WorldWideScience

Sample records for nano technology nano

  1. Nano technology

    International Nuclear Information System (INIS)

    Lee, In Sik

    2002-03-01

    This book is introduction of nano technology, which describes what nano technology is, alpha and omega of nano technology, the future of Korean nano technology and human being's future and nano technology. The contents of this book are nano period is coming, a engine of creation, what is molecular engineering, a huge nano technology, technique on making small things, nano materials with exorbitant possibility, the key of nano world the most desirable nano technology in bio industry, nano development plan of government, the direction of development for nano technology and children of heart.

  2. Nano-technology and nano-toxicology.

    Science.gov (United States)

    Maynard, Robert L

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology.

  3. Nano-technology and nano-toxicology

    OpenAIRE

    Maynard, Robert L.

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of ...

  4. Nano-ceramics and its molding technologies

    International Nuclear Information System (INIS)

    Liu Jian; Xu Yunshu

    2007-01-01

    Nano-ceramics and its related knowledge were introduced. Fabrication of nano-ceramic powder, as well as the molding and sintering technologies of nano-ceramics were reviewed. Features of the present molding technologies were analyzed. The applications of nano-ceramics were prospected. (authors)

  5. Issues in nano technologies for Australia

    International Nuclear Information System (INIS)

    Tegart, G.

    2007-01-01

    The Australian Government in late 2005 created a National Nano technology Taskforce that produced a paper, 'Options for a National Nano technology Strategy', in November last year. As an input to the National Nano technology Strategy Taskforce, in early 2006 the National Academies Forum was contracted by the Department of Industry, Tourism and Resources to produce a report Environmental, Social, Legal and Ethical Aspects of the Development of Nano technologies in Australia (which is available at www.naf.org.au/symposia). The report drew on the expertise of Fellows from the four academies in workshops in Melbourne and Sydney and from discussions with other experts, and expressed its outcomes as a set of opinions to assist in developing guidelines for a National Nano technology Strategy

  6. Nano market and analysis of technology

    International Nuclear Information System (INIS)

    2001-10-01

    This book gives descriptions of summary of nano technology with meaning, character and field, trend of technical development in domestic, current condition of nano basic research in domestic, trend of technical development in foreign country such as summary, trend of technology by industrial field, machine and metronics, material and process, standard of nano mechanism, scale of market and trend, competitiveness of nano technology of major country and research development system in Japan, Korean company and major countries.

  7. Nano-scale Materials and Nano-technology Processes in Environmental Protection

    International Nuclear Information System (INIS)

    Vissokov, Gh; Tzvetkoff, T.

    2003-01-01

    A number of environmental and energy technologies have benefited substantially from nano-scale technology: reduced waste and improved energy efficiency; environmentally friendly composite structures; waste remediation; energy conversion. In this report examples of current achievements and paradigm shifts are presented: from discovery to application; a nano structured materials; nanoparticles in the environment (plasma chemical preparation); nano-porous polymers and their applications in water purification; photo catalytic fluid purification; hierarchical self-assembled nano-structures for adsorption of heavy metals, etc. Several themes should be considered priorities in developing nano-scale processes related to environmental management: 1. To develop understanding and control of relevant processes, including protein precipitation and crystallisation, desorption of pollutants, stability of colloidal dispersion, micelle aggregation, microbe mobility, formation and mobility of nanoparticles, and tissue-nanoparticle interaction. Emphasis should be given to processes at phase boundaries (solid-liquid, solid-gas, liquid-gas) that involve mineral and organic soil components, aerosols, biomolecules (cells, microbes), bio tissues, derived components such as bio films and membranes, and anthropogenic additions (e.g. trace and heavy metals); 2. To carry out interdisciplinary research that initiates Noel approaches and adopts new methods for characterising surfaces and modelling complex systems to problems at interfaces and other nano-structures in the natural environment, including those involving biological or living systems. New technological advances such as optical traps, laser tweezers, and synchrotrons are extending examination of molecular and nano-scale processes to the single-molecule or single-cell level; 3. To integrate understanding of the roles of molecular and nano-scale phenomena and behaviour at the meso- and/or macro-scale over a period of time

  8. ACCELERATING NANO-TECHNOLOGICAL

    DEFF Research Database (Denmark)

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which concludes...... of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support “incubation rooms” or marked niches in order...

  9. Nano Manufacturing - Products and Technologies

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Alting, Leo

    2004-01-01

    The use of micro and nano technologies in components and products not only sets new demands to the manufacturing technologies. Product concepts have to be rethought and redefined in order to implement the micro and nano technologies into functional systems. Both a technology driven and a product ...

  10. Micro/nano-fabrication technologies for cell biology.

    Science.gov (United States)

    Qian, Tongcheng; Wang, Yingxiao

    2010-10-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities.

  11. Nano technologies, technologies converging and potential biomedical applications

    International Nuclear Information System (INIS)

    Capuano, V.

    2005-01-01

    The applications of nano technology to biology and medicine appear really promising for diagnostics, for various therapeutic approaches and in medical instrumentations. The growing synergism among nano technology, biotechnology, information technology and cognitive sciences, their convergence (NBIC) from the nano scale, could involve on next decades great changes in medicine, from a reactive to a predictive and preventive approach. It is expected that NBIC converging technologies could achieve tremendous improvements in human abilities and enhance societal achievement of related social and ethical implications, in the framework of a constant dialogue between science and society [it

  12. Book Review: Nano physics & Nano technology

    Directory of Open Access Journals (Sweden)

    Abdolkhaled Zaree

    2012-12-01

    Full Text Available During last decades, there are a lot of emphases on studying material behavior in atomic scale. In most scientific and engineering fields, one can see the effect of nanotechnology. The aim of nanoscience is to design and fabrication of new and applicable materials. Nowadays, Nano is a popular science which chemists, physicist, doctors, engineers, financial managers and environment's fans for creating a good life via nanoscience have a great cooperation with each others. Materials in nano scale such as nanotubes and nanowires have extraordinary properties which by optimization of these properties in nano scale and then develop these properties to macro scale, they've been challenging issues. For instance, materials in nano scale improve mechanical properties of polymers and metallic materials via nano particles and on the other hand by producing a thin film on surfaces improve surface hardening. Besides, nanotechnology is in hi-tech industries such as magnetic devices, surface coating, and biomaterial, material having sensors, polymers, gels, ceramics and intelligent membrane. Nano-carbon tubes are considered intelligent due to the fact that they couple electrochemical and elastic properties simultaneously, hence have greater activation energy density in comparison with other intelligent materials. Studying nanoscience is important because it causes the life to be better. Future Materials and structures will have a lot of outstanding properties. Intelligent machines can repair, recycle and reconstruct themselves. All these features are only possible in nano zone. Nano in engineering science can provide the possibility of making light missiles for exploring space. The reduced weight can be achieved by replacing traditional materials with hybrid nanocomposites.

  13. A Study on the Linkage between Nano Fusion Technology and Nuclear Technology

    International Nuclear Information System (INIS)

    Jeong, Ik; Lim, Chae Young; Lee, Jong Hee

    2009-02-01

    1) A survey of national energy policy trends in major nation - to secure renewal energy in the level of making a plan to supply national energy in the future - Tendency of energy policy based on Europe 2) A survey of the nano technology development - Status of major nano technology development - Developmental direction of nano technology related to nuclear energy 3) the nano technology development related with nuclear - high-temperature nuclear reactor by applying nano science and technology under quick development - materials required to high-level radioactive wastes treatment facility - develop materials of nuclear fusion facility in the long-term view 4) Innovation system of nano technology - Energy source -> conversion to energy -> distribution of energy -> energy storage -> energy use

  14. Assessing nano cellulose developments using science and technology indicators

    International Nuclear Information System (INIS)

    Milanez, Douglas Henrique; Amaral, Roniberto Morato do; Faria, Leandro Innocentini Lopes de; Gregolin, Jose Angelo Rodrigues

    2013-01-01

    This research aims to examine scientific and technological trends of developments in nano cellulose based on scientometric and patent indicators obtained from the Science Citation Index and Derwent Innovations Index in 2001-2010. The overall nano cellulose activity indicators were compared to nanotechnology and other selected nano materials. Scientific and technological future developments in nano cellulose were forecasted using extrapolation growth curves and the main countries were also mapped. The results showed that nano cellulose publications and patent documents have increased rapidly over the last five years with an average growth rate higher than that of nanotechnology and fullerene. The USA, Japan, France, Sweden and Finland all played a significant role in nano cellulose development and the extrapolation growth curves suggested that nano cellulose scientific and technological activities are still emerging. Finally, the evidence from this study recommends monitoring nano cellulose S and T advances in the coming years. (author)

  15. Assessing nano cellulose developments using science and technology indicators

    Energy Technology Data Exchange (ETDEWEB)

    Milanez, Douglas Henrique; Amaral, Roniberto Morato do; Faria, Leandro Innocentini Lopes de; Gregolin, Jose Angelo Rodrigues, E-mail: douglasmilanez@yahoo.com.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Nucleo de Informacao Tecnologica em Materiais. Dept. de Engenharia de Materiais

    2013-11-01

    This research aims to examine scientific and technological trends of developments in nano cellulose based on scientometric and patent indicators obtained from the Science Citation Index and Derwent Innovations Index in 2001-2010. The overall nano cellulose activity indicators were compared to nanotechnology and other selected nano materials. Scientific and technological future developments in nano cellulose were forecasted using extrapolation growth curves and the main countries were also mapped. The results showed that nano cellulose publications and patent documents have increased rapidly over the last five years with an average growth rate higher than that of nanotechnology and fullerene. The USA, Japan, France, Sweden and Finland all played a significant role in nano cellulose development and the extrapolation growth curves suggested that nano cellulose scientific and technological activities are still emerging. Finally, the evidence from this study recommends monitoring nano cellulose S and T advances in the coming years. (author)

  16. 6. international conference on Nano-technology in Carbon: from synthesis to applications of nano-structured carbon and related materials

    International Nuclear Information System (INIS)

    2004-01-01

    This is the sixth international conference sponsored this year by the French Carbon Group (GFEC), the European Research Group on Nano-tubes GDRE 'Nano-E', in collaboration with the British Carbon Group and the 'Institut des Materiaux Jean Rouxel' (local organizer). The aim of this conference is to promote carbon science in the nano-scale as, for example, nano-structured carbons, nano-tubes, nano-wires, fullerenes, etc. This conference is designed to introduce those with an interest in materials to current research in nano-technology and to bring together research scientists working in various disciplines in the broad area of nano-structured carbons, nano-tubes and fullerene-related nano-structures. Elemental carbon is the simplest exemplar of this nano-technology based on covalent bonding, however other systems (for example containing hetero-atoms) are becoming important from a research point of view, and provide alternative nano-materials with unique properties opening a broad field of applications. Nano-technology requires an understanding of these materials on a structural and textural point of view and this will be the central theme. This year the conference will feature sessions on: S1. Control and synthesis of nano-materials 1.1 Nano-structured carbons: pyrolysis of polymers, activation, templates,... 1.2 Nano-tubes: Catalytic method, HiPCO, graphite vaporization, electrolysis,... 1.3 Fullerenes S2. Chemistry of carbon nano-materials 2.1 Purification of carbon nano-tubes 2.2 Functionalization - Self-assembling S3. Structural characterization S4. Theory and modelling S5. Relationship between structure and properties S6. Applications Water and air purification, Gas and energy storage, Composite materials, Field emission, Nano-electronics, Biotechnology,... S7. Environmental impact. Only one paper concerning carbon under irradiation has been added to the INIS database. (authors)

  17. The world of Nano

    International Nuclear Information System (INIS)

    Noh, Seung Jeong; Hyun, Jun Won; An, Yong Hyeon; Lee, Sung Uk; Jee, Hye Gu; Kim, Young Seon

    2006-07-01

    The contents of this book are the beginning of nano technology, definition of nano, commercialization of nano technology, prospect of nano technology, survive with nano t-, development strategy of n-t in the U.S, and Japan, Korea, and other countries, comparison of development strategy of n-t among each country, various measurement technology for practical n-t, scanning tunneling microscopy, nano device, carbon nano tube, nano belt and nano wire, application of sensor in daily life, energy, post-Genome period and using as medicine with nano bio technology.

  18. Nano Materials

    International Nuclear Information System (INIS)

    Jin, In Ju; Lee, Ik Mo; Kwon, Yeung Gu

    2006-02-01

    This book introduces background of nano science such as summary, plenty room at the bottom, access way to nano technique, nanoparticles using bottom-up method which are a marvel of nature, and modern alchemy : chemical synthesis of artificial nano structure, understanding of quantum mechanics, STM/AFM, nano metal powder, ceramic nanoparticles, nano structure film, manufacture of nanoparticles using reverse micelle method, carbon nano tube, sol-gel material, nano energy material, nano catalyst nano bio material technology and spintronics.

  19. Drug Delivery Systems: A New Frontier in Nano-technology

    Directory of Open Access Journals (Sweden)

    Chamindri Witharana

    2017-09-01

    Full Text Available Nano-technology is a recent advancement in science, defined as “Science, engineering, and technology conducted at the Nano scale” (National nanotechnology initiatives in USA. Applications of Nano-technology cover a vast range from basic material science, personal care applications, agriculture, and medicine. Nano-technology is used in field of medicine for treatment, diagnostic, monitoring, genetic engineering, and drug delivery. There are two main types of Nano Particles (NPs used in drug delivery; organic NPs and inorganic NPs. In drug delivery, the drug-Nano- Particle (NP conjugate should be able to deliver drugs to the target site without degradation in gastrointestinal track and without reducing drug activity. Further, it should attack to target cells without causing any adverse effects. The ultimate goal of NP drug delivery is to improve proper treatment, effectiveness, less side effects with safety and patient adherence as well as reduction in the cost.

  20. The investigation of nano-monitoring technology and the probability analysis of application of nuclear technology

    International Nuclear Information System (INIS)

    Kang Kejun; Wang Xuewu; Gao Wenhuan

    1999-01-01

    After several-decade of development, nano science/nano technology has become a scientific and technical frontier that with major trends foreseen in several disciplines. By connecting with the development of nano science/nano technology and considering the human body environment that the nano system is applicable in, the author analyzes the probability of the present nuclear detection technologies integrating and application with the monitoring of nano system, and draws an analysis of optimality choice

  1. Applying Nano technology to Human Health: Revolution in Biomedical Sciences

    International Nuclear Information System (INIS)

    Shrivastava, S.; Dash, D.

    2009-01-01

    Recent research on bio systems at the nano scale has created one of the most dynamic science and technology domains at the confluence of physical sciences, molecular engineering, biology, biotechnology, and medicine. This domain includes better understanding of living and thinking systems, revolutionary biotechnology processes, synthesis of new drugs and their targeted delivery, regenerative medicine, necrophorum engineering, and developing a sustainable environment. Nano bio systems research is a priority in many countries and its relevance within nano technology is expected to increase in the future. The realisation that the nano scale has certain properties needed to solve important medical challenges and cater to unmet medical needs is driving nano medical research. The present review explores the significance of nano science and latest nano technologies for human health. Addressing the associated opportunities, the review also suggests how to manage far-reaching developments in these areas

  2. Nano- and micro-electromechanical systems fundamentals of nano- and microengineering

    CERN Document Server

    Lyshevski, Sergey Edward

    2005-01-01

    NANOTECHNOLOGY AND MICROTECHNOLOGY (NANO- AND MICRO- SCIENCE, ENGINEERING AND TECHNOLOGY), AND BEYOND Introduction and Overview: From Micro- to Nano- and Beyond to Stringo-Scale Introductory Definitions to the Subjects Current Developments and Needs for Coherent Revolutionary Developments Societal Challenges and Implications NANO- AND MICROSCALE SYSTEMS, DEVICES, AND STRUCTURES Sizing Features: From Micro- to Nano-, and from Nano- to Stringo-Scale MEMS and NEMS Definitions Introduction to Taxonomy of Nano- and Microsystem Synthesis and Design Introduction to Design and Optimization of Nano- and Microsystems in the Behavioral Domain NANO- AND MICROSYSTEMS: CLASSIFICATION AND CONSIDERATION Biomimetics, Biological Analogies,and Design of NEMS and MEMS Micro- and Nanoelectromechanical Systems: Scaling Laws and Mathematical Modeling MEMS Examples and MEMS Architectures Introduction to Microfabrication and Micromachining FUNDAMENTALS OF MICROFABRICATION AND MEMS FABRICATION TECHNOLOGIES Introducti...

  3. Nano technologies for Biosensor and Bio chip

    International Nuclear Information System (INIS)

    Kim, I.M.; Park, T.J.; Paskaleva, E.E.; Sun, F.; Seo, J.W.; Mehta, K.K.

    2015-01-01

    The bio sensing devices are characterized by their biological receptors, which have specificity to their corresponding analytes. These analytes are a vast and diverse group of biological molecules, DNAs, proteins (such as antibodies), fatty acids, or entire biological systems, such as pathogenic bacteria, viruses, cancerous cells, or other living organisms. A main challenge in the development of biosensor applications is the efficient recognition of a biological signal in a low signal-to-noise ratio environment, and its transduction into an electrochemical, optical, or other signals. The advent of nano material technology greatly increased the potential for achieving exquisite sensitivity of such devises, due to the innate high surface-to-volume ratio and high reactivity of the nano material. The second major challenge facing the biosensor application, that of sca lability, is addressed by multiplexing and miniaturizing of the biosensor devises into a bio chip. In recent years, biosensor and bio chip technologies have made significant progress by taking advantages of diverse kinds of nano materials that are derived from nano technology

  4. The Next Technology Revolution - Nano Electronic Technology

    Science.gov (United States)

    Turlik, Iwona

    2004-03-01

    Nanotechnology is a revolutionary engine that will engender enormous changes in a vast majority of today's industries and markets, while potentially creating whole new industries. The impact of nanotechnology is particularly significant in the electronics industry, which is constantly driven by the need for higher performance, increased functionality, smaller size and lower cost. Nanotechnology can influence many of the hundreds of components that are typically assembled to manufacture modern electronic devices. Motorola manufactures electronics for a wide range of industries and communication products. In this presentation, the typical components of a cellular phone are outlined and technology requirements for future products, the customer benefits, and the potential impact of nanotechnology on many of the components are discussed. Technology needs include reliable materials supply, processes for high volume production, experimental and simulation tools, etc. For example, even routine procedures such as failure characterization may require the development of new tools for investigating nano-scale phenomena. Business needs include the development of an effective, high volume supply chain for nano-materials and devices, disruptive product platforms, and visible performance impact on the end consumer. An equally significant long-term industry need is the availability of science and engineering graduates with a multidisciplinary focus and a deep understanding of the fundamentals of nano-technology, that can harness the technology to create revolutionary products.

  5. Nano dentistry

    International Nuclear Information System (INIS)

    Oh, S.; Park, Y.B.; Kim, S.; Jin, S.

    2014-01-01

    Nano technology in dentistry has drawn many scientists’ and clinicians’ attention to significant advances in the diagnosis, treatment, and prevention of oral disease. Also, nano materials in dentistry have been studied to overcome the physical and chemical characteristics of conventional dental materials. These interesting facts are the motivation of this special issue. The presented issue provides a variety of topics in the field of dentistry such as novel nano filled composite resin, the cytotoxicity of nanoparticles deposited on orthodontic bands, the osseointegration of 3D nano scaffold, and nano surface treated implant.

  6. Nano-bio-sensing

    CERN Document Server

    Carrara, Sandro

    2011-01-01

    This book examines state-of-the-art applications of nano-bio-sensing. It brings together researchers from nano-electronics and bio-technology, providing multidisciplinary content from nano-structures fabrication to bio-sensing applications.

  7. Application of emission CT on nano-robot radiation imaging tracing and isotope sign in nano-robot

    International Nuclear Information System (INIS)

    Wang Xuewu; Cheng Jianping; Kang Kejun

    2000-01-01

    Nano-technology has been a scientific and technical frontier with major trends foreseen in several disciplines. Nano-robot is the most remarkable imagination of the application of nano-technology. And it should be concerned of tracing technology along with nano-robot. The character of nano-robot is deeply analyzed, the development status of emission CT is integrated, and the application of emission CT on nano-robot radiation imaging tracing is discussed. The isotope sign of nano-robot is especially calculated and analyzed

  8. Reverse micelle-loaded lipid nano-emulsions: new technology for nano-encapsulation of hydrophilic materials.

    Science.gov (United States)

    Anton, Nicolas; Mojzisova, Halina; Porcher, Emilien; Benoit, Jean-Pierre; Saulnier, Patrick

    2010-10-15

    This study presents novel, recently patented technology for encapsulating hydrophilic species in lipid nano-emulsions. The method is based on the phase-inversion temperature method (the so-called PIT method), which follows a low-energy and solvent-free process. The nano-emulsions formed are stable for months, and exhibit droplet sizes ranging from 10 to 200 nm. Hydrophilic model molecules of fluorescein sodium salt are encapsulated in the oily core of these nano-emulsion droplets through their solubilisation in the reverse micellar system. As a result, original, multi-scaled nano-objects are generated with a 'hydrophilic molecule in a reverse-micelles-in-oil-in-water' structure. Once fluorescein has been encapsulated it remains stable, for thermodynamic reasons, and the encapsulation yields can reach 90%. The reason why such complex objects can be formed is due to the soft method used (PIT method) which allows the conservation of the structure of the reverse micelles throughout the formulation process, up to their entrapment in the nano-emulsion droplets. In this study, we focus the investigation on the process itself, revealing its potential and limits. Since the formulation of nanocarriers for the encapsulation of hydrophilic substances still remains a challenge, this study may constitute a significant advance in this field. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Chemical Functionalization, Self-Assembly, and Applications of Nano materials and Nano composites 2014

    International Nuclear Information System (INIS)

    Yan, X.; Jiao, T.; Balan, L.; Chen, X.; Hu, M.Z.; Liu, W.

    2014-01-01

    The growing interests in nano materials and nano composites call for the development of processing techniques to obtain multiple functionalization nano structures and achieve the tailoring of specific features of the nanometer size. Functional nano materials and nano composites will expand the applied range of the original material and at the same time promote the development of inter discipline. Thus, the chemical functionalization and bottom-up assemblies of nano materials and subsequent applications will accelerate the development of nano science and nano technology.

  10. Proceedings of the 1st CIRP Seminar on Micro and Nano Technology

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Alting, Leo

    2003-01-01

    The present Proceedings of the 1st International CIRP Seminar on Micro and Nano Technology is the result of a CIRP initiative taken by the Working Group on Micro/Nano Technology established in 2002. The CIRP initiative is a recognition of the large potentials that micro/nano technology has...... in improving/enhancing many of the existing products and in forming the basis of a long range of new next generation of products. Micro and nano technology are common phrases used to describe phenomena, components, products etc. related to small dimensions, usually based on functioning principles...... accessible to a large group of customers. Therefore, product development and manufacture is very essential. Therefore this 1st CIRP Seminar represents an important milestone for design and industrial manufacture of products based on micro and nano technology. The Proceedings cover mostly new, interesting...

  11. Nano-Bio Quantum Technology for Device-Specific Materials

    Science.gov (United States)

    Choi, Sang H.

    2009-01-01

    The areas discussed are still under development: I. Nano structured materials for TE applications a) SiGe and Be.Te; b) Nano particles and nanoshells. II. Quantum technology for optical devices: a) Quantum apertures; b) Smart optical materials; c) Micro spectrometer. III. Bio-template oriented materials: a) Bionanobattery; b) Bio-fuel cells; c) Energetic materials.

  12. The evolution of telemedicine and nano-technology

    Science.gov (United States)

    Park, Dong Kyun; Young Jung, Eun; Chan Moon, Byung

    2012-10-01

    This paper will cover definition and history of telemedicine, changes in medical paradigm and roll of telemedicine and roll of nano-technology for evolution of telemedicine. Hypothetically, telemedicine is distance communication for medical purpose and modern definition explains telemedicine as `a system of health care delivery in which physicians examine distant patients through the use of telecommunications technology. Medical service will change to personalized medicine based on gene information to prevent and manage diseases due to decrease of acute diseases, population aging and increase of prevalence in chronic diseases, which means current medical services based on manualized treatment for diseases will change to personalized medicine based on individual gene information. Also, international healthcare will be activated to provide high quality medical services with low cost using developed transportation. Moreover, hospital centered medical services will change to patients centered medical service due to increase of patient's rights. Development in sensor technology is required for telemedicine to be applied as basic infrastructure for medical services. Various researches in nano-biosensor field are conducted due to introduction of new technologies. However, most researches are in fundamental levels that requires more researches for stability and clinical usefulness. Nano technology is expected to achieve innovative development and define new criteria for disease prevention and management.

  13. MEMS and Nano-Technology Clean Room

    Data.gov (United States)

    Federal Laboratory Consortium — The MEMS and Nano-Technology Clean Room is a state-of-the-art, 800 square foot, Class 1000-capable facility used for development of micro and sub-micro scale sensors...

  14. Development of Nano technology in High Performance Concrete

    International Nuclear Information System (INIS)

    Nima Farzadnia; Abang Abdullah Abang Ali; Ramazan Demirboga; Demirboga, R.

    2011-01-01

    Concrete is the most widely used building material all around the world which has been undergoing many changes aligned with technological advancement. The most recent available type of concrete is high performance concrete which is produced by employing different admixtures both chemical and mineral to enhance mechanical properties and durability. Recently, technology has made it easy for scientist to study nano sized admixtures and their effect on microstructure of concrete. This paper reviews nano particles in cement composites and how they can improve different properties of concrete. (author)

  15. Report on surveys in fiscal 2000 on the surveys and researches in relation to nano-technology; 2000 nendo nano technology ni kakawaru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In order to view over the situation surrounding the nano-technology as a whole, surveys and discussions were given by means of questionnaire and open discussion meetings. In the questionnaire, the answer that the products utilizing nano-scale structure have already been, or scheduled to be put on sale has exceeded half of the total answers. Experts view that the nano-technology is infiltrating steadily into the actual society. In view of the applicable fields, and in the opening discussion meetings, drastic innovation was expected in the industrial technologies in the future not too far away as a dream world, by using the 'nano-technology' that utilizes a principle completely different from the principles that have been practically used. In order to achieve that goal, a recognition was made clear that the braeakthrough in other fields is important, and the field crossing fusion such as coordination with academia, and exchanges between different businesses and different fields is important. In the comparison of competitive edges of Japan, America and Europe, Japan was recognized to possess sufficient competitive power, but the sense of crisis is felt toward the latent technological power of America of the future. (NEDO)

  16. Report on surveys in fiscal 2000 on the surveys and researches in relation to nano-technology; 2000 nendo nano technology ni kakawaru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In order to view over the situation surrounding the nano-technology as a whole, surveys and discussions were given by means of questionnaire and open discussion meetings. In the questionnaire, the answer that the products utilizing nano-scale structure have already been, or scheduled to be put on sale has exceeded half of the total answers. Experts view that the nano-technology is infiltrating steadily into the actual society. In view of the applicable fields, and in the opening discussion meetings, drastic innovation was expected in the industrial technologies in the future not too far away as a dream world, by using the 'nano-technology' that utilizes a principle completely different from the principles that have been practically used. In order to achieve that goal, a recognition was made clear that the braeakthrough in other fields is important, and the field crossing fusion such as coordination with academia, and exchanges between different businesses and different fields is important. In the comparison of competitive edges of Japan, America and Europe, Japan was recognized to possess sufficient competitive power, but the sense of crisis is felt toward the latent technological power of America of the future. (NEDO)

  17. Hollow Nanospheres Array Fabrication via Nano-Conglutination Technology.

    Science.gov (United States)

    Zhang, Man; Deng, Qiling; Xia, Liangping; Shi, Lifang; Cao, Axiu; Pang, Hui; Hu, Song

    2015-09-01

    Hollow nanospheres array is a special nanostructure with great applications in photonics, electronics and biochemistry. The nanofabrication technique with high resolution is crucial to nanosciences and nano-technology. This paper presents a novel nonconventional nano-conglutination technology combining polystyrenes spheres (PSs) self-assembly, conglutination and a lift-off process to fabricate the hollow nanospheres array with nanoholes. A self-assembly monolayer of PSs was stuck off from the quartz wafer by the thiol-ene adhesive material, and then the PSs was removed via a lift-off process and the hollow nanospheres embedded into the thiol-ene substrate was obtained. Thiolene polymer is a UV-curable material via "click chemistry" reaction at ambient conditions without the oxygen inhibition, which has excellent chemical and physical properties to be attractive as the adhesive material in nano-conglutination technology. Using the technique, a hollow nanospheres array with the nanoholes at the diameter of 200 nm embedded into the rigid thiol-ene substrate was fabricated, which has great potential to serve as a reaction container, catalyst and surface enhanced Raman scattering substrate.

  18. Nano Surface Engineering in the 21st Century

    Institute of Scientific and Technical Information of China (English)

    Xu Bin-shi; Wang Hai-dou; Dong Shi-yun; Shi Pei-jing; Xu Yi

    2004-01-01

    Nano surface engineering is the new development of surface engineering, and is the typical representation that the advanced nano technology improves the traditional surface engineering. The connotation of nano surface engineering is profound. The initial stage of nano surface engineering is realized at present day. The key technologies of nano surface engineering are the support to the equipment remanufacturing. Today the relatively mature key technologies are: nano thermal spraying technology, nano electric-brush plating technology, nano self-repairing anti-friction technology and metal surface nanocrystallization, etc. Many scientific issues have been continuously discovered. Meanwhile they have been applied in the practice more and more, and have archived the excellent remanufacturing effect.

  19. Final report. CIRP seminar on micro and nano technology. November 2003

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Alting, Leo

    This final reports contains a description of the 1st international CIRP seminar on micro and nano technology held at DTU in November 2003.......This final reports contains a description of the 1st international CIRP seminar on micro and nano technology held at DTU in November 2003....

  20. Synthesis of Boron Nano wires, Nano tubes, and Nano sheets

    International Nuclear Information System (INIS)

    Patel, R.B.; Chou, T.; Iqbal, Z.

    2014-01-01

    The synthesis of boron nano wires, nano tubes, and nano sheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nano materials. The materials were made by using various combinations of MgB 2 , Mg(BH 4 ) 2 , MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nano wires, boron nano tubes, and boron nano sheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  1. Nano materials for Energy and Environmental Applications

    International Nuclear Information System (INIS)

    Srinivasan, S.; Kannan, A.M.; Kothurkar, N.; Khalil, Y.; Kuravi, S.

    2015-01-01

    Nano materials enabled technologies have been seamlessly integrated into applications such as aviation and space, chemical industry, optics, solar hydrogen, fuel cell, batteries, sensors, power generation, aeronautic industry, building/construction industry, automotive engineering, consumer electronics, thermoelectric devices, pharmaceuticals, and cosmetic industry. Clean energy and environmental applications often demand the development of novel nano materials that can provide shortest reaction pathways for the enhancement of reaction kinetics. Understanding the physicochemical, structural, microstructural, surface, and interface properties of nano materials is vital for achieving the required efficiency, cycle life, and sustain ability in various technological applications. Nano materials with specific size and shape such as nano tubes, nano fibers/nano wires, nano cones, nano composites, nano rods, nano islands, nanoparticles, nanospheres, and nano shells to provide unique properties can be synthesized by tuning the process conditions.

  2. The role of nano-particles in the field of thermal spray coating technology

    Science.gov (United States)

    Siegmann, Stephan; Leparoux, Marc; Rohr, Lukas

    2005-06-01

    Nano-particles play not only a key role in recent research fields, but also in the public discussions about health and safety in nanotechnology. Nevertheless, the worldwide activities in nano-particles research increased dramatically during the last 5 to 10 years. There are different potential routes for the future production of nano-particles at large scale. The main directions envisaged are mechanical milling, wet chemical reactions or gas phase processes. Each of the processes has its specific advantages and limitations. Mechanical milling and wet chemical reactions are typically time intensive and batch processes, whereas gas phase productions by flames or plasma can be carried out continuously. Materials of interest are mainly oxide ceramics, carbides, nitrides, and pure metals. Nano-ceramics are interesting candidates for coating technologies due to expected higher coating toughness, better thermal shock and wear resistance. Especially embedded nano-carbides and-nitrides offer homogenously distributed hard phases, which enhance coatings hardness. Thermal spraying, a nearly 100 years old and world wide established coating technology, gets new possibilities thanks to optimized, nano-sized and/or nano-structured powders. Latest coating system developments like high velocity flame spraying (HVOF), cold gas deposition or liquid suspension spraying in combination with new powder qualities may open new applications and markets. This article gives an overview on the latest activities in nano-particle research and production in special relation to thermal spray coating technology.

  3. The nano-science of C60 molecule

    International Nuclear Information System (INIS)

    Rafii-Tabar, H.

    2002-01-01

    Over the past few years, nano-science and its associated nano-technology have emerged into prominence in research institutions across the world. They have brought about new scientific and engineering paradigms, allowing for the manipulation of single atoms and molecules, designing and fabricating new materials, atom-by-atom, and devices that operate on significantly reduced time and length scales. One important area of research in nano-science and nano technology is carbon-based physics in the form of fullerene physics. The C 6 0 molecule, and other cage-like fullerenes, together with carbon nano tubes provide objects that can be combined to generate three-dimensional functional structures for use in the anticipated nano-technology of future. The unique properties of C 6 0 can also be exploited in designing nano-phase thin films with applications in nano-scope device technology and processes such as nano-lithography. This requires a deep understanding of the highly complex process of adsorption of this molecule on a variety of substrates. We review the field of nano-scale nucleation and growth of C 6 0 molecules on some of the technologically important substrates. In addition to experimental results, the results of a set of highly accurate computational simulations are also reported

  4. Nano materials for Medical and Dental Applications

    International Nuclear Information System (INIS)

    Yub Kwon, T.; Oh, D.S.; Narayanan, R.

    2015-01-01

    Welcome to this special issue. Nano science and nano technology concepts are applicable across all fields of science and a more widespread application of nano materials and nano technologies is imminent or already occurring in many areas, including health care. Today is scientists take those cutting-edge technologies and concepts and apply them to medicine and dentistry. They are finding a wide variety of ways to make medical and dental materials at the nano scale to take advantage of their enhanced physical and biological properties.The purpose of this special issue is to publish high-quality research papers as well as review articles addressing recent advances in the field of nano materials for medical and dental applications. A particular interest is given to papers exploring or discussing nano materials and nano technologies related to delivery system, bonding substitutes, and surface modification techniques applicable in these areas. For this special issue, several investigators were invited to contribute original research findings that can stimulate continuing efforts to understand the cutting-edge applications of nano materials in medicine and dentistry.

  5. Cancer Nano medicine

    International Nuclear Information System (INIS)

    Li, H.; Pike, M.M.; Luo, X.; Liu, L.H.

    2013-01-01

    Bioengineered nano materials have inspired revolutionary imaging and drug delivery methods whose clinical application in cancer research has resulted in powerful medical devices for early diagnosis, treatment, and prevention of cancer. Recent advances in super imaging agents have resulted in improved resolution and sensitivity. For instance, fluorescent quantum dots with wavelength-tunable emissions, plasmon-resonant gold nano structures with shape-controlled near-infrared absorptions, and MRI-active iron oxide nanoparticles are well-established molecular imaging probes for noninvasive cancer imaging. Nano materials are also considered to be the most effective vectors that can break through transport bio barriers and deliver a constant dose of multiple therapeutic agents to tumors and intracellular endocytic compartments for cancer gene therapy, immunotherapy, or chemotherapy. Furthermore, nano wire- or nano tube-based electronic devices demonstrate extraordinary sensitivity capable of detection at the single molecule or protein level. It is anticipated that developing nano technology-driven imaging, sensing, and therapeutic systems will dramatically advance cancer research and clinical treatments.

  6. The nano-materials, at the heart of the nano galaxy; Les nano-materiaux, au coeur de la galaxie nano

    Energy Technology Data Exchange (ETDEWEB)

    Le Marois, G. [Direction Generale de l' Industrie, des Technologies de l' Information et des Postes, 75 - Paris (France); Carlac, D. [Societe Developpement et Conseil, 51 - Reims (France)

    2004-02-01

    The researches on nano-materials are continuously increasing in most of industrialized countries. Between 1998 and 2003, the corresponding investment has been multiplied by six in Europe, eight in Usa and in Japan, to reach 3 milliards of euros in the world. Based on the nano-technologies development, these materials would represent the main part of the market at short and middle dated. Many examples of utilization are presented. (A.L.B.)

  7. The single-event effect evaluation technology for nano integrated circuits

    International Nuclear Information System (INIS)

    Zheng Hongchao; Zhao Yuanfu; Yue Suge; Fan Long; Du Shougang; Chen Maoxin; Yu Chunqing

    2015-01-01

    Single-event effects of nano scale integrated circuits are investigated. Evaluation methods for single-event transients, single-event upsets, and single-event functional interrupts in nano circuits are summarized and classified in detail. The difficulties in SEE testing are discussed as well as the development direction of test technology, with emphasis placed on the experimental evaluation of a nano circuit under heavy ion, proton, and laser irradiation. The conclusions in this paper are based on many years of testing at accelerator facilities and our present understanding of the mechanisms for SEEs, which have been well verified experimentally. (paper)

  8. Nano structures for Medical Diagnostics Md

    International Nuclear Information System (INIS)

    Bellah, M.; Iqbal, S.M.; Bellah, M.; Iqbal, S.M.; Christensen, S.M.; Iqbal, S.M.; Iqbal, S.M.

    2012-01-01

    Nano technology is the art of manipulating materials on atomic or molecular scales especially to build nano scale structures and devices. The field is expanding quickly, and a lot of work is ongoing in the design, characterization, synthesis, and application of materials, structures, devices, and systems by controlling shape and size at nanometer scale. In the last few years, much work has been focused on the use of nano structures toward problems of biology and medicine. In this paper, we focus on the application of various nano structures and nano devices in clinical diagnostics and detection of important biological molecules. The discussion starts by introducing some basic techniques of micro-/nano scale fabrication that have enabled reproducible production of nano structures. The prospects, benefits, and limitations of using these novel techniques in the fields of bio detection and medical diagnostics are then discussed. Finally, the challenges of mass production and acceptance of nano technology by the medical community are considered.

  9. MICRO & NANO TECHNOLOGIES – APPLICATIONS, DESIGN AND INTEGRATION

    Directory of Open Access Journals (Sweden)

    Dorin LEŢ

    2010-05-01

    Full Text Available The science of micro-nano technologies represents a multidisciplinary research domain, which provokes active participation of specialist from multiple domains (physics, chemistry, biology, mathematics, electronics, medicine, a.o.. Nanotechnology is an applied science domain focusing the design, synthesis and characterization of materials and devices starting from individual atoms and molecules level up to supramolecular level of strains of molecules with 100 molecular diameters. Operations at this dimensions implies the understanding of new scientific principles and new materials properties, which take place at micro and nano scale and are used in the development of materials, devices and systems with new and improved functions and performances. The properties and basic functions of structures and material systems at nano scale may be changed based on the organization of the living mater on molecular “weak” interactions (hydrogen binds, electrostatic dipole, Van der Waals forces, surface forces, electrofluidic forces, a.o..

  10. Carbon nano tubes embedded in polymer nano fibers

    International Nuclear Information System (INIS)

    Dror, Y.; Kedem, S.; Khalfin, R.L.; Paz, Y.; Cohenl, Y.; Salalha, Y.; Yarin, A.L.; Zussman, A.

    2004-01-01

    Full Text: The electro spinning process was used successfully to embed Multi-walled carbon nano tubes (MWCNTs) and single-walled carbon nano tubes (SWCNTs) in a matrix of poly(ethylene oxide) (PEO) forming composite nano fibers. Initial dispersion of SWCNTs in water was achieved by the use of an amphphilic alternating copolymer of styrene and sodium maleate. MWNT dispersion was achieved by ionic and nonionic surfactants. The distribution and conformation of the nano tubes in the nano fibers were studied by transmission electron microscopy (TEM). Oxygen plasma etching was used to expose the nano tubes within the nano fibers to facilitate direct observation. Nano tube alignment within the nano fibers was shown to depend strongly on the quality of the initial dispersions. Well-dispersed and separated nano tubes were embedded in a straight and aligned form while entangled non-separated nano tubes were incorporated as dense aggregates. X-ray diffraction demonstrated a high degree of orientation of the PEO crystals in the electro spun nano fibers with embedded SWCNTs, whereas incorporation of MVCNTs had a detrimental effect on the polymer orientation. Composite polymer nano fibers containing dispersed phases of nanometric TiO 2 particles and MWCNTs were also prepared electro spinning. In this case, the polymer matrix was poly(acrylonitrile) (PAN). The morphology and possible applications of these composite nano fibers will be discussed

  11. Selective and lithography-independent fabrication of 20 nm nano-gap electrodes and nano-channels for nanoelectrofluidics applications

    International Nuclear Information System (INIS)

    Zhang, J Y; Wang, X F; Wang, X D; Fan, Z C; Li, Y; Ji, An; Yang, F H

    2010-01-01

    A new method has been developed to selectively fabricate nano-gap electrodes and nano-channels by conventional lithography. Based on a sacrificial spacer process, we have successfully obtained sub-100-nm nano-gap electrodes and nano-channels and further reduced the dimensions to 20 nm by shrinking the sacrificial spacer size. Our method shows good selectivity between nano-gap electrodes and nano-channels due to different sacrificial spacer etch conditions. There is no length limit for the nano-gap electrode and the nano-channel. The method reported in this paper also allows for wafer scale fabrication, high throughput, low cost, and good compatibility with modern semiconductor technology.

  12. NanoChemistry Group at DTU uses NanoSight's NTA System for Nanoparticle Characterization

    DEFF Research Database (Denmark)

    2011-01-01

    (Nanowerk News) NanoSight, leading manufacturers of unique nanoparticle characterization technology, describes how the Nano Chemistry group at DTU Copenhagen is utilizing nanoparticle tracking analysis, NTA, in its research and teaching programs....

  13. High performance nano-composite technology development

    International Nuclear Information System (INIS)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D.; Kim, E. K.; Jung, S. Y.; Ryu, H. J.; Hwang, S. S.; Kim, J. K.; Hong, S. M.; Chea, Y. B.; Choi, C. H.; Kim, S. D.; Cho, B. G.; Lee, S. H.

    1999-06-01

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  14. High performance nano-composite technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D. [KAERI, Taejon (Korea, Republic of); Kim, E. K.; Jung, S. Y.; Ryu, H. J. [KRICT, Taejon (Korea, Republic of); Hwang, S. S.; Kim, J. K.; Hong, S. M. [KIST, Taejon (Korea, Republic of); Chea, Y. B. [KIGAM, Taejon (Korea, Republic of); Choi, C. H.; Kim, S. D. [ATS, Taejon (Korea, Republic of); Cho, B. G.; Lee, S. H. [HGREC, Taejon (Korea, Republic of)

    1999-06-15

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  15. Synchronized femtosecond laser pulse switching system based nano-patterning technology

    Science.gov (United States)

    Sohn, Ik-Bu; Choi, Hun-Kook; Yoo, Dongyoon; Noh, Young-Chul; Sung, Jae-Hee; Lee, Seong-Ku; Ahsan, Md. Shamim; Lee, Ho

    2017-07-01

    This paper demonstrates the design and development of a synchronized femtosecond laser pulse switching system and its applications in nano-patterning of transparent materials. Due to synchronization, we are able to control the location of each irradiated laser pulse in any kind of substrate. The control over the scanning speed and scanning step of the laser beam enables us to pattern periodic micro/nano-metric holes, voids, and/or lines in various materials. Using the synchronized laser system, we pattern synchronized nano-holes on the surface of and inside various transparent materials including fused silica glass and polymethyl methacrylate to replicate any image or pattern on the surface of or inside (transparent) materials. We also investigate the application areas of the proposed synchronized femtosecond laser pulse switching system in a diverse field of science and technology, especially in optical memory, color marking, and synchronized micro/nano-scale patterning of materials.

  16. Nano-Launcher Technologies, Approaches, and Life Cycle Assessment. Phase II

    Science.gov (United States)

    Zapata, Edgar

    2014-01-01

    Assist in understanding NASA technology and investment approaches, and other driving factors, necessary for enabling dedicated nano-launchers by industry at a cost and flight rate that (1) could support and be supported by an emerging nano-satellite market and (2) would benefit NASAs needs. Develop life-cycle cost, performance and other NASA analysis tools or models required to understand issues, drivers and challenges.

  17. The Effect of Nano Loading and Ultrasonic Compounding of EVA/LDPE/Nano-magnesium Hydroxide on Mechanical Properties and Distribution of Nano Particles

    Science.gov (United States)

    Azman, I. A.; Salleh, R. M.; Alauddin, S. M.; Shueb, M. I.

    2018-05-01

    Blends of Ethylene Vinyl Acetate (EVA) and Low-Density Polyethylene (LDPE) are promising composite which have good mechanical properties to environmental stress cracking. However, they lack fire resistant properties, which limits it usage in wire and cable industry. In order to improve flame retardancy ability, a range of nano-magnesium hydroxide (nano-MH) loading which is from 0 phr to maximum of 20 phr with ultrasonic extrusion 0-100 kHz frequencies have been introduced. Ultrasonic extrusion was used to improve the distribution of nano-MH. It was found that, 10 phr of nano loading with 100 kHz ultrasonic assisted has greater tensile strength compared to the nanocomposite without ultrasonication. Further increase of nano MH loading, will decrease the tensile properties. Better elongation at break was observed at10 phr nano-MH with the frequency of 50 kHz. The sample of 20 phr of nanoMH assisted with 50 kHz ultrasonic exhibits good flexural properties while 10 phr of nano-MH without the ultrasonic assisted demonstrates good in izod impact properties. From the evaluation of mechanical properties studied, it was found that 10 phr of nano-MH has shown the best performance among all the samples tested for EVA/LDPE/nano-MH composites. Transmission Electron Microscopy (TEM) has been conducted on 10 phr sample with different frequencies in order to observe the distribution of nano-MH particles. The sample with 100 kHz frequency shows more uniform dispersion of nano-MH in EVA/LDPE composites. This investigation indicates that the ultrasonic technology can enhance the mechanical properties studied as well as the dispersion of nano particles in the composite.

  18. A review of non-contact micro- and nano-printing technologies

    International Nuclear Information System (INIS)

    Ru, Changhai; Sun, Yu; Luo, Jun; Xie, Shaorong

    2014-01-01

    Printing technologies have undergone signficant development because they are an enabler in science and engineering research; they also have significant practical applications in manufacturing. Micro- and nano-printing techniques have found a number of applications in electronics, biotechnology, and material synthesis/patterning. In this review, we look at the important printing methods, including high precision traditional printing methods as well as recently emerging techniques. We also discuss the materials that are printable by these technologies, the challenges for future development, and the applications of micro- and nano-printing. (topical review)

  19. A review of non-contact micro- and nano-printing technologies

    Science.gov (United States)

    Ru, Changhai; Luo, Jun; Xie, Shaorong; Sun, Yu

    2014-05-01

    Printing technologies have undergone signficant development because they are an enabler in science and engineering research; they also have significant practical applications in manufacturing. Micro- and nano-printing techniques have found a number of applications in electronics, biotechnology, and material synthesis/patterning. In this review, we look at the important printing methods, including high precision traditional printing methods as well as recently emerging techniques. We also discuss the materials that are printable by these technologies, the challenges for future development, and the applications of micro- and nano-printing.

  20. High performance nano-composite technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D. [KAERI, Taejon (Korea, Republic of); Kim, E. K.; Jung, S. Y.; Ryu, H. J. [KRICT, Taejon (Korea, Republic of); Hwang, S. S.; Kim, J. K.; Hong, S. M. [KIST, Taejon (Korea, Republic of); Chea, Y. B. [KIGAM, Taejon (Korea, Republic of); Choi, C. H.; Kim, S. D. [ATS, Taejon (Korea, Republic of); Cho, B. G.; Lee, S. H. [HGREC, Taejon (Korea, Republic of)

    1999-06-15

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  1. 1D Nano materials 2012

    International Nuclear Information System (INIS)

    Yanqiu Zhu, Y.; Ma, R.; Whitby, R.; Acquah, S.

    2013-01-01

    We witnessed an initial hyped period and enthusiasm on carbon nano tubes in the 1990s later went through a significant expansion into nano tubes of other materials (metal di chalcogenides, boron nitride, etc.) as well as various nano wires and nano rods. While much of the hype might have gone, the research on one-dimensional (1D) nano materials has matured as one of the most active research areas within the nano science and nano technology community, flourishing with ample, exciting, and new research opportunities. Just like any other research frontier, researchers working in the 1D nano materials field are constantly striving to develop new fundamental science as well as potential applications. It remains a common belief that versatility and tunability of 1D nano materials would challenge many new rising tasks coming from our resource and energy demanding modern society. The traditional semiconductor industry has produced so many devices and systems from transistors, sensors, lasers, and LEDs to more sophisticated solar panels, which are now part of our daily lives. By down sizing the core components or parts to 1D form, one might wonder how fundamentally the dimensionality and morphology would impact the device performance, this is, as always, requiring us to fully understand the structure-property relationship in 1D nano materials. It may be equally crucial in connecting discovery-driven fundamental science to market-driven technology industry concerning potentially relevant findings derived from these novel materials. The importance of a platform that allows active researchers in this field to present their new development in a timely and efficient manner is therefore self-evident. Following the success of two early special issues devoted to 1D nano materials, this is the third one in a row organized by the same group of guest editors, attesting that such a platform has been well received by the readers

  2. Progress in Nano-Electro-Optics VII Chemical, Biological, and Nanophotonic Technologies for Nano-Optical Devices and Systems

    CERN Document Server

    Ohtsu, Motoichi

    2010-01-01

    This book focuses on chemical and nanophotonic technology to be used to develop novel nano-optical devices and systems. It begins with temperature- and photo-induced phase transition of ferromagnetic materials. Further topics include: energy transfer in artificial photosynthesis, homoepitaxial multiple quantum wells in ZnO, near-field photochemical etching and nanophotonic devices based on a nonadiabatic process and optical near-field energy transfer, respectively and polarization control in the optical near-field for optical information security. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.

  3. PREFACE: The 8th China International NanoScience and Technology Symposium

    Science.gov (United States)

    Cong, Hailin

    2009-09-01

    The 8th China International NanoScience and Technology Symposium, Xiangtan (2009) - Nano-products Exposition, sponsored by Chinese Society of Miro-nanoTechnology and IEEE Nanotechnology Council, etc will be held on 23-27 October 2009 in Xiangtan, China. This symposium is held in order to promote the technology for the development of micro- and nano-scale, cross-scale integration, to share new micro/nano technologies, to exchange information and knowledge over all fields and promote the industrialization and development of nanotechnology. This is a leading professional and traditional conference with at least 400 participants every year. Famous experts, professors and government officials at home and abroad will give lectures during the symposium, which provides a good platform for delegates to discover the latest developments and dynamics of nanotechnology. Researchers, teachers and students in colleges, and technical personnel in the industrial community are welcome to contribute and actively participate in the symposium. In our last symposium held in 2008, over 600 participants from all over the world attended, and we received over 570 abstract and paper submissions for the proceedings published in different languages in famous professional journals. And this year, we have already received over 400 submissions. After strict peer review, 60 of them are published in this volume of Journal of Physics: Conference Series. We are confident that the event will be even more successful this year. Consequently, the organizing committee and proceedings editorial committee would like to thank our colleagues at the IOP Publishing, the invited speakers, our sponsors and all the delegates for their great contributions in this conference. Hailin Cong Vice Chair of the proceedings editorial committee

  4. The nano-science of C sub 6 0 molecule

    CERN Document Server

    Rafii-Tabar, H

    2002-01-01

    Over the past few years, nano-science and its associated nano-technology have emerged into prominence in research institutions across the world. They have brought about new scientific and engineering paradigms, allowing for the manipulation of single atoms and molecules, designing and fabricating new materials, atom-by-atom, and devices that operate on significantly reduced time and length scales. One important area of research in nano-science and nano technology is carbon-based physics in the form of fullerene physics. The C sub 6 0 molecule, and other cage-like fullerenes, together with carbon nano tubes provide objects that can be combined to generate three-dimensional functional structures for use in the anticipated nano-technology of future. The unique properties of C sub 6 0 can also be exploited in designing nano-phase thin films with applications in nano-scope device technology and processes such as nano-lithography. This requires a deep understanding of the highly complex process of adsorption of thi...

  5. Nano medicine in Action: An Overview of Cancer Nano medicine on the Market and in Clinical Trials

    International Nuclear Information System (INIS)

    Wang, R.; Billone, P.S.; Mullett, W.M.

    2013-01-01

    Nano medicine, defined as the application of nano technology in the medical field, has the potential to significantly change the course of diagnostics and treatment of life-threatening diseases, such as cancer. In comparison with traditional cancer diagnostics and therapy, cancer nano medicine provides sensitive cancer detection and/or enhances treatment efficacy with significantly minimized adverse effects associated with standard therapeutics. Cancer nano medicine has been increasingly applied in areas including nano drug delivery systems, nano pharmaceuticals, and nano analytical contrast reagents in laboratory and animal model research. In recent years, the successful introduction of several novel nano medicine products into clinical trials and even onto the commercial market has shown successful outcomes of fundamental research into clinics. This paper is intended to examine several nano medicines for cancer therapeutics and/or diagnostics-related applications, to analyze the trend of nano medicine development, future opportunities, and challenges of this fast-growing area.

  6. Accelerating nano-technological innovation in the Danish construction industry

    DEFF Research Database (Denmark)

    Koch, Christian; Stissing Jensen, Jens

    2007-01-01

    . The institutional features of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support "incubation rooms" or marked......  By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which...... concludes that opportunities are generally poorly appreciated by the industry and research communities alike. It is found that the construction industry is characterised by low-tech trajectories where dedicated innovation networks are often too fragile for innovations to stabilize and diffuse...

  7. Pharmaceutical Applications of Polymeric Nano materials

    International Nuclear Information System (INIS)

    Wu, L.; Sun, L.

    2011-01-01

    With significant attention focused on nano science and nano technology in recent years, nano materials have been used in a wide variety of applications such as automotive, environmental, energy, catalysis, biomedical, drug delivery, and polymeric industries. Among those fields, the application of nano materials with pharmaceutical science is an emerging and rapidly growing field and has drawn increasing attention recently. Research and development in this field is mainly focused on several aspects such as the discoveries of novel functional nano materials, exploration on nanoparticles with controlled and targeted drug delivery characteristics, and investigation of bio functionalized and diagnostic nano materials. In this special issue, we have invited a few papers related to recent advances in pharmaceutical application of polymeric nano materials

  8. Nano-sized crystalline drug production by milling technology.

    Science.gov (United States)

    Moribe, Kunikazu; Ueda, Keisuke; Limwikrant, Waree; Higashi, Kenjirou; Yamamoto, Keiji

    2013-01-01

    Nano-formulation of poorly water-soluble drugs has been developed to enhance drug dissolution. In this review, we introduce nano-milling technology described in recently published papers. Factors affecting the size of drug crystals are compared based on the preparation methods and drug and excipient types. A top-down approach using the comminution process is a method conventionally used to prepare crystalline drug nanoparticles. Wet milling using media is well studied and several wet-milled drug formulations are now on the market. Several trials on drug nanosuspension preparation using different apparatuses, materials, and conditions have been reported. Wet milling using a high-pressure homogenizer is another alternative to preparing production-scale drug nanosuspensions. Dry milling is a simple method of preparing a solid-state drug nano-formulation. The effect of size on the dissolution of a drug from nanoparticles is an area of fundamental research, but it is sometimes incorrectly evaluated. Here, we discuss evaluation procedures and the associated problems. Lastly, the importance of quality control, process optimization, and physicochemical characterization are briefly discussed.

  9. Metrology at the nano scale

    International Nuclear Information System (INIS)

    Sheridan, B.; Cumpson, P.; Bailey, M.

    2006-01-01

    Progress in nano technology relies on ever more accurate measurements of quantities such as distance, force and current industry has long depended on accurate measurement. In the 19th century, for example, the performance of steam engines was seriously limited by inaccurately made components, a situation that was transformed by Henry Maudsley's screw micrometer calliper. And early in the 20th century, the development of telegraphy relied on improved standards of electrical resistance. Before this, each country had its own standards and cross border communication was difficult. The same is true today of nano technology if it is to be fully exploited by industry. Principles of measurement that work well at the macroscopic level often become completely unworkable at the nano metre scale - about 100 nm and below. Imaging, for example, is not possible on this scale using optical microscopes, and it is virtually impossible to weigh a nano metre-scale object with any accuracy. In addition to needing more accurate measurements, nano technology also often requires a greater variety of measurements than conventional technology. For example, standard techniques used to make microchips generally need accurate length measurements, but the manufacture of electronics at the molecular scale requires magnetic, electrical, mechanical and chemical measurements as well. (U.K.)

  10. Nano catalysis: Academic Discipline and Industrial Realities

    International Nuclear Information System (INIS)

    Olveira, S.; Forster, S.P.; Seeger, S.

    2014-01-01

    Nano technology plays a central role in both academic research and industrial applications. Nano enabled products are not only found in consumer markets, but also importantly in business to business markets (B2B). One of the oldest application areas of nano technology is nano catalysis—an excellent example for such a B2 B market. Several existing reviews illustrate the scientific developments in the field of nano catalysis. The goal of the present review is to provide an up-to-date picture of academic research and to extend this picture by an industrial and economic perspective. We therefore conducted an extensive search on several scientific databases and we further analyzed more than 1,500 nano catalysis-related patents and numerous market studies. We found that scientists today are able to prepare nano catalysts with superior characteristics regarding activity, selectivity, durability, and recoverability, which will contribute to solve current environmental, social, and industrial problems. In industry, the potential of nano catalysis is recognized, clearly reflected by the increasing number of nano catalysis-related patents and products on the market. The current nano catalysis research in academic and industrial laboratories will therefore enable a wealth of future applications in the industry

  11. Editorial Nano structures for Medicine and Pharmaceuticals

    International Nuclear Information System (INIS)

    Xing-Jie, L.; Kumar, A.; Donglu, S.; Daxiang, C.

    2012-01-01

    The rapid developments in nano structured materials and nano technology will have profound impact in many areas of biomedical applications including delivery of drugs and biomolecules, tissue engineering, detection of bio markers, cancer diagnosis, cancer therapy, and imaging. This field is expanding quickly, and a lot of work is ongoing in the design, characterization, synthesis, and application of materials, for controlling shape and size at nanometer scale to develop highly advanced materials for biomedical application and even to design better pharmaceutical products. In recent years, novel nano structure with multi functionalities has been focused on the use of nano structures toward solving problems of biology and medicine. The main scope of this special issue is to demonstrate the latest achievement of nano technology and its application in nano medicine particularly in new approaches for drug delivery such as targeted drug delivery system, nano structure for drug storage, nano materials for tissue engineering, medical diagnosis and treatment, and generation of new kinds of materials from biological sources. Therefore, many critical issues in nano structured materials, particularly their applications in biomedicine, must be addressed before clinical applications. This special issue devotes several review and research articles encompassing various aspects of nano materials for medicine and pharmaceuticals.

  12. Label it or ban it? Public perceptions of nano-food labels and propositions for banning nano-food applications

    Science.gov (United States)

    Chuah, Agnes S. F.; Leong, Alisius D.; Cummings, Christopher L.; Ho, Shirley S.

    2018-02-01

    The future of nano-food largely hinges on public perceptions and willingness to accept this novel technology. The present study utilizes the scientific literacy model and psychometric paradigm as the key theoretical frameworks to examine the factors influencing public support for labeling and banning of nano-food in Singapore. Using data collected from a nationally representative survey of 1001 respondents, the findings demonstrated that attitudes toward technology, preference for natural product, science knowledge, and risk perception were found to substantially affect public support for both labeling and banning of nano-food. Conversely, attention to food safety news on traditional media and attention to nano-news on new media were only associated with public support for labeling of nano-food. Similarly, benefit perception was only significantly associated with public support for banning of nano-food. Theoretically, these findings support the growing body of literature that argues for the significant role played by predispositions, media use, science knowledge, and risk and benefit perceptions on attitude formation toward nano-food. It serves as the pioneering piece to address the aspect of banning in the field of nano-food. Practically, insights drawn from this study could aid relevant stakeholders in enlisting effecting strategies to convey the benefits of nano-food while mitigating the risk perceptions among the public.

  13. From Nano Structure to Systems: Fabrication and Characterization

    International Nuclear Information System (INIS)

    Uda Hashim

    2011-01-01

    Currently, the interest in nano technology research has been grown rapidly. With the latest technology, it is possible to arrange atoms into structures that are only a few nanometers in size. Dimension for nano structure is between 0.1 and 100nm where the actual size of 1nm is equal to 10-9 m or just about a few atoms thick. In other word, a nano structure is an object which it size is about four atom diameters or 1/50000 of a human hair. Due to the connecting of a patterned silicon substrate with biomolecules and the small size and large surface-to-volume ratio, it opens much new possibility for assembling nano structures.The ultimate goal is to fabricate devices that have every atom in the right place. Such technology would give the opportunity to minimize the size of a device and to reduce the material, energy and time necessary to perform its task. Potential applications include electrical circuits, mechanical devices and medical instruments. There are two most important nano structures that are extensively studied and researched in various organizations which are nano wire and nano gap. Nano wires is a new class of nano structure that have attracted attention and great research interest in the last few years because of their potential applications in nano technology such as nano electronic, nano mechanical and biomedical engineering. Fabrication of Nano wires is one of the great challenges today. Conventional lithography methods are not capable to produce Nano wires and even with advance nano lithography sizes below 100 nm may not easily be achieved. Nano wire can be produced in two approaches, which are top down and bottom-up method. Very small nano wires which can be produced by using top-down nano fabrication methods are Scanning Electron Microscope (SEM) based Electron Beam Lithography (EBL) method, and Spacer Patterning Lithography (SPL) method. The top-down nano fabrication method based on EBL was the design of the Nano wires Pattern Design (NPD). The

  14. Indentation analysis of nano-particle using nano-contact mechanics models during nano-manipulation based on atomic force microscopy

    International Nuclear Information System (INIS)

    Daeinabi, Khadijeh; Korayem, Moharam Habibnejad

    2011-01-01

    Atomic force microscopy is applied to measure intermolecular forces and mechanical properties of materials, nano-particle manipulation, surface scanning and imaging with atomic accuracy in the nano-world. During nano-manipulation process, contact forces cause indentation in contact area between nano-particle and tip/substrate which is considerable at nano-scale and affects the nano-manipulation process. Several nano-contact mechanics models such as Hertz, Derjaguin–Muller–Toporov (DMT), Johnson–Kendall–Roberts–Sperling (JKRS), Burnham–Colton–Pollock (BCP), Maugis–Dugdale (MD), Carpick–Ogletree–Salmeron (COS), Pietrement–Troyon (PT), and Sun et al. have been applied as the continuum mechanics approaches at nano-scale. In this article, indentation depth and contact radius between tip and substrate with nano-particle for both spherical and conical tip shape during nano-manipulation process are analyzed and compared by applying theoretical, semiempirical, and empirical nano-contact mechanics models. The effects of adhesion force, as the main contrast point in different nano-contact mechanics models, on nano-manipulation analysis is investigated for different contact radius, and the critical point is discussed for mentioned models.

  15. Life Cycle Analysis of Dedicated Nano-Launch Technologies

    Science.gov (United States)

    Zapata, Edgar; McCleskey, Carey (Editor); Martin, John; Lepsch, Roger; Ternani, Tosoc

    2014-01-01

    Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs - small satellites awaiting the launch of a larger satellite, and then riding along on the same launcher. As a result, these small satellite customers await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options. With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.

  16. Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method

    Science.gov (United States)

    Kim, Jong-Woo; Yang, Ki-Yeon; Hong, Sung-Hoon; Lee, Heon

    2008-06-01

    For future device applications, fabrication of the metal nano-patterns on various substrates, such as Si wafer, non-planar glass lens and flexible plastic films become important. Among various nano-patterning technologies, nano-transfer print method is one of the simplest techniques to fabricate metal nano-patterns. In nano-transfer printing process, thin Au layer is deposited on flexible PDMS mold, containing surface protrusion patterns, and the Au layer is transferred from PDMS mold to various substrates due to the difference of bonding strength of Au layer to PDMS mold and to the substrate. For effective transfer of Au layer, self-assembled monolayer, which has strong bonding to Au, is deposited on the substrate as a glue layer. In this study, complicated SAM layer coating process was replaced to simple UV/ozone treatment, which can activates the surface and form the -OH radicals. Using simple UV/ozone treatments on both Au and substrate, Au nano-pattern can be successfully transferred to as large as 6 in. diameter Si wafer, without SAM coating process. High fidelity transfer of Au nano-patterns to non-planar glass lens and flexible PET film was also demonstrated.

  17. Ames Infusion Stories for NASA Annual Technology Report: Nano Entry System for CubeSat-Class Payloads

    Science.gov (United States)

    Smith, Brandon; Jan, Darrell Leslie; Venkatapathy, Etiraj

    2015-01-01

    The Nano Entry System for CubeSat-Class Payloads led to the development of the Nano-Adaptable Deployable Entry and Placement Technology ("Nano-ADEPT"). Nano-ADEPT is a mechanically deployed entry, descent, and landing (EDL) system that stows during launch and cruise (like an umbrella) and serves as both heat shield and primary structure during EDL. It is especially designed for small spacecraft where volume is a limiting constraint.

  18. Pulse electrochemical meso/micro/nano ultraprecision machining technology.

    Science.gov (United States)

    Lee, Jeong Min; Kim, Young Bin; Park, Jeong Woo

    2013-11-01

    This study demonstrated meso/micro/nano-ultraprecision machining through electrochemical reactions using intermittent DC pulses. The experiment focused on two machining methods: (1) pulse electrochemical polishing (PECP) of stainless steel, and (2) pulse electrochemical nano-patterning (PECNP) on a silicon (Si) surface, using atomic force microscopy (AFM) for fabrication. The dissolution reaction at the stainless steel surface following PECP produced a very clean, smooth workpiece. The advantages of the PECP process included improvements in corrosion resistance, deburring of the sample surface, and removal of hydrogen from the stainless steel surface as verified by time-of-flight secondary-ion mass spectrometry (TOF-SIMS). In PECNP, the electrochemical reaction generated within water molecules produced nanoscale oxide textures on a Si surface. Scanning probe microscopy (SPM) was used to evaluate nanoscale-pattern processing on a Si wafer surface produced by AFM-PECNP For both processes using pulse electrochemical reactions, three-dimensional (3-D) measurements and AFM were used to investigate the changes on the machined surfaces. Preliminary results indicated the potential for advancing surface polishing techniques and localized micro/nano-texturing technology using PECP and PECNP processes.

  19. Nano materials for Renewable Energy Storage: Synthesis, Characterization, and Applications

    International Nuclear Information System (INIS)

    Rather, S.U.; Zacharia, R.; Stephan, A.M.; Petrov, L.A.; Nair, J.R.

    2015-01-01

    Nano technology and nano scale materials have been part of human history and in use since centuries. Staining of glass windows hundreds of years ago is one of the examples where people created beautiful works without knowing that they are using nano processing. The beginning of modern era of nano technology dates back to the talk of the Nobel laureate Professor Richard Feynman in There plenty of room at the bottom. Professor Feynman hypothesized that in near future scientists would be able to control and modulate individual molecules and atoms. After a decade, Professor Norio Taniguchi introduced the magical word nano technology. However, in 1981, the introduction of scanning tunnelling microscope enabled the scientists to see the materials in nano scale that propagated the new age of nano technology.

  20. Nano-cellulose biopolymer based nano-biofilm biomaterial using plant biomass: An innovative plant biomaterial dataset

    Directory of Open Access Journals (Sweden)

    A.B.M. Sharif hossain

    2018-04-01

    Full Text Available The nano-cellulose derived nano-biofilm keeps a magnificent role in medical, biomedical, bioengineering and pharmaceutical industries. Plant biomaterial is naturally organic and biodegradable. This study has been highlighted as one of the strategy introducing biomass based nano-bioplastic (nanobiofilm to solve dependency on petroleum and environment pollution because of non-degradable plastic. The data study was carried out to investigate the nano-biopolymer (nanocellulose based nano-biofilm data from corn leaf biomass coming after bioprocess technology without chemicals. Corn leaf biomass was used to produce biodegradable nano-bioplastic for medical and biomedical and other industrial uses. Data on water absorption, odor, pH, cellulose content, shape and firmness, color coating and tensile strength test have been exhibited under standardization of ASTM (American standard for testing and materials. Moreover, the chemical elements of nanobiofilm like K+, CO3−−, Cl−, Na+ showed standard data using the EN (166. Keywords: Nanocellulose, Nanobiofilm, Nanobioplastic, Biodegradable, Corn leaf

  1. Handbook of nano-optics and nanophotonics

    CERN Document Server

    2013-01-01

    In the 1990s, optical technology and photonics industry developed fast, but further progress became difficult due to a fundamental limit of light known as the diffraction limit. This limit could be overcome using the novel technology of nano-optics or nanophotonics in which the size of the electromagnetic field is decreased down to the nanoscale and is used as a carrier for signal transmission, processing, and fabrication. Such a decrease beyond the diffraction limit is possible by using optical near-fields. The true nature of nano-optics and nanophotonics involves not only their abilities to meet the above requirements but also their abilities to realize qualitative innovations in photonic devices, fabrication techniques, energy conversion and information processing systems. The objective of this work is to review the innovations of optical science and technology by nano-optics and nanophotonics. While in conventional optical science and technology, light and matter are discussed separately, in nano-optics a...

  2. Laser nano-manufacturing: state of the art and challenges

    NARCIS (Netherlands)

    Li, L.; Hong, M.; Schmidt, M.; Zhong, M.; Mashe, A.; Huis in 't veld, A.J.; Kovalenko, V.

    2011-01-01

    This paper provides an overview of advances in laser based nano-manufacturing technologies including surface nano-structure manufacturing, production of nano materials (nanoparticles, nanotubes and nanowires) and 3D nano-structures manufacture through multiple layer additive techniques and

  3. Nano dots and nano crystals detectors applications and questions

    International Nuclear Information System (INIS)

    Paltiel, Y.; Shusterman, S.; Naaman, R.; Aqua, T.; Banin, U.; Aharoni, A.

    2006-01-01

    Full Text: Nano technology is in the center of attention in the last decade. In our work we are using nano dots, nano crystals and quantum wells to study and fabricate infrared devices. In this study we aim to develop an accurate narrow band infrared sensor that will use quantum mechanics at room temperature. The sensor is based on a FET like structure, in which the current is very sensitive to potential changes on its surface. We have shown that this configuration provides flexibility and variability in operation bandgap and response. However, the relations between the quantum and the macroscopic world are not trivial and the coupling between worlds influences the transport, noise, and optical measurements. In this talk we will show some of the infrared devices we are studying, and try to present the rich physics and relations that combine between the two worlds

  4. NanoString, a novel digital color-coded barcode technology: current and future applications in molecular diagnostics.

    Science.gov (United States)

    Tsang, Hin-Fung; Xue, Vivian Weiwen; Koh, Su-Pin; Chiu, Ya-Ming; Ng, Lawrence Po-Wah; Wong, Sze-Chuen Cesar

    2017-01-01

    Formalin-fixed, paraffin-embedded (FFPE) tissue sample is a gold mine of resources for molecular diagnosis and retrospective clinical studies. Although molecular technologies have expanded the range of mutations identified in FFPE samples, the applications of existing technologies are limited by the low nucleic acids yield and poor extraction quality. As a result, the routine clinical applications of molecular diagnosis using FFPE samples has been associated with many practical challenges. NanoString technologies utilize a novel digital color-coded barcode technology based on direct multiplexed measurement of gene expression and offer high levels of precision and sensitivity. Each color-coded barcode is attached to a single target-specific probe corresponding to a single gene which can be individually counted without amplification. Therefore, NanoString is especially useful for measuring gene expression in degraded clinical specimens. Areas covered: This article describes the applications of NanoString technologies in molecular diagnostics and challenges associated with its applications and the future development. Expert commentary: Although NanoString technology is still in the early stages of clinical use, it is expected that NanoString-based cancer expression panels would play more important roles in the future in classifying cancer patients and in predicting the response to therapy for better personal therapeutic care.

  5. Semiconductor Nano wires and Nano tubes: From Fundamentals to Diverse Applications

    International Nuclear Information System (INIS)

    Xiong, Q.; Grimes, C.A.; Zacharias, M.; Morral, A.F.; Hiruma, K.; Shen, G.

    2012-01-01

    Research in the field of semiconductor nano wires (SNWs) and nano tubes has been progressing into a mature subject with several highly interdisciplinary sub areas such as nano electronics, nano photonics, nano composites, bio sensing, optoelectronics, and solar cells. SNWs represent a unique system with novel properties associated to their one-dimensional (1D) structures. The fundamental physics concerning the formation of discrete 1D subbands, coulomb blockade effects, ballistic transport, and many-body phenomena in 1D nano wires and nano tubes provide a strong platform to explore the various scientific aspects in these nano structures. A rich variety of preparation methods have already been developed for generating well-controlled 1D nano structures and from a broad range of materials. The present special issue focuses on the recent development in the mechanistic understanding of the synthesis, the studies on electrical/optical properties of nano wires and their applications in nano electronics, nano photonics, and solar-energy harvesting. In this special issue, we have several invited review articles and contributed papers that are addressing current status of the fundamental issues related to synthesis and the diverse applications of semiconducting nano wires and nano tubes. One of the papers reviews the progress of the top-down approach of developing silicon-based vertically aligned nano wires to explore novel device architectures and integration schemes for nano electronics and clean energy applications. Another paper reviews the recent developments and experimental evidences of probing the confined optical and acoustic phonon in nonpolar semiconducting (Si and Ge) nano wires using Raman spectroscopy. The paper by K. Hiruma et al. spotlights the III semiconductor nano wires and demonstrates selective-area metal organic vapor phase epitaxy grown GaAs/In(Al)GaAs and InP/InAs/InP nano wires with heterojunctions along their axial and radial directions. The paper

  6. NanoCrySP technology for generation of drug nanocrystals: translational aspects and business potential.

    Science.gov (United States)

    Shete, Ganesh; Bansal, Arvind Kumar

    2016-08-01

    Drug nanocrystals have rapidly evolved into a mature drug delivery strategy in the last decade, with almost 16 products currently on the market. Several "top-down" technologies are available in the market for generation of nanocrystals. Despite several advantages, very few bottom-up technologies have been explored for commercial purpose. This short communication highlights a novel, bottom-up, spray drying based technology-NanoCrySP-to generate drug nanocrystals. Nanocrystals are generated in the presence of non-polymeric excipients that act as crystallization inducer for the drug. Excipients encourage crystallization of drug by plasticization, primary heterogeneous nucleation, and imparting physical barrier to crystal growth. Nanocrystals have shown significant improvement in dissolution and thereby oral bioavailability. NanoCrySP technology is protected through patents in India, the USA, and the European Union. NanoCrySP can be utilized for (i) pharmaceutical development of new chemical entities, (ii) differentiated products of existing molecules, and (iii) generic drug products. The aggregation of drug nanocrystals generated using NanoCrySP poses significant challenges in the nanocrystal-based product development. Addition of stabilizers either during spray drying or during dissolution has shown beneficial effects.

  7. Increasing Possibilities of Nano suspension

    International Nuclear Information System (INIS)

    Sutradhar, K.B.; Khatun, S.; Luna, I.P.

    2013-01-01

    Nowadays, a very large proportion of new drug candidates emerging from drug discovery programmes are water insoluble and thus poorly bioavailable. To avoid this problem, nano technology for drug delivery has gained much interest as a way to improve the solubility problems. Nano refers to particles size range of 1-1000 nm. The reduction of drug particles into the submicron range leads to a significant increase in the dissolution rate and therefore enhances bioavailability. Nanosuspensions are part of nano technology. This interacts with the body at subcellular (i.e., molecular) scales with a high degree of specificity and can be potentially translated into targeted cellular and tissue-specific clinical applications designed to achieve maximal therapeutic efficacy with minimal side effects. Production of drugs as nanosuspensions can be developed for drug delivery systems as an oral formulation and no noral administration. Here, this review describes the methods of pharmaceutical nano suspension production including advantages and disadvantages, potential benefits, characterization tests, and pharmaceutical applications in drug delivery

  8. Nano-tubular cellulose for bioprocess technology development.

    Science.gov (United States)

    Koutinas, Athanasios A; Sypsas, Vasilios; Kandylis, Panagiotis; Michelis, Andreas; Bekatorou, Argyro; Kourkoutas, Yiannis; Kordulis, Christos; Lycourghiotis, Alexis; Banat, Ibrahim M; Nigam, Poonam; Marchant, Roger; Giannouli, Myrsini; Yianoulis, Panagiotis

    2012-01-01

    Delignified cellulosic material has shown a significant promotional effect on the alcoholic fermentation as yeast immobilization support. However, its potential for further biotechnological development is unexploited. This study reports the characterization of this tubular/porous cellulosic material, which was done by SEM, porosimetry and X-ray powder diffractometry. The results showed that the structure of nano-tubular cellulose (NC) justifies its suitability for use in "cold pasteurization" processes and its promoting activity in bioprocessing (fermentation). The last was explained by a glucose pump theory. Also, it was demonstrated that crystallization of viscous invert sugar solutions during freeze drying could not be otherwise achieved unless NC was present. This effect as well as the feasibility of extremely low temperature fermentation are due to reduction of the activation energy, and have facilitated the development of technologies such as wine fermentations at home scale (in a domestic refrigerator). Moreover, NC may lead to new perspectives in research such as the development of new composites, templates for cylindrical nano-particles, etc.

  9. Prediction Surface Morphology of Nanostructure Fabricated by Nano-Oxidation Technology.

    Science.gov (United States)

    Huang, Jen-Ching; Chang, Ho; Kuo, Chin-Guo; Li, Jeen-Fong; You, Yong-Chin

    2015-12-04

    Atomic force microscopy (AFM) was used for visualization of a nano-oxidation technique performed on diamond-like carbon (DLC) thin film. Experiments of the nano-oxidation technique of the DLC thin film include those on nano-oxidation points and nano-oxidation lines. The feature sizes of the DLC thin film, including surface morphology, depth, and width, were explored after application of a nano-oxidation technique to the DLC thin film under different process parameters. A databank for process parameters and feature sizes of thin films was then established, and multiple regression analysis (MRA) and a back-propagation neural network (BPN) were used to carry out the algorithm. The algorithmic results are compared with the feature sizes acquired from experiments, thus obtaining a prediction model of the nano-oxidation technique of the DLC thin film. The comparative results show that the prediction accuracy of BPN is superior to that of MRA. When the BPN algorithm is used to predict nano-point machining, the mean absolute percentage errors (MAPE) of depth, left side, and right side are 8.02%, 9.68%, and 7.34%, respectively. When nano-line machining is being predicted, the MAPEs of depth, left side, and right side are 4.96%, 8.09%, and 6.77%, respectively. The obtained data can also be used to predict cross-sectional morphology in the DLC thin film treated with a nano-oxidation process.

  10. Nano-technology on the road of the success; Les nanotechnologies sur la route du succes

    Energy Technology Data Exchange (ETDEWEB)

    Pessey, V. [Alcimed, 75 - Paris (France)

    2005-05-01

    After some difficult beginnings in the years 1980, nano-technology is ready to invade the automobile sector. In composites, tires, coatings, fuels..., nano-particles bring unmatched properties. An only restriction to their development: a price too high. (O.M.)

  11. Micro and Nano-Scale Technologies for Cell Mechanics

    Directory of Open Access Journals (Sweden)

    Mustafa Unal

    2014-10-01

    Full Text Available Cell mechanics is a multidisciplinary field that bridges cell biology, fundamental mechanics, and micro and nanotechnology, which synergize to help us better understand the intricacies and the complex nature of cells in their native environment. With recent advances in nanotechnology, microfabrication methods and micro-electro-mechanical-systems (MEMS, we are now well situated to tap into the complex micro world of cells. The field that brings biology and MEMS together is known as Biological MEMS (BioMEMS. BioMEMS take advantage of systematic design and fabrication methods to create platforms that allow us to study cells like never before. These new technologies have been rapidly advancing the study of cell mechanics. This review article provides a succinct overview of cell mechanics and comprehensively surveys micro and nano-scale technologies that have been specifically developed for and are relevant to the mechanics of cells. Here we focus on micro and nano-scale technologies, and their applications in biology and medicine, including imaging, single cell analysis, cancer cell mechanics, organ-on-a-chip systems, pathogen detection, implantable devices, neuroscience and neurophysiology. We also provide a perspective on the future directions and challenges of technologies that relate to the mechanics of cells.

  12. Micro- and Nano-fibers by Electrospinning Technology: Processing, Properties, and Applications

    DEFF Research Database (Denmark)

    Chronakis, Ioannis S.

    2015-01-01

    Micro- and nano-structures such as micro- and nano-fibers and micro- and nano-particles based on polymers (synthetic and natural) can be processed by electrospinning. Electrospun micro- and nano-structures are an exciting class of novel materials due to several unique characteristics, including...

  13. Optical nano and micro actuator technology

    CERN Document Server

    Knopf, George K

    2012-01-01

    In Optical Nano and Micro Actuator Technology, leading engineers, material scientists, chemists, physicists, laser scientists, and manufacturing specialists offer an in-depth, wide-ranging look at the fundamental and unique characteristics of light-driven optical actuators. They discuss how light can initiate physical movement and control a variety of mechanisms that perform mechanical work at the micro- and nanoscale. The book begins with the scientific background necessary for understanding light-driven systems, discussing the nature of light and the interaction between light and NEMS/MEMS d

  14. Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems

    CERN Document Server

    Nepomnyashchy, Alexander A

    2006-01-01

    Nano-science and nano-technology are rapidly developing scientific and technological areas that deal with physical, chemical and biological processes that occur on nano-meter scale – one millionth of a millimeter. Self-organization and pattern formation play crucial role on nano-scales and promise new, effective routes to control various nano-scales processes. This book contains lecture notes written by the lecturers of the NATO Advanced Study Institute "Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems" that took place in St Etienne de Tinee, France, in the fall 2004. They give examples of self-organization phenomena on micro- and nano-scale as well as examples of the interplay between phenomena on nano- and macro-scales leading to complex behavior in various physical, chemical and biological systems. They discuss such fascinating nano-scale self-organization phenomena as self-assembly of quantum dots in thin solid films, pattern formation in liquid crystals caused by light, self-organi...

  15. Environmental risk assessment of engineered nano-SiO2 , nano iron oxides, nano-CeO2 , nano-Al2 O3 , and quantum dots.

    Science.gov (United States)

    Wang, Yan; Nowack, Bernd

    2018-05-01

    Many research studies have endeavored to investigate the ecotoxicological hazards of engineered nanomaterials (ENMs). However, little is known regarding the actual environmental risks of ENMs, combining both hazard and exposure data. The aim of the present study was to quantify the environmental risks for nano-Al 2 O 3 , nano-SiO 2 , nano iron oxides, nano-CeO 2 , and quantum dots by comparing the predicted environmental concentrations (PECs) with the predicted-no-effect concentrations (PNECs). The PEC values of these 5 ENMs in freshwaters in 2020 for northern Europe and southeastern Europe were taken from a published dynamic probabilistic material flow analysis model. The PNEC values were calculated using probabilistic species sensitivity distribution (SSD). The order of the PNEC values was quantum dots nano-CeO 2  nano iron oxides nano-Al 2 O 3  nano-SiO 2 . The risks posed by these 5 ENMs were demonstrated to be in the reverse order: nano-Al 2 O 3  > nano-SiO 2  > nano iron oxides > nano-CeO 2  > quantum dots. However, all risk characterization values are 4 to 8 orders of magnitude lower than 1, and no risk was therefore predicted for any of the investigated ENMs at the estimated release level in 2020. Compared to static models, the dynamic material flow model allowed us to use PEC values based on a more complex parameterization, considering a dynamic input over time and time-dependent release of ENMs. The probabilistic SSD approach makes it possible to include all available data to estimate hazards of ENMs by considering the whole range of variability between studies and material types. The risk-assessment approach is therefore able to handle the uncertainty and variability associated with the collected data. The results of the present study provide a scientific foundation for risk-based regulatory decisions of the investigated ENMs. Environ Toxicol Chem 2018;37:1387-1395. © 2018 SETAC. © 2018 SETAC.

  16. Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM

    Directory of Open Access Journals (Sweden)

    Ammar Ben Brahim

    2013-05-01

    Full Text Available This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting.

  17. Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM

    Science.gov (United States)

    Ghorbal, Achraf; Grisotto, Federico; Charlier, Julienne; Palacin, Serge; Goyer, Cédric; Demaille, Christophe; Ben Brahim, Ammar

    2013-01-01

    This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM) electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting. PMID:28348337

  18. Studies of cell biomechanics with surface micro-/nano-technology

    International Nuclear Information System (INIS)

    Wang Dong; Zhang Wei; Jiang Xingyu

    2011-01-01

    We report the recent progress in our studies of cell biology using micro-/nano-technology. Cells have a size of several to tens of microns, which makes them easily manipulated by micro-/nano-technology. The shape of the cell influences the alignment of the actin cytoskeleton, which bears the main forces of the cell, maintains the shape,and mediates a series of biochemical reactions. We invented a stretching device and studied the real-time actin filament dynamics under stretch. We found that one stretch cycle shortened the actin filaments and promoted their reassemble process. Cell migration is a complex mechanical process. We found that cell geometry determines the cell polarity and migration direction. We fabricated three-dimensional surfaces to mimic the topography in vivo, and further built a cell culture model by integrating the three-dimensional surface, microfluidics, cell patterning,and coculturing of multiple cell types. We also investigated the neuronal guidance by surface patterning. (authors)

  19. [Response surface method optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis preparation genistein].

    Science.gov (United States)

    Jin, Xin; Zhang, Zhen-Hai; Zhu, Jing; Sun, E; Yu, Dan-Hong; Chen, Xiao-Yun; Liu, Qi-Yuan; Ning, Qing; Jia, Xiao-Bin

    2012-04-01

    This article reports that nano-silica solid dispersion technology was used to raise genistein efficiency through increasing the enzymatic hydrolysis rate. Firstly, genistin-nano-silica solid dispersion was prepared by solvent method. And differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) were used to verify the formation of solid dispersion, then enzymatic hydrolysis of solid dispersion was done by snailase to get genistein. With the conversion of genistein as criteria, single factor experiments were used to study the different factors affecting enzymatic hydrolysis of genistin and its solid dispersion. And then, response surface method was used to optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis. The optimum condition to get genistein through enzymatic hydrolysis of genistin-nano-silica solid dispersion was pH 7.1, temperature 52.2 degrees C, enzyme concentration 5.0 mg x mL(-1) and reaction time 7 h. Under this condition, the conversion of genistein was (93.47 +/- 2.40)%. Comparing with that without forming the genistin-nano-silica solid dispersion, the conversion increased 2.62 fold. At the same time, the product of hydrolysis was purified to get pure genistein. The method of enzymatic hydrolysis of genistin-nano-silica solid dispersion by snailase to obtain genistein is simple, efficiency and suitable for the modern scale production.

  20. Brief overview of BioMicroNano Technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Gourley, Paul Lee

    2005-01-01

    This paper provides a brief overview of the fields of biological micro-electromechanical systems (bioMEMs) and associated nanobiotechnologies, collectively denoted as BioMicroNano. Although they are developing at a very rapid pace and still redefining themselves, several stabilized areas of research and development can be identified. Six major areas are delineated, and specific examples are discussed and illustrated. Various applications of the technologies are noted, and potential market sizes are compared.

  1. Dimensional micro and nano metrology

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; da Costa Carneiro, Kim; Haitjema, Han

    2006-01-01

    The need for dimensional micro and nano metrology is evident, and as critical dimensions are scaled down and geometrical complexity of objects is increased, the available technologies appear not sufficient. Major research and development efforts have to be undertaken in order to answer these chal......The need for dimensional micro and nano metrology is evident, and as critical dimensions are scaled down and geometrical complexity of objects is increased, the available technologies appear not sufficient. Major research and development efforts have to be undertaken in order to answer...... these challenges. The developments have to include new measuring principles and instrumentation, tolerancing rules and procedures as well as traceability and calibration. The current paper describes issues and challenges in dimensional micro and nano metrology by reviewing typical measurement tasks and available...

  2. Nano-tubular cellulose for bioprocess technology development.

    Directory of Open Access Journals (Sweden)

    Athanasios A Koutinas

    Full Text Available Delignified cellulosic material has shown a significant promotional effect on the alcoholic fermentation as yeast immobilization support. However, its potential for further biotechnological development is unexploited. This study reports the characterization of this tubular/porous cellulosic material, which was done by SEM, porosimetry and X-ray powder diffractometry. The results showed that the structure of nano-tubular cellulose (NC justifies its suitability for use in "cold pasteurization" processes and its promoting activity in bioprocessing (fermentation. The last was explained by a glucose pump theory. Also, it was demonstrated that crystallization of viscous invert sugar solutions during freeze drying could not be otherwise achieved unless NC was present. This effect as well as the feasibility of extremely low temperature fermentation are due to reduction of the activation energy, and have facilitated the development of technologies such as wine fermentations at home scale (in a domestic refrigerator. Moreover, NC may lead to new perspectives in research such as the development of new composites, templates for cylindrical nano-particles, etc.

  3. Application of nano-packaging in aquatics

    Directory of Open Access Journals (Sweden)

    D Jafarpour

    2018-03-01

    Conclusion: With regard to aquatics high nutritional value and their important presence in diet one should think of a way to increase it's survivability and maintaining quality. For this, nano technology can help packaging aquatics. Nano can be applied considerably in food health and environment protection.

  4. Nano-technology and privacy: on continuous surveillance outside the panopticon.

    Science.gov (United States)

    Hoven, Jeroen Van Den; Vermaas, Pieter E

    2007-01-01

    We argue that nano-technology in the form of invisible tags, sensors, and Radio Frequency Identity Chips (RFIDs) will give rise to privacy issues that are in two ways different from the traditional privacy issues of the last decades. One, they will not exclusively revolve around the idea of centralization of surveillance and concentration of power, as the metaphor of the Panopticon suggests, but will be about constant observation at decentralized levels. Two, privacy concerns may not exclusively be about constraining information flows but also about designing of materials and nano-artifacts such as chips and tags. We begin by presenting a framework for structuring the current debates on privacy, and then present our arguments.

  5. The NanoChemistry group at the Technical University of Denmark (DTU) uses NanoSight’s NTA system for nanoparticle characterization

    DEFF Research Database (Denmark)

    2011-01-01

    NanoSight, leading manufacturers of unique nanoparticle characterization technology, describes how the Nano Chemistry group at DTU Copenhagen is utilizing nanoparticle tracking analysis, NTA, in its research and teaching programs....

  6. New York Nano-Bio Molecular Information Technology (NYNBIT) Incubator

    Energy Technology Data Exchange (ETDEWEB)

    Das, Digendra K

    2008-12-19

    This project presents the outcome of an effort made by a consortium of six universities in the State of New York to develop a Center for Advanced technology (CAT) in the emerging field of Nano-Bio-Molecular Information Technology. The effort consists of activities such as organization of the NYNBIT incubator, collaborative research projects, development of courses, an educational program for high schools, and commercial start-up programs.

  7. Nano-enabled environmental products and technologies - opportunities and drawbacks

    DEFF Research Database (Denmark)

    Møller Christensen, Frans; Brinch, Anna; Kjølholt, Jesper

    The project aims to investigate the benefits for health and environment that the use of nanomaterials in products and technologies may have. More specifically, the project provides an overview of the most relevant nano-enabled environmental technologies, different types of products and technologies...... on the (Danish) market, as well as products and technologies, which are still in R&D and it will provide a qualitative overview of health and environmental pros and cons of these technologies. The project has focused on technologies applied in: 1) purification of water and wastewater, 2) remediation of soil...

  8. Environmental silicate nano-biocomposites

    CERN Document Server

    Pollet, Eric

    2012-01-01

    Environmental Silicate Nano-Biocomposites focuses on nano-biocomposites, which are obtained by the association of silicates such as bioclays with biopolymers. By highlighting recent developments and findings, green and biodegradable nano-composites from both renewable and biodegradable polymers are explored. This includes coverage of potential markets such as packaging, agricultures, leisure and the fast food industry. The knowledge and experience of more than twenty international experts in diverse fields, from chemical and biochemical engineering to applications, is brought together in four different sections covering: Biodegradable polymers and Silicates, Clay/Polyesters Nano-biocomposites, Clay/Agropolymers Nano-biocomposites, and Applications and biodegradation of Nano-biocomposites. By exploring the relationships between the biopolymer structures, the processes, and the final properties Environmental Silicate Nano-Biocomposites explains how to design nano-materials to develop new, valuable, environmenta...

  9. Multi Scale Micro and Nano Metrology for Advanced Precision Moulding Technologies

    DEFF Research Database (Denmark)

    Quagliotti, Danilo

    dimensions of the novel micro and nano production. Nowadays, design methodologies and concurrent tolerance guidelines are not yet available for advanced micro manufacture. Moreover, there are no shared methodologies that deals with the uncertainty evaluation of feature of size in the sub-millimetre scale......The technological revolution that has deeply influenced the manufacturing industry over the past two decades opened up new possibilities for the realisation of advanced micro and nano systems but, at the same time, traditional techniques for quality assurance became not adequate any longer......, as the technology progressed. The gap between the needs of the manufacturing industry and the well-organized structure of the dimensional and geometrical metrology appeared, above all, related to the methodologies and, also, to the instrumentation used to deal with the incessant scaling down of the critical...

  10. NANO supermarket : using speculative design to catalyze a technology debate

    NARCIS (Netherlands)

    Mensvoort, van K.M.; Vos, C.; Wouters, S.; Konrad, K.; Coenen, C.; Dijkstra, A.; Milburn, C.; Lente, van H.

    2013-01-01

    The NANO Supermarket is a mobile exhibition, which presents specula-tive, debate-provoking nanotechnology products that might arrive on the market within the next decades. The products function as scenarios for potential techno-logical futures that invite a broad audience to discuss the impact of

  11. Mass production of polymer nano-wires filled with metal nano-particles.

    Science.gov (United States)

    Lomadze, Nino; Kopyshev, Alexey; Bargheer, Matias; Wollgarten, Markus; Santer, Svetlana

    2017-08-17

    Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

  12. The NanoChemistry group at the Technical University of Denmark (DTU) uses NanoSight’s NTA system for nanoparticle characterization

    DEFF Research Database (Denmark)

    2011-01-01

    Salisbury, UK, 7th December 2011: NanoSight, leading manufacturers of unique nanoparticle characterization technology, describes how the Nano Chemistry group at DTU Copenhagen is utilizing nanoparticle tracking analysis, NTA, in its research and teaching programs....

  13. Emerging boom in nano magnetic particle incorporated high-Tc superconducting materials and technologies - A South African perspective

    CSIR Research Space (South Africa)

    Srinivasu, VV

    2009-01-01

    Full Text Available With a strategy to establish and embrace the emerging nano particle incorporated superconductivity technology (based on the HTS materials and nano magnetic particles) in South Africa, the author has initiated the following research activity in South...

  14. Plasmonic graded nano-disks as nano-optical conveyor belt.

    Science.gov (United States)

    Kang, Zhiwen; Lu, Haifei; Chen, Jiajie; Chen, Kun; Xu, Fang; Ho, Ho-Pui

    2014-08-11

    We propose a plasmonic system consisting of nano-disks (NDs) with graded diameters for the realization of nano-optical conveyor belt. The system contains a couple of NDs with individual elements coded with different resonant wavelengths. By sequentially switching the wavelength and polarization of the excitation source, optically trapped target nano-particle can be transferred from one ND to another. The feasibility of such function is verified based on the three-dimensional finite-difference time-domain technique and the Maxwell stress tensor method. Our design may provide an alternative way to construct nano-optical conveyor belt with which target molecules can be delivered between trapping sites, thus enabling many on-chip optofluidic applications.

  15. Development highlights of micro-nano technologies in the MENA region and pathways for initiatives to support and network

    NARCIS (Netherlands)

    Al-Rawashdeh, M.I.M.; Alfeeli, B.; Rawashdeh, A.M.; Hessel, V.

    2013-01-01

    Current developments in the field of micro-nano technologies in the Middle East and North Africa (MENA) region are highlighted. Firstly, the scientific outcome of micro-nano technologies from the MENA region is analyzed. Egypt and Saudi Arabia are the leading countries, with >50% of the total MENA

  16. Fabrication of a nano-structured PbO2 electrode by using printing technology: surface characterization and application

    International Nuclear Information System (INIS)

    Kannan, K.; Muthuraman, G.; Cho, G.; Moon, I. S.

    2014-01-01

    This investigation aimed to introduce printing technology for the first time to prepare a nanostrucutured PbO 2 electrode and its application to a cerium redox transfer process. The new method of nano-size PbO 2 preparation demonstrated that nano-PbO 2 could be obtained in less time and at less cost at room temperature. The prepared nano-PbO 2 screen printed on a Ti electrode by three different compositions under similar conditions showed through surface and electrochemical analyses no adherence on Ti and no contact with other nano-PbO 2 particles. Gravure printing of nano-PbO 2 on a PET (poly ethylene thin) film at high pressure was done with two different compositions for the first time. The selective composition of 57.14 % nano-PbO 2 powder with 4.28 % carbon black and 38.58 % ECA (ethyl carbitol acetate) produced a film with a nanoporous structure with an electron transfer ability. Finally, the optimized gravure-printed nano-PbO 2 electrode was applied to the oxidation of Ce(III) to Ce(IV) by using cyclic voltammetry. The gravure-printed nano-PbO 2 should pave the way to promising applications in electrochemical and sensor fields.

  17. Are nano-composites and nano-ionomers suitable for orthodontic bracket bonding?

    Science.gov (United States)

    Uysal, Tancan; Yagci, Ahmet; Uysal, Banu; Akdogan, Gülsen

    2010-02-01

    The aim of this study was to test nano-composite (Filtek Supreme Plus Universal) and a newly introduced nano-ionomer (Ketac N100 Light Curing Nano-Ionomer) restorative to determine their shear bond strength (SBS) and failure site locations in comparison with a conventional light-cure orthodontic bonding adhesive (Transbond XT). Sixty freshly extracted human maxillary premolar teeth were arbitrarily divided into three equal groups. The brackets were bonded to the teeth in each group with different composites, according to the manufacturers' instructions. The SBS values of the brackets were recorded in Megapascals (MPa) using a universal testing machine. Adhesive remnant index scores were determined after failure of the brackets. The data were analysed using analysis of variance, Tukey honestly significant difference, and chi-square tests. The results demonstrated that group 1 (Transbond XT, mean: 12.60 +/- 4.48 MPa) had a higher SBS than that of group 2 (nano-composite, mean: 8.33 +/- 5.16 MPa; P nano-ionomer, mean: 6.14 +/- 2.12 MPa; P Nano-composites and nano-ionomers may be suitable for bonding since they fulfil the previously suggested SBS ranges for clinical acceptability, but they are inferior to a conventional orthodontic composite.

  18. Preparation, Characterization, and Modeling of Carbon Nano fiber/Epoxy Nano composites

    International Nuclear Information System (INIS)

    Sun, L.H.; Yang, Z.G.; Ounaies, Z.; Whalen, C.A.; Gao, X.L.

    2011-01-01

    There is a lack of systematic investigations on both mechanical and electrical properties of carbon nano fiber (CNF)-reinforced epoxy matrix nano composites. In this paper, an in-depth study of both static and dynamic mechanical behaviors and electrical properties of CNF/epoxy nano composites with various contents of CNFs is provided. A modified Halpin-Tsai equation is used to evaluate the Young's modulus and storage modulus of the nano composites. The values of Young's modulus predicted using this method account for the effect of the CNF agglomeration and fit well with those obtained experimentally. The results show that the highest tensile strength is found in the epoxy nano composite with a 1.0 wt % CNFs. The alternate-current (AC) electrical properties of the CNF/epoxy nano composites exhibit a typical insulator-conductor transition. The conductivity increases by four orders of magnitude with the addition of 0.1 wt % (0.058 vol %) CNFs and by ten orders of magnitude for nano composites with CNF volume fractions higher than 1.0 wt % (0.578 vol %). The percolation threshold (i.e., the critical CNF volume fraction) is found to be at 0.057 vol %.

  19. Cancer Nano technology Using Elastin-Like Polypeptides

    International Nuclear Information System (INIS)

    Siti Najila Mohd Janib

    2014-01-01

    Despite progress in understanding cancer biology, this knowledge has not translated into comparable advances in the clinic. Two fundamental problems currently stalling the efficient treatment of cancer have been detecting cancer early enough for successful treatment and avoiding excessive toxicity to normal tissues. In view of this, cancer still remains one of the leading causes of mortality worldwide, affecting over 10 million new patients every year. Clearly the development of novel approaches for early detection and treatment of cancer is urgently needed to increase patient survival. Recently, nano technology-based systems have emerged as novel therapeutic modalities for cancer treatment. Tiny man made nanoparticles, much smaller than a virus, are being developed to package, transport, and deliver imaging and therapeutic agents. Co-inclusion of these agents, into nano carriers might be advantageous because they increase solubility of hydrophobic drugs, enhance permeability across physiological barriers, alter drug biodistribution, increase local bioavailability and reduce side effects. Initial findings have been promising and nanoparticles have been shown to deliver therapeutic agents to target cells and effect tumor growth. To this end our lab is investigating a class of biodegradable and biocompatible polymers known as elastin-like polypeptides (ELP). Elastin like polypeptide is a bio polymer derived from the structural motif found in mammalian elastin protein and has a sequence dependent transition temperature that can be used as nano carriers to treat diseases. ELPs are characterized by the pentameric repeat VPGXG, where X can be any amino acid. All functional ELPs undergo inverse phase transition whereby below its transition temperature, they exist in a solubilized form while above its transition temperature they undergo phase separation which leads to their aggregation in solution. This process is reversible. Phase transition can also be triggered by other

  20. Hydrogen Storage in Carbon Nano-materials

    International Nuclear Information System (INIS)

    David Eyler; Michel Junker; Emanuelle Breysse Carraboeuf; Laurent Allidieres; David Guichardot; Fabien Roy; Isabelle Verdier; Edward Mc Rae; Moulay Rachid Babaa; Gilles Flamant; David Luxembourg; Daniel Laplaze; Patrick Achard; Sandrine Berthon-Fabry; David Langohr; Laurent Fulcheri

    2006-01-01

    This paper presents the results of a French project related to hydrogen storage in carbon nano-materials. This 3 years project, co-funded by the ADEME (French Agency for the Environment and the Energy Management), aimed to assess the hydrogen storage capacity of carbon nano-materials. Four different carbon materials were synthesized and characterized in the frame of present project: - Carbon Nano-tubes; - Carbon Nano-fibres; - Carbon Aerogel; - Carbon Black. All materials tested in the frame of this project present a hydrogen uptake of less than 1 wt% (-20 C to 20 C). A state of the art of hydrogen storage systems has been done in order to determine the research trends and the maturity of the different technologies. The choice and design of hydrogen storage systems regarding fuel cell specifications has also been studied. (authors)

  1. NanoAODs

    CERN Document Server

    Husova, Lucia Anna

    2017-01-01

    The scientist on LHC experiment analyse a huge amount of data every day on the Grid. Thus new methods are requested, how to make the analysis more efficient. The NanoAOD is a derived dataset from AOD, where only information necessary for the analysis is stored. Thus the analysis can be more than two times faster, because of the smaller file size, which can be read faster on the Grid. The main goal of this summer student project was to help other users to start using NanoAODs by rewriting their user tasks. Two example users tasks were converted to NanoAODs and tested with the local train test. A speed up of 3.5 was reached. The results of the analysis tasks are identical independent if they use AODs or NanoAODs.

  2. Sensing of single electrons using micro and nano technologies: a review

    Science.gov (United States)

    Jalil, Jubayer; Zhu, Yong; Ekanayake, Chandima; Ruan, Yong

    2017-04-01

    During the last three decades, the remarkable dynamic features of microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS), and advances in solid-state electronics hold much potential for the fabrication of extremely sensitive charge sensors. These sensors have a broad range of applications, such as those involving the measurement of ionization radiation, detection of bio-analyte and aerosol particles, mass spectrometry, scanning tunneling microscopy, and quantum computation. Designing charge sensors (also known as charge electrometers) for electrometry is deemed significant because of the sensitivity and resolution issues in the range of micro- and nano-scales. This article reviews the development of state-of-the-art micro- and nano-charge sensors, and discusses their technological challenges for practical implementation.

  3. Comparative study on nano-Zirconium Oxide Materials used in Nuclear Technology

    International Nuclear Information System (INIS)

    Khalil, T.; Dakroury, G.A.; Abou El-Nour, F.; Abdel-Khlik, M.

    2004-01-01

    Nano-ZrO 2 powders were prepared using two advanced methods, namely SoI-GeI and Gelation techniques. Y 2 O 3 , Ce0 2 and Mg0 were used as stabilizers during the preparation processes. The function of these materials is to stabilize the meta stable tetragonal Zr0 2 phase responsible for the nano character of produced materials. The applied experimental procedures proved to be suitable to produce nano powders composed of crystallites of few nano-meter size with an interfacial component formed by all atoms situated in the grain boundaries. These two structure components (nano-sized crystallites and boundaries) of comparable volume fractions are crucial for the nano-structure materials. Powder agglo-meration, contamination during processing and remaining of the residual pores in the bodies were overcome during the sintering process of the powder by special treatment. Different analytical procedures such as DTA-TG, specific surface area, pore size analysis, density, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were carried out for Zr0 2 produced by both SoI-GeI and Gelation techniques

  4. Improving Risk Governance of Emerging Technologies through Public Engagement: The Neglected Case of Nano-Remediation?

    DEFF Research Database (Denmark)

    Grieger, Khara Deanne; Wickson, Fern; Andersen, Henning Boje

    2012-01-01

    : the use of nanoparticles for environmental remediation (nano-remediation). Through our review and analysis we find that the main approaches to incorporating public engagement into governance strategies have been the generation of a better understanding of public perceptions of NT and the setting...... of general research priorities. In the case of nano-remediation, we find that public engagement efforts have been extremely limited, even though this technology has been used in the field in several countries and highlighted as potentially problematic by others. Finally, we provide recommendations...... for improving the links between public engagement and risk assessment and specifically call for more work on the case of nano-remediation....

  5. Synthesis, Properties, and Applications of Low-Dimensional Carbon-Related Nano materials

    International Nuclear Information System (INIS)

    Mostofizadeh, A.; Li, Y.; Song, B.; Huang, Y.; Mostofizadeh, A.

    2011-01-01

    In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nano technology which is called carbon-related nano materials. The goal of this paper is to provide a review of some of the most exciting and important developments in the synthesis, properties, and applications of low-dimensional carbon nano materials. Carbon nano materials are formed in various structural features using several different processing methods. The synthesis techniques used to produce specific kinds of low-dimensional carbon nano materials such as zero-dimensional carbon nano materials (including fullerene, carbon-encapsulated metal nanoparticles, nano diamond, and onion-like carbons), one-dimensional carbon nano materials (including carbon nano fibers and carbon nano tubes), and two-dimensional carbon nano materials (including graphene and carbon nano walls) are discussed in this paper. Subsequently, the paper deals with an overview of the properties of the mainly important products as well as some important applications and the future outlooks of these advanced nano materials.

  6. Conservation of leather historical object by nano technology in ...

    African Journals Online (AJOL)

    This paper examines the conservation of Antibacterial by Nano materials in the manufacture of leather and the implication of such a processes deteriorated of aging leather. As a sample study to improve this process historical cover book is used. Experimental methods are SEM EDX, Cultural Bacterial, Nano materials such ...

  7. Nano-slit electrospray emitters fabricated by a micro- to nanofluidic via technology

    NARCIS (Netherlands)

    Dijkstra, Marcel; Berenschot, Johan W.; de Boer, Meint J.; van der Linden, H.J.; Hankemeier, T.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Elwenspoek, Michael Curt; Tas, Niels Roelof

    2012-01-01

    This article presents nano-slit electrospray emitters fabricated by a micro- to nanofluidic via technology. The main advantage of the technology is the ability to position freely suspended nanochannels anywhere on a microfluidic chip, where leak-tight delivery of fluid from a fluid reservoir can be

  8. Electrochemically synthesized Si nano wire arrays and thermoelectric nano structures

    International Nuclear Information System (INIS)

    Khuan, N.I.; Ying, K.K.; Nur Ubaidah Saidin; Foo, C.T.

    2012-01-01

    Thermoelectric nano structures hold great promise for capturing and directly converting into electricity some vast amount of low-grade waste heats now being lost to the environment (for example from nuclear power plant, fossil fuel burning, automotive and household appliances). In this study, large-area vertically-aligned silicon nano wire (SiNW) arrays were synthesized in an aqueous solution containing AgNO 3 and HF on p-type Si (100) substrate by self-selective electroless etching process. The etching conditions were systematically varied in order to achieve different stages of nano wire formation. Diameters of the SiNWs obtained varied from approximately 50 to 200 nm and their lengths ranged from several to a few tens of μm. Te/ Bi 2 Te 3 -Si thermoelectric core-shell nano structures were subsequently obtained via galvanic displacement of SiNWs in acidic HF electrolytes containing HTeO 2 + and Bi 3+ / HTeO 2 + ions. The reactions were basically a nano-electrochemical process due to the difference in redox potentials between the materials. the surface-modified SiNWs of core-shell structures had roughened surface morphologies and therefore, higher surface-t-bulk ratios compared to unmodified SiNWs. They have potential applications in sensors, photovoltaic and thermoelectric nano devices. Growth study on the SiNWs and core-shell nano structures produced is presented using various microscopy, diffraction and probe-based techniques for microstructural, morphological and chemical characterizations. (Author)

  9. Template-assisted growth of nano structured functional materials

    International Nuclear Information System (INIS)

    Ying, K.K.; Nur Ubaidah Saidin; Khuan, N.I.; Suhaila Hani Ilias; Foo, C.T.

    2012-01-01

    Template-assisted growth is an important nano electrochemical deposition technique for synthesizing one-dimensional (1-D) nano structures with uniformly well-controlled shapes and sizes. A good template with well-defined dimensions is imperative for realizing this task. Porous anodic alumina (PAA) has been a favorable candidate for this purpose as it can be tailor-made with precise pore geometries, such as pore length and diameter as well as inter-pore distances, via the anodization of pure aluminium. This paper reports the fabrication of PAA templates and electrochemical synthesis of functional nano structures in the form of nano wires using PAA templates as scaffolds. Axial heterostructure and homogeneous nano wires formed by engineering materials configuration via composition and/ or layer thickness variations were fabricated for different functionalities. X-ray diffraction and imaging techniques were used to alucidate the microstructures, morphologies and chemical compositions of the nano wires produced. Due to their large surface area-to-volume ratios, and therefore high sensitivities, these functional nano structures have useful applications as critical components in nano sensor devices and various areas of nano technology. Potential applications include as hydrogen gas sensors in nuclear power plant for monitoring structural integrity of reactor components and containment building, as well as environmental monitoring of air pollution and leakages of toxic gases and chemicals. (Author)

  10. Antibacterial performance of nano polypropylene filter media containing nano-TiO{sub 2} and clay particles

    Energy Technology Data Exchange (ETDEWEB)

    Shafiee, Sara; Zarrebini, Mohammad; Naghashzargar, Elham, E-mail: e.naghashzargar@tx.iut.ac.ir; Semnani, Dariush, E-mail: d-semnani@cc.iut.ac.ir [Isfahan University of Technology, Department of Textile Engineering (Iran, Islamic Republic of)

    2015-10-15

    Disinfection and elimination of pathogenic microorganisms from liquid can be achieved by filtration process using antibacterial filter media. The advent of nanotechnology has facilitated the introduction of membranes consisting of nano-fiber in filtration operations. The melt electro-spun fibers due to their extremely small diameters are used in the production of this particular filtration medium. In this work, antibacterial polypropylene filter medium containing clay particles and nano-TiO{sub 2} were made using melt electro-spun technology. Antibacterial performance of polypropylene nano-filters was evaluated using E. coli bacteria. Additionally, filtration efficiency of the samples in terms fiber diameter, filter porosity, and fiber distribution using image processing technique was determined. Air permeability and dust aerosol tests were conducted to establish the suitability of the samples as a filter medium. It was concluded that as far as antibacterial property is concerned, nano-fibers filter media containing clay particles are preferential to similar media containing TiO{sub 2} nanoparticles.

  11. Formation of DNA-network embedding ferromagnetic Cobalt nano-particles

    Science.gov (United States)

    Kanki, Teruo; Tanaka, Hidekazu; Shirakawa, Hideaki; Sacho, Yu; Taniguchi, Masateru; Lee, Hea-Yeon; Kawai, Tomoji; Kang, Nam-Jung; Chen, Jinwoo

    2002-03-01

    Formation of DNA-network embedding ferromagnetic Cobalt nano-particles T. Kanki, Hidekazu. Tanaka, H. Shirakawa, Y. Sacho, M. Taniguchi, H. Lee, T. Kawai The Institute of Scientific and Industrial Research, Osaka University, Japan and Nam-Jung Kang, Jinwoo Chen Korea Advanced Institute of Science and Technology (KAIST), Korea DNA can be regarded as a naturally occurring and highly specific functional biopolymer and as a fine nano-wire. Moreover, it was found that large-scale DNA networks can be fabricated on mica surfaces. By using this network structure, we can expect to construct nano-scale assembly of functional nano particle, for example ferromagnetic Co nano particles, toward nano scale spin-electronics based on DNA circuits. When we formed DNA network by 250mg/ml DNA solution of poly(dG)-poly(dC) including ferromagnetic Co nano particles (diameter of 12nm), we have conformed the DNA network structure embedding Co nano-particles (height of about 12nm) by atomic force microscopy. On the other hand, we used 100mg/ml DNA solution, DNA can not connect each other, and many Co nano-particles exist without being embedded.

  12. Combinatorial Nano-Bio Interfaces.

    Science.gov (United States)

    Cai, Pingqiang; Zhang, Xiaoqian; Wang, Ming; Wu, Yun-Long; Chen, Xiaodong

    2018-06-08

    Nano-bio interfaces are emerging from the convergence of engineered nanomaterials and biological entities. Despite rapid growth, clinical translation of biomedical nanomaterials is heavily compromised by the lack of comprehensive understanding of biophysicochemical interactions at nano-bio interfaces. In the past decade, a few investigations have adopted a combinatorial approach toward decoding nano-bio interfaces. Combinatorial nano-bio interfaces comprise the design of nanocombinatorial libraries and high-throughput bioevaluation. In this Perspective, we address challenges in combinatorial nano-bio interfaces and call for multiparametric nanocombinatorics (composition, morphology, mechanics, surface chemistry), multiscale bioevaluation (biomolecules, organelles, cells, tissues/organs), and the recruitment of computational modeling and artificial intelligence. Leveraging combinatorial nano-bio interfaces will shed light on precision nanomedicine and its potential applications.

  13. Towards security in nano-communication : Challenges and opportunities

    NARCIS (Netherlands)

    Dressler, Falko; Kargl, Frank

    Incredible improvements in the field of nano-technologies have enabled nano-scale machines that promise new solutions for several applications in biomedical, industry and military fields. Some of these applications require or might exploit the potential advantages of communication and hence

  14. Nano Mechanical Machining Using AFM Probe

    Science.gov (United States)

    Mostofa, Md. Golam

    Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces

  15. NanoLaunch

    Science.gov (United States)

    Jones, Jonathan; Harris, Lawanna

    2015-01-01

    NASA's NanoLaunch effort will provide the framework to mature both Earth-to-orbit and on-orbit propulsion and avionics technologies while also providing affordable, dedicated access to low-Earth orbit for CubeSat-class payloads. The project will also serve as an early career personnel training opportunity with mentors to gain hands-on project experience.

  16. Magnetically responsive (nano) composites as perspective materials for environmental technology applications

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Šafaříková, Miroslava

    -, č. 0 (2010), s. 85-90 R&D Projects: GA MPO(CZ) 2A-1TP1/094; GA MŠk OC09052 Institutional research plan: CEZ:AV0Z60870520 Keywords : magnetically responsive materials * ( nano )biocomposites * environmental technology Subject RIV: JI - Composite Materials

  17. ON NANO Λg-CLOSED SETS

    OpenAIRE

    Rajasekaran, Ilangovan; Nethaji, Ochanan

    2017-01-01

    Abstaract−In this paper, we introduce nano ∧g-closed sets in nano topological spaces. Some properties of nano ∧g-closed sets and nano ∧g-open sets are weaker forms of nano closed sets and nano open sets

  18. Transferring metallic nano-island on hydrogen passivated silicon surface for nano-electronics

    International Nuclear Information System (INIS)

    Deng, J; Troadec, C; Joachim, C

    2009-01-01

    In a planar configuration, precise positioning of ultra-flat metallic nano-islands on semiconductor surface opens a way to construct nanostructures for atomic scale interconnects. Regular triangular Au nano-islands have been grown on atomically flat MoS 2 substrates and manipulated by STM to form nanometer gap metal-pads connector for single molecule electronics study. The direct assembly of regular shaped metal nano-islands on H-Si(100) is not achievable. Here we present how to transfer Au triangle nano-islands from MoS 2 onto H-Si(100) in a clean manner. In this experiment, clean MoS 2 substrates are patterned as array of MoS 2 pillars with height of 8 μm. The Au triangle nano-islands are grown on top of the pillars. Successful printing transfer of these Au nano-islands from the MoS 2 pillars to the H-Si(100) is demonstrated.

  19. Superconducting nano-striplines as quantum detectors

    International Nuclear Information System (INIS)

    Casaburi, A.; Ejrnaes, M.; Mattioli, F.; Gaggero, A.; Leoni, R.; Martucciello, N.; Pagano, S.; Ohkubo, M.; Cristiano, R.

    2011-01-01

    The recent progress in the nanofabrication of superconducting films opens the road toward detectors with highly improved performances. This is the case for superconducting nano-striplines where the thickness and the width are pushed down to the extreme limits to realize detectors with unprecedented sensitivity and ultra fast response time. In this way quantum detectors for single photons at telecommunication wavelengths and for macromolecules such as proteins can be realized. As is often the case in applied nanotechnology, it is a challenge to make devices with the necessary macroscopic dimensions that are needed to interface present technologies, while maintaining the performance improvements. For nano-stripline detectors, both the fast temporal response and the device sensitivity is generally degraded when the area is increased. Here, we present how such detectors can be scaled up to macroscopic dimensions without losing the performance of the nano-structured active elements by using an innovative configuration. In order to realize ultrathin superconducting film the nano-layer is growth with a careful setup of the deposition technique which guarantees high quality and thickness uniformity at the nano-scale size. The active nano-strips are defined with the state-of-the-art electron beam nanolithography to achieve a highly uniform linewidth. We present working detectors based on nano-strips with thicknesses 9–40 nm and widths of 100–1000 nm which exhibit unprecedented speed and area coverage (40 × 40 μm 2 for single photon detectors and 1 × 1 mm 2 for single molecule detectors) based on niobium nitride thus enabling practical use of this nanotechnology.

  20. Fabrication of a nano-structured PbO{sub 2} electrode by using printing technology: surface characterization and application

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, K.; Muthuraman, G.; Cho, G.; Moon, I. S. [Sunchon National University, Suncheon (Korea, Republic of)

    2014-08-15

    This investigation aimed to introduce printing technology for the first time to prepare a nanostrucutured PbO{sub 2} electrode and its application to a cerium redox transfer process. The new method of nano-size PbO{sub 2} preparation demonstrated that nano-PbO{sub 2} could be obtained in less time and at less cost at room temperature. The prepared nano-PbO{sub 2} screen printed on a Ti electrode by three different compositions under similar conditions showed through surface and electrochemical analyses no adherence on Ti and no contact with other nano-PbO{sub 2} particles. Gravure printing of nano-PbO{sub 2} on a PET (poly ethylene thin) film at high pressure was done with two different compositions for the first time. The selective composition of 57.14 % nano-PbO{sub 2} powder with 4.28 % carbon black and 38.58 % ECA (ethyl carbitol acetate) produced a film with a nanoporous structure with an electron transfer ability. Finally, the optimized gravure-printed nano-PbO{sub 2} electrode was applied to the oxidation of Ce(III) to Ce(IV) by using cyclic voltammetry. The gravure-printed nano-PbO{sub 2} should pave the way to promising applications in electrochemical and sensor fields.

  1. Editorial Emerging Multifunctional Nano structures

    International Nuclear Information System (INIS)

    Fan, H.; Lu, Y.; Ramanath, G.; Pomposo, J.A.

    2009-01-01

    The interest in emerging nano structures is growing exponentially since they are promising building blocks for advanced multifunctional nano composites. In recent years, an evolution from the controlled synthesis of individual monodisperse nanoparticles to the tailored preparation of hybrid spherical and also unsymmetrical multiparticle nano structures is clearly observed. As a matter of fact, the field of nano structures built around a nano species such as inside, outside, and next to a nanoparticle is becoming a new evolving area of research and development with potential applications in improved drug delivery systems, innovative magnetic devices, biosensors, and highly efficient catalysts, among several others Emerging nano structures with improved magnetic, conducting and smart characteristics are currently based on the design, synthesis, characterization and modeling of multifunctional nano object-based materials. In fact, core-shell nanoparticles and other related complex nano architectures covering a broad spectrum of materials (from metal and metal oxide to fused carbon, synthetic polymer, and bio polymer structures) to nano structure morphologies (spherical, cylindrical, star-like, etc.) are becoming the main building blocks for next generation of drug delivery systems, advanced sensors and biosensors, or improved nano composites. The five papers presented in this special issue examine the preparation and characterization of emerging multifunctional materials, covering from hybrid asymmetric structures to engineering nano composites.

  2. Synthesis and characterization of nano hydroxyapatite using reverse micro emulsions as nano reactors

    International Nuclear Information System (INIS)

    Amin, S.; Siddique, T.

    2015-01-01

    In the present work reverse micro emulsion has been employed as nano reactors to synthesize nano crystalline Hydroxyapatite (HA). Two precursors; calcium and phosphate with different counter ions of each were used for the synthesis of HA at two different temperatures. To maintain the emulsified nano reactor, cyclohexane, TX-100 and 1-butanol including phosphate precursor was the continuous phase while aqueous Ca precursor solution was taken as the dispersed phase. Nano crystalline particles thus produced were evaluated on the basis of synthesis route, counter ions and temperature. It has been shown that emulsified nano reactors control the morphology, particle size and minimize phase transformation of HA. Characterizations of nano powder of HA are carried out using x-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), and scanning electron microscopy (SEM). HA crystallite size was found to be in the range of 20-25 nm whereas the morphology of nano particles changed from spheres to rods. (author)

  3. Connection technology of HPTO type WECs and DC nano grid in island

    Science.gov (United States)

    Wang, Kun-lin; Tian, Lian-fang; You, Ya-ge; Wang, Xiao-hong; Sheng, Song-wei; Zhang, Ya-qun; Ye, Yin

    2016-07-01

    Wave energy fluctuating a great deal endangers the security of power grid especially micro grid in island. A DC nano grid supported by batteries is proposed to smooth the output power of wave energy converters (WECs). Thus, renewable energy converters connected to DC grid is a new subject. The characteristics of WECs are very important to the connection technology of HPTO type WECs and DC nano grid. Hydraulic power take-off system (HPTO) is the core unit of the largest category of WECs, with the functions of supplying suitable damping for a WEC to absorb wave energy, and converting captured wave energy to electricity. The HPTO is divided into a hydraulic energy storage system (HESS) and a hydraulic power generation system (HPGS). A primary numerical model for the HPGS is established in this paper. Three important basic characteristics of the HPGS are deduced, which reveal how the generator load determines the HPGS rotation rate. Therefore, the connector of HPTO type WEC and DC nano grid would be an uncontrollable rectifier with high reliability, also would be a controllable power converter with high efficiency, such as interleaved boost converter-IBC. The research shows that it is very flexible to connect to DC nano grid for WECs, but bypass resistance loads are indispensable for the security of WECs.

  4. Nano-Satellite Secondary Spacecraft on Deep Space Missions

    Science.gov (United States)

    Klesh, Andrew T.; Castillo-Rogez, Julie C.

    2012-01-01

    NanoSat technology has opened Earth orbit to extremely low-cost science missions through a common interface that provides greater launch accessibility. They have also been used on interplanetary missions, but these missions have used one-off components and architectures so that the return on investment has been limited. A natural question is the role that CubeSat-derived NanoSats could play to increase the science return of deep space missions. We do not consider single instrument nano-satellites as likely to complete entire Discovery-class missions alone,but believe that nano-satellites could augment larger missions to significantly increase science return. The key advantages offered by these mini-spacecrafts over previous planetary probes is the common availability of advanced subsystems that open the door to a large variety of science experiments, including new guidance, navigation and control capabilities. In this paper, multiple NanoSat science applications are investigated, primarily for high risk/high return science areas. We also address the significant challenges and questions that remain as obstacles to the use of nano-satellites in deep space missions. Finally, we provide some thoughts on a development roadmap toward interplanetary usage of NanoSpacecraft.

  5. Nano devices and sensors

    CERN Document Server

    Liaw, Shien-Kuei; Chung, Yung-Hui

    2016-01-01

    This volume on semiconductor devices focuses on such topics as nano-imprinting, lithography, nanowire charge-trapping, thermo-stability in nanowires, nano-electrodes, and voltage and materials used for fabricating and improving electrical characteristics of nano-materials.

  6. The Extraordinary Progress in Very Early Cancer Diagnosis and Personalized Therapy: The Role of Onco markers and Nano technology

    International Nuclear Information System (INIS)

    Fruscella, M.; Crema, A.; Carloni, G.; Fruscella, M.; Ponzetto, A.

    2016-01-01

    The impact of nano technology on oncology is revolutionizing cancer diagnosis and therapy and largely improving prognosis. This is mainly due to clinical translation of the most recent findings in cancer research, that is, the application of bio- and nano technologies. Cancer genomics and early diagnostics are increasingly playing a key role in developing more precise targeted therapies for most human tumors. In the last decade, accumulation of basic knowledge has resulted in a tremendous breakthrough in this field. Nano oncology, through the discovery of new genetic and epigenetic biomarkers, has facilitated the development of more sensitive biosensors for early cancer detection and cutting-edge multi functionalized nanoparticles for tumor imaging and targeting. In the near future, nano oncology is expected to enable a very early tumor diagnosis, combined with personalized therapeutic approaches.

  7. Nano crystals for Electronic and Optoelectronic Applications

    International Nuclear Information System (INIS)

    Zhu, T.; Cloutier, S.G.; Ivanov, I; Knappenberger Jr, K.L.; Robel, I.; Zhang, F

    2012-01-01

    Electronic and optoelectronic devices, from computers and smart cell phones to solar cells, have become a part of our life. Currently, devices with featured circuits of 45 nm in size can be fabricated for commercial use. However, further development based on traditional semiconductor is hindered by the increasing thermal issues and the manufacturing cost. During the last decade, nano crystals have been widely adopted in various electronic and optoelectronic applications. They provide alternative options in terms of ease of processing, low cost, better flexibility, and superior electronic/optoelectronic properties. By taking advantage of solution-processing, self-assembly, and surface engineering, nano crystals could serve as new building blocks for low-cost manufacturing of flexible and large area devices. Tunable electronic structures combined with small exciton binding energy, high luminescence efficiency, and low thermal conductivity make nano crystals extremely attractive for FET, memory device, solar cell, solid-state lighting/display, photodetector, and lasing applications. Efforts to harness the nano crystal quantum tunability have led to the successful demonstration of many prototype devices, raising the public awareness to the wide range of solutions that nano technology can provide for an efficient energy economy. This special issue aims to provide the readers with the latest achievements of nano crystals in electronic and optoelectronic applications, including the synthesis and engineering of nano crystals towards the applications and the corresponding device fabrication, characterization and computer modeling.

  8. Nano materials for the Local and Targeted Delivery of Osteoarthritis Drugs

    International Nuclear Information System (INIS)

    Periyasamy, P.C.; Leijten, J.C.H.; Dijkstra, P.J.; Karperien, M.; Post, J.N.

    2012-01-01

    Nano technology has found its potential in every possible field of science and engineering. It offers a plethora of options to design tools at the nanometer scale, which can be expected to function more effectively than micro- and macro systems for specific applications. Although the debate regarding the safety of synthetic nano materials for clinical applications endures, it is a promising technology due to its potential to augment current treatments. Various materials such as synthetic polymer, biopolymers, or naturally occurring materials such as proteins and peptides can serve as building blocks for adaptive nano scale formulations. The choice of materials depends highly on the application. We focus on the use of nanoparticles for the treatment of degenerative cartilage diseases, such as osteoarthritis (OA). Current therapies for OA focus on treating the symptoms rather than modifying the disease. The usefulness of OA disease modifying drugs is hampered by side effects and lack of suitable drug delivery systems that target, deliver, and retain drugs locally. This challenge can be overcome by using nano technological formulations. We describe the different nano drug delivery systems and their potential for cartilage repair. This paper provides the reader basal understanding of nano materials and aims at drawing new perspectives on the use of existing nano technological formulations for the treatment of osteoarthritis.

  9. Fabrication of high-aspect-ratio nano structures using a nano x-ray shadow mask

    International Nuclear Information System (INIS)

    Kim, Yong Chul; Lee, Seung S

    2008-01-01

    This paper describes a novel method for the fabrication of high-aspect-ratio nano structures (HAR-nano structures) using a nano x-ray shadow mask and deep x-ray lithography (DXRL). The nano x-ray shadow mask is fabricated by depositing an x-ray absorber layer (Au, 3 µm) onto the back side of a nano shadow mask. The nano shadow mask is produced with nano-sized apertures whose dimensions are reduced to several tens of nanometers by the accumulation of low-stress silicon nitride (Si x N y ) using the LPCVD process on the shadow mask. A shadow mask containing apertures with a size of 1 µm is fabricated on a bulk micromachined Si x N y membrane. The thickness of an absorber layer must be in the range of several tens of micrometers in order to obtain a contrast of more than 100 for the conventional DXRL process at the Pohang Light Source (PLS). However, a 3 µm thick absorber layer can provide a sufficient contrast if the modified DXRL of the central beam-stop method is used, which blocks high-energy x-rays. A nano shadow mask with 30 nm sized apertures is fabricated and a nano x-ray shadow mask with 250 nm sized apertures is fabricated by depositing a 3 µm thick absorber layer on a nano shadow mask with 500 nm sized apertures. HAR-nano structures (circles with a diameter of 420 nm and lines with a width of 274 nm) with aspect ratios of over 10:1 on a 3.2 µm SU-8 are successfully fabricated by using the nano x-ray shadow mask and the central beam-stop method

  10. Nano-optomechanics with optically levitated nanoparticles

    Science.gov (United States)

    Neukirch, Levi P.; Vamivakas, A. Nick

    2015-01-01

    Nano-optomechanics is a vibrant area of research that continues to push the boundary of quantum science and measurement technology. Recently, it has been realised that the optical forces experienced by polarisable nanoparticles can provide a novel platform for nano-optomechanics with untethered mechanical oscillators. Remarkably, these oscillators are expected to exhibit quality factors approaching ?. The pronounced quality factors are a direct result of the mechanical oscillator being freed from a supporting substrate. This review provides an overview of the basic optical physics underpinning optical trapping and optical levitation experiments, it discusses a number of experimental approaches to optical trapping and finally outlines possible applications of this nano-optomechanics modality in hybrid quantum systems and nanoscale optical metrology.

  11. Nano materials Synthesis, Applications, and Toxicity 2012

    International Nuclear Information System (INIS)

    Nadagouda, M.N.; Lytle, D.A.; Speth, Th.F.; Dionysiou, D.D.; Mukhopadhyay, Sh.M.

    2013-01-01

    Nano technology presents new opportunities to create better materials and products. Nano materials find wide applications in catalysis, energy production, medicine, environmental remediation, automotive industry, and other sectors of our society. Nano material-containing products are already available globally and include automotive parts, defense application, drug delivery devices, coatings, computers, clothing, cosmetics, sports equipment, and medical devices. This special issue includes emerging advances in the field, with a special emphasis given to nano material synthesis and applications. There is an increasing interest in identifying magnetically separable catalysts for the degradation of wastewater. In this issue, A. Perumal et al. report an investigation of temperature-dependent magnetic properties and photo catalytic activity of CoFe 2 O 4 -Fe 3 O 4 magnetic nano composites (MNCs) synthesized by hydrothermal processes. These MNCs have saturation magnetization of 90 emu/g and coercivity (HC) of 530 Oe. The photo catalytic activity of the MNCs has been examined on the reduction of methyl orange (MO), a colored compound used in dyeing and printing textiles. The MNCs act as an excellent photo catalyst on the degradation of organic contaminants and degrade 93% of MO in 5 hours of UV irradiation. The photo catalytic activity of MNCs is attributed to remarkably high band gap energy and small particle size. Also, the MNCs with reproducible photo catalytic activity are easily separated from water media by applying an external magnetic field and they act as a promising catalyst for the remediation of textile wastewater. Microwaves can play an important role in orchestrating nano materials for a wide range of technological applications

  12. Near-field NanoThermoMechanical memory

    International Nuclear Information System (INIS)

    Elzouka, Mahmoud; Ndao, Sidy

    2014-01-01

    In this letter, we introduce the concept of NanoThermoMechanical Memory. Unlike electronic memory, a NanoThermoMechanical memory device uses heat instead of electricity to record, store, and recover data. Memory function is achieved through the coupling of near-field thermal radiation and thermal expansion resulting in negative differential thermal resistance and thermal latching. Here, we demonstrate theoretically via numerical modeling the concept of near-field thermal radiation enabled negative differential thermal resistance that achieves bistable states. Design and implementation of a practical silicon based NanoThermoMechanical memory device are proposed along with a study of its dynamic response under write/read cycles. With more than 50% of the world's energy losses being in the form of heat along with the ever increasing need to develop computer technologies which can operate in harsh environments (e.g., very high temperatures), NanoThermoMechanical memory and logic devices may hold the answer

  13. Achievement report for fiscal 1998. Research and development of nano-structural materials for ceramic bearing application (the second year); 1998 nendo seika hokokusho. Ceramic bearing yo nano seigyo zairyo no kenkyu kaihatsu (dai 2 nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Development is made on ceramic bearing using high-performance and low-cost nano-structural materials, and its application is performed to high-quality bearings suitable for energy conservation in automobiles and industrial machines, and bearings for office automation devices, electronics, and aeronautic and maritime development. To achieve these goals, raw material synthesizing technologies, forming technologies, structural control technologies, processing technologies and mass production technologies shall be established. Fiscal 1998 had the following achievements: establishment of nano-structure controlled ceramic material powder synthesizing technology (nano-lamination type composite powder made by using the beads mill co-precipitation method, nano-lamination type composite powder made by using the New Mymill co-precipitation method, nano-lamination type composite powder made by using the controlled liquid phase method, composite nano-structured gel, and nano-powder synthesis); near net forming technology for spherical ceramics; high-speed processing technology for ultra smooth surface; evaluation of rolling fatigue properties of ceramic bearings; and analysis and evaluation of nano-structured materials. Since this alumina-based ceramic bearing can be produced at reduced cost with performance comparable to silicon nitride based bearing, investigations and discussions are being given on the application thereof. (NEDO)

  14. Emerging areas of Nano and Smart Materials

    OpenAIRE

    Partha Ghosal

    2016-01-01

    ‘There’s plenty of room at the bottom’ – In 1959, one of the most brilliant physicists the world has ever seen, Richard P. Feynmann, gave us a beautiful introduction to nano-science. Today, after almost seven decades, nano-materials and related technologies are not just a simple extension of regular research and miniaturisation of materials, but have become the prime driver of advancement in science and technology all over the world. Over the past few decades, new societal requirement haveeme...

  15. Nano-dot and nano-pit fabrication on a GaAs substrate by a pulse applied AFM

    International Nuclear Information System (INIS)

    Kim, H C; Yu, J S; Ryu, S H

    2012-01-01

    The nano-patterning characteristics of GaAs is investigated using a pulse applied atomic force microscope (AFM). Very short range voltage pulses of micro to nano-seconds’ duration are applied to a conductive diamond-coated silicon (Si) tip in contact mode, to regulate the created feature size. The effects of pulse conditions such as pulse voltage, duration, frequency, offset voltage, anodization time, and applied tip pressure on nano-dot generation are characterized, based on the experiments. An interesting phenomenon, nano-pit creation instead of nano-dot creation, is observed when the applied pulse duration is less than 100 μs. Pulse frequency and offset voltage are also involved in nano-pit generation. The electrical spark discharge between the tip and the GaAs's surface is the most probable cause of the nano-pit creation and its generation mechanism is explained by considering the relevant pulse parameters. Nano-pits over 15 nm in depth are acquired on the GaAs substrate by adjusting the pulse conditions. This research facilitates the fabrication of more complex nano-structures on semiconductor materials since nano-dots and nano-pits could be easily made without any additional post-processes. (paper)

  16. Development of nano SiO2 incorporated nano zinc phosphate coatings on mild steel

    International Nuclear Information System (INIS)

    Tamilselvi, M.; Kamaraj, P.; Arthanareeswari, M.; Devikala, S.; Selvi, J. Arockia

    2015-01-01

    Highlights: • Nano SiO 2 incorporated nano zinc phosphate coating on mild steel was developed. • Coatings showed enhanced corrosion resistance. • The nano SiO 2 is adsorbed on mild steel surface and become nucleation sites. • The nano SiO 2 accelerates the phosphating process. - Abstract: This paper reports the development of nano SiO 2 incorporated nano zinc phosphate coatings on mild steel at low temperature for achieving better corrosion protection. A new formulation of phosphating bath at low temperature with nano SiO 2 was attempted to explore the possibilities of development of nano zinc phosphate coatings on mild steel with improved corrosion resistance. The coatings developed were studied by Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Electrochemical measurements. Significant variation in the coating weight, morphology and corrosion resistance was observed as nano SiO 2 concentrations varied from 0.5–4 g/L. The results showed that, the nano SiO 2 in the phosphating solution changed the initial potential of the interface between mild steel substrate and phosphating solution and reduce the activation energy of the phosphating process, increase the nucleation sites and yielded zinc phosphate coatings of higher coating weight, greater surface coverage and enhanced corrosion resistance. Better corrosion resistance was observed for coatings derived from phosphating bath containing 1.5 g/L nano SiO 2 . The new formulation reported in the present study was free from Ni or Mn salts and had very low concentration of sodium nitrite (0.4 g/L) as accelerator

  17. To be nano or not to be nano?

    Science.gov (United States)

    Joachim, Christian

    2005-02-01

    Nanomaterials, nanostructures, nanostructured materials, nanoimprint, nanobiotechnology, nanophysics, nanochemistry, radical nanotechnology, nanosciences, nanooptics, nanoelectronics, nanorobotics, nanosoldiers, nanomedecine, nanoeconomy, nanobusiness, nanolawyer, nanoethics to name a few of the nanos. We need a clear definition of all these burgeoning fields for the sake of the grant attribution, for the sake of research program definition, and to avoid everyone being lost in so many nanos.

  18. CONVERGENCE OF NANO-, BIO-, INFO-, COGNITIVE TECHNOLOGIES AND E-CULTURE

    Directory of Open Access Journals (Sweden)

    Sergey I. Rodzin

    2014-01-01

    Full Text Available The article analyzes the convergence of nano-, bio-, info- and cognitive technologies. We highlight the close relationship of such notions as “e-culture”, “consciousness”, “artificial intelligence”. Artificial intelligence technology is the meta-NBIC-complex itself. Electronic infrastructure of intellectual activity - the essence of artificial intelligence and artificial intelligence technologies play a meta-level role of NBIC- technologies, being significant for e-culture. Development of science, technology, and education suggests that in the future perhaps a radical transformation in human beings is not only the material world, but also a subjective reality. 

  19. Tipping solutions: emerging 3D nano-fabrication/ -imaging technologies

    Directory of Open Access Journals (Sweden)

    Seniutinas Gediminas

    2017-06-01

    Full Text Available The evolution of optical microscopy from an imaging technique into a tool for materials modification and fabrication is now being repeated with other characterization techniques, including scanning electron microscopy (SEM, focused ion beam (FIB milling/imaging, and atomic force microscopy (AFM. Fabrication and in situ imaging of materials undergoing a three-dimensional (3D nano-structuring within a 1−100 nm resolution window is required for future manufacturing of devices. This level of precision is critically in enabling the cross-over between different device platforms (e.g. from electronics to micro-/nano-fluidics and/or photonics within future devices that will be interfacing with biological and molecular systems in a 3D fashion. Prospective trends in electron, ion, and nano-tip based fabrication techniques are presented.

  20. Aluminum Templates of Different Sizes with Micro-, Nano- and Micro/Nano-Structures for Cell Culture

    Directory of Open Access Journals (Sweden)

    Ming-Liang Yen

    2017-10-01

    Full Text Available This study investigates the results of cell cultures on aluminum (Al templates with flat-structures, micro-structures, nano-structures and micro/nano-structures. An Al template with flat-structure was obtained by electrolytic polishing; an Al template with micro-structure was obtained by micro-powder blasting; an Al template with nano-structure was obtained by aluminum anodization; and an Al template with micro/nano-structure was obtained by micro-powder blasting and then anodization. Osteoblast-like cells were cultured on aluminum templates with various structures. The microculture tetrazolium test assay was utilized to assess the adhesion, elongation, and proliferation behaviors of cultured osteoblast-like cells on aluminum templates with flat-structures, micro-structures, nano-structures, and micro/nano-structures. The results showed that the surface characterization of micro/nano-structure of aluminum templates had superhydrophilic property, and these also revealed that an aluminum template with micro/nano-structure could provide the most suitable growth situation for cell culture.

  1. Image analysis of the nano DDS using photon radiation in SPring-8

    International Nuclear Information System (INIS)

    Noda, Nobuo; Koide, Kazuharu; Nemoto, Tetsuya; Matsuura, Hiroyuki; Makino, Ken-ichi; Nakano, Masahiro; Ju, Dong-Ying; Bian, Pei

    2007-01-01

    Recently, technology to handle a molecule of nano scale advances, and an applied technology is developed in every area. Development of nano-drug delivery system (DDS) is performed worldwide in the med-tech area. We try the effectiveness of nano-DDS. The dynamic behavior of nano-scale magnet in biomaterials is not well known. Therefore it is necessary we perform direct observation, and to get information of the behavior. Using strong photon beams in Spring-8 facility, we trace the magnets and investigate the leaf or the egg. (author)

  2. Functional Nano fibers: Production and Applications

    International Nuclear Information System (INIS)

    Khatri, Z.; Kim, I.S.; Kim, S.H.

    2016-01-01

    Nano fibers are lighter material with higher surface area in comparison to polymeric film. The ease of producing functional nano fiber is another advantage over many nano materials. Functional nano fiber in particular has attained a greater interest in recent years. The applications of functional nano fibers are increasing in various technical fields such as water filter membranes, tissue engineering, biosensors, drug delivery systems, wound dressings, catalysis, antibacterial. This special issue is comprised of well-selective articles that discuss production of functional nano fibers their applications in different emerging fields. M. Zhang et al. have presented exciting work on drug delivery using nano fibers. They used collagen that was extracted from abandoned Rana chensinensis skin in northeastern China via an acid enzymatic extraction method. They demonstrated two different nano fiber-vancomycin (VCM) systems, that is, VCM blended nano fibers and core-shell nano fibers with VCM in the core, and both systems sustained control release for a period of 80 hours. Another work was presented by R. Takai et al. on blood purification using composite nano fibers. About 10% of the population worldwide is affected by chronic kidney disease (CKD). The authors developed nano fiber meshes zeolite-polymer composite nano fibers for efficient adsorption of creatinine, which is a simpler and more accessible method for hemodialysis (HD) patients.

  3. Effects of incorporation of nano-fluorapatite or nano-fluorohydroxyapatite on a resin-modified glass ionomer cement.

    Science.gov (United States)

    Lin, Jun; Zhu, Jiajun; Gu, Xiaoxia; Wen, Wenjian; Li, Qingshan; Fischer-Brandies, Helge; Wang, Huiming; Mehl, Christian

    2011-03-01

    This study aimed to investigate the fluoride release properties and the effect on bond strength of two experimental adhesive cements. Synthesized particles of nano-fluorapatite (nano-FA) or nano-fluorohydroxyapatite (nano-FHA) were incorporated into a resin-modified glass ionomer cement (Fuji Ortho LC) and characterized using X-ray diffraction and scanning electron microscopy. Blocks with six different concentrations of nano-FA or nano-FHA were manufactured and their fluoride release properties evaluated by ultraviolet spectrophotometry. The unaltered glass ionomer cement Fuji Ortho LC (GC, control) and the two experimental cements with the highest fluoride release capacities (nano-FA+Fuji Ortho LC (GFA) and nano-FHA+Fuji Ortho LC (GFHA)) were used to bond composite blocks and orthodontic brackets to human enamel. After 24 h water storage all specimens were debonded, measuring the micro-tensile bond strength (μTBS) and the shear bond strength (SBS), respectively. The optimal concentration of added nano-FA and nano-FHA for maximum fluoride release was 25 wt.%, which nearly tripled fluoride release after 70 days compared with the control group. GC exhibited a significantly higher SBS than GFHA/GFA, with GFHA and GFA not differing significantly (P>0.05). The μTBS of GC and GFA were significantly higher than that of GFHA (P≤0.05). The results seem to indicate that the fluoride release properties of Fuji Ortho LC are improved by incorporating nano-FA or nano-FHA, simultaneously maintaining a clinically sufficient bond strength when nano-FA was added. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Micro- and nano-technologies to probe the mechano-biology of the brain.

    Science.gov (United States)

    Tay, Andy; Schweizer, Felix E; Di Carlo, Dino

    2016-05-24

    Biomechanical forces have been demonstrated to influence a plethora of neuronal functions across scales including gene expression, mechano-sensitive ion channels, neurite outgrowth and folding of the cortices in the brain. However, the detailed roles biomechanical forces may play in brain development and disorders has seen limited study, partly due to a lack of effective methods to probe the mechano-biology of the brain. Current techniques to apply biomechanical forces on neurons often suffer from low throughput and poor spatiotemporal resolution. On the other hand, newly developed micro- and nano-technologies can overcome these aforementioned limitations and offer advantages such as lower cost and possibility of non-invasive control of neuronal circuits. This review compares the range of conventional, micro- and nano-technological techniques that have been developed and how they have been or can be used to understand the effect of biomechanical forces on neuronal development and homeostasis.

  5. Use of nano filtration membrane technology for ceramic industry wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Moliner-Salvador, R.; Deratani, A.; Palmeri, J.; Sanchez, E.

    2012-07-01

    A study has been undertaken of an advanced wastewater treatment approach using polymer nano filtration membranes, in an attempt to obtain water of sufficient quality to allow it to be reused in the same production process or, alternatively, to be discharged without any problems. The study has initially focused on the removal of organic matter (reduction of COD) and the most representative ions present in the wastewater, such as Na{sup +}, Mg{sup 2}+, Cl{sup -}, and SO{sub 4}{sup 2}. In a first part of the study, with a view to optimising the experimental phase, a simulation has been performed of the nano filtration process using the Nano Flux software. Among other things, the simulation allows the most suitable membranes to be selected as a function of the permeate flow rate and desired level of retention in the substances to be removed. The subsequent experimentation was carried out in a laboratory tangential filtration system that works with flat membranes. It was found that retention values of about 90% were obtained for the studied substances, with a good permeate flow rate, using low operating pressures. These results demonstrate the feasibility of the studied technology and its potential as a treatment for improving ceramic industry wastewater quality.

  6. Nano

    DEFF Research Database (Denmark)

    Nørgaard, Bent; Engel, Lars Romann

    2007-01-01

    Gennem de sidste par år har et lille ord med et meget stort potentiale gentagende trængt sig på i den offentlige bevidsthed, det er ordet "nano". Nanovidenskab og nanoteknologi er lige nu to af de "hotteste" forskningsområder og betragtes af mange som porten til en helt ny verden af muligheder....... Muligheder, vi endnu ikke kender konsekvenserne af. Center for Kunst og Videnskabs forestilling NANO giver dig chancen for at blive bekendt med verdens mindste byggesten og idégrundlaget for nanoforskningen. Vi har skabt et rum, som på mange måder minder om et laboratorium. Rummet er forsynet med storskærme......, kolber, væsker og nanopartikler. Her vil du f.eks. opleve, hvordan forskere tilfører guld helt nye egenskaber. Forestillingen veksler mellem kemiske arbejdsdemonstrationer, stemningsskabende musik og livlig debat på storskærme mellem eksperter. NANO opfordrer publikum til at tage stilling til forskningen...

  7. The therapeutic effect of nano-encapsulated and nano-emulsion forms of carvacrol on experimental liver fibrosis.

    Science.gov (United States)

    Hussein, Jihan; El-Banna, Mona; Mahmoud, Khaled F; Morsy, Safaa; Abdel Latif, Yasmin; Medhat, Dalia; Refaat, Eman; Farrag, Abdel Razik; El-Daly, Sherien M

    2017-06-01

    The present study aimed to compare the therapeutic efficiency of nano-encapsulated and nano-emulsion carvacrol administration on liver injury in thioacetamide (TAA) treated rats. To fulfill our target, we used sixty male albino rats classified into six groups as follow: control, nano-encapsulated carvacrol, nano-emulsion carvacrol, thioacetamide, treated nano-encapsulated carvacrol and treated nano-emulsion carvacrol groups. Blood samples were collected from all groups and the separated serum was used for analysis of the following biochemical parameters; aspartate aminotransferase (AST), alanine aminotransferase (ALT), S100 B protein, alpha fetoprotein (AFP) and caspase-3. The levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), monocyte chemoattractant protein-1(MCP-1) and hydroxyproline content were all evaluated in liver tissue homogenate. Histopathological examinations for liver tissues were also performed. Thioacetamide induced hepatic damage in rats as revealed by the significant increase in the levels of serum ALT, AST and produced oxidative stress as displayed by the significant elevation in the levels of hepatic MDA and NO concomitant with a significant decrease in GSH. In addition, thioacetamide significantly increased serum S100B protein, alpha fetoprotein and caspase-3 along with hepatic MCP-1 and hydroxyproline; these results were confirmed by the histopathological investigation. In contrast, nano-encapsulated and nano-emulsion carvacrol were able to ameliorate these negative changes in the thioacetamide injected rats. However, the effect of the nano-encapsulated form of carvacrol was more prominent than the nano-emulsion form. Nano-encapsulated and nano-emulsion carvacrol can ameliorate thioacetamide induced liver injury. These results could be attributed to the potential anti-inflammatory, antioxidant, and anti-apoptotic activities of carvacrol in addition to the effectiveness of the encapsulation technique that can protect

  8. Endosomolytic Nano-Polyplex Platform Technology for Cytosolic Peptide Delivery To Inhibit Pathological Vasoconstriction.

    Science.gov (United States)

    Evans, Brian C; Hocking, Kyle M; Kilchrist, Kameron V; Wise, Eric S; Brophy, Colleen M; Duvall, Craig L

    2015-06-23

    A platform technology has been developed and tested for delivery of intracellular-acting peptides through electrostatically complexed nanoparticles, or nano-polyplexes, formulated from an anionic endosomolytic polymer and cationic therapeutic peptides. This delivery platform has been initially tested and optimized for delivery of two unique vasoactive peptides, a phosphomimetic of heat shock protein 20 and an inhibitor of MAPKAP kinase II, to prevent pathological vasoconstriction (i.e., vasospasm) in human vascular tissue. These peptides inhibit vasoconstriction and promote vasorelaxation by modulating actin dynamics in vascular smooth muscle cells. Formulating these peptides into nano-polyplexes significantly enhances peptide uptake and retention, facilitates cytosolic delivery through a pH-dependent endosomal escape mechanism, and enhances peptide bioactivity in vitro as measured by inhibition of F-actin stress fiber formation. In comparison to treatment with the free peptides, which were endowed with cell-penetrating sequences, the nano-polyplexes significantly increased vasorelaxation, inhibited vasoconstriction, and decreased F-actin formation in the human saphenous vein ex vivo. These results suggest that these formulations have significant potential for treatment of conditions such as cerebral vasospasm following subarachnoid hemorrhage. Furthermore, because many therapeutic peptides include cationic cell-penetrating segments, this simple and modular platform technology may have broad applicability as a cost-effective approach for enhancing the efficacy of cytosolically active peptides.

  9. A Fabrication Technique for Nano-gap Electrodes by Atomic Force Microscopy Nano lithography

    International Nuclear Information System (INIS)

    Jalal Rouhi; Shahrom Mahmud; Hutagalung, S.D.; Kakooei, S.

    2011-01-01

    A simple technique is introduced for fabrication of nano-gap electrodes by using nano-oxidation atomic force microscopy (AFM) lithography with a Cr/ Pt coated silicon tip. AFM local anodic oxidation was performed on silicon-on-insulator (SOI) surfaces by optimization of desired conditions to control process in contact mode. Silicon electrodes with gaps of sub 31 nm were fabricated by nano-oxidation method. This technique which is simple, controllable, inexpensive and fast is capable of fabricating nano-gap structures. The current-voltage measurements (I-V) of the electrodes demonstrated very good insulating characteristics. The results show that silicon electrodes have a great potential for fabrication of single molecule transistors (SMT), single electron transistors (SET) and the other nano electronic devices. (author)

  10. Removal of arsenic from water using nano adsorbents and challenges: A review.

    Science.gov (United States)

    Lata, Sneh; Samadder, S R

    2016-01-15

    Many researchers have used nanoparticles as adsorbents to remove water pollutants including arsenic after modifying the properties of nanoparticles by improving reactivity, biocompatibility, stability, charge density, multi-functionalities, and dispersibility. For arsenic removal, nano adsorbents emerged as the potential alternatives to existing conventional technologies. The present study critically reviewed the past and current available information on the potential of nano adsorbents for arsenic removal from contaminated water and the challenges involved in that. The study discussed the separation and regeneration techniques of nano adsorbents and the performance thereof. The study evaluated the adsorption efficiency of the various nanoparticles based on size of nanoparticles, types of nano adsorbents, method of synthesis, separation and regeneration of the nano adsorbents. The study found that more studies are required on suitable holding materials for the nano adsorbents to improve the permeability and to make the technology applicable at the field condition. The study will help the readers to choose suitable nanomaterials and to take up further research required for arsenic removal using nano adsorbents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Ceramic compositions based on nano forsterite/nano magnesium aluminate spinel powders

    International Nuclear Information System (INIS)

    Khattab, R.M.; Wahsh, M.M.S.; Khalil, N.M.

    2015-01-01

    According to the wide applications in the field of chemical and engineering industries, forsterite (Mg_2SiO_4)/spinel (MgAl_2O_4) ceramic compositions were the matter of interest of several research works during the last three decades. This work aims at preparation and characterization of improved ceramic bodies based on forsterite and spinel nano powders through controlling the forsterite and spinel contents in the prepared mixes. These prepared ceramic compositions have been investigated through measuring the densification parameters, cold crushing strength as well as volume resistively. Nano spinel was added from 0 to 30 mass% on expense of nano forsterite matrix and fired at 1550 °C for 2 h. The phase composition of the fired samples was examined using x-ray diffraction (XRD) technique. The microstructure of some selected samples was shown using scanning electron microscope (SEM). A pronounced improvement in the sintering, mechanical properties and volume resistively were achieved with increasing of nano spinel addition up to 15 mass%. This is due to the improvement in the matrix of the prepared forsterite/spinel bodies as a result of well distribution of spinel in the forsterite matrix as depicted by SEM analysis. - Highlights: • Ceramic compositions based on nano forsterite/nano-MgAl_2O_4 spinel were synthesized. • CCS was improved (333.78 MPa) through 15 mass% of nano-MgAl_2O_4 spinel addition. • Volume resistivity was enhanced to 203*10"1"3 Ohm cm with 15 mass% of spinel addition. • Beyond 15 mass% spinel, CCS and volume resistivity were decreased.

  12. Synthesis and applications of nano-structured iron oxides/hydroxides

    African Journals Online (AJOL)

    ... in numerous synthesis processes. This review outlines the work being carried out on synthesis of iron oxides in nano form and their various applications. Keywords: nano iron oxides, synthesis, catalysts, magnetic properties, biomedical application. International Journal of Engineering, Science and Technology, Vol. 2, No.

  13. Nano materials for Cancer Phototheranostics

    International Nuclear Information System (INIS)

    Huang, P.; Ling, D.; Song, J; Liu, G.; Xie, J.

    2016-01-01

    The rapid development of advanced nano technology promises the integration of multiple diagnostic/therapeutic modalities into one nano platform for cancer theranostics. This issue compiles 3 review articles and 7 high-quality original research articles related to the field of nano material-based cancer theranostics. Photo therapies, such as photothermal therapy (PTT), photodynamic therapy (PDT), or photo-triggered drug/gene delivery, have gained considerable attention because of specific spatiotemporal selectivity and minimal invasiveness. Considering the inherent biocompatibility and biodegradability of proteins and peptides, P. Huang and coworkers summarized recent advances in the development of protein/peptide-based photothermal cancer theranostics, using protein/peptide as delivery vehicles or synthesis bio templates of PTT agents. M. G. O∼Toole and coworkers developed a near-infrared (NIR) responsive oligonucleotide-coated (AS1411, hairpin, or both) gold nanoplate loaded with doxorubicin (DOX), which is demonstrated to be nontoxic to cells without triggered release, while being acutely toxic to cells after 5 minutes of laser exposure to trigger DOX release. K. Na and coworkers described an acidic tumor pH-responsive nanophotomedicine (pH-NanoPM), which was prepared by self-assembly of a pH-responsive polymeric photo sensitizer (pH-PPS) consisting of pH-cleavable methoxypolyethylene glycol (pH-C-mPEG), for targeted PDT

  14. CZT nanoRAIDER_VFG Factsheet

    Energy Technology Data Exchange (ETDEWEB)

    James, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bolotnikov, A. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cui, Yonggang [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-15

    Brookhaven National Laboratory (BNL) is working with FLIR System Inc., the manufacturer of the nanoRAIDER, to design a handheld device based on a position-sensitive virtual Frisch-grid (VFG) Cadmium-Zinc-Telluride (CdZnTe or CZT) detector array (with 1% or better energy resolution). The new device called nanoRAIDER VFG will be an improvement to the current nanoRAIDER, which is a compact gamma-ray detection instrument manufactured by FLIR Systems Inc. that employs relatively lower-performing CZT hemispheric detectors (i.e., 3%-FWHM CZT detectors). The nanoRAIDER will significantly improve the accuracy while maintaining similar efficiency, as compared to the nanoRAIDER, for in-field analysis of nuclear materials and detection of undeclared activities during inspections conducted by the International Atomic Energy Agency (IAEA). Since the nanoRAIDER is currently used by the IAEA as part of its Complementary Access toolkit, a relatively quick acceptance of the nanoRAIDER VFG for safeguards is anticipated. The nanoRAIDER VFG will help address several items listed in the IAEA’s Long-Term R&D Plan that could enhance the abilities to detect undeclared nuclear material and activities.

  15. [Effect of stability and dissolution of realgar nano-particles using solid dispersion technology].

    Science.gov (United States)

    Guo, Teng; Shi, Feng; Yang, Gang; Feng, Nian-Ping

    2013-09-01

    To improve the stability and dissolution of realgar nano-particles by solid dispersion. Using polyethylene glycol 6000 and poloxamer-188 as carriers, the solid dispersions were prepare by melting method. XRD, microscopic inspection were used to determine the status of realgar nano-particles in solid dispersions. The content and stability test of As(2)0(3) were determined by DDC-Ag method. Hydride generation atomic absorption spectrometry was used to determine the content of Arsenic and investigated the in vitro dissolution behavior of solid dispersions. The results of XRD and microscopic inspection showed that realgar nano-particles in solid dispersions were amorphous. The dissolution amount and rate of Arsenic from realgar nano-particles of all solid dispersions were increased significantly, the reunion of realgar nano-particles and content of As(2)0(3) were reduced for the formation of solid dispersions. The solid dispersion of realgar nano-particles with poloxamer-188 as carriers could obviously improve stability, dissolution and solubility.

  16. Fundamental Issues of Nano-fluid Behavior

    International Nuclear Information System (INIS)

    Williams, Wesley C.

    2006-01-01

    This paper will elucidate some of the behaviors of nano-fluids other than the abnormal conductivity enhancement, which are of importance to the experimental and engineering use of nano-fluids. Nano-fluid is the common name of any sol colloid involving nano-scale (less than 100 nm) sized particles dispersed within a base fluid. It has been shown previously that the dispersion of nano-particulate metallic oxides into water can increase thermal conductivity up to 30-40% over that of the base fluid and anomalously more than the mere weighed average of the colloid. There is a great potential for the use of nano-fluids as a way to enhance fluid/thermal energy transfer systems. Due to the recentness of nano-fluid science, there are still many issues which have not been fully investigated. This paper should act as a primer for the basic understanding of nano-fluid behavior. Particle size and colloid stability are of key importance to the functionality of nano-fluids. The pH and concentration/loading of nano-fluids can alter the size of the nano-particles and also the stability of the fluids. It will be shown through experiment and colloid theory the importance of these parameters. Furthermore, most of the existing literature uses volume percentage as the measure of particle loading, which can often be misleading. There will be discussion of this and other misleading ideas in nano-fluid science. (author)

  17. Electrodeposition of nickel nano wire arrays

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok Kuan Ying; Ng Inn Khuan; Nurazila Mat Zali; Siti Salwa Zainal Abidin

    2010-01-01

    Synthesis, characterization and assembly of one-dimensional nickel nano wires prepared by template directed electrodeposition are discussed in this paper. Parallel arrays of high aspect ratio nickel nano wires were electrodeposited using electrolytes with different cations and pH. The nano wires were characterized using X-ray diffractometry and scanning electron microscopy. It was found that the orientations of the electro deposited Ni nano wires were governed by the deposition current and the electrolyte conditions. Free standing nickel nano wires can be obtained by dissolving the template. Due to the magnetic nature of the nano wires, magnetic alignment was employed to assemble and position the free standing nano wires in the device structure. (author)

  18. AC dielectrophoresis alignment of single-walled carbon nano tubes (SWNTS) and palladium nano wires for hydrogen gas sensor

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Nur Ubaidah Saidin; Ying, K.K.; KKhuan, N.I.; Mohammad Hafizuddin Jumali

    2013-01-01

    Full-text: Using AC electric field, nano wires or nano tubes can be aligned, chained or accelerated in a direction parallel to the applied field, oriented or concentrated onto designated locations as well as dispersed in controlled manner under high efficiencies. In this work, systematic study on the alignment of nano wires/ nano tubes across the 3 μm-gaps between pairs of micro fabricated gold electrodes was carried out using AC dielectrophoresis technique. Densities and alignment of the nano wires/ nano tubes across the gaps of the electrodes were controlled by the applied AC field strengths and frequencies on the electrodes. Good alignments of SWNTs and Pd nano wires were achieved at an applied frequency of 5 MHz and a field strength as high as 25 V pp for Pd nano wires compared to only 2 V pp for SWNTs. The aligned nano wires/ nano tubes will be functioned as sensor elements for hydrogen gas sensing. (author)

  19. Nonlinear super-resolution nano-optics and applications

    CERN Document Server

    Wei, Jingsong

    2015-01-01

    This book covers many advances in the subjects of nano-optics and nano photonics. The author describes the principle and technical schematics of common methods for breaking through the optical diffraction limit and focuses on realizing optical super-resolution with nonlinear effects of thin film materials. The applications of nonlinear optical super-resolution effects in nano-data storage, nanolithography, and nano-imaging are also presented. This book is useful to graduate students majoring in optics and nano science and also serves as a reference book for academic researchers, engineers, technical professionals in the fields of super-resolution optics and laser techniques, nano-optics and nano photonics, nano-data storage, nano imaging, micro/nanofabrication and nanolithography and nonlinear optics.

  20. Phosphorylated nano-diamond/ Polyimide Nanocomposites

    International Nuclear Information System (INIS)

    Beyler-Çiǧil, Asli; Çakmakçi, Emrah; Kahraman, Memet Vezir

    2014-01-01

    In this study, a novel route to synthesize polyimide (PI)/phosphorylated nanodiamond films with improved thermal and mechanical properties was developed. Surface phosphorylation of nano-diamond was performed in dichloromethane. Phosphorylation dramatically enhanced the thermal stability of nano-diamond. Poly(amic acid) (PAA), which is the precursor of PI, was successfully synthesized with 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydianiline (4,4'-ODA) in the solution of N,N- dimethylformamide (DMF). Pure BTDA-ODA polyimide films and phosphorylated nanodiamond containing BTDA-ODA PI films were prepared. The PAA displayed good compatibility with phosphorylated nano-diamond. The morphology of the polyimide (PI)/phosphorylated nano-diamond was characterized by scanning electron microscopy (SEM). Chemical structure of polyimide and polyimide (PI)/phosphorylated nano-diamond was characterized by FTIR. SEM and FTIR results showed that the phosphorylated nano-diamond was successfully prepared. Thermal properties of the polyimide (PI)/phosphorylated nanodiamond was characterized by thermogravimetric analysis (TGA). TGA results showed that the thermal stability of (PI)/phosphorylated nano-diamond film was increased

  1. Evaluation of nano-technology-modified zirconia oral implants: a study in rabbits.

    Science.gov (United States)

    Lee, Jaebum; Sieweke, Janet H; Rodriguez, Nancy A; Schüpbach, Peter; Lindström, Håkan; Susin, Cristiano; Wikesjö, Ulf M E

    2009-07-01

    The objective of this study was to screen candidate nano-technology-modified, micro-structured zirconia implant surfaces relative to local bone formation and osseointegration. Proprietary nano-technology surface-modified (calcium phosphate: CaP) micro-structured zirconia implants (A and C), control micro-structured zirconia implants (ZiUnite), and titanium porous oxide implants (TiUnite) were implanted into the femoral condyle in 40 adult male New Zealand White rabbits. Each animal received one implant in each hind leg; thus, 20 animals received A and C implants and 20 animals received ZiUnite and TiUnite implants in contralateral hind legs. Ten animals/group were euthanized at weeks 3 and 6 when biopsies of the implant sites were processed for histometric analysis using digital photomicrographs produced using backscatter scanning electron microscopy. The TiUnite surface demonstrated significantly greater bone-implant contact (BIC) (77.6+/-2.6%) compared with the A (64.6+/-3.6%) and C (62.2+/-3.1%) surfaces at 3 weeks (p0.05). Similarly, there were non-significant differences between the TiUnite and the ZiUnite surfaces (p>0.05). At 6 weeks, there were no significant differences in BIC between the TiUnite (67.1+/-4.2%), ZiUnite (69.7+/-5.7%), A (68.6+/-1.9%), and C (64.5+/-4.1%) surfaces (p>0.05). TiUnite and ZiUnite implant surfaces exhibit high levels of osseointegration that, in this model, confirm their advanced osteoconductive properties. Addition of CaP nano-technology to the ZiUnite surface does not enhance the already advanced osteoconductivity displayed by the TiUnite and ZiUnite implant surfaces.

  2. Nano surface generation of grinding process using carbon nano tubes

    Indian Academy of Sciences (India)

    Nano surface finish has become an important parameter in the semiconductor, optical, electrical and mechanical industries. The materials used in these industries are classified as difficult to machine materials such as ceramics, glasses and silicon wafers. Machining of these materials up to nano accuracy is a great ...

  3. Radiation induced nano structures

    International Nuclear Information System (INIS)

    Ibragimova, E.M.; Kalanov, M.U.; Khakimov, Z.

    2006-01-01

    Full text: Nanometer-size silicon clusters have been attracting much attention due to their technological importance, in particular, as promising building blocks for nano electronic and nano photonic systems. Particularly, silicon wires are of great of interest since they have potential for use in one-dimensional quantum wire high-speed field effect transistors and light-emitting devices with extremely low power consumption. Carbon and metal nano structures are studied very intensely due to wide possible applications. Radiation material sciences have been dealing with sub-micron objects for a long time. Under interaction of high energy particles and ionizing radiation with solids by elastic and inelastic mechanisms, at first point defects are created, then they form clusters, column defects, disordered regions (amorphous colloids) and finally precipitates of another crystal phase in the matrix. Such irradiation induced evolution of structure defects and phase transformations was observed by X-diffraction techniques in dielectric crystals of quartz and corundum, which exist in and crystal modifications. If there is no polymorphism, like in alkali halide crystals, then due to radiolysis halogen atoms are evaporated from the surface that results in non-stoichiometry or accumulated in the pores formed by metal vacancies in the sub-surface layer. Nano-pores are created by intensive high energy particles irradiation at first chaotically and then they are ordered and in part filled by inert gas. It is well-known mechanism of radiation induced swelling and embrittlement of metals and alloys, which is undesirable for construction materials for nuclear reactors. Possible solution of this problem may come from nano-structured materials, where there is neither swelling nor embrittlement at gas absorption due to very low density of the structure, while strength keeps high. This review considers experimental observations of radiation induced nano-inclusions in insulating

  4. Fiscal 1998 research report on the R and D on produce process technology of eco-tailored tribo-materials/R and D on produce process technology of nano structure materials; Eco tailored tribo material sosei process gijutsu no kenkyu kaihatsu / nano metoru oda de seigyosareta material sosei process gijutsu no kenkyu kaihatsu 1998 nendo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In the R and D on produce process technology of nano structure materials, for reduction of friction and abrasion due to severe use conditions of automobile piston rings and valves, development of optimized produce process technology of eco-tailored tribo-materials with nano structures is in promotion by applying complex ion processing technology possible to control nano structures. In fiscal 1998, study was made on comparison of various ion processes and formation of nano structure single-phase films, and formation of Ti-Si system films was attempted as one of candidates of nano structure films. Problem points of existing test equipment as evaluation equipment of friction and abrasion for cams, shims and piston rings were arranged, and improvement and development of such equipment were considered. In the development of tribology evaluation technology, study was made on the sliding condition, environment and situation of a test equipment possible to simulate sliding of cams and shims, and the applicability of such equipment was also evaluated. (NEDO)

  5. Investigation of properties of modified oxides structured by nano technology

    International Nuclear Information System (INIS)

    Kurina, I.S.; Serebrennikova, O.V.; Rumyantsev, V.N.; Dvoryashin, A.M.

    2009-01-01

    Research results on the PuO 2 +MgO fuel composition with CeO 2 as a PuO 2 simulator are presented. The water nano technology for the production of oxide ceramic materials, developed in IPPE, was used for fabrication of powders and modified pellets. This technology includes obtaining precipitate, consisting of particles of different sizes as well as of nanoparticles, which is further calcined, pressed and sintered. It results in modifying structure of the sintered pellets. Modified pellets have anomalously high thermal conductivity measured by the axial heat flux method [ru

  6. Micro/Nano manufacturing

    DEFF Research Database (Denmark)

    Tosello, Guido

    2017-01-01

    Micro- and nano-scale manufacturing has been the subject of an increasing amount of interest and research effort worldwide in both academia and industry over the past 10 years.Traditional (MEMS) manufacturing, but also precision manufacturing technologies have been developed to cover micro......-scale dimensions and accuracies. Furthermore, these fundamentally different technology ecosystems are currently combined in order to exploit strengths of both platforms. One example is the use of lithography-based technologies to establish nanostructures that are subsequently transferred to 3D geometries via...

  7. Replication of micro and nano surface geometries

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Hocken, R.J.; Tosello, Guido

    2011-01-01

    The paper describes the state-of-the-art in replication of surface texture and topography at micro and nano scale. The description includes replication of surfaces in polymers, metals and glass. Three different main technological areas enabled by surface replication processes are presented......: manufacture of net-shape micro/nano surfaces, tooling (i.e. master making), and surface quality control (metrology, inspection). Replication processes and methods as well as the metrology of surfaces to determine the degree of replication are presented and classified. Examples from various application areas...... are given including replication for surface texture measurements, surface roughness standards, manufacture of micro and nano structured functional surfaces, replicated surfaces for optical applications (e.g. optical gratings), and process chains based on combinations of repeated surface replication steps....

  8. Manipulation and functionalization of nano-tubes: application to boron nitride nano-tubes

    International Nuclear Information System (INIS)

    Maguer, A.

    2007-01-01

    This PhD work is divided into two parts dealing with boron nitride (BNNT) and carbon nano-tubes. The first part is about synthesis, purification and chemical functionalization of BNNT. Single-walled BNNT are synthesized by LASER ablation of a hBN target. Improving the synthesis parameters first allowed us to limit the byproducts (hBN, boric acid). A specific purification process was then developed in order to enrich the samples in nano-tubes. Purified samples were then used to develop two new chemical functionalization methods. They both involve chemical molecules that present a high affinity towards the BN network. The use of long chain-substituted quinuclidines and borazines actually allowed the solubilization of BNNT in organic media. Purification and functionalization were developed for single-walled BNNT and were successfully applied to multi-walled BNNT. Sensibility of boron to thermic neutrons finally gave birth to a study about covalent functionalization possibilities of the network. The second part of the PhD work deals with separation of carbon nano-tubes depending on their properties. Microwave irradiation of carbon nano-tubes first allowed the enrichment of initially polydisperse samples in large diameter nano-tubes. A second strategy involving selective interaction between one type of tubes and fullerene micelles was finally envisaged to selectively solubilize carbon nano-tubes with specific electronic properties. (author) [fr

  9. Effect of TMAH Etching Duration on the Formation of Silicon Nano wire Transistor Patterned by AFM Nano lithography

    International Nuclear Information System (INIS)

    Hutagalung, S.D.; Lew, K.C.

    2012-01-01

    Atomic force microscopy (AFM) lithography was applied to produce nano scale pattern for silicon nano wire transistor fabrication. This technique takes advantage of imaging facility of AFM and the ability of probe movement controlling over the sample surface to create nano patterns. A conductive AFM tip was used to grow the silicon oxide nano patterns on silicon on insulator (SOI) wafer. The applied tip-sample voltage and writing speed were well controlled in order to form pre-designed silicon oxide nano wire transistor structures. The effect of tetra methyl ammonium hydroxide (TMAH) etching duration on the oxide covered silicon nano wire transistor structure has been investigated. A completed silicon nano wire transistor was obtained by removing the oxide layer via hydrofluoric acid etching process. The fabricated silicon nano wire transistor consists of a silicon nano wire that acts as a channel with source and drain pads. A lateral gate pad with a nano wire head was fabricated very close to the channel in the formation of transistor structures. (author)

  10. Measurement capability overview in PolyNano

    DEFF Research Database (Denmark)

    Calaon, Matteo; Tosello, Guido; Hansen, Hans Nørgaard

    2012-01-01

    A measurement capability overview has been conducted to evaluate, among the most used instruments in the field of nanometrology, where the PolyNano project should focus its research. The deliverable presents the most relevant instruments to achieve the best possible measurements accuracy matching...... requirements such as low uncertainty, high repeatability and resolution, adequate measuring range and availability among the different project partners. Based on the present measurement capability overview and in relation to the objective of PolyNano to “remove the technology barrier between lab‐scale proof...

  11. An education model of a nano-positioning system for mechanical engineers

    International Nuclear Information System (INIS)

    Lee, Dong Yeon; Gweon, Dae Gab

    2006-01-01

    The increasing use of nano-positioners in a wide variety of laboratory and industrial applications has created a need for nano-mechatronics education in all engineering disciplines. The subject of nano-mechatronics is broad and interdisciplinary. This article focuses on the way nano-mechatronics is taught in department of mechanical engineering at Korea Advanced Institute of Science and Technology (KAIST). As one model of nano-positioning systems, design and experimental methodology is presented in this article. For design phase, the stiffness and resonant frequencies are found analytically and verified by using a commercial finite element analysis program. Next, for experimental phase, various tests are performed to access the performances of the designed nano-positioner, for example, sine-tracking, multi-step response and travel-range check etc. Finally, the definition of 'separation frequency' is described and some comments are discussed

  12. Evaluation on the Toxic Effects of NanoAg to Catalase.

    Science.gov (United States)

    Zhang, Bin; Zhai, Wenxin; Liu, Rutao; Yu, Zehua; Shen, Hengmei; Hu, Xinxin

    2015-02-01

    Protein is the functional actor of life. Research on protein damage induced by nanomaterials may give insight into the toxicity mechanisms of nanoparticles. Studying nano silver over the impact of the structure and function of catalase (CAT) at the molecular level, is of great significance for a comprehensive evaluation of their toxic effects. The toxic effects of nanoAg on catalase were thoroughly investigated using steady state and time resolved fluorescence quenching measurements, ultraviolet-visible absorption spectroscopy, resonance light scattering spectroscopy (RLS), circular dichroism spectroscopy (CD) and transmission electron microscopy (TEM). NanoAg could decrease the amount of alpha-helix and increase the beta sheet structure, leading to loose the skeleton structure of catalase. The characteristic fluorescence of catalase was obviously quenched, which showed the exposal of internal hydrophobic amino acids enhanced, and its quenching type is dynamic quenching. The result of RLS and TEM showed that the distribution and size of nanoAg become more uniform and smaller after their interaction, resulting in a decrease of RLS intensity. NanoAg could make the activity of catalase rise. By changing the structure of catalase, nanoAg increases its enzymatic activity to a certain extent, breaking down its balance in vivo, thereby affecting the normal physiological activities. NanoAg has obvious toxic effects on catalase. This paper provided a new perspective and method for the toxic effects of nanoAg to biological macromolecules; provided basic data and reference gist for the hygienics and toxicology studies of nanoAg. It is conducive to the toxicity prevention and control work of nanoAg, promoting nano-technology applied to human production and living better.

  13. Nano Fertilizers

    Directory of Open Access Journals (Sweden)

    Hatice DAĞHAN

    2017-06-01

    Full Text Available Agricultural land is decreasing day by day due to erosion, environmental pollution, unconscious irrigation and fertilization. On the other hand, it is necessary to increase agricultural production in order to meet the needs of the developing industry as well as the nutritional needs of the growing population. In the recent years, nano fertilizers have begun to be produced to obtain the highest amount and quality of production from the unit area. Previous research shows that nano fertilizers cause an increase in the use efficiency of plant nutrients, reduce soil toxicity, minimize the potential adverse effects of excessive chemical fertilizer use, and reduce fertilizer application frequency. Nano fertilizers are important in agriculture to increase crop yield and nutrient use efficiency, and to reduce excessive use ofchemical fertilizers. The most important properties of these fertilizers are that they contain one or more of macro and micronutrients, they can be applied frequently in small amounts and are environmentally friendly. However, when applied at high doses, they exhibit decreasing effects on plant growth and crop yields, similar to chemical fertilizers. In this review, the definition, importan ce, and classification of nano fertilizers, their application in plant production, advantages and disadvantages and the results obtained in this field were discussed.

  14. Carbon nanotubes: from nano test tube to nano-reactor.

    Science.gov (United States)

    Khlobystov, Andrei N

    2011-12-27

    Confinement of molecules and atoms inside carbon nanotubes provides a powerful strategy for studying structures and chemical properties of individual molecules at the nanoscale. In this issue of ACS Nano, Allen et al. explore the nanotube as a template leading to the formation of unusual supramolecular and covalent structures. The potential of carbon nanotubes as reactors for synthesis on the nano- and macroscales is discussed in light of recent studies.

  15. Nanoparticles by spray drying using innovative new technology: the Büchi nano spray dryer B-90.

    Science.gov (United States)

    Li, Xiang; Anton, Nicolas; Arpagaus, Cordin; Belleteix, Fabrice; Vandamme, Thierry F

    2010-10-15

    Spray drying technology is widely known and used to transform liquids (solutions, emulsions, suspension, slurries, pastes or even melts) into solid powders. Its main applications are found in the food, chemical and materials industries to enhance ingredient conservation, particle properties, powder handling and storage etc. However, spray drying can also be used for specific applications in the formulation of pharmaceuticals for drug delivery (e.g. particles for pulmonary delivery). Büchi is a reference in the development of spray drying technology, notably for laboratory scale devices. This study presents the Nano Spray Dryer B-90, a revolutionary new sprayer developed by Büchi, use of which can lower the size of the produced dried particles by an order of magnitude attaining submicron sizes. In this paper, results are presented with a panel of five representative polymeric wall materials (arabic gum, whey protein, polyvinyl alcohol, modified starch, and maltodextrin) and the potentials to encapsulate nano-emulsions, or to formulate nano-crystals (e.g. from furosemide) are also shown. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. All-silicon-based nano-antennas for wavelength and polarization demultiplexing.

    Science.gov (United States)

    Panmai, Mingcheng; Xiang, Jin; Sun, Zhibo; Peng, Yuanyuan; Liu, Hongfeng; Liu, Haiying; Dai, Qiaofeng; Tie, Shaolong; Lan, Sheng

    2018-05-14

    We propose an all-silicon-based nano-antenna that functions as not only a wavelength demultiplexer but also a polarization one. The nano-antenna is composed of two silicon cuboids with the same length and height but with different widths. The asymmetric structure of the nano-antenna with respect to the electric field of the incident light induced an electric dipole component in the propagation direction of the incident light. The interference between this electric dipole and the magnetic dipole induced by the magnetic field parallel to the long side of the cuboids is exploited to manipulate the radiation direction of the nano-antenna. The radiation direction of the nano-antenna at a certain wavelength depends strongly on the phase difference between the electric and magnetic dipoles interacting coherently, offering us the opportunity to realize wavelength demultiplexing. By varying the polarization of the incident light, the interference of the magnetic dipole induced by the asymmetry of the nano-antenna and the electric dipole induced by the electric field parallel to the long side of the cuboids can also be used to realize polarization demultiplexing in a certain wavelength range. More interestingly, the interference between the dipole and quadrupole modes of the nano-antenna can be utilized to shape the radiation directivity of the nano-antenna. We demonstrate numerically that radiation with adjustable direction and high directivity can be realized in such a nano-antenna which is compatible with the current fabrication technology of silicon chips.

  17. The many faces of nano in newspaper reporting

    International Nuclear Information System (INIS)

    Boholm, Max; Boholm, Åsa

    2012-01-01

    The morpheme nano in languages such as Swedish and English is a constituent of many words. This article linguistically analyses the meaning potential of nano by focusing on word use in a Swedish newspaper corpus comprising 2,564 articles (1.6 million words) covering a 22-year period (1988–2010). Close to 400 word forms having nano as a constituent have been identified and analyzed. The results suggest that nano covers a broad and heterogeneous conceptual field: (i) as a prefix of the SI system; (ii) in relation to the scientific activities of nanoscience and nanotechnology, including their sub-processes and actors; and (iii) in relation to objects. The identified meanings of nano, besides the standard definition (i.e. ‘billionth part’ in relation to SI units), are ‘operating at the nanometre level’ in relation to activities and their actors and ‘nanometre sized’ and ‘nanotechnological’ in relation to objects; in addition, the less precise and non-technical meaning ‘very small’ is identified. We discuss the implications of the findings for a hypothesis about media influence on public understanding of technology, suggesting that repeated findings in Europe and the USA of little self-reported understanding and knowledge of nanotechnology or nanoscience among the public make sense in light of the polysemy of nano reflected in its broad variety of verbal forms and usages.

  18. The many faces of nano in newspaper reporting

    Science.gov (United States)

    Boholm, Max; Boholm, Åsa

    2012-02-01

    The morpheme nano in languages such as Swedish and English is a constituent of many words. This article linguistically analyses the meaning potential of nano by focusing on word use in a Swedish newspaper corpus comprising 2,564 articles (1.6 million words) covering a 22-year period (1988-2010). Close to 400 word forms having nano as a constituent have been identified and analyzed. The results suggest that nano covers a broad and heterogeneous conceptual field: (i) as a prefix of the SI system; (ii) in relation to the scientific activities of nanoscience and nanotechnology, including their sub-processes and actors; and (iii) in relation to objects. The identified meanings of nano, besides the standard definition (i.e. `billionth part' in relation to SI units), are `operating at the nanometre level' in relation to activities and their actors and `nanometre sized' and `nanotechnological' in relation to objects; in addition, the less precise and non-technical meaning `very small' is identified. We discuss the implications of the findings for a hypothesis about media influence on public understanding of technology, suggesting that repeated findings in Europe and the USA of little self-reported understanding and knowledge of nanotechnology or nanoscience among the public make sense in light of the polysemy of nano reflected in its broad variety of verbal forms and usages.

  19. Nano-structural characteristics and optical properties of silver chiral nano-flower sculptured thin films

    International Nuclear Information System (INIS)

    Savaloni, Hadi; Haydari-Nasab, Fatemh; Malmir, Mariam

    2011-01-01

    Silver chiral nano-flowers with 3-, 4- and 5-fold symmetry were produced using oblique angle deposition method in conjunction with the rotation of sample holder with different speeds at different sectors of each revolution corresponding to symmetry order of the acquired nano-flower. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM), were employed to obtain morphology and nano-structure of the films. Optical characteristics of silver chiral nano-flower thin films were obtained using single beam spectrophotometer with both s- and p-polarization incident light at 30 o and 70 o incidence angles and at different azimuthal angles (φ). Optical spectra showed both TM (TDM (transverse dipole mode) and TQM (transverse quadruple mode)) and LM (longitudinal mode) Plasmon resonance peaks. For 3- and 4-fold symmetry chiral nano-flowers the s-polarization extinction spectra obtained at different azimuthal angles did not show significant change in the Plasmon peak position while 5-fold symmetry chiral nano-flower showed a completely different behavior, which may be the result of increased surface anisotropy, so when the φ angle is changed the s-polarization response from the surface can change more significantly than that for lower symmetries. In general, for 3-, 4- and 5-fold symmetry chiral nano-flowers a sharp peak at lower wavelengths ( o incidence angle.

  20. Self-assembled metal nano-multilayered film prepared by co-sputtering method

    Science.gov (United States)

    Xie, Tianle; Fu, Licai; Qin, Wen; Zhu, Jiajun; Yang, Wulin; Li, Deyi; Zhou, Lingping

    2018-03-01

    Nano-multilayered film is usually prepared by the arrangement deposition of different materials. In this paper, a self-assembled nano-multilayered film was deposited by simultaneous sputtering of Cu and W. The Cu/W nano-multilayered film was accumulated by W-rich layer and Cu-rich layer. Smooth interfaces with consecutive composition variation and semi-coherent even coherent relationship were identified, indicating that a spinodal-like structure with a modulation wavelength of about 20 nm formed during co-deposition process. The participation of diffusion barrier element, such as W, is believed the essential to obtain the nano-multilayered structure besides the technological parameters.

  1. Nano technology for imaging and drug delivery in cancer

    International Nuclear Information System (INIS)

    Naz, S.; Qadir, M.I.; Ali, M.; Janbaz, K.H.

    2012-01-01

    Nanoparticles are multifunctional in characteristics and may be used for diagnosis as well as treatment of cancer. Nanoparticles enhance permeability, retention effects and target the tumor by avoiding reticuloendothelial system. The various nano technological approaches are used in treatment of the diseases and imaging of biological materials; like localized delivery of heat by nanoparticles, mini emulsion polymerization by nanoparticles, nanoparticles responsive to pH gradient and Nanoparticles along with ultrasonic radiations. In future, new herbal nanoparticles may be proved better in treatment of cancer and may improve life style of cancer patient. (author)

  2. Aligned Layers of Silver Nano-Fibers

    Directory of Open Access Journals (Sweden)

    Andrii B. Golovin

    2012-02-01

    Full Text Available We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polarization of transmitted light. The aligned layers of silver nano-fibers might be used in optics, microwave applications, and organic electronics.

  3. Nanosar-case study of synthetic aperture radar for nano-satellites

    NARCIS (Netherlands)

    Engelen, S.; Oever, M. van den; Mahapatra, P.; Sundaramoorthy, P.; Gill, E.; Meijer, R.J.; Verhoeven, C.

    2012-01-01

    Nano-satellites have a cost advantage due to their low mass and usage of commercial-off-the-shelf technologies. However, the low mass also restricts the functionality of a nano-satellite's payload. Typically, this would imply instruments with very low to low resolution and accuracy, essentially

  4. Self-aligned periodic Ni nano dots embedded in nano-oxide layer

    International Nuclear Information System (INIS)

    Doi, M.; Izumi, M.; Kawasaki, S.; Miyake, K.; Sahashi, M.

    2007-01-01

    The Ni nano constriction dots embedded in the Ta-nano-oxide layer (NOL) was prepared by the ion beam sputtering (IBS) method. After the various conditions of the oxidations, the structural analyses of the NOL were performed by RHEED, AES and in situ STM/AFM observations. From the current image of the conductive AFM for NOL, the periodically aligned metallic dots with the size around 5-10 nm were successfully observed. The mechanism of the formation of the self-organized aligned Ni nano constriction dots is discussed from the standpoint of the grain size, the crystal orientation, the preferred oxidation of Ta at the diffused interface

  5. On the selection of optimized carbon nano tube synthesis method using analytic hierarchy process

    International Nuclear Information System (INIS)

    Besharati, M. K.; Afaghi Khatibi, A.; Akbari, M.

    2008-01-01

    Evidence from the early and late industrializes shows that technology, as the commercial application of scientific knowledge, has been a major driver of industrial and economic development. International technology transfer is now being recognized as having played an important role in the development of the most successful late industrializes of the second half of the twentieth Century. Our society stands to be significantly influenced by carbon nano tubes, shaped by nano tube applications in every aspect, just as silicon-based technology still shapes society today. Nano tubes can be formed in various structures using several different processing methods. In this paper, the synthesis methods used to produce nano tubes in industrial or laboratory scales are discussed and a comparison is made. A technical feasibility study is conducted by using the multi criteria decision-making model, namely Analytic Hierarchy Process. The article ends with a discussion of selecting the best method of Technology Transferring of Carbon Nano tubes to Iran

  6. Review on Nano SeleniumProduced by Bacteria

    Directory of Open Access Journals (Sweden)

    LI Ji-xiang

    2014-12-01

    Full Text Available Selenium (Se is a kind of essential trace element for people and animal, while ionic state of selenium is toxic with high concentrations and will cause the selenium pollution. Nano-selenium is stable, nontoxic with higher biological activity. Application of bacteria reducing selenite or selenate to biological nano-selenium has great potential in selenium pollution control and nano-selenium production. This review summarizes the research progress of the red elemental nano-selenium reduced by bacteria including characteristics and application of nano-selenium, effects of carbon and nitrogen source, oxygen, temperature and pH in bacteria nano-selenium production, and molecular mechanisms of nano-selenium reduced by bacteria.

  7. Metal Oxide Nano structures: Synthesis, Properties, and Applications

    International Nuclear Information System (INIS)

    Xu, L. H.; Patil, D. S.; Yang, J.; Xiao, J.

    2015-01-01

    In recent years, nano structured materials have attracted wide attention due to their fascinating optical and electrical properties, which make these materials potentially suitable for applications in electronics, optics, photonics, and sensors. Some metal oxides show a wide variety of morphologies such as nano wires, nano rods, nano tubes, nano rings, and nano belts. Synthesis and investigation of these metal-oxide nano structures are beneficial not only for understanding the fundamental phenomena in low dimensional systems, but also for developing new-generation nano devices with high performance.

  8. Nano-JASMINE Data Analysis and Publication

    Science.gov (United States)

    Yamada, Y.; Hara, T.; Yoshioka, S.; Kobayashi, Y.; Gouda, N.; Miyashita, H.; Hatsutori, Y.; Lammers, U.; Michalik, D.

    2012-09-01

    The core data reduction for the Nano-JASMINE mission is planned to be done with Gaia's Astrometric Global Iterative Solution (AGIS). A collaboration between the Gaia AGIS and Nano-JASMINE teams on the Nano-JASMINE data reduction started in 2007. The Nano-JASMINE team writes codes to generate AGIS input, and this is called Initial Data Treament (IDT). Identification of observed stars and their observed field of view, getting color index, are different from those of Gaia because Nano-JASMINE is ultra small satellite. For converting centroiding results on detector to the celestial sphere, orbit and attitude data of the satellite are used. In Nano-JASMINE, orbit information is derived from on board GPS data and attitude is processed from on-board star sensor data and on-ground Kalman filtering. We also show the Nano-JASMINE goals, status of the data publications and utilizations, and introduce the next Japanese space astrometric mission.

  9. Frontiers in nano-therapeutics

    CERN Document Server

    Tasnim, Nishat; Sai Krishna, Katla; Kalagara, Sudhakar; Narayan, Mahesh; Noveron, Juan C; Joddar, Binata

    2017-01-01

    This brief highlights recent research advances in the area of nano-therapeutics. Nanotechnology holds immense potential for application in a wide range of biological and engineering applications such as molecular sensors for disease diagnosis, therapeutic agents for the treatment of diseases, a vehicle for delivering therapeutics and imaging agents for theranostic applications, both in-vitro and in-vivo. The brief is grouped into the following sections namely, A) Discrete Nanosystems ; B) Anisotropic Nanoparticles; C) Nano-films/coated/layered and D) Nano-composites.

  10. Porous Nano-Si/Carbon Derived from Zeolitic Imidazolate Frameworks@Nano-Si as Anode Materials for Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Song, Yonghai; Zuo, Li; Chen, Shouhui; Wu, Jiafeng; Hou, Haoqing; Wang, Li

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •The porous cage-like carbon/Si nanocomposites were synthesized based on nano-Si@ZIF-8-templatedmethod. •The nano-Si was uniformly embedded in porous amorphous carbon matrices. •The porous dodecahedral carbon framework effectively accommodates the volume variation of Si during the discharge/charge process. •The Si/C nanocomposites exhibit superior reversible capacity of 1168 mA h g −1 after 100 cycles. -- Abstract: Novel porous cage-like carbon (C)/nano-Si nanocomposites as anode materials for lithium-ion batteries (LIBs) was prepared based on nano-Si@zeolitic imidazolate frameworks (ZIF-8)-templated method. In this strategy, p-aminobenzoic acid was initially grafted onto nano-Si to form benzoic acid-functionalized nano-Si, and then nano-Si@ZIF-8 was constructed by alternately growing Zn(NO 3 ) 2 ·6H 2 O and 2-methylimidazolate on benzoic acid-functionalized nano-Si under ultrasound. The novel porous cage-like nano-Si/C nanocomposites were fabricated by pyrolyzing the resulted nano-Si@ZIF-8 and washing with HCl to remove off ZnO. Scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Raman spectra and N 2 adsorption/desorption isotherms were employed to characterize the porous cage-like nano-Si/C nanocomposites. The resulted nano-Si/C nanocomposites as anode materials for LIBs showed a high reversible capacity of ∼1168 mA h g −1 at 100 mA g −1 after 100 cycles, which was higher than many previously reported Si/C nanocomposites. The porous nanostructure, high specific surface area and good electrical conductivity of the cage-like nano-Si/C nanocomposites contributed together to the good performance for LIBs. It might open up a new way for application of silicon materials

  11. Recent technological advances in the application of nano-catalytic technology to the enhanced recovery and upgrading of bitumen and heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Almao, P. [Calgary Univ., AB (Canada). Schulich School of Engineering

    2013-11-01

    Advances in Nanotechnology, such as manufacturing of nano-catalysts allow the online (during processing) and on site production of nano-catalysts for heavy oils upgrading. These inventions have also facilitated the development of two lines of heavy oils upgrading processes that make use of nano-catalysts for producing upgraded oil: In Situ Upgrading and Field Upgrading. Producing chemical upgrading of heavy oils is achievable and economically viable at lower temperatures and lower pressures than used in most upgraders if the use of nano-catalysts were implemented. The spontaneity of thermal, steam and hydro processing reactions for converting the different chemical families of hydrocarbons present in the heaviest fractions of heavy oils and bitumen (HO-B) into lighter products was shown recently. Spontaneity was measured by the value of the change of free energy at low pressure. These undesirable paths are spontaneous and uncontrollable under thermal cracking conditions, and require providing years of residence time for intermolecular hydrogen redistribution to minimize olefins polymerization, if at all possible. Instead, hydroprocessing in the presence of hydrogen activating catalysts would create an abundance of hydrogen radicals impeding large molecules condensation and olefins proliferation. In Situ Upgrading: performs coupled Enhanced Oil Recovery with In Reservoir Upgrading via Hot Fluid Injection (HFI). The heat handling of this HFI process and the production of transportable oil with no need of diluent from the start of operation completes the originality of it. This technology uses heavy fractions separated from produced oil to reintroduce heat into the reservoir along with suspended nano-catalysts and hydrogen. These components react in the well bore and inside the reservoir to release more heat (hydroprocessing reactions are exothermic) producing light gases and volatile hydrocarbons that contribute to increase oil detachment from the rock resulting in

  12. Technologies for the 21st century: carbon nano tubes as adsorbents of metals

    International Nuclear Information System (INIS)

    Alguacil, F. J.; Cerpa, A.; Lado, I.; Lopez, F. A.

    2014-01-01

    Nowadays and in the recent past when the word nano appeared in almost anything it attracted immediate attention and interest, this is why carbon nano tubes, since its discovery nearly twenty years ago, caught the interest of a wide scientific and industrial population to apply the somewhat amazing properties of these nano materials in a number of applications. Among them, the removal of toxic and sometimes profitable metals from aqueous streams appeared, due to its economical and social impact, as one of the targets for their uses. This paper reviews some recent advances (2009-2013 years) in the application of carbon nano tubes materials in the removal of a variety of metals from these aqueous streams. (Author)

  13. Applications of Nano palm oil fuel ash and Nano fly ash in concrete

    Science.gov (United States)

    Hamada, Hussein M.; Jokhio, Gul Ahmed; Mat Yahaya, Fadzil; Humada, Ali M.

    2018-04-01

    This paper discusses the applications of Nano waste materials including palm oil fuel ash and fly ash in the concrete production. The implementation of nanotechnology has been instrumental in the development of significant interest among the stakeholders to improve the mechanical and chemical properties of materials involved in the production of concrete. Although many researchers have shown the potential of nanomaterials to increase strength and durability of concrete and improve its physical and chemical properties, there is still a knowledge gap regarding the preparation of Nano waste materials from agricultural waste to use as cement replacement instead of non-renewable materials. Therefore, it should be focused on to study Nano- waste materials to benefit from these characteristics during preparation of concrete mixtures. Therefore, this paper highlights the potential of waste materials in the Nano size to partially replace cement in concrete and achieve the same or better result than the traditional concrete. This paper recommends to conduct further experimental works to improve the concrete material properties by investigating the properties of waste materials in Nano size.

  14. Ecological assessment of nano-enabled supercapacitors for automotive applications

    Science.gov (United States)

    Weil, M.; Dura, H.; Shimon, B.; Baumann, M.; Zimmermann, B.; Ziemann, S.; Lei, C.; Markoulidis, F.; Lekakou, T.; Decker, M.

    2012-09-01

    New materials on nano scale have the potential to overcome existing technical barriers and are one of the most promising key technologies to enable the decoupling of economic growth and resource consumption. Developing these innovative materials for industrial applications means facing a complex quality profile, which includes among others technical, economic, and ecological aspects. So far the two latter aspects are not sufficiently included in technology development, especially from a life cycle point of view. Supercapacitors are considered a promising option for electric energy storage in hybrid and full electric cars. In comparison with presently used lithium based electro chemical storage systems supercapacitors possess a high specific power, but a relatively low specific energy. Therefore, the goal of ongoing research is to develop a new generation of supercapacitors with high specific power and high specific energy. To reach this goal particularly nano materials are developed and tested on cell level. In the presented study the ecological implications (regarding known environmental effects) of carbon based nano materials are analysed using Life Cycle Assessment (LCA). Major attention is paid to efficiency gains of nano particle production due to scaling up of such processes from laboratory to industrial production scales. Furthermore, a developed approach will be displayed, how to assess the environmental impact of nano materials on an automotive system level over the whole life cycle.

  15. Ecological assessment of nano-enabled supercapacitors for automotive applications

    International Nuclear Information System (INIS)

    Weil, M; Dura, H; Shimon, B; Baumann, M; Zimmermann, B; Ziemann, S; Decker, M; Lei, C; Markoulidis, F; Lekakou, T

    2012-01-01

    New materials on nano scale have the potential to overcome existing technical barriers and are one of the most promising key technologies to enable the decoupling of economic growth and resource consumption. Developing these innovative materials for industrial applications means facing a complex quality profile, which includes among others technical, economic, and ecological aspects. So far the two latter aspects are not sufficiently included in technology development, especially from a life cycle point of view. Supercapacitors are considered a promising option for electric energy storage in hybrid and full electric cars. In comparison with presently used lithium based electro chemical storage systems supercapacitors possess a high specific power, but a relatively low specific energy. Therefore, the goal of ongoing research is to develop a new generation of supercapacitors with high specific power and high specific energy. To reach this goal particularly nano materials are developed and tested on cell level. In the presented study the ecological implications (regarding known environmental effects) of carbon based nano materials are analysed using Life Cycle Assessment (LCA). Major attention is paid to efficiency gains of nano particle production due to scaling up of such processes from laboratory to industrial production scales. Furthermore, a developed approach will be displayed, how to assess the environmental impact of nano materials on an automotive system level over the whole life cycle.

  16. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes).

    Science.gov (United States)

    Coll, Claudia; Notter, Dominic; Gottschalk, Fadri; Sun, Tianyin; Som, Claudia; Nowack, Bernd

    2016-01-01

    The environmental risks of five engineered nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes) were quantified in water, soils, and sediments using probabilistic Species Sensitivity Distributions (pSSDs) and probabilistic predicted environmental concentrations (PECs). For water and soil, enough ecotoxicological endpoints were found for a full risk characterization (between 17 and 73 data points per nanomaterial for water and between 4 and 20 for soil) whereas for sediments, the data availability was not sufficient. Predicted No Effect Concentrations (PNECs) were obtained from the pSSD and used to calculate risk characterization ratios (PEC/PNEC). For most materials and environmental compartments, exposure and effect concentrations were separated by several orders of magnitude. Nano-ZnO in freshwaters and nano-TiO2 in soils were the combinations where the risk characterization ratio was closest to one, meaning that these are compartment/ENM combinations to be studied in more depth with the highest priority. The probabilistic risk quantification allows us to consider the large variability of observed effects in different ecotoxicological studies and the uncertainty in modeled exposure concentrations. The risk characterization results presented in this work allows for a more focused investigation of environmental risks of nanomaterials by consideration of material/compartment combinations where the highest probability for effects with predicted environmental concentrations is likely.

  17. Rapid fabrication of an ordered nano-dot array by the combination of nano-plastic forming and annealing methods

    International Nuclear Information System (INIS)

    Yoshino, Masahiko; Ohsawa, Hiroki; Yamanaka, Akinori

    2011-01-01

    In this paper, a new fabrication method for an ordered nano-dot array is developed. Combination of coating, nano-plastic forming and annealing processes is studied to produce uniformly sized and ordered gold nano-dot array on a quartz glass substrate. The experimental results reveal that patterning of a groove grid on the gold-coated substrate with NPF is effective to obtain the ordered gold nano-dot array. In the proposed fabrication process, the size of the gold nano-dot can be controlled by adjusting the groove grid size. A minimum gold nano-dot array fabricated on a quartz-glass substrate was 93 nm in diameter and 100 nm in pitch. Furthermore, the mechanism of nano-dot array generation by the presented process is investigated. Using a theoretical model it is revealed that the proposed method is capable of fabrication of smaller nano-dots than 10 nm by controlling process conditions adequately.

  18. The effect of brushing with nano calcium carbonate and calcium carbonate toothpaste on the surface roughness of nano-ionomer

    Science.gov (United States)

    Anisja, D. H.; Indrani, D. J.; Herda, E.

    2017-08-01

    Nanotechnology developments in dentistry have resulted in the development of nano-ionomer, a new restorative material. The surface roughness of restorative materials can increase bacteria adhesion and lead to poor oral hygiene. Abrasive agents in toothpaste can alter tooth and restorative material surfaces. The aim of this study is to identify the effect of brushing with nano calcium carbonate, and calcium carbonate toothpaste on surface roughness of nano-ionomer. Eighteen nano-ionomer specimens were brushed with Aquabidest (doubledistilled water), nano calcium carbonate and calcium carbonate toothpaste. Brushing lasted 30 minutes, and the roughness value (Ra) was measured after each 10 minute segment using a surface roughness tester. The data was analyzed using repeated ANOVA and one-way ANOVA test. The value of nano-ionomer surface roughness increased significantly (p<0.05) after 20 minutes of brushing with the nano calcium carbonate toothpaste. Brushing with calcium carbonate toothpaste leaves nano-ionomer surfaces more rugged than brushing with nano calcium carbonate toothpaste.

  19. The Potential of Nano materials for Drug Delivery, Cell Tracking, and Regenerative Medicine 2014

    International Nuclear Information System (INIS)

    Vasilev, K.; Vasilev, K.; Chen, H.; Murray, P.; Mantovani, D.

    2014-01-01

    Nano materials have become the building blocks of revolutionary technologies that have opened unprecedented opportunities across the entire global economy. Nano materials are particulates of various shapes and forms and assemblies that typically have a size range between 1 and 100 nm. Nature has designed and used nano materials for billions of years. For instance, proteins and viruses are complex nano engineered structures that have been designed by Nature to perform highly specific and refined roles. It was only in the last two decades that we learned how to engineer and use materials at the nano scale in a relatively large scale. Despite revolutionizing many technologies, these materials are far from the perfection that Nature has created. Thus, scientists and engineers are presented with enormous challenges and opportunities to explore, interrogate, and utilize the unique properties of nano materials to improve standards of living and drive economic prosperity

  20. Selected Topics in MicroNano-robotics for Biomedical Applications

    CERN Document Server

    2013-01-01

    Selected Topics in Micro/Nano-robotics for Biomedical Applications features a system approach and incorporates modern methodologies in autonomous mobile robots for programmable and controllable micro/nano-robots aiming at biomedical applications. The book provides chapters of instructional materials and cutting-edge research results in micro/nanorobotics for biomedical applications. The book presents new sensing technology on nanofibers, new power supply techniques including miniature fuel cells and energy harvesting devices, and manipulation techniques including AFM-based nano-robotic manipulation, robot-aided optical tweezers, and robot-assisted catheter surgery systems. It also contains case studies on using micro/nano-robots in biomedical environments and in biomedicine, as well as a design example to conceptually develop a Vitamin-pill sized robot to enter human’s gastrointestinal tract. Each chapter covers a different topic of the highly interdisciplinary area. Bring together the selected topics into ...

  1. Novel plasmon nano-lasers

    NARCIS (Netherlands)

    Hill, M.T.; Marell, M.J.H.

    2010-01-01

    We will discuss some of the latest developments in metallic and plasmonic nano-lasers. Furthermore we will present our latest results on further miniaturization of electrically pumped plasmonic nano-lasers and also DFB Plasmon mode devices.

  2. Preparation and characterization of bipolar membranes modified by photocatalyst nano-ZnO and nano-CeO2

    International Nuclear Information System (INIS)

    Zhou Tingjin; Hu Yanyu; Chen Riyao; Zheng Xi; Chen Xiao; Chen Zhen; Zhong Jieqiong

    2012-01-01

    Nano-ZnO-CeO 2 coupled semiconductor was added into the chitosan (CS) anion exchange membrane layer to prepare the PVA-CMC/nano-ZnO-CeO 2 -CS (here, PVA: polyvinyl alcohol; CMC: carboxymethyl cellulose) bipolar membrane (BPM), and the prepared BPM was characterized by SEM, J-V characteristics, electronic universal testing machine, contact angle measurement and so on. Experimental results showed that nano-ZnO-CeO 2 exhibited better photocatalytic property for water splitting at the interlayer of BPM than nano-ZnO or nano-CeO 2 , which could greatly reduce the membrane impedance of the BPM. Under the irradiation of high-pressure mercury lamps, the cell voltage of PVA-CMC/nano-ZnO-CeO 2 -CS BPM decreased by 0.7 V at the current density of 60 mA/cm 2 , and the cell voltages of PVA-CMC/nano-ZnO-CS BPM and PVA-CMC/nano-CeO 2 -CS BPM were only reduced by 0.3 V and 0.5 V, respectively. Furthermore, the hydrophilicity, and mechanical properties of the modified BPM were increased.

  3. Progress in Nano-Electro-Optics III Industrial Applications and Dynamics of the Nano-Optical System

    CERN Document Server

    Ohtsu, Motoichi

    2005-01-01

    This unique monograph series "Progress in Nano-Electro Optics" reviews the results of advanced studies of electro-optics on the nanometric scale. This third volume covers the most recent topics of theoretical and experimental interest including classical and quantum optics, organic and inorganic material science and technology, surface science, spectroscopy, atom manipulation, photonics, and electronics. Each chapter is written by one or more leading scientists from the relevant field. Thus, high-quality scientific and technical information is provided to scientists, engineers, and students engaged in nano-electro optics and nanophotonics research. The first two volumes addressed the "Basics and Theory of Near Field Optics" (2002) and "Novel Devices and Atom Manipulation" (2003).

  4. Applications and Nano toxicity of Carbon Nano tubes and Graphene in Biomedicine Caitlin Fisher

    International Nuclear Information System (INIS)

    Rider, A.E.; Han, Z.J.; Kumar, S.; Levchenko, L.; Ostrikov, K.K.

    2012-01-01

    Owing to their unique mechanical, electrical, optical, and thermal properties, carbon nano structures including carbon nano tubes and graphenes show great promise for advancing the fields of biology and medicine. Many reports have demonstrated the promise of these carbon nano structures and their hybrid structures (composites with polymers, ceramics, and metal nanoparticles, etc.) for a variety of biomedical areas ranging from bio sensing, drug delivery, and diagnostics, to cancer treatment, tissue engineering, and bio terrorism prevention. However, the issue of the safety and toxicity of these carbon nano structures, which is vital to their use as diagnostic and therapeutic tools in biomedical fields, has not been completely resolved. This paper aims to provide a summary of the features of carbon nano tube and graphene-based materials and current research progress in biomedical applications. We also highlight the current opinions within the scientific community on the toxicity and safety of these carbon structures

  5. The Degradation of Mechanical Properties in Halloysite Nano clay-Polyester Nano composites Exposed in Seawater Environment

    International Nuclear Information System (INIS)

    Saharudin, M.S.; Saharudin, M. Sh.; Wei, J.; Shyha, I.; Inam, F.

    2016-01-01

    Polyester based polymers are extensively used in aggressive marine environments; however, inadequate data is available on the effects of the seawater on the polyester based nano composites mechanical properties. This paper reports the effect of seawater absorption on the mechanical properties degradation of halloysite nano clay-polyester nano composites. Results confirmed that the addition of halloysite nano clay into polyester matrix was found to increase seawater uptake and reduce mechanical properties compared to monolithic polyester. The maximum decreases in microhardness, tensile and flexural properties, and impact toughness were observed in case of 1 wt% nano clay. The microhardness decreased from 107 HV to 41.7 HV (61% decrease). Young s modulus decreased from 0.6 GPa to 0.4 GPa (33% decrease). The flexural modulus decreased from 0.6 GPa to 0.34 GPa (43% decrease). The impact toughness dropped from 0.71 kJ/m"2 to 0.48 kJ/m"2 (32% decrease). Interestingly, the fracture toughnessκ_1C increased with the addition of halloysite nano clay due to the plasticization effect of the resin matrix. SEM images revealed the significant reduction in mechanical properties in case of 1 wt% reinforcement which is attributed to the degradation of the nano clay-matrix interface influenced by seawater absorption and agglomeration of halloysite nano clay.

  6. Applications of Nano-optics.

    Science.gov (United States)

    Zhou, Changhe; Fainman, Yeshaiahu; Sheng, Yunlong

    2011-11-01

    As nanoscale fabrication techniques advance, nano-optics continues to offer enabling solutions to numerous practical applications for information optics. This Applied Optics feature issue focuses on the Application of Nano-optics. © 2011 Optical Society of America

  7. A novel approach to nano topology via neutrosophic sets

    OpenAIRE

    M. Lellis Thivagar; Saeid Jafari; V. Sutha Devi; V. Antonysamy

    2018-01-01

    The main objective of this study is to introduce a new hybrid intelligent structure called Neutrosophic nano topology. Fuzzy nano topology and intuitionistic nano topology can also be deduced from the neutrosophic nano topology. Based on the neutrosophic nano approximations we have classified neutrosophic nano topology. Some properties like neutrosophic nano interior and neutrosophic nano closure are derived.

  8. Enhanced biomimic bactericidal surfaces by coating with positively-charged ZIF nano-dagger arrays.

    Science.gov (United States)

    Yuan, Yuan; Zhang, Yugen

    2017-10-01

    Cicada wing surfaces are covered with dense patterns of nano-pillar structure that prevent bacterial growth by rupturing adhered microbial cells. To mimic the natural nano-pillar structure, we developed a general and simple method to grow metal organic framework (MOF) nano-dagger arrays on a wide range of surfaces. These nano-daggers possess high bactericidal activity, with log reduction >7 for Escherichia coli and Staphylococcus aureus. It was hypothesized that the positively-charged ZIF-L nano-dagger surfaces enhance bacterial cell adhesion, facilitating selective and efficient bacteria killing by the rigid and sharp nano-dagger tips. This research provides a safe and clean antimicrobial surface technology which does not require external chemicals and will not cause drug resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Studying Of Preparation Silver Nano-Particles Using Spinning Disc Reactor

    International Nuclear Information System (INIS)

    Hoang Van Duc; Nguyen Thanh Chung; Tran Ngoc Ha; Ho Minh Quang; Nguyen Thi Thuc Phuong

    2014-01-01

    Preparation of silver nano-particles using spinning disc reactor has been investigated. The effects of technological factors and experimental conditions such as: concentrations of AgNO 3 , glucose, PVP, spinning speed, ect. on quality of nano-silver particles have been studied. With experimental conditions: rotation speed of 2000 rpm, weight rate of m PVP :m AgNO 3 = 1, AgNO 3 concentration of 0.01 M, glucose concentration of 0.02 M, silver particles of about 12 nm were obtained and the nano-silver solution were stable for more than 40 days. (author)

  10. Phenazopyridine-phthalimide nano-cocrystal: Release rate and oral bioavailability enhancement.

    Science.gov (United States)

    Huang, Yu; Li, Jin-Mei; Lai, Zhi-Hui; Wu, Jun; Lu, Tong-Bu; Chen, Jia-Mei

    2017-11-15

    Both cocrystal and nanocrystal technologies have been widely used in the pharmaceutical development for poorly soluble drugs. However, the synergistic effects due to the integration of these two technologies have not been well investigated. The aim of this study is to develop a nano-sized cocrystal of phenazopyridine (PAP) with phthalimide (PI) to enhance the release rate and oral bioavailability of PAP. A PAP-PI nano-cocrystal with particle diameter of 21.4±0.1nm was successfully prepared via a sonochemical approach and characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and dynamic light scattering (DLS) analysis. An in vitro release study revealed a significant release rate enhancement for PAP-PI nano-cocrystal as compared to PAP-PI cocrystal and PAP hydrochloride salt. Further, a comparative oral bioavailability study in rats indicated significant improvement in C max and oral bioavailability (AUC 0-∞ ) by 1.39- and 2.44-fold, respectively. This study demonstrated that this novel nano-cocrystal technology can be a new promising option to improve release rate and absorption of poorly soluble compounds in the pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Mass transfer in nano-fluids: A review

    International Nuclear Information System (INIS)

    Ashrafmansouri, Seyedeh-Saba; Esfahany, Mohsen Nasr

    2014-01-01

    Growing attention has been recently paid to nano-fluids because of their potential for augmenting transfer processes - i.e., heat and mass transfer. Conflicting results have been reported in the literature on mass transfer in nano-fluids. The aim of this paper is to summarize the literature on mass transfer in nano-fluids stating the conflicts and possible reasons. Literature on mass transfer in nano-fluids has been reviewed in two sections. The first section concentrates on surveying mass diffusivity in nano-fluids while the second section focuses on convective mass transfer in nano-fluids. In each section, published articles, type of nano-fluids used, size and concentration range of nanoparticles, measurement methods, maximum observed enhancement, and suggested mass transport mechanisms are summarized. (authors)

  12. Spin-accumulation effect in magnetic nano-bridge

    International Nuclear Information System (INIS)

    Khvalkovskii, A.V.; Zvezdin, A.A.; Zvezdin, K.A.; Pullini, D.; Perlo, P.

    2004-01-01

    Large values of magnetoresistance experimentally observed in magnetic nano-contacts and nano-wires are explained in terms of spin accumulation. The investigation of the spin-accumulation effect in magnetic nano-contacts (Phys. Rev. Lett. 82 (1999) 2923) and nano-bridges (JETP Lett. 75 (10) (2002) 613), which are considered to be very promising for various spintronic applications, is presented. The two-dimensional spin-diffusion problem in a magnetic nano-bridge is solved. Dependences of the specific resistance of the domain wall and of the distribution of non-equilibrium spin density on the nano-bridge geometry and the material parameters are obtained

  13. Study the scratch resistance of UV-cured epoxy acrylate in the presence of nano alumina particles via nano indentation

    International Nuclear Information System (INIS)

    Bastani, S.; Ebrahimi, M.; Kardar, P.

    2007-01-01

    In this research, an epoxy acrylate resin was synthesized, then the synthesized resin was used along with different multifunctional acrylate monomers and with a photoinitiator in different formulations and cured with UV radiation. The experiments were designed based on mixture method by using Design-Expert software. To investigate the effect of nano particles on the some of physical and mechanical properties of the UV cured resins, the suspension of nano alumina in TPGDA, was used in formulations. The hardness of prepared films was evaluated by using konig hardness tester and nano indentater. The scratch resistance and gloss of the films were also determined. The results showed that the visibility of scratch decreased when the nano particles were used. It seems that the self-healing property of the film improved in the presence of nano particles. The hardness of the samples with nano particles was found to be less than that the samples of without any nano particles. It was observed that the gloss of the films with the nano particles, almost was the same as the film without nano particles. (Author)

  14. Proceedings of the workshop on new material development. Nano-technology and hydrogen energy society

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Asano, Masaharu; Ohshima, Takeshi; Sugimoto, Masaki; Ohgaki, Junpei

    2005-03-01

    We have newly held the Workshop on New Material Development in order to enhance the research activities on new material development using radiation. Theme of this workshop was 'nano-technology and hydrogen', both of which are considered to have great influence on our social life and have shown rapid progress in the related researches, recently. Researchers from domestic universities, research institutes, and private companies have attended at the workshop and had the opportunity to exchange information and make discussions about the latest trend in the leading edge researches, and have contributed to the material development in future. The technology for manufacturing and evaluation of very fine materials, which is essential for the nano-technology, and the development of new functional materials, which will support the hydrogen energy society in future, have increasingly become important and have been intensively investigated by many research groups. In such investigation, the ionizing radiation is indispensable as the tool for probing and modifying materials. For this reason, this workshop was held at JAERI, Takasaki, a center of excellence for radiation application in Japan. This workshop was held by JAERI, Takasaki, on November 19, 2004 under the joint auspices of the Atomic Energy Society of Japan, the Chemical Society of Japan, the Polymer Science Society of Japan and the Japanese Society of Radiation Chemistry. The workshop was attended by 97 participates. We believe that this workshop supported by many academic societies will largely contribute to the research on new material development in the field of nano-technology and hydrogen. The 10 of the presented papers are indexed individually. (J.P.N.)

  15. Nano-structural characteristics and optical properties of silver chiral nano-flower sculptured thin films

    Energy Technology Data Exchange (ETDEWEB)

    Savaloni, Hadi, E-mail: savaloni@khayam.ut.ac.ir [Department of Physics, University of Tehran, North-Kargar Street, Tehran (Iran, Islamic Republic of); Haydari-Nasab, Fatemh; Malmir, Mariam [Department of Physics, University of Tehran, North-Kargar Street, Tehran (Iran, Islamic Republic of)

    2011-08-15

    Silver chiral nano-flowers with 3-, 4- and 5-fold symmetry were produced using oblique angle deposition method in conjunction with the rotation of sample holder with different speeds at different sectors of each revolution corresponding to symmetry order of the acquired nano-flower. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM), were employed to obtain morphology and nano-structure of the films. Optical characteristics of silver chiral nano-flower thin films were obtained using single beam spectrophotometer with both s- and p-polarization incident light at 30{sup o} and 70{sup o} incidence angles and at different azimuthal angles ({phi}). Optical spectra showed both TM (TDM (transverse dipole mode) and TQM (transverse quadruple mode)) and LM (longitudinal mode) Plasmon resonance peaks. For 3- and 4-fold symmetry chiral nano-flowers the s-polarization extinction spectra obtained at different azimuthal angles did not show significant change in the Plasmon peak position while 5-fold symmetry chiral nano-flower showed a completely different behavior, which may be the result of increased surface anisotropy, so when the {phi} angle is changed the s-polarization response from the surface can change more significantly than that for lower symmetries. In general, for 3-, 4- and 5-fold symmetry chiral nano-flowers a sharp peak at lower wavelengths (<450 nm) is observed in the s-polarization spectra, while in addition to this peak a broad peak at longer wavelengths (i.e., LM) observed in the p-polarization spectra, which is more dominant for 70{sup o} incidence angle.

  16. Fabrication of Nano-CeO2 and Application of Nano-CeO2 in Fe Matrix Composites

    International Nuclear Information System (INIS)

    Tiebao, W.; Chunxiang, C.; Xiaodong, W.; Guobin, L.

    2010-01-01

    It is expatiated that nano-CeO2 is fabricated by the direct sedimentation method. The components and particles diameter of nano-CeO2 powders are analyzed by XRD and SEM . The thermodynamic analysis and acting mechanism of nano-CeO2 with Al in Fe matrix composites are researched, which shows that the reaction is generated between CeO2 and Al in the composite, that is, 3CeO2+4Al - 2Al2O3+3[Ce], which obtains Al2O3 and active [Ce] during the sintering process. The active [Ce] can improve the performance of CeO2/Fe matrix composites. The suitable amount of CeO2 is about 0.05% in CeO2/Fe matrix composites. SEM fracture analysis shows that the toughness sockets in nano-CeO2/Fe matrix composites are more than those in no-added nano-CeO2 composites, which can explain that adding nano-CeO2 into Fe matrix composite, the toughness of the composite is improved significantly. Applied nano-CeO2 to Fe matrix diamond saw blades shows that Fe matrix diamond saw blade is sharper and of longer cutting life than that with no-added nano-CeO2.

  17. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    Science.gov (United States)

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances. Copyright © 2014. Published by Elsevier B.V.

  18. Nano-sensing of the orientation of fluorescing molecules with active coated nano-particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Ziolkowski, Richard W.

    2015-01-01

    The potential of using active coated nano-particles to determine the orientation of fluorescing molecules is reported. By treating each fluorescing molecule as an electric Hertzian dipole, single and multiple fluorescing molecules emitting coherently and incoherently in various orientations...... are considered in the presence of active coated nano-particles. It is demonstrated that in addition to offering a means to determine the orientation of a single molecule or the over-all orientation of the molecules surrounding it, the nature of the far-field response from the active coated nano...

  19. Control of the Nano-Particle Weight Ratio in Stainless Steel Micro and Nano Powders by Radio Frequency Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Dong-Yeol Yang

    2015-11-01

    Full Text Available This study describes how to make stainless steel hybrid micro-nano-powders (a mixture of micro-powder and nano-powder using an in situ one-step process via radio frequency (RF thermal plasma treatment. Nano-particles attached to micro-powders were successfully prepared by RF thermal plasma treatment of stainless steel powder with an average size of 35 μm. The ratio of nano-powders is estimated with a two-dimensional fluid simulation that calculates the temperature profile influencing the rate of surface evaporation. The simulation is conducted to determine the variation of the input power and the distance from the plasma torch to the feeding nozzle. It was demonstrated experimentally that the nano-powder ratio in the micro-nano-powder mixture can be controlled by adjusting the feeding rate, plasma power, feeding position and quenching effect during plasma treatment. The ratio of nano-particles in the micro-nano-powder mixture was controlled in a range from 0.1 (wt. % to 30.7 (wt. %.

  20. Design and Preparation of Nano-Lignin Peroxidase (NanoLiP by Protein Block Copolymerization Approach

    Directory of Open Access Journals (Sweden)

    Turgay Tay

    2016-06-01

    Full Text Available This study describes the preparation of nanoprotein particles having lignin peroxidase (LiP using a photosensitive microemulsion polymerization technique. The protein-based nano block polymer was synthesized by cross-linking of ligninase enzyme with ruthenium-based aminoacid monomers. This type polymerization process brought stability in different reaction conditions, reusability and functionality to the protein-based nano block polymer system when compared the traditional methods. After characterization of the prepared LiP copolymer nanoparticles, enzymatic activity studies of the nanoenzymes were carried out using tetramethylbenzidine (TMB as the substrate. The parameters such as pH, temperature and initial enzyme concentration that affect the activity, were investigated by using prepared nanoLip particles and compared to free LiP. The reusability of the nano-LiP particles was also investigated and the obtained results showed that the nano-LiP particles exhibited admirable potential as a reusable catalyst.

  1. NanoClusters Enhance Drug Delivery in Mechanical Ventilation

    Science.gov (United States)

    Pornputtapitak, Warangkana

    The overall goal of this thesis was to develop a dry powder delivery system for patients on mechanical ventilation. The studies were divided into two parts: the formulation development and the device design. The pulmonary system is an attractive route for drug delivery since the lungs have a large accessible surface area for treatment or drug absorption. For ventilated patients, inhaled drugs have to successfully navigate ventilator tubing and an endotracheal tube. Agglomerates of drug nanoparticles (also known as 'NanoClusters') are fine dry powder aerosols that were hypothesized to enable drug delivery through ventilator circuits. This Thesis systematically investigated formulations of NanoClusters and their aerosol performance in a conventional inhaler and a device designed for use during mechanical ventilation. These engineered powders of budesonide (NC-Bud) were delivered via a MonodoseRTM inhaler or a novel device through commercial endotracheal tubes, and analyzed by cascade impaction. NC-Bud had a higher efficiency of aerosol delivery compared to micronized stock budesonide. The delivery efficiency was independent of ventilator parameters such as inspiration patterns, inspiration volumes, and inspiration flow rates. A novel device designed to fit directly to the ventilator and endotracheal tubing connections and the MonodoseRTM inhaler showed the same efficiency of drug delivery. The new device combined with NanoCluster formulation technology, therefore, allowed convenient and efficient drug delivery through endotracheal tubes. Furthermore, itraconazole (ITZ), a triazole antifungal agent, was formulated as a NanoCluster powder via milling (top-down process) or precipitation (bottom-up process) without using any excipients. ITZ NanoClusters prepared by wet milling showed better aerosol performance compared to micronized stock ITZ and ITZ NanoClusters prepared by precipitation. ITZ NanoClusters prepared by precipitation methods also showed an amorphous state

  2. The nano-BIon in nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Sepehri, Alireza, E-mail: alireza.sepehri@uk.ac.ir [Nano Research Center of the Ferdowsi University, Mashhad (Iran, Islamic Republic of); Faculty of Physics, Shahid Bahonar University, P.O. Box 76175, Kerman (Iran, Islamic Republic of)

    2016-04-01

    Recently, some authors have considered the superconductivity in nano-cubes and shown that by decreasing the size of these systems, superconductivity order parameter increases. In this research, we show that the same result can be obtained in a nano-BIon which is a configuration of two layers of cuprates connected by an electronic tube. This tube is a channel for transporting energy and matter inside a superconductor and acts as a wormhole in this system. This wormhole-like-tube is formed by decreasing the separation distance between layers of nano-cuprate and enhancing the cooper hopping pairing between layers. We estimate the critical temperature of superconductor and find that it depends on the size of nano-BIon and coupling between atoms in a layer. Also, we observe that external magnetic field generates a new tube which causes losing the energy density of nano-BIon between two layers and decreasing critical temperature of superconductor.

  3. A Novel Silicon-based Wideband RF Nano Switch Matrix Cell and the Fabrication of RF Nano Switch Structures

    Directory of Open Access Journals (Sweden)

    Yi Xiu YANG

    2011-12-01

    Full Text Available This paper presents the concept of RF nano switch matrix cell and the fabrication of RF nano switch. The nano switch matrix cell can be implemented into complex switch matrix for signal routing. RF nano switch is the decision unit for the matrix cell; in this research, it is fabricated on a tri-layer high-resistivity-silicon substrate using surface micromachining approach. Electron beam lithography is introduced to define the pattern and IC compatible deposition process is used to construct the metal layers. Silicon-based nano switch fabricated by IC compatible process can lead to a high potential of system integration to perform a cost effective system-on-a-chip solution. In this paper, simulation results of the designed matrix cell are presented; followed by the details of the nano structure fabrication and fabrication challenges optimizations; finally, measurements of the fabricated nano structure along with analytical discussions are also discussed.

  4. Rapid thermal melted TiO2 nano-particles into ZnO nano-rod and its application for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Chao, Ching-Hsun; Chang, Chi-Lung; Chan, Chien-Hung; Lien, Shui-Yang; Weng, Ko-Wei; Yao, Kuo-Shan

    2010-01-01

    TiO 2 nano-particles with an anchored ZnO nano-rod structure were synthesized using the hydrothermal method to grow ZnO nano-rods and coated TiO 2 nano-particles on ZnO nano-rods using the rapid thermal annealing method on ITO conducting glass pre-coated with nano porous TiO 2 film. The XRD study showed that there was little difference in crystal composition for various types of TiO 2 nano-particles anchored to ZnO nano-rods. The as-prepared architecture was characterized using field-emission scanning electron microscopy (FE-SEM). Films with TiO 2 nano-particles anchored to ZnO nano-rods were used as electrode materials to fabricate dye sensitized solar cells (DSSCs). The best solar energy conversion efficiency of 2.397% was obtained by modified electrode material, under AM 1.5 illumination, achieved up to J sc = 15.382 mA/cm 2 , V oc = 0.479 V and fill factor = 32.8%.

  5. Getting nano tattoos right - a checklist of legal and ethical hurdles for an emerging nanomedical technology.

    Science.gov (United States)

    Bennett, Michael G; Naranja, R John

    2013-08-01

    The nano tattoo represents a nascent technology designed to be implanted in the skin to provide continuous and reliable glucose detection for diabetics. Its potential benefits are compelling not only for its ability to prevent diabetic complications and decrease related social costs, but also for its ease of use and relative patient-user comfort. This Note aims to articulate a checklist of fundamental intellectual property, bioethical and system design issues that are appropriately considered in the pre-clinical, pre-commercialization phase of nano tattoo development. Early and regular consideration of these factors can increase the odds of a societally beneficial dissemination of this device by engaging relevant researcher, medical, patient-user and patient-advocate communities concerned with its appropriate application, as well as policymaking communities focused on effectively managing diabetes-related healthcare costs. The checklist of factors includes fundamental issues and is generally applicable to nanomedical inventions. This paper presents a comprehensive list of fundamental intellectual property, bioethical, and system design issues to be considered in the pre-commercialization phase of nanomedicine development, through the specific example of nano tattoo development. Nano tattoo is designed to be implanted in the skin to provide reliable glucose monitoring for diabetics, enabling enhanced prevention of complications and decreased socioeconomic costs. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Study on the Effect of Heat Treatment on Physical Properties of Poplar and Beech Woods Impregnated with Nano-Copper and Nano-Silver

    Directory of Open Access Journals (Sweden)

    Hassan Siahposht

    2012-06-01

    Full Text Available Present study conducted to review effects of heat treatment on weight loss, water adsorption, and thickness swelling of poplar (Populus nigra and beech (Fagus oreintalis woods impregnated with nano-copper and nano-silver. Specimens werepressur (2.5 bar impregnated with 400 PPM water-based solution of nano-copper and nano-silver particles in a pressure vessel. For heat treatment, nano-cupper,  nano-silver impregnated and control specimens, were heat treated at 145°C temperature for 24 hours. Water absorption and thickness swelling decreased in heat treated and nano-heat treated specimens and this decrease in specimens impregnated with nano-copper and nano-silver was more obvious than in heat treated control specimens. The reasons were the degradation in crystal sections of celluloses chains and the ink variation of wood polymers. On the other hand, a comparison between heat treated and nano- heat treated specimens has shown weight loss further in nano-heat treated specimens. This shows that retent nano-copper and nano-silver by impregnation facilitates heat transfer in wood; and it may increase the process of degradation and pyrolysis of wood structures in inner parts of specimens.

  7. Synthesis of nano-composite surfaces via the co-deposition of metallic salts and nano particles

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, J.W.; Tesh, S.J.; Crane, R.A.; Hallam, K.R.; Scott, T.B.

    2014-03-15

    Highlights: • Nanofaceted surfaces are prepared by a low current density (<0.1 A cm{sup 2}) electrodeposition method. • Surfaces are formed of nanoparticles anchored to a conductive (carbon) substrate. • Formed surfaces show a high nano-reactivity and surface area. • Demonstration of INP/FeCl{sub 3} nanocomposite for water filtration effectively removing BTEX contamination. -- Abstract: A novel, low energy method for coating different nano-particles via electro-deposition to a recyclable carbon glass supporting structure is demonstrated. In the resulting composite, the nano-material is bound to the substrate surface, thereby removing the potential for causing harmful interactions with the environment. Nano-particles were suspended in a salt solution and deposited at low current densities (<0.1 A cm{sup −2}) producing thin (<100 nm), uniform nano-faceted surfaces. A co-deposition mechanism of nano-particles and cations from the salt solution is proposed and explored. This has been successfully demonstrated for iron, sliver, titanium in the current work. Furthermore, the removal of the surface coatings can be achieved via a reversed current applied over the system, allowing for the recovery of surface bound metal contaminants. The demonstrated applicability of this coating method to different nano-particle types, is useful in many areas within the catalysis and water treatment industries. One such example, is demonstrated, for the treatment of BTEX contamination and show a greatly improved efficiency to current leading remediation agents.

  8. Nano-ethics as NEST-ethics: Patterns of Moral Argumentation About New and Emerging Science and Technology

    NARCIS (Netherlands)

    Swierstra, Tsjalling; Rip, Arie

    2007-01-01

    There might not be a specific nano-ethics, but there definitely is an ethics of new & emerging science and technology (NEST), with characteristic tropes and patterns of moral argumentation. Ethical discussion in and around nanoscience and technology reflects such NEST-ethics. We offer an inventory

  9. Nano cobalt oxides for photocatalytic hydrogen production

    KAUST Repository

    Mangrulkar, Priti A.

    2012-07-01

    Nano structured metal oxides including TiO 2, Co 3O 4 and Fe 3O 4 have been synthesized and evaluated for their photocatalytic activity for hydrogen generation. The photocatalytic activity of nano cobalt oxide was then compared with two other nano structured metal oxides namely TiO 2 and Fe 3O 4. The synthesized nano cobalt oxide was characterized thoroughly with respect to EDX and TEM. The yield of hydrogen was observed to be 900, 2000 and 8275 mmol h -1 g -1 of photocatalyst for TiO 2, Co 3O 4 and Fe 3O 4 respectively under visible light. It was observed that the hydrogen yield in case of nano cobalt oxide was more than twice to that of TiO 2 and the hydrogen yield of nano Fe 3O 4 was nearly four times as compared to nano Co 3O 4. The influence of various operating parameters in hydrogen generation by nano cobalt oxide was then studied in detail. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  10. PLGA nanoparticles from nano-emulsion templating as imaging agents: Versatile technology to obtain nanoparticles loaded with fluorescent dyes.

    Science.gov (United States)

    Fornaguera, C; Feiner-Gracia, N; Calderó, G; García-Celma, M J; Solans, C

    2016-11-01

    The interest in polymeric nanoparticles as imaging systems for biomedical applications has increased notably in the last decades. In this work, PLGA nanoparticles, prepared from nano-emulsion templating, have been used to prepare novel fluorescent imaging agents. Two model fluorescent dyes were chosen and dissolved in the oil phase of the nano-emulsions together with PLGA. Nano-emulsions were prepared by the phase inversion composition (PIC) low-energy method. Fluorescent dye-loaded nanoparticles were obtained by solvent evaporation of nano-emulsion templates. PLGA nanoparticles loaded with the fluorescent dyes showed hydrodynamic radii lower than 40nm; markedly lower than those reported in previous studies. The small nanoparticle size was attributed to the nano-emulsification strategy used. PLGA nanoparticles showed negative surface charge and enough stability to be used for biomedical imaging purposes. Encapsulation efficiencies were higher than 99%, which was also attributed to the nano-emulsification approach as well as to the low solubility of the dyes in the aqueous component. Release kinetics of both fluorescent dyes from the nanoparticle dispersions was pH-independent and sustained. These results indicate that the dyes could remain encapsulated enough time to reach any organ and that the decrease of the pH produced during cell internalization by the endocytic route would not affect their release. Therefore, it can be assumed that these nanoparticles are appropriate as systemic imaging agents. In addition, in vitro toxicity tests showed that nanoparticles are non-cytotoxic. Consequently, it can be concluded that the preparation of PLGA nanoparticles from nano-emulsion templating represents a very versatile technology that enables obtaining biocompatible, biodegradable and safe imaging agents suitable for biomedical purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt.

    Science.gov (United States)

    Ghorbanzade, Tahere; Jafari, Seid Mahdi; Akhavan, Sahar; Hadavi, Roxana

    2017-02-01

    Fish oils have many dietary benefits, but due to their strong odors and rapid deterioration, their application in food formulations is limited. For these reasons, nano-liposome was used to nano-encapsulate fish oil in this study and encapsulated fish oil was utilized in fortifying yogurt. Physicochemical properties of produced yogurt including pH, acidity, syneresis, fatty acid composition, peroxide value as well as sensory tests were investigated during three weeks storage at 4°C. Nano-liposome encapsulation resulted in a significant reduction in acidity, syneresis and peroxide value. The results of gas chromatography analyses revealed that after 21days storage, yogurt fortified with nano-encapsulated fish oil had a higher DHA and EPA contents than yogurt containing free fish oil. Overall, the results of this study indicates that adding nano-encapsulated fish oil into yogurt gave closer characteristics to control sample in terms of sensory characteristics than yogurt fortified with free fish oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Nano-based PCMs for building energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kaushik [ORNL

    2016-01-01

    Thermal storage using phase change materials (PCMs) is seen as a viable method for improving the energy efficiency of buildings. PCMs have been used in building applications in various forms PCM slurries in heat exchangers, macro- or microencapsulated PCMs in building envelopes, bulk PCM for modulating photovoltaic temperatures, etc. In the last decade a new class of PCMs, called nano-enhanced PCM (or nanoPCM), has been extensively investigated with the goal of improving the heat transfer and thermal storage properties of PCMs. NanoPCMs can primarily be categorized as nano-encapsulated PCMs and nanoparticle-PCM composites. The former are nano-sized capsules in which the PCM forms the core and is surrounded by a high-conductivity membrane or shell. The latter consist of PCM supported within nanostructures or nanoparticles dispersed in PCMs. This article reviews the current state of nanoPCM synthesis and characterization of their heat transfer and thermal storage properties. Further, a critical review of nanoPCM applications and their potential energy benefits is performed. Nano-enhanced PCMs exhibit higher thermal conductivities than regular PCM. However, whether the higher conductivity is desirable in all applications and if the property enhancements are worth the cost and effort needed to create nanoPCMs are questions that still need to be answered.

  13. Report of International NanoSPD Steering Committee and statistics on recent NanoSPD activities

    International Nuclear Information System (INIS)

    Valiev, R Z; Langdon, T G

    2014-01-01

    Abstract. The Université de Lorraine in Metz, France, is the selected site for the 6th International Conference on Nanomaterials by Severe Plastic Deformation (NanoSPD6) following a series of five earlier conferences. This introductory paper reports on several major developments in NanoSPD activities as well as on very recent NanoSPD citation data which confirm the continued growth and expansion of this important research area. Close attention is given to the topics of workshops, conferences and seminars organized during these last three years as well as on books and reviews published prior to the NanoSPD6 conference. A special concern of the committee is in introducing and discussing the appropriate terminology to be applied in this new field of materials science and engineering

  14. TRANSFORMATIONS IN NANO-DIAMONDS WITH FORMATION OF NANO-POROUS SILICON CARBIDE AT HIGH PRESSURE

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2010-01-01

    Full Text Available The paper contains investigations on regularities of diamond - silicon carbide composite structure formation at impact-wave excitation. It has been determined that while squeezing a porous blank containing Si (SiC nano-diamond by explosive detonation products some processes are taking place such as diamond nano-particles consolidation, reverse diamond transition into graphite, fragments formation from silicon carbide. A method for obtaining high-porous composites with the presence of ultra-disperse diamond particles has been developed. Material with three-dimensional high-porous silicon-carbide structure has been received due to nano-diamond graphitation at impact wave transmission and plastic deformation. The paper reveals nano-diamonds inverse transformation into graphite and its subsequent interaction with the silicon accompanied by formation of silicon-carbide fragments with dimensions of up to 100 nm.

  15. Nano-composite materials

    Science.gov (United States)

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  16. Defining Nano, Nanotechnology and Nanomedicine: Why Should It Matter?

    OpenAIRE

    Satalkar Priya; Elger Bernice Simone; Shaw David M

    2016-01-01

    Nanotechnology which involves manipulation of matter on a 'nano' scale is considered to be a key enabling technology. Medical applications of nanotechnology (commonly known as nanomedicine) are expected to significantly improve disease diagnostic and therapeutic modalities and subsequently reduce health care costs. However there is no consensus on the definition of nanotechnology or nanomedicine and this stems from the underlying debate on defining 'nano'. This paper aims to present the diver...

  17. Nano forum 2012, VII edition, Rome, 24-26 September 2012

    International Nuclear Information System (INIS)

    Mariani, C.; Rossi, M.; Terranova, M.L.; Vittori Antisari, M.

    2013-01-01

    The intent of this issue of Il Nuovo Cimento Colloquia is to highlight the breadth and range of the research activities that have been presented at Nanoforum 2012 VIII edition held in Rome on September 24-26, 2012. The Nanoforum events are designed to offer a forum for the exchange of information on the latest progress in the exploiting field of nanotechnology. In addition to bringing together researchers involved in diverse R and D activities related to the 'nano' area, Nanoforum also endeavours to gather experts from industry. In doing so, Nanoforum provides a platform for researchers to discover new research opportunities, to identify the requirements for continued advancement in their field and to overcome the technological challenges related to nano materials production and applications. Emphasis is given to monitor progresses, to evaluate tendencies, to present innovative techniques and sophisticated strategies for materials growth and characterization at the nano scale. The papers published in this issue present an overview of some significant aspects of the nano technologies presented at Nanoforum 2012, covering current trends and developments in both basic and applied research. Topics range from the chemistry and physics of the synthesis/manufacturing processes, to characterization methodologies and to the engineering of nano materials for devices and bio-inspired applications. The editors are deeply grateful to all the authors for their inspiring contribution and precious collaboration.

  18. Characterization and H2-O2 reactivity of noble nano-metal tailored single wall nano-carbons

    International Nuclear Information System (INIS)

    K Kaneko; T Itoh; E Bekyarova; H Kanoh; S Utsumi; H Tanaka; M Yudasaka; S Iijima; S Iijima

    2005-01-01

    Full text of publication follows: Single wall carbon nano-tube (SWNT) and single wall carbon nano-horn (SWNH) have nano-spaces in their particles and the nano-spaces become open by oxidation. In particular, SWNH forms a unique colloidal structure which has micropores and meso-pores between the SWNH particles. Although non-treated SWNH colloids have quasi-one dimensional nano-pores [1], oxidized SWNH colloids have both of interstitial and internal nano-pores [2-5]. SWNH colloids show excellent supercritical methane storage ability [6], molecular sieving effect [7], and unique hydrogen adsorption characteristic [8]. Selective adsorptivity of SWNH colloids for H 2 and D 2 due to uncertainty principle of those molecules was shown [9-10]. As SWNH has no metallic impurities, we can study the effect of tailoring of metallic nano-particles on the surface activities of SWNH [11]. We tailored Pd or Pt nano-particles on SWNH and SWNH oxidized at 823 K (ox-SWNH) using poly[(2-oxo-pyrrolidine-1-yl)ethylene]. The oxidation of SWNH donates nano-scale windows to the single wall. The tailored metal amount was determined by TG analysis. TEM showed uniform dispersion of nano-metal particles of 2-3 nm in the diameter on SWNH. The nitrogen adsorption amount of SWNH oxidized decreases by tailoring, indicating that nano-particles are attached to the nano-scale windows. The electronic states of tailored metals were characterized by X-ray photoelectron spectroscopy. The surface activities of Pd tailored SWNH and ox-SWNH were examined for the reaction of hydrogen and oxygen near room temperature. The catalytic reactivities of Pd tailored SWNH and ox-SWNH were 4 times greater than that of Pd-dispersed activated carbon. The temperature dependence of the surface activity will be discussed with the relevance to the tube porosity. References [1] T. Ohba et al, J. Phys. Chem. In press. [2] S. Utsumi et al, J. Phys. Chem. In press. [3] C.- Min Yang, et al. Adv. Mater. In press. [4]C.M. Yang, J

  19. Development of novel nano-composite membranes as introduction systems for mass spectrometers: Contrasting nano-composite membranes and conventional inlet systems

    Science.gov (United States)

    Miranda, Luis Diego

    This dissertation presents the development of novel nano-composite membranes as introduction systems for mass spectrometers. These nano-composite membranes incorporate anodic aluminum oxide (AAO) membranes as templates that can be used by themselves or modified by a variety of chemical deposition processes. Two types of nano-composite membranes are presented. The first nano-composite membrane has carbon deposited within the pores of an AAO membrane. The second nano-composite membrane is made by coating an AAO membrane with a thin polymer film. The following chapters describe the transmission properties these nano-composite membranes and compare them to conventional mass spectrometry introduction systems. The nano- composite membranes were finally coupled to the inlet system of an underwater mass spectrometer revealing their utility in field deployments.

  20. Dynamic probabilistic material flow analysis of nano-SiO2, nano iron oxides, nano-CeO2, nano-Al2O3, and quantum dots in seven European regions.

    Science.gov (United States)

    Wang, Yan; Nowack, Bernd

    2018-04-01

    Static environmental exposure assessment models based on material flow analysis (MFA) have previously been used to estimate flows of engineered nanomaterials (ENMs) to the environment. However, such models do not account for changes in the system behavior over time. Dynamic MFA used in this study includes the time-dependent development of the modelling system by considering accumulation of ENMs in stocks and the environment, and the dynamic release of ENMs from nano-products. In addition, this study also included regional variations in population, waste management systems, and environmental compartments, which subsequently influence the environmental release and concentrations of ENMs. We have estimated the flows and release concentrations of nano-SiO 2 , nano-iron oxides, nano-CeO 2 , nano-Al 2 O 3 , and quantum dots in the EU and six geographical sub-regions in Europe (Central Europe, Northern Europe, Southern Europe, Eastern Europe, South-eastern Europe, and Switzerland). The model predicts that a large amount of ENMs are accumulated in stocks (not considering further transformation). For example, in the EU 2040 Mt of nano-SiO 2 are stored in the in-use stock, 80,400 tonnes have been accumulated in sediments and 65,600 tonnes in natural and urban soil from 1990 to 2014. The magnitude of flows in waste management processes in different regions varies because of differences in waste handling. For example, concentrations in landfilled waste are lowest in South-eastern Europe due to dilution by the high amount of landfilled waste in the region. The flows predicted in this work can serve as improved input data for mechanistic environmental fate models and risk assessment studies compared to previous estimates using static models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Functionalized Multi walled Carbon Nano tubes-Reinforced Viny lester/Epoxy Blend Based Nano composites: Enhanced Mechanical, Thermal, and Electrical Properties

    International Nuclear Information System (INIS)

    Praharaj, A. P.; Behera, D.; Bastia, T. K.; Rout, A. K.

    2015-01-01

    This paper presents a study on the mechanical, thermal, and electrical characterization of a new class of low cost multiphase nano composites consisting of Vinyl ester resin/epoxy (VER/EP) blend (40:60 w/w) reinforced with amine functionalized multi walled carbon nano tubes (f-MWCNTs). Five different sets of VER/EP nano composites are fabricated with addition of 0, 1, 3, 5, and 7 wt.% of f-MWCNTs. A detailed investigation of mechanical properties like tensile strength, impact strength, Young’s modulus, and hardness, thermal properties like thermogravimetric analysis (TGA) and thermal conductivity, electrical properties like dielectric strength, dielectric constant, and electrical conductivity, and corrosive and swelling properties of the nano composites has been carried out. Here, we report significant improvement in all the above properties of the fabricated nano composites with nano filler (f-MWCNTs) addition compared to the virgin blend (0 wt. nano filler loading). The properties are best observed in case of 5 wt.% nano filler loading with gradual deterioration thereafter which may be due to the nucleating tendency of the nano filler particles. Thus the above nano composites could be a preferable candidate for a wide range of structural, thermal, electrical, and solvent based applications.

  2. Polymer X-ray refractive nano-lenses fabricated by additive technology.

    Science.gov (United States)

    Petrov, A K; Bessonov, V O; Abrashitova, K A; Kokareva, N G; Safronov, K R; Barannikov, A A; Ershov, P A; Klimova, N B; Lyatun, I I; Yunkin, V A; Polikarpov, M; Snigireva, I; Fedyanin, A A; Snigirev, A

    2017-06-26

    The present work demonstrates the potential applicability of additive manufacturing to X-Ray refractive nano-lenses. A compound refractive lens with a radius of 5 µm was produced by the two-photon polymerization induced lithography. It was successfully tested at the X-ray microfocus laboratory source and a focal spot of 5 μm was measured. An amorphous nature of polymer material combined with the potential of additive technologies may result in a significantly enhanced focusing performance compared to the best examples of modern X-ray compound refractive lenses.

  3. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.

    Science.gov (United States)

    Chunmiao, Yuan; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-15

    The inerting effect of nano-sized TiO2 powder on ignition sensitivity of nano and micro Ti powders was investigated with a Mike 3 apparatus. "A little is not good enough" is also suitable for micro Ti powders mixed with nano-sized solid inertants. MIE of the mixtures did not significantly increase until the TiO2 percentage exceeded 50%. Nano-sized TiO2 powders were ineffective as an inertant when mixed with nano Ti powders, especially at higher dust loadings. Even with 90% nano TiO2 powder, mixtures still showed high ignition sensitivity because the statistic energy was as low as 2.1 mJ. Layer fires induced by ignited but unburned metal particles may occur for micro Ti powders mixed with nano TiO2 powders following a low level dust explosion. Such layer fires could lead to a violent dust explosion after a second dispersion. Thus, additional attention is needed to prevent metallic layer fires even where electric spark potential is low. In the case of nano Ti powder, no layer fires were observed because of less flammable material involved in the mixtures investigated, and faster flame propagation in nanoparticle clouds. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Generation and characterization of nano aluminium powder ...

    Indian Academy of Sciences (India)

    TECS

    Generation and characterization of nano aluminium powder obtained through wire ... Department of Aerospace Engineering, Indian Institute of Technology. Madras, Chennai 600 .... pressure developed due to current flow (z-Pinch). Figure 2.

  5. Investigation on Nano composite Membrane of Multi walled Carbon Nano tube Reinforced Polycarbonate Blend for Gas Separation

    International Nuclear Information System (INIS)

    Kausar, A.

    2016-01-01

    Carbon nano tube has been explored as a nano filler in high performance polymeric membrane for gas separation. In this regard, nano composite membrane of polycarbonate (PC), poly(vinylidene fluoride-co-hexafluoropropylene) (PVFHFP), and multi walled carbon nano tube (MWCNT) was fabricated via phase inversion technique. Poly (ethylene glycol) (PEG) was employed for the compatibilization of the blend system. Two series of PC/PVFHFP/PEG were developed using purified P-MWCNT and acid functional A-MWCNT nano filler. Scanning and transmission electron micrographs have shown fine nano tube dispersion and wetting by matrix, compared with the purified system. Tensile strength and Young s modulus of PC/PVFHFP/PEG/MWCNT-A 1-5 were found to be in the range of 63.6-72.5 MPa and 110.6-122.1 MPa, respectively. The nano composite revealed 51% increase in Young s modulus and 28% increase in tensile stress relative to the pristine blend. The A-MWCNT was also effective in enhancing the perm selectivity αCO 2 /N 2 (31.2-39.9) of nano composite membrane relative to the blend membrane (21.6). The permeability ρCO 2 of blend was 125.6 barrer; however, the functional series had enhancedρCO 2 values ranging from 142.8 to 186.6 barrer. Moreover, A-MWCNT loading improved the gas diffusivity of PC/PVFHFP/PEG/MWCNT-A 1-5; however, filler content did not significantly influence the CO 2 and N 2 solubility.

  6. The Nano Solar Case

    DEFF Research Database (Denmark)

    Hollensen, Svend; Lindgren, Peter

    2011-01-01

    ISO PAINT Nordic A/S produces roof coatings, facade painting as well as specialised products for surface treatments. The company decided that they would develop a nano solar ICT based project having the capacity to change the whole cost structure of a building, for example by a nano roof coating...

  7. Optiske nano-fibre

    DEFF Research Database (Denmark)

    Rubahn, Horst-Günter; Simonsen, Adam Cohen

    2003-01-01

    Forskere ved Syddansk Universitet har udviklet organiske nano-aggregater, som gør det muligt under meget kontrollerede forhold at studere optiske fænomener på skalaer mindre end lysets bølgelængde.......Forskere ved Syddansk Universitet har udviklet organiske nano-aggregater, som gør det muligt under meget kontrollerede forhold at studere optiske fænomener på skalaer mindre end lysets bølgelængde....

  8. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    Science.gov (United States)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  9. EPR dosimetric properties of nano-barium sulfate

    International Nuclear Information System (INIS)

    Aboelezz, E.; Hassan, G.M.; Sharaf, M.A.; El-Khodary, A.

    2015-01-01

    Nano/micro BaSO 4 were prepared through the co-precipitation method to measure ionizing radiation doses using electron paramagnetic resonance (EPR). The nano-BaSO 4 sample was characterized using X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. The dose response and fading properties of nano- and micro-phase BaSO 4 were compared in EPR spectra. The prepared nano- and micro-BaSO 4 samples have the same hole and electron centers, which may be attributed to SO 4 − and SO 3 − , respectively. The dosimetric signals for prepared nano- and micro-BaSO 4 have spectroscopic splitting factor (g) with values 2.0025±0.0006 and 2.0027±0.0006, respectively. The nanocrystalline sample has a linear γ-ray dose response over the range 0.4 Gy–1 kGy. The performance parameters which including detection limit and critical level calculated from weighted and unweighted least-squares fitting. The sensitivity of nano-BaSO 4 to γ-ray is one and a half times more than alanine. The lifetime and activation energy for nano-BaSO 4 were estimated by conducting a thermal stability study, and were 5.7±1.1×10 4 years and 0.73±0.14 eV, respectively. The combined and expanded uncertainties accompanying measurements were ±3.89% and ±7.78%, respectively. - Highlights: • Preparation of nano-BaSO 4 using the co-precipitation method. • Study of the dosimetric properties of nano-barium sulfate using the EPR technique. • Comparison between a new EPR dosimeter using nano-materials and standard alanine. • Calculation of the uncertainty budget for nano-BaSO 4

  10. Interaction of NANOS2 and NANOS3 with different components of the CNOT complex may contribute to the functional differences in mouse male germ cells

    Directory of Open Access Journals (Sweden)

    Atsushi Suzuki

    2014-11-01

    Full Text Available NANOS2 and NANOS3 belong to the Nanos family of proteins that contain a conserved zinc finger domain, which consists of two consecutive CCHC-type zinc finger motifs, and contribute to germ cell development in mice. Previous studies indicate that there are redundant and distinct functions of these two proteins. NANOS2 rescues NANOS3 functions in the maintenance of primordial germ cells, whereas NANOS3 fails to replace NANOS2 functions in the male germ cell pathway. However, the lack of a conditional allele of Nanos3 has hampered delineation of each contribution of NANOS2 and NANOS3 to the male germ cell pathway. In addition, the molecular mechanism underlying the distinct functions of these proteins remains unexplored. Here, we report an unexpected observation of a transgenic mouse line expressing a NANOS2 variant harboring mutations in the zinc finger domain. Transcription of Nanos2 and Nanos3 was strongly compromised in the presence of this transgene, which resulted in the mimicking of the Nanos2/Nanos3 double-null condition in the male gonad. In these transgenic mice, P-bodies involved in RNA metabolism had disappeared and germ cell differentiation was more severely affected than that in Nanos2-null mice, indicating that NANOS3 partially substitutes for NANOS2 functions. In addition, similar to NANOS2, we found that NANOS3 associated with the CCR4-NOT deadenylation complex but via a direct interaction with CNOT8, unlike CNOT1 in the case of NANOS2. This alternate interaction might account for the molecular basis of the functional redundancy and differences in NANOS2 and NANOS3 functions.

  11. Nano Entry System for CubeSat-Class Payloads Project (Nano-ADEPT)

    Science.gov (United States)

    Smith, Brandon Patrick

    2014-01-01

    This project is developing a mechanically deployed system through a mission application study, deployment/ejection testing, and wind tunnel testing. Adaptable Deployable Entry and Placement Technology (ADEPT) has been under development at NASA since 2011. Nano-ADEPT is the application of this revolutionary entry technology for small spacecraft. The unique capability of ADEPT for small science payloads comes from its ability to stow within a slender volume and deploy passively to achieve a mass-efficient drag surface with a high heat rate capability. Near-term applications for this technology include return of small science payloads or CubeSat technology from Low Earth Orbit (LEO) and delivery of secondary payloads to the surface of Mars.

  12. Core-shell architectures as nano-size transporters

    International Nuclear Information System (INIS)

    Adeli, M.; Zarnegar, Z.; Kabiri, R.; Salimi, F.; Dadkah, A.

    2006-01-01

    Core-shell architectures containing poly (ethylene imine) (PEI) as a core and poly (lactide) (PLA) as arms were prepared. PEI was used as macro initiator for ring opening polymerization of lactide. PEI-PLA core-shell architectures were able to encapsulate guest molecules. Size of the core-shell architectures was between 10- 100 nm, hence they can be considered as nano carriers to transport the guest molecules. Transport capacity of nano carriers depends on their nano-environments and type of self-assembly in solvent. In solid state nano carriers self-assemble as long structures with nano-size diameter or they form network structures. Aggregations type depends on the concentration of nano carriers in solution. Effect of the shell thickness and aggregation type on the release rate are also investigated

  13. Investigating factors influencing consumer willingness to buy GM food and nano-food

    International Nuclear Information System (INIS)

    Yue, Chengyan; Zhao, Shuoli; Cummings, Christopher; Kuzma, Jennifer

    2015-01-01

    Emerging technologies applied to food products often evoke controversy about their safety and whether to label foods resulting from their use. As such, it is important to understand the factors that influence consumer desires for labeling and their willingness-to-buy (WTB) these food products. Using data from a national survey with US consumers, this study employs structural equation modeling to explore relationships between potential influences such as trust in government to manage technologies, views on restrictive government policies, perceptions about risks and benefits, and preferences for labeling on consumer’s WTB genetically modified (GM) and nano-food products. Some interesting similarities and differences between GM- and nano-food emerged. For both technologies, trust in governing agencies to manage technologies did not influence labeling preferences, but it did influence attitudes about the food technologies themselves. Attitudes toward the two technologies, as measured by risk–benefit comparisons and comfort with consumption, also greatly influenced views of government restrictive policies, labeling preferences, and WTB GM or nano-food products. For differences, labeling preferences were found to influence WTB nano-foods, but not WTB GM foods. Gender and religiosity also had varying effects on WTB and labeling preferences: while gender and religiosity influenced labeling preferences and WTB for GM foods, they did not have a significant influence for nano-foods. We propose some reasons for these differences, such as greater media attention and other heuristics such as value-based concerns about “modifying life” with GM foods. The results of this study can help to inform policies and communication about the application of these new technologies in food products

  14. Investigating factors influencing consumer willingness to buy GM food and nano-food

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Chengyan [University of Minnesota-Twin Cities, Departments of Applied Economics and Horticultural Science, Bachman Endowed Chair in Horticultural Marketing (United States); Zhao, Shuoli [University of Minnesota-Twin Cities, Department of Applied Economics (United States); Cummings, Christopher [Nanyang Technological University, Division of Communication Research, Wee Kim Wee School of Communication and Information (Singapore); Kuzma, Jennifer, E-mail: jkuzma@ncsu.edu [North Carolina State University, Genetic Engineering & Society Center (United States)

    2015-07-15

    Emerging technologies applied to food products often evoke controversy about their safety and whether to label foods resulting from their use. As such, it is important to understand the factors that influence consumer desires for labeling and their willingness-to-buy (WTB) these food products. Using data from a national survey with US consumers, this study employs structural equation modeling to explore relationships between potential influences such as trust in government to manage technologies, views on restrictive government policies, perceptions about risks and benefits, and preferences for labeling on consumer’s WTB genetically modified (GM) and nano-food products. Some interesting similarities and differences between GM- and nano-food emerged. For both technologies, trust in governing agencies to manage technologies did not influence labeling preferences, but it did influence attitudes about the food technologies themselves. Attitudes toward the two technologies, as measured by risk–benefit comparisons and comfort with consumption, also greatly influenced views of government restrictive policies, labeling preferences, and WTB GM or nano-food products. For differences, labeling preferences were found to influence WTB nano-foods, but not WTB GM foods. Gender and religiosity also had varying effects on WTB and labeling preferences: while gender and religiosity influenced labeling preferences and WTB for GM foods, they did not have a significant influence for nano-foods. We propose some reasons for these differences, such as greater media attention and other heuristics such as value-based concerns about “modifying life” with GM foods. The results of this study can help to inform policies and communication about the application of these new technologies in food products.

  15. Investigating factors influencing consumer willingness to buy GM food and nano-food

    Science.gov (United States)

    Yue, Chengyan; Zhao, Shuoli; Cummings, Christopher; Kuzma, Jennifer

    2015-07-01

    Emerging technologies applied to food products often evoke controversy about their safety and whether to label foods resulting from their use. As such, it is important to understand the factors that influence consumer desires for labeling and their willingness-to-buy (WTB) these food products. Using data from a national survey with US consumers, this study employs structural equation modeling to explore relationships between potential influences such as trust in government to manage technologies, views on restrictive government policies, perceptions about risks and benefits, and preferences for labeling on consumer's WTB genetically modified (GM) and nano-food products. Some interesting similarities and differences between GM- and nano-food emerged. For both technologies, trust in governing agencies to manage technologies did not influence labeling preferences, but it did influence attitudes about the food technologies themselves. Attitudes toward the two technologies, as measured by risk-benefit comparisons and comfort with consumption, also greatly influenced views of government restrictive policies, labeling preferences, and WTB GM or nano-food products. For differences, labeling preferences were found to influence WTB nano-foods, but not WTB GM foods. Gender and religiosity also had varying effects on WTB and labeling preferences: while gender and religiosity influenced labeling preferences and WTB for GM foods, they did not have a significant influence for nano-foods. We propose some reasons for these differences, such as greater media attention and other heuristics such as value-based concerns about "modifying life" with GM foods. The results of this study can help to inform policies and communication about the application of these new technologies in food products.

  16. In situ TEM/SEM electronic/mechanical characterization of nano material with MEMS chip

    International Nuclear Information System (INIS)

    Wang Yuelin; Li Tie; Zhang Xiao; Zeng Hongjiang; Jin Qinhua

    2014-01-01

    Our investigation of in situ observations on electronic and mechanical properties of nano materials using a scanning electron microscope (SEM) and a transmission electron microscope (TEM) with the help of traditional micro-electro-mechanical system (MEMS) technology has been reviewed. Thanks to the stability, continuity and controllability of the loading force from the electrostatic actuator and the sensitivity of the sensor beam, a MEMS tensile testing chip for accurate tensile testing in the nano scale is obtained. Based on the MEMS chips, the scale effect of Young's modulus in silicon has been studied and confirmed directly in a tensile experiment using a transmission electron microscope. Employing the nanomanipulation technology and FIB technology, Cu and SiC nanowires have been integrated into the tensile testing device and their mechanical, electronic properties under different stress have been achieved, simultaneously. All these will aid in better understanding the nano effects and contribute to the designation and application in nano devices. (invited papers)

  17. Comparison on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fibre lasers

    Science.gov (United States)

    Yang, Chun-Yu; Lin, Yung-Hsiang; Wu, Chung-Lun; Cheng, Chih-Hsien; Tsai, Din-Ping; Lin, Gong-Ru

    2018-06-01

    Comparisons on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fiber lasers (EDFLs) are performed. As opposed to the graphite nano-particles obtained by physically triturating the graphite foil, the tri-layer graphene nano-sheets is obtained by electrochemically exfoliating the graphite foil. To precisely control the size dispersion and the layer number of the exfoliated graphene nano-sheet, both the bias of electrochemical exfoliation and the speed of centrifugation are optimized. Under a threshold exfoliation bias of 3 volts and a centrifugation at 1000 rpm, graphene nano-sheets with an average diameter of 100  ±  40 nm can be obtained. The graphene nano-sheets with an area density of 15 #/µm2 are directly imprinted onto the end-face of a single-mode fiber made patchcord connector inside the EDFL cavity. Such electrochemically exfoliated graphene nano-sheets show comparable saturable absorption with standard single-graphene and perform the self-amplitude modulation better than physically triturated graphite nano-particles. The linear transmittance and modulation depth of the inserted graphene nano-sheets are 92.5% and 53%, respectively. Under the operation with a power gain of 21.5 dB, the EDFL can be passively mode-locked to deliver a pulsewidth of 454.5 fs with a spectral linewidth of 5.6 nm. The time-bandwidth product of 0.31 is close to the transform limit. The Kelly sideband frequency spacing of 1.34 THz is used to calculate the chirp coefficient as  ‑0.0015.

  18. Nanofabrication Technology for Production of Quantum Nano-Electronic Devices Integrating Niobium Electrodes and Optically Transparent Gates

    Science.gov (United States)

    2018-01-01

    TECHNICAL REPORT 3086 January 2018 Nanofabrication Technology for Production of Quantum Nano-electronic Devices Integrating Niobium Electrodes...work described in this report was performed for the by the Advanced Concepts and Applied Research Branch (Code 71730) and the Science and Technology ...Applied Sciences Division iii EXECUTIVE SUMMARY This technical report demonstrates nanofabrication technology for Niobium heterostructures and

  19. Preparation and characterization of functionalized cellulose nano crystals with methyl adipoyl chloride used to prepare chitosan grafting nano composite

    International Nuclear Information System (INIS)

    Mesquita, Joao Paulo de; Teixeira, Ivo F.; Donnici, Claudio L.; Pereira, Fabiano V.

    2011-01-01

    Cellulose nano crystals (CNCs) were prepared from eucalyptus pulp and functionalized with methyl adipoyl chloride. The nano materials were characterized by different techniques including FTIR, 1H NMR and XRD which showed that the functionalization occurs only on the surface of the nano structures without change in crystalline structure of the nanoparticles. The new-functionalized CNCs were used as reinforcement in the preparation of a nano composite with chitosan, through the formation of a covalent bond between the nano filler and matrix. Preliminary results of mechanical tests indicate an improvement in tensile strength and increase in deformation of chitosan. (author)

  20. Nano lasers in photonic VLSI

    NARCIS (Netherlands)

    Hill, M.T.; Oei, Y.S.; Smit, M.K.

    2007-01-01

    We examine the use of micro and nano lasers to form digital photonic VLSI building blocks. Problems such as isolation and cascading of building blocks are addressed, and the potential of future nano lasers explored.

  1. Micro/nano-computed tomography technology for quantitative dynamic, multi-scale imaging of morphogenesis.

    Science.gov (United States)

    Gregg, Chelsea L; Recknagel, Andrew K; Butcher, Jonathan T

    2015-01-01

    Tissue morphogenesis and embryonic development are dynamic events challenging to quantify, especially considering the intricate events that happen simultaneously in different locations and time. Micro- and more recently nano-computed tomography (micro/nanoCT) has been used for the past 15 years to characterize large 3D fields of tortuous geometries at high spatial resolution. We and others have advanced micro/nanoCT imaging strategies for quantifying tissue- and organ-level fate changes throughout morphogenesis. Exogenous soft tissue contrast media enables visualization of vascular lumens and tissues via extravasation. Furthermore, the emergence of antigen-specific tissue contrast enables direct quantitative visualization of protein and mRNA expression. Micro-CT X-ray doses appear to be non-embryotoxic, enabling longitudinal imaging studies in live embryos. In this chapter we present established soft tissue contrast protocols for obtaining high-quality micro/nanoCT images and the image processing techniques useful for quantifying anatomical and physiological information from the data sets.

  2. Biocompatibility and Toxicity of Nano biomaterials 2014

    International Nuclear Information System (INIS)

    Li, X.; Lee, S.Ch.; Zhang, Sh.; Akasaka, T.

    2014-01-01

    It is well known that nano materials have developed rapidly over the past few decades. Based on their unique physicochemical properties and special mechanical properties, nano materials have provided application possibility in many different fields. Currently, as nano biomaterials, they are widely used in various biomedical applications, such as drug delivery systems, tissue engineering, dental/bone implant, and biosensors. For example, nano biomaterials have been used in tissue engineering because of their satisfactory bioactivity, high mechanical properties, and large surface area to adsorb specific proteins. Many kinds of nano biomaterials are used to prepare composite scaffolds to get better biocompatibility and higher ability in repairing specific tissues. Several antibacterial metallic nano biomaterials are used to coat implant surfaces to improve the speed of healing fractures. In addition, lots of nano biomaterials have the potential to break the limitations of the traditional delivery systems. They can load larger amount of drugs and provide stable drug release for long time at the targeted sites, such as tumors. Moreover, they can combine with polymers to furnish simultaneous drug delivery systems with the controllable release rate. Besides these applications, more and more nano biomaterials show great potential to be applied as highly sensitive biosensors because they have higher ability in loading firmly or interacting completely with recognition aptamers.

  3. CHF Enhancement in Flow Boiling using Al2O3 Nano-Fluid and Al2O3 Nano-Particle Deposited Tube

    International Nuclear Information System (INIS)

    Kim, Tae Il; Chun, T. H.; Chang, S. H.

    2010-01-01

    Nano-fluids are considered to have strong ability to enhance CHF. Most CHF experiments using nano-fluids were conducted in pool boiling conditions. However there are very few CHF experiments with nano-fluids in flow boiling condition. In the present study, flow boiling CHF experiments using bare round tube with Al 2 O 3 nano-fluid and Al 2 O 3 nano-particle deposited tube with DI water were conducted under atmospheric pressure. CHFs were enhanced up to ∼ 80% with Al 2 O 3 nano-fluid and CHFs with Al 2 O 3 nano-particle deposited tube were also enhanced up to ∼ 80%. Inner surface of test section tube were observed by SEM and AFM after CHF experiments

  4. Progress in nano-electro optics characterization of nano-optical materials and optical near-field interactions

    CERN Document Server

    Ohtsu, Motoichi

    2005-01-01

    This volume focuses on the characterization of nano-optical materials and optical-near field interactions. It begins with the techniques for characterizing the magneto-optical Kerr effect and continues with methods to determine structural and optical properties in high-quality quantum wires with high spatial uniformity. Further topics include: near-field luminescence mapping in InGaN/GaN single quantum well structures in order to interpret the recombination mechanism in InGaN-based nano-structures; and theoretical treatment of the optical near field and optical near-field interactions, providing the basis for investigating the signal transport and associated dissipation in nano-optical devices. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.

  5. Manufacture of Nano Structures in Polymer Material

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Pedersen, H.C.; Staun, Jacob

    2003-01-01

    The incorporation of micro and nano technology into the products of the future is an area of increasing interest. The ideas for new products based on this technology often take their starting point in specific scientific fields whereas the subsequent design and product development not necessarily...... is based on a systematic approach including manufacturing processes and production system capabilities. The process chain associated with micro and nano injection moulding usually comprises silicon or photoresist mastering, electroforming and polymer processing. Additionally, if the produced polymer...... components are to be used in a microsystem, subsequent handling and assembly is necessary. The present paper describes the process chain related to the manufacture of optical gratings with nanometer-sized structures. The problems of each process step and the challenges of establishing a coherent production...

  6. Regeneratively-Cooled, Pump-Fed Propulsion Technology for Nano / Micro Satellite Launch Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ventions proposes the development of a pump-fed, 2-stage nano launch vehicle for low-cost on demand placement of cube and nano-satellites into LEO. The proposed...

  7. One-Dimensional SnO2 Nano structures: Synthesis and Applications

    International Nuclear Information System (INIS)

    Pan, J.; Shen, H.; Mathur, S.; Pan, J.

    2012-01-01

    Nano scale semiconducting materials such as quantum dots (0-dimensional) and one-dimensional (1D) structures, like nano wires, nano belts, and nano tubes, have gained tremendous attention within the past decade. Among the variety of 1D nano structures, tin oxide (SnO 2 ) semiconducting nano structures are particularly interesting because of their promising applications in optoelectronic and electronic devices due to both good conductivity and transparence in the visible region. This article provides a comprehensive review of the recent research activities that focus on the rational synthesis and unique applications of 1D SnO 2 nano structures and their optical and electrical properties. We begin with the rational design and synthesis of 1D SnO 2 nano structures, such as nano tubes, nano wires, nano belts, and some heterogeneous nano structures, and then highlight a range of applications (e.g., gas sensor, lithium-ion batteries, and nano photonics) associated with them. Finally, the review is concluded with some perspectives with respect to future research on 1D SnO 2 nano structures

  8. Green chemistry by nano-catalysis

    KAUST Repository

    Polshettiwar, Vivek; Varma, Rajender S.

    2010-01-01

    the homogeneous catalysts. This review focuses on the use of nano-catalysis for green chemistry development including the strategy of using microwave heating with nano-catalysis in benign aqueous reaction media which offers an extraordinary synergistic effect

  9. Applications and research on nano power electronics: an adventure beyond quantum electronics

    Science.gov (United States)

    Chakraborty, Arindam; Emadi, Ali

    2005-06-01

    This paper is a roadmap to the exhaustive role of the newly emerging field of nanotechnology in various application and research areas. Some of the today's important topics are plasma, dielectric layer semiconductor, and carbon nanoparticle based technologies. Carbon nanotubes are very useful for the purpose of fabricating nano opto power devices. The basic concept behind tunneling of electrons has been utilized to define another scope of this technology, and thus came many quantum scale tunneling devices and elements. Fabrication of crystal semiconductors of high quality along with oxides of nano aspect would give rise to superior device performance and find applications such as LEDs, LASER, VLSI technology and also in highly efficient solar cells. Many nano-research based organizations are fully devoted to develop nano power cells, which would give birth to new battery cells, tunneling devises, with high power quality, longer lives, and higher activation rates. Different electronics industries as well as the military organizations would be largely benefited due to this major component and system design ideas of 'Smart Power' technologies. The contribution of nano scale power electronics would be realized in various fields like switching devices, electromechanical systems and quantum science. Such a sophisticated technology will have great impact on the modernization of robotics; space systems, automotive systems and many other fields. The highly emerging field of nanomedicine according to specialists would bring a dramatic revolution in the present century. However nanomedicine is nothing but an integration of biology, medicine and technology. Thermoelectric materials as been referred earlier also are used in case of implantable medical equipments for generation of electric power sufficient for those equipments.

  10. Polymer/Layered Silicate Nano composites

    International Nuclear Information System (INIS)

    Bakhit, M.E.E.H.

    2012-01-01

    Polymer–clay nano composites have attracted the attention of many researchers and experimental results are presented in a large number of recent papers and patents because of the outstanding mechanical properties and low gas permeabilities that are achieved in many cases. Polymer-clay nano composites are a new class of mineral-field polymer that contain relatively small amounts (<10%) of nanometer-sized clay particles. Polymer/clay nano composites have their origin in the pioneering research conducted at Toyota Central Research Laboratories and the first historical record goes back to 1987. The matrix was nylon-6 and the filler MMT. Because of its many advantages such as high mechanical properties, good gas barrier, flame retardation, etc. polymer/clay nano composites have been intensely investigated and is currently the subject of many research programs. Nano composite materials are commercially important and several types of products with different shapes and applications including food packaging films and containers, engine parts, dental materials, etc. are now available in markets. A number of synthesis routes have been developed in the recent years to prepare these materials, which include intercalation of polymers or prepolymers from solution, in-situ polymerization, melt intercalation etc. In this study, new nano composite materials were produced from the components of rubber (Nbr, SBR and EPDM) as the polymeric matrix and organically modified quaternary alkylammonium montmorillonite in different contents (3, 5, 7, and 10 phr) as the filler by using an extruder then, the rubber nano composite sheets were irradiated at a dose of 0, 50, 75, 100 and 150 KGy using Electron beam Irradiation technique as a crosslinking agent. These new materials can be characterized by using various analytical techniques including X-ray diffractometer XRD, Thermogravimetric analyzer TGA, scanning electron microscope (SEM), transmission electron microscope (TEM),Fourier transform

  11. Replication Fidelity Assessment in Nano Moulding

    DEFF Research Database (Denmark)

    Calaon, Matteo; Hansen, Hans Nørgaard; Tosello, Guido

    2015-01-01

    to remove technology barrier between lab-scale proof-of-principle and high-volume low-cost production of nanotechnology-based products. In the current study research work has been devoted to develop methods and approaches to process chain characterization for final polymer micro and nano structures...

  12. Natural convection in nano-fluids: Are the thermophoresis and Brownian motion effects significant in nano-fluid heat transfer enhancement?

    International Nuclear Information System (INIS)

    Haddad, Zoubida; Abu-Nada, Eiyad; Oztop, Hakan F.; Mataoui, Amina

    2012-01-01

    Natural convection heat transfer and fluid flow of CuO-Water nano-fluids is studied using the Rayleigh-Benard problem. A two component non-homogenous equilibrium model is used for the nano-fluid that incorporates the effects of Brownian motion and thermophoresis. Variable thermal conductivity and variable viscosity are taken into account in this work. Finite volume method is used to solve governing equations. Results are presented by streamlines, isotherms, nano-particle distribution, local and mean Nusselt numbers and nano-particle profiles at top and bottom side. Comparison of two cases as absence of Brownian and thermophoresis effects and presence of Brownian and thermophoresis effects showed that higher heat transfer is formed with the presence of Brownian and thermophoresis effect. In general, by considering the role of thermophoresis and Brownian motion, an enhancement in heat transfer is observed at any volume fraction of nano-particles. However, the enhancement is more pronounced at low volume fraction of nano-particles and the heat transfer decreases by increasing nano-particle volume fraction. On the other hand, by neglecting the role of thermophoresis and Brownian motion, deterioration in heat transfer is observed and this deterioration elevates by increasing the volume fraction of nano-particles. (authors)

  13. Responsible, Inclusive Innovation and the Nano-Divide.

    Science.gov (United States)

    Schroeder, Doris; Dalton-Brown, Sally; Schrempf, Benjamin; Kaplan, David

    Policy makers from around the world are trying to emulate successful innovation systems in order to support economic growth. At the same time, innovation governance systems are being put in place to ensure a better integration of stakeholder views into the research and development process. In Europe, one of the most prominent and newly emerging governance frameworks is called Responsible Research and Innovation (RRI). This article aims to substantiate the following points: (1) The concept of RRI and the concept of justice can be used to derive similar ethical positions on the nano-divide. (2) Given the ambitious policy aims of RRI (e.g. economic competitiveness enhancer), the concept may be better suited to push for ethical outcomes on access to nanotechnology and its products rather than debates based on justice issues alone. It may thus serve as a mediator concept between those who push solely for competitiveness considerations and those who push solely for justice considerations in nano-technology debates. (3) The descriptive, non-normative Systems of Innovation approaches (see below) should be linked into RRI debates to provide more evidence on whether the approach advocated to achieve responsible and ethical governance of research and innovation (R&I) can indeed deliver on competitiveness (in nano-technology and other fields).

  14. Green chemistry by nano-catalysis

    KAUST Repository

    Polshettiwar, Vivek

    2010-01-01

    Nano-materials are important in many diverse areas, from basic research to various applications in electronics, biochemical sensors, catalysis and energy. They have emerged as sustainable alternatives to conventional materials, as robust high surface area heterogeneous catalysts and catalyst supports. The nano-sized particles increase the exposed surface area of the active component of the catalyst, thereby enhancing the contact between reactants and catalyst dramatically and mimicking the homogeneous catalysts. This review focuses on the use of nano-catalysis for green chemistry development including the strategy of using microwave heating with nano-catalysis in benign aqueous reaction media which offers an extraordinary synergistic effect with greater potential than these three components in isolation. To illustrate the proof-of-concept of this "green and sustainable" approach, representative examples are discussed in this article. © 2010 The Royal Society of Chemistry.

  15. Nano-computed tomography. Technique and applications; Nanocomputertomografie. Technik und Applikationen

    Energy Technology Data Exchange (ETDEWEB)

    Kampschulte, M.; Sender, J.; Litzlbauer, H.D.; Althoehn, U.; Schwab, J.D.; Alejandre-Lafont, E.; Martels, G.; Krombach, G.A. [University Hospital Giessen (Germany). Dept. of Diagnostic and Interventional Radiology; Langheinirch, A.C. [BG Trauma Hospital Frankfurt/Main (Germany). Dept. of Diagnostic and Interventional Radiology

    2016-02-15

    Nano-computed tomography (nano-CT) is an emerging, high-resolution cross-sectional imaging technique and represents a technical advancement of the established micro-CT technology. Based on the application of a transmission target X-ray tube, the focal spot size can be decreased down to diameters less than 400 nanometers (nm). Together with specific detectors and examination protocols, a superior spatial resolution up to 400 nm (10 % MTF) can be achieved, thereby exceeding the resolution capacity of typical micro-CT systems. The technical concept of nano-CT imaging as well as the basics of specimen preparation are demonstrated exemplarily. Characteristics of atherosclerotic plaques (intraplaque hemorrhage and calcifications) in a murine model of atherosclerosis (ApoE{sub (-/-)}/LDLR{sub (-/-)} double knockout mouse) are demonstrated in the context of superior spatial resolution in comparison to micro-CT. Furthermore, this article presents the application of nano-CT for imaging cerebral microcirculation (murine), lung structures (porcine), and trabecular microstructure (ovine) in contrast to micro-CT imaging. This review shows the potential of nano-CT as a radiological method in biomedical basic research and discusses the application of experimental, high resolution CT techniques in consideration of other high resolution cross-sectional imaging techniques.

  16. Radiation synthesis of the nano-scale materials

    Energy Technology Data Exchange (ETDEWEB)

    Yonghong, Ni; Zhicheng, Zhang; Xuewu, Ge; Xiangling, Xu [Department of Applied Chemistry, Univ. of Science and Technology of China, Hefei (China)

    2000-03-01

    Some recent research jobs on fabricating the nano-scale materials via {gamma}-irradiation in our laboratory are simply summarized in this paper. The main contents contain four aspects: (1) the preparation of metal alloy - powders; (2) the fabrication of polymer -metal nano-composites in aqueous solution, micro-emulsion and emulsion systems; (3) the synthesis of metal sulfide nano-particles and (4) the preparation of the ordered nano-structure materials. The corresponding preparation processes are also simply described. (author)

  17. Radiation synthesis of the nano-scale materials

    International Nuclear Information System (INIS)

    Ni Yonghong; Zhang Zhicheng; Ge Xuewu; Xu Xiangling

    2000-01-01

    Some recent research jobs on fabricating the nano-scale materials via γ-irradiation in our laboratory are simply summarized in this paper. The main contents contain four aspects: (1) the preparation of metal alloy - powders; (2) the fabrication of polymer -metal nano-composites in aqueous solution, micro-emulsion and emulsion systems; (3) the synthesis of metal sulfide nano-particles and (4) the preparation of the ordered nano-structure materials. The corresponding preparation processes are also simply described. (author)

  18. Polyaniline nanowires on TiO2 nano/microfiber hierarchical nano/microstructures: Preparation and their photocatalytic properties

    International Nuclear Information System (INIS)

    Yu Qiaozhen; Wang Mang; Chen Hongzheng; Dai Zhengwei

    2011-01-01

    Highlights: → We fabricate PANI nanowire-on-TiO 2 nano/microfiber hierarchical nano/microstructure composite fiber films by electrospinning, calcinations and in situ polymerization. → PANI/TiO 2 composite fiber film exhibits high photocatalytic activity for the degradation of dye MB. → The photocatalytic activity and reusability of PANI/TiO 2 composite fiber film were lower than those of pure TiO 2 fiber film. - Abstract: TiO 2 /PANI composite fiber films were fabricated by electrospinning, calcinations and in situ polymerization. The morphology and structure of the resulting composites were analyzed by scanning electron micrograph, transmission electron micrograph, Fourier transform infrared spectroscopy and X-ray diffraction. It was found that this composite fiber film has a PANI nanowire-on-TiO 2 nano/microfiber hierarchical nano/microstructure. The surface morphology of this hierarchical nano/microstructure was related to the structure of TiO 2 nano/microfiber film, the time and temperature of in situ polymerization. Its photocatalytic property on methylene blue (MB) was studied, and the results showed that TiO 2 /PANI composite fiber film with this hierarchical nano/microstructure exhibited high photocatalytic activity for the degradation of MB under natural light. But both its photocatalytic activity and reusability were lower than those of pure TiO 2 fiber film. To improve the stability and reusability of TiO 2 /PANI composite fiber film, a direct chemical bonding of PANI chains onto TiO 2 surface, such as, the surface-initiated graft polymerization, is a useful method.

  19. [Biomimetic mineralization of rod-like cellulose nano-whiskers and spectrum analysis].

    Science.gov (United States)

    Qu, Ping; Wang, Xuan; Cui, Xiao-xia; Zhang, Li-ping

    2012-05-01

    Cellulose nano-whiskers/nano-hydroxyapatite composite was prepared with biomimetic mineralization using rod-like cellulose nano-whiskers as template. The cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope-energy dispersive analysis of X-rays (SEM-EDXA). Variation and distribution of carbon, oxygen, calcium, and phosphorus in the composites were studied. The morphologies and growth mechanism of nano-hydroxyapatite were analyzed. The results showed that nano-hydroxyapatite was formed on the surface of cellulose nano-whiskers; the carbon-oxygen ratio of cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite was 1.81 and 1.54, respectively; the calcium-phosphorus ratio of the composite was 1.70. The nucleation of nano-hydroxyapatite was around the hydroxyl groups of cellulose nano-whiskers. It is suggested that there is coordination between the hydroxyl groups of cellulose nano-whiskers and calcium ions of nano-hydroxyapatite. The nano-hydroxyapatite can distribute in the matrix of cellulose nano-whiskers. From the atomic force microscope (AFM) images, we can see that the diameter of the spherical nano-hydroxyapatite particles was about 20 nm.

  20. Recent progress in micro and nano-joining

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y; Hu, A; Khan, M I; Wu, W; Tam, B; Yavuz, M [Centre for Advanced Materials Joining Department of Mechanical and Mechatronics Engineering, University of Waterloo 200 University Avenue West, Waterloo, N2L 3G1 (Canada)], E-mail: nzhou@uwaterloo.ca

    2009-05-01

    Micro and nano-joining has been identified as a key enabling technology in the construction of micromechanical and microelectronic devices. The current article reviews recent progress in micro and nano-joining. In particular, laser micro-welding (LMW) of crossed 316 LVM stainless steel (SS) wire was compared to conventional resistance micro-welding (RMW) and was successfully employed in welding a Pt-Ir /SS dissimilar combination. Welding of Au nanoparticles was realized using femtosecond laser irradiation and its application in the surface enhanced Raman spectroscopy was investigated. Brazing between carbon nanotube (CNT) bundles and Ni electrodes was attained in vacuum, resulting in the development of a novel CNT filament of incandescent lamps.

  1. Evaluation of dose dependent antimicrobial activity of self-assembled chitosan, nano silver and chitosan-nano silver composite against several pathogens.

    Science.gov (United States)

    Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat

    2018-01-01

    The aim of this investigation to preparation of silver nanoparticles organized chitosan nano polymer, which effective against microbial and pathogens, when apply to liquid medium and edible food products surface, will rescue the growth of microbes. Self-assembly approach used to synthesis of silver nanoparticles and silver nanoparticles organized chitosan nano polymer. Silver nanoparticles and silver nanoparticles organized chitosan nano polymer and film characterized using Ultra-violate visible spectrometer (UV-vis), X-ray diffraction (X-ray), and Scanning electronic microscope (SEM). The crystalline structured protein capped nano silver successfully synthesized at range of 12 nm-29 nm and organized into chitosan nano polymer. Antimicrobial ingredient in liquid medium and food product surface provide to rescue oxidative change and growth of microorganism to provide higher safety. The silver nanoparticles organized chitosan nano polymer caused the death of microorganism. The materials in nano scale synthesized successfully using self-assembly method, which showed good antimicrobial properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. [Preparation of nano-nacre artificial bone].

    Science.gov (United States)

    Chen, Jian-ting; Tang, Yong-zhi; Zhang, Jian-gang; Wang, Jian-jun; Xiao, Ying

    2008-12-01

    To assess the improvements in the properties of nano-nacre artificial bone prepared on the basis of nacre/polylactide acid composite artificial bone and its potential for clinical use. The compound of nano-scale nacre powder and poly-D, L-lactide acid (PDLLA) was used to prepare the cylindrical hollow artificial bone, whose properties including raw material powder scale, pore size, porosity and biomechanical characteristics were compared with another artificial bone made of micron-scale nacre powder and PDLLA. Scanning electron microscope showed that the average particle size of the nano-nacre powder was 50.4-/+12.4 nm, and the average pore size of the artificial bone prepared using nano-nacre powder was 215.7-/+77.5 microm, as compared with the particle size of the micron-scale nacre powder of 5.0-/+3.0 microm and the pore size of the resultant artificial bone of 205.1-/+72.0 microm. The porosities of nano-nacre artificial bone and the micron-nacre artificial bone were (65.4-/+2.9)% and (53.4-/+2.2)%, respectively, and the two artificial bones had comparable compressive strength and Young's modulus, but the flexural strength of the nano-nacre artificial bone was lower than that of the micro-nacre artificial bone. The nano-nacre artificial bone allows better biodegradability and possesses appropriate pore size, porosity and biomechanical properties for use as a promising material in bone tissue engineering.

  3. Synthesise of Zn O nano wires by direct oxidation method

    International Nuclear Information System (INIS)

    Farbod, M.; Ahangarpour, A.

    2007-01-01

    Zn O is a semiconductor which has a direct and wide energy band which is about 3.37 eV at room temperature. It has various applications from UV lasers, sensitive sensors, solar cells to photo catalysis applications. Zn O has different nano structures such as nanoparticles, nano wires, nano rods, nano tubes and nano belts. The one dimensional Zn O nano structures such as nano wires are very important because of their applications in nano electronics and nano photonics so different methods have been proposed to synthesize them. In this work large scale of Zn O nano wires are produced by direct oxidation a Zn substrate (which was cleaned by chemical methods) in air or oxygen atmosphere at 400 d eg C . Nano wires were investigated by scanning electron microscopy and energy dispersive x-ray measurements. Their diameter is about 30-150 nanometer and their length is about several micrometer. This method which acts without any catalyst is a convenient method to synthesis semiconductor nano wires.

  4. Membrane separation using nano-pores; Nano poa wo riyoshita makubunri

    Energy Technology Data Exchange (ETDEWEB)

    Manabe, S. [Fukuoka Women`s Univ., Fukuoka (Japan)

    1995-08-01

    The membrane constituted by nano-pore only (NF membrane) is sold on the market recently as the membranes used for the matter separations in addition to the reverse osmosis membrane for changing seawater into fresh water, dialysis membrane used for artificial kidney, ultrafiltration membrane used for the separation and condensation of protein and the micro-filter used for removing microbe. It is possible for the membrane constituted by nano-pore to remove the virus with the size being from 20 to 300 nm. In this paper, the pore structure of NF membrane is explained, and then its application as the membrane for removing virus is described. Especially, it is possible for NF membrane to remove the virus with smallest size (parvovirus, etc.), prion albumen (bovine serum pathogen, etc.) and the special gene such as cancer, and it is further applied to the condensation and refining of virus and genes. The broader application of nano-pore to the control of the transportation of micro-particles in the future is expected. 3 refs., 2 figs.

  5. Flame Retardant Effect of Nano Fillers on Polydimethylsiloxane Composites.

    Science.gov (United States)

    Jagdale, Pravin; Salimpour, Samera; Islam, Md Hujjatul; Cuttica, Fabio; Hernandez, Francisco C Robles; Tagliaferro, Alberto; Frache, Alberto

    2018-02-01

    Polydimethylsiloxane has exceptional fire retardancy characteristics, which make it a popular polymer in flame retardancy applications. Flame retardancy of polydimethylsiloxane with different nano fillers was studied. Polydimethylsiloxane composite fire property varies because of the shape, size, density, and chemical nature of nano fillers. In house made carbon and bismuth oxide nano fillers were used in polydimethylsiloxane composite. Carbon from biochar (carbonised bamboo) and a carbon by-product (carbon soot) were selected. For comparative study of nano fillers, standard commercial multiwall carbon nano tubes (functionalised, graphitised and pristine) as nano fillers were selected. Nano fillers in polydimethylsiloxane positively affects their fire retardant properties such as total smoke release, peak heat release rate, and time to ignition. Charring and surface ceramization are the main reasons for such improvement. Nano fillers in polydimethylsiloxane may affect the thermal mobility of polymer chains, which can directly affect the time to ignition. The study concludes that the addition of pristine multiwall carbon nano tubes and bismuth oxide nano particles as filler in polydimethylsiloxane composite improves the fire retardant property.

  6. Bioinspiration From Nano to Micro Scales

    CERN Document Server

    2012-01-01

    Methods in bioinspiration and biomimicking have been around for a long time. However, due to current advances in modern physical, biological sciences, and technologies, our understanding of the methods have evolved to a new level. This is due not only to the identification of mysterious and fascinating phenomena but also to the understandings of the correlation between the structural factors and the performance based on the latest theoretical, modeling, and experimental technologies. Bioinspiration: From Nano to Micro Scale provides readers with a broad view of the frontiers of research in the area of bioinspiration from the nano to macroscopic scales, particularly in the areas of biomineralization, antifreeze protein, and antifreeze effect. It also covers such methods as the lotus effect and superhydrophobicity, structural colors in animal kingdom and beyond, as well as behavior in ion channels. A number of international experts in related fields have contributed to this book, which offers a comprehensive an...

  7. Fiscal 2000 pioneering research report on the 3D nanotechnology; 2000 nendo 3D nano technology sendo kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A survey was conducted of the 3D nanotechnology which is a technology that aims to create novel functions and to enhance functions in mechanical engineering through the control of large-area 3-dimensional nano-scale structures. In this fiscal year, trends of research and development and technological tasks were surveyed from the viewpoint of nanomanufacturing technology. Basic processing technologies were surveyed, which included the laser-aided or light-aided micromachining technology, chemomechanical processing technology, and nanoparticle beam-aided processing technology. In the research of mass production technologies, the nanostructure transfer technology superior in capability to the conventional photolithography was taken up. Nanomanipulation technologies were also surveyed, such as atomic/molecular-level observation, assessment, processing, fixation, and the like. Technologies involving machine elements and structures were surveyed, when microactuators and micromechanisms were studied, such as nano-scale functional films. Lastly, a proposition was made about research and development tasks for the future and about how to work on such tasks. (NEDO)

  8. Formation flying within a constellation of nano-satellites the QB50 mission

    NARCIS (Netherlands)

    Gill, E.K.A.; Sundaramoorthy, P.; Bouwmeester, J.; Zandbergen, B.; Reinhard, R.

    2010-01-01

    QB50 is a mission establishing an international network of 50 nano-satellites for multi-point, in-situ measurements in the lower thermosphere and re-entry research. As part of the QB50 mission, the Delft University of Technology intends to contribute two nano-satellites both being equipped with a

  9. Synthesis and photoluminescence enhancement of nano-PAA-ZnCl_2 with controllable dimension and morphology

    International Nuclear Information System (INIS)

    Wu, Jianguo; Wang, Kaige; Zhou, Yukun; Wang, Shuang; Zhang, Chen; Wang, Guiren

    2016-01-01

    Highlights: • One kind of large area nano-PAA-ZnCl_2 composite film is fabricated, its dimension and morphology is controllable. The properties of nano-composite films have been heavily influenced by the concentration of initial ZnCl_2 solution, the depth of nano-PAAM substrate and the growth time of ZnCl_2 crystals. • At room temperature, the nano-PAA-ZnCl_2 film has the same excitation center (335 nm) and emission center (430 nm) as the nano-PAAM substrate, and the PL intensities can be doubly enhanced. • After annealing at 500 °C, the emission peak spectra of the nano-composite films stabilized at 385 nm, 402 nm, and 430 nm. - Abstract: One kind of ZnCl_2 nano-films with controllable dimension and morphology is successfully synthesized on the top surface of nano-porous anodic alumina membrane (nano-PAAM) by self-organized method. The nano-PAA-ZnCl_2 composite films are characterized by field emission scanning electron microscopy, energy dispersive spectrometer, and laser confocal Raman spectroscopy. The results indicate that the concentration of initial ZnCl_2 solution, the depth of nano-PAAM substrate and the growth time of ZnCl_2 crystals have important influences on the properties of nano-composite films. Furthermore, the characteristics of nano-composites such as the photoluminescence (PL) spectra are investigated. Compared with the nano-PAAM substrate, at room temperature, all of the nano-PAA-ZnCl_2 composite films have both the same excitation center (335 nm) and emission center (430 nm), no matter what the nano-composite morphologies being; and the PL intensity of nano-PAA-ZnCl_2 composite films are all enhanced and the maximum enhancement is two times; after annealing at 500 °C, the emission spectra of the nano-composite films stabilized at the 385 nm, 402 nm and 430 nm. The research provides a new, simple, economical and practical technology to fabricate nano-PAA composite films with higher luminousintensity.

  10. Nano-funnels as electro-osmotic ``tweezers and pistons''

    Science.gov (United States)

    Wang, Yanqian; Panyukov, Sergey; Zhou, Jinsheng; Menard, Laurent D.; Ramsey, J. Michael; Rubinstien, Michael

    2014-03-01

    An electric field is used to force a DNA molecule into a nano-channel by compensating the free energy penalty that results from the reduced conformational entropy of the confined macromolecule. Narrow nano-channels require high critical electric fields to achieve DNA translocation, leading to short dwell times of DNA in these channels. We demonstrate that nano-funnels integrated with nano-channels reduce the free energy barrier and lower the critical electric field required for DNA translocation. A focused electric field within the funnel increases the electric force on the DNA, compresses the molecule, and increases the osmotic pressure at the nano-channel entrance. This ``electro-osmotic piston'' forces the molecule into the nano-channel at lower electric fields than those observed without the funnel. Appropirately designed nano-funnels can also function as tweezers that allow manipulation of the position of the DNA molecule. The predictions of our theory describing double-stranded DNA behavior in nano-funnel - nano-channel devices are consistent with experimental results. Thanks for the financial support from NSF (DMR-1309892, DMR-1121107, DMR-1122483), NIH (1-P50-HL107168, 1-P01-HL108808-01A1, R01HG02647), NHGRI and CF Foundation.

  11. Stacked dipole line source excitation of active nano-particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel

    This work investigates electromagnetic properties of cylindrical active coated nano-particles excited by a stac- ked electric dipole line source. The nano-particles consist of a silica nano-core, layered by silver, gold, or copper nano-shell. Attention is devoted to the influence of the source...... location and dipole orientation, the gain constant, and the nano-particle material composition on the electromagnetic field distributions and radiated powers. The results are contrasted to those for the magnetic line source illumination of the nano-particles....

  12. Energy challenge and nano-sciences

    International Nuclear Information System (INIS)

    Romulus, Anne-Marie; Chamelot, Pierre; Chaudret, Bruno; Comtat, Maurice; Fajerwerg, Katia; Philippot, Karine; Geoffron, Patrice; Lacroix, Jean-Christophe; Abanades, Stephane; Flamant, Gilles; HUERTA-ORTEGA, Benjamin; Cezac, Pierre; Lincot, Daniel; Roncali, Jean; Artero, Vincent; GuiLLET, Nicolas; Fauvarque, Jean-Francois; Simon, Patrice; Taberna, Pierre-Louis

    2013-01-01

    This book first describes the role of energy in the development of nano-sciences, discusses energy needs, the perception of nano-sciences by societies as far as the energy challenge is concerned, describes the contribution of nano-catalyzers to energy and how these catalyzers are prepared. A second part addresses the new perspectives regarding carbon: production of biofuels from biomass, process involved in CO 2 geological storage, improvement of solar fuel production with the use of nano-powders. The third part describes the new orientations of solar energy: contribution of the thin-layer inorganic sector to photovoltaic conversion, perspectives for organic photovoltaic cells, operation of new dye-sensitized nanocrystalline solar cells. The fourth part addresses the hydrogen sector: credibility, contribution of biomass in hydrogen production, production of hydrogen by electrochemistry, new catalyzers for electrolyzers and fuel cells. The last part address improved electrochemical reactors

  13. Bridging the Gap Between Innovation and ELSA: The TA Program in the Dutch Nano-R&D Program NanoNed

    NARCIS (Netherlands)

    Rip, Arie; van Lente, H

    2013-01-01

    The Technology Assessment (TA) Program established in 2003 as part of the Dutch R&D consortium NanoNed is interesting for what it did, but also as an indication that there are changes in how new science and technology are pursued: the nanotechnologists felt it necessary to spend part of their

  14. A study on a nano-scale materials simulation using a PC cluster

    International Nuclear Information System (INIS)

    Choi, Deok Kee; Ryu, Han Kyu

    2002-01-01

    Not a few scientists have paid attention to application of molecular dynamics to chemistry, biology and physics. With recent popularity of nano technology, nano-scale analysis has become a major subject in various engineering fields. A underlying nano scale analysis is based on classical molecular theories representing molecular dynamics. Based on Newton's law of motions of particles, the movement of each particles is to be determined by numerical integrations. As the size of computation is closely related with the number of molecules, materials simulation takes up huge amount of computer resources so that it is not until recent days that the application of molecular dynamics to materials simulations draw some attention from many researchers. Thanks to high-performance computers, materials simulation via molecular dynamics looks promising. In this study, a PC cluster consisting of multiple commodity PCs is established and nano scale materials simulations are carried out. Micro-sized crack propagation inside a nano material is displayed by the simulation

  15. Control of the Nano-Particle Weight Ratio in Stainless Steel Micro and Nano Powders by Radio Frequency Plasma Treatment

    OpenAIRE

    Dong-Yeol Yang; Youngja Kim; Min Young Hur; Hae June Lee; Yong-Jin Kim; Tae-Soo Lim; Ki-Bong Kim; Sangsun Yang

    2015-01-01

    This study describes how to make stainless steel hybrid micro-nano-powders (a mixture of micro-powder and nano-powder) using an in situ one-step process via radio frequency (RF) thermal plasma treatment. Nano-particles attached to micro-powders were successfully prepared by RF thermal plasma treatment of stainless steel powder with an average size of 35 μm. The ratio of nano-powders is estimated with a two-dimensional fluid simulation that calculates the temperature profile influencing the r...

  16. Light‐driven Nano­‐robotics - Invited Plenary Presentation, IEEE NANO 2016

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    ) and pioneering their use in so-called lightdriven nano-robotics. Hence, the aim of our latest R&D is to combine advanced topology optimisation, 3D printing of functionalized materials and light manipulation to demonstrate a structure-mediated micro-tonano coupling paradigm for controlled operation of robotic...... tools overcoming the diffraction limit while still being optically visible and manoeuvrable. 2PP-fabrication can already today create intricate nano-features merged onto larger microstructures that, in turn, are steerable by dynamic light beams. Applying multiple independently controllable laser beam...... traps on these structures will enable real-time light-driven nanorobotics with six-degrees-of-freedom. This sets the stage for new discoveries using calibrated steering of optimally shaped and functionalized nano-tools at the subcellular level and in full 3D - not available in the scientifi c world...

  17. Comparative evaluation of hydroxyapatite and nano-bioglass in two forms of conventional micro- and nano-particles in repairing bone defects (an animal study).

    Science.gov (United States)

    Nosouhian, Saied; Razavi, Mohammad; Jafari-Pozve, Nasim; Rismanchian, Mansour

    2015-01-01

    Many synthetic bone materials have been introduced for repairing bone defects. The aim of this study is to comparatively evaluate the efficacy of nano-hydroxyapatite (HA) and nano-bioglass bone materials with their traditional micro counterparts in repairing bone defects. In this prospective animal study, four healthy dogs were included. First to fourth premolars were extracted in each quadrant and five cavities in each quadrant were created using trephine. Sixteen cavities in each dog were filled by HA, nano-HA, bioglass, and nano-bioglass and four defects were left as the control group. All defects were covered by a nonrestorable membrane. Dogs were sacrificed after 15, 30, 45, and 60 days sequentially. All 20 samples were extracted by trephine #8 with a sufficient amount of surrounding bone. All specimens were investigated under an optical microscope and the percentage of total regenerated bone, lamellar, and woven bone were evaluated. Data analysis was carried out by SPSS Software ver. 15 and Mann-Whitney U-test (α =0.05). After 15 days, the bone formation percentage showed a significant difference between HA and nano-HA and between HA and bioglass (P bone formation after 15 days. Nano-bioglass and bioglass and nano-HA and nano-bioglass groups represented a significant difference and nano-bioglass showed the highest rate of bone formation after 30 days (P = 0.01). After 45 days, the bone formation percentage showed a significant difference between nano-bioglass and bioglass and between nano-HA and nano-bioglass groups (P = 0.01). Nano-HA and nano-bioglass biomaterials showed promising results when compared to conventional micro-particles in the repair of bone defects.

  18. Track-etch membranes enabled nano-/microtechnology: A review

    International Nuclear Information System (INIS)

    Chakarvarti, S.K.

    2009-01-01

    tunneling phenomenon, optical, magnetic, and chemical and other important functional attributes etc are found to be enhanced when the size reduction comes into play. This review article addresses the art and science of specific technique-the 'Template Synthesis'(TS) used as a route in the development of nano-/micromaterials and structures involving metals, non-metals, semiconductors, magnetic multilayered nanowires, conducting polymers, glasses, nanotubules, wires and whiskers etc. The recent past has witnessed keen interest being generated on the use of innovative technologies like TS in the production of nanomaterials' fabrication reported from various authors and from our lab. The strategy for embedding matter of interest within the etched pores or channels in the template is the material's placement through some suitable mechanism at the desired places viz., pores.

  19. Track-etch membranes enabled nano-/microtechnology: A review

    Energy Technology Data Exchange (ETDEWEB)

    Chakarvarti, S.K., E-mail: skchakarvarti@gmail.co [Department of Physics, National Institute of Technology, Institution of National Importance, Kurukshetra 136 119 (India)

    2009-10-15

    tunneling phenomenon, optical, magnetic, and chemical and other important functional attributes etc are found to be enhanced when the size reduction comes into play. This review article addresses the art and science of specific technique-the 'Template Synthesis'(TS) used as a route in the development of nano-/micromaterials and structures involving metals, non-metals, semiconductors, magnetic multilayered nanowires, conducting polymers, glasses, nanotubules, wires and whiskers etc. The recent past has witnessed keen interest being generated on the use of innovative technologies like TS in the production of nanomaterials' fabrication reported from various authors and from our lab. The strategy for embedding matter of interest within the etched pores or channels in the template is the material's placement through some suitable mechanism at the desired places viz., pores.

  20. Theoretical and experimental studies of single event effect induced by atmospheric muons on nano-metric technologies

    International Nuclear Information System (INIS)

    Li Cavoli, P.

    2016-01-01

    This study concerns the domain of the microelectronics. It consists in the study of the impact of the 3D morphology of the energy deposit on the Single Event Effect (SEE) modeling, induced by atmospheric muons. Over a first phase, the approach has consisted in the modeling of the energy deposit induced by protons in nano-metric volumes. For that purpose the use of the Monte Carlo code GEANT4 has allowed us to simulate and stock in a database the tracks characteristics of the energy deposit induced by protons. Once the approach validated for the protons, simulations of the energy deposit induced by muons have been realized. A CCD camera has been used in order to measure the radiative atmospheric environment and to constrain the modeling of the energy deposit induced by muons. This study highlights and quantify the contribution of the radial distribution of the energy deposit induced by protons in nano-metric volumes for the SEE prediction. On the other hand, the study shows that the contribution of the radial distribution of the energy deposit induced by muons in nano-metric volumes has a negligible impact on the SEE modeling. It will be interesting to realize measurements of the energy deposit induced by muons in nano-metric technologies under particle accelerator. This will allow to bring experimental data still nonexistent necessary to the development of new physical models more accurate on the modeling of the energy deposit induced by muons. (author)

  1. Simulation of micro/nano electroporation for cell transfection

    Science.gov (United States)

    Zhang, Guocheng; Fan, Na; Jiang, Hai; Guo, Jian; Peng, Bei

    2018-03-01

    The 3D micro/nano electroporation for transfection has become a powerful biological cell research technique with the development of micro-nano manufacturing technology. The micro channels connected the cells with transfection reagents on the chip were important to the transmemnbrane potentical, which directly influences the electroporation efficiency. In this study, a two-dimensional model for electroporation of cells was designed to address the effects of channels’ sizes and number on transmembrane potential. The simulation results indicated that the transmembrane potential increased with increasing size of channels’ entrances. Moreover, compared with single channel entrance, the transmembrane potential was higher when the cells located at multiple channels entrances. These results suggest that it IS required to develop higher micro manufacturing technology to create channels as we expected size.

  2. Nano-nutrition of chicken embryos

    DEFF Research Database (Denmark)

    Sawosz, Filip; Pineda, Lane Manalili; Hotowy, Anna

    2013-01-01

    It has been suggested that the quantity and quality of nutrients stored in the egg might not be optimal for the fast rate of chicken embryo development in modern broilers, and embryos could be supplemented with nutrients by in ovo injection. Recent experiments showed that in ovo feeding reduces...... broiler eggs was randomly divided into a Control group without injection and injected groups with hydrocolloids of Nano-Ag, ATP or a complex of Nano-Ag and ATP (Nano-Ag/ATP). The embryos were evaluated on day 20 of incubation. The results indicate that the application of ATP to chicken embryos increases...

  3. Growth of VO2 Nano wires from Supercooled Liquid Nano droplets and E-beam Irradiation for Ultra-sensitive sensor

    International Nuclear Information System (INIS)

    Byun, Ji Won; Baik, Jeong Min; Lee, Sang Hyun; Lee, Byung Cheol

    2011-01-01

    Vanadium dioxide is an interesting material on account of its easily accessible and sharp Mott metal-insulator transition at ∼ 68 .deg. C in the bulk, which is of great interest in sensing and catalytic applications. In this Paper, we describe the synthesis and properties of VO 2 nano wires as novel catalytic and gas sensor materials based on electron beam irradiation. High yields of single crystalline VO 2 nano wires are synthesized by atmospheric-pressure, physical vapor deposition using V 2 O 5 layer. Pd-decorated VO 2 nano wire sensors show extraordinary sensitivity towards hydrogen, an almost 3 order-of-magnitude increase in the current through the nano wire. By the Eb irradiation, the conductance of the nano wires significantly increased up to 5 times, reducing the response time by half and the operating temperature. The metal nanoparticles-VO 2 nano wire system will be very promising for high-sensitivity and high-selectivity under low temperature less than 100. deg. C

  4. Sintering characteristics of nano-ceramic coatings

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Popma, R.

    2003-01-01

    This paper concentrates on sintering characteristics of nano-sized ceramic SiO2 particles. The sintering process is studied as a function of temperature using a conventional furnace and using a laser beam. The underlying idea is to combine the nanoceramic sol-gel concept with inkjet technology and

  5. From Gold Nano-particles through Nano-wire to Gold Nano-layers on Substrate

    Czech Academy of Sciences Publication Activity Database

    Švorčík, V.; Kolská, Z.; Slepička, P.; Siegel, J.; Hnatowicz, Vladimír

    2010-01-01

    Roč. 2010, G (2010), s. 1-57. ISBN 978-1-61668-009-1 Institutional support: RVO:61389005 Keywords : thin films * Au nano layers * AFM Subject RIV: BM - Solid Matter Physics ; Magnetism https://www.novapublishers.com/catalog/product_info.php?products_id=12909

  6. Fabrication of nano-electrode arrays of free-standing carbon nanotubes on nano-patterned substrate by imprint method

    Energy Technology Data Exchange (ETDEWEB)

    Chang, W.S., E-mail: paul@kimm.re.kr [Department of Nano Mechanics, Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-gu Daejeon 305-343 (Korea, Republic of); Kim, J.W. [Gyeongbuk Hybrid Technology Institute, 36 Goeyeon-dong, Yeongcheon, Gyeongbuk 770-170 (Korea, Republic of); Choi, D.G. [Department of Nano Mechanics, Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-gu Daejeon 305-343 (Korea, Republic of); Han, C.S. [Gyeongbuk Hybrid Technology Institute, 36 Goeyeon-dong, Yeongcheon, Gyeongbuk 770-170 (Korea, Republic of)

    2011-01-15

    The synthesis of isolated carbon nanotubes with uniform outer diameters and ordered spacing over wafer-scale areas was investigated for fabrication of nano-electrode arrays on silicon wafers for field emission and sensor devices. Multi-walled carbon nanotubes (MWCNTs) were grown on TiN electrode layer with iron catalyst patterned by nano-imprint lithography (NIL), which allows the precise placement of individual CNTs on a substrate. The proposed techniques, including plasma-enhanced chemical vapor deposition (PECVD) and NIL, are simple, inexpensive, and reproducible methods for fabrication of nano-scale devices in large areas. The catalyst patterns were defined by an array of circles with 200 nm in diameter, and variable lengths of pitch. The nano-patterned master and Fe catalyst were observed with good pattern fidelity over a large area by atomic force microscope (AFM) and scanning electron microscopy (SEM). Nano-electrodes of MWCNTs had diameters ranging from 50 nm to 100 nm and lengths of about 300 nm. Field emission tests showed the reducing ignition voltage as the geometry of nanotube arrays was controlled by catalyst patterning. These results showed a wafer-scale approach to the control of the size, pitch, and position of nano-electrodes of nanotubes for various applications including electron field-emission sources, electrochemical probes, functionalized sensor elements, and so on.

  7. Oxidation of nano-reinforced polyolefins

    International Nuclear Information System (INIS)

    Gutierrez Castro, G.G.

    2010-11-01

    Nano-composite materials attract search due to their improvements on barrier properties by incorporating low level of nano-filler of 5%w. Nowadays, organically modified montmorillonite (MMT-O) is the most used filler due to its high aspect ratio which permits stronger clay/polymer interactions. If nano-reinforced materials are highly performing, the ways in which clay presence affects polyolefin durability have not being subject of a rigorous study, thus they are not yet clear. Our goal was to examine unstabilized clay polypropylene and unstabilized clay polyethylene nano composites to get a better comprehension of the clay effects on their thermo-oxidation process under low temperatures. The effects induced by a dual physic-chemical nature of the clay were explored. The problem was tackled from both experimental and theoretical point of views for degradation process not controlled and controlled by oxygen diffusion (homogenous and heterogeneous respectively). It seems that MMT-O speeds up oxidation. This phenomenon was modeled by adding a catalytic reaction between metallic particles initially present in the MMT-O and hydroperoxide groups (main responsible of oxidation). Regarding the oxygen permeability two situations were confronted: for the clay polypropylene system a decrease of 45% of oxygen permeability was measured. On the other hand, no variation was found for the polyethylene case. This effect was attributed to the fact that polyethylene nano-composite reached a blend morphology less developed than those of the polypropylene nano-composite. Kinetics and oxidation products profiles across the sample thickness were simulated for both systems by coupling oxidation reactions with oxygen diffusion equations. For the polyethylene case, the effects induced by oxidation on molar mass and crystalline morphology were also simulated. Finally, based on a structure-property relationship, simulations of mechanic modulus profiles were performed for the heterogeneous

  8. Nano-LED array fabrication suitable for future single photon lithography

    International Nuclear Information System (INIS)

    Mikulics, M; Hardtdegen, H

    2015-01-01

    We report on an alternative illumination concept for a future lithography based on single-photon emitters and important technological steps towards its implementation. Nano light-emitting diodes (LEDs) are chosen as the photon emitters. First, the development of their fabrication and their integration technology is presented, then their optical characteristics assessed. Last, size-controlled nano-LEDs, well positioned in an array, are electrically driven and utilized for illumination. Nanostructures are lithographically formed, demonstrating the feasibility of the approach. The potential of single-photon lithography to reach the ultimate scale limits in mass production is discussed. (paper)

  9. Ge nano-layer fabricated by high-fluence low-energy ion implantation

    International Nuclear Information System (INIS)

    Lu Tiecheng; Dun Shaobo; Hu Qiang; Zhang Songbao; An Zhu; Duan Yanmin; Zhu Sha; Wei Qiangmin; Wang Lumin

    2006-01-01

    A Ge nano-layer embedded in the surface layer of an amorphous SiO 2 film was fabricated by high-fluence low-energy ion implantation. The component, phase, nano-structure and luminescence properties of the nano-layer were studied by means of Rutherford backscattering, glancing incident X-ray diffraction, laser Raman scattering, transmission electron microscopy and photoluminescence. The relation between nano-particle characteristics and ion fluence was also studied. The results indicate that nano-crystalline Ge and nano-amorphous Ge particles coexist in the nano-layer and the ratio of nano-crystalline Ge to nano-particle Ge increases with increasing ion fluence. The intensity of photoluminescence from the nano-layer increases with increasing ion fluence also. Prepared with certain ion fluences, high-density nano-layers composed of uniform-sized nano-particles can be observed

  10. Managing collaboration in the nanoManipulator

    DEFF Research Database (Denmark)

    Hudson, Thomas C.; Heiser, Aron T.; Sonnenwald, Diane H.

    2003-01-01

    We designed, developed, deployed, and evaluated the Collaborative nanoManipulator (CnM), a system supporting remote collaboration between users of the nanoManipulator interface to atomic force microscopes. To be accepted by users, the shared nanoManipulator application had to have the same high...... level of interactivity as the single user system and the application had to support a user's ability to interleave working privately and working collaboratively. This paper briefly describes the entire collaboration system, but focuses on the shared nanoManipulator application. Based on our experience...... developing the CnM, we present: a method of analyzing applications to characterize the requirements for sharing data between collaborating sites, examples of data structures that support collaboration, and guidelines for selecting appropriate synchronization and concurrency control schemes....

  11. Nano-particles for therapeutical purposes: an innovative approach for the radiotherapy of cancer

    International Nuclear Information System (INIS)

    Borghi, E.; Said, P.; Pottier, A.; Levy, L.

    2010-01-01

    Nano-technology can be used to manage and assemble substances in unprecedented ways in the history of products for human health. Underlying this revolution are the possibilities for using new therapeutic processes and separating a drug's various functions (distribution, effects, etc.). This is not possible with classical drugs. Nano-medicine has made it possible to develop new approaches to treating cancer, by using nano-particles with physical effects at the scale of the malignant cell. Hard metallic oxide nano-particles have been designed so that they can play a therapeutic role when activated by x-rays. The x-rays irradiation will free electrons from the metallic oxide, these electrons will lose energy through collisions with water molecules and will create free radicals in the cells. These free radicals are very reactive and will damage the covalent bounds of the molecules located around the nano-particles. Clinical tests on man are expected to begin very soon. These 'x-ray-activable' nano-particles might set off a revolution in the practice of radiotherapy for destroying or controlling malignant tumors

  12. Nano-plastics in the aquatic environment.

    Science.gov (United States)

    Mattsson, K; Hansson, L-A; Cedervall, T

    2015-10-01

    The amount of plastics released to the environment in modern days has increased substantially since the development of modern plastics in the early 1900s. As a result, concerns have been raised by the public about the impact of plastics on nature and on, specifically, aquatic wildlife. Lately, much attention has been paid to macro- and micro-sized plastics and their impact on aquatic organisms. However, micro-sized plastics degrade subsequently into nano-sizes whereas nano-sized particles may be released directly into nature. Such particles have a different impact on aquatic organisms than larger pieces of plastic due to their small size, high surface curvature, and large surface area. This review describes the possible sources of nano-sized plastic, its distribution and behavior in nature, the impact of nano-sized plastic on the well-being of aquatic organisms, and the difference of impact between nano- and micro-sized particles. We also identify research areas which urgently need more attention and suggest experimental methods to obtain useful data.

  13. Wafer scale nano-membrane supported on a silicon microsieve using thin-film transfer technology

    NARCIS (Netherlands)

    Unnikrishnan, S.; Jansen, Henricus V.; Berenschot, Johan W.; Elwenspoek, Michael Curt

    A new micromachining method to fabricate wafer scale nano-membranes is described. The delicate thin-film nano-membrane is supported on a robust silicon microsieve fabricated by plasma etching. The silicon sieve is micromachined independently of the thin-film, which is later transferred onto it by

  14. Standardization of Alternative Methods for Nano genotoxicity Testing in Drosophila melanogaster Using Iron Nanoparticles: A Promising Link to Nanodosimetry

    International Nuclear Information System (INIS)

    Parvathi, D. P.; Rajagopal, K.; Sumitha, R.

    2016-01-01

    The remarkable advancement of nano technology has triggered enormous production of metal nanoparticles and nano materials for diverse applications in clinical diagnostics and biomedical research. Nano technology has facilitated understanding and analysing nano toxicology in a holistic approach. Iron nanoparticles have been of special interest in recent research owing to their dynamic, paramagnetic, and catalytic properties. Research studies (in vitro model) have demonstrated the lack of toxicity in nano iron. The present study design involves in vivo toxicity assessment of nano iron at specific concentrations of 0.1mM, 1 mM, 5 mM, and 10 mM in Drosophila. DNA fragmentation assay in exposed and F1 population showed first-line toxicity to flies. Viability and reproductive ability were assessed at 24-hour and 48-hour intervals and thus indicated no statistical significance between the exposed and control groups. The wing spot assay has expressed transparent lack of toxicity in the studied concentrations of nano iron. Protein profiling has demonstrated that the protein profiles have been intact in the larvae which confirm lack of toxicity of nano iron. This leads to concluding that nano iron at the defined concentrations is neither genotoxic nor mutagenic.

  15. Interaction of NANOS2 and NANOS3 with different components of the CNOT complex may contribute to the functional differences in mouse male germ cells

    OpenAIRE

    Atsushi Suzuki; Yuki Niimi; Yumiko Saga

    2014-01-01

    ABSTRACT NANOS2 and NANOS3 belong to the Nanos family of proteins that contain a conserved zinc finger domain, which consists of two consecutive CCHC-type zinc finger motifs, and contribute to germ cell development in mice. Previous studies indicate that there are redundant and distinct functions of these two proteins. NANOS2 rescues NANOS3 functions in the maintenance of primordial germ cells, whereas NANOS3 fails to replace NANOS2 functions in the male germ cell pathway. However, the lack o...

  16. Nano-pyramid arrays for nano-particle trapping

    NARCIS (Netherlands)

    Sun, Xingwu; Veltkamp, Henk-Willem; Berenschot, Johan W.; Gardeniers, Johannes G.E.; Tas, Niels Roelof

    2016-01-01

    Abstract In this paper we present the drastic miniaturization of nano-wire pyramids fabricated by corner lithography. A particle trapping device was fabricated in a well-defined and symmetrical array. The entrance and exit hole-size can be tuned by adjusting fabrication parameters. We describe here

  17. Review of Micro/Nano Nondestructive Evaluation Technique (II): Measurement of Acoustic Properties

    International Nuclear Information System (INIS)

    Kim, Chung Seok; Park, Ik Keun

    2012-01-01

    The present paper reviews the micro and nano nondestructive evaluation(NDE) technique that is possible to investigate the surface and measure the acoustic properties. The technical theory, features and applications of the ultrasonic atomic force microscopy(UAFM) and scanning acoustic microscopy(SAM) are illustrated. Especially, these technologies are possible to evaluate the mechanical properties in micro/nano structure and surface through the measurement of acoustic properties in addition to the observation of surface and subsurface. Consequently, it is thought that technique developments and applications of these micro/nano NDE in advanced industrial parts together with present nondestructive industry are widely possible hereafter.

  18. Nano-G accelerometer using geometric anti-springs

    NARCIS (Netherlands)

    Boom, B. A.; Bertolini, A.; Hennes, E.; Brookhuis, R. A.; Wiegerink, R. J.; Van Den Brand, J. F J; Beker, M. G.; Oner, A.; Van Wees, D.

    2017-01-01

    We report an ultra-sensitive seismic accelerometer with nano-g sensitivity, using geometric anti-spring technology. High sensitivity is achieved by an on-chip mechanical preloading system comprising four sets of curved leaf springs that support a proof-mass. Using this preloading mechanism,

  19. Synthesis and photoluminescence enhancement of nano-PAA-ZnCl{sub 2} with controllable dimension and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jianguo [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Physics Department, Northwest University, Xi’an 710069 (China); Wang, Kaige, E-mail: wangkg@nwu.edu.cn [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Zhou, Yukun; Wang, Shuang; Zhang, Chen [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Wang, Guiren [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Mechanical Engineering Department & Biomedical Engineering Program, University of South Carolina, Columbia SC 29208 (United States); and others

    2016-12-30

    Highlights: • One kind of large area nano-PAA-ZnCl{sub 2} composite film is fabricated, its dimension and morphology is controllable. The properties of nano-composite films have been heavily influenced by the concentration of initial ZnCl{sub 2} solution, the depth of nano-PAAM substrate and the growth time of ZnCl{sub 2} crystals. • At room temperature, the nano-PAA-ZnCl{sub 2} film has the same excitation center (335 nm) and emission center (430 nm) as the nano-PAAM substrate, and the PL intensities can be doubly enhanced. • After annealing at 500 °C, the emission peak spectra of the nano-composite films stabilized at 385 nm, 402 nm, and 430 nm. - Abstract: One kind of ZnCl{sub 2} nano-films with controllable dimension and morphology is successfully synthesized on the top surface of nano-porous anodic alumina membrane (nano-PAAM) by self-organized method. The nano-PAA-ZnCl{sub 2} composite films are characterized by field emission scanning electron microscopy, energy dispersive spectrometer, and laser confocal Raman spectroscopy. The results indicate that the concentration of initial ZnCl{sub 2} solution, the depth of nano-PAAM substrate and the growth time of ZnCl{sub 2} crystals have important influences on the properties of nano-composite films. Furthermore, the characteristics of nano-composites such as the photoluminescence (PL) spectra are investigated. Compared with the nano-PAAM substrate, at room temperature, all of the nano-PAA-ZnCl{sub 2} composite films have both the same excitation center (335 nm) and emission center (430 nm), no matter what the nano-composite morphologies being; and the PL intensity of nano-PAA-ZnCl{sub 2} composite films are all enhanced and the maximum enhancement is two times; after annealing at 500 °C, the emission spectra of the nano-composite films stabilized at the 385 nm, 402 nm and 430 nm. The research provides a new, simple, economical and practical technology to fabricate nano-PAA composite films with higher

  20. Every which way--nanos gene regulation in echinoderms.

    Science.gov (United States)

    Oulhen, Nathalie; Wessel, Gary M

    2014-03-01

    Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio binds to and changes the fate of several known transcripts. We summarize here the documented functions of Nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way. Copyright © 2013 Wiley Periodicals, Inc.

  1. Sub-micrometer waveguide for nano-optics

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Dyndgaard, Morten Glarborg; Andersen, Karin Nordström

    2003-01-01

    With the recent progress within the field of processing nano structures, there is an increasing interest in coupling light into such structures both for characterization of optical properties and new optical components. In this work we propose the use of a sub-micrometer planar waveguide for prob......With the recent progress within the field of processing nano structures, there is an increasing interest in coupling light into such structures both for characterization of optical properties and new optical components. In this work we propose the use of a sub-micrometer planar waveguide...... for probing the reflection of light against a nano structure. The planar waveguide is based on a silicon nitride core layer, surrounded by a silica cladding region. In our design we utilize this waveguide to couple light into a nano-structure....

  2. The Nanos3-3'UTR is required for germ cell specific NANOS3 expression in mouse embryos.

    Directory of Open Access Journals (Sweden)

    Hitomi Suzuki

    Full Text Available BACKGROUND: The regulation of gene expression via a 3' untranslated region (UTR plays essential roles in the discrimination of the germ cell lineage from somatic cells during embryogenesis. This is fundamental to the continuation of a species. Mouse NANOS3 is an essential protein required for the germ cell maintenance and is specifically expressed in these cells. However, the regulatory mechanisms that restrict the expression of this gene in the germ cells is largely unknown at present. METHODOLOGY/PRINCIPAL FINDINGS: In our current study, we show that differences in the stability of Nanos3 mRNA between germ cells and somatic cells is brought about in a 3'UTR-dependent manner in mouse embryos. Although Nanos3 is transcribed in both cell lineages, it is efficiently translated only in the germ lineage. We also find that the translational suppression of NANOS3 in somatic cells is caused by a 3'UTR-mediated mRNA destabilizing mechanism. Surprisingly, even when under the control of the CAG promoter which induces strong ubiquitous transcription in both germ cells and somatic cells, the addition of the Nanos3-3'UTR sequence to the coding region of exogenous gene was effective in restricting protein expression in germ cells. CONCLUSIONS/SIGNIFICANCE: Our current study thus suggests that Nanos3-3'UTR has an essential role in translational control in the mouse embryo.

  3. Nano-electromembrane extraction

    DEFF Research Database (Denmark)

    Payán, María D Ramos; Li, Bin; Petersen, Nickolaj J.

    2013-01-01

    as extraction selectivity. Compared with conventional EME, the acceptor phase volume in nano-EME was down-scaled by a factor of more than 1000. This resulted in a very high enrichment capacity. With loperamide as an example, an enrichment factor exceeding 500 was obtained in only 5 min of extraction...... electrophoresis (CE). In that way the sample preparation performed by nano-EME was coupled directly with a CE separation. Separation performance of 42,000-193,000 theoretical plates could easily be obtained by this direct sample preparation and injection technique that both provided enrichment as well...

  4. Synthesis and bio-evaluation of nano-hydroxyapatite trapped by 153Sm

    International Nuclear Information System (INIS)

    Bing Wenzeng; Luo Shunzhong; Wen Guanghua; Jiang Shubin; Xiong Xiaoling; Liu Guoping

    2006-03-01

    After nanoHA was synthesized, 153 Sm-EDTMP-nanoHA and 153 Sm-citrate-nanoHA were prepared and proved stable in vitro. ECT images of New Zealand rabbits injected with 153 Sm-EDTMP-nanoHA had better contrast, skeletal figure visible, liver and spleen clear. The images of 153 Sm-citrate-nanoHA showed a similar results but kidney invisible, which meant 153 Sm-citrate-nanoHA showed a similar results but kidney invisible, which meant 153 Sm-citrate-nanoHA was mainly excreted through liver and gall. 153 Sm-EDTMP-nanoHA's half effective inhibition concentrations to SMMC-7721 and MCF-7 cells were 1.98 g/L and 0.075 g/L respectively and 153 Sm-citrate-nanoHA's were 1.89 g/L and 0.094 g/L proportionally. 153 Sm-EDTMP-nanoHA and 153 Sm-citrate-nanoHA were worthy of a further research because their half effective inhibition concentrations were much lower than ones of the single nanoHA. (authors)

  5. Nano Energy Harvesting with Plasmonic Nano-Antennas: A review of MID-IR Rectenna and Application

    Directory of Open Access Journals (Sweden)

    R. Citroni

    2017-03-01

    Full Text Available Over the past decade, unmanned air vehicles are gaining more and more interest and popularity in particular miniaturized small flight objects named NAVs (Nano Air Vehicles. One of the main considerations when building or buying a drone is the flight time and range. The flight time is nowadays a drawback for miniature unmanned aerial vehicles (UAVs. It is limited to few minutes before requiring a forced recovery to replace exhausted batteries. Currently the batteries are the dominant technology, which possess limited operation in time and energy. The real viability to extending flight time (FT of NAVs is possible exploring new and more disruptive alternative solution able either to recharge a battery, or even to directly power the NAVs during the flight. Plasmonic Nano Energy harvester is an attractive technology to extending the FT extracting the energy in mid-infrared radiation emitted from Earth’s surface with Rectenna tuned to mid-infrared wavelengths (7 –14 um with a peak wavelength of about10um . In this review the concepts emerging from this work identify and suggest how this novel harvester can constantly supply these flying objects for the whole day.

  6. Structure-­mediated nano-­biophotonics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Villangca, Mark Jayson; Bañas, Andrew Rafael

    2015-01-01

    The synergy between photonics, nanotechnology and biotechnology is spawning the emerging fields of nano-biotechnology and nano-biophotonics. Photonic innovations already hurdle the diffraction barrier for imaging with nanoscopic resolutions. However, scientific hypothesis testing demands tools...

  7. Ga N nano wires and nano tubes growth by chemical vapor deposition method at different NH{sub 3} flow rate

    Energy Technology Data Exchange (ETDEWEB)

    Li, P.; Liu, Y.; Meng, X. [Wuhan University, School of Physics and Technology, Key Laboratory of Artificial Micro and Nanostructures of Ministry of Education, Wuhan 430072 (China)

    2016-11-01

    Ga N nano wires and nano tubes have been successfully synthesized via the simple chemical vapor deposition method. NH{sub 3} flow rate was found to be a crucial factor in the synthesis of different type of Ga N which affects the shape and the diameter of generated Ga N nano structures. X-ray diffraction confirms that Ga N nano wires grown on Si(111) substrate under 900 degrees Celsius and with NH{sub 3} flow rate of 50 sc cm presents the preferred orientation growth in the (002) direction. It is beneficial to the growth of nano structure through catalyst annealing. Transmission electron microscopy and scanning electron microscopy were used to measure the size and structures of the samples. (Author)

  8. Naming it 'nano': Expert views on 'nano' terminology in informed consent forms of first-in-human nanomedicine trials.

    Science.gov (United States)

    Satalkar, Priya; Elger, Bernice Simone; Shaw, David

    2016-04-01

    Obtaining valid informed consent (IC) can be challenging in first-in-human (FIH) trials in nanomedicine due to the complex interventions, the hype and hope concerning potential benefits, and fear of harms attributed to 'nano' particles. We describe and analyze the opinions of expert stakeholders involved in translational nanomedicine regarding explicit use of 'nano' terminology in IC documents. We draw on content analysis of 46 in-depth interviews with European and North American stakeholders. We received a spectrum of responses (reluctance, ambivalence, absolute insistence) on explicit mention of 'nano' in IC forms with underlying reasons. We conclude that consistent, clear and honest communication regarding the 'nano' dimension of investigational product is critical in IC forms of FIH trials.

  9. Visualization of nano risk research field to clarify domains year by year

    International Nuclear Information System (INIS)

    Matsui, Yasuto; Hayashi, Takeshi; Miyaoi, Kenichi; Yamaguchi, Yukio; Tomobe, Hironori; Kajikawa, Yuya; Matsushima, Katsumori

    2009-01-01

    With rising interest of nano technology R and D, nano risk researches have been greatly studied recently. They attract much attention since influence of nano products in the society is not well-known. Now the current state of nano risk research field is not fully investigated, and the object is overviewing this structure until 2008 and predicting the direction of next-coming studies. Nano risk 1611 papers were searched out with certain query and further refinement. And these papers were clustered by bibliometric method. The selected papers were clustered to seven parts and visually seen as aggregated blocks. Each cluster was labeled with proper name by analyzing in detail and the content of each cluster was classified with three terms, i.e. 'Material', 'Hazard' and 'Kinetics'. The biggest cluster was cluster no. 0 'atmospheric nanoparticles', and secondly cluster no. 1 'nanoparticles used in imaging', thirdly cluster no. 2 'toxicity of manufactured nano materials'. Furthermore, historical trend of the number of papers of each cluster was studied year by year. From the all results, short-term future predicting was performed by examining titles of papers or transition of the number of papers in each cluster and by watching the cluster position and gaps between clusters.

  10. Every which way – nanos gene regulation in echinoderms

    OpenAIRE

    Oulhen, Nathalie; Wessel, Gary M.

    2014-01-01

    Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio, binds to and changes the fate of several known transcripts. We summarize here the documented functions of nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos ...

  11. Oxide nano crystals for in vivo imaging

    International Nuclear Information System (INIS)

    Heinrich, E.

    2005-01-01

    For small animal, fluorescence imaging is complementary with other techniques such as nuclear imaging (PET, SPECT). In vivo imaging studies imply the development of new luminescent probes, with a better sensitivity and a better biological targeting. These markers must filled biological and optical conditions. Our goal is to study new doped lanthanides oxide nano-crystals, their properties, their functionalization and their ability to target biological molecules. Characterizations of Y 2 O 3 :Eu and Y 2 SiO 5 :Eu nano-crystals (light diffusion, spectrometry, microscopy) allowed the determination of their size, their fluorescence properties but also their photo-bleaching. Means of stabilization of the nanoparticles were also studied in order to decrease their aggregation. Gd 2 O 3 :Eu nano-crystals were as well excited by X rays. Nano-crystals of Y 2 SiO 5 :Eu were functionalized, and organic ligands grafting evidenced by fluorescence and NMR. The functionalized nano-crystals could then recognized biological targets (streptavidin-biotin) and be incubated in the presence of HeLa cells. This report deals with the properties of these nano-crystals and their ability to meet the optical and biological conditions required for the application of in vivo imaging. (author)

  12. Electrode fabrication for Lithium-ion batteries by intercalating of carbon nano tubes inside nano metric pores of silver foam

    International Nuclear Information System (INIS)

    Khoshnevisan, B.

    2011-01-01

    Here there is an on effort to improve working electrode (Ag + carbon nano tubes) preparation for Li-Ion batteries applications. Nano scaled silver foam with high specific area has been employed as a frame for loading carbon nano tubes by electrophoretic deposition method. In this ground, the prepared electrodes show a very good stability and also charge-discharge cycles reversibility.

  13. Synthesis of nano-textured biocompatible scaffolds from chicken eggshells

    International Nuclear Information System (INIS)

    Asghar, Waseem; Ilyas, Azhar; Sankaran, Jeyantt; Wan Yuan; Iqbal, Samir M; Kim, Young-Tae

    2012-01-01

    Cell adhesion, morphology and growth are influenced by surface topography at nano and micrometer scales. Nano-textured surfaces are prepared using photolithography, plasma etching and long polymer chemical etching which are cost prohibitive and require specialized equipment. This article demonstrates a simple approach to synthesize nano-textured scaffolds from chicken eggshells. Varieties of pattern are made on the eggshells like micro-needle forests and nanopores, giving very uniform nano-textures to the surfaces. The surfaces are characterized for chemical composition and crystal phase. The novel patterns are transferred to PDMS surfaces and the nano-textured PDMS surfaces are used to study the effect of texturing on human fibroblast cell growth and attachment. The effects of surface topographies, along with laminin coating on cell cultures, are also studied. We find an exciting phenomenon that the initial seeding density of the fibroblast cells affects the influence of the nano-texturing on cell growth. These nano-textured surfaces give 16 times more fibroblast growth when compared to flat PDMS surfaces. The novel nano-textured patterns also double the laminin adsorption on PDMS. (paper)

  14. Managing collaboration in the nanoManipulator

    DEFF Research Database (Denmark)

    Hudson, Thomas C.; Helser, Aren T.; Sonnenwald, Diane H.

    2004-01-01

    We designed, developed, deployed, and evaluated the Collaborative nanoManipulator (CnM), a distributed, collaborative virtual environment system supporting remote scientific collaboration between users of the nanoManipulator interface to atomic force microscopes. This paper describes the entire...

  15. Instrument platforms for nano liquid chromatography.

    Science.gov (United States)

    Šesták, Jozef; Moravcová, Dana; Kahle, Vladislav

    2015-11-20

    The history of liquid chromatography started more than a century ago and miniaturization and automation are two leading trends in this field. Nanocolumn liquid chromatography (nano LC) and largely synonymous capillary liquid chromatography (capillary LC) are the most recent results of this process where miniaturization of column dimensions and sorbent particle size play crucial role. Very interesting results achieved in the research of extremely miniaturized LC columns at the end of the last century lacked distinctive raison d'être and only advances in mass spectrometry brought a real breakthrough. Configuration of nano LC-electrospray ionization mass spectrometry (LC-ESI-MS) has become a basic tool in bioanalytical chemistry, especially in proteomics. This review discusses and summarizes past and current trends in the realization of nano liquid chromatography (nano LC) platforms. Special attention is given to the mobile phase delivery under nanoflow rates (isocratic, gradient) and sample injection to the nanocolumn. Available detection techniques applied in nano LC separations are also briefly discussed. We followed up the key themes from the original scientific reports over gradual improvements up to the contemporary commercial solutions. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Fabrication of nano-structured UO2 fuel pellets

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kang, Ki Won; Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Heon; Kim, Keon Sik; Song, Kun Woo

    2007-01-01

    Nano-structured materials have received much attention for their possibility for various functional materials. Ceramics with a nano-structured grain have some special properties such as super plasticity and a low sintering temperature. To reduce the fuel cycle costs and the total mass of spent LWR fuels, it is necessary to extend the fuel discharged burn-up. In order to increase the fuel burn-up, it is important to understand the fuel property of a highly irradiated fuel pellet. Especially, research has focused on the formation of a porous and small grained microstructure in the rim area of the fuel, called High Burn-up Structure (HBS). The average grain size of HBS is about 300nm. This paper deals with the feasibility study on the fabrication of nano-structured UO 2 pellets. The nano sized UO 2 particles are prepared by a combined process of a oxidation-reducing and a mechanical milling of UO 2 powder. Nano-structured UO 2 pellets (∼300nm) with a density of ∼93%TD can be obtained by sintering nano-sized UO 2 compacts. The SEM study reveals that the microstructure of the fabricated nano-structure UO 2 pellet is similar to that of HBS. Therefore, this bulk nano-structured UO 2 pellet can be used as a reference pellet for a measurement of the physical properties of HBS

  17. Nano-cellulose based nano-coating biomaterial dataset using corn leaf biomass: An innovative biodegradable plant biomaterial

    Directory of Open Access Journals (Sweden)

    A.B.M. Sharif Hossain

    2018-04-01

    Full Text Available The nanocellulose derived biodegradable plant biomaterial as nano-coating can be used in the medical, biomedical cosmetics, and bioengineering products. Bio-plastic and some synthetic derived materials are edible and naturally biodegradable. The study was conducted to investigate edible nano-biopolymer based nano-coating of capsules and drugs or other definite biomedical materials from corn leaf biomass. Corn leaf biomass was used as an innovative sample to produce edible nano-coating bioplastic for drug and capsule coating and other industrial uses. The data show the negligible water 0.01% absorbed by bio-plastic nanocoating. Odor represented by burning test was under the completely standard based on ASTM. Moreover, data on color coating, tensile strength, pH, cellulose content have been shown under standard value of ASTM (American standard for testing and materials standard. In addition to that data on the chemical element test like K+, CO3−−, Cl-, Na+ exhibited positive data compared to the synthetic plastic in the laboratory using the EN (166 standardization. Therefore, it can be concluded that both organic (cellulose and starch based edible nano-coating bioplastic may be used for drug and capsule coating as biomedical and medical components in the pharmaceutical industries. Keywords: Nanocellulose, Nanobioplastic, Nanocoating, Biodegradable, Corn leaf

  18. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices

    International Nuclear Information System (INIS)

    Liu Ling; Zhao Yaomin; Jia Nengqin; Zhou Qin; Zhao Chongjun; Yan Manming; Jiang Zhiyu

    2006-01-01

    Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers

  19. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Liu [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Yaomin, Zhao [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Nengqin, Jia [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Qin, Zhou [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Chongjun, Zhao [Photon Craft Project, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences and Japan Science and Technology Agency, Shanghai 201800 (China); Manming, Yan [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Zhiyu, Jiang [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2006-05-01

    Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers.

  20. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    Science.gov (United States)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  1. Nano-material aspects of shock absorption in bone joints.

    Science.gov (United States)

    Tributsch, H; Copf, F; Copf, P; Hindenlang, U; Niethard, F U; Schneider, R

    2010-01-01

    This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three-dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones.

  2. Micro Nano Replication Processes and Applications

    CERN Document Server

    Kang, Shinill

    2012-01-01

    This book is an introduction to the fundamentals and processes for micro and nano molding for plastic components. In addition to the basics, the book covers applications details and examples. The book helps both students and professionals to understand and work with the growing tools of molding and uses for micro and nano-sized plastic parts.Provides a comprehensive presentation on fundamentals and practices of manufacturing for micro / nano sized plastics partsCovers a relatively new but fast-growing field that is impacting any industry using plastic parts in their products (electronics, tele

  3. VMESNIK ZA DALJINSKO VODENJE NANO-ROBOTA

    OpenAIRE

    Kocmut, Silvester

    2015-01-01

    V diplomskem delu je predstavljen programski uporabniški vmesnik za vodenje realnega nano-robota. Uporabniški vmesnik omogoča neposredno krmiljenje nano-robota. Realni nano-robot ima pet translacijskih osi, omogoča tudi montažo prijemala. Osi delujejo na osnovi piezoelektričnih aktuatorjev. Izhod iz inkrementalnih dajalnikov nam da povratno informacijo o gibanju. Uporabniški vmesnik omogoča ročno vodenje preko navideznih gumbov za vseh pet osi ter vodenje preko ročne ure EZ430-Chronos. Krmilj...

  4. Accessing the nanostructural analysis network organisation (NANO)

    International Nuclear Information System (INIS)

    Hicks, R.; Ringer, S.

    2003-01-01

    Full text: As a Major National Research Facility (MNRF), NANO unites five Australian microscopy and microanalysis centres to form the peak Australian facility for nanometric analysis of the structure and chemistry of materials. NANO is headquartered at the Australian Key Centre for Microscopy and Microanalysis at the University of Sydney and involves the Centres for Microscopy and Microanalysis at the Universities of Queensland and Western Australia, the Electron Microscope Unit at the University of New South Wales and the Microanalytical Research Centre at the University of Melbourne. Together these major centres maintain a wide range of complementary instrumentation for the characterisation of nanostructure. NANO links them into a co-ordinated national facility with unified charges and booking systems. The facility will provide open access to a wide range of present and future partners involving local and international linkages. For this reason, NANO is designed to allow the incorporation of other groups as additional nodes. All Australian researchers are eligible to apply for support to use NANO through the Travel and Access Program (NANO-TAP), which will support basic travel and accommodation costs as well as instrument time. Access to the national grid may involve on-site presence at a particular node or remote telemicroscopy. Both passive (observation) and active (operation) modes of telemicroscopy are available. This presentation will address the NANO-TAP application procedure, the use of remote telemicroscopy and the formation of additional nodes. Copyright (2003) Australian Microbeam Analysis Society

  5. Exploring Modular Architecture for Nano Satellite and Opportunity for Developing Countries

    Science.gov (United States)

    Rhaman, M. K.; Monowar, M. I.; Shakil, S. R.; Kafi, A. H.; Antara, R. S. I.

    2015-01-01

    SPACE Technology has the potential to provide information, infrastructure and inspiration that meets national needs in developing countries like Bangladesh. Many countries recognize this; in response they are investing in new national satellite programs to harness satellite services. Technology related to space is one example of a tool that can contribute to development both by addressing societal challenges and by advancing a nation's technological capability. To cope up with the advanced world in space technology Bangladesh seems to be highly potential country for satellite, Robotics, embedded systems and renewable energy research. BRAC University, Bangladesh is planning to launch a nano satellite with the collaboration of KIT, Japan. The proposed nano satellite project mission is to experiment about social, commercial and agricultural survey needs in Bangladesh. Each of the proposed applications of the project will improve the lives of millions of people of Bangladesh and it will be a pathfinder mission for the people of this country. Another intention of this project is to create a cheap satellite based remote sensing for developing countries as the idea of large space systems is very costly for us therefore we have decided to make a Nano-satellite.

  6. Exploring Modular Architecture for Nano Satellite and Opportunity for Developing Countries

    International Nuclear Information System (INIS)

    Rhaman, M K; Monowar, M I; Shakil, S R; Kafi, A H; Antara, R S I

    2015-01-01

    SPACE Technology has the potential to provide information, infrastructure and inspiration that meets national needs in developing countries like Bangladesh. Many countries recognize this; in response they are investing in new national satellite programs to harness satellite services. Technology related to space is one example of a tool that can contribute to development both by addressing societal challenges and by advancing a nation's technological capability. To cope up with the advanced world in space technology Bangladesh seems to be highly potential country for satellite, Robotics, embedded systems and renewable energy research. BRAC University, Bangladesh is planning to launch a nano satellite with the collaboration of KIT, Japan. The proposed nano satellite project mission is to experiment about social, commercial and agricultural survey needs in Bangladesh. Each of the proposed applications of the project will improve the lives of millions of people of Bangladesh and it will be a pathfinder mission for the people of this country. Another intention of this project is to create a cheap satellite based remote sensing for developing countries as the idea of large space systems is very costly for us therefore we have decided to make a Nano-satellite

  7. Toughening by nano-scaled twin boundaries in nanocrystals

    International Nuclear Information System (INIS)

    Zhou, Haofei; Qu, Shaoxing; Yang, Wei

    2010-01-01

    Joint enhancement on strength and toughness provides a cutting-edge research frontier for metals and alloys. Conventional strengthening methods typically lead to suppressed ductility and fracture toughness. In this study, large-scale atomic simulation on the fracture process is performed featuring nanocrystals embedded with nano-scaled twin boundaries (TBs). Four toughening mechanisms by nano-scaled TBs are identified: (i) crack blunting through dislocation accommodation along the nano-scaled TBs; (ii) crack deflection in a manner of intragranular propagation; (iii) daughter crack formation along the nano-scaled TBs that further enhances the toughness and (iv) curved TB planes owing to an excessive pileup of geometrically necessary dislocations. These toughening mechanisms jointly dictate the mechanical behavior of nano-structured materials, and provide insights into the application of nano-scaled TBs with an aim to simultaneously obtain enhanced strength and toughness. New approaches to introduce these coherent internal defects into the nanostructure of crystalline materials are also proposed

  8. Nano crystals-Related Synthesis, Assembly, and Energy Applications

    International Nuclear Information System (INIS)

    Dai, Q.; Hu, M.Z.; Yu, B.Z.; William, W.; Seo, J.

    2011-01-01

    Fundamental material properties have been dramatically altered in the nano scale regime because of quantum confinement effect. The unique size-tunable functionalities of nano materials make them involved in an extensive variety of energy applications, such as light-emitting diodes and solar cells. These applications have been demonstrated to cut energy consumption. In response to the ever-growing energy demands as well as the concerns of global warming, researchers are actively placing their enormous emphasis on the exploration of energy savings. During this exploration, the primary stage requires the design of appropriate strategies for the synthesis of high-quality nano crystals in terms of size uniformity and superior optical/electronic properties. Especially, there is a need to seek green-chemistry approaches for the synthesis of environmentally benign and user-friendly nano crystals. Another recent area of focus is the use of individual nano crystals as building blocks for self-assembly, providing new opportunities to improve the nano crystal performance

  9. DNA damage due to perfluorooctane sulfonate based on nano-gold embedded in nano-porous poly-pyrrole film

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Liping, E-mail: lipinglu@bjut.edu.cn; Xu, Laihui; Kang, Tianfang; Cheng, Shuiyuan

    2013-11-01

    DNA damage induced from perfluorooctane sulfonate (PFOS) was further developed on a nano-porous bionic interface. The interface was formed by assembling DNA on nano-gold particles which were embedded in a nano-porous overoxidized polypyrrole film (OPPy). Atomic force microscopy, scanning electron microscope and electrochemical investigations indicate that OPPy can be treated to form nano-pore structures. DNA damage due to PFOS was proved using electrochemistry and X-ray photoelectron spectroscopy (XPS) and was investigated by detecting differential pulse voltammetry (DPV) response of methylene blue (MB) which was used as electro-active indicator in the system. The current of MB attenuates obviously after incubation of DNA in PFOS. Moreover, electrochemical impedance spectroscopy (EIS) demonstrates that PFOS weakens DNA charge transport. The tentative binding ratio of PFOS: DNA base pair was obtained by analyzing XPS data of this system.

  10. Nano-liquid chromatography applied to enantiomers separation.

    Science.gov (United States)

    Fanali, Salvatore

    2017-02-24

    This paper presents the state of the art concerning the separation of chiral compounds by means of nano-liquid chromatography (nano-LC). The enantiomers' separation and determination are a subject of fundamental importance in various application fields such as pharmaceutical industry, biomedicine, food, agrochemical etc. Nano-LC is a miniaturized chromatographic technique offering some advantages over conventional ones such as low consumption of mobile phase, sample volume and amount of chiral stationary phase, reduced costs etc. This is reported in the first part of the paper illustrating the features of the nano-LC. In addition, chiral resolution methods are briefly illustrated. Some chiral selectors, used in high-performance liquid chromatography have also been applied in nano-LC including cyclodextrins, glycopeptide antibiotics, modified polysaccharides etc. This is discussed in the second part of the review. Finally some examples of the applications available in literature are reported. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Fabrication and characteristics of magnetic field sensors based on nano-polysilicon thin-film transistors

    International Nuclear Information System (INIS)

    Zhao Xiaofeng; Wen Dianzhong; Zhuang Cuicui; Cao Jingya; Wang Zhiqiang

    2013-01-01

    A magnetic field sensor based on nano-polysilicon thin films transistors (TFTs) with Hall probes is proposed. The magnetic field sensors are fabricated on 〈100〉 orientation high resistivity (ρ > 500 Ω·cm) silicon substrates by using CMOS technology, which adopt nano-polysilicon thin films with thicknesses of 90 nm and heterojunction interfaces between the nano-polysilicon thin films and the high resistivity silicon substrates as the sensing layers. The experimental results show that when V DS = 5.0 V, the magnetic sensitivities of magnetic field sensors based on nano-polysilicon TFTs with length—width ratios of 160 μm/80 μm, 320 μm/80 μm and 480 μm/80 μm are 78 mV/T, 55 mV/T and 34 mV/T, respectively. Under the same conditions, the magnetic sensitivity of the obtained magnetic field sensor is significantly improved in comparison with a Hall magnetic field sensor adopting silicon as the sensing layers. (semiconductor technology)

  12. Structural Design of a Compact in-Plane Nano-Grating Accelerometer

    International Nuclear Information System (INIS)

    Yao Bao-Yin; Zhou Zhen; Feng Li-Shuang; Wang Wen-Pu; Wang Xiao

    2012-01-01

    A combination of large mass, weak spring and nano-grating is the key for a nano-grating accelerometer to measure nano-G acceleration. A novel compact nano-grating accelerometer integrating a large mass with nano-grating is proposed. First, the numbers of diffraction orders are calculated. Then, structure parameters are optimized by finite element analysis to achieve a high sensitivity in an ideal vibration mode. Finally, we design the fabrication method to form such a compact nano-grating accelerometer and successfully fabricate the uniform and well-designed nano-gratings with a period of 847 nm, crater of 451 nm by an FIB/SEM dual beam system. Based on the ANSYS simulation, a nano-grating accelerometer is predicted to work in the first modal and enables the accelerometer to have displacement sensitivity at 197 nm/G with a measurement range of ±1 G, corresponding to zeroth diffraction beam optical sensitivity 1%/mG. The nano-gratings fabricated are very close to those designed ones within experimental error to lay the foundation for the sequent fabrication. These results provide a theoretical basis for the design and fabrication of nano-grating accelerometers

  13. Preparation and Characterization of Water-Based Nano-fluids for Nuclear Applications

    International Nuclear Information System (INIS)

    Williams, W.C.; Forrest, E.; Hu, L.W.; Buongiorno, J.

    2006-01-01

    As part of an effort to evaluate water-based nano-fluids for nuclear applications, preparation and characterization has been performed for nano-fluids being considered for MIT's nano-fluid heat transfer experiments. Three methods of generating these nano-fluids are available: creating them from chemical precipitation, purchasing the nano-particles in powder form and mixing them with the base fluid, and direct purchase of prepared nano-fluids. Characterization of nano-fluids includes colloidal stability, size distribution, concentration, and elemental composition. Quality control of the nano-fluids to be used for heat transfer testing is crucial; an exact knowledge of the fluid constituents is essential to uncovering mechanisms responsible for heat transport enhancement. Testing indicates that nano-fluids created by mixing a liquid with nano-particles in powder form are often not stable, although some degree of stabilization is obtainable with pH control and/or surfactant addition. Some commercially available prepared nano-fluids have been found to contain unacceptable levels of impurities and/or include a different weight percent of nano-particles compared to vendor specifications. Tools utilized to characterize and qualify nano-fluids for this study include neutron activation analysis (NAA), inductively-coupled plasma spectroscopy (ICP), transmission electron microscopy (TEM) imaging, thermogravimetric analysis (TGA) and dynamic light scattering (DLS). Preparation procedures and characterization results for selected nano-fluids will be discussed in detail. (authors)

  14. X-diffraction technique applied for nano system metrology

    International Nuclear Information System (INIS)

    Kuznetsov, Alexei Yu.; Machado, Rogerio; Robertis, Eveline de; Campos, Andrea P.C.; Archanjo, Braulio S.; Gomes, Lincoln S.; Achete, Carlos A.

    2009-01-01

    The application of nano materials are fast growing in all industrial sectors, with a strong necessity in nano metrology and normalizing in the nano material area. The great potential of the X-ray diffraction technique in this field is illustrated at the example of metals, metal oxides and pharmaceuticals

  15. Photo-nano immunotherapy for metastatic cancers (Conference Presentation)

    Science.gov (United States)

    Zhou, Feifan

    2016-03-01

    We constructed a multifunction nano system SWNT-GC and investigated the synergize photothermal and immunological effects. Here, we improve the SWNT-GC nano system and design a new synergistic nano-particle, both have the photothermal effects and immunological effects. We investigate the therapeutic effects and detect the immune response with metastatic mouse tumor models. We also study the therapeutic mechanism after treatment in vitro and in vivo. With the enhancement of nano-materials on photothermal effects, laser treatment could destroy primary tumor and protect normal tissue with low dose laser irradiation. With the immunological effects of nano-materials, the treatment could trigger specific antitumor immune response, to eliminate the metastasis tumor. It is providing a promising treatment modality for the metastatic cancers.

  16. Single Molecule Nano-Metronome

    OpenAIRE

    Buranachai, Chittanon; McKinney, Sean A.; Ha, Taekjip

    2006-01-01

    We constructed a DNA-based nano-mechanical device called the nano-metronome. Our device is made by introducing complementary single stranded overhangs at the two arms of the DNA four-way junction. The ticking rates of this stochastic metronome depend on ion concentrations and can be changed by a set of DNA-based switches to deactivate/reactivate the sticky end. Since the device displays clearly distinguishable responses even with a single basepair difference, it may lead to a single molecule ...

  17. FY 1999 report on the results of the development of technology of super metal. Development of nano/amorphous structure control materials; 1999 nendo super metal no gijutsu kaihatsu seika hokokusho. Nano amorphous kozo seigyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing the amount of energy consumption of transportation equipment such as automobiles, the development is made of innovative metal materials enabling the weight reduction of members relatively on the basis of simple chemical components and by making more substantial improvement of characteristics such as strength and toughness than in the existing metals. For it, the following R and D are conducted in which nano crystal structure and non-equilibrium phase structure such as amorphous are controlled to the limits: 1) particle micro-dispersion technology; 2) high speed super plastic formation technology; 3) high density energy utilization control technology; 4) control cooling technology. In 1), study was made of alloy components and effects of the creation process which are needed for achievement of the nano level of crystal grain. In 2), conditions of vapor deposition and production in high speed particle deposition method are optimally selected, and amorphous and nano crystal structures can easily be produced. In 3), high corrosion-resistant amorphous alloy bulk materials with 5mm thickness and 10mm diameter were successfully trially manufactured. In 4), a bulk amorphous specimen with 10mm outer diameter, 6mm inner diameter and 1mm thickness which was fabricated in the forging method indicated favorable magnetic properties. A method to make a specimen which is more stable is being studied. (NEDO)

  18. Nano-formulations of drugs: Recent developments, impact and challenges.

    Science.gov (United States)

    Jeevanandam, Jaison; Chan, Yen San; Danquah, Michael K

    2016-01-01

    Nano-formulations of medicinal drugs have attracted the interest of many researchers for drug delivery applications. These nano-formulations enhance the properties of conventional drugs and are specific to the targeted delivery site. Dendrimers, polymeric nanoparticles, liposomes, nano-emulsions and micelles are some of the nano-formulations that are gaining prominence in pharmaceutical industry for enhanced drug formulation. Wide varieties of synthesis methods are available for the preparation of nano-formulations to deliver drugs in biological system. The choice of synthesis methods depend on the size and shape of particulate formulation, biochemical properties of drug, and the targeted site. This article discusses recent developments in nano-formulation and the progressive impact on pharmaceutical research and industries. Additionally, process challenges relating to consistent generation of nano-formulations for drug delivery are discussed. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  19. DyNano-2010, Book of abstracts

    International Nuclear Information System (INIS)

    Bjoemeholm, O.; Boutu, W.; Gauthier, D.; Xunyou, Ge; Xiaochi, Liu; Carre, B.; Merdji, H.; Winkler, M.; Harnes, J.; Saethre, L.J.; Boerve, K.J.

    2012-01-01

    The amazing progresses made in the recent years by the instrumentation in terms of spectral brightness of the X-ray sources (new synchrotron radiation facilities, X-ray Free Electron Lasers etc.), detection schemes (multi-channel analysis due to intensive use of position sensitive detectors, time-resolved techniques etc.) and production sources of clusters (pure and mixed, atomic and molecular clusters) and nano-particles permit nowadays highly accurate spectroscopic studies of more and more complex objects. There were dedicated sessions on the following topics: 1) recent progress in Nano-object's investigations, 2) synchrotron radiation based spectroscopic investigations of clusters and nano-particles, 3) Structure and properties of size-selected clusters, 4) electronic and nuclear decay of clusters, 5) new insights in structure and dynamics of complex species, and 6) clusters and nano-particles and new light sources. This document gathers only the abstracts of the papers

  20. The CHF enhancement on pool boiling using nano-fluids

    International Nuclear Information System (INIS)

    Chang, Won Joon; Jeong, Yong Hoon

    2009-01-01

    A increase of CHF was observed with nano-fluid. The addition of nano-particle helped to increase the wettability. This happens with the decrease in bubble diameter, breakup of bubbles and avoidance of bubble coalescence. CHF increase or decrease depends upon competition between high wettability and high instability. An optimum nano-fluid concentration is needed which must have high crystalline content. When the concentration reaches at a critical value, CHF will tend to a constant value. Deposition of nano-particles increasing the wettability and the rewetting are cause of CHF enhancement. It delay the growth of dry patch by increasing of wettability and lead to CHF enhancement. Now, we must define the wettability of nano-fluids. At case of nano-fluids using metallic particle, the explanation using contact angle using was reasonable. But, at case of nan-fluids using hydrophobic CNT, this explanation can't be acceptable. Moreover, at case of surfactant solution, contact angle was very low. But CHF enhancement was not great. So, wettability about nano-fluids must be defined anew for explanation of CHF enhancement. I suggest the extension of micro layer are acceptable concept for increasing wettability using nano-fluids

  1. Current safety practices in nano-research laboratories in China.

    Science.gov (United States)

    Zhang, Can; Zhang, Jing; Wang, Guoyu

    2014-06-01

    China has become a key player in the global nanotechnology field, however, no surveys have specifically examined safety practices in the Chinese nano-laboratories in depth. This study reports results of a survey of 300 professionals who work in research laboratories that handle nanomaterials in China. We recruited participants at three major nano-research laboratories (which carry out research in diverse fields such as chemistry, material science, and biology) and the nano-chemistry session of the national meeting of the Chinese Chemical Society. Results show that almost all nano-research laboratories surveyed had general safety regulations, whereas less than one third of respondents reported having nanospecific safety rules. General safety measures were in place in most surveyed nano-research laboratories, while nanospecific protective measures existed or were implemented less frequently. Several factors reported from the scientific literature including nanotoxicology knowledge gaps, technical limitations on estimating nano-exposure, and the lack of nano-occupational safety legislation may contribute to the current state of affairs. With these factors in mind and embracing the precautionary principle, we suggest strengthening or providing nanosafety training (including raising risk awareness) and establishing nanosafety guidelines in China, to better protect personnel in the nano-workplace.

  2. Flexural Properties of Activated Carbon Filled Epoxy Nano composites

    International Nuclear Information System (INIS)

    Khalil, H.P.S.A.; Khalil, H.P.S.A.; Alothman, O.Y.; Paridah, M.T.; Zainudin, E.S.

    2014-01-01

    Activated carbon (AC) filled epoxy nano composites obtained by mixing the desired amount of nano AC viz., bamboo stem, oil palm empty fruit bunch, and coconut shell from agricultural biomass with the epoxy resin. Flexural properties of activated carbons filled epoxy nano composites with 1 %, and 5 % filler loading were measured. In terms of flexural strength and modulus, a significant increment was observed with addition of 1 % vol and 5 % vol nano-activated carbon as compared to neat epoxy. The effect of activated carbon treated by two chemical agents (potassium hydroxide and phosphoric acid) on the flexural properties of epoxy nano composites were also investigated. Flexural strength of activated carbon-bamboo stem, activated carbon-oil palm, and activated carbon-coconut shell reinforced epoxy nano composites showed almost same value in case of 5 % potassium hydroxide activated carbon. Flexural strength of potassium hydroxide activated carbon-based epoxy nano composites was higher than phosphoric acid activated carbon. The flexural toughness of both the potassium hydroxide and phosphoric acid activated carbon reinforced composites range between 0.79 - 0.92 J. It attributed that developed activated carbon filled epoxy nano composites can be used in different applications. (author)

  3. A comparison of nano bentonite and some nano chemical additives to improve drilling fluid using local clay and commercial bentonites

    Directory of Open Access Journals (Sweden)

    Nada S. Al-Zubaidi

    2017-09-01

    In the second part, a commercial bentonite was used and mixed with nano commercial bentonite and nano chemical materials (MgO, TiO2, and graphene at 0.005, 0.01, 0.05, 0.1, 0.2 and 0.4 wt% concentrations. The results showed that nano commercial bentonite gives the same filtration behavior of graphene, whereas, the plastic viscosity, yield point and apparent viscosity were the same when using nano commercial bentonite, TiO2 and graphene. The best results were obtained with MgO addition, whereby the filter loss decreased to 35% with a higher value of yield point.

  4. Nano tubular Transition Metal Oxide for Hydrogen Production

    International Nuclear Information System (INIS)

    Sreekantan, S.; San, E.P.; Kregvirat, W.; Wei, L.C.

    2011-01-01

    TiO 2 , transition metal oxide nano tubes were successfully grown by anodizing of titanium foil (Ti) in ethylene glycol electrolyte containing 5wt. % hydrogen peroxide and 5wt. % ammonium fluoride for 60 minutes at 60V. It was found such electrochemical condition resulted in the formation of nano tube with average diameter of 90nm and length of 6.6 μm. These samples were used to study the effect of W loading by RF sputtering on TiO 2 nano tubes. Amorphous TiO 2 nano tube substrate leads to enhance incorporation of W instead of anatase. Therefore for the entire study, W was sputtered on amorphous TiO 2 nano tube substrate. TiO 2 nano tube sputtered for 1 minute resulted in the formation of W-O-Ti while beyond this point (10 minutes); it accumulates to form a self independent structure of WO 3 on the surface of the nano tubes. TiO 2 nano tube sputtered for 1 minute at 150 W and annealed at 450 degree Celsius exhibited best photocurrent density (1.4 mA/ cm 2 ) with photo conversion efficiency of 2.5 %. The reason for such behavior is attributed to W 6+ ions allows for electron traps that suppress electron hole recombination and exploit the lower band gap of material to produce a water splitting process by increasing the charge separation and extending the energy range of photoexcitation for the system. (author)

  5. Determination of standard molar enthalpies of formation of SrMoO4 micro/nano structures

    International Nuclear Information System (INIS)

    Guo, Yunxiao; Fan, Gaochao; Huang, Zaiyin; Sun, Jilong; Wang, Lude; Wang, Tenghui; Chen, Jie

    2012-01-01

    Graphical abstract: Schematic illustration of thermochemical cycle between the nano and bulk reaction systems. Highlights: ► A thermochemical cycle was designed. ► Relationship of standard molar enthalpies of formation between micro/nano and bulk SrMoO 4 was gained. ► Microcalorimetry was used as a supplementary technology. ► Standard molar enthalpies of formation of the synthesized micro/nano SrMoO 4 were obtained. ► This novel approach can be used to other micro/nano materials. - Abstract: SrMoO 4 micro/nano structures were prepared by a simple reverse microemulsion method and were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscope (SEM). In order to associate standard molar enthalpies of formation of nano SrMoO 4 with bulk SrMoO 4 , the relationship of them was obtained through designing a thermochemical cycle according to thermodynamic potential function method. Combined with microcalorimetry, the standard molar enthalpies of formation of the synthesized micro/nano SrMoO 4 at 298.15 K were gained in this paper. And the variation of standard molar enthalpies of formation of micro/nano SrMoO 4 with different morphologies and sizes was discussed.

  6. Handling in the Micro/nano-world: haptic device

    International Nuclear Information System (INIS)

    Nigues, A.

    2012-09-01

    Synchrotron Radiation and Scanning Probe Microscopy (SPM) are among the most used techniques to study the physical and chemical properties of nano-structures. Coupling these two techniques is a promising path for opening new horizons in the study of nano-sciences. The merge has already proved its potentialities in the frame of the X-tip project where Atomic Force Microscopy (AFM) has been associated with synchrotron radiation X-Ray diffraction to determine the Young's modulus of germanium micro-plots by dynamically indenting the sample while performing diffraction analysis. The configuration used there, however, does not permit three dimension (3D) manipulations of samples. The aim of our nano-manipulator is 3D management of samples with permanent control of the nano-forces exerted on the object while immersed in a scanning beam (X-Ray, e-beams). The first chapter focuses on the sensors with which measure the interactions at a nanometer scale and permit the selection of individual objects. After an overview of the different techniques of micro/nano-manipulation available today (mechanical micro-grippers based on MEMS technology, optic tweezers or grippers based on conventional atomic force microscopy), and considering the constraints imposed by synchrotron experiments, the choice of quartz oscillators (Tuning Forks or Length Extended Resonators (LER)) as sensors is explained. It follows an introduction to Atomic Force Microscopy in general and the description of its association to these oscillators. In the second chapter, the instrumental development of our nano-manipulation station is detailed with particular care on the definition of the geometry of the resonators and related tips for achieving both AFM imaging and gripping of the sample and on the way to control the coarse and ne positioning of the three elements of the nano-manipulator. Finally, the haptic system ERGOS and its coupling with our assembly is described. In the last chapter, two types of

  7. Omega-3 PUFA concentration by a novel PVDF nano-composite membrane filled with nano-porous silica particles.

    Science.gov (United States)

    Ghasemian, Samaneh; Sahari, Mohammad Ali; Barzegar, Mohsen; Ahmadi Gavlighi, Hasan

    2017-09-01

    In this study, polyvinylidene fluoride (PVDF) and nano-porous silica particle were used to fabricate an asymmetric nano-composite membrane. Silica particles enhanced the thermal stability of PVDF/SiO 2 membranes; increasing the decomposition temperature from 371°C to 408°C. Cross sectional morphology showed that silica particles were dispersed in polymer matrix uniformly. However, particle agglomeration was found at higher loading of silica (i.e., 20 by weight%). The separation performance of nano-composite membranes was also evaluated using the omega-3 polyunsaturated fatty acids (PUFA) concentration at a temperature and pressure of 30°C and 4bar, respectively. Silica particle increased the omega-3PUFA concentration from 34.8 by weight% in neat PVDF to 53.9 by weight% in PVDF with 15 by weight% of silica. Moreover, PVDF/SiO 2 nano-composite membranes exhibited enhanced anti-fouling property compared to neat PVDF membrane. Fouling mechanism analysis revealed that complete pore blocking was the predominant mechanism occurring in oil filtration. The concentration of omega-3 polyunsaturated fatty acids (PUFA) is important in the oil industries. While the current methods demand high energy consumptions in concentrating the omega-3, membrane separation technology offers noticeable advantages in producing pure omega-3 PUFA. Moreover, concentrating omega-3 via membrane separation produces products in the triacylglycerol form which possess better oxidative stability. In this work, the detailed mechanisms of fouling which limits the performance of membrane separation were investigated. Incorporating silica particles to polymeric membrane resulted in the formation of mixed matrix membrane with improved anti-fouling behaviour compared to the neat polymeric membrane. Hence, the industrial potential of membrane processing to concentrate omega-3 fatty acids is enhanced. Copyright © 2017. Published by Elsevier Ltd.

  8. Nano-Particle Enhanced Polymer Materials for Space Flight Applications

    Science.gov (United States)

    Criss, Jim M., Jr.; Powell, William D.; Connell, John W.; Stallworth-Bordain, Yemaya; Brown, Tracy R.; Mintz, Eric A.; Schlea, Michelle R.; Shofne, Meisha L.

    2009-01-01

    Recent advances in materials technology both in polymer chemistry and nano-materials warrant development of enhanced structures for space flight applications. This work aims to develop spacecraft structures based on polymer matrix composites (PMCs) that utilize these advancements.. Multi-wall carbon nano-tubes (MWCNTs) are expected ·to increase mechanical performance, lower coefficient of thermal expansion (CTE), increase electrical conductivity (mitigate electrostatic charge), increase thermal conductivity, and reduce moisture absorption of the resultant space structures. In this work, blends of MWCNTs with PETI-330 were prepared and characterized. The nano-reinforced resins were then resin transfer molded (RTM) into composite panels using M55J carbon fabric and compared to baseline panels fabricated from a cyanate ester (RS-3) or a polyimide (PETI-330) resin containing no MWCNTs. In addition, methods of pre-loading the fabric with the MWCNTs were also investigated. The effects of the MWCNTs on the resin processing properties and on the composite end-use properties were also determined.

  9. Large-area laser nano-texturing with user-defined patterns

    International Nuclear Information System (INIS)

    Li, L; Guo, W; Wang, Z B; Whitehead, D; Liu, Z; Luk'yanchuk, B

    2009-01-01

    Writing nano-sized features less than the diffraction limit of the lasers efficiently over a large area requires special technology development. This paper reports the use of a self-assembled particle lens array with near-field enhancement effect to write millions of nano-sized user-defined features, e.g. English letters, lines, curves, simultaneously by angular beam scanning. About a 5 mm × 5 mm area can be written with a single shot of a laser beam or few scans for up to 100 million identical features of nano or sub-micro scales. With the help of certain environmental conditions, such as the use of a suitable chemical solution in conjunction with the particle lens array, the characteristic of the features produced can be further controlled, including the generation of reversed (e.g. pits become hills and grooves become walls) features of laser-written patterns. The technical challenges, experimental findings and theoretical analysis/simulation are presented

  10. Measuring Understanding of Nanoscience and Nanotechnology: Development and Validation of the Nano-Knowledge Instrument (NanoKI)

    Science.gov (United States)

    Schönborn, K. J.; Höst, G. E.; Lundin Palmerius, K. E.

    2015-01-01

    As the application of nanotechnology in everyday life impacts society, it becomes critical for citizens to have a scientific basis upon which to judge their perceived hopes and fears of 'nano'. Although multiple instruments have been designed for assessing attitudinal and affective aspects of nano, surprisingly little work has focused on…

  11. Fabrication of micro- and nano-structured materials using mask-less processes

    International Nuclear Information System (INIS)

    Roy, Sudipta

    2007-01-01

    Micro- and nano-scale devices are used in electronics, micro-electro- mechanical, bio-analytical and medical components. An essential step for the fabrication of such small scale devices is photolithography. Photolithography requires a master mask to transfer micrometre or sub-micrometre scale patterns onto a substrate. The requirement of a physical, rigid mask can impede progress in applications which require rapid prototyping, flexible substrates, multiple alignment and 3D fabrication. Alternative technologies, which do not require the use of a physical mask, are suitable for these applications. In this paper mask-less methods of micro- and nano-scale fabrication have been discussed. The most common technique, which is the laser direct imaging (LDI), technique has been applied to fabricate micrometre scale structures on printed circuit boards, glass and epoxy. LDI can be combined with chemical methods to deposit metals, inorganic materials as well as some organic entities at the micrometre scale. Inkjet technology can be used to fabricate micrometre patterns of etch resists, organic transistors as well as arrays for bioanalysis. Electrohydrodynamic atomisation is used to fabricate micrometre scale ceramic features. Electrochemical methodologies offer a variety of technical solutions for micro- and nano-fabrication owing to the fact that electron charge transfer can be constrained to a solid-liquid interface. Electrochemical printing is an adaptation of inkjet printing which can be used for rapid prototyping of metallic circuits. Micro-machining using nano-second voltage pulses have been used to fabricate high precision features on metals and semiconductors. Optimisation of reactor, electrochemistry and fluid flow (EnFACE) has also been employed to transfer micrometre scale patterns on a copper substrate. Nano-scale features have been fabricated by using specialised tools such as scanning tunnelling microscopy, atomic force microscopy and focused ion beam. The

  12. Computer simulations for the nano-scale

    International Nuclear Information System (INIS)

    Stich, I.

    2007-01-01

    A review of methods for computations for the nano-scale is presented. The paper should provide a convenient starting point into computations for the nano-scale as well as a more in depth presentation for those already working in the field of atomic/molecular-scale modeling. The argument is divided in chapters covering the methods for description of the (i) electrons, (ii) ions, and (iii) techniques for efficient solving of the underlying equations. A fairly broad view is taken covering the Hartree-Fock approximation, density functional techniques and quantum Monte-Carlo techniques for electrons. The customary quantum chemistry methods, such as post Hartree-Fock techniques, are only briefly mentioned. Description of both classical and quantum ions is presented. The techniques cover Ehrenfest, Born-Oppenheimer, and Car-Parrinello dynamics. The strong and weak points of both principal and technical nature are analyzed. In the second part we introduce a number of applications to demonstrate the different approximations and techniques introduced in the first part. They cover a wide range of applications such as non-simple liquids, surfaces, molecule-surface interactions, applications in nano technology, etc. These more in depth presentations, while certainly not exhaustive, should provide information on technical aspects of the simulations, typical parameters used, and ways of analysis of the huge amounts of data generated in these large-scale supercomputer simulations. (author)

  13. Applying online nano-UHPLC to proteomics

    DEFF Research Database (Denmark)

    Falkenby, Lasse Gaarde; Hørning, Ole; Ravnsborg, Christian

    Ultra High Performance Liquid Chromatography (UHPLC) pushes the limits of feasible column designs by allowing higher operational pressure. Migrating from nano-HPLC to nano-UHPLC and coupling directly to a mass spectrometer requires alterations to the setup to allow the increase in pressure. We...

  14. Lifetime of Nano-Structured Black Silicon for Photovoltaic Applications

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    2016-01-01

    In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping pro......, respectively. This is promising for use of black silicon RIE nano-structuring in a solar cell process flow......In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping...

  15. Optical nano-biosensing interface via nucleic acid amplification strategy: construction and application.

    Science.gov (United States)

    Zhou, Hong; Liu, Jing; Xu, Jing-Juan; Zhang, Shu-Sheng; Chen, Hong-Yuan

    2018-03-21

    Modern optical detection technology plays a critical role in current clinical detection due to its high sensitivity and accuracy. However, higher requirements such as extremely high detection sensitivity have been put forward due to the clinical needs for the early finding and diagnosing of malignant tumors which are significant for tumor therapy. The technology of isothermal amplification with nucleic acids opens up avenues for meeting this requirement. Recent reports have shown that a nucleic acid amplification-assisted modern optical sensing interface has achieved satisfactory sensitivity and accuracy, high speed and specificity. Compared with isothermal amplification technology designed to work completely in a solution system, solid biosensing interfaces demonstrated better performances in stability and sensitivity due to their ease of separation from the reaction mixture and the better signal transduction on these optical nano-biosensing interfaces. Also the flexibility and designability during the construction of these nano-biosensing interfaces provided a promising research topic for the ultrasensitive detection of cancer diseases. In this review, we describe the construction of the burgeoning number of optical nano-biosensing interfaces assisted by a nucleic acid amplification strategy, and provide insightful views on: (1) approaches to the smart fabrication of an optical nano-biosensing interface, (2) biosensing mechanisms via the nucleic acid amplification method, (3) the newest strategies and future perspectives.

  16. Nano-scale gene delivery systems; current technology, obstacles, and future directions.

    Science.gov (United States)

    Garcia-Guerra, Antonio; Dunwell, Thomas L; Trigueros, Sonia

    2018-01-07

    Within the different applications of nanomedicine currently being developed, nano-gene delivery is appearing as an exciting new technique with the possibility to overcome recognised hurdles and fulfill several biological and medical needs. The central component of all delivery systems is the requirement for the delivery of genetic material into cells, and for them to eventually reside in the nucleus where their desired function will be exposed. However, genetic material does not passively enter cells; thus, a delivery system is necessary. The emerging field of nano-gene delivery exploits the use of new materials and the properties that arise at the nanometre-scale to produce delivery vectors that can effectively deliver genetic material into a variety of different types of cells. The novel physicochemical properties of the new delivery vectors can be used to address the current challenges existing in nucleic acid delivery in vitro and in vivo. While there is a growing interest in nanostructure-based gene delivery, the field is still in its infancy, and there is yet much to discover about nanostructures and their physicochemical properties in a biological context. We carry out an organized and focused search of bibliographic databases. Our results suggest that despite new breakthroughs in nanostructure synthesis and advanced characterization techniques, we still face many barriers in producing highly efficient and non-toxic delivery systems. In this review, we overview the types of systems currently used for clinical and biomedical research applications along with their advantages and disadvantages, as well as discussing barriers that arise from nano-scale interactions with biological material. In conclusion, we hope that by bringing the far reaching multidisciplinary nature of nano-gene delivery to light, new targeted nanotechnology-bases strategies are developed to overcome the major challenges covered in this review. Copyright© Bentham Science Publishers; For

  17. Conductive nano composites based on cellulose nano fiber coated poly aniline via in situ polymerization

    International Nuclear Information System (INIS)

    Silva, Michael J. da; Sanches, Alex O.; Malmonge, Luiz F.; Malmonge, Jose A.; Medeiros, Eliton S. de; Rosa, Morsyleide F.

    2011-01-01

    Cellulose nano fiber (CNF) was extracted by acid hydrolysis from cotton microfibril and nano composites of CNF/PANI-DBSA were obtained by in situ polymerization of aniline onto CNF. The ratios between DBSA/aniline and aniline/oxidant were varied and the nano composites were characterized by four probes direct current (dc) electrical conductivity, ultraviolet-visible (UV-Vis-NIR) and FTIR spectroscopy and X-ray diffraction (XRD). Electrical conductive about ∼10 -1 S/cm was research and was independent of DBSA/aniline molar ratio between 2-4 and the aniline/oxidant molar ratio between 1-5. X-ray patterns of the samples show crystalline peaks characteristic of cellulose I. The FTIR spectra confirmed the presence of PANI and CNF in all samples. (author)

  18. Highly Conductive Nano-Silver Circuits by Inkjet Printing

    Science.gov (United States)

    Zhu, Dongbin; Wu, Minqiang

    2018-06-01

    Inkjet technology has become popular in the field of printed electronics due to its superior properties such as simple processes and printable complex patterns. Electrical conductivity of the circuits is one of the key factors in measuring the performance of printed electronics, which requires great material properties and a manufactured process. With excellent conductivity and ductility, silver is an ideal material as the wire connecting components. This review summarizes the progress of conductivity studies on inkjet printed nano-silver lines, including ink composition and nanoparticle morphology, deposition of nano-silver lines with uniform and high aspect ratios, sintering mechanisms and alternative methods of thermal sintering. Finally, the research direction on inkjet printed electronics is proposed.

  19. Brillouin gain enhancement in nano-scale photonic waveguide

    Science.gov (United States)

    Nouri Jouybari, Soodabeh

    2018-05-01

    The enhancement of stimulated Brillouin scattering in nano-scale waveguides has a great contribution in the improvement of the photonic devices technology. The key factors in Brillouin gain are the electrostriction force and radiation pressure generated by optical waves in the waveguide. In this article, we have proposed a new scheme of nano-scale waveguide in which the Brillouin gain is considerably improved compared to the previously-reported schemes. The role of radiation pressure in the Brillouin gain was much higher than the role of the electrostriction force. The Brillouin gain strongly depends on the structural parameters of the waveguide and the maximum value of 12127 W-1 m-1 is obtained for the Brillouin gain.

  20. Compaction simulation of nano-crystalline metals with molecular dynamics analysis

    Directory of Open Access Journals (Sweden)

    Khoei A.R.

    2016-01-01

    Full Text Available The molecular-dynamics analysis is presented for 3D compaction simulation of nano-crystalline metals under uniaxial compaction process. The nano-crystalline metals consist of nickel and aluminum nano-particles, which are mixed with specified proportions. The EAM pair-potential is employed to model the formation of nano-particles at different temperatures, number of nano-particles, and mixing ratio of Ni and Al nano-particles to form the component into the shape of a die. The die-walls are modeled using the Lennard-Jones inter-atomic potential between the atoms of nano-particles and die-walls. The forming process is model in uniaxial compression, which is simulated until the full-dense condition is attained at constant temperature. Numerical simulations are performed by presenting the densification of nano-particles at different deformations and distribution of dislocations. Finally, the evolutions of relative density with the pressure as well as the stress-strain curves are depicted during the compaction process.

  1. Dipole nano-laser: Theory and properties

    Energy Technology Data Exchange (ETDEWEB)

    Ghannam, T., E-mail: gtalal@hotmail.com [King Abdullah Institute for Nano-Technology, King Saud University, PO Box 2454, Riyadh 11451 (Saudi Arabia)

    2014-03-31

    In this paper we outline the main quantum properties of the system of nano-based laser called Dipole Nano-Laser emphasizing mainly on its ability to produce coherent light and for different configurations such as different embedding materials and subjecting it to an external classical electric field.

  2. X-ray lithography for micro- and nano-fabrication at ELETTRA for interdisciplinary applications

    International Nuclear Information System (INIS)

    Di Fabrizio, E; Fillipo, R; Cabrini, S

    2004-01-01

    ELETTRA (http://www.elettra.trieste.it/index.html) is a third generation synchrotron radiation source facility operating at Trieste, Italy, and hosts a wide range of research activities in advanced materials analysis and processing, biology and nano-science at several various beam lines. The energy spectrum of ELETTRA allows x-ray nano-lithography using soft (1.5 keV) and hard x-ray (10 keV) wavelengths. The Laboratory for Interdisciplinary Lithography (LIILIT) was established in 1998 as part of an Italian national initiative on micro- and nano-technology project of INFM and is funded and supported by the Italian National Research Council (CNR), INFM and ELETTRA. LILIT had developed two dedicated lithographic beam lines for soft (1.5 keV) and hard x-ray (10 keV) for micro- and nano-fabrication activities for their applications in engineering, science and bio-medical applications. In this paper, we present a summary of our research activities in micro- and nano-fabrication involving x-ray nanolithography at LILIT's soft and hard x-ray beam lines

  3. Multifunctional magnetic nano/microparticles for bioapplications

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Babič, Michal; Jendelová, Pavla; Herynek, V.

    2010-01-01

    Roč. 26, č. 2 (2010), s. 38 ISSN 0233-7657. [Bridges in Life Sciences, Annual Scientific Meeting Regional Cooperation for Health, Science and Technology /5./. 09.04.2010-11.04.2010, Lviv] R&D Projects: GA MŠk 2B06053 Institutional research plan: CEZ:AV0Z40500505 Keywords : magnetic * nano particle * microsphere Subject RIV: EE - Microbiology, Virology

  4. Synthesis and Characterization of Salicylate-zinc Layered Hydroxide Nano hybrid for Antiinflammatory Active Delivery

    International Nuclear Information System (INIS)

    Mohd Zobir Hussein; Mohd Zobir Hussein; Munirah Ramli; Khatijah Yusoff

    2011-01-01

    The emergence of nano technology has prompted much advancement in various areas of research that includes cellular delivery systems, particularly those dealing with delivery of compounds with therapeutic effects. This study aimed at investigating the use of a layered nano material for formation of a new organic-inorganic nano hybrid material. In this work, a compound of zinc layered hydroxide (ZLH) used as a host for a guest, anti-inflammatory agent salicylate (SA) was synthesized. Through simple, direct reaction of SA solution at various concentrations with commercial zinc oxide, SA was found to be intercalated between the ZLH inorganic layers. Powder x-ray diffraction (PXRD) patterns revealed that the basal spacing of the nano hybrid is around 16.14 Angstrom. Further characterizations also confirmed that SA was successfully intercalated into the interlayers of the nano hybrid. Results generated from this work provide information beneficial for development of a new delivery system for therapeutic compounds consisting of antiinflammatory agents. (author)

  5. Synthesis and characterization of novel amphiphilic copolymer stearic acid-coupled F127 nanoparticles for nano-technology based drug delivery system.

    Science.gov (United States)

    Gao, Qihe; Liang, Qing; Yu, Fei; Xu, Jian; Zhao, Qihua; Sun, Baiwang

    2011-12-01

    Pluronic, F127, amphiphilic block copolymers, are used for several applications, including drug delivery systems. The critical micelle concentration (CMC) of F127 is about 0.26-0.8 wt% so that the utility of F127 in nano-technology based drug delivery system is limited since the nano-sized micelles could dissociate upon dilution. Herein, stearic acid (SA) was simply coupled to F127 between the carboxyl group of SA and the hydroxyl group of F127, which formed a novel copolymer named as SA-coupled F127, with significantly lower CMC. Above the CMC 6.9 × 10(-5)wt%, SA-coupled F127 self-assembled stable nanoparticles with Zeta potential -36 mV. Doxorubicin (DOX)-loaded nanoparticles were made, with drug loading (DL) 5.7 wt% and Zeta potential -36 to -39 mV, and the nanoparticles exhibited distinct shape with the size distribution from 20 to 50 nm. DOX-loaded nanoparticles were relatively stable and exhibited DOX dependant cytotoxicity toward MCF-7 cells in vitro. These results suggest that SA-coupled F127 potentially could be applied as a nano-technology based drug delivery method. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Recent Development of Nano-Materials Used in DNA Biosensors

    Directory of Open Access Journals (Sweden)

    Yibin Ying

    2009-07-01

    Full Text Available As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  7. Controlled synthesis of thorium and uranium oxide nano-crystals

    International Nuclear Information System (INIS)

    Hudry, Damien; Apostolidis, Christos; Walter, Olaf; Gouder, Thomas; Courtois, Eglantine; Kubel, Christian; Meyer, Daniel

    2013-01-01

    Very little is known about the size and shape effects on the properties of actinide compounds. As a consequence, the controlled synthesis of well-defined actinide-based nano-crystals constitutes a fundamental step before studying their corresponding properties. In this paper, we report on the non-aqueous surfactant-assisted synthesis of thorium and uranium oxide nano-crystals. The final characteristics of thorium and uranium oxide nano-crystals can be easily tuned by controlling a few experimental parameters such as the nature of the actinide precursor and the composition of the organic system (e.g., the chemical nature of the surfactants and their relative concentrations). Additionally, the influence of these parameters on the outcome of the synthesis is highly dependent on the nature of the actinide element (thorium versus uranium). By using optimised experimental conditions, monodisperse isotropic uranium oxide nano-crystals with different sizes (4.5 and 10.7 nm) as well as branched nano-crystals (overall size ca. 5 nm), nano-dots (ca. 4 nm) and nano-rods (with ultra-small diameters of 1 nm) of thorium oxide were synthesised. (authors)

  8. Every which way – nanos gene regulation in echinoderms

    Science.gov (United States)

    Oulhen, Nathalie; Wessel, Gary M.

    2014-01-01

    Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio, binds to and changes the fate of several known transcripts. We summarize here the documented functions of nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way. PMID:24376110

  9. Single Molecule Nano-Metronome

    Science.gov (United States)

    Buranachai, Chittanon; McKinney, Sean A.; Ha, Taekjip

    2008-01-01

    We constructed a DNA-based nano-mechanical device called the nano-metronome. Our device is made by introducing complementary single stranded overhangs at the two arms of the DNA four-way junction. The ticking rates of this stochastic metronome depend on ion concentrations and can be changed by a set of DNA-based switches to deactivate/reactivate the sticky end. Since the device displays clearly distinguishable responses even with a single basepair difference, it may lead to a single molecule sensor of minute sequence differences of a target DNA. PMID:16522050

  10. Nano Engineered Energetic Materials (NEEM)

    Science.gov (United States)

    2011-01-12

    Dryer, FL; Aksay, IA, Functionalized Graphene Sheet Colloids for Enhanced Fuel/Propellant Combustion, ACS NANO 3, 13, 3945-3954, 2009. 16. Weismiller...loading) which was not observed in other heterogeneous mixtures. Additional details on nano fuels (including graphene ) with liquid oxidizers can be...to the high reflectance of some samples black high temperature spray paint was used on ends of the samples to decrease ignition delay times and

  11. Instrument platforms for nano liquid chromatography

    Czech Academy of Sciences Publication Activity Database

    Šesták, Jozef; Moravcová, Dana; Kahle, Vladislav

    2015-01-01

    Roč. 1421, NOV (2015), s. 2-17 ISSN 0021-9673 R&D Projects: GA MV VG20112015021 Institutional support: RVO:68081715 Keywords : nano liquid chromatography * splitless gradient generation * nano LC platforms Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.926, year: 2015 http://hdl.handle.net/11104/0250900

  12. Decrease of FIB-induced lateral damage for diamond tool used in nano cutting

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Xu, Zongwei, E-mail: zongweixu@163.com [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Fang, Fengzhou, E-mail: fzfang@gmail.com [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Liu, Bing; Xiao, Yinjing; Chen, Jinping [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Wang, Xibin [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Liu, Hongzhong [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China)

    2014-07-01

    Highlights: • We mainly aim to characterize and decrease the FIB-induced damage on diamond tool. • Raman and XPS methods were used to characterize the nanoscale FIB-induced damage. • Lower energy FIB can effectively lessen the FIB-induced damage on diamond tool. • The diamond tools’ performance was greatly improved after FIB process optimization. • 6 nm chip thickness of copper was achieved by diamond tool with 22 nm edge radius. - Abstract: Diamond cutting tools with nanometric edge radius used in ultra-precision machining can be fabricated by focused ion beam (FIB) technology. However, due to the nanoscale effects, the diamond tools performance and the cutting edge lifetime in nano cutting would be degraded because of the FIB-induced nanoscale lateral damage. In this study, the methods of how to effectively characterize and decrease the FIB-induced lateral damage for diamond tool are intensively studied. Based on the performance optimization diamond machining tools, the controllable chip thickness of less than 10 nm was achieved on a single-crystal copper in nano cutting. In addition, the ratio of minimum thickness of chip (MTC) to tool edge radius of around 0.3–0.4 in nano cutting is achieved. Methods for decreasing the FIB-induced damage on diamond tools and adding coolant during the nano cutting are very beneficial in improving the research of nano cutting and MTC. The nano cutting experiments based on the sharp and high performance of diamond tools would validate the nano cutting mechanisms that many molecular dynamic simulation studies have put forward and provide new findings for nano cutting.

  13. Preparation of silver nano-particles immobilized onto chitin nano-crystals and their application to cellulose paper for imparting antimicrobial activity.

    Science.gov (United States)

    Li, Zhihan; Zhang, Ming; Cheng, Dong; Yang, Rendang

    2016-10-20

    Immobilized silver nano-particles (Ag NPs) possess excellent antimicrobial properties due to their unique surface characteristics. In this paper, immobilized silver nano-particles were synthesized in the presence of chitin nano-crystals (CNC) based on the Tollens mechanism (reduction of silver ion by aldehydes in the chitosan oligosaccharides (COS)) under microwave-assisted conditions. The prepared Ag NPs-loaded CNC nano-composites were then applied onto the paper surface via coating for the preparation of antibacterial paper. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) results confirmed that the Ag NPs were immobilized onto the CNC. The transmission electron microscope (TEM) and scanning electron microscopy (SEM) results further revealed that the spherical Ag NPs (5-12nm) were well dispersed on the surface of CNC. The coated paper made from the Ag NPs-loaded CNC nano-composites exhibited a high effectiveness of the antibacterial activity against E. coli or S. aureus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Development of Nb nanoSQUIDs based on SNS junctions for operation in high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Morosh, Viacheslav; Kieler, Oliver; Weimann, Thomas; Zorin, Alexander [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany); Mueller, Benedikt; Martinez-Perez, Maria Jose; Kleiner, Reinhold; Koelle, Dieter [Physikalisches Institut and Center for Quantum Science in LISA+, Universitaet Tuebingen (Germany)

    2016-07-01

    Investigation of the magnetization reversal of single magnetic nanoparticles requires SQUIDs with high spatial resolution, high spin sensitivity (a few Bohr magneton μ{sub B}) and at the same time sufficient stability in high magnetic fields. We fabricated dc nanoSQUIDs comprising overdamped SNS sandwich-type (Nb/HfTi/Nb) Josephson junctions using optimized technology based on combination of electron beam lithography and chemical-mechanical polishing. Our nanoSQUIDs have Josephson junctions with lateral dimensions ≤ 150 nm x 150 nm, effective loop areas < 0.05 μm{sup 2} and the distance between the Josephson junctions ≤ 100 nm. The feeding strip lines of the width ≤ 200 nm have been realized. The nanoSQUIDs have shown stable operation in external magnetic fields at least up to 250 mT. Sufficiently low level of flux noise resulting in spin sensitivity of few tens μ{sub B}/Hz{sup 1/2} has been demonstrated. A further reduction of the nanoSQUID size using our technology is possible.

  15. Convergence Science in a Nano World

    Science.gov (United States)

    Cady, Nathaniel

    2013-01-01

    Convergence is a new paradigm that brings together critical advances in the life sciences, physical sciences and engineering. Going beyond traditional “interdisciplinary” studies, “convergence” describes the culmination of truly integrated research and development, yielding revolutionary advances in both scientific research and new technologies. At its core, nanotechnology embodies these elements of convergence science by bringing together multiple disciplines with the goal of creating innovative and groundbreaking technologies. In the biological and biomedical sciences, nanotechnology research has resulted in dramatic improvements in sensors, diagnostics, imaging, and even therapeutics. In particular, there is a current push to examine the interface between the biological world and micro/nano-scale systems. For example, my laboratory is developing novel strategies for spatial patterning of biomolecules, electrical and optical biosensing, nanomaterial delivery systems, cellular patterning techniques, and the study of cellular interactions with nano-structured surfaces. In this seminar, I will give examples of how convergent research is being applied to three major areas of biological research &endash; cancer diagnostics, microbiology, and DNA-based biosensing. These topics will be presented as case studies, showing the benefits (and challenges) of multi-disciplinary, convergent research and development.

  16. Optical and Structural Characterizations of GaN Nano structures

    International Nuclear Information System (INIS)

    Shekari, L.; Abu Hassan, H.; Thahab, S.M.

    2011-01-01

    We have grown wurtzite GaN nano wires (NWs) on polished silicon (Si) either with or without Au as catalyst, using commercial GaN powder by thermal evaporation in an atmosphere of argon (Ar) gas. Structural and optical characterizations were performed using high resolution X-ray diffraction (HR-XRD), scanning electron microscopy (SEM), photoluminescence (PL) and energy-dispersive X-ray spectroscopy (EDX) spectroscopy. Results indicate that the nano wires are of single-crystal hexagonal GaN and the nano wires on Si with Au catalyst are more oriented than those without Au catalyst; and using catalyst make the NWs grow much faster and quite well-ordered. The compositional quality of the grown nano wires on the substrates are mostly same, however the nano wires on the Au coated silicon are of low density, while the nano wires on the Si are of high density. (author)

  17. Some Observations on Carbon Nano tubes Susceptibility to Cell Phagocytosis

    International Nuclear Information System (INIS)

    Fraczek-Szczypta, A.; Menaszek, E.; Blazewicz, S.; Menaszek, E.

    2011-01-01

    The aim of this study was to assess the influence of different types of carbon nano tubes (CNTs) on cell phagocytosis. Three kinds of carbon nano tubes: single-walled carbon nano horns (SWCNHs), multi walled carbon nano tubes (MWCNTs), and ultra-long single-walled carbon nano tubes (ULSWCNTs) before and after additional chemical functionalization were seeded with macrophage cell culture. Prior to biological testing, the CNTs were subjected to dispersion process with the use of phosphate buffered solution (PBS) and PBS containing surfactant (Tween 20) or dimethyl sulfoxide (DMSO). The results indicate that the cells interaction with an individual nano tube is entirely different as compared to CNTs in the form of aggregate. The presence of the surfactant favors the CNTs dispersion in culture media and facilitates phagocytosis process, while it has disadvantageous influence on cells morphology. The cells phagocytosis is a more effective for MWCNTs and SWCNHs after their chemical functionalization. Moreover, these nano tubes were well dispersed in culture media without using DMSO or surfactant. The functionalized carbon nano tubes were easily dispersed in pure PBS and seeded with cells

  18. Fabrication of nano porous with heavy ions in plastics for the oil industry; Fabricacion de nano poros con iones pesados en plasticos para la industria petrolera

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, M.; Tavera, L.; Mendoza, D.; Mut, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: mbg@nuclear.inin.mx

    2003-07-01

    The natural gas has undesirable concentrations of other gases like the nitrogen that reduces the heat capacity of the gas. It is required to develop separation technology to increase the caloric value of the gas. Among the technology in development for the separation of these gases there are the nano membranes; these are polymeric material that when synthesizing them form nano pores that allow the selective separation of the gas. Another form of creating these nano pores with uniform and controlled pore size, is irradiating a polymeric material with heavy ions. The energy loss of the heavy ion produces cylindrical damages around its trajectory in a diameter among 30 x 10{sup -10} m and 100 x 10{sup -10} m. This damage breaks the chains of the polymer making it susceptible to the corrosion of appropriate chemical agents that allow to create a pore of the size of some nanometers in the polymer. The basic mechanisms of the interaction of the ions with the polymer are important for the controlled creation, the observation and analysis of these nano pores. One of the more appropriate techniques for the visualization and analysis of the geometry of the produced damages, it is the scanning electron and of the atomic force microscopies. The present work has as objective to define the basic parameters of the interaction of the ion with the polymer that intervene in the fabrication of this nano pores. The conditions of the chemical corrosion process are presented for the creation of micro pores in two polymers CR39 and Makrofol produced by fission fragments and alpha particles. A characterization of the diameters and of the damages profile is make. The obtained results are related with the mechanisms of loss of energy of the ions in the matter and the particles identification in function of the damage geometry. (Author)

  19. Effects of nano calcium carbonate and nano calcium citrate on toxicity in ICR mice and on bone mineral density in an ovariectomized mice model

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Sherry; Chen, Jin Ching; Hsu, Chin Wei; Chang, Walter H, E-mail: whchang@cycu.edu.t [Center for Nano Bioengineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); Department of Biomedical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China)

    2009-09-16

    Taking calcium supplements can reduce the risk of developing osteoporosis, but they are not readily absorbed in the gastrointestinal tract. Nanotechnology is expected to resolve this problem. In the present study, we examined whether the bioavailability of calcium carbonate and calcium citrate can be improved by reducing the particle size. The morphology of nano calcium carbonate and nano calcium citrate was characterized by dynamic laser-light scattering (DLS), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The measurements obtained from DLS, FE-SEM and TEM were comparable. Acute and sub-chronic toxicity tests were performed to establish the safety of these products after oral administration. The no-observed-adverse-effect levels of nano calcium carbonate and nano calcium citrate were 1.3 and 2.3 g kg{sup -1} body weight, respectively. The results of our in vivo studies indicate that administering nano calcium carbonate and nano calcium citrate can enhance the serum calcium concentration and maintain the whole-body bone mineral density in ovariectomized mice. These data suggest that nano calcium carbonate and nano calcium citrate are more bioavailable than micro calcium carbonate and micro calcium citrate, respectively.

  20. Single-cell intracellular nano-pH probes†

    Science.gov (United States)

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2016-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution. PMID:27708772

  1. Single-cell intracellular nano-pH probes.

    Science.gov (United States)

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2015-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution.

  2. H2 uptake in the Li-dispersed silica nano-tubes

    International Nuclear Information System (INIS)

    Jin Bae Lee; Soon Chang Lee; Sang Moon Lee; Hae Jin Kim

    2006-01-01

    Highly ordered Li-dispersed silica nano-tubes were prepared by sol-gel template method for hydrogen storage. Isolated Li-dispersed silica nano-tubes can be easily obtained by removing the AAO template with 2M NaOH. From the XRD study, the Li-dispersed silica nano-tubes showed the amorphous phase with silica frameworks. The uniform length and diameter of Li-dispersed silica nano-tubes could be examined with the electron microscopy studies. The wall thickness and diameter of nano-tubes are about 50-60 nm and 200-400 nm, respectively. The obtained Li-dispersed silica nano-tubes have the hydrogen adsorption capacity 2.25 wt% at 77 K under 47 atm. (authors)

  3. Micro- and nano-NDE systems for aircraft: great things in small packages

    Science.gov (United States)

    Malas, James C.; Kropas-Hughes, Claudia V.; Blackshire, James L.; Moran, Thomas; Peeler, Deborah; Frazier, W. G.; Parker, Danny

    2003-07-01

    Recent advancements in small, microscopic NDE sensor technologies will revolutionize how aircraft maintenance is done, and will significantly improve the reliability and airworthiness of current and future aircraft systems. A variety of micro/nano systems and concepts are being developed that will enable whole new capabilities for detecting and tracking structural integrity damage. For aging aircraft systems, the impact of micro-NDE sensor technologies will be felt immediately, with dramatic reductions in labor for maintenance, and extended useable life of critical components being two of the primary benefits. For the fleet management of future aircraft systems, a comprehensive evaluation and tracking of vehicle health throughout its entire life cycle will be needed. Indeed, micro/nano NDE systems will be instrumental in realizing this futuristic vision. Several major challenges will need to be addressed, however, before micro- and nano-NDE systems can effectively be implemented, and this will require interdisciplinary research approaches, and a systematic engineering integration of the new technologies into real systems. Future research will need to emphasize systems engineering approaches for designing materials and structures with in-situ inspection and prognostic capabilities. Recent advances in 1) embedded / add-on micro-sensors, 2) computer modeling of nondestructive evaluation responses, and 3) wireless communications are important steps toward this goal, and will ultimately provide previously unimagined opportunities for realizing whole new integrated vehicle health monitoring capabilities. The future use of micro/nano NDE technologies as vehicle health monitoring tools will have profound implications, and will provide a revolutionary way of doing NDE in the near and distant future.

  4. Oxide nano particles modified by 2-benzothiazolylthiosuccinic acid

    International Nuclear Information System (INIS)

    Dang Quyet Thang; Trinh Anh Truc; Pham Gia Vu; To Thi Xuan Hang

    2015-01-01

    In this study, ZnO nanoparticle was synthesized and modified by a corrosion inhibitor 2-benzothiazolylthiosuccinic acid (BTSA) for corrosion protection of a carbon steel surface. The TEM, SEM and IR analyses were used for characterized the synthesized products. The nano ZnO size in the about 20 nm and the IR analyze shows the presence of BTSA on the ZnO surface. The corrosion inhibition of nano ZnO and nano ZnO bearing BTSA in the NaCL 0.1 M solution was characterized using electrochemical techniques. In the NaCl 0.1 M, both nano ZnO and nano ZnO-BTSA have the inhibition property for carbon steel surface. The inhibition efficiency of ZnO-BTSA in higher than of pure ZnO. The polarization curves indicate that ZnO is anodic inhibitor while the ZnO-BTSA is a mixed-type inhibitor. (author)

  5. Nano zinc phosphate coatings for enhanced corrosion resistance of mild steel

    International Nuclear Information System (INIS)

    Tamilselvi, M.; Kamaraj, P.; Arthanareeswari, M.; Devikala, S.

    2015-01-01

    Highlights: • Nano zinc phosphate coating on mild steel was developed. • Nano zinc phosphate coatings on mild steel showed enhanced corrosion resistance. • The nano ZnO increases the number of nucleating sites for phosphating. • Faster attainment of steady state during nano zinc phosphating. - Abstract: Nano crystalline zinc phosphate coatings were developed on mild steel surface using nano zinc oxide particles. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The particles size of the nano zinc phosphate coating developed was also characterized by TEM analysis. Potentiodynamic polarization and electrochemical impedance studies were carried out in 3.5% NaCl solution. Significant variations in the coating weight, morphology and corrosion resistance were observed as nano ZnO concentrations were varied from 0.25 to 2 g/L in the phosphating baths. The results showed that nano ZnO particles in the phosphating solution yielded phosphate coatings of higher coating weight, greater surface coverage and enhanced corrosion resistance than the normal zinc phosphate coatings (developed using normal ZnO particles in the phosphating baths). Better corrosion resistance was observed for coatings derived from phosphating bath containing 1.5 g/L nano ZnO. The activation effect brought about by the nano ZnO reduces the amount of accelerator (NaNO 2 ) required for phosphating

  6. Nano-DTA and nano-DSC with cantilever-type calorimeter

    International Nuclear Information System (INIS)

    Nakabeppu, Osamu; Deno, Kohei

    2016-01-01

    Highlights: • Nanocalorimetry with original cantilever type calorimeters. • The calorimeters showed the enthalpy resolution of 200 nJ level. • Nano-DTA of a binary alloy captured a probabilistic peak after solidification. • Power compensation DSC of a microgram level sample was demonstrated. • The DSC and DTA behavior were explained with a lumped model. - Abstract: Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) of the minute samples in the range of microgram to nanogram were studied using original cantilever-type calorimeters. The micro-fabricated calorimeter with a heater and thermal sensors was able to perform a fast temperature scan at above 1000 K/s and a high-resolution heat measurement. The DTA of minuscule metal samples demonstrated some advances such as the thermal analysis of a 20 ng level indium and observation of a strange phase transition of a binary alloy. The power compensation type DSC using a thermal feedback system was also performed. Thermal information of a microgram level sample was observed as splitting into the DSC and DTA signals because of a mismatch between the sample and the calorimeter. Although there remains some room for improvement in terms of the heat flow detection, the behavior of the compensation system in the DSC was theoretically understood through a lumped model. Those experiments also produced some findings, such as a fin effect with sample loading, a measurable weight range, a calibration of the calorimeter and a product design concept. The development of the nano-DTA and nano-DSC will enable breakthroughs for the fast calorimetry of the microscopic size samples.

  7. Effect of nano-clay on mechanical and thermal properties of geopolymer

    Directory of Open Access Journals (Sweden)

    H. Assaedi

    2016-03-01

    Full Text Available The effect of nano-clay platelets (Cloisite 30B on the mechanical and thermal properties of fly ash geopolymer has been investigated in this paper. The nano-clay platelets are added to reinforce the geopolymer at loadings of 1.0%, 2.0%, and 3.0% by weight. The phase composition and microstructure of geopolymer nano-composites are also investigated using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and scanning electron microscope (SEM techniques. Results show that the mechanical properties of geopolymer nano-composites are improved due to addition of nano-clay. It is found that the addition of 2.0 wt% nano-clay decreases the porosity and increases the nano-composite's resistance to water absorption significantly. The optimum 2.0 wt% nano-clay addition exhibited the highest flexural and compressive strengths, flexural modulus and hardness. The microstructural analysis results indicate that the nano-clay behaves not only as a filler to improve the microstructure, but also as an activator to facilitate the geopolymeric reaction. The geopolymer nano-composite also exhibited better thermal stability than its counterpart pure geopolymer.

  8. Light hydrogen isotopes in the single - walled carbon nano tube

    International Nuclear Information System (INIS)

    Khugaev, A.V.; Sultanov, R.A.; Guster, D.

    2007-01-01

    Full text: Progress of our understanding of the molecular hydrogen behavior in the nano tube interior open an intriguing possibility for the applications of these knowledge's to the solution of the hydrogen storage problem and light isotopes gas selectivity. That can strongly change the situation at the energy production in the world and completely change our civil life. These investigations underline the influence of the quantum effects on the properties of molecular hydrogen in the nano tube interior and it leads to the pure quantum-mechanical reformulation of the problem for the hydrogen behavior inside carbon nano tube as a problem of molecular quantum system behavior in the external field induced by the regular nano tube surface. In the present paper the molecular hydrogen behavior in the carbon nano tube was considered in the simple quantum mechanical manner. The main attention was paid to the investigation of the quantum sieving selectivity in the dependence of nano tube composition, radius and symmetry properties. For the interaction potential between hydrogen and nano tube surface was taken some phenomenological LJ(12,6) - (Lennard - Jones) potential and the external field induced by the nano tube in its interior is considered as a simple sum over the all nano tube carbon atoms. Influence of the structure of rotation (vibration) spectrum of the energy levels of diatomic molecules, such as H 2 , HD and D 2 on the final results and finite size of the nano tube along the axis of symmetry, its boundary effects is discussed in details. Thermal oscillations of nano tube surface were considered separately in the dependence of the temperature gradient along of the axis of symmetry

  9. Internal distribution of micro- / nano-sized inorganic particles and their cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Shigeaki; Iwadera, Nobuki; Esaki, Mitsue; Kida, Ikuhiro; Akasaka, Tsukasa; Uo, Motohiro; Yawaka, Yasutaka; Watari, Fumio [Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan); Mutoh, Mami [School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan); Morita, Manabu [Department of Oral Health, Okayama University Graduate School of Medicine, Dentisity and Pharmaceutical Science, Okayama 700-8525 (Japan); Haneda, Koichi [Department of Information Technology and Electronics, Senshu University of Ishinomaki, Ishinomaki 986-8580 (Japan); Yonezawa, Tetsu, E-mail: sabe@den.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)

    2011-10-29

    Nano-sized materials have received much attention lately, both in terms of their multiple applications and their biocompatibility. From both viewpoints, understanding the biodistribution of administered nano-materials is very important. In this study, we succeeded in visualizing the biodistribution of administered nano-materials using a scanning X-ray analytical microscope and magnetic resonance imaging method. Quantitative observation was carried out by inductively coupled plasma - atomic emission spectroscopy. We observed that the administered nano-particles accumulated in the liver, lung and spleen of mice. To estimate their cytocompatibility, the nano-particles were exposed to human liver cells. The results suggested that the micro-/ nano- particles have good cytocompatibility, except for copper oxide nano-particles.

  10. Functionally Graded Materials using Plasma Spray with Nano Structured Ceramic

    International Nuclear Information System (INIS)

    Sioh, E L; Tok, A I Y

    2013-01-01

    In this paper, nano structured FGM was fabricated using DC plasma spray technique. Nano structured and micro structured powder were used as the feeding powder with steel substrate. The spray parameters was optimized and characterisation of nano-ceramic FGM and micro-ceramic FGM were done using bending test and micro-hardness test. Experimental results have shown that the nano-structured FGM exhibit 20% improvement flexure strength and 10% in hardness. A comparison was made between sintered micro ceramic tile and nano ceramic FGM using simple drop test method.

  11. Security in Nano Communication: Challenges and Open Research Issues

    NARCIS (Netherlands)

    Dressler, Falko; Kargl, Frank

    Nano communication is one of the fastest growing emerging research fields. In recent years, much progress has been achieved in developing nano machines supporting our needs in health care and other scenarios. However, experts agree that only the interaction among nano machines allows to address the

  12. Nano-education from a European perspective

    International Nuclear Information System (INIS)

    Malsch, I

    2008-01-01

    At a global level, educating the nanotechnology workforce has been discussed since the beginning of the new millennium. Scientists, engineers and technicians should be trained in nanotechnology. Most educators prefer training students first in their own discipline at the Bachelor level (physics, chemistry, biology, etc) followed by specialisation in nanoscience and technology at the Master's level. Some favour a broad interdisciplinary basic training in different nanosciences followed by specialisation in a particular application area. What constitutes a good nanoscience curriculum is also being discussed, as well as the application of e-learning methodologies. The European Union is stimulating the development of nanoscience education in universities. The Erasmus Mundus programme is funding nanoscience and nanotechnology education programmes involving universities in several European countries. The policy debate in Europe is moving towards vocational training in nanotechnology for educating the technicians needed in industry and research. The EU vocational training institute CEDEFOP published a report in 2005 The EU funded European gateway to nanotechnology Nanoforum has stimulated the accessibility of nano-education throughout Europe with reports and online databases of education courses and materials. For university education, they list courses at the Bachelor, Master's, and PhD level as well as short courses. The EU funded EuroIndiaNet project also reviewed Nano-education courses at the Master's level, short courses, e-learning programmes, summerschools and vocational training courses. In this presentation, I review Nanoforum and other publications on nano-education in Europe and highlight current trends and gaps

  13. Application of Gaia Analysis Software AGIS to Nano-JASMINE

    Science.gov (United States)

    Yamada, Y.; Lammers, U.; Gouda, N.

    2011-07-01

    The core data reduction for the Nano-JASMINE mission is planned to be done with Gaia's Astrometric Global Iterative Solution (AGIS). Nano-JASMINE is an ultra small (35 kg) satellite for astrometry observations in Japan and Gaia is ESA's large (over 1000 kg) next-generation astrometry mission. The accuracy of Nano-JASMINE is about 3 mas, comparable to the Hipparcos mission, Gaia's predecessor some 20 years ago. It is challenging that such a small satellite can perform real scientific observations. The collaboration for sharing software started in 2007. In addition to similar design and operating principles of the two missions, this is possible thanks to the encapsulation of all Gaia-specific aspects of AGIS in a Parameter Database. Nano-JASMINE will be the test bench for the Gaia AGIS software. We present this idea in detail and the necessary practical steps to make AGIS work with Nano-JASMINE data. We also show the key mission parameters, goals, and status of the data reduction for the Nano-JASMINE.

  14. Study of nano-nitramine explosives: preparation, sensitivity and application

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2014-06-01

    Full Text Available Nano-nitramine explosives (RDX, HMX, CL-20 are produced on a bi-directional grinding mill. The scanning electron microscope (SEM observations show that the prepared particles are semi-spherical, and the narrow size distributions are characterized using the laser particle size analyzer. Compared with the micron-sized samples, the nano-products show obvious decrease in friction and impact sensitivities. In the case of shock sensitivities, nano-products have lower values by 59.9% (RDX, 56.4% (HMX, and 58.1% (CL-20, respectively. When nano-RDX and nano-HMX are used in plastic bonded explosives (PBX as alternative materials of micron-sized particles, their shock sensitivities are significantly decreased by 24.5% (RDX and 22.9% (HMX, and their detonation velocities are increased by about 1.7%. Therefore, it is expected to promote the application of nano-nitramine explosives in PBXs and composite modified double-based propellants (CMDBs so that some of their properties would be improved.

  15. Comparison of flux motion in type-II superconductors including pinning centers with the shapes of nano-rods and nano-particles by using 3D-TDGL simulation

    International Nuclear Information System (INIS)

    Ito, Shintaro; Ichino, Yusuke; Yoshida, Yutaka

    2015-01-01

    Highlights: • We constructed the 3D-TDGL simulator to calculate the flux motion. • We assumed two superconductors including only nano-rods and only nano-particles. • We succeeded to simulate the flux motion for various magnetic field angles. • If anyone introduce nano-rod, controlling the “single-kink” motion is very important. • The introduction of nano-particles is effective to pin the “single-kink” motion. - Abstract: Time-dependent Ginzburg–Landau (TDGL) equations are very useful method for simulation of the motion of flux quanta in type-II superconductors. We constructed the 3D-TDGL simulator and succeeded to simulate the motion of flux quanta in 3-dimension. We carried out the 3D-TDGL simulation to compare two superconductors which included only pinning centers with the shape of nano-rods and only nano-particle-like pinning centers in the viewpoint of the flux motion. As a result, a motion of “single-kink” caused the whole motion of a flux quantum in the superconductor including only the nano-rods. On the other hand, in the superconductor including the nano-particles, the flux quanta were pinned by the nano-particles in the various magnetic field applied angles. As the result, no “single-kink” occurred in the superconductor including the nano-particles. Therefore, the nano-particle-like pinning centers are effective shape to trap flux quanta for various magnetic field applied angles.

  16. Properties of forced convection experimental with silicon carbide based nano-fluids

    Science.gov (United States)

    Soanker, Abhinay

    With the advent of nanotechnology, many fields of Engineering and Science took a leap to the next level of advancements. The broad scope of nanotechnology initiated many studies of heat transfer and thermal engineering. Nano-fluids are one such technology and can be thought of as engineered colloidal fluids with nano-sized colloidal particles. There are different types of nano-fluids based on the colloidal particle and base fluids. Nano-fluids can primarily be categorized into metallic, ceramics, oxide, magnetic and carbon based. The present work is a part of investigation of the thermal and rheological properties of ceramic based nano-fluids. alpha-Silicon Carbide based nano-fluid with Ethylene Glycol and water mixture 50-50% volume concentration was used as the base fluid here. This work is divided into three parts; Theoretical modelling of effective thermal conductivity (ETC) of colloidal fluids, study of Thermal and Rheological properties of alpha-SiC nano-fluids, and determining the Heat Transfer properties of alpha-SiC nano-fluids. In the first part of this work, a theoretical model for effective thermal conductivity (ETC) of static based colloidal fluids was formulated based on the particle size, shape (spherical), thermal conductivity of base fluid and that of the colloidal particle, along with the particle distribution pattern in the fluid. A MATLAB program is generated to calculate the details of this model. The model is specifically derived for least and maximum ETC enhancement possible and thereby the lower and upper bounds was determined. In addition, ETC is also calculated for uniform colloidal distribution pattern. Effect of volume concentration on ETC was studied. No effect of particle size was observed for particle sizes below a certain value. Results of this model were compared with Wiener bounds and Hashin- Shtrikman bounds. The second part of this work is a study of thermal and rheological properties of alpha-Silicon Carbide based nano

  17. Villem Nano, pedagoog ja haritlane / Villem Normak

    Index Scriptorium Estoniae

    Normak, Villem

    2009-01-01

    Matemaatikaõpetaja, koolijuhi Villem Nano elust ja tegevusest. 1. juulil 1919 käivitas Villem Nano Tallinna õpetajate seminari, millest on läbi mitme nime- ja staatusemuudatuse kujunenud välja tänane Tallinna Ülikool

  18. Scaling laws for nanoFET sensors

    International Nuclear Information System (INIS)

    Zhou Fushan; Wei Qihuo

    2008-01-01

    The sensitive conductance change of semiconductor nanowires and carbon nanotubes in response to the binding of charged molecules provides a novel sensing modality which is generally denoted as nanoFET sensors. In this paper, we study the scaling laws of nanoplate FET sensors by simplifying nanoplates as random resistor networks with molecular receptors sitting on lattice sites. Nanowire/tube FETs are included as the limiting cases where the device width goes small. Computer simulations show that the field effect strength exerted by the binding molecules has significant impact on the scaling behaviors. When the field effect strength is small, nanoFETs have little size and shape dependence. In contrast, when the field effect strength becomes stronger, there exists a lower detection threshold for charge accumulation FETs and an upper detection threshold for charge depletion FET sensors. At these thresholds, the nanoFET devices undergo a transition between low and large sensitivities. These thresholds may set the detection limits of nanoFET sensors, while they could be eliminated by designing devices with very short source-drain distance and large width

  19. Effect of lateral size of graphene nano-sheets on the mechanical properties and machinability of alumina nano-composites

    Czech Academy of Sciences Publication Activity Database

    Porwal, H.; Saggar, Richa; Tatarko, P.; Grasso, S.; Saunders, T.; Dlouhý, Ivo; Reece, M. J.

    2016-01-01

    Roč. 42, č. 6 (2016), s. 7533-7542 ISSN 0272-8842 EU Projects: European Commission(XE) 264526 Institutional support: RVO:68081723 Keywords : Alumina * Graphene nano-sheets * Nano-composites * Mechanical properties * Machinability Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.986, year: 2016

  20. Structure and photoluminescence properties of Ag-coated ZnO nano-needles

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaozhu, E-mail: Lixiaozhu1019@21cn.com [Department of Physics, Shaoguan University, Shaoguan, Guangdong 512005 (China) and Department of Physics and Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, Wuhan, Hubei 430072 (China); Wang Yongqian [Engineering Research Center of Nano-Geomaterials of Ministry of Education (China University of Geosciences), Wuhan, Hubei 430074 (China)

    2011-05-12

    Highlights: > ZnO nano-needles were synthesized by thermal oxidation. > Their surfaces were coated with Ag by pulse electro-deposition technique. > The uncoated and coated ZnO nano-needles were characterized. > The results showed that the prepared ZnO nano-needles have been coated with Ag successfully. > The photoluminescence spectrums of ZnO nano-needles with Ag-coated and uncoated were analyzed, finding that the Ag-coated ZnO nano-needles can increase the absorption of UV light. - Abstract: A large number of zinc oxide (ZnO) nano-needles were synthesized by thermal oxidation of pure zinc. The surfaces of ZnO nano-needles were coated with a layer of Ag by pulse electro-deposition technique. The uncoated and coated ZnO nano-needles were characterized by using the X-ray diffraction and the scanning electron microscope (SEM). The results showed that the uncoated samples were close-packed hexagonal structure, which showed needle-like morphology. Their average diameter is about 40 nm, lengths up to 5 {mu}m. At the same time we observed that the prepared ZnO nano-needles have been coated with Ag successfully. The photoluminescence spectrums of ZnO nano-needles with Ag-coated and uncoated were analyzed, finding that the uncoated ZnO nano-needles have two fluorescence peaks at 388 nm and 470.8 nm, respectively, the relative intensity of 143.4 and 93.61; and the Ag-coated ZnO nano-needles showed a pair of strong peaks at 387.4 nm and 405.2 nm, the relative intensity of 1366 and 1305, respectively, indicating that the Ag-coated ZnO nano-needles can increase the absorption of UV light.

  1. Influence of Nano Silica on Alkyd Films

    DEFF Research Database (Denmark)

    Nikolic, Miroslav

    . The present work centers on the reinforcement of alkyd binders emulsified in water and used in exterior wood coatings with nano silica. Raman spectroscopy was used throughout the study to maintain the reproducibility of results as it was found that colloidal nano silica can increase or decrease the speed...... of alkyd curing affecting the tested mechanical properties. Hydrophilic, colloidal nano silica was seen to have limited effect in improving the mechanical properties due to problems in properly dispersing and attaining good surface interactions with the hydrophobic alkyd polymer. Efforts in increasing...... the interactions with the alkyd polymer while keeping the nano filler stable in the water phase did not show further improvements of mechanical properties. The best results in respect to mechanical properties, as measured under static and dynamic loading, were obtained with the use of hexamethyldisilazane treated...

  2. Invention profiles and uneven growth in the field of emerging nano-energy

    International Nuclear Information System (INIS)

    Guan, Jiancheng; Liu, Na

    2015-01-01

    This paper aims to synthetically investigate invention profiles and uneven growth of technological knowledge in the emerging nano-energy field, based on patents data extracted from the Derwent Innovation Index (DII) database during the time period 1991–2012. The trend analysis shows that invention in this field has experienced enormous growth and also diversification over the past 22 years. The co-occurrence network of burst technology domains reveals that technology domains constantly burst, and innovative progress in nanotechnology has tremendously contributed to energy production, storage, conversion and harvesting and so on. Nano-energy patented inventions mainly come from a combinatorial process with a very limited role of developing brand-new technological capabilities. Reusing existing technological capabilities including recombination reuse, recombination creation and single reuse is the primary source of inventions. For the impacts of technology networks' embeddedness, we find that network tie strength suppresses the growth of technological knowledge domains, and network status and convergence both facilitate the growth of technological knowledge domains. We expect that this study will provide some enlightenment for inventing or creating new knowledge in emerging fields in complex technological environment. - Highlights: • We define and utilize a unique dataset of nano-energy patents. • We identify and map the burst technological knowledge domains. • Quantitative argument is provided to prove the combinatorial invention. • Impacts of network embeddedness on growth of technology domain are examined. • Network characteristics affect the growth of technology domain

  3. The effect of nano-silver packaging in increasing the shelf life of nuts: An in vitro model.

    Science.gov (United States)

    Tavakoli, Hamidreza; Rastegar, Hossein; Taherian, Mahdi; Samadi, Mohammad; Rostami, Hossein

    2017-10-20

    Nano packaging is currently one of the most important topics in food packaging technologies. The aim of the application of this technology in food packaging is increasing shelf life of foods by preventing internal and external corruption and microbial contaminations. Use of silver nanoparticles in food packaging has recently attracted much attention. The aim of this study was to investigate the effect of nano-silver packaging in increasing the shelf life packages of nuts in an In vitro model. In this experimental study, the effects of different nano-silver concentrations (0, 1, 2 and 3 percent) on biological and chemical properties of 432 samples of nuts including walnuts, hazelnuts, almonds and pistachios were evaluated during 0, 3, 6, 9, 12, 15, 18, 21 and 24 months. In most samples, different concentrations of nano-silver (1, 2 and 3 %) significantly reduced total microbial count, mold and coliform counts compared to control group and the 3% nano-silver concentration was more effective than other concentrations (Pnano-silver concentrations were used. Nano-silver also prevented growth of mold and so prevented aflatoxin production in all treatment groups. Results of chemical and biological tests showed that the silver nanoparticles had a significant effect on increasing the shelf life of nuts. The highest shelf life belonged to pistachios, almonds, hazelnuts and walnuts with 20, 19, 18 and 18 months, respectively. The shelf life was associated with amount of silver nanoparticles. The highest antimicrobial activity was observed when 3% nano-silver concentration was used in pistachios. The shelf life of control groups in similar storage conditions were calculated for an average of 13 months. In conclusion, the results of this study demonstrate the efficacy of nano-silver packing in increasing shelf life of nuts. Hence, use of nano-silver packaging in food industry, especially in food packaging is recommended.

  4. Effects of gamma irradiation and silver nano particles on microbiological characteristics of saffron, using hurdle technology.

    Science.gov (United States)

    Hamid Sales, E; Motamedi Sedeh, F; Rajabifar, S

    2012-03-01

    Saffron, a plant from the Iridaceae family, is the world's most expensive spice. Gamma irradiation and silver nano particles whose uses are gradually increasing worldwide, have positive effects on preventing decay by sterilizing the microorganisms and by improving the safety without compromising the nutritional properties and sensory quality of the foods. In the present study combination effects of gamma irradiation and silver nano particles packaging on the microbial contamination of saffron were considered during storage. A combination of hurdles can ensure stability and microbial safety of foods. For this purpose, saffron samples were packaged by Poly Ethylene films that posses up to 300 ppm nano silver particles as antimicrobial agents and then irradiated in cobalt-60 irradiator (gamma cell PX30, dose rate 0.55 Gry/Sec) to 0, 1, 2,3 and 4 kGy at room temperature. The antimicrobial activities against Total Aerobic Mesophilic Bacteria, Entrobacteriace, Escherichia Coli and Clostridium Perfringines were higher in the irradiated samples, demonstrating the inhibition zone for their growth. Irradiation of the saffron samples packaged by Poly Ethylene films with nano silver particles showed the best results for decreasing microbial contamination at 2 kGy and for Poly Ethylene films without silver nano particles; it was 4 kGy.

  5. Zinc and Carbonate Co-Substituted Nano-Hydroxyapatite

    Science.gov (United States)

    Girija, E. K.; Kumar, G. Suresh; Thamizhavel, A.

    2011-07-01

    Synthesis of Zn or CO32- substituted nano-hydroxyapatite (HA) and its physico-chemical properties have been well documented. However, the effects of the simultaneous substitution of Zn and CO32- in nano-HA have not been reported. In the present study, Zn and CO32- substitutions in nano HA independently and concurrently have been done by wet precipitation method and characterized by XRD and FT-IR for its phase purity and chemical homogeneity. Further modulations of the bioactivity and thermal stability of HA due to the substitutions have been studied.

  6. Epitaxial Ni films, e-beam nano-patterning and BMR

    Science.gov (United States)

    Lukaszew, R. Alejandra; Zhang, Zhengdong; Pearson, Dave; Zambano, Antonio

    2004-05-01

    We have attempted to clarify possible domain-wall processes present in the recently reported large ballistic magnetoresistance effects in nano-contacts. To that effect we have used e-beam lithography applied to epitaxial Ni films to fabricate nano-bridges in more controlled geometry than electrochemical deposition. Our preliminary results indicate that magnetic domains do play a role in the magneto-resistance of these nano-bridges but the order of magnitude of the observed effect is considerably smaller than the reported observations in electrochemically prepared nano-contacts.

  7. Epitaxial Ni films, e-beam nano-patterning and BMR

    International Nuclear Information System (INIS)

    Lukaszew, R.A.; Zhang Zhengdong; Pearson, Dave; Zambano, Antonio

    2004-01-01

    We have attempted to clarify possible domain-wall processes present in the recently reported large ballistic magnetoresistance effects in nano-contacts. To that effect we have used e-beam lithography applied to epitaxial Ni films to fabricate nano-bridges in more controlled geometry than electrochemical deposition. Our preliminary results indicate that magnetic domains do play a role in the magneto-resistance of these nano-bridges but the order of magnitude of the observed effect is considerably smaller than the reported observations in electrochemically prepared nano-contacts

  8. Preparation and characterization of PVC /ENR/CNTs Nano composites

    International Nuclear Information System (INIS)

    Ratnam, C.T.; Nur Azrini Ramlee; Keong, C.C.

    2011-01-01

    Poly (vinyl chloride), PVC/ epoxidized natural rubber blend, ENR/ carbon nano tubes, CNTs were prepared by using melt and solution blending methods. Addition of 2 phr of CNTs found to cause a drop in the tensile strength, Ts of the 50/ 50 PVC/ ENR blend. The nano composites prepared by the melt blending method exhibited higher values of Ts compared to the nano composites prepared by solution blending. Melt blending found to be an efficient method to prepare PVC/ ENR/ CNTs nano composites. (author)

  9. Mechanical Behavior of Self-Compacting Concrete Containing Nano-Metakaolin

    Directory of Open Access Journals (Sweden)

    Mohammed Kareem Abed

    2017-08-01

    Full Text Available This paper presents the influence of nano- metakaolin addition for production self-compacting concrete (SCC. Nano-metakaolin material was used at four percentages (0, 1, 3 and 5 % as partial replacement by weight of cement [Reference mix (PC, (1%, 3%, 5% nano-metakaolin(1, 3, 5 NMK]. This research studied the influence of nano-metakaolin material on the fresh and mechanical properties which represented by the different tests were slump flow, T50cm, L-Box, V-funnel, compressive and flexural strength. From the results of this study, found that the SCC with 5% of nano-metakaolin material as partial replacement by weight of cement give the best results of fresh and mechanical properties of SCC mixes.

  10. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering.

    Science.gov (United States)

    Liu, Xiuju; Gan, Kang; Liu, Hong; Song, Xiaoqing; Chen, Tianjie; Liu, Chenchen

    2017-09-01

    We aimed to investigate the cytotoxicity and antibacterial properties of nano-silver-coated polyetheretherketone (PEEK) produced through magnetron sputtering and provide a theoretical basis for its use in clinical applications. The surfaces of PEEKs were coated with nano-silver at varying thicknesses (3, 6, 9, and 12nm) through magnetron sputtering technology. The resulting coated PEEK samples were classified into the following groups according to the thickness of the nano-silver coating: PEEK-3 (3nm), PEEK-6 (6nm), PEEK-9 (9nm), PEEK-12 (12nm), and PEEK control group. The surface microstructure and composition of each sample were observed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy dispersive spectrum (EDS) analysis. The water contact angle of each sample was then measured by contact angle meters. A cell counting kit (CCK-8) was used to analyze the cytotoxicity of the mouse fibroblast cells (L929) in the coated groups (n=5) and group test samples (n=6), negative control (polyethylene, PE) (n=6), and positive control group (phenol) (n=6). The antibacterial properties of the samples were tested by co-culturing Streptococcus mutans and Straphylococcus aureus. The bacteria that adhered to the surface of samples were observed by SEM. The antibacterial adhesion ability of each sample was then evaluated. SEM and AFM analysis results showed that the surfaces of control group samples were smooth but compact. Homogeneous silver nano-particles (AgNPs) and nano-silver coating were uniformly distributed on the surface of the coated group samples. Compared with the control samples, the nano-silver coated samples had a significant increase in surface roughness (Pnano-silver coating increased. EDS analysis showed that not only C and O but also Ag were present on the surface of the coated samples. Moreover, the water contact angle of modified samples significantly increased after nano-silver coating modification (Pnano-silver coating can

  11. Fabricated nano-fiber diameter as liquid concentration sensors

    Science.gov (United States)

    Chyad, Radhi M.; Mat Jafri, Mohd Zubir; Ibrahim, Kamarulazizi

    Nanofiber is characterized by thin, long, and very soft silica. Taper fibers are made using an easy and low cost chemical method. Etching is conducted with a HF solution to remove cladding and then a low molarity HF solution to reduce the fiber core diameter. One approach to on-line monitoring of the etching process uses spectrophotometer with a white light source. In the aforementioned technique, this method aims to determine the diameter of the reduced core and show the evolution of the two different processes from the nanofiber regime to the fixed regime in which the mode was remote from the surrounding evanescent field, intensity can propagate outside the segment fiber when the core diameter is less than 500 nm. Manufacturing technologies of nano-fiber sensors offer a number of approved properties of optical fiber sensors utilized in various sensory applications. The nano-fiber sensor is utilized to sense the difference in the concentration of D-glucose in double-distilled deionized water and to measure the refractive index (RI) of a sugar solution. Our proposed method exhibited satisfactory capability based on bimolecular interactions in the biological system. The response of the nano-fiber sensors indicates a different kind of interaction among various groups of AAs. These results can be interpreted in terms of solute-solute and solute-solvent interactions and the structure making or breaking ability of solutes in the given solution. This study utilized spectra photonics to measure the transmission of light through different concentrations of sugar solution, employing cell cumber and nano-optical fibers as sensors.

  12. Synthesis of nano-carbon (nanotubes, nanofibres, graphene ...

    Indian Academy of Sciences (India)

    Administrator

    – .... PEO composites. In other carbon nano materials such as graphite nano- fibres (GNFs) .... decides the catalyst shape according to which the mor- phology of the .... Castro M, Lu J, Bruzaud S, Kumar B and Feller J 2009 Carbon. 47 1930.

  13. Nano-TiO2, ultrasound and sequential nano-TiO2/ultrasonic degradation of N-acetyl-para-aminophenol from aqueous solution.

    Science.gov (United States)

    Ayanda, Olushola S; Nelana, Simphiwe M; Petrik, Leslie F; Naidoo, Eliazer B

    2017-10-01

    The application of nano-TiO 2 as adsorbent combined with ultrasound for the degradation of N-acetyl-para-aminophenol (AAP) from aqueous solution was investigated. The nano-TiO 2 was characterized by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). Experimental results revealed that the adsorption of AAP by nano-TiO 2 fitted the pseudo-second-order kinetic model, the equilibrium could be explained by the Freundlich isotherm and the treatment process is exothermic. The optimum removal efficiency of AAP (128.89 mg/g (77.33%)) was achieved at pH 4 when 0.03 g of nano-TiO 2 was mixed with 50 mL of 100 mg/L AAP aqueous solution at ambient temperature, 60 min contact time, and a stirring speed of 120 rpm. Ultrasound at 20 kHz and pH 3 was favorable and it resulted in 52.61% and 57.43% removal efficiency with and without the addition of nano-TiO 2 , respectively. The degradation of AAP by ultrasound followed by nano-TiO 2 treatment resulted in approximately 99.50% removal efficiency. This study showed that a sequential ultrasound and nano-TiO 2 treatment process could be employed for the removal of AAP or other emerging water and wastewater contaminants.

  14. Nano-Immobilized Biocatalysts for Biodiesel Production from Renewable and Sustainable Resources

    Directory of Open Access Journals (Sweden)

    Keon Hee Kim

    2018-02-01

    Full Text Available The cost of biodiesel production relies on feedstock cost. Edible oil is unfavorable as a biodiesel feedstock because of its expensive price. Thus, non-edible crop oil, waste oil, and microalgae oil have been considered as alternative resources. Non-edible crop oil and waste cooking oil are more suitable for enzymatic transesterification because they include a large amount of free fatty acids. Recently, enzymes have been integrated with nanomaterials as immobilization carriers. Nanomaterials can increase biocatalytic efficiency. The development of a nano-immobilized enzyme is one of the key factors for cost-effective biodiesel production. This paper presents the technology development of nanomaterials, including nanoparticles (magnetic and non-magnetic, carbon nanotubes, and nanofibers, and their application to the nano-immobilization of biocatalysts. The current status of biodiesel production using a variety of nano-immobilized lipase is also discussed.

  15. Formulasi Sediaan Nano Herbal Tempuyung (Sonchus arvensis L. dalam Bentuk Self Nano-Emulsifying Drug Delivery System (SNEDDS

    Directory of Open Access Journals (Sweden)

    Budy Wijiyanto

    2016-12-01

    Full Text Available Tempuyung (Sonchus arvensis L. merupakan tanaman asli Indonesia yang berhkasiat sebagai diuretik dan antioksidan. Untuk mendapatkan efek terapi yang optimal perlu inovasi untuk membuatnya menjadi sediaan nano herbal. Penelitian ini bertujuan  membuat sediaan nano herbal tempuyung dalam bentuk Self Nano-Emulsifying Drug Delivery System (SNEDDS.  Kandungan zat aktif tempuyung diekstraksi dengan etanol dan berikut diuapkan pelarutnya untuk mendapatkan ekstrak kental. Ekstrak yang diperoleh distandarisasi menurut Farmakope Herbal Indonesia. Berikutnya dibuat SNEDDS tempuyung dengan menggunakan minyak Capryol-90, surfaktan tween 20 dan ko-surfaktan PEG 400. SNEDDS yang diperoleh dikarakterisasi meliputi ukuran partikel dan zeta potensial. Dari ekstraksi diperoleh ekstrak kental sebanyak 77,52 g. Hasil ini telah memenuhi syarat jika dibandingkan dengan Farmakope Herbal yang menyebutkan perolehan rendemen ekstrak kental daun tempuyung adalah tidak kurang dari 7,5%.  Formulasi tempuyung dalam bentuk sediaan SNEDDS diperoleh suatu nanoemulsi yang jernih dengan ukuran partikel 16,2 ± 1,06 nm dan nilai zeta potensial -37,48±0,74 mV. Dapat disimpulkan bahwa ekstrak tempuyung menghasilkan suatu nano herbal dalam bentuk sediaan SNEDDS.

  16. A Survey on the Development Status of Nano Technology as a Basic and Fundamental Technology of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Lee, J. Y.; Lee, G. H.

    2010-02-01

    - It is necessary to research and develop high-grade nuclear energy technology such as raising stability of nuclear power generation, improving economic feasibility and managing radioactive wastes. - Innovation of nano technology is composed of each stage as follows Energy source -> conversion to energy -> distribution of energy -> energy storage -> energy use which are a value added system in the part of energy. - It is necessary to strengthen support of the government to raise next-generation human resources for continuous promotion of nuclear energy, referring to KNOO program promoted by the UK government for raising recognition about nuclear energy, raising core human resources and developing next generation core technology

  17. SiO2@FeSO4 nano composite: A recoverable nano-catalyst for eco-friendly synthesis oximes of carbonyl compounds

    Directory of Open Access Journals (Sweden)

    Mostafa Karimkoshteh

    2016-01-01

    Full Text Available Various aldoximes and ketoximes synthesis of corresponding aldehydes and ketones in the presence of SiO2@FeSO4 nano composite as recoverable nano catalyst and NH2OH·HCl. The SiO2@FeSO4 nano composite system was carried out between 10 to 15 min in oil bath (70-80 °C under solvent-free condition in excellent yields in addition this protocol can be used for industrial scales. This method offers some advantages in term of clean reaction conditions, easy work-up procedure, short reaction time, applied to convert α-diketones to α-diketoximes (as longer than other carbonyl compounds, α,β-unsaturated aldehydes and ketones to corresponding oximes and suppression of any side product. So we think that NH2OH•HCl/SiO2@FeSO4 nano composite system could be considered a new and useful addition to the present methodologies in this area. Structure of products and nano composite elucidation was carried out by 1H NMR, 13C NMR, FT-IR, scanning electron microscopy (SEM.

  18. Multi-walled carbon nano-tubes for energy storage and production applications

    International Nuclear Information System (INIS)

    Andrews, R.; Jacques, D.; Likpa, S.; Qian, D.; Rantell, T.; Anthony, J.

    2005-01-01

    Full text of publication follows: Since their discovery, carbon nano-tubes have been proposed as candidate materials for a broad range of applications, including high strength composites, molecular electronics, and energy storage. In many cases, nano-tubes have been proposed to replace traditional carbon materials, such as activated carbons in energy storage devices. In other cases, novel applications have been proposed, such as the use of carbon nano-tube arrays in photovoltaic devices. The use of multi-walled carbon nano-tubes in energy storage devices has generated great interest due to their high inherent conductivity, layered structure, and high surface area per volume compared to traditional graphitic materials. However as produced nano-tubes do not possess ideal properties, and exhibit only modest charge storage. We have explored the charge storage abilities of nano-tubes with varying morphologies (fullerenic versus stacked cones), nano-tubes containing N or B dopants, as well as various post-treatments of the nano-tubes. The use of nano-tubes in charge storage devices will be described, as well as modification of the nano-tube surfaces or morphology to improve this performance. The synthesis of nano-tubes with several differing hetero-atom dopants will also be described, as well as the effect of heat treatment on these structures. One of the most significant problems in organic photovoltaics is the typically low charge-carrier mobility in organic thin films which, coupled with short exciton diffusion lengths, means that photo-generated charge-carrier pairs are more likely to re-combine than reach an electrode to generate current. Two organic systems with high charge-carrier mobilities are carbon nano-tubes (here, MWNTs) and acene-based organic semiconductors. We believe that blended devices based on MWNTs and organic semiconductors could lead to the next class of efficient, flexible and inexpensive organic photovoltaic systems. We have developed methods to

  19. Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L.

    Science.gov (United States)

    Siddiqui, Manzer H; Al-Whaibi, Mohamed H; Faisal, Mohammad; Al Sahli, Abdulaziz A

    2014-11-01

    Research into nanotechnology, an emerging science, has advanced in almost all fields of technology. The aim of the present study was to evaluate the role of nano-silicon dioxide (nano-SiO2 ) in plant resistance to salt stress through improvement of the antioxidant system of squash (Cucurbita pepo L. cv. white bush marrow). Seeds treated with NaCl showed reduced germination percentage, vigor, length, and fresh and dry weights of the roots and shoots. However, nano-SiO2 improved seed germination and growth characteristics by reducing malondialdehyde and hydrogen peroxide levels as well as electrolyte leakage. In addition, application of nano-SiO2 reduced chlorophyll degradation and enhanced the net photosynthetic rate (Pn ), stomatal conductance (gs ), transpiration rate, and water use efficiency. The increase in plant germination and growth characteristics through application of nano-SiO2 might reflect a reduction in oxidative damage as a result of the expression of antioxidant enzymes, such as catalase, peroxidase, superoxide dismutase, glutathione reductase, and ascorbate peroxidase. These results indicate that nano-SiO2 may improve defense mechanisms of plants against salt stress toxicity by augmenting the Pn , gs , transpiration rate, water use efficiency, total chlorophyll, proline, and carbonic anhydrase activity in the leaves of plants. © 2014 SETAC.

  20. Structure and photoluminescence properties of Ag-coated ZnO nano-needles

    International Nuclear Information System (INIS)

    Li Xiaozhu; Wang Yongqian

    2011-01-01

    Highlights: → ZnO nano-needles were synthesized by thermal oxidation. → Their surfaces were coated with Ag by pulse electro-deposition technique. → The uncoated and coated ZnO nano-needles were characterized. → The results showed that the prepared ZnO nano-needles have been coated with Ag successfully. → The photoluminescence spectrums of ZnO nano-needles with Ag-coated and uncoated were analyzed, finding that the Ag-coated ZnO nano-needles can increase the absorption of UV light. - Abstract: A large number of zinc oxide (ZnO) nano-needles were synthesized by thermal oxidation of pure zinc. The surfaces of ZnO nano-needles were coated with a layer of Ag by pulse electro-deposition technique. The uncoated and coated ZnO nano-needles were characterized by using the X-ray diffraction and the scanning electron microscope (SEM). The results showed that the uncoated samples were close-packed hexagonal structure, which showed needle-like morphology. Their average diameter is about 40 nm, lengths up to 5 μm. At the same time we observed that the prepared ZnO nano-needles have been coated with Ag successfully. The photoluminescence spectrums of ZnO nano-needles with Ag-coated and uncoated were analyzed, finding that the uncoated ZnO nano-needles have two fluorescence peaks at 388 nm and 470.8 nm, respectively, the relative intensity of 143.4 and 93.61; and the Ag-coated ZnO nano-needles showed a pair of strong peaks at 387.4 nm and 405.2 nm, the relative intensity of 1366 and 1305, respectively, indicating that the Ag-coated ZnO nano-needles can increase the absorption of UV light.

  1. A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications.

    Science.gov (United States)

    Noorbakhsh-Soltani, S M; Zerafat, M M; Sabbaghi, S

    2018-06-01

    Environmental concerns have led to extensive research for replacing polymer-based food packaging with bio-nano-composites. In this study, incorporation of nano-cellulose into gelatin and starch matrices is investigated for this purpose. Chitosan is used to improve mechanical, anti-fungal and waterproof properties. Experiments are designed and analyzed using response surface methodology. Nano-Cellulose is synthesized via acid hydrolysis and incorporated in base matrices through wet processing. Also, tensile strength test, food preservation, transparency in visible and UV and water contact angle are performed on the nano-composite films. DSC/TGA and air permeability tests are also performed on the optimal films. The results show that increasing nano-cellulose composition to 10% leads to increase the tensile strength at break to 8121 MN/m 2 and decrease the elongation at break. Also, increasing chitosan composition from 5% to 30% can enhance food preservation up to 15 days. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Peculiarities of hydration of Portland cement with synthetic nano-silica

    Science.gov (United States)

    Kotsay, Galyna

    2017-12-01

    Application of nano-materials in cement products significantly, improves their properties. Of course, the effectiveness of the materials depends on their quantity and the way they are introduced into the system. So far, amongst nano-materials used in construction, the most preferred was nano-silica. This research investigated the effect of synthetic precipitated nano-silica on the cement hydration as well as, on the physical and mechanical properties of pastes and mortars. Obtained results showed that admixture of nano-silica enhanced flexural and compressive strength of cement after 2 and 28 days, however, only when admixture made up 0.5% and 1.0%. On the other hand, the use of nano-silica in the amount 2% had some limitations, due to its ability to agglomerate, which resulted in deterioration of the rheological and mechanical properties.

  3. Nano-aggregates: emerging delivery tools for tumor therapy.

    Science.gov (United States)

    Sharma, Vinod Kumar; Jain, Ankit; Soni, Vandana

    2013-01-01

    A plethora of formulation techniques have been reported in the literature for site-specific targeting of water-soluble and -insoluble anticancer drugs. Along with other vesicular and particulate carrier systems, nano-aggregates have recently emerged as a novel supramolecular colloidal carrier with promise for using poorly water-soluble drugs in molecular targeted therapies. Nano-aggregates possess some inherent properties such as size in the nanometers, high loading efficiency, and in vivo stability. Nano-aggregates can provide site-specific drug delivery via either a passive or active targeting mechanism. Nano-aggregates are formed from a polymer-drug conjugated amphiphilic block copolymer. They are suitable for encapsulation of poorly water-soluble drugs by covalent conjugation as well as physical encapsulation. Because of physical encapsulation, a maximum amount of drug can be loaded in nano-aggregates, which helps to achieve a sufficiently high drug concentration at the target site. Active transport can be achieved by conjugating a drug with vectors or ligands that bind specifically to receptors being overexpressed in the tumor cells. In this review, we explore synthesis and tumor targeting potential of nano-aggregates with active and passive mechanisms, and we discuss various characterization parameters, ex vivo studies, biodistribution studies, clinical trials, and patents.

  4. [Effect of nano-hydroxyapatite to glass ionomer cement].

    Science.gov (United States)

    Mu, Ya-Bing; Zang, Guang-Xiang; Sun, Hong-Chen; Wang, Cheng-Kun

    2007-12-01

    To investigate the mechanical character, microleakage and mineralizing potential of nano-hydroxyapatite (nano-HAP)-added glass ionomer cement(GIC). 8% nano-HAP were incorporated into GIC as composite, and pure GIC as control. Both types of material were used to make 20 cylinders respectively in order to detect three-point flexural strength and compressive strength. Class V cavities were prepared in 120 molars extracted for orthodontic treatment, then were filled by two kinds of material. The microleakage at the composite-dentine interface was observed with confocal laser scanning microscope (CLSM) after stained with 1% rhodamin-B-isothiocyanate for 24 hours. Class V cavities were prepared in the molars of 4 healthy dogs, filled with composite, and the same molars in the other side were filled with GIC as control. The teeth were extracted to observe the mineralizing property with polarimetric microscope in 8 weeks after filling. Three-point flexural strength and compressive of nano-HAP-added GIC were increased compared with pure GIC (P nano-HAP-added GIC, while there was no hydroxyapatite crystals formed at the interface of tooth and pure GIC. 8% nano-HAP-added GIC can tightly fill tooth and have mineralizing potential, and can be used as liner or filling material for prevention.

  5. Integrated lithography to prepare periodic arrays of nano-objects

    International Nuclear Information System (INIS)

    Sipos, Áron; Szalai, Anikó; Csete, Mária

    2013-01-01

    We present an integrated lithography method to prepare versatile nano-objects with variable shape and nano-scaled substructure, in wavelength-scaled periodic arrays with arbitrary symmetry. The idea is to illuminate colloid sphere monolayers by polarized beams possessing periodic lateral intensity modulations. Finite element method was applied to determine the effects of the wavelength, polarization and angle of incidence of the incoming beam, and to predict the characteristics of nano-objects, which can be fabricated on thin metal layer covered substrates due to the near-field enhancement under silica colloid spheres. The inter-object distance is controlled by varying the relative orientation of the periodic intensity modulation with respect to the silica colloid sphere monolayer. It is shown that illuminating silica colloid sphere monolayers by two interfering beams, linear patterns made of elliptical holes appear in case of linear polarization, while circularly polarized beams result in co-existent rounded objects, as more circular nano-holes and nano-crescents. The size of the nano-objects and their sub-structure is determined by the spheres diameter and by the wavelength. We present various complex plasmonic patterns made of versatile nano-objects that can be uniquely fabricated applying the inherent symmetry breaking possibilities in the integrated lithography method.

  6. Characteristics of Sodium Polyacrylate/Nano-Sized Carbon Hydrogel for Biomedical Patch.

    Science.gov (United States)

    Park, Jong-Kyu; Seo, Sun-Kyo; Cho, Seungkwan; Kim, Han-Sung; Lee, Chi-Hwan

    2018-03-01

    Conductive hydrogels were prepared for biomedical patch in order to improve the electrical conductivity. Sodium polyacrylate and nano-sized carbon were mixed and fabricated by aqueous solution gelation process in various contents of nano-sized carbon with 0.1, 0.5, 1.0 and 2.0 wt%. Sodium polyacrylate/nano-sized carbon conductive hydrogels were investigated by molecular structure, surface morphology and electrical conductivity. The conductivity of the hydrogel/nano-sized carbon conductive hydrogel proved to be 10% higher than conductive hydrogel without nano-sized carbon. However, it was founded that conductive hydrogels with nano-sized carbon content from 0.5 up to 2.0 wt% were remarkably decreased. This may be due to the non-uniform distribution of nano-sized carbon, resulting from agglomerates of nano-sized carbon. The developed hydrogel is intended for use in the medical and cosmetic fields that is applicable to supply micro-current from device to human body.

  7. Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures

    Science.gov (United States)

    D'Elía, Noelia L.; Mathieu, Colleen; Hoemann, Caroline D.; Laiuppa, Juan A.; Santillán, Graciela E.; Messina, Paula V.

    2015-11-01

    Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures for the in vitro conditions of bone-repair. Experiments are underway to investigate the effects of the material microstructure, surface roughness and hydrophilicity on their osseo-integration, osteo-conduction and osteo-induction abilities. Materials were tested in the presence of both, rat primary osteoblasts and rabbit mesenchymal stem cells. The following aspects are discussed: (i) cytotoxicity and material degradation; (ii) rat osteoblast spreading, proliferation and differentiation; and (iii) rabbit mesenchymal stem cell adhesion on nano-HAp and nano-HAp/collagen type I coatings. We effectively prepared a material based on biomimetic HAp nano-rods displaying the appropriate surface topography, hydrophilicity and degradation properties to induce the in vitro desired cellular responses for bone bonding and healing. Cells seeded on the selected material readily attached, proliferated and differentiated, as confirmed by cell viability, mitochondrial metabolic activity, alkaline phosphatase (ALP) activity and cytoskeletal integrity analysis by immunofluorescence localization of alpha-smooth muscle actin (α-SMA) protein. These results highlight the influence of material's surface characteristics to determine their tissue regeneration potential and their future use in engineering osteogenic scaffolds for orthopedic implants.Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures

  8. Nano Antenna Integrated Diode (Rectenna) For Infrared Energy Harvesting

    KAUST Repository

    Gadalla, Mena N.

    2013-01-01

    40% without it) which in turn improves the coupled power by 40 times. Nano antennas were fabricated in house using Electron beam lithography with a precise gap of 50nm. In addition, THz diode was designed, fabricated and integrated to the nano antennas to rectify the enhanced THz signal. The integration of the nano diode required a precise overlap of the two arms of the antenna in the rage of 100nm. In order to overcome two arms overlap fabrication challenges, three layer alignment technique was used to produce precise overlap.The THz rectifier was electrically tested and shown high sensitivity and rectification ability without any bias. Finally, nano antenna integrated diode is under optical testing using   a   10.6μm   𝐶𝑜2 laser at Electro-Optics Lab, Prince Sultan Advanced Technologies Research Institute (PSATRI), King Saud University due to the unavailability of the measurement setup in KAUST.

  9. Superconducting nano-strip particle detectors

    International Nuclear Information System (INIS)

    Cristiano, R; Ejrnaes, M; Casaburi, A; Zen, N; Ohkubo, M

    2015-01-01

    We review progress in the development and applications of superconducting nano-strip particle detectors. Particle detectors based on superconducting nano-strips stem from the parent devices developed for single photon detection (SSPD) and share with them ultra-fast response times (sub-nanosecond) and the ability to operate at a relatively high temperature (2–5 K) compared with other cryogenic detectors. SSPDs have been used in the detection of electrons, neutral and charged ions, and biological macromolecules; nevertheless, the development of superconducting nano-strip particle detectors has mainly been driven by their use in time-of-flight mass spectrometers (TOF-MSs) where the goal of 100% efficiency at large mass values can be achieved. Special emphasis will be given to this case, reporting on the great progress which has been achieved and which permits us to overcome the limitations of existing mass spectrometers represented by low detection efficiency at large masses and charge/mass ambiguity. Furthermore, such progress could represent a breakthrough in the field. In this review article we will introduce the device concept and detection principle, stressing the peculiarities of the nano-strip particle detector as well as its similarities with photon detectors. The development of parallel strip configuration is introduced and extensively discussed, since it has contributed to the significant progress of TOF-MS applications. (paper)

  10. Shape-dependent electronic properties of blue phosphorene nano-flakes

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, Pradeep; Swaroop, Ram; Kumar, Ashok, E-mail: ashok@cup.ac.in [Center for Physical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda-151001 (India)

    2016-05-06

    In recent year’s considerable attention has been given to the first principles method for modifying and controlling electronic properties of nano-materials. We performed DFT-based calculations on the electronic properties of zigzag-edged nano-flakes of blue phosphorene with three possible shapes namely rectangular, triangular and hexagonal. We observed that HOMO-LUMO gap of zigzag phosphorene nano-flakes with different shapes is ∼2.9 eV with H-passivations and ∼0.7 – 1.2 eV in pristine cases. Electronic properties of blue phosphorene nano-flakes show the strong dependence on their shape. We observed that distributions of molecular orbitals were strongly affected by the different shapes. Zigzag edged considered nanostructures are non-magnetic and semiconducting in nature. The shape dependent electronic properties may find applications in tunable nano-electronics.

  11. 'Nano-immuno test' for the detection of live Mycobacterium avium subspecies paratuberculosis bacilli in the milk samples using magnetic nano-particles and chromogen.

    Science.gov (United States)

    Singh, Manju; Singh, Shoor Vir; Gupta, Saurabh; Chaubey, Kundan Kumar; Stephan, Bjorn John; Sohal, Jagdip Singh; Dutta, Manali

    2018-04-26

    Early rapid detection of Mycobacterium avium subspecies paratuberculosis (MAP) bacilli in milk samples is the major challenge since traditional culture method is time consuming and laboratory dependent. We report a simple, sensitive and specific nano-technology based 'Nano-immuno test' capable of detecting viable MAP bacilli in the milk samples within 10 h. Viable MAP bacilli were captured by MAP specific antibody-conjugated magnetic nano-particles using resazurin dye as chromogen. Test was optimized using true culture positive (10-bovine and 12-goats) and true culture negative (16-bovine and 25-goats) raw milk samples. Domestic livestock species in India are endemically infected with MAP. After successful optimization, sensitivity and specificity of the 'nano-immuno test' in goats with respect to milk culture was 91.7% and 96.0%, respectively. Whereas, it was 90.0% (sensitivity) and 92.6% (specificity) with respect to IS900 PCR. In bovine milk samples, sensitivity and specificity of 'nano-immuno test' with respect to milk culture was 90.0% and 93.7%, respectively. However, with respect to IS900 PCR, the sensitivity and specificity was 88.9% and 94.1%, respectively. Test was validated with field raw milk samples (goats-258 and bovine-138) collected from domestic livestock species to detect live/viable MAP bacilli. Of 138 bovine raw milk samples screened by six diagnostic tests, 81 (58.7%) milk samples were positive for MAP infection in one or more than one diagnostic tests. Of 81 (58.7%) positive bovine raw milk samples, only 24 (17.4%) samples were detected positive for the presence of viable MAP bacilli. Of 258 goats raw milk samples screened by six diagnostic tests, 141 (54.6%) were positive for MAP infection in one or more than one test. Of 141 (54.6%) positive raw milk samples from goats, only 48 (34.0%) were detected positive for live MAP bacilli. Simplicity and efficiency of this novel 'nano-immuno test' makes it suitable for wide-scale screening of milk

  12. Preparation of RuO2-TiO2/Nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium.

    Science.gov (United States)

    Li, Dong; Guo, Xiaolei; Song, Haoran; Sun, Tianyi; Wan, Jiafeng

    2018-06-05

    Graphite-like material is widely used for preparing various electrodes for wastewater treatment. To enhance the electrochemical degradation efficiency of Nano-graphite (Nano-G) anode, RuO 2 -TiO 2 /Nano-G composite anode was prepared through the sol-gel method and hot-press technology. RuO 2 -TiO 2 /Nano-G composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N 2 adsorption-desorption. Results showed that RuO 2 , TiO 2 and Nano-G were composited successfully, and RuO 2 and TiO 2 nanoparticles were distributed uniformly on the surface of Nano-G sheet. Specific surface area of RuO 2 -TiO 2 /Nano-G composite was higher than that of TiO 2 /Nano-G composite and Nano-G. Electrochemical performances of RuO 2 -TiO 2 /Nano-G anode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy. RuO 2 -TiO 2 /Nano-G anode was applied to electrochemical degradation of ceftriaxone. The generation of hydroxyl radical (OH) was measured. Results demonstrated that RuO 2 -TiO 2 /Nano-G anode displayed enhanced electrochemical degradation efficiency towards ceftriaxone and yield of OH, which is derived from the synergetic effect between RuO 2 , TiO 2 and Nano-G, which enhance the specific surface area, improve the electrochemical oxidation activity and lower the charge transfer resistance. Besides, the possible degradation intermediates and pathways of ceftriaxone sodium were identified. This study may provide a viable and promising prospect for RuO 2 -TiO 2 /Nano-G anode towards effective electrochemical degradation of antibiotics from wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Antagonistic effect of nano-ZnO and cetyltrimethyl ammonium chloride on the growth of Chlorella vulgaris: Dissolution and accumulation of nano-ZnO.

    Science.gov (United States)

    Liu, Na; Wang, Yipeng; Ge, Fei; Liu, Shixiang; Xiao, Huaixian

    2018-04-01

    The interaction of nanoparticles with coexisting chemicals affects the fate and transport of nanoparticles, as well as their combined effects on aquatic organisms. Here, we evaluated the joint effect of ZnO nanoparticle (nano-ZnO) and cetyltrimethyl ammonium chloride (CTAC) on the growth of Chlorella vulgaris and explored the possible mechanism. Results showed that an antagonistic effect of nano-ZnO and CTAC (0.1, 0.2 and 0.3 mg L -1 ) was found because CTAC stop nano-ZnO being broken down into solution zinc ions (Zn 2+ ). In the presence of CTAC, the zinc (including nano-ZnO and released Zn 2+ ) showed a higher adsorption on bound extracellular polymeric substances (B-EPS) but lower accumulation in the algal cells. Moreover, we directly demonstrated that nano-ZnO was adsorbed on the algal B-EPS and entered into the algal cells by transmission electron microscope coupled with energy dispersive X-ray (TEM-EDX). Hence, these results suggested that the combined system of nano-ZnO and CTAC exhibited an antagonistic effect due to the inhibition of CTAC on dissolution of nano-ZnO and accumulation of the zinc in the algal cells. Copyright © 2017. Published by Elsevier Ltd.

  14. Electromagnetics of active coated nano-particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel

    2013-01-01

    This work reviews the fundamental properties of several spherical and cylindrical active coated nano-particles excited by their respective single and/or multiple sources of radiation at optical frequencies. Particular attention is devoted to the influence of the source location and orientation, t......, the optical gain constant and the nano-particle material composition on the electric and magnetic near fields, the power flow density, the radiated power as well as the directivities. Resonant as well as quasi-transparent states will be emphasized in the discussion.......This work reviews the fundamental properties of several spherical and cylindrical active coated nano-particles excited by their respective single and/or multiple sources of radiation at optical frequencies. Particular attention is devoted to the influence of the source location and orientation...

  15. Internal Nano Voids in Yttria-Stabilised Zirconia (YSZ Powder

    Directory of Open Access Journals (Sweden)

    Chen Barad

    2017-12-01

    Full Text Available Porous yttria-stabilised zirconia ceramics have been gaining popularity throughout the years in various fields, such as energy, environment, medicine, etc. Although yttria-stabilised zirconia is a well-studied material, voided yttria-stabilised zirconia powder particles have not been demonstrated yet, and might play an important role in future technology developments. A sol-gel synthesis accompanied by a freeze-drying process is currently being proposed as a method of obtaining sponge-like nano morphology of embedded faceted voids inside yttria-stabilised zirconia particles. The results rely on a freeze-drying stage as an effective and simple method for generating nano-voided yttria-stabilised zirconia particles without the use of template-assisted additives.

  16. NanoPack: visualizing and processing long read sequencing data.

    Science.gov (United States)

    De Coster, Wouter; D'Hert, Svenn; Schultz, Darrin T; Cruts, Marc; Van Broeckhoven, Christine

    2018-03-14

    Here we describe NanoPack, a set of tools developed for visualization and processing of long read sequencing data from Oxford Nanopore Technologies and Pacific Biosciences. The NanoPack tools are written in Python3 and released under the GNU GPL3.0 License. The source code can be found at https://github.com/wdecoster/nanopack, together with links to separate scripts and their documentation. The scripts are compatible with Linux, Mac OS and the MS Windows 10 subsystem for Linux and are available as a graphical user interface, a web service at http://nanoplot.bioinf.be and command line tools. wouter.decoster@molgen.vib-ua.be. Supplementary tables and figures are available at Bioinformatics online.

  17. Comparison of Antimicrobial Properties of Nano Quinolone with its Microscale Effects

    Science.gov (United States)

    Behbahani, G. Rezaie; Sadr, M. Hossaini; Nabipour, H.; Behbahani, H. Rezaei; Vahedpour, M.; Barzegar, L.

    2013-06-01

    Nano nalidixic acid was prepared by ultrasonic method in carbon tetrachloride. Nano nalidixic acid (quinolone antibiotic) was characterized by X-ray diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscope (SEM). The antibacterial activities of nano nalidixic acid were tested against microorganisms and compared with the microscale drug. The results show that nano nalidixic acid has good inhibitory properties against two Gram-positive species, Staphylococcus aureus and Bacillus subtilis. Nano nalidixic acid also showed good antifungal activity against Candida albicans. Nano nalidixic acid can be injected into the human body as a decontaminating agent to prevent the growth of harmful microorganisms more effectively than the micro-sized drug.

  18. Nano-optomechanical transducer

    Science.gov (United States)

    Rakich, Peter T; El-Kady, Ihab F; Olsson, Roy H; Su, Mehmet Fatih; Reinke, Charles; Camacho, Ryan; Wang, Zheng; Davids, Paul

    2013-12-03

    A nano-optomechanical transducer provides ultrabroadband coherent optomechanical transduction based on Mach-wave emission that uses enhanced photon-phonon coupling efficiencies by low impedance effective phononic medium, both electrostriction and radiation pressure to boost and tailor optomechanical forces, and highly dispersive electromagnetic modes that amplify both electrostriction and radiation pressure. The optomechanical transducer provides a large operating bandwidth and high efficiency while simultaneously having a small size and minimal power consumption, enabling a host of transformative phonon and signal processing capabilities. These capabilities include optomechanical transduction via pulsed phonon emission and up-conversion, broadband stimulated phonon emission and amplification, picosecond pulsed phonon lasers, broadband phononic modulators, and ultrahigh bandwidth true time delay and signal processing technologies.

  19. DLC nano-dot surfaces for tribological applications in MEMS devices

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R. Arvind; Na, Kyounghwan [Nano-Bio Research Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Yi, Jin Woo; Lee, Kwang-Ryeol [Computational Science Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Yoon, Eui-Sung, E-mail: esyoon@kist.re.kr [Nano-Bio Research Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2011-02-01

    With the invention of miniaturized devices like micro-electro-mechanical systems (MEMS), tribological studies at micro/nano-scale have gained importance. These studies are directed towards understanding the interactions between surfaces at micro/nano-scales, under relative motion. In MEMS devices, the critical forces, namely adhesion and friction restrict the smooth operation of the elements that are in relative motion. These miniaturized devices are traditionally made from silicon (Si), whose tribological properties are not good. In this paper, we present a short investigation of nano- and micro-tribological properties of diamond-like carbon (DLC) nano-dot surfaces. The investigation was undertaken to evaluate the potential of these surfaces for their possible application to the miniaturized devices. The tribological evaluation of the DLC nano-dot surfaces was done in comparison with bare Si (1 0 0) surfaces and DLC coated silicon surfaces. A commercial atomic force microscope (AFM) was used to measure adhesion and friction properties of the test materials at the nano-scale, whereas a custom-built micro-tribotester was used to measure their micro-friction property. Results showed that the DLC nano-dot surfaces exhibited superior tribological properties with the lowest values of adhesion force, and friction force both at the nano- and micro-scales, when compared to the bare Si (1 0 0) surfaces and DLC coated silicon surfaces. In addition, the DLC nano-dot surfaces showed no observable wear at the micro-scale, unlike the other two test materials. The superior tribological performance of the DLC nano-dot surfaces is attributed to their hydrophobic nature and the reduced area of contact projected by them.

  20. DLC nano-dot surfaces for tribological applications in MEMS devices

    International Nuclear Information System (INIS)

    Singh, R. Arvind; Na, Kyounghwan; Yi, Jin Woo; Lee, Kwang-Ryeol; Yoon, Eui-Sung

    2011-01-01

    With the invention of miniaturized devices like micro-electro-mechanical systems (MEMS), tribological studies at micro/nano-scale have gained importance. These studies are directed towards understanding the interactions between surfaces at micro/nano-scales, under relative motion. In MEMS devices, the critical forces, namely adhesion and friction restrict the smooth operation of the elements that are in relative motion. These miniaturized devices are traditionally made from silicon (Si), whose tribological properties are not good. In this paper, we present a short investigation of nano- and micro-tribological properties of diamond-like carbon (DLC) nano-dot surfaces. The investigation was undertaken to evaluate the potential of these surfaces for their possible application to the miniaturized devices. The tribological evaluation of the DLC nano-dot surfaces was done in comparison with bare Si (1 0 0) surfaces and DLC coated silicon surfaces. A commercial atomic force microscope (AFM) was used to measure adhesion and friction properties of the test materials at the nano-scale, whereas a custom-built micro-tribotester was used to measure their micro-friction property. Results showed that the DLC nano-dot surfaces exhibited superior tribological properties with the lowest values of adhesion force, and friction force both at the nano- and micro-scales, when compared to the bare Si (1 0 0) surfaces and DLC coated silicon surfaces. In addition, the DLC nano-dot surfaces showed no observable wear at the micro-scale, unlike the other two test materials. The superior tribological performance of the DLC nano-dot surfaces is attributed to their hydrophobic nature and the reduced area of contact projected by them.

  1. Method of producing nano-scaled inorganic platelets

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.

    2012-11-13

    The present invention provides a method of exfoliating a layered material (e.g., transition metal dichalcogenide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites.

  2. Fabrication of 3D nano-structures using reverse imprint lithography

    Science.gov (United States)

    Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-woo; Lee, Heon

    2013-02-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.

  3. Fabrication of 3D nano-structures using reverse imprint lithography

    International Nuclear Information System (INIS)

    Han, Kang-Soo; Cho, Joong-Yeon; Lee, Heon; Hong, Sung-Hoon; Kim, Kang-In; Choi, Kyung-woo

    2013-01-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED. (paper)

  4. NanoSail - D Orbital and Attitude Dynamics

    Science.gov (United States)

    Heaton, Andrew F.; Faller, Brent F.; Katan, Chelsea K.

    2013-01-01

    NanoSail-D unfurled January 20th, 2011 and successfully demonstrated the deployment and deorbit capability of a solar sail in low Earth orbit. The orbit was strongly perturbed by solar radiation pressure, aerodynamic drag, and oblate gravity which were modeled using STK HPOP. A comparison of the ballistic coefficient history to the orbit parameters exhibits a strong relationship between orbital lighting, the decay rate of the mean semi-major axis and mean eccentricity. A similar comparison of mean solar area using the STK HPOP solar radiation pressure model exhibits a strong correlation of solar radiation pressure to mean eccentricity and mean argument of perigee. NanoSail-D was not actively controlled and had no capability on-board for attitude or orbit determination. To estimate attitude dynamics we created a 3-DOF attitude dynamics simulation that incorporated highly realistic estimates of perturbing forces into NanoSail-D torque models. By comparing the results of this simulation to the orbital behavior and ground observations of NanoSail-D, we conclude that there is a coupling between the orbit and attitude dynamics as well as establish approximate limits on the location of the NanoSail-D solar center of pressure. Both of these observations contribute valuable data for future solar sail designs and missions.

  5. Extraction and characterization of cellulose nano whiskers from balsa wood

    International Nuclear Information System (INIS)

    Morelli, Carolina L.; Bretas, Rosario E.S.; Marconcini, Jose M.; Pereira, Fabiano V.; Branciforti, Marcia C.

    2011-01-01

    In this study cellulose nano whiskers were obtained from balsa wood. For this purpose, fibers of balsa wood were subjected to hydrolysis reactions for lignin and hemi cellulose digestion and acquisition of nano-scale cellulose. Cellulose nano crystals obtained had medium length and thickness of 176 nm and 7 nm respectively. Infrared spectroscopy and x-ray diffraction showed that the process used for extracting nano whiskers could digest nearly all the lignin and hemi cellulose from the balsa fiber and still preserve the aspect ratio and crystallinity, satisfactory enough for future application in polymer nano composites. Thermogravimetry showed that the onset temperature of thermal degradation of cellulose nano crystals (226 degree C) was higher than the temperature of the balsa fiber (215 degree C), allowing its use in molding processes with many polymers from the molten state.(author)

  6. Look@NanoSIMS--a tool for the analysis of nanoSIMS data in environmental microbiology.

    Science.gov (United States)

    Polerecky, Lubos; Adam, Birgit; Milucka, Jana; Musat, Niculina; Vagner, Tomas; Kuypers, Marcel M M

    2012-04-01

    We describe an open-source freeware programme for high throughput analysis of nanoSIMS (nanometre-scale secondary ion mass spectrometry) data. The programme implements basic data processing and analytical functions, including display and drift-corrected accumulation of scanned planes, interactive and semi-automated definition of regions of interest (ROIs), and export of the ROIs' elemental and isotopic composition in graphical and text-based formats. Additionally, the programme offers new functions that were custom-designed to address the needs of environmental microbiologists. Specifically, it allows manual and automated classification of ROIs based on the information that is derived either from the nanoSIMS dataset itself (e.g. from labelling achieved by halogen in situ hybridization) or is provided externally (e.g. as a fluorescence in situ hybridization image). Moreover, by implementing post-processing routines coupled to built-in statistical tools, the programme allows rapid synthesis and comparative analysis of results from many different datasets. After validation of the programme, we illustrate how these new processing and analytical functions increase flexibility, efficiency and depth of the nanoSIMS data analysis. Through its custom-made and open-source design, the programme provides an efficient, reliable and easily expandable tool that can help a growing community of environmental microbiologists and researchers from other disciplines process and analyse their nanoSIMS data. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  7. PolyNano M.6.1.1 Process validation state-of-the-art

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Calaon, Matteo

    2012-01-01

    Nano project. Methods for replication process validation are presented and will be further investigated in WP6 “Process Chain Validation” and applied to PolyNano study cases. Based on the available information, effective best practice standard process validation will be defined and implemented...... assessment methods, and presents measuring procedures/techniques suitable for replication fidelity studies. The report reviews state‐of‐the‐art research results regarding replication obtained at different scales, tooling technologies based on surface replication, process validation trough design...

  8. Anodic Aluminum Oxide Templates for Nano wires Array Fabrication

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok, K.Y.; Ng, I.K.

    2011-01-01

    This paper reports on the process developed to fabricate anodic aluminium oxide (AAO) templates suitable for the fabrication of nano wire arrays. Anodization process has been used to fabricate the AAO templates with pore diameters ranging from 15 nm to 30 nm. Electrodeposition of parallel arrays of high aspect ratio nickel nano wires were demonstrated using these fabricated AAO templates. The nano wires produced were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the orientations of the electrodeposited nickel nano wires were governed by the deposition current and electrolyte conditions. (author)

  9. Combined effect of nano-SiO2 and nano-Fe2O3 on compressive strength, flexural strength, porosity and electrical resistivity in cement mortars

    International Nuclear Information System (INIS)

    Sanjuán, M.A.; Argiz, C.; Gálvez, J.C.; Reyes, E.

    2018-01-01

    The compressive strength, flexural strength, porosity and electrical resistivity properties of cement mortars with nano-Fe2O3 and nano-SiO2 are studied. Amorphous silica is the main component of pozzolanic materials due to its reaction with calcium hydroxide formed from calcium silicate (C3S and C2S) hydration. The pozzolanic reaction rate is not only proportional to the amount of amorphous silica but also to the surface area available for reaction. Subsequently, fine nano-Fe2O3 and nano-SiO2 particles in mortars are expected to improve mortar performance. The experimental results showed that the compressive strength of mortars with nano-Fe2O3 and nano-SiO2 particles were lower than those obtained with the reference mortar at seven and 28 days. It was shown that the nano-particles were not able to enhance mechanical strength on every occasion. The continuous microstructural progress monitored by mercury intrusion porosimetry (MIP) measurements, pore-size distribution (PSD), total porosity and critical pore diameter also confirmed such results. [es

  10. Combined effect of nano-SiO2 and nano-Fe2O3 on compressive strength, flexural strength, porosity and electrical resistivity in cement mortars

    Directory of Open Access Journals (Sweden)

    M. A. Sanjuán

    2018-03-01

    Full Text Available The compressive strength, flexural strength, porosity and electrical resistivity properties of cement mortars with nano-Fe2O3 and nano-SiO2 are studied. Amorphous silica is the main component of pozzolanic materials due to its reaction with calcium hydroxide formed from calcium silicate (C3S and C2S hydration. The pozzolanic reaction rate is not only proportional to the amount of amorphous silica but also to the surface area available for reaction. Subsequently, fine nano-Fe2O3 and nano-SiO2 particles in mortars are expected to improve mortar performance. The experimental results showed that the compressive strength of mortars with nano-Fe2O3 and nano-SiO2 particles were lower than those obtained with the reference mortar at seven and 28 days. It was shown that the nano-particles were not able to enhance mechanical strength on every occasion. The continuous microstructural progress monitored by mercury intrusion porosimetry (MIP measurements, pore-size distribution (PSD, total porosity and critical pore diameter also confirmed such results.

  11. Carbon nano-tubes - what risks, what prevention?

    International Nuclear Information System (INIS)

    Ricaud, Myriam; Lafon, Dominique; Roos, Frederique

    2007-01-01

    Carbon nano-tubes are arousing considerable interest in both the research world and industry because of their exceptional intrinsic properties and dimensional characteristics. Health risks of nano-tubes have been little studied, although the general public is already aware of their existence on account of their numerous promising applications. Existing, sometimes extremely brief, publications only reveal insufficient data for assessing risks sustained due to carbon nano-tube exposure. Yet, the great interest aroused by these new chemicals would indicate strongly that the number of exposed workers will increase over the coming years. It therefore appears essential to review not only the characteristics and applications of carbon nano-tubes, but also the prevention means to be implemented during their handling. We recommend application of the principle of precaution and measures to keep the exposure level as low as possible until the significance of occupational exposure and the corresponding human health risks are better known and have been assessed. (authors)

  12. Window-assisted nanosphere lithography for vacuum micro-nano-electronics

    International Nuclear Information System (INIS)

    Li, Nannan; Pang, Shucai; Yan, Fei; Chen, Lei; Jin, Dazhi; Xiang, Wei; Zhang, De; Zeng, Baoqing

    2015-01-01

    Development of vacuum micro-nano-electronics is quite important for combining the advantages of vacuum tubes and solid-state devices but limited by the prevailing fabricating techniques which are expensive, time consuming and low-throughput. In this work, window-assisted nanosphere lithography (NSL) technique was proposed and enabled the low-cost and high-efficiency fabrication of nanostructures for vacuum micro-nano-electronic devices, thus allowing potential applications in many areas. As a demonstration, we fabricated high-density field emitter arrays which can be used as cold cathodes in vacuum micro-nano-electronic devices by using the window-assisted NSL technique. The details of the fabricating process have been investigated. This work provided a new and feasible idea for fabricating nanostructure arrays for vacuum micro-nano-electronic devices, which would spawn the development of vacuum micro-nano-electronics

  13. D. C. plasma-sprayed coatings of nano-structured alumina-titania-silica

    International Nuclear Information System (INIS)

    Jiang Xianliang

    2002-01-01

    nano-crystalline powders of ω(Al 2 O 3 ) = 95%, ω(TiO 2 ) = 3%, and ω(SiO 2 ) = 2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D.C. plasma was used to spray the agglomerated nano-crystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Experimental results show that the agglomerated nano-crystalline particles are spherical, with a size from (10-90) μm. The flow ability of the nano-crystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nano-structure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nano-structured coatings. Although the nano-structured coatings have a lower microhardness than conventional microstructured coatings, the toughness of the nano-structured ceramic coatings is significantly improved

  14. Evaluation on the toxicity of nanoAg to bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Liu Rutao, E-mail: rutaoliu@sdu.edu.cn [School of Environmental Science and Engineering, Shandong University, 27 Shanda South Road, Jinan 250100 (China); Sun Feng; Zhang Lijun; Zong Wansong; Zhao Xingchen; Wang Li; Wu Ruolin [School of Environmental Science and Engineering, Shandong University, 27 Shanda South Road, Jinan 250100 (China); Hao Xiaopeng [State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 (China)

    2009-06-15

    Measuring protein damage by nanomaterials may give insight into the mechanisms of toxicity of nanomaterials. The toxic effects of nanoAg on bovine serum albumin (BSA) were thoroughly studied using fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, resonance light scattering spectroscopy (RLS), circular dichroism spectroscopy (CD) and transmission electron microscopy (TEM). NanoAg had obvious toxic effects on BSA: nanoAg could increase the amount of helix and decrease the beta sheet structure, leading to a loosening of the protein skeleton. In the loose structure, internal hydrophobic amino acids are exposed and the characteristic fluorescence of BSA is obviously quenched. When the ratio of nanoAg and BSA increased to 1: 96 (wt/wt), the impact of nanoAg on the spectral properties leveled off. The RLS spectrum, TEM, CD spectra and electrophoresis results showed that BSA had destroyed the double-layer structure of nanoAg and covered its surface, generating a BSA-nanoAg complex held together by van der Waals and electrostatic forces. This paper provides a new perspective and method for determining the toxic effects of nanoAg on biological macromolecules.

  15. Static and dynamic characterization of robust superhydrophobic surfaces built from nano-flowers on silicon micro-post arrays

    KAUST Repository

    Chen, Longquan

    2010-09-01

    Superhydrophobic nano-flower surfaces were fabricated using MEMS technology and microwave plasma-enhanced chemical vapor deposition (MPCVD) of carbon nanotubes on silicon micro-post array surfaces. The nano-flower structures can be readily formed within 1-2 min on the micro-post arrays with the spacing ranging from 25 to 30 μm. The petals of the nano-flowers consisted of clusters of multi-wall carbon nanotubes. Patterned nano-flower structures were characterized using various microscopy techniques. After MPCVD, the apparent contact angle (160 ± 0.2°), abbreviated as ACA (defined as the measured angle between the apparent solid surface and the tangent to the liquid-fluid interface), of the nano-flower surfaces increased by 139% compared with that of the silicon micro-post arrays. The measured ACA of the nano-flower surface is consistent with the predicted ACA from a modified Cassie-Baxter equation. A high-speed CCD camera was used to study droplet impact dynamics on various micro/nanostructured surfaces. Both static testing (ACA and sliding angle) and droplet impact dynamics demonstrated that, among seven different micro/nanostructured surfaces, the nano-flower surfaces are the most robust superhydrophobic surfaces. © 2010 IOP Publishing Ltd.

  16. Static and dynamic characterization of robust superhydrophobic surfaces built from nano-flowers on silicon micro-post arrays

    KAUST Repository

    Chen, Longquan; Xiao, Zhiyong; Chan, Philip C H; Lee, Yi-Kuen

    2010-01-01

    Superhydrophobic nano-flower surfaces were fabricated using MEMS technology and microwave plasma-enhanced chemical vapor deposition (MPCVD) of carbon nanotubes on silicon micro-post array surfaces. The nano-flower structures can be readily formed within 1-2 min on the micro-post arrays with the spacing ranging from 25 to 30 μm. The petals of the nano-flowers consisted of clusters of multi-wall carbon nanotubes. Patterned nano-flower structures were characterized using various microscopy techniques. After MPCVD, the apparent contact angle (160 ± 0.2°), abbreviated as ACA (defined as the measured angle between the apparent solid surface and the tangent to the liquid-fluid interface), of the nano-flower surfaces increased by 139% compared with that of the silicon micro-post arrays. The measured ACA of the nano-flower surface is consistent with the predicted ACA from a modified Cassie-Baxter equation. A high-speed CCD camera was used to study droplet impact dynamics on various micro/nanostructured surfaces. Both static testing (ACA and sliding angle) and droplet impact dynamics demonstrated that, among seven different micro/nanostructured surfaces, the nano-flower surfaces are the most robust superhydrophobic surfaces. © 2010 IOP Publishing Ltd.

  17. Nano-education from a European perspective

    Energy Technology Data Exchange (ETDEWEB)

    Malsch, I [Malsch TechnoValuation Vondellaan 90 3521 GH Utrecht (Netherlands)], E-mail: postbus@malsch.demon.nl

    2008-03-15

    At a global level, educating the nanotechnology workforce has been discussed since the beginning of the new millennium. Scientists, engineers and technicians should be trained in nanotechnology. Most educators prefer training students first in their own discipline at the Bachelor level (physics, chemistry, biology, etc) followed by specialisation in nanoscience and technology at the Master's level. Some favour a broad interdisciplinary basic training in different nanosciences followed by specialisation in a particular application area. What constitutes a good nanoscience curriculum is also being discussed, as well as the application of e-learning methodologies. The European Union is stimulating the development of nanoscience education in universities. The Erasmus Mundus programme is funding nanoscience and nanotechnology education programmes involving universities in several European countries. The policy debate in Europe is moving towards vocational training in nanotechnology for educating the technicians needed in industry and research. The EU vocational training institute CEDEFOP published a report in 2005 The EU funded European gateway to nanotechnology Nanoforum has stimulated the accessibility of nano-education throughout Europe with reports and online databases of education courses and materials. For university education, they list courses at the Bachelor, Master's, and PhD level as well as short courses. The EU funded EuroIndiaNet project also reviewed Nano-education courses at the Master's level, short courses, e-learning programmes, summerschools and vocational training courses. In this presentation, I review Nanoforum and other publications on nano-education in Europe and highlight current trends and gaps.

  18. Design and Fabrication of Carbon Nano tube for Medical Application

    International Nuclear Information System (INIS)

    Azniza Abas; Nuzaihan, M.N.; Hafiza, N.; Nazwa, T.

    2011-01-01

    Carbon nano tubes or known as CNTs are allotropes of carbon with a cylindrical nano structure. They exhibit extraordinary strength and unique electrical properties, and are efficient thermal conductors [1]. Due to its ordinary properties this research will based on BIOSENSOR device. Normally these CNTs biosensor are based on an enzyme catalyzed reaction that will produce either electrons or protons. In particular, it is useful in genetic profiling of human diseases, which includes in identifying genes that are expressed in certain diseases such as cancer [2]. This research will based on design and fabricate sensor or device using carbon nano tube and integrate carbon nano tube (CNTs) onto wafer using combination of dichlorophosphate and nano manipulation. Carbon nano tubes device mask are design using AUTOCAD software; there is four mask involved, first mask is Gate Formation,second mask is insulation layer third mask is source and drain and final mask forth mask is used as test channel. For fabrication and optimization of biosensor using carbon nano tube CNT that will be involve both microfabrication and nano fabrication. This process will involve conventional photolithography process, electron beam evaporator, thermal oxidation and wet etching process. To inspect and characterize carbon nano tube electrical properties it will involve tools such as SEM, AFM, Dielectric Analyzer, IV-CV and Semiconductor Parametric Analyzer system. This inspection is very important to produce a perfect profile to produce a good biosensor based on carbon nano tube structure. Preparation of various samples for testing functionality of the device this various samples and conditions will be done to ensure the detection is precise. Conductivity and capacitance effect will be tested electrically to detect the hybridization of the sample. (author)

  19. ZnO Nano-Rod Devices for Intradermal Delivery and Immunization.

    Science.gov (United States)

    Nayak, Tapas R; Wang, Hao; Pant, Aakansha; Zheng, Minrui; Junginger, Hans; Goh, Wei Jiang; Lee, Choon Keong; Zou, Shui; Alonso, Sylvie; Czarny, Bertrand; Storm, Gert; Sow, Chorng Haur; Lee, Chengkuo; Pastorin, Giorgia

    2017-06-15

    Intradermal delivery of antigens for vaccination is a very attractive approach since the skin provides a rich network of antigen presenting cells, which aid in stimulating an immune response. Numerous intradermal techniques have been developed to enhance penetration across the skin. However, these methods are invasive and/or affect the skin integrity. Hence, our group has devised zinc oxide (ZnO) nano-rods for non-destructive drug delivery. Chemical vapour deposition was used to fabricate aligned nano-rods on ZnO pre-coated silicon chips. The nano-rods' length and diameter were found to depend on the temperature, time, quality of sputtered silicon chips, etc. Vertically aligned ZnO nano-rods with lengths of 30-35 µm and diameters of 200-300 nm were selected for in vitro human skin permeation studies using Franz cells with Albumin-fluorescein isothiocyanate (FITC) absorbed on the nano-rods. Fluorescence and confocal studies on the skin samples showed FITC penetration through the skin along the channels formed by the nano-rods. Bradford protein assay on the collected fluid samples indicated a significant quantity of Albumin-FITC in the first 12 h. Low antibody titres were observed with immunisation on Balb/c mice with ovalbumin (OVA) antigen coated on the nano-rod chips. Nonetheless, due to the reduced dimensions of the nano-rods, our device offers the additional advantage of excluding the simultaneous entrance of microbial pathogens. Taken together, these results showed that ZnO nano-rods hold the potential for a safe, non-invasive, and painless intradermal drug delivery.

  20. ZnO Nano-Rod Devices for Intradermal Delivery and Immunization

    Directory of Open Access Journals (Sweden)

    Tapas R. Nayak

    2017-06-01

    Full Text Available Intradermal delivery of antigens for vaccination is a very attractive approach since the skin provides a rich network of antigen presenting cells, which aid in stimulating an immune response. Numerous intradermal techniques have been developed to enhance penetration across the skin. However, these methods are invasive and/or affect the skin integrity. Hence, our group has devised zinc oxide (ZnO nano-rods for non-destructive drug delivery. Chemical vapour deposition was used to fabricate aligned nano-rods on ZnO pre-coated silicon chips. The nano-rods’ length and diameter were found to depend on the temperature, time, quality of sputtered silicon chips, etc. Vertically aligned ZnO nano-rods with lengths of 30–35 µm and diameters of 200–300 nm were selected for in vitro human skin permeation studies using Franz cells with Albumin-fluorescein isothiocyanate (FITC absorbed on the nano-rods. Fluorescence and confocal studies on the skin samples showed FITC penetration through the skin along the channels formed by the nano-rods. Bradford protein assay on the collected fluid samples indicated a significant quantity of Albumin-FITC in the first 12 h. Low antibody titres were observed with immunisation on Balb/c mice with ovalbumin (OVA antigen coated on the nano-rod chips. Nonetheless, due to the reduced dimensions of the nano-rods, our device offers the additional advantage of excluding the simultaneous entrance of microbial pathogens. Taken together, these results showed that ZnO nano-rods hold the potential for a safe, non-invasive, and painless intradermal drug delivery.