WorldWideScience

Sample records for nano engineered energetic

  1. Continuous engineering of nano-cocrystals for medical and energetic applications

    Science.gov (United States)

    Spitzer, D.; Risse, B.; Schnell, F.; Pichot, V.; Klaumünzer, M.; Schaefer, M. R.

    2014-10-01

    Cocrystals, solid mixtures of different molecules on molecular scale, are supposed to be tailor made materials with improved employability compared to their pristine individual components in domains such as medicine and explosives. In medicine, cocrystals are obtained by crystallization of active pharmaceutical ingredients with precisely chosen coformers to design medicaments that demonstrate enhanced stability, high solubility, and therefore high bioavailability and optimized drug up-take. Nanoscaling may further advance these characteristica compared to their micronsized counterparts - because of a larger surface to volume ratio of nanoparticles. In the field of energetic materials, cocrystals offer the opportunity to design smart explosives, combining high reactivity with significantly reduced sensitivity, nowadays essential for a safe manipulation and handling. Furthermore, cocrystals are used in ferroelectrics, non-linear material response and electronic organics. However, state of the art batch processes produce low volume of cocrystals of variable quality and only have produced micronsized cocrystals so far, no nano-cocrystals. Here we demonstrate the continuous preparation of pharmaceutical and energetic micro- and nano-cocrystals using the Spray Flash Evaporation process. Our laboratory scale pilot plant continuously prepared up to 8 grams per hour of Caffeine/Oxalic acid 2:1, Caffeine/Glutaric acid 1:1, TNT/CL-20 1:1 and HMX/Cl-20 1:2 nano- and submicronsized cocrystals.

  2. Nano Engineered Energetic Materials (NEEM)

    Science.gov (United States)

    2011-01-12

    Dryer, FL; Aksay, IA, Functionalized Graphene Sheet Colloids for Enhanced Fuel/Propellant Combustion, ACS NANO 3, 13, 3945-3954, 2009. 16. Weismiller...loading) which was not observed in other heterogeneous mixtures. Additional details on nano fuels (including graphene ) with liquid oxidizers can be...to the high reflectance of some samples black high temperature spray paint was used on ends of the samples to decrease ignition delay times and

  3. The viability and performance characterization of nano scale energetic materials on a semiconductor bridge (SCB)

    Science.gov (United States)

    Strohm, Gianna Sophia

    The move from conventional energetic composites to nano scale energetic mixtures (nano energetics) has shown dramatic improvement in energy release rate and sensitivity to ignition. A possible application of nano energetics is on a semiconductor bridge (SCB). An SCB typically requires a tenth of the energy input as compared to a bridge wire design with the same no-fire and is capable of igniting in tens of microseconds. For very low energy applications, SCBs can be manufactured to extremely small sizes and it is necessary to find materials with particle sizes that are even smaller to function. Reactive particles of comparable size to the bridge can lead to problems with ignition reliability for small bridges. Nano-energetic composites and the use of SCBs have been significantly studied individually, however, the process of combining nano energetics with an SCB has not been investigated extensively and is the focus of this work. Goals of this study are to determine if nano energetics can be used with SCBs to further reduce the minimum energy required and improve reliability. The performance of nano-scale aluminum (nAl) and bismuth oxide (Bi2O3) with nitrocellulose (NC), Fluorel(TM) FC 2175 (chemically equivalent to VitonRTM) and Glycidyl Azide Polymer (GAP) as binders where quantified initially using the SenTest(TM) algorithm at three weight fractions (5, 7, and 9%) of binder. The threshold energy was calculated and compared to previous data using conventional materials such as zirconium potassium chlorate (ZPC), mercuric 5-Nitrotetrazol (DXN-1) and titanium sub-hydride potassium per-chlorate (TSPP). It was found that even though there where only slight differences in performance between the binders with nAl/Bi2O 3 at any of the three binder weight fractions, the results show that these nano energetic materials require about half of the threshold energy compared to conventional materials using an SCB with an 84x42 mum bridge. Binder limit testing was conducted to

  4. Nano Surface Engineering in the 21st Century

    Institute of Scientific and Technical Information of China (English)

    Xu Bin-shi; Wang Hai-dou; Dong Shi-yun; Shi Pei-jing; Xu Yi

    2004-01-01

    Nano surface engineering is the new development of surface engineering, and is the typical representation that the advanced nano technology improves the traditional surface engineering. The connotation of nano surface engineering is profound. The initial stage of nano surface engineering is realized at present day. The key technologies of nano surface engineering are the support to the equipment remanufacturing. Today the relatively mature key technologies are: nano thermal spraying technology, nano electric-brush plating technology, nano self-repairing anti-friction technology and metal surface nanocrystallization, etc. Many scientific issues have been continuously discovered. Meanwhile they have been applied in the practice more and more, and have archived the excellent remanufacturing effect.

  5. Construct 3D porous hollow Co3O4 micro-sphere: A potential oxidizer of nano-energetic materials with superior reactivity

    Science.gov (United States)

    Wang, Jun; Zheng, Bo; Qiao, Zhiqiang; Chen, Jin; Zhang, Liyuan; Zhang, Long; Li, Zhaoqian; Zhang, Xingquan; Yang, Guangcheng

    2018-06-01

    High energy density and rapid reactivity are the future trend for nano-energetic materials. Energetic performance of nano-energetic materials depends on the interfacial diffusion and mass transfer during the reacted process. However, the development of desired structure to significantly enhance reactivity still remains challenging. Here we focused on the design and preparation of 3D porous hollow Co3O4 micro-spheres, in which gas-blowing agents (air) and maximize interfacial interactions were introduced to enhance mass transport and reduce the diffusion distance between the oxidizer and fuel (Aluminum). The 3D hierarchical Co3O4/Al based nano-energetic materials show a low-onset decomposition temperature (423 °C), and high heat output (3118 J g-1) resulting from porous and hollow nano-structure of Co3O4 micro-spheres. Furthermore, 3D hierarchical Co3O4/Al arrays were directly fabricated on the silicon substrate, which was fully compatible with silicon-based microelectromechanical systems to achieve functional nanoenergetics-on-a-chip. This approach provides a simple and efficient way to fabricate 3D ordered nano-energetic arrays with superior reactivity and the potential on the application in micro-energetic devices.

  6. Huyghens Engines--a new concept and its embodiment for nano-micro interlevel information processing.

    Science.gov (United States)

    Santoli, Salvatore

    2009-02-01

    Current criteria in Bionanotechnology based on software and sensor/actuator hardware of Artificial Intelligence for bioinspired nanostructured systems lack the nanophysical background and key mathematics to describe and mimick the biological hierarchies of nano-to-micro-integrated informational/energetic levels. It is argued that bionanoscale hardware/software undividable solidarity can be mimicked by artificial nanostructured systems featuring intra/interlevel information processing through the emerging organization principle of quantum holography, described by the Heisenberg group G and by harmonic analysis on G. From a property of G as a Lie group, quantum holography is shown to merge the quantum/classical dynamic-symbolic ongoings into the structure-function unity of biological sensing-information processing-actuating, while by Ch. Huyghens' principles about wave motion and coupled oscillators synchronization it applies to environmental waves of any kind, so embodying a universal information processing engine, dubbed Huyghens Engine, that mimicks the holistic nanobiological structure-function solidarity and the kinetics/thermodynamics of nano/micro interface information transfer.

  7. Safer energetic materials by a nanotechnological approach

    Science.gov (United States)

    Siegert, Benny; Comet, Marc; Spitzer, Denis

    2011-09-01

    Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity.Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity. Electronic supplementary information (ESI) available: Experimental details for the preparation of the V2O5@CNF/Al nanothermite; X-ray diffractogram of the V2O5@CNF/Al combustion residue; installation instructions and source code for the nt-timeline program. See DOI: 10.1039/c1nr10292c

  8. Nano-Aluminum Reaction with Nitrogen in the Burn Front of Oxygen-Free Energetic Materials

    International Nuclear Information System (INIS)

    Tappan, B. C.; Son, S. F.; Moore, D. S.

    2006-01-01

    Nano-particulate aluminum metal was added to the high nitrogen energetic material triaminoguanidium azotetrazolate (TAGzT) in order to determine the effects on decomposition behavior. Standard safety testing (sensitivity to impact, spark and friction) are reported and show that the addition of nano-Al actually decreases the sensitivity of the pure TAGzT. Thermo-equilibrium calculations (Cheetah) indicate that the all of the Al reacts to form AlN in TAGzT decomposition, and the calculated specific impulses are reported. T-Jump/FTIR spectroscopy was performed on the neat TAGzT. Emission spectra were collected to determine the temperature of AlN formation in combustion. Burning rates were also collected, and the effects of nano-Al on rates are discussed

  9. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications.

    Science.gov (United States)

    Tay, Chor Yong; Irvine, Scott Alexander; Boey, Freddy Y C; Tan, Lay Poh; Venkatraman, Subbu

    2011-05-23

    The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ultrafast Vibrational Spectrometer for Engineered Nanometric Energetic Materials

    National Research Council Canada - National Science Library

    Dlott, Dana

    2002-01-01

    The proposer requested funding for laser equipment that would be used to study engineered nanometric energetic materials consisting of nanometer metal particles, passivation layers and oxidizing binders...

  11. Engineered Nanoparticles and Their Applications

    International Nuclear Information System (INIS)

    Matsoukas, T.; Desai, T.; Lee, K.

    2015-01-01

    Nanoparticles engineered for shape, size, and surface properties impart special functionalities including catalytic behavior, improved strength, enhanced thermal and electrical conductivity, and controlled release of host molecules. These advances have opened up applications in biomedicine, nano energetic materials, and functional nano composites. This special issue highlights successes in developing nanoparticles for a number of diverse applications.

  12. Nano-engineered polyurethane resin-modified concrete.

    Science.gov (United States)

    2014-04-01

    The goal of the proposed work is to investigate the application of nano-engineered polyurethane (NEPU) emulsions for latex modified : concrete (LMC). NEPU emulsions are non-toxic, environment friendly, durable over a wide temperature range, provide b...

  13. Energetic and exergetic analyses of T56 turboprop engine

    International Nuclear Information System (INIS)

    Balli, Ozgur; Hepbasli, Arif

    2013-01-01

    Highlights: • Performing comprehensive energy and exergy analyses of T56 turboprop engine at various operation modes. • Proposing two new parameters, energetic and exergetic fuel-production ratios. • Calculating maximum energy efficiency values of 25.4% for Case A and 28.1% for Case B at Takeoff mode. • Accounting maximum exergy efficiency values of 23.8% for Case A and 26.3% for Case B at Takeoff mode. - Abstract: This study presents the results of energetic and exergetic analyses of T56 turboprop engine at various power loading operation modes (75%, 100%, Military and Takeoff). The energetic and exergetic performance evaluations were made for both the shaft power (Case A) and the shaft power plus the kinetic energy of exhaust gaseous (Case B). The energetic efficiency was calculated to be maximum at 25.4% for Case A and 28.1% for Case B while the exergy efficiency was obtained to be maximum at 23.8% for Case A and 26.3% for Case B at Takeoff mode, respectively. The maximum exergy destruction rate occurred within the combustion chamber. It increased from 4846.3 kW to 6234.1 kW depending on operation modes. The exergetic performance parameters, such as the relative exergy consumption, the fuel depletion ratio, the productivity lack ratio, the improvement potential and the fuel-production ratio, were also investigated. The fuel energy-production ratio decreased from 4.6 to 3.9 while the fuel exergy-production ratio decreased from 4.9 to 4.2 by increasing the produced shaft power and residual thrust. The results provided here can be helpful to regulate and select operation modes for these engine users

  14. An education model of a nano-positioning system for mechanical engineers

    International Nuclear Information System (INIS)

    Lee, Dong Yeon; Gweon, Dae Gab

    2006-01-01

    The increasing use of nano-positioners in a wide variety of laboratory and industrial applications has created a need for nano-mechatronics education in all engineering disciplines. The subject of nano-mechatronics is broad and interdisciplinary. This article focuses on the way nano-mechatronics is taught in department of mechanical engineering at Korea Advanced Institute of Science and Technology (KAIST). As one model of nano-positioning systems, design and experimental methodology is presented in this article. For design phase, the stiffness and resonant frequencies are found analytically and verified by using a commercial finite element analysis program. Next, for experimental phase, various tests are performed to access the performances of the designed nano-positioner, for example, sine-tracking, multi-step response and travel-range check etc. Finally, the definition of 'separation frequency' is described and some comments are discussed

  15. Energetic transitions by the French engineers and scientists

    International Nuclear Information System (INIS)

    Wiltz, Bruno

    2014-01-01

    The energetic transition concerns the French scientists and engineers very much (1 million) because they are a lot involved in research, innovation, development, exploitation and generally in industry, in a field of fast-changing environment and of vital national interest, which, despite the absence of dominant classical resources, has remarkable potentials. (O.M.)

  16. Building energetic material from novel salix leaf-like CuO and nano-Al through electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yan Jun; Li, Xueming [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing (China)

    2016-11-15

    In this study, an energetic material was prepared by depositing nano-Al on CuO arrays via electrophoretic deposition (EPD), which offers a feasible route for nano-Al integration. The morphology and structure of the CuO arrays and Al/CuO composites were characterized by scanning electron microscopy and X-ray diffraction. The CuO arrays were homogenously salix leaf-like structure with a width of ⁓150 to 200 nm. The energy density of Al/CuO composites was approximate to 1454.5 J/g by integrating the differential scanning calorimetry (DSC) plot and the combustion performance was recorded by a high-speed camera. Moreover, the combustion flames were violent and the whole reaction process only lasted 72.2 ms, indicating that the energy of the Al/CuO nanothermite can be released effectively.

  17. Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug Through True Active Tumor Targeting.

    Science.gov (United States)

    Layek, Buddhadev; Sadhukha, Tanmoy; Panyam, Jayanth; Prabha, Swayam

    2018-06-01

    Tumor-targeted drug delivery has the potential to improve therapeutic efficacy and mitigate non-specific toxicity of anticancer drugs. However, current drug delivery approaches rely on inefficient passive accumulation of the drug carrier in the tumor. We have developed a unique, truly active tumor-targeting strategy that relies on engineering mesenchymal stem cells (MSC) with drug-loaded nanoparticles. Our studies using the A549 orthotopic lung tumor model show that nano-engineered MSCs carrying the anticancer drug paclitaxel (PTX) home to tumors and create cellular drug depots that release the drug payload over several days. Despite significantly lower doses of PTX, nano-engineered MSCs resulted in significant inhibition of tumor growth and superior survival. Anticancer efficacy of nano-engineered MSCs was confirmed in immunocompetent C57BL/6 albino female mice bearing orthotopic Lewis Lung Carcinoma (LL/2-luc) tumors. Furthermore, at doses that resulted in equivalent therapeutic efficacy, nano-engineered MSCs had no effect on white blood cell count, whereas PTX solution and PTX nanoparticle treatments caused leukopenia. Biodistribution studies showed that nano-engineered MSCs resulted in greater than 9-fold higher AUC lung of PTX (1.5 μg.day/g) than PTX solution and nanoparticles (0.2 and 0.1 μg.day/g tissue, respectively) in the target lung tumors. Furthermore, the lung-to-liver and the lung-to-spleen ratios of PTX were several folds higher for nano-engineered MSCs relative to those for PTX solution and nanoparticle groups, suggesting that nano-engineered MSCs demonstrate significantly less off-target deposition. In summary, our results demonstrate that nano-engineered MSCs can serve as an efficient carrier for tumor-specific drug delivery and significantly improved anti-cancer efficacy of conventional chemotherapeutic drugs. Mol Cancer Ther; 17(6); 1196-206. ©2018 AACR . ©2018 American Association for Cancer Research.

  18. Energetic Systems

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetic Systems Division provides full-spectrum energetic engineering services (project management, design, analysis, production support, in-service support,...

  19. Nano technology

    International Nuclear Information System (INIS)

    Lee, In Sik

    2002-03-01

    This book is introduction of nano technology, which describes what nano technology is, alpha and omega of nano technology, the future of Korean nano technology and human being's future and nano technology. The contents of this book are nano period is coming, a engine of creation, what is molecular engineering, a huge nano technology, technique on making small things, nano materials with exorbitant possibility, the key of nano world the most desirable nano technology in bio industry, nano development plan of government, the direction of development for nano technology and children of heart.

  20. Performance Assessment and Scooter Verification of Nano-Alumina Engine Oil

    Directory of Open Access Journals (Sweden)

    Yu-Feng Lue

    2016-09-01

    Full Text Available The performance assessment and vehicle verification of nano-alumina (Al2O3 engine oil (NAEO were conducted in this study. The NAEO was produced by mixing Al2O3 nanoparticles with engine oil using a two-step synthesis method. The weight fractions of the Al2O3 nanoparticles in the four test samples were 0 (base oil, 0.5, 1.5, and 2.5 wt. %. The measurement of basic properties included: (1 density; (2 viscosity at various sample temperatures (20–80 °C. A rotary tribology testing machine with a pin-on-disk apparatus was used for the wear test. The measurement of the before-and-after difference of specimen (disk weight (wear test indicates that the NAEO with 1.5 wt. % Al2O3 nanoparticles (1.5 wt. % NAEO was the chosen candidate for further study. For the scooter verification on an auto-pilot dynamometer, there were three tests, including: (1 the European Driving Cycle (ECE40 driving cycle; (2 constant speed (50 km/h; and (3 constant throttle positions (20%, 40%, 60%, and 90%. For the ECE40 driving cycle and the constant speed tests, the fuel consumption was decreased on average by 2.75%, while it was decreased by 3.57% for the constant throttle case. The experimental results prove that the engine oil with added Al2O3 nanoparticles significantly decreased the fuel consumption. In the future, experiments with property tests of other nano-engine oils and a performance assessment of the nano-engine-fuel will be conducted.

  1. Environmental risk assessment of engineered nano-SiO2 , nano iron oxides, nano-CeO2 , nano-Al2 O3 , and quantum dots.

    Science.gov (United States)

    Wang, Yan; Nowack, Bernd

    2018-05-01

    Many research studies have endeavored to investigate the ecotoxicological hazards of engineered nanomaterials (ENMs). However, little is known regarding the actual environmental risks of ENMs, combining both hazard and exposure data. The aim of the present study was to quantify the environmental risks for nano-Al 2 O 3 , nano-SiO 2 , nano iron oxides, nano-CeO 2 , and quantum dots by comparing the predicted environmental concentrations (PECs) with the predicted-no-effect concentrations (PNECs). The PEC values of these 5 ENMs in freshwaters in 2020 for northern Europe and southeastern Europe were taken from a published dynamic probabilistic material flow analysis model. The PNEC values were calculated using probabilistic species sensitivity distribution (SSD). The order of the PNEC values was quantum dots nano-CeO 2  nano iron oxides nano-Al 2 O 3  nano-SiO 2 . The risks posed by these 5 ENMs were demonstrated to be in the reverse order: nano-Al 2 O 3  > nano-SiO 2  > nano iron oxides > nano-CeO 2  > quantum dots. However, all risk characterization values are 4 to 8 orders of magnitude lower than 1, and no risk was therefore predicted for any of the investigated ENMs at the estimated release level in 2020. Compared to static models, the dynamic material flow model allowed us to use PEC values based on a more complex parameterization, considering a dynamic input over time and time-dependent release of ENMs. The probabilistic SSD approach makes it possible to include all available data to estimate hazards of ENMs by considering the whole range of variability between studies and material types. The risk-assessment approach is therefore able to handle the uncertainty and variability associated with the collected data. The results of the present study provide a scientific foundation for risk-based regulatory decisions of the investigated ENMs. Environ Toxicol Chem 2018;37:1387-1395. © 2018 SETAC. © 2018 SETAC.

  2. Performance analysis of a thermosize micro/nano heat engine

    International Nuclear Information System (INIS)

    Nie Wenjie; He Jizhou

    2008-01-01

    In a recent paper [A. Sisman, I. Muller, Phys. Lett. A 320 (2004) 360] the thermodynamic properties of ideal gases confined in a narrow box were examined theoretically. The so-called 'thermosize effects' similar to thermoelectric effects, such as Seebeck-like thermosize effect, Peltier-like thermosize effect and Thomson-like thermosize effect, were analyzed. Like the thermoelectric generator, based on the thermosize effects we have established a model of micro/nano scaled ideal gas heat engine cycle which includes two isothermal and two isobaric processes. The expressions of power output and efficiency of this cycle in the two cases of reversible and irreversible heat exchange are derived and the optimal performance characteristics of the heat engine is discussed by some numerical example. The results obtained here will provide theoretical guidance for the design of micro/nano scaled device

  3. Experimental Demonstration of Phase Sensitive Parametric Processes in a Nano-Engineered Silicon Waveguide

    DEFF Research Database (Denmark)

    Kang, Ning; Fadil, Ahmed; Pu, Minhao

    2013-01-01

    We demonstrate experimentally phase-sensitive processes in nano-engineered silicon waveguides for the first time. Furthermore, we highlight paths towards the optimization of the phase-sensitive extinction ratio under the impact of two-photon and free-carrier absorption.......We demonstrate experimentally phase-sensitive processes in nano-engineered silicon waveguides for the first time. Furthermore, we highlight paths towards the optimization of the phase-sensitive extinction ratio under the impact of two-photon and free-carrier absorption....

  4. Phonon Spectrum Engineering in Rolled-up Micro- and Nano-Architectures

    Directory of Open Access Journals (Sweden)

    Vladimir M. Fomin

    2015-10-01

    Full Text Available We report on a possibility of efficient engineering of the acoustic phonon energy spectrum in multishell tubular structures produced by a novel high-tech method of self-organization of micro- and nano-architectures. The strain-driven roll-up procedure paved the way for novel classes of metamaterials such as single semiconductor radial micro- and nano-crystals and multi-layer spiral micro- and nano-superlattices. The acoustic phonon dispersion is determined by solving the equations of elastodynamics for InAs and GaAs material systems. It is shown that the number of shells is an important control parameter of the phonon dispersion together with the structure dimensions and acoustic impedance mismatch between the superlattice layers. The obtained results suggest that rolled up nano-architectures are promising for thermoelectric applications owing to a possibility of significant reduction of the thermal conductivity without degradation of the electronic transport.

  5. Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive Support Vector Machine (SVM) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For SVM modelling, different values for radial basis function (RBF) kernel width and penalty parameters (C) were considered and the optimum values were then found. The results demonstrate that SVM is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  6. Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.

  7. Synthesis of new aluminum nano hybrid composite liner for energy saving in diesel engines

    International Nuclear Information System (INIS)

    Tiruvenkadam, N.; Thyla, P.R.; Senthilkumar, M.; Bharathiraja, M.; Murugesan, A.

    2015-01-01

    Highlights: • Nano hybrid composite cylinder liner (NL) was developed to replace cast iron liner. • NL improved engine performance, combustion and reduced emissions except NO x . • Teardown analysis provides the suitability of NL for diesel engine. • The developed aluminum NL saved 43.75% of weight than cast iron cylinder liner. - Abstract: This work aims to replace the conventional cast iron cylinder liner (CL) in diesel engine by introducing lightweight aluminum (Al) 6061 nano hybrid composite cylinder liner (NL) by analyzing the performance, combustion, and emission characteristics of an engine. NL was fabricated by bottom pouring stir casting technique with nano- and micro-reinforcement materials. Experimental results proved that the use of NL increased brake thermal efficiency, in-cylinder pressure, heat release rate, and reduced carbon monoxide, hydrocarbon, and smoke emission in comparison with CL. However, oxides of nitrogen slightly increased with the use of the new liner. No differences in wear or other issues were noted during the engine teardown after 1 year of operation and 2000 h of running. Thus, NL has been recommended to replace the CL to save the energy and to reap environmental benefits

  8. Engineered nano particles: Nature, behavior, and effect on the environment.

    Science.gov (United States)

    Goswami, Linee; Kim, Ki-Hyun; Deep, Akash; Das, Pallabi; Bhattacharya, Satya Sundar; Kumar, Sandeep; Adelodun, Adedeji A

    2017-07-01

    Increased application of engineered nano particles (ENPs) in production of various appliances and consumer items is increasing their presence in the natural environment. Although a wide variety of nano particles (NPs) are ubiquitously dispersed in ecosystems, risk assessment guidelines to describe their ageing, direct exposure, and long-term accumulation characteristics are poorly developed. In this review, we describe what is known about the life cycle of ENPs and their impact on natural systems and examine if there is a cohesive relationship between their transformation processes and bio-accessibility in various food chains. Different environmental stressors influence the fate of these particles in the environment. Composition of solid media, pore size, solution chemistry, mineral composition, presence of natural organic matter, and fluid velocity are some environmental stressors that influence the transformation, transport, and mobility of nano particles. Transformed nano particles can reduce cell viability, growth and morphology, enhance oxidative stress, and damage DNA in living organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Structured electron beams from nano-engineered cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Lueangaramwong, A. [NICADD, DeKalb; Mihalcea, D. [NICADD, DeKalb; Andonian, G. [RadiaBeam Tech.; Piot, P. [Fermilab

    2017-03-07

    The ability to engineer cathodes at the nano-scale have open new possibilities such as enhancing quantum eciency via surface-plasmon excitation, forming ultra-low-emittance beams, or producing structured electron beams. In this paper we present numerical investigations of the beam dynamics associated to this class of cathode in the weak- and strong-field regimes.We finally discuss the possible applications of some of the achievable cathode patterns when coupled with other phase space manipulations.

  10. Advancing Tissue Engineering: A Tale of Nano-, Micro-, and Macroscale Integration

    NARCIS (Netherlands)

    Leijten, Jeroen Christianus Hermanus; Rouwkema, Jeroen; Zhang, Y.S.; Nasajpour, A.; Dokmeci, M.R.; Khademhosseini, A.

    2016-01-01

    Tissue engineering has the potential to revolutionize the health care industry. Delivering on this promise requires the generation of efficient, controllable and predictable implants. The integration of nano- and microtechnologies into macroscale regenerative biomaterials plays an essential role in

  11. Nano-metal Oxides: Exposure and Engineering Control Assessment

    OpenAIRE

    Garcia, Alberto; Sparks, Christopher; Martinez, Kenneth; Topmiller, Jennifer L.; Eastlake, Adrienne; Geraci, Charles L.

    2017-01-01

    This paper discusses the evaluation of a facility that produces high quality engineered nanomaterials. These ENMs consist of various metals including iron, nickel, silver, manganese, and palladium. Although occupational exposure levels are not available for these metals, studies have indicated that it may be prudent to keep exposures to the nano-scale metal as low as possible. Previous In vitro studies indicated that in comparison with a material’s larger (parent) counterpart, nanomaterials c...

  12. Book Review: Nano physics & Nano technology

    Directory of Open Access Journals (Sweden)

    Abdolkhaled Zaree

    2012-12-01

    Full Text Available During last decades, there are a lot of emphases on studying material behavior in atomic scale. In most scientific and engineering fields, one can see the effect of nanotechnology. The aim of nanoscience is to design and fabrication of new and applicable materials. Nowadays, Nano is a popular science which chemists, physicist, doctors, engineers, financial managers and environment's fans for creating a good life via nanoscience have a great cooperation with each others. Materials in nano scale such as nanotubes and nanowires have extraordinary properties which by optimization of these properties in nano scale and then develop these properties to macro scale, they've been challenging issues. For instance, materials in nano scale improve mechanical properties of polymers and metallic materials via nano particles and on the other hand by producing a thin film on surfaces improve surface hardening. Besides, nanotechnology is in hi-tech industries such as magnetic devices, surface coating, and biomaterial, material having sensors, polymers, gels, ceramics and intelligent membrane. Nano-carbon tubes are considered intelligent due to the fact that they couple electrochemical and elastic properties simultaneously, hence have greater activation energy density in comparison with other intelligent materials. Studying nanoscience is important because it causes the life to be better. Future Materials and structures will have a lot of outstanding properties. Intelligent machines can repair, recycle and reconstruct themselves. All these features are only possible in nano zone. Nano in engineering science can provide the possibility of making light missiles for exploring space. The reduced weight can be achieved by replacing traditional materials with hybrid nanocomposites.

  13. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    Science.gov (United States)

    Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek

    2011-01-01

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering. PMID:28880002

  14. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development.

    Science.gov (United States)

    Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek

    2011-02-25

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.

  15. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    Directory of Open Access Journals (Sweden)

    Gerrard Eddy Jai Poinern

    2011-02-01

    Full Text Available The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.

  16. Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process.

    Science.gov (United States)

    Schafroth, Nina; Arpagaus, Cordin; Jadhav, Umesh Y; Makne, Sushil; Douroumis, Dennis

    2012-02-01

    In the current study nano and microparticle engineering of water insoluble drugs was conducted using a novel piezoelectric spray-drying approach. Cyclosporin A (CyA) and dexamethasone (DEX) were encapsulated in biodegradable poly(D,L-lactide-co-glycolide) (PLGA) grades of different molecular weights. Spray-drying studies carried out with the Nano Spray Dryer B-90 employed with piezoelectric driven actuator. The processing parameters including inlet temperature, spray mesh diameter, sample flow rate, spray rate, applied pressure and sample concentration were examined in order to optimize the particle size and the obtained yield. The process parameters and the solute concentration showed a profound effect on the particle engineering and the obtained product yield. The produced powder presented consistent and reproducible spherical particles with narrow particle size distribution. Cyclosporin was found to be molecularly dispersed while dexamethasone was in crystalline state within the PLGA nanoparticles. Further evaluation revealed excellent drug loading, encapsulation efficiency and production yield. In vitro studies demonstrated sustained release patterns for the active substances. This novel spray-drying process proved to be efficient for nano and microparticle engineering of water insoluble active substances. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Control of magnetohydrodynamic stability by phase space engineering of energetic ions in tokamak plasmas.

    Science.gov (United States)

    Graves, J P; Chapman, I T; Coda, S; Lennholm, M; Albergante, M; Jucker, M

    2012-01-10

    Virtually collisionless magnetic mirror-trapped energetic ion populations often partially stabilize internally driven magnetohydrodynamic disturbances in the magnetosphere and in toroidal laboratory plasma devices such as the tokamak. This results in less frequent but dangerously enlarged plasma reorganization. Unique to the toroidal magnetic configuration are confined 'circulating' energetic particles that are not mirror trapped. Here we show that a newly discovered effect from hybrid kinetic-magnetohydrodynamic theory has been exploited in sophisticated phase space engineering techniques for controlling stability in the tokamak. These theoretical predictions have been confirmed, and the technique successfully applied in the Joint European Torus. Manipulation of auxiliary ion heating systems can create an asymmetry in the distribution of energetic circulating ions in the velocity orientated along magnetic field lines. We show the first experiments in which large sawtooth collapses have been controlled by this technique, and neoclassical tearing modes avoided, in high-performance reactor-relevant plasmas.

  18. Transparent, flexible supercapacitors from nano-engineered carbon films

    Science.gov (United States)

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-10-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.

  19. Nano-Bio Quantum Technology for Device-Specific Materials

    Science.gov (United States)

    Choi, Sang H.

    2009-01-01

    The areas discussed are still under development: I. Nano structured materials for TE applications a) SiGe and Be.Te; b) Nano particles and nanoshells. II. Quantum technology for optical devices: a) Quantum apertures; b) Smart optical materials; c) Micro spectrometer. III. Bio-template oriented materials: a) Bionanobattery; b) Bio-fuel cells; c) Energetic materials.

  20. Engineering the Surface/Interface Structures of Titanium Dioxide Micro and Nano Architectures towards Environmental and Electrochemical Applications

    DEFF Research Database (Denmark)

    Wang, Xiaoliang; Zhao, Yanyan; Mølhave, Kristian

    2017-01-01

    advances in the surface and interface engineering and applications in environmental and electrochemical applications. We analyze the advantages of surface/interface engineered TiO₂ micro and nano structures, and present the principles and growth mechanisms of TiO₂ nanostructures via different strategies...

  1. Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas

    Science.gov (United States)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad-Ali; Pourfayaz, Fathollah

    2015-09-01

    Developing new technologies like nano-technology improves the performance of the energy industries. Consequently, emerging new groups of thermal cycles in nano-scale can revolutionize the energy systems' future. This paper presents a thermo-dynamical study of a nano-scale irreversible Stirling engine cycle with the aim of optimizing the performance of the Stirling engine cycle. In the Stirling engine cycle the working fluid is an Ideal Maxwell-Boltzmann gas. Moreover, two different strategies are proposed for a multi-objective optimization issue, and the outcomes of each strategy are evaluated separately. The first strategy is proposed to maximize the ecological coefficient of performance (ECOP), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F . Furthermore, the second strategy is suggested to maximize the thermal efficiency ( η), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F). All the strategies in the present work are executed via a multi-objective evolutionary algorithms based on NSGA∥ method. Finally, to achieve the final answer in each strategy, three well-known decision makers are executed. Lastly, deviations of the outcomes gained in each strategy and each decision maker are evaluated separately.

  2. Engineering the Surface/Interface Structures of Titanium Dioxide Micro and Nano Architectures towards Environmental and Electrochemical Applications

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2017-11-01

    Full Text Available Titanium dioxide (TiO2 materials have been intensively studied in the past years because of many varied applications. This mini review article focuses on TiO2 micro and nano architectures with the prevalent crystal structures (anatase, rutile, brookite, and TiO2(B, and summarizes the major advances in the surface and interface engineering and applications in environmental and electrochemical applications. We analyze the advantages of surface/interface engineered TiO2 micro and nano structures, and present the principles and growth mechanisms of TiO2 nanostructures via different strategies, with an emphasis on rational control of the surface and interface structures. We further discuss the applications of TiO2 micro and nano architectures in photocatalysis, lithium/sodium ion batteries, and Li–S batteries. Throughout the discussion, the relationship between the device performance and the surface/interface structures of TiO2 micro and nano structures will be highlighted. Then, we discuss the phase transitions of TiO2 nanostructures and possible strategies of improving the phase stability. The review concludes with a perspective on the current challenges and future research directions.

  3. Structural, energetic and electronic properties of intercalated boron ...

    Indian Academy of Sciences (India)

    2National Institute for R&D of Isotopic and Molecular Technologies, Cluj-Napoca 400 293, Romania. MS received 8 November 2010; revised 28 March 2012. Abstract. The effects of chirality and the intercalation of transitional metal atoms inside single walled BN nano- tubes on structural, energetic and electronic properties ...

  4. Nano- and micro-electromechanical systems fundamentals of nano- and microengineering

    CERN Document Server

    Lyshevski, Sergey Edward

    2005-01-01

    NANOTECHNOLOGY AND MICROTECHNOLOGY (NANO- AND MICRO- SCIENCE, ENGINEERING AND TECHNOLOGY), AND BEYOND Introduction and Overview: From Micro- to Nano- and Beyond to Stringo-Scale Introductory Definitions to the Subjects Current Developments and Needs for Coherent Revolutionary Developments Societal Challenges and Implications NANO- AND MICROSCALE SYSTEMS, DEVICES, AND STRUCTURES Sizing Features: From Micro- to Nano-, and from Nano- to Stringo-Scale MEMS and NEMS Definitions Introduction to Taxonomy of Nano- and Microsystem Synthesis and Design Introduction to Design and Optimization of Nano- and Microsystems in the Behavioral Domain NANO- AND MICROSYSTEMS: CLASSIFICATION AND CONSIDERATION Biomimetics, Biological Analogies,and Design of NEMS and MEMS Micro- and Nanoelectromechanical Systems: Scaling Laws and Mathematical Modeling MEMS Examples and MEMS Architectures Introduction to Microfabrication and Micromachining FUNDAMENTALS OF MICROFABRICATION AND MEMS FABRICATION TECHNOLOGIES Introducti...

  5. Nano scaffolds and stem cell therapy in liver tissue engineering

    Science.gov (United States)

    Montaser, Laila M.; Fawzy, Sherin M.

    2015-08-01

    Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.

  6. Reverse engineering of a railcar prototype via energetic macroscopic representation approach

    International Nuclear Information System (INIS)

    Agbli, Kréhi Serge; Hissel, Daniel; Sorrentino, Marco; Chauvet, Frédéric; Pouget, Julien

    2016-01-01

    Highlights: • A complex EMR model of a new railcar range has been developed. • A satisfactory assessment of the fuel consumption of the railcar. • The significant potential benefits are attainable by hybridizing the original railcar. • The regenerative braking can provide up to 240 kW h saving. - Abstract: Energetic Macroscopic Representation (EMR) modelling approach is proposed to perform model-based reverse-engineering of a new railcar range, having six propulsion units, each consisting of a diesel engine and a traction motor. Particularly, EMR intrinsic features were exploited to perform phenomenological structuration of power flows, thus allowing proper and comprehensive modelling of complex systems, such as the under-study railcar. Based on some prospective real trips, selected in such a way as to enable realistic evaluation of effective railcar effort, EMR-based prediction of railcar energy consumption is performed. Furthermore, physical consistency of each powertrain component operation was carefully verified. The suitability of EMR approach was thus proven effective to perform reverse-engineering of known specifications and available experimental data, with the final aim of reconstructing a high fidelity computational tool that meets computational burden requirements for subsequent model-based tasks deployment. Finally, specific simulation analyses were performed to evaluate the potential benefits attainable through electric hybridization of the original powertrain.

  7. Nano-engineered pinning centres in YBCO superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Crisan, A., E-mail: adrian.crisan@infim.ro [National Institute for Materials Physics Bucharest, 105 bis Atomistilor Str., 077125 Magurele (Romania); School of Metallurgy and Materials, University of Birmingham, Edgbaston, B15 2TT Birmingham (United Kingdom); Dang, V.S. [School of Metallurgy and Materials, University of Birmingham, Edgbaston, B15 2TT Birmingham (United Kingdom); Nano and Energy Center, VNU Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Mikheenko, P. [School of Metallurgy and Materials, University of Birmingham, Edgbaston, B15 2TT Birmingham (United Kingdom); Department of Physics, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo (Norway)

    2017-02-15

    Highlights: • Power applications of YBCO films/coated conductors in technological relevant magnetic fields requires nano-engineered pinning centre. • Three approaches have been proposed: substrate decoration, quasi-multilayers, and targets with secondary phase nano-inclusions. • Combination of all three approaches greatly increased critical current in YBCO films. • Bulk pinning force, pinning potential, and critical current density are estimated and discussed in relation with the type and strength of pinning centres related to the defects evidenced by Transmission Electron Microscopy. - Abstract: For practical applications of superconducting materials in applied magnetic fields, artificial pinning centres in addition to natural ones are required to oppose the Lorentz force. These pinning centres are actually various types of defects in the superconductor matrix. The pinning centres can be categorised on their dimension (volume, surface or point) and on their character (normal cores or Δκ cores). Different samples have been produced by Pulsed Laser Deposition, with various thicknesses, temperatures and nanostructured additions to the superconducting matrix. They have been characterized by SQUID Magnetic Properties Measurement System and Physical Properties Measurement System, as well as by Transmission Electron Microscopy (TEM). Correlations between pinning architecture, TEM images, and critical currents at various fields and field orientations will be shown for a large number of YBa{sub 2}Cu{sub 3}O{sub x} films with various types and architectures of artificial pinning centres.

  8. Dynamical and quasi-static multi-physical models of a diesel internal combustion engine using Energetic Macroscopic Representation

    International Nuclear Information System (INIS)

    Horrein, L.; Bouscayrol, A.; Cheng, Y.; El Fassi, M.

    2015-01-01

    Highlights: • Internal Combustion Engine (ICE) dynamical and static models. • Organization of ICE model using Energetic Macroscopic Representation. • Description of the distribution of the chemical, thermal and mechanical power. • Implementation of the ICE model in a global vehicle model. - Abstract: In the simulation of new vehicles, the Internal Combustion Engine (ICE) is generally modeled by a static map. This model yields the mechanical power and the fuel consumption. But some studies require the heat energy from the ICE to be considered (i.e. waste heat recovery, thermal regulation of the cabin). A dynamical multi-physical model of a diesel engine is developed to consider its heat energy. This model is organized using Energetic Macroscopic Representation (EMR) in order to be interconnected to other various models of vehicle subsystems. An experimental validation is provided. Moreover a multi-physical quasi-static model is also derived. According to different modeling aims, a comparison of the dynamical and the quasi-static model is discussed in the case of the simulation of a thermal vehicle. These multi-physical models with different simulation time consumption provide good basis for studying the effects of the thermal energy on the vehicle behaviors, including the possibilities of waste heat recovery

  9. Engineering Interfacial Energetics: A Novel Hybrid System of Metal Oxide Quantum Dots and Cobalt Complex for Photocatalytic Water Oxidation

    International Nuclear Information System (INIS)

    Niu, Fujun; Shen, Shaohua; Wang, Jian; Guo, Liejin

    2016-01-01

    Graphical abstract: A cobalt complex engineers the interfacial energetics of metal oxide quantum dots (n- or p-type) and electrolytes for highly efficient O_2 generation under visible light irradiation. - Highlights: • A noble-metal-free hybrid photocatalytic system using a single-site cobalt catalyst was developed for O_2 generation. • Considerable activity and excellent stability for O_2 production were achieved by this novel system. • CoSlp engineered the QDs/electrolyte interfacical energetics for efficient hole transfer. - Abstract: Here we reported a novel hybrid photocatalytic water oxidation system, containing metal oxide (n-Fe_2O_3 or p-Co_3O_4) quantum dots (QDs) as light harvester, a salophen cobalt(II) complex (CoSlp) as redox catalyst and persulfate (S_2O_8"2"−) as sacrificial electron acceptor, for oxygen generation from fully aqueous solution. The n-Fe_2O_3 QDs/CoSlp and p-Co_3O_4 QDs/CoSlp systems exhibited good O_2 evolution performances, giving turnover numbers (TONs) of ca. 33 and ca. 35 over CoSlp after visible light irradiation for 72 h, respectively. The excellent photocatalytic performance could be ascribed to the efficient hole transfer from QDs to CoSlp catalyst, leading to reduced photogenerated charge recombination, as well as the CoSlp engineered interfacial band bending of QDs, increasing the driving force or decreasing the energy barrier for hole transfer and then benefiting the following O_2 generation at the QDs/electrolyte interface. The present work successfully demonstrated a novel hybrid system for photocatalytic O_2 evolution from fully aqueous solution; and the essential role of cobalt complexes in engineering the interfacial energetics of semiconductors (n- or p-type) and electrolytes could be informative for designing efficient systems for solar water splitting.

  10. Effects of Alumina Nano Metal Oxide Blended Palm Stearin Methyl Ester Bio-Diesel on Direct Injection Diesel Engine Performance and Emissions

    Science.gov (United States)

    Krishna, K.; Kumar, B. Sudheer Prem; Reddy, K. Vijaya Kumar; Charan Kumar, S.; Kumar, K. Ravi

    2017-08-01

    The Present Investigation was carried out to study the effect of Alumina Metal Oxide (Al2O3) Nano Particles as additive for Palm Stearin Methyl Ester Biodiesel (B 100) and their blends as an alternate fuel in four stroke single cylinder water cooled, direct injection diesel engine. Alumina Nano Particles has high calorific value and relatively high thermal conductivity (30-1 W m K-1) compare to diesel, which helps to promote more combustion in engines due to their higher thermal efficiency. In the experimentation Al2O3 were doped in various proportions with the Palm Stearin Methyl Ester Biodiesel (B-100) using an ultrasonicator and a homogenizer with cetyl trimethyl ammonium bromide (CTAB) as the cationic surfactant. The test were performed on a Kirsloskar DI diesel engine at constant speed of 1500 rpm using different Nano Biodiesel Fuel blends (psme+50 ppm, psme+150 ppm, and psme+200 ppm) and results were compared with those of neat conventional diesel and Palm Stearin Methyl Ester Bio diesel. It was observed that for Nano Biodiesel Fuel blend (psme+50ppm) there is an significant reduction in carbon monoxide (CO) emissions and Nox emissions compared to diesel and the brake thermal efficiency for (psme+50ppm) was almost same as diesel.

  11. Environmental silicate nano-biocomposites

    CERN Document Server

    Pollet, Eric

    2012-01-01

    Environmental Silicate Nano-Biocomposites focuses on nano-biocomposites, which are obtained by the association of silicates such as bioclays with biopolymers. By highlighting recent developments and findings, green and biodegradable nano-composites from both renewable and biodegradable polymers are explored. This includes coverage of potential markets such as packaging, agricultures, leisure and the fast food industry. The knowledge and experience of more than twenty international experts in diverse fields, from chemical and biochemical engineering to applications, is brought together in four different sections covering: Biodegradable polymers and Silicates, Clay/Polyesters Nano-biocomposites, Clay/Agropolymers Nano-biocomposites, and Applications and biodegradation of Nano-biocomposites. By exploring the relationships between the biopolymer structures, the processes, and the final properties Environmental Silicate Nano-Biocomposites explains how to design nano-materials to develop new, valuable, environmenta...

  12. Computational studies on energetic properties of nitrogen-rich ...

    Indian Academy of Sciences (India)

    Computational studies on energetic properties of nitrogen-rich energetic materials with ditetrazoles. LI XIAO-HONGa,b,∗ and ZHANG RUI-ZHOUa. aCollege of Physics and Engineering, Henan University of Science and Technology, Luoyang 471 003, China. bLuoyang Key Laboratory of Photoelectric Functional Materials, ...

  13. Introduction of Functional Structures in Nano-Scales into Engineering Polymer Films Using Radiation Technique

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Y., E-mail: maekawa.yasunari@jaea.go.jp [Japan Atomic Energy Agency (JAEA), Quantum Beam Science Directorate, High Performance Polymer Group, 1233 Watanuki-Machi, Takasaki, Gunma-ken 370-1292 (Japan)

    2010-07-01

    Introduction of functional regions in nanometer scale in polymeric films using γ-rays, EB, and ion beams are proposed. Two approaches to build nano-scale functional domains in polymer substrates are proposed: 1) Radiation-induced grafting to transfer nano-scale polymer crystalline structures (morphology), acting as a nano-template, to nano-scale graft polymer regions. The obtained polymers with nano structures can be applied to high performance polymer membranes. 2) Fabrication of nanopores and functional domains in engineering plastic films using ion beams, which deposit the energy in very narrow region of polymer films. Hydrophilic grafting polymers are introduced into hydrophobic fluorinated polymers, cross-linked PTFE (cPTFE) and aromatic hydrocarbon polymer, poly(ether ether ketone (PEEK), which is known to have lamella and crystallite in the polymer films. Then, the hierarchical structures of graft domains are analyzed by a small angle neutron scattering (SANS) experiment. From these analyses, the different structures and the different formation of graft domains were observed in fluorinated and hydrocarbon polymer substrates. the grafted domains in the cPTFE film, working as an ion channel, grew as covering the crystallite and the size of domain seems to be similar to that of crystallite. On the other hand, the PEEK-based PEM has a smaller domain size and it seems to grow independently on the crystallites of PEEK substrate. For nano-fabrication of polymer films using heavy ion beams, the energy distribution in radial direction, which is perpendicular to ion trajectory, is mainly concerned. For penumbra, we re-estimated effective radius of penumbra, in which radiation induced grafting took place, for several different ion beams. We observed the different diameters of the ion channels consisting of graft polymers. The channel sizes were quite in good agreement with the effective penumbra which possess the absorption doses more than 1 kGy. (author)

  14. Introduction of Functional Structures in Nano-Scales into Engineering Polymer Films Using Radiation Technique

    International Nuclear Information System (INIS)

    Maekawa, Y.

    2010-01-01

    Introduction of functional regions in nanometer scale in polymeric films using γ-rays, EB, and ion beams are proposed. Two approaches to build nano-scale functional domains in polymer substrates are proposed: 1) Radiation-induced grafting to transfer nano-scale polymer crystalline structures (morphology), acting as a nano-template, to nano-scale graft polymer regions. The obtained polymers with nano structures can be applied to high performance polymer membranes. 2) Fabrication of nanopores and functional domains in engineering plastic films using ion beams, which deposit the energy in very narrow region of polymer films. Hydrophilic grafting polymers are introduced into hydrophobic fluorinated polymers, cross-linked PTFE (cPTFE) and aromatic hydrocarbon polymer, poly(ether ether ketone (PEEK), which is known to have lamella and crystallite in the polymer films. Then, the hierarchical structures of graft domains are analyzed by a small angle neutron scattering (SANS) experiment. From these analyses, the different structures and the different formation of graft domains were observed in fluorinated and hydrocarbon polymer substrates. the grafted domains in the cPTFE film, working as an ion channel, grew as covering the crystallite and the size of domain seems to be similar to that of crystallite. On the other hand, the PEEK-based PEM has a smaller domain size and it seems to grow independently on the crystallites of PEEK substrate. For nano-fabrication of polymer films using heavy ion beams, the energy distribution in radial direction, which is perpendicular to ion trajectory, is mainly concerned. For penumbra, we re-estimated effective radius of penumbra, in which radiation induced grafting took place, for several different ion beams. We observed the different diameters of the ion channels consisting of graft polymers. The channel sizes were quite in good agreement with the effective penumbra which possess the absorption doses more than 1 kGy. (author)

  15. Combinatorial Nano-Bio Interfaces.

    Science.gov (United States)

    Cai, Pingqiang; Zhang, Xiaoqian; Wang, Ming; Wu, Yun-Long; Chen, Xiaodong

    2018-06-08

    Nano-bio interfaces are emerging from the convergence of engineered nanomaterials and biological entities. Despite rapid growth, clinical translation of biomedical nanomaterials is heavily compromised by the lack of comprehensive understanding of biophysicochemical interactions at nano-bio interfaces. In the past decade, a few investigations have adopted a combinatorial approach toward decoding nano-bio interfaces. Combinatorial nano-bio interfaces comprise the design of nanocombinatorial libraries and high-throughput bioevaluation. In this Perspective, we address challenges in combinatorial nano-bio interfaces and call for multiparametric nanocombinatorics (composition, morphology, mechanics, surface chemistry), multiscale bioevaluation (biomolecules, organelles, cells, tissues/organs), and the recruitment of computational modeling and artificial intelligence. Leveraging combinatorial nano-bio interfaces will shed light on precision nanomedicine and its potential applications.

  16. Second School of Nuclear Energetics

    International Nuclear Information System (INIS)

    2009-01-01

    At 3-5 Nov 2009 Institute of Nuclear Energy POLATOM, Association of Polish Electrical Engineers (SEP) and Polish Nuclear Society have organized Second School of Nuclear Energetics. 165 participants have arrived from all Poland and represented both different central institutions (e.g. ministries) and local institutions (e.g. Office of Technical Inspection, The Voivodship Presidential Offices, several societies, consulting firms or energetic enterprises). Students from the Warsaw Technical University and Gdansk Technical University, as well as the PhD students from the Institute of Nuclear Chemistry and Technology (Warsaw) attended the School. 20 invited lectures presented by eminent Polish specialists concerned basic problems of nuclear energetics, nuclear fuel cycle and different problems of the NPP construction in Poland. [pl

  17. In-situ TEM observation of nano-void formation in UO2 under irradiation

    Science.gov (United States)

    Sabathier, C.; Martin, G.; Michel, A.; Carlot, G.; Maillard, S.; Bachelet, C.; Fortuna, F.; Kaitasov, O.; Oliviero, E.; Garcia, P.

    2014-05-01

    Transmission electron microscopy (TEM) observations of UO2 polycrystals irradiated in situ with 4 MeV Au ions were performed at room temperature (RT) to better understand the mechanisms of cavity and ultimately fission products nucleation in UO2. Experiments were carried out at the JANNuS Orsay facility that enables in situ ion irradiations inside the microscope to be carried out. The majority of 4 MeV gold ions were transmitted through the thin foil, and the induced radiation defects were investigated by TEM. Observations showed that nano-void formation occurs at ambient temperature in UO2 thin foils irradiated with energetic heavy ions under an essentially nuclear energy loss regime. The diameter and density of nano-objects were measured as a function of the gold irradiation dose at RT. A previous paper has also revealed a similar nano-object population after a Xe implantation performed at 390 keV at 870 K. The nano-object density was modelled using simple concepts derived from Classical Molecular Dynamics simulations. The results are in good agreement, which suggests a mechanism of heterogeneous nucleation induced by energetic cascade overlaps. This indicates that nano-void formation mechanism is controlled by radiation damage. Such nanovoids are likely to act as sinks for mobile fission products during reactor operation.

  18. Characteristic of nanoparticles generated from different nano-powders by using different dispersion methods

    International Nuclear Information System (INIS)

    Tsai, Chuen-Jinn; Lin, Guan-Yu; Liu, Chun-Nan; He, Chi-En; Chen, Chun-Wan

    2012-01-01

    A standard rotating drum with a modified sampling train (RD), a vortex shaker (VS), and a SSPD (small-scale powder disperser) were used to investigate the emission characteristics of nano-powders, including nano-titanium dioxide (nano-TiO 2 , primary diameter: 21 nm), nano-zinc oxide (nano-ZnO, primary diameter: 30–50 nm), and nano-silicon dioxide (nano-SiO 2 , primary diameter: 10–30 nm). A TSI SMPS (scanning mobility particle sizer), a TSI APS (aerodynamic particle sizer), and a MSP MOUDI (micro-orifice uniform deposit impactor) were used to measure the number and mass distributions of generated particles. Significant differences in specific number and mass concentration or distributions were found among different methods and nano-powders with the most specific number and mass concentration and the smallest particles being generated by the most energetic SSPD, followed by VS and RD. Near uni-modal number or mass distributions were observed for the SSPD while bi-modal number or mass distributions existed for nano-powders except nano-SiO 2 which also exhibited bimodal mass distributions. The 30-min average results showed that the mass median aerodynamic diameter (MMAD) and number median diameter (NMD) of the SSPD ranged 1.1–2.1 μm and 166–261 nm, respectively, for all three nano-powders, which were smaller than those of the VS (MMAD: 3.3–6.0 μm and NMD: 156–462 nm), and the RD (MMAD: 5.2–11.2 μm and NMD: 198–479 nm). For nano-particles (electric mobility diameter < 100 nm), specific mass concentrations were nearly negligible for all three nano-powders and test methods. Specific number concentrations of nano-particles were low for the RD tester but were elevated when more energetic VS and SSPD testers were used. The quantitative size and concentration data obtained in this study is useful to elucidate the field emission and personal exposure data in the future provided that particle loss in the generation system is carefully assessed.

  19. Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans

    Science.gov (United States)

    Arora, Pooja; Sindhu, Annu; Dilbaghi, Neeraj; Chaudhury, Ashok; Rajakumar, Govindasamy; Rahuman, Abdul Abdul

    2012-01-01

    Nanotechnology is a fast growing area of research that aims to create nanomaterials or nanostructures development in stem cell and tissue-based therapies. Concepts and discoveries from the fields of bio nano research provide exciting opportunities of using stem cells for regeneration of tissues and organs. The application of nanotechnology to stem-cell biology would be able to address the challenges of disease therapeutics. This review covers the potential of nanotechnology approaches towards regenerative medicine. Furthermore, it focuses on current aspects of stem- and tissue-cell engineering. The magnetic nanoparticles-based applications in stem-cell research open new frontiers in cell and tissue engineering. PMID:22260258

  20. Insensitive high-energy energetic structural material of tungsten-polytetrafluoroethylene-aluminum composites

    Directory of Open Access Journals (Sweden)

    Liu Wang

    2015-11-01

    Full Text Available Energetic structural material is a kind of materials that are inert under normal conditions but could produce exothermic chemical reaction when subjected to impact. This report shows a kind of energetic structural material of tungsten (W-polytetrafluoroethylene (PTFE-aluminum (Al with density of 4.12 g/cm3, excellent ductility and dynamic compressive strength of 96 MPa. Moreover, 50W-35PTFE-15Al (wt% can exhibit a high reaction energy value of more than 2 times of TNT per unit mass and 5 times of TNT per unit volume, respectively, but with excellent insensitivity compared with traditional explosives. Under thermal conditions, the W-PTFE-Al composite can keep stable at 773 K. Under impact loading, when the strain rate up to ∼4820 s−1 coupled with the absorbed energy per unit volume of 120 J/cm3, deflagration occurs and combustion lasts for 500 μs. During impact compressive deformation, the PTFE matrix is elongated into nano-fibers, thus significantly increases the reaction activity of W-PTFE-Al composites. The nano-fiber structure is necessary for the reaction of W-PTFE-Al composites. The formation of PTFE nano-fibers must undergo severe plastic deformation, and therefore the W-PTFE-Al composites exhibit excellent insensitivity and safety. Furthermore, the reaction mechanisms of W-PTFE-Al composites in argon and in air are revealed.

  1. Editorial Nano structures for Medicine and Pharmaceuticals

    International Nuclear Information System (INIS)

    Xing-Jie, L.; Kumar, A.; Donglu, S.; Daxiang, C.

    2012-01-01

    The rapid developments in nano structured materials and nano technology will have profound impact in many areas of biomedical applications including delivery of drugs and biomolecules, tissue engineering, detection of bio markers, cancer diagnosis, cancer therapy, and imaging. This field is expanding quickly, and a lot of work is ongoing in the design, characterization, synthesis, and application of materials, for controlling shape and size at nanometer scale to develop highly advanced materials for biomedical application and even to design better pharmaceutical products. In recent years, novel nano structure with multi functionalities has been focused on the use of nano structures toward solving problems of biology and medicine. The main scope of this special issue is to demonstrate the latest achievement of nano technology and its application in nano medicine particularly in new approaches for drug delivery such as targeted drug delivery system, nano structure for drug storage, nano materials for tissue engineering, medical diagnosis and treatment, and generation of new kinds of materials from biological sources. Therefore, many critical issues in nano structured materials, particularly their applications in biomedicine, must be addressed before clinical applications. This special issue devotes several review and research articles encompassing various aspects of nano materials for medicine and pharmaceuticals.

  2. Visualizing Microbial Biogeochemistry: NanoSIMS and Stable Isotope Probing (Invited)

    Science.gov (United States)

    Pett-Ridge, J.; Weber, P. K.

    2009-12-01

    Linking phylogenetic information to function in microbial communities is a key challenge for microbial ecology. Isotope-labeling experiments provide a useful means to investigate the ecophysiology of microbial populations and cells in the environment and allow measurement of nutrient transfers between cell types, symbionts and consortia. The combination of Nano-Secondary Ion Mass Spectrometry (NanoSIMS) analysis, in situ labeling and high resolution microscopy allows isotopic analysis to be linked to phylogeny and morphology and holds great promise for fine-scale studies of microbial systems. In NanoSIMS analysis, samples are sputtered with an energetic primary beam (Cs+, O-) liberating secondary ions that are separated by the mass spectrometer and detected in a suite of electron multipliers. Five isotopic species may be analyzed concurrently with spatial resolution as fine as 50nm. A high sensitivity isotope ratio ‘map’ can then be generated for the analyzed area. NanoSIMS images of 13C, 15N and Mo (a nitrogenase co-factor) localization in diazotrophic cyanobacteria show how cells differentially allocate resources within filaments and allow calculation of nutrient uptake rates on a cell by cell basis. Images of AM fungal hyphae-root and cyanobacteria-rhizobia associations indicate the mobilization and sharing (stealing?) of newly fixed C and N. In a related technique, “El-FISH”, stable isotope labeled biomass is probed with oligonucleotide-elemental labels and then imaged by NanoSIMS. In microbial consortia and cyanobacterial mats, this technique helps link microbial structure and function simultaneously even in systems with unknown and uncultivated microbes. Finally, the combination of re-engineered universal 16S oligonucleotide microarrays with NanoSIMS analyses may allow microbial identity to be linked to functional roles in complex systems such as mats and cellulose degrading hindgut communities. These newly developed methods provide correlated

  3. Frontiers in nano-therapeutics

    CERN Document Server

    Tasnim, Nishat; Sai Krishna, Katla; Kalagara, Sudhakar; Narayan, Mahesh; Noveron, Juan C; Joddar, Binata

    2017-01-01

    This brief highlights recent research advances in the area of nano-therapeutics. Nanotechnology holds immense potential for application in a wide range of biological and engineering applications such as molecular sensors for disease diagnosis, therapeutic agents for the treatment of diseases, a vehicle for delivering therapeutics and imaging agents for theranostic applications, both in-vitro and in-vivo. The brief is grouped into the following sections namely, A) Discrete Nanosystems ; B) Anisotropic Nanoparticles; C) Nano-films/coated/layered and D) Nano-composites.

  4. Acute toxicity of virgin and used engine oil enriched with copper nano particles in the earthworm

    International Nuclear Information System (INIS)

    Khodabandeh, M; Koohi, M K; Shahroziyan, E; Badri, B; Pourfallah, A; Shams, Gh; Sadeghi-Hashjin, G; Roshani, A; Hobbenaghi, R

    2011-01-01

    In spite of development of nanotechnology and creation of new opportunities for industry, new applications and products initiated by this technology may cause harmful effects on human health and environment. Unfortunately, there is no sufficient information on the harmful effects caused by application of some nano materials; the current knowledge in this field is limited solely to the nano particles but not the final products. Nano cupper particles, as one of the common materials produced in industrial scale is widely used as additives into engine oil to reduce friction and improve lubrication. However, the difference between the effects of virgin and used conventional engine oil (CEO) and the engine oil containing cupper nano particles (NEO) on the environment is not known. Earthworm, as a one of the species which could live and survive in different sorts of earth and has a certain role in protecting the soil structure and fertility, was used in this experiment. In accordance with the recommended method of OECD.1984, Filter Paper test in 24 and 48 h based on 8 concentrations in the range of 3x10 -3 - 24x10 -3 ml/cm 2 and Artificial Soil test in 7 and 14 days based on 7 concentrations in the range of 0.1 mg/kg - 100 g/kg were carried out to study earthworms in terms of lifetime (LC50), morphology and pathology. It was shown that the 48 h LC50 for virgin CEO, virgin NEO, used CEO(8000 km) and used NEO (8000 km) were 6x10 -3 , 23x10 -3 , 24x10 -3 and 16x10 -3 ml/cm 2 respectively. Furthermore, 14-day LC50 in artificial soil for all cases were above 100 g/kg. It is concluded that virgin CEO is more toxic than virgin NEO. Meanwhile, the CEO shows significant reduction in toxicity after consumption and the used NEO shows more toxicity in comparison to virgin product. It seems that more investigations on the effects of final products specifically after consumption is necessary because the products after consumption have the most contact with environment and subsequently

  5. Acute toxicity of virgin and used engine oil enriched with copper nano particles in the earthworm

    Energy Technology Data Exchange (ETDEWEB)

    Khodabandeh, M; Koohi, M K; Shahroziyan, E; Badri, B; Pourfallah, A; Shams, Gh; Sadeghi-Hashjin, G [Faculty of Veterinary Medicine, University of Tehran, Tehran (Iran, Islamic Republic of); Roshani, A [Industrial and Environmental Protection Division, Research Institute of Petroleum Industry (RRIPI), Tehran (Iran, Islamic Republic of); Hobbenaghi, R, E-mail: gsadeghi@ut.ac.ir [Faculty of Veterinary Medicine, Urmia University, Urmia (Iran, Islamic Republic of)

    2011-07-06

    In spite of development of nanotechnology and creation of new opportunities for industry, new applications and products initiated by this technology may cause harmful effects on human health and environment. Unfortunately, there is no sufficient information on the harmful effects caused by application of some nano materials; the current knowledge in this field is limited solely to the nano particles but not the final products. Nano cupper particles, as one of the common materials produced in industrial scale is widely used as additives into engine oil to reduce friction and improve lubrication. However, the difference between the effects of virgin and used conventional engine oil (CEO) and the engine oil containing cupper nano particles (NEO) on the environment is not known. Earthworm, as a one of the species which could live and survive in different sorts of earth and has a certain role in protecting the soil structure and fertility, was used in this experiment. In accordance with the recommended method of OECD.1984, Filter Paper test in 24 and 48 h based on 8 concentrations in the range of 3x10{sup -3} - 24x10{sup -3} ml/cm{sup 2} and Artificial Soil test in 7 and 14 days based on 7 concentrations in the range of 0.1 mg/kg - 100 g/kg were carried out to study earthworms in terms of lifetime (LC50), morphology and pathology. It was shown that the 48 h LC50 for virgin CEO, virgin NEO, used CEO(8000 km) and used NEO (8000 km) were 6x10{sup -3}, 23x10{sup -3}, 24x10{sup -3} and 16x10{sup -3} ml/cm{sup 2} respectively. Furthermore, 14-day LC50 in artificial soil for all cases were above 100 g/kg. It is concluded that virgin CEO is more toxic than virgin NEO. Meanwhile, the CEO shows significant reduction in toxicity after consumption and the used NEO shows more toxicity in comparison to virgin product. It seems that more investigations on the effects of final products specifically after consumption is necessary because the products after consumption have the most

  6. Status, problems and perspectives of the education on nuclear energetics and nuclear safety within the Technical University of Sofia

    International Nuclear Information System (INIS)

    Lakov, M.; Bonev, B.; Stoyanov, S.; Velev, V.

    2004-01-01

    Education on nuclear energetic within the Technical University of Sofia is conducted since 1966 within the framework of the specialty 'Thermal energetic' at that time, and since 1973, within the specialty 'Thermal and nuclear energetic'. In 1986 is opened a college on nuclear energetic teaching on specialty 'Nuclear Energetic' and 'Automation in Energetic'. Since 1998 the department 'Thermal and nuclear energetic' is the only one within the Republic of Bulgaria having the legal rights to train 'engineers-bachelors' and 'engineers-master of science' on 'Thermal and nuclear energetic', as well as doctors - engineers of the same specialty. The bachelor course is graduated from between 40 and 60 students annually. The training within the bachelor level is 4 years and finishes by defending diploma thesis. Part of the graduated bachelors (between 20 and 30 students) are closely specialized in the area of Nuclear Energetic. The specialization is trained through preparation of diploma thesis within the nuclear area. The master course has 3 semesters including preparation of diploma thesis. Within the master level are prepared 25 students annually. Within the sub-division 'Nuclear Energetic' are promulgated between 2 and 4 competitions for preparation of doctoral thesis annually. At the moment 7 students are preparing doctoral thesis. Graduated engineers on 'Nuclear Energetic' are engaged as operative personnel mainly in Kozloduy NPP. The rest of them are engaged within the engineering and scientific organizations, connected to nuclear energetic

  7. Are engineered nano iron oxide particles safe? an environmental risk assessment by probabilistic exposure, effects and risk modeling.

    Science.gov (United States)

    Wang, Yan; Deng, Lei; Caballero-Guzman, Alejandro; Nowack, Bernd

    2016-12-01

    Nano iron oxide particles are beneficial to our daily lives through their use in paints, construction materials, biomedical imaging and other industrial fields. However, little is known about the possible risks associated with the current exposure level of engineered nano iron oxides (nano-FeOX) to organisms in the environment. The goal of this study was to predict the release of nano-FeOX to the environment and assess their risks for surface waters in the EU and Switzerland. The material flows of nano-FeOX to technical compartments (waste incineration and waste water treatment plants) and to the environment were calculated with a probabilistic modeling approach. The mean value of the predicted environmental concentrations (PECs) of nano-FeOX in surface waters in the EU for a worst-case scenario (no particle sedimentation) was estimated to be 28 ng/l. Using a probabilistic species sensitivity distribution, the predicted no-effect concentration (PNEC) was determined from ecotoxicological data. The risk characterization ratio, calculated by dividing the PEC by PNEC values, was used to characterize the risks. The mean risk characterization ratio was predicted to be several orders of magnitude smaller than 1 (1.4 × 10 - 4 ). Therefore, this modeling effort indicates that only a very limited risk is posed by the current release level of nano-FeOX to organisms in surface waters. However, a better understanding of the hazards of nano-FeOX to the organisms in other ecosystems (such as sediment) needs to be assessed to determine the overall risk of these particles to the environment.

  8. Fabrication of chitin-chitosan/nano TiO2-composite scaffolds for tissue engineering applications.

    Science.gov (United States)

    Jayakumar, R; Ramachandran, Roshni; Divyarani, V V; Chennazhi, K P; Tamura, H; Nair, S V

    2011-03-01

    In this study, we prepared chitin-chitosan/nano TiO(2) composite scaffolds using lyophilization technique for bone tissue engineering. The prepared composite scaffold was characterized using SEM, XRD, FTIR and TGA. In addition, swelling, degradation and biomineralization capability of the composite scaffolds were evaluated. The developed composite scaffold showed controlled swelling and degradation when compared to the control scaffold. Cytocompatibility of the scaffold was assessed by MTT assay and cell attachment studies using osteoblast-like cells (MG-63), fibroblast cells (L929) and human mesenchymal stem cells (hMSCs). Results indicated no sign of toxicity and cells were found attached to the pore walls within the scaffolds. These results suggested that the developed composite scaffold possess the prerequisites for tissue engineering scaffolds and it can be used for tissue engineering applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Energetic assessment of soybean biodiesel obtainment in West ...

    African Journals Online (AJOL)

    SAM

    2014-07-16

    Jul 16, 2014 ... Energetic outputs added up to 3,003.75 MJ and energy balance was 57,132.54 MJ. ... biodiesel, the study was divided into three stages: soybean farming, ... considering energetic consumptions with labor, seeds, diesel oil, ... model MF 283(4X2 TDA), power 63.2 kW (86 cv) in the engine, board weight.

  10. Nano materials for Energy and Environmental Applications

    International Nuclear Information System (INIS)

    Srinivasan, S.; Kannan, A.M.; Kothurkar, N.; Khalil, Y.; Kuravi, S.

    2015-01-01

    Nano materials enabled technologies have been seamlessly integrated into applications such as aviation and space, chemical industry, optics, solar hydrogen, fuel cell, batteries, sensors, power generation, aeronautic industry, building/construction industry, automotive engineering, consumer electronics, thermoelectric devices, pharmaceuticals, and cosmetic industry. Clean energy and environmental applications often demand the development of novel nano materials that can provide shortest reaction pathways for the enhancement of reaction kinetics. Understanding the physicochemical, structural, microstructural, surface, and interface properties of nano materials is vital for achieving the required efficiency, cycle life, and sustain ability in various technological applications. Nano materials with specific size and shape such as nano tubes, nano fibers/nano wires, nano cones, nano composites, nano rods, nano islands, nanoparticles, nanospheres, and nano shells to provide unique properties can be synthesized by tuning the process conditions.

  11. Nonlinear super-resolution nano-optics and applications

    CERN Document Server

    Wei, Jingsong

    2015-01-01

    This book covers many advances in the subjects of nano-optics and nano photonics. The author describes the principle and technical schematics of common methods for breaking through the optical diffraction limit and focuses on realizing optical super-resolution with nonlinear effects of thin film materials. The applications of nonlinear optical super-resolution effects in nano-data storage, nanolithography, and nano-imaging are also presented. This book is useful to graduate students majoring in optics and nano science and also serves as a reference book for academic researchers, engineers, technical professionals in the fields of super-resolution optics and laser techniques, nano-optics and nano photonics, nano-data storage, nano imaging, micro/nanofabrication and nanolithography and nonlinear optics.

  12. Evolution and Engineering of Precisely Controlled Ge Nanostructures on Scalable Array of Ordered Si Nano-pillars

    Science.gov (United States)

    Wang, Shuguang; Zhou, Tong; Li, Dehui; Zhong, Zhenyang

    2016-06-01

    The scalable array of ordered nano-pillars with precisely controllable quantum nanostructures (QNs) are ideal candidates for the exploration of the fundamental features of cavity quantum electrodynamics. It also has a great potential in the applications of innovative nano-optoelectronic devices for the future quantum communication and integrated photon circuits. Here, we present a synthesis of such hybrid system in combination of the nanosphere lithography and the self-assembly during heteroepitaxy. The precise positioning and controllable evolution of self-assembled Ge QNs, including quantum dot necklace(QDN), QD molecule(QDM) and quantum ring(QR), on Si nano-pillars are readily achieved. Considering the strain relaxation and the non-uniform Ge growth due to the thickness-dependent and anisotropic surface diffusion of adatoms on the pillars, the comprehensive scenario of the Ge growth on Si pillars is discovered. It clarifies the inherent mechanism underlying the controllable growth of the QNs on the pillar. Moreover, it inspires a deliberate two-step growth procedure to engineer the controllable QNs on the pillar. Our results pave a promising avenue to the achievement of desired nano-pillar-QNs system that facilitates the strong light-matter interaction due to both spectra and spatial coupling between the QNs and the cavity modes of a single pillar and the periodic pillars.

  13. Engineered electrospun poly(caprolactone)/polycaprolactone-g-hydroxyapatite nano-fibrous scaffold promotes human fibroblasts adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Keivani, F. [Biology Department, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Shokrollahi, P., E-mail: p.shokrolahi@ippi.ac.ir [Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Zandi, M. [Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Irani, S. [Biology Department, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Shokrolahi, F. [Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Khorasani, S.C. [Biology Department, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-11-01

    Polycaprolactone (PCL)/hydroxyapatite nano-composites are among the best candidates for tissue engineering. However, interactions between nHAp and PCL are difficult to control leading to inhomogeneous dispersion of the bio-ceramic particles. Grafting of polymer chains at high density/chain length while promotes the phase compatibility may result in reduced HAp exposed surface area and therefore, bioactivity is compromised. This issue is addressed here by grafting PCL chains onto HAp nano-particles through ring opening polymerization of ε-caprolactone (PCL-g-HAp). FTIR and TGA analysis showed that PCL (6.9 wt%), was successfully grafted on the HAp. PCL/PCL-g-HAp nano-fibrous scaffold showed up to 10 and 33% enhancement in tensile strength and modulus, respectively, compared to those of PCL/HAp. The effects of HAp on the in vitro HAp formation were investigated for both the PCL/HAp and PCL/PCL-g-HAp scaffolds. Precipitation of HAp on the nano-composite scaffolds observed after 15 days incubation in simulated body fluid (SBF), as confirmed by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). Human fibroblasts were seeded on PCL, PCL/HAp and PCL/PCL-g-HAp scaffolds. According to MTT assay, the highest cell proliferation was recorded for PCL/PCL-g-HAp nano-composite, at all time intervals (1–21 days, P < 0.001). Fluorescent microscopy (of DAPI stained samples) and electron microscopy images showed that all nano-fibrous scaffolds (PCL, PCL/HAp, and PCL/PCL-g-HAp), were non-toxic against cells, while more cell adhesion, and the most uniform cell distribution observed on the PCL/PCL-g-HAp. Overall, grafting of relatively short chains of PCL on the surface of HAp nano-particles stimulates fibroblasts adhesion and proliferation on the PCL/PCL-g-HAp nano-composite. - Highlights: • PCL chains were grafted on HAp nano-particles at relatively low density, through ROP of ε-caprolactone (PCL-g-HAp) • PCL-g-HAp featured a relatively high

  14. Sputtering of nano-grains by energetic ions

    CERN Document Server

    Bringa, E M

    2002-01-01

    Sputtering from grains with a size of tens of nanometers is important in a number of astrophysical environments having a variety of plasma properties and can have applications in nano-technology. Since energy deposition by incident ions or electrons can create 'hot' regions in a small grain, thermal spike (TS) models have been applied to estimate the sputtering. The excitations produced by a fast ion are often assumed to form a 'hot' cylindrical track. In this paper we use molecular dynamics (MD) calculations to describe the energy transport and sputtering due to the creation of a 'hot' track in a grain with one quarter million atoms. We show the enhancement due to grain size and find that TS models work over a limited range of excitation densities. Discrepancies of several orders of magnitude are found when comparing our MD results for sputtering of small dust grains to those obtained by the astrophysical community using spike models.

  15. Biocompatibility and Toxicity of Nano biomaterials 2014

    International Nuclear Information System (INIS)

    Li, X.; Lee, S.Ch.; Zhang, Sh.; Akasaka, T.

    2014-01-01

    It is well known that nano materials have developed rapidly over the past few decades. Based on their unique physicochemical properties and special mechanical properties, nano materials have provided application possibility in many different fields. Currently, as nano biomaterials, they are widely used in various biomedical applications, such as drug delivery systems, tissue engineering, dental/bone implant, and biosensors. For example, nano biomaterials have been used in tissue engineering because of their satisfactory bioactivity, high mechanical properties, and large surface area to adsorb specific proteins. Many kinds of nano biomaterials are used to prepare composite scaffolds to get better biocompatibility and higher ability in repairing specific tissues. Several antibacterial metallic nano biomaterials are used to coat implant surfaces to improve the speed of healing fractures. In addition, lots of nano biomaterials have the potential to break the limitations of the traditional delivery systems. They can load larger amount of drugs and provide stable drug release for long time at the targeted sites, such as tumors. Moreover, they can combine with polymers to furnish simultaneous drug delivery systems with the controllable release rate. Besides these applications, more and more nano biomaterials show great potential to be applied as highly sensitive biosensors because they have higher ability in loading firmly or interacting completely with recognition aptamers.

  16. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Chhavi, E-mail: chhavisharma19@gmail.com [Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee (India); Dinda, Amit Kumar, E-mail: amit_dinda@yahoo.com [Department of Molecular Medicine and Biology, Jaslok Hospital and Research Centre, Mumbai 400 026 (India); Potdar, Pravin D., E-mail: ppotdar@jaslokhospital.net [Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029 (India); Chou, Chia-Fu, E-mail: cfchou@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Mishra, Narayan Chandra, E-mail: mishrawise@gmail.com [Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee (India)

    2016-07-01

    A novel nano-biocomposite scaffold was fabricated in bead form by applying simple foaming method, using a combination of natural polymers–chitosan, gelatin, alginate and a bioceramic–nano-hydroxyapatite (nHAp). This approach of combining nHAp with natural polymers to fabricate the composite scaffold, can provide good mechanical strength and biological property mimicking natural bone. Environmental scanning electron microscopy (ESEM) images of the nano-biocomposite scaffold revealed the presence of interconnected pores, mostly spread over the whole surface of the scaffold. The nHAp particulates have covered the surface of the composite matrix and made the surface of the scaffold rougher. The scaffold has a porosity of 82% with a mean pore size of 112 ± 19.0 μm. Swelling and degradation studies of the scaffold showed that the scaffold possesses excellent properties of hydrophilicity and biodegradability. Short term mechanical testing of the scaffold does not reveal any rupturing after agitation under physiological conditions, which is an indicative of good mechanical stability of the scaffold. In vitro cell culture studies by seeding osteoblast cells over the composite scaffold showed good cell viability, proliferation rate, adhesion and maintenance of osteoblastic phenotype as indicated by MTT assay, ESEM of cell–scaffold construct, histological staining and gene expression studies, respectively. Thus, it could be stated that the nano-biocomposite scaffold of chitosan–gelatin–alginate–nHAp has the paramount importance for applications in bone tissue-engineering in future regenerative therapies. - Highlights: • nHAp–chitosan–gelatin–alginate composite scaffold was successfully fabricated. • Foaming method, without surfactant, was applied successfully for fabricating the scaffold. • nHAp provided mechanical stability and nanotopographic features to scaffold matrix. • This scaffold shows good biocompatibility and proliferation with

  17. Drug Delivery Systems: A New Frontier in Nano-technology

    Directory of Open Access Journals (Sweden)

    Chamindri Witharana

    2017-09-01

    Full Text Available Nano-technology is a recent advancement in science, defined as “Science, engineering, and technology conducted at the Nano scale” (National nanotechnology initiatives in USA. Applications of Nano-technology cover a vast range from basic material science, personal care applications, agriculture, and medicine. Nano-technology is used in field of medicine for treatment, diagnostic, monitoring, genetic engineering, and drug delivery. There are two main types of Nano Particles (NPs used in drug delivery; organic NPs and inorganic NPs. In drug delivery, the drug-Nano- Particle (NP conjugate should be able to deliver drugs to the target site without degradation in gastrointestinal track and without reducing drug activity. Further, it should attack to target cells without causing any adverse effects. The ultimate goal of NP drug delivery is to improve proper treatment, effectiveness, less side effects with safety and patient adherence as well as reduction in the cost.

  18. Applying Nano technology to Human Health: Revolution in Biomedical Sciences

    International Nuclear Information System (INIS)

    Shrivastava, S.; Dash, D.

    2009-01-01

    Recent research on bio systems at the nano scale has created one of the most dynamic science and technology domains at the confluence of physical sciences, molecular engineering, biology, biotechnology, and medicine. This domain includes better understanding of living and thinking systems, revolutionary biotechnology processes, synthesis of new drugs and their targeted delivery, regenerative medicine, necrophorum engineering, and developing a sustainable environment. Nano bio systems research is a priority in many countries and its relevance within nano technology is expected to increase in the future. The realisation that the nano scale has certain properties needed to solve important medical challenges and cater to unmet medical needs is driving nano medical research. The present review explores the significance of nano science and latest nano technologies for human health. Addressing the associated opportunities, the review also suggests how to manage far-reaching developments in these areas

  19. How fast are the ultra-fast nano-scale solid-liquid phase transitions induced by energetic particles in solids?

    International Nuclear Information System (INIS)

    Lopasso, E.M.; Caro, A.; Caro, M.

    2003-01-01

    We study the thermodynamic forces acting on the evolution of the nanoscale regions excited by collisions of energetic particles into solid targets. We analyze the role of diffusion, thermo-migration, and the liquidus-solidus two-phase field crossing, as the system cools down from the collision-induced melt under different conditions of energy deposition. To determine the relevance of these thermodynamic forces, solute redistribution is evaluated using molecular dynamics simulations of equilibrium Au-Ni solid solutions. At low collision energies, our results show that the quenching of spherical cascades is too fast to allow for solute redistribution according to equilibrium solidification as determined from the equilibrium phase diagram (zone refining effect), and only thermo-migration is observed. At higher energies instead, in the cylindrical symmetry of ion tracks, quenching rate is in a range that shows the combined effects of thermo-migration and solute redistribution that, depending on the material, can reinforce or cancel each other. These results are relevant for the interpretation of the early stage of radiation damage in alloys, and show that the combination of ultra-fast but nano-scale characteristics of these processes can still be described in terms of linear response of the perturbed system

  20. Editorial Emerging Multifunctional Nano structures

    International Nuclear Information System (INIS)

    Fan, H.; Lu, Y.; Ramanath, G.; Pomposo, J.A.

    2009-01-01

    The interest in emerging nano structures is growing exponentially since they are promising building blocks for advanced multifunctional nano composites. In recent years, an evolution from the controlled synthesis of individual monodisperse nanoparticles to the tailored preparation of hybrid spherical and also unsymmetrical multiparticle nano structures is clearly observed. As a matter of fact, the field of nano structures built around a nano species such as inside, outside, and next to a nanoparticle is becoming a new evolving area of research and development with potential applications in improved drug delivery systems, innovative magnetic devices, biosensors, and highly efficient catalysts, among several others Emerging nano structures with improved magnetic, conducting and smart characteristics are currently based on the design, synthesis, characterization and modeling of multifunctional nano object-based materials. In fact, core-shell nanoparticles and other related complex nano architectures covering a broad spectrum of materials (from metal and metal oxide to fused carbon, synthetic polymer, and bio polymer structures) to nano structure morphologies (spherical, cylindrical, star-like, etc.) are becoming the main building blocks for next generation of drug delivery systems, advanced sensors and biosensors, or improved nano composites. The five papers presented in this special issue examine the preparation and characterization of emerging multifunctional materials, covering from hybrid asymmetric structures to engineering nano composites.

  1. Nano/micro hybrid scaffold of PCL or P3HB nanofibers combined with silk fibroin for tendon and ligament tissue engineering.

    Science.gov (United States)

    Naghashzargar, Elham; Farè, Silvia; Catto, Valentina; Bertoldi, Serena; Semnani, Dariush; Karbasi, Saeed; Tanzi, Maria Cristina

    2015-07-04

    A novel biodegradable nano/micro hybrid structure was obtained by electrospinning P3HB or PCL nanofibers onto a twisted silk fibroin (SF) structure, with the aim of fabricating a suitable scaffold for tendon and ligament tissue engineering. The electrospinning (ES) processing parameters for P3HB and PCL were optimized on 2D samples, and applied to produce two different nano/micro hybrid constructs (SF/ES-PCL and SF/ES-P3HB).Morphological, chemico-physical and mechanical properties of the novel hybrid scaffolds were evaluated by SEM, ATR FT-IR, DSC, tensile and thermodynamic mechanical tests. The results demonstrated that the nanofibers were tightly wrapped around the silk filaments, and the crystallinity of the SF twisted yarns was not influenced by the presence of the electrospun polymers. The slightly higher mechanical properties of the hybrid constructs confirmed an increase of internal forces due to the interaction between nano and micro components. Cell culture tests with L929 fibroblasts, in the presence of the sample eluates or in direct contact with the hybrid structures, showed no cytotoxic effects and a good level of cytocompatibility of the nano/micro hybrid structures in term of cell viability, particularly at day 1. Cell viability onto the nano/micro hybrid structures decreased from the first to the third day of culture when compared with the control culture plastic, but appeared to be higher when compared with the uncoated SF yarns. Although additional in vitro and in vivo tests are needed, the original fabrication method here described appears promising for scaffolds suitable for tendon and ligament tissue engineering.

  2. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zobelli, A

    2007-10-15

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  3. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    International Nuclear Information System (INIS)

    Zobelli, A.

    2007-10-01

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  4. Design methodology for nano-engineered surfaces to control adhesion: Application to the anti-adhesion of particles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taekyung [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); School of Mechanical Engineering, Yonsei University, Seoul 03722 (Korea, Republic of); Min, Cheongwan [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); Jung, Myungki; Lee, Jinhyung; Park, Changsu [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); School of Mechanical Engineering, Yonsei University, Seoul 03722 (Korea, Republic of); Kang, Shinill, E-mail: snlkang@yonsei.ac.kr [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); School of Mechanical Engineering, Yonsei University, Seoul 03722 (Korea, Republic of)

    2016-12-15

    Highlights: • A design method using the Derjaguin approximation with FEA for low-adhesion surface. • Fabrication of nanostructures with small adhesion forces by presented design method. • Characterization of adhesion force via AFM FD-curve with modified atypical tips. • Verification of low-adhesion of designed surfaces using centrifugal detachment tests. • Investigation of interdependence of hydrophobicity and anti-adhesion force. - Abstract: With increasing demand for means of controlling surface adhesion in various applications, including the semiconductor industry, optics, micro/nanoelectromechanical systems, and the medical industry, nano-engineered surfaces have attracted much attention. This study suggests a design methodology for nanostructures using the Derjaguin approximation in conjunction with finite element analysis for the control of adhesion forces. The suggested design methodology was applied for designing a nano-engineered surface with low-adhesion properties. To verify this, rectangular and sinusoidal nanostructures were fabricated and analyzed using force-distance curve measurements using atomic force microscopy and centrifugal detachment testing. For force-distance curve measurements, modified cantilevers with tips formed with atypical particles were used. Subsequently, centrifugal detachment tests were also conducted. The surface wettability of rectangular and sinusoidal nanostructures was measured and compared with the measured adhesion force and the number of particles remaining after centrifugal detachment tests.

  5. Energetic and Exergetic Analysis of a Heat Exchanger Integrated in a Solid Biomass-Fuelled Micro-CHP System with an Ericsson Engine

    Directory of Open Access Journals (Sweden)

    Marie Creyx

    2016-04-01

    Full Text Available A specific heat exchanger has been developed to transfer heat from flue gas to the working fluid (hot air of the Ericsson engine of a solid biomass-fuelled micro combined heat and power (CHP. In this paper, the theoretical and experimental energetic analyses of this heat exchanger are compared. The experimental performances are described considering energetic and exergetic parameters, in particular the effectiveness on both hot and cold sides. A new exergetic parameter called the exergetic effectiveness is introduced, which allows a comparison between the real and the ideal heat exchanger considering the Second Law of Thermodynamics. A global analysis of exergetic fluxes in the whole micro-CHP system is presented, showing the repartition of the exergy destruction among the components.

  6. Nano crystals for Electronic and Optoelectronic Applications

    International Nuclear Information System (INIS)

    Zhu, T.; Cloutier, S.G.; Ivanov, I; Knappenberger Jr, K.L.; Robel, I.; Zhang, F

    2012-01-01

    Electronic and optoelectronic devices, from computers and smart cell phones to solar cells, have become a part of our life. Currently, devices with featured circuits of 45 nm in size can be fabricated for commercial use. However, further development based on traditional semiconductor is hindered by the increasing thermal issues and the manufacturing cost. During the last decade, nano crystals have been widely adopted in various electronic and optoelectronic applications. They provide alternative options in terms of ease of processing, low cost, better flexibility, and superior electronic/optoelectronic properties. By taking advantage of solution-processing, self-assembly, and surface engineering, nano crystals could serve as new building blocks for low-cost manufacturing of flexible and large area devices. Tunable electronic structures combined with small exciton binding energy, high luminescence efficiency, and low thermal conductivity make nano crystals extremely attractive for FET, memory device, solar cell, solid-state lighting/display, photodetector, and lasing applications. Efforts to harness the nano crystal quantum tunability have led to the successful demonstration of many prototype devices, raising the public awareness to the wide range of solutions that nano technology can provide for an efficient energy economy. This special issue aims to provide the readers with the latest achievements of nano crystals in electronic and optoelectronic applications, including the synthesis and engineering of nano crystals towards the applications and the corresponding device fabrication, characterization and computer modeling.

  7. Substrate engineering for Ni-assisted growth of carbon nano-tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kolahdouz, Z.; Kolahdouz, M. [Department of Electrical and Computer Engineering, Nano-electronic Laboratory, University of Tehran, Tehran (Iran, Islamic Republic of); Ghanbari, H. [Tarbiat Modarres University, Tehran (Iran, Islamic Republic of); Mohajerzadeh, S. [Department of Electrical and Computer Engineering, Nano-electronic Laboratory, University of Tehran, Tehran (Iran, Islamic Republic of); Naureen, S. [School of Information and Communication Technology, KTH (Royal Institute of Technology) Kista (Sweden); Radamson, H.H., E-mail: rad@kth.se [School of Information and Communication Technology, KTH (Royal Institute of Technology) Kista (Sweden)

    2012-10-01

    The growth of carbon multi-walled nano-tubes (MWCNTs) using metal catalyst (e.g. Ni, Co, and Fe) has been extensively investigated during the last decade. In general, the physical properties of CNTs depend on the type, quality and diameter of the tubes. One of the parameters which affects the diameter of a MWCNT is the size of the catalyst metal islands. Considering Ni as the metal catalyst, the formed silicide layer agglomerates (island formation) after a thermal treatment. One way to decrease the size of Ni islands is to apply SiGe as the base for the growth. In this study, different methods based on substrate engineering are proposed to change/control the MWCNT diameters. These include (i) well-controlled oxide openings containing Ni to miniaturize the metal island size, and (ii) growth on strained or partially relaxed SiGe layers for smaller Ni silicide islands.

  8. Nanotechnology for chemical engineers

    CERN Document Server

    Salaheldeen Elnashaie, Said; Hashemipour Rafsanjani, Hassan

    2015-01-01

    The book describes the basic principles of transforming nano-technology into nano-engineering with a particular focus on chemical engineering fundamentals. This book provides vital information about differences between descriptive technology and quantitative engineering for students as well as working professionals in various fields of nanotechnology. Besides chemical engineering principles, the fundamentals of nanotechnology are also covered along with detailed explanation of several specific nanoscale processes from chemical engineering point of view. This information is presented in form of practical examples and case studies that help the engineers and researchers to integrate the processes which can meet the commercial production. It is worth mentioning here that, the main challenge in nanostructure and nanodevices production is nowadays related to the economic point of view. The uniqueness of this book is a balance between important insights into the synthetic methods of nano-structures and nanomaterial...

  9. Ultrafast Vibrational Spectrometer for Engineered Nanometric Energetic Materials

    National Research Council Canada - National Science Library

    Dlott, Dana

    2002-01-01

    .... The needed equipment was ordered and installed, and assembled into a working SFG set up that has been tested on a model system consisting of a self assembled monolayer of alkane on gold. The next step will be to finish integrating the carbon dioxide laser system and to begin looking at aluminum based energetic materials.

  10. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    Science.gov (United States)

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances. Copyright © 2014. Published by Elsevier B.V.

  11. Experimental flame speed in multi-layered nano-energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Manesh, Navid Amini; Basu, Saptarshi; Kumar, Ranganathan [Department of Mechanical, Material and Aerospace Engineering, University of Central Florida, Orlando, FL (United States)

    2010-03-15

    This paper deals with the reaction of dense Metastable Intermolecular Composite (MIC) materials, which have a higher density than conventional energetic materials. The reaction of a multilayer thin film of aluminum and copper oxide has been studied by varying the substrate material and thicknesses. The in-plane speed of propagation of the reaction was experimentally determined using a time of- flight technique. The experiment shows that the reaction is completely quenched for a silicon substrate having an intervening silica layer of less than 200 nm. The speed of reaction seems to be constant at 40 m/s for silica layers with a thickness greater than 1 {mu}m. Different substrate materials such as glass and photoresist were also used. (author)

  12. Report of International NanoSPD Steering Committee and statistics on recent NanoSPD activities

    International Nuclear Information System (INIS)

    Valiev, R Z; Langdon, T G

    2014-01-01

    Abstract. The Université de Lorraine in Metz, France, is the selected site for the 6th International Conference on Nanomaterials by Severe Plastic Deformation (NanoSPD6) following a series of five earlier conferences. This introductory paper reports on several major developments in NanoSPD activities as well as on very recent NanoSPD citation data which confirm the continued growth and expansion of this important research area. Close attention is given to the topics of workshops, conferences and seminars organized during these last three years as well as on books and reviews published prior to the NanoSPD6 conference. A special concern of the committee is in introducing and discussing the appropriate terminology to be applied in this new field of materials science and engineering

  13. Evaluation of structural and mechanical properties of electrospun nano-micro hybrid of poly hydroxybutyrate-chitosan/silk scaffold for cartilage tissue engineering.

    Science.gov (United States)

    Karbasi, Saeed; Fekrat, Farnoosh; Semnani, Daryoush; Razavi, Shahnaz; Zargar, Elham Naghash

    2016-01-01

    One of the new methods of scaffold fabrication is a nano-micro hybrid structure in which the properties of the scaffold are improved by introducing nanometer and micrometer structures. This method could be suitable for scaffold designing if some features improve. In this study, electrospun nanofibers of 9% weight solution of poly (3-hydroxybutyrate) (P3HB) and a 15% weight of chitosan by trifluoroacetic acid were coated on both the surface of a silk knitted substrate in the optimum condition to improve the mechanical properties of scaffolds for cartilage tissue engineering application. These hybrid nano-micro fibrous scaffolds were characterized by structural and mechanical evaluation methods. Scanning electron microscopy values and porosity analysis showed that average diameter of nanofibers was 584.94 nm in electrospinning part and general porosity was more than 80%. Fourier transform infrared spectroscopy results indicated the presence of all elements without pollution. The tensile test also stated that by electrospinning, as well as adding chitosan, both maximum strength and maximum elongation increased to 187 N and 10 mm. It means that the microfibrous part of scaffold could affect mechanical properties of nano part of the hybrid scaffold, significantly. It could be concluded that P3HB-chitosan/silk hybrid scaffolds can be a good candidate for cartilage tissue engineering.

  14. Applications and Nano toxicity of Carbon Nano tubes and Graphene in Biomedicine Caitlin Fisher

    International Nuclear Information System (INIS)

    Rider, A.E.; Han, Z.J.; Kumar, S.; Levchenko, L.; Ostrikov, K.K.

    2012-01-01

    Owing to their unique mechanical, electrical, optical, and thermal properties, carbon nano structures including carbon nano tubes and graphenes show great promise for advancing the fields of biology and medicine. Many reports have demonstrated the promise of these carbon nano structures and their hybrid structures (composites with polymers, ceramics, and metal nanoparticles, etc.) for a variety of biomedical areas ranging from bio sensing, drug delivery, and diagnostics, to cancer treatment, tissue engineering, and bio terrorism prevention. However, the issue of the safety and toxicity of these carbon nano structures, which is vital to their use as diagnostic and therapeutic tools in biomedical fields, has not been completely resolved. This paper aims to provide a summary of the features of carbon nano tube and graphene-based materials and current research progress in biomedical applications. We also highlight the current opinions within the scientific community on the toxicity and safety of these carbon structures

  15. Functional Nano fibers: Production and Applications

    International Nuclear Information System (INIS)

    Khatri, Z.; Kim, I.S.; Kim, S.H.

    2016-01-01

    Nano fibers are lighter material with higher surface area in comparison to polymeric film. The ease of producing functional nano fiber is another advantage over many nano materials. Functional nano fiber in particular has attained a greater interest in recent years. The applications of functional nano fibers are increasing in various technical fields such as water filter membranes, tissue engineering, biosensors, drug delivery systems, wound dressings, catalysis, antibacterial. This special issue is comprised of well-selective articles that discuss production of functional nano fibers their applications in different emerging fields. M. Zhang et al. have presented exciting work on drug delivery using nano fibers. They used collagen that was extracted from abandoned Rana chensinensis skin in northeastern China via an acid enzymatic extraction method. They demonstrated two different nano fiber-vancomycin (VCM) systems, that is, VCM blended nano fibers and core-shell nano fibers with VCM in the core, and both systems sustained control release for a period of 80 hours. Another work was presented by R. Takai et al. on blood purification using composite nano fibers. About 10% of the population worldwide is affected by chronic kidney disease (CKD). The authors developed nano fiber meshes zeolite-polymer composite nano fibers for efficient adsorption of creatinine, which is a simpler and more accessible method for hemodialysis (HD) patients.

  16. The Potential of Nano materials for Drug Delivery, Cell Tracking, and Regenerative Medicine 2014

    International Nuclear Information System (INIS)

    Vasilev, K.; Vasilev, K.; Chen, H.; Murray, P.; Mantovani, D.

    2014-01-01

    Nano materials have become the building blocks of revolutionary technologies that have opened unprecedented opportunities across the entire global economy. Nano materials are particulates of various shapes and forms and assemblies that typically have a size range between 1 and 100 nm. Nature has designed and used nano materials for billions of years. For instance, proteins and viruses are complex nano engineered structures that have been designed by Nature to perform highly specific and refined roles. It was only in the last two decades that we learned how to engineer and use materials at the nano scale in a relatively large scale. Despite revolutionizing many technologies, these materials are far from the perfection that Nature has created. Thus, scientists and engineers are presented with enormous challenges and opportunities to explore, interrogate, and utilize the unique properties of nano materials to improve standards of living and drive economic prosperity

  17. Biomedical engineering and nanotechnology

    International Nuclear Information System (INIS)

    Pawar, S.H.; Khyalappa, R.J.; Yakhmi, J.V.

    2009-01-01

    This book is predominantly a compilation of papers presented in the conference which is focused on the development in biomedical materials, biomedical devises and instrumentation, biomedical effects of electromagnetic radiation, electrotherapy, radiotherapy, biosensors, biotechnology, bioengineering, tissue engineering, clinical engineering and surgical planning, medical imaging, hospital system management, biomedical education, biomedical industry and society, bioinformatics, structured nanomaterial for biomedical application, nano-composites, nano-medicine, synthesis of nanomaterial, nano science and technology development. The papers presented herein contain the scientific substance to suffice the academic directivity of the researchers from the field of biomedicine, biomedical engineering, material science and nanotechnology. Papers relevant to INIS are indexed separately

  18. Progress in nano-electro optics characterization of nano-optical materials and optical near-field interactions

    CERN Document Server

    Ohtsu, Motoichi

    2005-01-01

    This volume focuses on the characterization of nano-optical materials and optical-near field interactions. It begins with the techniques for characterizing the magneto-optical Kerr effect and continues with methods to determine structural and optical properties in high-quality quantum wires with high spatial uniformity. Further topics include: near-field luminescence mapping in InGaN/GaN single quantum well structures in order to interpret the recombination mechanism in InGaN-based nano-structures; and theoretical treatment of the optical near field and optical near-field interactions, providing the basis for investigating the signal transport and associated dissipation in nano-optical devices. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.

  19. Ignition and Reaction Analysis of High Loading Nano-Al/Fluoropolymer Energetic Composite Films

    Science.gov (United States)

    2014-01-01

    A novel hybrid binder system for extrudable composite propellant,” International Journal of Energetic Materials and Chemical Propulsion, Vol. 11...Vol. 27, No. 5, 2002, pp. 262-266. 6 Wang, Y., Travas-Sejdic, J., Steiner, R., “Polymer gel electrolyte supported with microporous polyolefin

  20. Fundamental Issues of Nano-fluid Behavior

    International Nuclear Information System (INIS)

    Williams, Wesley C.

    2006-01-01

    This paper will elucidate some of the behaviors of nano-fluids other than the abnormal conductivity enhancement, which are of importance to the experimental and engineering use of nano-fluids. Nano-fluid is the common name of any sol colloid involving nano-scale (less than 100 nm) sized particles dispersed within a base fluid. It has been shown previously that the dispersion of nano-particulate metallic oxides into water can increase thermal conductivity up to 30-40% over that of the base fluid and anomalously more than the mere weighed average of the colloid. There is a great potential for the use of nano-fluids as a way to enhance fluid/thermal energy transfer systems. Due to the recentness of nano-fluid science, there are still many issues which have not been fully investigated. This paper should act as a primer for the basic understanding of nano-fluid behavior. Particle size and colloid stability are of key importance to the functionality of nano-fluids. The pH and concentration/loading of nano-fluids can alter the size of the nano-particles and also the stability of the fluids. It will be shown through experiment and colloid theory the importance of these parameters. Furthermore, most of the existing literature uses volume percentage as the measure of particle loading, which can often be misleading. There will be discussion of this and other misleading ideas in nano-fluid science. (author)

  1. Synthesis and applications of nano-structured iron oxides/hydroxides

    African Journals Online (AJOL)

    ... in numerous synthesis processes. This review outlines the work being carried out on synthesis of iron oxides in nano form and their various applications. Keywords: nano iron oxides, synthesis, catalysts, magnetic properties, biomedical application. International Journal of Engineering, Science and Technology, Vol. 2, No.

  2. Sociosynergistic Management of the Companies. Economic, Energetic and Ecologic Challenge

    Directory of Open Access Journals (Sweden)

    Dušan Turan

    2008-06-01

    Full Text Available Sociosynergistic management is inevitable condition of nanotechnology tendency of value-creating process of the companies in incoming third level of social division of labor. This management is being a product of transdisciplinary nanocognition and nano-projection of the systems there through creates for the management the operation base for system solution of economic effectiveness, energetic friendliness and ecologic safety of material-technological processes of the companies. He uncovers the sociosynergetics as a system entirety in the limits of abstract thinking, notion-categorical communication and knowingly-practical acting of the subject.

  3. The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering.

    Science.gov (United States)

    Shen, Renze; Xu, Weihong; Xue, Yanxiang; Chen, Luyuan; Ye, Haicheng; Zhong, Enyi; Ye, Zhanchao; Gao, Jie; Yan, Yurong

    2018-04-16

    In this study, nanofibrous scaffolds base on pure polylactic acid (PLA) and chitosan/PLA blends were fabricated by emulsion eletrospinning. By modulating their mechanical and biological properties, cell-compatible and biodegradable scaffolds were developed for periodontal bone regeneration. Pure PLA and different weight ratios of chitosan nano-particle/PLA nano-fibers were fabricated by emulsion eletrospinning. Scanning electron microscope (SEM) was performed to observe the morphology of nano-fibers. Mechanical properties of nano-fibers were tested by single fiber strength tester. Hydrophilic/hydrophobic nature of the nano-fibers was observed by stereomicroscope. In vitro degradation was also tested. Cells were seeded on nano-fibers scaffolds. Changes in cell adhesion, proliferation and osteogenic differentiation were tested by MTT assay and Alizarin Red S staining. Reverse transcription-polymerase chain reaction (RT-PCR) assay was used to evaluate the expression of (Toll-like receptor 4) TLR4, IL-6, IL-8, IL-1β, OPG, RUNX2 mRNA. It is shown that the mean diameter of nano-fibers is about 200 nm. The mean diameter of chitosan nano-particles is about 50 nm. The combination of chitosan nano-particles enhanced the mechanical properties of pure PLA nano-fibers. By adding a certain amount of chitosan nano-particles, it promoted cell adhesion. It also promoted the osteogenic differentiation of bone marrow stem cells (BMSCs) by elevating the expression of osteogenic marker genes such as BSP, Ocn, collagen I, and OPN and enhanced ECM mineralization. Nonetheless, it caused higher expression of inflammatory mediators and TLR4 of human periodontal ligament cells (hPDLCs). The combination of chitosan nano-particles enhanced the mechanical properties of pure PLA nano-fibers and increased its hydrophilicity. Pure PLA nano-fibers scaffold facilitated BMSCs proliferation. Adding an appropriate amount of chitosan nano-particles may promote its properties of cell proliferation

  4. Ceramic compositions based on nano forsterite/nano magnesium aluminate spinel powders

    International Nuclear Information System (INIS)

    Khattab, R.M.; Wahsh, M.M.S.; Khalil, N.M.

    2015-01-01

    According to the wide applications in the field of chemical and engineering industries, forsterite (Mg_2SiO_4)/spinel (MgAl_2O_4) ceramic compositions were the matter of interest of several research works during the last three decades. This work aims at preparation and characterization of improved ceramic bodies based on forsterite and spinel nano powders through controlling the forsterite and spinel contents in the prepared mixes. These prepared ceramic compositions have been investigated through measuring the densification parameters, cold crushing strength as well as volume resistively. Nano spinel was added from 0 to 30 mass% on expense of nano forsterite matrix and fired at 1550 °C for 2 h. The phase composition of the fired samples was examined using x-ray diffraction (XRD) technique. The microstructure of some selected samples was shown using scanning electron microscope (SEM). A pronounced improvement in the sintering, mechanical properties and volume resistively were achieved with increasing of nano spinel addition up to 15 mass%. This is due to the improvement in the matrix of the prepared forsterite/spinel bodies as a result of well distribution of spinel in the forsterite matrix as depicted by SEM analysis. - Highlights: • Ceramic compositions based on nano forsterite/nano-MgAl_2O_4 spinel were synthesized. • CCS was improved (333.78 MPa) through 15 mass% of nano-MgAl_2O_4 spinel addition. • Volume resistivity was enhanced to 203*10"1"3 Ohm cm with 15 mass% of spinel addition. • Beyond 15 mass% spinel, CCS and volume resistivity were decreased.

  5. Life cycles of energetic systems

    International Nuclear Information System (INIS)

    Adnot, Jerome; Marchio, Dominique; Riviere, Philippe; Duplessis, B.; Rabl, A.; Glachant, M.; Aggeri, F.; Benoist, A.; Teulon, H.; Daude, J.

    2012-01-01

    This collective publication aims at being a course for students in engineering of energetic systems, i.e. at learning how to decide to accept or discard a project, to select the most efficient system, to select the optimal system, to select the optimal combination of systems, and to classify independent systems. Thus, it presents methods to analyse system life cycle from an energetic, economic and environmental point of view, describes how to develop an approach to the eco-design of an energy consuming product, how to understand the importance of hypotheses behind abundant and often contradicting publicised results, and to be able to criticise or to put in perspective one's own analysis. The first chapters thus recall some aspects of economic calculation, introduce the assessment of investment and exploitation costs of energetic systems, describe how to assess and internalise environmental costs, present the territorial carbon assessment, discuss the use of the life cycle assessment, and address the issue of environmental management at a product scale. The second part proposes various case studies: an optimal fleet of thermal production of electric power, the eco-design of a refrigerator, the economic and environmental assessment of wind farms

  6. The nano-science of C60 molecule

    International Nuclear Information System (INIS)

    Rafii-Tabar, H.

    2002-01-01

    Over the past few years, nano-science and its associated nano-technology have emerged into prominence in research institutions across the world. They have brought about new scientific and engineering paradigms, allowing for the manipulation of single atoms and molecules, designing and fabricating new materials, atom-by-atom, and devices that operate on significantly reduced time and length scales. One important area of research in nano-science and nano technology is carbon-based physics in the form of fullerene physics. The C 6 0 molecule, and other cage-like fullerenes, together with carbon nano tubes provide objects that can be combined to generate three-dimensional functional structures for use in the anticipated nano-technology of future. The unique properties of C 6 0 can also be exploited in designing nano-phase thin films with applications in nano-scope device technology and processes such as nano-lithography. This requires a deep understanding of the highly complex process of adsorption of this molecule on a variety of substrates. We review the field of nano-scale nucleation and growth of C 6 0 molecules on some of the technologically important substrates. In addition to experimental results, the results of a set of highly accurate computational simulations are also reported

  7. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes).

    Science.gov (United States)

    Coll, Claudia; Notter, Dominic; Gottschalk, Fadri; Sun, Tianyin; Som, Claudia; Nowack, Bernd

    2016-01-01

    The environmental risks of five engineered nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes) were quantified in water, soils, and sediments using probabilistic Species Sensitivity Distributions (pSSDs) and probabilistic predicted environmental concentrations (PECs). For water and soil, enough ecotoxicological endpoints were found for a full risk characterization (between 17 and 73 data points per nanomaterial for water and between 4 and 20 for soil) whereas for sediments, the data availability was not sufficient. Predicted No Effect Concentrations (PNECs) were obtained from the pSSD and used to calculate risk characterization ratios (PEC/PNEC). For most materials and environmental compartments, exposure and effect concentrations were separated by several orders of magnitude. Nano-ZnO in freshwaters and nano-TiO2 in soils were the combinations where the risk characterization ratio was closest to one, meaning that these are compartment/ENM combinations to be studied in more depth with the highest priority. The probabilistic risk quantification allows us to consider the large variability of observed effects in different ecotoxicological studies and the uncertainty in modeled exposure concentrations. The risk characterization results presented in this work allows for a more focused investigation of environmental risks of nanomaterials by consideration of material/compartment combinations where the highest probability for effects with predicted environmental concentrations is likely.

  8. Laser shock ignition of porous silicon based nano-energetic films

    International Nuclear Information System (INIS)

    Plummer, A.; Gascooke, J.; Shapter, J.; Kuznetsov, V. A.; Voelcker, N. H.

    2014-01-01

    Nanoporous silicon films on a silicon wafer were loaded with sodium perchlorate and initiated using illumination with infrared laser pulses to cause laser thermal ignition and laser-generated shock waves. Using Photon Doppler Velocimetry, it was determined that these waves are weak stress waves with a threshold intensity of 131 MPa in the silicon substrate. Shock generation was achieved through confinement of a plasma, generated upon irradiation of an absorptive paint layer held against the substrate side of the wafer. These stress waves were below the threshold required for sample fracturing. Exploiting either the laser thermal or laser-generated shock mechanisms of ignition may permit use of pSi energetic materials in applications otherwise precluded due to their environmental sensitivity

  9. Laser shock ignition of porous silicon based nano-energetic films

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, A.; Gascooke, J.; Shapter, J. [School of Chemical and Physical Sciences, Flinders University, 5042, Bedford Park (Australia); Centre of Expertise in Energetic Materials (CEEM), Bedford Park (Australia); Kuznetsov, V. A., E-mail: nico.voelcker@unisa.edu.au, E-mail: Valerian.Kuznetsov@dsto.defence.gov.au [School of Chemical and Physical Sciences, Flinders University, 5042, Bedford Park (Australia); Centre of Expertise in Energetic Materials (CEEM), Bedford Park (Australia); Weapons and Combat Systems Division, Defence Science and Technology Organisation, Edinburgh 5111 (Australia); Voelcker, N. H., E-mail: nico.voelcker@unisa.edu.au, E-mail: Valerian.Kuznetsov@dsto.defence.gov.au [Mawson Institute, University of South Australia, 5095, Mawson Lakes (Australia)

    2014-08-07

    Nanoporous silicon films on a silicon wafer were loaded with sodium perchlorate and initiated using illumination with infrared laser pulses to cause laser thermal ignition and laser-generated shock waves. Using Photon Doppler Velocimetry, it was determined that these waves are weak stress waves with a threshold intensity of 131 MPa in the silicon substrate. Shock generation was achieved through confinement of a plasma, generated upon irradiation of an absorptive paint layer held against the substrate side of the wafer. These stress waves were below the threshold required for sample fracturing. Exploiting either the laser thermal or laser-generated shock mechanisms of ignition may permit use of pSi energetic materials in applications otherwise precluded due to their environmental sensitivity.

  10. Micro/nano-fabrication technologies for cell biology.

    Science.gov (United States)

    Qian, Tongcheng; Wang, Yingxiao

    2010-10-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities.

  11. The nano-science of C sub 6 0 molecule

    CERN Document Server

    Rafii-Tabar, H

    2002-01-01

    Over the past few years, nano-science and its associated nano-technology have emerged into prominence in research institutions across the world. They have brought about new scientific and engineering paradigms, allowing for the manipulation of single atoms and molecules, designing and fabricating new materials, atom-by-atom, and devices that operate on significantly reduced time and length scales. One important area of research in nano-science and nano technology is carbon-based physics in the form of fullerene physics. The C sub 6 0 molecule, and other cage-like fullerenes, together with carbon nano tubes provide objects that can be combined to generate three-dimensional functional structures for use in the anticipated nano-technology of future. The unique properties of C sub 6 0 can also be exploited in designing nano-phase thin films with applications in nano-scope device technology and processes such as nano-lithography. This requires a deep understanding of the highly complex process of adsorption of thi...

  12. Engineering of the energetic structure of the anode of organic photovoltaic devices utilizing hot-wire deposited transition metal oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Vasilopoulou, M., E-mail: mariva@imel.demokritos.gr [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece); Stathopoulos, N.A.; Savaidis, S.A. [Department of Electronics, Technological and Educational Institute (TEI) of Piraeus, Petrou Ralli & Thivon, 12244 Aegaleo (Greece); Kostis, I. [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece); Department of Electronics, Technological and Educational Institute (TEI) of Piraeus, Petrou Ralli & Thivon, 12244 Aegaleo (Greece); Papadimitropoulos, G. [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece); Davazoglou, D., E-mail: d.davazoglou@imel.demokritos.gr [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece)

    2015-09-30

    Graphical abstract: In this work we perform successful engineering of the anode of organic photovoltaics based on poly(3-hexylthiophene):[6,6]-phenyl butyric acid methyl ester blends by using metal oxide transport layers exhibiting shallow gap states which act as a barrier-free path for hole transport toward the anode. - Highlights: • Interface engineering of the anode. • Organic photovoltaics (OPVs). • Shallow gap states. • Barrier-free hole transport. • Design rules for interface engineering in OPVs. - Abstract: In this work we use hydrogen deposited molybdenum and tungsten oxides (chemically described as H:MO{sub x}x ≤ 3 where M = Mo or W) to control the energetics at the anode of bulk heterojunction (BHJ) organic photovoltaics (OPVs) based on poly(3-hexylthiophene):[6,6]-phenyl butyric acid methyl ester (P3HT:PC{sub 71}BM) blends. Significantly improved current densities and open circuit voltages were achieved as a result of improved hole transport from the P3HT highest occupied molecular orbital (HOMO) toward indium tin oxide (ITO) anode. This was attributed to the formation of shallow gap states in these oxides which are located just below the Fermi level and above the polymer HOMO and thus may act as a barrier-free path for the extraction of holes. Consequently, these states can be used for controlling the energetic structure of the anode of OPVs. By using ultraviolet photoelectron spectroscopy it was found that dependent on the deposition conditions these gap states and work function of the metal oxides may be tailored to contribute to the precise alignment of the HOMO of the organic semiconductor (OSC) with the Fermi level of the anode electrode resulting in further enhancement of the device performance.

  13. Physico-mathematical model of motor vehicle of divided weight with unifying energetic element

    Directory of Open Access Journals (Sweden)

    Leonid M. Petrov

    2015-12-01

    Full Text Available The traction characteristics are important for ensuring of motor vehicle work process. In providing the traction characteristics the average velocity of mobile energetic transport grows, energy costs for work process execution are uprating and operation costs are reducing. The implementation of traction characteristics is performed by transmission of mobile energetic transport. Aim: The aim of the work is improvement of torque transfer technology from the engine to the wheel driving forces through the establishment of new construction of divided weight vehicle transmission. Materials and Methods: Consider a motor vehicle of divided weight with unifying energetic element which performs rotary motions relative to the vehicle frame. Results: It was shown that, the momentum which creates the rotational motion depends on the module and the direction of rotation speed of the unifying energetic element. For the first time, the technology and design of vehicle transmission which differs from previous designs by significant simplifying of the torque transmission from the engine to driving wheels at increased value of efficiency coefficient were proposed.

  14. Experimental development, 1D CFD simulation and energetic analysis of a 15 kw micro-CHP unit based on reciprocating internal combustion engine

    International Nuclear Information System (INIS)

    Muccillo, M.; Gimelli, A.

    2014-01-01

    Cogeneration is commonly recognized as one of the most effective solutions to achieve the increasingly stringent reduction in primary energy consumption and greenhouse emissions. This characteristic led to the adoption of specific directives promoting this technique. In addition, a strategic role in power reliability is recognized to distributed generation. The study and prototyping of cogeneration plants, therefore, has involved many research centres. This paper deals with energetic aspects of CHP referring to the study of a 15 kW micro-CHP plant based on a LPG reciprocating engine designed, built and grid connected. The plant consists of a heat recovery system characterized by a single water circuit recovering heat from exhaust gases, from engine coolant and from the energy radiated by the engine within the shell hosting the plant. Some tests were carried out at whole open throttle and the experimental data were collected. However it was needed to perform a 1D thermo-fluid dynamics simulation of the engine to completely characterize the micro-CHP. As the heat actually recovered depends on the user's thermal load, particularly from the required temperature's level, a comparison of the results for six types of users were performed: residential, hospital, office, commercial, sports, hotel. Both Italian legislative indexes IRE and LT were evaluated, as defined by A.E.E.G resolution n. 42/02 and subsequent updates, as well as the plant's total Primary Energy Saving. - Highlights: • This paper deals with energetic aspects of CHP referring to the study of a 15 kW micro-CHP plant. • The 15 kW micro-CHP plant is based on a GPL reciprocating engine designed, built and grid connected. • Some tests were carried out at whole open throttle and the experimental data were collected. • It was needed to perform a 1D thermo-fluid dynamics simulation of the engine to completely characterize the micro-CHP. • The analysed solution is particularly suited for

  15. Thermal Conductivity of Nano-fluids in Nano-channels

    OpenAIRE

    Frank, M; Asproulis, N; Drikakis, D; 4th Micro and Nano Flows Conference (MNF2014)

    2014-01-01

    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, U...

  16. Nervous System Injury in Response to Contact With Environmental, Engineered and Planetary Micro- and Nano-Sized Particles

    Directory of Open Access Journals (Sweden)

    Tatiana Borisova

    2018-06-01

    Full Text Available Nerve cells take a special place among other cells in organisms because of their unique function mechanism. The plasma membrane of nerve cells from the one hand performs a classical barrier function, thereby being foremost targeted during contact with micro- and nano-sized particles, and from the other hand it is very intensively involved in nerve signal transmission, i.e., depolarization-induced calcium-dependent compound exocytosis realized via vesicle fusion following by their retrieval and calcium-independent permanent neurotransmitter turnover via plasma membrane neurotransmitter transporters that utilize Na+/K+ electrochemical gradient as a driving force. Worldwide traveling air pollution particulate matter is now considered as a possible trigger factor for the development of a variety of neuropathologies. Micro- and nano-sized particles can reach the central nervous system during inhalation avoiding the blood–brain barrier, thereby making synaptic neurotransmission extremely sensitive to their influence. Neurosafety of environmental, engineered and planetary particles is difficult to predict because they possess other features as compared to bulk materials from which the particles are composed of. The capability of the particles to absorb heavy metals and organic neurotoxic molecules from the environment, and moreover, spontaneously interact with proteins and lipids in organisms and form biomolecular corona can considerably change the particles‘ features. The absorption capability occasionally makes them worldwide traveling particulate carriers for delivery of environmental neurotoxic compounds to the brain. Discrepancy of the experimental data on neurotoxicity assessment of micro- and nano-sized particles can be associated with a variability of systems, in which neurotoxicity was analyzed and where protein components of the incubation media forming particle biocorona can significantly distort and even eliminate factual particle

  17. 3rd International Conference on Micro and Nano Flows (MNF2011)

    CERN Document Server

    Koenig, Carola; Micro and Nano Flow Systems for Bioanalysis

    2013-01-01

    Micro and Nano Flow Systems for Bioanalysis addresses the latest developments in biomedical engineering at very small scales. It shows how organic systems require multi-scale understanding in the broadest sense whether the approach  is experimental or mathematical, and whether the physiological state is healthy or diseased. Micro-and nano-fluidics represent  key areas of translational research in which state-of-the-art engineering processes and devices are applied to bedside monitoring and treatment. By applying conventional micro- and nano-engineering to complex organic solids, fluids, and their interactions, leading researchers from throughout the world describe methods and techniques with great potential for use in medicine and clinical practice. Coverage includes the seeming plethora of new, fine-scale optical methods for measuring blood flow as well as endothelial activation and interaction with tissue. Generic areas of modeling and bioelectronics are also considered. In keeping with the recurring them...

  18. Review—Micro and Nano-Engineering Enabled New Generation of Thermoelectric Generator Devices and Applications

    KAUST Repository

    Rojas, Jhonathan P.

    2017-01-13

    As we are advancing our world to smart living, a critical challenge is increasingly pressing - increased energy demand. While we need mega power supplies for running data centers and other emerging applications, we also need instant small- scale power supply for trillions of electronics that we are using and will use in the age of Internet of Things (IoT) and Internet of Everything (IoE). Such power supplies must meet some parallel demands: sufficient energy supply in reliable, safe and affordable manner. In that regard, thermoelectric generators emerge as important renewable energy source with great potential to take advantage of the widely-abundant and normally-wasted thermal energy. Thanks to the advancements of nano-engineered materials, thermoelectric generators\\' (TEG) performance and feasibility are gradually improving. However, still innovative engineering solutions are scarce to sufficiently take the TEG performance and functionalities beyond the status-quo. Opportunities exist to integrate them with emerging fields and technologies such as wearable electronics, bio-integrated systems, cybernetics and others. This review will mainly focus on unorthodox but effective engineering solutions to notch up the overall performance of TEGs and broadening their application base. First, nanotechnology\\'s influence in TEGs\\' development will be introduced, followed by a discussion on how the introduction of mechanically reconfigurable devices can shape up the emerging spectrum of novel TEG technologies. (C) The Author(s) 2017. Published by ECS.

  19. Poly (lactide-co-glycolide nanofibers coated with collagen and nano-hydroxyapatite for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Reza Tavakoli-Darestani

    2013-05-01

    Full Text Available Please cite this article as: Tavakoli-Darestani R, Kazemian GH, Emami M, Kamrani-Rad A. Poly (lactide-co-glycolide nanofibers coated with collagen and nano-hydroxyapatite for bone tissue engineering. Novel Biomed 2013;1:8-15.Background: A combination of polymeric nanofibrous scaffold and bioactive materials is potentially useful in bone regeneration applications.Materials and Methods: In the present study, Poly (lactide-co-glycolide (PLGA nanofibrous scaffolds, fabricated via electrospinning, were initially coated with Type I collagen and then with nano-hydroxyapatite. The prepared scaffolds were then characterized using SEM and their ability for bone regeneration was investigated in a rat critical size bone defect using digital mammography, multislice spiral-computed tomography (MSCT imaging, and histological analysis.Results: Electrospun scaffolds had nanofibrous structure with homogenous distribution of n-HA on collagen-grafted PLGA. After 8 weeks of implantation, no sign of inflammation or complication was observed at the site of surgery. According to digital mammography and MSCT, PLGA nanofibers coated simultaneously with collagen and HA showed the highest regeneration in rat calvarium. In addition, no significant difference was observed in bone repair in the group which received PLGA and the untreated control. This amount was lower than that observed in the group implanted with collagen-coated PLGA. Histological studies confirmed these data and showed osteointegration to the surrounding tissue.Conclusion: Taking all together, it was demonstrated that nanofibrous structures can be used as appropriate support for tissue-engineered scaffolds, and coating them with bioactive materials will provide ideal synthetic grafts. Fabricated PLGA coated with Type I collagen and HA can be used as new bone graft substitutes in orthopaedic surgery and is capable of enhancing bone regeneration via characteristics such as osteoconductivity and

  20. Shielding properties of the ordinary concrete loaded with micro- and nano-particles against neutron and gamma radiations.

    Science.gov (United States)

    Mesbahi, Asghar; Ghiasi, Hosein

    2018-06-01

    The shielding properties of ordinary concrete doped with some micro and nano scaled materials were studied in the current study. Narrow beam geometry was simulated using MCNPX Monte Carlo code and the mass attenuation coefficient of ordinary concrete doped with PbO 2 , Fe 2 O 3 , WO 3 and H 4 B (Boronium) in both nano and micro scales was calculated for photon and neutron beams. Mono-energetic beams of neutrons (100-3000 keV) and photons (142-1250 keV) were used for calculations. The concrete doped with nano-sized particles showed higher neutron removal cross section (7%) and photon attenuation coefficient (8%) relative to micro-particles. Application of nano-sized material in the composition of new concretes for dual protection against neutrons and photons are recommended. For further studies, the calculation of attenuation coefficients of these nano-concretes against higher energies of neutrons and photons and different particles are suggested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Generation and characterization of nano aluminium powder ...

    Indian Academy of Sciences (India)

    TECS

    Generation and characterization of nano aluminium powder obtained through wire ... Department of Aerospace Engineering, Indian Institute of Technology. Madras, Chennai 600 .... pressure developed due to current flow (z-Pinch). Figure 2.

  2. A portable pulmonary delivery system for nano engineered DNA vaccines driven by surface acoustic wave devices

    International Nuclear Information System (INIS)

    Rajapaksa, A.E.; Qi, Aisha; Yeo, L.; Friend, J.

    2010-01-01

    Full text: The increase in the need for effective delivery of potelll vaccines against infectious diseases, require robust yet straightforward pro duction of encapsulated DNA-laden aerosols. Aerosol delivery of drugs represents the next generation of vaccine delivery where the drug is deposited into the lung, which provides an ideal, non-invasive route. Moreover, several features of D A vaccines make them more attractive than conventional vaccines; thus, DNA vaccines have gained global interest for a variety of applications. However, several limitations such as ineffective cellular uptake and intracellular delivery, and degradation of DNA need to be overcome before clin ical applications. In this study, a novel and scalable engineered technique has been developed to create a biodegradable polymer system, which enables controlled delivery of a well designed DNA vaccine for immuno-therapeutics. Surface Acoustic Wave (SAW) atomisation has been found as useful mechanism for atomising fluid samples for medical and industrial devices. It is a straightforward method for synthesising un-agglomerated biodegradable nanoparti cles (<250 nm) in the absence of organic solvents which would represent a major breakthrough for biopharmaceutical encapsulation and delivery. Nano-scale polymer particles for DNA vaccines deliv ery were obtained through an evaporative process of the initial aerosol created by surface acoustic waves at 8-150 MHz, the final size of which could be controlled by modifying the initial polymer concen tration and solid contents. Thus, SAW atomiser represents a promising alternative for the development of a low power device for producing nano-engineered vaccines with a controlled and narrow size distribution as delivery system for genetic immuno-therapeutics.

  3. Metrology at the nano scale

    International Nuclear Information System (INIS)

    Sheridan, B.; Cumpson, P.; Bailey, M.

    2006-01-01

    Progress in nano technology relies on ever more accurate measurements of quantities such as distance, force and current industry has long depended on accurate measurement. In the 19th century, for example, the performance of steam engines was seriously limited by inaccurately made components, a situation that was transformed by Henry Maudsley's screw micrometer calliper. And early in the 20th century, the development of telegraphy relied on improved standards of electrical resistance. Before this, each country had its own standards and cross border communication was difficult. The same is true today of nano technology if it is to be fully exploited by industry. Principles of measurement that work well at the macroscopic level often become completely unworkable at the nano metre scale - about 100 nm and below. Imaging, for example, is not possible on this scale using optical microscopes, and it is virtually impossible to weigh a nano metre-scale object with any accuracy. In addition to needing more accurate measurements, nano technology also often requires a greater variety of measurements than conventional technology. For example, standard techniques used to make microchips generally need accurate length measurements, but the manufacture of electronics at the molecular scale requires magnetic, electrical, mechanical and chemical measurements as well. (U.K.)

  4. Effects of neutral particle beam on nano-crystalline silicon thin films, with application to thin film transistor backplane for flexible active matrix organic light emitting diodes

    International Nuclear Information System (INIS)

    Jang, Jin Nyoung; Song, Byoung Chul; Lee, Dong Hyeok; Yoo, Suk Jae; Lee, Bonju; Hong, MunPyo

    2011-01-01

    A novel deposition process for nano-crystalline silicon (nc-Si) thin films was developed using neutral beam assisted chemical vapor deposition (NBaCVD) technology for the application of the thin film transistor (TFT) backplane of flexible active matrix organic light emitting diode (AMOLED). During the formation of a nc-Si thin film, the energetic particles enhance nano-sized crystalline rather microcrystalline Si in thin films. Neutral Particle Beam (NPB) affects the crystallinity in two ways: (1) NPB energy enhances nano-crystallinity through kinetic energy transfer and chemical annealing, and (2) heavier NPB (such as Ar) induces damage and amorphization through energetic particle impinging. Nc-Si thin film properties effectively can be changed by the reflector bias. As increase of NPB energy limits growing the crystalline, the performance of TFT supports this NPB behavior. The results of nc-Si TFT by NBaCVD demonstrate the technical potentials of neutral beam based processes for achieving high stability and reduced leakage in TFT backplanes for AMOLEDs.

  5. Potential Nano-Enabled Environmental Applications for Radionuclides

    Science.gov (United States)

    This document provides information about nanotechnology materials and processes that may be applicable when cleaning up radioactively contaminated sites or materials, and presents a snapshot of lessons learned in nano-science and engineering.

  6. [Preparation of nano-nacre artificial bone].

    Science.gov (United States)

    Chen, Jian-ting; Tang, Yong-zhi; Zhang, Jian-gang; Wang, Jian-jun; Xiao, Ying

    2008-12-01

    To assess the improvements in the properties of nano-nacre artificial bone prepared on the basis of nacre/polylactide acid composite artificial bone and its potential for clinical use. The compound of nano-scale nacre powder and poly-D, L-lactide acid (PDLLA) was used to prepare the cylindrical hollow artificial bone, whose properties including raw material powder scale, pore size, porosity and biomechanical characteristics were compared with another artificial bone made of micron-scale nacre powder and PDLLA. Scanning electron microscope showed that the average particle size of the nano-nacre powder was 50.4-/+12.4 nm, and the average pore size of the artificial bone prepared using nano-nacre powder was 215.7-/+77.5 microm, as compared with the particle size of the micron-scale nacre powder of 5.0-/+3.0 microm and the pore size of the resultant artificial bone of 205.1-/+72.0 microm. The porosities of nano-nacre artificial bone and the micron-nacre artificial bone were (65.4-/+2.9)% and (53.4-/+2.2)%, respectively, and the two artificial bones had comparable compressive strength and Young's modulus, but the flexural strength of the nano-nacre artificial bone was lower than that of the micro-nacre artificial bone. The nano-nacre artificial bone allows better biodegradability and possesses appropriate pore size, porosity and biomechanical properties for use as a promising material in bone tissue engineering.

  7. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ning; Qin, Lijun [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Hao, Haixia [Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Hui, Longfei [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Zhao, Fengqi [Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Feng, Hao, E-mail: fenghao98@hotmail.com [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Shaanxi (China)

    2017-06-30

    Highlights: • Energetic rGO/Al@Fe{sub 2}O{sub 3}nanocompositeswerefabricatedbyatomiclayerdepositionapproach. • A novel Al@Fe{sub 2}O{sub 3} unit featuring core-shell structure was decorated on the graphene nanosheet. • RGO/Al@Fe{sub 2}O{sub 3} nanocomposite exhibits superior energy release and reduced electrostatic ignition hazard. - Abstract: Nanocomposites consisting of iron oxide (Fe{sub 2}O{sub 3}) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe{sub 2}O{sub 3} was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe{sub 2}O{sub 3} energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe{sub 2}O{sub 3} composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe{sub 2}O{sub 3} nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe{sub 2}O{sub 3} nanoparticles. The enhanced energy release of rGO/Al@Fe{sub 2}O{sub 3} is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe{sub 2}O{sub 3} composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.

  8. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    International Nuclear Information System (INIS)

    Yan, Ning; Qin, Lijun; Hao, Haixia; Hui, Longfei; Zhao, Fengqi; Feng, Hao

    2017-01-01

    Highlights: • Energetic rGO/Al@Fe 2 O 3 nanocompositeswerefabricatedbyatomiclayerdepositionapproach. • A novel Al@Fe 2 O 3 unit featuring core-shell structure was decorated on the graphene nanosheet. • RGO/Al@Fe 2 O 3 nanocomposite exhibits superior energy release and reduced electrostatic ignition hazard. - Abstract: Nanocomposites consisting of iron oxide (Fe 2 O 3 ) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe 2 O 3 was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe 2 O 3 energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe 2 O 3 composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe 2 O 3 nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe 2 O 3 nanoparticles. The enhanced energy release of rGO/Al@Fe 2 O 3 is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe 2 O 3 composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.

  9. Template-assisted growth of nano structured functional materials

    International Nuclear Information System (INIS)

    Ying, K.K.; Nur Ubaidah Saidin; Khuan, N.I.; Suhaila Hani Ilias; Foo, C.T.

    2012-01-01

    Template-assisted growth is an important nano electrochemical deposition technique for synthesizing one-dimensional (1-D) nano structures with uniformly well-controlled shapes and sizes. A good template with well-defined dimensions is imperative for realizing this task. Porous anodic alumina (PAA) has been a favorable candidate for this purpose as it can be tailor-made with precise pore geometries, such as pore length and diameter as well as inter-pore distances, via the anodization of pure aluminium. This paper reports the fabrication of PAA templates and electrochemical synthesis of functional nano structures in the form of nano wires using PAA templates as scaffolds. Axial heterostructure and homogeneous nano wires formed by engineering materials configuration via composition and/ or layer thickness variations were fabricated for different functionalities. X-ray diffraction and imaging techniques were used to alucidate the microstructures, morphologies and chemical compositions of the nano wires produced. Due to their large surface area-to-volume ratios, and therefore high sensitivities, these functional nano structures have useful applications as critical components in nano sensor devices and various areas of nano technology. Potential applications include as hydrogen gas sensors in nuclear power plant for monitoring structural integrity of reactor components and containment building, as well as environmental monitoring of air pollution and leakages of toxic gases and chemicals. (Author)

  10. NanoClusters Enhance Drug Delivery in Mechanical Ventilation

    Science.gov (United States)

    Pornputtapitak, Warangkana

    The overall goal of this thesis was to develop a dry powder delivery system for patients on mechanical ventilation. The studies were divided into two parts: the formulation development and the device design. The pulmonary system is an attractive route for drug delivery since the lungs have a large accessible surface area for treatment or drug absorption. For ventilated patients, inhaled drugs have to successfully navigate ventilator tubing and an endotracheal tube. Agglomerates of drug nanoparticles (also known as 'NanoClusters') are fine dry powder aerosols that were hypothesized to enable drug delivery through ventilator circuits. This Thesis systematically investigated formulations of NanoClusters and their aerosol performance in a conventional inhaler and a device designed for use during mechanical ventilation. These engineered powders of budesonide (NC-Bud) were delivered via a MonodoseRTM inhaler or a novel device through commercial endotracheal tubes, and analyzed by cascade impaction. NC-Bud had a higher efficiency of aerosol delivery compared to micronized stock budesonide. The delivery efficiency was independent of ventilator parameters such as inspiration patterns, inspiration volumes, and inspiration flow rates. A novel device designed to fit directly to the ventilator and endotracheal tubing connections and the MonodoseRTM inhaler showed the same efficiency of drug delivery. The new device combined with NanoCluster formulation technology, therefore, allowed convenient and efficient drug delivery through endotracheal tubes. Furthermore, itraconazole (ITZ), a triazole antifungal agent, was formulated as a NanoCluster powder via milling (top-down process) or precipitation (bottom-up process) without using any excipients. ITZ NanoClusters prepared by wet milling showed better aerosol performance compared to micronized stock ITZ and ITZ NanoClusters prepared by precipitation. ITZ NanoClusters prepared by precipitation methods also showed an amorphous state

  11. In vitro corrosion and cytocompatibility properties of nano-whisker hydroxyapatite coating on magnesium alloy for bone tissue engineering applications.

    Science.gov (United States)

    Yang, Huawei; Yan, Xueyu; Ling, Min; Xiong, Zuquan; Ou, Caiwen; Lu, Wei

    2015-03-17

    We report here the successful fabrication of nano-whisker hydroxyapatite (nHA) coatings on Mg alloy by using a simple one-step hydrothermal process in aqueous solution. The nHA coating shows uniform structure and high crystallinity. Results indicate that nHA coating is promising for improving the in vitro corrosion and cytocompatibility properties of Mg-based implants and devices for bone tissue engineering. In addition, the simple hydrothermal deposition method used in the current study is also applicable to substrates with complex shapes or surface geometries.

  12. Ion implantation induced conducting nano-cluster formation in PPO

    International Nuclear Information System (INIS)

    Das, A.; Patnaik, A.; Ghosh, G.; Dhara, S.

    1997-01-01

    Conversion of polymers and non-polymeric organic molecules from insulating to semiconducting materials as an effect of energetic ion implantation is an established fact. Formation of nano-clusters enriched with carbonaceous materials are made responsible for the insulator-semiconductor transition. Conduction in these implanted materials is observed to follow variable range hopping (VRH) mechanism. Poly(2,6-dimethyl phenylene oxide) [PPO] compatible in various proportion with polystyrene is used as a high thermal resistant insulating polymer. PPO has been used for the first time in the ion implantation study

  13. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    Science.gov (United States)

    Yan, Ning; Qin, Lijun; Hao, Haixia; Hui, Longfei; Zhao, Fengqi; Feng, Hao

    2017-06-01

    Nanocomposites consisting of iron oxide (Fe2O3) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe2O3 was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe2O3 energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe2O3 composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe2O3 nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe2O3 nanoparticles. The enhanced energy release of rGO/Al@Fe2O3 is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe2O3 composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.

  14. Dynamic probabilistic material flow analysis of nano-SiO2, nano iron oxides, nano-CeO2, nano-Al2O3, and quantum dots in seven European regions.

    Science.gov (United States)

    Wang, Yan; Nowack, Bernd

    2018-04-01

    Static environmental exposure assessment models based on material flow analysis (MFA) have previously been used to estimate flows of engineered nanomaterials (ENMs) to the environment. However, such models do not account for changes in the system behavior over time. Dynamic MFA used in this study includes the time-dependent development of the modelling system by considering accumulation of ENMs in stocks and the environment, and the dynamic release of ENMs from nano-products. In addition, this study also included regional variations in population, waste management systems, and environmental compartments, which subsequently influence the environmental release and concentrations of ENMs. We have estimated the flows and release concentrations of nano-SiO 2 , nano-iron oxides, nano-CeO 2 , nano-Al 2 O 3 , and quantum dots in the EU and six geographical sub-regions in Europe (Central Europe, Northern Europe, Southern Europe, Eastern Europe, South-eastern Europe, and Switzerland). The model predicts that a large amount of ENMs are accumulated in stocks (not considering further transformation). For example, in the EU 2040 Mt of nano-SiO 2 are stored in the in-use stock, 80,400 tonnes have been accumulated in sediments and 65,600 tonnes in natural and urban soil from 1990 to 2014. The magnitude of flows in waste management processes in different regions varies because of differences in waste handling. For example, concentrations in landfilled waste are lowest in South-eastern Europe due to dilution by the high amount of landfilled waste in the region. The flows predicted in this work can serve as improved input data for mechanistic environmental fate models and risk assessment studies compared to previous estimates using static models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Synthesis of Boron Nano wires, Nano tubes, and Nano sheets

    International Nuclear Information System (INIS)

    Patel, R.B.; Chou, T.; Iqbal, Z.

    2014-01-01

    The synthesis of boron nano wires, nano tubes, and nano sheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nano materials. The materials were made by using various combinations of MgB 2 , Mg(BH 4 ) 2 , MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nano wires, boron nano tubes, and boron nano sheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  16. Preparation and Characterization of Pyrotechnics Binder-Coated Nano-Aluminum Composite Particles

    Science.gov (United States)

    Ye, Mingquan; Zhang, Shuting; Liu, Songsong; Han, Aijun; Chen, Xin

    2017-07-01

    The aim of this article is to protect the activity of nano-aluminum (Al) particles in solid rocket propellants and pyrotechnics. The morphology, structure, active aluminum content, and thermal and catalytic properties of the coated samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry-differential scanning calorimetry (TG-DSC), and oxidation-reduction titration methods. The results indicated that nano-Al particles could be effectively coated with phenolic resin (PF), fluororubber (Viton B), and shellac through a solvent/nonsolvent method. The energetic composite particles have core-shell structures and the thickness of the coating film is about 5-15 nm. Analysis of the active Al content revealed that Viton B coating had a much better protective effect. The TG-DSC results showed that the energy amount and energy release rate of PF-, Viton B-, and shellac-coated Al particles were larger than those of the raw nano-Al particles. The catalytic effects of coated Al particles on the thermal decomposition of ammonium perchlorate (AP) were better than those of raw nano-Al particles, and the effect of shellac-coated Al particles was significantly better than that of Viton B-coated Al particles.

  17. Radiation induced nano structures

    International Nuclear Information System (INIS)

    Ibragimova, E.M.; Kalanov, M.U.; Khakimov, Z.

    2006-01-01

    , semiconducting and conducting materials and a few examples of computer modeling of Si and C nano-clusters, which have been carried out at the Institute of Nuclear Physics recently. After a long term gamma-irradiation of graphite at elevated temperature and pressure, nano-precipitates of diamond are formed with the critical size and definite orientation. The structure of graphite matrix changes so as to ensure the minimal lattice strains at the boundary with diamond nano-crystallites. Recently we suggested a regular, quasi-one dimensional growth pattern of Si clusters, that is energetically competitive with a growth pattern predicted by ab initio methods for clusters of up to 20 Si atoms. We used computer simulations to find the maximum size to which clusters from this regular pattern can grow, and to identify a mechanism that restricts such a growth. These simulations were performed using a combination of the non-conventional tight-binding method with a molecular-dynamics approach. Spherical clusters with a diamond-like core were also studied. We found that clusters with a diamond-like core were less stable than the clusters from this one-dimensional growth pattern, over the range of cluster sizes considered. The diamond-like structures of the former tend to become amorphous because of a large number of surface states; the mixing of fully and partially occupied states initiates a great variety of distortions from the ideal quasi-spherical diamond-like structure

  18. Crystal engineering of giant molecules based on perylene diimide conjugated polyhedral oligomeric silsesquioxane nano-atom

    Science.gov (United States)

    Ren, He

    Molecular architectures and topologies are found contributing to the formation of supramolecular structures of giant molecules. Dr. Cheng's research group developed a diverse of giant molecules via precisely controlled chemistry synthetic routes. These giant molecules can be categorized into several different families, namely giant surfactants, giant shape amphiphiles and giant polyhedron. By analyzing the hierarchical structures of these carefully designed and precisely synthesized giant molecules, the structural factors which affect, or even dominates, in some cases, the formation of supramolecular structures are revealed in these intensive researches. The results will further contribute to the understanding of dependence of supramolecular structures on molecular designs as well as molecular topology, and providing a practical solution to the scaling up of microscopic molecular functionalities to macroscopic material properties. Molecular Nano Particles (MNPs), including fullerene (C60), POSS, Polyoxometalate (POM) and proteins etc., is defined and applied as a specific type of building blocks in the design and synthesis of giant molecules. The persistence in shape and symmetry is considered as one of the major properties of MNPs. This persistence will support the construction of giant molecules for further supramolecular structures' study by introducing specific shapes, or precisely located side groups which will facilitate self-assembling behaviors with pre-programmed secondary interactions. Dictating material physical properties by its chemical composition is an attractive yet currently failed approach in the study of materials. However, the pursuit of determining material properties by microscopic molecular level properties is never seized, and found its solution when the idea of crystal engineering is raised: should each atom in the material is located exactly where it is designed to be and is properly bonded, the property of the material is hence determined

  19. FY2012 Engineering Research & Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Monya

    2014-07-22

    This report documents engineering research, development, and technology advancements performed by LLNL during fiscal year 2012 in the following areas: computational engineering, engineering information systems, micro/nano-devices and structures, and measurement technologies.

  20. Progress in Nano-Electro-Optics VII Chemical, Biological, and Nanophotonic Technologies for Nano-Optical Devices and Systems

    CERN Document Server

    Ohtsu, Motoichi

    2010-01-01

    This book focuses on chemical and nanophotonic technology to be used to develop novel nano-optical devices and systems. It begins with temperature- and photo-induced phase transition of ferromagnetic materials. Further topics include: energy transfer in artificial photosynthesis, homoepitaxial multiple quantum wells in ZnO, near-field photochemical etching and nanophotonic devices based on a nonadiabatic process and optical near-field energy transfer, respectively and polarization control in the optical near-field for optical information security. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.

  1. Study of Two-Phase Heat Transfer in Nano-fluids for Nuclear Applications

    International Nuclear Information System (INIS)

    Kim, S.J.; Truong, B.; Buongiorno, J.; Hu, L.W.; Bang, I.C.

    2006-01-01

    Nano-fluids are engineered colloidal suspensions of nano-particles in a base fluid. We are investigating the two-phase heat transfer behavior of water-based nano-fluids, to evaluate their potential use in nuclear applications, including the PWR primary coolant and PWR and BWR safety systems. A simple pool boiling wire experiment shows that a significant increase in Critical Heat Flux (CHF) can be achieved at modest nano-particle concentrations. For example, the CHF increases by 50% in nano-fluids with alumina nano-particles at 0.001%v concentration. The CHF enhancement appears to correlate with the presence of a layer of nano-particles that builds up on the heated surface during nucleate boiling. A review of the prevalent Departure from Nucleate Boiling (DNB) theories suggests that an alteration of the nucleation site density (brought about by the nano-particle layer) could plausibly explain the CHF enhancement. (authors)

  2. Nano-technology and nano-toxicology.

    Science.gov (United States)

    Maynard, Robert L

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology.

  3. In Vitro Corrosion and Cytocompatibility Properties of Nano-Whisker Hydroxyapatite Coating on Magnesium Alloy for Bone Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Huawei Yang

    2015-03-01

    Full Text Available We report here the successful fabrication of nano-whisker hydroxyapatite (nHA coatings on Mg alloy by using a simple one-step hydrothermal process in aqueous solution. The nHA coating shows uniform structure and high crystallinity. Results indicate that nHA coating is promising for improving the in vitro corrosion and cytocompatibility properties of Mg-based implants and devices for bone tissue engineering. In addition, the simple hydrothermal deposition method used in the current study is also applicable to substrates with complex shapes or surface geometries.

  4. PREFACE: International Conference on Structural Nano Composites (NANOSTRUC 2012)

    Science.gov (United States)

    Njuguna, James

    2012-09-01

    Dear Colleagues It is a great pleasure to welcome you to NanoStruc2012 at Cranfield University. The purpose of the 2012 International Conference on Structural Nano Composites (NanoStruc2012) is to promote activities in various areas of materials and structures by providing a forum for exchange of ideas, presentation of technical achievements and discussion of future directions. NanoStruc brings together an international community of experts to discuss the state-of-the-art, new research results, perspectives of future developments, and innovative applications relevant to structural materials, engineering structures, nanocomposites, modelling and simulations, and their related application areas. The conference is split in 7 panel sessions, Metallic Nanocomposites and Coatings, Silica based Nanocomposites, safty of Nanomaterials, Carboin based Nanocomposites, Multscale Modelling, Bio materials and Application of Nanomaterials. All accepted Papers will be published in the IOP Conference Series: Materials Science and Engineering (MSE), and included in the NanoStruc online digital library. The abstracts will be indexed in Scopus, Compedex, Inspec, INIS (International Nuclear Information System), Chemical Abstracts, NASA Astrophysics Data System and Polymer Library. Before ending this message, I would like to acknowledge the hard work, professional skills and efficiency of the team which ensured the general organisation. As a conclusion, I would like to Welcome you to the Nanostruc2012 and wish you a stimulating Conference and a wonderful time. On behalf of the scientific committee, Signature James Njuguna Conference Chair The PDF of this preface also contains committee listings and associates logos.

  5. Continuous engineering of nano-cocrystals for medical and energetic applications

    OpenAIRE

    Spitzer, D.; Risse, B.; Schnell, F.; Pichot, V.; Klaumünzer, M.; Schaefer, M. R.

    2014-01-01

    Cocrystals, solid mixtures of different molecules on molecular scale, are supposed to be tailor made materials with improved employability compared to their pristine individual components in domains such as medicine and explosives. In medicine, cocrystals are obtained by crystallization of active pharmaceutical ingredients with precisely chosen coformers to design medicaments that demonstrate enhanced stability, high solubility, and therefore high bioavailability and optimized drug up-take. N...

  6. Progress in Nano-Electro-Optics III Industrial Applications and Dynamics of the Nano-Optical System

    CERN Document Server

    Ohtsu, Motoichi

    2005-01-01

    This unique monograph series "Progress in Nano-Electro Optics" reviews the results of advanced studies of electro-optics on the nanometric scale. This third volume covers the most recent topics of theoretical and experimental interest including classical and quantum optics, organic and inorganic material science and technology, surface science, spectroscopy, atom manipulation, photonics, and electronics. Each chapter is written by one or more leading scientists from the relevant field. Thus, high-quality scientific and technical information is provided to scientists, engineers, and students engaged in nano-electro optics and nanophotonics research. The first two volumes addressed the "Basics and Theory of Near Field Optics" (2002) and "Novel Devices and Atom Manipulation" (2003).

  7. Polymer/Layered Silicate Nano composites

    International Nuclear Information System (INIS)

    Bakhit, M.E.E.H.

    2012-01-01

    Polymer–clay nano composites have attracted the attention of many researchers and experimental results are presented in a large number of recent papers and patents because of the outstanding mechanical properties and low gas permeabilities that are achieved in many cases. Polymer-clay nano composites are a new class of mineral-field polymer that contain relatively small amounts (<10%) of nanometer-sized clay particles. Polymer/clay nano composites have their origin in the pioneering research conducted at Toyota Central Research Laboratories and the first historical record goes back to 1987. The matrix was nylon-6 and the filler MMT. Because of its many advantages such as high mechanical properties, good gas barrier, flame retardation, etc. polymer/clay nano composites have been intensely investigated and is currently the subject of many research programs. Nano composite materials are commercially important and several types of products with different shapes and applications including food packaging films and containers, engine parts, dental materials, etc. are now available in markets. A number of synthesis routes have been developed in the recent years to prepare these materials, which include intercalation of polymers or prepolymers from solution, in-situ polymerization, melt intercalation etc. In this study, new nano composite materials were produced from the components of rubber (Nbr, SBR and EPDM) as the polymeric matrix and organically modified quaternary alkylammonium montmorillonite in different contents (3, 5, 7, and 10 phr) as the filler by using an extruder then, the rubber nano composite sheets were irradiated at a dose of 0, 50, 75, 100 and 150 KGy using Electron beam Irradiation technique as a crosslinking agent. These new materials can be characterized by using various analytical techniques including X-ray diffractometer XRD, Thermogravimetric analyzer TGA, scanning electron microscope (SEM), transmission electron microscope (TEM),Fourier transform

  8. Density functional theory studies on the nano-scaled composites consisted of graphene and acyl hydrazone molecules

    Science.gov (United States)

    Ren, J. L.; Zhou, L.; Lv, Z. C.; Ding, C. H.; Wu, Y. H.; Bai, H. C.

    2016-07-01

    Graphene, which is the first obtained single atomic layer 2D materials, has drawn a great of concern in nano biotechnology due to the unique property. On one hand, acyl hydrazone compounds belonging to the Schif bases have aroused considerable attention in medicine, pharmacy, and analytical reagent. However, few understanding about the interaction between graphene and acyl hydrazone molecules is now available. And such investigations are much crucial for the applications of these new nano-scaled composites. The current work revealed theoretical investigations on the nano-scaled composites built by acyl hydrazone molecules loaded on the surface of graphene. The relative energy, electronic property and the interaction between the counterparts of graphene/acyl hydrazone composites are investigated based on the density functional theory calculations. According to the obtained adsorption energy, the formation of the nano-scaled composite from the isolated graphene and acyl hydrazone molecule is exothermic, and thus it is energetically favorable to form these nano composites in viewpoint of total energy change. The frontier molecular orbital for the nano composite is mainly distributed at the graphene part, leading to that the energy levels of the frontier molecular orbital of the nano composites are very close to that of isolated graphene. Moreover, the counterpart interaction for the graphene/acyl hydrazone composites is also explored based on the discussions of orbital hybridization, charge redistribution and Van der Waals interaction.

  9. Micro/nano engineering on stainless steel substrates to produce superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beckford, Samuel; Zou Min, E-mail: mzou@uark.edu

    2011-12-30

    Creating micro-/nano-scale topography on material surfaces to change their wetting properties has been a subject of much interest in recent years. Wenzel in 1936 and Cassie and Baxter in 1944 proposed that by microscopically increasing the surface roughness of a substrate, it is possible to increase its hydrophobicity. This paper reports the fabrication of micro-textured surfaces and nano-textured surfaces, and the combination of both on stainless steel substrates by sandblasting, thermal evaporation of aluminum, and aluminum-induced crystallization (AIC) of amorphous silicon (a-Si). Meanwhile, fluorinated carbon films were used to change the chemical composition of the surfaces to render the surfaces more hydrophobic. These surface modifications were investigated to create superhydrophobic surfaces on stainless steel substrates. The topography resulting from these surface modifications was analyzed by scanning electron microscopy and surface profilometry. The wetting properties of these surfaces were characterized by water contact angle measurement. The results of this study show that superhydrophobic surfaces can be produced by either micro-scale surface texturing or nano-scale surface texturing, or the combination of both, after fluorinated carbon film deposition.

  10. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone.

    Science.gov (United States)

    Chen, Cen; Bang, Sumi; Cho, Younghak; Lee, Sahnghoon; Lee, Inseop; Zhang, ShengMin; Noh, Insup

    2016-01-01

    This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines.

  11. An engineered polypeptide around nano-sized manganese-calcium oxide: copying plants for water oxidation.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Sarvi, Bahram; Haghighi, Behzad

    2015-09-14

    Synthesis of new efficient catalysts inspired by Nature is a key goal in the production of clean fuel. Different compounds based on manganese oxide have been investigated in order to find their water-oxidation activity. Herein, we introduce a novel engineered polypeptide containing tyrosine around nano-sized manganese-calcium oxide, which was shown to be a highly active catalyst toward water oxidation at low overpotential (240 mV), with high turnover frequency of 1.5 × 10(-2) s(-1) at pH = 6.3 in the Mn(III)/Mn(IV) oxidation range. The compound is a novel structural and efficient functional model for the water-oxidizing complex in Photosystem II. A new proposed clever strategy used by Nature in water oxidation is also discussed. The new model of the water-oxidizing complex opens a new perspective for synthesis of efficient water-oxidation catalysts.

  12. Strain distributions in nano-onions with uniform and non-uniform compositions

    International Nuclear Information System (INIS)

    Duan, H L; Karihaloo, B L; Wang, J; Yi, X

    2006-01-01

    Nano-onions are ellipsoidal or spherical particles consisting of a core surrounded by concentric shells of nanometre size. Nano-onions produced by self-assembly and colloidal techniques have different structures and compositions, and thus differ in the state of strains. The mismatch of the thermal expansion coefficients and lattice constants between neighbouring shells induces stress/strain fields in the core and shells, which in turn affect their physical/mechanical properties and/or the properties of the composites containing them. In this paper, the strains in embedded and free-standing nano-onions with uniform and non-uniform compositions are studied in detail. It is found that the strains in the nano-onions can be modified by adjusting their compositions and structures. The results are useful for the band structure engineering of semiconductor nano-onions

  13. Novel technique for enhancement of diesel fuel: Impact of aqueous alumina nano-fluid on engine's performance and emissions

    Directory of Open Access Journals (Sweden)

    Miqdam Tariq Chaichan

    2017-09-01

    Full Text Available Nanofluids are suspensions of nanoparticles mixed in liquids and show significant enhancement in some thermophysical and combustion properties of the resulting suspension. In this study, the changes in the performance and emissions characteristics of a conventional diesel engine are verified experimentally using the combustion of a mixture of nanofluid (water and Al2O3 and conventional Iraqi diesel fuel. The nano-Al2O3 (51 nm diameter was used in this study; multiple weight ratios of this nanoparticle were mixed with water to form a nanoparticle suspension. The weight fractions used were 1%, 3%, 5%, 7%, and 10%. After that, a fixed volume ratio of the resulting suspension (10% was added to the diesel and completely mixed. The results indicate that the addition of the nano-alumina-water suspension has increased the brake thermal efficiency up to 5.5%, and reduced the relative fuel consumption up to 3.94%, compared to diesel fuel. In the analysis of emitted exhaust emissions, CO, HC, NOx, PM and noise emissions, they were found to be lower than diesel fuel, while CO2 emissions increased.

  14. Effect of fuel oxygen on the energetic and exergetic efficiency of a compression ignition engine fuelled separately with palm and karanja biodiesels

    International Nuclear Information System (INIS)

    Jena, Jibanananda; Misra, Rahul Dev

    2014-01-01

    Exergy analysis of any thermodynamic system can take care of the limitations of energy analysis such as irreversible losses, their magnitude and the source of thermodynamic inefficiencies apart from energy losses. In the present study, both the analyses along with heat release analysis are conducted on a natural aspirated diesel engine fuelled separately with palm biodiesel (PB), karanja biodiesel (KB), and petrodiesel (PD) using the experimental data. Since the engine performs best at about 85% loading condition, the energetic and exergetic performance parameters of the engine are evaluated at 85% loading condition for each type of fuel. The aim of the study is to determine the effect of fuel oxygen on energy and exergy efficiencies of a CI (compression ignition) engine. Various exergy losses, exergy destruction and their ratios associated with the heat transfer through cooling water, radiation, exhaust gas, friction, and some uncounted exergy destruction are investigated. Apart from exergy loss due to heat transfer; the uncounted exergy destruction (due to combustion) also plays a major role in the system inefficiency. Based on the comparative assessment of the obtained results, it is concluded that a better combustion with less irreversibility is possible with the increase in O 2 content in the fuel. - Highlights: • Efficiency of a CI engine increases with the increase in oxygen quantity in the fuel. • Irreversibility of a CI engine decreases with increase in oxygen content in the fuel. • Palm biodiesel performs better than karanja biodiesel and petrodiesel for a CI engine

  15. Optimizing critical heat flux enhancement through nano-particle-based surface modifications

    International Nuclear Information System (INIS)

    Truong, B.; Hu, L. W.; Buongiorno, J.

    2008-01-01

    Colloidal dispersions of nano-particles, also known as nano-fluids, have shown to yield significant Critical Heat Flux (CHF) enhancement. The CHF enhancement mechanism in nano-fluids is due to the buildup of a porous layer of nano-particles upon boiling. Unlike microporous coatings that had been studied extensively, nano-particles have the advantages of forming a thin layer on the substrate with surface roughness ranges from the sub-micron to several microns. By tuning the chemical properties it is possible to coat the nano-particles in colloidal dispersions onto the desired surface, as has been demonstrated in engineering thin film industry. Building on recent work conducted at MIT, this paper illustrates the maximum CHF enhancement that can be achieved based on existing correlations. Optimization of the CHF enhancement by incorporation of key factors, such as the surface wettability and roughness, will also be discussed. (authors)

  16. Nano Materials

    International Nuclear Information System (INIS)

    Jin, In Ju; Lee, Ik Mo; Kwon, Yeung Gu

    2006-02-01

    This book introduces background of nano science such as summary, plenty room at the bottom, access way to nano technique, nanoparticles using bottom-up method which are a marvel of nature, and modern alchemy : chemical synthesis of artificial nano structure, understanding of quantum mechanics, STM/AFM, nano metal powder, ceramic nanoparticles, nano structure film, manufacture of nanoparticles using reverse micelle method, carbon nano tube, sol-gel material, nano energy material, nano catalyst nano bio material technology and spintronics.

  17. Nano-technology and nano-toxicology

    OpenAIRE

    Maynard, Robert L.

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of ...

  18. Apatite nano-crystalline surface modification of poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering: implications for protein adsorption.

    Science.gov (United States)

    Jabbarzadeh, Ehsan; Nair, Lakshmi S; Khan, Yusuf M; Deng, Meng; Laurencin, Cato T

    2007-01-01

    A number of bone tissue engineering approaches are aimed at (i) increasing the osteconductivity and osteoinductivity of matrices, and (ii) incorporating bioactive molecules within the scaffolds. In this study we examined the growth of a nano-crystalline mineral layer on poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds for tissue engineering. In addition, the influence of the mineral precipitate layer on protein adsorption on the scaffolds was studied. Scaffolds were mineralized by incubation in simulated body fluid (SBF). Scanning electron microscopy (SEM) analysis revealed that mineralized scaffolds possess a rough surface with a plate-like nanostructure covering the surface of microspheres. The results of protein adsorption and release studies showed that while the protein release pattern was similar for PLAGA and mineralized PLAGA scaffolds, precipitation of the mineral layer on PLAGA led to enhanced protein adsorption and slower protein release. Mineralization of tissue-engineered surfaces provides a method for both imparting bioactivity and controlling levels of protein adsorption and release.

  19. Revising REACH guidance on information requirements and chemical safety assessment for engineered nanomaterials for aquatic ecotoxicity endpoints: recommendations from the EnvNano project

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss; Sørensen, Sara Nørgaard; Skjolding, Lars Michael

    2017-01-01

    be made applicable to nanomaterials. European Research Council project EnvNano—Environmental Effects and Risk Evaluation of Engineered, which ran from 2011 to 2016, took another outset by assuming that: “The behaviour of nanoparticles in suspension is fundamentally different from that of chemicals......The European Chemical Agency (ECHA) is in the process of revising its guidance documents on how to address the challenges of ecotoxicological testing of nanomaterials. In these revisions, outset is taken in the hypothesis that ecotoxicological test methods, developed for soluble chemicals, can...... in solution”. The aim of this paper is to present the findings of the EnvNano project and through these provide the scientific background for specific recommendations on how ECHA guidance could be further improved. Key EnvNano findings such as the need to characterize dispersion and dissolution rates in stock...

  20. Carbon nano tubes embedded in polymer nano fibers

    International Nuclear Information System (INIS)

    Dror, Y.; Kedem, S.; Khalfin, R.L.; Paz, Y.; Cohenl, Y.; Salalha, Y.; Yarin, A.L.; Zussman, A.

    2004-01-01

    Full Text: The electro spinning process was used successfully to embed Multi-walled carbon nano tubes (MWCNTs) and single-walled carbon nano tubes (SWCNTs) in a matrix of poly(ethylene oxide) (PEO) forming composite nano fibers. Initial dispersion of SWCNTs in water was achieved by the use of an amphphilic alternating copolymer of styrene and sodium maleate. MWNT dispersion was achieved by ionic and nonionic surfactants. The distribution and conformation of the nano tubes in the nano fibers were studied by transmission electron microscopy (TEM). Oxygen plasma etching was used to expose the nano tubes within the nano fibers to facilitate direct observation. Nano tube alignment within the nano fibers was shown to depend strongly on the quality of the initial dispersions. Well-dispersed and separated nano tubes were embedded in a straight and aligned form while entangled non-separated nano tubes were incorporated as dense aggregates. X-ray diffraction demonstrated a high degree of orientation of the PEO crystals in the electro spun nano fibers with embedded SWCNTs, whereas incorporation of MVCNTs had a detrimental effect on the polymer orientation. Composite polymer nano fibers containing dispersed phases of nanometric TiO 2 particles and MWCNTs were also prepared electro spinning. In this case, the polymer matrix was poly(acrylonitrile) (PAN). The morphology and possible applications of these composite nano fibers will be discussed

  1. Formation of carbon nano- and micro-structures on C+1 irradiated copper surfaces

    International Nuclear Information System (INIS)

    Ahmad, Shoaib

    2013-01-01

    A series of experiments has identified mechanisms of carbon nano- and micro-structure formation at room temperature, without catalyst and in the environment of immiscible metallic surroundings. The structures include threaded nano fibres, graphitic sheets and carbon onions. Copper as substrate was used due to its immiscibility with carbon. Energetic carbon ions (C + 1 ) of 0.2–2.0 MeV irradiated Cu targets. Cu substrates, apertures and 3 mm dia TEM Cu grids were implanted with the carbon. We observed wide range of μm-size structures formed on Cu grids and along the edges of the irradiated apertures. These are shown to be threaded nano fibers (TNF) of few μm thicknesses with lengths varying from 10 to 3000 μm. Secondary electron microscopy (SEM) identifies the μm-size structures while Confocal microscopy was used to learn about the mechanisms by which C + 1 irradiated Cu provides the growth environment. Huge carbon onions of diameters ranging from hundreds of nm to μm were observed in the as-grown and annealed samples. Transformations of the nanostructures were observed under prolonged electron irradiations of SEM and TEM. A mechanism for the formation of carbon nano- and micro-structures is proposed.

  2. Energetic retrofitting of industrial heat supply systems. Possibilities of enhancing the efficiency and energy conservation at large combustion engineering plants; Energetische Modernisierung industrieller Waermeversorgungssysteme. Moeglichkeiten der Effizienzsteigerung und der Energieeinsparung an grossen feuerungstechnischen Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    In the contribution under consideration, the Deutsche Energie-Agentur GmbH (Berlin, Federal Republic of Germany) reports on an energetic modernization of industrial heat supply systems. Possibilities of an enhancement of the energetic efficiency and energy conservation at large combustion engineering plants are described. After an introduction to this theme, the author of this contribution provides an overview of the optimization of heat supply systems, and reports on the following aspects: Optimisation of the heat demand; energy efficient heat generation; heat recovery; energy efficient conversion technology and generation technology; associate partners for more energy efficiency in industry and commerce; best practice examples.

  3. Properties of forced convection experimental with silicon carbide based nano-fluids

    Science.gov (United States)

    Soanker, Abhinay

    With the advent of nanotechnology, many fields of Engineering and Science took a leap to the next level of advancements. The broad scope of nanotechnology initiated many studies of heat transfer and thermal engineering. Nano-fluids are one such technology and can be thought of as engineered colloidal fluids with nano-sized colloidal particles. There are different types of nano-fluids based on the colloidal particle and base fluids. Nano-fluids can primarily be categorized into metallic, ceramics, oxide, magnetic and carbon based. The present work is a part of investigation of the thermal and rheological properties of ceramic based nano-fluids. alpha-Silicon Carbide based nano-fluid with Ethylene Glycol and water mixture 50-50% volume concentration was used as the base fluid here. This work is divided into three parts; Theoretical modelling of effective thermal conductivity (ETC) of colloidal fluids, study of Thermal and Rheological properties of alpha-SiC nano-fluids, and determining the Heat Transfer properties of alpha-SiC nano-fluids. In the first part of this work, a theoretical model for effective thermal conductivity (ETC) of static based colloidal fluids was formulated based on the particle size, shape (spherical), thermal conductivity of base fluid and that of the colloidal particle, along with the particle distribution pattern in the fluid. A MATLAB program is generated to calculate the details of this model. The model is specifically derived for least and maximum ETC enhancement possible and thereby the lower and upper bounds was determined. In addition, ETC is also calculated for uniform colloidal distribution pattern. Effect of volume concentration on ETC was studied. No effect of particle size was observed for particle sizes below a certain value. Results of this model were compared with Wiener bounds and Hashin- Shtrikman bounds. The second part of this work is a study of thermal and rheological properties of alpha-Silicon Carbide based nano

  4. The Next Technology Revolution - Nano Electronic Technology

    Science.gov (United States)

    Turlik, Iwona

    2004-03-01

    Nanotechnology is a revolutionary engine that will engender enormous changes in a vast majority of today's industries and markets, while potentially creating whole new industries. The impact of nanotechnology is particularly significant in the electronics industry, which is constantly driven by the need for higher performance, increased functionality, smaller size and lower cost. Nanotechnology can influence many of the hundreds of components that are typically assembled to manufacture modern electronic devices. Motorola manufactures electronics for a wide range of industries and communication products. In this presentation, the typical components of a cellular phone are outlined and technology requirements for future products, the customer benefits, and the potential impact of nanotechnology on many of the components are discussed. Technology needs include reliable materials supply, processes for high volume production, experimental and simulation tools, etc. For example, even routine procedures such as failure characterization may require the development of new tools for investigating nano-scale phenomena. Business needs include the development of an effective, high volume supply chain for nano-materials and devices, disruptive product platforms, and visible performance impact on the end consumer. An equally significant long-term industry need is the availability of science and engineering graduates with a multidisciplinary focus and a deep understanding of the fundamentals of nano-technology, that can harness the technology to create revolutionary products.

  5. Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications.

    Science.gov (United States)

    Rizwan, Muhammad; Peh, Gary S L; Ang, Heng-Pei; Lwin, Nyein Chan; Adnan, Khadijah; Mehta, Jodhbir S; Tan, Wui Siew; Yim, Evelyn K F

    2017-03-01

    Naturally-bioactive hydrogels like gelatin provide favorable properties for tissue-engineering but lack sufficient mechanical strength for use as implantable tissue engineering substrates. Complex fabrication or multi-component additives can improve material strength, but often compromises other properties. Studies have shown gelatin methacrylate (GelMA) as a bioactive hydrogel with diverse tissue growth applications. We hypothesize that, with suitable material modifications, GelMA could be employed for growth and implantation of tissue-engineered human corneal endothelial cell (HCEC) monolayer. Tissue-engineered HCEC monolayer could potentially be used to treat corneal blindness due to corneal endothelium dysfunction. Here, we exploited a sequential hybrid (physical followed by UV) crosslinking to create an improved material, named as GelMA+, with over 8-fold increase in mechanical strength as compared to regular GelMA. The presence of physical associations increased the subsequent UV-crosslinking efficiency resulting in robust materials able to withstand standard endothelium insertion surgical device loading. Favorable biodegradation kinetics were also measured in vitro and in vivo. We achieved hydrogels patterning with nano-scale resolution by use of oxygen impermeable stamps that overcome the limitations of PDMS based molding processes. Primary HCEC monolayers grown on GelMA+ carrier patterned with pillars of optimal dimension demonstrated improved zona-occludin-1 expression, higher cell density and cell size homogeneity, which are indications of functionally-superior transplantable monolayers. The hybrid crosslinking and fabrication approach offers potential utility for development of implantable tissue-engineered cell-carrier constructs with enhanced bio-functional properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Enhancement of osteogenesis on micro/nano-topographical carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite biocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Anxiu [College of Stomatology, Chongqing Medical University, Chongqing 401147 (China); Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147 (China); Liu, Xiaochen [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Gao, Xiang; Deng, Feng [College of Stomatology, Chongqing Medical University, Chongqing 401147 (China); Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147 (China); Deng, Yi, E-mail: 18210357357@163.com [College of Stomatology, Chongqing Medical University, Chongqing 401147 (China); Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147 (China); Wei, Shicheng, E-mail: weishicheng99@163.com [College of Stomatology, Chongqing Medical University, Chongqing 401147 (China); Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147 (China)

    2015-03-01

    As an FDA-approved implantable material, carbon fiber-reinforced polyetheretherketone (CFRPEEK) possesses excellent mechanical properties similar to those of human cortical bone and is a prime candidate to replace conventional metallic implants. The bioinertness and inferior osteogenic properties of CFRPEEK, however, limit its clinical application as orthopedic/dental implants. The present work aimed at developing a novel carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite (PEEK/CF/n-HA) ternary biocomposite with micro/nano-topographical surface for the enhancement of the osteogenesis as a potential bioactive material for bone grafting and bone tissue-engineering applications. The combined modification of oxygen plasma and sand-blasting could improve the hydrophily and generate micro/nano-topographical structures on the surface of the CFRPEEK-based ternary biocomposite. The results clearly showcased that the micro-/nano-topographical PEEK/n-HA/CF ternary biocomposite demonstrated the outstanding ability to promote the proliferation and differentiation of MG-63 cells in vitro as well as to boost the osseointegration between implant and bone in vivo, thereby boding well application to bone tissue engineering. - Highlights: • A novel micro/nano-topographical PEEK/n-HA/CF ternary biocomposite was developed. • The modified PEEK biocomposite promotes proliferation and differentiation of cells. • In vivo osseointegration of the micro/nano-topographical PEEK/n-HA/CF was enhanced.

  7. Enhancement of osteogenesis on micro/nano-topographical carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite biocomposite

    International Nuclear Information System (INIS)

    Xu, Anxiu; Liu, Xiaochen; Gao, Xiang; Deng, Feng; Deng, Yi; Wei, Shicheng

    2015-01-01

    As an FDA-approved implantable material, carbon fiber-reinforced polyetheretherketone (CFRPEEK) possesses excellent mechanical properties similar to those of human cortical bone and is a prime candidate to replace conventional metallic implants. The bioinertness and inferior osteogenic properties of CFRPEEK, however, limit its clinical application as orthopedic/dental implants. The present work aimed at developing a novel carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite (PEEK/CF/n-HA) ternary biocomposite with micro/nano-topographical surface for the enhancement of the osteogenesis as a potential bioactive material for bone grafting and bone tissue-engineering applications. The combined modification of oxygen plasma and sand-blasting could improve the hydrophily and generate micro/nano-topographical structures on the surface of the CFRPEEK-based ternary biocomposite. The results clearly showcased that the micro-/nano-topographical PEEK/n-HA/CF ternary biocomposite demonstrated the outstanding ability to promote the proliferation and differentiation of MG-63 cells in vitro as well as to boost the osseointegration between implant and bone in vivo, thereby boding well application to bone tissue engineering. - Highlights: • A novel micro/nano-topographical PEEK/n-HA/CF ternary biocomposite was developed. • The modified PEEK biocomposite promotes proliferation and differentiation of cells. • In vivo osseointegration of the micro/nano-topographical PEEK/n-HA/CF was enhanced

  8. Energetic materials and methods of tailoring electrostatic discharge sensitivity of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Michael A.; Heaps, Ronald J.; Wallace, Ronald S.; Pantoya, Michelle L.; Collins, Eric S.

    2016-11-01

    An energetic material comprising an elemental fuel, an oxidizer or other element, and a carbon nanofiller or carbon fiber rods, where the carbon nanofiller or carbon fiber rods are substantially homogeneously dispersed in the energetic material. Methods of tailoring the electrostatic discharge sensitivity of an energetic material are also disclosed.

  9. Micro Nano PMP (Product-Method-Process) Graduate Course

    DEFF Research Database (Denmark)

    De Grave, Arnaud; Hansen, Hans Nørgaard

    2005-01-01

    This paper describes a framework for teaching in the development (design and manufacture) of products in the micro / nano scale in the Department of Manufacturing Engineering and Management (IPL) at the Technical University of Denmark (DTU). The training of students in this field involves both...

  10. Plasmonic-cavity model for radiating nano-rod antennas

    DEFF Research Database (Denmark)

    Peng, Liang; Mortensen, N. Asger

    2014-01-01

    In this paper, we propose the analytical solution of nano-rod antennas utilizing a cylindrical harmonics expansion. By treating the metallic nano-rods as plasmonic cavities, we derive closed-form expressions for both the internal and the radiated fields, as well as the resonant condition and the ......In this paper, we propose the analytical solution of nano-rod antennas utilizing a cylindrical harmonics expansion. By treating the metallic nano-rods as plasmonic cavities, we derive closed-form expressions for both the internal and the radiated fields, as well as the resonant condition...... and the radiation efficiency. With our theoretical model, we show that besides the plasmonic resonances, efficient radiation takes advantage of (a) rendering a large value of the rods' radius and (b) a central-fed profile, through which the radiation efficiency can reach up to 70% and even higher in a wide...... frequency band. Our theoretical expressions and conclusions are general and pave the way for engineering and further optimization of optical antenna systems and their radiation patterns....

  11. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  12. Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures

    Science.gov (United States)

    D'Elía, Noelia L.; Mathieu, Colleen; Hoemann, Caroline D.; Laiuppa, Juan A.; Santillán, Graciela E.; Messina, Paula V.

    2015-11-01

    Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures for the in vitro conditions of bone-repair. Experiments are underway to investigate the effects of the material microstructure, surface roughness and hydrophilicity on their osseo-integration, osteo-conduction and osteo-induction abilities. Materials were tested in the presence of both, rat primary osteoblasts and rabbit mesenchymal stem cells. The following aspects are discussed: (i) cytotoxicity and material degradation; (ii) rat osteoblast spreading, proliferation and differentiation; and (iii) rabbit mesenchymal stem cell adhesion on nano-HAp and nano-HAp/collagen type I coatings. We effectively prepared a material based on biomimetic HAp nano-rods displaying the appropriate surface topography, hydrophilicity and degradation properties to induce the in vitro desired cellular responses for bone bonding and healing. Cells seeded on the selected material readily attached, proliferated and differentiated, as confirmed by cell viability, mitochondrial metabolic activity, alkaline phosphatase (ALP) activity and cytoskeletal integrity analysis by immunofluorescence localization of alpha-smooth muscle actin (α-SMA) protein. These results highlight the influence of material's surface characteristics to determine their tissue regeneration potential and their future use in engineering osteogenic scaffolds for orthopedic implants.Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures

  13. Radiation damage to multi-walled carbon nanotubes and their ...

    Indian Academy of Sciences (India)

    Since their discovery in 1991 by Iijima, carbon nanotubes (CNTs) have been of great interest, both from a fundamental point of view and for future applications. As recent experimental and theoretical studies demonstrate, irradiation of CNTs with energetic particles can successfully be used for nano-engineering, e.g., ...

  14. Engineering high power induction plasma unit at BARC for mass synthesis of refractory nano-ceramics

    International Nuclear Information System (INIS)

    Ghorui, S.; Sahasrabudhe, S.N.; Dhamale, G.; Das, A.K.

    2013-01-01

    Atmospheric pressure RF thermal plasma sources are gaining increasing importance for production of high purity novel nano-materials in different high-end technological applications. Inherent electrode-less features of the discharge together with the large volume and high energy density of the produced plasma ensures contamination free process environment and mass production ability. Reported herewith is the development of an indigenous induction plasma system for mass synthesis of nanopowders of refractory ceramic materials. The system has been tested for continuous synthesis of Al 2 O 3 nano-powder at a rate of more than 600 gm per hour and checked for its viability for bulk production of nano-particles of other refractory ceramics like Yttrium oxide and Neodymium Oxide. From collected evidences, the process of formation of the nano-particles is identified as the evaporation and subsequent homogeneous nucleation. Major features observed for alumina are complete conversion into highly spherical nano-sized particles, small particle sizes, very narrow size distribution, highly crystallite nature and mixed phases depending on the zone of collection. For alumina, the particles are found to exhibit a uni-modal distribution with peak near 15 nm

  15. On the Size Dependence of Molar and Specific Properties of Independent Nano-phases and Those in Contact with Other Phases

    Science.gov (United States)

    Kaptay, George

    2018-05-01

    Nano-materials are materials with at least one nano-phase. A nano-phase is a phase with at least one of its dimensions below 100 nm. It is shown here that nano-phases have at least 1% of their atoms along their surface layer. The ratio of surface atoms is proportional to the specific surface area of the phase, defined as the ratio of its surface area to its volume. Each specific/molar property has its bulk value and its surface value for the given phase, being always different, as the energetic states of the atoms in the bulk and in the surface layer of a phase are different. The average specific/molar property of a nano-phase is modeled here as a linear combination of the bulk and surface values of the same property, scaled with the ratio of the surface atoms. That makes the performance of all nano-phases proportional to their specific surface area. As the characteristic size of the nano-phase is inversely proportional to its specific surface area, all specific/molar properties of nano-phases are inversely proportional to the characteristic size of the phase. This is applied to the size dependence of the molar Gibbs energy of the nano-phase, which appears to be in agreement with the thermodynamics of Gibbs. This agreement proves the general validity of the present model on the size dependence of the specific/molar properties of independent nano-phases. It is shown that the properties of nano-phases are different for independent nano-phases (surrounded only by their equilibrium vapor phase) and for nano-phases in multi-phase situations, such as a liquid nano-droplet in the sessile drop configuration.

  16. Manufacturing at Nanoscale: Top-Down, Bottom-up and System Engineering

    International Nuclear Information System (INIS)

    Zhang Xiang; Sun Cheng; Fang, Nicholas

    2004-01-01

    The current nano-technology revolution is facing several major challenges: to manufacture nanodevices below 20 nm, to fabricate three-dimensional complex nano-structures, and to heterogeneously integrate multiple functionalities. To tackle these grand challenges, the Center for Scalable and Integrated NAno-Manufacturing (SINAM), a NSF Nanoscale Science and Engineering Center, set its goal to establish a new manufacturing paradigm that integrates an array of new nano-manufacturing technologies, including the plasmonic imaging lithography and ultramolding imprint lithography aiming toward critical resolution of 1-10 nm and the hybrid top-down and bottom-up technologies to achieve massively parallel integration of heterogeneous nanoscale components into higher-order structures and devices. Furthermore, SINAM will develop system engineering strategies to scale-up the nano-manufacturing technologies. SINAMs integrated research and education platform will shed light to a broad range of potential applications in computing, telecommunication, photonics, biotechnology, health care, and national security

  17. Nano-crystallization of steel wire and its wear behavior

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.H. [School of Electromechanical Engineering, Xian University of Architecture and Technology, Xian 716000 (China) and School of Materials Science and Engineering, Northwestern Polytecnical University, Xian 710072 (China)], E-mail: xuyunhua@vip.163.com; Peng, J.H. [School of Electromechanical Engineering, Xian University of Architecture and Technology, Xian 716000 (China); Fang, L. [State Key Laboratory for Mechanical Behavior of Materials, Xian Jiaotong University, Xian 710049 (China)

    2008-06-15

    As carbon steel wire is widely used in civil engineering and industry, it is quite important to increase its strength. In the present paper, a severe cold drawing approach is applied to increase strength and is shown to produce nano grains. With increasing true strain, the tensile strength increases continuously and the cementite flake thickness decreases correspondingly. It is observed by transmission electron microscopy that a significant amount of cementite flakes have been fragmented and dissolved at true strains. Finally, the grains are transformed to nano-sized crystals. Additionally, the cold drawn nano-sized steel wire has been knitted and filled with polyurethane to produce a composite material. Three-body abrasive wear tests show that the wear resistance of the test material is even better than that of high-Cr white cast irons.

  18. Nano-crystallization of steel wire and its wear behavior

    International Nuclear Information System (INIS)

    Xu, Y.H.; Peng, J.H.; Fang, L.

    2008-01-01

    As carbon steel wire is widely used in civil engineering and industry, it is quite important to increase its strength. In the present paper, a severe cold drawing approach is applied to increase strength and is shown to produce nano grains. With increasing true strain, the tensile strength increases continuously and the cementite flake thickness decreases correspondingly. It is observed by transmission electron microscopy that a significant amount of cementite flakes have been fragmented and dissolved at true strains. Finally, the grains are transformed to nano-sized crystals. Additionally, the cold drawn nano-sized steel wire has been knitted and filled with polyurethane to produce a composite material. Three-body abrasive wear tests show that the wear resistance of the test material is even better than that of high-Cr white cast irons

  19. Applied optics fundamentals and device applications nano, MOEMS, and biotechnology

    CERN Document Server

    Mentzer, Mark

    2011-01-01

    How does the field of optical engineering impact biotechnology? Perhaps for the first time, Applied Optics Fundamentals and Device Applications: Nano, MOEMS, and Biotechnology answers that question directly by integrating coverage of the many disciplines and applications involved in optical engineering, and then examining their applications in nanobiotechnology. Written by a senior U.S. Army research scientist and pioneer in the field of optical engineering, this book addresses the exponential growth in materials, applications, and cross-functional relevance of the many convergent disciplines

  20. Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dong Zhihong [Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064 (China); Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Li Yubao, E-mail: nic7504@scu.edu.cn [Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064 (China); Zou Qin [Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064 (China)

    2009-04-01

    Porous scaffold containing 30 wt% nano-hydroxyapatite (n-HA) and 70 wt% polyurethane (PU) from castor oil was prepared by a foaming method and investigated by X-ray diffraction (XRD), Fourier transform infrared absorption (FTIR), scanning electron microscopy (SEM) techniques. The results show that n-HA particles disperse homogeneously in the PU matrix. The porous scaffold has not only macropores of 100-800 {mu}m in size but also a lot of micropores on the walls of macropores. The porosity and compressive strength of scaffold are 80% and 271 kPa, respectively. After soaking in simulated body fluid (SBF), hydrolysis and deposition partly occur on the scaffold. The biological evaluation in vitro and in vivo shows that the n-HA/PU scaffold is non-cytotoxic and degradable. The porous structure provides a good microenvironment for cell adherence, growth and proliferation. The n-HA/PU composite scaffold can be satisfied with the basic requirement for tissue engineering, and has the potential to be applied in repair and substitute of human menisci of the knee-joint and articular cartilage.

  1. Product engineering by high-temperature flame synthesis

    DEFF Research Database (Denmark)

    Johannessen, Tue; Johansen, Johnny; Mosleh, Majid

    product gas can be applied directly in additional product engineering concepts. A brief overview of on-going product developments and product engineering projects is outlined below. These projects, which are all founded on flame synthesis of nano-structured materials, include: • Preparation of catalyzed...... hardware by direct deposition of catalysts on process equipment • Modifications of the substrate surfaces to obtain good adhesion during flame-coating • Formation of membrane layers by gas-phase deposition of nano-particles • Catalyst deposition in micro-reactors for rapid catalyst screening...

  2. LPG as a Fuel for Diesel Engines-Experimental Investigations

    Science.gov (United States)

    Cristian Nutu, Nikolaos; Pana, Constantin; Negurescu, Niculae; Cernat, Alexandru; Mirica, Ionel

    2017-10-01

    The main objective of the paper is to reduce the pollutant emissions of a compression ignition engine, fuelling the engine with liquefied petroleum gas (LPG), aiming to maintain the energetic performances of the engine. To optimise the engine operation a corelation between the substitute ratio of the diesel fuel with LPG and the adjustments for the investigated regimens must be made in order to limit the maximum pressure and smoke level, knock and rough engine functioning, fuel consumption and the level of the pollutant emissions. The test bed situated in the Thermotechnics, Engines, Thermal Equipments and Refrigeration Instalations Department was adapted to be fuelled with liquefied petroleum gas. A conventional LPG fuelling instalation was adopted, consisting of a LPG tank, a vaporiser, conections between the tank and the vaporiser and a valve to adjust the gaseous fuel flow. Using the diesel-gas methode, in the intake manifold of the engine is injected LPG in gaseous aggregation state and the airr-LPG homogeneous mixture is ignited from the flame appeared in the diesel fuel sprays. To maintain the engine power at the same level like in the standard case of fuelling only with diesel fuel, for each investigated operate regimen the diesel fuel dose was reduced, being energetically substituted with LPG. The engine used for experimental investigations is a turbocharged truck diesel engine with a 10.34 dm3 displacement. The investigated working regimen was 40% load and 1750 rpm and the energetic substitute ratios of the diesel fuel with LPG was situated between [0-25%].

  3. Automatic and rapid identification of glycopeptides by nano-UPLC-LTQ-FT-MS and proteomic search engine.

    Science.gov (United States)

    Giménez, Estela; Gay, Marina; Vilaseca, Marta

    2017-01-30

    Here we demonstrate the potential of nano-UPLC-LTQ-FT-MS and the Byonic™ proteomic search engine for the separation, detection, and identification of N- and O-glycopeptide glycoforms in standard glycoproteins. The use of a BEH C18 nanoACQUITY column allowed the separation of the glycopeptides present in the glycoprotein digest and a baseline-resolution of the glycoforms of the same glycopeptide on the basis of the number of sialic acids. Moreover, we evaluated several acquisition strategies in order to improve the detection and characterization of glycopeptide glycoforms with the maximum number of identification percentages. The proposed strategy is simple to set up with the technology platforms commonly used in proteomic labs. The method allows the straightforward and rapid obtention of a general glycosylated map of a given protein, including glycosites and their corresponding glycosylated structures. The MS strategy selected in this work, based on a gas phase fractionation approach, led to 136 unique peptides from four standard proteins, which represented 78% of the total number of peptides identified. Moreover, the method does not require an extra glycopeptide enrichment step, thus preventing the bias that this step could cause towards certain glycopeptide species. Data are available via ProteomeXchange with identifier PXD003578. We propose a simple and high-throughput glycoproteomics-based methodology that allows the separation of glycopeptide glycoforms on the basis of the number of sialic acids, and their automatic and rapid identification without prior knowledge of protein glycosites or type and structure of the glycans. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Indentation analysis of nano-particle using nano-contact mechanics models during nano-manipulation based on atomic force microscopy

    International Nuclear Information System (INIS)

    Daeinabi, Khadijeh; Korayem, Moharam Habibnejad

    2011-01-01

    Atomic force microscopy is applied to measure intermolecular forces and mechanical properties of materials, nano-particle manipulation, surface scanning and imaging with atomic accuracy in the nano-world. During nano-manipulation process, contact forces cause indentation in contact area between nano-particle and tip/substrate which is considerable at nano-scale and affects the nano-manipulation process. Several nano-contact mechanics models such as Hertz, Derjaguin–Muller–Toporov (DMT), Johnson–Kendall–Roberts–Sperling (JKRS), Burnham–Colton–Pollock (BCP), Maugis–Dugdale (MD), Carpick–Ogletree–Salmeron (COS), Pietrement–Troyon (PT), and Sun et al. have been applied as the continuum mechanics approaches at nano-scale. In this article, indentation depth and contact radius between tip and substrate with nano-particle for both spherical and conical tip shape during nano-manipulation process are analyzed and compared by applying theoretical, semiempirical, and empirical nano-contact mechanics models. The effects of adhesion force, as the main contrast point in different nano-contact mechanics models, on nano-manipulation analysis is investigated for different contact radius, and the critical point is discussed for mentioned models.

  5. Experimental investigations of the hydrogen addition effects on diesel engine performance

    Science.gov (United States)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, A.; Nutu, C.

    2016-08-01

    In the global content regarding the impact on the environmental of the gases emissions resulted from the fossil fuels combustion, an interest aspect discussed on the 21st Session of the Conference of the Parties from the 2015 Paris Climate Conference and the gradual diminution of the worldwide oil reserves contribute to the necessity of searching of alternative energy from durable and renewable resources. At the use of hydrogen as addition in air to diesel engine, the level of CO, HC and smoke from the exhaust gases will decrease due to the improvement of the combustion process. At low and medium partial loads and low hydrogen energetic ratios used the NOX emission level can decrease comparative to classic diesel engine. The hydrogen use as fuel for diesel engine leads to the improving of the energetic and emissions performance of the engine due to combustion improvement and reduction of carbon content. The paper presents, in a comparative way, results of the experimental researches carried on a truck compression ignition engine fuelled with diesel fuel and with hydrogen diesel fuel and hydrogen as addition in air at different engine operation regimes. The results obtained during experimental investigations show better energetic and pollution performance of the engine fuelled with hydrogen as addition in air comparative to classic engine. The influences of hydrogen addition on engine operation are shown.

  6. Improvement of performance of ultra-high performance concrete based composite material added with nano materials

    Directory of Open Access Journals (Sweden)

    Pang Jinchang

    2016-03-01

    Full Text Available Ultra-high performance concrete (UHPC, a kind of composite material characterized by ultra high strength, high toughness and high durability. It has a wide application prospect in engineering practice. But there are some defects in concrete. How to improve strength and toughness of UHPC remains to be the target of researchers. To obtain UHPC with better performance, this study introduced nano-SiO2 and nano-CaCO3 into UHPC. Moreover, hydration heat analysis, X-Ray Diffraction (XRD, mercury intrusion porosimetry (MIP and nanoindentation tests were used to explore hydration process and microstructure. Double-doped nanomaterials can further enhance various mechanical performances of materials. Nano-SiO2 can promote early progress of cement hydration due to its high reaction activity and C-S-H gel generates when it reacts with cement hydration product Ca(OH2. Nano-CaCO3 mainly plays the role of crystal nucleus effect and filling effect. Under the combined action of the two, the composite structure is denser, which provides a way to improve the performance of UHPC in practical engineering.

  7. Contact engineering for nano-scale CMOS

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-09-10

    High performance computation with longer battery lifetime is an essential component in our today\\'s digital electronics oriented life. To achieve these goals, field effect transistors based complementary metal oxide semiconductor play the key role. One of the critical requirements of transistor structure and fabrication is efficient contact engineering. To catch up with high performance information processing, transistors are going through continuous scaling process. However, it also imposes new challenges to integrate good contact materials in a small area. This can be counterproductive as smaller area results in higher contact resistance thus reduced performance for the transistor itself. At the same time, discovery of new one or two-dimensional materials like nanowire, nanotube, or atomic crystal structure materials, introduces new set of challenges and opportunities. In this paper, we are reviewing them in a synchronized fashion: fundamentals of contact engineering, evolution into non-planar field effect transistors, opportunities and challenges with one and two-dimensional materials and a new opportunity of contact engineering from device architecture perspective. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fundamentals of electro-engineering I

    International Nuclear Information System (INIS)

    Rapsik, M.; Smola, M.; Bohac, M.; Mucha, M.

    2004-01-01

    This is the text-book of the fundamentals of electro-engineering. It contains the following chapters: (1) Selected terms in electro-engineering; (2) Fundamental electric values; (3) Energy and their transformations; (4) Water, hydro-energy and hydro-energetic potential of the Slovak Republic; (5) Nuclear power engineering; (6) Conventional thermal power plants; (7) Heating and cogeneration of electric power and heat production; (8) Equipment of electricity supply system; (9) Measurements in electro-engineering ; (10) Regulation of frequency and voltage, electric power quality

  9. A review of non-contact micro- and nano-printing technologies

    International Nuclear Information System (INIS)

    Ru, Changhai; Sun, Yu; Luo, Jun; Xie, Shaorong

    2014-01-01

    Printing technologies have undergone signficant development because they are an enabler in science and engineering research; they also have significant practical applications in manufacturing. Micro- and nano-printing techniques have found a number of applications in electronics, biotechnology, and material synthesis/patterning. In this review, we look at the important printing methods, including high precision traditional printing methods as well as recently emerging techniques. We also discuss the materials that are printable by these technologies, the challenges for future development, and the applications of micro- and nano-printing. (topical review)

  10. A review of non-contact micro- and nano-printing technologies

    Science.gov (United States)

    Ru, Changhai; Luo, Jun; Xie, Shaorong; Sun, Yu

    2014-05-01

    Printing technologies have undergone signficant development because they are an enabler in science and engineering research; they also have significant practical applications in manufacturing. Micro- and nano-printing techniques have found a number of applications in electronics, biotechnology, and material synthesis/patterning. In this review, we look at the important printing methods, including high precision traditional printing methods as well as recently emerging techniques. We also discuss the materials that are printable by these technologies, the challenges for future development, and the applications of micro- and nano-printing.

  11. A study on a nano-scale materials simulation using a PC cluster

    International Nuclear Information System (INIS)

    Choi, Deok Kee; Ryu, Han Kyu

    2002-01-01

    Not a few scientists have paid attention to application of molecular dynamics to chemistry, biology and physics. With recent popularity of nano technology, nano-scale analysis has become a major subject in various engineering fields. A underlying nano scale analysis is based on classical molecular theories representing molecular dynamics. Based on Newton's law of motions of particles, the movement of each particles is to be determined by numerical integrations. As the size of computation is closely related with the number of molecules, materials simulation takes up huge amount of computer resources so that it is not until recent days that the application of molecular dynamics to materials simulations draw some attention from many researchers. Thanks to high-performance computers, materials simulation via molecular dynamics looks promising. In this study, a PC cluster consisting of multiple commodity PCs is established and nano scale materials simulations are carried out. Micro-sized crack propagation inside a nano material is displayed by the simulation

  12. From Nano Structure to Systems: Fabrication and Characterization

    International Nuclear Information System (INIS)

    Uda Hashim

    2011-01-01

    Currently, the interest in nano technology research has been grown rapidly. With the latest technology, it is possible to arrange atoms into structures that are only a few nanometers in size. Dimension for nano structure is between 0.1 and 100nm where the actual size of 1nm is equal to 10-9 m or just about a few atoms thick. In other word, a nano structure is an object which it size is about four atom diameters or 1/50000 of a human hair. Due to the connecting of a patterned silicon substrate with biomolecules and the small size and large surface-to-volume ratio, it opens much new possibility for assembling nano structures.The ultimate goal is to fabricate devices that have every atom in the right place. Such technology would give the opportunity to minimize the size of a device and to reduce the material, energy and time necessary to perform its task. Potential applications include electrical circuits, mechanical devices and medical instruments. There are two most important nano structures that are extensively studied and researched in various organizations which are nano wire and nano gap. Nano wires is a new class of nano structure that have attracted attention and great research interest in the last few years because of their potential applications in nano technology such as nano electronic, nano mechanical and biomedical engineering. Fabrication of Nano wires is one of the great challenges today. Conventional lithography methods are not capable to produce Nano wires and even with advance nano lithography sizes below 100 nm may not easily be achieved. Nano wire can be produced in two approaches, which are top down and bottom-up method. Very small nano wires which can be produced by using top-down nano fabrication methods are Scanning Electron Microscope (SEM) based Electron Beam Lithography (EBL) method, and Spacer Patterning Lithography (SPL) method. The top-down nano fabrication method based on EBL was the design of the Nano wires Pattern Design (NPD). The

  13. Drug-releasing nano-engineered titanium implants: therapeutic efficacy in 3D cell culture model, controlled release and stability

    Energy Technology Data Exchange (ETDEWEB)

    Gulati, Karan [School of Chemical Engineering, The University of Adelaide, SA 5005 (Australia); Kogawa, Masakazu; Prideaux, Matthew; Findlay, David M. [Discipline of Orthopaedics and Trauma, The University of Adelaide, SA 5005 (Australia); Atkins, Gerald J., E-mail: gerald.atkins@adelaide.edu.au [Discipline of Orthopaedics and Trauma, The University of Adelaide, SA 5005 (Australia); Losic, Dusan, E-mail: dusan.losic@adelaide.edu.au [School of Chemical Engineering, The University of Adelaide, SA 5005 (Australia)

    2016-12-01

    There is an ongoing demand for new approaches for treating localized bone pathologies. Here we propose a new strategy for treatment of such conditions, via local delivery of hormones/drugs to the trauma site using drug releasing nano-engineered implants. The proposed implants were prepared in the form of small Ti wires/needles with a nano-engineered oxide layer composed of array of titania nanotubes (TNTs). TNTs implants were inserted into a 3D collagen gel matrix containing human osteoblast-like, and the results confirmed cell migration onto the implants and their attachment and spread. To investigate therapeutic efficacy, TNTs/Ti wires loaded with parathyroid hormone (PTH), an approved anabolic therapeutic for the treatment of severe bone fractures, were inserted into 3D gels containing osteoblast-like cells. Gene expression studies revealed a suppression of SOST (sclerostin) and an increase in RANKL (receptor activator of nuclear factor kappa-B ligand) mRNA expression, confirming the release of PTH from TNTs at concentrations sufficient to alter cell function. The performance of the TNTs wire implants using an example of a drug needed at relatively higher concentrations, the anti-inflammatory drug indomethacin, is also demonstrated. Finally, the mechanical stability of the prepared implants was tested by their insertion into bovine trabecular bone cores ex vivo followed by retrieval, which confirmed the robustness of the TNT structures. This study provides proof of principle for the suitability of the TNT/Ti wire implants for localized bone therapy, which can be customized to cater for specific therapeutic requirements. - Highlights: • Ti wire with titania nanotubes (TNTs) are proposed as ‘in-bone’ therapeutic implants. • 3D cell culture model is used to confirm therapeutic efficacy of drug releasing implants. Osteoblasts migrated and firmly attached to the TNTs and the micro-scale cracks. • Tailorable drug loading from few nanograms to several hundred

  14. Nano-topography Enhances Communication in Neural Cells Networks

    KAUST Repository

    Onesto, V.

    2017-08-23

    Neural cells are the smallest building blocks of the central and peripheral nervous systems. Information in neural networks and cell-substrate interactions have been heretofore studied separately. Understanding whether surface nano-topography can direct nerve cells assembly into computational efficient networks may provide new tools and criteria for tissue engineering and regenerative medicine. In this work, we used information theory approaches and functional multi calcium imaging (fMCI) techniques to examine how information flows in neural networks cultured on surfaces with controlled topography. We found that substrate roughness Sa affects networks topology. In the low nano-meter range, S-a = 0-30 nm, information increases with Sa. Moreover, we found that energy density of a network of cells correlates to the topology of that network. This reinforces the view that information, energy and surface nano-topography are tightly inter-connected and should not be neglected when studying cell-cell interaction in neural tissue repair and regeneration.

  15. Electrical initiation of an energetic nanolaminate film

    Science.gov (United States)

    Tringe, Joseph W.; Gash, Alexander E.; Barbee, Jr., Troy W.

    2010-03-30

    A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.

  16. Stochastic Stirling Engine Operating in Contact with Active Baths

    Directory of Open Access Journals (Sweden)

    Ruben Zakine

    2017-04-01

    Full Text Available A Stirling engine made of a colloidal particle in contact with a nonequilibrium bath is considered and analyzed with the tools of stochastic energetics. We model the bath by non Gaussian persistent noise acting on the colloidal particle. Depending on the chosen definition of an isothermal transformation in this nonequilibrium setting, we find that either the energetics of the engine parallels that of its equilibrium counterpart or, in the simplest case, that it ends up being less efficient. Persistence, more than non-Gaussian effects, are responsible for this result.

  17. Stochastic Stirling Engine Operating in Contact with Active Baths

    Science.gov (United States)

    Zakine, Ruben; Solon, Alexandre; Gingrich, Todd; van Wijland, Frédéric

    2017-04-01

    A Stirling engine made of a colloidal particle in contact with a nonequilibrium bath is considered and analyzed with the tools of stochastic energetics. We model the bath by non Gaussian persistent noise acting on the colloidal particle. Depending on the chosen definition of an isothermal transformation in this nonequilibrium setting, we find that either the energetics of the engine parallels that of its equilibrium counterpart or, in the simplest case, that it ends up being less efficient. Persistence, more than non Gaussian effects, are responsible for this result.

  18. Nanoscale strain engineering of graphene and graphene-based devices

    Institute of Scientific and Technical Information of China (English)

    N-C Yeh; C-C Hsu; M L Teague; J-Q Wang; D A Boyd; C-C Chen

    2016-01-01

    Structural distortions in nano-materials can induce dramatic changes in their electronic properties. This situation is well manifested in graphene, a two-dimensional honeycomb structure of carbon atoms with only one atomic layer thickness. In particular, strained graphene can result in both charging effects and pseudo-magnetic fields, so that controlled strain on a perfect graphene lattice can be tailored to yield desirable electronic properties. Here, we describe the theoretical foundation for strain-engineering of the electronic properties of graphene, and then provide experimental evidence for strain-induced pseudo-magnetic fields and charging effects in monolayer graphene. We further demonstrate the feasibility of nano-scale strain engineering for graphene-based devices by means of theoretical simula-tions and nano-fabrication technology.

  19. Nano dentistry

    International Nuclear Information System (INIS)

    Oh, S.; Park, Y.B.; Kim, S.; Jin, S.

    2014-01-01

    Nano technology in dentistry has drawn many scientists’ and clinicians’ attention to significant advances in the diagnosis, treatment, and prevention of oral disease. Also, nano materials in dentistry have been studied to overcome the physical and chemical characteristics of conventional dental materials. These interesting facts are the motivation of this special issue. The presented issue provides a variety of topics in the field of dentistry such as novel nano filled composite resin, the cytotoxicity of nanoparticles deposited on orthodontic bands, the osseointegration of 3D nano scaffold, and nano surface treated implant.

  20. Stablization of Nanotwinned Microstructures in Stainless Steels Through Alloying and Microstructural Design

    Science.gov (United States)

    2013-08-23

    Effects of carbon content, deformation, and interfacial energetics on carbide precipitation and corrosion sensitization in 304 stainless steel , Acta...Alumina- Forming Austenitic Stainless Steels Strengthened by LAves Phase and MC Carbide Precipitates , Metallurgical and Materials Transactions A...nano- precipitate engineering---of nanotwinned stainless steels . This preliminary work has provided valuable insight into the mechanisms responsible

  1. Nano materials for the Local and Targeted Delivery of Osteoarthritis Drugs

    International Nuclear Information System (INIS)

    Periyasamy, P.C.; Leijten, J.C.H.; Dijkstra, P.J.; Karperien, M.; Post, J.N.

    2012-01-01

    Nano technology has found its potential in every possible field of science and engineering. It offers a plethora of options to design tools at the nanometer scale, which can be expected to function more effectively than micro- and macro systems for specific applications. Although the debate regarding the safety of synthetic nano materials for clinical applications endures, it is a promising technology due to its potential to augment current treatments. Various materials such as synthetic polymer, biopolymers, or naturally occurring materials such as proteins and peptides can serve as building blocks for adaptive nano scale formulations. The choice of materials depends highly on the application. We focus on the use of nanoparticles for the treatment of degenerative cartilage diseases, such as osteoarthritis (OA). Current therapies for OA focus on treating the symptoms rather than modifying the disease. The usefulness of OA disease modifying drugs is hampered by side effects and lack of suitable drug delivery systems that target, deliver, and retain drugs locally. This challenge can be overcome by using nano technological formulations. We describe the different nano drug delivery systems and their potential for cartilage repair. This paper provides the reader basal understanding of nano materials and aims at drawing new perspectives on the use of existing nano technological formulations for the treatment of osteoarthritis.

  2. A Study of Engineering Freshmen Regarding Nanotechnology Understanding

    Science.gov (United States)

    Lu, Kathy

    2009-01-01

    This study was conducted under the grand scheme of nanotechnology education and was focused on examining the nanotechnology readiness of first-year engineering students. The study found that most students learned the term "nano" from popular science magazines or as a measurement unit; less than 5% of the students learned "nano" through…

  3. Nano-volcanic Eruption of Silver

    Science.gov (United States)

    Lin, Shih-Kang; Nagao, Shijo; Yokoi, Emi; Oh, Chulmin; Zhang, Hao; Liu, Yu-Chen; Lin, Shih-Guei; Suganuma, Katsuaki

    2016-10-01

    Silver (Ag) is one of the seven metals of antiquity and an important engineering material in the electronic, medical, and chemical industries because of its unique noble and catalytic properties. Ag thin films are extensively used in modern electronics primarily because of their oxidation-resistance. Here we report a novel phenomenon of Ag nano-volcanic eruption that is caused by interactions between Ag and oxygen (O). It involves grain boundary liquation, the ejection of transient Ag-O fluids through grain boundaries, and the decomposition of Ag-O fluids into O2 gas and suspended Ag and Ag2O clusters. Subsequent coating with re-deposited Ag-O and the de-alloying of O yield a conformal amorphous Ag coating. Patterned Ag hillock arrays and direct Ag-to-Ag bonding can be formed by the homogenous crystallization of amorphous coatings. The Ag “nano-volcanic eruption” mechanism is elaborated, shedding light on a new mechanism of hillock formation and new applications of amorphous Ag coatings.

  4. Energetic Combustion Devices for Aerospace Propulsion and Power

    Science.gov (United States)

    Litchford, Ron J.

    2000-01-01

    Chemical reactions have long been the mainstay thermal energy source for aerospace propulsion and power. Although it is widely recognized that the intrinsic energy density limitations of chemical bonds place severe constraints on maximum realizable performance, it will likely be several years before systems based on high energy density nuclear fuels can be placed into routine service. In the mean time, efforts to develop high energy density chemicals and advanced combustion devices which can utilize such energetic fuels may yield worthwhile returns in overall system performance and cost. Current efforts in this vein are being carried out at NASA MSFC under the direction of the author in the areas of pulse detonation engine technology development and light metals combustion devices. Pulse detonation engines are touted as a low cost alternative to gas turbine engines and to conventional rocket engines, but actual performance and cost benefits have yet to be convincingly demonstrated. Light metal fueled engines also offer potential benefits in certain niche applications such as aluminum/CO2 fueled engines for endo-atmospheric Martian propulsion. Light metal fueled MHD generators also present promising opportunities with respect to electric power generation for electromagnetic launch assist. This presentation will discuss the applications potential of these concepts with respect to aero ace propulsion and power and will review the current status of the development efforts.

  5. Semiconductor Nano wires and Nano tubes: From Fundamentals to Diverse Applications

    International Nuclear Information System (INIS)

    Xiong, Q.; Grimes, C.A.; Zacharias, M.; Morral, A.F.; Hiruma, K.; Shen, G.

    2012-01-01

    Research in the field of semiconductor nano wires (SNWs) and nano tubes has been progressing into a mature subject with several highly interdisciplinary sub areas such as nano electronics, nano photonics, nano composites, bio sensing, optoelectronics, and solar cells. SNWs represent a unique system with novel properties associated to their one-dimensional (1D) structures. The fundamental physics concerning the formation of discrete 1D subbands, coulomb blockade effects, ballistic transport, and many-body phenomena in 1D nano wires and nano tubes provide a strong platform to explore the various scientific aspects in these nano structures. A rich variety of preparation methods have already been developed for generating well-controlled 1D nano structures and from a broad range of materials. The present special issue focuses on the recent development in the mechanistic understanding of the synthesis, the studies on electrical/optical properties of nano wires and their applications in nano electronics, nano photonics, and solar-energy harvesting. In this special issue, we have several invited review articles and contributed papers that are addressing current status of the fundamental issues related to synthesis and the diverse applications of semiconducting nano wires and nano tubes. One of the papers reviews the progress of the top-down approach of developing silicon-based vertically aligned nano wires to explore novel device architectures and integration schemes for nano electronics and clean energy applications. Another paper reviews the recent developments and experimental evidences of probing the confined optical and acoustic phonon in nonpolar semiconducting (Si and Ge) nano wires using Raman spectroscopy. The paper by K. Hiruma et al. spotlights the III semiconductor nano wires and demonstrates selective-area metal organic vapor phase epitaxy grown GaAs/In(Al)GaAs and InP/InAs/InP nano wires with heterojunctions along their axial and radial directions. The paper

  6. Hybrid chitosan-ß-glycerol phosphate-gelatin nano-/micro fibrous scaffolds with suitable mechanical and biological properties for tissue engineering.

    Science.gov (United States)

    Lotfi, Marzieh; Bagherzadeh, Roohollah; Naderi-Meshkin, Hojjat; Mahdipour, Elahe; Mafinezhad, Asghar; Sadeghnia, Hamid Reza; Esmaily, Habibollah; Maleki, Masoud; Hasssanzadeh, Halimeh; Ghayaour-Mobarhan, Majid; Bidkhori, Hamid Reza; Bahrami, Ahmad Reza

    2016-03-01

    Scaffold-based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano-/microfibrous scaffold, made from a mixture of chitosan-ß-glycerol phosphate-gelatin (chitosan-GP-gelatin) using a standard electrospinning set-up was developed. Gelatin-acid acetic and chitosan ß-glycerol phosphate-HCL solutions were prepared at ratios of 30/70, 50/50, 70/30 (w/w) and their mechanical and biological properties were engineered. Furthermore, the pore structure of the fabricated nanofibrous scaffolds was investigated and predicted using a theoretical model. Higher gelatin concentrations in the polymer blend resulted in significant increase in mean pore size and its distribution. Interaction between the scaffold and the contained cells was also monitored and compared in the test and control groups. Scaffolds with higher chitosan concentrations showed higher rate of cell attachment with better proliferation property, compared with gelatin-only scaffolds. The fabricated scaffolds, unlike many other natural polymers, also exhibit non-toxic and biodegradable properties in the grafted tissues. In conclusion, the data clearly showed that the fabricated biomaterial is a biologically compatible scaffold with potential to serve as a proper platform for retaining the cultured cells for further application in cell-based tissue engineering, especially in wound healing practices. These results suggested the potential of using mesoporous composite chitosan-GP-gelatin fibrous scaffolds for engineering three-dimensional tissues with different inherent cell characteristics. © 2015 Wiley Periodicals, Inc.

  7. Handbook of damage mechanics nano to macro scale for materials and structures

    CERN Document Server

    2015-01-01

    This authoritative reference provides comprehensive coverage of the topics of damage and healing mechanics. Computational modeling of constitutive equations is provided as well as solved examples in engineering applications. A wide range of materials that engineers may encounter are covered, including metals, composites, ceramics, polymers, biomaterials, and nanomaterials. The internationally recognized team of contributors employ a consistent and systematic approach, offering readers a user-friendly reference that is ideal for frequent consultation. Handbook of Damage Mechanics: Nano to Macro Scale for Materials and Structures is ideal for graduate students and faculty, researchers, and professionals in the fields of Mechanical Engineering, Civil Engineering, Aerospace Engineering, Materials Science, and Engineering Mechanics.

  8. About Russian nuclear energetic perspectives

    International Nuclear Information System (INIS)

    Laletin, N.I.

    2003-01-01

    My particular view about Russian nuclear energetics perspectives is presented. The nearest and the further perspectives are considered. The arguments are adduced that the most probable scenario of nuclear energetic development is its stabilization in the near future. Fur further development the arguments of supporters and opponents of nuclear energetics are analyzed. Three points of view are considered. The first point of view that there is not alternative for nuclear energetics. My notes are the following ones. a) I express a skeptic opinion about a statement of quick exhaustion of fossil organic fuel recourses and corresponding estimations are presented. b) It is expressed skeptic opinion about the statement that nuclear energetics can have a visual influence on ''steam effect''. c) I agree that nuclear energetics is the most ecological technology for normal work but however we can't disregard possibilities of catastrophic accidents. The second point of view that the use of nuclear energetics can't have the justification. I adduce the arguments contrary to this statement. The third point of view that nuclear energetics is a usual technology and the only criteria for discussions about what dimension and where one ought develop it is total cost of its unit. Expressed an opinion that the deceived for the choose of a way the skill of the estimate correctly and optimized so named the external parts of the unit energy costs for different energy technologies. (author)

  9. The world of Nano

    International Nuclear Information System (INIS)

    Noh, Seung Jeong; Hyun, Jun Won; An, Yong Hyeon; Lee, Sung Uk; Jee, Hye Gu; Kim, Young Seon

    2006-07-01

    The contents of this book are the beginning of nano technology, definition of nano, commercialization of nano technology, prospect of nano technology, survive with nano t-, development strategy of n-t in the U.S, and Japan, Korea, and other countries, comparison of development strategy of n-t among each country, various measurement technology for practical n-t, scanning tunneling microscopy, nano device, carbon nano tube, nano belt and nano wire, application of sensor in daily life, energy, post-Genome period and using as medicine with nano bio technology.

  10. Carbon Nano tube Composites for Electronic Packaging Applications: A Review

    International Nuclear Information System (INIS)

    Aryasomayajula, L.; Wolter, K.J.

    2013-01-01

    Composite engineering comprises of metal matrix composites. They have high strength-weight ratio, better stiffness, economical production, and ease of availability of raw materials. The discovery of carbon nano tubes has opened new possibilities to face challenges better. Carbon Nano tubes are known for their high mechanical strength, excellent thermal and electrical properties. Recent research has made progress in fabricating carbon nano tube metal matrix and polymer-based composites. The methods of fabrication of these composites, their properties and possible applications restricted to the field of electronic packaging have been discussed in this paper. Experimental and theoretical calculations have shown improved mechanical and physical properties like tensile stress, toughness, and improved electrical and thermal properties. They have also demonstrated the ease of production of the composites and their adaptability as one can tailor their properties as per the requirement. This paper reviews work reported on fabricating and characterizing carbon- nano tube-based metal matrix and polymer composites. The focus of this paper is mainly to review the importance of these composites in the field of electronics packaging.

  11. The nano-mechanical signature of Ultra High Performance Concrete by statistical nanoindentation techniques

    International Nuclear Information System (INIS)

    Sorelli, Luca; Constantinides, Georgios; Ulm, Franz-Josef; Toutlemonde, Francois

    2008-01-01

    Advances in engineering the microstructure of cementitious composites have led to the development of fiber reinforced Ultra High Performance Concretes (UHPC). The scope of this paper is twofold, first to characterize the nano-mechanical properties of the phases governing the UHPC microstructure by means of a novel statistical nanoindentation technique; then to upscale those nanoscale properties, by means of continuum micromechanics, to the macroscopic scale of engineering applications. In particular, a combined investigation of nanoindentation, scanning electron microscope (SEM) and X-ray Diffraction (XRD) indicates that the fiber-matrix transition zone is relatively defect free. On this basis, a four-level multiscale model with defect free interfaces allows to accurately determine the composite stiffness from the measured nano-mechanical properties. Besides evidencing the dominant role of high density calcium silicate hydrates and the stiffening effect of residual clinker, the suggested model may become a useful tool for further optimizing cement-based engineered composites

  12. International Civil and Infrastructure Engineering Conference 2013

    CERN Document Server

    Yusoff, Marina; Ismail, Zulhabri; Amin, Norliyati; Fadzil, Mohd

    2014-01-01

    The special focus of this proceedings is to cover the areas of infrastructure engineering and sustainability management. The state-of-the art information in infrastructure and sustainable issues in engineering covers earthquake, bioremediation, synergistic management, timber engineering, flood management and intelligent transport systems. It provides precise information with regards to innovative research development in construction materials and structures in addition to a compilation of interdisciplinary finding combining nano-materials and engineering.

  13. International Civil and Infrastructure Engineering Conference 2014

    CERN Document Server

    Yusoff, Marina; Alisibramulisi, Anizahyati; Amin, Norliyati; Ismail, Zulhabri

    2015-01-01

    The special focus of this proceedings is to cover the areas of infrastructure engineering and sustainability management. The state-of-the art information in infrastructure and sustainable issues in engineering covers earthquake, bioremediation, synergistic management, timber engineering, flood management and intelligent transport systems. It provides precise information with regards to innovative research development in construction materials and structures in addition to a compilation of interdisciplinary finding combining nano-materials and engineering.

  14. Observation of enhanced radial transport of energetic ion due to energetic particle mode destabilized by helically-trapped energetic ion in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    A deuterium experiment was initiated to achieve higher-temperature and higher-density plasmas in March 2017 in the Large Helical Device (LHD). The central ion temperature notably increases compared with that in hydrogen experiments. However, an energetic particle mode called the helically-trapped energetic-ion-driven resistive interchange (EIC) mode is often excited by intensive perpendicular neutral beam injections on high ion-temperature discharges. The mode leads to significant decrease of the ion temperature or to limiting the sustainment of the high ion-temperature state. To understand the effect of EIC on the energetic ion confinement, the radial transport of energetic ions is studied by means of the neutron flux monitor and vertical neutron camera newly installed on the LHD. Decreases of the line-integrated neutron profile in core channels show that helically-trapped energetic ions are lost from the plasma.

  15. Analysis of the energetic sector through the national energetic matrix

    International Nuclear Information System (INIS)

    Garzon Lozano, Enrique

    2007-01-01

    The author shows the results of the national energetic balance 1975-2005, through the energetic matrix of the country, giving an annual growth of 5.1% in this period of offer of primary energy, where the mineral coal participates with 9,6%, the hydraulic energy with 4,8%, natural gas with 4,2%, trash with 2,4% and petroleum with 2,2%, while the firewood fell in 0,5%

  16. Optical engineering of diamond

    CERN Document Server

    Rabeau, James R

    2013-01-01

    This is the first comprehensive book on the engineering of diamond optical devices. It will give readers an up-to-date account of the properties of optical quality synthetic diamond (single crystal, nanodiamond and polycrystalline) and reviews the large and growing field of engineering of diamond-based optical devices, with applications in quantum computation, nano-imaging, high performance lasers, and biomedicine. It aims to provide scientists, engineers and physicists with a valuable resource and reference book for the design and performance of diamond-based optical devices.

  17. Contact engineering for nano-scale CMOS

    KAUST Repository

    Hussain, Muhammad Mustafa; Fahad, Hossain M.; Qaisi, Ramy M.

    2012-01-01

    . One of the critical requirements of transistor structure and fabrication is efficient contact engineering. To catch up with high performance information processing, transistors are going through continuous scaling process. However, it also imposes new

  18. The state and perspective of Belarus power engineering

    International Nuclear Information System (INIS)

    Mikhalevich, A.A.; Molochko, F.I.

    1994-01-01

    The economy of the Republic of Belarus has a high fuel and power resource deficit. In according to the National power engineering programme the power balance must be achieved by means of reconstruction and development of the energetics system on the basis of difference modern technologies, as well as carrying out power saving programme, It is suggested the building of a nuclear power plant in Belarus. The power engineering development directions for Belarus is discussed. The structure and dynamics of a power balance of the economy is described. It was shown the electric and heat energetics perspectives for Belarus by using of difference power sources. 3 tabs., 4 figs

  19. Interfacial engineering of two-dimensional nano-structured materials by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhuiykov, Serge, E-mail: serge.zhuiykov@ugent.be [Ghent University Global Campus, Department of Applied Analytical & Physical Chemistry, Faculty of Bioscience Engineering, 119 Songdomunhwa-ro, Yeonsu-Gu, Incheon 406-840 (Korea, Republic of); Kawaguchi, Toshikazu [Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education, Hokkaido University, N10W5 Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Graduate School of Environmental Science, Hokkaido University, N10W5 Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Hai, Zhenyin; Karbalaei Akbari, Mohammad; Heynderickx, Philippe M. [Ghent University Global Campus, Department of Applied Analytical & Physical Chemistry, Faculty of Bioscience Engineering, 119 Songdomunhwa-ro, Yeonsu-Gu, Incheon 406-840 (Korea, Republic of)

    2017-01-15

    Highlights: • Advantages of atomic layer deposition technology (ALD) for two-dimensional nano-crystals. • Conformation of ALD technique and chemistry of precursors. • ALD of semiconductor oxide thin films. • Ultra-thin (∼1.47 nm thick) ALD-developed tungsten oxide nano-crystals on large area. - Abstract: Atomic Layer Deposition (ALD) is an enabling technology which provides coating and material features with significant advantages compared to other existing techniques for depositing precise nanometer-thin two-dimensional (2D) nanostructures. It is a cyclic process which relies on sequential self-terminating reactions between gas phase precursor molecules and a solid surface. ALD is especially advantageous when the film quality or thickness is critical, offering ultra-high aspect ratios. ALD provides digital thickness control to the atomic level by depositing film one atomic layer at a time, as well as pinhole-free films even over a very large and complex areas. Digital control extends to sandwiches, hetero-structures, nano-laminates, metal oxides, graded index layers and doping, and it is perfect for conformal coating and challenging 2D electrodes for various functional devices. The technique’s capabilities are presented on the example of ALD-developed ultra-thin 2D tungsten oxide (WO{sub 3}) over the large area of standard 4” Si substrates. The discussed advantages of ALD enable and endorse the employment of this technique for the development of hetero-nanostructure 2D semiconductors with unique properties.

  20. Nano-modification to improve the ductility of cementitious composites

    International Nuclear Information System (INIS)

    Yeşilmen, Seda; Al-Najjar, Yazin; Balav, Mohammad Hatam; Şahmaran, Mustafa; Yıldırım, Gürkan; Lachemi, Mohamed

    2015-01-01

    Effect of nano-sized mineral additions on ductility of engineered cementitious composites (ECC) containing high volumes of fly ash was investigated at different hydration degrees. Various properties of ECC mixtures with different mineral additions were compared in terms of microstructural properties of matrix, fiber-matrix interface, and fiber surface to assess improvements in ductility. Microstructural characterization was made by measuring pore size distributions through mercury intrusion porosimetry (MIP). Hydration characteristics were assessed using thermogravimetric analysis/differential thermal analysis (TGA/DTA), and fiber-matrix interface and fiber surface characteristics were assessed using scanning electron microscopy (SEM) through a period of 90 days. Moreover, compressive and flexural strength developments were monitored for the same period. Test results confirmed that mineral additions could significantly improve both flexural strength and ductility of ECC, especially at early ages. Cheaper Nano-CaCO 3 was more effective compared to nano-silica. However, the crystal structure of CaCO 3 played a very important role in the range of expected improvements

  1. UV resistibility of a nano-ZnO/glass fibre reinforced epoxy composite

    International Nuclear Information System (INIS)

    Wong, Tsz-ting; Lau, Kin-tak; Tam, Wai-yin; Leng, Jinsong; Etches, Julie A.

    2014-01-01

    Highlights: • A GFRE composite with UV resistibility is introduced. • The bonding behaviour and UV resistibility of the composite were studied upon the addition of nano-ZnO particles. • The solvent effect in the dispersion of nano-ZnO particles was also studied. • The nano-ZnO/GFRE composite shows effective UV absorption with enhanced bonding behaviour. - Abstract: The harmfulness of ultraviolet (UV) radiation (UVR) to human health and polymer degradation has been the focus recently in all engineering industries. A polymer-based composite filled with nano-ZnO particles can enhance its UV resistibility. It has been found that the use of appropriate amount of nano-ZnO/Isopropyl alcohol solvent to prepare a UV resistant nano-ZnO/glass fibre reinforced epoxy (ZGFRE) composite can effectively block the UV transmission with negligible influence on the crystal structure of its resin system. This paper aims at investigating the interfacial bonding behaviour and UV resistibility of a ZGFRE composite. The solvent effect in relation to the dispersion properties of ZnO in the composite is also discussed. XRD results indicated that 20 wt% Isopropyl alcohol was an effective solvent for filling nano-ZnO particles into an epoxy. SEM examination also showed that the bonding behaviour between glass fibre and matrix was enhanced after filling 20 wt% nano-ZnO particles with 20 wt% Isopropyl alcohol into the composite. Samples filled with 20 wt% nano-ZnO/Isopropyl alcohol and 40 wt% nano-ZnO/Isopropyl alcohol has full absorption of UVA (315–400 nm), UVB (280–315 nm) and a part of UVC (190–280 nm)

  2. Energetic Techniques For Planetary Defense

    Science.gov (United States)

    Barbee, B.; Bambacus, M.; Bruck Syal, M.; Greenaugh, K. C.; Leung, R. Y.; Plesko, C. S.

    2017-12-01

    Near-Earth Objects (NEOs) are asteroids and comets whose heliocentric orbits tend to approach or cross Earth's heliocentric orbit. NEOs of various sizes periodically collide with Earth, and efforts are currently underway to discover, track, and characterize NEOs so that those on Earth-impacting trajectories are discovered far enough in advance that we would have opportunities to deflect or destroy them prior to Earth impact, if warranted. We will describe current efforts by the National Aeronautics and Space Administration (NASA) and the National Nuclear Security Administration (NNSA) to assess options for energetic methods of deflecting or destroying hazardous NEOs. These methods include kinetic impactors, which are spacecraft designed to collide with an NEO and thereby alter the NEO's trajectory, and nuclear engineering devices, which are used to rapidly vaporize a layer of NEO surface material. Depending on the amount of energy imparted, this can result in either deflection of the NEO via alteration of its trajectory, or robust disruption of the NEO and dispersal of the remaining fragments. We have studied the efficacies and limitations of these techniques in simulations, and have combined the techniques with corresponding spacecraft designs and mission designs. From those results we have generalized planetary defense mission design strategies and drawn conclusions that are applicable to a range of plausible scenarios. We will present and summarize our research efforts to date, and describe approaches to carrying out planetary defense missions with energetic NEO deflection or disruption techniques.

  3. 3rd International Civil and Infrastructure Engineering Conference

    CERN Document Server

    Hamid, Nor; Arshad, Mohd; Arshad, Ahmad; Ridzuan, Ahmad; Awang, Haryati

    2016-01-01

    The special focus of these proceedings is on the areas of infrastructure engineering and sustainability management. They provide detailed information on innovative research developments in construction materials and structures, in addition to a compilation of interdisciplinary findings combining nano-materials and engineering. The coverage of cutting-edge infrastructure and sustainability issues in engineering includes earthquakes, bioremediation, synergistic management, timber engineering, flood management and intelligent transport systems.

  4. Nano-Scale Positioning Design with Piezoelectric Materials

    Directory of Open Access Journals (Sweden)

    Yung Yue Chen

    2017-12-01

    Full Text Available Piezoelectric materials naturally possess high potential to deliver nano-scale positioning resolution; hence, they are adopted in a variety of engineering applications widely. Unfortunately, unacceptable positioning errors always appear because of the natural hysteresis effect of the piezoelectric materials. This natural property must be mitigated in practical applications. For solving this drawback, a nonlinear positioning design is proposed in this article. This nonlinear positioning design of piezoelectric materials is realized by the following four steps: 1. The famous Bouc–Wen model is utilized to present the input and output behaviors of piezoelectric materials; 2. System parameters of the Bouc–Wen model that describe the characteristics of piezoelectric materials are simultaneously identified with the particle swam optimization method; 3. Stability verification for the identified Bouc–Wen model; 4. A nonlinear feedback linearization control design is derived for the nano-scale positioning design of the piezoelectric material, mathematically. One important contribution of this investigation is that the positioning error between the output displacement of the controlled piezoelectric materials and the desired trajectory in nano-scale level can be proven to converge to zero asymptotically, under the effect of the hysteresis.

  5. Natural gas fuelled vehicles, energetic and environmental problems

    International Nuclear Information System (INIS)

    Ciancia, A.; Pede, G.

    1998-03-01

    The present report deals with the analysis and the presentation of the main problems concerning the introduction of the natural gas fuel for vehicles. The offer and demand side of the NGV market are analyzed, together with the presently available NG fuelled vehicles and the status of the technology for engines and on-board storage systems, with particular regard to the energetic and environmental performance of the system. Finally the NGV market development is presented, and the actors on the stage, showing the opportunities together with the possible obstacle to a wider diffusion of this technology [it

  6. Flare energetics

    Science.gov (United States)

    Wu, S. T.; Dejager, C.; Dennis, B. R.; Hudson, H. S.; Simnett, G. M.; Strong, K. T.; Bentley, R. D.; Bornmann, P. L.; Bruner, M. E.; Cargill, P. J.

    1986-01-01

    In this investigation of flare energetics, researchers sought to establish a comprehensive and self-consistent picture of the sources and transport of energy within a flare. To achieve this goal, they chose five flares in 1980 that were well observed with instruments on the Solar Maximum Mission, and with other space-borne and ground-based instruments. The events were chosen to represent various types of flares. Details of the observations available for them and the corresponding physical parameters derived from these data are presented. The flares were studied from two perspectives, the impulsive and gradual phases, and then the results were compared to obtain the overall picture of the energics of these flares. The role that modeling can play in estimating the total energy of a flare when the observationally determined parameters are used as the input to a numerical model is discussed. Finally, a critique of the current understanding of flare energetics and the methods used to determine various energetics terms is outlined, and possible future directions of research in this area are suggested.

  7. Nano-enabled tribological thin film coatings: global patent scenario.

    Science.gov (United States)

    Sivudu, Kurva S; Mahajan, Yashwant R; Joshi, Shrikant V

    2014-01-01

    The aim of this paper is to present current status and future prospects of nano-enabled tribological thin film coatings based on worldwide patent landscape analysis. The study also presents an overview of technological trends by carrying out state-of-the-art literature analysis, including survey of corporate websites. Nanostructured tribological coatings encompass a wide spectrum of nanoscale microstructures, including nanocrystalline, nanolayered, nano-multilayered, nanocomposite, nanogradient structures or their unique combinations, which are composed of single or multi-component phases. The distinct microstructural features of the coatings impart outstanding tribological properties combined with multifunctional attributes to the coated components. Their unique combination of remarkable properties make them ideal candidates for a wide range of applications in diverse fields such as cutting and metalworking tools, biomedical devices, automotive engine components, wear parts, hard disc drives etc. The patent landscape analysis has revealed that nano-enabled tribological thin film coatings have significant potential for commercial applications in view of the lion's share of corporate industry in patenting activity. The largest patent portfolio is held by Japan followed by USA, Germany, Sweden and China. The prominent players involved in this field are Mitsubishi Materials Corp., Sandvik Aktiebolag, Hitachi Ltd., Sumitomo Electric Industries Ltd., OC Oerlikon Corp., and so on. The outstanding potential of nanostructured thin film tribological coatings is yet to be fully unravelled and, therefore, immense opportunities are available in future for microstructurally engineered novel coatings to enhance their performance and functionality by many folds.

  8. Chemical Functionalization, Self-Assembly, and Applications of Nano materials and Nano composites 2014

    International Nuclear Information System (INIS)

    Yan, X.; Jiao, T.; Balan, L.; Chen, X.; Hu, M.Z.; Liu, W.

    2014-01-01

    The growing interests in nano materials and nano composites call for the development of processing techniques to obtain multiple functionalization nano structures and achieve the tailoring of specific features of the nanometer size. Functional nano materials and nano composites will expand the applied range of the original material and at the same time promote the development of inter discipline. Thus, the chemical functionalization and bottom-up assemblies of nano materials and subsequent applications will accelerate the development of nano science and nano technology.

  9. Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM

    Directory of Open Access Journals (Sweden)

    Ammar Ben Brahim

    2013-05-01

    Full Text Available This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting.

  10. Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM

    Science.gov (United States)

    Ghorbal, Achraf; Grisotto, Federico; Charlier, Julienne; Palacin, Serge; Goyer, Cédric; Demaille, Christophe; Ben Brahim, Ammar

    2013-01-01

    This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM) electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting. PMID:28348337

  11. Leaching of nano-ZnO in municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Sakallioglu, T.; Bakirdoven, M.; Temizel, I. [Institute of Environmental Sciences, Bogazici University, 34342 Istanbul (Turkey); Demirel, B., E-mail: burak.demirel@boun.edu.tr [Institute of Environmental Sciences, Bogazici University, 34342 Istanbul (Turkey); Copty, N.K.; Onay, T.T.; Uyguner Demirel, C.S. [Institute of Environmental Sciences, Bogazici University, 34342 Istanbul (Turkey); Karanfil, T. [Environmental Engineering and Earth Science, Clemson University, Clemson, SC 29634 (United States)

    2016-11-05

    Highlights: • Leaching potential of 3 different types of nano-ZnO in real fresh MSW was investigated. • Batch tests were conducted at different pH, ionic strength and ZnO concentrations. • Most of the added nano-ZnO mass was retained within the solid waste matrix. • The pH and IS conditions did not significantly influence the leaching behavior of ZnO. • A kinetic particle deposition/detachment model was developed to analyze ZnO behavior. - Abstract: Despite widespread use of engineered nanomaterials (ENMs) in commercial products and their potential disposal in landfills, the fate of ENMs in solid waste environments are still not well understood. In this study, the leaching behavior of nano ZnO -one of the most used ENMs- in fresh municipal solid waste (MSW) was investigated. Batch reactors containing municipal solid waste samples were spiked with three different types of nano ZnO having different surface stabilization. The leaching of ZnO was examined under acidic, basic and elevated ionic strength (IS) conditions. The results of the 3-day batch tests showed that the percent of the added nano-ZnO mass retained within the solid waste matrix ranged between 80% and 93% on average for the three types of nano-ZnO tested. The pH and IS conditions did not significantly influence the leaching behavior of ZnO. To further analyze the behavior of ZnO in the MSW matrix, a kinetic particle deposition/detachment model was developed. The model was able to reproduce the main trends of the batch experiments. Reaction rate constants for the batch tests ranged from 0.01 to 0.4 1/hr, reflecting the rapid deposition of nano-ZnO within the MSW matrix.

  12. The eNanoMapper database for nanomaterial safety information.

    Science.gov (United States)

    Jeliazkova, Nina; Chomenidis, Charalampos; Doganis, Philip; Fadeel, Bengt; Grafström, Roland; Hardy, Barry; Hastings, Janna; Hegi, Markus; Jeliazkov, Vedrin; Kochev, Nikolay; Kohonen, Pekka; Munteanu, Cristian R; Sarimveis, Haralambos; Smeets, Bart; Sopasakis, Pantelis; Tsiliki, Georgia; Vorgrimmler, David; Willighagen, Egon

    2015-01-01

    The NanoSafety Cluster, a cluster of projects funded by the European Commision, identified the need for a computational infrastructure for toxicological data management of engineered nanomaterials (ENMs). Ontologies, open standards, and interoperable designs were envisioned to empower a harmonized approach to European research in nanotechnology. This setting provides a number of opportunities and challenges in the representation of nanomaterials data and the integration of ENM information originating from diverse systems. Within this cluster, eNanoMapper works towards supporting the collaborative safety assessment for ENMs by creating a modular and extensible infrastructure for data sharing, data analysis, and building computational toxicology models for ENMs. The eNanoMapper database solution builds on the previous experience of the consortium partners in supporting diverse data through flexible data storage, open source components and web services. We have recently described the design of the eNanoMapper prototype database along with a summary of challenges in the representation of ENM data and an extensive review of existing nano-related data models, databases, and nanomaterials-related entries in chemical and toxicogenomic databases. This paper continues with a focus on the database functionality exposed through its application programming interface (API), and its use in visualisation and modelling. Considering the preferred community practice of using spreadsheet templates, we developed a configurable spreadsheet parser facilitating user friendly data preparation and data upload. We further present a web application able to retrieve the experimental data via the API and analyze it with multiple data preprocessing and machine learning algorithms. We demonstrate how the eNanoMapper database is used to import and publish online ENM and assay data from several data sources, how the "representational state transfer" (REST) API enables building user friendly

  13. Synergistic toxic effect of nano-Al2O3 and As(V) on Ceriodaphnia dubia

    International Nuclear Information System (INIS)

    Wang Demin; Hu Ji; Forthaus, Brett E.; Wang Jianmin

    2011-01-01

    Engineered nanomaterials (ENMs) alone could negatively impact the environment and human health. However, their role in the presence of other toxic substances is not well understood. The toxicity of nano-Al 2 O 3 , inorganic As(V), and a combination of both was examined with C. dubia as the model organisms. Bare nano-Al 2 O 3 particles exhibited partial mortality at concentrations of greater than 200 mg/L. When As(V) was also present, a significant amount of As(V) was accumulated on the nano-Al 2 O 3 surface, and the calculated LC 50 of As(V) in the presence of nano-Al 2 O 3 was lower than that it was without the nano-Al 2 O 3 . The adsorption of As(V) on the nano-Al 2 O 3 surface and the uptake of nano-Al 2 O 3 by C. dubia were both verified. Therefore, the uptake of As(V)-loaded nano-Al 2 O 3 was a major reason for the enhanced toxic effect. - Highlights: → Nano-Al 2 O 3 particles alone do not have significant toxic effect on C. dubia. → However, nano-Al 2 O 3 particles significantly enhance the toxicity of As(V). → The uptake of As-loaded nano-Al 2 O 3 by C. dubia plays the major role on the toxicity. - Nano-Al 2 O 3 could accumulate background As(V) and enhance As(V) toxicity on C. dubia through the uptake of As(V)-loaded nano-Al 2 O 3 particles.

  14. Gradient nano-engineered in situ forming composite hydrogel for osteochondral regeneration.

    Science.gov (United States)

    Radhakrishnan, Janani; Manigandan, Amrutha; Chinnaswamy, Prabu; Subramanian, Anuradha; Sethuraman, Swaminathan

    2018-04-01

    Fabrication of anisotropic osteochondral-mimetic scaffold with mineralized subchondral zone and gradient interface remains challenging. We have developed an injectable semi-interpenetrating network hydrogel construct with chondroitin sulfate nanoparticles (ChS-NPs) and nanohydroxyapatite (nHA) (∼30-90 nm) in chondral and subchondral hydrogel zones respectively. Mineralized subchondral hydrogel exhibited significantly higher osteoblast proliferation and alkaline phosphatase activity (p gradient interface of nHA and ChS-NPs. Microcomputed tomography (μCT) demonstrated nHA gradation while rheology showed predominant elastic modulus (∼930 Pa) at the interface. Co-culture of osteoblasts and chondrocytes in gradient hydrogels showed layer-specific retention of cells and cell-cell interaction at the interface. In vivo osteochondral regeneration by biphasic (nHA or ChS) and gradient (nHA + ChS) hydrogels was compared with control using rabbit osteochondral defect after 3 and 8 weeks. Complete closure of defect was observed in gradient (8 weeks) while defect remained in other groups. Histology demonstrated collagen and glycosaminoglycan deposition in neo-matrix and presence of hyaline cartilage-characteristic matrix, chondrocytes and osteoblasts. μCT showed mineralized neo-tissue formation, which was confined within the defect with higher bone mineral density in gradient (chondral: 0.42 ± 0.07 g/cc, osteal: 0.64 ± 0.08 g/cc) group. Further, biomechanical push-out studies showed significantly higher load for gradient group (378 ± 56 N) compared to others. Thus, the developed nano-engineered gradient hydrogel enhanced hyaline cartilage regeneration with subchondral bone formation and lateral host-tissue integration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. X-ray lithography for micro- and nano-fabrication at ELETTRA for interdisciplinary applications

    International Nuclear Information System (INIS)

    Di Fabrizio, E; Fillipo, R; Cabrini, S

    2004-01-01

    ELETTRA (http://www.elettra.trieste.it/index.html) is a third generation synchrotron radiation source facility operating at Trieste, Italy, and hosts a wide range of research activities in advanced materials analysis and processing, biology and nano-science at several various beam lines. The energy spectrum of ELETTRA allows x-ray nano-lithography using soft (1.5 keV) and hard x-ray (10 keV) wavelengths. The Laboratory for Interdisciplinary Lithography (LIILIT) was established in 1998 as part of an Italian national initiative on micro- and nano-technology project of INFM and is funded and supported by the Italian National Research Council (CNR), INFM and ELETTRA. LILIT had developed two dedicated lithographic beam lines for soft (1.5 keV) and hard x-ray (10 keV) for micro- and nano-fabrication activities for their applications in engineering, science and bio-medical applications. In this paper, we present a summary of our research activities in micro- and nano-fabrication involving x-ray nanolithography at LILIT's soft and hard x-ray beam lines

  16. Nano-Engineered Catalysts for Direct Methanol Fuel Cells

    Science.gov (United States)

    Myung, Nosang; Narayanan, Sekharipuram; Wiberg, Dean

    2008-01-01

    Nano-engineered catalysts, and a method of fabricating them, have been developed in a continuing effort to improve the performances of direct methanol fuel cells as candidate power sources to supplant primary and secondary batteries in a variety of portable electronic products. In order to realize the potential for high energy densities (as much as 1.5 W h/g) of direct methanol fuel cells, it will be necessary to optimize the chemical compositions and geometric configurations of catalyst layers and electrode structures. High performance can be achieved when catalyst particles and electrode structures have the necessary small feature sizes (typically of the order of nanometers), large surface areas, optimal metal compositions, high porosity, and hydrophobicity. The present method involves electrodeposition of one or more catalytic metal(s) or a catalytic-metal/polytetrafluoroethylene nanocomposite on an alumina nanotemplate. The alumina nanotemplate is then dissolved, leaving the desired metal or metal/polytetrafluoroethylene-composite catalyst layer. Unlike some prior methods of making fine metal catalysts, this method does not involve processing at elevated temperature; all processing can be done at room temperature. In addition, this method involves fewer steps and is more amenable to scaling up for mass production. Alumina nanotemplates are porous alumina membranes that have been fabricated, variously, by anodizing either pure aluminum or aluminum that has been deposited on silicon by electronbeam evaporation. The diameters of the pores (7 to 300 nm), areal densities of pores (as much as 7 x 10(exp 10)sq cm), and lengths of pores (up to about 100 nm) can be tailored by selection of fabrication conditions. In a given case, the catalytic metal, catalytic metal alloy, or catalytic metal/ polytetrafluoroethylene composite is electrodeposited in the pores of the alumina nanotemplate. The dimensions of the pores, together with the electrodeposition conditions

  17. Energetic optimization of the ventilation system in modern ships

    International Nuclear Information System (INIS)

    Pérez, José Antonio; Orosa, José Antonio; Costa, Ángel Martín

    2016-01-01

    Highlights: • New solutions to optimize the ventilation system in modern ships are proposed. • Very important energy savings have been achieved. • Extreme indoor conditions in the engine room are modelled and analysed. • Critical places and hazardous tasks have been identified and analysed. • Important problems in the daily task schedule have been detected and corrected. - Abstract: The indoor ambience on board modern ships constitutes a perfect example of severe industrial environment, where personnel are exposed to extreme working conditions, especially in the engine room. To mitigate this problem, the classical solution is the use of powerful mechanical ventilation systems, with high energy consumption, which, in the case of the engine room, represents between 3.5% and 5.5% of the overall power installed. Consequently, its energetic optimization is critical, being an interesting example of not well solved thermal engineering problem, where work risk criteria also must be considered, as the engine room is the hottest and, therefore, one of the most hazardous places on the ship. Based on a complete 3D CFD analysis of the thermal conditions in the engine room and the requirements and duties of the crew derived from their daily work schedule, the optimal ventilation requirements and the maximum tolerable working time have been established, achieving very important energy savings, without any reduction in crew productivity or safety.

  18. Efficient conversion of sand to nano-silicon and its energetic Si-C composite anode design for high volumetric capacity lithium-ion battery

    Science.gov (United States)

    Furquan, Mohammad; Raj Khatribail, Anish; Vijayalakshmi, Savithri; Mitra, Sagar

    2018-04-01

    Silicon is an attractive anode material for Li-ion cells, which can provide energy density 30% higher than any of the today's commercial Li-ion cells. In the current study, environmentally benign, high abundant, and low cost sand (SiO2) source has been used to prepare nano-silicon via scalable metallothermic reduction method using micro wave heating. In this research, we have developed and optimized a method to synthesis high purity nano silicon powder that takes only 5 min microwave heating of sand and magnesium mixture at 800 °C. Carbon coated nano-silicon electrode material is prepared by a unique method of coating, polymerization and finally in-situ carbonization of furfuryl alcohol on to the high purity nano-silicon. The electrochemical performance of a half cell using the carbon coated high purity Si is showed a stable capacity of 1500 mAh g-1 at 6 A g-1 for over 200 cycles. A full cell is fabricated using lithium cobalt oxide having thickness ≈56 μm as cathode and carbon coated silicon thin anode of thickness ≈9 μm. The fabricated full cell of compact size exhibits excellent volumetric capacity retention of 1649 mAh cm-3 at 0.5 C rate (C = 4200 mAh g-1) and extended cycle life (600 cycles). The full cell is demonstrated on an LED lantern and LED display board.

  19. Experimental Investigations to Enhance the Tribological Performance of Engine Oil by Using Nano-Boric Acid and Functionalized Multiwalled Carbon Nanotubes: A Comparative Study to Assess Wear in Bronze Alloy

    Science.gov (United States)

    Ajay Vardhaman, B. S.; Amarnath, M.; Ramkumar, J.; Rai, Prabhat K.

    2018-04-01

    In various mechanical systems, lubricants are generally used to reduce friction and wear; thus, the total energy loss in the mechanical systems can be minimized by the proper enhancement of lubrication properties. In general, friction modifiers and antiwear additives are used to improve the tribological properties of the lubricant. However, the use of these additives has to be phased out due to their fast chemical degradation in their applications and other environmental issues. In recent years, the use of nanoparticles as a potential lubricant additive has received considerable attention because of its excellent mechanical and tribological characteristics. The present work describes the tribological behavior of nano-boric acid, multiwalled carbon nanotubes (MWCNTs), and functionalized multiwalled carbon nanotubes (FMWCNTs) modified with carboxylic acid. These nanoparticles were used to enhance the tribological properties of engine oil (SAE20W40) used to lubricate bronze alloy samples. The performance of these nano-coolants was assessed on a linear reciprocating ball-on-flat tribometer. Results highlight the friction and wear behavior of the nano-boric acid, MWCNTs, and FMWCNTs under three varying parameters such as the effect of nanoparticles concentration, load-carrying capacity, and sliding speed. The addition of nano-boric acid, MWCNTs, and FMWCNTs has significantly improved the tribological properties of the base lubricant. The addition of 0.5 wt.% of nano-boric acid, MWCNTs, and FMWCNTs to the base lubricant has decreased the coefficient of friction by 19.76, 30.55, and 35.65%, respectively, and a significant reduction in wear volume by 55.17, 71.42, and 88.97% was obtained in comparison with base lubricant.

  20. NATO Advanced Study Institute on Nano-Optics : Principles Enabling Basic Research and Applications

    CERN Document Server

    Collins, John; Silvestri, Luciano

    2017-01-01

    This book provides a comprehensive overview of nano-optics, including basic theory, experiment and applications, particularly in nanofabrication and optical characterization. The contributions clearly demonstrate how advances in nano-optics and photonics have stimulated progress in nanoscience and -fabrication, and vice versa. Their expert authors address topics such as three-dimensional optical lithography and microscopy beyond the Abbe diffraction limit, optical diagnostics and sensing, optical data- and telecommunications, energy-efficient lighting, and efficient solar energy conversion. Nano-optics emerges as a key enabling technology of the 21st century. This work will appeal to a wide readership, from physics through chemistry, to biology and engineering. The contributions that appear in this volume were presented at a NATO Advanced Study Institute held in Erice, 4-19 July, 2015.

  1. Musical Tasks and Energetic Arousal.

    Science.gov (United States)

    Lim, Hayoung A; Watson, Angela L

    2018-03-08

    Music is widely recognized as a motivating stimulus. Investigators have examined the use of music to improve a variety of motivation-related outcomes; however, these studies have focused primarily on passive music listening rather than active participation in musical activities. To examine the influence of participation in musical tasks and unique participant characteristics on energetic arousal. We used a one-way Welch's ANOVA to examine the influence of musical participation (i.e., a non-musical control and four different musical task conditions) upon energetic arousal. In addition, ancillary analyses of participant characteristics including personality, age, gender, sleep, musical training, caffeine, nicotine, and alcohol revealed their possible influence upon pretest and posttest energetic arousal scores. Musical participation yielded a significant relationship with energetic arousal, F(4, 55.62) = 44.38, p = .000, estimated ω2 = 0.60. Games-Howell post hoc pairwise comparisons revealed statistically significant differences between five conditions. Descriptive statistics revealed expected differences between introverts' and extraverts' energetic arousal scores at the pretest, F(1, 115) = 6.80, p = .010, partial η2= .06; however, mean differences failed to reach significance at the posttest following musical task participation. No other measured participant characteristics yielded meaningful results. Passive tasks (i.e., listening to a story or song) were related to decreased energetic arousal, while active musical tasks (i.e., singing, rhythm tapping, and keyboard playing) were related to increased energetic arousal. Musical task participation appeared to have a differential effect for individuals with certain personality traits (i.e., extroverts and introverts).

  2. Nano forum 2012, VII edition, Rome, 24-26 September 2012

    International Nuclear Information System (INIS)

    Mariani, C.; Rossi, M.; Terranova, M.L.; Vittori Antisari, M.

    2013-01-01

    The intent of this issue of Il Nuovo Cimento Colloquia is to highlight the breadth and range of the research activities that have been presented at Nanoforum 2012 VIII edition held in Rome on September 24-26, 2012. The Nanoforum events are designed to offer a forum for the exchange of information on the latest progress in the exploiting field of nanotechnology. In addition to bringing together researchers involved in diverse R and D activities related to the 'nano' area, Nanoforum also endeavours to gather experts from industry. In doing so, Nanoforum provides a platform for researchers to discover new research opportunities, to identify the requirements for continued advancement in their field and to overcome the technological challenges related to nano materials production and applications. Emphasis is given to monitor progresses, to evaluate tendencies, to present innovative techniques and sophisticated strategies for materials growth and characterization at the nano scale. The papers published in this issue present an overview of some significant aspects of the nano technologies presented at Nanoforum 2012, covering current trends and developments in both basic and applied research. Topics range from the chemistry and physics of the synthesis/manufacturing processes, to characterization methodologies and to the engineering of nano materials for devices and bio-inspired applications. The editors are deeply grateful to all the authors for their inspiring contribution and precious collaboration.

  3. Multi-functional nano silver: A novel disruptive and theranostic agent for pathogenic organisms in real-time

    Science.gov (United States)

    Gopinath, Ponnusamy Manogaran; Ranjani, Anandan; Dhanasekaran, Dharumadurai; Thajuddin, Nooruddin; Archunan, Govindaraju; Akbarsha, Mohammad Abdulkader; Gulyás, Balázs; Padmanabhan, Parasuraman

    2016-01-01

    The present study was aimed at evaluating the fluorescence property, sporicidal potency against Bacillus and Clostridium endospores, and surface disinfecting ability of biogenic nano silver. The nano silver was synthesized using an actinobacterial cell-filtrate. The fluorescence property as well as imaging facilitator potency of this nano silver was verified adopting spectrofluorometer along with fluorescent and confocal laser scanning microscope wherein strong emission and bright green fluorescence, respectively, on the entire spore surface was observed. Subsequently, the endospores of B. subtilis, B. cereus, B. amyloliquefaciens, C. perfringens and C. difficile were treated with physical sporicides, chemical sporicides and nano silver, in which the nano silver brought about pronounced inhibition even at a very low concentration. Finally, the environmental surface-sanitizing potency of nano silver was investigated adopting cage co-contamination assay, wherein vital organs of mice exposed to the nano silver-treated cage did not show any signs of pathological lesions, thus signifying the ability of nano silver to completely disinfect the spore or reduce the count required for infection. Taken these observations together, we have shown the multi-functional biological properties of the nano silver, synthesized using an actinobacterial cell-filtrate, which could be of application in advanced diagnostics, biomedical engineering and therapeutics in the near future. PMID:27666290

  4. Investigation of growth, coverage and effectiveness of plasma assisted nano-films of fluorocarbon

    International Nuclear Information System (INIS)

    Joshi, Pratik P.; Pulikollu, Rajasekhar; Higgins, Steven R.; Hu Xiaoming; Mukhopadhyay, S.M.

    2006-01-01

    Plasma-assisted functional films have significant potential in various engineering applications. They can be tailored to impart desired properties by bonding specific molecular groups to the substrate surface. The aim of this investigation was to develop a fundamental understanding of the atomic level growth, coverage and functional effectiveness of plasma nano-films on flat surfaces and to explore their application-potential for complex and uneven shaped nano-materials. In this paper, results on plasma-assisted nano-scale fluorocarbon films, which are known for imparting inertness or hydrophobicity to the surface, will be discussed. The film deposition was studied as a function of time on flat single crystal surfaces of silicon, sapphire and graphite, using microwave plasma. X-ray photoelectron spectroscopy (XPS) was used for detailed study of composition and chemistry of the substrate and coating atoms, at all stages of deposition. Atomic force microscopy (AFM) was performed in parallel to study the coverage and growth morphology of these films at each stage. Combined XPS and AFM results indicated complete coverage of all the substrates at the nanometer scale. It was also shown that these films grew in a layer-by-layer fashion. The nano-films were also applied to complex and uneven shaped nano-structured and porous materials, such as microcellular porous foam and nano fibers. It was seen that these nano-films can be a viable approach for effective surface modification of complex or uneven shaped nano-materials

  5. Erythrocyte-derived nano-probes functionalized with antibodies for targeted near infrared fluorescence imaging of cancer cells

    OpenAIRE

    Anvari, Bahman; Mac, Jenny T.; Nunez, Vicente; Burns, Joshua M.; Guerrero, Yadir A.

    2016-01-01

    Constructs derived from mammalian cells are emerging as a new generation of nano-scale platforms for clinical imaging applications. Herein, we report successful engineering of hybrid nano-structures composed of erythrocyte-derived membranes doped with FDA-approved near infrared (NIR) chromophore, indocyanine green (ICG), and surface-functionalized with antibodies to achieve molecular targeting. We demonstrate that these constructs can be used for targeted imaging of cancer cells in vitro. The...

  6. Preliminary assessment of water-based nano-fluids for use as coolants in PWRs

    International Nuclear Information System (INIS)

    Jacopo Buongiorno

    2005-01-01

    Full text of publication follows: The impact of using water-based fluids with small additions (<2% vol.) of nano-sized (10-100 nm) particle populations as coolants for current and advanced PWRs is evaluated. Such 'engineered' fluids (known as nano-fluids) are attractive because the presence of the nano-particles enhances energy transport considerably. As a result, nano-fluids are known to have (i) higher thermal conductivity than water (up to 20% depending on nano-particle material, size and volumetric fraction), (ii) higher heat transfer coefficients (up to 40%), (iii) higher CHF (up to 300% in pool boiling), and (iv) comparable pressure drop. Furthermore, nano-fluids appear to be very stable suspensions with little or no sedimentation, because of the small size of the dispersed particles and their typically low volumetric fractions. The ultimate objective of this work is to assess whether existing PWRs could be retro-fitted with a water-based nano-fluid coolant, to increase safety margins, reduce stored energy, and/or allow for power up-rates. Also, advanced PWRs could be designed with nano-fluids. The linear heat generation rate in PWRs is limited by a) fuel centerline melting, b) cladding overheating (CHF), and c) stored energy release following a large-break LOCA. Mechanisms b) and c) are usually the most limiting. For given geometry and linear power, it is obvious that the core with the nano-fluid coolant will have higher margins to CHF and LOCA limits. Conversely, for given margins, a higher linear power can be accommodated by the nano-fluid-cooled core. Standard thermal-hydraulic models for the PWR hot fuel pin (including a RELAP model for the LOCA) have been used to quantify the benefit of using nano-fluid coolants on the performance of a PWR. (author)

  7. Optical nano and micro actuator technology

    CERN Document Server

    Knopf, George K

    2012-01-01

    In Optical Nano and Micro Actuator Technology, leading engineers, material scientists, chemists, physicists, laser scientists, and manufacturing specialists offer an in-depth, wide-ranging look at the fundamental and unique characteristics of light-driven optical actuators. They discuss how light can initiate physical movement and control a variety of mechanisms that perform mechanical work at the micro- and nanoscale. The book begins with the scientific background necessary for understanding light-driven systems, discussing the nature of light and the interaction between light and NEMS/MEMS d

  8. Micro- and nano-NDE systems for aircraft: great things in small packages

    Science.gov (United States)

    Malas, James C.; Kropas-Hughes, Claudia V.; Blackshire, James L.; Moran, Thomas; Peeler, Deborah; Frazier, W. G.; Parker, Danny

    2003-07-01

    Recent advancements in small, microscopic NDE sensor technologies will revolutionize how aircraft maintenance is done, and will significantly improve the reliability and airworthiness of current and future aircraft systems. A variety of micro/nano systems and concepts are being developed that will enable whole new capabilities for detecting and tracking structural integrity damage. For aging aircraft systems, the impact of micro-NDE sensor technologies will be felt immediately, with dramatic reductions in labor for maintenance, and extended useable life of critical components being two of the primary benefits. For the fleet management of future aircraft systems, a comprehensive evaluation and tracking of vehicle health throughout its entire life cycle will be needed. Indeed, micro/nano NDE systems will be instrumental in realizing this futuristic vision. Several major challenges will need to be addressed, however, before micro- and nano-NDE systems can effectively be implemented, and this will require interdisciplinary research approaches, and a systematic engineering integration of the new technologies into real systems. Future research will need to emphasize systems engineering approaches for designing materials and structures with in-situ inspection and prognostic capabilities. Recent advances in 1) embedded / add-on micro-sensors, 2) computer modeling of nondestructive evaluation responses, and 3) wireless communications are important steps toward this goal, and will ultimately provide previously unimagined opportunities for realizing whole new integrated vehicle health monitoring capabilities. The future use of micro/nano NDE technologies as vehicle health monitoring tools will have profound implications, and will provide a revolutionary way of doing NDE in the near and distant future.

  9. SIMULATION OF ENERGETIC NEUTRAL ATOMS FROM SOLAR ENERGETIC PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Linghua [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Li, Gang [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Shih, Albert Y. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20770 (United States); Lin, Robert P. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Wimmer-Schweingruber, Robert F., E-mail: wanglhwang@gmail.com [Institut fuer Experimentelle und Angewandte Physik, University of Kiel, Leibnizstrasse 11, D-24118 Kiel (Germany)

    2014-10-01

    Energetic neutral atoms (ENAs) provide the only way to observe the acceleration site of coronal-mass-ejection-driven (CME-driven) shock-accelerated solar energetic particles (SEPs). In gradual SEP events, energetic protons can charge exchange with the ambient solar wind or interstellar neutrals to become ENAs. Assuming a CME-driven shock with a constant speed of 1800 km s{sup –1} and compression ratio of 3.5, propagating from 1.5 to 40 R{sub S} , we calculate the accelerated SEPs at 5-5000 keV and the resulting ENAs via various charge-exchange interactions. Taking into account the ENA losses in the interplanetary medium, we obtain the flux-time profiles of these solar ENAs reaching 1 AU. We find that the arriving ENAs at energies above ∼100 keV show a sharply peaked flux-time profile, mainly originating from the shock source below 5 R{sub S} , whereas the ENAs below ∼20 keV have a flat-top time profile, mostly originating from the source beyond 10 R{sub S} . Assuming the accelerated protons are effectively trapped downstream of the shock, we can reproduce the STEREO ENA fluence observations at ∼2-5 MeV/nucleon. We also estimate the flux of ENAs coming from the charge exchange of energetic storm protons, accelerated by the fast CME-driven shock near 1 AU, with interstellar hydrogen and helium. Our results suggest that appropriate instrumentation would be able to detect ENAs from SEPs and to even make ENA images of SEPs at energies above ∼10-20 keV.

  10. Nano-bio-sensing

    CERN Document Server

    Carrara, Sandro

    2011-01-01

    This book examines state-of-the-art applications of nano-bio-sensing. It brings together researchers from nano-electronics and bio-technology, providing multidisciplinary content from nano-structures fabrication to bio-sensing applications.

  11. Preparation, Modification, and Characterization of Alginate Hydrogel with Nano-/Microfibers: A New Perspective for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Bianca Palma Santana

    2013-01-01

    Full Text Available We aimed to develop an alginate hydrogel (AH modified with nano-/microfibers of titanium dioxide (nfTD and hydroxyapatite (nfHY and evaluated its biological and chemical properties. Nano-/microfibers of nfTD and nfHY were combined with AH, and its chemical properties were evaluated by FTIR spectroscopy, X-ray diffraction, energy dispersive X-Ray analysis, and the cytocompatibility by the WST-1 assay. The results demonstrate that the association of nfTD and nfHY nano-/microfibers to AH did not modified the chemical characteristics of the scaffold and that the association was not cytotoxic. In the first 3 h of culture with NIH/3T3 cells nfHY AH scaffolds showed a slight increase in cell viability when compared to AH alone or associated with nfTD. However, an increase in cell viability was observed in 24 h when nfTD was associated with AH scaffold. In conclusion our study demonstrates that the combination of nfHY and nfTD nano-/microfibers in AH scaffold maintains the chemical characteristics of alginate and that this association is cytocompatible. Additionally the combination of nfHY with AH favored cell viability in a short term, and the addition of nfTD increased cell viability in a long term.

  12. TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS

    Science.gov (United States)

    TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS. Zhe Zhang*, Huawei Shi, Clement Kleinstreuer, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910; Chong S. Kim, National Health and En...

  13. Photoactive energetic materials

    Science.gov (United States)

    Chavez, David E.; Hanson, Susan Kloek; Scharff, Robert Jason; Veauthier, Jacqueline Marie; Myers, Thomas Winfield

    2018-02-27

    Energetic materials that are photoactive or believed to be photoactive may include a conventional explosive (e.g. PETN, nitroglycerine) derivatized with an energetic UV-absorbing and/or VIS-absorbing chromophore such as 1,2,4,5-tetrazine or 1,3,5-triazine. Absorption of laser light having a suitably chosen wavelength may result in photodissociation, decomposition, and explosive release of energy. These materials may be used as ligands to form complexes. Coordination compounds include such complexes with counterions. Some having the formula M(L).sub.n.sup.2+ were synthesized, wherein M is a transition metal and L is a ligand and n is 2 or 3. These may be photoactive upon exposure to a laser light beam having an appropriate wavelength of UV light, near-IR and/or visible light. Photoactive materials also include coordination compounds bearing non-energetic ligands; in this case, the counterion may be an oxidant such as perchlorate.

  14. Advanced control of piezoelectric micro-nano-positioning systems

    CERN Document Server

    Xu, Qingsong

    2016-01-01

    This book explores emerging methods and algorithms that enable precise control of micro-/nano-positioning systems. The text describes three control strategies: hysteresis-model-based feedforward control and hysteresis-model-free feedback control based on and free from state observation. Each paradigm receives dedicated attention within a particular part of the text. Readers are shown how to design, validate and apply a variety of new control approaches in micromanipulation: hysteresis modelling, discrete-time sliding-mode control and model-reference adaptive control. Experimental results are provided throughout and build up to a detailed treatment of practical applications in the fourth part of the book. The applications focus on control of piezoelectric grippers. Advanced Control of Piezoelectric Micro-/Nano-Positioning Systems will assist academic researchers and practising control and mechatronics engineers interested in suppressing sources of nonlinearity such as hysteresis and drift when combining positi...

  15. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    International Nuclear Information System (INIS)

    Cutting, R.S.; Coker, V.S.; Telling, N.D.; Kimber, R.L.; Pearce, C.I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J.R.

    2009-01-01

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe 3 O 4 powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion (∼10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a γ-camera to obtain real time images of a 99m Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more (∼20%) 99m Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral substrate supplied to Fe

  16. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    Energy Technology Data Exchange (ETDEWEB)

    Cutting, R. S.; Coker, V. S.; Telling, N. D.; Kimber, R. L.; Pearce, C. I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J. R.

    2009-09-09

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe{sub 3}O{sub 4} powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion ({approx}10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a {gamma}-camera to obtain real time images of a {sup 99m}Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more ({approx}20%) {sup 99m}Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral

  17. Microfluidic-based screening of resveratrol and drug-loading PLA/Gelatine nano-scaffold for the repair of cartilage defect.

    Science.gov (United States)

    Ming, Li; Zhipeng, Yuan; Fei, Yu; Feng, Rao; Jian, Weng; Baoguo, Jiang; Yongqiang, Wen; Peixun, Zhang

    2018-03-26

    Cartilage defect is common in clinical but notoriously difficult to treat for low regenerative and migratory capacity of chondrocytes. Biodegradable tissue engineering nano-scaffold with a lot of advantages has been the direction of material to repair cartilage defect in recent years. The objective of our study is to establish a biodegradable drug-loading synthetic polymer (PLA) and biopolymer (Gelatine) composite 3D nano-scaffold to support the treatment of cartilage defect. We designed a microfluidic chip-based drug-screening device to select the optimum concentration of resveratrol, which has strong protective capability for chondrocyte. Then biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds were fabricated and used to repair the cartilage defects. As a result, we successfully cultured primary chondrocytes and screened the appropriate concentrations of resveratrol by the microfluidic device. We also smoothly obtained superior biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds and compared the properties and therapeutic effects of cartilage defect in rats. In summary, our microfluidic device is a simple but efficient platform for drug screening and resveratrol-loading PLA/Gelatine 3D nano-scaffolds could greatly promote the cartilage formation. It would be possible for materials and medical researchers to explore individualized pharmacotherapy and drug-loading synthetic polymer and biopolymer composite tissue engineering scaffolds for the repair of cartilage defect in future.

  18. Mass production of polymer nano-wires filled with metal nano-particles.

    Science.gov (United States)

    Lomadze, Nino; Kopyshev, Alexey; Bargheer, Matias; Wollgarten, Markus; Santer, Svetlana

    2017-08-17

    Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

  19. Colloid process engineering

    CERN Document Server

    Peukert, Wolfgang; Rehage, Heinz; Schuchmann, Heike

    2015-01-01

    This book deals with colloidal systems in technical processes and the influence of colloidal systems by technical processes. It explores how new measurement capabilities can offer the potential for a dynamic development of scientific and engineering, and examines the origin of colloidal systems and its use for new products. The future challenges to colloidal process engineering are the development of appropriate equipment and processes for the production and obtainment of multi-phase structures and energetic interactions in market-relevant quantities. The book explores the relevant processes and for controlled production and how they can be used across all scales.

  20. Study on penetration-induced initiation of energetic fragment

    Science.gov (United States)

    Qiao, Xiangxin; Xu, Heyang

    2017-09-01

    In order to investigate penetration-induced initiation of energetic fragment penetrating target, PTFE/Al (mass ratio 73.5/26.5) pressed and sintered into a Ф8mm × 8mm cylinder. To form energetic fragment, the cylinder was put into a closed container made by 35CrMnSiA. The container is 12mm long, 2mm thick. Energetic fragments were launched by a 14.5mm ballistic gun with a series of velocities and the penetrate process was simulated by AUTODYN-3D. The results show that the stress peak of energetic material exceed the initiation threshold, and energetic material will deflagrate, when energetic fragments impact velocity more than 800 m/s. The research results can provide reference for designs of energetic warhead.

  1. Nano-engineered composites: interlayer carbon nanotubes effect

    Energy Technology Data Exchange (ETDEWEB)

    Carley, Glaucio, E-mail: carleyone@hotmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Geraldo, Viviany; Oliveira, Sergio de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica; Avila, Antonio Ferreira [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica

    2013-11-01

    The concept of carbon nanotube interlayer was successfully introduced to carbon fiber/epoxy composites. This new hybrid laminated composites was characterized by Raman spectroscopy, X-ray diffraction, scanning electron microscopy and tensile tests. An increase on peak stress close to 85% was witnessed when CNTs interlayer with 206.30 mg was placed to carbon fiber/epoxy laminates. The failure mechanisms are associated to CNTs distribution between and around carbon fibers. These CNTs are also responsible for crack bridging formation and the increase on peak stress. Initial stiffness is strongly affected by the CNT interlayer, however, changes on stiffness is associated to changes on nano/micro-structure due to damage. Three different behaviors can be described, i.e. for interlayers with Almost-Equal-To 60 mg of CNT the failure mode is based on cracks between and around carbon fibers, while for interlayers with CNT contents between 136 mg and 185 mg cracks were spotted on fibers and inside the CNT/matrix mix. Finally, the third failure mechanism is based on carbon fiber breakage, as a strong interface between CNT/matrix mix and carbon fibers is observed. (author)

  2. Nano-engineered composites: interlayer carbon nanotubes effect

    International Nuclear Information System (INIS)

    Carley, Glaucio; Geraldo, Viviany; Oliveira, Sergio de; Avila, Antonio Ferreira

    2013-01-01

    The concept of carbon nanotube interlayer was successfully introduced to carbon fiber/epoxy composites. This new hybrid laminated composites was characterized by Raman spectroscopy, X-ray diffraction, scanning electron microscopy and tensile tests. An increase on peak stress close to 85% was witnessed when CNTs interlayer with 206.30 mg was placed to carbon fiber/epoxy laminates. The failure mechanisms are associated to CNTs distribution between and around carbon fibers. These CNTs are also responsible for crack bridging formation and the increase on peak stress. Initial stiffness is strongly affected by the CNT interlayer, however, changes on stiffness is associated to changes on nano/micro-structure due to damage. Three different behaviors can be described, i.e. for interlayers with ≈ 60 mg of CNT the failure mode is based on cracks between and around carbon fibers, while for interlayers with CNT contents between 136 mg and 185 mg cracks were spotted on fibers and inside the CNT/matrix mix. Finally, the third failure mechanism is based on carbon fiber breakage, as a strong interface between CNT/matrix mix and carbon fibers is observed. (author)

  3. The eNanoMapper database for nanomaterial safety information

    Directory of Open Access Journals (Sweden)

    Nina Jeliazkova

    2015-07-01

    Full Text Available Background: The NanoSafety Cluster, a cluster of projects funded by the European Commision, identified the need for a computational infrastructure for toxicological data management of engineered nanomaterials (ENMs. Ontologies, open standards, and interoperable designs were envisioned to empower a harmonized approach to European research in nanotechnology. This setting provides a number of opportunities and challenges in the representation of nanomaterials data and the integration of ENM information originating from diverse systems. Within this cluster, eNanoMapper works towards supporting the collaborative safety assessment for ENMs by creating a modular and extensible infrastructure for data sharing, data analysis, and building computational toxicology models for ENMs.Results: The eNanoMapper database solution builds on the previous experience of the consortium partners in supporting diverse data through flexible data storage, open source components and web services. We have recently described the design of the eNanoMapper prototype database along with a summary of challenges in the representation of ENM data and an extensive review of existing nano-related data models, databases, and nanomaterials-related entries in chemical and toxicogenomic databases. This paper continues with a focus on the database functionality exposed through its application programming interface (API, and its use in visualisation and modelling. Considering the preferred community practice of using spreadsheet templates, we developed a configurable spreadsheet parser facilitating user friendly data preparation and data upload. We further present a web application able to retrieve the experimental data via the API and analyze it with multiple data preprocessing and machine learning algorithms.Conclusion: We demonstrate how the eNanoMapper database is used to import and publish online ENM and assay data from several data sources, how the “representational state

  4. Plasmonic graded nano-disks as nano-optical conveyor belt.

    Science.gov (United States)

    Kang, Zhiwen; Lu, Haifei; Chen, Jiajie; Chen, Kun; Xu, Fang; Ho, Ho-Pui

    2014-08-11

    We propose a plasmonic system consisting of nano-disks (NDs) with graded diameters for the realization of nano-optical conveyor belt. The system contains a couple of NDs with individual elements coded with different resonant wavelengths. By sequentially switching the wavelength and polarization of the excitation source, optically trapped target nano-particle can be transferred from one ND to another. The feasibility of such function is verified based on the three-dimensional finite-difference time-domain technique and the Maxwell stress tensor method. Our design may provide an alternative way to construct nano-optical conveyor belt with which target molecules can be delivered between trapping sites, thus enabling many on-chip optofluidic applications.

  5. Using the Aerasense NanoTracer for simultaneously obtaining several ultrafine particle exposure metrics

    International Nuclear Information System (INIS)

    Marra, J

    2011-01-01

    The expanding production and use of nanomaterials increases the chance of human exposure to engineered nanoparticles (NP), also referred to as ultrafine particles (UFP; ≤ 100 - 300 nm). This is particularly true in workplaces where they can become airborne and thereafter inhaled by workers during nanopowder processing. Considering the suspected hazard of many engineered UFPs, the general recommendation is to take measures for minimizing personal exposure while monitoring the UFP pollution for assessment and control purposes. The portable Aerasense NanoTracer accomplishes this UFP monitoring, either intermittently or in real time. This paper reviews its design and operational characteristics and elaborates on a number of application extensions and constraints. The NanoTracer's output signals enable several UFP exposure metrics to be simultaneously inferred. These include the airborne UFP number concentration and the number-averaged particle size, serving as characteristics of the pertaining UFP pollution. When non-hygroscopic particles are involved, the NanoTracer's output signals also allow an estimation of the lung-deposited UFP surface area concentration and the lung-deposited UFP mass concentration. It is thereby possible to distinguish between UFP depositions in the alveolar region, the trachea-bronchial region and the head airway region, respectively, by making use of the ICRP particle deposition model.

  6. Investigation of mechanical properties of hemp/glass fiber reinforced nano clay hybrid composites

    Science.gov (United States)

    Unki, Hanamantappa Ningappa; Shivanand, H. K.; Vidyasagar, H. N.

    2018-04-01

    Over the last twenty to thirty years composite materials have been used in engineering field. Composite materials possess high strength, high strength to weight ratio due to these facts composite materials are becoming popular among researchers and scientists. The major proportion of engineering materials consists of composite materials. Composite materials are used in vast applications ranging from day-to-day household articles to highly sophisticated applications. In this paper an attempt is made to prepare three different composite materials using e-glass and Hemp. In this present investigation hybrid composite of Hemp, Glass fiber and Nano clay will be prepared by Hand-layup technique. The glass fiber used in this present investigation is E-glass fiber bi-directional: 90˚ orientation. The composite samples will be made in the form of a Laminates. The wt% of nanoclay added in the preparation of sample is 20 gm constant. The fabricated composite Laminate will be cut into corresponding profiles as per ASTM standards for Mechanical Testing. The effect of addition of Nano clay and variation of Hemp/glass fibers will be studied. In the present work, a new Hybrid composite is developed in which Hemp, E glass fibers is reinforced with epoxy resin and with Nano clay.

  7. Mammalian energetics. Flexible energetics of cheetah hunting strategies provide resistance against kleptoparasitism.

    Science.gov (United States)

    Scantlebury, David M; Mills, Michael G L; Wilson, Rory P; Wilson, John W; Mills, Margaret E J; Durant, Sarah M; Bennett, Nigel C; Bradford, Peter; Marks, Nikki J; Speakman, John R

    2014-10-03

    Population viability is driven by individual survival, which in turn depends on individuals balancing energy budgets. As carnivores may function close to maximum sustained power outputs, decreased food availability or increased activity may render some populations energetically vulnerable. Prey theft may compromise energetic budgets of mesopredators, such as cheetahs and wild dogs, which are susceptible to competition from larger carnivores. We show that daily energy expenditure (DEE) of cheetahs was similar to size-based predictions and positively related to distance traveled. Theft at 25% only requires cheetahs to hunt for an extra 1.1 hour per day, increasing DEE by just 12%. Therefore, not all mesopredators are energetically constrained by direct competition. Other factors that increase DEE, such as those that increase travel, may be more important for population viability. Copyright © 2014, American Association for the Advancement of Science.

  8. The Effect of Nano Loading and Ultrasonic Compounding of EVA/LDPE/Nano-magnesium Hydroxide on Mechanical Properties and Distribution of Nano Particles

    Science.gov (United States)

    Azman, I. A.; Salleh, R. M.; Alauddin, S. M.; Shueb, M. I.

    2018-05-01

    Blends of Ethylene Vinyl Acetate (EVA) and Low-Density Polyethylene (LDPE) are promising composite which have good mechanical properties to environmental stress cracking. However, they lack fire resistant properties, which limits it usage in wire and cable industry. In order to improve flame retardancy ability, a range of nano-magnesium hydroxide (nano-MH) loading which is from 0 phr to maximum of 20 phr with ultrasonic extrusion 0-100 kHz frequencies have been introduced. Ultrasonic extrusion was used to improve the distribution of nano-MH. It was found that, 10 phr of nano loading with 100 kHz ultrasonic assisted has greater tensile strength compared to the nanocomposite without ultrasonication. Further increase of nano MH loading, will decrease the tensile properties. Better elongation at break was observed at10 phr nano-MH with the frequency of 50 kHz. The sample of 20 phr of nanoMH assisted with 50 kHz ultrasonic exhibits good flexural properties while 10 phr of nano-MH without the ultrasonic assisted demonstrates good in izod impact properties. From the evaluation of mechanical properties studied, it was found that 10 phr of nano-MH has shown the best performance among all the samples tested for EVA/LDPE/nano-MH composites. Transmission Electron Microscopy (TEM) has been conducted on 10 phr sample with different frequencies in order to observe the distribution of nano-MH particles. The sample with 100 kHz frequency shows more uniform dispersion of nano-MH in EVA/LDPE composites. This investigation indicates that the ultrasonic technology can enhance the mechanical properties studied as well as the dispersion of nano particles in the composite.

  9. Experimental thermodynamics of single molecular motor.

    Science.gov (United States)

    Toyabe, Shoichi; Muneyuki, Eiro

    2013-01-01

    Molecular motor is a nano-sized chemical engine that converts chemical free energy to mechanical motions. Hence, the energetics is as important as kinetics in order to understand its operation principle. We review experiments to evaluate the thermodynamic properties of a rotational F1-ATPase motor (F1-motor) at a single-molecule level. We show that the F1-motor achieves 100% thermo dynamic efficiency at the stalled state. Furthermore, the motor reduces the internal irreversible heat inside the motor to almost zero and achieves a highly-efficient free energy transduction close to 100% during rotations far from quasistatic process. We discuss the mechanism of how the F1-motor achieves such a high efficiency, which highlights the remarkable property of the nano-sized engine F1-motor.

  10. Cancer Nano medicine

    International Nuclear Information System (INIS)

    Li, H.; Pike, M.M.; Luo, X.; Liu, L.H.

    2013-01-01

    Bioengineered nano materials have inspired revolutionary imaging and drug delivery methods whose clinical application in cancer research has resulted in powerful medical devices for early diagnosis, treatment, and prevention of cancer. Recent advances in super imaging agents have resulted in improved resolution and sensitivity. For instance, fluorescent quantum dots with wavelength-tunable emissions, plasmon-resonant gold nano structures with shape-controlled near-infrared absorptions, and MRI-active iron oxide nanoparticles are well-established molecular imaging probes for noninvasive cancer imaging. Nano materials are also considered to be the most effective vectors that can break through transport bio barriers and deliver a constant dose of multiple therapeutic agents to tumors and intracellular endocytic compartments for cancer gene therapy, immunotherapy, or chemotherapy. Furthermore, nano wire- or nano tube-based electronic devices demonstrate extraordinary sensitivity capable of detection at the single molecule or protein level. It is anticipated that developing nano technology-driven imaging, sensing, and therapeutic systems will dramatically advance cancer research and clinical treatments.

  11. Mechanics and energetics in tool manufacture and use: a synthetic approach.

    Science.gov (United States)

    Wang, Liyu; Brodbeck, Luzius; Iida, Fumiya

    2014-11-06

    Tool manufacture and use are observed not only in humans but also in other animals such as mammals, birds and insects. Manufactured tools are used for biomechanical functions such as effective control of fluids and small solid objects and extension of reaching. These tools are passive and used with gravity and the animal users' own energy. From the perspective of evolutionary biology, manufactured tools are extended phenotypes of the genes of the animal and exhibit phenotypic plasticity. This incurs energetic cost of manufacture as compared to the case with a fixed tool. This paper studies mechanics and energetics aspects of tool manufacture and use in non-human beings. Firstly, it investigates possible mechanical mechanisms of the use of passive manufactured tools. Secondly, it formulates the energetic cost of manufacture and analyses when phenotypic plasticity benefits an animal tool maker and user. We take a synthetic approach and use a controlled physical model, i.e. a robot arm. The robot is capable of additively manufacturing scoop and gripper structures from thermoplastic adhesives to pick and place fluid and solid objects, mimicking primates and birds manufacturing tools for a similar function. We evaluate the effectiveness of tool use in pick-and-place and explain the mechanism for gripper tools picking up solid objects with a solid-mechanics model. We propose a way to formulate the energetic cost of tool manufacture that includes modes of addition and reshaping, and use it to analyse the case of scoop tools. Experiment results show that with a single motor trajectory, the robot was able to effectively pick and place water, rice grains, a pebble and a plastic box with a scoop tool or gripper tools that were manufactured by itself. They also show that by changing the dimension of scoop tools, the energetic cost of tool manufacture and use could be reduced. The work should also be interesting for engineers to design adaptive machines. © 2014 The Author

  12. Mechanics and energetics in tool manufacture and use: a synthetic approach

    Science.gov (United States)

    Wang, Liyu; Brodbeck, Luzius; Iida, Fumiya

    2014-01-01

    Tool manufacture and use are observed not only in humans but also in other animals such as mammals, birds and insects. Manufactured tools are used for biomechanical functions such as effective control of fluids and small solid objects and extension of reaching. These tools are passive and used with gravity and the animal users' own energy. From the perspective of evolutionary biology, manufactured tools are extended phenotypes of the genes of the animal and exhibit phenotypic plasticity. This incurs energetic cost of manufacture as compared to the case with a fixed tool. This paper studies mechanics and energetics aspects of tool manufacture and use in non-human beings. Firstly, it investigates possible mechanical mechanisms of the use of passive manufactured tools. Secondly, it formulates the energetic cost of manufacture and analyses when phenotypic plasticity benefits an animal tool maker and user. We take a synthetic approach and use a controlled physical model, i.e. a robot arm. The robot is capable of additively manufacturing scoop and gripper structures from thermoplastic adhesives to pick and place fluid and solid objects, mimicking primates and birds manufacturing tools for a similar function. We evaluate the effectiveness of tool use in pick-and-place and explain the mechanism for gripper tools picking up solid objects with a solid-mechanics model. We propose a way to formulate the energetic cost of tool manufacture that includes modes of addition and reshaping, and use it to analyse the case of scoop tools. Experiment results show that with a single motor trajectory, the robot was able to effectively pick and place water, rice grains, a pebble and a plastic box with a scoop tool or gripper tools that were manufactured by itself. They also show that by changing the dimension of scoop tools, the energetic cost of tool manufacture and use could be reduced. The work should also be interesting for engineers to design adaptive machines. PMID:25209405

  13. Are nano-composites and nano-ionomers suitable for orthodontic bracket bonding?

    Science.gov (United States)

    Uysal, Tancan; Yagci, Ahmet; Uysal, Banu; Akdogan, Gülsen

    2010-02-01

    The aim of this study was to test nano-composite (Filtek Supreme Plus Universal) and a newly introduced nano-ionomer (Ketac N100 Light Curing Nano-Ionomer) restorative to determine their shear bond strength (SBS) and failure site locations in comparison with a conventional light-cure orthodontic bonding adhesive (Transbond XT). Sixty freshly extracted human maxillary premolar teeth were arbitrarily divided into three equal groups. The brackets were bonded to the teeth in each group with different composites, according to the manufacturers' instructions. The SBS values of the brackets were recorded in Megapascals (MPa) using a universal testing machine. Adhesive remnant index scores were determined after failure of the brackets. The data were analysed using analysis of variance, Tukey honestly significant difference, and chi-square tests. The results demonstrated that group 1 (Transbond XT, mean: 12.60 +/- 4.48 MPa) had a higher SBS than that of group 2 (nano-composite, mean: 8.33 +/- 5.16 MPa; P nano-ionomer, mean: 6.14 +/- 2.12 MPa; P Nano-composites and nano-ionomers may be suitable for bonding since they fulfil the previously suggested SBS ranges for clinical acceptability, but they are inferior to a conventional orthodontic composite.

  14. Preparation, Characterization, and Modeling of Carbon Nano fiber/Epoxy Nano composites

    International Nuclear Information System (INIS)

    Sun, L.H.; Yang, Z.G.; Ounaies, Z.; Whalen, C.A.; Gao, X.L.

    2011-01-01

    There is a lack of systematic investigations on both mechanical and electrical properties of carbon nano fiber (CNF)-reinforced epoxy matrix nano composites. In this paper, an in-depth study of both static and dynamic mechanical behaviors and electrical properties of CNF/epoxy nano composites with various contents of CNFs is provided. A modified Halpin-Tsai equation is used to evaluate the Young's modulus and storage modulus of the nano composites. The values of Young's modulus predicted using this method account for the effect of the CNF agglomeration and fit well with those obtained experimentally. The results show that the highest tensile strength is found in the epoxy nano composite with a 1.0 wt % CNFs. The alternate-current (AC) electrical properties of the CNF/epoxy nano composites exhibit a typical insulator-conductor transition. The conductivity increases by four orders of magnitude with the addition of 0.1 wt % (0.058 vol %) CNFs and by ten orders of magnitude for nano composites with CNF volume fractions higher than 1.0 wt % (0.578 vol %). The percolation threshold (i.e., the critical CNF volume fraction) is found to be at 0.057 vol %.

  15. Semiconductor-to-metallic flipping in a ZnFe2O4–graphene based smart nano-system: Temperature/microwave magneto-dielectric spectroscopy

    International Nuclear Information System (INIS)

    Ameer, Shahid; Gul, Iftikhar Hussain; Mahmood, Nasir; Mujahid, Muhammad

    2015-01-01

    Zn-(FeO 2 ) 2 –graphene smart nano-composites were synthesized using a novel modified solvothermal synthesis with different percentages of graphene. The structure of the nanocomposite was confirmed through X-ray diffraction, micro-Raman scattering spectroscopy, Ultraviolet–Visible spectroscopy, and Fourier transform infrared spectroscopy. The structural growth and morphological aspects were analyzed using scanning/transmission electron microscopy, revealing marvelous micro-structural features of the assembled nano-system resembling a maple leaf. To determine the composition, energy dispersive spectroscopy and X-ray photoelectron spectroscopy were used. Microwave magneto-dielectric spectroscopy revealed the improved dielectric properties of the nano-composite compared to those of the parent functional nanocrystals. Temperature gradient dielectric spectroscopy was used over the spectral range from 100 Hz to 5 MHz to reveal the phenomenological effect that the nanosystem flips from its usual semiconductor nature to a metallic nature with sensing temperature. Electrical conductivity and dielectric analysis indicated that the dielectric loss and the dielectric permittivity increased at room temperature. This extraordinary switching capability of the functionalized graphene nanosystem opens up a new dimension for engineering advanced and efficient smart composite materials. - Graphical abstract: Display Omitted - Highlights: • Zn-(FeO 2 ) 2 –graphene smart nano-composites were synthesized using a novel modified solvothermal synthesis. • The synthesized nano-system exhibits marvelous leaf like microstructure. • These nano-composites show improved magneto dielectric response. • This engineered smart nano-system shows phenomenological flipping from semiconductor like nature to metallic behavior

  16. Structure and band gap determination of irradiation-induced amorphous nano-channels in LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sachan, R., E-mail: sachanr@ornl.gov; Pakarinen, O. H.; Chisholm, M. F. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Liu, P. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); School of Physics, State Key Laboratory of Crystal Materials and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Jinan 250100 (China); Patel, M. K. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Zhang, Y. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Wang, X. L. [School of Physics, State Key Laboratory of Crystal Materials and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Jinan 250100 (China); Weber, W. J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-04-07

    The irradiation of lithium niobate with swift heavy ions results in the creation of amorphous nano-sized channels along the incident ion path. These nano-channels are on the order of a hundred microns in length and could be useful for photonic applications. However, there are two major challenges in these nano-channels characterization: (i) it is difficult to investigate the structural characteristics of these nano-channels due to their very long length and (ii) the analytical electron microscopic analysis of individual ion track is complicated due to electron beam sensitive nature of lithium niobate. Here, we report the first high resolution microscopic characterization of these amorphous nano-channels, widely known as ion-tracks, by direct imaging them at different depths in the material, and subsequently correlating the key characteristics with electronic energy loss of ions. Energetic Kr ions ({sup 84}Kr{sup 22} with 1.98 GeV energy) are used to irradiate single crystal lithium niobate with a fluence of 2 × 10{sup 10} ions/cm{sup 2}, which results in the formation of individual ion tracks with a penetration depth of ∼180 μm. Along the ion path, electron energy loss of the ions, which is responsible for creating the ion tracks, increases with depth under these conditions in LiNbO{sub 3}, resulting in increases in track diameter of a factor of ∼2 with depth. This diameter increase with electronic energy loss is consistent with predictions of the inelastic thermal spike model. We also show a new method to measure the band gap in individual ion track by using electron energy-loss spectroscopy.

  17. NanoAODs

    CERN Document Server

    Husova, Lucia Anna

    2017-01-01

    The scientist on LHC experiment analyse a huge amount of data every day on the Grid. Thus new methods are requested, how to make the analysis more efficient. The NanoAOD is a derived dataset from AOD, where only information necessary for the analysis is stored. Thus the analysis can be more than two times faster, because of the smaller file size, which can be read faster on the Grid. The main goal of this summer student project was to help other users to start using NanoAODs by rewriting their user tasks. Two example users tasks were converted to NanoAODs and tested with the local train test. A speed up of 3.5 was reached. The results of the analysis tasks are identical independent if they use AODs or NanoAODs.

  18. Nano-education from a European perspective

    International Nuclear Information System (INIS)

    Malsch, I

    2008-01-01

    At a global level, educating the nanotechnology workforce has been discussed since the beginning of the new millennium. Scientists, engineers and technicians should be trained in nanotechnology. Most educators prefer training students first in their own discipline at the Bachelor level (physics, chemistry, biology, etc) followed by specialisation in nanoscience and technology at the Master's level. Some favour a broad interdisciplinary basic training in different nanosciences followed by specialisation in a particular application area. What constitutes a good nanoscience curriculum is also being discussed, as well as the application of e-learning methodologies. The European Union is stimulating the development of nanoscience education in universities. The Erasmus Mundus programme is funding nanoscience and nanotechnology education programmes involving universities in several European countries. The policy debate in Europe is moving towards vocational training in nanotechnology for educating the technicians needed in industry and research. The EU vocational training institute CEDEFOP published a report in 2005 The EU funded European gateway to nanotechnology Nanoforum has stimulated the accessibility of nano-education throughout Europe with reports and online databases of education courses and materials. For university education, they list courses at the Bachelor, Master's, and PhD level as well as short courses. The EU funded EuroIndiaNet project also reviewed Nano-education courses at the Master's level, short courses, e-learning programmes, summerschools and vocational training courses. In this presentation, I review Nanoforum and other publications on nano-education in Europe and highlight current trends and gaps

  19. Effects of engineered nano-titanium dioxide on pore surface properties and phosphorus adsorption of sediment: its environmental implications.

    Science.gov (United States)

    Luo, Zhuanxi; Wang, Zhenhong; Wei, Qunshan; Yan, Changzhou; Liu, Feng

    2011-09-15

    Understanding the environmental safety and human health implications of engineered nanoparticles (ENPs) is of worldwide importance. As an important ENPs, engineered nano-TiO(2) (Enano-TiO(2)) may have been substantially deposited in aquatic sediments because of its widely uses. Sediment pore surface properties would be thus significantly influenced due to the large surface area of Enano-TiO(2). In this study, Enano-TiO(2) was found to greatly impact on sediment pore surface properties. The attachment of Enano-TiO(2) particles to sediment surfaces enhanced markedly BET specific surface area and t-Plot external specific surface area, and thereby increased sediment phosphorus (P) adsorption maximum (S(max)). Contrarily, the fill of Enano-TiO(2) particles into the micropores of sediments could significantly reduce t-Plot micropore specific surface area, and cause slight decrease in sediment P binding energy (K). Clearly, P sorbed in sediment would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO(2). Enano-TiO(2) would thus cause aggravated endogenous pollution in water if such sediment was re-suspended on disturbance. The results obtained in this study contribute to our increasing knowledge of how to regulate physicochemical behavior of pollutants in sediments under the influences of Enano-TiO(2) and/or similar ENPs. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Probabilistic modeling of the flows and environmental risks of nano-silica

    International Nuclear Information System (INIS)

    Wang, Yan; Kalinina, Anna; Sun, Tianyin; Nowack, Bernd

    2016-01-01

    Nano-silica, the engineered nanomaterial with one of the largest production volumes, has a wide range of applications in consumer products and industry. This study aimed to quantify the exposure of nano-silica to the environment and to assess its risk to surface waters. Concentrations were calculated for four environmental (air, soil, surface water, sediments) and two technical compartments (wastewater, solid waste) for the EU and Switzerland using probabilistic material flow modeling. The corresponding median concentration in surface water is predicted to be 0.12 μg/l in the EU (0.053–3.3 μg/l, 15/85% quantiles). The concentrations in sediments in the complete sedimentation scenario were found to be the largest among all environmental compartments, with a median annual increase of 0.43 mg/kg·y in the EU (0.19–12 mg/kg·y, 15/85% quantiles). Moreover, probabilistic species sensitivity distributions (PSSD) were computed and the risk of nano-silica in surface waters was quantified by comparing the predicted environmental concentration (PEC) with the predicted no-effect concentration (PNEC) distribution, which was derived from the cumulative PSSD. This assessment suggests that nano-silica currently poses no risk to aquatic organisms in surface waters. Further investigations are needed to assess the risk of nano-silica in other environmental compartments, which is currently not possible due to a lack of ecotoxicological data. - Highlights: • We quantify the exposure of nano-silica to technical systems and the environment. • The median concentration in surface waters is predicted to be 0.12 μg/L in the EU. • Probabilistic species sensitivity distributions were computed for surface waters. • The risk assessment suggests that nano-silica poses no risk to aquatic organisms.

  1. Osteoconductivity and Biodegradability of Collagen Scaffold Coated with Nano-β-TCP and Fibroblast Growth Factor 2

    Directory of Open Access Journals (Sweden)

    Asako Ibara

    2013-01-01

    Full Text Available Nanoparticle bioceramics have become anticipated for biomedical applications. Highly bioactive and biodegradable scaffolds would be developed using nanoparticles of β-tricalcium phosphate (β-TCP. We prepared collagen scaffolds coated by nano-β-TCP and fibroblast growth factor 2 (FGF2 and evaluated the effects on new bone augmentation and biodegradation. The collagen sponge was coated with the nano-TCP dispersion and freeze-dried. Scaffold was characterized by SEM, TEM, XRD, compressive testing and cell seeding. Subsequently, the nano-β-TCP/collagen scaffold, collagen sponge, and each material loaded with FGF2 were implanted on rat cranial bone. As a control, no implantation was performed. Nano-TCP particles were found to be attached to the fibers of the collagen sponge by SEM and TEM observations. Scaffold coated with nano-TCP showed higher compressive strength and cytocompatibility. In histological evaluations at 10 days, inflammatory cells were rarely seen around the residual scaffold, suggesting that the nano-TCP material possesses good tissue compatibility. At 35 days, bone augmentation and scaffold degradation in histological samples receiving nano-β-TCP scaffold were significantly greater than those in the control. By loading of FGF2, advanced bone formation is facilitated, indicating that a combination with FGF2 would be effective for bone tissue engineering.

  2. Rural energetic development: cuban experience

    International Nuclear Information System (INIS)

    Aguilera Barciela, M.

    1994-01-01

    The development of electro energetic national system in Cuba has been directed to the following objectives: to brake the rural population's exodus toward the cities, electrification of dairy farm, interconnection to the system electro energetic of all the sugar central production, these improves the rural population's conditions life

  3. Self-organised nano-structuring of thin oxide-films under swift heavy ion bombardment

    International Nuclear Information System (INIS)

    Bolse, Wolfgang

    2006-01-01

    Surface instabilities and the resulting self-organisation processes play an important role in nano-technology since they allow for large-array nano-structuring. We have recently found that the occurrence of such instabilities in thin film systems can be triggered by energetic ion bombardment and the subsequent self-assembly of the surface can be nicely controlled by fine-tuning of the irradiation conditions. The role of the ion in such processes is of double nature: If the instability is latently present already in the virgin sample, but self-assembly cannot take place because of kinetic barriers, the ion impact may just supply the necessary atomic mobility. On the other hand, the surface may become instable due to the ion beam induced material modifications and further irradiation then results in its reorganisation. In the present paper, we will review recently observed nano-scale self-organisation processes in thin oxide-films induced by the irradiation with swift heavy ions (SHI) at some MeV/amu energies. The first example is about SHI induced dewetting, which is driven by capillary forces already present in the as-deposited samples. The achieved dewetting pattern show an amazing similarity to those observed for liquid polymer films on Si, although in the present case the samples were kept at 80 K and hence have never reached their melting point. The second example is about self-organised lamellae formation driven by planar stresses, which are induced by SHI bombardment under grazing incidence and result in a surface instability and anisotropic plastic deformation (hammering effect). Taking advantage of these effects and modifying the irradiation procedure, we were able to generate more complex structures like NiO-'nano-towers' of 2 μm height and 200 nm in diameter

  4. Numerical solution of ordinary differential equations. For classical, relativistic and nano systems

    International Nuclear Information System (INIS)

    Greenspan, D.

    2006-01-01

    An up-to-date survey on numerical solutions with theory, intuition and applications. Ordinary differential equations (ODE) play a significant role in mathematics, physics and engineering sciences, and thus are part of relevant college and university courses. Many problems, however, both traditional and modern, do not possess exact solutions, and must be treated numerically. Usually this is done with software packages, but for this to be efficient requires a sound understanding of the mathematics involved. This work meets the need for an affordable textbook that helps in understanding numerical solutions of ODE. Carefully structured by an experienced textbook author, it provides a survey of ODE for various applications, both classical and modern, including such special applications as relativistic and nano systems. The examples are carefully explained and compiled into an algorithm, each of which is presented generically, independent of a specific programming language, while each chapter is rounded off with exercises. The text meets the demands of MA200 courses and of the newly created Numerical Solution of Differential Equations courses, making it ideal for both students and lecturers in physics, mathematics, mechanical engineering, electrical engineering, as well as for physicists, mathematicians, engineers, and electrical engineers. From the Contents - Euler's Method - Runge-Kutta Methods - The Method of Taylor Expansions - Large Second Order Systems with Application to Nano Systems - Completely Conservative, Covariant Numerical Methodology - Instability - Numerical Solution of Tridiagonal Linear Algebraic Systems and Related Nonlinear Systems - Approximate Solution of Boundary Value Problems - Special Relativistic Motion - Special Topics - Appendix: Basic Matrix Operations - Bibliography. (orig.) (orig.)

  5. Electrochemically synthesized Si nano wire arrays and thermoelectric nano structures

    International Nuclear Information System (INIS)

    Khuan, N.I.; Ying, K.K.; Nur Ubaidah Saidin; Foo, C.T.

    2012-01-01

    Thermoelectric nano structures hold great promise for capturing and directly converting into electricity some vast amount of low-grade waste heats now being lost to the environment (for example from nuclear power plant, fossil fuel burning, automotive and household appliances). In this study, large-area vertically-aligned silicon nano wire (SiNW) arrays were synthesized in an aqueous solution containing AgNO 3 and HF on p-type Si (100) substrate by self-selective electroless etching process. The etching conditions were systematically varied in order to achieve different stages of nano wire formation. Diameters of the SiNWs obtained varied from approximately 50 to 200 nm and their lengths ranged from several to a few tens of μm. Te/ Bi 2 Te 3 -Si thermoelectric core-shell nano structures were subsequently obtained via galvanic displacement of SiNWs in acidic HF electrolytes containing HTeO 2 + and Bi 3+ / HTeO 2 + ions. The reactions were basically a nano-electrochemical process due to the difference in redox potentials between the materials. the surface-modified SiNWs of core-shell structures had roughened surface morphologies and therefore, higher surface-t-bulk ratios compared to unmodified SiNWs. They have potential applications in sensors, photovoltaic and thermoelectric nano devices. Growth study on the SiNWs and core-shell nano structures produced is presented using various microscopy, diffraction and probe-based techniques for microstructural, morphological and chemical characterizations. (Author)

  6. CompNanoTox2015: novel perspectives from a European conference on computational nanotoxicology on predictive nanotoxicology

    Energy Technology Data Exchange (ETDEWEB)

    Bañares, Miguel A. [Instituto de Catalisis y Petroleoquimica, ICP, CSIC, Madrid, Spain,; Haase, Andrea [German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany,; Tran, Lang [Statistics and Toxicology Section, Institute of Occupational Medicine, Edinburgh, UK,; Lobaskin, Vladimir [School of Physics, University College Dublin, Dublin, Ireland,; Oberdörster, Günter [Department of Environmental Medicine, University of Rochester, Rochester, NY, USA,; Rallo, Robert [Departament d’Enginyeria Informatica i Matematiques, Universitat Rovira i Virgili, Tarragona, Spain,; Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, WA, USA,; Leszczynski, Jerzy [Interdisciplinary Nanotoxicity Center, Jackson State University, Jackson, MS, USA,; Hoet, Peter [Public Health, Unit Lung Toxicology, K. U. Leuven, Leuven, Belgium,; Korenstein, Rafi [Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel,; Hardy, Barry [Technology Park Basel, Douglas Connect GmbH, Basel, Switzerland,; Puzyn, Tomasz [Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland

    2017-08-09

    A first European Conference on Computational Nanotoxicology, CompNanoTox, was held in November 2015 in Benahavís, Spain with the objectives to disseminate and integrate results from the European modeling and database projects (NanoPUZZLES, ModENPTox, PreNanoTox, MembraneNanoPart, MODERN, eNanoMapper and EU COST TD1204 MODENA) as well as to create synergies within the European NanoSafety Cluster. This conference was supported by the COST Action TD1204 MODENA on developing computational methods for toxicological risk assessment of engineered nanoparticles and provided a unique opportunity for crossfertilization among complementary disciplines. The efforts to develop and validate computational models crucially depend on high quality experimental data and relevant assays which will be the basis to identify relevant descriptors. The ambitious overarching goal of this conference was to promote predictive nanotoxicology, which can only be achieved by a close collaboration between the computational scientists (e.g. database experts, modeling experts for structure, (eco) toxicological effects, performance and interaction of nanomaterials) and experimentalists from different areas (in particular toxicologists, biologists, chemists and material scientists, among others). The main outcome and new perspectives of this conference are summarized here.

  7. Bio-nano interface and environment: A critical review.

    Science.gov (United States)

    Pulido-Reyes, Gerardo; Leganes, Francisco; Fernández-Piñas, Francisca; Rosal, Roberto

    2017-12-01

    The bio-nano interface is the boundary where engineered nanomaterials (ENMs) meet the biological system, exerting the biological function for which they have been designed or inducing adverse effects on other cells or organisms when they reach nontarget scenarios (i.e., the natural environment). Research has been performed to determine the fate, transport, and toxic properties of ENMs, but much of it is focused on pristine or so-called as-manufactured ENMs, or else modifications of the materials were not assessed. We review the most recent progress regarding the bio-nano interface and the transformations that ENMs undergo in the environment, paying special attention to the adsorption of environmental biomolecules on the surface of ENMs. Whereas the protein corona has received considerable attention in the fields of biomedics and human toxicology, its environmental analogue (the eco-corona) has been much less studied. A section dedicated to the analytical methods for studying and characterizing the eco-corona is also presented. We conclude by presenting and discussing the key problems and knowledge gaps that need to be resolved in the near future regarding the bio-nano interface and the eco-corona. Environ Toxicol Chem 2017;36:3181-3193. © 2017 SETAC. © 2017 SETAC.

  8. Nano-hydroxyapatite/β-CD/chitosan nanocomposite for potential applications in bone tissue engineering.

    Science.gov (United States)

    Shakir, Mohammad; Jolly, Reshma; Khan, Mohd Shoeb; Rauf, Ahmar; Kazmi, Shadab

    2016-12-01

    Herein, we report the synthesis of a novel tri-component nanocomposite system incorporating β-cyclodextrin (β-CD) with nano-hydroxyapatite (n-HA) and chitosan (CS), (n-HA/β-CD/CS) at three different temperatures via co-precipitation method. The chemical interactions and surface morphology have been evaluated by TEM, SEM and AFM techniques revealing the agglomerated nanoparticles in CS/n-HA-HA binary system whereas the ternary systems produced needle shaped nanoparticles dispersed homogeneously at low temperature with more porous and rougher surface. The addition of β-CD in CS/n-HA at low temperature decreased the particle size and raised the thermal stability as compared to CS/n-HA. The comparative hemolytic, protein adsorption and platelet adhesion studies confirmed the better hemocompatibility of n-HA/β-CD/CS-(RT,HT,LT) nanocomposites relative to CS/n-HA. The cell viability has been evaluated in vitro using MG-63 cell line which revealed superior non toxicity of n-HA/β-CD/CS-LT nanocomposite in comparison to n-HA/β-CD/CS-(RT,HT) and CS/n-HA nanocomposites. Thus it may be concluded that the orchestrated organic/inorganic n-HA/β-CD/CS-(RT,HT,LT) nanocomposites exhibited relatively higher cell viability of human osteoblast cells, stimulated greater osteogenesis, controlled biodegradation, enhanced antibacterial activity with excellent in-vitro biomineralization and remarkable mechanical parameters as compared to CS/n-HA nanocomposite and thus may provide opportunities for potential use as an alternative biomaterial for Bone tissue engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Nano-scale Materials and Nano-technology Processes in Environmental Protection

    International Nuclear Information System (INIS)

    Vissokov, Gh; Tzvetkoff, T.

    2003-01-01

    A number of environmental and energy technologies have benefited substantially from nano-scale technology: reduced waste and improved energy efficiency; environmentally friendly composite structures; waste remediation; energy conversion. In this report examples of current achievements and paradigm shifts are presented: from discovery to application; a nano structured materials; nanoparticles in the environment (plasma chemical preparation); nano-porous polymers and their applications in water purification; photo catalytic fluid purification; hierarchical self-assembled nano-structures for adsorption of heavy metals, etc. Several themes should be considered priorities in developing nano-scale processes related to environmental management: 1. To develop understanding and control of relevant processes, including protein precipitation and crystallisation, desorption of pollutants, stability of colloidal dispersion, micelle aggregation, microbe mobility, formation and mobility of nanoparticles, and tissue-nanoparticle interaction. Emphasis should be given to processes at phase boundaries (solid-liquid, solid-gas, liquid-gas) that involve mineral and organic soil components, aerosols, biomolecules (cells, microbes), bio tissues, derived components such as bio films and membranes, and anthropogenic additions (e.g. trace and heavy metals); 2. To carry out interdisciplinary research that initiates Noel approaches and adopts new methods for characterising surfaces and modelling complex systems to problems at interfaces and other nano-structures in the natural environment, including those involving biological or living systems. New technological advances such as optical traps, laser tweezers, and synchrotrons are extending examination of molecular and nano-scale processes to the single-molecule or single-cell level; 3. To integrate understanding of the roles of molecular and nano-scale phenomena and behaviour at the meso- and/or macro-scale over a period of time

  10. The location of energetic compartments affects energetic communication in cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Rikke eBirkedal

    2014-09-01

    Full Text Available The heart relies on accurate regulation of mitochondrial energy supply to match energy demand. The main regulators are Ca2+ and feedback of ADP and Pi. Regulation via feedback has intrigued for decades. First, the heart exhibits a remarkable metabolic stability. Second, diffusion of ADP and other molecules is restricted specifically in heart and red muscle, where a fast feedback is needed the most. To explain the regulation by feedback, compartmentalization must be taken into account. Experiments and theoretical approaches suggest that cardiomyocyte energetic compartmentalization is elaborate with barriers obstructing diffusion in the cytosol and at the level of the mitochondrial outer membrane (MOM. A recent study suggests the barriers are organized in a lattice with dimensions in agreement with those of intracellular structures. Here, we discuss the possible location of these barriers. The more plausible scenario includes a barrier at the level of MOM. Much research has focused on how the permeability of MOM itself is regulated, and the importance of the creatine kinase system to facilitate energetic communication. We hypothesize that at least part of the diffusion restriction at the MOM level is not by MOM itself, but due to the close physical association between the sarcoplasmic reticulum (SR and mitochondria. This will explain why animals with a disabled creatine kinase system exhibit rather mild phenotype modifications. Mitochondria are hubs of energetics, but also ROS production and signaling. The close association between SR and mitochondria may form a diffusion barrier to ADP added outside a permeabilised cardiomyocyte. But in vivo, it is the structural basis for the mitochondrial-SR coupling that is crucial for the regulation of mitochondrial Ca2+-transients to regulate energetics, and for avoiding Ca2+-overload and irreversible opening of the mitochondrial permeability transition pore.

  11. Engineered nano-magnetic iron oxide-urea-activated carbon nanolayer sorbent for potential removal of uranium (VI) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Mohamed E., E-mail: memahmoud10@yahoo.com [Faculty of Sciences, Alexandria University, P.O. Box 426, Ibrahimia, 21321, Alexandria (Egypt); Khalifa, Mohamed A.; El Wakeel, Yasser M.; Header, Mennatllah S. [Faculty of Sciences, Alexandria University, P.O. Box 426, Ibrahimia, 21321, Alexandria (Egypt); Abdel-Fattah, Tarek M. [Applied Research Center Thomas Jefferson National Accelerator Facility, Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA 23606 (United States)

    2017-04-15

    A novel magnetic nanosorbent was designed using chemical grafting of nano-magnetite (Nano-Fe{sub 3}O{sub 4}) with nanolayer of activated carbon (AC) via urea intermediate for the formation of Nano-Fe{sub 3}O{sub 4}-Urea-AC. Characterizing was carried out using FT-IR, SEM, HR-TEM, TGA, point of zero charge (Pzc) and surface area analysis. The designed sorbent maintained its magnetic properties and nanosized structure in the range of 8.7–14.1 nm. The surface area was identified as 389 m{sup 2}/g based on the BET method. Sorption of uranyl ions from aqueous solutions was studied and evaluated in different experimental conditions. Removal of uranyl ions increased with increasing in pH value and the maximum percentage removal was established at pH 5.0. The removal and sorption processes of uranyl ions by Nano-Fe{sub 3}O{sub 4}-Urea-AC sorbent were studied and optimized using the batch technique. The key variables affecting removal of uranyl ions were studied including the effect of the contact time, dosage of Nano-Fe{sub 3}O{sub 4}-Urea-AC sorbent, reaction temperature, initial uranyl ions concentration and interfering anions and cations. - Highlights: •A novel magnetic nanosorbent was designed and synthesized. •Nano-Fe{sub 3}O{sub 4}) was coated with nanolayer of activated carbon. •The particle size of magnetic nanosorbent in the range of 8.65–14.06 nm. •Optimization of experimental controlling factors. •Maximum percentage removal uranyl ions was established at pH 5.0.

  12. Probabilistic modeling of the flows and environmental risks of nano-silica.

    Science.gov (United States)

    Wang, Yan; Kalinina, Anna; Sun, Tianyin; Nowack, Bernd

    2016-03-01

    Nano-silica, the engineered nanomaterial with one of the largest production volumes, has a wide range of applications in consumer products and industry. This study aimed to quantify the exposure of nano-silica to the environment and to assess its risk to surface waters. Concentrations were calculated for four environmental (air, soil, surface water, sediments) and two technical compartments (wastewater, solid waste) for the EU and Switzerland using probabilistic material flow modeling. The corresponding median concentration in surface water is predicted to be 0.12 μg/l in the EU (0.053-3.3 μg/l, 15/85% quantiles). The concentrations in sediments in the complete sedimentation scenario were found to be the largest among all environmental compartments, with a median annual increase of 0.43 mg/kg · y in the EU (0.19-12 mg/kg · y, 15/85% quantiles). Moreover, probabilistic species sensitivity distributions (PSSD) were computed and the risk of nano-silica in surface waters was quantified by comparing the predicted environmental concentration (PEC) with the predicted no-effect concentration (PNEC) distribution, which was derived from the cumulative PSSD. This assessment suggests that nano-silica currently poses no risk to aquatic organisms in surface waters. Further investigations are needed to assess the risk of nano-silica in other environmental compartments, which is currently not possible due to a lack of ecotoxicological data. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Engineering physics

    CERN Document Server

    Mukherji, Uma

    2015-01-01

    ENGINEERING PHYSICS is designed as a textbook for first year engineering students of a two semester course in Applied Physics according to new revised syllabus. However the scope of this book is not only limited to undergraduate engineering students and science students, it can also serve as a reference book for practicing scientists.Advanced technological topics like LCD, Squid, Maglev system, Electron microscopes, MRI, Photonics - Photonic fibre, Nano-particles, CNT, Quantum computing etc., are explained with basic underlying principles of Physics.This text explained following topics with numerous solved, unsolved problems and questions from different angles. Part-I contains crystal structure, Liquid crystal, Thermo-electric effect, Thermionic emission, Ultrasonic, Acoustics, semiconductor and magnetic materials. Whereas Part-2 contains Optics, X-rays, Electron optics, Dielectric materials, Quantum Physics and Schrodinger wave equation, Laser, Fibre-optics and Holography, Radio-activity, Super-conductivity,...

  14. ON NANO Λg-CLOSED SETS

    OpenAIRE

    Rajasekaran, Ilangovan; Nethaji, Ochanan

    2017-01-01

    Abstaract−In this paper, we introduce nano ∧g-closed sets in nano topological spaces. Some properties of nano ∧g-closed sets and nano ∧g-open sets are weaker forms of nano closed sets and nano open sets

  15. Transferring metallic nano-island on hydrogen passivated silicon surface for nano-electronics

    International Nuclear Information System (INIS)

    Deng, J; Troadec, C; Joachim, C

    2009-01-01

    In a planar configuration, precise positioning of ultra-flat metallic nano-islands on semiconductor surface opens a way to construct nanostructures for atomic scale interconnects. Regular triangular Au nano-islands have been grown on atomically flat MoS 2 substrates and manipulated by STM to form nanometer gap metal-pads connector for single molecule electronics study. The direct assembly of regular shaped metal nano-islands on H-Si(100) is not achievable. Here we present how to transfer Au triangle nano-islands from MoS 2 onto H-Si(100) in a clean manner. In this experiment, clean MoS 2 substrates are patterned as array of MoS 2 pillars with height of 8 μm. The Au triangle nano-islands are grown on top of the pillars. Successful printing transfer of these Au nano-islands from the MoS 2 pillars to the H-Si(100) is demonstrated.

  16. Synthesis and characterization of nano hydroxyapatite using reverse micro emulsions as nano reactors

    International Nuclear Information System (INIS)

    Amin, S.; Siddique, T.

    2015-01-01

    In the present work reverse micro emulsion has been employed as nano reactors to synthesize nano crystalline Hydroxyapatite (HA). Two precursors; calcium and phosphate with different counter ions of each were used for the synthesis of HA at two different temperatures. To maintain the emulsified nano reactor, cyclohexane, TX-100 and 1-butanol including phosphate precursor was the continuous phase while aqueous Ca precursor solution was taken as the dispersed phase. Nano crystalline particles thus produced were evaluated on the basis of synthesis route, counter ions and temperature. It has been shown that emulsified nano reactors control the morphology, particle size and minimize phase transformation of HA. Characterizations of nano powder of HA are carried out using x-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), and scanning electron microscopy (SEM). HA crystallite size was found to be in the range of 20-25 nm whereas the morphology of nano particles changed from spheres to rods. (author)

  17. International Conference on Medical and Biological Engineering 2017

    CERN Document Server

    2017-01-01

    This volume presents the proceedings of the International Conference on Medical and Biological Engineering held from 16 to 18 March 2017 in Sarajevo, Bosnia and Herzegovina. Focusing on the theme of ‘Pursuing innovation. Shaping the future’, it highlights the latest advancements in Biomedical Engineering and also presents the latest findings, innovative solutions and emerging challenges in this field. Topics include: - Biomedical Signal Processing - Biomedical Imaging and Image Processing - Biosensors and Bioinstrumentation - Bio-Micro/Nano Technologies - Biomaterials - Biomechanics, Robotics and Minimally Invasive Surgery - Cardiovascular, Respiratory and Endocrine Systems Engineering - Neural and Rehabilitation Engineering - Molecular, Cellular and Tissue Engineering - Bioinformatics and Computational Biology - Clinical Engineering and Health Technology Assessment - Health Informatics, E-Health and Telemedicine - Biomedical Engineering Education - Pharmaceutical Engineering.

  18. The Principle of Energetic Consistency

    Science.gov (United States)

    Cohn, Stephen E.

    2009-01-01

    A basic result in estimation theory is that the minimum variance estimate of the dynamical state, given the observations, is the conditional mean estimate. This result holds independently of the specifics of any dynamical or observation nonlinearity or stochasticity, requiring only that the probability density function of the state, conditioned on the observations, has two moments. For nonlinear dynamics that conserve a total energy, this general result implies the principle of energetic consistency: if the dynamical variables are taken to be the natural energy variables, then the sum of the total energy of the conditional mean and the trace of the conditional covariance matrix (the total variance) is constant between observations. Ensemble Kalman filtering methods are designed to approximate the evolution of the conditional mean and covariance matrix. For them the principle of energetic consistency holds independently of ensemble size, even with covariance localization. However, full Kalman filter experiments with advection dynamics have shown that a small amount of numerical dissipation can cause a large, state-dependent loss of total variance, to the detriment of filter performance. The principle of energetic consistency offers a simple way to test whether this spurious loss of variance limits ensemble filter performance in full-blown applications. The classical second-moment closure (third-moment discard) equations also satisfy the principle of energetic consistency, independently of the rank of the conditional covariance matrix. Low-rank approximation of these equations offers an energetically consistent, computationally viable alternative to ensemble filtering. Current formulations of long-window, weak-constraint, four-dimensional variational methods are designed to approximate the conditional mode rather than the conditional mean. Thus they neglect the nonlinear bias term in the second-moment closure equation for the conditional mean. The principle of

  19. Nano devices and sensors

    CERN Document Server

    Liaw, Shien-Kuei; Chung, Yung-Hui

    2016-01-01

    This volume on semiconductor devices focuses on such topics as nano-imprinting, lithography, nanowire charge-trapping, thermo-stability in nanowires, nano-electrodes, and voltage and materials used for fabricating and improving electrical characteristics of nano-materials.

  20. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering.

    Science.gov (United States)

    Lowe, Baboucarr; Venkatesan, Jayachandran; Anil, Sukumaran; Shim, Min Suk; Kim, Se-Kwon

    2016-12-01

    Solid three dimensional (3D) composite scaffolds for bone tissue engineering were prepared using the freeze-drying method. The scaffolds were composed of chitosan, natural nano-hydroxyapatite (nHA) and fucoidan in the following combinations: chitosan, chitosan-fucoidan, chitosan-nHA, and chitosan-nHA-fucoidan. Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and optical microscopy (OM) were used to determine the physiochemical constituents and the morphology of the scaffolds. The addition of nHA into the chitosan-fucoidan composite scaffold reduced the water uptake and water retention. FT-IR analysis confirmed the presence of a phosphate group in the chitosan-nHA-fucoidan scaffold. This group is present because of the presence of nHA (isolated via alkaline hydrolysis from salmon fish bones). Microscopic results indicated that the dispersion of nHA and fucoidan in the chitosan matrix was uniform with a pore size of 10-400μm. The composite demonstrated a suitable micro architecture for cell growth and nutrient supplementation. This compatibility was further elucidated in vitro using periosteum-derived mesenchymal stem cells (PMSCs). The cells demonstrated high biocompatibility and excellent mineralization for the chitosan-nHA-fucoidan scaffold. We believe that a chitosan-nHA-fucoidan composite is a promising biomaterial for the scaffold that can be used for bone tissue regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Application of emission CT on nano-robot radiation imaging tracing and isotope sign in nano-robot

    International Nuclear Information System (INIS)

    Wang Xuewu; Cheng Jianping; Kang Kejun

    2000-01-01

    Nano-technology has been a scientific and technical frontier with major trends foreseen in several disciplines. Nano-robot is the most remarkable imagination of the application of nano-technology. And it should be concerned of tracing technology along with nano-robot. The character of nano-robot is deeply analyzed, the development status of emission CT is integrated, and the application of emission CT on nano-robot radiation imaging tracing is discussed. The isotope sign of nano-robot is especially calculated and analyzed

  2. Fabrication of high-aspect-ratio nano structures using a nano x-ray shadow mask

    International Nuclear Information System (INIS)

    Kim, Yong Chul; Lee, Seung S

    2008-01-01

    This paper describes a novel method for the fabrication of high-aspect-ratio nano structures (HAR-nano structures) using a nano x-ray shadow mask and deep x-ray lithography (DXRL). The nano x-ray shadow mask is fabricated by depositing an x-ray absorber layer (Au, 3 µm) onto the back side of a nano shadow mask. The nano shadow mask is produced with nano-sized apertures whose dimensions are reduced to several tens of nanometers by the accumulation of low-stress silicon nitride (Si x N y ) using the LPCVD process on the shadow mask. A shadow mask containing apertures with a size of 1 µm is fabricated on a bulk micromachined Si x N y membrane. The thickness of an absorber layer must be in the range of several tens of micrometers in order to obtain a contrast of more than 100 for the conventional DXRL process at the Pohang Light Source (PLS). However, a 3 µm thick absorber layer can provide a sufficient contrast if the modified DXRL of the central beam-stop method is used, which blocks high-energy x-rays. A nano shadow mask with 30 nm sized apertures is fabricated and a nano x-ray shadow mask with 250 nm sized apertures is fabricated by depositing a 3 µm thick absorber layer on a nano shadow mask with 500 nm sized apertures. HAR-nano structures (circles with a diameter of 420 nm and lines with a width of 274 nm) with aspect ratios of over 10:1 on a 3.2 µm SU-8 are successfully fabricated by using the nano x-ray shadow mask and the central beam-stop method

  3. caNanoLab: data sharing to expedite the use of nanotechnology in biomedicine

    International Nuclear Information System (INIS)

    Gaheen, Sharon; Hinkal, George W; Morris, Stephanie A; Lijowski, Michal; Heiskanen, Mervi; Klemm, Juli D

    2013-01-01

    The use of nanotechnology in biomedicine involves the engineering of nanomaterials to act as therapeutic carriers, targeting agents and diagnostic imaging devices. The application of nanotechnology in cancer aims to transform early detection, targeted therapeutics and cancer prevention and control. To assist in expediting and validating the use of nanomaterials in biomedicine, the National Cancer Institute (NCI) Center for Biomedical Informatics and Information Technology, in collaboration with the NCI Alliance for Nanotechnology in Cancer (Alliance), has developed a data sharing portal called caNanoLab. caNanoLab provides access to experimental and literature curated data from the NCI Nanotechnology Characterization Laboratory, the Alliance and the greater cancer nanotechnology community. (paper)

  4. Nano-crystalline P/M aluminium for automotive applications

    International Nuclear Information System (INIS)

    Hummert, K; Schattevoy, R; Broda, M; Knappe, M; Beiss, P; Klubberg, F; Schubert, T H; Leuschner, R

    2009-01-01

    The reduction of total vehicle weight and lowering of moving masses within the engine are key elements to overcome future emission challenges of the automotive industry. Within a German BMBF funded project the melt spinning technology will be driven to a series production status. The very fast cooling condition of the melt leads to a nano-structure of the aluminium material. This results in new material properties of known alloys. The strength increases dramatically without lowered forming behaviour. With this process the freedom of designing complex alloys is very flexible. Different alloys have been investigated for several applications, where high strength at room and elevated temperatures and/or high wear resistance is required. This paper presents some results regarding the processing, microstructure and mechanical properties of a developed Al-Ni-Fe alloy. This joined research project with partners from the automotive industry as well as automotive suppliers and universities is funded by the German BMBF 'NanoMobile' Program under Project number 03X3008.

  5. Adsorption of F2C=CFCl on TiO2 nano-powder: Structures, energetics and vibrational properties from DRIFT spectroscopy and periodic quantum chemical calculations

    International Nuclear Information System (INIS)

    Tasinato, Nicola; Moro, Daniele; Stoppa, Paolo; Pietropolli Charmet, Andrea; Toninello, Piero; Giorgianni, Santi

    2015-01-01

    Graphical abstract: - Highlights: • Adsorption of F 2 C=CFCl on TiO 2 unveiled by DRIFTS and periodic DFT. • Structural, energetic and vibrational properties of F 2 C=CFCl @ anatase (1 0 1). • Binding energies (B3LYP-D2) between −17 and −46 kJ mol −1 depending on the anchor point. • Theory and experiment converge on the CF 2 moiety as the main anchor point. - Abstract: Photodegradation over titanium dioxide (TiO 2 ) is a very appealing technology for removing environmental pollutants from the air, the adsorption interaction being the first step of the whole reaction pathway. In the present work the adsorption of F 2 C=CFCl (chlorotrifluoroethene, halon 1113), a compound used by industry and detected in the atmosphere, on a commercial TiO 2 nano-powder is investigated experimentally by in situ DRIFT spectroscopy and theoretically through periodic ab initio calculations rooted in DFT. The spectra of the adsorbed molecule suggest that the anchoring to the surface mainly takes place through F atoms. Theoretically, five adsorption configurations for the molecule interacting with the anatase (1 0 1) surface are simulated at B3LYP level and for each of them, structures, binding energies and vibrational frequencies are derived. The interplay between theory and experiments shows the coexistence of different adsorption configurations, the foremost ones featuring the interaction of one F atom with a fivefold coordinated Ti 4+ of the surface. These two adsorption models, which mostly differ for the orientation of the adsorbate with respect to the surface, feature a binding energy of −45.6 and −41.0 kJ mol −1 according to dispersion corrected DFT calculations. The favorable adsorption interaction appears as an important requirement toward the application of titanium dioxide technologies for the photocatalytic degradation of halon 1113.

  6. Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system

    Energy Technology Data Exchange (ETDEWEB)

    Shuai Cijun; Gao Chengde; Nie Yi; Hu Huanlong; Zhou Ying [Key Laboratory of Modern Complex Equipment Design and Extreme Manufacturing, Central South University, Ministry of Education, Changsha, 410083 (China); Peng Shuping, E-mail: shuping@csu.edu.cn [Cancer Research Institute, Central South University, Changsha, 410078 (China)

    2011-07-15

    In this study, nano-hydroxypatite (n-HAP) bone scaffolds are prepared by a homemade selective laser sintering (SLS) system based on rapid prototyping (RP) technology. The SLS system consists of a precise three-axis motion platform and a laser with its optical focusing device. The implementation of arbitrary complex movements based on the non-uniform rational B-Spline (NURBS) theory is realized in this system. The effects of the sintering processing parameters on the microstructure of n-HAP are tested with x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The particles of n-HAP grow gradually and tend to become spherical-like from the initial needle-like shape, but still maintain a nanoscale structure at scanning speeds between 200 and 300 mm min{sup -1} when the laser power is 50 W, the light spot diameter 4 mm, and the layer thickness 0.3 mm. In addition, these changes do not result in decomposition of the n-HAP during the sintering process. The results suggest that the newly developed n-HAP scaffolds have the potential to serve as an excellent substrate in bone tissue engineering.

  7. Hyper-elastic modeling and mechanical behavior investigation of porous poly-D-L-lactide/nano-hydroxyapatite scaffold material.

    Science.gov (United States)

    Han, Quan Feng; Wang, Ze Wu; Tang, Chak Yin; Chen, Ling; Tsui, Chi Pong; Law, Wing Cheung

    2017-07-01

    Poly-D-L-lactide/nano-hydroxyapatite (PDLLA/nano-HA) can be used as the biological scaffold material in bone tissue engineering as it can be readily made into a porous composite material with excellent performance. However, constitutive modeling for the mechanical response of porous PDLLA/nano-HA under various stress conditions has been very limited so far. In this work, four types of fundamental compressible hyper-elastic constitutive models were introduced for constitutive modeling and investigation of mechanical behaviors of porous PDLLA/nano-HA. Moreover, the unitary expressions of Cauchy stress tensor have been derived for the PDLLA/nano-HA under uniaxial compression (or stretch), biaxial compression (or stretch), pure shear and simple shear load by using the theory of continuum mechanics. The theoretical results determined from the approach based on the Ogden compressible hyper-elastic constitutive model were in good agreement with the experimental data from the uniaxial compression tests. Furthermore, this approach can also be used to predict the mechanical behaviors of the porous PDLLA/nano-HA material under the biaxial compression (or stretch), pure shear and simple shear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Observation of terahertz-radiation-induced ionization in a single nano island.

    Science.gov (United States)

    Seo, Minah; Kang, Ji-Hun; Kim, Hyo-Suk; Hyong Cho, Joon; Choi, Jaebin; Min Jhon, Young; Lee, Seok; Hun Kim, Jae; Lee, Taikjin; Park, Q-Han; Kim, Chulki

    2015-05-22

    Terahertz (THz) electromagnetic wave has been widely used as a spectroscopic probe to detect the collective vibrational mode in vast molecular systems and investigate dielectric properties of various materials. Recent technological advances in generating intense THz radiation and the emergence of THz plasmonics operating with nanoscale structures have opened up new pathways toward THz applications. Here, we present a new opportunity in engineering the state of matter at the atomic scale using THz wave and a metallic nanostructure. We show that a medium strength THz radiation of 22 kV/cm can induce ionization of ambient carbon atoms through interaction with a metallic nanostructure. The prepared structure, made of a nano slot antenna and a nano island located at the center, acts as a nanogap capacitor and enhances the local electric field by two orders of magnitudes thereby causing the ionization of ambient carbon atoms. Ionization and accumulation of carbon atoms are also observed through the change of the resonant condition of the nano slot antenna and the shift of the characteristic mode in the spectrum of the transmitted THz waves.

  9. Nano-education from a European perspective

    Energy Technology Data Exchange (ETDEWEB)

    Malsch, I [Malsch TechnoValuation Vondellaan 90 3521 GH Utrecht (Netherlands)], E-mail: postbus@malsch.demon.nl

    2008-03-15

    At a global level, educating the nanotechnology workforce has been discussed since the beginning of the new millennium. Scientists, engineers and technicians should be trained in nanotechnology. Most educators prefer training students first in their own discipline at the Bachelor level (physics, chemistry, biology, etc) followed by specialisation in nanoscience and technology at the Master's level. Some favour a broad interdisciplinary basic training in different nanosciences followed by specialisation in a particular application area. What constitutes a good nanoscience curriculum is also being discussed, as well as the application of e-learning methodologies. The European Union is stimulating the development of nanoscience education in universities. The Erasmus Mundus programme is funding nanoscience and nanotechnology education programmes involving universities in several European countries. The policy debate in Europe is moving towards vocational training in nanotechnology for educating the technicians needed in industry and research. The EU vocational training institute CEDEFOP published a report in 2005 The EU funded European gateway to nanotechnology Nanoforum has stimulated the accessibility of nano-education throughout Europe with reports and online databases of education courses and materials. For university education, they list courses at the Bachelor, Master's, and PhD level as well as short courses. The EU funded EuroIndiaNet project also reviewed Nano-education courses at the Master's level, short courses, e-learning programmes, summerschools and vocational training courses. In this presentation, I review Nanoforum and other publications on nano-education in Europe and highlight current trends and gaps.

  10. In vitro degradation of porous nano-hydroxyapatite/collagen/PLLA scaffold reinforced by chitin fibres

    International Nuclear Information System (INIS)

    Li Xiaoming; Feng Qingling; Cui Fuzhai

    2006-01-01

    In this paper, a novel porous scaffold for bone tissue engineering was prepared with nano-hydroxyapatite/collagen/Poly-L-lactic acid (PLLA) composite reinforced by chitin fibres. To enhance the strength of the scaffold further, PLLA was linked with chitin fibres by Dicyclohexylcarbodimide (DCC). The structures of the reinforced scaffold with and without linking were characterized by Scanning Electron Microscopy (SEM). The chemical characteristics of the chitin fibres with and without linking were evaluated by Fourier-transformed infrared (FTIR) spectroscopy. The mechanical performance during degradation in vitro was investigated. The results indicated that the nano-hydroxyapatite/collagen/PLLA composite reinforced by chitin fibres with linking kept better mechanical properties than that of the composite without linking. These results denoted that the stronger interfacial bonding strength of the scaffold with linking could decrease the degradation rate in vitro. The reinforced composite with the link-treatment can be severed as a scaffold for bone tissue engineering

  11. Evaluation of the effects of nano-TiO2 on bioactivity and mechanical properties of nano bioglass-P3HB composite scaffold for bone tissue engineering.

    Science.gov (United States)

    Bakhtiyari, Sanaz Soleymani Eil; Karbasi, Saeed; Monshi, Ahmad; Montazeri, Mahbobeh

    2016-01-01

    To emulate bone structure, porous composite scaffold with suitable mechanical properties should be designed. In this research the effects of nano-titania (nTiO2) on the bioactivity and mechanical properties of nano-bioglass-poly-3-hydroxybutyrate (nBG/P3HB)-composite scaffold were evaluated. First, nBG powder was prepared by melting method of pure raw materials at a temperature of 1400 °C and then the porous ceramic scaffold of nBG/nTiO2 with 30 wt% of nBG containing different weight ratios of nTiO2 (3, 6, and 9 wt% of nTiO2 with grain size of 35-37 nm) was prepared by using polyurethane sponge replication method. Then the scaffolds were coated with P3HB in order to increase the scaffold's mechanical properties. Mechanical strength and modulus of scaffolds were improved by adding nTiO2 to nBG scaffold and adding P3HB to nBG/nTiO2 composite scaffold. The results of the compressive strength and porosity tests showed that the best scaffold is 30 wt% of nBG with 6 wt% of nTiO2 composite scaffold immersed for 30 s in P3HB with 79.5-80 % of porosity in 200-600 μm, with a compressive strength of 0.15 MPa and a compressive modulus of 30 MPa, which is a good candidate for bone tissue engineering. To evaluate the bioactivity of the scaffold, the simulated body fluid (SBF) solution was used. The best scaffold with 30 wt% of nBG, 6 wt% of P3HB and 6 wt% of nTiO2 was immersed in SBF for 4 weeks at an incubation temperature of 37 °C. The bioactivity of the scaffolds was characterized by AAS, SEM, EDXA and XRD. The results of bioactivity showed that bone-like apatite layer formed well at scaffold surface and adding nTiO2 to nBG/P3HB composite scaffold helped increase the bioactivity rate.

  12. Energetic map

    International Nuclear Information System (INIS)

    2012-01-01

    This report explains the energetic map of Uruguay as well as the different systems that delimits political frontiers in the region. The electrical system importance is due to the electricity, oil and derived , natural gas, potential study, biofuels, wind and solar energy

  13. Convergence Science in a Nano World

    Science.gov (United States)

    Cady, Nathaniel

    2013-01-01

    Convergence is a new paradigm that brings together critical advances in the life sciences, physical sciences and engineering. Going beyond traditional “interdisciplinary” studies, “convergence” describes the culmination of truly integrated research and development, yielding revolutionary advances in both scientific research and new technologies. At its core, nanotechnology embodies these elements of convergence science by bringing together multiple disciplines with the goal of creating innovative and groundbreaking technologies. In the biological and biomedical sciences, nanotechnology research has resulted in dramatic improvements in sensors, diagnostics, imaging, and even therapeutics. In particular, there is a current push to examine the interface between the biological world and micro/nano-scale systems. For example, my laboratory is developing novel strategies for spatial patterning of biomolecules, electrical and optical biosensing, nanomaterial delivery systems, cellular patterning techniques, and the study of cellular interactions with nano-structured surfaces. In this seminar, I will give examples of how convergent research is being applied to three major areas of biological research &endash; cancer diagnostics, microbiology, and DNA-based biosensing. These topics will be presented as case studies, showing the benefits (and challenges) of multi-disciplinary, convergent research and development.

  14. Economical aspects of nuclear energetics

    International Nuclear Information System (INIS)

    Celinski, Z.

    2000-01-01

    The economical aspects of nuclear power generation in respect to costs of conventional energetics have been discussed in detail. The costs and competitiveness of nuclear power have been considered on the base of worldwide trends taking into account investment and fuel costs as well as 'social' costs being result of impact of different types of energetics on environment, human health etc

  15. Material versatility using replica molding for large-scale fabrication of high aspect-ratio, high density arrays of nano-pillars

    International Nuclear Information System (INIS)

    Li, Y; Menon, C; Ng, H W; Gates, B D

    2014-01-01

    Arrays of high aspect-ratio (AR) nano-pillars have attracted a lot of interest for various applications, such as for use in solar cells, surface acoustic sensors, tissue engineering, bio-inspired adhesives and anti-reflective surfaces. Each application may require a different structural material, which can vary in the required chemical composition and mechanical properties. In this paper, a low cost fabrication procedure is proposed for large scale, high AR and high density arrays of nano-pillars. The proposed method enables the replication of a master with high fidelity, using the subsequent replica molds multiple times, and preparing arrays of nano-pillars in a variety of different materials. As an example applied to bio-inspired dry adhesion, polymeric arrays of nano-pillars are prepared in this work. Thermoset and thermoplastic nano-pillar arrays are examined using an atomic force microscope to assess their adhesion strength and its uniformity. Results indicate the proposed method is robust and can be used to reliably prepare nano-structures with a high AR. (paper)

  16. Comparison Based on Exergetic Analyses of Two Hot Air Engines: A Gamma Type Stirling Engine and an Open Joule Cycle Ericsson Engine

    Directory of Open Access Journals (Sweden)

    Houda Hachem

    2015-10-01

    Full Text Available In this paper, a comparison of exergetic models between two hot air engines (a Gamma type Stirling prototype having a maximum output mechanical power of 500 W and an Ericsson hot air engine with a maximum power of 300 W is made. Referring to previous energetic analyses, exergetic models are set up in order to quantify the exergy destruction and efficiencies in each type of engine. The repartition of the exergy fluxes in each part of the two engines are determined and represented in Sankey diagrams, using dimensionless exergy fluxes. The results show a similar proportion in both engines of destroyed exergy compared to the exergy flux from the hot source. The compression cylinders generate the highest exergy destruction, whereas the expansion cylinders generate the lowest one. The regenerator of the Stirling engine increases the exergy resource at the inlet of the expansion cylinder, which might be also set up in the Ericsson engine, using a preheater between the exhaust air and the compressed air transferred to the hot heat exchanger.

  17. Energetic Sustainability and the Environment: A Transdisciplinary, Economic–Ecological Approach

    Directory of Open Access Journals (Sweden)

    Ioan G. Pop

    2017-05-01

    Full Text Available The paper combines original concepts about eco-energetic systems, in a transdisciplinary sustainable context. Firstly, it introduces the concept of M.E.N. (Mega-Eco-Nega-Watt, the eco-energetic paradigm based on three different but complementary ecological economic spaces: the Megawatt as needed energy, the Ecowatt as ecological energy, and the Negawatt as preserved energy. The paper also deals with the renewable energies and technologies in the context of electrical energy production. Secondly, in the context of the M.E.N. eco-energetic paradigm, comprehensive definitions are given about eco-energetic systems and for pollution. Thirdly, the paper introduces a new formula for the eco-energetic efficiency which correlates the energetic efficiency of the system and the necessary newly defined ecological coefficient. The proposed formula for eco-energetic efficiency enables an interesting form of relating to different situations in which the input energy, output energy, lost energy, and externalities involved in an energetic process, interact to produce energy in a specific energetic system, in connection with the circular resilient economy model. Finally, the paper presents an original energetic diagram to explain different channels to produce electricity in a resilience regime, with high eco-energetic efficiency from primary external energetic sources (gravitation and solar sources, fuels (classical and radioactive, internal energetic sources (geothermal, volcanoes and other kind of sources. Regardless the kind of energetic sources used to obtain electricity, the entire process should be sustainable in what concerns the transdisciplinary integration of the different representative spheres as energy, socio-economy, and ecology (environment.

  18. Nano-dot and nano-pit fabrication on a GaAs substrate by a pulse applied AFM

    International Nuclear Information System (INIS)

    Kim, H C; Yu, J S; Ryu, S H

    2012-01-01

    The nano-patterning characteristics of GaAs is investigated using a pulse applied atomic force microscope (AFM). Very short range voltage pulses of micro to nano-seconds’ duration are applied to a conductive diamond-coated silicon (Si) tip in contact mode, to regulate the created feature size. The effects of pulse conditions such as pulse voltage, duration, frequency, offset voltage, anodization time, and applied tip pressure on nano-dot generation are characterized, based on the experiments. An interesting phenomenon, nano-pit creation instead of nano-dot creation, is observed when the applied pulse duration is less than 100 μs. Pulse frequency and offset voltage are also involved in nano-pit generation. The electrical spark discharge between the tip and the GaAs's surface is the most probable cause of the nano-pit creation and its generation mechanism is explained by considering the relevant pulse parameters. Nano-pits over 15 nm in depth are acquired on the GaAs substrate by adjusting the pulse conditions. This research facilitates the fabrication of more complex nano-structures on semiconductor materials since nano-dots and nano-pits could be easily made without any additional post-processes. (paper)

  19. Development of nano SiO2 incorporated nano zinc phosphate coatings on mild steel

    International Nuclear Information System (INIS)

    Tamilselvi, M.; Kamaraj, P.; Arthanareeswari, M.; Devikala, S.; Selvi, J. Arockia

    2015-01-01

    Highlights: • Nano SiO 2 incorporated nano zinc phosphate coating on mild steel was developed. • Coatings showed enhanced corrosion resistance. • The nano SiO 2 is adsorbed on mild steel surface and become nucleation sites. • The nano SiO 2 accelerates the phosphating process. - Abstract: This paper reports the development of nano SiO 2 incorporated nano zinc phosphate coatings on mild steel at low temperature for achieving better corrosion protection. A new formulation of phosphating bath at low temperature with nano SiO 2 was attempted to explore the possibilities of development of nano zinc phosphate coatings on mild steel with improved corrosion resistance. The coatings developed were studied by Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Electrochemical measurements. Significant variation in the coating weight, morphology and corrosion resistance was observed as nano SiO 2 concentrations varied from 0.5–4 g/L. The results showed that, the nano SiO 2 in the phosphating solution changed the initial potential of the interface between mild steel substrate and phosphating solution and reduce the activation energy of the phosphating process, increase the nucleation sites and yielded zinc phosphate coatings of higher coating weight, greater surface coverage and enhanced corrosion resistance. Better corrosion resistance was observed for coatings derived from phosphating bath containing 1.5 g/L nano SiO 2 . The new formulation reported in the present study was free from Ni or Mn salts and had very low concentration of sodium nitrite (0.4 g/L) as accelerator

  20. Consumer exposures to laser printer-emitted engineered nanoparticles: A case study of life-cycle implications from nano-enabled products.

    Science.gov (United States)

    Pirela, Sandra V; Sotiriou, Georgios A; Bello, Dhimiter; Shafer, Martin; Bunker, Kristin Lee; Castranova, Vincent; Thomas, Treye; Demokritou, Philip

    2015-01-01

    It is well established that printers emit nanoparticles during their operation. To-date, however, the physicochemical and toxicological characterization of "real world" printer-emitted nanoparticles (PEPs) remains incomplete, hampering proper risk assessment efforts. Here, we investigate our earlier hypothesis that engineered nanomaterials (ENMs) are used in toners and ENMs are released during printing (consumer use). Furthermore, we conduct a detailed physicochemical and morphological characterization of PEPs in support of ongoing toxicological assessment. A comprehensive suite of state of the art analytical methods and tools was employed for the physicochemical and morphological characterization of 11 toners widely utilized in printers from major printer manufacturers and their PEPs. We confirmed that a number of ENMs incorporated into toner formulations (e.g. silica, alumina, titania, iron oxide, zinc oxide, copper oxide, cerium oxide, carbon black among others) and released into the air during printing. All evaluated toners contained large amounts of organic carbon (OC, 42-89%), metals/metal oxides (1-33%), and some elemental carbon (EC, 0.33-12%). The PEPs possess a composition similar to that of toner and contained 50-90% OC, 0.001-0.5% EC and 1-3% metals. While the chemistry of the PEPs generally reflected that of their toners, considerable differences are documented indicative of potential transformations taking place during consumer use (printing). We conclude that: (i) Routine incorporation of ENMs in toners classifies them as nano-enabled products (NEPs); (ii) These ENMs become airborne during printing; (iii) The chemistry of PEPs is complex and it reflects that of the toner and paper. This work highlights the importance of understanding life-cycle (LC) nano-EHS implications of NEPs and assessing real world exposures and associated toxicological properties rather than focusing on "raw" materials used in the synthesis of an NEP.

  1. To be nano or not to be nano?

    Science.gov (United States)

    Joachim, Christian

    2005-02-01

    Nanomaterials, nanostructures, nanostructured materials, nanoimprint, nanobiotechnology, nanophysics, nanochemistry, radical nanotechnology, nanosciences, nanooptics, nanoelectronics, nanorobotics, nanosoldiers, nanomedecine, nanoeconomy, nanobusiness, nanolawyer, nanoethics to name a few of the nanos. We need a clear definition of all these burgeoning fields for the sake of the grant attribution, for the sake of research program definition, and to avoid everyone being lost in so many nanos.

  2. The nano-materials, at the heart of the nano galaxy; Les nano-materiaux, au coeur de la galaxie nano

    Energy Technology Data Exchange (ETDEWEB)

    Le Marois, G. [Direction Generale de l' Industrie, des Technologies de l' Information et des Postes, 75 - Paris (France); Carlac, D. [Societe Developpement et Conseil, 51 - Reims (France)

    2004-02-01

    The researches on nano-materials are continuously increasing in most of industrialized countries. Between 1998 and 2003, the corresponding investment has been multiplied by six in Europe, eight in Usa and in Japan, to reach 3 milliards of euros in the world. Based on the nano-technologies development, these materials would represent the main part of the market at short and middle dated. Many examples of utilization are presented. (A.L.B.)

  3. A Review of the Effect of Processing Variables on the Fabrication of Electro spun Nano fibers for Drug Delivery Applications

    International Nuclear Information System (INIS)

    Pillay, V.; Dott, C.; Choonara, Y.E.; Tyagi, Ch.; Tomar, L.; Kumar, P.; Toit, L.C.D.; Ndesendo, V.M.K.

    2013-01-01

    Electro spinning is a fast emerging technique for producing ultrafine fibers by utilizing electrostatic repulsive forces. The technique has gathered much attention due to the emergence of nano technology that sparked worldwide research interest in nano materials for their preparation and application in biomedicine and drug delivery. Electro spinning is a simple, adaptable, cost-effective, and versatile technique for producing nano fibers. For effective and efficient use of the technique, several processing parameters need to be optimized for fabricating polymeric nano fibers. The nano fiber morphology, size, porosity, surface area, and topography can be refined by varying these parameters. Such flexibility and diversity in nano fiber fabrication by electro spinning has broadened the horizons for widespread application of nano fibers in the areas of drug and gene delivery, wound dressing, and tissue engineering. Drug-loaded electro spun nano fibers have been used in implants, transdermal systems, wound dressings, and as devices for aiding the prevention of post surgical abdominal adhesions and infection. They show great promise for use in drug delivery provided that one can confidently control the processing variables during fabrication. This paper provides a concise incursion into the application of electro spun nano fibers in drug delivery and cites pertinent processing parameters that may influence the performance of the nano fibers when applied to drug delivery.

  4. Aluminum Templates of Different Sizes with Micro-, Nano- and Micro/Nano-Structures for Cell Culture

    Directory of Open Access Journals (Sweden)

    Ming-Liang Yen

    2017-10-01

    Full Text Available This study investigates the results of cell cultures on aluminum (Al templates with flat-structures, micro-structures, nano-structures and micro/nano-structures. An Al template with flat-structure was obtained by electrolytic polishing; an Al template with micro-structure was obtained by micro-powder blasting; an Al template with nano-structure was obtained by aluminum anodization; and an Al template with micro/nano-structure was obtained by micro-powder blasting and then anodization. Osteoblast-like cells were cultured on aluminum templates with various structures. The microculture tetrazolium test assay was utilized to assess the adhesion, elongation, and proliferation behaviors of cultured osteoblast-like cells on aluminum templates with flat-structures, micro-structures, nano-structures, and micro/nano-structures. The results showed that the surface characterization of micro/nano-structure of aluminum templates had superhydrophilic property, and these also revealed that an aluminum template with micro/nano-structure could provide the most suitable growth situation for cell culture.

  5. Towards an energetic theory of brittle fracture

    International Nuclear Information System (INIS)

    Francfort, G.; Marigo, J.J.

    2002-01-01

    The drawbacks of the classical theory of brittle fracture, based on Griffith's criterion, - a notion of critical energy release rate -, and a fracture toughness k, are numerous (think for instance the issue of crack initiation) and penalize its validity as a good model. Are all attempts at building a macroscopic theory of fracture doomed? The variety and complexity of micro-mechanical phenomena would suggest that this is indeed the case. We believe however that structural effects still preside over fracture and consequently propose to modify slightly Griffith theory without altering its fundamental components so that it becomes amenable to the widest range of situations. The examples presented here will demonstrate that a revisited energetic framework is a sound basis for a theory which can be used at the engineering level and which reconciles seemingly contradictory viewpoints. (authors)

  6. Sensing the Presence and Transport of Engineered Nanoparticles in Saturated PorousMedia using Spectral Induced Polarization (SIP) Method

    Science.gov (United States)

    Nano-materials are emerging into the global marketplace. Engineered Nano-particles, and other throwaway nanodevices may constitute a whole new class of non-biodegradable pollutants of which scientists have very little understanding. Therefore, the production of significant quanti...

  7. Nano sized Particles of Silica and Its Derivatives for Applications in Various Branches of Food and Nutrition Sectors

    International Nuclear Information System (INIS)

    Kasaai, M. R.

    2015-01-01

    Nano sized particles of silica and its derivatives have been identified as versatile for a broad range of science, technology, and engineering applications. In this paper, an effort has been made to provide a short review from the available literature information on their applications in various branches of food and nutrition sectors. The information provided in this paper describes various parameters affecting their performances and efficiencies. The properties and applications of nano silica and its derivatives have been compared with micro silica and bulk-silica for their performances. The use of nano sized particles of silica and its derivatives provides a number of advantages. Their efficiencies and performances are significantly higher than those of the traditional ones

  8. Optimization of some eco-energetic systems

    International Nuclear Information System (INIS)

    Purica, I.; Pavelescu, M.; Stoica, M.

    1976-01-01

    An optimization problem of two eco-energetic systems is described. The first one is close to the actual eco-energetic system in Romania, while the second is a new one, based on nuclear energy as primary source and hydrogen energy as secondary source. The optimization problem solved is to find the optimal structure of the systems so that the objective functions adopted, namely unitary energy cost C and total pollution P, to be minimum at the same time. The problem can be modelated with a bimatrix cooperative mathematical game without side payments. We demonstrate the superiority of the new eco-energetic system. (author)

  9. Effects of incorporation of nano-fluorapatite or nano-fluorohydroxyapatite on a resin-modified glass ionomer cement.

    Science.gov (United States)

    Lin, Jun; Zhu, Jiajun; Gu, Xiaoxia; Wen, Wenjian; Li, Qingshan; Fischer-Brandies, Helge; Wang, Huiming; Mehl, Christian

    2011-03-01

    This study aimed to investigate the fluoride release properties and the effect on bond strength of two experimental adhesive cements. Synthesized particles of nano-fluorapatite (nano-FA) or nano-fluorohydroxyapatite (nano-FHA) were incorporated into a resin-modified glass ionomer cement (Fuji Ortho LC) and characterized using X-ray diffraction and scanning electron microscopy. Blocks with six different concentrations of nano-FA or nano-FHA were manufactured and their fluoride release properties evaluated by ultraviolet spectrophotometry. The unaltered glass ionomer cement Fuji Ortho LC (GC, control) and the two experimental cements with the highest fluoride release capacities (nano-FA+Fuji Ortho LC (GFA) and nano-FHA+Fuji Ortho LC (GFHA)) were used to bond composite blocks and orthodontic brackets to human enamel. After 24 h water storage all specimens were debonded, measuring the micro-tensile bond strength (μTBS) and the shear bond strength (SBS), respectively. The optimal concentration of added nano-FA and nano-FHA for maximum fluoride release was 25 wt.%, which nearly tripled fluoride release after 70 days compared with the control group. GC exhibited a significantly higher SBS than GFHA/GFA, with GFHA and GFA not differing significantly (P>0.05). The μTBS of GC and GFA were significantly higher than that of GFHA (P≤0.05). The results seem to indicate that the fluoride release properties of Fuji Ortho LC are improved by incorporating nano-FA or nano-FHA, simultaneously maintaining a clinically sufficient bond strength when nano-FA was added. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Selective and lithography-independent fabrication of 20 nm nano-gap electrodes and nano-channels for nanoelectrofluidics applications

    International Nuclear Information System (INIS)

    Zhang, J Y; Wang, X F; Wang, X D; Fan, Z C; Li, Y; Ji, An; Yang, F H

    2010-01-01

    A new method has been developed to selectively fabricate nano-gap electrodes and nano-channels by conventional lithography. Based on a sacrificial spacer process, we have successfully obtained sub-100-nm nano-gap electrodes and nano-channels and further reduced the dimensions to 20 nm by shrinking the sacrificial spacer size. Our method shows good selectivity between nano-gap electrodes and nano-channels due to different sacrificial spacer etch conditions. There is no length limit for the nano-gap electrode and the nano-channel. The method reported in this paper also allows for wafer scale fabrication, high throughput, low cost, and good compatibility with modern semiconductor technology.

  11. Energetics Laboratory Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — These energetic materials laboratories are equipped with explosion proof hoods with blow out walls for added safety, that are certified for safe handling of primary...

  12. RGD Peptide-Grafted Graphene Oxide as a New Biomimetic Nano interface for Impedance-Monitoring Cell Behaviors

    International Nuclear Information System (INIS)

    Li, J.; Zheng, L.; Zeng, L.; Zhang, Y.; Jiang, L.; Song, J.; Li, J.; Zheng, L.; Song, J.; Li, J.; Zheng, L.; Song, J.

    2016-01-01

    A new biomimetic nano interface was constructed by facile grafting the bioactive arginylglycylaspartic acid (RGD) peptide on the graphene oxide (GO) surface through carbodiimide and N-hydroxysuccinimide coupling amidation reaction. The formed RGD-GO nano composites own unique two-dimensional structure and desirable electrochemical performance. The linked RGD peptides could improve GO∼s biocompatibility and support the adhesion and proliferation of human periodontal ligament fibroblasts (HPLFs) on RGD-GO biofilm surface. Furthermore the biologically active RGD-GO nano composites were demonstrated as a potential biomimetic nano interface for monitoring cell bio behaviors by electrochemical impedance spectroscopy (EIS). By analysis of the data obtained from equivalent circuit-fitting impedance spectroscopy, the information related to cell membrane capacitance, cell-cell gap resistance, and cell-electrode interface gap resistance in the process of cell adhesion and proliferation could be obtained. Besides, this proposed impedance-based cell sensor could be used to assess the inhibition effect of the lipopolysaccharide (LPS) on the HPLFs proliferation. Findings from this work suggested that RGD peptide functionalized GO nano materials may be not only applied in dental tissue engineering but also used as a sensor interface for electrochemical detection and analysis of cell behaviors in vitro.

  13. Nano

    DEFF Research Database (Denmark)

    Nørgaard, Bent; Engel, Lars Romann

    2007-01-01

    Gennem de sidste par år har et lille ord med et meget stort potentiale gentagende trængt sig på i den offentlige bevidsthed, det er ordet "nano". Nanovidenskab og nanoteknologi er lige nu to af de "hotteste" forskningsområder og betragtes af mange som porten til en helt ny verden af muligheder....... Muligheder, vi endnu ikke kender konsekvenserne af. Center for Kunst og Videnskabs forestilling NANO giver dig chancen for at blive bekendt med verdens mindste byggesten og idégrundlaget for nanoforskningen. Vi har skabt et rum, som på mange måder minder om et laboratorium. Rummet er forsynet med storskærme......, kolber, væsker og nanopartikler. Her vil du f.eks. opleve, hvordan forskere tilfører guld helt nye egenskaber. Forestillingen veksler mellem kemiske arbejdsdemonstrationer, stemningsskabende musik og livlig debat på storskærme mellem eksperter. NANO opfordrer publikum til at tage stilling til forskningen...

  14. The therapeutic effect of nano-encapsulated and nano-emulsion forms of carvacrol on experimental liver fibrosis.

    Science.gov (United States)

    Hussein, Jihan; El-Banna, Mona; Mahmoud, Khaled F; Morsy, Safaa; Abdel Latif, Yasmin; Medhat, Dalia; Refaat, Eman; Farrag, Abdel Razik; El-Daly, Sherien M

    2017-06-01

    The present study aimed to compare the therapeutic efficiency of nano-encapsulated and nano-emulsion carvacrol administration on liver injury in thioacetamide (TAA) treated rats. To fulfill our target, we used sixty male albino rats classified into six groups as follow: control, nano-encapsulated carvacrol, nano-emulsion carvacrol, thioacetamide, treated nano-encapsulated carvacrol and treated nano-emulsion carvacrol groups. Blood samples were collected from all groups and the separated serum was used for analysis of the following biochemical parameters; aspartate aminotransferase (AST), alanine aminotransferase (ALT), S100 B protein, alpha fetoprotein (AFP) and caspase-3. The levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), monocyte chemoattractant protein-1(MCP-1) and hydroxyproline content were all evaluated in liver tissue homogenate. Histopathological examinations for liver tissues were also performed. Thioacetamide induced hepatic damage in rats as revealed by the significant increase in the levels of serum ALT, AST and produced oxidative stress as displayed by the significant elevation in the levels of hepatic MDA and NO concomitant with a significant decrease in GSH. In addition, thioacetamide significantly increased serum S100B protein, alpha fetoprotein and caspase-3 along with hepatic MCP-1 and hydroxyproline; these results were confirmed by the histopathological investigation. In contrast, nano-encapsulated and nano-emulsion carvacrol were able to ameliorate these negative changes in the thioacetamide injected rats. However, the effect of the nano-encapsulated form of carvacrol was more prominent than the nano-emulsion form. Nano-encapsulated and nano-emulsion carvacrol can ameliorate thioacetamide induced liver injury. These results could be attributed to the potential anti-inflammatory, antioxidant, and anti-apoptotic activities of carvacrol in addition to the effectiveness of the encapsulation technique that can protect

  15. Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna

    International Nuclear Information System (INIS)

    Fan Wenhong; Cui Minming; Liu Hong; Wang Chuan; Shi Zhiwei; Tan Cheng; Yang Xiuping

    2011-01-01

    The acute toxicity of engineered nanoparticles (NPs) in aquatic environments at high concentrations has been well-established. This study demonstrates that, at a concentration generally considered to be safe in the environment, nano-TiO 2 remarkably enhanced the toxicity of copper to Daphnia magna by increasing the copper bioaccumulation. Specifically, at 2 mg L -1 nano-TiO 2 , the (LC 50 ) of Cu 2+ concentration observed to kill half the population, decreased from 111 μg L -1 to 42 μg L -1 . Correspondingly, the level of metallothionein decreased from 135 μg g -1 wet weight to 99 μg g -1 wet weight at a Cu 2+ level of 100 μg L -1 . The copper was found to be adsorbed onto the nano-TiO 2 , and ingested and accumulated in the animals, thereby causing toxic injury. The nano-TiO 2 may compete for free copper ions with sulfhydryl groups, causing the inhibition of the detoxification by metallothioneins. - Research highlights: → This study demonstrates that, at a concentration generally considered to be safe in the environment, nano-TiO 2 remarkably enhanced the toxicity of copper to Daphnia magna. → The copper was found to be adsorbed onto the nano-TiO 2 , and ingested and accumulated in the Daphnia magna, thereby causing toxic injury. → The nano-TiO 2 may compete for free copper ions with sulfhydryl groups, causing the inhibition of the detoxification mechanism of metallothionein. - The nano-TiO 2 remarkably enhanced the toxicity of copper to Daphnia magna. The nano-TiO 2 may compete for free copper ions with sulfhydryl groups, causing the inhibition of the detoxification mechanism of metallothionein.

  16. Nano medicine in Action: An Overview of Cancer Nano medicine on the Market and in Clinical Trials

    International Nuclear Information System (INIS)

    Wang, R.; Billone, P.S.; Mullett, W.M.

    2013-01-01

    Nano medicine, defined as the application of nano technology in the medical field, has the potential to significantly change the course of diagnostics and treatment of life-threatening diseases, such as cancer. In comparison with traditional cancer diagnostics and therapy, cancer nano medicine provides sensitive cancer detection and/or enhances treatment efficacy with significantly minimized adverse effects associated with standard therapeutics. Cancer nano medicine has been increasingly applied in areas including nano drug delivery systems, nano pharmaceuticals, and nano analytical contrast reagents in laboratory and animal model research. In recent years, the successful introduction of several novel nano medicine products into clinical trials and even onto the commercial market has shown successful outcomes of fundamental research into clinics. This paper is intended to examine several nano medicines for cancer therapeutics and/or diagnostics-related applications, to analyze the trend of nano medicine development, future opportunities, and challenges of this fast-growing area.

  17. A Fabrication Technique for Nano-gap Electrodes by Atomic Force Microscopy Nano lithography

    International Nuclear Information System (INIS)

    Jalal Rouhi; Shahrom Mahmud; Hutagalung, S.D.; Kakooei, S.

    2011-01-01

    A simple technique is introduced for fabrication of nano-gap electrodes by using nano-oxidation atomic force microscopy (AFM) lithography with a Cr/ Pt coated silicon tip. AFM local anodic oxidation was performed on silicon-on-insulator (SOI) surfaces by optimization of desired conditions to control process in contact mode. Silicon electrodes with gaps of sub 31 nm were fabricated by nano-oxidation method. This technique which is simple, controllable, inexpensive and fast is capable of fabricating nano-gap structures. The current-voltage measurements (I-V) of the electrodes demonstrated very good insulating characteristics. The results show that silicon electrodes have a great potential for fabrication of single molecule transistors (SMT), single electron transistors (SET) and the other nano electronic devices. (author)

  18. Effects of atomic-level nano-structured hydroxyapatite on adsorption of bone morphogenetic protein-7 and its derived peptide by computer simulation.

    Science.gov (United States)

    Wang, Qun; Wang, Menghao; Lu, Xiong; Wang, Kefeng; Fang, Liming; Ren, Fuzeng; Lu, Guoming

    2017-11-09

    Hydroxyapatite (HA) is the principal inorganic component of bones and teeth and has been widely used as a bone repair material because of its good biocompatibility and bioactivity. Understanding the interactions between proteins and HA is crucial for designing biomaterials for bone regeneration. In this study, we evaluated the effects of atomic-level nano-structured HA (110) surfaces on the adsorption of bone morphogenetic protein-7 (BMP-7) and its derived peptide (KQLNALSVLYFDD) using molecular dynamics and density functional theory methods. The results indicated that the atomic-level morphology of HA significantly affected the interaction strength between proteins and HA substrates. The interactions of BMP-7 and its derived peptide with nano-concave and nano-pillar HA surfaces were stronger than those with flat or nano-groove HA surfaces. The results also revealed that if the groove size of nano-structured HA surfaces matched that of residues in the protein or peptide, these residues were likely to spread into the grooves of the nano-groove, nano-concave, and nano-pillar HA, further strengthening the interactions. These results are helpful in better understanding the adsorption behaviors of proteins onto nano-structured HA surfaces, and provide theoretical guidance for designing novel bioceramic materials for bone regeneration and tissue engineering.

  19. 4th micro and nano flows conference (book of abstracts)

    OpenAIRE

    König, CS; Karayiannis, TG; Balabani, S; 4th Micro and Nano Flows Conference (MNF2014)

    2014-01-01

    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, U...

  20. Semiconductor-to-metallic flipping in a ZnFe{sub 2}O{sub 4}–graphene based smart nano-system: Temperature/microwave magneto-dielectric spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ameer, Shahid, E-mail: shahidameer@scme.nust.edu.pk [School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad (Pakistan); Gul, Iftikhar Hussain [School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad (Pakistan); Mahmood, Nasir [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Mujahid, Muhammad [School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad (Pakistan)

    2015-01-15

    Zn-(FeO{sub 2}){sub 2}–graphene smart nano-composites were synthesized using a novel modified solvothermal synthesis with different percentages of graphene. The structure of the nanocomposite was confirmed through X-ray diffraction, micro-Raman scattering spectroscopy, Ultraviolet–Visible spectroscopy, and Fourier transform infrared spectroscopy. The structural growth and morphological aspects were analyzed using scanning/transmission electron microscopy, revealing marvelous micro-structural features of the assembled nano-system resembling a maple leaf. To determine the composition, energy dispersive spectroscopy and X-ray photoelectron spectroscopy were used. Microwave magneto-dielectric spectroscopy revealed the improved dielectric properties of the nano-composite compared to those of the parent functional nanocrystals. Temperature gradient dielectric spectroscopy was used over the spectral range from 100 Hz to 5 MHz to reveal the phenomenological effect that the nanosystem flips from its usual semiconductor nature to a metallic nature with sensing temperature. Electrical conductivity and dielectric analysis indicated that the dielectric loss and the dielectric permittivity increased at room temperature. This extraordinary switching capability of the functionalized graphene nanosystem opens up a new dimension for engineering advanced and efficient smart composite materials. - Graphical abstract: Display Omitted - Highlights: • Zn-(FeO{sub 2}){sub 2}–graphene smart nano-composites were synthesized using a novel modified solvothermal synthesis. • The synthesized nano-system exhibits marvelous leaf like microstructure. • These nano-composites show improved magneto dielectric response. • This engineered smart nano-system shows phenomenological flipping from semiconductor like nature to metallic behavior.

  1. caNanoLab: data sharing to expedite the use of nanotechnology in biomedicine

    Science.gov (United States)

    Gaheen, Sharon; Hinkal, George W.; Morris, Stephanie A.; Lijowski, Michal; Heiskanen, Mervi

    2014-01-01

    The use of nanotechnology in biomedicine involves the engineering of nanomaterials to act as therapeutic carriers, targeting agents and diagnostic imaging devices. The application of nanotechnology in cancer aims to transform early detection, targeted therapeutics and cancer prevention and control. To assist in expediting and validating the use of nanomaterials in biomedicine, the National Cancer Institute (NCI) Center for Biomedical Informatics and Information Technology, in collaboration with the NCI Alliance for Nanotechnology in Cancer (Alliance), has developed a data sharing portal called caNanoLab. caNanoLab provides access to experimental and literature curated data from the NCI Nanotechnology Characterization Laboratory, the Alliance and the greater cancer nanotechnology community. PMID:25364375

  2. Cell and Tissue Engineering

    CERN Document Server

    2012-01-01

    “Cell and Tissue Engineering” introduces the principles and new approaches in cell and tissue engineering. It includes both the fundamentals and the current trends in cell and tissue engineering, in a way useful both to a novice and an expert in the field. The book is composed of 13 chapters all of which are written by the leading experts. It is organized to gradually assemble an insight in cell and tissue function starting form a molecular nano-level, extending to a cellular micro-level and finishing at the tissue macro-level. In specific, biological, physiological, biophysical, biochemical, medical, and engineering aspects are covered from the standpoint of the development of functional substitutes of biological tissues for potential clinical use. Topics in the area of cell engineering include cell membrane biophysics, structure and function of the cytoskeleton, cell-extracellular matrix interactions, and mechanotransduction. In the area of tissue engineering the focus is on the in vitro cultivation of ...

  3. Preparation and Characterization of Nano-Sized TiO2@Chitosan for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Lei JIANG

    2016-12-01

    Full Text Available Background: With the development of genetic engineering, it is urgent to find a vector with high transfection efficiency and good biocompatibility for genes. We considered combining nano-TiO2 with chitosan (CTS in order to tap their respective advantages to make a better new nanoparticle as gene vector.Methods: TiO2@CTS was prepared using microemulsion method. The physicochemical property of TiO2@CTS was measured by transmission electron microscopy (TEM and zeta potential. The safety and influence on MC3T3-E1 cells were detected by methyl thiazolyl tetrazolium (MTT, blood compatibility assay and flow cytometry.Results: TiO2@CTS was well prepared and it was safe to cells under concentration tests. TiO2@CTS particles had a fuzzy boundary with a particle size remaining in 20-30 nm. Besides, the results also showed that TiO2@CTS did better in cellular uptake than TiO2 at 2 h and 24 h, and had good biocompatibility. MTT assay proved that the MC3T3 cells remained good growth when treated with different concentrations of TiO2@CTS (2.5, 5, 10, 20, 40 and 80 μg/mL. Moreover, transfection assay in vitro and electrophoretic mobility shift assay illustrated the high transfection efficiency of TiO2@CTS.Conclusion: TiO2@CTS is a good choice to gene transfection, with good biocompatibility, and it also provides a new thought for the application of nanotechnology in the field of aveolar bone graft material.

  4. International Conference on Nano-electronics, Circuits & Communication Systems

    CERN Document Server

    2017-01-01

    This volume comprises select papers from the International Conference on Nano-electronics, Circuits & Communication Systems(NCCS). The conference focused on the frontier issues and their applications in business, academia, industry, and other allied areas. This international conference aimed to bring together scientists, researchers, engineers from academia and industry. The book covers technological developments and current trends in key areas such as VLSI design, IC manufacturing, and applications such as communications, ICT, and hybrid electronics. The contents of this volume will prove useful to researchers, professionals, and students alike.

  5. Impulse Plasma In Surface Engineering - a review

    Science.gov (United States)

    Zdunek, K.; Nowakowska-Langier, K.; Chodun, R.; Okrasa, S.; Rabinski, M.; Dora, J.; Domanowski, P.; Halarowicz, J.

    2014-11-01

    The article describes the view of the plasma surface engineering, assuming the role of non-thermal energy effects in the synthesis of materials and coatings deposition. In the following study it was underlined that the vapor excitation through the application of an electric field during coatings deposition gives new possibilities for coatings formation. As an example the IPD method was chosen. During the IPD (Impulse Plasma Deposition) the impulse plasma is generated in the coaxial accelerator by strong periodic electrical pulses. The impulse plasma is distributed in the form of energetic plasma pockets. Due to the almost completely ionization of gas, the nucleation of new phases takes place on ions directly in the plasma itself. As a result the coatings of metastable materials with nano-amorphous structure and excellent adhesion to the non-heated intentionally substrates could be deposited. Recently the novel way of impulse plasma generation during the coatings deposition was proposed and developed by our group. An efficient tool for plasma process control, the plasma forming gas injection to the interelectrode space was used. Periodic changing the gas pressure results in increasing both the degree of dispersion and the dynamics of the plasma pulses. The advantage of the new technique in deposition of coatings with exceptionally good properties has been demonstrated in the industrial scale not only in the case of the IPD method but also in the case of very well known magnetron sputtering method.

  6. High precision tracking of a piezoelectric nano-manipulator with parameterized hysteresis compensation

    Science.gov (United States)

    Yan, Peng; Zhang, Yangming

    2018-06-01

    High performance scanning of nano-manipulators is widely deployed in various precision engineering applications such as SPM (scanning probe microscope), where trajectory tracking of sophisticated reference signals is an challenging control problem. The situation is further complicated when rate dependent hysteresis of the piezoelectric actuators and the stress-stiffening induced nonlinear stiffness of the flexure mechanism are considered. In this paper, a novel control framework is proposed to achieve high precision tracking of a piezoelectric nano-manipulator subjected to hysteresis and stiffness nonlinearities. An adaptive parameterized rate-dependent Prandtl-Ishlinskii model is constructed and the corresponding adaptive inverse model based online compensation is derived. Meanwhile a robust adaptive control architecture is further introduced to improve the tracking accuracy and robustness of the compensated system, where the parametric uncertainties of the nonlinear dynamics can be well eliminated by on-line estimations. Comparative experimental studies of the proposed control algorithm are conducted on a PZT actuated nano-manipulating stage, where hysteresis modeling accuracy and excellent tracking performance are demonstrated in real-time implementations, with significant improvement over existing results.

  7. CZT nanoRAIDER_VFG Factsheet

    Energy Technology Data Exchange (ETDEWEB)

    James, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bolotnikov, A. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cui, Yonggang [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-15

    Brookhaven National Laboratory (BNL) is working with FLIR System Inc., the manufacturer of the nanoRAIDER, to design a handheld device based on a position-sensitive virtual Frisch-grid (VFG) Cadmium-Zinc-Telluride (CdZnTe or CZT) detector array (with 1% or better energy resolution). The new device called nanoRAIDER VFG will be an improvement to the current nanoRAIDER, which is a compact gamma-ray detection instrument manufactured by FLIR Systems Inc. that employs relatively lower-performing CZT hemispheric detectors (i.e., 3%-FWHM CZT detectors). The nanoRAIDER will significantly improve the accuracy while maintaining similar efficiency, as compared to the nanoRAIDER, for in-field analysis of nuclear materials and detection of undeclared activities during inspections conducted by the International Atomic Energy Agency (IAEA). Since the nanoRAIDER is currently used by the IAEA as part of its Complementary Access toolkit, a relatively quick acceptance of the nanoRAIDER VFG for safeguards is anticipated. The nanoRAIDER VFG will help address several items listed in the IAEA’s Long-Term R&D Plan that could enhance the abilities to detect undeclared nuclear material and activities.

  8. A review on the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends.

    Science.gov (United States)

    Damanik, Natalina; Ong, Hwai Chyuan; Tong, Chong Wen; Mahlia, Teuku Meurah Indra; Silitonga, Arridina Susan

    2018-06-01

    Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.

  9. 1D Nano materials 2012

    International Nuclear Information System (INIS)

    Yanqiu Zhu, Y.; Ma, R.; Whitby, R.; Acquah, S.

    2013-01-01

    We witnessed an initial hyped period and enthusiasm on carbon nano tubes in the 1990s later went through a significant expansion into nano tubes of other materials (metal di chalcogenides, boron nitride, etc.) as well as various nano wires and nano rods. While much of the hype might have gone, the research on one-dimensional (1D) nano materials has matured as one of the most active research areas within the nano science and nano technology community, flourishing with ample, exciting, and new research opportunities. Just like any other research frontier, researchers working in the 1D nano materials field are constantly striving to develop new fundamental science as well as potential applications. It remains a common belief that versatility and tunability of 1D nano materials would challenge many new rising tasks coming from our resource and energy demanding modern society. The traditional semiconductor industry has produced so many devices and systems from transistors, sensors, lasers, and LEDs to more sophisticated solar panels, which are now part of our daily lives. By down sizing the core components or parts to 1D form, one might wonder how fundamentally the dimensionality and morphology would impact the device performance, this is, as always, requiring us to fully understand the structure-property relationship in 1D nano materials. It may be equally crucial in connecting discovery-driven fundamental science to market-driven technology industry concerning potentially relevant findings derived from these novel materials. The importance of a platform that allows active researchers in this field to present their new development in a timely and efficient manner is therefore self-evident. Following the success of two early special issues devoted to 1D nano materials, this is the third one in a row organized by the same group of guest editors, attesting that such a platform has been well received by the readers

  10. 6. international conference on Nano-technology in Carbon: from synthesis to applications of nano-structured carbon and related materials

    International Nuclear Information System (INIS)

    2004-01-01

    This is the sixth international conference sponsored this year by the French Carbon Group (GFEC), the European Research Group on Nano-tubes GDRE 'Nano-E', in collaboration with the British Carbon Group and the 'Institut des Materiaux Jean Rouxel' (local organizer). The aim of this conference is to promote carbon science in the nano-scale as, for example, nano-structured carbons, nano-tubes, nano-wires, fullerenes, etc. This conference is designed to introduce those with an interest in materials to current research in nano-technology and to bring together research scientists working in various disciplines in the broad area of nano-structured carbons, nano-tubes and fullerene-related nano-structures. Elemental carbon is the simplest exemplar of this nano-technology based on covalent bonding, however other systems (for example containing hetero-atoms) are becoming important from a research point of view, and provide alternative nano-materials with unique properties opening a broad field of applications. Nano-technology requires an understanding of these materials on a structural and textural point of view and this will be the central theme. This year the conference will feature sessions on: S1. Control and synthesis of nano-materials 1.1 Nano-structured carbons: pyrolysis of polymers, activation, templates,... 1.2 Nano-tubes: Catalytic method, HiPCO, graphite vaporization, electrolysis,... 1.3 Fullerenes S2. Chemistry of carbon nano-materials 2.1 Purification of carbon nano-tubes 2.2 Functionalization - Self-assembling S3. Structural characterization S4. Theory and modelling S5. Relationship between structure and properties S6. Applications Water and air purification, Gas and energy storage, Composite materials, Field emission, Nano-electronics, Biotechnology,... S7. Environmental impact. Only one paper concerning carbon under irradiation has been added to the INIS database. (authors)

  11. Laser-assisted nanoceramics reinforced polymer scaffolds for tissue engineering: additional heating and stem cells behavior

    Science.gov (United States)

    Shishkovsky, Igor; Scherbakov, Vladimir; Volchkov, Vladislav; Volova, Larisa

    2018-02-01

    The conditions of selective laser melting (SLM) of tissue engineering scaffolds affect cell response and must be engineered to support cell adhesion, proliferation, and differentiation. In the present study, the influence of additional heating during SLM process on stem cell viability near biopolymer matrix reinforced by nanoceramics additives was carried out. We used the biocompatible and bioresorbable polymers (polyetheretherketone /PEEK/ and polycaprolactone /PCL/) as a matrix and nano-oxide ceramics - TiO2, Al2O3, ZrO2, FexOy and/or hydroxyapatite as a basis of the additives. The rate of pure PEEK and PCL bio-resorption and in mixtures with nano oxides on the matrix was studied by the method of mass loss on bacteria of hydroxylase and enzyme complex. The stem cellular morphology, proliferative MMSC activity, and adhesion of the 2D and 3D nanocomposite matrices were the subjects of comparison. Medical potential of the SLS/M-fabricated nano-oxide ceramics after additional heating as the basis for tissue engineering scaffolds and cell targeting systems were discussed.

  12. Rocket measurements of energetic particles in the midlatitude precipitation zone

    Science.gov (United States)

    Voss, H. D.; Smith, L. G.; Braswell, F. M.

    1980-01-01

    Measurements of energetic ion and electron properties as a function of altitude in the midlatitude zone of nighttime energetic particle precipitation are reported. The measurements of particle fluxes, energy spectra and pitch angle distributions were obtained by a Langmuir probe, six energetic particle spectrometers and an electrostatic analyzer on board a Nike Apache rocket launched near the center of the midlatitude zone during disturbed conditions. It is found that the incident flux was primarily absorbed rather than backscattered, and consists of mainly energetic hydrogen together with some helium and a small energetic electron component. Observed differential energy spectra of protons having an exponential energy spectrum, and pitch angle distributions at various altitudes indicate that the energetic particle flux decreases rapidly for pitch angles less than 70 deg. An energetic particle energy flux of 0.002 ergs/sq cm per sec is calculated which indicates the significance of energetic particles as a primary nighttime ionization source for altitudes between 120 and 200 km in the midlatitude precipitation zone.

  13. VI Latin American Congress on Biomedical Engineering

    CERN Document Server

    Hadad, Alejandro

    2015-01-01

    This volume presents the proceedings of the CLAIB 2014, held in Paraná, Entre Ríos, Argentina 29, 30 & 31 October 2014. The proceedings, presented by the Regional Council of Biomedical Engineering for Latin America (CORAL) offer research findings, experiences and activities between institutions and universities to develop Bioengineering, Biomedical Engineering and related sciences. The conferences of the American Congress of Biomedical Engineering are sponsored by the International Federation for Medical and Biological Engineering (IFMBE), Society for Engineering in Biology and Medicine (EMBS) and the Pan American Health Organization (PAHO), among other organizations and international agencies and bringing together scientists, academics and biomedical engineers in Latin America and other continents in an environment conducive to exchange and professional growth. The Topics include: - Bioinformatics and Computational Biology - Bioinstrumentation; Sensors, Micro and Nano Technologies - Biomaterials, Tissu...

  14. Electrodeposition of nano-sized bismuth on copper foil as electrocatalyst for reduction of CO{sub 2} to formate

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Weixin; Zhou, Jing; Bei, Jingjing [School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051 (China); Zhang, Rui, E-mail: zhangrui@ycit.cn [School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051 (China); Wang, Lei [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin, 150080 (China); Xu, Qi [School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051 (China); Wang, Wei, E-mail: wangw@ycit.edu.cn [School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051 (China)

    2017-01-30

    Highlights: • Bi/Cu electrode was prepared by depositing nano-sized Bi catalyst on Cu foil. • The Bi/Cu electrode can reduce CO{sub 2} to formate with a low overpotential. • The energy efficiency for reduction of CO{sub 2} to formate can reach to 50%. • A Tafel slope of 128 mV decade{sup −1} was observed for producing formate. - Abstract: Electrochemical reduction of carbon dioxide (CO{sub 2}) to formate is energetically inefficient because high overpotential is required for reduction of CO{sub 2} to formate on most traditional catalysts. In this paper, a novel nano-sized Bi-based electrocatalyst deposited on a Cu foil has been synthesized, which can be used as a cathode for electrochemical reduction of CO{sub 2} to formate with a low overpotential (0.69 V) and a high selectivity (91.3%). The electrocatalyst can show excellent catalytic performance toward reduction of CO{sub 2} which can probably be attributed to the nano-sized structure and the surface oxide layer. The energy efficiency for reduction of CO{sub 2} to formate can reach to 50% when an Ir{sub x}Sn{sub y}Ru{sub z}O{sub 2}/Ti electrode is used as anode, it is one of the highest values found in the literatures and very practicable for sustainable fuel synthesis.

  15. Self-sensing and thermal energy experimental characterization of multifunctional cement-matrix composites with carbon nano-inclusions

    Science.gov (United States)

    D'Alessandro, A.; Pisello, A. L.; Sambuco, Sara; Ubertini, F.; Asdrubali, F.; Materazzi, A. L.; Cotana, F.

    2016-04-01

    The recent progress of Nanotechnology allowed the development of new smart materials in several fields of engineering. In particular, innovative construction materials with multifunctional enhanced properties can be produced. The paper presents an experimental characterization on cement-matrix pastes doped with Carbon Nanotubes, Carbon Nano-fibers, Carbon Black and Graphene Nano-platelets. Both electro-mechanical and thermo-physical investigations have been carried out. The conductive nano-inclusions provide the cementitious matrix with piezo-resistive properties allowing the detection of external strain and stress changes. Thereby, traditional building materials, such as concrete and cementitious materials in general, would be capable of self-monitoring the state of deformation they are subject to, giving rise to diffuse sensing systems of structural integrity. Besides supplying self-sensing abilities, carbon nano-fillers may change mechanical, physical and thermal properties of cementitious composites. The experimental tests of the research have been mainly concentrated on the thermal conductivity and the optical properties of the different nano-modified materials, in order to make a critical comparison between them. The aim of the work is the characterization of an innovative multifunctional composite capable of combining self-monitoring properties with proper mechanical and thermal-energy efficiency characteristics. The potential applications of these nano-modified materials cover a wide range of possibilities, such as structural elements, floors, geothermal piles, radiant systems and more.

  16. Electrodeposition of nickel nano wire arrays

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok Kuan Ying; Ng Inn Khuan; Nurazila Mat Zali; Siti Salwa Zainal Abidin

    2010-01-01

    Synthesis, characterization and assembly of one-dimensional nickel nano wires prepared by template directed electrodeposition are discussed in this paper. Parallel arrays of high aspect ratio nickel nano wires were electrodeposited using electrolytes with different cations and pH. The nano wires were characterized using X-ray diffractometry and scanning electron microscopy. It was found that the orientations of the electro deposited Ni nano wires were governed by the deposition current and the electrolyte conditions. Free standing nickel nano wires can be obtained by dissolving the template. Due to the magnetic nature of the nano wires, magnetic alignment was employed to assemble and position the free standing nano wires in the device structure. (author)

  17. Simulated and measured neutron/gamma light output distribution for poly-energetic neutron/gamma sources

    Science.gov (United States)

    Hosseini, S. A.; Zangian, M.; Aghabozorgi, S.

    2018-03-01

    In the present paper, the light output distribution due to poly-energetic neutron/gamma (neutron or gamma) source was calculated using the developed MCNPX-ESUT-PE (MCNPX-Energy engineering of Sharif University of Technology-Poly Energetic version) computational code. The simulation of light output distribution includes the modeling of the particle transport, the calculation of scintillation photons induced by charged particles, simulation of the scintillation photon transport and considering the light resolution obtained from the experiment. The developed computational code is able to simulate the light output distribution due to any neutron/gamma source. In the experimental step of the present study, the neutron-gamma discrimination based on the light output distribution was performed using the zero crossing method. As a case study, 241Am-9Be source was considered and the simulated and measured neutron/gamma light output distributions were compared. There is an acceptable agreement between the discriminated neutron/gamma light output distributions obtained from the simulation and experiment.

  18. Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method

    Science.gov (United States)

    Kim, Jong-Woo; Yang, Ki-Yeon; Hong, Sung-Hoon; Lee, Heon

    2008-06-01

    For future device applications, fabrication of the metal nano-patterns on various substrates, such as Si wafer, non-planar glass lens and flexible plastic films become important. Among various nano-patterning technologies, nano-transfer print method is one of the simplest techniques to fabricate metal nano-patterns. In nano-transfer printing process, thin Au layer is deposited on flexible PDMS mold, containing surface protrusion patterns, and the Au layer is transferred from PDMS mold to various substrates due to the difference of bonding strength of Au layer to PDMS mold and to the substrate. For effective transfer of Au layer, self-assembled monolayer, which has strong bonding to Au, is deposited on the substrate as a glue layer. In this study, complicated SAM layer coating process was replaced to simple UV/ozone treatment, which can activates the surface and form the -OH radicals. Using simple UV/ozone treatments on both Au and substrate, Au nano-pattern can be successfully transferred to as large as 6 in. diameter Si wafer, without SAM coating process. High fidelity transfer of Au nano-patterns to non-planar glass lens and flexible PET film was also demonstrated.

  19. Coupling DNA nano-breadboards to solid state conductors

    International Nuclear Information System (INIS)

    Wang, Liqian; Morales, Piero; Dalmastri, Claudia; Rapone, Bruno; Gothelf, Kurt; Krissanaprasit, Abhichart; Rettere, Scott

    2015-01-01

    DNA is not only a most extraordinary information storage medium: the programmable pairing of DNA single strands into precisely engineered, connecting double helices make it an extremely appealing material for assemblage of nanoscale architectures. This is the basis of DNA nanotechnology, and designing almost any structure made of DNA at the nanometer scale, decorating it with a variety of functional molecules, and accomplishing it by virtually inexpensive self-assembly, is already a reality in many research laboratories in the world. But can we extend the range of applications of this technology by coupling DNA grafted molecular electronic nano circuitry to solid state devices, and interface molecular smart functions to our senses? This challenging research is addressed by a collaborative research among ENEA, the Universities of Roma 'Tor Vergata' and 'Aarhus', and the CNMS of the Oak Ridge National Laboratory. The first results obtained by our consortium pave the way to the technological ability to interface and use completely self-assembled, DNA-based electronic nano-breadboards, endowed with ultra-high-density functional organic components [it

  20. Single-cell intracellular nano-pH probes†

    Science.gov (United States)

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2016-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution. PMID:27708772

  1. Single-cell intracellular nano-pH probes.

    Science.gov (United States)

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2015-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution.

  2. AC dielectrophoresis alignment of single-walled carbon nano tubes (SWNTS) and palladium nano wires for hydrogen gas sensor

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Nur Ubaidah Saidin; Ying, K.K.; KKhuan, N.I.; Mohammad Hafizuddin Jumali

    2013-01-01

    Full-text: Using AC electric field, nano wires or nano tubes can be aligned, chained or accelerated in a direction parallel to the applied field, oriented or concentrated onto designated locations as well as dispersed in controlled manner under high efficiencies. In this work, systematic study on the alignment of nano wires/ nano tubes across the 3 μm-gaps between pairs of micro fabricated gold electrodes was carried out using AC dielectrophoresis technique. Densities and alignment of the nano wires/ nano tubes across the gaps of the electrodes were controlled by the applied AC field strengths and frequencies on the electrodes. Good alignments of SWNTs and Pd nano wires were achieved at an applied frequency of 5 MHz and a field strength as high as 25 V pp for Pd nano wires compared to only 2 V pp for SWNTs. The aligned nano wires/ nano tubes will be functioned as sensor elements for hydrogen gas sensing. (author)

  3. Nano-ceramics and its molding technologies

    International Nuclear Information System (INIS)

    Liu Jian; Xu Yunshu

    2007-01-01

    Nano-ceramics and its related knowledge were introduced. Fabrication of nano-ceramic powder, as well as the molding and sintering technologies of nano-ceramics were reviewed. Features of the present molding technologies were analyzed. The applications of nano-ceramics were prospected. (authors)

  4. Phosphorylated nano-diamond/ Polyimide Nanocomposites

    International Nuclear Information System (INIS)

    Beyler-Çiǧil, Asli; Çakmakçi, Emrah; Kahraman, Memet Vezir

    2014-01-01

    In this study, a novel route to synthesize polyimide (PI)/phosphorylated nanodiamond films with improved thermal and mechanical properties was developed. Surface phosphorylation of nano-diamond was performed in dichloromethane. Phosphorylation dramatically enhanced the thermal stability of nano-diamond. Poly(amic acid) (PAA), which is the precursor of PI, was successfully synthesized with 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydianiline (4,4'-ODA) in the solution of N,N- dimethylformamide (DMF). Pure BTDA-ODA polyimide films and phosphorylated nanodiamond containing BTDA-ODA PI films were prepared. The PAA displayed good compatibility with phosphorylated nano-diamond. The morphology of the polyimide (PI)/phosphorylated nano-diamond was characterized by scanning electron microscopy (SEM). Chemical structure of polyimide and polyimide (PI)/phosphorylated nano-diamond was characterized by FTIR. SEM and FTIR results showed that the phosphorylated nano-diamond was successfully prepared. Thermal properties of the polyimide (PI)/phosphorylated nanodiamond was characterized by thermogravimetric analysis (TGA). TGA results showed that the thermal stability of (PI)/phosphorylated nano-diamond film was increased

  5. Nano surface generation of grinding process using carbon nano tubes

    Indian Academy of Sciences (India)

    Nano surface finish has become an important parameter in the semiconductor, optical, electrical and mechanical industries. The materials used in these industries are classified as difficult to machine materials such as ceramics, glasses and silicon wafers. Machining of these materials up to nano accuracy is a great ...

  6. Structure of Energetic Particle Mediated Shocks Revisited

    International Nuclear Information System (INIS)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2017-01-01

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  7. Structure of Energetic Particle Mediated Shocks Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mostafavi, P.; Zank, G. P. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2017-05-20

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  8. Virtual Parts Engineering Research Center

    Science.gov (United States)

    2010-05-20

    engineering 10 materials. High strength alloys , composites (polymer composites and metallic composites), and the like cannot merely be replaced by...ceramics, smart materials, shape memory alloys , super plastic materials and nano- structured materials may be more appropriate substitutes in a reverse...molding process using thermosetting Bakelite. For remanufacturing the part in small quantities, machining has been identified as the most economical

  9. Pharmaceutical Applications of Polymeric Nano materials

    International Nuclear Information System (INIS)

    Wu, L.; Sun, L.

    2011-01-01

    With significant attention focused on nano science and nano technology in recent years, nano materials have been used in a wide variety of applications such as automotive, environmental, energy, catalysis, biomedical, drug delivery, and polymeric industries. Among those fields, the application of nano materials with pharmaceutical science is an emerging and rapidly growing field and has drawn increasing attention recently. Research and development in this field is mainly focused on several aspects such as the discoveries of novel functional nano materials, exploration on nanoparticles with controlled and targeted drug delivery characteristics, and investigation of bio functionalized and diagnostic nano materials. In this special issue, we have invited a few papers related to recent advances in pharmaceutical application of polymeric nano materials

  10. Energetic consumption levels and human development indexes

    International Nuclear Information System (INIS)

    Boa Nova, Antonio Carlos

    1999-01-01

    The article overviews the energetic consumption levels and human development indexes. The human development indexes are described based on the United Nations Development Programme. A comparison between the energetic consumption levels and human development indexes is also presented

  11. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid

    Science.gov (United States)

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-08-01

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2-16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process.

  12. Water-soluble ions in nano/ultrafine/fine/coarse particles collected near a busy road and at a rural site

    International Nuclear Information System (INIS)

    Lin, C.-C.; Chen, S.-J.; Huang, K.-L.; Lee, W.-J.; Lin, W.-Y.; Liao, C.-J.; Chaung, H.-C.; Chiu, C.-H.

    2007-01-01

    This study investigated water-soluble ions in the sized particles (particularly nano (PM 0.01-0.056 )/ultrafine (PM 0.01-0.1 )) collected using MOUDI and Nano-MOUDI samplers near a busy road site and at a rural site. The analytical results demonstrate that nano and coarse particles exhibited the highest (16.3%) and lowest (8.37%) nitrate mass ratios, respectively. The mass ratio of NO 3 - was higher than that of SO 4 2- in all the sized particles at the traffic site. The secondary aerosols all displayed trimodal distributions. The aerosols in ultrafine particles collected at the roadside site exhibited Aitken mode distributions indicating they were of local origin. This finding was not observed for those ultrafine particles collected at the rural site. The mass median diameters (MMDs) of the nano, ultrafine, and fine particles were smaller at the traffic site than at the rural site, possibly related to the contribution of mobile engine emissions. - NO 3 - > SO 4 2- in mass ratio, different from common observations in rural areas, was found in (particularly the nano) traffic-associated particles

  13. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering

    Science.gov (United States)

    Kwak, Sanghwa; Haider, Adnan; Gupta, Kailash Chandra; Kim, Sukyoung; Kang, Inn-Kyu

    2016-07-01

    The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds.

  14. Finite Element Model Characterization Of Nano-Composite Thermal And Environmental Barrier Coatings

    Science.gov (United States)

    Yamada, Yoshiki; Zhu, Dongming

    2011-01-01

    Thermal and environmental barrier coatings have been applied for protecting Si based ceramic matrix composite components from high temperature environment in advanced gas turbine engines. It has been found that the delamination and lifetime of T/EBC systems generally depend on the initiation and propagation of surface cracks induced by the axial mechanical load in addition to severe thermal loads. In order to prevent T/EBC systems from surface cracking and subsequent delamination due to mechanical and thermal stresses, T/EBC systems reinforced with nano-composite architectures have showed promise to improve mechanical properties and provide a potential crack shielding mechanism such as crack bridging. In this study, a finite element model (FEM) was established to understand the potential beneficial effects of nano-composites systems such as SiC nanotube-reinforced oxide T/EBC systems.

  15. A continuum-atomistic simulation of heat transfer in micro- and nano-flows

    International Nuclear Information System (INIS)

    Liu Jin; Chen Shiyi; Nie Xiaobo; Robbins, Mark O.

    2007-01-01

    We develop a hybrid atomistic-continuum scheme for simulating micro- and nano-flows with heat transfer. The approach is based on spatial 'domain decomposition' in which molecular dynamics (MD) is used in regions where atomistic details are important, while classical continuum fluid dynamics is used in the remaining regions. The two descriptions are matched in a coupling region where we ensure continuity of mass, momentum, energy and their fluxes. The scheme for including the energy equation is implemented in 1-D and 2-D, and used to study steady and unsteady heat transfer in channel flows with and without nano roughness. Good agreement between hybrid results and analytical or pure MD results is found, demonstrating the accuracy of this multiscale method and its potential applications in thermal engineering

  16. Nano structures for Medical Diagnostics Md

    International Nuclear Information System (INIS)

    Bellah, M.; Iqbal, S.M.; Bellah, M.; Iqbal, S.M.; Christensen, S.M.; Iqbal, S.M.; Iqbal, S.M.

    2012-01-01

    Nano technology is the art of manipulating materials on atomic or molecular scales especially to build nano scale structures and devices. The field is expanding quickly, and a lot of work is ongoing in the design, characterization, synthesis, and application of materials, structures, devices, and systems by controlling shape and size at nanometer scale. In the last few years, much work has been focused on the use of nano structures toward problems of biology and medicine. In this paper, we focus on the application of various nano structures and nano devices in clinical diagnostics and detection of important biological molecules. The discussion starts by introducing some basic techniques of micro-/nano scale fabrication that have enabled reproducible production of nano structures. The prospects, benefits, and limitations of using these novel techniques in the fields of bio detection and medical diagnostics are then discussed. Finally, the challenges of mass production and acceptance of nano technology by the medical community are considered.

  17. Determination of organic compounds in nano-particles by laser breakdown and resonant ionization time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Deguchi, Yoshihiro; Tanaka, Nobuyuki

    2005-01-01

    Laser breakdown and resonance ionization time-of-flight mass spectrometry (TOFMS) with a differential mobility analyzer (DMA) was developed and applied to detect compositions and organic substances in nano-particles. The laser breakdown TOFMS method is capable of reaching pptv sensitivity, which is generally much better than the normal LIBS techniques. The system was demonstrated to successfully detect signals in the mass range of 1 to 300 amu for 60 and 140 nm particles in diesel engine exhaust. The detected signals showed that the nano-particles contained both aromatic and chain hydrocarbons

  18. Manipulation and functionalization of nano-tubes: application to boron nitride nano-tubes

    International Nuclear Information System (INIS)

    Maguer, A.

    2007-01-01

    This PhD work is divided into two parts dealing with boron nitride (BNNT) and carbon nano-tubes. The first part is about synthesis, purification and chemical functionalization of BNNT. Single-walled BNNT are synthesized by LASER ablation of a hBN target. Improving the synthesis parameters first allowed us to limit the byproducts (hBN, boric acid). A specific purification process was then developed in order to enrich the samples in nano-tubes. Purified samples were then used to develop two new chemical functionalization methods. They both involve chemical molecules that present a high affinity towards the BN network. The use of long chain-substituted quinuclidines and borazines actually allowed the solubilization of BNNT in organic media. Purification and functionalization were developed for single-walled BNNT and were successfully applied to multi-walled BNNT. Sensibility of boron to thermic neutrons finally gave birth to a study about covalent functionalization possibilities of the network. The second part of the PhD work deals with separation of carbon nano-tubes depending on their properties. Microwave irradiation of carbon nano-tubes first allowed the enrichment of initially polydisperse samples in large diameter nano-tubes. A second strategy involving selective interaction between one type of tubes and fullerene micelles was finally envisaged to selectively solubilize carbon nano-tubes with specific electronic properties. (author) [fr

  19. Effect of TMAH Etching Duration on the Formation of Silicon Nano wire Transistor Patterned by AFM Nano lithography

    International Nuclear Information System (INIS)

    Hutagalung, S.D.; Lew, K.C.

    2012-01-01

    Atomic force microscopy (AFM) lithography was applied to produce nano scale pattern for silicon nano wire transistor fabrication. This technique takes advantage of imaging facility of AFM and the ability of probe movement controlling over the sample surface to create nano patterns. A conductive AFM tip was used to grow the silicon oxide nano patterns on silicon on insulator (SOI) wafer. The applied tip-sample voltage and writing speed were well controlled in order to form pre-designed silicon oxide nano wire transistor structures. The effect of tetra methyl ammonium hydroxide (TMAH) etching duration on the oxide covered silicon nano wire transistor structure has been investigated. A completed silicon nano wire transistor was obtained by removing the oxide layer via hydrofluoric acid etching process. The fabricated silicon nano wire transistor consists of a silicon nano wire that acts as a channel with source and drain pads. A lateral gate pad with a nano wire head was fabricated very close to the channel in the formation of transistor structures. (author)

  20. Formulation and Testing of Paraffin-Based Solid Fuels Containing Energetic Additives for Hybrid Rockets

    Science.gov (United States)

    Larson, Daniel B.; Boyer, Eric; Wachs,Trevor; Kuo, Kenneth K.; Story, George

    2012-01-01

    Many approaches have been considered in an effort to improve the regression rate of solid fuels for hybrid rocket applications. One promising method is to use a fuel with a fast burning rate such as paraffin wax; however, additional performance increases to the fuel regression rate are necessary to make the fuel a viable candidate to replace current launch propulsion systems. The addition of energetic and/or nano-sized particles is one way to increase mass-burning rates of the solid fuels and increase the overall performance of the hybrid rocket motor.1,2 Several paraffin-based fuel grains with various energetic additives (e.g., lithium aluminum hydride (LiAlH4) have been cast in an attempt to improve regression rates. There are two major advantages to introducing LiAlH4 additive into the solid fuel matrix: 1) the increased characteristic velocity, 2) decreased dependency of Isp on oxidizer-to-fuel ratio. The testing and characterization of these solid-fuel grains have shown that continued work is necessary to eliminate unburned/unreacted fuel in downstream sections of the test apparatus.3 Changes to the fuel matrix include higher melting point wax and smaller energetic additive particles. The reduction in particle size through various methods can result in more homogeneous grain structure. The higher melting point wax can serve to reduce the melt-layer thickness, allowing the LiAlH4 particles to react closer to the burning surface, thus increasing the heat feedback rate and fuel regression rate. In addition to the formulation of LiAlH4 and paraffin wax solid-fuel grains, liquid additives of triethylaluminum and diisobutylaluminum hydride will be included in this study. Another promising fuel formulation consideration is to incorporate a small percentage of RDX as an additive to paraffin. A novel casting technique will be used by dissolving RDX in a solvent to crystallize the energetic additive. After dissolving the RDX in a solvent chosen for its compatibility

  1. Nonperturbative effects of energetic ions on Alfven eigenmodes

    International Nuclear Information System (INIS)

    Todo, Y.; Nakajima, N.; Shinohara, K.; Takechi, M.; Ishikawa, M.; Yamamoto, S.

    2005-01-01

    Linear properties and nonlinear evolutions of an energetic-ion driven instability in a JT-60U plasma were investigated using a simulation code for magnetohydrodynamics and energetic particles. The spatial profile of the unstable mode peaks near the plasma center where the safety factor profile is flat. The unstable mode is not a toroidal Alfven eigenmode (TAE) because the spatial profile deviates from the expected location of TAE and the spatial profile consists of a single primary harmonic m/n = 2/1 where m, n are poloidal and toroidal mode numbers. The real frequency of the unstable mode is close to the experimental starting frequency of the fast frequency sweeping mode. The simulation results demonstrate that the energetic ion orbit width and the energetic ion pressure significantly broaden radial profile of the unstable mode. For the smallest value among the investigated energetic ion orbit width, the unstable mode is localized within 20% of the minor radius. This gives an upper limit of the spatial profile width of the unstable mode which the magnetohydrodynamic effects alone can induce. For the experimental condition of the JT-60U plasma, the energetic ions broaden the spatial profile of the unstable mode by a factor of 3 compared with the smallest orbit width case. The unstable mode is primarily induced by the energetic particles. It is demonstrated that the frequency shifts both upward and downward in the nonlinear evolution at the rate close to that of the fast frequency sweeping mode. In addition to the energetic particle mode in the JT-60U plasma, an investigation of TAE in an LHD-like plasma using the simulation code for the helical coordinate system is reported. (author)

  2. Nonperturbative effects of energetic ions on Alfven eigenmodes

    International Nuclear Information System (INIS)

    Todo, Y.; Nakajima, N.; Shinohara, Kouji; Takechi, Manabu; Ishikawa, Masao

    2005-01-01

    Linear properties and nonlinear evolutions of an energetic-ion driven instability in a JT-60U plasma were investigated using a simulation code for magnetohydrodynamics and energetic particles. The spatial profile of the unstable mode peaks near the plasma center where the safety factor profile is flat. The unstable mode is not a toroidal Alfven eigenmode (TAE) because the spatial profile deviates from the expected location of TAE and the spatial profile consists of a single primary harmonic m/n=2/1 where m, n are poloidal and toroidal mode numbers. The real frequency of the unstable mode is close to the experimental starting frequency of the fast frequency sweeping mode. The simulation results demonstrate that the energetic ion orbit width and the energetic ion pressure significantly broaden radial profile of the unstable mode. For the smallest value among the investigated energetic ion orbit width, the unstable mode is localized within 20% of the minor radius. This gives an upper limit of the spatial profile width of the unstable mode which the magnetohydrodynamic effects alone can induce. For the experimental condition of the JT-60U plasma, the energetic ions broaden the spatial profile of the unstable mode by a factor of 3 compared with the smallest orbit width case. The unstable mode is primarily induced by the energetic particles. It is demonstrated that the frequency shifts both upward and downward in the nonlinear evolution at the rate close to that of the fast frequency sweeping mode. In addition to the energetic particle mode in the JT-60U plasma, an investigation of TAE in an LHD-like plasma using the simulation code for the helical coordinate system is reported. (author)

  3. Eddy Current Assessment of Engineered Components Containing Nanofibers

    Science.gov (United States)

    Ko, Ray T.; Hoppe, Wally; Pierce, Jenny

    2009-03-01

    The eddy current approach has been used to assess engineered components containing nanofibers. Five specimens with different programmed defects were fabricated. A 4-point collinear probe was used to verify the electrical resistivity of each specimen. The liftoff component of the eddy current signal was used to test two extreme cases with different nano contents. Additional eddy current measurements were also used in detecting a missing nano layer simulating a manufacturing process error. The results of this assessment suggest that eddy current liftoff measurement can be a useful tool in evaluating the electrical properties of materials containing nanofibers.

  4. Ecological problems of thermonuclear energetics. Review

    Energy Technology Data Exchange (ETDEWEB)

    Sivintsev, Yu V

    1980-01-01

    A review of preliminary quantitative estimates of radiation hazard of thermonuclear reactors is presented. Main attention is given to three aspects: nonradiation effect on environment, radionuclide blow-ups at normal operation and emergency situations with their consequences. The given data testify to great radiological advantages of thermonuclear energetics as compared with the modern nuclear energetics with thermal and prospective fast reactors.

  5. Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures

    Science.gov (United States)

    Chu, Fuqiang; Wu, Xiaomin

    2016-05-01

    Metallic superhydrophobic surfaces have various applications in aerospace, refrigeration and other engineering fields due to their excellent water repellent characteristics. This study considers a simple but widely applicable fabrication method using a two simultaneous chemical reactions method to prepare the acid-salt mixed solutions to process the metal surfaces with surface deposition and surface etching to construct hierarchical micro-nano structures on the surface and then modify the surface with low surface-energy materials. Al-based and Cu-based superhydrophobic surfaces were fabricated using this method. The Al-based superhydrophobic surface had a water contact angle of 164° with hierarchical micro-nano structures similar to the lotus leaves. The Cu-based surface had a water contact angle of 157° with moss-like hierarchical micro-nano structures. Droplet condensation experiments were also performed on these two superhydrophobic surfaces to investigate their condensation characteristics. The results show that the Al-based superhydrophobic surface has lower droplet density, higher droplet jumping probability, slower droplet growth rate and lower surface coverage due to the more structured hierarchical structures.

  6. Nano Fertilizers

    Directory of Open Access Journals (Sweden)

    Hatice DAĞHAN

    2017-06-01

    Full Text Available Agricultural land is decreasing day by day due to erosion, environmental pollution, unconscious irrigation and fertilization. On the other hand, it is necessary to increase agricultural production in order to meet the needs of the developing industry as well as the nutritional needs of the growing population. In the recent years, nano fertilizers have begun to be produced to obtain the highest amount and quality of production from the unit area. Previous research shows that nano fertilizers cause an increase in the use efficiency of plant nutrients, reduce soil toxicity, minimize the potential adverse effects of excessive chemical fertilizer use, and reduce fertilizer application frequency. Nano fertilizers are important in agriculture to increase crop yield and nutrient use efficiency, and to reduce excessive use ofchemical fertilizers. The most important properties of these fertilizers are that they contain one or more of macro and micronutrients, they can be applied frequently in small amounts and are environmentally friendly. However, when applied at high doses, they exhibit decreasing effects on plant growth and crop yields, similar to chemical fertilizers. In this review, the definition, importan ce, and classification of nano fertilizers, their application in plant production, advantages and disadvantages and the results obtained in this field were discussed.

  7. Development of Useful Biomaterial for Bone Tissue Engineering by Incorporating Nano-Copper-Zinc Alloy (nCuZn in Chitosan/Gelatin/Nano-Hydroxyapatite (Ch/G/nHAp Scaffold

    Directory of Open Access Journals (Sweden)

    Juan Carlos Forero

    2017-10-01

    Full Text Available Ceramic and metallic nanoparticles can improve the mechanical and biological properties of polymeric scaffolds for bone tissue engineering (BTE. In this work, nanohydroxyapatite (nHAp and nano-copper-zinc alloy (nCuZn were added to a chitosan/gelatin (Ch/G scaffold in order to investigate the effects on morphological, physical, and biocompatibility properties. Scaffolds were fabricated by a freeze-drying technique using different pre-freezing temperatures. Microstructure and morphology were studied by scanning electron microscopy (SEM, glass transition (Tg was studied using differential scanning calorimetry (DSC, cell growth was estimated by MTT assay, and biocompatibility was examined in vitro and in vivo by histochemistry analyses. Scaffolds and nanocomposite scaffolds presented interconnected pores, high porosity, and pore size appropriate for BTE. Tg of Ch/G scaffolds was diminished by nanoparticle inclusion. Mouse embryonic fibroblasts (MEFs cells loaded in the Ch/G/nHAp/nCuZn nanocomposite scaffold showed suitable behavior, based on cell adhesion, cell growth, alkaline phosphatase (ALP activity as a marker of osteogenic differentiation, and histological in vitro cross sections. In vivo subcutaneous implant showed granulation tissue formation and new tissue infiltration into the scaffold. The favorable microstructure, coupled with the ability to integrate nanoparticles into the scaffold by freeze-drying technique and the biocompatibility, indicates the potential of this new material for applications in BTE.

  8. Carbon nanotubes: from nano test tube to nano-reactor.

    Science.gov (United States)

    Khlobystov, Andrei N

    2011-12-27

    Confinement of molecules and atoms inside carbon nanotubes provides a powerful strategy for studying structures and chemical properties of individual molecules at the nanoscale. In this issue of ACS Nano, Allen et al. explore the nanotube as a template leading to the formation of unusual supramolecular and covalent structures. The potential of carbon nanotubes as reactors for synthesis on the nano- and macroscales is discussed in light of recent studies.

  9. Nano- and micro-structured assemblies for encapsulation of food ingredients.

    Science.gov (United States)

    Augustin, Mary Ann; Hemar, Yacine

    2009-04-01

    This tutorial review provides an overview of the science of food materials and encapsulation techniques that underpin the development of delivery vehicles for functional food components, nutrients and bioactives. Examples of how the choice of materials, formulation and process affect the structure of micro- and nano-encapsulated ingredients and the release of the core are provided. The review is of relevance to chemists, material scientists, food scientists, engineers and nutritionists who are interested in addressing delivery challenges in the food and health industries.

  10. Segregation and redistribution of end-of-process energetic materials

    International Nuclear Information System (INIS)

    McCabe, R.A.; Cummins, B.; Gonzalez, M.A.

    1993-03-01

    A system recovering then recycling or reusing end-of-process energetic materials has been developed at the Lawrence Livermore National Laboratory (LLNL). The system promotes separating energetic materials with high potential for reuse or recycling from those that have no further value. A feature of the system is a computerized electronic bulletin board for advertising the availability of surplus and recovered energetic materials and process chemicals to LLNL researchers, and for posting energetic materials, ''want ads.'' The system was developed and implemented to promote waste minimization and pollution prevention at LLNL

  11. Assessment of accident energetics in LMFBR core-disruptive accidents

    International Nuclear Information System (INIS)

    Fauske, H.K.

    1977-01-01

    An assessment of accident energetics in LMFBR core-disruptive accidents is given with emphasis on the generic issues of energetic recriticality and energetic fuel-coolant interaction events. Application of a few general behavior principles to the oxide-fueled system suggests that such events are highly unlikely following a postulated core meltdown event

  12. Towards an ideal polymer scaffold for tendon/ligament tissue engineering

    Science.gov (United States)

    Sahoo, Sambit; Ouyang, Hong Wei; Goh, James Cho-Hong; Tay, Tong-Earn; Toh, Siew Lok

    2005-04-01

    Tissue engineering holds promise in treating injured tendons and ligaments by replacing the injured tissues with "engineered tissues" with identical mechanical and functional characteristics. A biocompatible, biodegradable, porous scaffold with optimized architecture, sufficient surface area for cell attachment, growth and proliferation, faborable mechanical properties, and suitable degradation rate is a pre-requisite to achieve success with this aproach. Knitted poly(lactide-co-glycolide) (PLGA) scaffolds comprising of microfibers of 25 micron diameter were coated with PLGA nanofibers on their surfaces by electrospinning technique. A cell suspension of pig bone marrow stromal cells (BMSC) was seeded on the scaffolds by pipetting, and the cell-scaffold constructs were cultured in a CO2 incubator, at 37°C for 1-2 weeks. The "engineered tissues" were then assessed for cell attachment and proliferation, tissue formation, and mechanical properties. Nanofibers, of diameter 300-900 nm, were spread randomly over the knitted scaffold. The reduction in pore-size from about 1 mm (in the knitted scaffold) to a few micrometers (in the nano-microscaffold) allowed cell seeding by direct pipetting, and eliminated the need of a cell-delivery system like fibrin gel. BMSCs were seen to attach and proliferate well on the nano-microscaffold, producing abundant extracellular matrix. Mechanical testing revealed that the cell-seeded nano-microscaffolds possessed slightly higher values of failure load, elastic-region stiffness and toe-region stiffness, than the unseeded scaffolds. The combination of superior mechanical strength and integrity of knitted microfibers, with the large surface area and improved hydrophilicity of the electrospun nanofibers facilitated cell attachment and new tissue formation. This holds promise in tissue engineering of tendon/ligament.

  13. Facile fabrication and characterization of poly(tetrafluoroethylene)@polypyrrole/nano-silver composite membranes with conducting and antibacterial property

    Science.gov (United States)

    Shi, Zhiquan; Zhou, Hui; Qing, Xutang; Dai, Tingyang; Lu, Yun

    2012-06-01

    Porous poly(tetrafluoroethylene) (PTFE) membranes play an important role in air purification and separation engineering. To achieve the bi-functionality of conducting and antibacterial property, two kinds of poly(tetrafluoroethylene)@ polypyrrole/nano-silver composite membranes have been prepared. One involves hydrophobic polypyrrole/nano-silver composite with hollow capsule nanostructures immobilized on the surface of the PTFE membranes. The other is a type of composite membranes with polypyrrole/nano-silver composite wholly packed on the fibrils of the expand PTFE membrane to form core/shell coaxial cable structures. The structure and morphology of the two kinds of composite membranes have been characterized by FTIR, UV-vis, XRD, TGA and SEM measurements. Possible formation mechanisms of the hollow capsules and the core/shell nanocable structures have been discussed in detail. The antibacterial effects of composite membranes are also briefly investigated.

  14. Nano-cellulose biopolymer based nano-biofilm biomaterial using plant biomass: An innovative plant biomaterial dataset

    Directory of Open Access Journals (Sweden)

    A.B.M. Sharif hossain

    2018-04-01

    Full Text Available The nano-cellulose derived nano-biofilm keeps a magnificent role in medical, biomedical, bioengineering and pharmaceutical industries. Plant biomaterial is naturally organic and biodegradable. This study has been highlighted as one of the strategy introducing biomass based nano-bioplastic (nanobiofilm to solve dependency on petroleum and environment pollution because of non-degradable plastic. The data study was carried out to investigate the nano-biopolymer (nanocellulose based nano-biofilm data from corn leaf biomass coming after bioprocess technology without chemicals. Corn leaf biomass was used to produce biodegradable nano-bioplastic for medical and biomedical and other industrial uses. Data on water absorption, odor, pH, cellulose content, shape and firmness, color coating and tensile strength test have been exhibited under standardization of ASTM (American standard for testing and materials. Moreover, the chemical elements of nanobiofilm like K+, CO3−−, Cl−, Na+ showed standard data using the EN (166. Keywords: Nanocellulose, Nanobiofilm, Nanobioplastic, Biodegradable, Corn leaf

  15. The open prototype for educational NanoSats: Fixing the other side of the small satellite cost equation

    Science.gov (United States)

    Berk, Josh; Straub, Jeremy; Whalen, David

    Government supported nano-satellite launch programs and emerging commercial small satellite launch services are reducing the cost of access to space for educational and other CubeSat projects. The cost and complexity of designing and building these satellites remains a vexing complication for many would be CubeSat aspirants. The Open Prototype for Educational NanoSats (OPEN), a proposed nano-satellite development platform, is described in this paper. OPEN endeavors to reduce the costs and risks associated with educational, government and commercial nano-satellite development. OPEN provides free and publicly available plans for building, testing and operating a versatile, low-cost satellite, based on the standardized CubeSat form-factor. OPEN consists of public-domain educational reference plans, complete with engineering schematics, CAD files, construction and test instructions as well as ancillary reference materials relevant to satellite building and operation. By making the plan, to produce a small but capable spacecraft freely available, OPEN seeks to lower the barriers to access on the other side (non-launch costs) of the satellite cost equation.

  16. Nano-structural characteristics and optical properties of silver chiral nano-flower sculptured thin films

    International Nuclear Information System (INIS)

    Savaloni, Hadi; Haydari-Nasab, Fatemh; Malmir, Mariam

    2011-01-01

    Silver chiral nano-flowers with 3-, 4- and 5-fold symmetry were produced using oblique angle deposition method in conjunction with the rotation of sample holder with different speeds at different sectors of each revolution corresponding to symmetry order of the acquired nano-flower. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM), were employed to obtain morphology and nano-structure of the films. Optical characteristics of silver chiral nano-flower thin films were obtained using single beam spectrophotometer with both s- and p-polarization incident light at 30 o and 70 o incidence angles and at different azimuthal angles (φ). Optical spectra showed both TM (TDM (transverse dipole mode) and TQM (transverse quadruple mode)) and LM (longitudinal mode) Plasmon resonance peaks. For 3- and 4-fold symmetry chiral nano-flowers the s-polarization extinction spectra obtained at different azimuthal angles did not show significant change in the Plasmon peak position while 5-fold symmetry chiral nano-flower showed a completely different behavior, which may be the result of increased surface anisotropy, so when the φ angle is changed the s-polarization response from the surface can change more significantly than that for lower symmetries. In general, for 3-, 4- and 5-fold symmetry chiral nano-flowers a sharp peak at lower wavelengths ( o incidence angle.

  17. Heliospheric Observations of Energetic Particles

    Science.gov (United States)

    Summerlin, Errol J.

    2011-01-01

    Heliospheric observations of energetic particles have shown that, on long time averages, a consistent v^-5 power-law index arises even in the absence of transient events. This implies an ubiquitous acceleration process present in the solar wind that is required to generate these power-law tails and maintain them against adiabatic losses and coulomb-collisions which will cool and thermalize the plasma respectively. Though the details of this acceleration process are being debated within the community, most agree that the energy required for these tails comes from fluctuations in the magnetic field which are damped as the energy is transferred to particles. Given this source for the tail, is it then reasonable to assume that the turbulent LISM should give rise to such a power-law tail as well? IBEX observations clearly show a power-law tail of index approximately -5 in energetic neutral atoms. The simplest explanation for the origins of these ENAs are that they are energetic ions which have charge-exchanged with a neutral atom. However, this would imply that energetic ions possess a v^-5 power-law distribution at keV energies at the source of these ENAs. If the source is presumed to be the LISM, it provides additional options for explaining the, so called, IBEX ribbon. This presentation will discuss some of these options as well as potential mechanisms for the generation of a power-law spectrum in the LISM.

  18. Physics of energetic ions

    International Nuclear Information System (INIS)

    1999-01-01

    Physics knowledge (theory and experiment) in energetic particles relevant to design of a reactor scale tokamak is reviewed, and projections for ITER are provided in this Chapter of the ITER Physics Basis. The review includes single particle effects such as classical alpha particle heating and toroidal field ripple loss, as well as collective instabilities that might be generated in ITER plasmas by energetic alpha particles. The overall conclusion is that fusion alpha particles are expected to provide an efficient plasma heating for ignition and sustained burn in the next step device. The major concern is localized heat loads on the plasma facing components produced by alpha particle loss, which might affect their lifetime in a tokamak reactor. (author)

  19. Energetic particle observations at the subsolar magnetopause

    Directory of Open Access Journals (Sweden)

    A. A. Eccles

    Full Text Available The pitch-angle distributions (PAD of energetic particles are examined as the ISEE-1 satellite crosses the Earth’s magnetopause near the subsolar point. The investigation focuses on the possible existence of a particular type of distribution that would be associated with a source of energetic particles in the high-latitude magnetosphere. PADs, demonstrating broad, persistent field-aligned fluxes filling a single hemisphere (upper/northern or lower/southern, were observed just sunward of the magnetopause current layer for an extended period of many minutes. These distributions are a direct prediction of a possible source of energetic particles located in the high altitude dayside cusp and we present five examples in detail of the three-dimensional particle distributions to demonstrate their existence. From these results, other possible causes of such PADs are examined.

    Key words. Magnetospheric physics (energetic particles, precipitating; magnetopause, cusp and boundary layers; magnetospheric configuration and dynamics

  20. The effect of dynamic operating conditions on nano-particle emissions from a light-duty diesel engine applicable to prime and auxiliary machines on marine vessels

    Directory of Open Access Journals (Sweden)

    Hyungmin Lee

    2012-12-01

    Full Text Available This study presents the nano-sized particle emission characteristics from a small turbocharged common rail diesel engine applicable to prime and auxiliary machines on marine vessels. The experiments were conducted under dynamic engine operating conditions, such as steady-state, cold start, and transient conditions. The particle number and size distributions were analyzed with a high resolution PM analyzer. The diesel oxidation catalyst (DOC had an insignificant effect on the reduction in particle number, but particle number emissions were drastically reduced by 3 to 4 orders of magnitude downstream of the diesel particulate filter (DPF at various steady conditions. Under high speed and load conditions, the particle filtering efficiency was decreased by the partial combustion of trapped particles inside the DPF because of the high exhaust temperature caused by the increased particle number concentration. Retarded fuel injection timing and higher EGR rates led to increased particle number emissions. As the temperature inside the DPF increased from 25 °C to 300 °C, the peak particle number level was reduced by 70% compared to cold start conditions. High levels of nucleation mode particle generation were found in the deceleration phases during the transient tests.

  1. Energetically resolved multiple-fluid equilibria of tokamak plasmas

    International Nuclear Information System (INIS)

    Hole, M J; Dennis, G

    2009-01-01

    In many magnetically confined fusion experiments, a significant fraction of the stored energy of the plasma resides in energetic, or non-thermal, particle populations. Despite this, most equilibrium treatments are based on MHD: a single fluid treatment which assumes a Maxwell-Boltzmann distribution function. Detailed magnetic reconstruction based on this treatment ignore the energetic complexity of the plasma and can result in model-data inconsistencies, such as thermal pressure profiles which are inconsistent with the total stored kinetic energy of the plasma. Alternatively, ad hoc corrections to the pressure profile, such as summing the energetic and thermal pressures, have poor theoretical justification. Motivated by this omission, we generalize ideal MHD one step further: we consider multiple quasi-neutral fluids, each in thermal equilibrium and each thermally insulated from each other-no population mixing occurs. Kinetically, such a model may be able to describe the ion or electron distribution function in regions of velocity phase space with a large number of particles, at the expense of more weakly populated phase space, which may have uncharacteristically high temperature and hence pressure. As magnetic equilibrium effects increase with the increase in pressure, our work constitutes an upper limit to the effect of energetic particles. When implemented into an existing solver, FLOW (Guazzotto et al 2004 Phys. Plasmas 11, 604-14), it becomes possible to qualitatively explore the impact of resolving the energetic populations on plasma equilibrium configurations in realistic geometry. Deploying the modified code, FLOW-M, on a high performance spherical torus configuration, we find that the effect of variations of the pressure, poloidal flow and toroidal flow of the energetic populations is qualitatively similar to variations in the background plasma. We also study the robustness of the equilibrium to uncertainties in the current profile and the energetic

  2. Nano-phases of ZrO2 doped with Y2O3

    International Nuclear Information System (INIS)

    Duteanu, Narcis; Monty, Claude

    2001-01-01

    This work reports the method of obtaining oxygen sensors by using nano-phases of ZrO 2 doped with Y 2 O 3 95% molar in thin layers. In the first phase it is necessary to prepare a substratum based on La 1-x Sr 30 MnO 3 . This substratum is obtained by grinding powders of base, followed by mixing and then by baking of the product. The nano-phases of ZrO 2 doped with Y 2 O 3 95% molar are obtained using solar energy in a solar furnace; in the focus the temperature has value of 3000 deg. C. Such temperatures are enough to realize the process of vapor condensation. The nano-phases obtained will have used in thin layers, representing the active element. This layers are obtained directly through the process of vapor condensation in solar focus or using the spray method. The goal of this work was obtaining oxygen sensors which function at low temperatures (below 300 deg. C), because the sensors which are found on market, operate at a temperature of 800 deg. C. Those sensors are used to obtain a good combustion with engines with internal combustion. (authors)

  3. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive

    NARCIS (Netherlands)

    Peters, R.; Kramer, E.; Oomen, A.G.; Herrera Rivera, Z.E.; Oegema, G.; Tromp, P.C.; Fokkink, R.; Rietveld, A.; Marvin, H.J.P.; Weigel, S.; Peijnenburg, A.A.C.M.; Bouwmeester, H.

    2012-01-01

    The presence, dissolution, agglomeration state, and release of materials in the nano-size range from food containing engineered nanoparticles during human digestion is a key question for the safety assessment of these materials. We used an in vitro model to mimic the human digestion. Food products

  4. Effects of engineered nano-titanium dioxide on pore surface properties and phosphorus adsorption of sediment: Its environmental implications

    International Nuclear Information System (INIS)

    Luo, Zhuanxi; Wang, Zhenhong; Wei, QunShan; Yan, Changzhou; Liu, Feng

    2011-01-01

    Highlights: → The attachment of Enano-TiO 2 to surface enhanced markedly sediment BET surface area and t-Plot external surface area. → The fill of Enano-TiO 2 into the micropores reduced significantly the sediment t-Plot micropore surface area. → Enano-TiO 2 could increase sediment phosphorus (P) adsorption maximum and decrease in sediment P binding energy. → P would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO 2 . - Abstract: Understanding the environmental safety and human health implications of engineered nanoparticles (ENPs) is of worldwide importance. As an important ENPs, engineered nano-TiO 2 (Enano-TiO 2 ) may have been substantially deposited in aquatic sediments because of its widely uses. Sediment pore surface properties would be thus significantly influenced due to the large surface area of Enano-TiO 2 . In this study, Enano-TiO 2 was found to greatly impact on sediment pore surface properties. The attachment of Enano-TiO 2 particles to sediment surfaces enhanced markedly BET specific surface area and t-Plot external specific surface area, and thereby increased sediment phosphorus (P) adsorption maximum (S max ). Contrarily, the fill of Enano-TiO 2 particles into the micropores of sediments could significantly reduce t-Plot micropore specific surface area, and cause slight decrease in sediment P binding energy (K). Clearly, P sorbed in sediment would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO 2 . Enano-TiO 2 would thus cause aggravated endogenous pollution in water if such sediment was re-suspended on disturbance. The results obtained in this study contribute to our increasing knowledge of how to regulate physicochemical behavior of pollutants in sediments under the influences of Enano-TiO 2 and/or similar ENPs.

  5. Aligned Layers of Silver Nano-Fibers

    Directory of Open Access Journals (Sweden)

    Andrii B. Golovin

    2012-02-01

    Full Text Available We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polarization of transmitted light. The aligned layers of silver nano-fibers might be used in optics, microwave applications, and organic electronics.

  6. Characterizing dynamic behavior of carbon dioxide nano-jets using molecular dynamics simulation

    Science.gov (United States)

    Huang, Pei-Hsing; Chou, Chuen-Shii; Hung, Shang-Chao; Jhan, Jhih-Wei

    2017-12-01

    This paper reports on the use of molecular dynamics (MD) simulations to elucidate the dynamic behavior of CO2 through a Graphene/Au(111) nano-injector. We investigated the effects of jet diameter ( d), system temperature ( T), and the extrusion velocity ( v) of a graphite piston plate on the jet pattern, system pressure ( P), and the number of molecules ( N m) in the outflow. Simulation results show that the combined effects of high v and small d induced a larger jet angle, resulting in an increase in the number of CO2 molecules attached to the surface of the outlet. Increasing d enhanced the formation of the T-junction molecular geometry of CO2 molecules, due to the effects of electrostatic attraction between C (0.5888 e) and O (- 0.2944 e) of CO2, which caused the formation of larger agglomerations of CO2 molecules in the vicinity of the nano-injector orifice in the final extrusion stage. The increase in P within the cylinder of the nano-injector was more pronounced during middle and final stages of extrusion, compared with the effects observed during the initial stages. Despite the fact that N m increased noticeably with an increase in T, the value of N m at d = 1.5 nm and T ≥ 300 K greatly exceeded that at d = 1.0 nm and T = 500 K, regardless of the value of v. The numerical simulations presented in this study could be helpful in the design of nano-injectors for a diversity of applications associated with engineering systems and biomedicine at the nano-scale.

  7. Self-aligned periodic Ni nano dots embedded in nano-oxide layer

    International Nuclear Information System (INIS)

    Doi, M.; Izumi, M.; Kawasaki, S.; Miyake, K.; Sahashi, M.

    2007-01-01

    The Ni nano constriction dots embedded in the Ta-nano-oxide layer (NOL) was prepared by the ion beam sputtering (IBS) method. After the various conditions of the oxidations, the structural analyses of the NOL were performed by RHEED, AES and in situ STM/AFM observations. From the current image of the conductive AFM for NOL, the periodically aligned metallic dots with the size around 5-10 nm were successfully observed. The mechanism of the formation of the self-organized aligned Ni nano constriction dots is discussed from the standpoint of the grain size, the crystal orientation, the preferred oxidation of Ta at the diffused interface

  8. Review on Nano SeleniumProduced by Bacteria

    Directory of Open Access Journals (Sweden)

    LI Ji-xiang

    2014-12-01

    Full Text Available Selenium (Se is a kind of essential trace element for people and animal, while ionic state of selenium is toxic with high concentrations and will cause the selenium pollution. Nano-selenium is stable, nontoxic with higher biological activity. Application of bacteria reducing selenite or selenate to biological nano-selenium has great potential in selenium pollution control and nano-selenium production. This review summarizes the research progress of the red elemental nano-selenium reduced by bacteria including characteristics and application of nano-selenium, effects of carbon and nitrogen source, oxygen, temperature and pH in bacteria nano-selenium production, and molecular mechanisms of nano-selenium reduced by bacteria.

  9. Metal Oxide Nano structures: Synthesis, Properties, and Applications

    International Nuclear Information System (INIS)

    Xu, L. H.; Patil, D. S.; Yang, J.; Xiao, J.

    2015-01-01

    In recent years, nano structured materials have attracted wide attention due to their fascinating optical and electrical properties, which make these materials potentially suitable for applications in electronics, optics, photonics, and sensors. Some metal oxides show a wide variety of morphologies such as nano wires, nano rods, nano tubes, nano rings, and nano belts. Synthesis and investigation of these metal-oxide nano structures are beneficial not only for understanding the fundamental phenomena in low dimensional systems, but also for developing new-generation nano devices with high performance.

  10. Nano-JASMINE Data Analysis and Publication

    Science.gov (United States)

    Yamada, Y.; Hara, T.; Yoshioka, S.; Kobayashi, Y.; Gouda, N.; Miyashita, H.; Hatsutori, Y.; Lammers, U.; Michalik, D.

    2012-09-01

    The core data reduction for the Nano-JASMINE mission is planned to be done with Gaia's Astrometric Global Iterative Solution (AGIS). A collaboration between the Gaia AGIS and Nano-JASMINE teams on the Nano-JASMINE data reduction started in 2007. The Nano-JASMINE team writes codes to generate AGIS input, and this is called Initial Data Treament (IDT). Identification of observed stars and their observed field of view, getting color index, are different from those of Gaia because Nano-JASMINE is ultra small satellite. For converting centroiding results on detector to the celestial sphere, orbit and attitude data of the satellite are used. In Nano-JASMINE, orbit information is derived from on board GPS data and attitude is processed from on-board star sensor data and on-ground Kalman filtering. We also show the Nano-JASMINE goals, status of the data publications and utilizations, and introduce the next Japanese space astrometric mission.

  11. Porous Nano-Si/Carbon Derived from Zeolitic Imidazolate Frameworks@Nano-Si as Anode Materials for Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Song, Yonghai; Zuo, Li; Chen, Shouhui; Wu, Jiafeng; Hou, Haoqing; Wang, Li

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •The porous cage-like carbon/Si nanocomposites were synthesized based on nano-Si@ZIF-8-templatedmethod. •The nano-Si was uniformly embedded in porous amorphous carbon matrices. •The porous dodecahedral carbon framework effectively accommodates the volume variation of Si during the discharge/charge process. •The Si/C nanocomposites exhibit superior reversible capacity of 1168 mA h g −1 after 100 cycles. -- Abstract: Novel porous cage-like carbon (C)/nano-Si nanocomposites as anode materials for lithium-ion batteries (LIBs) was prepared based on nano-Si@zeolitic imidazolate frameworks (ZIF-8)-templated method. In this strategy, p-aminobenzoic acid was initially grafted onto nano-Si to form benzoic acid-functionalized nano-Si, and then nano-Si@ZIF-8 was constructed by alternately growing Zn(NO 3 ) 2 ·6H 2 O and 2-methylimidazolate on benzoic acid-functionalized nano-Si under ultrasound. The novel porous cage-like nano-Si/C nanocomposites were fabricated by pyrolyzing the resulted nano-Si@ZIF-8 and washing with HCl to remove off ZnO. Scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Raman spectra and N 2 adsorption/desorption isotherms were employed to characterize the porous cage-like nano-Si/C nanocomposites. The resulted nano-Si/C nanocomposites as anode materials for LIBs showed a high reversible capacity of ∼1168 mA h g −1 at 100 mA g −1 after 100 cycles, which was higher than many previously reported Si/C nanocomposites. The porous nanostructure, high specific surface area and good electrical conductivity of the cage-like nano-Si/C nanocomposites contributed together to the good performance for LIBs. It might open up a new way for application of silicon materials

  12. Nano-Engineered Hierarchical Advanced Composite Materials for Space Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Composites are widely used throughout aerospace engineering and in numerous other applications where structures that possess high strength and toughness properties...

  13. Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugar-coated chewing gum.

    Science.gov (United States)

    Chen, Xin-Xin; Cheng, Bin; Yang, Yi-Xin; Cao, Aoneng; Liu, Jia-Hui; Du, Li-Jing; Liu, Yuanfang; Zhao, Yuliang; Wang, Haifang

    2013-05-27

    Nanotechnology shows great potential for producing food with higher quality and better taste through including new additives, improving nutrient delivery, and using better packaging. However, lack of investigations on safety issues of nanofood has resulted in public fears. How to characterize engineered nanomaterials in food and assess the toxicity and health impact of nanofood remains a big challenge. Herein, a facile and highly reliable separation method of TiO2 particles from food products (focusing on sugar-coated chewing gum) is reported, and the first comprehensive characterization study on food nanoparticles by multiple qualitative and quantitative methods is provided. The detailed information on nanoparticles in gum includes chemical composition, morphology, size distribution, crystalline phase, particle and mass concentration, surface charge, and aggregation state. Surprisingly, the results show that the number of food products containing nano-TiO2 (TiO2 in gum is nano-TiO2 , and it is unexpectedly easy to come out and be swallowed by a person who chews gum. Preliminary cytotoxicity assays show that the gum nano-TiO2 particles are relatively safe for gastrointestinal cells within 24 h even at a concentration of 200 μg mL(-1) . This comprehensive study demonstrates accurate physicochemical property, exposure, and cytotoxicity information on engineered nanoparticles in food, which is a prerequisite for the successful safety assessment of nanofood products. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Applications of Nano palm oil fuel ash and Nano fly ash in concrete

    Science.gov (United States)

    Hamada, Hussein M.; Jokhio, Gul Ahmed; Mat Yahaya, Fadzil; Humada, Ali M.

    2018-04-01

    This paper discusses the applications of Nano waste materials including palm oil fuel ash and fly ash in the concrete production. The implementation of nanotechnology has been instrumental in the development of significant interest among the stakeholders to improve the mechanical and chemical properties of materials involved in the production of concrete. Although many researchers have shown the potential of nanomaterials to increase strength and durability of concrete and improve its physical and chemical properties, there is still a knowledge gap regarding the preparation of Nano waste materials from agricultural waste to use as cement replacement instead of non-renewable materials. Therefore, it should be focused on to study Nano- waste materials to benefit from these characteristics during preparation of concrete mixtures. Therefore, this paper highlights the potential of waste materials in the Nano size to partially replace cement in concrete and achieve the same or better result than the traditional concrete. This paper recommends to conduct further experimental works to improve the concrete material properties by investigating the properties of waste materials in Nano size.

  15. [Arbuscular mycorrhizal symbiosis influences the biological effects of nano-ZnO on maize].

    Science.gov (United States)

    Wang, Wei-Zhong; Wang, Fa-Yuan; Li, Shuai; Liu, Xue-Qin

    2014-08-01

    Engineered nanoparticles (ENPs) can be taken up and accumulated in plants, then enter human bodies via food chain, and thus cause potential health risk. Arbuscular mycorrhizal fungi form mutualistic symbioses with the majority of higher plants in terrestrial ecosystems, and potentially influence the biological effects of ENPs. The present greenhouse pot culture experiment studied the effects of inoculation with or without arbuscular mycorrhizal fungus Acaulospora mellea on growth and nutritional status of maize under different nano-ZnO levels (0, 500, 1 000, 2000 and 3 000 mg x kg(-1)) artificially added into soil. Results showed that with the increasing nano-ZnO levels in soil, mycorrhizal colonization rate and biomass of maize plants showed a decreasing trend, total root length, total surface area and total volume reduced, while Zn concentration and uptake in plants gradually increased, and P, N, K, Fe, and Cu uptake in shoots all decreased. Compared with the controls, arbuscular mycorrhizal inoculation improved the growth and P, N and K nutrition of maize, enhanced total root length, total surface area and total volume, and increased Zn allocation to roots when nano-ZnO was added. Our results firstly show that nano-ZnO in soil induces toxicity to arbuscular mycorrhizae, while arbuscular mycorrhizal inoculation can alleviate its toxicity and play a protective role in plants.

  16. The Spin Torque Lego - from spin torque nano-devices to advanced computing architectures

    Science.gov (United States)

    Grollier, Julie

    2013-03-01

    Spin transfer torque (STT), predicted in 1996, and first observed around 2000, brought spintronic devices to the realm of active elements. A whole class of new devices, based on the combined effects of STT for writing and Giant Magneto-Resistance or Tunnel Magneto-Resistance for reading has emerged. The second generation of MRAMs, based on spin torque writing : the STT-RAM, is under industrial development and should be out on the market in three years. But spin torque devices are not limited to binary memories. We will rapidly present how the spin torque effect also allows to implement non-linear nano-oscillators, spin-wave emitters, controlled stochastic devices and microwave nano-detectors. What is extremely interesting is that all these functionalities can be obtained using the same materials, the exact same stack, simply by changing the device geometry and its bias conditions. So these different devices can be seen as Lego bricks, each brick with its own functionality. During this talk, I will show how spin torque can be engineered to build new bricks, such as the Spintronic Memristor, an artificial magnetic nano-synapse. I will then give hints on how to assemble these bricks in order to build novel types of computing architectures, with a special focus on neuromorphic circuits. Financial support by the European Research Council Starting Grant NanoBrain (ERC 2010 Stg 259068) is acknowledged.

  17. NanoChemistry Group at DTU uses NanoSight's NTA System for Nanoparticle Characterization

    DEFF Research Database (Denmark)

    2011-01-01

    (Nanowerk News) NanoSight, leading manufacturers of unique nanoparticle characterization technology, describes how the Nano Chemistry group at DTU Copenhagen is utilizing nanoparticle tracking analysis, NTA, in its research and teaching programs....

  18. Rapid fabrication of an ordered nano-dot array by the combination of nano-plastic forming and annealing methods

    International Nuclear Information System (INIS)

    Yoshino, Masahiko; Ohsawa, Hiroki; Yamanaka, Akinori

    2011-01-01

    In this paper, a new fabrication method for an ordered nano-dot array is developed. Combination of coating, nano-plastic forming and annealing processes is studied to produce uniformly sized and ordered gold nano-dot array on a quartz glass substrate. The experimental results reveal that patterning of a groove grid on the gold-coated substrate with NPF is effective to obtain the ordered gold nano-dot array. In the proposed fabrication process, the size of the gold nano-dot can be controlled by adjusting the groove grid size. A minimum gold nano-dot array fabricated on a quartz-glass substrate was 93 nm in diameter and 100 nm in pitch. Furthermore, the mechanism of nano-dot array generation by the presented process is investigated. Using a theoretical model it is revealed that the proposed method is capable of fabrication of smaller nano-dots than 10 nm by controlling process conditions adequately.

  19. Thermodynamic signature of secondary nano-emulsion formation by isothermal titration calorimetry.

    Science.gov (United States)

    Fotticchia, Iolanda; Fotticchia, Teresa; Mattia, Carlo Andrea; Netti, Paolo Antonio; Vecchione, Raffaele; Giancola, Concetta

    2014-12-09

    The stabilization of oil in water nano-emulsions by means of a polymer coating is extremely important; it prolongs the shelf life of the product and makes it suitable for a variety of applications ranging from nutraceutics to cosmetics and pharmaceutics. To date, an effective methodology to assess the best formulations in terms of thermodynamic stability has yet to be designed. Here, we perform a complete physicochemical characterization based on isothermal titration calorimetry (ITC) compared to conventional dynamic light scattering (DLS) to identify polymer concentration domains that are thermodynamically stable and to define the degree of stability through thermodynamic functions depending upon any relevant parameter affecting the stability itself, such as type of polymer coating, droplet distance, etc. For instance, the method was proven by measuring the energetics in the case of two different biopolymers, chitosan and poly-L-lysine, and for different concentrations of the emulsion coated with poly-L-lysine.

  20. Mechanical, Biological and Electrochemical Investigations of Advanced Micro/Nano Materials for Tissue Engineering and Energy Storage

    Science.gov (United States)

    Pu, Juan

    Various micro/nano materials have been extensively studied for applications in tissue engineering and energy storage. Tissue engineering seeks to repair or replace damaged tissue by integrating approaches from cellular/molecular biology and material chemistry/engineering. A major challenge is the consistent design of three-dimensional (3D) scaffolds that mimic the structure and biological functions of extracellular matrix (ECM), guide cell migration, provide mechanical support, and regulate cell activity. Electrospun micro/nanofibers have been investigated as promising tissue engineering scaffolds because they resemble native ECM and possess tunable surface morphologies. Supercapacitors, one of the energy storage devices, bridge the performance gap between rechargeable batteries and conventional capacitors. Active electrode materials of supercapacitors must possess high specific surface area, high conductivity, and good electrochemical properties. Carbon-based micro/nano-particles, such as graphene, activated carbon (AC), and carbon nanotubes, are commonly used as active electrode materials for storing charge in supercapacitors by the electrical double layer mechanism due to their high specific surface area and excellent conductivity. In this thesis, the mechanical properties of electrospun bilayer microfibrous membranes were investigated for potential applications in tissue engineering. Bilayer microfibrous membranes of poly(l-lactic acid) (PLLA) were fabricated by electrospinning using a parallel-disk mandrel configuration, which resulted in the sequential deposition of a layer with aligned fibers (AFL) across the two parallel disks and a layer with random fibers (RFL), both deposited by a single process step. The membrane structure and fiber alignment were characterized by scanning electron microscopy and two-dimensional fast Fourier transform. Because of the intricacies of the generated electric field, the bilayer membranes exhibited higher porosity than the

  1. Energetic policies 2005-2030

    International Nuclear Information System (INIS)

    2008-01-01

    This power point exhibition shows the following topics: energy analysis, production and use, supply and demand, consumption, energy sources, energetic prospective of Uruguay country, medium and long term perspectives.

  2. Advances in magnetospheric physics, 1971--1974: energetic particles

    International Nuclear Information System (INIS)

    West, H.I. Jr.

    1974-12-01

    An account is given of energetic particle research in magnetospheric physics for the time period 1971--1974. Emphasis is on relating the various aspects of energetic particles to magnetospheric processes. 458 refs. (U.S.)

  3. The effect of brushing with nano calcium carbonate and calcium carbonate toothpaste on the surface roughness of nano-ionomer

    Science.gov (United States)

    Anisja, D. H.; Indrani, D. J.; Herda, E.

    2017-08-01

    Nanotechnology developments in dentistry have resulted in the development of nano-ionomer, a new restorative material. The surface roughness of restorative materials can increase bacteria adhesion and lead to poor oral hygiene. Abrasive agents in toothpaste can alter tooth and restorative material surfaces. The aim of this study is to identify the effect of brushing with nano calcium carbonate, and calcium carbonate toothpaste on surface roughness of nano-ionomer. Eighteen nano-ionomer specimens were brushed with Aquabidest (doubledistilled water), nano calcium carbonate and calcium carbonate toothpaste. Brushing lasted 30 minutes, and the roughness value (Ra) was measured after each 10 minute segment using a surface roughness tester. The data was analyzed using repeated ANOVA and one-way ANOVA test. The value of nano-ionomer surface roughness increased significantly (p<0.05) after 20 minutes of brushing with the nano calcium carbonate toothpaste. Brushing with calcium carbonate toothpaste leaves nano-ionomer surfaces more rugged than brushing with nano calcium carbonate toothpaste.

  4. Nano dots and nano crystals detectors applications and questions

    International Nuclear Information System (INIS)

    Paltiel, Y.; Shusterman, S.; Naaman, R.; Aqua, T.; Banin, U.; Aharoni, A.

    2006-01-01

    Full Text: Nano technology is in the center of attention in the last decade. In our work we are using nano dots, nano crystals and quantum wells to study and fabricate infrared devices. In this study we aim to develop an accurate narrow band infrared sensor that will use quantum mechanics at room temperature. The sensor is based on a FET like structure, in which the current is very sensitive to potential changes on its surface. We have shown that this configuration provides flexibility and variability in operation bandgap and response. However, the relations between the quantum and the macroscopic world are not trivial and the coupling between worlds influences the transport, noise, and optical measurements. In this talk we will show some of the infrared devices we are studying, and try to present the rich physics and relations that combine between the two worlds

  5. Size-controlled fabrication of zein nano/microparticles by modified anti-solvent precipitation with/without sodium caseinate

    OpenAIRE

    Li, Feng; Chen, Yan; Liu, Shubo; Qi, Jian; Wang, Weiying; Wang, Chenhua; Zhong, Ruiyue; Chen, Zhijun; Li, Xiaoming; Guan, Yuanzhou; Kong, Wei; Zhang, Yong

    2017-01-01

    Feng Li,1 Yan Chen,1,2 Shubo Liu,1 Jian Qi,1 Weiying Wang,1 Chenhua Wang,1 Ruiyue Zhong,1 Zhijun Chen,1 Xiaoming Li,1 Yuanzhou Guan,1 Wei Kong,1,2 Yong Zhang1,2 1National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 2Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China Abstract: Zein-based nano/microparticles have been demonstrated to be promising carr...

  6. Sol-Gel Manufactured Energetic Materials

    Science.gov (United States)

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  7. Novel plasmon nano-lasers

    NARCIS (Netherlands)

    Hill, M.T.; Marell, M.J.H.

    2010-01-01

    We will discuss some of the latest developments in metallic and plasmonic nano-lasers. Furthermore we will present our latest results on further miniaturization of electrically pumped plasmonic nano-lasers and also DFB Plasmon mode devices.

  8. Preparation and characterization of bipolar membranes modified by photocatalyst nano-ZnO and nano-CeO2

    International Nuclear Information System (INIS)

    Zhou Tingjin; Hu Yanyu; Chen Riyao; Zheng Xi; Chen Xiao; Chen Zhen; Zhong Jieqiong

    2012-01-01

    Nano-ZnO-CeO 2 coupled semiconductor was added into the chitosan (CS) anion exchange membrane layer to prepare the PVA-CMC/nano-ZnO-CeO 2 -CS (here, PVA: polyvinyl alcohol; CMC: carboxymethyl cellulose) bipolar membrane (BPM), and the prepared BPM was characterized by SEM, J-V characteristics, electronic universal testing machine, contact angle measurement and so on. Experimental results showed that nano-ZnO-CeO 2 exhibited better photocatalytic property for water splitting at the interlayer of BPM than nano-ZnO or nano-CeO 2 , which could greatly reduce the membrane impedance of the BPM. Under the irradiation of high-pressure mercury lamps, the cell voltage of PVA-CMC/nano-ZnO-CeO 2 -CS BPM decreased by 0.7 V at the current density of 60 mA/cm 2 , and the cell voltages of PVA-CMC/nano-ZnO-CS BPM and PVA-CMC/nano-CeO 2 -CS BPM were only reduced by 0.3 V and 0.5 V, respectively. Furthermore, the hydrophilicity, and mechanical properties of the modified BPM were increased.

  9. Minimizing of the boundary friction coefficient in automotive engines using Al2O3 and TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Ali, Mohamed Kamal Ahmed; Xianjun, Hou; Elagouz, Ahmed; Essa, F.A.; Abdelkareem, Mohamed A. A.

    2016-01-01

    Minimizing of the boundary friction coefficient is critical for engine efficiency improvement. It is known that the tribological behavior has a major role in controlling the performance of automotive engines in terms of the fuel consumption. The purpose of this research is an experimental study to minimize the boundary friction coefficient via nano-lubricant additives. The tribological characteristics of Al 2 O 3 and TiO 2 nano-lubricants were evaluated under reciprocating test conditions to simulate a piston ring/cylinder liner interface in automotive engines. The nanoparticles were suspended in a commercially available lubricant in a concentration of 0.25 wt.% to formulate the nano-lubricants. The Al 2 O 3 and TiO 2 nanoparticles had sizes of 8–12 and 10 nm, respectively. The experimental results have shown that the boundary friction coefficient reduced by 35–51% near the top and bottom dead center of the stroke (TDC and BDC) for the Al 2 O 3 and TiO 2 nano-lubricants, respectively. The anti-wear mechanism was generated via the formation of protective films on the worn surfaces of the ring and liner. These results will be a promising approach for improving fuel economy in automotive.

  10. Nanoscale biomaterial interface modification for advanced tissue engineering applications

    International Nuclear Information System (INIS)

    Safonov, V; Zykova, A; Smolik, J; Rogovska, R; Donkov, N; Goltsev, A; Dubrava, T; Rassokha, I; Georgieva, V

    2012-01-01

    Recently, various stem cells, including mesenchymal stem cells (MSCs), have been found to have considerable potential for application in tissue engineering and future advanced therapies due to their biological capability to differentiate into specific lineages. Modified surface properties, such as composition, nano-roughness and wettability, affect the most important processes at the biomaterial interface. The aim of the present is work is to study the stem cells' (MSCs) adhesive potential, morphology, phenotypical characteristics in in vitro tests, and to distinguish betwen the different factors influencing the cell/biomaterial interaction, such as nano-topography, surface chemistry and surface free energy.

  11. Mechanical Behavior of Polymer Nano Bio Composite for Orthopedic Implants

    Science.gov (United States)

    Marimuthu, K., Dr.; Rajan, Sankar

    2018-04-01

    The bio-based polymer composites have been the focus of many scientific and research projects, as well as many commercial programs. In recent years, scientists and engineers have been working together to use the inherent strength and performance of the new class of bio-based composites which is compactable with human body and can act as a substitute for living cells. In this stage the polymer composites also stepped into human bone implants as a replacement for metallic implants which was problems like corrosion resistance and high cost. The polymer composite have the advantage that it can be molded to the required shape, the polymers have high corrosion resistance, less weight and low cost. The aim of this research is to develop and analyze the suitable bio compactable polymer composite for human implants. The nano particles reinforced polymer composites provides good mechanical properties and shows good tribological properties especially in the total hip and knee replacements. The graphene oxide powders are bio compactable and acts as anti biotic. GO nano powder where reinforced into High-density polyethylene in various weight percentage of 0.5% to 2%. The performance of GO nano powder shows better tribological properties. The material produced does not cause any pollution to the environment and at the same time it can be bio compactable and sustainable. The product will act environmentally friendly.

  12. Nano silver diffusion behaviour on conductive polymer during doping process for high voltage application

    Science.gov (United States)

    Mohammad, A.; Mahmood, A.; Chin, K. T.; Danquah, M. K.; van Stratan, S.

    2017-06-01

    Conductive polymer had opened a new era of engineering for microelectronics and semiconductor applications. However, it is still a challenge for high voltage applications due to lower electrical conductivity compare to metals. This results tremendous energy losses during transmission and restricts its usage. In order to address such problem a novel method was investigated using nano silver particle doped iodothiophene since silver is the highest electrical conductive material. The experiments were carried out to study the organometallic diffusion behaviour of nanosilver doped iodothiophene with different concentration of iodothiophene. Five different mixing ratio between nanosilver and the solution of iodothiophene dissolved in diethyl ether were used which are 1:1.25, 1:1.5, 1:2.5, 1:3 and l:5. It was revealed that there is an effective threshold concentration of which the nano silver evenly distributed and there was no coagulation observed. These parameters laid the foundation of better doping process between the nano silver and the polymer significantly which would contribute developing conductive polymer towards high voltage application for industries that are vulnerable to corrosive environment.

  13. The Degradation of Mechanical Properties in Halloysite Nano clay-Polyester Nano composites Exposed in Seawater Environment

    International Nuclear Information System (INIS)

    Saharudin, M.S.; Saharudin, M. Sh.; Wei, J.; Shyha, I.; Inam, F.

    2016-01-01

    Polyester based polymers are extensively used in aggressive marine environments; however, inadequate data is available on the effects of the seawater on the polyester based nano composites mechanical properties. This paper reports the effect of seawater absorption on the mechanical properties degradation of halloysite nano clay-polyester nano composites. Results confirmed that the addition of halloysite nano clay into polyester matrix was found to increase seawater uptake and reduce mechanical properties compared to monolithic polyester. The maximum decreases in microhardness, tensile and flexural properties, and impact toughness were observed in case of 1 wt% nano clay. The microhardness decreased from 107 HV to 41.7 HV (61% decrease). Young s modulus decreased from 0.6 GPa to 0.4 GPa (33% decrease). The flexural modulus decreased from 0.6 GPa to 0.34 GPa (43% decrease). The impact toughness dropped from 0.71 kJ/m"2 to 0.48 kJ/m"2 (32% decrease). Interestingly, the fracture toughnessκ_1C increased with the addition of halloysite nano clay due to the plasticization effect of the resin matrix. SEM images revealed the significant reduction in mechanical properties in case of 1 wt% reinforcement which is attributed to the degradation of the nano clay-matrix interface influenced by seawater absorption and agglomeration of halloysite nano clay.

  14. Applications of Nano-optics.

    Science.gov (United States)

    Zhou, Changhe; Fainman, Yeshaiahu; Sheng, Yunlong

    2011-11-01

    As nanoscale fabrication techniques advance, nano-optics continues to offer enabling solutions to numerous practical applications for information optics. This Applied Optics feature issue focuses on the Application of Nano-optics. © 2011 Optical Society of America

  15. Theoretical study of energetic interactions between high temperature molten materials and a low temperature fluid

    International Nuclear Information System (INIS)

    Chen, S.H.H.

    1984-01-01

    Analytical models are developed to predict the hydrodynamical transients resulting from the energetic interactions between a high temperature molten material and a low temperature liquid coolant. Initially, the molten material at high temperature and pressure is separated from the low temperature fluid by a solid metal barrier. Upon contact between the molten material and solid barrier, thermal attack occurs eventually resulting in a loss of barrier integrity. Subsequently, the molten material is injected into the liquid pool resulting in energetic interactions. The analytical models integrate a wide variety of potentially mutually-interacting transport phenomena which dominate the transient process into a deterministic scheme to predict the hydrodynamic transient process into a deterministic scheme to predict the hydrodynamic transient process. The model calculations are compared with the existing experimental results to show its engineering accuracy and adequacy in predicting such energetic interactions. Two models are formulated to bracket the transport of molten material to the rupture site for the reactor system. The stratified model minimized the rate of transport of material to the break location while the dispersed model maximized such transport. These two models are applied to a reference pressure tube reactor to evaluate the pressure transients and the potential structural damages as a result of a postulated severe primary coolant blockage in a power channel

  16. Nano materials for Medical and Dental Applications

    International Nuclear Information System (INIS)

    Yub Kwon, T.; Oh, D.S.; Narayanan, R.

    2015-01-01

    Welcome to this special issue. Nano science and nano technology concepts are applicable across all fields of science and a more widespread application of nano materials and nano technologies is imminent or already occurring in many areas, including health care. Today is scientists take those cutting-edge technologies and concepts and apply them to medicine and dentistry. They are finding a wide variety of ways to make medical and dental materials at the nano scale to take advantage of their enhanced physical and biological properties.The purpose of this special issue is to publish high-quality research papers as well as review articles addressing recent advances in the field of nano materials for medical and dental applications. A particular interest is given to papers exploring or discussing nano materials and nano technologies related to delivery system, bonding substitutes, and surface modification techniques applicable in these areas. For this special issue, several investigators were invited to contribute original research findings that can stimulate continuing efforts to understand the cutting-edge applications of nano materials in medicine and dentistry.

  17. Nano/macro porous bioactive glass scaffold

    Science.gov (United States)

    Wang, Shaojie

    exchange process. Although both techniques lower the surface area of BG scaffolds, the temperature-dependent sintering process closes nanopores through densification, while the concentration-dependent solvent exchange process enlarges nanopores through Ostwald-ripening type coarsening. Therefore, nanopore size and surface area of BG scaffold are independently controlled using these methods. In vitro cell and in vivo animal tissue responses have been investigated to evaluate the performance of the nano-macro porous BG scaffold. The cells are found to migrate and penetrate deep into the 3D nano-macro porous structure, while exhibiting excellent adhesion to the bioscaffold surface. Importantly, the new tissue with both blood vessels and collagen fibers is formed deep inside the implanted scaffolds without obvious inflammatory reaction. Furthermore, our observations show biological benefits of the nanopores in the BG scaffold. In comparison to BG scaffold without nanopores, cells migrate and penetrate into nano-macro dual-porous BG scaffold faster and deeper mainly because of the increase of surface area. To study the effect of nanopore topography, we fabricated BG scaffolds with the same surface area but different nanopore sizes. It is found that the initial cell attachment is significantly enhanced on the BG scaffold with the same surface area but smaller nanopores size, indicating that the nanopore topography strongly influences the performance of BG scaffold. In conclusion, the present results demonstrate most clearly the usefulness of our nano-macro dual-porous BG as a novel and superior 3D bioscaffold for regenerative medicine and hard tissue engineering.

  18. Nano/micro-scale magnetophoretic devices for biomedical applications

    International Nuclear Information System (INIS)

    Lim, Byeonghwa; Kim, CheolGi; Vavassori, Paolo; Sooryakumar, R

    2017-01-01

    In recent years there have been tremendous advances in the versatility of magnetic shuttle technology using nano/micro-scale magnets for digital magnetophoresis. While the technology has been used for a wide variety of single-cell manipulation tasks such as selection, capture, transport, encapsulation, transfection, or lysing of magnetically labeled and unlabeled cells, it has also expanded to include parallel actuation and study of multiple bio-entities. The use of nano/micro-patterned magnetic structures that enable remote control of the applied forces has greatly facilitated integration of the technology with microfluidics, thereby fostering applications in the biomedical arena. The basic design and fabrication of various scaled magnets for remote manipulation of individual and multiple beads/cells, and their associated energies and forces that underlie the broad functionalities of this approach, are presented. One of the most useful features enabled by such advanced integrated engineering is the capacity to remotely tune the magnetic field gradient and energy landscape, permitting such multipurpose shuttles to be implemented within lab-on-chip platforms for a wide range of applications at the intersection of cellular biology and biotechnology. (topical review)

  19. Nano/micro-scale magnetophoretic devices for biomedical applications

    Science.gov (United States)

    Lim, Byeonghwa; Vavassori, Paolo; Sooryakumar, R.; Kim, CheolGi

    2017-01-01

    In recent years there have been tremendous advances in the versatility of magnetic shuttle technology using nano/micro-scale magnets for digital magnetophoresis. While the technology has been used for a wide variety of single-cell manipulation tasks such as selection, capture, transport, encapsulation, transfection, or lysing of magnetically labeled and unlabeled cells, it has also expanded to include parallel actuation and study of multiple bio-entities. The use of nano/micro-patterned magnetic structures that enable remote control of the applied forces has greatly facilitated integration of the technology with microfluidics, thereby fostering applications in the biomedical arena. The basic design and fabrication of various scaled magnets for remote manipulation of individual and multiple beads/cells, and their associated energies and forces that underlie the broad functionalities of this approach, are presented. One of the most useful features enabled by such advanced integrated engineering is the capacity to remotely tune the magnetic field gradient and energy landscape, permitting such multipurpose shuttles to be implemented within lab-on-chip platforms for a wide range of applications at the intersection of cellular biology and biotechnology.

  20. Energetic materials: crystallization, characterization and insensitive plastic bonded explosives

    Energy Technology Data Exchange (ETDEWEB)

    Heijden, Antoine E.D.M. van der; Creyghton, Yves L.M.; Marino, Emanuela; Bouma, Richard H.B.; Scholtes, Gert J.H.G.; Duvalois, Willem [TNO Defence, Security and Safety, P. O. Box 45, 2280 AA Rijswijk (Netherlands); Roelands, Marc C.P.M. [TNO Science and Industry, P. O. Box 342, 7300 AH Apeldoorn (Netherlands)

    2008-02-15

    The product quality of energetic materials is predominantly determined by the crystallization process applied to produce these materials. It has been demonstrated in the past that the higher the product quality of the solid energetic ingredients, the less sensitive a plastic bonded explosive containing these energetic materials becomes. The application of submicron or nanometric energetic materials is generally considered to further decrease the sensitiveness of explosives. In order to assess the product quality of energetic materials, a range of analytical techniques is available. Recent attempts within the Reduced-sensitivity RDX Round Robin (R4) have provided the EM community a better insight into these analytical techniques and in some cases a correlation between product quality and shock initiation of plastic bonded explosives containing (RS-)RDX was identified, which would provide a possibility to discriminate between conventional and reduced sensitivity grades. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  1. Energetic matrix of Rio de Janeiro State, Brazil - 1994/2004

    International Nuclear Information System (INIS)

    1996-01-01

    This book has been structured into three parts and three appendices. In the first part, named Energetic matrix of Rio de Janeiro State, the most important economic and social aspects of the State and the methodology for elaboration of economic and energetic scenarios has been detailed. In the second part, an analysis of seven consumption sectors components of the energetic matrix structure ( industrial, transports, residential, commercial, energetic, agriculture and cattle-breeding, non energetic) has been performed, with the objective of providing information on the present status and future prospects of energy consumption by sectors up to 2004. Finally, in the third part, the energy supply of Rio de Janeiro State for the consumption sectors has been discussed

  2. Combined effect of nanoemulsion and EGR on combustion and emission characteristics of neat lemongrass oil (LGO)-DEE-diesel blend fuelled diesel engine

    International Nuclear Information System (INIS)

    Sathiyamoorthi, R.; Sankaranarayanan, G.; Pitchandi, K.

    2017-01-01

    Highlights: • Neat lemongrass oil can be used as an alternate fuel in diesel engine. • The combined effect of nano emulsion and EGR using LGO25-DEE-Diesel is investigated. • The BTE is improved for nano emulsion fuel blend. • The NO_x and smoke emissions decrease significantly. • Cylinder pressure and Heat release rate increase with longer ignition delay. - Abstract: In the present experimental study, the combined effects of nanoemulsion and exhaust gas recirculation (EGR) on the performance, combustion and emission characteristics of a single cylinder, four stroke, variable compression ratio diesel engine fueled with neat lemongrass oil (LGO)-diesel-DEE (diethyl ether) blend are investigated. The Neat Lemongrass oil could be used as a new alternate fuel in compression ignition engines without any engine modifications. The entire investigation was conducted in the diesel engine using the following test fuels: emulsified LGO25, cerium oxide blended emulsified LGO25 and DEE added emulsified LGO25 with EGR respectively and compared with standard diesel and LGO25 (75% by volume of diesel and 25% by volume of lemongrass oil) fuels. The combined effect of DEE added nano-emulsified LGO25 with EGR yielded a significant reduction in NO_x and smoke emission by 30.72% and 11.2% respectively compared to LGO25. Furthermore, the HC and CO emissions were reduced by 18.18% and 33.31% respectively than with LGO25. The brake thermal efficiency and brake specific fuel consumption increased by 2.4% and 10.8% respectively than LGO25. The combustion characteristics such as cylinder pressure and heat release rate increased by 4.46% and 3.29% respectively than with LGO25. The combustion duration and ignition delay increase at nano-emulsified LGO25 with DEE and EGR mode but decrease for nano-emulsified LGO25 fuel.

  3. A novel approach to nano topology via neutrosophic sets

    OpenAIRE

    M. Lellis Thivagar; Saeid Jafari; V. Sutha Devi; V. Antonysamy

    2018-01-01

    The main objective of this study is to introduce a new hybrid intelligent structure called Neutrosophic nano topology. Fuzzy nano topology and intuitionistic nano topology can also be deduced from the neutrosophic nano topology. Based on the neutrosophic nano approximations we have classified neutrosophic nano topology. Some properties like neutrosophic nano interior and neutrosophic nano closure are derived.

  4. Mass transfer in nano-fluids: A review

    International Nuclear Information System (INIS)

    Ashrafmansouri, Seyedeh-Saba; Esfahany, Mohsen Nasr

    2014-01-01

    Growing attention has been recently paid to nano-fluids because of their potential for augmenting transfer processes - i.e., heat and mass transfer. Conflicting results have been reported in the literature on mass transfer in nano-fluids. The aim of this paper is to summarize the literature on mass transfer in nano-fluids stating the conflicts and possible reasons. Literature on mass transfer in nano-fluids has been reviewed in two sections. The first section concentrates on surveying mass diffusivity in nano-fluids while the second section focuses on convective mass transfer in nano-fluids. In each section, published articles, type of nano-fluids used, size and concentration range of nanoparticles, measurement methods, maximum observed enhancement, and suggested mass transport mechanisms are summarized. (authors)

  5. Spin-accumulation effect in magnetic nano-bridge

    International Nuclear Information System (INIS)

    Khvalkovskii, A.V.; Zvezdin, A.A.; Zvezdin, K.A.; Pullini, D.; Perlo, P.

    2004-01-01

    Large values of magnetoresistance experimentally observed in magnetic nano-contacts and nano-wires are explained in terms of spin accumulation. The investigation of the spin-accumulation effect in magnetic nano-contacts (Phys. Rev. Lett. 82 (1999) 2923) and nano-bridges (JETP Lett. 75 (10) (2002) 613), which are considered to be very promising for various spintronic applications, is presented. The two-dimensional spin-diffusion problem in a magnetic nano-bridge is solved. Dependences of the specific resistance of the domain wall and of the distribution of non-equilibrium spin density on the nano-bridge geometry and the material parameters are obtained

  6. Energetic magnetospheric protons in the plasma depletion layer

    International Nuclear Information System (INIS)

    Fuselier, S.A.

    1992-01-01

    Interplanetary magnetic field draping against the Earth's dayside subsolar magnetopause creates a region of reduced plasma density and increased magnetic field called the plasma depletion layer. In this region, leakage of energetic ions from the Earth's magnetosphere onto magnetic field lines in the plasma depletion layer can be studied without interference from ions accelerated at the Earth's quasi-parallel bow shock. Active Magnetospheric Particle Tracer Experiment/Charge Composition Explorer (AMPTE/CCE) observations for 13 plasma depletion layer events are used to determine the characteristics of energetic protons between a few keV/e and ∼100keV/e leaked from the magnetosphere. Results indicate that the leaked proton distributions resemble those in the magnetosphere except that they have lower densities and temperatures and much higher velocities parallel (or antiparallel) and perpendicular to the magnetic field. Compared to the low-energy magnetosheath proton distributions present in the depletion layer, the leaked energetic proton distributions typically have substantially higher flow velocities along the magnetic field indicate that the leaked energetic proton distributions to contribute to the energetic proton population seen upstream and downstream from the quasi-parallel bow shock. However, their contribution is small compared to the contribution from acceleration of protons at the bow shock because the leaked proton densities are on the order of 10 times smaller than the energetic proton densities typically observed in the vicinity of the quasi-parallel bow shock

  7. Nano catalysis: Academic Discipline and Industrial Realities

    International Nuclear Information System (INIS)

    Olveira, S.; Forster, S.P.; Seeger, S.

    2014-01-01

    Nano technology plays a central role in both academic research and industrial applications. Nano enabled products are not only found in consumer markets, but also importantly in business to business markets (B2B). One of the oldest application areas of nano technology is nano catalysis—an excellent example for such a B2 B market. Several existing reviews illustrate the scientific developments in the field of nano catalysis. The goal of the present review is to provide an up-to-date picture of academic research and to extend this picture by an industrial and economic perspective. We therefore conducted an extensive search on several scientific databases and we further analyzed more than 1,500 nano catalysis-related patents and numerous market studies. We found that scientists today are able to prepare nano catalysts with superior characteristics regarding activity, selectivity, durability, and recoverability, which will contribute to solve current environmental, social, and industrial problems. In industry, the potential of nano catalysis is recognized, clearly reflected by the increasing number of nano catalysis-related patents and products on the market. The current nano catalysis research in academic and industrial laboratories will therefore enable a wealth of future applications in the industry

  8. Study the scratch resistance of UV-cured epoxy acrylate in the presence of nano alumina particles via nano indentation

    International Nuclear Information System (INIS)

    Bastani, S.; Ebrahimi, M.; Kardar, P.

    2007-01-01

    In this research, an epoxy acrylate resin was synthesized, then the synthesized resin was used along with different multifunctional acrylate monomers and with a photoinitiator in different formulations and cured with UV radiation. The experiments were designed based on mixture method by using Design-Expert software. To investigate the effect of nano particles on the some of physical and mechanical properties of the UV cured resins, the suspension of nano alumina in TPGDA, was used in formulations. The hardness of prepared films was evaluated by using konig hardness tester and nano indentater. The scratch resistance and gloss of the films were also determined. The results showed that the visibility of scratch decreased when the nano particles were used. It seems that the self-healing property of the film improved in the presence of nano particles. The hardness of the samples with nano particles was found to be less than that the samples of without any nano particles. It was observed that the gloss of the films with the nano particles, almost was the same as the film without nano particles. (Author)

  9. Energetically efficient proportional-integral-differential (PID) control of wake vortices behind a circular cylinder

    International Nuclear Information System (INIS)

    Das, Pramode K; Mathew, Sam; Shaiju, A J; Patnaik, B S V

    2016-01-01

    The control of vortex shedding behind a circular cylinder is a precursor to a wide range of external shear flow problems in engineering, in particular the flow-induced vibrations. In the present study, numerical simulation of an energetically efficient active flow control strategy is proposed, for the control of wake vortices behind a circular cylinder at a low Reynolds number of 100. The fluid is assumed to be incompressible and Newtonian with negligible variation in properties. Reflectionally symmetric controllers are designed such that, they are located on a small sector of the cylinder over which, tangential sliding mode control is imparted. In the field of modern controls, proportional (P), integral (I) and differential (D) control strategies and their numerous combinations are extremely popular in industrial practice. To impart suitable control actuation, the vertically varying lift force on the circular cylinder, is synthesised for the construction of an error term. Four different types of controllers considered in the present study are, P, I, PI and PID. These controllers are evaluated for their energetic efficiency and performance. A linear quadratic optimal control problem is formulated, to minimise the cost functional. By performing detailed simulations, it was observed that, the system is energetically efficient, even when the twin eddies are still persisting behind the circular cylinder. To assess the adaptability of the controllers, the actuators were switched on and off to study their dynamic response. (paper)

  10. Nano-structural characteristics and optical properties of silver chiral nano-flower sculptured thin films

    Energy Technology Data Exchange (ETDEWEB)

    Savaloni, Hadi, E-mail: savaloni@khayam.ut.ac.ir [Department of Physics, University of Tehran, North-Kargar Street, Tehran (Iran, Islamic Republic of); Haydari-Nasab, Fatemh; Malmir, Mariam [Department of Physics, University of Tehran, North-Kargar Street, Tehran (Iran, Islamic Republic of)

    2011-08-15

    Silver chiral nano-flowers with 3-, 4- and 5-fold symmetry were produced using oblique angle deposition method in conjunction with the rotation of sample holder with different speeds at different sectors of each revolution corresponding to symmetry order of the acquired nano-flower. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM), were employed to obtain morphology and nano-structure of the films. Optical characteristics of silver chiral nano-flower thin films were obtained using single beam spectrophotometer with both s- and p-polarization incident light at 30{sup o} and 70{sup o} incidence angles and at different azimuthal angles ({phi}). Optical spectra showed both TM (TDM (transverse dipole mode) and TQM (transverse quadruple mode)) and LM (longitudinal mode) Plasmon resonance peaks. For 3- and 4-fold symmetry chiral nano-flowers the s-polarization extinction spectra obtained at different azimuthal angles did not show significant change in the Plasmon peak position while 5-fold symmetry chiral nano-flower showed a completely different behavior, which may be the result of increased surface anisotropy, so when the {phi} angle is changed the s-polarization response from the surface can change more significantly than that for lower symmetries. In general, for 3-, 4- and 5-fold symmetry chiral nano-flowers a sharp peak at lower wavelengths (<450 nm) is observed in the s-polarization spectra, while in addition to this peak a broad peak at longer wavelengths (i.e., LM) observed in the p-polarization spectra, which is more dominant for 70{sup o} incidence angle.

  11. Label it or ban it? Public perceptions of nano-food labels and propositions for banning nano-food applications

    Science.gov (United States)

    Chuah, Agnes S. F.; Leong, Alisius D.; Cummings, Christopher L.; Ho, Shirley S.

    2018-02-01

    The future of nano-food largely hinges on public perceptions and willingness to accept this novel technology. The present study utilizes the scientific literacy model and psychometric paradigm as the key theoretical frameworks to examine the factors influencing public support for labeling and banning of nano-food in Singapore. Using data collected from a nationally representative survey of 1001 respondents, the findings demonstrated that attitudes toward technology, preference for natural product, science knowledge, and risk perception were found to substantially affect public support for both labeling and banning of nano-food. Conversely, attention to food safety news on traditional media and attention to nano-news on new media were only associated with public support for labeling of nano-food. Similarly, benefit perception was only significantly associated with public support for banning of nano-food. Theoretically, these findings support the growing body of literature that argues for the significant role played by predispositions, media use, science knowledge, and risk and benefit perceptions on attitude formation toward nano-food. It serves as the pioneering piece to address the aspect of banning in the field of nano-food. Practically, insights drawn from this study could aid relevant stakeholders in enlisting effecting strategies to convey the benefits of nano-food while mitigating the risk perceptions among the public.

  12. Nano-ceramic composite scaffolds for bioreactor-based bone engineering.

    Science.gov (United States)

    Lv, Qing; Deng, Meng; Ulery, Bret D; Nair, Lakshmi S; Laurencin, Cato T

    2013-08-01

    Composites of biodegradable polymers and bioactive ceramics are candidates for tissue-engineered scaffolds that closely match the properties of bone. We previously developed a porous, three-dimensional poly (D,L-lactide-co-glycolide) (PLAGA)/nanohydroxyapatite (n-HA) scaffold as a potential bone tissue engineering matrix suitable for high-aspect ratio vessel (HARV) bioreactor applications. However, the physical and cellular properties of this scaffold are unknown. The present study aims to evaluate the effect of n-HA in modulating PLAGA scaffold properties and human mesenchymal stem cell (HMSC) responses in a HARV bioreactor. By comparing PLAGA/n-HA and PLAGA scaffolds, we asked whether incorporation of n-HA (1) accelerates scaffold degradation and compromises mechanical integrity; (2) promotes HMSC proliferation and differentiation; and (3) enhances HMSC mineralization when cultured in HARV bioreactors. PLAGA/n-HA scaffolds (total number = 48) were loaded into HARV bioreactors for 6 weeks and monitored for mass, molecular weight, mechanical, and morphological changes. HMSCs were seeded on PLAGA/n-HA scaffolds (total number = 38) and cultured in HARV bioreactors for 28 days. Cell migration, proliferation, osteogenic differentiation, and mineralization were characterized at four selected time points. The same amount of PLAGA scaffolds were used as controls. The incorporation of n-HA did not alter the scaffold degradation pattern. PLAGA/n-HA scaffolds maintained their mechanical integrity throughout the 6 weeks in the dynamic culture environment. HMSCs seeded on PLAGA/n-HA scaffolds showed elevated proliferation, expression of osteogenic phenotypic markers, and mineral deposition as compared with cells seeded on PLAGA scaffolds. HMSCs migrated into the scaffold center with nearly uniform cell and extracellular matrix distribution in the scaffold interior. The combination of PLAGA/n-HA scaffolds with HMSCs in HARV bioreactors may allow for the generation of engineered

  13. Fabrication of Nano-CeO2 and Application of Nano-CeO2 in Fe Matrix Composites

    International Nuclear Information System (INIS)

    Tiebao, W.; Chunxiang, C.; Xiaodong, W.; Guobin, L.

    2010-01-01

    It is expatiated that nano-CeO2 is fabricated by the direct sedimentation method. The components and particles diameter of nano-CeO2 powders are analyzed by XRD and SEM . The thermodynamic analysis and acting mechanism of nano-CeO2 with Al in Fe matrix composites are researched, which shows that the reaction is generated between CeO2 and Al in the composite, that is, 3CeO2+4Al - 2Al2O3+3[Ce], which obtains Al2O3 and active [Ce] during the sintering process. The active [Ce] can improve the performance of CeO2/Fe matrix composites. The suitable amount of CeO2 is about 0.05% in CeO2/Fe matrix composites. SEM fracture analysis shows that the toughness sockets in nano-CeO2/Fe matrix composites are more than those in no-added nano-CeO2 composites, which can explain that adding nano-CeO2 into Fe matrix composite, the toughness of the composite is improved significantly. Applied nano-CeO2 to Fe matrix diamond saw blades shows that Fe matrix diamond saw blade is sharper and of longer cutting life than that with no-added nano-CeO2.

  14. 3rd International Conference on Nanotechnologies and Biomedical Engineering

    CERN Document Server

    Tiginyanu, Ion

    2016-01-01

    This volume presents the proceedings of the 3rd International Conference on Nanotechnologies and Biomedical Engineering which was held on September 23-26, 2015 in Chisinau, Republic of Moldova. ICNBME-2015 continues the series of International Conferences in the field of nanotechnologies and biomedical engineering. It aims at bringing together scientists and engineers dealing with fundamental and applied research for reporting on the latest theoretical developments and applications involved in the fields. Topics include Nanotechnologies and nanomaterials Plasmonics and metamaterials Bio-micro/nano technologies Biomaterials Biosensors and sensors systems Biomedical instrumentation Biomedical signal processing Biomedical imaging and image processing Molecular, cellular and tissue engineering Clinical engineering, health technology management and assessment; Health informatics, e-health and telemedicine Biomedical engineering education Nuclear and radiation safety and security Innovations and technology transfer...

  15. Cutting and machining energetic materials with a femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Roeske, Frank; Benterou, Jerry; Lee, Ronald; Roos, Edward [Energetic Materials Center, Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94550 (United States)

    2003-04-01

    A femtosecond (fs) laser has been used as a tool for solving many problems involving access, machining, disassembly, inspection and avoidance of undesirable hazardous waste streams in systems containing energetic materials. Because of the unique properties of the interaction of ultrashort laser pulses with matter, the femtosecond laser can be used to safely cut these energetic materials in a precise manner without creating an unacceptable waste stream. Many types of secondary high explosives (HE) and propellants have been cut with the laser for a variety of applications ranging from disassembly of aging conventional weapons (demilitarization), inspection of energetic components of aging systems to creating unique shapes of HE for purposes of initiation and detonation physics studies. Hundreds of samples of energetic materials have been cut with the fs laser without ignition and, in most cases, without changing the surface morphology of the cut surfaces. The laser has also been useful in cutting nonenergetic components in close proximity to energetic materials. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  16. Nano-sensing of the orientation of fluorescing molecules with active coated nano-particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Ziolkowski, Richard W.

    2015-01-01

    The potential of using active coated nano-particles to determine the orientation of fluorescing molecules is reported. By treating each fluorescing molecule as an electric Hertzian dipole, single and multiple fluorescing molecules emitting coherently and incoherently in various orientations...... are considered in the presence of active coated nano-particles. It is demonstrated that in addition to offering a means to determine the orientation of a single molecule or the over-all orientation of the molecules surrounding it, the nature of the far-field response from the active coated nano...

  17. Spotlight on nano-theranostics in South Korea: applications in diagnostics and treatment of diseases

    Directory of Open Access Journals (Sweden)

    Lee S

    2015-08-01

    Full Text Available Sangwha Lee,1,* Jongsung Kim,1,* Chung Wung Bark,2 Bonghee Lee,3 Heongkyu Ju,4 Se Chan Kang,5 TaeYoung Kim,6 Moon Il Kim,6 Young Tag Ko,3 Jeong-Seok Nam,3 Hyon Hee Yoon,1 Kyu-Sik Yun,1,6 Young Soo Yoon,1 Seong Soo A An,1,6 John Hulme6 1BioNano Sensor Research Center, 2Department of Electrical Engineering, Gachon University, Seongnam-si, 3Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 4Department of Nano-Physics, 5Department of Life Science, Gachon University, 6Department of BioNano Technology, Gachon BioNano Research Institute, Seongnam-si, South Korea *These authors contributed equally to this work Abstract: From the synergistic integration and the multidisciplinary strengths of the BioNano Sensor Research Center, Gachon Bionano Research Institute, and Lee GilYa Cancer and Diabetes Institute, researchers, students, and faculties at Gachon University in collaboration with other institutions in Korea, Australia, France, America, and Japan have come together to produce a special issue on the diverse applications of nano-theranostics in nanomedicine. This special issue will showcase new research conducted by various scientific groups in Gyonggi-do and Songdo/Incheon, South Korea. The objectives of this special issue are as follows: 1 to bring together and demonstrate some of the latest research results in the field, 2 to introduce new multifunctional nanomaterials and their applications in imaging and detection methods, and 3 to stimulate collaborative interdisciplinary research at both national and international levels in nanomedicine. Keywords: cancer, imaging and therapeutics, antibacterial, disease, neurodegenerative

  18. Nano market and analysis of technology

    International Nuclear Information System (INIS)

    2001-10-01

    This book gives descriptions of summary of nano technology with meaning, character and field, trend of technical development in domestic, current condition of nano basic research in domestic, trend of technical development in foreign country such as summary, trend of technology by industrial field, machine and metronics, material and process, standard of nano mechanism, scale of market and trend, competitiveness of nano technology of major country and research development system in Japan, Korean company and major countries.

  19. Metamaterial-based theoretical description of light scattering by metallic nano-hole array structures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada); Najiminaini, Mohamadreza; Carson, Jeffrey J. L. [Lawson Health Research Institute, St. Joseph' s Health Care, 268 Grosvenor Street, London N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London N6A 3K7 (Canada); Balakrishnan, Shankar [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada); Lawson Health Research Institute, St. Joseph' s Health Care, 268 Grosvenor Street, London N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London N6A 3K7 (Canada)

    2015-05-14

    We have experimentally and theoretically investigated the light-matter interaction in metallic nano-hole array structures. The scattering cross section spectrum was measured for three samples each having a unique nano-hole array radius and periodicity. Each measured spectrum had several peaks due to surface plasmon polaritons. The dispersion relation and the effective dielectric constant of the structure were calculated using transmission line theory and Bloch's theorem. Using the effective dielectric constant and the transfer matrix method, the surface plasmon polariton energies were calculated and found to be quantized. Using these quantized energies, a Hamiltonian for the surface plasmon polaritons was written in the second quantized form. Working with the Hamiltonian, a theory of scattering cross section was developed based on the quantum scattering theory and Green's function method. For both theory and experiment, the location of the surface plasmon polariton spectral peaks was dependant on the array periodicity and radii of the nano-holes. Good agreement was observed between the experimental and theoretical results. It is proposed that the newly developed theory can be used to facilitate optimization of nanosensors for medical and engineering applications.

  20. Control of the Nano-Particle Weight Ratio in Stainless Steel Micro and Nano Powders by Radio Frequency Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Dong-Yeol Yang

    2015-11-01

    Full Text Available This study describes how to make stainless steel hybrid micro-nano-powders (a mixture of micro-powder and nano-powder using an in situ one-step process via radio frequency (RF thermal plasma treatment. Nano-particles attached to micro-powders were successfully prepared by RF thermal plasma treatment of stainless steel powder with an average size of 35 μm. The ratio of nano-powders is estimated with a two-dimensional fluid simulation that calculates the temperature profile influencing the rate of surface evaporation. The simulation is conducted to determine the variation of the input power and the distance from the plasma torch to the feeding nozzle. It was demonstrated experimentally that the nano-powder ratio in the micro-nano-powder mixture can be controlled by adjusting the feeding rate, plasma power, feeding position and quenching effect during plasma treatment. The ratio of nano-particles in the micro-nano-powder mixture was controlled in a range from 0.1 (wt. % to 30.7 (wt. %.

  1. Design and Preparation of Nano-Lignin Peroxidase (NanoLiP by Protein Block Copolymerization Approach

    Directory of Open Access Journals (Sweden)

    Turgay Tay

    2016-06-01

    Full Text Available This study describes the preparation of nanoprotein particles having lignin peroxidase (LiP using a photosensitive microemulsion polymerization technique. The protein-based nano block polymer was synthesized by cross-linking of ligninase enzyme with ruthenium-based aminoacid monomers. This type polymerization process brought stability in different reaction conditions, reusability and functionality to the protein-based nano block polymer system when compared the traditional methods. After characterization of the prepared LiP copolymer nanoparticles, enzymatic activity studies of the nanoenzymes were carried out using tetramethylbenzidine (TMB as the substrate. The parameters such as pH, temperature and initial enzyme concentration that affect the activity, were investigated by using prepared nanoLip particles and compared to free LiP. The reusability of the nano-LiP particles was also investigated and the obtained results showed that the nano-LiP particles exhibited admirable potential as a reusable catalyst.

  2. The 17th International Conference on Biomedical Engineering

    CERN Document Server

    Lim, Chwee; Leo, Hwa

    2017-01-01

    This volume presents the proceedings of the 16th ICMBE held from 4th to 7th December 2016, Singapore. Topics of the proceedings include 6 tracks: BioImaging and BioSignals, Bio-Micro/Nano Technologies BioRobotics and Medical Devices, Biomaterials and Regenerative Medicine.- BioMechanics and Mechanobiology., Engineering/Synthetic Biology.

  3. Energetic particle physics with applications in fusion and space plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1997-01-01

    Energetic particle physics is the study of the effects of energetic particles on collective electromagnetic (EM) instabilities and energetic particle transport in plasmas. Anomalously large energetic particle transport is often caused by low frequency MHD instabilities, which are driven by these energetic particles in the presence of a much denser background of thermal particles. The theory of collective energetic particle phenomena studies complex wave-particle interactions in which particle kinetic physics involving small spatial and fast temporal scales can strongly affect the MHD structure and long-time behavior of plasmas. The difficulty of modeling kinetic-MHD multiscale coupling processes stems from the disparate scales which are traditionally analyzed separately: the macroscale MHD phenomena are studied using the fluid MHD framework, while microscale kinetic phenomena are best described by complicated kinetic theories. The authors have developed a kinetic-MHD model that properly incorporates major particle kinetic effects into the MHD fluid description. For tokamak plasmas a nonvariational kinetic-MHD stability code, the NOVA-K code, has been successfully developed and applied to study problems such as the excitation of fishbone and Toroidal Alfven Eigenmodes (TAE) and the sawtooth stabilization by energetic ions in tokamaks. In space plasmas the authors have employed the kinetic-MHD model to study the energetic particle effects on the ballooning-mirror instability which explains the multisatellite observation of the stability and field-aligned structure of compressional Pc 5 waves in the magnetospheric ring current plasma

  4. NanoJapan: international research experience for undergraduates program: fostering U.S.-Japan research collaborations in terahertz science and technology of nanostructures

    Science.gov (United States)

    Phillips, Sarah R.; Matherly, Cheryl A.; Kono, Junichiro

    2014-09-01

    The international nature of science and engineering research demands that students have the skillsets necessary to collaborate internationally. However, limited options exist for science and engineering undergraduates who want to pursue research abroad. The NanoJapan International Research Experience for Undergraduates Program is an innovative response to this need. Developed to foster research and international engagement among young undergraduate students, it is funded by a National Science Foundation Partnerships for International Research and Education (PIRE) grant. Each summer, NanoJapan sends 12 U.S. students to Japan to conduct research internships with world leaders in terahertz (THz) spectroscopy, nanophotonics, and ultrafast optics. The students participate in cutting-edge research projects managed within the framework of the U.S-Japan NSF-PIRE collaboration. One of our focus topics is THz science and technology of nanosystems (or `TeraNano'), which investigates the physics and applications of THz dynamics of carriers and phonons in nanostructures and nanomaterials. In this article, we will introduce the program model, with specific emphasis on designing high-quality international student research experiences. We will specifically address the program curriculum that introduces students to THz research, Japanese language, and intercultural communications, in preparation for work in their labs. Ultimately, the program aims to increase the number of U.S. students who choose to pursue graduate study in this field, while cultivating a generation of globally aware engineers and scientists who are prepared for international research collaboration.

  5. 6th European Conference of the International Federation for Medical and Biological Engineering

    CERN Document Server

    Vasic, Darko

    2015-01-01

    This volume presents the Proceedings of the 6th European Conference of the International Federation for Medical and Biological Engineering (MBEC2014), held in Dubrovnik September 7 – 11, 2014. The general theme of MBEC 2014 is "Towards new horizons in biomedical engineering" The scientific discussions in these conference proceedings include the following themes: - Biomedical Signal Processing - Biomedical Imaging and Image Processing - Biosensors and Bioinstrumentation - Bio-Micro/Nano Technologies - Biomaterials - Biomechanics, Robotics and Minimally Invasive Surgery - Cardiovascular, Respiratory and Endocrine Systems Engineering - Neural and Rehabilitation Engineering - Molecular, Cellular and Tissue Engineering - Bioinformatics and Computational Biology - Clinical Engineering and Health Technology Assessment - Health Informatics, E-Health and Telemedicine - Biomedical Engineering Education

  6. Modelling the Energetics of Encapsulation of Atoms and Atomic ...

    Indian Academy of Sciences (India)

    user

    2015-07-04

    Jul 4, 2015 ... 3. Encapsulation into carbon nanotubes. Gases. Biomolecules like proteins and DNA. Assemblies of molecules. Drug molecules. Lulevich et al. Nano Lett. 11, 1171 (2011). Quinonero et al. J. Phys. Chem. C 116, 21083 (2012). Zhang et al. ACS Nano 6, 8674 (2012). Chaban et al. ACS Nano 5, 5647 (2011) ...

  7. The nano-BIon in nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Sepehri, Alireza, E-mail: alireza.sepehri@uk.ac.ir [Nano Research Center of the Ferdowsi University, Mashhad (Iran, Islamic Republic of); Faculty of Physics, Shahid Bahonar University, P.O. Box 76175, Kerman (Iran, Islamic Republic of)

    2016-04-01

    Recently, some authors have considered the superconductivity in nano-cubes and shown that by decreasing the size of these systems, superconductivity order parameter increases. In this research, we show that the same result can be obtained in a nano-BIon which is a configuration of two layers of cuprates connected by an electronic tube. This tube is a channel for transporting energy and matter inside a superconductor and acts as a wormhole in this system. This wormhole-like-tube is formed by decreasing the separation distance between layers of nano-cuprate and enhancing the cooper hopping pairing between layers. We estimate the critical temperature of superconductor and find that it depends on the size of nano-BIon and coupling between atoms in a layer. Also, we observe that external magnetic field generates a new tube which causes losing the energy density of nano-BIon between two layers and decreasing critical temperature of superconductor.

  8. A Novel Silicon-based Wideband RF Nano Switch Matrix Cell and the Fabrication of RF Nano Switch Structures

    Directory of Open Access Journals (Sweden)

    Yi Xiu YANG

    2011-12-01

    Full Text Available This paper presents the concept of RF nano switch matrix cell and the fabrication of RF nano switch. The nano switch matrix cell can be implemented into complex switch matrix for signal routing. RF nano switch is the decision unit for the matrix cell; in this research, it is fabricated on a tri-layer high-resistivity-silicon substrate using surface micromachining approach. Electron beam lithography is introduced to define the pattern and IC compatible deposition process is used to construct the metal layers. Silicon-based nano switch fabricated by IC compatible process can lead to a high potential of system integration to perform a cost effective system-on-a-chip solution. In this paper, simulation results of the designed matrix cell are presented; followed by the details of the nano structure fabrication and fabrication challenges optimizations; finally, measurements of the fabricated nano structure along with analytical discussions are also discussed.

  9. Mechanical and materials engineering of modern structure and component design

    CERN Document Server

    Altenbach, Holm

    2015-01-01

    This book presents the latest findings on mechanical and materials engineering as applied to the design of modern engineering materials and components. The contributions cover the classical fields of mechanical, civil and materials engineering, as well as bioengineering and advanced materials processing and optimization. The materials and structures discussed can be categorized into modern steels, aluminium and titanium alloys, polymers/composite materials, biological and natural materials, material hybrids and modern nano-based materials. Analytical modelling, numerical simulation, state-of-the-art design tools and advanced experimental techniques are applied to characterize the materials’ performance and to design and optimize structures in different fields of engineering applications.

  10. Rapid thermal melted TiO2 nano-particles into ZnO nano-rod and its application for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Chao, Ching-Hsun; Chang, Chi-Lung; Chan, Chien-Hung; Lien, Shui-Yang; Weng, Ko-Wei; Yao, Kuo-Shan

    2010-01-01

    TiO 2 nano-particles with an anchored ZnO nano-rod structure were synthesized using the hydrothermal method to grow ZnO nano-rods and coated TiO 2 nano-particles on ZnO nano-rods using the rapid thermal annealing method on ITO conducting glass pre-coated with nano porous TiO 2 film. The XRD study showed that there was little difference in crystal composition for various types of TiO 2 nano-particles anchored to ZnO nano-rods. The as-prepared architecture was characterized using field-emission scanning electron microscopy (FE-SEM). Films with TiO 2 nano-particles anchored to ZnO nano-rods were used as electrode materials to fabricate dye sensitized solar cells (DSSCs). The best solar energy conversion efficiency of 2.397% was obtained by modified electrode material, under AM 1.5 illumination, achieved up to J sc = 15.382 mA/cm 2 , V oc = 0.479 V and fill factor = 32.8%.

  11. Neoclassical transport of energetic beam ions in the Large Helical Device

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Yamada, Hiroshi; Kaneko, Osamu

    2000-01-01

    The neoclassical (collisional) transport of energetic ions is investigated by the global neoclassical transport simulation in the Large Helical Device (LHD). The steady state distributions of energetic ions are evaluated assuming an energetic particle source by NBI heating (tangentally injected). Significant radial transport of energetic ions can be seen due to the radial motion of trapped particles in the velocity region below near critical velocity. Our simulation results show relatively good agreements with the experimental results of fast particle measurements in the LHD. This suggests an important role of neoclassical transport in the radial transport process of energetic ions in heliotrons. (author)

  12. Integrating Metagenomics and NanoSIMS to Investigate the Evolution and Ecophysiology of Magnetotactic Bacteria

    Science.gov (United States)

    Lin, W.; Zhang, W.; He, M.; Pan, Y.

    2017-12-01

    Magnetotactic bacteria (MTB) synthesize intracellular nano-sized magnetite (Fe3O4) and/or greigite (Fe3S4) crystals, called magnetosomes, which impart a permanent magnetic dipole moment to the cell causing it to align along the geomagnetic field lines as it swims. MTB play essential roles in global cycling of Fe, S, N and C, and represent an excellent model system not just for the investigation of the mechanisms of microbial engines that drive Earth's biogeochemical cycles but also for magnetotaxis and microbial biomineralization. Most of the previous studies on MTB were based on 16S rRNA gene-targeting analyses, which are powerful approaches to characterize the diversity, ecology and biogeography of MTB in nature. However, these approaches are somewhat limited in the physiological detail they can provide. In the present study, we have combined the genome-resolved metagenomics and nanoscale secondary ion mass spectrometry (NanoSIMS) analyses to study the genomic information, biomineralization mechanism and metabolic potential of environmental MTB. Two nearly complete genomes from uncultivated MTB belonging to the Nitrospirae phylum were reconstructed and their proposed metabolisms were further investigated and confirmed through NanoSIMS analyses. These results improve our understanding about the ecophysiology and evolution of MTB and their environmental function. The development of metagenomics-NanoSIMS integrated approach will provide a powerful tool for the research of geomicrobiology and environmental microbiology.

  13. Study on the Effect of Heat Treatment on Physical Properties of Poplar and Beech Woods Impregnated with Nano-Copper and Nano-Silver

    Directory of Open Access Journals (Sweden)

    Hassan Siahposht

    2012-06-01

    Full Text Available Present study conducted to review effects of heat treatment on weight loss, water adsorption, and thickness swelling of poplar (Populus nigra and beech (Fagus oreintalis woods impregnated with nano-copper and nano-silver. Specimens werepressur (2.5 bar impregnated with 400 PPM water-based solution of nano-copper and nano-silver particles in a pressure vessel. For heat treatment, nano-cupper,  nano-silver impregnated and control specimens, were heat treated at 145°C temperature for 24 hours. Water absorption and thickness swelling decreased in heat treated and nano-heat treated specimens and this decrease in specimens impregnated with nano-copper and nano-silver was more obvious than in heat treated control specimens. The reasons were the degradation in crystal sections of celluloses chains and the ink variation of wood polymers. On the other hand, a comparison between heat treated and nano- heat treated specimens has shown weight loss further in nano-heat treated specimens. This shows that retent nano-copper and nano-silver by impregnation facilitates heat transfer in wood; and it may increase the process of degradation and pyrolysis of wood structures in inner parts of specimens.

  14. Synthesis of nano-composite surfaces via the co-deposition of metallic salts and nano particles

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, J.W.; Tesh, S.J.; Crane, R.A.; Hallam, K.R.; Scott, T.B.

    2014-03-15

    Highlights: • Nanofaceted surfaces are prepared by a low current density (<0.1 A cm{sup 2}) electrodeposition method. • Surfaces are formed of nanoparticles anchored to a conductive (carbon) substrate. • Formed surfaces show a high nano-reactivity and surface area. • Demonstration of INP/FeCl{sub 3} nanocomposite for water filtration effectively removing BTEX contamination. -- Abstract: A novel, low energy method for coating different nano-particles via electro-deposition to a recyclable carbon glass supporting structure is demonstrated. In the resulting composite, the nano-material is bound to the substrate surface, thereby removing the potential for causing harmful interactions with the environment. Nano-particles were suspended in a salt solution and deposited at low current densities (<0.1 A cm{sup −2}) producing thin (<100 nm), uniform nano-faceted surfaces. A co-deposition mechanism of nano-particles and cations from the salt solution is proposed and explored. This has been successfully demonstrated for iron, sliver, titanium in the current work. Furthermore, the removal of the surface coatings can be achieved via a reversed current applied over the system, allowing for the recovery of surface bound metal contaminants. The demonstrated applicability of this coating method to different nano-particle types, is useful in many areas within the catalysis and water treatment industries. One such example, is demonstrated, for the treatment of BTEX contamination and show a greatly improved efficiency to current leading remediation agents.

  15. Nano-laminate-based ignitors

    Science.gov (United States)

    Barbee, Jr., Troy W.; Simpson, Randall L.; Gash, Alexander E.; Satcher, Jr., Joe H.

    2012-12-11

    Sol-gel chemistry is used to prepare igniters comprising energetic multilayer structures coated with energetic materials. These igniters can be tailored to be stable to environmental aging, i.e., where the igniters are exposed to extremes of both hot and cold temperatures (-30 C to 150 C) and both low (0%) and high relative humidity (100%).

  16. Nuclear energetics all over the world

    International Nuclear Information System (INIS)

    Wojcik, T.

    2000-01-01

    The actual state and tendencies of nuclear power further development for different world regions have been presented and discussed. The problem of safety of energetic nuclear reactors, radioactive waste management and related problems have been discussed in respect of regulations in different countries. The economical aspects of nuclear energetics in comparison with different fossil fuel power plants exploitation costs has been presented as well. The official state of international organizations (IAEA, WANO, HASA etc.) have been also shown in respect to subject presented

  17. Neoproteoglycans in tissue engineering

    Science.gov (United States)

    Weyers, Amanda; Linhardt, Robert J.

    2014-01-01

    Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein–glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer–glycosaminoglycan complexes. PMID:23399318

  18. Nano cobalt oxides for photocatalytic hydrogen production

    KAUST Repository

    Mangrulkar, Priti A.

    2012-07-01

    Nano structured metal oxides including TiO 2, Co 3O 4 and Fe 3O 4 have been synthesized and evaluated for their photocatalytic activity for hydrogen generation. The photocatalytic activity of nano cobalt oxide was then compared with two other nano structured metal oxides namely TiO 2 and Fe 3O 4. The synthesized nano cobalt oxide was characterized thoroughly with respect to EDX and TEM. The yield of hydrogen was observed to be 900, 2000 and 8275 mmol h -1 g -1 of photocatalyst for TiO 2, Co 3O 4 and Fe 3O 4 respectively under visible light. It was observed that the hydrogen yield in case of nano cobalt oxide was more than twice to that of TiO 2 and the hydrogen yield of nano Fe 3O 4 was nearly four times as compared to nano Co 3O 4. The influence of various operating parameters in hydrogen generation by nano cobalt oxide was then studied in detail. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  19. Energetic certification in Europe

    International Nuclear Information System (INIS)

    1998-01-01

    At community level the problem of energy quality control in a building was introduced by EEC recommendation n. 93/76 in 1993. In this item are reported some notes on energetic certification in European countries [it

  20. Nanoscale Resolution 3D Printing with Pin-Modified Electrified Inkjets for Tailorable Nano/Macrohybrid Constructs for Tissue Engineering.

    Science.gov (United States)

    Kim, Jeong In; Kim, Cheol Sang

    2018-04-18

    Cells respond to their microenvironment, which is of a size comparable to that of the cells. The macroscale features of three-dimensional (3D) printing struts typically result in whole cell contact guidance (CCG). In contrast, at the nanoscale, where features are of a size similar to that of receptors of cells, the response of cells is more complex. The cell-nanotopography interaction involves nanoscale adhesion localized structures, which include cell adhesion-related particles that change in response to the clustering of integrin. For this reason, it is necessary to develop a technique for manufacturing tailorable nano/macrohybrid constructs capable of freely controlling the cellular activity. In this study, a hierarchical 3D nano- to microscale hybrid structure was fabricated by combinational processing of 3D printing and electrified inkjet spinning via pin motions. This method overcomes the disadvantages of conventional 3D printing, providing a novel combinatory technique for the fabrication of 3D hybrid constructs with excellent cell proliferation. Through a pin-modified electrified inkjet spinning, we have successfully fabricated customizable nano-/microscale hybrid constructs in a fibrous or mesh form, which can control the cell fate. We have conducted this study of cell-topography interactions from the fabrication approach to accelerate the development of next-generation 3D scaffolds.

  1. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt.

    Science.gov (United States)

    Ghorbanzade, Tahere; Jafari, Seid Mahdi; Akhavan, Sahar; Hadavi, Roxana

    2017-02-01

    Fish oils have many dietary benefits, but due to their strong odors and rapid deterioration, their application in food formulations is limited. For these reasons, nano-liposome was used to nano-encapsulate fish oil in this study and encapsulated fish oil was utilized in fortifying yogurt. Physicochemical properties of produced yogurt including pH, acidity, syneresis, fatty acid composition, peroxide value as well as sensory tests were investigated during three weeks storage at 4°C. Nano-liposome encapsulation resulted in a significant reduction in acidity, syneresis and peroxide value. The results of gas chromatography analyses revealed that after 21days storage, yogurt fortified with nano-encapsulated fish oil had a higher DHA and EPA contents than yogurt containing free fish oil. Overall, the results of this study indicates that adding nano-encapsulated fish oil into yogurt gave closer characteristics to control sample in terms of sensory characteristics than yogurt fortified with free fish oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Energetic Particles Dynamics in Mercury's Magnetosphere

    Science.gov (United States)

    Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.

    2013-01-01

    We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface

  3. Nano-based PCMs for building energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kaushik [ORNL

    2016-01-01

    Thermal storage using phase change materials (PCMs) is seen as a viable method for improving the energy efficiency of buildings. PCMs have been used in building applications in various forms PCM slurries in heat exchangers, macro- or microencapsulated PCMs in building envelopes, bulk PCM for modulating photovoltaic temperatures, etc. In the last decade a new class of PCMs, called nano-enhanced PCM (or nanoPCM), has been extensively investigated with the goal of improving the heat transfer and thermal storage properties of PCMs. NanoPCMs can primarily be categorized as nano-encapsulated PCMs and nanoparticle-PCM composites. The former are nano-sized capsules in which the PCM forms the core and is surrounded by a high-conductivity membrane or shell. The latter consist of PCM supported within nanostructures or nanoparticles dispersed in PCMs. This article reviews the current state of nanoPCM synthesis and characterization of their heat transfer and thermal storage properties. Further, a critical review of nanoPCM applications and their potential energy benefits is performed. Nano-enhanced PCMs exhibit higher thermal conductivities than regular PCM. However, whether the higher conductivity is desirable in all applications and if the property enhancements are worth the cost and effort needed to create nanoPCMs are questions that still need to be answered.

  4. Microwave-Assisted Dip Coating of Aloe Vera on Metallocene Polyethylene Incorporated with Nano-Rods of Hydroxyapaptite for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Hairong Wang

    2017-10-01

    Full Text Available Bone tissue engineering widely explores the use of ceramic reinforced polymer-matrix composites. Among the various widely-used ceramic reinforcements, hydroxyapatite is an undisputed choice due to its inherent osteoconductive nature. In this study, a novel nanocomposite comprising metallocene polyethylene (mPE incorporated with nano-hydroxyapaptite nanorods (mPE-nHA was synthesized and dip coated with Aloe vera after subjecting it to microwave treatment. The samples were characterized using contact angle, Fourier transform infrared spectroscopy (FTIR, scanning electron microscope (SEM, atomic force microscopy (AFM and 3D Hirox microscopy scanning. Contact angle results show that the hydrophilicity of mPE-nHA improved notably with the coating of Aloe vera. The surface topology and increase in surface roughness were observed using the SEM, AFM and 3D Hirox microscopy. Blood compatibility assays of pure mPE and the Aloe vera coated nanocomposite were performed. The prothrombin time (PT was delayed by 1.06% for 24 h Aloe-vera-treated mPE-nHA compared to the pristine mPE-nHA. Similarly, the 24 h Aloe-vera-coated mPE-nHA nanocomposite prolonged the activated partial thromboplastin time (APTT by 41 s against the control of pristine mPE-nHA. The hemolysis percentage was also found to be the least for the 24 h Aloe-vera-treated mPE-nHA which was only 0.2449% compared to the pristine mPE-nHA, which was 2.188%. To conclude, this novel hydroxyapatite-reinforced, Aloe-vera-coated mPE with a better mechanical and anti-thrombogenic nature may hold a great potential to be exploited for bone tissue engineering applications.

  5. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    Directory of Open Access Journals (Sweden)

    Enrico Bernardo

    2014-03-01

    Full Text Available Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings or functional (bioactive ceramics, luminescent materials, mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs, or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  6. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review.

    Science.gov (United States)

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-03-06

    Preceramic polymers, i.e. , polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e. , on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  7. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    Science.gov (United States)

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-01-01

    Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix. PMID:28788548

  8. TRANSFORMATIONS IN NANO-DIAMONDS WITH FORMATION OF NANO-POROUS SILICON CARBIDE AT HIGH PRESSURE

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2010-01-01

    Full Text Available The paper contains investigations on regularities of diamond - silicon carbide composite structure formation at impact-wave excitation. It has been determined that while squeezing a porous blank containing Si (SiC nano-diamond by explosive detonation products some processes are taking place such as diamond nano-particles consolidation, reverse diamond transition into graphite, fragments formation from silicon carbide. A method for obtaining high-porous composites with the presence of ultra-disperse diamond particles has been developed. Material with three-dimensional high-porous silicon-carbide structure has been received due to nano-diamond graphitation at impact wave transmission and plastic deformation. The paper reveals nano-diamonds inverse transformation into graphite and its subsequent interaction with the silicon accompanied by formation of silicon-carbide fragments with dimensions of up to 100 nm.

  9. Scientists versus Regulators: Precaution, Novelty & Regulatory Oversight as Predictors of Perceived Risks of Engineered Nanomaterials

    Science.gov (United States)

    Beaudrie, Christian E. H.; Satterfield, Terre; Kandlikar, Milind; Harthorn, Barbara H.

    2014-01-01

    Engineered nanoscale materials (ENMs) present a difficult challenge for risk assessors and regulators. Continuing uncertainty about the potential risks of ENMs means that expert opinion will play an important role in the design of policies to minimize harmful implications while supporting innovation. This research aims to shed light on the views of ‘nano experts’ to understand which nanomaterials or applications are regarded as more risky than others, to characterize the differences in risk perceptions between expert groups, and to evaluate the factors that drive these perceptions. Our analysis draws from a web-survey (N = 404) of three groups of US and Canadian experts: nano-scientists and engineers, nano-environmental health and safety scientists, and regulatory scientists and decision-makers. Significant differences in risk perceptions were found across expert groups; differences found to be driven by underlying attitudes and perceptions characteristic of each group. Nano-scientists and engineers at the upstream end of the nanomaterial life cycle perceived the lowest levels of risk, while those who are responsible for assessing and regulating risks at the downstream end perceived the greatest risk. Perceived novelty of nanomaterial risks, differing preferences for regulation (i.e. the use of precaution versus voluntary or market-based approaches), and perceptions of the risk of technologies in general predicted variation in experts' judgments of nanotechnology risks. Our findings underscore the importance of involving a diverse selection of experts, particularly those with expertise at different stages along the nanomaterial lifecycle, during policy development. PMID:25222742

  10. Scientists versus regulators: precaution, novelty & regulatory oversight as predictors of perceived risks of engineered nanomaterials.

    Directory of Open Access Journals (Sweden)

    Christian E H Beaudrie

    Full Text Available Engineered nanoscale materials (ENMs present a difficult challenge for risk assessors and regulators. Continuing uncertainty about the potential risks of ENMs means that expert opinion will play an important role in the design of policies to minimize harmful implications while supporting innovation. This research aims to shed light on the views of 'nano experts' to understand which nanomaterials or applications are regarded as more risky than others, to characterize the differences in risk perceptions between expert groups, and to evaluate the factors that drive these perceptions. Our analysis draws from a web-survey (N = 404 of three groups of US and Canadian experts: nano-scientists and engineers, nano-environmental health and safety scientists, and regulatory scientists and decision-makers. Significant differences in risk perceptions were found across expert groups; differences found to be driven by underlying attitudes and perceptions characteristic of each group. Nano-scientists and engineers at the upstream end of the nanomaterial life cycle perceived the lowest levels of risk, while those who are responsible for assessing and regulating risks at the downstream end perceived the greatest risk. Perceived novelty of nanomaterial risks, differing preferences for regulation (i.e. the use of precaution versus voluntary or market-based approaches, and perceptions of the risk of technologies in general predicted variation in experts' judgments of nanotechnology risks. Our findings underscore the importance of involving a diverse selection of experts, particularly those with expertise at different stages along the nanomaterial lifecycle, during policy development.

  11. Issues in nano technologies for Australia

    International Nuclear Information System (INIS)

    Tegart, G.

    2007-01-01

    The Australian Government in late 2005 created a National Nano technology Taskforce that produced a paper, 'Options for a National Nano technology Strategy', in November last year. As an input to the National Nano technology Strategy Taskforce, in early 2006 the National Academies Forum was contracted by the Department of Industry, Tourism and Resources to produce a report Environmental, Social, Legal and Ethical Aspects of the Development of Nano technologies in Australia (which is available at www.naf.org.au/symposia). The report drew on the expertise of Fellows from the four academies in workshops in Melbourne and Sydney and from discussions with other experts, and expressed its outcomes as a set of opinions to assist in developing guidelines for a National Nano technology Strategy

  12. Nano-composite materials

    Science.gov (United States)

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  13. Nano Mechanical Machining Using AFM Probe

    Science.gov (United States)

    Mostofa, Md. Golam

    Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces

  14. Energetic Materials Effects on Essential Soil Processes: Decomposition of Orchard Grass (Dactylis glomerata) Litter in Soil Contaminated with Energetic Materials

    Science.gov (United States)

    2014-02-01

    availabilities of their respective food sources (bacteria and fungi ), were also unaffected-or-increasing in soil with CL-20 treatments. This is...ENERGETIC MATERIALS EFFECTS ON ESSENTIAL SOIL PROCESSES: DECOMPOSITION OF ORCHARD...GRASS (DACTYLIS GLOMERATA) LITTER IN SOIL CONTAMINATED WITH ENERGETIC MATERIALS ECBC-TR-1199 Roman G. Kuperman Ronald T. Checkai Michael Simini

  15. Characterization and H2-O2 reactivity of noble nano-metal tailored single wall nano-carbons

    International Nuclear Information System (INIS)

    K Kaneko; T Itoh; E Bekyarova; H Kanoh; S Utsumi; H Tanaka; M Yudasaka; S Iijima; S Iijima

    2005-01-01

    Full text of publication follows: Single wall carbon nano-tube (SWNT) and single wall carbon nano-horn (SWNH) have nano-spaces in their particles and the nano-spaces become open by oxidation. In particular, SWNH forms a unique colloidal structure which has micropores and meso-pores between the SWNH particles. Although non-treated SWNH colloids have quasi-one dimensional nano-pores [1], oxidized SWNH colloids have both of interstitial and internal nano-pores [2-5]. SWNH colloids show excellent supercritical methane storage ability [6], molecular sieving effect [7], and unique hydrogen adsorption characteristic [8]. Selective adsorptivity of SWNH colloids for H 2 and D 2 due to uncertainty principle of those molecules was shown [9-10]. As SWNH has no metallic impurities, we can study the effect of tailoring of metallic nano-particles on the surface activities of SWNH [11]. We tailored Pd or Pt nano-particles on SWNH and SWNH oxidized at 823 K (ox-SWNH) using poly[(2-oxo-pyrrolidine-1-yl)ethylene]. The oxidation of SWNH donates nano-scale windows to the single wall. The tailored metal amount was determined by TG analysis. TEM showed uniform dispersion of nano-metal particles of 2-3 nm in the diameter on SWNH. The nitrogen adsorption amount of SWNH oxidized decreases by tailoring, indicating that nano-particles are attached to the nano-scale windows. The electronic states of tailored metals were characterized by X-ray photoelectron spectroscopy. The surface activities of Pd tailored SWNH and ox-SWNH were examined for the reaction of hydrogen and oxygen near room temperature. The catalytic reactivities of Pd tailored SWNH and ox-SWNH were 4 times greater than that of Pd-dispersed activated carbon. The temperature dependence of the surface activity will be discussed with the relevance to the tube porosity. References [1] T. Ohba et al, J. Phys. Chem. In press. [2] S. Utsumi et al, J. Phys. Chem. In press. [3] C.- Min Yang, et al. Adv. Mater. In press. [4]C.M. Yang, J

  16. The Energetics of Economics (Money as access to Energy)

    OpenAIRE

    Ternyik, Stephen I.

    2013-01-01

    Money is being portrayed as temporal access to energy and a new methodical approach to the energetics of the human economy is introduced.The economic evolution of world system energetics is put into the historical focus of all global monetary civilization, reaching back to Sumerian city states.This long wave energetics of human economic action clearly points to the biophysical boundaries of the globalized monetary production economy which is also based on natural law.The future perspective of...

  17. Interaction in the large energetic companies in the Republic of Macedonia

    International Nuclear Information System (INIS)

    Janevski, Risto

    1999-01-01

    After disintegration of former power energetic system of Yugoslavia 1991, the Republic of Macedonia has faced enormous problems in the energetic field. It was necessary to realize all options in order to secure enough electric power for normal economic capacities function. In that course a direct involvement of five large companies, which represent very significant energetic subjects, will largely determine the future energetic conditions and circumstances in our country. These are the following companies: P.E. Electric Power Company Of Macedonia; OKTA Crude Oil Refinery; Heat Power Company; HEK Jugohrom; Fenimak. The paper presents the electric power consumption of these macro energetic companies during the period 1991-1998

  18. Thermal decomposition of nano-enabled thermoplastics: Possible environmental health and safety implications

    International Nuclear Information System (INIS)

    Sotiriou, Georgios A.; Singh, Dilpreet; Zhang, Fang; Chalbot, Marie-Cecile G.; Spielman-Sun, Eleanor; Hoering, Lutz; Kavouras, Ilias G.; Lowry, Gregory V.; Wohlleben, Wendel; Demokritou, Philip

    2016-01-01

    Highlights: • Nano-enabled products might reach their end-of-life by thermal decomposition. • Thermal decomposition provides two by-products: released aerosol and residual ash. • Is there any nanofiller release in byproducts? • Risk assessment of potential environmental health implications. - Abstract: Nano-enabled products (NEPs) are currently part of our life prompting for detailed investigation of potential nano-release across their life-cycle. Particularly interesting is their end-of-life thermal decomposition scenario. Here, we examine the thermal decomposition of widely used NEPs, namely thermoplastic nanocomposites, and assess the properties of the byproducts (released aerosol and residual ash) and possible environmental health and safety implications. We focus on establishing a fundamental understanding on the effect of thermal decomposition parameters, such as polymer matrix, nanofiller properties, decomposition temperature, on the properties of byproducts using a recently-developed lab-based experimental integrated platform. Our results indicate that thermoplastic polymer matrix strongly influences size and morphology of released aerosol, while there was minimal but detectable nano-release, especially when inorganic nanofillers were used. The chemical composition of the released aerosol was found not to be strongly influenced by the presence of nanofiller at least for the low, industry-relevant loadings assessed here. Furthermore, the morphology and composition of residual ash was found to be strongly influenced by the presence of nanofiller. The findings presented here on thermal decomposition/incineration of NEPs raise important questions and concerns regarding the potential fate and transport of released engineered nanomaterials in environmental media and potential environmental health and safety implications.

  19. Thermal decomposition of nano-enabled thermoplastics: Possible environmental health and safety implications

    Energy Technology Data Exchange (ETDEWEB)

    Sotiriou, Georgios A.; Singh, Dilpreet; Zhang, Fang [Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA 02115 (United States); Chalbot, Marie-Cecile G. [Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Spielman-Sun, Eleanor [Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Hoering, Lutz [BASF SE, Material Physics, 67056 Ludwigshafen (Germany); Kavouras, Ilias G. [Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Lowry, Gregory V. [Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Wohlleben, Wendel [Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA 02115 (United States); BASF SE, Material Physics, 67056 Ludwigshafen (Germany); Demokritou, Philip, E-mail: pdemokri@hsph.harvard.edu [Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA 02115 (United States)

    2016-03-15

    Highlights: • Nano-enabled products might reach their end-of-life by thermal decomposition. • Thermal decomposition provides two by-products: released aerosol and residual ash. • Is there any nanofiller release in byproducts? • Risk assessment of potential environmental health implications. - Abstract: Nano-enabled products (NEPs) are currently part of our life prompting for detailed investigation of potential nano-release across their life-cycle. Particularly interesting is their end-of-life thermal decomposition scenario. Here, we examine the thermal decomposition of widely used NEPs, namely thermoplastic nanocomposites, and assess the properties of the byproducts (released aerosol and residual ash) and possible environmental health and safety implications. We focus on establishing a fundamental understanding on the effect of thermal decomposition parameters, such as polymer matrix, nanofiller properties, decomposition temperature, on the properties of byproducts using a recently-developed lab-based experimental integrated platform. Our results indicate that thermoplastic polymer matrix strongly influences size and morphology of released aerosol, while there was minimal but detectable nano-release, especially when inorganic nanofillers were used. The chemical composition of the released aerosol was found not to be strongly influenced by the presence of nanofiller at least for the low, industry-relevant loadings assessed here. Furthermore, the morphology and composition of residual ash was found to be strongly influenced by the presence of nanofiller. The findings presented here on thermal decomposition/incineration of NEPs raise important questions and concerns regarding the potential fate and transport of released engineered nanomaterials in environmental media and potential environmental health and safety implications.

  20. Development of novel nano-composite membranes as introduction systems for mass spectrometers: Contrasting nano-composite membranes and conventional inlet systems

    Science.gov (United States)

    Miranda, Luis Diego

    This dissertation presents the development of novel nano-composite membranes as introduction systems for mass spectrometers. These nano-composite membranes incorporate anodic aluminum oxide (AAO) membranes as templates that can be used by themselves or modified by a variety of chemical deposition processes. Two types of nano-composite membranes are presented. The first nano-composite membrane has carbon deposited within the pores of an AAO membrane. The second nano-composite membrane is made by coating an AAO membrane with a thin polymer film. The following chapters describe the transmission properties these nano-composite membranes and compare them to conventional mass spectrometry introduction systems. The nano- composite membranes were finally coupled to the inlet system of an underwater mass spectrometer revealing their utility in field deployments.