura tucumã's endocarp has showed a natural crystalline content embedded in a non-crystalline matrix. Nanocrystals of cellulose have been observed in the XRD pattern of the extracted cellulose, showing a good agreement with type II. Rietveld refinement allowed the cell parameters obtainment (a = 8.43(1) Å, b = 9.50(1) Å, c = 9.39(3) Å and γ = 118.43(4)°). Apparent average crystallite size and microstrain were, respectively, 20.0 Å and 0.1%. Two different methods were applied for estimative of crystallinity percentage. In the first method the height ratio between the intensity of the crystalline peak and the total intensity after the subtraction of the non-crystalline content was applied, leading to 48.5%. The second approach was performed using the amorphous area and the total area of the (1 1 0) peak from the experimental diffractogram, leading to 31.5%. The difference in crystallinity percentage concerning these two used approaches may be explained due to the first method does not consider the broad peaks resulted from nanocrystals diffraction. FTIR spectroscopy has evidenced a cellulose type II structure. SEM images showed micrometric sized fibers with ranged thicknesses. However, a new morphology of spherical nanostructures was observed on the type II matrix fibers. Thermal analysis suggests that the extracted cellulose have low thermal

  11. Using measurable dosimetric quantities to characterize the inter-structural tradeoff in inverse planning

    Science.gov (United States)

    Liu, Hongcheng; Dong, Peng; Xing, Lei

    2017-08-01

    Traditional inverse planning relies on the use of weighting factors to balance the conflicting requirements of different structures. Manual trial-and-error determination of weighting factors has long been recognized as a time-consuming part of treatment planning. The purpose of this work is to develop an inverse planning framework that parameterizes the dosimetric tradeoff among the structures with physically meaningful quantities to simplify the search for clinically sensible plans. In this formalism, instead of using weighting factors, the permissible variation range of the prescription dose or dose volume histogram (DVH) of the involved structures are used to characterize the ‘importance’ of the structures. The inverse planning is then formulated into a convex feasibility problem, called the dosimetric variation-controlled model (DVCM), whose goal is to generate plans with dosimetric or DVH variations of the structures consistent with the pre-specified values. For simplicity, the dosimetric variation range for a structure is extracted from a library of previous cases which possess similar anatomy and prescription. A two-phase procedure (TPP) is designed to solve the model. The first phase identifies a physically feasible plan to satisfy the prescribed dosimetric variation, and the second phase automatically improves the plan in case there is room for further improvement. The proposed technique is applied to plan two prostate cases and two head-and-neck cases and the results are compared with those obtained using a conventional CVaR approach and with a moment-based optimization scheme. Our results show that the strategy is able to generate clinically sensible plans with little trial and error. In all cases, the TPP generates a very competitive plan as compared to those obtained using the alternative approaches. Particularly, in the planning of one of the head-and-neck cases, the TPP leads to a non-trivial improvement in the resultant dose distribution

  12. Synthesis and structural characterization of novel flower-like titanium dioxide nanostructures

    International Nuclear Information System (INIS)

    Castaneda, Luis; Terrones, Mauricio

    2007-01-01

    Titanium dioxide (TiO 2 -anatase phase) films, consisting of agglomerated flower-like nanoparticles, have been synthesized using an ultrasonic spray pyrolysis method in conjunction with titanium (IV) oxide acetylacetonate (TiO(acac) 2 ) and methanol at 550 deg. C. These films were subsequently thermally treated in air, at 950 deg. C for 6 h, and the flower-like particles were transformed into smooth surfaces mainly formed by the TiO 2 rutile phase. In this letter, we characterized these structures using scanning electron microscopy, atomic force micrcoscopy, and low-angle X-ray diffraction measurements. It is proposed that these novel flower-like nanostructures, exhibiting a large number of exposed edges, will be important in the development of efficient gas sensor devices

  13. Sizing Single Cantilever Beam Specimens for Characterizing Facesheet/Core Peel Debonding in Sandwich Structure

    Science.gov (United States)

    Ratcliffe, James G.

    2010-01-01

    This paper details part of an effort focused on the development of a standardized facesheet/core peel debonding test procedure. The purpose of the test is to characterize facesheet/core peel in sandwich structure, accomplished through the measurement of the critical strain energy release rate associated with the debonding process. The specific test method selected for the standardized test procedure utilizes a single cantilever beam (SCB) specimen configuration. The objective of the current work is to develop a method for establishing SCB specimen dimensions. This is achieved by imposing specific limitations on specimen dimensions, with the objectives of promoting a linear elastic specimen response, and simplifying the data reduction method required for computing the critical strain energy release rate associated with debonding. The sizing method is also designed to be suitable for incorporation into a standardized test protocol. Preliminary application of the resulting sizing method yields practical specimen dimensions.

  14. Nanoparticle synthesis of zinc peroxide: structural and morphological characterization for bactericidal applications

    International Nuclear Information System (INIS)

    Colonia, Roberto; Martinez, Vanessa C.; Solis, Jose L.; Gomez, Monica M.

    2013-01-01

    Zinc peroxide (ZnO 2 ) nanoparticles were synthesized by sol-gel technique. The chemicals used for the synthesis were zinc acetate di-hydrate (Zn(CH 3 COO) 2. 2H 2 O) and hydrogen peroxide (H 2 O 2 ) at 30 % in an aqueous solution with sonication. The structure of the ZnO 2 nanoparticles was characterized by X-ray diffraction. While the morphology and the cluster size were determined using scanning and transmission electron microscopy. For a preliminary evaluation of the bactericidal properties of the ZnO 2 , the material was exposed to Staphylococcus aureus, Escherichia coli y Bacillus subtili, and the nanoparticles presented good bactericidal properties. (author)

  15. Geological and structural characterization and microtectonic study of shear zones Colonia

    International Nuclear Information System (INIS)

    Gianotti, V.; Oyhantcabal, P.; Spoturno, J.; Wemmer, K.

    2010-01-01

    The “Colonia Shear Zone System”, characterized by a transcurrent system of predominant sinistral shear sense, is defined by two approximately parallel shear zones, denominated Isla San Gabriel-Juan Lacaze Shear Zone (ISG-JL S.Z.) and Islas de Hornos-Arroyo Riachuelo Shear Zone (IH-AºR S. Z.). Represented by rocks with ductile and brittle deformation, are defined as a strike slip fault system, with dominant subvertical foliation orientations: 090-100º (dip-direction 190º) and 090-100º (dip-direction 005º). The K/Ar geochronology realized, considering the estimates temperatures conditions for shear zones (450-550º), indicate that 1780-1812 Ma should be considered a cooling age and therefore a minimum deformation age. The observed microstructures suggest deformation conditions with temperatures between 450-550º overprinted by cataclastic flow structures (reactivation at lower temperature)

  16. Characterizing the Nano and Micro Structure of Concrete toImprove its Durability

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, P.J.M.; Kirchheim, A.P.; Chae, S.; Fischer, Peter; MacDowell, Alastair; Schaible, Eirc; Wenk, H.R.; Macdowell, Alastair A.

    2009-01-13

    New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images of ice inside cement paste and cracking caused by the alkali?silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools are shown on this paper.

  17. Characterizing the nano and micro structure of concrete to improve its durability

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, P.J.M.; Kirchheim, A.P.; Chae, S.; Fischer, P.; MacDowell, A.A.; Schaible, E.; Wenk, H.R.

    2008-10-22

    New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images on ice inside cement paste and cracking caused by the alkali-silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools will be shown on this paper.

  18. Bimetallic octahedral ruthenium-nickel carbido cluster complexes. Synthesis and structural characterization.

    Science.gov (United States)

    Saha, Sumit; Zhu, Lei; Captain, Burjor

    2013-03-04

    The reaction of Ru5(CO)15(μ5-C) with Ni(COD)2 in acetonitrile at 80 °C affords the bimetallic octahedral ruthenium-nickel cluster complex Ru5Ni(NCMe)(CO)15(μ6-C), 3. The acetonitrile ligand in 3 can be replaced by CO and NH3 to yield Ru5Ni(CO)16(μ6-C), 4, and Ru5Ni(NH3)(CO)15(μ6-C), 5, respectively. Photolysis of compound 3 in benzene and toluene solvent yielded the η(6)-coordinated benzene and toluene Ru5Ni carbido cluster complexes Ru5Ni(CO)13(η(6)-C6H6)(μ6-C), 6, and Ru5Ni(CO)13(η(6)-C7H8)(μ6-C), 7, respectively. All five new compounds were structurally characterized by single-crystal X-ray diffraction analyses.

  19. New topologies in pentanuclear nickel/oximato clusters: structural and magnetic characterization.

    Science.gov (United States)

    Esteban, Jordi; Font-Bardia, Mercè; Costa, José Sánchez; Teat, Simon J; Escuer, Albert

    2014-03-17

    In the present work, five new Ni5 clusters employing the versatile 2-pyridylcyanoxime ligand have been synthesized and chemically, structurally, and magnetically characterized. The crystallographic examination of these Ni5 clusters together with those already published in the literature, giving a total number of 14 complexes, exhibiting up to 8 different topologies for which the relationship between topology, reaction conditions and magnetic response has been analyzed. DC magnetic measurements were carried in the 300-2 K range for the new complexes and the analysis of the experimental data revealed an antiferromagnetic response for the oximato mediated interactions with a variety of ground states (S = 0, 1, 3) as function of the cluster topology.

  20. Investigation on the structural characterization of pulsed p-type porous silicon

    Science.gov (United States)

    Wahab, N. H. Abd; Rahim, A. F. Abd; Mahmood, A.; Yusof, Y.

    2017-08-01

    P-type Porous silicon (PS) was sucessfully formed by using an electrochemical pulse etching (PC) and conventional direct current (DC) etching techniques. The PS was etched in the Hydrofluoric (HF) based solution at a current density of J = 10 mA/cm2 for 30 minutes from a crystalline silicon wafer with (100) orientation. For the PC process, the current was supplied through a pulse generator with 14 ms cycle time (T) with 10 ms on time (Ton) and pause time (Toff) of 4 ms respectively. FESEM, EDX, AFM, and XRD have been used to characterize the morphological properties of the PS. FESEM images showed that pulse PS (PPC) sample produces more uniform circular structures with estimated average pore sizes of 42.14 nm compared to DC porous (PDC) sample with estimated average size of 16.37nm respectively. The EDX spectrum for both samples showed higher Si content with minimal presence of oxide.

  1. Electrical Characterization of Amorphous Silicon MIS-Based Structures for HIT Solar Cell Applications

    Science.gov (United States)

    García, Héctor; Castán, Helena; Dueñas, Salvador; Bailón, Luis; García-Hernansanz, Rodrigo; Olea, Javier; del Prado, Álvaro; Mártil, Ignacio

    2016-07-01

    A complete electrical characterization of hydrogenated amorphous silicon layers (a-Si:H) deposited on crystalline silicon (c-Si) substrates by electron cyclotron resonance chemical vapor deposition (ECR-CVD) was carried out. These structures are of interest for photovoltaic applications. Different growth temperatures between 30 and 200 °C were used. A rapid thermal annealing in forming gas atmosphere at 200 °C during 10 min was applied after the metallization process. The evolution of interfacial state density with the deposition temperature indicates a better interface passivation at higher growth temperatures. However, in these cases, an important contribution of slow states is detected as well. Thus, using intermediate growth temperatures (100-150 °C) might be the best choice.

  2. Tetraphenylphosphonium allyldithiocarbimates derived from Morita-Baylis-Hillman adducts: Synthesis, characterization, crystal structure and antifungal activity

    Science.gov (United States)

    Tavares, Eder C.; Rubinger, Mayura M. M.; Filho, Eclair V.; Oliveira, Marcelo R. L.; Piló-Veloso, Dorila; Ellena, Javier; Guilardi, Silvana; Souza, Rafael A. C.; Zambolim, Laércio

    2016-02-01

    Botrytis blight is a very destructive disease caused by Botrytis spp., infecting flowers, trees, vegetables and fruits. Twelve new compounds were prepared by the reaction of potassium N-aryl-sulfonyldithiocarbimates with Morita-Baylis-Hillman derivatives bearing phenyl and furyl groups. These are the first examples of allyldithiocarbimate anions and were isolated as tetraphenylphosphonium salts. The new compounds were characterized by HRMS, NMR and Infrared spectroscopy. Further, the structures of three allyldithiocarbimates were determined by single crystal X-ray diffraction. The compounds are isostructural and crystallize in the space group P21/c of the monoclinic system, and the allyldithiocarbimate anions present Z configuration. All the compounds were active against Botrytis cinerea. The best results were achieved with the tetraphenylphosphonium (Z)-3-(furan-2-yl)-2-(methoxycarbonyl)allyl-(4-chlorophenylsulfonyl)dithiocarbimate (IC50 38 μM).

  3. Energetics and Structural Characterization of the large-scale Functional Motion of Adenylate Kinase

    Science.gov (United States)

    Formoso, Elena; Limongelli, Vittorio; Parrinello, Michele

    2015-02-01

    Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.

  4. Synthesis, structural characterization and cytotoxic activity of two new organoruthenium(II complexes

    Directory of Open Access Journals (Sweden)

    SANJA GRGURIC-SIPKA

    2008-06-01

    Full Text Available Two new p-cymene ruthenium(II complexes containing as additional ligands N-methylpiperazine ([(η6-p-cymeneRuCl2(CH3NH(CH24NH]PF6, complex 1 or vitamin K3-thiosemicarbazone ([(η6-p-cymeneRuCl2(K3tsc], complex 2 were synthesized starting from [(η6-p-cymene2RuCl2]2 and the corresponding ligand. The complexes were characterized by elemental analysis, IR, electronic absorption and NMR spectroscopy. The X-ray crystal structure determination of complex 1 revealed “piano-stool” geometry. The differences in the cytotoxic activity of the two complexes are discussed in terms of the ligand present.

  5. Development of IR Contrast Data Analysis Application for Characterizing Delaminations in Graphite-Epoxy Structures

    Science.gov (United States)

    Havican, Marie

    2012-01-01

    Objective: Develop infrared (IR) flash thermography application based on use of a calibration standard for inspecting graphite-epoxy laminated/honeycomb structures. Background: Graphite/Epoxy composites (laminated and honeycomb) are widely used on NASA programs. Composite materials are susceptible for impact damage that is not readily detected by visual inspection. IR inspection can provide required sensitivity to detect surface damage in composites during manufacturing and during service. IR contrast analysis can provide characterization of depth, size and gap thickness of impact damage. Benefits/Payoffs: The research provides an empirical method of calibrating the flash thermography response in nondestructive evaluation. A physical calibration standard with artificial flaws such as flat bottom holes with desired diameter and depth values in a desired material is used in calibration. The research devises several probability of detection (POD) analysis approaches to enable cost effective POD study to meet program requirements.

  6. Characterizing the nano and micro structure of concrete to improve its durability

    KAUST Repository

    Monteiro, P.J.M.

    2009-09-01

    New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images of ice inside cement paste and cracking caused by the alkali-silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools are shown on this paper. © 2009 Elsevier Ltd. All rights reserved.

  7. Synthesis and structural characterization of novel flower-like titanium dioxide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda, Luis [Departamento de Ingenieria Electrica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional CINVESTAV-IPN, SEES, Apartado Postal 14740, Mexico, DF, 07000 (Mexico); Departamento de Fisica y Matematicas, Division de Ciencia, Arte y Tecnologia, Universidad Iberoamericana, Av. Prolongacion Paseo de la Reforma 880, Santa Fe 012100, DF (Mexico); Terrones, Mauricio [Departamento de Fisica y Matematicas, Division de Ciencia, Arte y Tecnologia, Universidad Iberoamericana, Av. Prolongacion Paseo de la Reforma 880, Santa Fe 012100, DF (Mexico) and Advanced Materials Department, IPICYT, Camino a la Presa San Jose 2055, Col. Lomas, 4a. seccion, San Luis Potosi, 78216 (Mexico)]. E-mail: mterrones@ipicyt.edu.mx

    2007-03-01

    Titanium dioxide (TiO{sub 2}-anatase phase) films, consisting of agglomerated flower-like nanoparticles, have been synthesized using an ultrasonic spray pyrolysis method in conjunction with titanium (IV) oxide acetylacetonate (TiO(acac){sub 2}) and methanol at 550 deg. C. These films were subsequently thermally treated in air, at 950 deg. C for 6 h, and the flower-like particles were transformed into smooth surfaces mainly formed by the TiO{sub 2} rutile phase. In this letter, we characterized these structures using scanning electron microscopy, atomic force micrcoscopy, and low-angle X-ray diffraction measurements. It is proposed that these novel flower-like nanostructures, exhibiting a large number of exposed edges, will be important in the development of efficient gas sensor devices.

  8. Synthesis and structural characterization of piperazino-modified DNA that favours hybridization towards DNA over RNA

    DEFF Research Database (Denmark)

    Skov, Joan; Bryld, Torsten; Lindegaard, Dorthe

    2011-01-01

    We report the synthesis of two C4'-modified DNA analogues and characterize their structural impact on dsDNA duplexes. The 4'-C-piperazinomethyl modification stabilizes dsDNA by up to 5°C per incorporation. Extension of the modification with a butanoyl-linked pyrene increases the dsDNA stabilization...... to a maximum of 9°C per incorporation. Using fluorescence, ultraviolet and nuclear magnetic resonance (NMR) spectroscopy, we show that the stabilization is achieved by pyrene intercalation in the dsDNA duplex. The pyrene moiety is not restricted to one intercalation site but rather switches between multiple...... sites in intermediate exchange on the NMR timescale, resulting in broad lines in NMR spectra. We identified two intercalation sites with NOE data showing that the pyrene prefers to intercalate one base pair away from the modified nucleotide with its linker curled up in the minor groove. Both...

  9. Defects in ZnO, CdTe, and Si: Optical, structural, and electrical characterization

    CERN Multimedia

    Deicher, M; Kronenberg, J; Johnston, K; Roder, J; Byrne, D J

    Electronic and optical properties of semiconductors are extremely sensitive to defects and impurities that have localized electronic states with energy levels in the band gap of the semiconductor. Spectroscopic techniques like photo-luminescence (PL), deep level transient spectroscopy (DLTS), or Hall effect that are able to detect and characterize band gap states do not reveal direct information about their microscopic origin. To overcome this chemical "blindness" radioactive isotopes are used as a tracer. Moreover, the recoil energies involved in ${\\beta}$- and ${\\gamma}$-decays can be used to create intrinsic, isolated point defects (interstitials, vacancies) in a controlled way. A microscopic insight into the structure and the thermodynamic properties of complexes formed by interacting defects can be gained by detecting the hyperfine interaction between the nuclear moments of radioactive dopants and the electromagnetic fields present at the site of the radioactive nucleus. These techniques will be used to...

  10. Isolation, structural characterization, and potential applications of hemicelluloses from bamboo: a review.

    Science.gov (United States)

    Peng, Pai; She, Diao

    2014-11-04

    Bamboo is one of the mostly fast growing natural resources and has great potential to be used as a valuable feedstock for biorefinery. The hemicelluloses, next to cellulose, represent a diverse group of polysaccharides in plant cell wall. Elucidation and understanding of the hemicelluloses from bamboo play an important role in the efficient conversion of bamboo into biofuels and bioproducts. This review summarized the recent reports on hemicelluloses from bamboo, including immunohistochemical localization, focused on extraction and purification methods, chemical components, characterization of structural features, as well as physicochemical properties. In addition, attention was also paid to derivatives prepared from bamboo hemicelluloses and to potential applications of bamboo hemicelluloses in a variety of areas such as biomaterials, biofuel, and food. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Characterization of electronic structure and physicochemical properties of antiparasitic nifurtimox analogues: A theoretical study

    Science.gov (United States)

    Soriano-Correa, Catalina; Raya, A.; Esquivel, Rodolfo O.

    American trypanosomiasis, also known as Chagas' disease, is caused by Trypanosoma cruzi (T. cruzi). It is well known that trypanosomes, and particularly T. cruzi, are highly sensitive towards oxidative stress, i.e., to compounds than are able to produce free radicals. Generally, nifurtimox (NFX) and benznidazol are most effective in the acute phase of the disease; therefore, nitroheterocycles constitute good models to design other nitrocompounds with specific biological characteristics. Thus, we have performed an ab initio study at the Hartree-Fock and Density Functional Theory levels of theory of several NFX analogues recently synthesized, to characterize them by obtaining their electronic, structural, and physicochemical properties, which might be linked to the observed antichagasic activity. The antitrypanosomal activity scale previously reported for the NFX analogues studied in this work is in good agreement with our theoretical results, from which we can conclude that the activity seems to be related to the reactivity along with the acidity observed for the most active molecules.

  12. Structural characterization of half-metallic Heusler compound NiMnSb

    Energy Technology Data Exchange (ETDEWEB)

    Nowicki, L. E-mail: lech.nowicki@fuw.edu.pl; Abdul-Kader, A.M.; Bach, P.; Schmidt, G.; Molenkamp, L.W.; Turos, A.; Karczewski, G

    2004-06-01

    High resolution X-ray diffraction (HRXRD) and Rutherford backscattering/channeling (RBS/c) techniques were used to characterize layers of NiMnSb grown by molecular beam epitaxy (MBE) on InP with a In{sub x}Ga{sub 1-x}As buffer. Angular scans in the channeling mode reveal that the crystal structure of NiMnSb is tetragonally deformed with c/a=1.010{+-}0.002, in agreement with HRXRD data. Although HRXRD demonstrates the good quality of the pseudomorphic NiMnSb layers the channeling studies show that about 20% of atoms in the layers do not occupy lattice sites in the [0 0 1] rows of NiMnSb. The possible mechanisms responsible for the observed disorder are discussed.

  13. Characterization of wami tilapia (Oreochromis urolepis hornorum) skin gelatin: microbiological, rheological and structural properties.

    Science.gov (United States)

    Alfaro, Alexandre Da Trindade; Fonseca, Gustavo Graciano; Balbinot, Evellin; Prentice, Carlos

    2014-07-01

    Gelatin was extracted from the skin of tilapia (Oreochromis urolepis hornorum) and its microbiological, rheological and structural properties were characterized. The tilapia skin gelatin presented typical molecular weight distribution of type I collagen with contents of imino acids (proline + hydroxyproline) of 21.67%. Gel strength and viscosity values were 221 ± 5.68 g and 5.98 ± 0.34 cP, respectively, with the maturation time of 18 ± 1 h, and both parameters increased with the maturation time. Melting and gelling points of 25 degrees C and 21 degrees C, respectively, were obtained for tilapia skin gelatin. The gelatin presented microbiological standards in accordance with the Brazilian Legislation.

  14. New modeling and experimental approaches for characterization of two-phase flow interfacial structure

    International Nuclear Information System (INIS)

    Ishii, Mamoru; Sun, Xiaodong

    2004-01-01

    This paper presents new experimental and modeling approaches in characterizing interfacial structures in gas-liquid two-phase flow. For the experiments, two objective approaches are developed to identify flow regimes and to obtain local interfacial structure data. First, a global measurement technique using a non-intrusive ring-type impedance void-meter and a self-organizing neural network is presented to identify the one-dimensional'' flow regimes. In the application of this measurement technique, two methods are discussed, namely, one based on the probability density function of the impedance probe measurement (PDF input method) and the other based on the sorted impedance signals, which is essentially the cumulative probability distribution function of the impedance signals (instantaneous direct signal input method). In the latter method, the identification can be made close to instantaneously since the required signals can be acquired over a very short time period. In addition, a double-sensor conductivity probe can also be used to obtain ''local'' flow regimes by using the instantaneous direct signal input method with the bubble chord length information. Furthermore, a newly designed conductivity probe with multiple double-sensor heads is proposed to obtain ''two-dimensional'' flow regimes across the flow channel. Secondly, a state-of-the-art four-sensor conductivity probe technique has been developed to obtain detailed local interfacial structure information. The four-sensor conductivity probe accommodates the double-sensor probe capability and can be applied in a wide range of flow regimes spanning from bubbly to churn-turbulent flows. The signal processing scheme is developed such that it categorizes the acquired parameters into two groups based on bubble cord length information. Furthermore, for the modeling of the interfacial structure characterization, the interfacial area transport equation proposed earlier has been studied to provide a dynamic and

  15. Structural and Functional Characterization of Reston Ebola Virus VP35 Interferon Inhibitory Domain

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Daisy W.; Shabman, Reed S.; Farahbakhsh, Mina; Prins, Kathleen C.; Borek, Dominika M.; Wang, Tianjiao; Mühlberger, Elke; Basler, Christopher F.; Amarasinghe, Gaya K. (Sinai); (BU-M); (Iowa State); (UTSMC)

    2010-09-21

    Ebolaviruses are causative agents of lethal hemorrhagic fever in humans and nonhuman primates. Among the filoviruses characterized thus far, Reston Ebola virus (REBOV) is the only Ebola virus that is nonpathogenic to humans despite the fact that REBOV can cause lethal disease in nonhuman primates. Previous studies also suggest that REBOV is less effective at inhibiting host innate immune responses than Zaire Ebola virus (ZEBOV) or Marburg virus. Virally encoded VP35 protein is critical for immune suppression, but an understanding of the relative contributions of VP35 proteins from REBOV and other filoviruses is currently lacking. In order to address this question, we characterized the REBOV VP35 interferon inhibitory domain (IID) using structural, biochemical, and virological studies. These studies reveal differences in double-stranded RNA binding and interferon inhibition between the two species. These observed differences are likely due to increased stability and loss of flexibility in REBOV VP35 IID, as demonstrated by thermal shift stability assays. Consistent with this finding, the 1.71-{angstrom} crystal structure of REBOV VP35 IID reveals that it is highly similar to that of ZEBOV VP35 IID, with an overall backbone r.m.s.d. of 0.64 {angstrom}, but contains an additional helical element at the linker between the two subdomains of VP35 IID. Mutations near the linker, including swapping sequences between REBOV and ZEBOV, reveal that the linker sequence has limited tolerance for variability. Together with the previously solved ligand-free and double-stranded-RNA-bound forms of ZEBOV VP35 IID structures, our current studies on REBOV VP35 IID reinforce the importance of VP35 in immune suppression. Functional differences observed between REBOV and ZEBOV VP35 proteins may contribute to observed differences in pathogenicity, but these are unlikely to be the major determinant. However, the high level of similarity in structure and the low tolerance for sequence

  16. Structural Characterization of Silica Particles Extracted from Grass Stenotaphrum secundatum: Biotransformation via Annelids

    Directory of Open Access Journals (Sweden)

    A. Espíndola-Gonzalez

    2014-01-01

    Full Text Available This study shows the structural characterization of silica particles extracted from Stenotaphrum secundatum (St. Augustine grass using an annelid-based biotransformation process. This bioprocess starts when St. Augustine grass is turned into humus by vermicompost, and then goes through calcination and acid treatment to obtain silica particles. To determine the effect of the bioprocess, silica particles without biotransformation were extracted directly from the sample of grass. The characterization of the silica particles was performed using Infrared (FTIR and Raman spectroscopy, Transmission Electron Microscopy (TEM, X-ray Diffraction (XRD, Dynamic Light Scattering (DLS, and Energy Dispersion Spectroscopy (EDS. Both types of particles showed differences in morphology and size. The particles without biotransformation were essentially amorphous while those obtained via annelids showed specific crystalline phases. The biological relationship between the metabolisms of worms and microorganisms and the organic-mineral matter causes changes to the particles' properties. The results of this study are important because they will allow synthesis of silica in cheaper and more ecofriendly ways.

  17. Structural Characterizations of Palladium Clusters Prepared by Polyol Reduction of [PdCl 4 ] (2-) Ions.

    Science.gov (United States)

    Schiavo, Loredana; Aversa, Lucrezia; Tatti, Roberta; Verucchi, Roberto; Carotenuto, Gianfranco

    2016-01-01

    Palladium nanoparticles are of great interest in many industrial fields, ranging from catalysis and hydrogen technology to microelectronics, thanks to their unique physical and chemical properties. In this work, palladium clusters have been prepared by reduction of [PdCl4](2-) ions with ethylene glycol, in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) as stabilizer. The stabilizer performs the important role of nucleating agent for the Pd atoms with a fast phase separation, since palladium atoms coordinated to the polymer side-groups are forced at short distances during nucleation. Quasispherical palladium clusters with a diameter of ca. 2.6 nm were obtained by reaction in air at 90°C for 2 hours. An extensive materials characterization by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and other characterizations (TGA, SEM, EDS-SEM, and UV-Vis) has been performed in order to evaluate the structure and oxidation state of nanopalladium.

  18. Structural and Chemical Characterization of Silica Spheres before and after Modification by Silanization for Trypsin Immobilization

    Directory of Open Access Journals (Sweden)

    Eduardo F. Barbosa

    2017-01-01

    Full Text Available In the last decades, silica particles of a variety of sizes and shapes have been characterized and chemically modified for several applications, from chromatographic separation to dental supplies. The present study proposes the use of aminopropyl triethoxysilane (APTS silanized silica particles to immobilize the proteolytic enzyme trypsin for the development of a bioreactor. The major advantage of the process is that it enables the polypeptides hydrolysis interruption simply by removing the silica particles from the reaction bottle. Silanized silica surfaces showed significant morphological changes at micro- and nanoscale level. Chemical characterization showed changes in elemental composition, chemical environment, and thermal degradation. Their application as supports for trypsin immobilization showed high immobilization efficiency at reduced immobilization times, combined with more acidic conditions. Indirect immobilization quantification by reversed-phase ultrafast high performance liquid chromatography proved to be a suitable approach due to its high linearity and sensitivity. Immobilized trypsin activities on nonmodified and silanized silica showed promising features (e.g., selective hydrolysis for applications in proteins/peptides primary structure elucidation for proteomics. Silanized silica system produced some preferential targeting peptides, probably due to the hydrophobicity of the nanoenvironment conditioned by silanization.

  19. Functional and structural characterization of a eurytolerant calsequestrin from the intertidal teleost Fundulus heteroclitus.

    Directory of Open Access Journals (Sweden)

    A Carl Whittington

    Full Text Available Calsequestrins (CSQ are high capacity, medium affinity, calcium-binding proteins present in the sarcoplasmic reticulum (SR of cardiac and skeletal muscles. CSQ sequesters Ca²⁺ during muscle relaxation and increases the Ca²⁺-storage capacity of the SR. Mammalian CSQ has been well studied as a model of human disease, but little is known about the environmental adaptation of CSQ isoforms from poikilothermic organisms. The mummichog, Fundulus heteroclitus, is an intertidal fish that experiences significant daily and seasonal environmental fluctuations and is an interesting study system for investigations of adaptation at the protein level. We determined the full-length coding sequence of a CSQ isoform from skeletal muscle of F. heteroclitus (FCSQ and characterized the function and structure of this CSQ. The dissociation constant (K(d of FCSQ is relatively insensitive to changes in temperature and pH, thus indicating that FCSQ is a eurytolerant protein. We identified and characterized a highly conserved salt bridge network in FCSQ that stabilizes the formation of front-to-front dimers, a process critical to CSQ function. The functional profile of FCSQ correlates with the natural history of F. heteroclitus suggesting that the eurytolerant function of FCSQ may be adaptive.

  20. Assessing Local Structure Motifs Using Order Parameters for Motif Recognition, Interstitial Identification, and Diffusion Path Characterization

    Directory of Open Access Journals (Sweden)

    Nils E. R. Zimmermann

    2017-11-01

    Full Text Available Structure–property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors, as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal close packed-like environments. Here, we showcase the usefulness of local order parameters to identify these basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP database (61,422 compounds for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.

  1. Synthesis and structural characterization of coaxial nano tubes intercalated of molybdenum disulfide with carbon

    International Nuclear Information System (INIS)

    Reza San German, C.M.

    2005-01-01

    In this work the study of some fundamental aspects in the growth of unidimensional systems of coaxial nano tubes from the mold method is approached. This method is an inclusion technique of a precursor reagent into oxide nano porous alumina film (mold), and later applying some processes of synthesis it is gotten to obtain the wished material. The synthesized structures are identified later because they take place by means of the initial formation of nano tubes of MoS 2 , enclosing to carbon nano tubes by the same method, with propylene flow which generates a graphitization process that 'copy' the mold through as it flows. Binary phase MoS 2 + C nano tubes were synthesized by propylene pyrolysis inside MoS 2 nano tubes prepared by template assisted technique. The large coaxial nano tubes constituted of graphite sheets inserted between the MoS 2 layers forming the outer part, and coaxial multi wall carbon nano tubes (MWCNT) intercalated with MoS 2 inside. High resolution electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), high angle annular dark field (HAADF), gatan image filter (GIF), nano beam electron diffraction patterns (NBEDP), along with molecular dynamics simulation and quantum mechanical calculations were used to characterize the samples. The one-dimensional structures exhibit diverse morphologies such as long straight and twisted nano tubes with several structural irregularities. The inter-planar spacing between MoS 2 layers was found to increase from 6.3 to 7.4 A due to intercalation with carbon. Simulated HREM images revealed the presence of these twisted nano structures, with mechanical stretch into intercalate carbon between MoS 2 layers. Our results open up the possibility of using MoS 2 nano tubes as templates for the synthesis of new one- dimensional binary phase systems. (Author)

  2. Reflection characterization of nano-sized dielectric structure in Morpho butterfly wings

    Science.gov (United States)

    Zhu, Dong

    2017-10-01

    Morpho butterflies living in Central and South America are well-known for their structural-colored blue wings. The blue coloring originates from the interaction of light with nano-sized dielectric structures that are equipped on the external surface of scales covering over their wings. The high-accuracy nonstandard finite-difference time domain (NS-FDTD) method is used to investigate the reflection characterization from the nanostructures. In the NS-FDTD calculation, a computational model is built to mimic the actual tree-like multilayered structures wherever possible using the hyperbolic tangent functions. It is generally known that both multilayer interference and diffraction grating phenomena can occur when light enters the nano-sized multilayered structure. To answer the question that which phenomenon is mainly responsible for the blue coloring, the NS-FDTD calculation is performed under various incidence angles at wavelengths from 360 to 500 nm. The calculated results at one incident wavelength under different incidence angles are visualized in a two-dimensional mapping image, where horizontal and vertical axes are incidence and reflection angles, respectively. The images demonstrate a remarkable transition from a ring-like pattern at shorter wavelengths to a retro-reflection pattern at longer wavelengths. To clarify the origin of the pattern transition, the model is separated into several simpler parts and compared their mapping images with the theoretical diffraction calculations. It can be concluded that the blue coloring at longer wavelengths is mainly caused by the cooperation of multilayer interference and retro-reflection while the effect of diffraction grating is predominant at shorter wavelengths.

  3. Fabrication, characterization, and heuristic trade space exploration of magnetically actuated Miura-Ori origami structures

    Science.gov (United States)

    Cowan, Brett; von Lockette, Paris R.

    2017-04-01

    The authors develop magnetically actuated Miura-Ori structures through observation, experiment, and computation using an initially heuristic strategy followed by trade space visualization and optimization. The work is novel, especially within origami engineering, in that beyond final target shape approximation, Miura-Ori structures in this work are additionally evaluated for the shape approximation while folding and for their efficient use of their embedded actuators. The structures consisted of neodymium magnets placed on the panels of silicone elastomer substrates cast in the Miura-Ori folding pattern. Initially four configurations, arrangements of magnets on the panels, were selected based on heuristic arguments that (1) maximized the amount of magnetic torque applied to the creases and (2) reduced the number of magnets needed to affect all creases in the pattern. The results of experimental and computational performance metrics were used in a weighted sum model to predict the optimum configuration, which was then fabricated and experimentally characterized for comparison to the initial prototypes. As expected, optimization of magnet placement and orientation was effective at increasing the degree of theoretical useful work. Somewhat unexpectedly, however, trade space results showed that even after optimization, the configuration with the most number of magnets was least effective, per magnet, at directing its actuation to the structure’s creases. Overall, though the winning configuration experimentally outperformed its initial, non-optimal counterparts, results showed that the choice of optimum configuration was heavily dependent on the weighting factors. These results highlight both the ability of the Miura-Ori to be actuated with external magnetic stimuli, the effectiveness of a heuristic design approach that focuses on the actuation mechanism, and the need to address path-dependent metrics in assessing performance in origami folding structures.

  4. Structural characterization and antioxidant property of released exopolysaccharides from Lactobacillus delbrueckii ssp. bulgaricus SRFM-1.

    Science.gov (United States)

    Tang, Weizhi; Dong, Mingsheng; Wang, Weilu; Han, Shuo; Rui, Xin; Chen, Xiaohong; Jiang, Mei; Zhang, Qiuqin; Wu, Junjun; Li, Wei

    2017-10-01

    Three released exopolysaccharide fractions (r-EPS1, r-EPS2 and r-EPS3) were isolated from the fermented milk of Lactobacillus delbrueckii ssp. bulgaricus SRFM-1 and purified by anion exchange chromatography, and characterizations of the structures were conducted. The r-EPS1 and r-EPS2 were homogenous with the average molecular weights of 3.97×10 5 Da and 3.86×10 5 Da, respectively. Three r-EPS fractions were composed of galactose and glucose with a molar ratio of 1.23: 1.00, 1.33: 1.00 and 1.00: 1.34, respectively. Structural characterization indicated that the r-EPS1 contained a backbone of →6-β-d-Galp-(1→4)-β-d-Glcp-(1→4)-α-d-Galp-(1→4)-β-d-Galp-(1→6)-β-d-Galp-(1→4)-β-d-Glcp-(1→4)-α-d-Galp-(1→4)-β-d-Galp-(1→4)-α-d-Glcp-(1→, and had three branching points which existed in terminal with D-Glcp residues with α/β-d-(1→6) linkages. The r-EPS2 was composed of →6-β-d-Galp-(1→4)-β-d-Glcp-(1→6)-α-d-Galp-(1→ as the backbone chain with a branching point which also existed in terminal D-Glcp residue with β-(1→6) linkage. In addition, three r-EPS fractions exhibited strong scavenging activities on superoxide radical, hydroxyl radical, DPPH radical and chelating activity on ferrous ion, and their antioxidant activities decreased in the order of r-EPS1>r-EPS2>r-EPS3. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Structural characterization and identification of cyclic lipopeptides produced by Bacillus methylotrophicus DCS1 strain.

    Science.gov (United States)

    Jemil, Nawel; Manresa, Angeles; Rabanal, Francesc; Ben Ayed, Hanen; Hmidet, Noomen; Nasri, Moncef

    2017-08-15

    Bacillus methylotrophicus DCS1 strain was isolated from diesel contaminated soil and screened for its ability to produce biosurfactants; it was found effective for the production of surface active molecules. The structural characterization of the isolated lipopeptides was studied by a variety of analytical techniques. The organic extract of DCS1 lipopeptides was fractionated by silica gel column chromatography (60Mesh). Fractions containing lipopeptides were collected and identified by tandem mass spectrometry MALDI-TOF-MS and MALDI-TOF MS 2 . The crude biosurfactants contains a mixture of homologous lipopeptides with molecular weights between 1016 and 1556Da. Mass spectrometry analysis of partially purified lipopeptides revealed that it contains different isoforms belonging to three families: surfactin, iturin and fengycin. To identify lipopeptides isoforms, MALDI-TOF MS 2 was used and ions representing characteristic fragmentations were detected. The mass spectrometry characterization revealed the presence of four variants of surfactin lipopeptides, four variants of pumilacidin that differ according to the β-hydroxy fatty acid chain length as well as the type of amino acid at position 7, five variants of iturin A/mycosubtilin varying in the β-amino fatty acid chain length from C12 to C16, C16 iturin C1, five isoforms of bacillomycin D varying in the β-amino fatty acid chain length from C14 to C18, and six fengycin isoforms that differ according to the length of the β-hydroxy fatty acid side chain as well as the amino acid at position 6. The capacity of B. methylotrohicus DCS1 strain to produce many lipopeptides isoforms belonging to different families and having a structural diversity is a very interesting characteristic that allows them to be used in various fields of biotechnological applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Biochemical characterization and low-resolution SAXS structure of an exo-polygalacturonase from Bacillus licheniformis.

    Science.gov (United States)

    Evangelista, Danilo Elton; de Araújo, Evandro A; Neto, Mario Oliveira; Kadowaki, Marco Antonio Seiki; Polikarpov, Igor

    2018-01-25

    Among the structural polymers present in the plant cell wall, pectin is the main component of the middle lamella. This heterogeneous polysaccharide has an α-1,4 galacturonic acid backbone, which can be broken by the enzymatic action of pectinases, such as exo-polygalacturonases, that sequentially cleave pectin from the non-reducing ends, releasing mono or di-galacturonic acid residues. Constant demand for pectinases that better suit industrial requirements has motivated identification and characterization of novel enzymes from diverse sources. Bacillus licheniformis has been used as an important source for bioprospection of several industrial biomolecules, such as surfactants and enzymes, including pectate lyases. Here we cloned, expressed, purified, and biochemically and structurally characterized an exo-polygalacturonase from B. licheniformis (BlExoPG). Its low-resolution molecular envelope was derived from experimental small-angle scattering data (SAXS). Our experimental data revealed that BlExoPG is a monomeric enzyme with optimum pH at 6.5 and optimal temperature of approximately 60°C, at which it has considerable stability over the broad pH range from 5 to 10. After incubation of the enzyme for 30min at pH ranging from 5 to 10, no significant loss of the original enzyme activity was observed. Furthermore, the enzyme maintained residual activity of greater than 80% at 50°C after 15h of incubation. BlExoPG is more active against polygalacturonic acid as compared to methylated pectin, liberating mono galacturonic acid as a unique product. Its enzymatic parameters are V max =4.18μM.s -1 ,K m =3.25mgmL -1 and k cat =2.58s -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Temperature dependence measurements and structural characterization of trimethyl ammonium ionic liquids with a highly polar solvent.

    Science.gov (United States)

    Attri, Pankaj; Venkatesu, Pannuru; Hofman, T

    2011-08-25

    We report the synthesis and characterization of a series of an ammonium ionic liquids (ILs) containing acetate, dihydrogen phosphate, and hydrogen sulfate anions with a common cation. To characterize the thermophysical properties of these newly synthesized ILs with the highly polar solvent N,N-dimethylformamide (DMF), precise measurements such as densities (ρ) and ultrasonic sound velocities (u) over the whole composition range have been performed at atmospheric pressure and over wide temperature ranges (25-50 °C). The excess molar volume (V(E)) and the deviation in isentropic compressibilities (Δκ(s)) were predicted using these temperature dependence properties as a function of the concentration of ILs. The Redlich-Kister polynomial was used to correlate the results. The ILs investigated in the present study included trimethylammonium acetate [(CH(3))(3)NH][CH(3)COO] (TMAA), trimethylammonium dihydrogen phosphate [(CH(3))(3)NH][H(2)PO(4)] (TMAP), and trimethylammonium hydrogen sulfate [(CH(3))(3)NH][HSO(4)] (TMAS). The intermolecular interactions and structural effects were analyzed on the basis of the measured and the derived properties. In addition, the hydrogen bonding between ILs and DMF has been demonstrated using semiempirical calculations with help of Hyperchem 7. A qualitative analysis of the results is discussed in terms of the ion-dipole, ion-pair interactions, and hydrogen bonding between ILs and DMF molecules and their structural factors. The influence of the anion of the protic IL, namely, acetate (CH(3)COO), dihydrogen phosphate (H(2)PO(4)), and hydrogen sulfate (HSO(4)), on the thermophysical properties is also provided. © 2011 American Chemical Society

  8. Structural characterization of acetylcholinesterase 1 from the sand fly Lutzomyia longipalpis (Diptera: Psychodidae).

    Science.gov (United States)

    Coutinho-Abreu, I V; Balbino, V Q; Valenzuela, J G; Sonoda, I V; Ramalho-Ortigão, J M

    2007-07-01

    Acetylcholinesterase (AChE) plays a key role in cholinergic impulse transmission, and it is the target enzyme for organophosphorus and carbamate insecticides. Two genes, AceI and AceII, have been characterized from different insect species, and point mutations in either gene can lead to significant resistance to these classes of insecticides. In this report, we describe the partial characterization of the AceI gene from Lutzomyia longipalpis (Lutz & Neiva) (Diptera: Psychodidae), and we show that the possibility exists for the development of a resistant phenotype to organophosphates and carbamates in sand flies. Our results point to the presence of a single AceI gene in L. longipalpis (LlAce1) and that AChE activity is inhibited by organophosphorus at a concentration of 5 x 10(-5) M. Regarding insecticide resistance, analysis of the truncated LlAce1 cDNA suggests that a single missense mutation leading to a glycine-to-serine substitution at amino acid position 119 (G119S) may arise in L. longipalpis, similar to what has been detected in Anopheles gambiae s.s. Another missense mutation involved in resistant phenotypes, F331W, detected in Culex tritaeniorhynchus Giles, is less likely to occur in L. longipalpis, because it faces codon constraint in this sand fly species. Comparison of the three-dimensional structures of the deduced amino acid sequence of the truncated LLAChE1 with that of An. gambiae and Cx. tritaeniorhynchus also suggests that similar structural modifications due to the missense amino acid changes in the active site gorge are detected in all three insects.

  9. Characterizing the structure of lipodisq nanoparticles for membrane protein spectroscopic studies.

    Science.gov (United States)

    Zhang, Rongfu; Sahu, Indra D; Liu, Lishan; Osatuke, Anna; Comer, Raven G; Dabney-Smith, Carole; Lorigan, Gary A

    2015-01-01

    Membrane protein spectroscopic studies are challenging due to the difficulty introduced in preparing homogenous and functional hydrophobic proteins incorporated into a lipid bilayer system. Traditional membrane mimics such as micelles or liposomes have proved to be powerful in solubilizing membrane proteins for biophysical studies, however, several drawbacks have limited their applications. Recently, a nanosized complex termed lipodisq nanoparticles was utilized as an alternative membrane mimic to overcome these caveats by providing a homogeneous lipid bilayer environment. Despite all the benefits that lipodisq nanoparticles could provide to enhance the biophysical studies of membrane proteins, structural characterization in different lipid compositions that closely mimic the native membrane environment is still lacking. In this study, the formation of lipodisq nanoparticles using different weight ratios of POPC/POPG lipids to SMA polymers was characterized via solid-state nuclear magnetic resonance (SSNMR) spectroscopy and dynamic light scattering (DLS). A critical weight ratio of (1/1.25) for the complete solubilization of POPC/POPG vesicles has been observed and POPC/POPG vesicles turned clear instantaneously upon the addition of the SMA polymer. The size of lipodisq nanoparticles formed from POPC/POPG lipids at this weight ratio of (1/1.25) was found to be about 30 nm in radius. We also showed that upon the complete solubilization of POPC/POPG vesicles by SMA polymers, the average size of the lipodisq nanoparticles is weight ratio dependent, when more SMA polymers were introduced, smaller lipodisq nanoparticles were obtained. The results of this study will be helpful for a variety of biophysical experiments when specific size of lipid disc is required. Further, this study will provide a proper path for researchers working on membrane proteins to obtain pertinent structure and dynamic information in a physiologically relevant membrane mimetic environment

  10. Manganese ferrite prepared using reverse micelle process: Structural and magnetic properties characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Mohd, E-mail: md.hashim09@gmail.com [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India); Shirsath, Sagar E. [Spin Device Technology Centre, Department of Engineering, Shinshu University, Nagano 380-8553 (Japan); Meena, S.S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mane, M.L. [Department of Physics, S.G.R.G. Shinde Mahavidyalaya, Paranda 413502, MS (India); Kumar, Shalendra [School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773 (Korea, Republic of); Bhatt, Pramod [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Ravi [Centre for Material Science Engineering, National Institute of Technology, Hamirpur, HP (India); Prasad, N.K.; Alla, S.K. [Deptartment of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Shah, Jyoti; Kotnala, R.K. [National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Mohammed, K.A. [Department of Mathematics & Physics Sciences, College of Arts and Sciences, University of Nizwa, Nizwa (Oman); Şentürk, Erdoğan [Department of Physics, Sakarya University, Esentepe, 54187 Sakarya (Turkey); Alimuddin [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India)

    2015-09-05

    Highlights: • Preparation of Mn{sup 3+} substituted MnFe{sub 2}O{sub 4} ferrite by Reverse microemulsion process. • Characterization by XRD, SEM, VSM, Mössbauer spectroscopy and dielectric measurements techniques. • Magnetic properties of MnFe{sub 2}O{sub 4} enhanced after Mn{sup 3+} substitution. • The dielectric constant and ac conductivity increased with Mn{sup 3+} substitution. - Abstract: Reverse microemulsion process was employed to prepare of nanocrystalline Mn{sup 3+} substituted MnFe{sub 2−x}Mn{sub x}O{sub 4} ferrites. The structural, magnetic and dielectric properties were studied for different concentrations of Mn{sup 3+}. The structural and microstructural properties were analyzed using X-ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy techniques. The phase identification of the materials was studied by Rietveld refined XRD patterns which reveals single phase with cubic symmetry for the samples. The lattice parameters were ranged in between 8.369 and 8.379 Å and do not show any significant change with the substitution of Mn{sup 3+}. The average particles size was found to be around 11 ± 3 nm. Magnetization results obtained from the vibrating sample magnetometer (VSM) confirm that the substitution of Mn{sup 3+} in MnFe{sub 2}O{sub 4} ferrite caused an increase in the saturation magnetization and coercivity. The dependence of Mössbauer parameters on Mn{sup 3+} substitution has been analyzed. Magnetic behavior of the samples were also studied at field cooled (FC) and zero field cooled (ZFC) mode. The dependence of Mössbauer parameters on Mn{sup 3+} substitution was also analyzed. All the magnetic characterization shows that Mn{sup 3+} substitution enhance the magnetic behavior of MnFe{sub 2}O{sub 4} ferrite nanoparticles.

  11. Characterization of the extracellular matrix of Phaeodactylum tricornutum (Bacillariophyceae): structure, composition, and adhesive characteristics.

    Science.gov (United States)

    Willis, Anusuya; Chiovitti, Anthony; Dugdale, Tony M; Wetherbee, Richard

    2013-10-01

    The extracellular matrix of the ovoid and fusiform morphotypes of Phaeodactylum tricornutum (Bohlin) was characterized in detail. The structural and nanophysical properties were analyzed by microscopy. Of the two morphotypes, only the ovoid form secretes adhesive mucilage; light microscopy and scanning electron microscopy images showed that the mucilage was secreted from the girdle band region of the cell as cell-substratum tethers, accumulating on the surface forming a biofilm. After 7 d, the secreted mucilage became entangled, forming adhesive strands that crisscrossed the substratum surface. In the initial secreted mucilage atomic force microscopy identified a high proportion of adhesive molecules without regular retraction curves and some modular-like adhesive molecules, in the 7 d old biofilm, the adhesive molecules were longer with fewer adhesive events but greater adhesive strength. Chemical characterization was carried out on extracted proteins and polysaccharides. Differences in protein composition, monosaccharide composition, and linkage analysis are discussed in relation to the composition of the frustule and secreted adhesive mucilage. Polysaccharide analysis showed a broad range of monosaccharides and linkages across all fractions with idiosyncratic enrichment of particular monosaccharides and linkages in each fraction. 3-linked Mannan was highly enriched in the cell frustule fractions indicating a major structural role, while Rhamnose and Fucose derivatives were enriched in the secreted fractions of the ovoid morphotype suggesting involvement in cell adhesion. Comparison of SDS-PAGE of extracellular proteins showed two major bands for the ovoid morphotype and four for the fusiform morphotype of which only one appeared to be common to both morphotypes. © 2013 Phycological Society of America.

  12. Structural and functional characterization of TRI3 trichothecene 15-O-acetyltransferase from Fusarium sporotrichioides

    Energy Technology Data Exchange (ETDEWEB)

    Garvey, Graeme S.; McCormick, Susan P.; Alexander, Nancy J.; Rayment, Ivan; (US-Agriculture); (UW)

    2009-08-14

    Fusarium head blight is a devastating disease of cereal crops whose worldwide incidence is increasing and at present there is no satisfactory way of combating this pathogen or its associated toxins. There is a wide variety of trichothecene mycotoxins and they all contain a 12,13-epoxytrichothecene skeleton but differ in their substitutions. Indeed, there is considerable variation in the toxin profile across the numerous Fusarium species that has been ascribed to differences in the presence or absence of biosynthetic enzymes and their relative activity. This article addresses the source of differences in acetylation at the C15 position of the trichothecene molecule. Here, we present the in vitro structural and biochemical characterization of TRI3, a 15-O-trichothecene acetyltransferase isolated from F. sporotrichioides and the 'in vivo' characterization of Deltatri3 mutants of deoxynivalenol (DON) producing F. graminearum strains. A kinetic analysis shows that TRI3 is an efficient enzyme with the native substrate, 15-decalonectrin, but is inactive with either DON or nivalenol. The structure of TRI3 complexed with 15-decalonectrin provides an explanation for this specificity and shows that Tri3 and Tri101 (3-O-trichothecene acetyltransferase) are evolutionarily related. The active site residues are conserved across all sequences for TRI3 orthologs, suggesting that differences in acetylation at C15 are not due to differences in Tri3. The tri3 deletion mutant shows that acetylation at C15 is required for DON biosynthesis even though DON lacks a C15 acetyl group. The enzyme(s) responsible for deacetylation at the 15 position of the trichothecene mycotoxins have not been identified.

  13. Processing and characterization of monolithic carbon structures based on wood fiberboards

    Science.gov (United States)

    Kercher, Andrew Keith

    The structure and properties of monolithic carbonized medium-density fiberboards were studied to expand the capabilities of carbonized wood processing. Medium-density fiberboard (MDF) has a more uniform structure than wood, which was investigated in earlier studies for monolithic carbon structures. The uniform structure of medium density fiberboard (MDF) allowed for a reduction in thermal processing time from 4.5 days for wood carbonization to 1 day for MDF carbonization. Key physical properties of carbonized MDF (c-MDF) were determined for potential applications, such as battery electrodes, fuel cell separators and activated carbon filters. X-ray diffraction (XRD) was used to characterize the growth of large turbostratic crystallites and large graphene sheets during the carbonization process. A novel x-ray diffraction method using monolithic pieces of c-MDF was used to correlate the dimensional changes occurring during the carbonization process with the growth of large turbostratic crystallites. The insights gained from the XRD investigation of c-MDF were used to develop a quasipercolation model, which describes the microstructural evolution of hard carbons. This quasipercolation model explained the observed changes in bulk density, dimension, helium density and electrical conductivity of c-MDF. The model also explained how nanopores form in activated carbon materials. The mechanical and electrical properties of carbonized MDF were measured using ASTM 4-point bending and 4-point electrical conductivity techniques. The elastic modulus was shown to vary from 1.5 to 4.5 GPa for the carbonization temperature range of 600°C to 1000°C. The electrical resistivity varied by seven orders of magnitude from 600°C to 1400°C. An open foam model was used to approximate the mechanical and electrical properties of the hard carbon material in the porous c-MDF. Large structural activated carbons were made by physical activation of c-MDF in carbon dioxide. A low activation

  14. Structural And Biochemical Characterization of the Therapeutic A. Variabilis Phenylalanine Ammonia Lyase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.; Gamez, A.; Archer, H.; Abola, E.E.; Sarkissian, C.N.; Fitzpatrick, P.; Wendt, D.; Zhang, Y.; Vellard, M.; Bliesath, J.; Bell, S.; Lemont, J.; Scriver, C.R.; Stevens, R.C.

    2009-05-26

    We have recently observed promising success in a mouse model for treating the metabolic disorder phenylketonuria with phenylalanine ammonia lyase (PAL) from Rhodosporidium toruloides and Anabaena variabilis. Both molecules, however, required further optimization in order to overcome problems with protease susceptibility, thermal stability, and aggregation. Previously, we optimized PAL from R. toruloides, and in this case we reduced aggregation of the A. variabilis PAL by mutating two surface cysteine residues (C503 and C565) to serines. Additionally, we report the structural and biochemical characterization of the A. variabilis PAL C503S/C565S double mutant and carefully compare this molecule with the R. toruloides engineered PAL molecule. Unlike previously published PAL structures, significant electron density is observed for the two active-site loops in the A. variabilis C503S/C565S double mutant, yielding a complete view of the active site. Docking studies and N-hydroxysuccinimide-biotin binding studies support a proposed mechanism in which the amino group of the phenylalanine substrate is attacked directly by the 4-methylidene-imidazole-5-one prosthetic group. We propose a helix-to-loop conformational switch in the helices flanking the inner active-site loop that regulates accessibility of the active site. Differences in loop stability among PAL homologs may explain the observed variation in enzyme efficiency, despite the highly conserved structure of the active site. A. variabilis C503S/C565S PAL is shown to be both more thermally stable and more resistant to proteolytic cleavage than R. toruloides PAL. Additional increases in thermal stability and protease resistance upon ligand binding may be due to enhanced interactions among the residues of the active site, possibly locking the active-site structure in place and stabilizing the tetramer. Examination of the A. variabilis C503S/C565S PAL structure, combined with analysis of its physical properties, provides

  15. Physical, Structural, Barrier, and Antifungal Characterization of Chitosan–Zein Edible Films with Added Essential Oils

    Science.gov (United States)

    Escamilla-García, Monserrat; Calderón-Domínguez, Georgina; Chanona-Pérez, Jorge J.; Mendoza-Madrigal, Angélica G.; Di Pierro, Prospero; García-Almendárez, Blanca E.; Amaro-Reyes, Aldo

    2017-01-01

    Edible films (EFs) have gained great interest due to their ability to keep foods safe, maintaining their physical and organoleptic properties for a longer time. The aim of this work was to develop EFs based on a chitosan–zein mixture with three different essential oils (EOs) added: anise, orange, and cinnamon, and to characterize them to establish the relationship between their structural and physical properties. The addition of an EO into an EF significantly affected (p film surface. The EFs presented a refractive index between 1.35 and 1.55, and thus are classified as transparent. The physical properties of EFs with an added EO were improved, and films that incorporated the anise EO showed significantly lower water vapor permeability (1.2 ± 0.1 g mm h−1 m−2 kPa−1) and high hardness (104.3 ± 3.22 MPa). EFs with an added EO were able to inhibit the growth of Penicillium sp. and Rhizopus sp. to a larger extent than without an EO. Films’ structural changes were the result of chemical interactions among amino acid side chains from zein, glucosamine from chitosan, and cinnamaldehyde, anethole, or limonene from the EOs as detected by a Raman analysis. The incorporation of an EO in the EFs’ formulation could represent an alternative use as coatings to enhance the shelf life of food products. PMID:29117148

  16. Physical, Structural, Barrier, and Antifungal Characterization of Chitosan-Zein Edible Films with Added Essential Oils.

    Science.gov (United States)

    Escamilla-García, Monserrat; Calderón-Domínguez, Georgina; Chanona-Pérez, Jorge J; Mendoza-Madrigal, Angélica G; Di Pierro, Prospero; García-Almendárez, Blanca E; Amaro-Reyes, Aldo; Regalado-González, Carlos

    2017-11-08

    Edible films (EFs) have gained great interest due to their ability to keep foods safe, maintaining their physical and organoleptic properties for a longer time. The aim of this work was to develop EFs based on a chitosan-zein mixture with three different essential oils (EOs) added: anise, orange, and cinnamon, and to characterize them to establish the relationship between their structural and physical properties. The addition of an EO into an EF significantly affected ( p film surface. The EFs presented a refractive index between 1.35 and 1.55, and thus are classified as transparent. The physical properties of EFs with an added EO were improved, and films that incorporated the anise EO showed significantly lower water vapor permeability (1.2 ± 0.1 g mm h -1 m -2 kPa -1 ) and high hardness (104.3 ± 3.22 MPa). EFs with an added EO were able to inhibit the growth of Penicillium sp. and Rhizopus sp. to a larger extent than without an EO. Films' structural changes were the result of chemical interactions among amino acid side chains from zein, glucosamine from chitosan, and cinnamaldehyde, anethole, or limonene from the EOs as detected by a Raman analysis. The incorporation of an EO in the EFs' formulation could represent an alternative use as coatings to enhance the shelf life of food products.

  17. Physical, Structural, Barrier, and Antifungal Characterization of Chitosan–Zein Edible Films with Added Essential Oils

    Directory of Open Access Journals (Sweden)

    Monserrat Escamilla-García

    2017-11-01

    Full Text Available Edible films (EFs have gained great interest due to their ability to keep foods safe, maintaining their physical and organoleptic properties for a longer time. The aim of this work was to develop EFs based on a chitosan–zein mixture with three different essential oils (EOs added: anise, orange, and cinnamon, and to characterize them to establish the relationship between their structural and physical properties. The addition of an EO into an EF significantly affected (p < 0.05 the a* (redness/greenness and b* (yellowness/blueness values of the film surface. The EFs presented a refractive index between 1.35 and 1.55, and thus are classified as transparent. The physical properties of EFs with an added EO were improved, and films that incorporated the anise EO showed significantly lower water vapor permeability (1.2 ± 0.1 g mm h−1 m−2 kPa−1 and high hardness (104.3 ± 3.22 MPa. EFs with an added EO were able to inhibit the growth of Penicillium sp. and Rhizopus sp. to a larger extent than without an EO. Films’ structural changes were the result of chemical interactions among amino acid side chains from zein, glucosamine from chitosan, and cinnamaldehyde, anethole, or limonene from the EOs as detected by a Raman analysis. The incorporation of an EO in the EFs’ formulation could represent an alternative use as coatings to enhance the shelf life of food products.

  18. Structural and Electrical Characterization of Oxidated, Nitridated and Oxi-nitridated (100) GaAs Surfaces

    Science.gov (United States)

    Paul, Narayan Chandra; Nakamura, Kazuki; Takebe, Masahide; Takemoto, Akira; Inokuma, Takao; Iiyama, Koichi; Takamiya, Saburo; Higashimine, Koichi; Ohtsuka, Nobuo; Yonezawa, Yasuto

    2003-07-01

    Oxidation by the UV & ozone process, nitridation by the nitrogen helicon-wave-excited plasma process, and the combination of these processes are applied to (100) GaAs wafers. An atomic force microscope, X-ray photoelectron spectroscopy, a transmission electron microscope, photoluminescence and electrical characteristics (current-voltage and capacitance-voltage) were used to analyze the influences of these processes on the structure and composition of the surfaces and the interfaces. Metal-insulator-semiconductor (MIS) diodes and Schottky diodes were fabricated in order to investigate the electrical influences of these processes. The oxidation slightly disorders GaAs surfaces. Nitridation of a bare surface creates about a 2-nm-thick strongly disordered layer, which strongly deteriorates the electrical and photoluminescence characteristics. Nitridation of oxidated wafers (oxi-nitridation) forms firm amorphous GaON layers, which contain GaN, with very flat and sharp GaON/GaAs interfaces, where crystal disorder is hardly observed. It improves the current-voltage (I-V) and capacitance-voltage (C-V) characteristics and the photoluminescence intensity. Results of the structural and the electrical characterizations qualitatively coincide well with each other.

  19. Advances in Chemical and Structural Characterization of Concretion with Implications for Modeling Marine Corrosion

    Science.gov (United States)

    Johnson, Donald L.; DeAngelis, Robert J.; Medlin, Dana J.; Carr, James D.; Conlin, David L.

    2014-05-01

    The Weins number model and concretion equivalent corrosion rate methodology were developed as potential minimum-impact, cost-effective techniques to determine corrosion damage on submerged steel structures. To apply the full potential of these technologies, a detailed chemical and structural characterization of the concretion (hard biofouling) that transforms into iron bearing minerals is required. The fractions of existing compounds and the quantitative chemistries are difficult to determine from x-ray diffraction. Environmental scanning electron microscopy was used to present chemical compositions by means of energy-dispersive spectroscopy (EDS). EDS demonstrates the chemical data in mapping format or in point or selected area chemistries. Selected-area EDS data collection at precise locations is presented in terms of atomic percent. The mechanism of formation and distribution of the iron-bearing mineral species at specific locations will be presented. Based on water retention measurements, porosity in terms of void volume varies from 15 v/o to 30 v/o (vol.%). The void path displayed by scanning electron microscopy imaging illustrates the tortuous path by which oxygen migrates in the water phase within the concretion from seaside to metalside.

  20. Lanthanoid tagging via an unnatural amino acid for protein structure characterization.

    Science.gov (United States)

    Jiang, Wen-Xue; Gu, Xin-Hua; Dong, Xu; Tang, Chun

    2017-04-01

    Lanthanoid pseudo-contact shift (PCS) provides long-range structural information between a paramagnetic tag and protein nuclei. However, for proteins with native cysteines, site-specific attachment may only utilize functional groups orthogonal to sulfhydryl chemistry. Here we report two lanthanoid probes, DTTA-C3-yne and DTTA-C4-yne, which can be conjugated to an unnatural amino acid pAzF in the target protein via azide-alkyne cycloaddition. Demonstrated with ubiquitin and cysteine-containing enzyme EIIB, we show that large PCSs of distinct profiles can be generated for each tag/lanthanoid combination. The DTTA-based lanthanoid tags are associated with large magnetic susceptibility tensors owing to the rigidity of the tags. In particular, introduction of the DTTA-C3 tag affords intermolecular PCSs and enables structural characterization of a transient protein complex between ubiquitin and a UBA domain. Together, we have expanded the repertoire of paramagnetic tags and the applicability of paramagnetic NMR.

  1. Characterization of a structurally and functionally diverged acyl-acyl carrier protein desaturase from milkweed seed.

    Science.gov (United States)

    Cahoon, E B; Coughlan, S J; Shanklin, J

    1997-04-01

    A cDNA for a structurally variant acyl-acyl carrier protein (ACP) desaturase was isolated from milkweed (Asclepias syriaca) seed, a tissue enriched in palmitoleic (16:1delta9)* and cis-vaccenic (18:1delta11) acids. Extracts of Escherichia coli that express the milkweed cDNA catalyzed delta9 desaturation of acyl-ACP substrates, and the recombinant enzyme exhibited seven- to ten-fold greater specificity for palmitoyl (16:0)-ACP and 30-fold greater specificity for myristoyl (14:0)-ACP than did known delta9-stearoyl (18:0)-ACP desaturases. Like other variant acyl-ACP desaturases reported to date, the milkweed enzyme contains fewer amino acids near its N-terminus compared to previously characterized delta9-18:0-ACP desaturases. Based on the activity of an N-terminal deletion mutant of a delta9-18:0-ACP desaturase, this structural feature likely does not account for differences in substrate specificities.

  2. Report on maloine, a new alkaloid discovered from G. maloi: Structural characterization and biological activity

    Science.gov (United States)

    Çela, Dorisa; Nepravishta, Ridvan; Lazari, Diamanto; Gaziano, Roberta; Moroni, Gabriella; Pica, Francesca; Paci, Maurizio; Abazi, Sokol

    2017-02-01

    Gymnospermium maloi Kit Tan, & Shuka is a new endemic species of the genus Gymnospermium Spach which has been described recently from the southern part of Albania. The members of this genus are poorly studied for what it concern the secondary metabolites in general and the class of alkaloids in particular. In fact from Gymnospermium genus, there are only few alkaloids characterized, (namely albertramine, albertidine, and albertine) isolated from G. albertii. Until now the chemical composition and the structure elucidation of other possible secondary metabolites, especially alkaloids, remain largely unknown. Here we report, for the first time, the structure of a new alkaloid isolated from G. maloi, designated by us as maloine, and obtained by the use of 2D homonuclear and heteronuclear NMR spectroscopy, FTIR, UV, Fluorescence and HPLC/MS spectra. The biological activity of the crude extract of Gymnospermium maloi and of its alkaloid maloine, was evaluated in vitro on human chronic myeloid leukemia cell line K562 and results herewith reported.

  3. Structural characterization of lignin isolated from coconut (Cocos nucifera) coir fibers.

    Science.gov (United States)

    Rencoret, Jorge; Ralph, John; Marques, Gisela; Gutiérrez, Ana; Martínez, Ángel T; del Río, José C

    2013-03-13

    The structure of the isolated milled "wood" lignin from coconut coir has been characterized using different analytical methods, including Py-GC/MS, 2D NMR, DFRC, and thioacidolysis. The analyses demonstrated that it is a p-hydroxyphenyl-guaiacyl-syringyl (H-G-S) lignin, with a predominance of G units (S/G ratio 0.23) and considerable amounts of associated p-hydroxybenzoates. Two-dimensional NMR indicated that the main substructures present in this lignin include β-O-4' alkyl aryl ethers followed by phenylcoumarans and resinols. Two-dimensional NMR spectra also indicated that coir lignin is partially acylated at the γ-carbon of the side chain with p-hydroxybenzoates and acetates. DFRC analysis showed that acetates preferentially acylate the γ-OH in S rather than in G units. Despite coir lignin's being highly enriched in G-units, thioacidolysis indicated that β-β' resinol structures are mostly derived from sinapyl alcohol. Finally, we find evidence that the flavone tricin is incorporated into the coconut coir lignin, as has been recently noted for various grasses.

  4. Physiochemical Characterization of Iodine (V Oxide Part II: Morphology and Crystal Structure of Particulate Films

    Directory of Open Access Journals (Sweden)

    Brian K. Little

    2015-11-01

    Full Text Available In this study, the production of particulate films of iodine (V oxides is investigated. The influence that sonication and solvation of suspended particles in various alcohol/ketone/ester solvents have on the physical structure of spin or drop cast films is examined in detail with electron microscopy, powder x-ray diffraction, and UV-visible absorption spectroscopy. Results indicate that sonicating iodine oxides in alcohol mixtures containing trace amounts of water decreases deposited particle sizes and produces a more uniform film morphology. UV-visible spectra of the pre-cast suspensions reveal that for some solvents, the iodine oxide oxidizes the solvent, producing I2 and lowering the pH of the suspension. Characterizing the crystals within the cast films reveal their composition to be primarily HI3O8, their orientations to exhibit a preferential orientation, and their growth to be primarily along the ac-plane of the crystal, enhanced at higher spin rates. Spin-coating at lower spin rates produces laminate-like particulate films versus higher density, one-piece films of stacked particles produced by drop casting. The particle morphology in these films consists of a combination of rods, plates, cubes, and rhombohedra structure.

  5. Synthesis, structural and magnetic characterization of soft magnetic nanocrystalline ternary FeNiCo particles

    Energy Technology Data Exchange (ETDEWEB)

    Toparli, Cigdem [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey); Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf (Germany); Ebin, Burçak [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey); Nuclear Chemistry and Industrial Material Recycling, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, S-412 96 Gothenburg (Sweden); Gürmen, Sebahattin, E-mail: gurmen@itu.edu.tr [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey)

    2017-02-01

    The present study focuses on the synthesis, microstructural and magnetic properties of ternary FeNiCo nanoparticles. Nanocrystalline ternary FeNiCo particles were synthesized via hydrogen reduction assisted ultrasonic spray pyrolysis method in single step. The effect of precursor concentration on the morphology and the size of particles was investigated. The syntheses were performed at 800 °C. Structure, morphology and magnetic properties of the as-prepared products were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) studies. Scherer calculation revealed that crystallite size of the ternary particles ranged between 36 and 60 nm. SEM and TEM investigations showed that the particle size was strongly influenced by the precursor concentration and Fe, Ni, Co elemental composition of individual particles was homogeneous. Finally, the soft magnetic properties of the particles were observed to be a function of their size. - Highlights: • Ternary FeNiCo alloy nanocrystalline particles were synthesized in a single step. • Cubic crystalline structure and spherical morphology was observed by XRD, SEM and TEM investigations. • The analysis of magnetic properties indicates the soft magnetic features of particles.

  6. Structural Characterization of Lignin during Pinus taeda Wood Treatment with Ceriporiopsis subvermispora

    Science.gov (United States)

    Guerra, Anderson; Mendonça, Régis; Ferraz, André; Lu, Fachuang; Ralph, John

    2004-01-01

    Pinus taeda wood chips were biotreated with Ceriporiopsis subvermispora under solid-state fermentation for periods varying from 15 to 90 days. Milled wood lignins extracted from sound and biotreated wood samples were characterized by wet-chemical and spectroscopic techniques. Treatment of the lignins by derivatization followed by reductive cleavage (DFRC) made it possible to detect DFRC monomers and dimers that are diagnostic of the occurrence of arylglycerol-β-O-aryl and β-β, β-5, β-1, and 4-O-5 units in the lignin structure. Quantification of these DFRC products indicated that β-O-aryl cleavage was a significant route for lignin biodegradation but that β-β, β-5, β-1, and 4-O-5 linkages were more resistant to the biological attack. The amount of aromatic hydroxyls did not increase with the split of β-O-4 linkages, suggesting that the β-O-4 cleavage products remain as quinone-type structures as detected by UV and visible spectroscopy. Nuclear magnetic resonance techniques also indicated the formation of new substructures containing nonoxygenated, saturated aliphatic carbons (CH2 and CH3) in the side chains of lignins extracted from biotreated wood samples. PMID:15240285

  7. Structural and IR-spectroscopic characterization of cadmium and lead(II) acesulfamates

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria, Gustavo A.; Piro, Oscar E. [Univ. Nacional de La Plata (Argentina). Dept. de Fisica y Inst. IFLP (CONICET- CCT-La Plata); Parajon-Costa, Beatriz S.; Baran, Enrique J. [Univ. Nacional de La Plata (Argentina). Centro de Quimica Inorganica (CEQUINOR/CONICET- CCT-La Plata)

    2017-07-01

    Cadmium and lead(II) acesulfamate, Cd(C{sub 4}H{sub 4}NO{sub 4}S){sub 2} . 2H{sub 2}O and Pb(C{sub 4}H{sub 4}NO{sub 4}S){sub 2}, were prepared by the reaction of acesulfamic acid and the respective metal carbonates in aqueous solution, and characterized by elemental analysis. Their crystal structures were determined by single crystal X-ray diffraction methods. The Cd(II) compound crystallizes in the monoclinic space group P2{sub 1}/c with Z=4 and the corresponding Pb(II) salt in the triclinic space group P anti 1 with Z=2. In both salts, acesulfamate acts both as a bi-dentate ligand through its nitrogen and carbonyl oxygen atoms and also as a mono-dentate ligand through this same oxygen atom, giving rise to polymeric structures; in the Pb(II) salt the ligand also binds the cation through its sulfoxido oxygen atoms. The FTIR spectra of the compounds were recorded and are briefly discussed. Some comparisons with other related acesulfamate and saccharinate complexes are made.

  8. Characterization of internal structure of hydrated agar and gelatin matrices by cryo-SEM

    KAUST Repository

    Rahbani, Janane

    2012-12-26

    There has been a considerable interest in recent years in developing polymer gel matrices for many important applications such as 2DE for quantization and separation of a variety of proteins and drug delivery system to control the release of active agents. However, a well-defined knowledge of the ultrastructures of the gels has been elusive. In this study, we report the characterization of two different polymers used in 2DE: Gelatin, a naturally occurring polymer derived from collagen (protein) and agar, a polymer of polysaccharide (sugar) origin. Low-temperature SEM is used to examine the internal structure of these gels in their frozen natural hydrated states. Results of this study show that both polymers have an array of hollow cells that resembles honeycomb structures. While agar pores are almost circular, the corresponding Gaussian curve is very broad exhibiting a range of radii from nearly 370 to 700 nm. Gelatin pores are smaller and more homogeneous reflecting a narrower distribution from nearly 320 to 650 nm. Overall, these ultrastructural findings could be used to correlate with functions of the polymers. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Distorted tetrahedral nickel-nitrosyl complexes: spectroscopic characterization and electronic structure.

    Science.gov (United States)

    Soma, Shoko; Van Stappen, Casey; Kiss, Mercedesz; Szilagyi, Robert K; Lehnert, Nicolai; Fujisawa, Kiyoshi

    2016-09-01

    The linear nickel-nitrosyl complex [Ni(NO)(L3)] supported by a highly hindered tridentate nitrogen-based ligand, hydrotris(3-tertiary butyl-5-isopropyl-1-pyrazolyl)borate (denoted as L3), was prepared by the reaction of the potassium salt of the ligand with the nickel-nitrosyl precursor [Ni(NO)(Br)(PPh 3 ) 2 ]. The obtained nitrosyl complexes as well as the corresponding chlorido complexes [Ni(NO)(Cl)(PPh 3 ) 2 ] and [Ni(Cl)(L3)] were characterized by X-ray crystallography and different spectroscopic methods including IR/far-IR, UV-Vis, NMR, and multi-edge X-ray absorption spectroscopy at the Ni K-, Ni L-, Cl K-, and P K-edges. For comparative electronic structure analysis we also performed DFT calculations to further elucidate the electronic structure of [Ni(NO)(L3)]. These results provide the nickel oxidation state and the character of the Ni-NO bond. The complex [Ni(NO)(L3)] is best described as [Ni (II) (NO (-) )(L3)], and the spectroscopic results indicate that the phosphane complexes have a similar [Ni (II) (NO (-) )(X)(PPh 3 ) 2 ] ground state.

  10. Preparation and structural characterization of amorphous spray-dried dispersions of tenoxicam with enhanced dissolution.

    Science.gov (United States)

    Patel, Jagdishwar R; Carlton, Robert A; Yuniatine, Fnu; Needham, Thomas E; Wu, Lianming; Vogt, Frederick G

    2012-02-01

    Tenoxicam is a poorly soluble nonsteroidal anti-inflammatory drug. In this work, the solubility of tenoxicam is enhanced using amorphous spray-dried dispersions (SDDs) prepared using two molar equivalents of l-arginine and optionally with 10%-50% (w/w) polyvinylpyrrolidone (PVP). When added to the dispersions, PVP is shown to improve physical properties and also assists in maintaining supersaturation in solution. The dispersions provide a twofold increase over equilibrium solubility at the same pH. The dispersions are characterized using electron microscopy, vibrational spectroscopy, diffuse-reflectance visible spectroscopy, and X-ray powder diffraction. The structures of the dispersions are probed using solid-state nuclear magnetic resonance (SSNMR) experiments applied to the (1) H, (13) C, and (15) N nuclei, including two-dimensional dipolar correlation experiments that detect molecular association and the formation of a glass solution between tenoxicam, l-arginine, and PVP. Other aspects of the amorphous structure, including hydrogen-bonding interactions and the ionization state of tenoxicam and l-arginine, are also explored using SSNMR methods. These methods are used to show that the SDDs contain an amorphous l-arginine salt of tenoxicam in a glass solution that also includes PVP when present. Finally, the dispersions show only a minor decrease in chemical stability during accelerated stability studies relative to a crystalline form of tenoxicam. Copyright © 2011 Wiley Periodicals, Inc.

  11. Functional and Structural Characterization of a (+)-Limonene Synthase from Citrus sinensis.

    Science.gov (United States)

    Morehouse, Benjamin R; Kumar, Ramasamy P; Matos, Jason O; Olsen, Sarah Naomi; Entova, Sonya; Oprian, Daniel D

    2017-03-28

    Terpenes make up the largest and most diverse class of natural compounds and have important commercial and medical applications. Limonene is a cyclic monoterpene (C 10 ) present in nature as two enantiomers, (+) and (-), which are produced by different enzymes. The mechanism of production of the (-)-enantiomer has been studied in great detail, but to understand how enantiomeric selectivity is achieved in this class of enzymes, it is important to develop a thorough biochemical description of enzymes that generate (+)-limonene, as well. Here we report the first cloning and biochemical characterization of a (+)-limonene synthase from navel orange (Citrus sinensis). The enzyme obeys classical Michaelis-Menten kinetics and produces exclusively the (+)-enantiomer. We have determined the crystal structure of the apoprotein in an "open" conformation at 2.3 Å resolution. Comparison with the structure of (-)-limonene synthase (Mentha spicata), which is representative of a fully closed conformation (Protein Data Bank entry 2ONG ), reveals that the short H-α1 helix moves nearly 5 Å inward upon substrate binding, and a conserved Tyr flips to point its hydroxyl group into the active site.

  12. Structural and magnetic characterization of soft-magnetic FeCo alloy nanoparticles

    International Nuclear Information System (INIS)

    Gao Xingyu; Tan, S.C.; Wee, A.T.S.; Wu Junhua; Kong Lingbing; Yu Xiaojiang; Moser, H.O.

    2006-01-01

    Soft-magnetic FeCo alloy nanoparticles with diameters less than 100 nm are prepared by ball milling. X-ray photoemission spectroscopy (XPS) and X-ray magnetic circular dichroism (XMCD) are used to characterize these particles. While the XPS spectrum from the as-prepared sample clearly shows Co photoemission peaks, no sign of Fe is observed in the same spectrum. However, Fe photoemission peaks appear after 1 h of Ar ion sputtering. A quantitative analysis of the XPS spectra shows an increase of Fe concentration versus sputtering time until the Fe:Co ratio of the bulk alloy is reached. In addition, the narrow scan Fe and Co 2p XPS spectra show that Co is more oxidized than Fe. All these measurements indicate that the nanoparticles have a Co shell and an Fe-rich core. They further demonstrate the usefulness of XPS combined with depth-profiling via sputtering to obtain element- and chemically-sensitive structural information on nanoparticles. XMCD as an element-specific magnetic analysis tool further reveals that Fe and Co are ferromagnetically coupled in these particles. The information obtained is useful for establishing a structure-property relation for the studied material that is expected to have applications as a soft magnetic material at high temperatures

  13. Structural characterization of polycarbonates for membrane applications by atomic level simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, F.T.; Arizzi, S.; Suter, U.W. [ETH-Zentrum, Zuerich (Switzerland). Inst. fuer Polymere; Ludovice, P.J. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Chemical Engineering

    1995-12-01

    Polycarbonate polymers are desirable for use in membrane applications for separating gas mixtures due to their unique properties. Two commercially important membrane polymers, the tetramethyl (TMPC) and tetrabromo (TBPC) derivatives of Bisphenol A polycarbonate, were studied with computer simulation. The volume available to various gas diffusants in these polymers was characterized by calculating the volume of clusters of Delauney tetrahedra between the atoms of an ensemble of bulk molecular mechanics models of the polymer. The inverse of this available volume correlated with the diffusivity of various gases in these polymers. This correlation was able to qualitatively reproduce the gas diffusion consistent with the superior diffusivity and superior selectivity of TMPC and TBPC, respectively. Analysis of the structure of the two polymers suggests a more ordered packing of the TMPC chain which is consistent with the experimentally observed trend in which inhibited packing leads to increased selectivity for gas diffusion in polymers. Despite the model`s neglect of the thermal motion of the polymer, it has potential for use as a tool to suggest other perturbations in polycarbonate structure that may produce superior properties.

  14. Characterization of synthetic foam structures used to manufacture artificial vertebral trabecular bone.

    Science.gov (United States)

    Fürst, David; Senck, Sascha; Hollensteiner, Marianne; Esterer, Benjamin; Augat, Peter; Eckstein, Felix; Schrempf, Andreas

    2017-07-01

    Artificial materials reflecting the mechanical properties of human bone are essential for valid and reliable implant testing and design. They also are of great benefit for realistic simulation of surgical procedures. The objective of this study was therefore to characterize two groups of self-developed synthetic foam structures by static compressive testing and by microcomputed tomography. Two mineral fillers and varying amounts of a blowing agent were used to create different expansion behavior of the synthetic open-cell foams. The resulting compressive and morphometric properties thus differed within and also slightly between both groups. Apart from the structural anisotropy, the compressive and morphometric properties of the synthetic foam materials were shown to mirror the respective characteristics of human vertebral trabecular bone in good approximation. In conclusion, the artificial materials created can be used to manufacture valid synthetic bones for surgical training. Further, they provide novel possibilities for studying the relationship between trabecular bone microstructure and biomechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The hemoglobin system of the serpent eel Ophisurus serpens: structural and functional characterization.

    Science.gov (United States)

    Manconi, Barbara; Pellegrini, Mariagiuseppina; Messana, Irene; Sanna, Maria Teresa; Castagnola, Massimo; Iavarone, Federica; Coluccia, Elisabetta; Giardina, Bruno; Olianas, Alessandra

    2013-10-01

    The hemoglobin system of the serpent eel Ophisurus serpens was structurally and functionally characterized with the aim of comparing it to the hemoglobin system of other fish species, as oxygen loading under the severe habitat conditions experienced by O. serpens could have necessitated specific adaptation mechanisms during evolution. The hemoglobin system of O. serpens includes one cathodic and four anodic components. The molecular mass of the α and β chains of the cathodic component as well as the 2 α and 4 β of the anodic components were determined. Analysis of the intact α and β chains from cathodic hemoglobin and their proteolytic digestion products by high-resolution MS and MS/MS experiments resulted in 92 and 95 % sequence coverage of the α and β globins, respectively. The oxygen binding properties of both hemoglobin components were analyzed with respect to their interactions with their physiological effectors. Stripped cathodic hemoglobin displayed the highest oxygen affinity among Anguilliformes with no significant effect of pH on O2-affinity. In the presence of both chloride and organic phosphates, O2-affinity was strongly reduced, and cooperativity was enhanced; moreover, cathodic hemoglobin contains two indistinguishable GTP-binding sites. Stripped anodic hemoglobins exhibited both low O2-affinity and low cooperativity and a larger Bohr effect than cathodic hemoglobin. The cathodic hemoglobin of O. serpens and the corresponding component of Conger conger share the greatest structural and functional similarity among hemoglobin systems of Anguilliformes studied to date, consistent with their phylogenetic relationship.

  16. Structural and physicochemical characterization of pyridine derivative salts of anti-inflammatory drugs

    Science.gov (United States)

    Nechipadappu, Sunil Kumar; Trivedi, Darshak R.

    2017-08-01

    Salts of common anti-inflammatory drugs mefenamic acid (MFA), tolfenamic acid (TFA) and naproxen (NPX) with various pyridine derivatives (4-amino pyridine (4AP), 4-dimethylaminopyridine (DMAP) and 2-amino pyridine (2AP)) were synthesized by crystal engineering approach based on the pKa values of API's and the salt former. All the salts were characterized systematically by various spectroscopic methods including FT-IR and 1H NMR and the crystal structure was determined by single-crystal X-ray diffraction techniques (SCXRD). DMAP salt of NPX and 2AP salts of MFA and TFA were not obtained in the salt screening experiments. All the molecular salts exhibited 1:1 molecular stoichiometry in the asymmetric unit and except NPX-2AP salt, all the molecular salts included a water molecule in the crystal lattice. Physicochemical and structural properties between drug-drug molecular salts of MFA-4AP, TFA-4AP and NPX-4AP have been evaluated and it was found that these molecular salts were found to be stable for a time period of six months at ambient condition and further hydration of molecular salts were not observed even at accelerated humid conditions (∼75% RH). It was found that 4AP salts of MFA and TFA and DMAP salts of MFA and TFA are isostructural.

  17. Structural characterization of Pt–Pd core–shell nanoparticles by Cs-corrected STEM

    International Nuclear Information System (INIS)

    Esparza, R.; García-Ruiz, Amado F.; Velázquez Salazar, J. J.; Pérez, R.; José-Yacamán, M.

    2013-01-01

    Pt–Pd core–shell nanoparticles were synthesized using a modified polyol method. A thermal method under refluxing, carrying on the reaction up to 285 °C, has been performed to reduce metallic salts using ethylene glycol as reducer and poly(N-vinyl-2-pyrrolidone) as protective reagent of the formed bimetallic nanoparticles. According to other works, this type of structure has been studied and utilized to successfully increase the catalytic properties of monometallic nanoparticles Pt or Pd. Core–shell bimetallic nanoparticles were structurally characterized using aberration-corrected scanning transmission electron microscopy (Cs-STEM) equipped with a high-angle annular dark field detector, energy-dispersive X-ray spectrometry (EDS), and electron energy-loss spectroscopy (EELS). The high-resolution elemental line scan and mappings were carried out using a combination of STEM–EDS and STEM–EELS. The obtained results show the growth of the Pd shell on the Pt core with polyhedral morphology. The average size of the bimetallic nanoparticles was 13.5 nm and the average size of the core was 8.5 nm; consequently, the thickness of the shell was around 2.5 nm. The growth of the Pd shell on the Pt core is layer by layer, suggesting a Frank-van der Merwe growth mechanism.

  18. Characterization of iron oxide nanoparticles in structural silk-elastinlike protein polymer

    Science.gov (United States)

    Shih, Jennifer

    The structure of silk elastin-like protein (SELP) block copolymers containing Fe3O4 magnetic nanoparticles are investigated. These materials have potential applications for hyperthermia cancer therapy. SELPs undergo a gel transition at physiological temperatures, which can be used to localize delivery of nanoparticles at tumor sites. Vibrating sample magnetometry (VSM), transmission electron microscopy (TEM), and small angle neutron scattering (SANS) are used to characterize the nanoparticles and the SELP-nanoparticle nanocomposite system. A series of nanoparticles with three different nominal diameters, 30, 50 and 80 nm, were added to 4 and 8 wt.% SELP samples. Different functionalities on the nanoparticle surface affect their interactions with SELP. The 50 nm nanoparticles in SELP exhibit chaining (linear association of the nanoparticles), while the 30 nm nanoparticles are too small and settle out of the polymer mesh and the 80 nm nanoparticles tend to cluster without any regard for SELP structure. The SELP concentration does not have a major affect on nanoparticle behavior in the nanocomposites.

  19. STRUCTURAL CHARACTERIZATION OF THE INTERACTIONS BETWEEN PALLADIN AND α-ACTININ

    Science.gov (United States)

    Beck, Moriah R.; Otey, Carol A.; Campbell, Sharon L.

    2011-01-01

    The interaction between α-actinin and palladin, two actin-crosslinking proteins, is essential for proper bidirectional targeting of these proteins. As a first step toward understanding the role of this complex in organizing cytoskeletal actin, we have characterized binding interactions between the EF hand domain of α-actinin (Act-EF34) and peptides derived from palladin, and generated a NMR-derived structural model for the Act-EF34/palladin peptide complex. The critical binding site residues are similar to an actinin binding motif previously suggested for the complex between Act-EF34 and titin Z-repeats. The structure-based model of the Act-EF34/palladin peptide complex expands our understanding of binding specificity between the scaffold protein α-actinin and various ligands, which appears to require an α-helical motif containing four hydrophobic residues, common to many α–actinin ligands. We also provide evidence that the Family-X mutation in palladin, associated with a highly penetrant form of pancreatic cancer, does not interfere with α-actinin binding. PMID:21925511

  20. Non-Linear Structural Dynamics Characterization using a Scanning Laser Vibrometer

    Science.gov (United States)

    Pai, P. F.; Lee, S.-Y.

    2003-01-01

    This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal \\ielocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.

  1. Characterization of microgravity effects on bone structure and strength using fractal analysis

    Science.gov (United States)

    Acharya, Raj S.; Shackelford, Linda

    1995-01-01

    The effect of micro-gravity on the musculoskeletal system has been well studied. Significant changes in bone and muscle have been shown after long term space flight. Similar changes have been demonstrated due to bed rest. Bone demineralization is particularly profound in weight bearing bones. Much of the current techniques to monitor bone condition use bone mass measurements. However, bone mass measurements are not reliable to distinguish Osteoporotic and Normal subjects. It has been shown that the overlap between normals and osteoporosis is found for all of the bone mass measurement technologies: single and dual photon absorptiometry, quantitative computed tomography and direct measurement of bone area/volume on biopsy as well as radiogrammetry. A similar discordance is noted in the fact that it has not been regularly possible to find the expected correlation between severity of osteoporosis and degree of bone loss. Structural parameters such as trabecular connectivity have been proposed as features for assessing bone conditions. In this report, we use fractal analysis to characterize bone structure. We show that the fractal dimension computed with MRI images and X-Ray images of the patella are the same. Preliminary experimental results show that the fractal dimension computed from MRI images of vertebrae of human subjects before bedrest is higher than during bedrest.

  2. Got Point Clouds: Characterizing Canopy Structure With Active and Passive Sensors

    Science.gov (United States)

    Popescu, S. C.; Malambo, L.; Sheridan, R.; Putman, E.; Murray, S.; Rooney, W.; Rajan, N.

    2016-12-01

    Unmanned Aerial Systems (UAS) provide the means to acquire highly customized aerial data at local scale with a multitude of sensors. UAS allow us to obtain affordably repeated observations of canopy structure for agricultural and natural resources applications by using passive optical sensors, such as cameras and photogrammetric techniques, and active sensors, such as lidar (Light Detection and Ranging). The objectives of this presentation are to: (1) offer a brief overview of UAS used for agriculture and natural resources studies, (2) describe experiences in conducting agriculture phenotyping and forest vegetation measurements, and (3) give details on the methodology developed for image and lidar data processing for characterizing the three dimensional structure of plant canopies. The UAS types used for this purpose included rotary platforms, such as quadcopters, hexacopters, and octocopters, with a payload capacity of up to 19 lbs. The sensors that collected data over two crop seasons include multispectral cameras in the visible color spectrum and near infrared, and UAS-lidar. For ground reference data we used terrestrial lidar scanners and field measurements. Results comparing UAS and terrestrial measurements show high correlation and open new areas of scientific investigation of crop canopies previously not possible with affordable techniques.

  3. Nanoscale structural and electronic characterization of α-RuCl3 layered compound

    Science.gov (United States)

    Ziatdinov, Maxim; Maksov, Artem; Banerjee, Arnab; Zhou, Wu; Berlijn, Tom; Yan, Jiaqiang; Nagler, Stephen; Mandrus, David; Baddorf, Arthur; Kalinin, Sergei

    The exceptional interplay of spin-orbit effects, Coulomb interaction, and electron-lattice coupling is expected to produce an elaborate phase space of α-RuCl3 layered compound, which to date remains largely unexplored. Here we employ a combination of scanning transmission electron microscopy (STEM) and scanning tunneling microscopy (STM) for detailed evaluation of the system's microscopic structural and electronic orders with a sub-nanometer precision. The STM and STEM measurements are further supported by neutron scattering, X-Ray diffraction, density functional theory (DFT), and multivariate statistical analysis. Our results show a trigonal distortion of Cl octahedral ligand cage along the C3 symmetry axes in each RuCl3 layer. The lattice distortion is limited mainly to the Cl subsystem leaving the Ru honeycomb lattice nearly intact. The STM topographic and spectroscopic characterization reveals an intra unit cell electronic symmetry breaking in a spin-orbit coupled Mott insulating phase on the Cl-terminated surface of α-RuCl3. The associated long-range charge order (CO) pattern is linked to a surface component of Cl cage distortion. We finally discuss a fine structure of CO and its potential relation to variations of average unit cell geometries found in multivariate analysis of STEM data. The research was sponsored by the U.S. Department of Energy.

  4. C-V characterization of Schottky- and MIS-gate SiGe/Si HEMT structures

    International Nuclear Information System (INIS)

    Onojima, Norio; Kasamatsu, Akihumi; Hirose, Nobumitsu; Mimura, Takashi; Matsui, Toshiaki

    2008-01-01

    Electrical properties of Schottky- and metal-insulator-semiconductor (MIS)-gate SiGe/Si high electron mobility transistors (HEMTs) were investigated with capacitance-voltage (C-V) measurements. The MIS-gate HEMT structure was fabricated using a SiN gate insulator formed by catalytic chemical vapor deposition (Cat-CVD). The Cat-CVD SiN thin film (5 nm) was found to be an effective gate insulator with good gate controllability and dielectric properties. We previously investigated device characteristics of sub-100-nm-gate-length Schottky- and MIS-gate HEMTs, and reported that the MIS-gate device had larger maximum drain current density and transconductance (g m ) than the Schottky-gate device. The radio frequency (RF) measurement of the MIS-gate device, however, showed a relatively lower current gain cutoff frequency f T compared with that of the Schottky-gate device. In this study, C-V characterization of the MIS-gate HEMT structure demonstrated that two electron transport channels existed, one at the SiGe/Si buried channel and the other at the SiN/Si surface channel

  5. Optical and structural characterization of silicon-carbon-nitride thin films for optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Swatowska, Barbara; Stapinski, Tomasz [Department of Electronics, AGH University of Science and Technology, Krakow (Poland)

    2010-04-15

    Amorphous a-SiCN:H films were deposited by radio frequency Plasma Enhanced Chemical Vapour Deposition (PECVD) at 13.56 MHz from silane-methane-ammonia (SiH{sub 4}+CH{sub 4}+NH{sub 3}) gaseous mixture. Morphological, structural and optical characterization of a-SiCN:H in correlation with process parameters was done. High growth rate of films was influenced mainly by presence of ammonia and silane in technological process. FTIR spectra analysis of films revealed the influence of gaseous mixture content in PECVD process on their structure. The refractive index and optical gap depended on elemental composition of films. The total reflectivity of a-SiCN:H on monocrystalline silicon revealed increase with the decrease in carbon and nitrogen content. The a-SiCN:H films are smooth, homogeneous, chemically inert and wear resistive and also hydrogen rich, which is important from the application point of view (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Synthesis, growth, structural characterization, Hirshfeld analysis and nonlinear optical studies of a methyl substituted chalcone

    Science.gov (United States)

    Prabhu, Shobha R.; Jayarama, A.; Chandrasekharan, K.; Upadhyaya, V.; Ng, Seik Weng

    2017-05-01

    A new chalcone compound (2E)-3-(3-methylphenyl)-1-(4-nitrophenyl)prop-2-en-1-one (3MPNP) with molecular formula C16H13NO3 has been synthesized and crystallized by slow solvent evaporation technique. The Fourier transform infrared, Fourier transform Raman and nuclear magnetic resonance techniques were used for structural characterization. UV-visible absorption studies were carried out to study the transparency of the crystal in the visible region. Differential scanning calorimetry study shows thermal stability of crystals up to temperature 122 °C. Single crystal X-ray diffraction and powder X-ray diffraction techniques were used to study crystal structure and cell parameters. The Hirshfeld surface and 2-D fingerprint analysis were performed to study the nature of interactions and their quantitative contributions towards the crystal packing. The third order non-linear optical properties have been studied using single beam Z-scan technique and the results show that the material is a potential candidate for optical device applications such as optical limiters and optical switches.

  7. Structural characterization of Pt-Pd core-shell nanoparticles by Cs-corrected STEM

    Energy Technology Data Exchange (ETDEWEB)

    Esparza, R., E-mail: resparza@fata.unam.mx [Universidad Nacional Autonoma de Mexico, Centro de Fisica Aplicada y Tecnologia Avanzada (Mexico); Garcia-Ruiz, Amado F. [UPIICSA-COFAA, Instituto Politecnico Nacional (Mexico); Velazquez Salazar, J. J. [University of Texas at San Antonio, Department of Physics and Astronomy (United States); Perez, R. [Universidad Nacional Autonoma de Mexico, Centro de Fisica Aplicada y Tecnologia Avanzada (Mexico); Jose-Yacaman, M. [The University of Texas at San Antonio, Department of Physics and Astronomy (United States)

    2013-01-15

    Pt-Pd core-shell nanoparticles were synthesized using a modified polyol method. A thermal method under refluxing, carrying on the reaction up to 285 Degree-Sign C, has been performed to reduce metallic salts using ethylene glycol as reducer and poly(N-vinyl-2-pyrrolidone) as protective reagent of the formed bimetallic nanoparticles. According to other works, this type of structure has been studied and utilized to successfully increase the catalytic properties of monometallic nanoparticles Pt or Pd. Core-shell bimetallic nanoparticles were structurally characterized using aberration-corrected scanning transmission electron microscopy (Cs-STEM) equipped with a high-angle annular dark field detector, energy-dispersive X-ray spectrometry (EDS), and electron energy-loss spectroscopy (EELS). The high-resolution elemental line scan and mappings were carried out using a combination of STEM-EDS and STEM-EELS. The obtained results show the growth of the Pd shell on the Pt core with polyhedral morphology. The average size of the bimetallic nanoparticles was 13.5 nm and the average size of the core was 8.5 nm; consequently, the thickness of the shell was around 2.5 nm. The growth of the Pd shell on the Pt core is layer by layer, suggesting a Frank-van der Merwe growth mechanism.

  8. Characterization of Structural Rebuilding and Shear Migration in Cementitious Materials in Consideration of Thixotropy

    Science.gov (United States)

    Qian, Ye

    Characterization of structural rebuilding and shear migration in cementitious materials in consideration of thixotropy Ye Qian From initial contact with water until hardening, and deterioration, cement and concrete materials are subjected to various chemical and physical transformations and environmental impacts. This thesis focuses on the properties during the fresh state, shortly after mixing until the induction period. During this period flow history, including shearing and resting, and hydration both play big roles in determining the rheological properties. The rheological properties of cement and concrete not only affect the casting and pumping process, but also very critical for harden properties and durability properties. Compared with conventional concrete, self-consolidating concrete (SCC) can introduce many advantages in construction application. These include readiness to apply, decreasing labor necessary for casting, and enhancing hardened properties. However, challenges still remain, such as issues relating to formwork pressure and multi-layer casting. Each of these issues is closely related to the property of thixotropy. From the microstructural point of view, thixotropy is described as structural buildup (flocculation) under rest and breakdown (deflocculation) under flow. For SCC, as well as other concrete systems, it is about balancing sufficient flowability during casting and rate of structural buildup after placement for the application at hand. For instance, relating to the issue of SCC formwork, it is ideal for the material to be highly flowable to achieve rapid casting, but then exhibit high rate of structural buildup to reduce formwork pressure. This can reduce the cost of formwork and reduce the risk of formwork failure. It is apparent that accurately quantifying the two aspects of thixotropy, i.e. structuration and destructuration, is key to tackling these challenges in field application. Thus, the overall objective of my doctoral study is

  9. Structural characterization of the entire 1.3S subunit of transcarboxylase from Propionibacterium shermanii.

    Science.gov (United States)

    Reddy, D V; Rothemund, S; Shenoy, B C; Carey, P R; Sönnichsen, F D

    1998-10-01

    Transcarboxylase (TC) from Propionibacterium shermanii, a biotin-dependent enzyme, catalyzes the transfer of a carboxyl group from methylmalonyl-CoA to pyruvate in two partial reactions. Within the multisubunit enzyme complex, the 1.3S subunit functions as the carboxyl group carrier. The 1.3S is a 123-amino acid polypeptide (12.6 kDa), to which biotin is covalently attached at Lys 89. We have expressed 1.3S in Escherichia coli with uniform 15N labeling. The backbone structure and dynamics of the protein have been characterized in aqueous solution by three-dimensional heteronuclear nuclear magnetic resonance (NMR) spectroscopy. The secondary structure elements in the protein were identified based on NOE information, secondary chemical shifts, homonuclear 3J(HNHalpha) coupling constants, and amide proton exchange data. The protein contains a predominantly disordered N-terminal half, while the C-terminal half is folded into a compact domain comprising eight beta-strands connected by short loops and turns. The topology of the C-terminal domain is consistent with the fold found in both carboxyl carrier and lipoyl domains, to which this domain has approximately 26-30% sequence similarity.

  10. Synthesis, characterization, crystal structure and quantum chemical investigations of three novel coumarin-benzenesulfonohydrazide derivatives

    Science.gov (United States)

    Chethan Prathap, K. N.; Lokanath, N. K.

    2018-04-01

    Coumarin derivatives are an important class of heterocyclic compounds due to their physical and biological properties. Coumarin derivatives have been identified with many significant electro-optical properties and biological activities. Three novel coumarin derivatives containing benzene sulfonohydrazide group were synthesized by condensation reaction. The synthesized compounds were characterized by various spectroscopic techniques (Mass, 1H/13C NMR and FTIR). Thermal and optical properties were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and UV-Vis spectroscopic studies. Finally their structures were confirmed by single crystal X-ray diffraction (XRD) studies. The three compounds exhibit diverse intermolecular interactions, as observed by the crystal packing and Hirshfeld surface analysis. Further, their structures were optimized by density functional theory (DFT) calculations using B3LYP hybrid functionals with 6-311G+(d,p) level basis set. The Mulliken charge, molecular electrostatic potential (MEP), frontier molecular orbitals (HOMO-LUMO) were investigated. The experimentally determined parameters were compared with those calculated theoretically and they complement each other with a very good correlation. The transitions among the molecular orbitals were investigated using time-dependent density functional theory (TD-DFT) and the electronic absorption spectra obtained showed very good agreement with the experimentally measured UV-Vis spectra. Furthermore, non-linear optical (NLO) properties were investigated by calculating polarizabilities and hyperpolarizabilities. All three compounds exhibit significantly high hyperpolarizabilities compared to the reference material urea, which makes them potential candidates for NLO applications.

  11. Characterization of internal structure of hydrated agar and gelatin matrices by cryo-SEM.

    Science.gov (United States)

    Rahbani, Janane; Behzad, Ali R; Khashab, Niveen M; Al-Ghoul, Mazen

    2013-02-01

    There has been a considerable interest in recent years in developing polymer gel matrices for many important applications such as 2DE for quantization and separation of a variety of proteins and drug delivery system to control the release of active agents. However, a well-defined knowledge of the ultrastructures of the gels has been elusive. In this study, we report the characterization of two different polymers used in 2DE: Gelatin, a naturally occurring polymer derived from collagen (protein) and agar, a polymer of polysaccharide (sugar) origin. Low-temperature SEM is used to examine the internal structure of these gels in their frozen natural hydrated states. Results of this study show that both polymers have an array of hollow cells that resembles honeycomb structures. While agar pores are almost circular, the corresponding Gaussian curve is very broad exhibiting a range of radii from nearly 370 to 700 nm. Gelatin pores are smaller and more homogeneous reflecting a narrower distribution from nearly 320 to 650 nm. Overall, these ultrastructural findings could be used to correlate with functions of the polymers. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Characterization of oligomeric xylan structures from corn fiber resistant to pretreatment and simultaneous saccharification and fermentation.

    Science.gov (United States)

    Appeldoorn, Maaike M; Kabel, Mirjam A; Van Eylen, David; Gruppen, Harry; Schols, Henk A

    2010-11-10

    Corn fiber, a byproduct from the corn industry, would be a good source for bioethanol production if the hemicellulose, consisting of polymeric glucoronoarabinoxylans, can be degraded into fermentable sugars. Structural knowledge of the hemicellulose is needed to improve the enzymatic hydrolyses of corn fiber. Oligosaccharides that resisted a mild acid pretreatment and subsequent enzymatic hydrolysis, representing 50% of the starting material, were fractionated on reversed phase and size exclusion material and characterized. The oligosaccharides within each fraction were highly substituted by various compounds. Oligosaccharides containing uronic acid were accumulated in two polar fractions unless also a feruloyl group was present. Feruloylated oligosaccharides, containing mono- and/or diferulic acid, were accumulated within four more apolar fractions. All fractions contained high amounts of acetyl substituents. The data show that complex xylan oligomers are present in which ferulic acid, diferulates, acetic acid, galactose, arabinose, and uronic acids were combined within an oligomer. Hypothetical structures are discussed, demonstrating which enzyme activities are lacking to fully degrade corn glucuronoarabinoxylans.

  13. Structural characterization and optical properties of perovskite ZnZrO 3 nanoparticles

    KAUST Repository

    Zhu, Xinhua

    2014-03-17

    Perovskite ZnZrO3 nanoparticles were synthesized by hydrothermal method, and their microstructures and optical properties were characterized. The crystallinity, phase formation, morphology and composition of the as-synthesized nanoparticles were characterized by X-ray diffraction (XRD), selected area electron diffraction (SAED), high-resolutiontransmission electron microscopy (HRTEM), and energy-dispersive X-ray (EDX) spectroscopy analysis, respectively. TEM images demonstrated that the average particle size of the ZnZrO3 powders was increased with increasing the Zn/Zr molar ratios in the precursors, and more large ZnZrO3 particles with cubic morphology were observed at high Zn/Zr molar ratios. In addition, the phase structures of the ZnZrO3 particles were also evolved from a cubic to tetragonal perovskite phase, as revealed by XRD and SAED patterns. HRTEM images demonstrate that surface structures of the ZnZrO3 powders synthesized at high Zn/Zr molar ratios, are composed of corners bound by the {100} mini-facets, and the surface steps lying on the {100} planes are frequently observed, whereas the (101) facet isoccasionally observed. The formation of such a rough surface structure is understood from the periodic bond chain theory. Quantitative EDX analyses demonstrated that the atomic concentrations (at.%) of Zn:Zr:O in the particles were 20.70:21.07:58.23, as close to the composition of ZnZrO3. In the optical spectra, a significant red shift of the absorption edges (for the ZnZrO3 nanopowders) from UV to visible region (from 394 to 417 nm) was observed as increasing the Zn/Zr molar ratios in the precursors, which corresponds to that the band gap energies of the ZnZrO3 nanopowders can be continuously tuned from 3.15 to 2.97 eV. This opens an easy way to tune the band gap energies of the ZnZrO3 nanopowders. © 2014 The American Ceramic Society.

  14. Biochemical and structural characterization of HDAC8 mutants associated with Cornelia de Lange syndrome spectrum disorders.

    Science.gov (United States)

    Decroos, Christophe; Christianson, Nicolas H; Gullett, Laura E; Bowman, Christine M; Christianson, Karen E; Deardorff, Matthew A; Christianson, David W

    2015-10-27

    Cornelia de Lange Syndrome (CdLS) spectrum disorders are characterized by multiple organ system congenital anomalies that result from mutations in genes encoding core cohesin proteins SMC1A, SMC3, and RAD21, or proteins that regulate cohesin function such as NIPBL and HDAC8. HDAC8 is the Zn(2+)-dependent SMC3 deacetylase required for cohesin recycling during the cell cycle, and 17 different HDAC8 mutants have been identified to date in children diagnosed with CdLS. As part of our continuing studies focusing on aberrant HDAC8 function in CdLS, we now report the preparation and biophysical evaluation of five human HDAC8 mutants: P91L, G117E, H180R, D233G, and G304R. Additionally, the double mutants D233G-Y306F and P91L-Y306F were prepared to enable cocrystallization of intact enzyme-substrate complexes. X-ray crystal structures of G117E, P91L-Y306F, and D233G-Y306F HDAC8 mutants reveal that each CdLS mutation causes structural changes that compromise catalysis and/or thermostability. For example, the D233G mutation disrupts the D233-K202-S276 hydrogen bond network, which stabilizes key tertiary structure interactions, thereby significantly compromising thermostability. Molecular dynamics simulations of H180R and G304R HDAC8 mutants suggest that the bulky arginine side chain of each mutant protrudes into the substrate binding site and also causes active site residue Y306 to fluctuate away from the position required for substrate activation and catalysis. Significantly, the catalytic activities of most mutants can be partially or fully rescued by the activator N-(phenylcarbamothioyl)-benzamide, suggesting that HDAC8 activators may serve as possible leads in the therapeutic management of CdLS.

  15. Characterizing the phylogenetic tree community structure of a protected tropical rain forest area in Cameroon.

    Directory of Open Access Journals (Sweden)

    Stéphanie Manel

    Full Text Available Tropical rain forests, the richest terrestrial ecosystems in biodiversity on Earth are highly threatened by global changes. This paper aims to infer the mechanisms governing species tree assemblages by characterizing the phylogenetic structure of a tropical rain forest in a protected area of the Congo Basin, the Dja Faunal Reserve (Cameroon. We re-analyzed a dataset of 11538 individuals belonging to 372 taxa found along nine transects spanning five habitat types. We generated a dated phylogenetic tree including all sampled taxa to partition the phylogenetic diversity of the nine transects into alpha and beta components at the level of the transects and of the habitat types. The variation in phylogenetic composition among transects did not deviate from a random pattern at the scale of the Dja Faunal Reserve, probably due to a common history and weak environmental variation across the park. This lack of phylogenetic structure combined with an isolation-by-distance pattern of taxonomic diversity suggests that neutral dispersal limitation is a major driver of community assembly in the Dja. To assess any lack of sensitivity to the variation in habitat types, we restricted the analyses of transects to the terra firme primary forest and found results consistent with those of the whole dataset at the level of the transects. Additionally to previous analyses, we detected a weak but significant phylogenetic turnover among habitat types, suggesting that species sort in varying environments, even though it is not predominating on the overall phylogenetic structure. Finer analyses of clades indicated a signal of clustering for species from the Annonaceae family, while species from the Apocynaceae family indicated overdispersion. These results can contribute to the conservation of the park by improving our understanding of the processes dictating community assembly in these hyperdiverse but threatened regions of the world.

  16. Characterizing the phylogenetic tree community structure of a protected tropical rain forest area in Cameroon.

    Science.gov (United States)

    Manel, Stéphanie; Couvreur, Thomas L P; Munoz, François; Couteron, Pierre; Hardy, Olivier J; Sonké, Bonaventure

    2014-01-01

    Tropical rain forests, the richest terrestrial ecosystems in biodiversity on Earth are highly threatened by global changes. This paper aims to infer the mechanisms governing species tree assemblages by characterizing the phylogenetic structure of a tropical rain forest in a protected area of the Congo Basin, the Dja Faunal Reserve (Cameroon). We re-analyzed a dataset of 11538 individuals belonging to 372 taxa found along nine transects spanning five habitat types. We generated a dated phylogenetic tree including all sampled taxa to partition the phylogenetic diversity of the nine transects into alpha and beta components at the level of the transects and of the habitat types. The variation in phylogenetic composition among transects did not deviate from a random pattern at the scale of the Dja Faunal Reserve, probably due to a common history and weak environmental variation across the park. This lack of phylogenetic structure combined with an isolation-by-distance pattern of taxonomic diversity suggests that neutral dispersal limitation is a major driver of community assembly in the Dja. To assess any lack of sensitivity to the variation in habitat types, we restricted the analyses of transects to the terra firme primary forest and found results consistent with those of the whole dataset at the level of the transects. Additionally to previous analyses, we detected a weak but significant phylogenetic turnover among habitat types, suggesting that species sort in varying environments, even though it is not predominating on the overall phylogenetic structure. Finer analyses of clades indicated a signal of clustering for species from the Annonaceae family, while species from the Apocynaceae family indicated overdispersion. These results can contribute to the conservation of the park by improving our understanding of the processes dictating community assembly in these hyperdiverse but threatened regions of the world.

  17. Structural and Biochemical Characterization of the Human Cyclophilin Family of Peptidyl-Prolyl Isomerases

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Tara L.; Walker, John R.; Campagna-Slater, Valérie; Finerty, Jr., Patrick J.; Paramanathan, Ragika; Bernstein, Galina; MacKenzie, Farrell; Tempel, Wolfram; Ouyang, Hui; Lee, Wen Hwa; Eisenmesser, Elan Z.; Dhe-Paganon, Sirano (Toronto); (Colorado)

    2011-12-14

    Peptidyl-prolyl isomerases catalyze the conversion between cis and trans isomers of proline. The cyclophilin family of peptidyl-prolyl isomerases is well known for being the target of the immunosuppressive drug cyclosporin, used to combat organ transplant rejection. There is great interest in both the substrate specificity of these enzymes and the design of isoform-selective ligands for them. However, the dearth of available data for individual family members inhibits attempts to design drug specificity; additionally, in order to define physiological functions for the cyclophilins, definitive isoform characterization is required. In the current study, enzymatic activity was assayed for 15 of the 17 human cyclophilin isomerase domains, and binding to the cyclosporin scaffold was tested. In order to rationalize the observed isoform diversity, the high-resolution crystallographic structures of seven cyclophilin domains were determined. These models, combined with seven previously solved cyclophilin isoforms, provide the basis for a family-wide structure:function analysis. Detailed structural analysis of the human cyclophilin isomerase explains why cyclophilin activity against short peptides is correlated with an ability to ligate cyclosporin and why certain isoforms are not competent for either activity. In addition, we find that regions of the isomerase domain outside the proline-binding surface impart isoform specificity for both in vivo substrates and drug design. We hypothesize that there is a well-defined molecular surface corresponding to the substrate-binding S2 position that is a site of diversity in the cyclophilin family. Computational simulations of substrate binding in this region support our observations. Our data indicate that unique isoform determinants exist that may be exploited for development of selective ligands and suggest that the currently available small-molecule and peptide-based ligands for this class of enzyme are insufficient for isoform

  18. Insights into soybean transcriptome reconfiguration under hypoxic stress: Functional, regulatory, structural, and compositional characterization

    Science.gov (United States)

    Rodrigues, Fabiana A.; Neumaier, Norman; Marcolino-Gomes, Juliana; Molinari, Hugo B. C.; Santiago, Thaís R.; Formighieri, Eduardo F.; Basso, Marcos F.; Farias, José R. B.; Emygdio, Beatriz M.; de Oliveira, Ana C. B.; Campos, Ângela D.; Borém, Aluízio; Harmon, Frank G.; Mertz-Henning, Liliane M.; Nepomuceno, Alexandre L.

    2017-01-01

    Soybean (Glycine max) is one of the major crops worldwide and flooding stress affects the production and expansion of cultivated areas. Oxygen is essential for mitochondrial aerobic respiration to supply the energy demand of plant cells. Because oxygen diffusion in water is 10,000 times lower than in air, partial (hypoxic) or total (anoxic) oxygen deficiency is important component of flooding. Even when oxygen is externally available, oxygen deficiency frequently occurs in bulky, dense or metabolically active tissues such as phloem, meristems, seeds, and fruits. In this study, we analyzed conserved and divergent root transcriptional responses between flood-tolerant Embrapa 45 and flood-sensitive BR 4 soybean cultivars under hypoxic stress conditions with RNA-seq. To understand how soybean genes evolve and respond to hypoxia, stable and differentially expressed genes were characterized structurally and compositionally comparing its mechanistic relationship. Between cultivars, Embrapa 45 showed less up- and more down-regulated genes, and stronger induction of phosphoglucomutase (Glyma05g34790), unknown protein related to N-terminal protein myristoylation (Glyma06g03430), protein suppressor of phyA-105 (Glyma06g37080), and fibrillin (Glyma10g32620). RNA-seq and qRT-PCR analysis of non-symbiotic hemoglobin (Glyma11g12980) indicated divergence in gene structure between cultivars. Transcriptional changes for genes in amino acids and derivative metabolic process suggest involvement of amino acids metabolism in tRNA modifications, translation accuracy/efficiency, and endoplasmic reticulum stress in both cultivars under hypoxia. Gene groups differed in promoter TATA box, ABREs (ABA-responsive elements), and CRT/DREs (C-repeat/dehydration-responsive elements) frequency. Gene groups also differed in structure, composition, and codon usage, indicating biological significances. Additional data suggests that cis-acting ABRE elements can mediate gene expression independent of ABA

  19. Structural characterization and EXAFS wavelet analysis of Yb doped ZnO by wet chemistry route

    Energy Technology Data Exchange (ETDEWEB)

    Otal, Eugenio H., E-mail: eugenio.otal@citedef.gob.ar [Division of Porous Materials, UNIDEF, CITEDEF, CONICET, S.J.B de la Salle 4397, Villa Martelli (B1603ALO), Buenos Aires (Argentina); Laboratory for Materials Science and Technology, FRSC-UTN, Av. Inmigrantes 555, Río Gallegos 9400 (Argentina); Sileo, Elsa [INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Aguirre, Myriam H. [Dept. of Physics Condensed Matter, University of Zaragoza (Spain); Laboratory of Advanced Microscopy (LMA), Institute of Nanoscience of Aragón (INA), University of Zaragoza (Spain); Fabregas, Ismael O. [Division of Porous Materials, UNIDEF, CITEDEF, CONICET, S.J.B de la Salle 4397, Villa Martelli (B1603ALO), Buenos Aires (Argentina); Kim, Manuela [Division of Porous Materials, UNIDEF, CITEDEF, CONICET, S.J.B de la Salle 4397, Villa Martelli (B1603ALO), Buenos Aires (Argentina); Laboratory for Materials Science and Technology, FRSC-UTN, Av. Inmigrantes 555, Río Gallegos 9400 (Argentina)

    2015-02-15

    Highlights: • Optical and electrical properties of ZnO are influenced by lanthanide doping. • Optical and electrical properties of ZnO are influenced by lanthanide positioning. • Yb is incorporated in the O{sub h} sites of the wurtzite structure. • There is not Yb{sub 2}O{sub 3} clustering or segregation for treatments below 800 °C. - Abstract: Lanthanide doped ZnO are interesting materials for optical and electrical applications. The wide band gap of this semiconductor makes it transparent in the visible range (E{sub gap} = 3.2 eV), allowing a sharp emission from intra shell transition from the lanthanides. From the electrical side, ZnO is a widely used material in varistors and its electrical properties can be tailored by the inclusion of lanthanides. Both applications are influenced by the location of the lanthanides, grain boundaries or lattice inclusion. Yb doped ZnO samples obtained by wet chemistry route were annealed at different temperatures and characterized by Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Rietveld refinement of XRD data, and X-ray Absorption Fine Structure (XAFS). These techniques allowed to follow the changes occurred in the matrix and the Yb environment. The use of the Cauchy continuous wavelet transform allowed identifying a second coordination shell composed of Zn atoms, supporting the observations from XRD Rietveld refinement and XAFS fittings. The information obtained confirmed the incorporation of Yb in O{sub h} sites of the wurtzite structure without Yb{sub 2}O{sub 3} clustering in the lattice.

  20. Characterization and structural analysis of the potent antiparasitic and antiviral agent tizoxanide

    Science.gov (United States)

    Bruno, Flavia P.; Caira, Mino R.; Martin, Eliseo Ceballos; Monti, Gustavo A.; Sperandeo, Norma R.

    2013-03-01

    Tizoxanide [2-(hydroxy)-N-(5-nitro-2-thiazolyl)benzamide, TIZ] is a new potent anti-infective agent which may enhance current therapies for leishmaniasis, Chagas disease and viral hepatitis. The aim of this study was to identify the conformational preferences that may be related to the biological activity of TIZ by resolving its crystal structure and characterizing various physicochemical properties, including its experimental vibrational and 13C nuclear magnetic resonance properties, behavior on heating and solubility in several solvents at 25 °C. TIZ crystallizes from dimethylformamide as the carboxamide tautomer in the triclinic system, space group P(-1) (No. 2) with the following unit cell parameters at 173(2) K: a = 5.4110(3) Å, b = 7.3315(6) Å, c = 13.5293(9) Å, α = 97.528(3), β = 95.390(4), γ = 97.316(5), V = 524.41(6) Å3, Z = 2, Dc = 1.680 g/cm3, R1 = 0.0482 and wR2 = 0.0911 for 2374 reflections. This modification of TIZ has a 'graphitic' structure and is composed of tightly packed layers of extensively hydrogen-bonded molecules. The various spectroscopic data [Diffuse Fourier transform infrared (DRIFT) and FT-Raman, recorded in the range 3600-500 and 4000-200 cm-1 respectively, and solid-state 13C NMR] were consistent with the structure determined by X-ray crystallography. From DSC, TG and thermomicroscopy, it was concluded that TIZ is thermally stable as a solid and that melting is not an isolated event from the one-step thermal decomposition that it undergoes above 270 °C. This modification of TIZ is practically insoluble in water and slightly soluble in polar aprotic solvents such as dimethylsulfoxide, dimethylformamide and dioxane.