WorldWideScience

Sample records for nano coordinate machine

  1. Coordinate measuring machines

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This document is used in connection with three exercises of 2 hours duration as a part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The exercises concern three aspects of coordinate measuring: 1) Measuring and verification of tolerances on coordinate measuring machines, 2) Traceabilit...... and uncertainty during coordinate measurements, 3) Digitalisation and Reverse Engineering. This document contains a short description of each step in the exercise and schemes with room for taking notes of the results.......This document is used in connection with three exercises of 2 hours duration as a part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The exercises concern three aspects of coordinate measuring: 1) Measuring and verification of tolerances on coordinate measuring machines, 2) Traceability...

  2. Natural Nano-Machines

    Indian Academy of Sciences (India)

    Administrator

    transport, ion pump, ATP syn- thase. A popularized ..... gas. A lice: I could not understand how A T P m olecules serve as fuels for m olecular m achines. ..... [16] V Balzani, M Venturi and A Credi, Molecular Devices and Machines: a Journey into ...

  3. NanoCMM : a 3D coordinate measuring machine with low moving mass for measuring small products in array with nanometer uncertainty

    NARCIS (Netherlands)

    Seggelen, van J.K.

    2007-01-01

    To measure dimensions and shape of complex three dimensional products (e.g. engines, mouldings, etc) with low uncertainty, Coordinate Measuring Machines (CMMs) are adequate instruments due to their universal applicability, easy measurement set-up and measuring flexibility. Motion software is

  4. Nano Mechanical Machining Using AFM Probe

    Science.gov (United States)

    Mostofa, Md. Golam

    Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces

  5. 9th Conference on Coordinate Measuring Machines

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Dorph, Pernille

    2001-01-01

    This one-day conference on coordinate measuring machines is the 9th in a row of conferences organised in connection with the Danish CMM Club, a users’ group regarding CMMs that has existed in Denmark since 1994. The Danish CMM Club was founded by the Department of Manufacturing Engineering...... termination of the second lifetime cycle of the club. This conference treates the traceability of geometrical measurements with particular reference to those obtained using coordinate measuring machines. A number of on-going activities and new achievements in coordinate metrology are presented by European...

  6. Coordinate measurement machines as an alignment tool

    International Nuclear Information System (INIS)

    Wand, B.T.

    1991-03-01

    In February of 1990 the Stanford Linear Accelerator Center (SLAC) purchased a LEITZ PM 12-10-6 CMM (Coordinate measurement machine). The machine is shared by the Quality Control Team and the Alignment Team. One of the alignment tasks in positioning beamline components in a particle accelerator is to define the component's magnetic centerline relative to external fiducials. This procedure, called fiducialization, is critical to the overall positioning tolerance of a magnet. It involves the definition of the magnetic center line with respect to the mechanical centerline and the transfer of the mechanical centerline to the external fiducials. To perform the latter a magnet coordinate system has to be established. This means defining an origin and the three rotation angles of the magnet. The datum definition can be done by either optical tooling techniques or with a CMM. As optical tooling measurements are very time consuming, not automated and are prone to errors, it is desirable to use the CMM fiducialization method instead. The establishment of a magnet coordinate system based on the mechanical center and the transfer to external fiducials will be discussed and presented with 2 examples from the Stanford Linear Collider (SLC). 7 figs

  7. New developments in coordinate measuring machines for manufacturing industries

    Directory of Open Access Journals (Sweden)

    Hammad Mian S.

    2014-01-01

    Full Text Available There have been substantial improvements in measurement systems in order to meet fluctuating market demands. This rapid change and development in measurement technology has primarily been governed by demands of accuracy and precision from aerospace, automotive and other manufacturing industries. Coordinate measuring machines (CMMs available with different technologies and configurations has efficiently been fulfilling customer demands for more than a decade. Though, current CMMs can meet needs of rapid and increased demands of customers to a greater extent but still there is lot of scope for improvement and development in CMMs. The globalization of manufacturing has resulted in development of variety of complex products and miniaturization of mechanical components. The technology of micro/nano-scale 3D measurement is still a bottleneck for industries. Therefore, precise and accurate system which is flexible enough to deal with complexities of parts and micro & nano range products has to be investigated. In this paper, comprehensive review concerning CMMs with capabilities to measure micro/nano features has been presented. This work has also discussed different methods to estimate measurement uncertainty, as well as performance evaluation of CMMs. Moreover, novel concepts such as intelligent CMM, multi-sensor CMM, virtual CMM have been presented.

  8. Monitoring coordinate measuring machines by calibrated parts

    International Nuclear Information System (INIS)

    Weckenmann, A; Lorz, J

    2005-01-01

    Coordinate measuring machines (CMM) are essential for quality assurance and production control in modern manufacturing. Due to the necessity of assuring traceability during the use of CMM, interim checks with calibrated objects carried out periodically. For this purpose usually special artefacts like standardized ball plates, hole plates, ball bars or step gages are measured. Measuring calibrated series parts would be more advantageous. Applying the substitution method of ISO 15530-3: 2000 such parts can be used. It is less cost intensive and less time consuming than measuring expensive special standardized objects in special programmed measurement routines. Moreover, the measurement results can directly compare with the calibration values; thus, direct information on systematic measurement deviations and uncertainty of the measured features are available. The paper describes a procedure for monitoring horizontal-arm CMMs with calibrated sheet metal series parts

  9. Experimental investigation of the tip based micro/nano machining

    Science.gov (United States)

    Guo, Z.; Tian, Y.; Liu, X.; Wang, F.; Zhou, C.; Zhang, D.

    2017-12-01

    Based on the self-developed three dimensional micro/nano machining system, the effects of machining parameters and sample material on micro/nano machining are investigated. The micro/nano machining system is mainly composed of the probe system and micro/nano positioning stage. The former is applied to control the normal load and the latter is utilized to realize high precision motion in the xy plane. A sample examination method is firstly introduced to estimate whether the sample is placed horizontally. The machining parameters include scratching direction, speed, cycles, normal load and feed. According to the experimental results, the scratching depth is significantly affected by the normal load in all four defined scratching directions but is rarely influenced by the scratching speed. The increase of scratching cycle number can increase the scratching depth as well as smooth the groove wall. In addition, the scratching tests of silicon and copper attest that the harder material is easier to be removed. In the scratching with different feed amount, the machining results indicate that the machined depth increases as the feed reduces. Further, a cubic polynomial is used to fit the experimental results to predict the scratching depth. With the selected machining parameters of scratching direction d3/d4, scratching speed 5 μm/s and feed 0.06 μm, some more micro structures including stair, sinusoidal groove, Chinese character '田', 'TJU' and Chinese panda have been fabricated on the silicon substrate.

  10. Progress report on Freeform Calibrations on Coordinate Measureing Machines

    DEFF Research Database (Denmark)

    Savio, Enrico; Meneghello, R.; De Chiffre, Leonardo

    This report is made as a part of the project Easytrac, an EU project under the programme: Competitive and Sustainable Growth: Contract No: G6RD-CT-2000-00188, coordinated by UNIMETRIK S.A. (Spain). The project is concerned with low uncertainty calibrations on coordinate measuring machines...

  11. Pulse electrochemical meso/micro/nano ultraprecision machining technology.

    Science.gov (United States)

    Lee, Jeong Min; Kim, Young Bin; Park, Jeong Woo

    2013-11-01

    This study demonstrated meso/micro/nano-ultraprecision machining through electrochemical reactions using intermittent DC pulses. The experiment focused on two machining methods: (1) pulse electrochemical polishing (PECP) of stainless steel, and (2) pulse electrochemical nano-patterning (PECNP) on a silicon (Si) surface, using atomic force microscopy (AFM) for fabrication. The dissolution reaction at the stainless steel surface following PECP produced a very clean, smooth workpiece. The advantages of the PECP process included improvements in corrosion resistance, deburring of the sample surface, and removal of hydrogen from the stainless steel surface as verified by time-of-flight secondary-ion mass spectrometry (TOF-SIMS). In PECNP, the electrochemical reaction generated within water molecules produced nanoscale oxide textures on a Si surface. Scanning probe microscopy (SPM) was used to evaluate nanoscale-pattern processing on a Si wafer surface produced by AFM-PECNP For both processes using pulse electrochemical reactions, three-dimensional (3-D) measurements and AFM were used to investigate the changes on the machined surfaces. Preliminary results indicated the potential for advancing surface polishing techniques and localized micro/nano-texturing technology using PECP and PECNP processes.

  12. Effect of lateral size of graphene nano-sheets on the mechanical properties and machinability of alumina nano-composites

    Czech Academy of Sciences Publication Activity Database

    Porwal, H.; Saggar, Richa; Tatarko, P.; Grasso, S.; Saunders, T.; Dlouhý, Ivo; Reece, M. J.

    2016-01-01

    Roč. 42, č. 6 (2016), s. 7533-7542 ISSN 0272-8842 EU Projects: European Commission(XE) 264526 Institutional support: RVO:68081723 Keywords : Alumina * Graphene nano-sheets * Nano-composites * Mechanical properties * Machinability Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.986, year: 2016

  13. Usage of I++ Simulator to Program Coordinate Measuring Machines when Common Programming Methods are difficult to apply

    Directory of Open Access Journals (Sweden)

    Gąska A.

    2014-02-01

    Full Text Available Nowadays, simulators facilitate tasks performed daily by the engineers of different branches, including coordinate metrologists. Sometimes it is difficult or almost impossible to program a Coordinate Measuring Machine (CMM using standard methods. This happens, for example, during measurements of nano elements or in cases when measurements are performed on high-precision (accurate measuring machines which work in strictly air-conditioned spaces and the presence of the operator in such room during the programming of CMM could cause an increase in temperature, which in turn could make it necessary to wait some time until conditions stabilize. This article describes functioning of a simulator and its usage during Coordinate Measuring Machine programming in the latter situation. Article also describes a general process of programming CMMs which ensures the correct machine performance after starting the program on a real machine. As an example proving the presented considerations, measurement of exemplary workpiece, which was performed on the machine working in the strictly air-conditioned room, was described

  14. Unique sensor fusion system for coordinate-measuring machine tasks

    Science.gov (United States)

    Nashman, Marilyn; Yoshimi, Billibon; Hong, Tsai Hong; Rippey, William G.; Herman, Martin

    1997-09-01

    This paper describes a real-time hierarchical system that fuses data from vision and touch sensors to improve the performance of a coordinate measuring machine (CMM) used for dimensional inspection tasks. The system consists of sensory processing, world modeling, and task decomposition modules. It uses the strengths of each sensor -- the precision of the CMM scales and the analog touch probe and the global information provided by the low resolution camera -- to improve the speed and flexibility of the inspection task. In the experiment described, the vision module performs all computations in image coordinate space. The part's boundaries are extracted during an initialization process and then the probe's position is continuously updated as it scans and measures the part surface. The system fuses the estimated probe velocity and distance to the part boundary in image coordinates with the estimated velocity and probe position provided by the CMM controller. The fused information provides feedback to the monitor controller as it guides the touch probe to scan the part. We also discuss integrating information from the vision system and the probe to autonomously collect data for 2-D to 3-D calibration, and work to register computer aided design (CAD) models with images of parts in the workplace.

  15. 76 FR 8788 - National Nanotechnology Coordination Office; Bridging NanoEHS Research Efforts: A Joint US-EU...

    Science.gov (United States)

    2011-02-15

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY National Nanotechnology Coordination Office; Bridging NanoEHS Research Efforts: A Joint US-EU Workshop: Public Meeting AGENCY: National Nanotechnology Coordination Office, STPO. ACTION: Notice of public meeting. SUMMARY: The National Nanotechnology Coordination...

  16. Development of an Abbe Error Free Micro Coordinate Measuring Machine

    Directory of Open Access Journals (Sweden)

    Qiangxian Huang

    2016-04-01

    Full Text Available A micro Coordinate Measuring Machine (CMM with the measurement volume of 50 mm × 50 mm × 50 mm and measuring accuracy of about 100 nm (2σ has been developed. In this new micro CMM, an XYZ stage, which is driven by three piezo-motors in X, Y and Z directions, can achieve the drive resolution of about 1 nm and the stroke of more than 50 mm. In order to reduce the crosstalk among X-, Y- and Z-stages, a special mechanical structure, which is called co-planar stage, is introduced. The movement of the stage in each direction is detected by a laser interferometer. A contact type of probe is adopted for measurement. The center of the probe ball coincides with the intersection point of the measuring axes of the three laser interferometers. Therefore, the metrological system of the CMM obeys the Abbe principle in three directions and is free from Abbe error. The CMM is placed in an anti-vibration and thermostatic chamber for avoiding the influence of vibration and temperature fluctuation. A series of experimental results show that the measurement uncertainty within 40 mm among X, Y and Z directions is about 100 nm (2σ. The flatness of measuring face of the gauge block is also measured and verified the performance of the developed micro CMM.

  17. New potential for the Leitz Infinity Coordinate Measuring Machine

    CERN Document Server

    Sanz, Claude; MAINAUD DURAND , Hélène; Schneider, Jurgen; Steffens, Norbert; Morantz , Paul; Shore , Paul

    2015-01-01

    The following study is realised within the frame of the PACMAN project: a study on Particle Accelerator Components Metrology and Alignment to the Nanometre scale, which is a Marie Curie program supported by the European commission and hosted by CERN (European Organisation for Nuclear Research). The aim of this program is to develop and build a pre-alignment bench on which each component is aligned to the required level in one single step using a stretched wire. During the operation, the centre of the stretched wire is aligned with the magnetic axis of the magnet. Then, the position of the wire is measured to the highest possible accuracy using a 3D Coordinate Measuring Machine (CMM) Leitz PMM-C Infinity from HEXAGON Metrology. The research described in this paper is two-fold: on one hand we apply a strong magnetic field to the head of the CMM and evaluate its influence on the measurement accuracy; on the other hand we measure the position

  18. A scanning contact probe for a micro-coordinate measuring machine (CMM)

    International Nuclear Information System (INIS)

    Fan, Kuang-Chao; Cheng, Fang; Wang, Weili; Chen, Yejin; Lin, Jia-You

    2010-01-01

    A new high precision contact scanning probe able to measure miniature components on a micro/nano-coordinate measuring machine (CMM) is proposed. This contact probe is composed of a fiber stylus with a ball tip, a floating plate and focus sensors. The stylus is attached to a floating plate, which is connected to the probe housing via four elastic wires. When the probe tip is touched and then deflected by the workpiece, the wires experience elastic deformations and the four mirrors mounted on the plate will be displaced. These displacements can be detected by four corresponding laser focus probes. To calibrate this touch trigger probe, a double-trigger method is developed for a high-speed approach and a low-speed touch. Experimental results show that the probe has a symmetric contact property in the horizontal XY plane. The contact force is found to be about 109 µN. The standard deviation of the unidirectional touch is less than 10 nm and the pre-travel distance is around 10 nm with a standard deviation of less than 3 nm

  19. TRACEABILITY OF ON COORDINATE MEASURING MACHINES – CALIBRATION AND PERFORMANCE VERIFICATION

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Savio, Enrico; Bariani, Paolo

    This document is used in connection with three exercises each of 45 minutes duration as a part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The exercises concern three aspects of coordinate measurement traceability: 1) Performance verification of a CMM using a ball bar; 2) Calibration...... of an optical coordinate measuring machine; 3) Uncertainty assessment using the ISO 15530-3 “Calibrated workpieces” procedure....

  20. Nano Trek Beyond: Driving Nanocars/Molecular Machines at Interfaces.

    Science.gov (United States)

    Ariga, Katsuhiko; Mori, Taizo; Nakanishi, Waka

    2018-03-09

    In 2016, the Nobel Prize in Chemistry was awarded for pioneering work on molecular machines. Half a year later, in Toulouse, the first molecular car race, a "nanocar race", was held by using the tip of a scanning tunneling microscope as an electrical remote control. In this Focus Review, we discuss the current state-of-the-art in research on molecular machines at interfaces. In the first section, we briefly explain the science behind the nanocar race, followed by a selection of recent examples of controlling molecules on surfaces. Finally, motion synchronization and the functions of molecular machines at liquid interfaces are discussed. This new concept of molecular tuning at interfaces is also introduced as a method for the continuous modification and optimization of molecular structure for target functions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. High-precision micro/nano-scale machining system

    Science.gov (United States)

    Kapoor, Shiv G.; Bourne, Keith Allen; DeVor, Richard E.

    2014-08-19

    A high precision micro/nanoscale machining system. A multi-axis movement machine provides relative movement along multiple axes between a workpiece and a tool holder. A cutting tool is disposed on a flexible cantilever held by the tool holder, the tool holder being movable to provide at least two of the axes to set the angle and distance of the cutting tool relative to the workpiece. A feedback control system uses measurement of deflection of the cantilever during cutting to maintain a desired cantilever deflection and hence a desired load on the cutting tool.

  2. Sonochemical synthesis of bismuth(III) nano coordination compound and direct synthesis of Bi.sub.2./sub.O.sub.3./sub. nanoparticles from a bismuth(III) nano coordination compound precursor

    Czech Academy of Sciences Publication Activity Database

    Roodsari, M.S.; Shaabani, B.; Mirtamizdoust, B.; Dušek, Michal; Fejfarová, Karla

    2015-01-01

    Roč. 25, č. 5 (2015), s. 1226-1232 ISSN 1574-1443 Grant - others:AV ČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : nano coordination compound * sonochemical method * intramolecular proton transfer * nano bismuth oxide * isoniazid Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.308, year: 2015

  3. Verification of optical coordinate measuring machines along the vertical measurement axis

    DEFF Research Database (Denmark)

    Morace, Renata Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    This paper deals with the performance verification of optical coordinate measuring machines (CMMs) equipped with video probes along the vertical measurement axis. The aim of this work was to investigate the capability of artefacts like gauge blocks and angle blocks for calibrating, verifying...

  4. Surface topography characterization using an atomic force microscope mounted on a coordinate measuring machine

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, H.N; Kofod, N

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning o...

  5. Advanced induction machine model in phase coordinates for wind turbine applications

    DEFF Research Database (Denmark)

    Fajardo, L.A.; Iov, F.; Hansen, Anca Daniela

    2007-01-01

    In this paper an advanced phase coordinates squirrel cage induction machine model with time varying electrical parameters affected by magnetic saturation and rotor deep bar effects, is presented. The model uses standard data sheet for characterization of the electrical parameters, it is developed...

  6. TRACEABILITY OF PRECISION MEASUREMENTS ON COORDINATE MEASURING MACHINES – TRACEABILITY, CALIBRATION AND PERFORMANCE VERIFICATION

    DEFF Research Database (Denmark)

    Bariani, Paolo; De Chiffre, Leonardo; Tosello, Guido

    This document is used in connection with an exercise of 1 hour duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercise concerns establishment of traceability of measurements with optical coordinate machine by mean of using two different calibrated...

  7. TRACEABILITY OF PRECISION MEASUREMENTS ON COORDINATE MEASURING MACHINES – PERFORMANCE VERIFICATION OF CMMs

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Sobiecki, René; Tosello, Guido

    This document is used in connection with one exercise of 30 minutes duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercise concerns performance verification of the volumetric measuring capability of a small volume coordinate measuring machine...

  8. Proceedings of the meeting for coordinating precision machining of optics research and requirements

    International Nuclear Information System (INIS)

    Saito, T.T.

    1975-12-01

    The meeting for ''Coordinating Precision Machining of Optics Research and Requirements'' on September 18, 1975, was sponsored by the Air Force Weapons Laboratory at Kirtland AFB, NM. These proceedings contain an introduction to the meeting including a brief description of the participants and the objectives. The developments and capabilities of Union Carbide Y-12 plant are described in detail. A short summary of the new Moore no. 5 machine at Bendix, Kansas City, Mo. is included as well as a description of using light scattering for roughness characterization at Rockwell International, Rocky Flats, Colorado. The executive summary of the meeting mentions some of the discussions that also followed. Important conclusions of the meeting were that a 5 y lead time is required to obtain a machine and acquire the necessary skills for precision machining, and that demands for diamond turning optics will be increasing

  9. Tool wear of a single-crystal diamond tool in nano-groove machining of a quartz glass plate

    International Nuclear Information System (INIS)

    Yoshino, Masahiko; Nakajima, Satoshi; Terano, Motoki

    2015-01-01

    Tool wear characteristics of a diamond tool in ductile mode machining are presented in this paper. Nano-groove machining of a quartz glass plate was conducted to examine the tool wear rate of a single-crystal diamond tool. Effects of lubrication on the tool wear rate were also evaluated. A numerical simulation technique was developed to evaluate the tool temperature and normal stress acting on the wear surface. From the simulation results it was found that the tool temperature does not increase during the machining experiment. It is also demonstrated that tool wear is attributed to the abrasive wear mechanism, but the effect of the adhesion wear mechanism is minor in nano-groove machining. It is found that the tool wear rate is reduced by using water or kerosene as a lubricant. (paper)

  10. Mesostructure of Ordered Corneal Nano-nipple Arrays: The Role of 5-7 Coordination Defects

    Science.gov (United States)

    Lee, Ken C.; Yu, Qi; Erb, Uwe

    2016-06-01

    Corneal nano-nipple structures consisting of hexagonally arranged protrusions with diameters around 200 nm have long been known for their antireflection capability and have served as biological blueprint for solar cell, optical lens and other surface designs. However, little is known about the global arrangement of these nipples on the ommatidial surface and their growth during the eye development. This study provides new insights based on the analysis of nano-nipple arrangements on the mesoscale across entire ommatidia, which has never been done before. The most important feature in the nipple structures are topological 5- and 7-fold coordination defects, which align to form dislocations and interconnected networks of grain boundaries that divide the ommatidia into crystalline domains in different orientations. Furthermore, the domain size distribution might be log-normal, and the domains demonstrate no preference in crystal orientation. Both observations suggest that the nipple growth process may be similar to the nucleation and growth mechanisms during the formation of other crystal structures. Our results are also consistent with the most recently proposed Turing-type reaction-diffusion process. In fact, we were able to produce the key structural characteristics of the nipple arrangements using Turing analysis from the nucleation to the final structure development.

  11. Employing Ti nano-powder dielectric to enhance surface characteristics in electrical discharge machining of AISI D2 steel

    Energy Technology Data Exchange (ETDEWEB)

    Marashi, Houriyeh, E-mail: houriyeh@marashi.co [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Center of Advanced Manufacturing and Materials Processing (AMMP), 50603 Kuala Lumpur (Malaysia); Sarhan, Ahmed A.D., E-mail: ah_sarhan@yahoo.com [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Center of Advanced Manufacturing and Materials Processing (AMMP), 50603 Kuala Lumpur (Malaysia); Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Assiut 71516 (Egypt); Hamdi, Mohd [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Center of Advanced Manufacturing and Materials Processing (AMMP), 50603 Kuala Lumpur (Malaysia)

    2015-12-01

    Graphical abstract: - Highlights: • We proposed adding Ti nano-powder to dielectric in EDM. • Average and peak-valley surface roughness was improved by 35 and 40%, respectively. • Improvement of up to 69% in material removal rate was obtained. • Enhanced surface morphology and formation of shallower craters were observed. - Abstract: Manufacturing components with superior surface characteristics is challenging when electrical discharge machining (EDM) is employed for mass production. The aim of this research is to enhance the characteristics of AISI D2 steel surface machined with EDM through adding Ti nano-powder to dielectric under various machining parameters, including discharge duration (T{sub on}) and peak current (I). Surface roughness profilometer, FESEM and AFM analysis were utilized to reveal the machined surface characteristics in terms of surface roughness, surface morphology and surface micro-defects. Moreover, EDX analysis was performed in order to evaluate the atomic deposition of Ti nano-powder on the surface. The concentration of Ti nano-powder in dielectric was also examined using ESEM and EDX. According to the results, the addition of Ti nano-powder to dielectric notably enhanced the surface morphology and surface roughness at all machining parameters except T{sub on} = 340 μs. Of these parameters, maximum enhancement was observed at T{sub on} = 210 μs, where the material removal rate and average surface roughness improved by ∼69 and ∼35% for peak current of 6 and 12 A, respectively. Elemental analysis signified negligible Ti deposition on the machined surface while the atomic concentration of Ti was increased around the crack areas.

  12. Emergent coordination underlying learning to reach to grasp with a brain-machine interface.

    Science.gov (United States)

    Vaidya, Mukta; Balasubramanian, Karthikeyan; Southerland, Joshua; Badreldin, Islam; Eleryan, Ahmed; Shattuck, Kelsey; Gururangan, Suchin; Slutzky, Marc; Osborne, Leslie; Fagg, Andrew; Oweiss, Karim; Hatsopoulos, Nicholas G

    2018-04-01

    The development of coordinated reach-to-grasp movement has been well studied in infants and children. However, the role of motor cortex during this development is unclear because it is difficult to study in humans. We took the approach of using a brain-machine interface (BMI) paradigm in rhesus macaques with prior therapeutic amputations to examine the emergence of novel, coordinated reach to grasp. Previous research has shown that after amputation, the cortical area previously involved in the control of the lost limb undergoes reorganization, but prior BMI work has largely relied on finding neurons that already encode specific movement-related information. In this study, we taught macaques to cortically control a robotic arm and hand through operant conditioning, using neurons that were not explicitly reach or grasp related. Over the course of training, stereotypical patterns emerged and stabilized in the cross-covariance between the reaching and grasping velocity profiles, between pairs of neurons involved in controlling reach and grasp, and to a comparable, but lesser, extent between other stable neurons in the network. In fact, we found evidence of this structured coordination between pairs composed of all combinations of neurons decoding reach or grasp and other stable neurons in the network. The degree of and participation in coordination was highly correlated across all pair types. Our approach provides a unique model for studying the development of novel, coordinated reach-to-grasp movement at the behavioral and cortical levels. NEW & NOTEWORTHY Given that motor cortex undergoes reorganization after amputation, our work focuses on training nonhuman primates with chronic amputations to use neurons that are not reach or grasp related to control a robotic arm to reach to grasp through the use of operant conditioning, mimicking early development. We studied the development of a novel, coordinated behavior at the behavioral and cortical level, and the neural

  13. Comparison of two different methods for the uncertainty estimation of circle diameter measurements using an optical coordinate measuring machine

    DEFF Research Database (Denmark)

    Morace, Renata Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    This paper deals with the uncertainty estimation of measurements performed on optical coordinate measuring machines (CMMs). Two different methods were used to assess the uncertainty of circle diameter measurements using an optical CMM: the sensitivity analysis developing an uncertainty budget...

  14. Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive Support Vector Machine (SVM) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For SVM modelling, different values for radial basis function (RBF) kernel width and penalty parameters (C) were considered and the optimum values were then found. The results demonstrate that SVM is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  15. Integration of Error Compensation of Coordinate Measuring Machines into Feature Measurement: Part I—Model Development

    Science.gov (United States)

    Calvo, Roque; D’Amato, Roberto; Gómez, Emilio; Domingo, Rosario

    2016-01-01

    The development of an error compensation model for coordinate measuring machines (CMMs) and its integration into feature measurement is presented. CMMs are widespread and dependable instruments in industry and laboratories for dimensional measurement. From the tip probe sensor to the machine display, there is a complex transformation of probed point coordinates through the geometrical feature model that makes the assessment of accuracy and uncertainty measurement results difficult. Therefore, error compensation is not standardized, conversely to other simpler instruments. Detailed coordinate error compensation models are generally based on CMM as a rigid-body and it requires a detailed mapping of the CMM’s behavior. In this paper a new model type of error compensation is proposed. It evaluates the error from the vectorial composition of length error by axis and its integration into the geometrical measurement model. The non-explained variability by the model is incorporated into the uncertainty budget. Model parameters are analyzed and linked to the geometrical errors and uncertainty of CMM response. Next, the outstanding measurement models of flatness, angle, and roundness are developed. The proposed models are useful for measurement improvement with easy integration into CMM signal processing, in particular in industrial environments where built-in solutions are sought. A battery of implementation tests are presented in Part II, where the experimental endorsement of the model is included. PMID:27690052

  16. PSS and TCSC damping controller coordinated design using PSO in multi-machine power system

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Safari, A.; Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2010-12-15

    The paper develops a new design procedure for simultaneous coordinated designing of the thyristor controlled series capacitor (TCSC) damping controller and power system stabilizer (PSS) in multi-machine power system. The coordinated design problem of PSS and TCSC damping controllers over a wide range of loading conditions is converted to an optimization problem with the time domain-based objective function that is solved by a particle swarm optimization (PSO) technique which has a strong ability to find the most optimistic results. By minimizing the proposed fitness function in which oscillatory characteristics between areas are included and thus the interactions among the TCSC controller and PSS under transient conditions in the multi-machine power system are improved. To ensure the robustness of the proposed stabilizers, the design process takes a wide range of operating conditions into account. The effectiveness of the proposed controller is demonstrated through the nonlinear time-domain simulation and some performance indices studies. The results of these studies show that the proposed coordinated controllers have an excellent capability in damping power system inter-area oscillations and enhance greatly the dynamic stability of the power system. Moreover, it is superior to both the uncoordinated designed stabilizers of the PSS and the TCSC damping controller.

  17. Integration of Error Compensation of Coordinate Measuring Machines into Feature Measurement: Part I—Model Development

    Directory of Open Access Journals (Sweden)

    Roque Calvo

    2016-09-01

    Full Text Available The development of an error compensation model for coordinate measuring machines (CMMs and its integration into feature measurement is presented. CMMs are widespread and dependable instruments in industry and laboratories for dimensional measurement. From the tip probe sensor to the machine display, there is a complex transformation of probed point coordinates through the geometrical feature model that makes the assessment of accuracy and uncertainty measurement results difficult. Therefore, error compensation is not standardized, conversely to other simpler instruments. Detailed coordinate error compensation models are generally based on CMM as a rigid-body and it requires a detailed mapping of the CMM’s behavior. In this paper a new model type of error compensation is proposed. It evaluates the error from the vectorial composition of length error by axis and its integration into the geometrical measurement model. The non-explained variability by the model is incorporated into the uncertainty budget. Model parameters are analyzed and linked to the geometrical errors and uncertainty of CMM response. Next, the outstanding measurement models of flatness, angle, and roundness are developed. The proposed models are useful for measurement improvement with easy integration into CMM signal processing, in particular in industrial environments where built-in solutions are sought. A battery of implementation tests are presented in Part II, where the experimental endorsement of the model is included.

  18. Measuring large aspherics using a commercially available 3D-coordinate measuring machine

    Science.gov (United States)

    Otto, Wolfgang; Matthes, Axel; Schiehle, Heinz

    2000-07-01

    A CNC-controlled precision measuring machine is a very powerful tool in the optical shop not only to determine the surface figure, but also to qualify the radius of curvature and conic constant of aspherics. We used a commercially available 3D-coordinate measuring machine (CMM, ZEISS UPMC 850 CARAT S-ACC) to measure the shape of the GEMINI 1-m convex secondary mirrors at different lapping and polishing stages. To determine the measuring accuracy we compared the mechanical measurements with the results achieved by means of an interferometrical test setup. The data obtained in an early stage of polishing were evaluated in Zernike polynomials which show a very good agreement. The deviation concerning long wave rotational symmetrical errors was 20 nm rms, whereas the accuracy measuring of mid spatial frequency deviations was limited to about 100 nm rms.

  19. Design and development of PCD micro straight edge end mills for micro/nano machining of hard and brittle materials

    International Nuclear Information System (INIS)

    Cheng, Xiang; Wang, Zhigang; Yamazaki, Kazuo; Nakamoto, Kazuo

    2010-01-01

    One of the biggest challenges for mechanical micro/nano milling is the design and fabrication of high precision and high efficiency micro milling tools. Commercially available micro milling tools are either too expensive (around several hundred US dollars) or simply made from downsizing of macro milling tools, which is sometimes not appropriate for the specific micro/nano milling requirements. So the design and fabrication of custom micro milling tools are necessary. In this paper, a micro straight edge endmill (SEE) is designed. Static and dynamic FEM analyses have been done for the SEEs with different rake angles trying to identify their stiffness and natural frequencies. By wire electrical discharge machining (WEDM), the SEEs made of polycrystalline diamond (PCD) with three different rake angles have been fabricated. The evaluation milling on tungsten carbide (WC) and silicon wafer have processed on a nano milling center. Experimental results show the SEEs have a good ability to simultaneously micro/nano milling of both the side and bottom surfaces with submicron surface roughness, and the SEE has high accuracy for large aspect ratio thin wall machining. The milling experiments on silicon wafer have successfully demonstrated that ductile mode machining was achieved and the coolant played an important role in silicon wafer milling

  20. Coordination of the installation and of the commissioning of the machine [LHC

    CERN Document Server

    Foraz, K

    2008-01-01

    The installation of the LHC machine is now finished, and the powering tests are on-going. Since the start of the civil engineering works in 1998, a lot of installation works and tests had been performed by different groups and departments, by different type and size of contracts, and with different technologies. During the last ten years, we had to face different hazards and delays, inherent to a large and complex project. This paper describes the methodology followed by the coordination team, and draw up a balance sheet of the works done so far.

  1. Protein-polymer nano-machines. Towards synthetic control of biological processes

    Directory of Open Access Journals (Sweden)

    Alexander Cameron

    2004-09-01

    Full Text Available Abstract The exploitation of nature's machinery at length scales below the dimensions of a cell is an exciting challenge for biologists, chemists and physicists, while advances in our understanding of these biological motifs are now providing an opportunity to develop real single molecule devices for technological applications. Single molecule studies are already well advanced and biological molecular motors are being used to guide the design of nano-scale machines. However, controlling the specific functions of these devices in biological systems under changing conditions is difficult. In this review we describe the principles underlying the development of a molecular motor with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for control of the motor function. The molecular motor is a derivative of a TypeI Restriction-Modification (R-M enzyme and the synthetic polymer is drawn from the class of materials that exhibit a temperature-dependent phase transition. The potential exploitation of single molecules as functional devices has been heralded as the dawn of new era in biotechnology and medicine. It is not surprising, therefore, that the efforts of numerous multidisciplinary teams 12. have been focused in attempts to develop these systems. as machines capable of functioning at the low sub-micron and nanometre length-scales 3. However, one of the obstacles for the practical application of single molecule devices is the lack of functional control methods in biological media, under changing conditions. In this review we describe the conceptual basis for a molecular motor (a derivative of a TypeI Restriction-Modification enzyme with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for controlling the motor function 4.

  2. Focused particle beam nano-machining: the next evolution step towards simulation aided process prediction

    International Nuclear Information System (INIS)

    Plank, Harald

    2015-01-01

    During the last decade, focused ion beam processing has been developed from traditionally used Ga + liquid ion sources towards higher resolution gas field ion sources (He + and Ne + ). Process simulations not only improve the fundamental understanding of the relevant ion–matter interactions, but also enable a certain predictive power to accelerate advances. The historic ‘gold’ standard in ion–solid simulations is the SRIM/TRIM Monte Carlo package released by Ziegler, Ziegler and Biersack 2010 Nucl. Instrum. Methods B 268 1818–23. While SRIM/TRIM is very useful for a myriad of applications, it is not applicable for the understanding of the nanoscale evolution associated with ion beam nano-machining as the substrate does not evolve with the sputtering process. As a solution for this problem, a new, adapted simulation code is briefly overviewed and finally addresses these contributions. By that, experimentally observed Ne + beam sputter profiles can be explained from a fundamental point of view. Due to their very good agreement, these simulations contain the potential for computer aided optimization towards predictable sputter processes for different nanotechnology applications. With these benefits in mind, the discussed simulation approach represents an enormous step towards a computer based master tool for adaptable ion beam applications in the context of industrial applications. (viewpoint)

  3. Parameters for Fabricating Nano-Au Colloids through the Electric Spark Discharge Method with Micro-Electrical Discharge Machining.

    Science.gov (United States)

    Tseng, Kuo-Hsiung; Chung, Meng-Yun; Chang, Chaur-Yang

    2017-06-02

    In this study, the Electric Spark Discharge Method (ESDM) was employed with micro-electrical discharge machining (m-EDM) to create an electric arc that melted two electrodes in deionized water (DW) and fabricated nano-Au colloids through pulse discharges with a controlled on-off duration (T ON -T OFF ) and a total fabrication time of 1 min. A total of six on-off settings were tested under normal experimental conditions and without the addition of any chemical substances. Ultraviolet-visible spectroscopy (UV-Vis), Zetasizer Nano measurements, and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analyses suggested that the nano-Au colloid fabricated at 10-10 µs (10 µs on, 10 µs off) had higher concentration and suspension stability than products made at other T ON -T OFF settings. The surface plasmon resonance (SPR) of the colloid was 549 nm on the first day of fabrication and stabilized at 532 nm on the third day. As the T ON -T OFF period increased, the absorbance (i.e., concentration) of all nano-Au colloids decreased. Absorbance was highest at 10-10 µs. The SPR peaks stabilized at 532 nm across all T ON -T OFF periods. The Zeta potential at 10-10 µs was -36.6 mV, indicating that no nano-Au agglomeration occurred and that the particles had high suspension stability.

  4. Nonlinear Elastodynamic Behaviour Analysis of High-Speed Spatial Parallel Coordinate Measuring Machines

    Directory of Open Access Journals (Sweden)

    Xiulong Chen

    2012-10-01

    Full Text Available In order to study the elastodynamic behaviour of 4- universal joints- prismatic pairs- spherical joints / universal joints- prismatic pairs- universal joints 4-UPS-UPU high-speed spatial PCMMs(parallel coordinate measuring machines, the nonlinear time-varying dynamics model, which comprehensively considers geometric nonlinearity and the rigid-flexible coupling effect, is derived by using Lagrange equations and finite element methods. Based on the Newmark method, the kinematics output response of 4-UPS-UPU PCMMs is illustrated through numerical simulation. The results of the simulation show that the flexibility of the links is demonstrated to have a significant impact on the system dynamics response. This research can provide the important theoretical base of the optimization design and vibration control for 4-UPS-UPU PCMMs.

  5. CIRP Interlaboratory Comparison of Coordinate Measuring Machines using an Optomechanical Hole Plate

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, Hans Nørgaard; Morace, Renata Erica

    An interlaboratory comparison on mechanical and optical coordinate measuring machines (CMMs) has been organized by the Centre for Geometrical Metrology (CGM), Department of Manufacturing Engineering and Management (IPL), Technical University of Denmark (DTU) and carried out within Collège...... plate [1], designed and manufactured by DTU. A measurement procedure was sent to each participant together with the hole plate to be measured. The procedure consists mainly of two parts [2]: 1) four reversal measurements, by which the systematic errors in the measuring plane (X,Y) on the CMM...... are eliminated, except the positioning errors; 2) transfer of traceability by comparator measurement using a length reference chosen by the participant, by which the positioning errors are eliminated. Furthermore, a third optional part could be carried out by the participant, using a different measurement...

  6. Application of a virtual coordinate measuring machine for measurement uncertainty estimation of aspherical lens parameters

    International Nuclear Information System (INIS)

    Küng, Alain; Meli, Felix; Nicolet, Anaïs; Thalmann, Rudolf

    2014-01-01

    Tactile ultra-precise coordinate measuring machines (CMMs) are very attractive for accurately measuring optical components with high slopes, such as aspheres. The METAS µ-CMM, which exhibits a single point measurement repeatability of a few nanometres, is routinely used for measurement services of microparts, including optical lenses. However, estimating the measurement uncertainty is very demanding. Because of the many combined influencing factors, an analytic determination of the uncertainty of parameters that are obtained by numerical fitting of the measured surface points is almost impossible. The application of numerical simulation (Monte Carlo methods) using a parametric fitting algorithm coupled with a virtual CMM based on a realistic model of the machine errors offers an ideal solution to this complex problem: to each measurement data point, a simulated measurement variation calculated from the numerical model of the METAS µ-CMM is added. Repeated several hundred times, these virtual measurements deliver the statistical data for calculating the probability density function, and thus the measurement uncertainty for each parameter. Additionally, the eventual cross-correlation between parameters can be analyzed. This method can be applied for the calibration and uncertainty estimation of any parameter of the equation representing a geometric element. In this article, we present the numerical simulation model of the METAS µ-CMM and the application of a Monte Carlo method for the uncertainty estimation of measured asphere parameters. (paper)

  7. A microscopy approach for in situ inspection of micro-coordinate measurement machine styli for contamination

    Science.gov (United States)

    Feng, Xiaobing; Pascal, Jonathan; Lawes, Simon

    2017-09-01

    During the process of measurement using a micro-coordinate measurement machine (µCMM) contamination gradually builds up on the surface of the stylus tip and affects the dimensional accuracy of the measurement. Regular inspection of the stylus for contamination is essential to determine the appropriate cleaning interval and prevent the dimensional error from becoming significant. However, in situ inspection of a µCMM stylus is challenging due to the size, spherical shape, material and surface properties of a typical stylus. To address this challenge, this study evaluates several non-contact measurement technologies for in situ stylus inspection and, based on those findings, proposes a cost-effective microscopy approach. The operational principle is then demonstrated by an automated prototype, coordinated directly by the CMM software MCOSMOS, with an effective threshold of detection as low as 400 nm and a large field of view and depth of field. The level of contamination on the stylus has been found to increase steadily with the number of measurement contacts made. Once excessive contamination is detected on the stylus, measurement should be stopped and a stylus cleaning procedure should be performed to avoid affecting measurement accuracy.

  8. A microscopy approach for in situ inspection of micro-coordinate measurement machine styli for contamination

    International Nuclear Information System (INIS)

    Feng, Xiaobing; Lawes, Simon; Pascal, Jonathan

    2017-01-01

    During the process of measurement using a micro-coordinate measurement machine (µCMM) contamination gradually builds up on the surface of the stylus tip and affects the dimensional accuracy of the measurement. Regular inspection of the stylus for contamination is essential to determine the appropriate cleaning interval and prevent the dimensional error from becoming significant. However, in situ inspection of a µCMM stylus is challenging due to the size, spherical shape, material and surface properties of a typical stylus. To address this challenge, this study evaluates several non-contact measurement technologies for in situ stylus inspection and, based on those findings, proposes a cost-effective microscopy approach. The operational principle is then demonstrated by an automated prototype, coordinated directly by the CMM software MCOSMOS, with an effective threshold of detection as low as 400 nm and a large field of view and depth of field. The level of contamination on the stylus has been found to increase steadily with the number of measurement contacts made. Once excessive contamination is detected on the stylus, measurement should be stopped and a stylus cleaning procedure should be performed to avoid affecting measurement accuracy. (paper)

  9. The use of the co-ordinate measuring machine for the study of three-dimensional biomechanics of the knee.

    Science.gov (United States)

    Veselko, M; Jenko, M; Lipuscek, I

    1998-07-01

    Original methodology for the study of three-dimensional biomechanics of the knee is presented in the paper. Defining the geometry of the rigid body in the body-fixed reference frame and the orientation of the body-fixed reference frame in the global co-ordinate system are the theoretic basis. The data in the form of co-ordinates of the Cartesian frame are gathered by the co-ordinate measuring machine and analysed by specially computer program. The theory and a practical example of the study of the three-dimensional biomechanics of the knee are presented. Various possibilities of the use of the methodology are discussed.

  10. MM99.50 - Surface Topography Characterization Using an Atomic Force Microscope Mounted on a Coordinate Measuring Machine

    DEFF Research Database (Denmark)

    Chiffre, Leonardo De; Hansen, Hans Nørgaard; Kofod, Niels

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning o...

  11. Toughened and machinable glass matrix composites reinforced with graphene and graphene-oxide nano platelets

    Czech Academy of Sciences Publication Activity Database

    Porwal, H.; Tatarko, Peter; Grasso, S.; Hu, Ch.; Boccaccini, A. R.; Dlouhý, Ivo; Reece, M.J.

    2013-01-01

    Roč. 14, č. 5 (2013), Art.N. 055007 ISSN 1468-6996 EU Projects: European Commission(XE) 264526 - GLACERCO Institutional support: RVO:68081723 Keywords : silica * graphene/graphene-oxide nano platelets * nano composites * mechanical properties * sintering Subject RIV: JI - Composite Materials Impact factor: 2.613, year: 2013

  12. Implementation of the FDTD method in cylindrical coordinates for dispersive materials: Modal study of C-shaped nano-waveguides

    Science.gov (United States)

    kebci, Zahia; Belkhir, Abderrahmane; Mezeghrane, Abdelaziz; Lamrous, Omar; Baida, Fadi Issam

    2018-03-01

    The objective of this work is to develop a code based on the finite difference time domain method in cylindrical coordinates (CC-FDTD) that integrates the Drude Critical Points model (DCP) and to apply it in the study of a metallic C-shaped waveguide (CSWG). The integrated dispersion model allows an accurate description of noble metals in the optical range and working in cylindrical coordinates is necessary to bypass the staircase effect induced by a Cartesian mesh especially in the case of curved geometrical forms. The CC-FDTD code developed as a part of this work is more general than the Body-Of-Revolution-FDTD algorithm that can only handle structures exhibiting a complete cylindrical symmetry. A N-order CC-FDTD code is then derived and used to perform a parametric study of an infinitly-long CSWG for nano-optic applications. Propagation losses and dispersion diagrams are given for different geometrical parameters.

  13. Development of a contact probe incorporating a Bragg grating strain sensor for nano coordinate measuring machines

    International Nuclear Information System (INIS)

    Ji, H; Hsu, H-Y; Kong, L X; Wedding, A B

    2009-01-01

    This paper presents a novel optical fibre based micro contact probe system with high sensitivity and repeatability. In this optical fibre probe with a fused spherical tip, a fibre Bragg grating has been utilized as a strain sensor in the probe stem. When the probe tip contacts the surface of the part, a strain will be induced along the probe stem and will produce a Bragg wavelength shift. The contact signal can be issued once the wavelength shift signal is produced and demodulated. With the fibre grating sensor element integrated into the probe directly, the probe system shows a high sensitivity. In this work, the strain distributions along the probe stem with the probe under axial and lateral load are analysed. A simulation of the strain distribution was performed using the finite element package ANSYS 11. Performance tests using a piezoelectric transducer stage with a displacement resolution of 1.5 nm yielded a measurement resolution of 60 nm under axial loading

  14. Methodology for the assessment of measuring uncertainties of articulated arm coordinate measuring machines

    International Nuclear Information System (INIS)

    Romdhani, Fekria; Hennebelle, François; Ge, Min; Juillion, Patrick; Fontaine, Jean François; Coquet, Richard

    2014-01-01

    Articulated Arm Coordinate Measuring Machines (AACMMs) have gradually evolved and are increasingly used in mechanical industry. At present, measurement uncertainties relating to the use of these devices are not yet well quantified. The work carried out consists of determining the measurement uncertainties of a mechanical part by an AACMM. The studies aiming to develop a model of measurement uncertainty are based on the Monte Carlo method developed in Supplement 1 of the Guide to Expression of Uncertainty in Measurement [1] but also identifying and characterizing the main sources of uncertainty. A multi-level Monte Carlo approach principle has been developed which allows for characterizing the possible evolution of the AACMM during the measurement and quantifying in a second level the uncertainty on the considered measurand. The first Monte Carlo level is the most complex and is thus divided into three sub-levels, namely characterization on the positioning error of a point, estimation of calibration errors and evaluation of fluctuations of the ‘localization point’. The global method is thus presented and results of the first sub-level are particularly developed. The main sources of uncertainty, including AACMM deformations, are exposed. (paper)

  15. Three dimensional nano-assemblies of noble metal nanoparticle-infinite coordination polymers as specific oxidase mimetics for degradation of methylene blue without adding any cosubstrate.

    Science.gov (United States)

    Wang, Lihua; Zeng, Yi; Shen, Aiguo; Zhou, Xiaodong; Hu, Jiming

    2015-02-07

    Novel three-dimensional (3D) nano-assemblies of noble metal nanoparticle (NP)-infinite coordination polymers (ICPs) are conveniently fabricated through the infiltration of HAuCl4 into hollow Au@Ag@ICPs core-shell nanostructures and its replacement reaction with Au@Ag NPs. The present 3D nano-assemblies exhibit highly efficient and specific intrinsic oxidase-like activity even without adding any cosubstrate.

  16. Nano

    DEFF Research Database (Denmark)

    Nørgaard, Bent; Engel, Lars Romann

    2007-01-01

    Gennem de sidste par år har et lille ord med et meget stort potentiale gentagende trængt sig på i den offentlige bevidsthed, det er ordet "nano". Nanovidenskab og nanoteknologi er lige nu to af de "hotteste" forskningsområder og betragtes af mange som porten til en helt ny verden af muligheder....... Muligheder, vi endnu ikke kender konsekvenserne af. Center for Kunst og Videnskabs forestilling NANO giver dig chancen for at blive bekendt med verdens mindste byggesten og idégrundlaget for nanoforskningen. Vi har skabt et rum, som på mange måder minder om et laboratorium. Rummet er forsynet med storskærme......, kolber, væsker og nanopartikler. Her vil du f.eks. opleve, hvordan forskere tilfører guld helt nye egenskaber. Forestillingen veksler mellem kemiske arbejdsdemonstrationer, stemningsskabende musik og livlig debat på storskærme mellem eksperter. NANO opfordrer publikum til at tage stilling til forskningen...

  17. Application of virtual machine technology to real-time mapping of Thomson scattering data to flux coordinates for the LHD

    International Nuclear Information System (INIS)

    Emoto, Masahiko; Yoshida, Masanobu; Suzuki, Chihiro; Suzuki, Yasuhiro; Ida, Katsumi; Nagayama, Yoshio; Akiyama, Tsuyoshi; Kawahata, Kazuo; Narihara, Kazumichi; Tokuzawa, Tokihiko; Yamada, Ichihiro

    2012-01-01

    Highlights: ► We have developed a mapping system of the electron temperature profile to the flux coordinates. ► To increases the performance, multiple virtual machines are used. ► The virtual machine technology is flexible when increasing the number of computers. - Abstract: This paper presents a system called “TSMAP” that maps electron temperature profiles to flux coordinates for the Large Helical Device (LHD). Considering the flux surface is isothermal, TSMAP searches an equilibrium database for the LHD equilibrium that fits the electron temperature profile. The equilibrium database is built through many VMEC computations of the helical equilibria. Because the number of equilibria is large, the most important technical issue for realizing the TSMAP system is computational performance. Therefore, we use multiple personal computers to enhance performance when building the database for TSMAP. We use virtual machines on multiple Linux computers to run the TSMAP program. Virtual machine technology is flexible, allowing the number of computers to be easily increased. This paper discusses how the use of virtual machine technology enhances the performance of TSMAP calculations when multiple CPU cores are used.

  18. Mechanical characterization of biocompatible thin film materials by scanning along micro-machined cantilevers for micro-/nano-system

    International Nuclear Information System (INIS)

    He, J.H.; Luo, J.K.; Le, H.R.; Moore, D.F.

    2006-01-01

    Mechanical characterization is vital for the design of micro-/nano-electro-mechanical system (MEMS/NEMS). This paper describes a new characterization method to extract the mechanical properties of the thin film materials, which is simple, inexpensive and applicable to a wide range of materials including biocompatible ones described in this paper. The beams of the material under tests, are patterned by laser micro-machining and released by alkaline etch. A surface profilometer is used to scan along micro-machined cantilevers and produce a bending profile, from which the Young's modulus can be extracted. Biocompatible SiN x , SiC and nanocrystal diamond cantilevers have been fabricated and their Young's modulus has been evaluated as 154 ± 12, 360 ± 50 and 504 ± 50 GPa, respectively, which is consistent with those measured by nano-indentation. Residual stress gradient has also been extracted by surface profilometer, which is comparable with the results inferred from ZYGO interferometer measurements. This method can be extended to atomic force microscopy stylus or nanometer-stylus profilometer for Bio-NEMS mechanical characterization

  19. Research on the method of improving the accuracy of CMM (coordinate measuring machine) testing aspheric surface

    Science.gov (United States)

    Cong, Wang; Xu, Lingdi; Li, Ang

    2017-10-01

    Large aspheric surface which have the deviation with spherical surface are being used widely in various of optical systems. Compared with spherical surface, Large aspheric surfaces have lots of advantages, such as improving image quality, correcting aberration, expanding field of view, increasing the effective distance and make the optical system compact, lightweight. Especially, with the rapid development of space optics, space sensor resolution is required higher and viewing angle is requred larger. Aspheric surface will become one of the essential components in the optical system. After finishing Aspheric coarse Grinding surface profile error is about Tens of microns[1].In order to achieve the final requirement of surface accuracy,the aspheric surface must be quickly modified, high precision testing is the basement of rapid convergence of the surface error . There many methods on aspheric surface detection[2], Geometric ray detection, hartmann detection, ronchi text, knifeedge method, direct profile test, interferometry, while all of them have their disadvantage[6]. In recent years the measure of the aspheric surface become one of the import factors which are restricting the aspheric surface processing development. A two meter caliber industrial CMM coordinate measuring machine is avaiable, but it has many drawbacks such as large detection error and low repeatability precision in the measurement of aspheric surface coarse grinding , which seriously affects the convergence efficiency during the aspherical mirror processing. To solve those problems, this paper presents an effective error control, calibration and removal method by calibration mirror position of the real-time monitoring and other effective means of error control, calibration and removal by probe correction and the measurement mode selection method to measure the point distribution program development. This method verified by real engineer examples, this method increases the original industrial

  20. Measurement of the accuracy of dental working casts using a coordinate measuring machine

    Directory of Open Access Journals (Sweden)

    Potran Michal

    2016-01-01

    Full Text Available Background/Aim: Dental impressions present a negative imprint of intraoral tissues of a patient which is, by pouring in gypsum, transferred extraorally on the working cast. Casting an accurate and precise working cast presents the first and very important step, since each of the following stages contributes to the overall error of the production process, which can lead to inadequately fitting dental restorations. The aim of this study was to promote and test a new model and technique for in vitro evaluation of the dental impression accuracy, as well as to asses the dimensional stability of impression material depending on the material bulk, and its effect on the accuracy of working casts. Methods. Impressions were made by the monophasic technique using the experimental master model. Custom trays with spacing of 1, 2 and 3 mm were constructed by rapid prototyping. The overall of 10 impressions were made with each custom tray. Working casts were made with gypsum type IV. Measurement of working casts was done 24 h later using a co-ordinate measuring machine. Results. The obtained results show that the working casts of all the three custom trays were in most cases significantly different in the transversal and sagittal planes in relation to the master model. The height of abutments was mainly unaffected. The degree of convergence showed certain significance in all the three custom trays, most pronounced in the tray with 3 mm spacing. Conclusion. The impression material bulk of 1–3 mm could provide accurate working casts when using the monophasic impression technique. The increase of the distance between abutment teeth influences the accuracy of working casts depending on the material bulk. [Projekat Ministarstva nauke Republike Srbije, br. TR 35020: Research and development of modelling methods and approaches in manufacturing of dental recoveries with the application of modern technologies and computer aided systems

  1. TRACEABILITY OF PRECISION MEASUREMENTS ON COORDINATE MEASURING MACHINES – UNCERTAINTY ASSESSMENT BY USING CALIBRATED WORPIECES ON CMMs

    DEFF Research Database (Denmark)

    Tosello, Guido; De Chiffre, Leonardo

    This document is used in connection with one exercise 30 minutes duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercise concerns establishment of traceability of precision measurements on coordinate measuring machines. This document contains...... a short description of each step in the exercise, the uncertainty budget as described in the ISO/TS 15530 part 3 and tables from the excel spreadsheets....

  2. WIDE-AREA BASED ON COORDINATED TUNING OF FUZZY PSS AND FACTS CONTROLLER IN MULTI-MACHINE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Homayoun Ebrahimian

    2016-03-01

    Full Text Available In this paper coordination of fuzzy power system stabilizer (FPSS and flexible ac transmission systems (FACTS have been considered in a multi-machine power system. The proposed model, has been applied for a wide-area power system. The proposed FPSS presented with local, nonlinear feedbacks, and the corresponding control synthesis conditions are given in terms of solutions to a set of linear matrix inequalities (LMIs. For this model, in fuzzy control synthesis, the new proposed control design method is based on fewer fuzzy rules and less computational burden. Also, the parameters of FACTS controller have been evaluated by improved honey bee mating optimization (IHBMO. The effectiveness of the proposed method has been applied over two case studies of single-machine infinite-bus (SMIB and two areas four machine (TAFM Kundur’s power system. The obtained results demonstrate the superiority of proposed strategy.

  3. Sequential growth in solution of NiFe Prussian blue coordination network nano-layers on Si(100) surfaces

    International Nuclear Information System (INIS)

    Tricard, Simon; Costa-Coquelard, Claire; Volatron, Florence; Fleury, Benoit; Huc, Vincent; Mallah, Talal; Albouy, Pierre-Antoine; David, Christophe; Miserque, Frederic; Jegou, Pascale; Palacin, Serge

    2012-01-01

    Controlling the elaboration of Coordination Networks (CoNet) on surfaces at the nano-scale remains a challenge. One suitable technique is the Sequential Growth in Solution (SGS), which has the advantage to be simple, cheap and fast. We addressed two issues in this article: i) the controlled synthesis of ultra thin films of CoNet (thickness lower than 10 nm), and ii) the investigation of the influence of the precursors' concentration on the growth process. Si(100) was used because it is possible to prepare atomically flat Si-H surfaces, which is necessary for the growth of ultrathin films. We used, as a model system, the sequential reactions of K 4 [Fe(II)(CN) 6 ] and [Ni(II)(H 2 O) 6 ]Cl 2 that occur by the substitution of the water molecules in the coordination sphere of Ni(II) by the nitrogen atoms of ferrocyanide. We demonstrated that the nature of the deposited film depends mainly on the relative concentration of the anchoring sites versus the precursors' solution. Attenuated Total Reflection Fourier Transformed Infra Red (ATR-FTIR), X-ray reflectivity, X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscopy (AFM) were used to characterize the steps of the growth process. (authors)

  4. Development of a model of machine hand eye coordination and program specifications for a topological machine vision system

    Science.gov (United States)

    1972-01-01

    A unified approach to computer vision and manipulation is developed which is called choreographic vision. In the model, objects to be viewed by a projected robot in the Viking missions to Mars are seen as objects to be manipulated within choreographic contexts controlled by a multimoded remote, supervisory control system on Earth. A new theory of context relations is introduced as a basis for choreographic programming languages. A topological vision model is developed for recognizing objects by shape and contour. This model is integrated with a projected vision system consisting of a multiaperture image dissector TV camera and a ranging laser system. System program specifications integrate eye-hand coordination and topological vision functions and an aerospace multiprocessor implementation is described.

  5. Ultrasonic-assisted synthesis of nano lead(II) coordination polymer as precursors for preparation of lead(II) oxide nano-structures: Thermal, optical properties and XRD studies.

    Science.gov (United States)

    Ghavidelaghdam, Elham; Shahverdizadeh, Gholam Hossein; Motameni Tabatabai, Javad; Mirtamizdoust, Babak

    2018-04-01

    Nano structure of a lead (II) coordination polymer [Pb 2 (C 2 Cl 3 O 2 ) 2 (NO 3 ) 2 (C l2 H 8 N 2 ) 2 ] n (1), has been synthesized by a sonochemical method in different concentrations. The nano particles were characterized by scanning electron microscopy (SEM) X-ray powder diffraction (XRD), FT-IR spectroscopy and elemental analyses. The thermal stability of nano structure is closely investigated via thermal gravimetric (TGA), and compared with crystalline structure. The compounds are then heated to 600 °C to produce PbO nano particles. The resulting PbO is characterized through XRD and SEM analyses. Concentration of initial reagents effects on size and morphology of nano-structured compound 1 have been studied and show that low concentrations of initial reagents decreased particles size and leaded to uniform nano particles morphology. The photoluminescence properties of the prepared compound, as crystalline and as nanoparticles, have been investigated. The result showed a good correlation between the size and emission wavelength. Copyright © 2017. Published by Elsevier B.V.

  6. Towards biocompatible nano/microscale machines: self-propelled catalytic nanomotors not exhibiting acute toxicity

    Science.gov (United States)

    Khim Chng, Elaine Lay; Zhao, Guanjia; Pumera, Martin

    2014-01-01

    Recent advances in nanotechnology have led to the evolution of self-propelled, artificial nano/microjet motors. These intelligent devices are considered to be the next generation self-powered drug delivery system in the field of biomedical applications. While many studies have strived to further improve the various properties of these devices such as their efficiency, performance and power, little attention has been paid to the actual biocompatibility of nanojets in vivo. In this paper, we will present for the first time the investigation of the toxicity effects of nanojets on the viability of human lung epithelial cells (A549 cells). From the 24 h and 48 h post-exposure studies, it is clearly shown that the nanojets we used in our work has negligible influence on the cell viability across all the concentrations tested. As such, the toxicity profile of our nanojets have been shown to be neither dose- nor time-dependent. This is strongly indicative of the benign nature of our nanojets, which is of paramount significance as it is the first step towards the applications of nano/micromotors in real-world practical medical devices.

  7. CIRP Interlaboratory Comparison of Coordinate Measuring Machines using an Optomechanical Hole Plate - Final Report

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, Hans Nørgaard; Morace, Renata Erica

    2005-01-01

    be expected that the optomechanical hole plates can be calibrated using the DKD procedure with an uncertainty in the range between 0.5 µm and 2 µm. Using the hole plate, it is possible to compare the performance of measurements obtained using optical and mechanical CMMs. Optical CMM measurements can...... be divided in two groups. A group leading to deviations larger than 2 µm, and a group with deviations that are comparable to those using mechanical machines. All but one laboratory could perform reversal measurements. Transfer of traceability was established as follows: 8 using gauge blocks, 2 laser...... interferometers, 1 zerodur hole plate, 2 callipers, and 1 quartz standard. Out of the 23 measurement campaigns, 5 optical and 2 mechanical machines were not provided with establishment of traceability. The optomechanical hole plate is a suitable reference artefact providing traceability of CMMs, in particular...

  8. The influence of Span-20 surfactant and micro-/nano-Chromium (Cr) Powder Mixed Electrical Discharge Machining (PMEDM) on the surface characteristics of AISI D2 hardened steel

    Science.gov (United States)

    Hosni, N. A. J.; Lajis, M. A.

    2018-04-01

    The application of powder mixed dielectric to improve the efficiency of electrical discharge machining (EDM) has been extensively studied. Therefore, PMEDM have attracted the attention of many researchers since last few decades. Improvement in EDM process has resulted in the use of span-20 surfactant and Cr powder mixed in dielectric fluid, which results in increasing machiniability, better surface quality and faster machining time. However, the study of powder suspension size of surface charateristics in EDM field is still limited. This paper presents the improvement of micro-/nano- Cr powder size on the surface characteristics of the AISI D2 hardened steels in PMEDM. It has found that the reacst layer in PMEDM improved by as high as 41-53 % compared to conventional EDM. Also notably, the combination of added Cr powder and span-20 surfactant reduced the recast layer thickness significantly especially in nano-Cr size. This improvement was great potential adding nano-size Cr powder to dielectric for machining performance.

  9. MM98.52 - An industrial comparison of coordinate measuring machines in Scandinavia with focus on uncertainty statements

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Chiffre, Leonardo De

    1999-01-01

    This paper describes an industrial comparison of coordinate measuring machines (CMMs) carried out in the Scandinavian countries from October 1994 to May 1996. Fifty-nine industrial companies with a total of 62 CMMs participated in the project and measured a comparison package with five items chosen....... An important part of the intercomparison was to test the ability of the participants to determine measurement uncertainties. One of the uncertainties was based upon a "best guess" but nevertheless, many participants did not even report this uncertainty. Uncertainty budgeting was not used for measurements other...... than simple length. For each company, a comparison of their measurement ability with the reference laboratory and other Scandinavian companies was made possible. A network regarding CMMs was created in these Scandinavian countries. (C) 1999 Elsevier Science Inc. All rights reserved....

  10. Toughened and machinable glass matrix composites reinforced with graphene and graphene-oxide nano platelets

    Science.gov (United States)

    Porwal, Harshit; Tatarko, Peter; Grasso, Salvatore; Hu, Chunfeng; Boccaccini, Aldo R; Dlouhý, Ivo; Reece, Mike J

    2013-01-01

    The processing conditions for preparing well dispersed silica–graphene nanoplatelets and silica–graphene oxide nanoplatelets (GONP) composites were optimized using powder and colloidal processing routes. Fully dense silica–GONP composites with up to 2.5 vol% loading were consolidated using spark plasma sintering. The GONP aligned perpendicularly to the applied pressure during sintering. The fracture toughness of the composites increased linearly with increasing concentration of GONP and reached a value of ∼0.9 MPa m1/2 for 2.5 vol% loading. Various toughening mechanisms including GONP necking, GONP pull-out, crack bridging, crack deflection and crack branching were observed. GONP decreased the hardness and brittleness index (BI) of the composites by ∼30 and ∼50% respectively. The decrease in BI makes silica–GONP composites machinable compared to pure silica. When compared to silica–Carbon nanotube composites, silica–GONP composites show better process-ability and enhanced mechanical properties. PMID:27877614

  11. Comparison of the GUM and Monte Carlo methods on the flatness uncertainty estimation in coordinate measuring machine

    Directory of Open Access Journals (Sweden)

    Jalid Abdelilah

    2016-01-01

    Full Text Available In engineering industry, control of manufactured parts is usually done on a coordinate measuring machine (CMM, a sensor mounted at the end of the machine probes a set of points on the surface to be inspected. Data processing is performed subsequently using software, and the result of this measurement process either validates or not the conformity of the part. Measurement uncertainty is a crucial parameter for making the right decisions, and not taking into account this parameter can, therefore, sometimes lead to aberrant decisions. The determination of the uncertainty measurement on CMM is a complex task for the variety of influencing factors. Through this study, we aim to check if the uncertainty propagation model developed according to the guide to the expression of uncertainty in measurement (GUM approach is valid, we present here a comparison of the GUM and Monte Carlo methods. This comparison is made to estimate a flatness deviation of a surface belonging to an industrial part and the uncertainty associated to the measurement result.

  12. Sonochemical synthesis and characterization of nano-sized zinc(II coordination complex as a precursor for the preparation of pure-phase zinc(II oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Maryam Ranjbar

    2017-01-01

    Full Text Available In current study, nanoparticles and single crystals of a Zn(II coordination complex, [Zn(dmphI2](1, {dmph=2,9-dimethyl-1,10-phenanthroline(neocuproine}, have been synthesized by the reaction of zinc(II acetate, KI and neocuproine as ligand in methanol using sonochemical and heat gradient methods, respectively. The nanostructure of 1 was characterized by scanning electron microscopy (SEM, X-ray powder diffraction (XRD, FT-IR spectroscopy and elemental analyses, and the structure of compound 1 was determined by single-crystal X-ray diffraction. The thermal stability of nano-sized 1 has been studied by thermogravimetric (TG and differential thermal analyses (DTA. Structural determination of compound 1 reveals the Zn(II ion is four-coordinated in a distorted tetrahedral configuration by two N atoms from a 2,9-dimethyl-1,10-Phenanthroline ligand and two terminal I atoms. The effect of supercritical condition on stability, size and morphology of nano-structured compound 1 has also been studied. The XRD pattern of the residue obtained from thermal decomposition of nano-sized compound 1 at 600 °C under air atmosphere provided pure phase of ZnO with the average particles size of about 31 nm.

  13. Hydrothermal synthesis of Bismuth(III) coordination polymer and its transformation to nano α-Bi{sub 2}O{sub 3} for photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ya-Jing; Zheng, Yue-Qing, E-mail: zhengnbu@163.com; Zhu, Hong-Lin; Wang, Jin-Jian

    2016-07-15

    A new Bi(III) coordination polymer Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O (H{sub 2}pdc=pyridine-2,6-dicarboxylic acid) was synthesized by hydrothermal method. Solid state thermal decomposition of this complex under 500 °C for 1 h led to the foliated Bi{sub 2}O{sub 3} nanoparticles, which were then characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Comparative study on their photocatalytic activity toward the degradation of rhodamine B (RhB), methylene blue (MB) and methyl orange (MO) in polluted water was explored, and the mechanism of these photocatalytic degradation was discussed. These results provided some interesting insights into their photocatalytic applications. - Graphical abstract: We regard Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O with 1D chain structures as the precursor, then calcinate the complex to prepare nano-powder α-Bi{sub 2}O{sub 3}. The photochemical experiment indicates that Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O can be used as an efficient photocatalyst for the degradation of RhB and MB. Interestingly, nano α-Bi{sub 2}O{sub 3} shows higher activity than the commercial Bi{sub 2}O{sub 3} for the degradation of RhB, MB or MO. Display Omitted - Highlights: • A novel dinuclear Bi(III) coordination polymer is hydrothermally synthesized. • Calcinating the precursor Bi-CP will result in the nano Bi{sub 2}O{sub 3} with foliated morphology. • Nano Bi{sub 2}O{sub 3} shows higher activity than the commercial Bi{sub 2}O{sub 3} for the degradation of dyes.

  14. Production quality controls and geometric characterization of the IFMIF-RFQ modules via the usage of a Coordinate Measuring Machine

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Luigi, E-mail: luigi.ferrari@lnl.infn.it [INFN-LNL Laboratori Nazionali di Legnaro, Legnaro (Italy); Palmieri, Antonio [INFN-LNL Laboratori Nazionali di Legnaro, Legnaro (Italy); Pepato, Adriano; Prevedello, Alessandro; Dima, Razvan; Udup, Emil [INFN-Sezione di Padova, Padova (Italy)

    2017-02-15

    Highlights: • The production phases of the IFMIF-RFQ Modules is introduced. • Metrological controls through production are described and some results reported. • Radio-Frequency test is introduced by using geometric considerations. • Results from metrology and RF test are compared. • Acceptance of the modules has been guaranteed from that comparison. - Abstract: The RFQ of the IFMIF/EVEDA project (Pérez et al., 2015) is a 9.8 m long cavity able to accelerate a 125 mA deuteron beam from the input energy of 50 keV/u to the output energy of 2.5 MeV/u. Such RFQ operates at the frequency of 175 MHz and is composed of 18 mechanical modules approximately 0.55 long each (Pepato et al., 2010) . The RFQ realization involves the I.N.F.N. Sections of Padova, Torino and Bologna, as well as the Legnaro National Laboratories (L.N.L.). The metrological measurements via CMM (Coordinate Measuring Machine) provided to be a very effective tool both for quality controls along the RFQ production phases and in the reconstruction of the cavity geometric profile for each RFQ module. The scans in the most sensitive regions with respect to RF frequency, such as modulation, tips, base-vane width and vessel height provided the values of the cavity deviations from nominal geometry to be compared with design physic-driven tolerances and with RF measurements. Moreover, the comparison between mechanical and RF measurements suggests a methodology for the geometric reconstruction of the cavity axis and determines the final machining of the end surfaces of each module in view of the coupling with the adjacent ones. In this paper a detailed description of the metrological procedures and tests and of the RFQ along its production and assembly phases will be given and it will be shown that the adopted procedure allowed the attainment of the tuning range specifications for each RFQ module.

  15. An innovative method for coordinate measuring machine one-dimensional self-calibration with simplified experimental process.

    Science.gov (United States)

    Fang, Cheng; Butler, David Lee

    2013-05-01

    In this paper, an innovative method for CMM (Coordinate Measuring Machine) self-calibration is proposed. In contrast to conventional CMM calibration that relies heavily on a high precision reference standard such as a laser interferometer, the proposed calibration method is based on a low-cost artefact which is fabricated with commercially available precision ball bearings. By optimizing the mathematical model and rearranging the data sampling positions, the experimental process and data analysis can be simplified. In mathematical expression, the samples can be minimized by eliminating the redundant equations among those configured by the experimental data array. The section lengths of the artefact are measured at arranged positions, with which an equation set can be configured to determine the measurement errors at the corresponding positions. With the proposed method, the equation set is short of one equation, which can be supplemented by either measuring the total length of the artefact with a higher-precision CMM or calibrating the single point error at the extreme position with a laser interferometer. In this paper, the latter is selected. With spline interpolation, the error compensation curve can be determined. To verify the proposed method, a simple calibration system was set up on a commercial CMM. Experimental results showed that with the error compensation curve uncertainty of the measurement can be reduced to 50%.

  16. A self-centering active probing technique for kinematic parameter identification and verification of articulated arm coordinate measuring machines

    International Nuclear Information System (INIS)

    Santolaria, J; Brau, A; Velázquez, J; Aguilar, J J

    2010-01-01

    A crucial task in the procedure of identifying the parameters of a kinematic model of an articulated arm coordinate measuring machine (AACMM) or robot arm is the process of capturing data. In this paper a capturing data method is analyzed using a self-centering active probe, which drastically reduces the capture time and the required number of positions of the gauge as compared to the usual standard and manufacturer methods. The mathematical models of the self-centering active probe and AACMM are explained, as well as the mathematical model that links the AACMM global reference system to the probe reference system. We present a self-calibration method that will allow us to determine a homogeneous transformation matrix that relates the probe's reference system to the AACMM last reference system from the probing of a single sphere. In addition, a comparison between a self-centering passive probe and self-centering active probe is carried out to show the advantages of the latter in the procedures of kinematic parameter identification and verification of the AACMM

  17. Damping Improvement of Multiple Damping Controllers by Using Optimal Coordinated Design Based on PSS and FACTS-POD in a Multi-Machine Power System

    Directory of Open Access Journals (Sweden)

    Ali Nasser Hussain

    2016-09-01

    Full Text Available The aim of this study is to present a comprehensive comparison and assessment of the damping function improvement of power system oscillation for the multiple damping controllers using the simultaneously coordinated design based on Power System Stabilizer (PSS and Flexible AC Transmission System (FACTS devices. FACTS devices can help in the enhancing the stability of the power system by adding supplementary damping controller to the control channel of the FACTS input to implement the task of Power Oscillation Damping (FACT POD controller. Simultaneous coordination can be performed in different ways. First, the dual coordinated designs between PSS and FACTS POD controller or between different FACTS POD controllers are arranged in a multiple FACTS devices without PSS. Second, the simultaneous coordination has been extended to triple coordinated design among PSS and different FACTS POD controllers. The parameters of the damping controllers have been tuned in the individual controllers and coordinated designs by using a Chaotic Particle Swarm Optimization (CPSO algorithm that optimized the given eigenvalue-based objective function. The simulation results for a multi-machine power system show that the dual coordinated design provide satisfactory damping performance over the individual control responses. Furthermore, the triple coordinated design has been shown to be more effective in damping oscillations than the dual damping controllers.

  18. Synthesis of Nano-Zinc Oxide Loaded on Mesoporous Silica by Coordination Effect and Its Photocatalytic Degradation Property of Methyl Orange.

    Science.gov (United States)

    Shen, Zhichuan; Zhou, Hongjun; Chen, Huayao; Xu, Hua; Feng, Chunhua; Zhou, Xinhua

    2018-05-09

    Salicylaldimine-modified mesoporous silica (Sal-MCM-3 and Sal-MCM-9) was prepared through a co-condensation method with different amounts of added salicylaldimine. With the coordination from the salicylaldimine, zinc ions were impregnated on Sal-MCM-3 and Sal-MCM-9. Then, Zn-Sal-MCM-3 and Zn-Sal-MCM-9 were calcined to obtain nano-zinc oxide loaded on mesoporous silica (ZnO-MCM-3 and ZnO-MCM-9). The material structures were systematically studied by Fourier transform infrared spectroscopy (FTIR), N₂ adsorption/desorption measurements, X-ray powder diffraction (XRD), zeta potential, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet diffused reflectance spectrum (UV-vis DRS), and thermogravimetry (TGA). Methyl orange (MO) was used to investigate the photocatalysis behavior of ZnO-MCM-3 and ZnO-MCM-9. The results confirmed that nano ZnO was loaded in the channels as well as the outside surface of mesoporous silica (MCM-41). The modification of salicylaldimine helped MCM-41 to load more nano ZnO on MCM-41. When the modification amount of salicylaldimine was one-ninth and one-third of the mass of the silicon source, respectively, the load of nano ZnO on ZnO-MCM-9 and ZnO-MCM-3 had atomic concentrations of 1.27 and 2.03, respectively. ZnO loaded on ZnO-MCM-9 had a wurtzite structure, while ZnO loaded on ZnO-MCM-3 was not in the same crystalline group. The blocking effect caused by nano ZnO in the channels reduced the orderliness of MCM-41. The photodegradation of MO can be divided in two processes, which are mainly controlled by the surface areas of ZnO-MCM and the loading amount of nano ZnO, respectively. The pseudo-first-order model was more suitable for the photodegradation process.

  19. Z-correction, a method for achieving ultraprecise self-calibration on large area coordinate measurement machines for photomasks

    Science.gov (United States)

    Ekberg, Peter; Stiblert, Lars; Mattsson, Lars

    2014-05-01

    High-quality photomasks are a prerequisite for the production of flat panel TVs, tablets and other kinds of high-resolution displays. During the past years, the resolution demand has become more and more accelerated, and today, the high-definition standard HD, 1920 × 1080 pixels2, is well established, and already the next-generation so-called ultra-high-definition UHD or 4K display is entering the market. Highly advanced mask writers are used to produce the photomasks needed for the production of such displays. The dimensional tolerance in X and Y on absolute pattern placement on these photomasks, with sizes of square meters, has been in the range of 200-300 nm (3σ), but is now on the way to be <150 nm (3σ). To verify these photomasks, 2D ultra-precision coordinate measurement machines are used with even tighter tolerance requirements. The metrology tool MMS15000 is today the world standard tool used for the verification of large area photomasks. This paper will present a method called Z-correction that has been developed for the purpose of improving the absolute X, Y placement accuracy of features on the photomask in the writing process. However, Z-correction is also a prerequisite for achieving X and Y uncertainty levels <90 nm (3σ) in the self-calibration process of the MMS15000 stage area of 1.4 × 1.5 m2. When talking of uncertainty specifications below 200 nm (3σ) of such a large area, the calibration object used, here an 8-16 mm thick quartz plate of size approximately a square meter, cannot be treated as a rigid body. The reason for this is that the absolute shape of the plate will be affected by gravity and will therefore not be the same at different places on the measurement machine stage when it is used in the self-calibration process. This mechanical deformation will stretch or compress the top surface (i.e. the image side) of the plate where the pattern resides, and therefore spatially deform the mask pattern in the X- and Y-directions. Errors due

  20. Z-correction, a method for achieving ultraprecise self-calibration on large area coordinate measurement machines for photomasks

    International Nuclear Information System (INIS)

    Ekberg, Peter; Stiblert, Lars; Mattsson, Lars

    2014-01-01

    High-quality photomasks are a prerequisite for the production of flat panel TVs, tablets and other kinds of high-resolution displays. During the past years, the resolution demand has become more and more accelerated, and today, the high-definition standard HD, 1920 × 1080 pixels 2 , is well established, and already the next-generation so-called ultra-high-definition UHD or 4K display is entering the market. Highly advanced mask writers are used to produce the photomasks needed for the production of such displays. The dimensional tolerance in X and Y on absolute pattern placement on these photomasks, with sizes of square meters, has been in the range of 200–300 nm (3σ), but is now on the way to be <150 nm (3σ). To verify these photomasks, 2D ultra-precision coordinate measurement machines are used with even tighter tolerance requirements. The metrology tool MMS15000 is today the world standard tool used for the verification of large area photomasks. This paper will present a method called Z-correction that has been developed for the purpose of improving the absolute X, Y placement accuracy of features on the photomask in the writing process. However, Z-correction is also a prerequisite for achieving X and Y uncertainty levels <90 nm (3σ) in the self-calibration process of the MMS15000 stage area of 1.4 × 1.5 m 2 . When talking of uncertainty specifications below 200 nm (3σ) of such a large area, the calibration object used, here an 8–16 mm thick quartz plate of size approximately a square meter, cannot be treated as a rigid body. The reason for this is that the absolute shape of the plate will be affected by gravity and will therefore not be the same at different places on the measurement machine stage when it is used in the self-calibration process. This mechanical deformation will stretch or compress the top surface (i.e. the image side) of the plate where the pattern resides, and therefore spatially deform the mask pattern in the X- and Y

  1. Dr Mauro Dell’Ambrogio, State Secretary for Education and Research of the Swiss Confederation visit the ATLAS Cavern and the LHC Machine with with Collaboration Spokesperson P. Jenni and Technical Coordinator M. Nessi.

    CERN Multimedia

    Maximilien Brice

    2008-01-01

    Dr Mauro Dell’Ambrogio, State Secretary for Education and Research of the Swiss Confederation visit the ATLAS Cavern and the LHC Machine with with Collaboration Spokesperson P. Jenni and Technical Coordinator M. Nessi.

  2. Machine Learning-Assisted Network Inference Approach to Identify a New Class of Genes that Coordinate the Functionality of Cancer Networks.

    Science.gov (United States)

    Ghanat Bari, Mehrab; Ung, Choong Yong; Zhang, Cheng; Zhu, Shizhen; Li, Hu

    2017-08-01

    Emerging evidence indicates the existence of a new class of cancer genes that act as "signal linkers" coordinating oncogenic signals between mutated and differentially expressed genes. While frequently mutated oncogenes and differentially expressed genes, which we term Class I cancer genes, are readily detected by most analytical tools, the new class of cancer-related genes, i.e., Class II, escape detection because they are neither mutated nor differentially expressed. Given this hypothesis, we developed a Machine Learning-Assisted Network Inference (MALANI) algorithm, which assesses all genes regardless of expression or mutational status in the context of cancer etiology. We used 8807 expression arrays, corresponding to 9 cancer types, to build more than 2 × 10 8 Support Vector Machine (SVM) models for reconstructing a cancer network. We found that ~3% of ~19,000 not differentially expressed genes are Class II cancer gene candidates. Some Class II genes that we found, such as SLC19A1 and ATAD3B, have been recently reported to associate with cancer outcomes. To our knowledge, this is the first study that utilizes both machine learning and network biology approaches to uncover Class II cancer genes in coordinating functionality in cancer networks and will illuminate our understanding of how genes are modulated in a tissue-specific network contribute to tumorigenesis and therapy development.

  3. Nano surface generation of grinding process using carbon nano tubes

    Indian Academy of Sciences (India)

    Nano surface finish has become an important parameter in the semiconductor, optical, electrical and mechanical industries. The materials used in these industries are classified as difficult to machine materials such as ceramics, glasses and silicon wafers. Machining of these materials up to nano accuracy is a great ...

  4. Investigation on influence parameters in measurements of the optomechanical hole plate using an optical coordinate measuring machine

    DEFF Research Database (Denmark)

    Morace, Renate Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2003-01-01

    This paper describes the results of an experimental investigation on influence parameters in optical coordinate measurements of the optomechanical hole plate. Special attention was paid to the background of the object, which strongly influences the measurement result. Furthermore, it is seen that...... influences, the measurements were all performed with no movements of the axes of the CMM....

  5. The effect of dynamic operating conditions on nano-particle emissions from a light-duty diesel engine applicable to prime and auxiliary machines on marine vessels

    Directory of Open Access Journals (Sweden)

    Hyungmin Lee

    2012-12-01

    Full Text Available This study presents the nano-sized particle emission characteristics from a small turbocharged common rail diesel engine applicable to prime and auxiliary machines on marine vessels. The experiments were conducted under dynamic engine operating conditions, such as steady-state, cold start, and transient conditions. The particle number and size distributions were analyzed with a high resolution PM analyzer. The diesel oxidation catalyst (DOC had an insignificant effect on the reduction in particle number, but particle number emissions were drastically reduced by 3 to 4 orders of magnitude downstream of the diesel particulate filter (DPF at various steady conditions. Under high speed and load conditions, the particle filtering efficiency was decreased by the partial combustion of trapped particles inside the DPF because of the high exhaust temperature caused by the increased particle number concentration. Retarded fuel injection timing and higher EGR rates led to increased particle number emissions. As the temperature inside the DPF increased from 25 °C to 300 °C, the peak particle number level was reduced by 70% compared to cold start conditions. High levels of nucleation mode particle generation were found in the deceleration phases during the transient tests.

  6. Thermal-Induced Errors Prediction and Compensation for a Coordinate Boring Machine Based on Time Series Analysis

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2014-01-01

    Full Text Available To improve the CNC machine tools precision, a thermal error modeling for the motorized spindle was proposed based on time series analysis, considering the length of cutting tools and thermal declined angles, and the real-time error compensation was implemented. A five-point method was applied to measure radial thermal declinations and axial expansion of the spindle with eddy current sensors, solving the problem that the three-point measurement cannot obtain the radial thermal angle errors. Then the stationarity of the thermal error sequences was determined by the Augmented Dickey-Fuller Test Algorithm, and the autocorrelation/partial autocorrelation function was applied to identify the model pattern. By combining both Yule-Walker equations and information criteria, the order and parameters of the models were solved effectively, which improved the prediction accuracy and generalization ability. The results indicated that the prediction accuracy of the time series model could reach up to 90%. In addition, the axial maximum error decreased from 39.6 μm to 7 μm after error compensation, and the machining accuracy was improved by 89.7%. Moreover, the X/Y-direction accuracy can reach up to 77.4% and 86%, respectively, which demonstrated that the proposed methods of measurement, modeling, and compensation were effective.

  7. Microscale soil structure development after glacial retreat - using machine-learning based segmentation of elemental distributions obtained by NanoSIMS

    Science.gov (United States)

    Schweizer, Steffen; Schlueter, Steffen; Hoeschen, Carmen; Koegel-Knabner, Ingrid; Mueller, Carsten W.

    2017-04-01

    Soil organic matter (SOM) is distributed on mineral surfaces depending on physicochemical soil properties that vary at the submicron scale. Nanoscale secondary ion mass spectrometry (NanoSIMS) can be used to visualize the spatial distribution of up to seven elements simultaneously at a lateral resolution of approximately 100 nm from which patterns of SOM coatings can be derived. Existing computational methods are mostly confined to visualization and lack spatial quantification measures of coverage and connectivity of organic matter coatings. This study proposes a methodology for the spatial analysis of SOM coatings based on supervised pixel classification and automatic image analysis of the 12C, 12C14N (indicative for SOM) and 16O (indicative for mineral surfaces) secondary ion distributions. The image segmentation of the secondary ion distributions into mineral particle surface and organic coating was done with a machine learning algorithm, which accounts for multiple features like size, color, intensity, edge and texture in all three ion distributions simultaneously. Our workflow allowed the spatial analysis of differences in the SOM coverage during soil development in the Damma glacier forefield (Switzerland) based on NanoSIMS measurements (n=121; containing ca. 4000 particles). The Damma chronosequence comprises several stages of soil development with increasing ice-free period (from ca. 15 to >700 years). To investigate mineral-associated SOM in the developing soil we obtained clay fractions (2.2 g cm3). We found increased coverage and a simultaneous development from patchy-distributed organic coatings to more connected coatings with increasing time after glacial retreat. The normalized N:C ratio (12C14N: (12C14N + 12C)) on the organic matter coatings was higher in the medium-aged soils than in the young and mature ones in both heavy and light mineral fraction. This reflects the sequential accumulation of proteinaceous SOM in the medium-aged soils and C

  8. Nano Materials

    International Nuclear Information System (INIS)

    Jin, In Ju; Lee, Ik Mo; Kwon, Yeung Gu

    2006-02-01

    This book introduces background of nano science such as summary, plenty room at the bottom, access way to nano technique, nanoparticles using bottom-up method which are a marvel of nature, and modern alchemy : chemical synthesis of artificial nano structure, understanding of quantum mechanics, STM/AFM, nano metal powder, ceramic nanoparticles, nano structure film, manufacture of nanoparticles using reverse micelle method, carbon nano tube, sol-gel material, nano energy material, nano catalyst nano bio material technology and spintronics.

  9. Nano technology

    International Nuclear Information System (INIS)

    Lee, In Sik

    2002-03-01

    This book is introduction of nano technology, which describes what nano technology is, alpha and omega of nano technology, the future of Korean nano technology and human being's future and nano technology. The contents of this book are nano period is coming, a engine of creation, what is molecular engineering, a huge nano technology, technique on making small things, nano materials with exorbitant possibility, the key of nano world the most desirable nano technology in bio industry, nano development plan of government, the direction of development for nano technology and children of heart.

  10. Security in Nano Communication: Challenges and Open Research Issues

    NARCIS (Netherlands)

    Dressler, Falko; Kargl, Frank

    Nano communication is one of the fastest growing emerging research fields. In recent years, much progress has been achieved in developing nano machines supporting our needs in health care and other scenarios. However, experts agree that only the interaction among nano machines allows to address the

  11. Nano market and analysis of technology

    International Nuclear Information System (INIS)

    2001-10-01

    This book gives descriptions of summary of nano technology with meaning, character and field, trend of technical development in domestic, current condition of nano basic research in domestic, trend of technical development in foreign country such as summary, trend of technology by industrial field, machine and metronics, material and process, standard of nano mechanism, scale of market and trend, competitiveness of nano technology of major country and research development system in Japan, Korean company and major countries.

  12. Book Review: Nano physics & Nano technology

    Directory of Open Access Journals (Sweden)

    Abdolkhaled Zaree

    2012-12-01

    Full Text Available During last decades, there are a lot of emphases on studying material behavior in atomic scale. In most scientific and engineering fields, one can see the effect of nanotechnology. The aim of nanoscience is to design and fabrication of new and applicable materials. Nowadays, Nano is a popular science which chemists, physicist, doctors, engineers, financial managers and environment's fans for creating a good life via nanoscience have a great cooperation with each others. Materials in nano scale such as nanotubes and nanowires have extraordinary properties which by optimization of these properties in nano scale and then develop these properties to macro scale, they've been challenging issues. For instance, materials in nano scale improve mechanical properties of polymers and metallic materials via nano particles and on the other hand by producing a thin film on surfaces improve surface hardening. Besides, nanotechnology is in hi-tech industries such as magnetic devices, surface coating, and biomaterial, material having sensors, polymers, gels, ceramics and intelligent membrane. Nano-carbon tubes are considered intelligent due to the fact that they couple electrochemical and elastic properties simultaneously, hence have greater activation energy density in comparison with other intelligent materials. Studying nanoscience is important because it causes the life to be better. Future Materials and structures will have a lot of outstanding properties. Intelligent machines can repair, recycle and reconstruct themselves. All these features are only possible in nano zone. Nano in engineering science can provide the possibility of making light missiles for exploring space. The reduced weight can be achieved by replacing traditional materials with hybrid nanocomposites.

  13. Position Accuracy of Implant Analogs on 3D Printed Polymer versus Conventional Dental Stone Casts Measured Using a Coordinate Measuring Machine.

    Science.gov (United States)

    Revilla-León, Marta; Gonzalez-Martín, Óscar; Pérez López, Javier; Sánchez-Rubio, José Luis; Özcan, Mutlu

    2017-11-17

    To compare the accuracy of implant analog positions on complete edentulous maxillary casts made of either dental stone or additive manufactured polymers using a coordinate measuring machine (CMM). A completely edentulous maxillary model of a patient with 7 implant analogs was obtained. From this model, two types of casts were duplicated, namely conventional dental stone (CDS) using a custom tray impression technique after splinting (N = 5) and polymer cast using additive manufacturing based on the STL file generated. Polymer casts (N = 20; n = 5 per group) were fabricated using 4 different additive manufacturing technologies (multijet printing-MJP1, direct light processing-DLP, stereolithography-SLA, multijet printing-MJP2). CMM was used to measure the correct position of each implant, and distortion was calculated for each system at x-, y-, and z-axes. Measurements were repeated 3 times per specimen in each axis yielding a total of 546 measurements. Data were analyzed using ANOVA, Sheffé tests, and Bonferroni correction (α = 0.05). Compared to CMM, the mean distortion (μm) ranged from 22.7 to 74.9, 23.4 to 49.1, and 11.0 to 85.8 in the x-, y-, and z-axes, respectively. CDS method (x-axis: 37.1; z-axis: 27.62) showed a significant difference compared to DLP on the x-axis (22.7) (p = 0.037) and to MJP1 on the z-axis (11.0) (p = 0.003). Regardless of the cast system, x-axes showed more distortion (42.6) compared to y- (34.6) and z-axes (35.97). Among additive manufacturing technologies, MJP2 presented the highest (64.3 ± 83.6), and MJP1 (21.57 ± 16.3) and DLP (27.07 ± 20.23) the lowest distortion, which was not significantly different from CDS (32.3 ± 22.73) (p > 0.05). For the fabrication of the definitive casts for implant prostheses, one of the multijet printing systems and direct light processing additive manufacturing technologies showed similar results to conventional dental stone. Conventional dental stone casts could be accurately duplicated using some

  14. Coordinating controls

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-07-15

    While physics Laboratories are having to absorb cuts in resources, the machines they rely on are becoming more and more complex, requiring increasingly sophisticated systems. Rather than being a resourceful engineer or physicist able to timber together solutions in his 'backyard', the modern controls specialist has become a professional in his own right. Because of possible conflicts between increasing sophistication on one hand and scarcer resources on the other, there was felt a need for more contacts among controls specialists to exchange experiences, coordinate development and discuss 'family problems', away from meetings where the main interest is on experimental physics.

  15. Coordinating controls

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    While physics Laboratories are having to absorb cuts in resources, the machines they rely on are becoming more and more complex, requiring increasingly sophisticated systems. Rather than being a resourceful engineer or physicist able to timber together solutions in his 'backyard', the modern controls specialist has become a professional in his own right. Because of possible conflicts between increasing sophistication on one hand and scarcer resources on the other, there was felt a need for more contacts among controls specialists to exchange experiences, coordinate development and discuss 'family problems', away from meetings where the main interest is on experimental physics

  16. Effect of Machining Velocity in Nanoscale Machining Operations

    International Nuclear Information System (INIS)

    Islam, Sumaiya; Khondoker, Noman; Ibrahim, Raafat

    2015-01-01

    The aim of this study is to investigate the generated forces and deformations of single crystal Cu with (100), (110) and (111) crystallographic orientations at nanoscale machining operation. A nanoindenter equipped with nanoscratching attachment was used for machining operations and in-situ observation of a nano scale groove. As a machining parameter, the machining velocity was varied to measure the normal and cutting forces. At a fixed machining velocity, different levels of normal and cutting forces were generated due to different crystallographic orientations of the specimens. Moreover, after machining operation percentage of elastic recovery was measured and it was found that both the elastic and plastic deformations were responsible for producing a nano scale groove within the range of machining velocities from 250-1000 nm/s. (paper)

  17. Ultrasonic synthesis of two new zinc(II) bipyridine coordination polymers: New precursors for preparation of zinc(II) oxide nano-particles.

    Science.gov (United States)

    Fard, Mohammad Jaafar Soltanian; Hayati, Payam; Firoozadeh, Azita; Janczak, Jan

    2017-03-01

    Nanoparticles of two zinc(II) coordination polymers (CPs), [Zn(μ-4,4'-bipy)Cl 2 ] n (1) and [Zn(μ-4,4'-bipy)Br 2 ] n (2) L=bpy=4,4'-bipyridine ligand, have been synthesized by use of a sonochemical process and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) spectroscopy and elemental analyses. The single crystal X-ray data of compounds 1 and 2 imply that the Zn +2 ions are four coordinated. Topological analysis shows that 1D coordination networks of 1 and 2 can be classified as underlying nets of topological types 2C1. Nanoparticles of zinc(II) oxide have been prepared by calcination of two different zinc (II) CPs at 450°C that were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and IR spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Nano dentistry

    International Nuclear Information System (INIS)

    Oh, S.; Park, Y.B.; Kim, S.; Jin, S.

    2014-01-01

    Nano technology in dentistry has drawn many scientists’ and clinicians’ attention to significant advances in the diagnosis, treatment, and prevention of oral disease. Also, nano materials in dentistry have been studied to overcome the physical and chemical characteristics of conventional dental materials. These interesting facts are the motivation of this special issue. The presented issue provides a variety of topics in the field of dentistry such as novel nano filled composite resin, the cytotoxicity of nanoparticles deposited on orthodontic bands, the osseointegration of 3D nano scaffold, and nano surface treated implant.

  19. A flexible and cost-effective compensation method for leveling using large-scale coordinate measuring machines and its application in aircraft digital assembly

    Science.gov (United States)

    Deng, Zhengping; Li, Shuanggao; Huang, Xiang

    2018-06-01

    In the assembly process of large-size aerospace products, the leveling and horizontal alignment of large components are essential prior to the installation of an inertial navigation system (INS) and the final quality inspection. In general, the inherent coordinate systems of large-scale coordinate measuring devices are not coincident with the geodetic horizontal system, and a dual-axis compensation system is commonly required for the measurement of difference in heights. These compensation systems are expensive and dedicated designs for different devices at present. Considering that a large-size assembly site usually needs more than one measuring device, a compensation approach which is versatile for different devices would be a more convenient and economic choice for manufacturers. In this paper, a flexible and cost-effective compensation method is proposed. Firstly, an auxiliary measuring device called a versatile compensation fixture (VCF) is designed, which mainly comprises reference points for coordinate transformation and a dual-axis inclinometer, and a kind of network tighten points (NTPs) are introduced and temporarily deployed in the large measuring space to further reduce transformation error. Secondly, the measuring principle of height difference is studied, based on coordinate transformation theory and trigonometry while considering the effects of earth curvature, and the coordinate transformation parameters are derived by least squares adjustment. Thirdly, the analytical solution of leveling uncertainty is analyzed, based on which the key parameters of the VCF and the proper deployment of NTPs are determined according to the leveling accuracy requirement. Furthermore, the proposed method is practically applied to the assembly of a large helicopter by developing an automatic leveling and alignment system. By measuring four NTPs, the leveling uncertainty (2σ) is reduced by 29.4% to about 0.12 mm, compared with that without NTPs.

  20. Nano-tribology and materials in MEMS

    CERN Document Server

    Satyanarayana, N; Lim, Seh

    2013-01-01

    This book brings together recent developments in the areas of MEMS tribology, novel lubricants and coatings for nanotechnological applications, biomimetics in tribology and fundamentals of micro/nano-tribology. Tribology plays important roles in the functioning and durability of machines at small length scales because of the problems associated with strong surface adhesion, friction, wear etc. Recently, a number of studies have been conducted to understand tribological phenomena at nano/micro scales and many new tribological solutions for MEMS have been proposed.

  1. Machine Shop Grinding Machines.

    Science.gov (United States)

    Dunn, James

    This curriculum manual is one in a series of machine shop curriculum manuals intended for use in full-time secondary and postsecondary classes, as well as part-time adult classes. The curriculum can also be adapted to open-entry, open-exit programs. Its purpose is to equip students with basic knowledge and skills that will enable them to enter the…

  2. The world of Nano

    International Nuclear Information System (INIS)

    Noh, Seung Jeong; Hyun, Jun Won; An, Yong Hyeon; Lee, Sung Uk; Jee, Hye Gu; Kim, Young Seon

    2006-07-01

    The contents of this book are the beginning of nano technology, definition of nano, commercialization of nano technology, prospect of nano technology, survive with nano t-, development strategy of n-t in the U.S, and Japan, Korea, and other countries, comparison of development strategy of n-t among each country, various measurement technology for practical n-t, scanning tunneling microscopy, nano device, carbon nano tube, nano belt and nano wire, application of sensor in daily life, energy, post-Genome period and using as medicine with nano bio technology.

  3. [Biomimetic mineralization of rod-like cellulose nano-whiskers and spectrum analysis].

    Science.gov (United States)

    Qu, Ping; Wang, Xuan; Cui, Xiao-xia; Zhang, Li-ping

    2012-05-01

    Cellulose nano-whiskers/nano-hydroxyapatite composite was prepared with biomimetic mineralization using rod-like cellulose nano-whiskers as template. The cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope-energy dispersive analysis of X-rays (SEM-EDXA). Variation and distribution of carbon, oxygen, calcium, and phosphorus in the composites were studied. The morphologies and growth mechanism of nano-hydroxyapatite were analyzed. The results showed that nano-hydroxyapatite was formed on the surface of cellulose nano-whiskers; the carbon-oxygen ratio of cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite was 1.81 and 1.54, respectively; the calcium-phosphorus ratio of the composite was 1.70. The nucleation of nano-hydroxyapatite was around the hydroxyl groups of cellulose nano-whiskers. It is suggested that there is coordination between the hydroxyl groups of cellulose nano-whiskers and calcium ions of nano-hydroxyapatite. The nano-hydroxyapatite can distribute in the matrix of cellulose nano-whiskers. From the atomic force microscope (AFM) images, we can see that the diameter of the spherical nano-hydroxyapatite particles was about 20 nm.

  4. Nano Fertilizers

    Directory of Open Access Journals (Sweden)

    Hatice DAĞHAN

    2017-06-01

    Full Text Available Agricultural land is decreasing day by day due to erosion, environmental pollution, unconscious irrigation and fertilization. On the other hand, it is necessary to increase agricultural production in order to meet the needs of the developing industry as well as the nutritional needs of the growing population. In the recent years, nano fertilizers have begun to be produced to obtain the highest amount and quality of production from the unit area. Previous research shows that nano fertilizers cause an increase in the use efficiency of plant nutrients, reduce soil toxicity, minimize the potential adverse effects of excessive chemical fertilizer use, and reduce fertilizer application frequency. Nano fertilizers are important in agriculture to increase crop yield and nutrient use efficiency, and to reduce excessive use ofchemical fertilizers. The most important properties of these fertilizers are that they contain one or more of macro and micronutrients, they can be applied frequently in small amounts and are environmentally friendly. However, when applied at high doses, they exhibit decreasing effects on plant growth and crop yields, similar to chemical fertilizers. In this review, the definition, importan ce, and classification of nano fertilizers, their application in plant production, advantages and disadvantages and the results obtained in this field were discussed.

  5. Towards security in nano-communication : Challenges and opportunities

    NARCIS (Netherlands)

    Dressler, Falko; Kargl, Frank

    Incredible improvements in the field of nano-technologies have enabled nano-scale machines that promise new solutions for several applications in biomedical, industry and military fields. Some of these applications require or might exploit the potential advantages of communication and hence

  6. Magnet Fiducialization with Coordinate Measuring Machines

    International Nuclear Information System (INIS)

    Friedsam, H.; Oren, W.; Pietryka, M.; SLAC

    2005-01-01

    One of the fundamental alignment problems encountered when building a particle accelerator is the transfer of a component's magnetic centerline position to external fiducials. This operation, dubbed fiducialization, is critical because it can contribute significantly to the alignment error budget. The fiducialization process requires two measurements: (1) from magnetic centerline to mechanical centerline, and (2) from mechanical centerline to external fiducials. This paper will focus on methods for observing the second measurement. Two Stanford Linear Collider (SLC) examples are presented. The object of magnet fiducialization is to relate the magnet-defined beamline position to exterior reference surfaces. To be useful for later component alignment, this relationship must be established in a manner consistent with overall positioning tolerances. The error budget for the SLC's ± 100 (micro)m component to component alignment tolerance is as follows: magnetic centerline to mechanical centerline--σ = ±30 (micro)m; mechanical centerline to fiducial marks--σ = ±50 (micro)m; and fiducial marks to adjacent components--σ = ±80 (micro)m; the TOTAL σ = ±100 (micro)m. The offset between the mechanical and magnetic centerlines of well-known magnets is generally smaller than the ±30 (micro)m measurement tolerance. It is commonly assumed to be zero without measurement. When this tiny value must be measured, extreme care is necessary to avoid obscuring the offset with measurement tool registration errors. In contrast, the mechanical centerline to fiducial measurement must be performed on every magnet. The 50 (micro)m tolerance for this operation is only slightly larger and pushes conventional surveying technology to its limit

  7. Magnet Fiducialization with Coordinate Measuring Machines

    Energy Technology Data Exchange (ETDEWEB)

    Friedsam, H.; Oren, W.; Pietryka, M.; /SLAC

    2005-08-12

    One of the fundamental alignment problems encountered when building a particle accelerator is the transfer of a component's magnetic centerline position to external fiducials. This operation, dubbed fiducialization, is critical because it can contribute significantly to the alignment error budget. The fiducialization process requires two measurements: (1) from magnetic centerline to mechanical centerline, and (2) from mechanical centerline to external fiducials. This paper will focus on methods for observing the second measurement. Two Stanford Linear Collider (SLC) examples are presented. The object of magnet fiducialization is to relate the magnet-defined beamline position to exterior reference surfaces. To be useful for later component alignment, this relationship must be established in a manner consistent with overall positioning tolerances. The error budget for the SLC's {+-} 100 {micro}m component to component alignment tolerance is as follows: magnetic centerline to mechanical centerline--{sigma} = {+-}30 {micro}m; mechanical centerline to fiducial marks--{sigma} = {+-}50 {micro}m; and fiducial marks to adjacent components--{sigma} = {+-}80 {micro}m; the TOTAL {sigma} = {+-}100 {micro}m. The offset between the mechanical and magnetic centerlines of well-known magnets is generally smaller than the {+-}30 {micro}m measurement tolerance. It is commonly assumed to be zero without measurement. When this tiny value must be measured, extreme care is necessary to avoid obscuring the offset with measurement tool registration errors. In contrast, the mechanical centerline to fiducial measurement must be performed on every magnet. The 50 {micro}m tolerance for this operation is only slightly larger and pushes conventional surveying technology to its limit.

  8. Coordinate Measuring Machine for Characterizing Conformal Optics

    National Research Council Canada - National Science Library

    Jacobs, Stephen

    2001-01-01

    ... Nanotech 150AG Aspharic Grinder and the Nanotecnnologv Systems Nanotech 5OOFG Freeform Generator. The unique and complex nature of these parts prevented them from being characterized with standard optical metrology instrumentation...

  9. Surface Nano Structures Manufacture Using Batch Chemical Processing Methods for Tooling Applications

    DEFF Research Database (Denmark)

    Tosello, Guido; Calaon, Matteo; Gavillet, J.

    2011-01-01

    The patterning of large surface areas with nano structures by using chemical batch processes to avoid using highenergy intensive nano machining processes was investigated. The capability of different surface treatment methods of creating micro and nano structured adaptable mould inserts for subse...

  10. Current state of micro machine technologies and summary of its research and development. ; Research and development of the project requiring coordination among industries, government and universities, and international cooperation. Micro machine gijutsu no genjo to kenkyu kaihatsu no gaiyo. ; Hon project no kenkyu kaihatsu ni wa sankangaku no renkei to kokusai kyoryoku ga juyo

    Energy Technology Data Exchange (ETDEWEB)

    Konaka, M [Agency of Industrial Science and Technology, Tokyo (Japan)

    1991-11-15

    A summary is given on the current state of micro machine (MM) technologies and its research and development. The large scale project system was inaugurated in 1966 under the coordinations among the industries, government and universities. The MM technology creates micro movement mechanisms using IC{prime}s in place of electronic circuits. The subject is to perform an IC manufacturing process which can process IC{prime}s three-dimensionally and assemble them simultaneously, and the product strength. The target is a systematization of constitutive elements ultra small, yet high in performance. This requires an international cooperation. The future MM image would include those that enter blood vessels and organs to help operations with only a small amount of incision, and those that enter power plant boiler piping and aircraft engines to perform inspection and repair without a need of dismantling. Problems to be solved relate to the MM movement mechanisms, modules having environment recognizing function, small-size energy converters, wireless transmission technologies, and dynamics in microscopic regions.

  11. Sustainable machining

    CERN Document Server

    2017-01-01

    This book provides an overview on current sustainable machining. Its chapters cover the concept in economic, social and environmental dimensions. It provides the reader with proper ways to handle several pollutants produced during the machining process. The book is useful on both undergraduate and postgraduate levels and it is of interest to all those working with manufacturing and machining technology.

  12. Nano-bio-sensing

    CERN Document Server

    Carrara, Sandro

    2011-01-01

    This book examines state-of-the-art applications of nano-bio-sensing. It brings together researchers from nano-electronics and bio-technology, providing multidisciplinary content from nano-structures fabrication to bio-sensing applications.

  13. Synthesis of Boron Nano wires, Nano tubes, and Nano sheets

    International Nuclear Information System (INIS)

    Patel, R.B.; Chou, T.; Iqbal, Z.

    2014-01-01

    The synthesis of boron nano wires, nano tubes, and nano sheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nano materials. The materials were made by using various combinations of MgB 2 , Mg(BH 4 ) 2 , MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nano wires, boron nano tubes, and boron nano sheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  14. Nano-technology and nano-toxicology

    OpenAIRE

    Maynard, Robert L.

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of ...

  15. Poisson Coordinates.

    Science.gov (United States)

    Li, Xian-Ying; Hu, Shi-Min

    2013-02-01

    Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.

  16. Simple machines

    CERN Document Server

    Graybill, George

    2007-01-01

    Just how simple are simple machines? With our ready-to-use resource, they are simple to teach and easy to learn! Chocked full of information and activities, we begin with a look at force, motion and work, and examples of simple machines in daily life are given. With this background, we move on to different kinds of simple machines including: Levers, Inclined Planes, Wedges, Screws, Pulleys, and Wheels and Axles. An exploration of some compound machines follows, such as the can opener. Our resource is a real time-saver as all the reading passages, student activities are provided. Presented in s

  17. Accessing the nanostructural analysis network organisation (NANO)

    International Nuclear Information System (INIS)

    Hicks, R.; Ringer, S.

    2003-01-01

    Full text: As a Major National Research Facility (MNRF), NANO unites five Australian microscopy and microanalysis centres to form the peak Australian facility for nanometric analysis of the structure and chemistry of materials. NANO is headquartered at the Australian Key Centre for Microscopy and Microanalysis at the University of Sydney and involves the Centres for Microscopy and Microanalysis at the Universities of Queensland and Western Australia, the Electron Microscope Unit at the University of New South Wales and the Microanalytical Research Centre at the University of Melbourne. Together these major centres maintain a wide range of complementary instrumentation for the characterisation of nanostructure. NANO links them into a co-ordinated national facility with unified charges and booking systems. The facility will provide open access to a wide range of present and future partners involving local and international linkages. For this reason, NANO is designed to allow the incorporation of other groups as additional nodes. All Australian researchers are eligible to apply for support to use NANO through the Travel and Access Program (NANO-TAP), which will support basic travel and accommodation costs as well as instrument time. Access to the national grid may involve on-site presence at a particular node or remote telemicroscopy. Both passive (observation) and active (operation) modes of telemicroscopy are available. This presentation will address the NANO-TAP application procedure, the use of remote telemicroscopy and the formation of additional nodes. Copyright (2003) Australian Microbeam Analysis Society

  18. Nano-technology and nano-toxicology.

    Science.gov (United States)

    Maynard, Robert L

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology.

  19. Face machines

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-06-01

    The article surveys latest equipment available from the world`s manufacturers of a range of machines for tunnelling. These are grouped under headings: excavators; impact hammers; road headers; and shields and tunnel boring machines. Products of thirty manufacturers are referred to. Addresses and fax numbers of companies are supplied. 5 tabs., 13 photos.

  20. Electric machine

    Science.gov (United States)

    El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  1. Machine Learning.

    Science.gov (United States)

    Kirrane, Diane E.

    1990-01-01

    As scientists seek to develop machines that can "learn," that is, solve problems by imitating the human brain, a gold mine of information on the processes of human learning is being discovered, expert systems are being improved, and human-machine interactions are being enhanced. (SK)

  2. Nonplanar machines

    International Nuclear Information System (INIS)

    Ritson, D.

    1989-05-01

    This talk examines methods available to minimize, but never entirely eliminate, degradation of machine performance caused by terrain following. Breaking of planar machine symmetry for engineering convenience and/or monetary savings must be balanced against small performance degradation, and can only be decided on a case-by-case basis. 5 refs

  3. The Machine within the Machine

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Although Virtual Machines are widespread across CERN, you probably won't have heard of them unless you work for an experiment. Virtual machines - known as VMs - allow you to create a separate machine within your own, allowing you to run Linux on your Mac, or Windows on your Linux - whatever combination you need.   Using a CERN Virtual Machine, a Linux analysis software runs on a Macbook. When it comes to LHC data, one of the primary issues collaborations face is the diversity of computing environments among collaborators spread across the world. What if an institute cannot run the analysis software because they use different operating systems? "That's where the CernVM project comes in," says Gerardo Ganis, PH-SFT staff member and leader of the CernVM project. "We were able to respond to experimentalists' concerns by providing a virtual machine package that could be used to run experiment software. This way, no matter what hardware they have ...

  4. Coordination cycles

    Czech Academy of Sciences Publication Activity Database

    Steiner, Jakub

    -, č. 274 (2005), s. 1-26 ISSN 1211-3298 Institutional research plan: CEZ:AV0Z70850503 Keywords : coordination * crises * cycles and fluctuations Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp274.pdf

  5. Coordination cycles

    Czech Academy of Sciences Publication Activity Database

    Steiner, Jakub

    2008-01-01

    Roč. 63, č. 1 (2008), s. 308-327 ISSN 0899-8256 Institutional research plan: CEZ:AV0Z70850503 Keywords : global games * coordination * crises * cycles and fluctuations Subject RIV: AH - Economics Impact factor: 1.333, year: 2008

  6. Machine translation

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, M

    1982-04-01

    Each language has its own structure. In translating one language into another one, language attributes and grammatical interpretation must be defined in an unambiguous form. In order to parse a sentence, it is necessary to recognize its structure. A so-called context-free grammar can help in this respect for machine translation and machine-aided translation. Problems to be solved in studying machine translation are taken up in the paper, which discusses subjects for semantics and for syntactic analysis and translation software. 14 references.

  7. Are nano-composites and nano-ionomers suitable for orthodontic bracket bonding?

    Science.gov (United States)

    Uysal, Tancan; Yagci, Ahmet; Uysal, Banu; Akdogan, Gülsen

    2010-02-01

    The aim of this study was to test nano-composite (Filtek Supreme Plus Universal) and a newly introduced nano-ionomer (Ketac N100 Light Curing Nano-Ionomer) restorative to determine their shear bond strength (SBS) and failure site locations in comparison with a conventional light-cure orthodontic bonding adhesive (Transbond XT). Sixty freshly extracted human maxillary premolar teeth were arbitrarily divided into three equal groups. The brackets were bonded to the teeth in each group with different composites, according to the manufacturers' instructions. The SBS values of the brackets were recorded in Megapascals (MPa) using a universal testing machine. Adhesive remnant index scores were determined after failure of the brackets. The data were analysed using analysis of variance, Tukey honestly significant difference, and chi-square tests. The results demonstrated that group 1 (Transbond XT, mean: 12.60 +/- 4.48 MPa) had a higher SBS than that of group 2 (nano-composite, mean: 8.33 +/- 5.16 MPa; P nano-ionomer, mean: 6.14 +/- 2.12 MPa; P Nano-composites and nano-ionomers may be suitable for bonding since they fulfil the previously suggested SBS ranges for clinical acceptability, but they are inferior to a conventional orthodontic composite.

  8. Machine Learning

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Machine learning, which builds on ideas in computer science, statistics, and optimization, focuses on developing algorithms to identify patterns and regularities in data, and using these learned patterns to make predictions on new observations. Boosted by its industrial and commercial applications, the field of machine learning is quickly evolving and expanding. Recent advances have seen great success in the realms of computer vision, natural language processing, and broadly in data science. Many of these techniques have already been applied in particle physics, for instance for particle identification, detector monitoring, and the optimization of computer resources. Modern machine learning approaches, such as deep learning, are only just beginning to be applied to the analysis of High Energy Physics data to approach more and more complex problems. These classes will review the framework behind machine learning and discuss recent developments in the field.

  9. Machine Translation

    Indian Academy of Sciences (India)

    Research Mt System Example: The 'Janus' Translating Phone Project. The Janus ... based on laptops, and simultaneous translation of two speakers in a dialogue. For more ..... The current focus in MT research is on using machine learning.

  10. Universal mechatronics coordinator

    Science.gov (United States)

    Muir, Patrick F.

    1999-11-01

    Mechatronic systems incorporate multiple actuators and sensor which must be properly coordinated to achieve the desired system functionality. Many mechatronic systems are designed as one-of-a-kind custom projects without consideration for facilitating future system or alterations and extensions to the current syste. Thus, subsequent changes to the system are slow, different, and costly. It has become apparent that manufacturing processes, and thus the mechatronics which embody them, need to be agile in order to more quickly and easily respond to changing customer demands or market pressures. To achieve agility, both the hardware and software of the system need to be designed such that the creation of new system and the alteration and extension of current system is fast and easy. This paper describes the design of a Universal Mechatronics Coordinator (UMC) which facilitates agile setup and changeover of coordination software for mechatronic systems. The UMC is capable of sequencing continuous and discrete actions that are programmed as stimulus-response pairs, as state machines, or a combination of the two. It facilitates the modular, reusable programing of continuous actions such as servo control algorithms, data collection code, and safety checking routines; and discrete actions such as reporting achieved states, and turning on/off binary devices. The UMC has been applied to the control of a z- theta assembly robot for the Minifactory project and is applicable to a spectrum of widely differing mechatronic systems.

  11. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball

    Overview From a technical perspective, CMS has been in “beam operation” state since 6th November. The detector is fully closed with all components operational and the magnetic field is normally at the nominal 3.8T. The UXC cavern is normally closed with the radiation veto set. Access to UXC is now only possible during downtimes of LHC. Such accesses must be carefully planned, documented and carried out in agreement with CMS Technical Coordination, Experimental Area Management, LHC programme coordination and the CCC. Material flow in and out of UXC is now strictly controlled. Access to USC remains possible at any time, although, for safety reasons, it is necessary to register with the shift crew in the control room before going down.It is obligatory for all material leaving UXC to pass through the underground buffer zone for RP scanning, database entry and appropriate labeling for traceability. Technical coordination (notably Stephane Bally and Christoph Schaefer), the shift crew and run ...

  12. Nano devices and sensors

    CERN Document Server

    Liaw, Shien-Kuei; Chung, Yung-Hui

    2016-01-01

    This volume on semiconductor devices focuses on such topics as nano-imprinting, lithography, nanowire charge-trapping, thermo-stability in nanowires, nano-electrodes, and voltage and materials used for fabricating and improving electrical characteristics of nano-materials.

  13. RUN COORDINATION

    CERN Multimedia

    Christophe Delaere

    2012-01-01

      On Wednesday 14 March, the machine group successfully injected beams into LHC for the first time this year. Within 48 hours they managed to ramp the beams to 4 TeV and proceeded to squeeze to β*=0.6m, settings that are used routinely since then. This brought to an end the CMS Cosmic Run at ~Four Tesla (CRAFT), during which we collected 800k cosmic ray events with a track crossing the central Tracker. That sample has been since then topped up to two million, allowing further refinements of the Tracker Alignment. The LHC started delivering the first collisions on 5 April with two bunches colliding in CMS, giving a pile-up of ~27 interactions per crossing at the beginning of the fill. Since then the machine has increased the number of colliding bunches to reach 1380 bunches and peak instantaneous luminosities around 6.5E33 at the beginning of fills. The average bunch charges reached ~1.5E11 protons per bunch which results in an initial pile-up of ~30 interactions per crossing. During the ...

  14. Machine Protection

    International Nuclear Information System (INIS)

    Zerlauth, Markus; Schmidt, Rüdiger; Wenninger, Jörg

    2012-01-01

    The present architecture of the machine protection system is being recalled and the performance of the associated systems during the 2011 run will be briefly summarized. An analysis of the causes of beam dumps as well as an assessment of the dependability of the machine protection systems (MPS) itself is being presented. Emphasis will be given to events that risked exposing parts of the machine to damage. Further improvements and mitigations of potential holes in the protection systems will be evaluated along with their impact on the 2012 run. The role of rMPP during the various operational phases (commissioning, intensity ramp up, MDs...) will be discussed along with a proposal for the intensity ramp up for the start of beam operation in 2012

  15. Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Chikkagoudar, Satish; Chatterjee, Samrat; Thomas, Dennis G.; Carroll, Thomas E.; Muller, George

    2017-04-21

    The absence of a robust and unified theory of cyber dynamics presents challenges and opportunities for using machine learning based data-driven approaches to further the understanding of the behavior of such complex systems. Analysts can also use machine learning approaches to gain operational insights. In order to be operationally beneficial, cybersecurity machine learning based models need to have the ability to: (1) represent a real-world system, (2) infer system properties, and (3) learn and adapt based on expert knowledge and observations. Probabilistic models and Probabilistic graphical models provide these necessary properties and are further explored in this chapter. Bayesian Networks and Hidden Markov Models are introduced as an example of a widely used data driven classification/modeling strategy.

  16. Machine Protection

    CERN Document Server

    Zerlauth, Markus; Wenninger, Jörg

    2012-01-01

    The present architecture of the machine protection system is being recalled and the performance of the associated systems during the 2011 run will be briefly summarized. An analysis of the causes of beam dumps as well as an assessment of the dependability of the machine protection systems (MPS) itself is being presented. Emphasis will be given to events that risked exposing parts of the machine to damage. Further improvements and mitigations of potential holes in the protection systems will be evaluated along with their impact on the 2012 run. The role of rMPP during the various operational phases (commissioning, intensity ramp up, MDs...) will be discussed along with a proposal for the intensity ramp up for the start of beam operation in 2012.

  17. Machine Protection

    Energy Technology Data Exchange (ETDEWEB)

    Zerlauth, Markus; Schmidt, Rüdiger; Wenninger, Jörg [European Organization for Nuclear Research, Geneva (Switzerland)

    2012-07-01

    The present architecture of the machine protection system is being recalled and the performance of the associated systems during the 2011 run will be briefly summarized. An analysis of the causes of beam dumps as well as an assessment of the dependability of the machine protection systems (MPS) itself is being presented. Emphasis will be given to events that risked exposing parts of the machine to damage. Further improvements and mitigations of potential holes in the protection systems will be evaluated along with their impact on the 2012 run. The role of rMPP during the various operational phases (commissioning, intensity ramp up, MDs...) will be discussed along with a proposal for the intensity ramp up for the start of beam operation in 2012.

  18. Coordinated unbundling

    DEFF Research Database (Denmark)

    Timmermans, Bram; Zabala-Iturriagagoitia, Jon Mikel

    2013-01-01

    Public procurement for innovation is a matter of using public demand to trigger innovation. Empirical studies have demonstrated that demand-based policy instruments can be considered to be a powerful tool in stimulating innovative processes among existing firms; however, the existing literature has...... not focused on the role this policy instrument can play in the promotion of (knowledge-intensive) entrepreneurship. This paper investigates this link in more detail and introduces the concept of coordinated unbundling as a strategy that can facilitate this purpose. We also present a framework on how...

  19. Teletherapy machine

    International Nuclear Information System (INIS)

    Panyam, Vinatha S.; Rakshit, Sougata; Kulkarni, M.S.; Pradeepkumar, K.S.

    2017-01-01

    Radiation Standards Section (RSS), RSSD, BARC is the national metrology institute for ionizing radiation. RSS develops and maintains radiation standards for X-ray, beta, gamma and neutron radiations. In radiation dosimetry, traceability, accuracy and consistency of radiation measurements is very important especially in radiotherapy where the success of patient treatment is dependent on the accuracy of the dose delivered to the tumour. Cobalt teletherapy machines have been used in the treatment of cancer since the early 1950s and India had its first cobalt teletherapy machine installed at the Cancer Institute, Chennai in 1956

  20. A Process Algebra for Supervisory Coordination

    Directory of Open Access Journals (Sweden)

    Jos Baeten

    2011-08-01

    Full Text Available A supervisory controller controls and coordinates the behavior of different components of a complex machine by observing their discrete behaviour. Supervisory control theory studies automated synthesis of controller models, known as supervisors, based on formal models of the machine components and a formalization of the requirements. Subsequently, code generation can be used to implement this supervisor in software, on a PLC, or embedded microprocessor. In this article, we take a closer look at the control loop that couples the supervisory controller and the machine. We model both event-based and state-based observations using process algebra and bisimulation-based semantics. The main application area of supervisory control that we consider is coordination, referred to as supervisory coordination, and we give an academic and an industrial example, discussing the process-theoretic concepts employed.

  1. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball

    2010-01-01

    Operational Experience At the end of the first full-year running period of LHC, CMS is established as a reliable, robust and mature experiment. In particular common systems and infrastructure faults accounted for <0.6 % CMS downtime during LHC pp physics. Technical operation throughout the entire year was rather smooth, the main faults requiring UXC access being sub-detector power systems and rack-cooling turbines. All such problems were corrected during scheduled technical stops, in the shadow of tunnel access needed by the LHC, or in negotiated accesses or access extensions. Nevertheless, the number of necessary accesses to the UXC averaged more than one per week and the technical stops were inevitably packed with work packages, typically 30 being executed within a few days, placing a high load on the coordination and area management teams. It is an appropriate moment for CMS Technical Coordination to thank all those in many CERN departments and in the Collaboration, who were involved in CMS techni...

  2. Machine testning

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This document is used in connection with a laboratory exercise of 3 hours duration as a part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The exercise includes a series of tests carried out by the student on a conventional and a numerically controled lathe, respectively. This document...

  3. Machine rates for selected forest harvesting machines

    Science.gov (United States)

    R.W. Brinker; J. Kinard; Robert Rummer; B. Lanford

    2002-01-01

    Very little new literature has been published on the subject of machine rates and machine cost analysis since 1989 when the Alabama Agricultural Experiment Station Circular 296, Machine Rates for Selected Forest Harvesting Machines, was originally published. Many machines discussed in the original publication have undergone substantial changes in various aspects, not...

  4. Traceability and uncertainty estimation in coordinate metrology

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Savio, Enrico; De Chiffre, Leonardo

    2001-01-01

    National and international standards have defined performance verification procedures for coordinate measuring machines (CMMs) that typically involve their ability to measure calibrated lengths and to a certain extent form. It is recognised that, without further analysis or testing, these results...... are required. Depending on the requirements for uncertainty level, different approaches may be adopted to achieve traceability. Especially in the case of complex measurement situations and workpieces the procedures are not trivial. This paper discusses the establishment of traceability in coordinate metrology...

  5. Preparation and characterization of bipolar membranes modified by photocatalyst nano-ZnO and nano-CeO2

    International Nuclear Information System (INIS)

    Zhou Tingjin; Hu Yanyu; Chen Riyao; Zheng Xi; Chen Xiao; Chen Zhen; Zhong Jieqiong

    2012-01-01

    Nano-ZnO-CeO 2 coupled semiconductor was added into the chitosan (CS) anion exchange membrane layer to prepare the PVA-CMC/nano-ZnO-CeO 2 -CS (here, PVA: polyvinyl alcohol; CMC: carboxymethyl cellulose) bipolar membrane (BPM), and the prepared BPM was characterized by SEM, J-V characteristics, electronic universal testing machine, contact angle measurement and so on. Experimental results showed that nano-ZnO-CeO 2 exhibited better photocatalytic property for water splitting at the interlayer of BPM than nano-ZnO or nano-CeO 2 , which could greatly reduce the membrane impedance of the BPM. Under the irradiation of high-pressure mercury lamps, the cell voltage of PVA-CMC/nano-ZnO-CeO 2 -CS BPM decreased by 0.7 V at the current density of 60 mA/cm 2 , and the cell voltages of PVA-CMC/nano-ZnO-CS BPM and PVA-CMC/nano-CeO 2 -CS BPM were only reduced by 0.3 V and 0.5 V, respectively. Furthermore, the hydrophilicity, and mechanical properties of the modified BPM were increased.

  6. Electric machines

    CERN Document Server

    Gross, Charles A

    2006-01-01

    BASIC ELECTROMAGNETIC CONCEPTSBasic Magnetic ConceptsMagnetically Linear Systems: Magnetic CircuitsVoltage, Current, and Magnetic Field InteractionsMagnetic Properties of MaterialsNonlinear Magnetic Circuit AnalysisPermanent MagnetsSuperconducting MagnetsThe Fundamental Translational EM MachineThe Fundamental Rotational EM MachineMultiwinding EM SystemsLeakage FluxThe Concept of Ratings in EM SystemsSummaryProblemsTRANSFORMERSThe Ideal n-Winding TransformerTransformer Ratings and Per-Unit ScalingThe Nonideal Three-Winding TransformerThe Nonideal Two-Winding TransformerTransformer Efficiency and Voltage RegulationPractical ConsiderationsThe AutotransformerOperation of Transformers in Three-Phase EnvironmentsSequence Circuit Models for Three-Phase Transformer AnalysisHarmonics in TransformersSummaryProblemsBASIC MECHANICAL CONSIDERATIONSSome General PerspectivesEfficiencyLoad Torque-Speed CharacteristicsMass Polar Moment of InertiaGearingOperating ModesTranslational SystemsA Comprehensive Example: The ElevatorP...

  7. Charging machine

    International Nuclear Information System (INIS)

    Medlin, J.B.

    1976-01-01

    A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine. 3 claims, 11 drawing figures

  8. Genesis machines

    CERN Document Server

    Amos, Martyn

    2014-01-01

    Silicon chips are out. Today's scientists are using real, wet, squishy, living biology to build the next generation of computers. Cells, gels and DNA strands are the 'wetware' of the twenty-first century. Much smaller and more intelligent, these organic computers open up revolutionary possibilities. Tracing the history of computing and revealing a brave new world to come, Genesis Machines describes how this new technology will change the way we think not just about computers - but about life itself.

  9. RUN COORDINATION

    CERN Multimedia

    Christophe Delaere

    2013-01-01

    The focus of Run Coordination during LS1 is to monitor closely the advance of maintenance and upgrade activities, to smooth interactions between subsystems and to ensure that all are ready in time to resume operations in 2015 with a fully calibrated and understood detector. After electricity and cooling were restored to all equipment, at about the time of the last CMS week, recommissioning activities were resumed for all subsystems. On 7 October, DCS shifts began 24/7 to allow subsystems to remain on to facilitate operations. That culminated with the Global Run in November (GriN), which   took place as scheduled during the week of 4 November. The GriN has been the first centrally managed operation since the beginning of LS1, and involved all subdetectors but the Pixel Tracker presently in a lab upstairs. All nights were therefore dedicated to long stable runs with as many subdetectors as possible. Among the many achievements in that week, three items may be highlighted. First, the Strip...

  10. RUN COORDINATION

    CERN Multimedia

    C. Delaere

    2013-01-01

    Since the LHC ceased operations in February, a lot has been going on at Point 5, and Run Coordination continues to monitor closely the advance of maintenance and upgrade activities. In the last months, the Pixel detector was extracted and is now stored in the pixel lab in SX5; the beam pipe has been removed and ME1/1 removal has started. We regained access to the vactank and some work on the RBX of HB has started. Since mid-June, electricity and cooling are back in S1 and S2, allowing us to turn equipment back on, at least during the day. 24/7 shifts are not foreseen in the next weeks, and safety tours are mandatory to keep equipment on overnight, but re-commissioning activities are slowly being resumed. Given the (slight) delays accumulated in LS1, it was decided to merge the two global runs initially foreseen into a single exercise during the week of 4 November 2013. The aim of the global run is to check that we can run (parts of) CMS after several months switched off, with the new VME PCs installed, th...

  11. Representational Machines

    DEFF Research Database (Denmark)

    Photography not only represents space. Space is produced photographically. Since its inception in the 19th century, photography has brought to light a vast array of represented subjects. Always situated in some spatial order, photographic representations have been operatively underpinned by social...... to the enterprises of the medium. This is the subject of Representational Machines: How photography enlists the workings of institutional technologies in search of establishing new iconic and social spaces. Together, the contributions to this edited volume span historical epochs, social environments, technological...... possibilities, and genre distinctions. Presenting several distinct ways of producing space photographically, this book opens a new and important field of inquiry for photography research....

  12. Shear machines

    International Nuclear Information System (INIS)

    Astill, M.; Sunderland, A.; Waine, M.G.

    1980-01-01

    A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)

  13. Electricity of machine tool

    International Nuclear Information System (INIS)

    Gijeon media editorial department

    1977-10-01

    This book is divided into three parts. The first part deals with electricity machine, which can taints from generator to motor, motor a power source of machine tool, electricity machine for machine tool such as switch in main circuit, automatic machine, a knife switch and pushing button, snap switch, protection device, timer, solenoid, and rectifier. The second part handles wiring diagram. This concludes basic electricity circuit of machine tool, electricity wiring diagram in your machine like milling machine, planer and grinding machine. The third part introduces fault diagnosis of machine, which gives the practical solution according to fault diagnosis and the diagnostic method with voltage and resistance measurement by tester.

  14. Environmentally Friendly Machining

    CERN Document Server

    Dixit, U S; Davim, J Paulo

    2012-01-01

    Environment-Friendly Machining provides an in-depth overview of environmentally-friendly machining processes, covering numerous different types of machining in order to identify which practice is the most environmentally sustainable. The book discusses three systems at length: machining with minimal cutting fluid, air-cooled machining and dry machining. Also covered is a way to conserve energy during machining processes, along with useful data and detailed descriptions for developing and utilizing the most efficient modern machining tools. Researchers and engineers looking for sustainable machining solutions will find Environment-Friendly Machining to be a useful volume.

  15. The Nano Solar Case

    DEFF Research Database (Denmark)

    Hollensen, Svend; Lindgren, Peter

    2011-01-01

    ISO PAINT Nordic A/S produces roof coatings, facade painting as well as specialised products for surface treatments. The company decided that they would develop a nano solar ICT based project having the capacity to change the whole cost structure of a building, for example by a nano roof coating...

  16. Parametric optimization for the production of nanostructure in high carbon steel chips via machining

    Directory of Open Access Journals (Sweden)

    M. Ilangkumaran

    2015-09-01

    Full Text Available Nano crystalline materials are an area of interest for the researchers all over the world due to its superior mechanical properties such as high strength and high hardness. But the cost of nano-crystals is high because of the complexity and cost incurred during its production. This paper focuses on the application of Taguchi method with Fuzzy logic for optimizing the machining parameters of nano-crystalline structured chips production in High Carbon Steel (HCS through machining. An orthogonal array, multi-response performance index, signals to noise ratio and analysis of variance are used to study the machining process with multi-response performance characteristics. The machining parameters namely rake angle, depth of cut, heat treatment, feed and cutting velocity are optimized with considerations of the multi-response performance characteristics. Using the Taguchi and Fuzzy logic method optimum cutting conditions are identified in order to obtain the smallest nanocrystalline structure via machining.

  17. Machine Protection

    CERN Document Server

    Schmidt, R

    2014-01-01

    The protection of accelerator equipment is as old as accelerator technology and was for many years related to high-power equipment. Examples are the protection of powering equipment from overheating (magnets, power converters, high-current cables), of superconducting magnets from damage after a quench and of klystrons. The protection of equipment from beam accidents is more recent. It is related to the increasing beam power of high-power proton accelerators such as ISIS, SNS, ESS and the PSI cyclotron, to the emission of synchrotron light by electron–positron accelerators and FELs, and to the increase of energy stored in the beam (in particular for hadron colliders such as LHC). Designing a machine protection system requires an excellent understanding of accelerator physics and operation to anticipate possible failures that could lead to damage. Machine protection includes beam and equipment monitoring, a system to safely stop beam operation (e.g. dumping the beam or stopping the beam at low energy) and an ...

  18. Study of on-machine error identification and compensation methods for micro machine tools

    International Nuclear Information System (INIS)

    Wang, Shih-Ming; Yu, Han-Jen; Lee, Chun-Yi; Chiu, Hung-Sheng

    2016-01-01

    Micro machining plays an important role in the manufacturing of miniature products which are made of various materials with complex 3D shapes and tight machining tolerance. To further improve the accuracy of a micro machining process without increasing the manufacturing cost of a micro machine tool, an effective machining error measurement method and a software-based compensation method are essential. To avoid introducing additional errors caused by the re-installment of the workpiece, the measurement and compensation method should be on-machine conducted. In addition, because the contour of a miniature workpiece machined with a micro machining process is very tiny, the measurement method should be non-contact. By integrating the image re-constructive method, camera pixel correction, coordinate transformation, the error identification algorithm, and trajectory auto-correction method, a vision-based error measurement and compensation method that can on-machine inspect the micro machining errors and automatically generate an error-corrected numerical control (NC) program for error compensation was developed in this study. With the use of the Canny edge detection algorithm and camera pixel calibration, the edges of the contour of a machined workpiece were identified and used to re-construct the actual contour of the work piece. The actual contour was then mapped to the theoretical contour to identify the actual cutting points and compute the machining errors. With the use of a moving matching window and calculation of the similarity between the actual and theoretical contour, the errors between the actual cutting points and theoretical cutting points were calculated and used to correct the NC program. With the use of the error-corrected NC program, the accuracy of a micro machining process can be effectively improved. To prove the feasibility and effectiveness of the proposed methods, micro-milling experiments on a micro machine tool were conducted, and the results

  19. Prediction Surface Morphology of Nanostructure Fabricated by Nano-Oxidation Technology.

    Science.gov (United States)

    Huang, Jen-Ching; Chang, Ho; Kuo, Chin-Guo; Li, Jeen-Fong; You, Yong-Chin

    2015-12-04

    Atomic force microscopy (AFM) was used for visualization of a nano-oxidation technique performed on diamond-like carbon (DLC) thin film. Experiments of the nano-oxidation technique of the DLC thin film include those on nano-oxidation points and nano-oxidation lines. The feature sizes of the DLC thin film, including surface morphology, depth, and width, were explored after application of a nano-oxidation technique to the DLC thin film under different process parameters. A databank for process parameters and feature sizes of thin films was then established, and multiple regression analysis (MRA) and a back-propagation neural network (BPN) were used to carry out the algorithm. The algorithmic results are compared with the feature sizes acquired from experiments, thus obtaining a prediction model of the nano-oxidation technique of the DLC thin film. The comparative results show that the prediction accuracy of BPN is superior to that of MRA. When the BPN algorithm is used to predict nano-point machining, the mean absolute percentage errors (MAPE) of depth, left side, and right side are 8.02%, 9.68%, and 7.34%, respectively. When nano-line machining is being predicted, the MAPEs of depth, left side, and right side are 4.96%, 8.09%, and 6.77%, respectively. The obtained data can also be used to predict cross-sectional morphology in the DLC thin film treated with a nano-oxidation process.

  20. Coordinate metrology accuracy of systems and measurements

    CERN Document Server

    Sładek, Jerzy A

    2016-01-01

    This book focuses on effective methods for assessing the accuracy of both coordinate measuring systems and coordinate measurements. It mainly reports on original research work conducted by Sladek’s team at Cracow University of Technology’s Laboratory of Coordinate Metrology. The book describes the implementation of different methods, including artificial neural networks, the Matrix Method, the Monte Carlo method and the virtual CMM (Coordinate Measuring Machine), and demonstrates how these methods can be effectively used in practice to gauge the accuracy of coordinate measurements. Moreover, the book includes an introduction to the theory of measurement uncertainty and to key techniques for assessing measurement accuracy. All methods and tools are presented in detail, using suitable mathematical formulations and illustrated with numerous examples. The book fills an important gap in the literature, providing readers with an advanced text on a topic that has been rapidly developing in recent years. The book...

  1. Analysis of machining and machine tools

    CERN Document Server

    Liang, Steven Y

    2016-01-01

    This book delivers the fundamental science and mechanics of machining and machine tools by presenting systematic and quantitative knowledge in the form of process mechanics and physics. It gives readers a solid command of machining science and engineering, and familiarizes them with the geometry and functionality requirements of creating parts and components in today’s markets. The authors address traditional machining topics, such as: single and multiple point cutting processes grinding components accuracy and metrology shear stress in cutting cutting temperature and analysis chatter They also address non-traditional machining, such as: electrical discharge machining electrochemical machining laser and electron beam machining A chapter on biomedical machining is also included. This book is appropriate for advanced undergraduate and graduate mechani cal engineering students, manufacturing engineers, and researchers. Each chapter contains examples, exercises and their solutions, and homework problems that re...

  2. Machine Protection

    International Nuclear Information System (INIS)

    Schmidt, R

    2014-01-01

    The protection of accelerator equipment is as old as accelerator technology and was for many years related to high-power equipment. Examples are the protection of powering equipment from overheating (magnets, power converters, high-current cables), of superconducting magnets from damage after a quench and of klystrons. The protection of equipment from beam accidents is more recent. It is related to the increasing beam power of high-power proton accelerators such as ISIS, SNS, ESS and the PSI cyclotron, to the emission of synchrotron light by electron–positron accelerators and FELs, and to the increase of energy stored in the beam (in particular for hadron colliders such as LHC). Designing a machine protection system requires an excellent understanding of accelerator physics and operation to anticipate possible failures that could lead to damage. Machine protection includes beam and equipment monitoring, a system to safely stop beam operation (e.g. dumping the beam or stopping the beam at low energy) and an interlock system providing the glue between these systems. The most recent accelerator, the LHC, will operate with about 3 × 10 14 protons per beam, corresponding to an energy stored in each beam of 360 MJ. This energy can cause massive damage to accelerator equipment in case of uncontrolled beam loss, and a single accident damaging vital parts of the accelerator could interrupt operation for years. This article provides an overview of the requirements for protection of accelerator equipment and introduces the various protection systems. Examples are mainly from LHC, SNS and ESS

  3. Machine terms dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-04-15

    This book gives descriptions of machine terms which includes machine design, drawing, the method of machine, machine tools, machine materials, automobile, measuring and controlling, electricity, basic of electron, information technology, quality assurance, Auto CAD and FA terms and important formula of mechanical engineering.

  4. Accuracy increase of the coordinate measurement based on the model production of geometrical parts specifications

    Science.gov (United States)

    Zlatkina, O. Yu

    2018-04-01

    There is a relationship between the service properties of component parts and their geometry; therefore, to predict and control the operational characteristics of parts and machines, it is necessary to measure their geometrical specifications. In modern production, a coordinate measuring machine is the advanced measuring instrument of the products geometrical specifications. The analysis of publications has shown that during the coordinate measurements the problems of choosing locating chart of parts and coordination have not been sufficiently studied. A special role in the coordination of the part is played by the coordinate axes informational content. Informational content is the sum of the degrees of freedom limited by the elementary item of a part. The coordinate planes of a rectangular coordinate system have different informational content (three, two, and one). The coordinate axes have informational content of four, two and zero. The higher the informational content of the coordinate plane or axis, the higher its priority for reading angular and linear coordinates is. The geometrical model production of the coordinate measurements object taking into account the information content of coordinate planes and coordinate axes allows us to clearly reveal the interrelationship of the coordinates of the deviations in location, sizes and deviations of their surfaces shape. The geometrical model helps to select the optimal locating chart of parts for bringing the machine coordinate system to the part coordinate system. The article presents an algorithm the model production of geometrical specifications using the example of the piston rod of a compressor.

  5. Nanomedicine: tiny particles and machines give huge gains.

    Science.gov (United States)

    Tong, Sheng; Fine, Eli J; Lin, Yanni; Cradick, Thomas J; Bao, Gang

    2014-02-01

    Nanomedicine is an emerging field that integrates nanotechnology, biomolecular engineering, life sciences and medicine; it is expected to produce major breakthroughs in medical diagnostics and therapeutics. Nano-scale structures and devices are compatible in size with proteins and nucleic acids in living cells. Therefore, the design, characterization and application of nano-scale probes, carriers and machines may provide unprecedented opportunities for achieving a better control of biological processes, and drastic improvements in disease detection, therapy, and prevention. Recent advances in nanomedicine include the development of nanoparticle (NP)-based probes for molecular imaging, nano-carriers for drug/gene delivery, multifunctional NPs for theranostics, and molecular machines for biological and medical studies. This article provides an overview of the nanomedicine field, with an emphasis on NPs for imaging and therapy, as well as engineered nucleases for genome editing. The challenges in translating nanomedicine approaches to clinical applications are discussed.

  6. Infinite Coordination Polymer Nano- and Micro-Particles

    Science.gov (United States)

    2015-06-12

    attachment (Figure 1). Particles were synthesized by combining DABA-bis-HP-N3 and ferric nitrate in dilute NaOH. The crude particles were purified by...cervical cancer cells using dye-labeled DNA (Figure 2). The ICP-DNA particles were found to cross cell membranes with efficiency very similar to the...deliver their genetic cargo to the cell and effect expression of a known cancer -related mRNA transcript in vitro. SKOV-3 ovarian cancer cells were chosen

  7. Carbon nano tubes embedded in polymer nano fibers

    International Nuclear Information System (INIS)

    Dror, Y.; Kedem, S.; Khalfin, R.L.; Paz, Y.; Cohenl, Y.; Salalha, Y.; Yarin, A.L.; Zussman, A.

    2004-01-01

    Full Text: The electro spinning process was used successfully to embed Multi-walled carbon nano tubes (MWCNTs) and single-walled carbon nano tubes (SWCNTs) in a matrix of poly(ethylene oxide) (PEO) forming composite nano fibers. Initial dispersion of SWCNTs in water was achieved by the use of an amphphilic alternating copolymer of styrene and sodium maleate. MWNT dispersion was achieved by ionic and nonionic surfactants. The distribution and conformation of the nano tubes in the nano fibers were studied by transmission electron microscopy (TEM). Oxygen plasma etching was used to expose the nano tubes within the nano fibers to facilitate direct observation. Nano tube alignment within the nano fibers was shown to depend strongly on the quality of the initial dispersions. Well-dispersed and separated nano tubes were embedded in a straight and aligned form while entangled non-separated nano tubes were incorporated as dense aggregates. X-ray diffraction demonstrated a high degree of orientation of the PEO crystals in the electro spun nano fibers with embedded SWCNTs, whereas incorporation of MVCNTs had a detrimental effect on the polymer orientation. Composite polymer nano fibers containing dispersed phases of nanometric TiO 2 particles and MWCNTs were also prepared electro spinning. In this case, the polymer matrix was poly(acrylonitrile) (PAN). The morphology and possible applications of these composite nano fibers will be discussed

  8. NanoAODs

    CERN Document Server

    Husova, Lucia Anna

    2017-01-01

    The scientist on LHC experiment analyse a huge amount of data every day on the Grid. Thus new methods are requested, how to make the analysis more efficient. The NanoAOD is a derived dataset from AOD, where only information necessary for the analysis is stored. Thus the analysis can be more than two times faster, because of the smaller file size, which can be read faster on the Grid. The main goal of this summer student project was to help other users to start using NanoAODs by rewriting their user tasks. Two example users tasks were converted to NanoAODs and tested with the local train test. A speed up of 3.5 was reached. The results of the analysis tasks are identical independent if they use AODs or NanoAODs.

  9. Addiction Machines

    Directory of Open Access Journals (Sweden)

    James Godley

    2011-10-01

    Full Text Available Entry into the crypt William Burroughs shared with his mother opened and shut around a failed re-enactment of William Tell’s shot through the prop placed upon a loved one’s head. The accidental killing of his wife Joan completed the installation of the addictation machine that spun melancholia as manic dissemination. An early encryptment to which was added the audio portion of abuse deposited an undeliverable message in WB. Wil- liam could never tell, although his corpus bears the in- scription of this impossibility as another form of pos- sibility. James Godley is currently a doctoral candidate in Eng- lish at SUNY Buffalo, where he studies psychoanalysis, Continental philosophy, and nineteenth-century litera- ture and poetry (British and American. His work on the concept of mourning and “the dead” in Freudian and Lacanian approaches to psychoanalytic thought and in Gothic literature has also spawned an essay on zombie porn. Since entering the Academy of Fine Arts Karlsruhe in 2007, Valentin Hennig has studied in the classes of Sil- via Bächli, Claudio Moser, and Corinne Wasmuht. In 2010 he spent a semester at the Dresden Academy of Fine Arts. His work has been shown in group exhibi- tions in Freiburg and Karlsruhe.

  10. Machine musicianship

    Science.gov (United States)

    Rowe, Robert

    2002-05-01

    The training of musicians begins by teaching basic musical concepts, a collection of knowledge commonly known as musicianship. Computer programs designed to implement musical skills (e.g., to make sense of what they hear, perform music expressively, or compose convincing pieces) can similarly benefit from access to a fundamental level of musicianship. Recent research in music cognition, artificial intelligence, and music theory has produced a repertoire of techniques that can make the behavior of computer programs more musical. Many of these were presented in a recently published book/CD-ROM entitled Machine Musicianship. For use in interactive music systems, we are interested in those which are fast enough to run in real time and that need only make reference to the material as it appears in sequence. This talk will review several applications that are able to identify the tonal center of musical material during performance. Beyond this specific task, the design of real-time algorithmic listening through the concurrent operation of several connected analyzers is examined. The presentation includes discussion of a library of C++ objects that can be combined to perform interactive listening and a demonstration of their capability.

  11. Characterization of nano-textured samples in a production environment

    DEFF Research Database (Denmark)

    Madsen, Morten Hannibal; Hansen, Poul-Erik; Bilenberg, Brian

    2015-01-01

    , such as a machine floor. The acquisition and analysing time for the topological parameters height, width and sidewall angle is only a few milliseconds. It is demonstrated that by simple adaptions to an optical microscope we can measure nano-textured surfaces with an uncertainty of a few nanometers for the height......Nano-textured surfaces have been characterized by optical diffraction techniques using an adapted commercial light microscope with two detectors, a CCD camera and a spectrometer. We demonstrate that the microscope has a resolution in the nanometer range, also in an environment with many vibrations...

  12. Machine Shop. Module 8: CNC (Computerized Numerical Control). Instructor's Guide.

    Science.gov (United States)

    Crosswhite, Dwight

    This document consists of materials for a five-unit course on the following topics: (1) safety guidelines; (2) coordinates and dimensions; (3) numerical control math; (4) programming for numerical control machines; and (5) setting and operating the numerical control machine. The instructor's guide begins with a list of competencies covered in the…

  13. Nano-composite materials

    Science.gov (United States)

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  14. Optiske nano-fibre

    DEFF Research Database (Denmark)

    Rubahn, Horst-Günter; Simonsen, Adam Cohen

    2003-01-01

    Forskere ved Syddansk Universitet har udviklet organiske nano-aggregater, som gør det muligt under meget kontrollerede forhold at studere optiske fænomener på skalaer mindre end lysets bølgelængde.......Forskere ved Syddansk Universitet har udviklet organiske nano-aggregater, som gør det muligt under meget kontrollerede forhold at studere optiske fænomener på skalaer mindre end lysets bølgelængde....

  15. Cancer Nano medicine

    International Nuclear Information System (INIS)

    Li, H.; Pike, M.M.; Luo, X.; Liu, L.H.

    2013-01-01

    Bioengineered nano materials have inspired revolutionary imaging and drug delivery methods whose clinical application in cancer research has resulted in powerful medical devices for early diagnosis, treatment, and prevention of cancer. Recent advances in super imaging agents have resulted in improved resolution and sensitivity. For instance, fluorescent quantum dots with wavelength-tunable emissions, plasmon-resonant gold nano structures with shape-controlled near-infrared absorptions, and MRI-active iron oxide nanoparticles are well-established molecular imaging probes for noninvasive cancer imaging. Nano materials are also considered to be the most effective vectors that can break through transport bio barriers and deliver a constant dose of multiple therapeutic agents to tumors and intracellular endocytic compartments for cancer gene therapy, immunotherapy, or chemotherapy. Furthermore, nano wire- or nano tube-based electronic devices demonstrate extraordinary sensitivity capable of detection at the single molecule or protein level. It is anticipated that developing nano technology-driven imaging, sensing, and therapeutic systems will dramatically advance cancer research and clinical treatments.

  16. Efficacy of Nanocutting Fluids in Machining-an Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Vamsi Krishna Pasam

    2018-01-01

    Full Text Available This paper presents the experimental investigations on the performance of eco-friendly vegetable oil based nanofluids in turning operation. In order to assess the quality of nano cutting fluids used during machining, cutting temperatures, cutting forces, tool wear and surface roughness under constant cutting conditions are measured. The influence of two types of nanofluids prepared from nano boric acid (NBA and carbon nanotubes (CNT mixed separately with coconut oil (CC, on machining performance during turning operation is examined. Comparative analysis of the results obtained is done under dry, soluble oil (SL and lubricant environments at constant cutting conditions and 0.25% nano particle inclusions (NPI. To understand the influence of NPI experiments were conducted using CCNBA and CCCNT at varying NPI as well. Results obtained using cutting fluids prepared from vegetable oil based nanofluids are encouraging and more pronouncing by the application of CCCNT at machining zone. The extent of improvement in reduction of cutting temperatures, main cutting force, tool wear and surface roughness is tracked to be 13%, 37.5%, 44% and 40% respectively by the application of CCCNT compared to dry machining. It was found that application of CCNBA and CCCNT at 0.5% NPI is more effective in improving the machining performance.

  17. Adaptation of coordination mechanisms to network structures

    Directory of Open Access Journals (Sweden)

    Herwig Mittermayer

    2008-12-01

    Full Text Available The coordination efficiency of Supply Chain Management is determined by two opposite poles: benefit from improved planning results and associated coordination cost. The centralization grade, applied coordination mechanisms and IT support have influence on both categories. Therefore three reference types are developed and subsequently detailed in business process models for different network structures. In a simulation study the performance of these organization forms are compared in a process plant network. Coordination benefit is observed if the planning mode is altered by means of a demand planning IT tool. Coordination cost is divided into structural and activity-dependent cost. The activity level rises when reactive planning iterations become necessary as a consequence of inconsistencies among planning levels. Some characteristic influence factors are considered to be a reason for uninfeasible planning. In this study the effect of capacity availability and stochastic machine downtimes is investigated in an uncertain demand situation. Results that if the network runs with high overcapacity, central planning is less likely to increase benefit enough to outweigh associated cost. Otherwise, if capacity constraints are crucial, a central planning mode is recommendable. When also unforeseen machine downtimes are low, the use of sophisticated IT tools is most profitable.

  18. Machine technology: a survey

    International Nuclear Information System (INIS)

    Barbier, M.M.

    1981-01-01

    An attempt was made to find existing machines that have been upgraded and that could be used for large-scale decontamination operations outdoors. Such machines are in the building industry, the mining industry, and the road construction industry. The road construction industry has yielded the machines in this presentation. A review is given of operations that can be done with the machines available

  19. Machine Shop Lathes.

    Science.gov (United States)

    Dunn, James

    This guide, the second in a series of five machine shop curriculum manuals, was designed for use in machine shop courses in Oklahoma. The purpose of the manual is to equip students with basic knowledge and skills that will enable them to enter the machine trade at the machine-operator level. The curriculum is designed so that it can be used in…

  20. Superconducting rotating machines

    International Nuclear Information System (INIS)

    Smith, J.L. Jr.; Kirtley, J.L. Jr.; Thullen, P.

    1975-01-01

    The opportunities and limitations of the applications of superconductors in rotating electric machines are given. The relevant properties of superconductors and the fundamental requirements for rotating electric machines are discussed. The current state-of-the-art of superconducting machines is reviewed. Key problems, future developments and the long range potential of superconducting machines are assessed

  1. ON NANO Λg-CLOSED SETS

    OpenAIRE

    Rajasekaran, Ilangovan; Nethaji, Ochanan

    2017-01-01

    Abstaract−In this paper, we introduce nano ∧g-closed sets in nano topological spaces. Some properties of nano ∧g-closed sets and nano ∧g-open sets are weaker forms of nano closed sets and nano open sets

  2. Novel plasmon nano-lasers

    NARCIS (Netherlands)

    Hill, M.T.; Marell, M.J.H.

    2010-01-01

    We will discuss some of the latest developments in metallic and plasmonic nano-lasers. Furthermore we will present our latest results on further miniaturization of electrically pumped plasmonic nano-lasers and also DFB Plasmon mode devices.

  3. Nano lasers in photonic VLSI

    NARCIS (Netherlands)

    Hill, M.T.; Oei, Y.S.; Smit, M.K.

    2007-01-01

    We examine the use of micro and nano lasers to form digital photonic VLSI building blocks. Problems such as isolation and cascading of building blocks are addressed, and the potential of future nano lasers explored.

  4. Applications of Nano-optics.

    Science.gov (United States)

    Zhou, Changhe; Fainman, Yeshaiahu; Sheng, Yunlong

    2011-11-01

    As nanoscale fabrication techniques advance, nano-optics continues to offer enabling solutions to numerous practical applications for information optics. This Applied Optics feature issue focuses on the Application of Nano-optics. © 2011 Optical Society of America

  5. Environmental silicate nano-biocomposites

    CERN Document Server

    Pollet, Eric

    2012-01-01

    Environmental Silicate Nano-Biocomposites focuses on nano-biocomposites, which are obtained by the association of silicates such as bioclays with biopolymers. By highlighting recent developments and findings, green and biodegradable nano-composites from both renewable and biodegradable polymers are explored. This includes coverage of potential markets such as packaging, agricultures, leisure and the fast food industry. The knowledge and experience of more than twenty international experts in diverse fields, from chemical and biochemical engineering to applications, is brought together in four different sections covering: Biodegradable polymers and Silicates, Clay/Polyesters Nano-biocomposites, Clay/Agropolymers Nano-biocomposites, and Applications and biodegradation of Nano-biocomposites. By exploring the relationships between the biopolymer structures, the processes, and the final properties Environmental Silicate Nano-Biocomposites explains how to design nano-materials to develop new, valuable, environmenta...

  6. ACCELERATING NANO-TECHNOLOGICAL

    DEFF Research Database (Denmark)

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which concludes...... of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support “incubation rooms” or marked niches in order...

  7. Nano-electromembrane extraction

    DEFF Research Database (Denmark)

    Payán, María D Ramos; Li, Bin; Petersen, Nickolaj J.

    2013-01-01

    as extraction selectivity. Compared with conventional EME, the acceptor phase volume in nano-EME was down-scaled by a factor of more than 1000. This resulted in a very high enrichment capacity. With loperamide as an example, an enrichment factor exceeding 500 was obtained in only 5 min of extraction...... electrophoresis (CE). In that way the sample preparation performed by nano-EME was coupled directly with a CE separation. Separation performance of 42,000-193,000 theoretical plates could easily be obtained by this direct sample preparation and injection technique that both provided enrichment as well...

  8. Comparison of Coordinate Measuring Machines using an Optomechanical Hole Plate

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, Hans Nørgaard; Morace, Renata Erica

    2005-01-01

    This paper describes modelling of an integrated AFM - CMM instrument, its calibration, and estimation of measurement uncertainty. Positioning errors were seen to limit the instrument performance. Software for off-line stitching of single AFM scans was developed and verified, which allows compensa...

  9. Sustainable Electric Vehicle Management using Coordinated Machine Learning

    NARCIS (Netherlands)

    K. Valogianni (Konstantina)

    2016-01-01

    markdownabstractThe purpose of this dissertation is to investigate how intelligent algorithms can support electricity customers in their complex decisions within the electricity grid. In particular, we focus on how electric vehicle (EV) owners can be supported in their charging and discharging

  10. Machine tool structures

    CERN Document Server

    Koenigsberger, F

    1970-01-01

    Machine Tool Structures, Volume 1 deals with fundamental theories and calculation methods for machine tool structures. Experimental investigations into stiffness are discussed, along with the application of the results to the design of machine tool structures. Topics covered range from static and dynamic stiffness to chatter in metal cutting, stability in machine tools, and deformations of machine tool structures. This volume is divided into three sections and opens with a discussion on stiffness specifications and the effect of stiffness on the behavior of the machine under forced vibration c

  11. Coordinated control of electrical drives

    International Nuclear Information System (INIS)

    Keresztely, S.

    1983-01-01

    The control system developed for the fuel handling machine of nuclear power plants contains seven microcomputers. Redundant hardware and software structure ensures high reliability and availability. The sensors are doubled and each set is connected to its own microcomputer for evaluation of measurements. The control program, coordinating seven electrical drives, is run on two identical microcomputers, and has access to both sets of measurement results. Two control desks are provided. The seventh microcomputer generates the digital picture of the working site around the actual position and the picture is sent to color TV monitors at the control desks. System reliability: failure of any part of the system causes an error message and no action. System availability: for emergency purposes, one of every pair of the identical subsystems must be operational. In this emergency mode unconditional reliability is lost. (author)

  12. NanoLaunch

    Science.gov (United States)

    Jones, Jonathan; Harris, Lawanna

    2015-01-01

    NASA's NanoLaunch effort will provide the framework to mature both Earth-to-orbit and on-orbit propulsion and avionics technologies while also providing affordable, dedicated access to low-Earth orbit for CubeSat-class payloads. The project will also serve as an early career personnel training opportunity with mentors to gain hands-on project experience.

  13. Editorial Emerging Multifunctional Nano structures

    International Nuclear Information System (INIS)

    Fan, H.; Lu, Y.; Ramanath, G.; Pomposo, J.A.

    2009-01-01

    The interest in emerging nano structures is growing exponentially since they are promising building blocks for advanced multifunctional nano composites. In recent years, an evolution from the controlled synthesis of individual monodisperse nanoparticles to the tailored preparation of hybrid spherical and also unsymmetrical multiparticle nano structures is clearly observed. As a matter of fact, the field of nano structures built around a nano species such as inside, outside, and next to a nanoparticle is becoming a new evolving area of research and development with potential applications in improved drug delivery systems, innovative magnetic devices, biosensors, and highly efficient catalysts, among several others Emerging nano structures with improved magnetic, conducting and smart characteristics are currently based on the design, synthesis, characterization and modeling of multifunctional nano object-based materials. In fact, core-shell nanoparticles and other related complex nano architectures covering a broad spectrum of materials (from metal and metal oxide to fused carbon, synthetic polymer, and bio polymer structures) to nano structure morphologies (spherical, cylindrical, star-like, etc.) are becoming the main building blocks for next generation of drug delivery systems, advanced sensors and biosensors, or improved nano composites. The five papers presented in this special issue examine the preparation and characterization of emerging multifunctional materials, covering from hybrid asymmetric structures to engineering nano composites.

  14. The eNanoMapper database for nanomaterial safety information

    Directory of Open Access Journals (Sweden)

    Nina Jeliazkova

    2015-07-01

    Full Text Available Background: The NanoSafety Cluster, a cluster of projects funded by the European Commision, identified the need for a computational infrastructure for toxicological data management of engineered nanomaterials (ENMs. Ontologies, open standards, and interoperable designs were envisioned to empower a harmonized approach to European research in nanotechnology. This setting provides a number of opportunities and challenges in the representation of nanomaterials data and the integration of ENM information originating from diverse systems. Within this cluster, eNanoMapper works towards supporting the collaborative safety assessment for ENMs by creating a modular and extensible infrastructure for data sharing, data analysis, and building computational toxicology models for ENMs.Results: The eNanoMapper database solution builds on the previous experience of the consortium partners in supporting diverse data through flexible data storage, open source components and web services. We have recently described the design of the eNanoMapper prototype database along with a summary of challenges in the representation of ENM data and an extensive review of existing nano-related data models, databases, and nanomaterials-related entries in chemical and toxicogenomic databases. This paper continues with a focus on the database functionality exposed through its application programming interface (API, and its use in visualisation and modelling. Considering the preferred community practice of using spreadsheet templates, we developed a configurable spreadsheet parser facilitating user friendly data preparation and data upload. We further present a web application able to retrieve the experimental data via the API and analyze it with multiple data preprocessing and machine learning algorithms.Conclusion: We demonstrate how the eNanoMapper database is used to import and publish online ENM and assay data from several data sources, how the “representational state

  15. The eNanoMapper database for nanomaterial safety information.

    Science.gov (United States)

    Jeliazkova, Nina; Chomenidis, Charalampos; Doganis, Philip; Fadeel, Bengt; Grafström, Roland; Hardy, Barry; Hastings, Janna; Hegi, Markus; Jeliazkov, Vedrin; Kochev, Nikolay; Kohonen, Pekka; Munteanu, Cristian R; Sarimveis, Haralambos; Smeets, Bart; Sopasakis, Pantelis; Tsiliki, Georgia; Vorgrimmler, David; Willighagen, Egon

    2015-01-01

    The NanoSafety Cluster, a cluster of projects funded by the European Commision, identified the need for a computational infrastructure for toxicological data management of engineered nanomaterials (ENMs). Ontologies, open standards, and interoperable designs were envisioned to empower a harmonized approach to European research in nanotechnology. This setting provides a number of opportunities and challenges in the representation of nanomaterials data and the integration of ENM information originating from diverse systems. Within this cluster, eNanoMapper works towards supporting the collaborative safety assessment for ENMs by creating a modular and extensible infrastructure for data sharing, data analysis, and building computational toxicology models for ENMs. The eNanoMapper database solution builds on the previous experience of the consortium partners in supporting diverse data through flexible data storage, open source components and web services. We have recently described the design of the eNanoMapper prototype database along with a summary of challenges in the representation of ENM data and an extensive review of existing nano-related data models, databases, and nanomaterials-related entries in chemical and toxicogenomic databases. This paper continues with a focus on the database functionality exposed through its application programming interface (API), and its use in visualisation and modelling. Considering the preferred community practice of using spreadsheet templates, we developed a configurable spreadsheet parser facilitating user friendly data preparation and data upload. We further present a web application able to retrieve the experimental data via the API and analyze it with multiple data preprocessing and machine learning algorithms. We demonstrate how the eNanoMapper database is used to import and publish online ENM and assay data from several data sources, how the "representational state transfer" (REST) API enables building user friendly

  16. MITS machine operations

    International Nuclear Information System (INIS)

    Flinchem, J.

    1980-01-01

    This document contains procedures which apply to operations performed on individual P-1c machines in the Machine Interface Test System (MITS) at AiResearch Manufacturing Company's Torrance, California Facility

  17. Brain versus Machine Control.

    Directory of Open Access Journals (Sweden)

    Jose M Carmena

    2004-12-01

    Full Text Available Dr. Octopus, the villain of the movie "Spiderman 2", is a fusion of man and machine. Neuroscientist Jose Carmena examines the facts behind this fictional account of a brain- machine interface

  18. Applied machining technology

    CERN Document Server

    Tschätsch, Heinz

    2010-01-01

    Machining and cutting technologies are still crucial for many manufacturing processes. This reference presents all important machining processes in a comprehensive and coherent way. It includes many examples of concrete calculations, problems and solutions.

  19. Machining with abrasives

    CERN Document Server

    Jackson, Mark J

    2011-01-01

    Abrasive machining is key to obtaining the desired geometry and surface quality in manufacturing. This book discusses the fundamentals and advances in the abrasive machining processes. It provides a complete overview of developing areas in the field.

  20. Machine medical ethics

    CERN Document Server

    Pontier, Matthijs

    2015-01-01

    The essays in this book, written by researchers from both humanities and sciences, describe various theoretical and experimental approaches to adding medical ethics to a machine in medical settings. Medical machines are in close proximity with human beings, and getting closer: with patients who are in vulnerable states of health, who have disabilities of various kinds, with the very young or very old, and with medical professionals. In such contexts, machines are undertaking important medical tasks that require emotional sensitivity, knowledge of medical codes, human dignity, and privacy. As machine technology advances, ethical concerns become more urgent: should medical machines be programmed to follow a code of medical ethics? What theory or theories should constrain medical machine conduct? What design features are required? Should machines share responsibility with humans for the ethical consequences of medical actions? How ought clinical relationships involving machines to be modeled? Is a capacity for e...

  1. Machine protection systems

    CERN Document Server

    Macpherson, A L

    2010-01-01

    A summary of the Machine Protection System of the LHC is given, with particular attention given to the outstanding issues to be addressed, rather than the successes of the machine protection system from the 2009 run. In particular, the issues of Safe Machine Parameter system, collimation and beam cleaning, the beam dump system and abort gap cleaning, injection and dump protection, and the overall machine protection program for the upcoming run are summarised.

  2. Radiation induced nano structures

    International Nuclear Information System (INIS)

    Ibragimova, E.M.; Kalanov, M.U.; Khakimov, Z.

    2006-01-01

    Full text: Nanometer-size silicon clusters have been attracting much attention due to their technological importance, in particular, as promising building blocks for nano electronic and nano photonic systems. Particularly, silicon wires are of great of interest since they have potential for use in one-dimensional quantum wire high-speed field effect transistors and light-emitting devices with extremely low power consumption. Carbon and metal nano structures are studied very intensely due to wide possible applications. Radiation material sciences have been dealing with sub-micron objects for a long time. Under interaction of high energy particles and ionizing radiation with solids by elastic and inelastic mechanisms, at first point defects are created, then they form clusters, column defects, disordered regions (amorphous colloids) and finally precipitates of another crystal phase in the matrix. Such irradiation induced evolution of structure defects and phase transformations was observed by X-diffraction techniques in dielectric crystals of quartz and corundum, which exist in and crystal modifications. If there is no polymorphism, like in alkali halide crystals, then due to radiolysis halogen atoms are evaporated from the surface that results in non-stoichiometry or accumulated in the pores formed by metal vacancies in the sub-surface layer. Nano-pores are created by intensive high energy particles irradiation at first chaotically and then they are ordered and in part filled by inert gas. It is well-known mechanism of radiation induced swelling and embrittlement of metals and alloys, which is undesirable for construction materials for nuclear reactors. Possible solution of this problem may come from nano-structured materials, where there is neither swelling nor embrittlement at gas absorption due to very low density of the structure, while strength keeps high. This review considers experimental observations of radiation induced nano-inclusions in insulating

  3. Dictionary of machine terms

    International Nuclear Information System (INIS)

    1990-06-01

    This book has introduction of dictionary of machine terms, and a compilation committee and introductory remarks. It gives descriptions of the machine terms in alphabetical order from a to Z and also includes abbreviation of machine terms and symbol table, way to read mathematical symbols and abbreviation and terms of drawings.

  4. Mankind, machines and people

    Energy Technology Data Exchange (ETDEWEB)

    Hugli, A

    1984-01-01

    The following questions are addressed: is there a difference between machines and men, between human communication and communication with machines. Will we ever reach the point when the dream of artificial intelligence becomes a reality. Will thinking machines be able to replace the human spirit in all its aspects. Social consequences and philosophical aspects are addressed. 8 references.

  5. A Universal Reactive Machine

    DEFF Research Database (Denmark)

    Andersen, Henrik Reif; Mørk, Simon; Sørensen, Morten U.

    1997-01-01

    Turing showed the existence of a model universal for the set of Turing machines in the sense that given an encoding of any Turing machine asinput the universal Turing machine simulates it. We introduce the concept of universality for reactive systems and construct a CCS processuniversal...

  6. HTS machine laboratory prototype

    DEFF Research Database (Denmark)

    machine. The machine comprises six stationary HTS field windings wound from both YBCO and BiSCOO tape operated at liquid nitrogen temperature and enclosed in a cryostat, and a three phase armature winding spinning at up to 300 rpm. This design has full functionality of HTS synchronous machines. The design...

  7. Your Sewing Machine.

    Science.gov (United States)

    Peacock, Marion E.

    The programed instruction manual is designed to aid the student in learning the parts, uses, and operation of the sewing machine. Drawings of sewing machine parts are presented, and space is provided for the student's written responses. Following an introductory section identifying sewing machine parts, the manual deals with each part and its…

  8. Explicitly computing geodetic coordinates from Cartesian coordinates

    Science.gov (United States)

    Zeng, Huaien

    2013-04-01

    This paper presents a new form of quartic equation based on Lagrange's extremum law and a Groebner basis under the constraint that the geodetic height is the shortest distance between a given point and the reference ellipsoid. A very explicit and concise formulae of the quartic equation by Ferrari's line is found, which avoids the need of a good starting guess for iterative methods. A new explicit algorithm is then proposed to compute geodetic coordinates from Cartesian coordinates. The convergence region of the algorithm is investigated and the corresponding correct solution is given. Lastly, the algorithm is validated with numerical experiments.

  9. Quantum machine learning.

    Science.gov (United States)

    Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth

    2017-09-13

    Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.

  10. Asynchronized synchronous machines

    CERN Document Server

    Botvinnik, M M

    1964-01-01

    Asynchronized Synchronous Machines focuses on the theoretical research on asynchronized synchronous (AS) machines, which are "hybrids” of synchronous and induction machines that can operate with slip. Topics covered in this book include the initial equations; vector diagram of an AS machine; regulation in cases of deviation from the law of full compensation; parameters of the excitation system; and schematic diagram of an excitation regulator. The possible applications of AS machines and its calculations in certain cases are also discussed. This publication is beneficial for students and indiv

  11. Nano semiconducting materials

    CERN Document Server

    Saravanan, R

    2016-01-01

    The main focus of the present book is the characterization of a number of nano-semiconducting materials, using such techniques as powder X-ray diffraction, UV-visible spectrophotometry, Raman spectrometry, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometry. The materials studied include ZnS, TiO2, NiO, Ga doped ZnO, Mn doped SnO2, Mn doped CeO2 and Mn doped ZrO2.

  12. Combinatorial Nano-Bio Interfaces.

    Science.gov (United States)

    Cai, Pingqiang; Zhang, Xiaoqian; Wang, Ming; Wu, Yun-Long; Chen, Xiaodong

    2018-06-08

    Nano-bio interfaces are emerging from the convergence of engineered nanomaterials and biological entities. Despite rapid growth, clinical translation of biomedical nanomaterials is heavily compromised by the lack of comprehensive understanding of biophysicochemical interactions at nano-bio interfaces. In the past decade, a few investigations have adopted a combinatorial approach toward decoding nano-bio interfaces. Combinatorial nano-bio interfaces comprise the design of nanocombinatorial libraries and high-throughput bioevaluation. In this Perspective, we address challenges in combinatorial nano-bio interfaces and call for multiparametric nanocombinatorics (composition, morphology, mechanics, surface chemistry), multiscale bioevaluation (biomolecules, organelles, cells, tissues/organs), and the recruitment of computational modeling and artificial intelligence. Leveraging combinatorial nano-bio interfaces will shed light on precision nanomedicine and its potential applications.

  13. Dwell time adjustment for focused ion beam machining

    International Nuclear Information System (INIS)

    Taniguchi, Jun; Satake, Shin-ichi; Oosumi, Takaki; Fukushige, Akihisa; Kogo, Yasuo

    2013-01-01

    Focused ion beam (FIB) machining is potentially useful for micro/nano fabrication of hard brittle materials, because the removal method involves physical sputtering. Usually, micro/nano scale patterning of hard brittle materials is very difficult to achieve by mechanical polishing or dry etching. Furthermore, in most reported examples, FIB machining has been applied to silicon substrates in a limited range of shapes. Therefore, a versatile method for FIB machining is required. We previously established the dwell time adjustment for mechanical polishing. The dwell time adjustment is calculated by using a convolution model derived from Preston’s hypothesis. More specifically, the target removal shape is a convolution of the unit removal shape, and the dwell time is calculated by means of one of four algorithms. We investigate these algorithms for dwell time adjustment in FIB machining, and we found that a combination a fast Fourier transform calculation technique and a constraint-type calculation is suitable. By applying this algorithm, we succeeded in machining a spherical lens shape with a diameter of 2.93 μm and a depth of 203 nm in a glassy carbon substrate by means of FIB with dwell time adjustment

  14. A computer architecture for intelligent machines

    Science.gov (United States)

    Lefebvre, D. R.; Saridis, G. N.

    1992-01-01

    The theory of intelligent machines proposes a hierarchical organization for the functions of an autonomous robot based on the principle of increasing precision with decreasing intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed. The authors present a computer architecture that implements the lower two levels of the intelligent machine. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Execution-level controllers for motion and vision systems are briefly addressed, as well as the Petri net transducer software used to implement coordination-level functions. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.

  15. 2016 IFToMM Asian Conference on Mechanism and Machine Science (IFToMM Asian MMS 2016) & 2016 International Conference on Mechanism and Machine Science (CCMMS 2016)

    CERN Document Server

    Wang, Nianfeng; Huang, Yanjiang

    2017-01-01

    These proceedings collect the latest research results in mechanism and machine science, intended to reinforce and improve the role of mechanical systems in a variety of applications in daily life and industry. Gathering more than 120 academic papers, it addresses topics including: Computational kinematics, Machine elements, Actuators, Gearing and transmissions, Linkages and cams, Mechanism design, Dynamics of machinery, Tribology, Vehicle mechanisms, dynamics and design, Reliability, Experimental methods in mechanisms, Robotics and mechatronics, Biomechanics, Micro/nano mechanisms and machines, Medical/welfare devices, Nature and machines, Design methodology, Reconfigurable mechanisms and reconfigurable manipulators, and Origami mechanisms. This is the fourth installment in the IFToMM Asian conference series on Mechanism and Machine Science (ASIAN MMS 2016). The ASIAN MMS conference initiative was launched to provide a forum mainly for the Asian community working in Mechanism and Machine Science, in order to ...

  16. Histological Evaluation of Nano-Micro Titanium Implant Surface Treatment in Beagle Humerus.

    Science.gov (United States)

    Yun, Kwidug; Kang, Seongsoo; Oh, Gyejeong; Lim, Hyunpil; Lee, Kwangmin; Yang, Hongso; Vang, Mongsook; Park, Sangwon

    2016-02-01

    The objective of this study was to investigate the effects of nano-micro titanium implant surface using histology in beagle dogs. A total of 48 screw-shaped implants (Megagen, Daegu, Korea) which dimensions were 4 mm in diameter and 8.5 mm in length, were used. The implants were classified into 4 groups (n = 12): machined surface (M group), RBM (Resorbable Blasting Media) surface (R group), nano surface which is nanotube formation on the machined surface (MA group) and nano-micro surface which is nanotube formation on the RBM surface (RA group). Anodic oxidation was performed at a constant voltage of 20 V for 10 min using a DC power supply (Fine Power F-3005; SG EMD, Anyang, Korea). The bone blocks were investigated using histology. There was no inflammation around implants, and new bone formation was shown along with the nano-micro titanium implant surfaces. The amount of bone formation was increased depending on time comparing 4 weeks and 12 weeks. At 12 weeks, lamellar bone was more formed along with the nano-micro titanium implant surfaces than 4 weeks. It indicated that nano-micro surface showed good result in terms of osseointegration.

  17. Implementation of the geometrical problem in CNC metal cutting machine

    Directory of Open Access Journals (Sweden)

    Erokhin V.V.

    2017-06-01

    Full Text Available The article deals with the tasks of managing the production process (technological process and technological equip-ment, the most detailed analysis of the implementation of the geometric problem in CNC machines. The influence of the solution of the geometric CNC problem on the accuracy of workpiece machining is analyzed by implementing a certain interpolation algorithm and the values of the discreteness of the movements of the working bodies of the CNC machine. The technique of forming a given trajectory of motion of the machine's executive organ is given, by means of which it is required to ensure the coordinated movement of the shaping coordinates according to a certain law, depend-ing on the specified trajectory of the cutting edge of the tool. The advantages and disadvantages of the implementation of interpolation in CNC systems by various methods are considered, and particular attention is paid to combined meth-ods of realizing interpolation.

  18. Nano materials for Energy and Environmental Applications

    International Nuclear Information System (INIS)

    Srinivasan, S.; Kannan, A.M.; Kothurkar, N.; Khalil, Y.; Kuravi, S.

    2015-01-01

    Nano materials enabled technologies have been seamlessly integrated into applications such as aviation and space, chemical industry, optics, solar hydrogen, fuel cell, batteries, sensors, power generation, aeronautic industry, building/construction industry, automotive engineering, consumer electronics, thermoelectric devices, pharmaceuticals, and cosmetic industry. Clean energy and environmental applications often demand the development of novel nano materials that can provide shortest reaction pathways for the enhancement of reaction kinetics. Understanding the physicochemical, structural, microstructural, surface, and interface properties of nano materials is vital for achieving the required efficiency, cycle life, and sustain ability in various technological applications. Nano materials with specific size and shape such as nano tubes, nano fibers/nano wires, nano cones, nano composites, nano rods, nano islands, nanoparticles, nanospheres, and nano shells to provide unique properties can be synthesized by tuning the process conditions.

  19. The curvature coordinate system

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2007-01-01

    The paper describes a concept for a curvature coordinate system on regular curved surfaces from which faceted surfaces with plane quadrangular facets can be designed. The lines of curvature are used as parametric lines for the curvature coordinate system on the surface. A new conjugate set of lin...

  20. A novel approach to nano topology via neutrosophic sets

    OpenAIRE

    M. Lellis Thivagar; Saeid Jafari; V. Sutha Devi; V. Antonysamy

    2018-01-01

    The main objective of this study is to introduce a new hybrid intelligent structure called Neutrosophic nano topology. Fuzzy nano topology and intuitionistic nano topology can also be deduced from the neutrosophic nano topology. Based on the neutrosophic nano approximations we have classified neutrosophic nano topology. Some properties like neutrosophic nano interior and neutrosophic nano closure are derived.

  1. Technique for Increasing Accuracy of Positioning System of Machine Tools

    Directory of Open Access Journals (Sweden)

    Sh. Ji

    2014-01-01

    Full Text Available The aim of research is to improve the accuracy of positioning and processing system using a technique for optimization of pressure diagrams of guides in machine tools. The machining quality is directly related to its accuracy, which characterizes an impact degree of various errors of machines. The accuracy of the positioning system is one of the most significant machining characteristics, which allow accuracy evaluation of processed parts.The literature describes that the working area of the machine layout is rather informative to characterize the effect of the positioning system on the macro-geometry of the part surfaces to be processed. To enhance the static accuracy of the studied machine, in principle, two groups of measures are possible. One of them points toward a decrease of the cutting force component, which overturns the slider moments. Another group of measures is related to the changing sizes of the guide facets, which may lead to their profile change.The study was based on mathematical modeling and optimization of the cutting zone coordinates. And we find the formula to determine the surface pressure of the guides. The selected parameters of optimization are vectors of the cutting force and values of slides and guides. Obtained results show that a technique for optimization of coordinates in the cutting zone was necessary to increase a processing accuracy.The research has established that to define the optimal coordinates of the cutting zone we have to change the sizes of slides, value and coordinates of applied forces, reaching the pressure equalization and improving the accuracy of positioning system of machine tools. In different points of the workspace a vector of forces is applied, pressure diagrams are found, which take into account the changes in the parameters of positioning system, and the pressure diagram equalization to provide the most accuracy of machine tools is achieved.

  2. To be nano or not to be nano?

    Science.gov (United States)

    Joachim, Christian

    2005-02-01

    Nanomaterials, nanostructures, nanostructured materials, nanoimprint, nanobiotechnology, nanophysics, nanochemistry, radical nanotechnology, nanosciences, nanooptics, nanoelectronics, nanorobotics, nanosoldiers, nanomedecine, nanoeconomy, nanobusiness, nanolawyer, nanoethics to name a few of the nanos. We need a clear definition of all these burgeoning fields for the sake of the grant attribution, for the sake of research program definition, and to avoid everyone being lost in so many nanos.

  3. 1D Nano materials 2012

    International Nuclear Information System (INIS)

    Yanqiu Zhu, Y.; Ma, R.; Whitby, R.; Acquah, S.

    2013-01-01

    We witnessed an initial hyped period and enthusiasm on carbon nano tubes in the 1990s later went through a significant expansion into nano tubes of other materials (metal di chalcogenides, boron nitride, etc.) as well as various nano wires and nano rods. While much of the hype might have gone, the research on one-dimensional (1D) nano materials has matured as one of the most active research areas within the nano science and nano technology community, flourishing with ample, exciting, and new research opportunities. Just like any other research frontier, researchers working in the 1D nano materials field are constantly striving to develop new fundamental science as well as potential applications. It remains a common belief that versatility and tunability of 1D nano materials would challenge many new rising tasks coming from our resource and energy demanding modern society. The traditional semiconductor industry has produced so many devices and systems from transistors, sensors, lasers, and LEDs to more sophisticated solar panels, which are now part of our daily lives. By down sizing the core components or parts to 1D form, one might wonder how fundamentally the dimensionality and morphology would impact the device performance, this is, as always, requiring us to fully understand the structure-property relationship in 1D nano materials. It may be equally crucial in connecting discovery-driven fundamental science to market-driven technology industry concerning potentially relevant findings derived from these novel materials. The importance of a platform that allows active researchers in this field to present their new development in a timely and efficient manner is therefore self-evident. Following the success of two early special issues devoted to 1D nano materials, this is the third one in a row organized by the same group of guest editors, attesting that such a platform has been well received by the readers

  4. 3D-SEM Metrology for Coordinate Measurements at the Nanometer Scale

    DEFF Research Database (Denmark)

    Carli, Lorenzo

    to be addressed concerning uncertainty evaluation have been discussed. Most recent developments in the field of micro and nano-metrology, in terms of measuring machines and techniques, are described pointing out advantages and limitations. The importance of multi-sensor and multi-orientation strategy...

  5. Pattern recognition & machine learning

    CERN Document Server

    Anzai, Y

    1992-01-01

    This is the first text to provide a unified and self-contained introduction to visual pattern recognition and machine learning. It is useful as a general introduction to artifical intelligence and knowledge engineering, and no previous knowledge of pattern recognition or machine learning is necessary. Basic for various pattern recognition and machine learning methods. Translated from Japanese, the book also features chapter exercises, keywords, and summaries.

  6. Support vector machines applications

    CERN Document Server

    Guo, Guodong

    2014-01-01

    Support vector machines (SVM) have both a solid mathematical background and good performance in practical applications. This book focuses on the recent advances and applications of the SVM in different areas, such as image processing, medical practice, computer vision, pattern recognition, machine learning, applied statistics, business intelligence, and artificial intelligence. The aim of this book is to create a comprehensive source on support vector machine applications, especially some recent advances.

  7. The Newest Machine Material

    International Nuclear Information System (INIS)

    Seo, Yeong Seop; Choe, Byeong Do; Bang, Meong Sung

    2005-08-01

    This book gives descriptions of machine material with classification of machine material and selection of machine material, structure and connection of material, coagulation of metal and crystal structure, equilibrium diagram, properties of metal material, elasticity and plasticity, biopsy of metal, material test and nondestructive test. It also explains steel material such as heat treatment of steel, cast iron and cast steel, nonferrous metal materials, non metallic materials, and new materials.

  8. Introduction to machine learning

    OpenAIRE

    Baştanlar, Yalın; Özuysal, Mustafa

    2014-01-01

    The machine learning field, which can be briefly defined as enabling computers make successful predictions using past experiences, has exhibited an impressive development recently with the help of the rapid increase in the storage capacity and processing power of computers. Together with many other disciplines, machine learning methods have been widely employed in bioinformatics. The difficulties and cost of biological analyses have led to the development of sophisticated machine learning app...

  9. Machinability of advanced materials

    CERN Document Server

    Davim, J Paulo

    2014-01-01

    Machinability of Advanced Materials addresses the level of difficulty involved in machining a material, or multiple materials, with the appropriate tooling and cutting parameters.  A variety of factors determine a material's machinability, including tool life rate, cutting forces and power consumption, surface integrity, limiting rate of metal removal, and chip shape. These topics, among others, and multiple examples comprise this research resource for engineering students, academics, and practitioners.

  10. Machining of titanium alloys

    CERN Document Server

    2014-01-01

    This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

  11. Uncertainty budget for optical coordinate measurements of circle diameter

    DEFF Research Database (Denmark)

    Morace, Renate Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2004-01-01

    An uncertainty analysis for circle diameter measurements using a coordinate measuring machine (CMM) equipped with an optical probe is presented in this paper. A mathematical model for data evaluation and uncertainty assessment was formulated in accordance with Guide to the Expression of Uncertain...

  12. PREFACE: Nano- and microfluidics Nano- and microfluidics

    Science.gov (United States)

    Jacobs, Karin

    2011-05-01

    The field of nano- and microfluidics emerged at the end of the 1990s parallel to the demand for smaller and smaller containers and channels for chemical, biochemical and medical applications such as blood and DNS analysis [1], gene sequencing or proteomics [2, 3]. Since then, new journals and conferences have been launched and meanwhile, about two decades later, a variety of microfluidic applications are on the market. Briefly, 'the small flow becomes mainstream' [4]. Nevertheless, research in nano- and microfluidics is more than downsizing the spatial dimensions. For liquids on the nanoscale, surface and interface phenomena grow in importance and may even dominate the behavior in some systems. The studies collected in this special issue all concentrate on these type of systems and were part ot the priority programme SPP1164 'Nano- and Microfluidics' of the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG). The priority programme was initiated in 2002 by Hendrik Kuhlmann and myself and was launched in 2004. Friction between a moving liquid and a solid wall may, for instance, play an important role so that the usual assumption of a no-slip boundary condition is no longer valid. Likewise, the dynamic deformations of soft objects like polymers, vesicles or capsules in flow arise from the subtle interplay between the (visco-)elasticity of the object and the viscous stresses in the surrounding fluid and, potentially, the presence of structures confining the flow like channels. Consequently, new theories were developed ( see articles in this issue by Münch and Wagner, Falk and Mecke, Bonthuis et al, Finken et al, Almenar and Rauscher, Straube) and experiments were set up to unambiguously demonstrate deviations from bulk, or 'macro', behavior (see articles in this issue by Wolff et al, Vinogradova and Belyaev, Hahn et al, Seemann et al, Grüner and Huber, Müller-Buschbaum et al, Gutsche et al, Braunmüller et al, Laube et al, Brücker, Nottebrock et al

  13. Tribology in machine design

    CERN Document Server

    Stolarski, Tadeusz

    1999-01-01

    ""Tribology in Machine Design is strongly recommended for machine designers, and engineers and scientists interested in tribology. It should be in the engineering library of companies producing mechanical equipment.""Applied Mechanics ReviewTribology in Machine Design explains the role of tribology in the design of machine elements. It shows how algorithms developed from the basic principles of tribology can be used in a range of practical applications within mechanical devices and systems.The computer offers today's designer the possibility of greater stringen

  14. Induction machine handbook

    CERN Document Server

    Boldea, Ion

    2002-01-01

    Often called the workhorse of industry, the advent of power electronics and advances in digital control are transforming the induction motor into the racehorse of industrial motion control. Now, the classic texts on induction machines are nearly three decades old, while more recent books on electric motors lack the necessary depth and detail on induction machines.The Induction Machine Handbook fills industry's long-standing need for a comprehensive treatise embracing the many intricate facets of induction machine analysis and design. Moving gradually from simple to complex and from standard to

  15. Chaotic Boltzmann machines

    Science.gov (United States)

    Suzuki, Hideyuki; Imura, Jun-ichi; Horio, Yoshihiko; Aihara, Kazuyuki

    2013-01-01

    The chaotic Boltzmann machine proposed in this paper is a chaotic pseudo-billiard system that works as a Boltzmann machine. Chaotic Boltzmann machines are shown numerically to have computing abilities comparable to conventional (stochastic) Boltzmann machines. Since no randomness is required, efficient hardware implementation is expected. Moreover, the ferromagnetic phase transition of the Ising model is shown to be characterised by the largest Lyapunov exponent of the proposed system. In general, a method to relate probabilistic models to nonlinear dynamics by derandomising Gibbs sampling is presented. PMID:23558425

  16. Electrical machines & drives

    CERN Document Server

    Hammond, P

    1985-01-01

    Containing approximately 200 problems (100 worked), the text covers a wide range of topics concerning electrical machines, placing particular emphasis upon electrical-machine drive applications. The theory is concisely reviewed and focuses on features common to all machine types. The problems are arranged in order of increasing levels of complexity and discussions of the solutions are included where appropriate to illustrate the engineering implications. This second edition includes an important new chapter on mathematical and computer simulation of machine systems and revised discussions o

  17. Nanocomposites for Machining Tools

    Directory of Open Access Journals (Sweden)

    Daria Sidorenko

    2017-10-01

    Full Text Available Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance.

  18. Machine listening intelligence

    Science.gov (United States)

    Cella, C. E.

    2017-05-01

    This manifesto paper will introduce machine listening intelligence, an integrated research framework for acoustic and musical signals modelling, based on signal processing, deep learning and computational musicology.

  19. Machine learning with R

    CERN Document Server

    Lantz, Brett

    2013-01-01

    Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or

  20. Rotating electrical machines

    CERN Document Server

    Le Doeuff, René

    2013-01-01

    In this book a general matrix-based approach to modeling electrical machines is promulgated. The model uses instantaneous quantities for key variables and enables the user to easily take into account associations between rotating machines and static converters (such as in variable speed drives).   General equations of electromechanical energy conversion are established early in the treatment of the topic and then applied to synchronous, induction and DC machines. The primary characteristics of these machines are established for steady state behavior as well as for variable speed scenarios. I

  1. Are there intelligent Turing machines?

    OpenAIRE

    Bátfai, Norbert

    2015-01-01

    This paper introduces a new computing model based on the cooperation among Turing machines called orchestrated machines. Like universal Turing machines, orchestrated machines are also designed to simulate Turing machines but they can also modify the original operation of the included Turing machines to create a new layer of some kind of collective behavior. Using this new model we can define some interested notions related to cooperation ability of Turing machines such as the intelligence quo...

  2. Micro/Nano manufacturing

    DEFF Research Database (Denmark)

    Tosello, Guido

    2017-01-01

    Micro- and nano-scale manufacturing has been the subject of an increasing amount of interest and research effort worldwide in both academia and industry over the past 10 years.Traditional (MEMS) manufacturing, but also precision manufacturing technologies have been developed to cover micro......-scale dimensions and accuracies. Furthermore, these fundamentally different technology ecosystems are currently combined in order to exploit strengths of both platforms. One example is the use of lithography-based technologies to establish nanostructures that are subsequently transferred to 3D geometries via...

  3. Nano Manufacturing - Products and Technologies

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Alting, Leo

    2004-01-01

    The use of micro and nano technologies in components and products not only sets new demands to the manufacturing technologies. Product concepts have to be rethought and redefined in order to implement the micro and nano technologies into functional systems. Both a technology driven and a product ...

  4. Decrease of FIB-induced lateral damage for diamond tool used in nano cutting

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Xu, Zongwei, E-mail: zongweixu@163.com [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Fang, Fengzhou, E-mail: fzfang@gmail.com [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Liu, Bing; Xiao, Yinjing; Chen, Jinping [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Wang, Xibin [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Liu, Hongzhong [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China)

    2014-07-01

    Highlights: • We mainly aim to characterize and decrease the FIB-induced damage on diamond tool. • Raman and XPS methods were used to characterize the nanoscale FIB-induced damage. • Lower energy FIB can effectively lessen the FIB-induced damage on diamond tool. • The diamond tools’ performance was greatly improved after FIB process optimization. • 6 nm chip thickness of copper was achieved by diamond tool with 22 nm edge radius. - Abstract: Diamond cutting tools with nanometric edge radius used in ultra-precision machining can be fabricated by focused ion beam (FIB) technology. However, due to the nanoscale effects, the diamond tools performance and the cutting edge lifetime in nano cutting would be degraded because of the FIB-induced nanoscale lateral damage. In this study, the methods of how to effectively characterize and decrease the FIB-induced lateral damage for diamond tool are intensively studied. Based on the performance optimization diamond machining tools, the controllable chip thickness of less than 10 nm was achieved on a single-crystal copper in nano cutting. In addition, the ratio of minimum thickness of chip (MTC) to tool edge radius of around 0.3–0.4 in nano cutting is achieved. Methods for decreasing the FIB-induced damage on diamond tools and adding coolant during the nano cutting are very beneficial in improving the research of nano cutting and MTC. The nano cutting experiments based on the sharp and high performance of diamond tools would validate the nano cutting mechanisms that many molecular dynamic simulation studies have put forward and provide new findings for nano cutting.

  5. Regional transit coordination guidebook.

    Science.gov (United States)

    2009-01-01

    Constant growth in rural areas and extensive suburban development have contributed to increasingly more people needing seamless and adequate public transportation into and from nearby cities. Coordinating existing services or determining the need for...

  6. Supercritical Airfoil Coordinates

    Data.gov (United States)

    National Aeronautics and Space Administration — Rectangular Supercritical Wing (Ricketts) - design and measured locations are provided in an Excel file RSW_airfoil_coordinates_ricketts.xls . One sheet is with Non...

  7. Developmental coordination disorder

    Science.gov (United States)

    Developmental coordination disorder can lead to: Learning problems Low self-esteem resulting from poor ability at sports and teasing by other children Repeated injuries Weight gain as a result of not wanting to participate ...

  8. Environmental Compliance Issue Coordination

    Science.gov (United States)

    An order to establish the Department of Energy (DOE) requirements for coordination of significant environmental compliance issues to ensure timely development and consistent application of Departmental environmental policy and guidance

  9. Data Management Coordinators (DMC)

    Science.gov (United States)

    The Regional Data Management Coordinators (DMCs) were identified to serve as the primary contact for each region for all Water Quality Framework activities. They will facilitate and communicate information to the necessary individuals at the region and tra

  10. Coordinating Work with Groupware

    DEFF Research Database (Denmark)

    Pors, Jens Kaaber; Simonsen, Jesper

    2003-01-01

    One important goal of employing groupware is to make possible complex collaboration between geographically distributed groups. This requires a dual transformation of both technology and work practice. The challenge is to re­duce the complexity of the coordination work by successfully inte....... Using the CSCW frame­work of coordination mechanisms, we have elicited six general factors influencing the integration of the groupware application in two situations....

  11. Luminescent lanthanide coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ma, L.; Evans, O.R.; Foxman, B.M.; Lin, W.

    1999-12-13

    One-dimensional lanthanide coordination polymers with the formula Ln(isonicotinate){sub 3}(H{sub 2}O){sub 2} (Ln = Ce, Pr, Nd, Sm, Eu, Tb; 1a-f) were synthesized by treating nitrate or perchlorate salts of Ln(III) with 4-pyridinecarboxaldehyde under hydro(solvo)thermal conditions. Single-crystal and powder X-ray diffraction studies indicate that these lanthanide coordination polymers adopt two different structures. While Ce(III), Pr(III), and Nd(III) complexes adopt a chain structure with alternating Ln-(carboxylate){sub 2}-Ln and Ln-(carboxylate){sub 4}-Ln linkages, Sm(III), Eu(III), and Tb(III) complexes have a doubly carboxylate-bridged infinite-chain structure with one chelating carboxylate group on each metal center. In both structures, the lanthanide centers also bind to two water molecules to yield an eight-coordinate, square antiprismatic geometry. The pyridine nitrogen atoms of the isonicotinate groups do not coordinate to the metal centers in these lanthanide(III) complexes; instead, they direct the formation of Ln(III) coordination polymers via hydrogen bonding with coordinated water molecules. Photoluminescence measurements show that Tb(isonicotinate){sub 3}(H{sub 2}O){sub 2} is highly emissive at room temperature with a quantum yield of {approximately}90%. These results indicate that highly luminescent lanthanide coordination polymers can be assembled using a combination of coordination and hydrogen bonds. Crystal data for 1a: monoclinic space group P2{sub 1}/c, a = 9.712(2) {angstrom}, b = 19.833(4) {angstrom}, c = 11.616(2) {angstrom}, {beta} = 111.89(3){degree}, Z = 4. Crystal data for 1f: monoclinic space group C2/c, a = 20.253(4) {angstrom}, b = 11.584(2) {angstrom}, c = 9.839(2) {angstrom}, {beta} = 115.64(3){degree}, Z = 8.

  12. Coordinate-invariant regularization

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1987-01-01

    A general phase-space framework for coordinate-invariant regularization is given. The development is geometric, with all regularization contained in regularized DeWitt Superstructures on field deformations. Parallel development of invariant coordinate-space regularization is obtained by regularized functional integration of the momenta. As representative examples of the general formulation, the regularized general non-linear sigma model and regularized quantum gravity are discussed. copyright 1987 Academic Press, Inc

  13. EDITORIAL: Nano Meets Spectroscopy Nano Meets Spectroscopy

    Science.gov (United States)

    Birch, David J. S.

    2012-08-01

    The multidisciplinary two-day Nano Meets Spectroscopy (NMS) event was held at the National Physical Laboratory (NPL), Teddington, UK, in September 2011. The event was planned from the outset to be at the interface of several areas—in particular, spectroscopy and nanoscience, and to bring together topics and people with different approaches to achieving common goals in biomolecular science. Hence the meeting cut across traditional boundaries and brought together researchers using diverse techniques, particularly fluorescence and Raman spectroscopy. Despite engaging common problems, these techniques are frequently seen as mutually exclusive with the two communities rarely interacting at conferences. The meeting was widely seen to have lived up to its billing in good measure. It attracted the maximum capacity of ~120 participants, including 22 distinguished speakers (9 from outside the UK), over 50 posters and a vibrant corporate exhibition comprising 10 leading instrument companies and IOP Publishing. The organizers were Professor David Birch (Chair), Dr Karen Faulds and Professor Duncan Graham of the University of Strathclyde, Professor Cait MacPhee of the University of Edinburgh and Dr Alex Knight of NPL. The event was sponsored by the European Science Foundation, the Institute of Physics, the Royal Society of Chemistry, NPL and the Scottish Universities Physics Alliance. The full programme and abstracts are available at http://sensor.phys.strath.ac.uk/nms/program.php. The programme was quite ambitious in terms of the breadth and depth of scope. The interdisciplinary and synergistic concept of 'X meets Y' played well, cross-fertilization between different fields often being a source of inspiration and progress. Fluorescence and Raman spectroscopy provided the core, but the meeting had little repetition and also attracted contributions on more specialist techniques such as CARS, super-resolution, single molecule and chiral methods. In terms of application the

  14. Magnetic Coordinate Systems

    Science.gov (United States)

    Laundal, K. M.; Richmond, A. D.

    2017-03-01

    Geospace phenomena such as the aurora, plasma motion, ionospheric currents and associated magnetic field disturbances are highly organized by Earth's main magnetic field. This is due to the fact that the charged particles that comprise space plasma can move almost freely along magnetic field lines, but not across them. For this reason it is sensible to present such phenomena relative to Earth's magnetic field. A large variety of magnetic coordinate systems exist, designed for different purposes and regions, ranging from the magnetopause to the ionosphere. In this paper we review the most common magnetic coordinate systems and describe how they are defined, where they are used, and how to convert between them. The definitions are presented based on the spherical harmonic expansion coefficients of the International Geomagnetic Reference Field (IGRF) and, in some of the coordinate systems, the position of the Sun which we show how to calculate from the time and date. The most detailed coordinate systems take the full IGRF into account and define magnetic latitude and longitude such that they are constant along field lines. These coordinate systems, which are useful at ionospheric altitudes, are non-orthogonal. We show how to handle vectors and vector calculus in such coordinates, and discuss how systematic errors may appear if this is not done correctly.

  15. Comparison and Analysis on Mechanical Property and Machinability about Polyetheretherketone and Carbon-Fibers Reinforced Polyetheretherketone

    Directory of Open Access Journals (Sweden)

    Shijun Ji

    2015-07-01

    Full Text Available The aim of this paper is to compare the mechanical property and machinability of Polyetheretherketone (PEEK and 30 wt% carbon-fibers reinforced Polyetheretherketone (PEEK CF 30. The method of nano-indentation is used to investigate the microscopic mechanical property. The evolution of load with displacement, Young’s modulus curves and hardness curves are analyzed. The results illustrate that the load-displacement curves of PEEK present better uniformity, and the variation of Young’s modulus and hardness of PEEK both change smaller at the experimental depth. The machinability between PEEK and PEEK CF 30 are also compared by the method of single-point diamond turning (SPDT, and the peak-to-valley value (PV and surface roughness (Ra are obtained to evaluate machinability of the materials after machining. The machining results show that PEEK has smaller PV and Ra, which means PEEK has superior machinability.

  16. Comparison and Analysis on Mechanical Property and Machinability about Polyetheretherketone and Carbon-Fibers Reinforced Polyetheretherketone.

    Science.gov (United States)

    Ji, Shijun; Sun, Changrui; Zhao, Ji; Liang, Fusheng

    2015-07-07

    The aim of this paper is to compare the mechanical property and machinability of Polyetheretherketone (PEEK) and 30 wt% carbon-fibers reinforced Polyetheretherketone (PEEK CF 30). The method of nano-indentation is used to investigate the microscopic mechanical property. The evolution of load with displacement, Young's modulus curves and hardness curves are analyzed. The results illustrate that the load-displacement curves of PEEK present better uniformity, and the variation of Young's modulus and hardness of PEEK both change smaller at the experimental depth. The machinability between PEEK and PEEK CF 30 are also compared by the method of single-point diamond turning (SPDT), and the peak-to-valley value (PV) and surface roughness (Ra) are obtained to evaluate machinability of the materials after machining. The machining results show that PEEK has smaller PV and Ra, which means PEEK has superior machinability.

  17. Microsoft Azure machine learning

    CERN Document Server

    Mund, Sumit

    2015-01-01

    The book is intended for those who want to learn how to use Azure Machine Learning. Perhaps you already know a bit about Machine Learning, but have never used ML Studio in Azure; or perhaps you are an absolute newbie. In either case, this book will get you up-and-running quickly.

  18. The Hooey Machine.

    Science.gov (United States)

    Scarnati, James T.; Tice, Craig J.

    1992-01-01

    Describes how students can make and use Hooey Machines to learn how mechanical energy can be transferred from one object to another within a system. The Hooey Machine is made using a pencil, eight thumbtacks, one pushpin, tape, scissors, graph paper, and a plastic lid. (PR)

  19. Nanocomposites for Machining Tools

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Loginov, Pavel; Mishnaevsky, Leon

    2017-01-01

    Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials...

  20. A nucleonic weighing machine

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The design and operation of a nucleonic weighing machine fabricated for continuous weighing of material over conveyor belt are described. The machine uses a 40 mCi cesium-137 line source and a 10 litre capacity ionization chamber. It is easy to maintain as there are no moving parts. It can also be easily removed and reinstalled. (M.G.B.)

  1. An asymptotical machine

    Science.gov (United States)

    Cristallini, Achille

    2016-07-01

    A new and intriguing machine may be obtained replacing the moving pulley of a gun tackle with a fixed point in the rope. Its most important feature is the asymptotic efficiency. Here we obtain a satisfactory description of this machine by means of vector calculus and elementary trigonometry. The mathematical model has been compared with experimental data and briefly discussed.

  2. Machine learning with R

    CERN Document Server

    Lantz, Brett

    2015-01-01

    Perhaps you already know a bit about machine learning but have never used R, or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.

  3. The deleuzian abstract machines

    DEFF Research Database (Denmark)

    Werner Petersen, Erik

    2005-01-01

    To most people the concept of abstract machines is connected to the name of Alan Turing and the development of the modern computer. The Turing machine is universal, axiomatic and symbolic (E.g. operating on symbols). Inspired by Foucault, Deleuze and Guattari extended the concept of abstract...

  4. Human Machine Learning Symbiosis

    Science.gov (United States)

    Walsh, Kenneth R.; Hoque, Md Tamjidul; Williams, Kim H.

    2017-01-01

    Human Machine Learning Symbiosis is a cooperative system where both the human learner and the machine learner learn from each other to create an effective and efficient learning environment adapted to the needs of the human learner. Such a system can be used in online learning modules so that the modules adapt to each learner's learning state both…

  5. Thorium/uranium mixed oxide nano-crystals: Synthesis, structural characterization and magnetic properties

    International Nuclear Information System (INIS)

    Hudry, Damien; Griveau, Jean-Christophe; Apostolidis, Christos; Colineau, Eric; Rasmussen, Gert; Walter, Olaf; Wang, Di; Venkata Sai Kiran Chakravadhaluna; Courtois, Eglantine; Kubel, Christian

    2014-01-01

    One of the primary aims of the actinide community within nano-science is to develop a good understanding similar to what is currently the case for stable elements. As a consequence, efficient, reliable and versatile synthesis techniques dedicated to the formation of new actinide-based nano-objects (e.g., nano-crystals) are necessary. Hence, a 'library' dedicated to the preparation of various actinide based nano-scale building blocks is currently being developed. Nano-scale building blocks with tunable sizes, shapes and compositions are of prime importance. So far, the non-aqueous synthesis method in highly coordinating organic media is the only approach which has demonstrated the capability to provide size and shape control of actinide-based nano-crystals (both for thorium and uranium, and recently extended to neptunium and plutonium). In this paper, we demonstrate that the non-aqueous approach is also well adapted to control the chemical composition of the nano-crystals obtained when mixing two different actinides. Indeed, the controlled hot co-injection of thorium acetylacetonate and uranyl acetate (together with additional capping agents) into benzyl ether can be used to synthesize thorium/uranium mixed oxide nano-crystals covering the full compositional spectrum. Additionally, we found that both size and shape are modified as a function of the thorium/uranium ratio. Finally, the magnetic properties of the different thorium/uranium mixed oxide nano-crystals were investigated. Contrary to several reports, we did not observe any ferromagnetic behavior. As a consequence, ferromagnetism cannot be described as a universal feature of nano-crystals of non-magnetic oxides as recently claimed in the literature. (authors)

  6. Precision machining commercialization

    International Nuclear Information System (INIS)

    1978-01-01

    To accelerate precision machining development so as to realize more of the potential savings within the next few years of known Department of Defense (DOD) part procurement, the Air Force Materials Laboratory (AFML) is sponsoring the Precision Machining Commercialization Project (PMC). PMC is part of the Tri-Service Precision Machine Tool Program of the DOD Manufacturing Technology Five-Year Plan. The technical resources supporting PMC are provided under sponsorship of the Department of Energy (DOE). The goal of PMC is to minimize precision machining development time and cost risk for interested vendors. PMC will do this by making available the high precision machining technology as developed in two DOE contractor facilities, the Lawrence Livermore Laboratory of the University of California and the Union Carbide Corporation, Nuclear Division, Y-12 Plant, at Oak Ridge, Tennessee

  7. Introduction to machine learning.

    Science.gov (United States)

    Baştanlar, Yalin; Ozuysal, Mustafa

    2014-01-01

    The machine learning field, which can be briefly defined as enabling computers make successful predictions using past experiences, has exhibited an impressive development recently with the help of the rapid increase in the storage capacity and processing power of computers. Together with many other disciplines, machine learning methods have been widely employed in bioinformatics. The difficulties and cost of biological analyses have led to the development of sophisticated machine learning approaches for this application area. In this chapter, we first review the fundamental concepts of machine learning such as feature assessment, unsupervised versus supervised learning and types of classification. Then, we point out the main issues of designing machine learning experiments and their performance evaluation. Finally, we introduce some supervised learning methods.

  8. LHC Report: machine development

    CERN Multimedia

    Rogelio Tomás García for the LHC team

    2015-01-01

    Machine development weeks are carefully planned in the LHC operation schedule to optimise and further study the performance of the machine. The first machine development session of Run 2 ended on Saturday, 25 July. Despite various hiccoughs, it allowed the operators to make great strides towards improving the long-term performance of the LHC.   The main goals of this first machine development (MD) week were to determine the minimum beam-spot size at the interaction points given existing optics and collimation constraints; to test new beam instrumentation; to evaluate the effectiveness of performing part of the beam-squeezing process during the energy ramp; and to explore the limits on the number of protons per bunch arising from the electromagnetic interactions with the accelerator environment and the other beam. Unfortunately, a series of events reduced the machine availability for studies to about 50%. The most critical issue was the recurrent trip of a sextupolar corrector circuit –...

  9. Synthesis of new nano Schiff base complexes: X-ray crystallography ...

    African Journals Online (AJOL)

    This study presents synthesis and characterization of new nano uranyl Schiff base complexes. Electrochemistry of these complexes showed a quasireversible redox reaction without any successive reactions. Furthermore, X-ray crystallography exhibited that beside the coordination of tetradentate Schiff base, one solvent ...

  10. Synthesis of Metal Polymer Nano composites Using Ionizing Radiation

    International Nuclear Information System (INIS)

    Mostafa, R.S.S.

    2012-01-01

    with small agglomeration appeared in the as-prepared nano composites at either higher CdCl 2 concentration or irradiation dose. The X-ray diffraction patterns of CdS/PVA show that all the diffraction of the nano composites sample, (containing CdCl 2 concentration in rang 10-2-10-3 M), can be ascribed to the cubic phase of CdS. On the other hand, the CdS/PVA nano composites (containing 1 gm of both CdCl 2 and Na 2 S 2 O 3 ) exhibited a mixture of diffraction patterns related to the cubic and hexagonal phase of CdS nanoparticles. The calculated particle sizes of CdS nanoparticles using UV/VIS, TEM and XRD data are in good agreement with each other, consistent and dependent on the theory of examination. Particle size measured from TEM was somewhat larger than that obtained from either UV/VIS or XRD data. Fourier transform infrared (FTIR) spectra confirmed the formation of nano composites with hydroxyl group of PVA chains via chemically coordinated linkage to the surface of CdS and Ag nanoparticles. Also, thermogravimetric analysis (TGA) indicated that the resulting nano composites displayed higher thermal stability compared with pure PVA matrix.

  11. Nano-ceramics and its molding technologies

    International Nuclear Information System (INIS)

    Liu Jian; Xu Yunshu

    2007-01-01

    Nano-ceramics and its related knowledge were introduced. Fabrication of nano-ceramic powder, as well as the molding and sintering technologies of nano-ceramics were reviewed. Features of the present molding technologies were analyzed. The applications of nano-ceramics were prospected. (authors)

  12. Frontiers in nano-therapeutics

    CERN Document Server

    Tasnim, Nishat; Sai Krishna, Katla; Kalagara, Sudhakar; Narayan, Mahesh; Noveron, Juan C; Joddar, Binata

    2017-01-01

    This brief highlights recent research advances in the area of nano-therapeutics. Nanotechnology holds immense potential for application in a wide range of biological and engineering applications such as molecular sensors for disease diagnosis, therapeutic agents for the treatment of diseases, a vehicle for delivering therapeutics and imaging agents for theranostic applications, both in-vitro and in-vivo. The brief is grouped into the following sections namely, A) Discrete Nanosystems ; B) Anisotropic Nanoparticles; C) Nano-films/coated/layered and D) Nano-composites.

  13. HNF - Helmholtz Nano Facility

    Directory of Open Access Journals (Sweden)

    Wolfgang Albrecht

    2017-05-01

    Full Text Available The Helmholtz Nano Facility (HNF is a state-of-the-art cleanroom facility. The cleanroom has ~1100 m2 with cleanroom classes of DIN ISO 1-3. HNF operates according to VDI DIN 2083, Good Manufacturing Practice (GMP and aquivalent to Semiconductor Industry Association (SIA standards. HNF is a user facility of Forschungszentrum Jülich and comprises a network of facilities, processes and systems for research, production and characterization of micro- and nanostructures. HNF meets the basic supply of micro- and nanostructures for nanoelectronics, fluidics. micromechanics, biology, neutron and energy science, etc.. The task of HNF is rapid progress in nanostructures and their technology, offering efficient access to infrastructure and equipment. HNF gives access to expertise and provides resources in production, synthesis, characterization and integration of structures, devices and circuits. HNF covers the range from basic research to application oriented research facilitating a broad variety of different materials and different sample sizes.

  14. Nano-optomechanical transducer

    Science.gov (United States)

    Rakich, Peter T; El-Kady, Ihab F; Olsson, Roy H; Su, Mehmet Fatih; Reinke, Charles; Camacho, Ryan; Wang, Zheng; Davids, Paul

    2013-12-03

    A nano-optomechanical transducer provides ultrabroadband coherent optomechanical transduction based on Mach-wave emission that uses enhanced photon-phonon coupling efficiencies by low impedance effective phononic medium, both electrostriction and radiation pressure to boost and tailor optomechanical forces, and highly dispersive electromagnetic modes that amplify both electrostriction and radiation pressure. The optomechanical transducer provides a large operating bandwidth and high efficiency while simultaneously having a small size and minimal power consumption, enabling a host of transformative phonon and signal processing capabilities. These capabilities include optomechanical transduction via pulsed phonon emission and up-conversion, broadband stimulated phonon emission and amplification, picosecond pulsed phonon lasers, broadband phononic modulators, and ultrahigh bandwidth true time delay and signal processing technologies.

  15. Machine Learning and Radiology

    Science.gov (United States)

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  16. Machine learning and radiology.

    Science.gov (United States)

    Wang, Shijun; Summers, Ronald M

    2012-07-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. Copyright © 2012. Published by Elsevier B.V.

  17. Carbon nanotubes: from nano test tube to nano-reactor.

    Science.gov (United States)

    Khlobystov, Andrei N

    2011-12-27

    Confinement of molecules and atoms inside carbon nanotubes provides a powerful strategy for studying structures and chemical properties of individual molecules at the nanoscale. In this issue of ACS Nano, Allen et al. explore the nanotube as a template leading to the formation of unusual supramolecular and covalent structures. The potential of carbon nanotubes as reactors for synthesis on the nano- and macroscales is discussed in light of recent studies.

  18. DNA-based machines.

    Science.gov (United States)

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications.

  19. Machine Vision Implementation in Rapid PCB Prototyping

    Directory of Open Access Journals (Sweden)

    Yosafat Surya Murijanto

    2012-03-01

    Full Text Available Image processing, the heart of machine vision, has proven itself to be an essential part of the industries today. Its application has opened new doorways, making more concepts in manufacturing processes viable. This paper presents an application of machine vision in designing a module with the ability to extract drills and route coordinates from an un-mounted or mounted printed circuit board (PCB. The algorithm comprises pre-capturing processes, image segmentation and filtering, edge and contour detection, coordinate extraction, and G-code creation. OpenCV libraries and Qt IDE are the main tools used. Throughout some testing and experiments, it is concluded that the algorithm is able to deliver acceptable results. The drilling and routing coordinate extraction algorithm can extract in average 90% and 82% of the whole drills and routes available on the scanned PCB in a total processing time of less than 3 seconds. This is achievable through proper lighting condition, good PCB surface condition and good webcam quality. 

  20. Fundamentals of machine design

    CERN Document Server

    Karaszewski, Waldemar

    2011-01-01

    A forum of researchers, educators and engineers involved in various aspects of Machine Design provided the inspiration for this collection of peer-reviewed papers. The resultant dissemination of the latest research results, and the exchange of views concerning the future research directions to be taken in this field will make the work of immense value to all those having an interest in the topics covered. The book reflects the cooperative efforts made in seeking out the best strategies for effecting improvements in the quality and the reliability of machines and machine parts and for extending

  1. Machine Learning for Hackers

    CERN Document Server

    Conway, Drew

    2012-01-01

    If you're an experienced programmer interested in crunching data, this book will get you started with machine learning-a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyz

  2. Creativity in Machine Learning

    OpenAIRE

    Thoma, Martin

    2016-01-01

    Recent machine learning techniques can be modified to produce creative results. Those results did not exist before; it is not a trivial combination of the data which was fed into the machine learning system. The obtained results come in multiple forms: As images, as text and as audio. This paper gives a high level overview of how they are created and gives some examples. It is meant to be a summary of the current work and give people who are new to machine learning some starting points.

  3. Machine Tool Software

    Science.gov (United States)

    1988-01-01

    A NASA-developed software package has played a part in technical education of students who major in Mechanical Engineering Technology at William Rainey Harper College. Professor Hack has been using (APT) Automatically Programmed Tool Software since 1969 in his CAD/CAM Computer Aided Design and Manufacturing curriculum. Professor Hack teaches the use of APT programming languages for control of metal cutting machines. Machine tool instructions are geometry definitions written in APT Language to constitute a "part program." The part program is processed by the machine tool. CAD/CAM students go from writing a program to cutting steel in the course of a semester.

  4. [Binocular coordination during reading].

    Science.gov (United States)

    Bassou, L; Granié, M; Pugh, A K; Morucci, J P

    1992-01-01

    Is there an effect on binocular coordination during reading of oculomotor imbalance (heterophoria, strabismus and inadequate convergence) and of functional lateral characteristics (eye preference and perceptually privileged visual laterality)? Recordings of the binocular eye-movements of ten-year-old children show that oculomotor imbalances occur most often among children whose left visual perceptual channel is privileged, and that these subjects can present optomotor dissociation and manifest lack of motor coordination. Close binocular motor coordination is far from being the norm in reading. The faster reader displays saccades of differing spatial amplitude and the slower reader an oculomotor hyperactivity, especially during fixations. The recording of binocular movements in reading appears to be an excellent means of diagnosing difficulties related to visual laterality and to problems associated with oculomotor imbalance.

  5. Achievement report for fiscal 1998. Research and development of nano-structural materials for ceramic bearing application (the second year); 1998 nendo seika hokokusho. Ceramic bearing yo nano seigyo zairyo no kenkyu kaihatsu (dai 2 nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Development is made on ceramic bearing using high-performance and low-cost nano-structural materials, and its application is performed to high-quality bearings suitable for energy conservation in automobiles and industrial machines, and bearings for office automation devices, electronics, and aeronautic and maritime development. To achieve these goals, raw material synthesizing technologies, forming technologies, structural control technologies, processing technologies and mass production technologies shall be established. Fiscal 1998 had the following achievements: establishment of nano-structure controlled ceramic material powder synthesizing technology (nano-lamination type composite powder made by using the beads mill co-precipitation method, nano-lamination type composite powder made by using the New Mymill co-precipitation method, nano-lamination type composite powder made by using the controlled liquid phase method, composite nano-structured gel, and nano-powder synthesis); near net forming technology for spherical ceramics; high-speed processing technology for ultra smooth surface; evaluation of rolling fatigue properties of ceramic bearings; and analysis and evaluation of nano-structured materials. Since this alumina-based ceramic bearing can be produced at reduced cost with performance comparable to silicon nitride based bearing, investigations and discussions are being given on the application thereof. (NEDO)

  6. Quantifying linguistic coordination

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Tylén, Kristian

    task (Bahrami et al 2010, Fusaroli et al. 2012) we extend to linguistic coordination dynamical measures of recurrence employed in the analysis of sensorimotor coordination (such as heart-rate (Konvalinka et al 2011), postural sway (Shockley 2005) and eye-movements (Dale, Richardson and Kirkham 2012......). We employ nominal recurrence analysis (Orsucci et al 2005, Dale et al 2011) on the decision-making conversations between the participants. We report strong correlations between various indexes of recurrence and collective performance. We argue this method allows us to quantify the qualities...

  7. Light-driven nano-robotics for sub-diffraction probing and sensing

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Bañas, Andrew Rafael; Palima, Darwin

    On the macro-scale robotics typically uses light for carrying information for machine vision for and feedback in artificially intelligent guidance systems and monitoring. Using the miniscule momentum of light shrinking robots down to the micro- and even nano-scale regime creates opportunities......]. Therefore, a generic approach for optimizing lightmatter interaction involves the combination of optimal light-shaping techniques with the use of optimized nano-featured shapes in light-driven micro-robotics structures. In this work, we designed different three-dimensional micro-structures and fabricated...

  8. Preparation and Characterization of Soluble Eggshell Membrane Protein/PLGA Electro spun Nano fibers for Guided Tissue Regeneration Membrane

    International Nuclear Information System (INIS)

    Jia, J.; Liu, G.; Duan, Y.; Guo, Z.; Yu, J.

    2012-01-01

    Guided tissue regeneration (GTR) is a widely used method in periodontal therapy, which involves the placement of a barrier membrane to exclude migration of epithelium and ensure repopulation of periodontal ligament cells. The objective of this study is to prepare and evaluate a new type of soluble eggshell membrane protein (SEP)/poly (lactic-co-glycolic acid) (PLGA) nano fibers using electro spinning method for GTR membrane application. SEP/PLGA nano fibers were successfully prepared with various blending ratios. The morphology, chemical composition, surface wettability, and mechanical properties of the nano fibers were characterized using scanning electron microscopy (SEM), contact angle measurement, Fourier transform-infrared spectroscopy (FTIR), and a universal testing machine. L-929 fibroblast cells were used to evaluate the biocompatibility of SEP/PLGA nano fibers and investigate the interaction between cells and nano fibers. Results showed that the SEP/PLGA electro spun membrane was composed of uniform, bead-free nano fibers, which formed an interconnected porous network structure. Mechanical property of SEP has been greatly improved by the addition of PLGA. The biological study results showed that SEP/PLGA nano fibers could enhance cell attachment, spreading, and proliferation. The study indicated the potential of SEP/PLGA nano fibers for GTR application and provided a basis for future optimization

  9. Machine Vision Handbook

    CERN Document Server

    2012-01-01

    The automation of visual inspection is becoming more and more important in modern industry as a consistent, reliable means of judging the quality of raw materials and manufactured goods . The Machine Vision Handbook  equips the reader with the practical details required to engineer integrated mechanical-optical-electronic-software systems. Machine vision is first set in the context of basic information on light, natural vision, colour sensing and optics. The physical apparatus required for mechanized image capture – lenses, cameras, scanners and light sources – are discussed followed by detailed treatment of various image-processing methods including an introduction to the QT image processing system. QT is unique to this book, and provides an example of a practical machine vision system along with extensive libraries of useful commands, functions and images which can be implemented by the reader. The main text of the book is completed by studies of a wide variety of applications of machine vision in insp...

  10. Enter the machine

    Science.gov (United States)

    Palittapongarnpim, Pantita; Sanders, Barry C.

    2018-05-01

    Quantum tomography infers quantum states from measurement data, but it becomes infeasible for large systems. Machine learning enables tomography of highly entangled many-body states and suggests a new powerful approach to this problem.

  11. Nano Engineered Energetic Materials (NEEM)

    Science.gov (United States)

    2011-01-12

    Dryer, FL; Aksay, IA, Functionalized Graphene Sheet Colloids for Enhanced Fuel/Propellant Combustion, ACS NANO 3, 13, 3945-3954, 2009. 16. Weismiller...loading) which was not observed in other heterogeneous mixtures. Additional details on nano fuels (including graphene ) with liquid oxidizers can be...to the high reflectance of some samples black high temperature spray paint was used on ends of the samples to decrease ignition delay times and

  12. Introduction to AC machine design

    CERN Document Server

    Lipo, Thomas A

    2018-01-01

    AC electrical machine design is a key skill set for developing competitive electric motors and generators for applications in industry, aerospace, and defense. This book presents a thorough treatment of AC machine design, starting from basic electromagnetic principles and continuing through the various design aspects of an induction machine. Introduction to AC Machine Design includes one chapter each on the design of permanent magnet machines, synchronous machines, and thermal design. It also offers a basic treatment of the use of finite elements to compute the magnetic field within a machine without interfering with the initial comprehension of the core subject matter. Based on the author's notes, as well as after years of classroom instruction, Introduction to AC Machine Design: * Brings to light more advanced principles of machine design--not just the basic principles of AC and DC machine behavior * Introduces electrical machine design to neophytes while also being a resource for experienced designers * ...

  13. Metalworking and machining fluids

    Science.gov (United States)

    Erdemir, Ali; Sykora, Frank; Dorbeck, Mark

    2010-10-12

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  14. Superconducting machines. Chapter 4

    International Nuclear Information System (INIS)

    Appleton, A.D.

    1977-01-01

    A brief account is given of the principles of superconductivity and superconductors. The properties of Nb-Ti superconductors and the method of flux stabilization are described. The basic features of superconducting d.c. machines are illustrated by the use of these machines for ship propulsion, steel-mill drives, industrial drives, aluminium production, and other d.c. power supplies. Superconducting a.c. generators and their design parameters are discussed. (U.K.)

  15. Quantum Machine Learning

    OpenAIRE

    Romero García, Cristian

    2017-01-01

    [EN] In a world in which accessible information grows exponentially, the selection of the appropriate information turns out to be an extremely relevant problem. In this context, the idea of Machine Learning (ML), a subfield of Artificial Intelligence, emerged to face problems in data mining, pattern recognition, automatic prediction, among others. Quantum Machine Learning is an interdisciplinary research area combining quantum mechanics with methods of ML, in which quantum properties allow fo...

  16. Human-machine interactions

    Science.gov (United States)

    Forsythe, J Chris [Sandia Park, NM; Xavier, Patrick G [Albuquerque, NM; Abbott, Robert G [Albuquerque, NM; Brannon, Nathan G [Albuquerque, NM; Bernard, Michael L [Tijeras, NM; Speed, Ann E [Albuquerque, NM

    2009-04-28

    Digital technology utilizing a cognitive model based on human naturalistic decision-making processes, including pattern recognition and episodic memory, can reduce the dependency of human-machine interactions on the abilities of a human user and can enable a machine to more closely emulate human-like responses. Such a cognitive model can enable digital technology to use cognitive capacities fundamental to human-like communication and cooperation to interact with humans.

  17. Some relations between quantum Turing machines and Turing machines

    OpenAIRE

    Sicard, Andrés; Vélez, Mario

    1999-01-01

    For quantum Turing machines we present three elements: Its components, its time evolution operator and its local transition function. The components are related with the components of deterministic Turing machines, the time evolution operator is related with the evolution of reversible Turing machines and the local transition function is related with the transition function of probabilistic and reversible Turing machines.

  18. Chemical Functionalization, Self-Assembly, and Applications of Nano materials and Nano composites 2014

    International Nuclear Information System (INIS)

    Yan, X.; Jiao, T.; Balan, L.; Chen, X.; Hu, M.Z.; Liu, W.

    2014-01-01

    The growing interests in nano materials and nano composites call for the development of processing techniques to obtain multiple functionalization nano structures and achieve the tailoring of specific features of the nanometer size. Functional nano materials and nano composites will expand the applied range of the original material and at the same time promote the development of inter discipline. Thus, the chemical functionalization and bottom-up assemblies of nano materials and subsequent applications will accelerate the development of nano science and nano technology.

  19. Definition of free form object for low uncertainty measurements on cooridnate measuring machines

    DEFF Research Database (Denmark)

    Savio, Enrico; De Chiffre, Leonardo

    This report is made as a part of the project Easytrac, an EU project under the programme: Competitive and Sustainable Growth: Contract No: G6RD-CT-2000-00188, coordinated by UNIMETRIK S.A. (Spain). The project is concerned with low uncertainty calibrations on coordinate measuring machines. The Ce...

  20. UNIFIED MODELS OF ELEMENTS OF POWER SUPPLY SYSTEMS BASED ON EQUATIONS IN PHASE COORDINATES

    Directory of Open Access Journals (Sweden)

    Yu.N. Vepryk

    2015-12-01

    Full Text Available Purpose. The models of electrical machines in the phase coordinates, the universal algorithm for the simulation of separate elements in a d-q coordinates system and in a phase-coordinates system are proposed. Methodology. Computer methods of investigation of transients in electrical systems are based on a compilation of systems of differential equations and their numerical integration solution methods. To solve differential equations an implicit method of numerical integration was chosen. Because it provides to complete structural simulation possibility: firstly developing models of separate elements and then forming a model of the complex system. For the mathematical simulation of electromagnetic transients in the elements of the electrical systems has been accepted the implicit Euler-Cauchy method, because it provides a higher precision and stability of the computing processes. Results. In developing the model elements identified two groups of elements: - Static elements and electrical machines in the d-q coordinates; - Rotating electrical machines in phase coordinates. As an example, the paper provides a model of synchronous and asynchronous electric machines in the d-q coordinates system and the phase coordinate system. The generalization algorithm and the unified notation form of equations of elements of an electrical system are obtained. It provides the possibility of using structural methods to develop a mathematical model of power systems under transient conditions. Practical value. In addition, the using of a computer model allows to implement multivariant calculations for research and study of factors affecting the quantitative characteristics of the transients.

  1. Reactor refueling machine simulator

    International Nuclear Information System (INIS)

    Rohosky, T.L.; Swidwa, K.J.

    1987-01-01

    This patent describes in combination: a nuclear reactor; a refueling machine having a bridge, trolley and hoist each driven by a separate motor having feedback means for generating a feedback signal indicative of movement thereof. The motors are operable to position the refueling machine over the nuclear reactor for refueling the same. The refueling machine also has a removable control console including means for selectively generating separate motor signals for operating the bridge, trolley and hoist motors and for processing the feedback signals to generate an indication of the positions thereof, separate output leads connecting each of the motor signals to the respective refueling machine motor, and separate input leads for connecting each of the feedback means to the console; and a portable simulator unit comprising: a single simulator motor; a single simulator feedback signal generator connected to the simulator motor for generating a simulator feedback signal in response to operation of the simulator motor; means for selectively connecting the output leads of the console to the simulator unit in place of the refueling machine motors, and for connecting the console input leads to the simulator unit in place of the refueling machine motor feedback means; and means for driving the single simulator motor in response to any of the bridge, trolley or hoist motor signals generated by the console and means for applying the simulator feedback signal to the console input lead associated with the motor signal being generated by the control console

  2. Dimensions of Organizational Coordination

    DEFF Research Database (Denmark)

    Jensen, Andreas Schmidt; Aldewereld, Huib; Dignum, Virginia

    2013-01-01

    be supported to include organizational objectives and constraints into their reasoning processes by considering two alternatives: agent reasoning and middleware regulation. We show how agents can use an organizational specification to achieve organizational objectives by delegating and coordinating...... their activities with other agents in the society, using the GOAL agent programming language and the OperA organizational model....

  3. Reusability of coordination programs

    NARCIS (Netherlands)

    F. Arbab (Farhad); C.L. Blom (Kees); F.J. Burger (Freek); C.T.H. Everaars (Kees)

    1996-01-01

    textabstractIsolating computation and communication concerns into separate pure computation and pure coordination modules enhances modularity, understandability, and reusability of parallel and/or distributed software. This can be achieved by moving communication primitives (such as SendMessage and

  4. [Civilian-military coordination].

    Science.gov (United States)

    de Montravel, G

    2002-01-01

    Current humanitarian emergencies create complex, mutidimensional situations that stimulate simultaneous responses from a wide variety of sources including governments, non-governmental organizations (NGO), United Nations agencies, and private individuals. As a result, it has become essential to establish a coherent framework in which each actor can contribute promptly and effectively to the overall effort. This is the role of the United Nations Office for the Coordination of Humanitarian Affairs. Regardless of the circumstances and level of coordination, cooperation and collaboration between humanitarian and military personnel, it is necessary to bear in mind their objectives. The purpose of humanitarian action is to reduce human suffering. The purpose of military intervention is to stop warfare. The author of this article will discuss the three major obstacles to civilian-military coordination (strategic, tactical, and operational). Operations cannot be conducted smoothly and differences cannot be ironed out without mutual respect between the two parties, an explicit definition of their respective duties and responsibilities, a clear understanding of their cultural differences, and the presence of an organization and facilities for coordination and arbitrage by a neutral referee.

  5. Coordination of hand shape.

    Science.gov (United States)

    Pesyna, Colin; Pundi, Krishna; Flanders, Martha

    2011-03-09

    The neural control of hand movement involves coordination of the sensory, motor, and memory systems. Recent studies have documented the motor coordinates for hand shape, but less is known about the corresponding patterns of somatosensory activity. To initiate this line of investigation, the present study characterized the sense of hand shape by evaluating the influence of differences in the amount of grasping or twisting force, and differences in forearm orientation. Human subjects were asked to use the left hand to report the perceived shape of the right hand. In the first experiment, six commonly grasped items were arranged on the table in front of the subject: bottle, doorknob, egg, notebook, carton, and pan. With eyes closed, subjects used the right hand to lightly touch, forcefully support, or imagine holding each object, while 15 joint angles were measured in each hand with a pair of wired gloves. The forces introduced by supporting or twisting did not influence the perceptual report of hand shape, but for most objects, the report was distorted in a consistent manner by differences in forearm orientation. Subjects appeared to adjust the intrinsic joint angles of the left hand, as well as the left wrist posture, so as to maintain the imagined object in its proper spatial orientation. In a second experiment, this result was largely replicated with unfamiliar objects. Thus, somatosensory and motor information appear to be coordinated in an object-based, spatial-coordinate system, sensitive to orientation relative to gravitational forces, but invariant to grasp forcefulness.

  6. Block coordination copolymers

    Science.gov (United States)

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  7. Data Encoding using Periodic Nano-Optical Features

    Science.gov (United States)

    Vosoogh-Grayli, Siamack

    Successful trials have been made through a designed algorithm to quantize, compress and optically encode unsigned 8 bit integer values in the form of images using Nano optical features. The periodicity of the Nano-scale features (Nano-gratings) have been designed and investigated both theoretically and experimentally to create distinct states of variation (three on states and one off state). The use of easy to manufacture and machine readable encoded data in secured authentication media has been employed previously in bar-codes for bi-state (binary) models and in color barcodes for multiple state models. This work has focused on implementing 4 states of variation for unit information through periodic Nano-optical structures that separate an incident wavelength into distinct colors (variation states) in order to create an encoding system. Compared to barcodes and magnetic stripes in secured finite length storage media the proposed system encodes and stores more data. The benefits of multiple states of variation in an encoding unit are 1) increased numerically representable range 2) increased storage density and 3) decreased number of typical set elements for any ergodic or semi-ergodic source that emits these encoding units. A thorough investigation has targeted the effects of the use of multi-varied state Nano-optical features on data storage density and consequent data transmission rates. The results show that use of Nano-optical features for encoding data yields a data storage density of circa 800 Kbits/in2 via the implementation of commercially available high resolution flatbed scanner systems for readout. Such storage density is far greater than commercial finite length secured storage media such as Barcode family with maximum practical density of 1kbits/in2 and highest density magnetic stripe cards with maximum density circa 3 Kbits/in2. The numerically representable range of the proposed encoding unit for 4 states of variation is [0 255]. The number of

  8. Coordination failure caused by sunspots

    DEFF Research Database (Denmark)

    Beugnot, Julie; Gürgüç, Zeynep; Øvlisen, Frederik Roose

    2012-01-01

    on the efficient equilibrium, we consider sunspots as a potential reason for coordination failure. We conduct an experiment with a three player 2x2x2 game in which coordination on the efficient equilibrium is easy and should normally occur. In the control session, we find almost perfect coordination on the payoff......-dominant equilibrium, but in the sunspot treatment, dis-coordination is frequent. Sunspots lead to significant inefficiency, and we conclude that sunspots can indeed cause coordination failure....

  9. Electrochemically synthesized Si nano wire arrays and thermoelectric nano structures

    International Nuclear Information System (INIS)

    Khuan, N.I.; Ying, K.K.; Nur Ubaidah Saidin; Foo, C.T.

    2012-01-01

    Thermoelectric nano structures hold great promise for capturing and directly converting into electricity some vast amount of low-grade waste heats now being lost to the environment (for example from nuclear power plant, fossil fuel burning, automotive and household appliances). In this study, large-area vertically-aligned silicon nano wire (SiNW) arrays were synthesized in an aqueous solution containing AgNO 3 and HF on p-type Si (100) substrate by self-selective electroless etching process. The etching conditions were systematically varied in order to achieve different stages of nano wire formation. Diameters of the SiNWs obtained varied from approximately 50 to 200 nm and their lengths ranged from several to a few tens of μm. Te/ Bi 2 Te 3 -Si thermoelectric core-shell nano structures were subsequently obtained via galvanic displacement of SiNWs in acidic HF electrolytes containing HTeO 2 + and Bi 3+ / HTeO 2 + ions. The reactions were basically a nano-electrochemical process due to the difference in redox potentials between the materials. the surface-modified SiNWs of core-shell structures had roughened surface morphologies and therefore, higher surface-t-bulk ratios compared to unmodified SiNWs. They have potential applications in sensors, photovoltaic and thermoelectric nano devices. Growth study on the SiNWs and core-shell nano structures produced is presented using various microscopy, diffraction and probe-based techniques for microstructural, morphological and chemical characterizations. (Author)

  10. [A new machinability test machine and the machinability of composite resins for core built-up].

    Science.gov (United States)

    Iwasaki, N

    2001-06-01

    A new machinability test machine especially for dental materials was contrived. The purpose of this study was to evaluate the effects of grinding conditions on machinability of core built-up resins using this machine, and to confirm the relationship between machinability and other properties of composite resins. The experimental machinability test machine consisted of a dental air-turbine handpiece, a control weight unit, a driving unit of the stage fixing the test specimen, and so on. The machinability was evaluated as the change in volume after grinding using a diamond point. Five kinds of core built-up resins and human teeth were used in this study. The machinabilities of these composite resins increased with an increasing load during grinding, and decreased with repeated grinding. There was no obvious correlation between the machinability and Vickers' hardness; however, a negative correlation was observed between machinability and scratch width.

  11. The Knife Machine. Module 15.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This module on the knife machine, one in a series dealing with industrial sewing machines, their attachments, and operation, covers one topic: performing special operations on the knife machine (a single needle or multi-needle machine which sews and cuts at the same time). These components are provided: an introduction, directions, an objective,…

  12. The Buttonhole Machine. Module 13.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This module on the bottonhole machine, one in a series dealing with industrial sewing machines, their attachments, and operation, covers two topics: performing special operations on the buttonhole machine (parts and purpose) and performing special operations on the buttonhole machine (gauged buttonholes). For each topic these components are…

  13. Machining of Metal Matrix Composites

    CERN Document Server

    2012-01-01

    Machining of Metal Matrix Composites provides the fundamentals and recent advances in the study of machining of metal matrix composites (MMCs). Each chapter is written by an international expert in this important field of research. Machining of Metal Matrix Composites gives the reader information on machining of MMCs with a special emphasis on aluminium matrix composites. Chapter 1 provides the mechanics and modelling of chip formation for traditional machining processes. Chapter 2 is dedicated to surface integrity when machining MMCs. Chapter 3 describes the machinability aspects of MMCs. Chapter 4 contains information on traditional machining processes and Chapter 5 is dedicated to the grinding of MMCs. Chapter 6 describes the dry cutting of MMCs with SiC particulate reinforcement. Finally, Chapter 7 is dedicated to computational methods and optimization in the machining of MMCs. Machining of Metal Matrix Composites can serve as a useful reference for academics, manufacturing and materials researchers, manu...

  14. Molecular Treatment of Nano-Kaolinite Generations.

    Science.gov (United States)

    Táborosi, Attila; Szilagyi, Robert K; Zsirka, Balázs; Fónagy, Orsolya; Horváth, Erzsébet; Kristóf, János

    2018-06-18

    A procedure is developed for defining a compositionally and structurally realistic, atomic-scale description of exfoliated clay nanoparticles from the kaolinite family of phylloaluminosilicates. By use of coordination chemical principles, chemical environments within a nanoparticle can be separated into inner, outer, and peripheral spheres. The edges of the molecular models of nanoparticles were protonated in a validated manner to achieve charge neutrality. Structural optimizations using semiempirical methods (NDDO Hamiltonians and DFTB formalism) and ab initio density functionals with a saturated basis set revealed previously overlooked molecular origins of morphological changes as a result of exfoliation. While the use of semiempirical methods is desirable for the treatment of nanoparticles composed of tens of thousands of atoms, the structural accuracy is rather modest in comparison to DFT methods. We report a comparative survey of our infrared data for untreated crystalline and various exfoliated states of kaolinite and halloysite. Given the limited availability of experimental techniques for providing direct structural information about nano-kaolinite, the vibrational spectra can be considered as an essential tool for validating structural models. The comparison of experimental and calculated stretching and bending frequencies further justified the use of the preferred level of theory. Overall, an optimal molecular model of the defect-free, ideal nano-kaolinite can be composed with respect to stationary structure and curvature of the potential energy surface using the PW91/SVP level of theory with empirical dispersion correction (PW91+D) and polarizable continuum solvation model (PCM) without the need for a scaled quantum chemical force field. This validated theoretical approach is essential in order to follow the formation of exfoliated clays and their surface reactivity that is experimentally unattainable.

  15. Toward a systematic exploration of nano-bio interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xue; Liu, Fang; Liu, Yin; Li, Cong; Wang, Shenqing [School of Chemistry and Chemical Engineering, Shandong University, Jinan (China); Zhou, Hongyu [School of Environmental Science and Technology, Shandong University, Jinan (China); Wang, Wenyi; Zhu, Hao [Department of Chemistry, Rutgers University, Camden, NJ (United States); The Rutgers Center for Computational and Integrative Biology, Rutgers University, Camden, NJ (United States); Winkler, David A., E-mail: d.winkler@latrobe.edu.au [CSIRO Manufacturing, Bag 10, Clayton South MDC 3169 (Australia); Monash Institute of Pharmaceutical Sciences, 392 Royal Parade, Parkville 3052 (Australia); Latrobe Institute for Molecular Science, Bundoora 3083 (Australia); School of Chemical and Physical Sciences, Flinders University, Bedford Park 5042 (Australia); Yan, Bing, E-mail: drbingyan@yahoo.com [School of Chemistry and Chemical Engineering, Shandong University, Jinan (China); School of Environmental Science and Technology, Shandong University, Jinan (China)

    2017-05-15

    Many studies of nanomaterials make non-systematic alterations of nanoparticle physicochemical properties. Given the immense size of the property space for nanomaterials, such approaches are not very useful in elucidating fundamental relationships between inherent physicochemical properties of these materials and their interactions with, and effects on, biological systems. Data driven artificial intelligence methods such as machine learning algorithms have proven highly effective in generating models with good predictivity and some degree of interpretability. They can provide a viable method of reducing or eliminating animal testing. However, careful experimental design with the modelling of the results in mind is a proven and efficient way of exploring large materials spaces. This approach, coupled with high speed automated experimental synthesis and characterization technologies now appearing, is the fastest route to developing models that regulatory bodies may find useful. We advocate greatly increased focus on systematic modification of physicochemical properties of nanoparticles combined with comprehensive biological evaluation and computational analysis. This is essential to obtain better mechanistic understanding of nano-bio interactions, and to derive quantitatively predictive and robust models for the properties of nanomaterials that have useful domains of applicability. - Highlights: • Nanomaterials studies make non-systematic alterations to nanoparticle properties. • Vast nanomaterials property spaces require systematic studies of nano-bio interactions. • Experimental design and modelling are efficient ways of exploring materials spaces. • We advocate systematic modification and computational analysis to probe nano-bio interactions.

  16. Toward a systematic exploration of nano-bio interactions

    International Nuclear Information System (INIS)

    Bai, Xue; Liu, Fang; Liu, Yin; Li, Cong; Wang, Shenqing; Zhou, Hongyu; Wang, Wenyi; Zhu, Hao; Winkler, David A.; Yan, Bing

    2017-01-01

    Many studies of nanomaterials make non-systematic alterations of nanoparticle physicochemical properties. Given the immense size of the property space for nanomaterials, such approaches are not very useful in elucidating fundamental relationships between inherent physicochemical properties of these materials and their interactions with, and effects on, biological systems. Data driven artificial intelligence methods such as machine learning algorithms have proven highly effective in generating models with good predictivity and some degree of interpretability. They can provide a viable method of reducing or eliminating animal testing. However, careful experimental design with the modelling of the results in mind is a proven and efficient way of exploring large materials spaces. This approach, coupled with high speed automated experimental synthesis and characterization technologies now appearing, is the fastest route to developing models that regulatory bodies may find useful. We advocate greatly increased focus on systematic modification of physicochemical properties of nanoparticles combined with comprehensive biological evaluation and computational analysis. This is essential to obtain better mechanistic understanding of nano-bio interactions, and to derive quantitatively predictive and robust models for the properties of nanomaterials that have useful domains of applicability. - Highlights: • Nanomaterials studies make non-systematic alterations to nanoparticle properties. • Vast nanomaterials property spaces require systematic studies of nano-bio interactions. • Experimental design and modelling are efficient ways of exploring materials spaces. • We advocate systematic modification and computational analysis to probe nano-bio interactions.

  17. Virtual Machine in Automation Projects

    OpenAIRE

    Xing, Xiaoyuan

    2010-01-01

    Virtual machine, as an engineering tool, has recently been introduced into automation projects in Tetra Pak Processing System AB. The goal of this paper is to examine how to better utilize virtual machine for the automation projects. This paper designs different project scenarios using virtual machine. It analyzes installability, performance and stability of virtual machine from the test results. Technical solutions concerning virtual machine are discussed such as the conversion with physical...

  18. Non-conventional electrical machines

    CERN Document Server

    Rezzoug, Abderrezak

    2013-01-01

    The developments of electrical machines are due to the convergence of material progress, improved calculation tools, and new feeding sources. Among the many recent machines, the authors have chosen, in this first book, to relate the progress in slow speed machines, high speed machines, and superconducting machines. The first part of the book is dedicated to materials and an overview of magnetism, mechanic, and heat transfer.

  19. Advanced SLARette delivery machine

    International Nuclear Information System (INIS)

    Bodner, R.R.

    1995-01-01

    SLARette 1 equipment, comprising of a SLARette Delivery Machine, SLAR Tools, SLAR power supplies and SLAR Inspection Systems was designed, developed and manufactured to service fuel channels of CANDU 6 stations during the regular yearly station outages. The Mark 2 SLARette Delivery Machine uses a Push Tube system to provide the axial and rotary movements of the SLAR Tool. The Push Tubes are operated remotely but must be attached and removed manually. Since this operation is performed at the Reactor face, there is radiation dose involved for the workers. An Advanced SLARette Delivery Machine which incorporates a computer controlled telescoping Ram in the place of the Push Tubes has been recently designed and manufactured. Utilization of the Advanced SLARette Delivery Machine significantly reduces the amount of radiation dose picked up by the workers because the need to have workers at the face of the Reactor during the SLARette operation is greatly reduced. This paper describes the design, development and manufacturing process utilized to produce the Advanced SLARette Delivery Machine and the experience gained during the Gentilly-2 NGS Spring outage. (author)

  20. The Bearingless Electrical Machine

    Science.gov (United States)

    Bichsel, J.

    1992-01-01

    Electromagnetic bearings allow the suspension of solids. For rotary applications, the most important physical effect is the force of a magnetic circuit to a high permeable armature, called the MAXWELL force. Contrary to the commonly used MAXWELL bearings, the bearingless electrical machine will take advantage of the reaction force of a conductor carrying a current in a magnetic field. This kind of force, called Lorentz force, generates the torque in direct current, asynchronous and synchronous machines. The magnetic field, which already exists in electrical machines and helps to build up the torque, can also be used for the suspension of the rotor. Besides the normal winding of the stator, a special winding was added, which generates forces for levitation. So a radial bearing, which is integrated directly in the active part of the machine, and the motor use the laminated core simultaneously. The winding was constructed for the levitating forces in a special way so that commercially available standard ac inverters for drives can be used. Besides wholly magnetic suspended machines, there is a wide range of applications for normal drives with ball bearings. Resonances of the rotor, especially critical speeds, can be damped actively.

  1. Asymmetric quantum cloning machines

    International Nuclear Information System (INIS)

    Cerf, N.J.

    1998-01-01

    A family of asymmetric cloning machines for quantum bits and N-dimensional quantum states is introduced. These machines produce two approximate copies of a single quantum state that emerge from two distinct channels. In particular, an asymmetric Pauli cloning machine is defined that makes two imperfect copies of a quantum bit, while the overall input-to-output operation for each copy is a Pauli channel. A no-cloning inequality is derived, characterizing the impossibility of copying imposed by quantum mechanics. If p and p ' are the probabilities of the depolarizing channels associated with the two outputs, the domain in (√p,√p ' )-space located inside a particular ellipse representing close-to-perfect cloning is forbidden. This ellipse tends to a circle when copying an N-dimensional state with N→∞, which has a simple semi-classical interpretation. The symmetric Pauli cloning machines are then used to provide an upper bound on the quantum capacity of the Pauli channel of probabilities p x , p y and p z . The capacity is proven to be vanishing if (√p x , √p y , √p z ) lies outside an ellipsoid whose pole coincides with the depolarizing channel that underlies the universal cloning machine. Finally, the tradeoff between the quality of the two copies is shown to result from a complementarity akin to Heisenberg uncertainty principle. (author)

  2. Functional Nano fibers: Production and Applications

    International Nuclear Information System (INIS)

    Khatri, Z.; Kim, I.S.; Kim, S.H.

    2016-01-01

    Nano fibers are lighter material with higher surface area in comparison to polymeric film. The ease of producing functional nano fiber is another advantage over many nano materials. Functional nano fiber in particular has attained a greater interest in recent years. The applications of functional nano fibers are increasing in various technical fields such as water filter membranes, tissue engineering, biosensors, drug delivery systems, wound dressings, catalysis, antibacterial. This special issue is comprised of well-selective articles that discuss production of functional nano fibers their applications in different emerging fields. M. Zhang et al. have presented exciting work on drug delivery using nano fibers. They used collagen that was extracted from abandoned Rana chensinensis skin in northeastern China via an acid enzymatic extraction method. They demonstrated two different nano fiber-vancomycin (VCM) systems, that is, VCM blended nano fibers and core-shell nano fibers with VCM in the core, and both systems sustained control release for a period of 80 hours. Another work was presented by R. Takai et al. on blood purification using composite nano fibers. About 10% of the population worldwide is affected by chronic kidney disease (CKD). The authors developed nano fiber meshes zeolite-polymer composite nano fibers for efficient adsorption of creatinine, which is a simpler and more accessible method for hemodialysis (HD) patients.

  3. Nano dots and nano crystals detectors applications and questions

    International Nuclear Information System (INIS)

    Paltiel, Y.; Shusterman, S.; Naaman, R.; Aqua, T.; Banin, U.; Aharoni, A.

    2006-01-01

    Full Text: Nano technology is in the center of attention in the last decade. In our work we are using nano dots, nano crystals and quantum wells to study and fabricate infrared devices. In this study we aim to develop an accurate narrow band infrared sensor that will use quantum mechanics at room temperature. The sensor is based on a FET like structure, in which the current is very sensitive to potential changes on its surface. We have shown that this configuration provides flexibility and variability in operation bandgap and response. However, the relations between the quantum and the macroscopic world are not trivial and the coupling between worlds influences the transport, noise, and optical measurements. In this talk we will show some of the infrared devices we are studying, and try to present the rich physics and relations that combine between the two worlds

  4. Structural Analysis of Molten NaNO3 by Molecular Dynamics Simulation

    Science.gov (United States)

    Tahara, Shuta; Toyama, Hiroshi; Shimakura, Hironori; Fukami, Takanori

    2017-08-01

    MD simulation for molten NaNO3 has been performed by using the Born-Mayer-Huggins-type potentials. The new structural features of molten NaNO3 are investigated by several analytical methods. The coordination-number and bond-angle distributions are similar to those of simple molten salts such as NaCl except for the variation caused by the different size of the anion and cation. Na+ ions are attracted toward O- ions, and get separated from N+ ions by Coulomb interactions. The distribution of the dihedral angle between NO3 - plannar ionic molecules has also been investigated.

  5. Improving Project Manufacturing Coordination

    Directory of Open Access Journals (Sweden)

    Korpivaara Ville

    2014-09-01

    Full Text Available The objective of this research is to develop firms’ project manufacturing coordination. The development will be made by centralizing the manufacturing information flows in one system. To be able to centralize information, a deep user need assessment is required. After user needs have been identified, the existing system will be developed to match these needs. The theoretical background is achieved through exploring the literature of project manufacturing, development project success factors and different frameworks and tools for development project execution. The focus of this research is rather in customer need assessment than in system’s technical expertise. To ensure the deep understanding of customer needs this study is executed by action research method. As a result of this research the information system for project manufacturing coordination was developed to respond revealed needs of the stakeholders. The new system improves the quality of the manufacturing information, eliminates waste in manufacturing coordination processes and offers a better visibility to the project manufacturing. Hence it provides a solid base for the further development of project manufacturing.

  6. Metrology at the nano scale

    International Nuclear Information System (INIS)

    Sheridan, B.; Cumpson, P.; Bailey, M.

    2006-01-01

    Progress in nano technology relies on ever more accurate measurements of quantities such as distance, force and current industry has long depended on accurate measurement. In the 19th century, for example, the performance of steam engines was seriously limited by inaccurately made components, a situation that was transformed by Henry Maudsley's screw micrometer calliper. And early in the 20th century, the development of telegraphy relied on improved standards of electrical resistance. Before this, each country had its own standards and cross border communication was difficult. The same is true today of nano technology if it is to be fully exploited by industry. Principles of measurement that work well at the macroscopic level often become completely unworkable at the nano metre scale - about 100 nm and below. Imaging, for example, is not possible on this scale using optical microscopes, and it is virtually impossible to weigh a nano metre-scale object with any accuracy. In addition to needing more accurate measurements, nano technology also often requires a greater variety of measurements than conventional technology. For example, standard techniques used to make microchips generally need accurate length measurements, but the manufacture of electronics at the molecular scale requires magnetic, electrical, mechanical and chemical measurements as well. (U.K.)

  7. Preparation of PbS and PbO nanopowders from new Pb(II)(saccharine) coordination polymers

    International Nuclear Information System (INIS)

    Aslani, Alireza; Musevi, Seyid Javad; Şahin, Ertan; Yilmaz, Veysel T.

    2014-01-01

    Highlights: • The complex of compounds “[Pb(H 2 O)(μ-OAc)(μ-sac)] n ” are synthesized at nano and bulk size structurally diverse and show interesting three-dimensional coordination polymers. • Reduction of the particle size of the coordination polymers to a few dozen nanometers results in lower thermal stability when compared to the single crystalline samples. • This study demonstrates that the metal–organic framework may be suitable precursors for the preparation of nanoscale materials with interesting morphologies. - Abstract: Nanopowders and single crystal of new Pb(II) three-dimensional coordination polymer, [Pb(H 2 O)(μ-OAc)(μ-sac)] n “PASAC” were synthesized by a sonochemical and branched tube methods (Yılmaz et al., Z. Anorg. Allg. Chem. 629 (2003) 172). The new nano-structures of Pb(II) coordination polymer were characterized by X-ray crystallography analysis, scanning electron microscopy (SEM), X-ray powder diffraction (XRD), surface analysis (BET), and IR spectroscopy. The crystal structure of these compounds consists of three-dimensional polymeric units. The thermal stability of compounds was studied by thermal gravimetric analysis (TGA) and differential thermal analyses (DTA). PbS and PbO nano-structures were obtained by calcinations of the nano-structures of this coordination polymer at 600 °C

  8. Human-Machine Communication

    International Nuclear Information System (INIS)

    Farbrot, J.E.; Nihlwing, Ch.; Svengren, H.

    2005-01-01

    New requirements for enhanced safety and design changes in process systems often leads to a step-wise installation of new information and control equipment in the control room of older nuclear power plants, where nowadays modern digital I and C solutions with screen-based human-machine interfaces (HMI) most often are introduced. Human factors (HF) expertise is then required to assist in specifying a unified, integrated HMI, where the entire integration of information is addressed to ensure an optimal and effective interplay between human (operators) and machine (process). Following a controlled design process is the best insurance for ending up with good solutions. This paper addresses the approach taken when introducing modern human-machine communication in the Oskarshamn 1 NPP, the results, and the lessons learned from this work with high operator involvement seen from an HF point of view. Examples of possibilities modern technology might offer for the operators are also addressed. (orig.)

  9. Machines and Metaphors

    Directory of Open Access Journals (Sweden)

    Ángel Martínez García-Posada

    2016-10-01

    Full Text Available The edition La ley del reloj. Arquitectura, máquinas y cultura moderna (Cátedra, Madrid, 2016 registers the useful paradox of the analogy between architecture and technique. Its author, the architect Eduardo Prieto, also a philosopher, professor and writer, acknowledges the obvious distance from machines to buildings, so great that it can only be solved using strange comparisons, since architecture does not move nor are the machines habitable, however throughout the book, from the origin of the metaphor of the machine, with clarity in his essay and enlightening erudition, he points out with certainty some concomitances of high interest, drawing throughout history a beautiful cartography of the fruitful encounter between organics and mechanics.

  10. Machine Learning for Security

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Applied statistics, aka ‘Machine Learning’, offers a wealth of techniques for answering security questions. It’s a much hyped topic in the big data world, with many companies now providing machine learning as a service. This talk will demystify these techniques, explain the math, and demonstrate their application to security problems. The presentation will include how-to’s on classifying malware, looking into encrypted tunnels, and finding botnets in DNS data. About the speaker Josiah is a security researcher with HP TippingPoint DVLabs Research Group. He has over 15 years of professional software development experience. Josiah used to do AI, with work focused on graph theory, search, and deductive inference on large knowledge bases. As rules only get you so far, he moved from AI to using machine learning techniques identifying failure modes in email traffic. There followed digressions into clustered data storage and later integrated control systems. Current ...

  11. Chatter and machine tools

    CERN Document Server

    Stone, Brian

    2014-01-01

    Focussing on occurrences of unstable vibrations, or Chatter, in machine tools, this book gives important insights into how to eliminate chatter with associated improvements in product quality, surface finish and tool wear. Covering a wide range of machining processes, including turning, drilling, milling and grinding, the author uses his research expertise and practical knowledge of vibration problems to provide solutions supported by experimental evidence of their effectiveness. In addition, this book contains links to supplementary animation programs that help readers to visualise the ideas detailed in the text. Advancing knowledge in chatter avoidance and suggesting areas for new innovations, Chatter and Machine Tools serves as a handbook for those desiring to achieve significant reductions in noise, longer tool and grinding wheel life and improved product finish.

  12. Structural coloration of metallic surfaces with micro/nano-structures induced by elliptical vibration texturing

    Science.gov (United States)

    Yang, Yang; Pan, Yayue; Guo, Ping

    2017-04-01

    Creating orderly periodic micro/nano-structures on metallic surfaces, or structural coloration, for control of surface apparent color and optical reflectivity has been an exciting research topic over the years. The direct applications of structural coloration include color marking, display devices, and invisibility cloak. This paper presents an efficient method to colorize metallic surfaces with periodic micro/nano-gratings using elliptical vibration texturing. When the tool vibration is coupled with a constant cutting velocity, controlled periodic ripples can be generated due to the overlapping tool trajectory. These periodic ripples with a wavelength near visible spectrum can act as micro-gratings to introduce iridescent colors. The proposed technique also provides a flexible method for color marking of metallic surfaces with arbitrary patterns and images by precise control of the spacing distance and orientation of induced micro/nano-ripples. Theoretical analysis and experimental results are given to demonstrate structural coloration of metals by a direct mechanical machining technique.

  13. Injector machine development days 2017

    CERN Document Server

    Bartosik, H

    2017-01-01

    Following the important progress made in 2016 in the Machine Development (MD) activities that took place in all the accelerators of the LHC injector chain, the days 23-24 March, 2017, have been devoted to summarise the main out- come from the MDs and lay out the plans for the next steps. The event was also triggered by the following motivations and goals: Give a chance to the MD users to present their results; Provide a platform in which MD users, MD coordinators and operations crews meet and discuss openly the optimisation of the MD time and procedures, taking into account of the different perspectives; Provide an overview of all the ongoing activities to better frame their impact in the broader picture of the CERN short and long term projects; Identify the open questions, define and prioritise ma- chine studies in the injectors for 2017; Create the opportunity to obtain and document written reports from MD users. Within this contribution, we just summarise the context and the main points discussed at the ev...

  14. Nano structures for Medical Diagnostics Md

    International Nuclear Information System (INIS)

    Bellah, M.; Iqbal, S.M.; Bellah, M.; Iqbal, S.M.; Christensen, S.M.; Iqbal, S.M.; Iqbal, S.M.

    2012-01-01

    Nano technology is the art of manipulating materials on atomic or molecular scales especially to build nano scale structures and devices. The field is expanding quickly, and a lot of work is ongoing in the design, characterization, synthesis, and application of materials, structures, devices, and systems by controlling shape and size at nanometer scale. In the last few years, much work has been focused on the use of nano structures toward problems of biology and medicine. In this paper, we focus on the application of various nano structures and nano devices in clinical diagnostics and detection of important biological molecules. The discussion starts by introducing some basic techniques of micro-/nano scale fabrication that have enabled reproducible production of nano structures. The prospects, benefits, and limitations of using these novel techniques in the fields of bio detection and medical diagnostics are then discussed. Finally, the challenges of mass production and acceptance of nano technology by the medical community are considered.

  15. Green chemistry by nano-catalysis

    KAUST Repository

    Polshettiwar, Vivek; Varma, Rajender S.

    2010-01-01

    the homogeneous catalysts. This review focuses on the use of nano-catalysis for green chemistry development including the strategy of using microwave heating with nano-catalysis in benign aqueous reaction media which offers an extraordinary synergistic effect

  16. Work stress of women in sewing machine operation.

    Science.gov (United States)

    Nag, A; Desai, H; Nag, P K

    1992-06-01

    The study examined the work stresses of 107 women who were engaged in sewing machine operation in small garment manufacturing units. Of the three types of sewing machines (motor-operated, full and half shuttle foot-operated), 74% of the machines were foot-operated, where throttle action of the lower limb is required to move the shuttle of the machine. The motor-operated machines were faster than the foot-operated machines. The short cycle sewing work involves repetitive action of hand and feet. The women had to maintain a constant seated position on a stool without backrest and the body inclined forward. Long-term sewing work had a cumulative load on the musculo-skeletal structures, including the vertebral column and reflected in the form of high prevalence of discomfort and pain in different body parts. About 68% of the women complained of back pain, among whom 35% reported a persistent low back pain. Common sewing work accident is piercing of the needle through the fingers, particularly the right forefingers. Unsatisfactory man-machine incompatibility, work posture and fatigue, improper coordination of eye, leg and hand are the major problems of the operators. The design mis-match of the work place may be significantly improved by taking women's anthropometric dimensions in modifying the workplace, i.e. the seat surface, seat height, work height, backrest, etc.

  17. Clojure for machine learning

    CERN Document Server

    Wali, Akhil

    2014-01-01

    A book that brings out the strengths of Clojure programming that have to facilitate machine learning. Each topic is described in substantial detail, and examples and libraries in Clojure are also demonstrated.This book is intended for Clojure developers who want to explore the area of machine learning. Basic understanding of the Clojure programming language is required, but thorough acquaintance with the standard Clojure library or any libraries are not required. Familiarity with theoretical concepts and notation of mathematics and statistics would be an added advantage.

  18. Machine learning systems

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R

    1984-05-01

    With the dramatic rise of expert systems has come a renewed interest in the fuel that drives them-knowledge. For it is specialist knowledge which gives expert systems their power. But extracting knowledge from human experts in symbolic form has proved arduous and labour-intensive. So the idea of machine learning is enjoying a renaissance. Machine learning is any automatic improvement in the performance of a computer system over time, as a result of experience. Thus a learning algorithm seeks to do one or more of the following: cover a wider range of problems, deliver more accurate solutions, obtain answers more cheaply, and simplify codified knowledge. 6 references.

  19. Machine tool evaluation

    International Nuclear Information System (INIS)

    Lunsford, B.E.

    1976-01-01

    Continued improvement in numerical control (NC) units and the mechanical components used in the construction of today's machine tools, necessitate the use of more precise instrumentation to calibrate and determine the capabilities of these systems. It is now necessary to calibrate most tape-control lathes to a tool-path positioning accuracy of +-300 microinches in the full slide travel and, on some special turning and boring machines, a capability of +-100 microinches must be achieved. The use of a laser interferometer to determine tool-path capabilities is described

  20. Electrical machines & their applications

    CERN Document Server

    Hindmarsh, J

    1984-01-01

    A self-contained, comprehensive and unified treatment of electrical machines, including consideration of their control characteristics in both conventional and semiconductor switched circuits. This new edition has been expanded and updated to include material which reflects current thinking and practice. All references have been updated to conform to the latest national (BS) and international (IEC) recommendations and a new appendix has been added which deals more fully with the theory of permanent-magnets, recognising the growing importance of permanent-magnet machines. The text is so arra

  1. Machine shop basics

    CERN Document Server

    Miller, Rex

    2004-01-01

    Use the right tool the right wayHere, fully updated to include new machines and electronic/digital controls, is the ultimate guide to basic machine shop equipment and how to use it. Whether you're a professional machinist, an apprentice, a trade student, or a handy homeowner, this fully illustrated volume helps you define tools and use them properly and safely. It's packed with review questions for students, and loaded with answers you need on the job.Mark Richard Miller is a Professor and Chairman of the Industrial Technology Department at Texas A&M University in Kingsville, T

  2. Electrical machines diagnosis

    CERN Document Server

    Trigeassou, Jean-Claude

    2013-01-01

    Monitoring and diagnosis of electrical machine faults is a scientific and economic issue which is motivated by objectives for reliability and serviceability in electrical drives.This book provides a survey of the techniques used to detect the faults occurring in electrical drives: electrical, thermal and mechanical faults of the electrical machine, faults of the static converter and faults of the energy storage unit.Diagnosis of faults occurring in electrical drives is an essential part of a global monitoring system used to improve reliability and serviceability. This diagnosis is perf

  3. Neutron irradiation therapy machine

    International Nuclear Information System (INIS)

    1980-01-01

    Conventional neutron irradiation therapy machines, based on the use of cyclotrons for producing neutron beams, use a superconducting magnet for the cyclotron's magnetic field. This necessitates complex liquid He equipment and presents problems in general hospital use. If conventional magnets are used, the weight of the magnet poles considerably complicates the design of the rotating gantry. Such a therapy machine, gantry and target facilities are described in detail. The use of protons and deuterons to produce the neutron beams is compared and contrasted. (U.K.)

  4. Man - Machine Communication

    CERN Document Server

    Petersen, Peter; Nielsen, Henning

    1984-01-01

    This report describes a Man-to-Machine Communication module which together with a STAC can take care of all operator inputs from the touch-screen, tracker balls and mechanical buttons. The MMC module can also contain a G64 card which could be a GPIB driver but many other G64 cards could be used. The soft-ware services the input devices and makes the results accessible from the CAMAC bus. NODAL functions for the Man Machine Communication is implemented in the STAC and in the ICC.

  5. MRTD: man versus machine

    Science.gov (United States)

    van Rheenen, Arthur D.; Taule, Petter; Thomassen, Jan Brede; Madsen, Eirik Blix

    2018-04-01

    We present Minimum-Resolvable Temperature Difference (MRTD) curves obtained by letting an ensemble of observers judge how many of the six four-bar patterns they can "see" in a set of images taken with different bar-to-background contrasts. The same images are analyzed using elemental signal analysis algorithms and machine-analysis based MRTD curves are obtained. We show that by adjusting the minimum required signal-to-noise ratio the machine-based MRTDs are very similar to the ones obtained with the help of the human observers.

  6. Advances in Machine Technology.

    Science.gov (United States)

    Clark, William R; Villa, Gianluca; Neri, Mauro; Ronco, Claudio

    2018-01-01

    Continuous renal replacement therapy (CRRT) machines have evolved into devices specifically designed for critically ill over the past 40 years. In this chapter, a brief history of this evolution is first provided, with emphasis on the manner in which changes have been made to address the specific needs of the critically ill patient with acute kidney injury. Subsequently, specific examples of technology developments for CRRT machines are discussed, including the user interface, pumps, pressure monitoring, safety features, and anticoagulation capabilities. © 2018 S. Karger AG, Basel.

  7. Dimensional micro and nano metrology

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; da Costa Carneiro, Kim; Haitjema, Han

    2006-01-01

    The need for dimensional micro and nano metrology is evident, and as critical dimensions are scaled down and geometrical complexity of objects is increased, the available technologies appear not sufficient. Major research and development efforts have to be undertaken in order to answer these chal......The need for dimensional micro and nano metrology is evident, and as critical dimensions are scaled down and geometrical complexity of objects is increased, the available technologies appear not sufficient. Major research and development efforts have to be undertaken in order to answer...... these challenges. The developments have to include new measuring principles and instrumentation, tolerancing rules and procedures as well as traceability and calibration. The current paper describes issues and challenges in dimensional micro and nano metrology by reviewing typical measurement tasks and available...

  8. Coordinator, Translation Services | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Coordinator, Translation Services coordinates the overall operations of the ... services in IDRC by acting as the main resource person for internal clients ... all operational issues in order to ensure good quality products delivered on time.

  9. Machine speech and speaking about machines

    Energy Technology Data Exchange (ETDEWEB)

    Nye, A. [Univ. of Wisconsin, Whitewater, WI (United States)

    1996-12-31

    Current philosophy of language prides itself on scientific status. It boasts of being no longer contaminated with queer mental entities or idealist essences. It theorizes language as programmable variants of formal semantic systems, reimaginable either as the properly epiphenomenal machine functions of computer science or the properly material neural networks of physiology. Whether or not such models properly capture the physical workings of a living human brain is a question that scientists will have to answer. I, as a philosopher, come at the problem from another direction. Does contemporary philosophical semantics, in its dominant truth-theoretic and related versions, capture actual living human thought as it is experienced, or does it instead reflect, regardless of (perhaps dubious) scientific credentials, pathology of thought, a pathology with a disturbing social history.

  10. Fundamental Issues of Nano-fluid Behavior

    International Nuclear Information System (INIS)

    Williams, Wesley C.

    2006-01-01

    This paper will elucidate some of the behaviors of nano-fluids other than the abnormal conductivity enhancement, which are of importance to the experimental and engineering use of nano-fluids. Nano-fluid is the common name of any sol colloid involving nano-scale (less than 100 nm) sized particles dispersed within a base fluid. It has been shown previously that the dispersion of nano-particulate metallic oxides into water can increase thermal conductivity up to 30-40% over that of the base fluid and anomalously more than the mere weighed average of the colloid. There is a great potential for the use of nano-fluids as a way to enhance fluid/thermal energy transfer systems. Due to the recentness of nano-fluid science, there are still many issues which have not been fully investigated. This paper should act as a primer for the basic understanding of nano-fluid behavior. Particle size and colloid stability are of key importance to the functionality of nano-fluids. The pH and concentration/loading of nano-fluids can alter the size of the nano-particles and also the stability of the fluids. It will be shown through experiment and colloid theory the importance of these parameters. Furthermore, most of the existing literature uses volume percentage as the measure of particle loading, which can often be misleading. There will be discussion of this and other misleading ideas in nano-fluid science. (author)

  11. Mechanical properties of the weld line defect in micro injection molding for various nano filled polypropylene composites

    International Nuclear Information System (INIS)

    Xie Lei; Ziegmann, Gerhard

    2011-01-01

    is increased to 30%, the E modulus and tensile strength of micro weld line were increased again compared with the low loading level. → Finally, an empirical prediction equation for micro injection molded weld line strength of nano PP composites was proposed for higher nano filler loading fraction than 10 wt%. - Abstract: The nano filled functional polymer materials have been widely processed with micro injection molding technology for micro electromechanical systems (MEMS) fabrication. As the unfavorable defect in micro injection molding parts, weld line brings reduced mechanical and physical properties, especially for nano filled composites. In this study, polypropylene (PP) was compounded respectively with carbon nano fibers (CNFs) and TiO 2 nano particles at various weight fractions (10, 20, 30, 35 wt%) through co-screws internal mixing. The morphological, thermal and rheological properties of nano composites were characterized by wider angle X-ray diffraction (WXRD), different scanning calorimeter (DSC) and high pressure capillary rheometer. Additionally, under the constant setting of injection molding process parameters in injection molding machine, micro tensile samples with weld lines for each nano filled PP composite were produced. The tensile tests were served as the characterizing method for weld line mechanical properties. The results show that when the CNFs is filled higher than 10 wt%, the tensile strength of samples with weld lines made of nano composites become lower than neat PP. While the raising CNFs content contributes to the improved E modulus of micro injection molded weld lines. Additionally, with the increasing fraction of CNFs in PP, the weld line area's elongation percent is decreased. Whereas for case of TiO 2 , the 10 wt% is the threshold for micro injection molded weld line tensile strength turning from decrease trend to increase. The same as CNFs, elongation of micro weld line samples were in general lower than neat PP as well, due to

  12. Single Molecule Nano-Metronome

    OpenAIRE

    Buranachai, Chittanon; McKinney, Sean A.; Ha, Taekjip

    2006-01-01

    We constructed a DNA-based nano-mechanical device called the nano-metronome. Our device is made by introducing complementary single stranded overhangs at the two arms of the DNA four-way junction. The ticking rates of this stochastic metronome depend on ion concentrations and can be changed by a set of DNA-based switches to deactivate/reactivate the sticky end. Since the device displays clearly distinguishable responses even with a single basepair difference, it may lead to a single molecule ...

  13. Single Molecule Nano-Metronome

    Science.gov (United States)

    Buranachai, Chittanon; McKinney, Sean A.; Ha, Taekjip

    2008-01-01

    We constructed a DNA-based nano-mechanical device called the nano-metronome. Our device is made by introducing complementary single stranded overhangs at the two arms of the DNA four-way junction. The ticking rates of this stochastic metronome depend on ion concentrations and can be changed by a set of DNA-based switches to deactivate/reactivate the sticky end. Since the device displays clearly distinguishable responses even with a single basepair difference, it may lead to a single molecule sensor of minute sequence differences of a target DNA. PMID:16522050

  14. Design of rotating electrical machines

    CERN Document Server

    Pyrhonen , Juha; Hrabovcova , Valeria

    2013-01-01

    In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machinesAn expanded section on the design of permanent magnet synchronous machines, now repo

  15. Virtual Machine Language 2.1

    Science.gov (United States)

    Riedel, Joseph E.; Grasso, Christopher A.

    2012-01-01

    VML (Virtual Machine Language) is an advanced computing environment that allows spacecraft to operate using mechanisms ranging from simple, time-oriented sequencing to advanced, multicomponent reactive systems. VML has developed in four evolutionary stages. VML 0 is a core execution capability providing multi-threaded command execution, integer data types, and rudimentary branching. VML 1 added named parameterized procedures, extensive polymorphism, data typing, branching, looping issuance of commands using run-time parameters, and named global variables. VML 2 added for loops, data verification, telemetry reaction, and an open flight adaptation architecture. VML 2.1 contains major advances in control flow capabilities for executable state machines. On the resource requirements front, VML 2.1 features a reduced memory footprint in order to fit more capability into modestly sized flight processors, and endian-neutral data access for compatibility with Intel little-endian processors. Sequence packaging has been improved with object-oriented programming constructs and the use of implicit (rather than explicit) time tags on statements. Sequence event detection has been significantly enhanced with multi-variable waiting, which allows a sequence to detect and react to conditions defined by complex expressions with multiple global variables. This multi-variable waiting serves as the basis for implementing parallel rule checking, which in turn, makes possible executable state machines. The new state machine feature in VML 2.1 allows the creation of sophisticated autonomous reactive systems without the need to develop expensive flight software. Users specify named states and transitions, along with the truth conditions required, before taking transitions. Transitions with the same signal name allow separate state machines to coordinate actions: the conditions distributed across all state machines necessary to arm a particular signal are evaluated, and once found true, that

  16. Making molecular machines work

    NARCIS (Netherlands)

    Browne, Wesley R.; Feringa, Ben L.

    2006-01-01

    In this review we chart recent advances in what is at once an old and very new field of endeavour the achievement of control of motion at the molecular level including solid-state and surface-mounted rotors, and its natural progression to the development of synthetic molecular machines. Besides a

  17. Massively collaborative machine learning

    NARCIS (Netherlands)

    Rijn, van J.N.

    2016-01-01

    Many scientists are focussed on building models. We nearly process all information we perceive to a model. There are many techniques that enable computers to build models as well. The field of research that develops such techniques is called Machine Learning. Many research is devoted to develop

  18. Turbulence and Flying Machines

    Indian Academy of Sciences (India)

    other to make the aircraft roll. For example, a downward dis- placement of the left aileron causes the airplane to roll to the right. In Figure 4 the elevators have been deflected downwards, giving rise to a 'nose-down' moment about the pitch axis. Delaying Turbulence. In the last few decades, flying machines have proliferated ...

  19. Consuming a Machinic Servicescape

    OpenAIRE

    Hietanen, Joel; Andéhn, Mikael; Iddon, Thom; Denny, Iain; Ehnhage, Anna

    2016-01-01

    Consumer encounters with servicescapes tend to emphasize the harmonic tendency of their value-creating potential. We contest this assumption from a critical non-representational perspective that foregrounds the machinic and repressive potentiality of such con- sumption contexts. We offer the airport servicescape as an illustrative example. 

  20. War Machines and Ethics

    DEFF Research Database (Denmark)

    Nielsen, Thomas Galasz; Buhl, Kenneth Øhlenschlæger

    2018-01-01

    and save military lives. However, this opens up for discussions about ethical dilemmas about machines that autonomously are able to kill humans: What is an autonomous weapons system? What laws covers the use of fully autonomous weapons systems? Should it apply to International Humanitarian Law?...

  1. GPK heading machine

    Energy Technology Data Exchange (ETDEWEB)

    Krmasek, J.; Novosad, K.

    1981-01-01

    This article evaluates performance tests of the Soviet made GPK heading machine carried out in 4 coal mines in Czechoslovakia (Ostrava-Karvina region and Kladno mines). GPK works in coal seams and rocks with compression strength of 40 to 50 MPa. Dimensions of the tunnel are height 1.8 to 3.8 m and width 2.6 to 4.7 m, tunnel gradient plus to minus 10 degrees. GPK weighs 16 t, its conical shaped cutting head equipped with RKS-1 cutting tools is driven by an electric motor with 55 kW capacity. Undercarriage of the GPK, gathering-arm loader, hydraulic system, electric system and dust supression system (water spraying or pneumatic section) are characterized. Specifications of GPK heading machines are compared with PK-3r and F8 heading machines. Reliability, number of failures, dust level, noise, productivity depending on compression strength of rocks, heading rate in coal and in rocks, energy consumption, performance in inclined tunnels, and cutting tool wear are evaluated. Tests show that GPK can be used to drive tunnels in coal with rock constituting up to 50% of the tunnel crosscut, as long as rock compression strength does not exceed 50 MPa. In rocks characterized by higher compression strength cutting tool wear sharply increases. GPK is characterized by higher productivity than that of the PK-3r heading machine. Among the weak points of the GPK are: unsatisfactory reliability and excessive wear of its elements. (4 refs.) (In Czech)

  2. A Turing Machine Simulator.

    Science.gov (United States)

    Navarro, Aaron B.

    1981-01-01

    Presents a program in Level II BASIC for a TRS-80 computer that simulates a Turing machine and discusses the nature of the device. The program is run interactively and is designed to be used as an educational tool by computer science or mathematics students studying computational or automata theory. (MP)

  3. Machine Dictation and Transcription.

    Science.gov (United States)

    Harvey, Evelyn; And Others

    This instructional package contains both an instructor's manual and a student's manual for a course in machine dictation and transcription. The instructor's manual contains an overview with tips on teaching the course, letters for dictation, and a key to the letters. The student's manual contains an overview of the course and of the skills needed…

  4. ADAM: ADaptive Autonomous Machine

    NARCIS (Netherlands)

    van Oosten, Daan C.; Nijenhuis, Lucas F.J.; Bakkers, André; Vervoort, Wiek

    1996-01-01

    This paper describes a part of the development of an adaptive autonomous machine that is able to move in an unknown world extract knowledge out of the perceived data, has the possibility to reason, and finally has the capability to exchange experiences and knowledge with other agents. The agent is

  5. Machine Parts as Metaphor.

    Science.gov (United States)

    Porter, Gerald

    The connection between Language for Specific Purposes (LSP) and literature is discussed with examples of technical vocabulary drawn from a variety of writers, with particular attention to a sketch by the British dramatist Harold Pinter, "Trouble in the Works," which makes extensive use of the terminology of machine parts. It is noted…

  6. Machine-Learning Research

    OpenAIRE

    Dietterich, Thomas G.

    1997-01-01

    Machine-learning research has been making great progress in many directions. This article summarizes four of these directions and discusses some current open problems. The four directions are (1) the improvement of classification accuracy by learning ensembles of classifiers, (2) methods for scaling up supervised learning algorithms, (3) reinforcement learning, and (4) the learning of complex stochastic models.

  7. Nano-pyramid arrays for nano-particle trapping

    NARCIS (Netherlands)

    Sun, Xingwu; Veltkamp, Henk-Willem; Berenschot, Johan W.; Gardeniers, Johannes G.E.; Tas, Niels Roelof

    2016-01-01

    Abstract In this paper we present the drastic miniaturization of nano-wire pyramids fabricated by corner lithography. A particle trapping device was fabricated in a well-defined and symmetrical array. The entrance and exit hole-size can be tuned by adjusting fabrication parameters. We describe here

  8. Recursive Advice for Coordination

    DEFF Research Database (Denmark)

    Terepeta, Michal Tomasz; Nielson, Hanne Riis; Nielson, Flemming

    2012-01-01

    Aspect-oriented programming is a programming paradigm that is often praised for the ability to create modular software and separate cross-cutting concerns. Recently aspects have been also considered in the context of coordination languages, offering similar advantages. However, introducing aspects...... challenging. This is important since ensuring that a system does not contain errors is often equivalent to proving that some states are not reachable. In this paper we show how to solve these challenges by applying a successful technique from the area of software model checking, namely communicating pushdown...

  9. Hybrid machining processes perspectives on machining and finishing

    CERN Document Server

    Gupta, Kapil; Laubscher, R F

    2016-01-01

    This book describes various hybrid machining and finishing processes. It gives a critical review of the past work based on them as well as the current trends and research directions. For each hybrid machining process presented, the authors list the method of material removal, machining system, process variables and applications. This book provides a deep understanding of the need, application and mechanism of hybrid machining processes.

  10. Novel jet observables from machine learning

    Science.gov (United States)

    Datta, Kaustuv; Larkoski, Andrew J.

    2018-03-01

    Previous studies have demonstrated the utility and applicability of machine learning techniques to jet physics. In this paper, we construct new observables for the discrimination of jets from different originating particles exclusively from information identified by the machine. The approach we propose is to first organize information in the jet by resolved phase space and determine the effective N -body phase space at which discrimination power saturates. This then allows for the construction of a discrimination observable from the N -body phase space coordinates. A general form of this observable can be expressed with numerous parameters that are chosen so that the observable maximizes the signal vs. background likelihood. Here, we illustrate this technique applied to discrimination of H\\to b\\overline{b} decays from massive g\\to b\\overline{b} splittings. We show that for a simple parametrization, we can construct an observable that has discrimination power comparable to, or better than, widely-used observables motivated from theory considerations. For the case of jets on which modified mass-drop tagger grooming is applied, the observable that the machine learns is essentially the angle of the dominant gluon emission off of the b\\overline{b} pair.

  11. Machining of Machine Elements Made of Polymer Composite Materials

    Science.gov (United States)

    Baurova, N. I.; Makarov, K. A.

    2017-12-01

    The machining of the machine elements that are made of polymer composite materials (PCMs) or are repaired using them is considered. Turning, milling, and drilling are shown to be most widely used among all methods of cutting PCMs. Cutting conditions for the machining of PCMs are presented. The factors that most strongly affect the roughness parameters and the accuracy of cutting PCMs are considered.

  12. First LHC Shutdown: Coordination and Schedule Issues

    CERN Document Server

    Coupard, J; Grillot, S

    2010-01-01

    The first LHC shutdown started in fall 2008, just after the incident on the 19th of September 2008. In addition to the typical work of a shutdown, a large number of interventions, related to the “consolidation after the incident” were performed in the LHC loop. Moreover the amount of work increased during the shutdown, following the recommendations and conclusions of the different working groups in charge of the safety of the personnel and of the machine. This paper will give an overview of the work performed, the organization of the coordination, emphasizing the new safety risks (electrical and cryogenic), and how the interventions were implemented in order to ensure both the safety of personnel and a minimized time window.

  13. Aligned Layers of Silver Nano-Fibers

    Directory of Open Access Journals (Sweden)

    Andrii B. Golovin

    2012-02-01

    Full Text Available We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polarization of transmitted light. The aligned layers of silver nano-fibers might be used in optics, microwave applications, and organic electronics.

  14. DESIGN OF GRASS BRIQUETTE MACHINE

    African Journals Online (AJOL)

    user

    E-mail addresses: 1 mike.ajieh@gmail.com, 2 dracigboanugo@yahoo.com, ... machine design was considered for processing biomass of grass origin. The machine operations include pulverization, compaction and extrusion of the briquettes.

  15. New Applications of Learning Machines

    DEFF Research Database (Denmark)

    Larsen, Jan

    * Machine learning framework for sound search * Genre classification * Music separation * MIMO channel estimation and symbol detection......* Machine learning framework for sound search * Genre classification * Music separation * MIMO channel estimation and symbol detection...

  16. Tattoo machines, needles and utilities.

    Science.gov (United States)

    Rosenkilde, Frank

    2015-01-01

    Starting out as a professional tattooist back in 1977 in Copenhagen, Denmark, Frank Rosenkilde has personally experienced the remarkable development of tattoo machines, needles and utilities: all the way from home-made equipment to industrial products of substantially improved quality. Machines can be constructed like the traditional dual-coil and single-coil machines or can be e-coil, rotary and hybrid machines, with the more convenient and precise rotary machines being the recent trend. This development has resulted in disposable needles and utilities. Newer machines are more easily kept clean and protected with foil to prevent crosscontaminations and infections. The machines and the tattooists' knowledge and awareness about prevention of infection have developed hand-in-hand. For decades, Frank Rosenkilde has been collecting tattoo machines. Part of his collection is presented here, supplemented by his personal notes. © 2015 S. Karger AG, Basel.

  17. QCD machines - present and future

    International Nuclear Information System (INIS)

    Christ, N.H.

    1991-01-01

    The present status of the currently working and nearly working dedicated QCD machines is reviewed and proposals for future machines are discussed with particular emphasis on the QCD Teraflop Project in the US. (orig.)

  18. Optimization of mechanical performance of oxidative nano-particle electrode nitrile butadiene rubber conducting polymer actuator.

    Science.gov (United States)

    Kim, Baek-Chul; Park, S J; Cho, M S; Lee, Y; Nam, J D; Choi, H R; Koo, J C

    2009-12-01

    Present work delivers a systematical evaluation of actuation efficiency of a nano-particle electrode conducting polymer actuator fabricated based on Nitrile Butadiene Rubber (NBR). Attempts are made for maximizing mechanical functionality of the nano-particle electrode conducting polymer actuator that can be driven in the air. As the conducting polymer polypyrrole of the actuator is to be fabricated through a chemical oxidation polymerization process that may impose certain limitations on both electrical and mechanical functionality of the actuator, a coordinated study for optimization process of the actuator is necessary for maximizing its performance. In this article actuation behaviors of the nano-particle electrode polypyrrole conducting polymer is studied and an optimization process for the mechanical performance maximization is performed.

  19. Nano materials for Cancer Phototheranostics

    International Nuclear Information System (INIS)

    Huang, P.; Ling, D.; Song, J; Liu, G.; Xie, J.

    2016-01-01

    The rapid development of advanced nano technology promises the integration of multiple diagnostic/therapeutic modalities into one nano platform for cancer theranostics. This issue compiles 3 review articles and 7 high-quality original research articles related to the field of nano material-based cancer theranostics. Photo therapies, such as photothermal therapy (PTT), photodynamic therapy (PDT), or photo-triggered drug/gene delivery, have gained considerable attention because of specific spatiotemporal selectivity and minimal invasiveness. Considering the inherent biocompatibility and biodegradability of proteins and peptides, P. Huang and coworkers summarized recent advances in the development of protein/peptide-based photothermal cancer theranostics, using protein/peptide as delivery vehicles or synthesis bio templates of PTT agents. M. G. O∼Toole and coworkers developed a near-infrared (NIR) responsive oligonucleotide-coated (AS1411, hairpin, or both) gold nanoplate loaded with doxorubicin (DOX), which is demonstrated to be nontoxic to cells without triggered release, while being acutely toxic to cells after 5 minutes of laser exposure to trigger DOX release. K. Na and coworkers described an acidic tumor pH-responsive nanophotomedicine (pH-NanoPM), which was prepared by self-assembly of a pH-responsive polymeric photo sensitizer (pH-PPS) consisting of pH-cleavable methoxypolyethylene glycol (pH-C-mPEG), for targeted PDT

  20. Increasing Possibilities of Nano suspension

    International Nuclear Information System (INIS)

    Sutradhar, K.B.; Khatun, S.; Luna, I.P.

    2013-01-01

    Nowadays, a very large proportion of new drug candidates emerging from drug discovery programmes are water insoluble and thus poorly bioavailable. To avoid this problem, nano technology for drug delivery has gained much interest as a way to improve the solubility problems. Nano refers to particles size range of 1-1000 nm. The reduction of drug particles into the submicron range leads to a significant increase in the dissolution rate and therefore enhances bioavailability. Nanosuspensions are part of nano technology. This interacts with the body at subcellular (i.e., molecular) scales with a high degree of specificity and can be potentially translated into targeted cellular and tissue-specific clinical applications designed to achieve maximal therapeutic efficacy with minimal side effects. Production of drugs as nanosuspensions can be developed for drug delivery systems as an oral formulation and no noral administration. Here, this review describes the methods of pharmaceutical nano suspension production including advantages and disadvantages, potential benefits, characterization tests, and pharmaceutical applications in drug delivery

  1. Student Modeling and Machine Learning

    OpenAIRE

    Sison , Raymund; Shimura , Masamichi

    1998-01-01

    After identifying essential student modeling issues and machine learning approaches, this paper examines how machine learning techniques have been used to automate the construction of student models as well as the background knowledge necessary for student modeling. In the process, the paper sheds light on the difficulty, suitability and potential of using machine learning for student modeling processes, and, to a lesser extent, the potential of using student modeling techniques in machine le...

  2. Machine Translation Effect on Communication

    DEFF Research Database (Denmark)

    Jensen, Mika Yasuoka; Bjørn, Pernille

    2011-01-01

    Intercultural collaboration facilitated by machine translation has gradually spread in various settings. Still, little is known as for the practice of machine-translation mediated communication. This paper investigates how machine translation affects intercultural communication in practice. Based...... on communication in which multilingual communication system is applied, we identify four communication types and its’ influences on stakeholders’ communication process, especially focusing on establishment and maintenance of common ground. Different from our expectation that quality of machine translation results...

  3. Nuclear reactor machine refuelling system

    International Nuclear Information System (INIS)

    Cashen, W.S.; Erwin, D.

    1977-01-01

    Part of an on-line fuelling machine for a CANDU pressure-tube reactor is described. The present invention provides a refuelling machine wherein the fuelling components, including the fuel carrier and the closure adapter, are positively positioned and retained within the machine magazine or positively secured to the machine charge tube head, and cannot be accidentally disengaged as in former practice. The positive positioning devices include an arcuate keeper plate. Simplified hooked fingers are used. (NDH)

  4. Nano-JASMINE Data Analysis and Publication

    Science.gov (United States)

    Yamada, Y.; Hara, T.; Yoshioka, S.; Kobayashi, Y.; Gouda, N.; Miyashita, H.; Hatsutori, Y.; Lammers, U.; Michalik, D.

    2012-09-01

    The core data reduction for the Nano-JASMINE mission is planned to be done with Gaia's Astrometric Global Iterative Solution (AGIS). A collaboration between the Gaia AGIS and Nano-JASMINE teams on the Nano-JASMINE data reduction started in 2007. The Nano-JASMINE team writes codes to generate AGIS input, and this is called Initial Data Treament (IDT). Identification of observed stars and their observed field of view, getting color index, are different from those of Gaia because Nano-JASMINE is ultra small satellite. For converting centroiding results on detector to the celestial sphere, orbit and attitude data of the satellite are used. In Nano-JASMINE, orbit information is derived from on board GPS data and attitude is processed from on-board star sensor data and on-ground Kalman filtering. We also show the Nano-JASMINE goals, status of the data publications and utilizations, and introduce the next Japanese space astrometric mission.

  5. Electrodeposition of nickel nano wire arrays

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok Kuan Ying; Ng Inn Khuan; Nurazila Mat Zali; Siti Salwa Zainal Abidin

    2010-01-01

    Synthesis, characterization and assembly of one-dimensional nickel nano wires prepared by template directed electrodeposition are discussed in this paper. Parallel arrays of high aspect ratio nickel nano wires were electrodeposited using electrolytes with different cations and pH. The nano wires were characterized using X-ray diffractometry and scanning electron microscopy. It was found that the orientations of the electro deposited Ni nano wires were governed by the deposition current and the electrolyte conditions. Free standing nickel nano wires can be obtained by dissolving the template. Due to the magnetic nature of the nano wires, magnetic alignment was employed to assemble and position the free standing nano wires in the device structure. (author)

  6. Pharmaceutical Applications of Polymeric Nano materials

    International Nuclear Information System (INIS)

    Wu, L.; Sun, L.

    2011-01-01

    With significant attention focused on nano science and nano technology in recent years, nano materials have been used in a wide variety of applications such as automotive, environmental, energy, catalysis, biomedical, drug delivery, and polymeric industries. Among those fields, the application of nano materials with pharmaceutical science is an emerging and rapidly growing field and has drawn increasing attention recently. Research and development in this field is mainly focused on several aspects such as the discoveries of novel functional nano materials, exploration on nanoparticles with controlled and targeted drug delivery characteristics, and investigation of bio functionalized and diagnostic nano materials. In this special issue, we have invited a few papers related to recent advances in pharmaceutical application of polymeric nano materials

  7. The Chainstitch Machine. Module 18.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This module on the chainstitch machine, one in a series dealing with industrial sewing machines, their attachments, and operation, covers one topic: performing special operations on the chainstitch machine. These components are provided: an introduction, directions, an objective, learning activities, student information, a student self-check, and…

  8. Modification of structural graphite machining

    International Nuclear Information System (INIS)

    Lavrenev, M.M.

    1979-01-01

    Studied are machining procedures for structural graphites (GMZ, MG, MG-1, PPG) most widely used in industry, of the article mass being about 50 kg. Presented are dependences necessary for the calculation of cross sections of chip suction tappers and duster pipelines in machine shops for structural graphite machining

  9. Adaptive Machine Aids to Learning.

    Science.gov (United States)

    Starkweather, John A.

    With emphasis on man-machine relationships and on machine evolution, computer-assisted instruction (CAI) is examined in this paper. The discussion includes the background of machine assistance to learning, the current status of CAI, directions of development, the development of criteria for successful instruction, meeting the needs of users,…

  10. Machine Shop Fundamentals: Part I.

    Science.gov (United States)

    Kelly, Michael G.; And Others

    These instructional materials were developed and designed for secondary and adult limited English proficient students enrolled in machine tool technology courses. Part 1 includes 24 lessons covering introduction, safety and shop rules, basic machine tools, basic machine operations, measurement, basic blueprint reading, layout, and bench tools.…

  11. Side Flow Effect on Surface Generation in Nano Cutting.

    Science.gov (United States)

    Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong

    2017-12-01

    The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} , {110} , and {110}  are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.

  12. Prediction of Machine Tool Condition Using Support Vector Machine

    International Nuclear Information System (INIS)

    Wang Peigong; Meng Qingfeng; Zhao Jian; Li Junjie; Wang Xiufeng

    2011-01-01

    Condition monitoring and predicting of CNC machine tools are investigated in this paper. Considering the CNC machine tools are often small numbers of samples, a condition predicting method for CNC machine tools based on support vector machines (SVMs) is proposed, then one-step and multi-step condition prediction models are constructed. The support vector machines prediction models are used to predict the trends of working condition of a certain type of CNC worm wheel and gear grinding machine by applying sequence data of vibration signal, which is collected during machine processing. And the relationship between different eigenvalue in CNC vibration signal and machining quality is discussed. The test result shows that the trend of vibration signal Peak-to-peak value in surface normal direction is most relevant to the trend of surface roughness value. In trends prediction of working condition, support vector machine has higher prediction accuracy both in the short term ('One-step') and long term (multi-step) prediction compared to autoregressive (AR) model and the RBF neural network. Experimental results show that it is feasible to apply support vector machine to CNC machine tool condition prediction.

  13. Network Coordinator Report

    Science.gov (United States)

    Himwich, Ed; Strand, Richard

    2013-01-01

    This report includes an assessment of the network performance in terms of lost observing time for the 2012 calendar year. Overall, the observing time loss was about 12.3%, which is in-line with previous years. A table of relative incidence of problems with various subsystems is presented. The most significant identified causes of loss were electronics rack problems (accounting for about 21.8% of losses), antenna reliability (18.1%), RFI (11.8%), and receiver problems (11.7%). About 14.2% of the losses occurred for unknown reasons. New antennas are under development in the USA, Germany, and Spain. There are plans for new telescopes in Norway and Sweden. Other activities of the Network Coordinator are summarized.

  14. Quo vadis, Intelligent Machine?

    Directory of Open Access Journals (Sweden)

    Rosemarie Velik

    2010-09-01

    Full Text Available Artificial Intelligence (AI is a branch of computer science concerned with making computers behave like humans. At least this was the original idea. However, it turned out that this is no task easy to be solved. This article aims to give a comprehensible review on the last 60 years of artificial intelligence taking a philosophical viewpoint. It is outlined what happened so far in AI, what is currently going on in this research area, and what can be expected in future. The goal is to mediate an understanding for the developments and changes in thinking in course of time about how to achieve machine intelligence. The clear message is that AI has to join forces with neuroscience and other brain disciplines in order to make a step towards the development of truly intelligent machines.

  15. Smart Machine Protection System

    International Nuclear Information System (INIS)

    Clark, S.; Nelson, D.; Grillo, A.; Spencer, N.; Hutchinson, D.; Olsen, J.; Millsom, D.; White, G.; Gromme, T.; Allison, S.; Underwood, K.; Zelazny, M.; Kang, H.

    1991-11-01

    A Machine Protection System implemented on the SLC automatically controls the beam repetition rates in the accelerator so that radiation or temperature faults slow the repetition rate to bring the fault within tolerance without shutting down the machine. This process allows the accelerator to aid in the fault diagnostic process, and the protection system automatically restores the beams back to normal rates when the fault is diagnosed and corrected. The user interface includes facilities to monitor the performance of the system, and track rate limits, faults, and recoveries. There is an edit facility to define the devices to be included in the protection system, along with their set points, limits, and trip points. This set point and limit data is downloaded into the CAMAC modules, and the configuration data is compiled into a logical decision tree for the 68030 processor. 3 figs

  16. Smart machine protection system

    International Nuclear Information System (INIS)

    Clark, S.; Nelson, D.; Grillo, A.

    1992-01-01

    A Machine Protection System implemented on the SLC automatically controls the beam repetition rates in the accelerator so that radiation or temperature faults slow the repetition rate to bring the fault within tolerance without shutting down the machine. This process allows the accelerators to aid in the fault diagnostic process, and the protection system automatically restores the beams back to normal rates when the fault is diagnosed and corrected. The user interface includes facilities to monitor the performance of the system, and track rate limits, faults, and recoveries. There is an edit facility to define the devices to be included in the protection system, along with their set points, limits, and trip points. This set point and limit data is downloaded into the CAMAC modules, and the configuration data is complied into a logical decision tree for the 68030 processor. (author)

  17. Operation and machine studies

    International Nuclear Information System (INIS)

    1992-01-01

    This annual report describes the GANIL (Grand accelerateur national d'ions lourds, Caen, France) operation and the machine studies realized in 1992. Metallic ions have been accelerated during 36 pc of the time; some were produced for the first time at GANIL: 125 Te, 52 Cr with ECR3, 181 Ta with ECR4. The various machine studies are: comparison of lifetimes of carbon sheets, charge exchange of very heavy ions in carbon foils and in the residual gas of the Ganil cyclotrons, commissioning of the new high intensity axial injection system for Ganil, tantalum acceleration with the new injector, a cyclotron as a mass spectrometer; other studies concerned: implementing the new control system, gettering flux measurement, energy deposited by neutrons and gamma rays in the cryogenic system of SISSI; latest developments on multicharged ECR ion sources, and an on-line isotopic separator test bench at Ganil

  18. Introduction to Machine Protection

    CERN Document Server

    Schmidt, R

    2016-01-01

    Protection of accelerator equipment is as old as accelerator technology and was for many years related to high-power equipment. Examples are the protection of powering equipment from overheating (magnets, power converters, high-current cables), of superconducting magnets from damage after a quench and of klystrons. The protection of equipment from beam accidents is more recent, although there was one paper that discussed beam-induced damage for the SLAC linac (Stanford Linear Accelerator Center) as early as in 1967. It is related to the increasing beam power of high-power proton accelerators, to the emission of synchrotron light by electron-positron accelerators and to the increase of energy stored in the beam. Designing a machine protection system requires an excellent understanding of accelerator physics and operation to anticipate possible failures that could lead to damage. Machine protection includes beam and equipment monitoring, a system to safely stop beam operation (e.g. dumping the beam or stopping ...

  19. Coordinating Group report

    International Nuclear Information System (INIS)

    1994-01-01

    In December 1992, western governors and four federal agencies established a Federal Advisory Committee to Develop On-site Innovative Technologies for Environmental Restoration and Waste Management (the DOIT Committee). The purpose of the Committee is to advise the federal government on ways to improve waste cleanup technology development and the cleanup of federal sites in the West. The Committee directed in January 1993 that information be collected from a wide range of potential stakeholders and that innovative technology candidate projects be identified, organized, set in motion, and evaluated to test new partnerships, regulatory approaches, and technologies which will lead to improve site cleanup. Five working groups were organized, one to develop broad project selection and evaluation criteria and four to focus on specific contaminant problems. A Coordinating Group comprised of working group spokesmen and federal and state representatives, was set up to plan and organize the routine functioning of these working groups. The working groups were charged with defining particular contaminant problems; identifying shortcomings in technology development, stakeholder involvement, regulatory review, and commercialization which impede the resolution of these problems; and identifying candidate sites or technologies which could serve as regional innovative demonstration projects to test new approaches to overcome the shortcomings. This report from the Coordinating Group to the DOIT Committee highlights the key findings and opportunities uncovered by these fact-finding working groups. It provides a basis from which recommendations from the DOIT Committee to the federal government can be made. It also includes observations from two public roundtables, one on commercialization and another on regulatory and institutional barriers impeding technology development and cleanup

  20. Vibration of machine

    International Nuclear Information System (INIS)

    Kwak, Mun Gyu; Na, Sung Su; Baek, Gwang Hyeon; Song, Chul Gi; Han, Sang Bo

    2001-09-01

    This book deals with vibration of machine which gives descriptions of free vibration using SDOF system, forced vibration using SDOF system, vibration of multi-degree of freedom system like introduction and normal form, distribution system such as introduction, free vibration of bar and practice problem, approximate solution like lumped approximations and Raleigh's quotient, engineering by intuition and experience, real problem and experimental method such as technology of signal, fourier transform analysis, frequency analysis and sensor and actuator.

  1. Quantum Virtual Machine (QVM)

    Energy Technology Data Exchange (ETDEWEB)

    2016-11-18

    There is a lack of state-of-the-art HPC simulation tools for simulating general quantum computing. Furthermore, there are no real software tools that integrate current quantum computers into existing classical HPC workflows. This product, the Quantum Virtual Machine (QVM), solves this problem by providing an extensible framework for pluggable virtual, or physical, quantum processing units (QPUs). It enables the execution of low level quantum assembly codes and returns the results of such executions.

  2. Machine Translation from Text

    Science.gov (United States)

    Habash, Nizar; Olive, Joseph; Christianson, Caitlin; McCary, John

    Machine translation (MT) from text, the topic of this chapter, is perhaps the heart of the GALE project. Beyond being a well defined application that stands on its own, MT from text is the link between the automatic speech recognition component and the distillation component. The focus of MT in GALE is on translating from Arabic or Chinese to English. The three languages represent a wide range of linguistic diversity and make the GALE MT task rather challenging and exciting.

  3. Unconventional wind machine

    International Nuclear Information System (INIS)

    Sheff, J.R.

    1979-01-01

    It is the purpose of this paper to introduce an unconventional wind machine which has economics comparable with nuclear power and is already available in the public market place. Specifically, up to about 17 MWE could be saved for other uses such as sale in most 1000 MWE plants of any type - nuclear, oil, gas, peat, or wood - which use conventional electrically driven fans in their cooling towers. 10 refs

  4. From Gold Nano-particles through Nano-wire to Gold Nano-layers on Substrate

    Czech Academy of Sciences Publication Activity Database

    Švorčík, V.; Kolská, Z.; Slepička, P.; Siegel, J.; Hnatowicz, Vladimír

    2010-01-01

    Roč. 2010, G (2010), s. 1-57. ISBN 978-1-61668-009-1 Institutional support: RVO:61389005 Keywords : thin films * Au nano layers * AFM Subject RIV: BM - Solid Matter Physics ; Magnetism https://www.novapublishers.com/catalog/product_info.php?products_id=12909

  5. Research on cylindrical indexing cam’s unilateral machining

    Directory of Open Access Journals (Sweden)

    Junhua Chen

    2015-08-01

    Full Text Available The cylindrical cam ridge of the indexer is a spatial curved surface, which is difficult to design and machine. The cylindrical cam has some defects after machining because conventional machining methods have inaccuracies. This article aims at proposing a precise way to machine an indexing cam, using basic motion analysis and analytic geometry approach. Analytical methodology is first applied in the cam’s motion analysis, to obtain an error-free cam follower’s trajectory formula, and then separate the continuous trajectory curve by thousandth resolution, to create a three-dimensional discrete trajectory curve. Planar formulae and spherical formulae can be built on the loci. Based on the machine principle, the cutting cutter’s position and orientation will be taken into account. This article calculates the formula set as presented previously and obtains the ultimate cutter path coordinate value. The new error-free cutter path trajectory is called the unilateral machining trajectory. The earned results will compile into numerical control processing schedule. This processing methodology gives a convenient and precision way to manufacture a cylindrical indexing cam. Experimental results are also well supported.

  6. Behind the machines

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    One of the first things we think about when someone mentions physics is the machines. But behind the machines, there are the men and women who design, build and operate them. In an exhibition at the Thinktank planetarium’s art gallery in Birmingham (UK), Claudia Marcelloni and her husband Neal Hartman—she is a photographer and Outreach Officer for ATLAS, while he is an engineer working on the ATLAS pixel detector—explore the human side of scientists.   The exhibition at the Thinktank Planetarium art gallery, Birmingham (UK). It all began two years ago with the publication of Exploring the mystery of matter, a book about ATLAS. “A Norwegian physicist friend, Heidi Sandaker, saw my photographs and suggested that I display them in a museum. I thought this was an interesting idea, except that the photos consisted entirely of depictions of machinery, with human beings completely absent. For me, showing the people who are behind the machines and the fascination ...

  7. Evolution of Replication Machines

    Science.gov (United States)

    Yao, Nina Y.; O'Donnell, Mike E.

    2016-01-01

    The machines that decode and regulate genetic information require the translation, transcription and replication pathways essential to all living cells. Thus, it might be expected that all cells share the same basic machinery for these pathways that were inherited from the primordial ancestor cell from which they evolved. A clear example of this is found in the translation machinery that converts RNA sequence to protein. The translation process requires numerous structural and catalytic RNAs and proteins, the central factors of which are homologous in all three domains of life, bacteria, archaea and eukarya. Likewise, the central actor in transcription, RNA polymerase, shows homology among the catalytic subunits in bacteria, archaea and eukarya. In contrast, while some “gears” of the genome replication machinery are homologous in all domains of life, most components of the replication machine appear to be unrelated between bacteria and those of archaea and eukarya. This review will compare and contrast the central proteins of the “replisome” machines that duplicate DNA in bacteria, archaea and eukarya, with an eye to understanding the issues surrounding the evolution of the DNA replication apparatus. PMID:27160337

  8. Machine Learning in Medicine.

    Science.gov (United States)

    Deo, Rahul C

    2015-11-17

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games - tasks that would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in health care. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades, and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus, part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome. © 2015 American Heart Association, Inc.

  9. Quantum Machine Learning

    Science.gov (United States)

    Biswas, Rupak

    2018-01-01

    Quantum computing promises an unprecedented ability to solve intractable problems by harnessing quantum mechanical effects such as tunneling, superposition, and entanglement. The Quantum Artificial Intelligence Laboratory (QuAIL) at NASA Ames Research Center is the space agency's primary facility for conducting research and development in quantum information sciences. QuAIL conducts fundamental research in quantum physics but also explores how best to exploit and apply this disruptive technology to enable NASA missions in aeronautics, Earth and space sciences, and space exploration. At the same time, machine learning has become a major focus in computer science and captured the imagination of the public as a panacea to myriad big data problems. In this talk, we will discuss how classical machine learning can take advantage of quantum computing to significantly improve its effectiveness. Although we illustrate this concept on a quantum annealer, other quantum platforms could be used as well. If explored fully and implemented efficiently, quantum machine learning could greatly accelerate a wide range of tasks leading to new technologies and discoveries that will significantly change the way we solve real-world problems.

  10. Machine Learning in Medicine

    Science.gov (United States)

    Deo, Rahul C.

    2015-01-01

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games – tasks which would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in healthcare. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades – and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome. PMID:26572668

  11. Homopolar machine design

    International Nuclear Information System (INIS)

    Thullen, P.

    1978-01-01

    A general conceptual design for a disc-type homopolar machine is presented. This machine uses a superconducting, air-core, solenoidal field winding with a peak field of 8 T. A total energy of 500 MJ is stored in two counter-rotating disc rotors that operate at a surface speed of 200 m/s. Terminal voltages of 500 to 2000 V are obtained over the range of designs studied. Brush systems to collect 3 MA are investigated. Various brush materials are discussed to determine their usefulness in this application. Sufficient information on operating characteristics in high-power applications is only available for copper-graphite brushes. The use of sliding brushes for terminal voltage regulation is discussed. This feature cannot provide a great deal of flexibility in this particular application although it may be useful during start-up. The brush system is the most demanding feature of this design. Few systems in the million ampere range have been constructed, consequently, it is not possible to predict the behavior of this brush system with great certainty. A detailed design of the brushes should be undertaken. It is estimated that the cost of such a machine will range from 0.5 to 1.5 cents per joule

  12. Introduction: Minds, Bodies, Machines

    Directory of Open Access Journals (Sweden)

    Deirdre Coleman

    2008-10-01

    Full Text Available This issue of 19 brings together a selection of essays from an interdisciplinary conference on 'Minds, Bodies, Machines' convened last year by Birkbeck's Centre for Nineteenth-Century Studies, University of London, in partnership with the English programme, University of Melbourne and software developers Constraint Technologies International (CTI. The conference explored the relationship between minds, bodies and machines in the long nineteenth century, with a view to understanding the history of our technology-driven, post-human visions. It is in the nineteenth century that the relationship between the human and the machine under post-industrial capitalism becomes a pervasive theme. From Blake on the mills of the mind by which we are enslaved, to Carlyle's and Arnold's denunciation of the machinery of modern life, from Dickens's sooty fictional locomotive Mr Pancks, who 'snorted and sniffed and puffed and blew, like a little labouring steam-engine', and 'shot out […]cinders of principles, as if it were done by mechanical revolvency', to the alienated historical body of the late-nineteenth-century factory worker under Taylorization, whose movements and gestures were timed, regulated and rationalised to maximize efficiency; we find a cultural preoccupation with the mechanisation of the nineteenth-century human body that uncannily resonates with modern dreams and anxieties around technologies of the human.

  13. An HTS machine laboratory prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2012-01-01

    This paper describes Superwind HTS machine laboratory setup which is a small scale HTS machine designed and build as a part of the efforts to identify and tackle some of the challenges the HTS machine design may face. One of the challenges of HTS machines is a Torque Transfer Element (TTE) which...... conduction compared to a shaft. The HTS machine was successfully cooled to 77K and tests have been performed. The IV curves of the HTS field winding employing 6 HTS coils indicate that two of the coils had been damaged. The maximal value of the torque during experiments of 78Nm was recorded. Loaded with 33...

  14. Thermal Conductivity of Nano-fluids in Nano-channels

    OpenAIRE

    Frank, M; Asproulis, N; Drikakis, D; 4th Micro and Nano Flows Conference (MNF2014)

    2014-01-01

    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, U...

  15. Mechanical design of machine components

    CERN Document Server

    Ugural, Ansel C

    2015-01-01

    Mechanical Design of Machine Components, Second Edition strikes a balance between theory and application, and prepares students for more advanced study or professional practice. It outlines the basic concepts in the design and analysis of machine elements using traditional methods, based on the principles of mechanics of materials. The text combines the theory needed to gain insight into mechanics with numerical methods in design. It presents real-world engineering applications, and reveals the link between basic mechanics and the specific design of machine components and machines. Divided into three parts, this revised text presents basic background topics, deals with failure prevention in a variety of machine elements and covers applications in design of machine components as well as entire machines. Optional sections treating special and advanced topics are also included.Key Features of the Second Edition:Incorporates material that has been completely updated with new chapters, problems, practical examples...

  16. Soft computing in machine learning

    CERN Document Server

    Park, Jooyoung; Inoue, Atsushi

    2014-01-01

    As users or consumers are now demanding smarter devices, intelligent systems are revolutionizing by utilizing machine learning. Machine learning as part of intelligent systems is already one of the most critical components in everyday tools ranging from search engines and credit card fraud detection to stock market analysis. You can train machines to perform some things, so that they can automatically detect, diagnose, and solve a variety of problems. The intelligent systems have made rapid progress in developing the state of the art in machine learning based on smart and deep perception. Using machine learning, the intelligent systems make widely applications in automated speech recognition, natural language processing, medical diagnosis, bioinformatics, and robot locomotion. This book aims at introducing how to treat a substantial amount of data, to teach machines and to improve decision making models. And this book specializes in the developments of advanced intelligent systems through machine learning. It...

  17. Machine Ethics: Creating an Ethical Intelligent Agent

    OpenAIRE

    Anderson, Michael; Anderson, Susan Leigh

    2007-01-01

    The newly emerging field of machine ethics (Anderson and Anderson 2006) is concerned with adding an ethical dimension to machines. Unlike computer ethics -- which has traditionally focused on ethical issues surrounding humans' use of machines -- machine ethics is concerned with ensuring that the behavior of machines toward human users, and perhaps other machines as well, is ethically acceptable. In this article we discuss the importance of machine ethics, the need for machines that represent ...

  18. Confronto Inter-Aziendale sulle Macchine di Misura a Coordinate tramite un Piatto Opto-Tattile

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    2005-01-01

    Si è recentemente concluso un confronto inter-aziendale sulle macchine di misura a coordinate basato sull'utilizzo di un piatto opto-tattile. Il progetto denominato "CIRP Comparison of Coordinate Measuring Machines using an Optomechanical Hole Plate" è constitito in un confronto interlaboratori i...... tesi di dottorato [3]. Il report finale [1] è a disposizione dei membri interessati sul sito del CMM Club mentre il presente articolo è in gran parte tratto dalla memoria...

  19. Nano catalysis: Academic Discipline and Industrial Realities

    International Nuclear Information System (INIS)

    Olveira, S.; Forster, S.P.; Seeger, S.

    2014-01-01

    Nano technology plays a central role in both academic research and industrial applications. Nano enabled products are not only found in consumer markets, but also importantly in business to business markets (B2B). One of the oldest application areas of nano technology is nano catalysis—an excellent example for such a B2 B market. Several existing reviews illustrate the scientific developments in the field of nano catalysis. The goal of the present review is to provide an up-to-date picture of academic research and to extend this picture by an industrial and economic perspective. We therefore conducted an extensive search on several scientific databases and we further analyzed more than 1,500 nano catalysis-related patents and numerous market studies. We found that scientists today are able to prepare nano catalysts with superior characteristics regarding activity, selectivity, durability, and recoverability, which will contribute to solve current environmental, social, and industrial problems. In industry, the potential of nano catalysis is recognized, clearly reflected by the increasing number of nano catalysis-related patents and products on the market. The current nano catalysis research in academic and industrial laboratories will therefore enable a wealth of future applications in the industry

  20. Editorial Nano structures for Medicine and Pharmaceuticals

    International Nuclear Information System (INIS)

    Xing-Jie, L.; Kumar, A.; Donglu, S.; Daxiang, C.

    2012-01-01

    The rapid developments in nano structured materials and nano technology will have profound impact in many areas of biomedical applications including delivery of drugs and biomolecules, tissue engineering, detection of bio markers, cancer diagnosis, cancer therapy, and imaging. This field is expanding quickly, and a lot of work is ongoing in the design, characterization, synthesis, and application of materials, for controlling shape and size at nanometer scale to develop highly advanced materials for biomedical application and even to design better pharmaceutical products. In recent years, novel nano structure with multi functionalities has been focused on the use of nano structures toward solving problems of biology and medicine. The main scope of this special issue is to demonstrate the latest achievement of nano technology and its application in nano medicine particularly in new approaches for drug delivery such as targeted drug delivery system, nano structure for drug storage, nano materials for tissue engineering, medical diagnosis and treatment, and generation of new kinds of materials from biological sources. Therefore, many critical issues in nano structured materials, particularly their applications in biomedicine, must be addressed before clinical applications. This special issue devotes several review and research articles encompassing various aspects of nano materials for medicine and pharmaceuticals.

  1. Coordinates in relativistic Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1984-01-01

    The physical (covariant and measurable) coordinates of free particles and covariant coordinates of the center of inertia are found for three main forms of relativistic dynamics. In the point form of dynamics, the covariant coordinates of two directly interacting particles are found, and the equations of motion are brought to the explicitly covariant form. These equations are generalized to the case of interaction with an external electromagnetic field

  2. Agile machining and inspection thrust area team-on-machine probing / compatibility assessment of Parametric Technology Corporation (PTC) pro/CMM DMIS with Zeiss DMISEngine.

    Energy Technology Data Exchange (ETDEWEB)

    Wade, James Rokwel; Tomlinson, Kurt; Bryce, Edwin Anthony

    2008-09-01

    The charter goal of the Agile Machining and Inspection Thrust Area Team is to identify technical requirements, within the nuclear weapons complex (NWC), for Agile Machining and Inspection capabilities. During FY 2008, the team identified Parametric Technology Corporation (PTC) Pro/CMM as a software tool for use in off-line programming of probing routines--used for measurement--for machining and turning centers. The probing routine would be used for in-process verification of part geometry. The same Pro/CMM program used on the machine tool could also be employed for program validation / part verification using a coordinate measuring machine (CMM). Funding was provided to determine the compatibility of the Pro/CMM probing program with CMM software (Zeiss DMISEngine).

  3. NanoChemistry Group at DTU uses NanoSight's NTA System for Nanoparticle Characterization

    DEFF Research Database (Denmark)

    2011-01-01

    (Nanowerk News) NanoSight, leading manufacturers of unique nanoparticle characterization technology, describes how the Nano Chemistry group at DTU Copenhagen is utilizing nanoparticle tracking analysis, NTA, in its research and teaching programs....

  4. Nano- and micro-electromechanical systems fundamentals of nano- and microengineering

    CERN Document Server

    Lyshevski, Sergey Edward

    2005-01-01

    NANOTECHNOLOGY AND MICROTECHNOLOGY (NANO- AND MICRO- SCIENCE, ENGINEERING AND TECHNOLOGY), AND BEYOND Introduction and Overview: From Micro- to Nano- and Beyond to Stringo-Scale Introductory Definitions to the Subjects Current Developments and Needs for Coherent Revolutionary Developments Societal Challenges and Implications NANO- AND MICROSCALE SYSTEMS, DEVICES, AND STRUCTURES Sizing Features: From Micro- to Nano-, and from Nano- to Stringo-Scale MEMS and NEMS Definitions Introduction to Taxonomy of Nano- and Microsystem Synthesis and Design Introduction to Design and Optimization of Nano- and Microsystems in the Behavioral Domain NANO- AND MICROSYSTEMS: CLASSIFICATION AND CONSIDERATION Biomimetics, Biological Analogies,and Design of NEMS and MEMS Micro- and Nanoelectromechanical Systems: Scaling Laws and Mathematical Modeling MEMS Examples and MEMS Architectures Introduction to Microfabrication and Micromachining FUNDAMENTALS OF MICROFABRICATION AND MEMS FABRICATION TECHNOLOGIES Introducti...

  5. Robotic refueling machine

    International Nuclear Information System (INIS)

    Challberg, R.C.; Jones, C.R.

    1996-01-01

    One of the longest critical path operations performed during the outage is removing and replacing the fuel. A design is currently under development for a refueling machine which would allow faster, fully automated operation and would also allow the handling of two fuel assemblies at the same time. This design is different from current designs, (a) because of its lighter weight, making increased acceleration and speed possible, (b) because of its control system which makes locating the fuel assembly more dependable and faster, and (c) because of its dual handling system allowing simultaneous fuel movements. The new design uses two robotic arms to span a designated area of the vessel and the fuel storage area. Attached to the end of each robotic arm is a lightweight telescoping mast with a pendant attached to the end of each mast. The pendant acts as the base unit, allowing attachment of any number of end effectors depending on the servicing or inspection operation. Housed within the pendant are two television cameras used for the positioning control system. The control system is adapted from the robotics field using the technology known as machine vision, which provides both object and character recognition techniques to enable relative position control rather than absolute position control as in past designs. The pendant also contains thrusters that are used for fast, short distance, precise positioning. The new refueling machine system design is capable of a complete off load and reload of an 872 element core in about 5.3 days compared to 13 days for a conventional system

  6. Mineral mining machines

    Energy Technology Data Exchange (ETDEWEB)

    Mc Gaw, B H

    1984-01-01

    A machine for mining minerals is patented. It is a cutter loader with a drum actuating element of the worm type equipped with a multitude of cutting teeth reinforced with tungsten carbide. A feature of the patented machine is that all of the cutting teeth and holders on the drum have the identical design. This is achieved through selecting a slant angle for the cutting teeth which is the mean between the slant angle of the conventional radial teeth and the slant angle of the advance teeth. This, in turn, is provided thanks to the corresponding slant of the holders relative to the drum and (or) the slant of the cutting part of the teeth relative to their stems. Thus, the advance teeth projecting beyond the surface of the drum on the face side and providing upper and lateral clearances have the same angle of attack as the radial teeth, that is, from 20 to 35 degrees. A series of modifications of the cutting teeth is patented. One of the designs allows the cutting tooth to occupy a varying position relative to the drum, from the conventional vertical to an inverted, axially projecting position. In the last case the tooth in the extraction process provides the upper and lateral clearances for the drum on the face side. Among the different modifications of the cutting teeth, a design is proposed which provides for the presence of a stem which is shaped like a truncated cone. This particular stem is designed for use jointly with a wedge which unfastens the teeth and is placed in a holder. The latter is completed in a transverse slot thanks to which the rear end of the stem is compressed, which simplifies replacement of a tooth. Channels are provided in the patented machine for feeding water to the worm spiral, the holders and the cutting teeth themselves in order to deal with dust.

  7. Application of exergetic sustainability index to a nano-scale irreversible Brayton cycle operating with ideal Bose and Fermi gasses

    Energy Technology Data Exchange (ETDEWEB)

    Açıkkalp, Emin, E-mail: eacikkalp@gmail.com [Department of Mechanical and Manufacturing Engineering, Engineering Faculty, Bilecik S.E. University, Bilecik (Turkey); Caner, Necmettin [Department of Chemistry, Faculty of Arts and Sciences, Eskisehir Osmangazi University, Eskisehir (Turkey)

    2015-09-25

    Highlights: • An irreversible Brayton cycle operating quantum gasses is considered. • Exergetic sustainability index is derived for nano-scale cycles. • Nano-scale effects are considered. • Calculation are conducted for irreversible cycles. • Numerical results are presented and discussed. - Abstract: In this study, a nano-scale irreversible Brayton cycle operating with quantum gasses including Bose and Fermi gasses is researched. Developments in the nano-technology cause searching the nano-scale machines including thermal systems to be unavoidable. Thermodynamic analysis of a nano-scale irreversible Brayton cycle operating with Bose and Fermi gasses was performed (especially using exergetic sustainability index). In addition, thermodynamic analysis involving classical evaluation parameters such as work output, exergy output, entropy generation, energy and exergy efficiencies were conducted. Results are submitted numerically and finally some useful recommendations were conducted. Some important results are: entropy generation and exergetic sustainability index are affected mostly for Bose gas and power output and exergy output are affected mostly for the Fermi gas by x. At the high temperature conditions, work output and entropy generation have high values comparing with other degeneracy conditions.

  8. Tribology in machine design

    CERN Document Server

    Stolarski, T A

    1990-01-01

    Tribology in Machine Design aims to promote a better appreciation of the increasingly important role played by tribology at the design stage in engineering. This book shows how algorithms developed from the basic principles of tribology can be used in a range of practical applications. The concept of tribodesign is introduced in Chapter 1. Chapter 2 is devoted to a brief discussion of the basic principles of tribology, including some concepts and models of lubricated wear and friction under complex kinematic conditions. Elements of contact mechanics, presented in Chapter 3, are confined to the

  9. Electrical machines with Matlab

    CERN Document Server

    Gonen, Turan

    2011-01-01

    Basic ConceptsDistribution SystemImpact of Dispersed Storage and GenerationBrief Overview of Basic Electrical MachinesReal and Reactive Powers in Single-Phase AC CircuitsThree-Phase CircuitsThree-Phase SystemsUnbalanced Three-Phase LoadsMeasurement of Average Power in Three-Phase CircuitsPower Factor CorrectionMagnetic CircuitsMagnetic Field of Current-Carrying ConductorsAmpère's Magnetic Circuital LawMagnetic CircuitsMagnetic Circuit with Air GapBrief Review of FerromagnetismMagnetic Core LossesHow to Determine Flux for a Given MMFPermanent MagnetsTransformersTransformer ConstructionBrief Rev

  10. Session 2: Machine studies

    International Nuclear Information System (INIS)

    Assmann, R.W.; Papotti, G.

    2012-01-01

    This document summarizes the talks and discussion that took place in the second session of the Chamonix 2012 workshop concerning results from machine studies performed in 2011. The session consisted of the following presentations: -) LHC experience with different bunch spacings by G. Rumolo; -) Observations of beam-beam effects in MDs in 2011 by W. Herr; -) Beam-induced heating/ bunch length/RF and lessons for 2012 by E. Metral; -) Lessons in beam diagnostics by R. Jones; -) Quench margins by M. Sapinski; and -) First demonstration with beam of the Achromatic Telescopic Squeeze (ATS) by S. Fartoukh. (authors)

  11. Daphne machine project

    Energy Technology Data Exchange (ETDEWEB)

    Vignola, G. and Daphne Project Team [Istituto Nazionale di Fisica Nucleare, Frascati (Italy)

    1996-07-01

    Daphne, a high luminosity e{sup +}/e{sup -} {Phi} factory, is presently under construction in Frascati. The beginning of the collider commissioning is scheduled by winter 1997, with a short term luminosity goal L=1.3 10{sup 32} cm{sup -2} sec{sup -1}. Daphne shall be the first of the new generation of very high luminosity colliders, called factories, to come in operation. Other factories under construction are PEP-II and KEK-B: first collision, for both machines, is planned for 1998.

  12. Fuel transfer machine

    International Nuclear Information System (INIS)

    Bernstein, I.

    1978-01-01

    A nuclear fuel transfer machine for transferring fuel assemblies through the fuel transfer tube of a nuclear power generating plant containment structure is described. A conventional reversible drive cable is attached to the fuel transfer carriage to drive it horizontally through the tube. A shuttle carrying a sheave at each end is arranged in parallel with the carriage to also travel into the tube. The cable cooperating with the sheaves permit driving a relatively short fuel transfer carriage a large distance without manually installing sheaves or drive apparatus in the tunnel. 8 claims, 3 figures

  13. Vibration control, machine diagnostics

    International Nuclear Information System (INIS)

    1990-01-01

    Changing vibrations announce damage in the form of wear or cracks on components of, e.g., engine rotors, pumps, power plant turbo sets, rounding-up tools, or marine diesel engines. Therefore, machine diagnostics use frequency analyses, system tests, trend analyses as well as expert systems to localize or estimate the causes of these damages and malfunctions. Data acquisistion, including not only sensors, but also reliable and redundant data processing systems and analyzing systems, play an important role. The lectures pertaining to the data base are covered in detail. (DG) [de

  14. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Shigeru; Watanabe, Masaya [The University of Aizu, Aizuwakamatsu (Japan); Yusa, Noritaka [Tohoku University, Sendai (Japan)

    2014-08-15

    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology.

  15. Support vector machine in machine condition monitoring and fault diagnosis

    Science.gov (United States)

    Widodo, Achmad; Yang, Bo-Suk

    2007-08-01

    Recently, the issue of machine condition monitoring and fault diagnosis as a part of maintenance system became global due to the potential advantages to be gained from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a survey of machine condition monitoring and fault diagnosis using support vector machine (SVM). It attempts to summarize and review the recent research and developments of SVM in machine condition monitoring and diagnosis. Numerous methods have been developed based on intelligent systems such as artificial neural network, fuzzy expert system, condition-based reasoning, random forest, etc. However, the use of SVM for machine condition monitoring and fault diagnosis is still rare. SVM has excellent performance in generalization so it can produce high accuracy in classification for machine condition monitoring and diagnosis. Until 2006, the use of SVM in machine condition monitoring and fault diagnosis is tending to develop towards expertise orientation and problem-oriented domain. Finally, the ability to continually change and obtain a novel idea for machine condition monitoring and fault diagnosis using SVM will be future works.

  16. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru; Watanabe, Masaya; Yusa, Noritaka

    2014-01-01

    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology

  17. Coordination of Conditional Poisson Samples

    Directory of Open Access Journals (Sweden)

    Grafström Anton

    2015-12-01

    Full Text Available Sample coordination seeks to maximize or to minimize the overlap of two or more samples. The former is known as positive coordination, and the latter as negative coordination. Positive coordination is mainly used for estimation purposes and to reduce data collection costs. Negative coordination is mainly performed to diminish the response burden of the sampled units. Poisson sampling design with permanent random numbers provides an optimum coordination degree of two or more samples. The size of a Poisson sample is, however, random. Conditional Poisson (CP sampling is a modification of the classical Poisson sampling that produces a fixed-size πps sample. We introduce two methods to coordinate Conditional Poisson samples over time or simultaneously. The first one uses permanent random numbers and the list-sequential implementation of CP sampling. The second method uses a CP sample in the first selection and provides an approximate one in the second selection because the prescribed inclusion probabilities are not respected exactly. The methods are evaluated using the size of the expected sample overlap, and are compared with their competitors using Monte Carlo simulation. The new methods provide a good coordination degree of two samples, close to the performance of Poisson sampling with permanent random numbers.

  18. Coordination in continuously repeated games

    NARCIS (Netherlands)

    Weeren, A.J.T.M.; Schumacher, J.M.; Engwerda, J.C.

    1995-01-01

    In this paper we propose a model to describe the effectiveness of coordination in a continuously repeated two-player game. We study how the choice of a decision rule by a coordinator affects the strategic behavior of the players, resulting in more or less cooperation. Our model requires the analysis

  19. Coordinated Transportation: Problems and Promise?

    Science.gov (United States)

    Fickes, Michael

    1998-01-01

    Examines the legal, administrative, and logistical barriers that have prevented the wide acceptance of coordinating community and school transportation services and why these barriers may be breaking down. Two examples of successful implementation of coordinated transportation are examined: employing a single system to serve all transportation…

  20. Bare coordination: the semantic shift

    NARCIS (Netherlands)

    de Swart, Henriette; Le Bruyn, Bert

    2014-01-01

    This paper develops an analysis of the syntax-semantics interface of two types of split coordination structures. In the first type, two bare singular count nouns appear as arguments in a coordinated structure, as in bride and groom were happy. We call this the N&N construction. In the second type,

  1. Nano materials for Medical and Dental Applications

    International Nuclear Information System (INIS)

    Yub Kwon, T.; Oh, D.S.; Narayanan, R.

    2015-01-01

    Welcome to this special issue. Nano science and nano technology concepts are applicable across all fields of science and a more widespread application of nano materials and nano technologies is imminent or already occurring in many areas, including health care. Today is scientists take those cutting-edge technologies and concepts and apply them to medicine and dentistry. They are finding a wide variety of ways to make medical and dental materials at the nano scale to take advantage of their enhanced physical and biological properties.The purpose of this special issue is to publish high-quality research papers as well as review articles addressing recent advances in the field of nano materials for medical and dental applications. A particular interest is given to papers exploring or discussing nano materials and nano technologies related to delivery system, bonding substitutes, and surface modification techniques applicable in these areas. For this special issue, several investigators were invited to contribute original research findings that can stimulate continuing efforts to understand the cutting-edge applications of nano materials in medicine and dentistry.

  2. Bio/Nano Electronic Devices and Sensors

    National Research Council Canada - National Science Library

    Jones, W. K

    2008-01-01

    .... Flexible micromanipulator probes developed for probing waveguides. (5) Doped nano-diamonds and nanoceramic lasers- optically transparent YAG were demonstrated, and yttrium aluminum perovskite (YAP...

  3. Report on surveys in fiscal 2000 on the surveys and researches in relation to nano-technology; 2000 nendo nano technology ni kakawaru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In order to view over the situation surrounding the nano-technology as a whole, surveys and discussions were given by means of questionnaire and open discussion meetings. In the questionnaire, the answer that the products utilizing nano-scale structure have already been, or scheduled to be put on sale has exceeded half of the total answers. Experts view that the nano-technology is infiltrating steadily into the actual society. In view of the applicable fields, and in the opening discussion meetings, drastic innovation was expected in the industrial technologies in the future not too far away as a dream world, by using the 'nano-technology' that utilizes a principle completely different from the principles that have been practically used. In order to achieve that goal, a recognition was made clear that the braeakthrough in other fields is important, and the field crossing fusion such as coordination with academia, and exchanges between different businesses and different fields is important. In the comparison of competitive edges of Japan, America and Europe, Japan was recognized to possess sufficient competitive power, but the sense of crisis is felt toward the latent technological power of America of the future. (NEDO)

  4. Report on surveys in fiscal 2000 on the surveys and researches in relation to nano-technology; 2000 nendo nano technology ni kakawaru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In order to view over the situation surrounding the nano-technology as a whole, surveys and discussions were given by means of questionnaire and open discussion meetings. In the questionnaire, the answer that the products utilizing nano-scale structure have already been, or scheduled to be put on sale has exceeded half of the total answers. Experts view that the nano-technology is infiltrating steadily into the actual society. In view of the applicable fields, and in the opening discussion meetings, drastic innovation was expected in the industrial technologies in the future not too far away as a dream world, by using the 'nano-technology' that utilizes a principle completely different from the principles that have been practically used. In order to achieve that goal, a recognition was made clear that the braeakthrough in other fields is important, and the field crossing fusion such as coordination with academia, and exchanges between different businesses and different fields is important. In the comparison of competitive edges of Japan, America and Europe, Japan was recognized to possess sufficient competitive power, but the sense of crisis is felt toward the latent technological power of America of the future. (NEDO)

  5. Hybrid 3D printing by bridging micro/nano processes

    International Nuclear Information System (INIS)

    Yoon, Hae-Sung; Jang, Ki-Hwan; Kim, Eunseob; Lee, Hyun-Taek; Ahn, Sung-Hoon

    2017-01-01

    A hybrid 3D printing process was developed for multiple-material/freeform nano-scale manufacturing. The process consisted of aerodynamically focused nanoparticle (AFN) printing, micro-machining, focused ion beam milling, and spin-coating. Theoretical and experimental investigations were carried out to improve the compatibility of each of the processes, enabling bridging of various different techniques. The resulting hybrid process could address the limitations of individual processes, enabling improved process scaling and dimensional degrees of freedom, without losing the advantages of the existing processes. The minimum structure width can be reduced to 50 nm using undercut structures. In addition, AFN printing employs particle impact for adhesion, and various inorganic materials are suitable for printing, including metals and functional ceramics. Using the developed system, we fabricated bi-material cantilevers for applications as a thermal actuator. The mechanical and thermal properties of the structure were investigated using an in situ measurement system, and irregular thermal phenomena due to the fabrication process were analyzed. We expect that this work will lead to improvements in the area of customized nano-scale manufacturing, as well as further improvements in manufacturing technology by combining different fabrication techniques. (paper)

  6. Hybrid 3D printing by bridging micro/nano processes

    Science.gov (United States)

    Yoon, Hae-Sung; Jang, Ki-Hwan; Kim, Eunseob; Lee, Hyun-Taek; Ahn, Sung-Hoon

    2017-06-01

    A hybrid 3D printing process was developed for multiple-material/freeform nano-scale manufacturing. The process consisted of aerodynamically focused nanoparticle (AFN) printing, micro-machining, focused ion beam milling, and spin-coating. Theoretical and experimental investigations were carried out to improve the compatibility of each of the processes, enabling bridging of various different techniques. The resulting hybrid process could address the limitations of individual processes, enabling improved process scaling and dimensional degrees of freedom, without losing the advantages of the existing processes. The minimum structure width can be reduced to 50 nm using undercut structures. In addition, AFN printing employs particle impact for adhesion, and various inorganic materials are suitable for printing, including metals and functional ceramics. Using the developed system, we fabricated bi-material cantilevers for applications as a thermal actuator. The mechanical and thermal properties of the structure were investigated using an in situ measurement system, and irregular thermal phenomena due to the fabrication process were analyzed. We expect that this work will lead to improvements in the area of customized nano-scale manufacturing, as well as further improvements in manufacturing technology by combining different fabrication techniques.

  7. Chemical energy powered nano/micro/macromotors and the environment.

    Science.gov (United States)

    Moo, James Guo Sheng; Pumera, Martin

    2015-01-02

    The rise of miniaturized artificial self-powered devices, demonstrating autonomous motion, has brought in new considerations from the environmental perspective. This review addresses the interplay between these nano/micro/macromotors and the environment, recent advances, and their applications in pollution management. Such self-propelled devices are able to actuate chemical energy into mechanical motion in situ, adding another powerful dimension towards solving environmental problems. Use of synthetic nano/micro/macromotors has demonstrated potential in environmental remediation, both in pollutant removal and contaminant degradation, owing to motion-induced mixing. At the same time, the chemical environment exerts influence on the locomotion of the motors. These sensitized self-powered devices demonstrate capabilities for being deployed as sensors and their chemotactic behaviors show efficacy to act as first responders towards a chemical leakage. Thus, the notion of a self-propelling entity also entails further investigation into its inherent toxicity and possible implications as a pollutant. Future challenges and outlook of the use of these miniaturized devices are discussed, with specific regard to the fields of environmental remediation and monitoring, as we move towards their wider acceptance. We believe that these tiny machines will stand up to the task as solutions for environmental sustainability in the 21st century. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Multipole structure and coordinate systems

    International Nuclear Information System (INIS)

    Burko, Lior M

    2007-01-01

    Multipole expansions depend on the coordinate system, so that coefficients of multipole moments can be set equal to zero by an appropriate choice of coordinates. Therefore, it is meaningless to say that a physical system has a nonvanishing quadrupole moment, say, without specifying which coordinate system is used. (Except if this moment is the lowest non-vanishing one.) This result is demonstrated for the case of two equal like electric charges. Specifically, an adapted coordinate system in which the potential is given by a monopole term only is explicitly found, the coefficients of all higher multipoles vanish identically. It is suggested that this result can be generalized to other potential problems, by making equal coordinate surfaces adapt to the potential problem's equipotential surfaces

  9. Giro form reading machine

    Science.gov (United States)

    Minh Ha, Thien; Niggeler, Dieter; Bunke, Horst; Clarinval, Jose

    1995-08-01

    Although giro forms are used by many people in daily life for money remittance in Switzerland, the processing of these forms at banks and post offices is only partly automated. We describe an ongoing project for building an automatic system that is able to recognize various items printed or written on a giro form. The system comprises three main components, namely, an automatic form feeder, a camera system, and a computer. These components are connected in such a way that the system is able to process a bunch of forms without any human interactions. We present two real applications of our system in the field of payment services, which require the reading of both machine printed and handwritten information that may appear on a giro form. One particular feature of giro forms is their flexible layout, i.e., information items are located differently from one form to another, thus requiring an additional analysis step to localize them before recognition. A commercial optical character recognition software package is used for recognition of machine-printed information, whereas handwritten information is read by our own algorithms, the details of which are presented. The system is implemented by using a client/server architecture providing a high degree of flexibility to change. Preliminary results are reported supporting our claim that the system is usable in practice.

  10. Tube plug removal machine

    International Nuclear Information System (INIS)

    Hawkins, P.J.

    1987-01-01

    In a nuclear steam generator wherein some faulty tubes have been isolated by mechanical plugging, to remove a selected plug without damaging the associated tube, a plug removal machine is used. The machine drills into a plug portion with a tap drill bit having a drill portion a tap portion and a threaded portion, engaging that plug portion with the threaded portion after the drilled hole has been threaded by the tap portion thereof, and removing a portion of the plug in the tube with a counterbore drill bit mounted concentrically about the tap drill bit. A trip pin and trip spline disengage the tap drill bit from the motor. The counterbore drill bit is thereafter self-centered with respect to the tube and plug about the now stationary tap drill bit. After a portion of the plug has been removed by the counterbore drill bit, pulling on the top drill bit by grippers on slots will remove the remaining plug portion from the tube. (author)

  11. Man-machine supervision

    International Nuclear Information System (INIS)

    Montmain, J.

    2005-01-01

    Today's complexity of systems where man is involved has led to the development of more and more sophisticated information processing systems where decision making has become more and more difficult. The operator task has moved from operation to supervision and the production tool has become indissociable from its numerical instrumentation and control system. The integration of more and more numerous and sophisticated control indicators in the control room does not necessary fulfill the expectations of the operation team. It is preferable to develop cooperative information systems which are real situation understanding aids. The stake is not the automation of operators' cognitive tasks but the supply of a reasoning help. One of the challenges of interactive information systems is the selection, organisation and dynamical display of information. The efficiency of the whole man-machine system depends on the communication interface efficiency. This article presents the principles and specificities of man-machine supervision systems: 1 - principle: operator's role in control room, operator and automation, monitoring and diagnosis, characteristics of useful models for supervision; 2 - qualitative reasoning: origin, trends, evolutions; 3 - causal reasoning: causality, causal graph representation, causal and diagnostic graph; 4 - multi-points of view reasoning: multi flow modeling method, Sagace method; 5 - approximate reasoning: the symbolic numerical interface, the multi-criteria decision; 6 - example of application: supervision in a spent-fuel reprocessing facility. (J.S.)

  12. Formal modeling of virtual machines

    Science.gov (United States)

    Cremers, A. B.; Hibbard, T. N.

    1978-01-01

    Systematic software design can be based on the development of a 'hierarchy of virtual machines', each representing a 'level of abstraction' of the design process. The reported investigation presents the concept of 'data space' as a formal model for virtual machines. The presented model of a data space combines the notions of data type and mathematical machine to express the close interaction between data and control structures which takes place in a virtual machine. One of the main objectives of the investigation is to show that control-independent data type implementation is only of limited usefulness as an isolated tool of program development, and that the representation of data is generally dictated by the control context of a virtual machine. As a second objective, a better understanding is to be developed of virtual machine state structures than was heretofore provided by the view of the state space as a Cartesian product.

  13. Machining of Complex Sculptured Surfaces

    CERN Document Server

    2012-01-01

    The machining of complex sculptured surfaces is a global technological topic in modern manufacturing with relevance in both industrialized and emerging in countries particularly within the moulds and dies sector whose applications include highly technological industries such as the automotive and aircraft industry. Machining of Complex Sculptured Surfaces considers new approaches to the manufacture of moulds and dies within these industries. The traditional technology employed in the manufacture of moulds and dies combined conventional milling and electro-discharge machining (EDM) but this has been replaced with  high-speed milling (HSM) which has been applied in roughing, semi-finishing and finishing of moulds and dies with great success. Machining of Complex Sculptured Surfaces provides recent information on machining of complex sculptured surfaces including modern CAM systems and process planning for three and five axis machining as well as explanations of the advantages of HSM over traditional methods ra...

  14. A Collaboration Model for Community-Based Software Development with Social Machines

    Directory of Open Access Journals (Sweden)

    Dave Murray-Rust

    2016-02-01

    Full Text Available Crowdsourcing is generally used for tasks with minimal coordination, providing limited support for dynamic reconfiguration. Modern systems, exemplified by social ma chines, are subject to continual flux in both the client and development communities and their needs. To support crowdsourcing of open-ended development, systems must dynamically integrate human creativity with machine support. While workflows can be u sed to handle structured, predictable processes, they are less suitable for social machine development and its attendant uncertainty. We present models and techniques for coordination of human workers in crowdsourced software development environments. We combine the Social Compute Unit—a model of ad-hoc human worker teams—with versatile coordination protocols expressed in the Lightweight Social Calculus. This allows us to combine coordination and quality constraints with dynamic assessments of end-user desires, dynamically discovering and applying development protocols.

  15. Semiconductor Nano wires and Nano tubes: From Fundamentals to Diverse Applications

    International Nuclear Information System (INIS)

    Xiong, Q.; Grimes, C.A.; Zacharias, M.; Morral, A.F.; Hiruma, K.; Shen, G.

    2012-01-01

    Research in the field of semiconductor nano wires (SNWs) and nano tubes has been progressing into a mature subject with several highly interdisciplinary sub areas such as nano electronics, nano photonics, nano composites, bio sensing, optoelectronics, and solar cells. SNWs represent a unique system with novel properties associated to their one-dimensional (1D) structures. The fundamental physics concerning the formation of discrete 1D subbands, coulomb blockade effects, ballistic transport, and many-body phenomena in 1D nano wires and nano tubes provide a strong platform to explore the various scientific aspects in these nano structures. A rich variety of preparation methods have already been developed for generating well-controlled 1D nano structures and from a broad range of materials. The present special issue focuses on the recent development in the mechanistic understanding of the synthesis, the studies on electrical/optical properties of nano wires and their applications in nano electronics, nano photonics, and solar-energy harvesting. In this special issue, we have several invited review articles and contributed papers that are addressing current status of the fundamental issues related to synthesis and the diverse applications of semiconducting nano wires and nano tubes. One of the papers reviews the progress of the top-down approach of developing silicon-based vertically aligned nano wires to explore novel device architectures and integration schemes for nano electronics and clean energy applications. Another paper reviews the recent developments and experimental evidences of probing the confined optical and acoustic phonon in nonpolar semiconducting (Si and Ge) nano wires using Raman spectroscopy. The paper by K. Hiruma et al. spotlights the III semiconductor nano wires and demonstrates selective-area metal organic vapor phase epitaxy grown GaAs/In(Al)GaAs and InP/InAs/InP nano wires with heterojunctions along their axial and radial directions. The paper

  16. Flocking small smart machines: An experiment in cooperative, multi-machine control

    International Nuclear Information System (INIS)

    Klarer, P.R.

    1998-03-01

    The intent and purpose of this work was to investigate and demonstrate cooperative behavior among a group of mobile robot machines. The specific goal of this work was to build a small swarm of identical machines and control them in such a way as to show a coordinated movement of the group in a flocking manner, similar to that observed in nature. Control of the swarm's individual members and its overall configuration is available to the human user via a graphic man-machine interface running on a base station control computer. Any robot may be designated as the nominal leader through the interface tool, which then may be commanded to proceed to a particular geographic destination. The remainder of the flock follows the leader by maintaining their relative positions in formation, as specified by the human controller through the interface. The formation's configuration can be altered manually through an interactive graphic-based tool. An alternative mode of control allows for teleoperation of one robot, with the flock following along as described above

  17. Autocoding State Machine in Erlang

    DEFF Research Database (Denmark)

    Guo, Yu; Hoffman, Torben; Gunder, Nicholas

    2008-01-01

    This paper presents an autocoding tool suit, which supports development of state machine in a model-driven fashion, where models are central to all phases of the development process. The tool suit, which is built on the Eclipse platform, provides facilities for the graphical specification...... of a state machine model. Once the state machine is specified, it is used as input to a code generation engine that generates source code in Erlang....

  18. Coil Optimization for HTS Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    An optimization approach of HTS coils in HTS synchronous machines (SM) is presented. The optimization is aimed at high power SM suitable for direct driven wind turbines applications. The optimization process was applied to a general radial flux machine with a peak air gap flux density of ~3T...... is suitable for which coil segment is presented. Thus, the performed study gives valuable input for the coil design of HTS machines ensuring optimal usage of HTS tapes....

  19. Machine learning in healthcare informatics

    CERN Document Server

    Acharya, U; Dua, Prerna

    2014-01-01

    The book is a unique effort to represent a variety of techniques designed to represent, enhance, and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. The book provides a unique compendium of current and emerging machine learning paradigms for healthcare informatics and reflects the diversity, complexity and the depth and breath of this multi-disciplinary area. The integrated, panoramic view of data and machine learning techniques can provide an opportunity for novel clinical insights and discoveries.

  20. Machine learning with R cookbook

    CERN Document Server

    Chiu, Yu-Wei

    2015-01-01

    If you want to learn how to use R for machine learning and gain insights from your data, then this book is ideal for you. Regardless of your level of experience, this book covers the basics of applying R to machine learning through to advanced techniques. While it is helpful if you are familiar with basic programming or machine learning concepts, you do not require prior experience to benefit from this book.

  1. Ultraprecision machining. Cho seimitsu kako

    Energy Technology Data Exchange (ETDEWEB)

    Suga, T [The Univ. of Tokyo, Tokyo (Japan). Research Center for Advanced Science and Technology

    1992-10-05

    It is said that the image of ultraprecision improved from 0.1[mu]m to 0.01[mu]m within recent years. Ultraprecision machining is a production technology which forms what is called nanotechnology with ultraprecision measuring and ultraprecision control. Accuracy means average machined sizes close to a required value, namely the deflection errors are small; precision means the scattered errors of machined sizes agree very closely. The errors of machining are related to both of the above errors and ultraprecision means the combined errors are very small. In the present ultraprecision machining, the relative precision to the size of a machined object is said to be in the order of 10[sup -6]. The flatness of silicon wafers is usually less than 0.5[mu]m. It is the fact that the appearance of atomic scale machining is awaited as the limit of ultraprecision machining. The machining of removing and adding atomic units using scanning probe microscopes are expected to reach the limit actually. 2 refs.

  2. Vector control of induction machines

    CERN Document Server

    Robyns, Benoit

    2012-01-01

    After a brief introduction to the main law of physics and fundamental concepts inherent in electromechanical conversion, ""Vector Control of Induction Machines"" introduces the standard mathematical models for induction machines - whichever rotor technology is used - as well as several squirrel-cage induction machine vector-control strategies. The use of causal ordering graphs allows systematization of the design stage, as well as standardization of the structure of control devices. ""Vector Control of Induction Machines"" suggests a unique approach aimed at reducing parameter sensitivity for

  3. A titanium surface with nano-ordered spikes and pores enhances human dermal fibroblastic extracellular matrix production and integration of collagen fibers

    International Nuclear Information System (INIS)

    Yamada, Masahiro; Kato, Eiji; Sakurai, Kaoru; Yamamoto, Akiko

    2016-01-01

    The acquisition of substantial dermal sealing determines the prognosis of percutaneous titanium-based medical devices or prostheses. A nano-topographic titanium surface with ordered nano-spikes and pores has been shown to induce periodontal-like connective tissue attachment and activate gingival fibroblastic functions. This in vitro study aimed to determine whether an alkali-heat (AH) treatment-created nano-topographic titanium surface could enhance human dermal fibroblastic functions and binding strength to the deposited collagen on the titanium surface. The surface topographies of commercially pure titanium machined discs exposed to two different AH treatments were evaluated. Human dermal fibroblastic cultures grown on the discs were evaluated in terms of cellular morphology, proliferation, extracellular matrix (ECM) and proinflammatory cytokine synthesis, and physicochemical binding strength of surface-deposited collagen. An isotropically-patterned, shaggy nano-topography with a sponge-like inner network and numerous well-organized, anisotropically-patterned fine nano-spikes and pores were observed on each nano-topographic surface type via scanning electron microscopy. In contrast to the typical spindle-shaped cells on the machined surfaces, the isotropically- and anisotropically-patterned nano-topographic titanium surfaces had small circular/angular cells containing contractile ring-like structures and elongated, multi-shaped cells with a developed cytoskeletal network and multiple filopodia and lamellipodia, respectively. These nano-topographic surfaces enhanced dermal-related ECM synthesis at both the protein and gene levels, without proinflammatory cytokine synthesis or reduced proliferative activity. Deposited collagen fibers were included in these surfaces and sufficiently bound to the nano-topographies to resist the physical, enzymatic and chemical detachment treatments, in contrast to machined surfaces. Well-organized, isotropically

  4. MicroCT Analysis of Micro-Nano Titanium Implant Surface on the Osseointegration.

    Science.gov (United States)

    Ban, Jaesam; Kang, Seongsoo; Kim, Jihyun; Lee, Kwangmin; Hyunpil, Lim; Vang, Mongsook; Yang, Hongso; Oh, Gyejeong; Kim, Hyunseung; Hwang, Gabwoon; Jung, Yongho; Lee, Kyungku; Park, Sangwon; Yunl, Kwidug

    2015-01-01

    This study was to investigate the effects of micro-nano titanium implant surface on the osseointegration. A total of 36 screw-shaped implants were used. The implant surfaces were classified into 3 groups (n = 12): machined surface (M group), nanosurface which is nanotube formation on the machined surface (MA group) and nano-micro surface which is nanotube formation on the RBM surface (RA group). Anodic oxidation was performed at a 20 V for 10 min with 1 M H3PO4 and 1.5 wt% HF solutions. The implants were installed on the humerus on 6 beagles. After 4 and 12 weeks, the morphometric analysis with micro CT (skyscan 1172, SKYSCAN, Antwerpen, Belgium) was done. The data were statistically analyzed with two-way ANOVA. Bone mineral density and bone volume were significantly increased depending on time. RA group showed the highest bone mineral density and bone volume at 4 weeks and 12 weeks significantly. It indicated that nano-micro titanium implant surface showed faster and more mature osseointegration.

  5. Optimization on robot arm machining by using genetic algorithms

    Science.gov (United States)

    Liu, Tung-Kuan; Chen, Chiu-Hung; Tsai, Shang-En

    2007-12-01

    In this study, an optimization problem on the robot arm machining is formulated and solved by using genetic algorithms (GAs). The proposed approach adopts direct kinematics model and utilizes GA's global search ability to find the optimum solution. The direct kinematics equations of the robot arm are formulated and can be used to compute the end-effector coordinates. Based on these, the objective of optimum machining along a set of points can be evolutionarily evaluated with the distance between machining points and end-effector positions. Besides, a 3D CAD application, CATIA, is used to build up the 3D models of the robot arm, work-pieces and their components. A simulated experiment in CATIA is used to verify the computation results first and a practical control on the robot arm through the RS232 port is also performed. From the results, this approach is proved to be robust and can be suitable for most machining needs when robot arms are adopted as the machining tools.

  6. Metal Oxide Nano structures: Synthesis, Properties, and Applications

    International Nuclear Information System (INIS)

    Xu, L. H.; Patil, D. S.; Yang, J.; Xiao, J.

    2015-01-01

    In recent years, nano structured materials have attracted wide attention due to their fascinating optical and electrical properties, which make these materials potentially suitable for applications in electronics, optics, photonics, and sensors. Some metal oxides show a wide variety of morphologies such as nano wires, nano rods, nano tubes, nano rings, and nano belts. Synthesis and investigation of these metal-oxide nano structures are beneficial not only for understanding the fundamental phenomena in low dimensional systems, but also for developing new-generation nano devices with high performance.

  7. Improving Machining Accuracy of CNC Machines with Innovative Design Methods

    Science.gov (United States)

    Yemelyanov, N. V.; Yemelyanova, I. V.; Zubenko, V. L.

    2018-03-01

    The article considers achieving the machining accuracy of CNC machines by applying innovative methods in modelling and design of machining systems, drives and machine processes. The topological method of analysis involves visualizing the system as matrices of block graphs with a varying degree of detail between the upper and lower hierarchy levels. This approach combines the advantages of graph theory and the efficiency of decomposition methods, it also has visual clarity, which is inherent in both topological models and structural matrices, as well as the resiliency of linear algebra as part of the matrix-based research. The focus of the study is on the design of automated machine workstations, systems, machines and units, which can be broken into interrelated parts and presented as algebraic, topological and set-theoretical models. Every model can be transformed into a model of another type, and, as a result, can be interpreted as a system of linear and non-linear equations which solutions determine the system parameters. This paper analyses the dynamic parameters of the 1716PF4 machine at the stages of design and exploitation. Having researched the impact of the system dynamics on the component quality, the authors have developed a range of practical recommendations which have enabled one to reduce considerably the amplitude of relative motion, exclude some resonance zones within the spindle speed range of 0...6000 min-1 and improve machining accuracy.

  8. Machinability of nickel based alloys using electrical discharge machining process

    Science.gov (United States)

    Khan, M. Adam; Gokul, A. K.; Bharani Dharan, M. P.; Jeevakarthikeyan, R. V. S.; Uthayakumar, M.; Thirumalai Kumaran, S.; Duraiselvam, M.

    2018-04-01

    The high temperature materials such as nickel based alloys and austenitic steel are frequently used for manufacturing critical aero engine turbine components. Literature on conventional and unconventional machining of steel materials is abundant over the past three decades. However the machining studies on superalloy is still a challenging task due to its inherent property and quality. Thus this material is difficult to be cut in conventional processes. Study on unconventional machining process for nickel alloys is focused in this proposed research. Inconel718 and Monel 400 are the two different candidate materials used for electrical discharge machining (EDM) process. Investigation is to prepare a blind hole using copper electrode of 6mm diameter. Electrical parameters are varied to produce plasma spark for diffusion process and machining time is made constant to calculate the experimental results of both the material. Influence of process parameters on tool wear mechanism and material removal are considered from the proposed experimental design. While machining the tool has prone to discharge more materials due to production of high energy plasma spark and eddy current effect. The surface morphology of the machined surface were observed with high resolution FE SEM. Fused electrode found to be a spherical structure over the machined surface as clumps. Surface roughness were also measured with surface profile using profilometer. It is confirmed that there is no deviation and precise roundness of drilling is maintained.

  9. Keep Meaning in Conversational Coordination

    Directory of Open Access Journals (Sweden)

    Elena Clare Cuffari

    2014-12-01

    Full Text Available Coordination is a widely employed term across recent quantitative and qualitative approaches to intersubjectivity, particularly approaches that give embodiment and enaction central explanatory roles. With a focus on linguistic and bodily coordination in conversational contexts, I review the operational meaning of coordination in recent empirical research and related theorizing of embodied intersubjectivity. This discussion articulates what must be involved in treating linguistic meaning as dynamic processes of coordination. The coordination approach presents languaging as a set of dynamic self-organizing processes and actions on multiple timescales and across multiple modalities that come about and work in certain domains (those jointly constructed in social, interactive, high-order sense-making. These processes go beyond meaning at the level that is available to first-person experience. I take one crucial consequence of this to be the ubiquitously moral nature of languaging with others. Languaging coordinates experience, among other levels of behavior and event. Ethical effort is called for by the automatic autonomy-influencing forces of languaging as coordination.

  10. Coordinating distributed work : Exploring situated coordination with gaming-simulation

    NARCIS (Netherlands)

    van Laere, J.

    2003-01-01

    Organizational work has become more and more distributed nowadays. Information and communication technologies (ICT) provide opportunities to improve coordination of distributed work, but in practice many organizations struggle with integrating new organizational structures, new work practices and

  11. Participation in the ABWR Man-Machine interface design. Applicability to the Spanish Electrical Sector

    International Nuclear Information System (INIS)

    Rodriguez, C.; Manrique Martin, A.; Nunez, J.

    1997-01-01

    Project coordinated by DTN within the advanced reactor programme. Participation in the design activities for the Advanced Boiling Water Reactor (ABWR) man-machine interface was divided into two phases: Phase I: Preparation of drawings for designing, developing and assessing the advanced control room Phase II: Application of these drawings in design activities Participation in this programme has led to the following possible future applications to the electrical sector: 1. Design and implementation of man-machine interfaces 2. Human factor criteria 3. Assessment of man-machine interfaces 4. Functional specification, computerised operating procedures 5. Computerised alarm prototypes. (Author)

  12. Machine performance assessment and enhancement for a hexapod machine

    Energy Technology Data Exchange (ETDEWEB)

    Mou, J.I. [Arizona State Univ., Tempe, AZ (United States); King, C. [Sandia National Labs., Livermore, CA (United States). Integrated Manufacturing Systems Center

    1998-03-19

    The focus of this study is to develop a sensor fused process modeling and control methodology to model, assess, and then enhance the performance of a hexapod machine for precision product realization. Deterministic modeling technique was used to derive models for machine performance assessment and enhancement. Sensor fusion methodology was adopted to identify the parameters of the derived models. Empirical models and computational algorithms were also derived and implemented to model, assess, and then enhance the machine performance. The developed sensor fusion algorithms can be implemented on a PC-based open architecture controller to receive information from various sensors, assess the status of the process, determine the proper action, and deliver the command to actuators for task execution. This will enhance a hexapod machine`s capability to produce workpieces within the imposed dimensional tolerances.

  13. Surface enhanced 316L/SiC nano-composite coatings via laser cladding and following cold-swaging process

    Science.gov (United States)

    Li, Yuhang; Gao, Shiyou

    2017-10-01

    Cold-swaging is one of a cold deformation processes, and ceramic-reinforcement nano-composite coatings can effectively improve the performance of metal matrix surface. Therefore, the two processes are innovatively combined to further improve the surface properties of the metal matrix in this paper. The microstructure and surface properties of the laser cladding 316L + 10 wt% SiC nano-composite coatings were examined through designed experiments after cold-swaging by self-developed hydraulic machine. Furthermore, the coatings were compared with those without cold-swaging coatings at the same time. The result shows that the cold-swaging process can further enhance the tensile strength, micro-hardness and the wear resistance of the composite coating. This study can be used as a reference for further strengthening of laser cladding nano-composite coatings in future research.

  14. Remote handling machines

    International Nuclear Information System (INIS)

    Sato, Shinri

    1985-01-01

    In nuclear power facilities, the management of radioactive wastes is made with its technology plus the automatic techniques. Under the radiation field, the maintenance or aid of such systems is important. To cope with this situation, MF-2 system, MF-3 system and a manipulator system as remote handling machines are described. MF-2 system consists of an MF-2 carrier truck, a control unit and a command trailer. It is capable of handling heavy-weight objects. The system is not by hydraulic but by electrical means. MF-3 system consists of a four-crawler truck and a manipulator. The truck is versatile in its posture by means of the four independent crawlers. The manipulator system is bilateral in operation, so that the delicate handling is made possible. (Mori, K.)

  15. Training Restricted Boltzmann Machines

    DEFF Research Database (Denmark)

    Fischer, Asja

    relies on sampling based approximations of the log-likelihood gradient. I will present an empirical and theoretical analysis of the bias of these approximations and show that the approximation error can lead to a distortion of the learning process. The bias decreases with increasing mixing rate......Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can also be interpreted as stochastic neural networks. Training RBMs is known to be challenging. Computing the likelihood of the model parameters or its gradient is in general computationally intensive. Thus, training...... of the applied sampling procedure and I will introduce a transition operator that leads to faster mixing. Finally, a different parametrisation of RBMs will be discussed that leads to better learning results and more robustness against changes in the data representation....

  16. Mechanics of Wood Machining

    CERN Document Server

    Csanády, Etele

    2013-01-01

    Wood is one of the most valuable materials for mankind, and since our earliest days wood materials have been widely used. Today we have modern woodworking machine and tools; however, the raw wood materials available are continuously declining. Therefore we are forced to use this precious material more economically, reducing waste wherever possible. This new textbook on the “Mechanics of Wood Machining” combines the quantitative, mathematical analysis of the mechanisms of wood processing with practical recommendations and solutions. Bringing together materials from many sources, the book contains new theoretical and experimental approaches and offers a clear and systematic overview of the theory of wood cutting, thermal loading in wood-cutting tools, dynamic behaviour of tool and work piece, optimum choice of operational parameters and energy consumption, the wear process of the tools, and the general regularities of wood surface roughness. Diagrams are provided for the quick estimation of various process ...

  17. Technology Time Machine 2012

    DEFF Research Database (Denmark)

    Lehner, Wolfgang; Fettweis, Gerhard; Fitzek, Frank

    2013-01-01

    The IEEE Technology Time Machine (TTM) is a unique event for industry leaders, academics, and decision making government officials who direct R&D activities, plan research programs or manage portfolios of research activities. This report covers the main topics of the 2nd Symposium of future...... technologies. The Symposium brought together world renowned experts to discuss the evolutionary and revolutionary advances in technology landscapes as we look towards 2020 and beyond. TTM facilitated informal discussions among the participants and speakers thus providing an excellent opportunity for informal...... interaction between attendees, senior business leaders, world-renowned innovators, and the press. The goal of the Symposium is to discover key critical innovations across technologies which will alter the research and application space of the future. Topics covered the future of Wireless Technology, Smart...

  18. Tunnel boring machine applications

    International Nuclear Information System (INIS)

    Bhattacharyya, K.K.; McDonald, R.; Saunders, R.S.

    1992-01-01

    This paper reports that characterization of Yucca Mountain for a potential repository requires construction of an underground Exploratory Studies Facility (ESF). Mechanical excavating methods have been proposed for construction of the ESF as they offer a number of advantages over drilling and blasting at the Yucca Mountain site, including; less ground disturbance and therefore a potential for less adverse effects on the integrity of the site, creation of a more stable excavation cross section requiring less ground support, and an inherently safer and cleaner working environment. The tunnel boring machine (TBM) provides a proven technology for excavating the welded and unwelded Yucca Mountain tuffs. The access ramps and main underground tunnels form the largest part of the ESF underground construction work, and have been designed for excavation by TBM

  19. The uranium machine

    International Nuclear Information System (INIS)

    Walker, M.

    1990-01-01

    The German atom bomb is a chimera. Scientists such as Carl Friedrich von Weizsaecker and Werner Heisenberg have been claiming for a long time that they refused to carry out research in the Third Reich because they did not want to put such a terrible weapon into Hitler's hand. The author produces evidence proving that the German physicists were never in a position to carry out a research project on the scale of the 'Manhattan Project', quite apart from the fact that they were lacking important technical prerequisites for splitting isotopes. With a detective's touch the author succeeds in reconstructing the competition for the bomb in minute detail. This book is the most detailed and precise analysis of the reality of that uranium machine which for four decades has haunted scientific and journalistic literature. (orig./HP) [de

  20. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yunji; Jing, Bing-Yi; Gao, Xin

    2015-01-01

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  1. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan

    2015-02-12

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  2. Machine assisted histogram classification

    Science.gov (United States)

    Benyó, B.; Gaspar, C.; Somogyi, P.

    2010-04-01

    LHCb is one of the four major experiments under completion at the Large Hadron Collider (LHC). Monitoring the quality of the acquired data is important, because it allows the verification of the detector performance. Anomalies, such as missing values or unexpected distributions can be indicators of a malfunctioning detector, resulting in poor data quality. Spotting faulty or ageing components can be either done visually using instruments, such as the LHCb Histogram Presenter, or with the help of automated tools. In order to assist detector experts in handling the vast monitoring information resulting from the sheer size of the detector, we propose a graph based clustering tool combined with machine learning algorithm and demonstrate its use by processing histograms representing 2D hitmaps events. We prove the concept by detecting ion feedback events in the LHCb experiment's RICH subdetector.

  3. Machine assisted histogram classification

    Energy Technology Data Exchange (ETDEWEB)

    Benyo, B; Somogyi, P [BME-IIT, H-1117 Budapest, Magyar tudosok koerutja 2. (Hungary); Gaspar, C, E-mail: Peter.Somogyi@cern.c [CERN-PH, CH-1211 Geneve 23 (Switzerland)

    2010-04-01

    LHCb is one of the four major experiments under completion at the Large Hadron Collider (LHC). Monitoring the quality of the acquired data is important, because it allows the verification of the detector performance. Anomalies, such as missing values or unexpected distributions can be indicators of a malfunctioning detector, resulting in poor data quality. Spotting faulty or ageing components can be either done visually using instruments, such as the LHCb Histogram Presenter, or with the help of automated tools. In order to assist detector experts in handling the vast monitoring information resulting from the sheer size of the detector, we propose a graph based clustering tool combined with machine learning algorithm and demonstrate its use by processing histograms representing 2D hitmaps events. We prove the concept by detecting ion feedback events in the LHCb experiment's RICH subdetector.

  4. Geometrical effects on the electron residence time in semiconductor nano-particles.

    Science.gov (United States)

    Koochi, Hakimeh; Ebrahimi, Fatemeh

    2014-09-07

    We have used random walk (RW) numerical simulations to investigate the influence of the geometry on the statistics of the electron residence time τ(r) in a trap-limited diffusion process through semiconductor nano-particles. This is an important parameter in coarse-grained modeling of charge carrier transport in nano-structured semiconductor films. The traps have been distributed randomly on the surface (r(2) model) or through the whole particle (r(3) model) with a specified density. The trap energies have been taken from an exponential distribution and the traps release time is assumed to be a stochastic variable. We have carried out (RW) simulations to study the effect of coordination number, the spatial arrangement of the neighbors and the size of nano-particles on the statistics of τ(r). It has been observed that by increasing the coordination number n, the average value of electron residence time, τ̅(r) rapidly decreases to an asymptotic value. For a fixed coordination number n, the electron's mean residence time does not depend on the neighbors' spatial arrangement. In other words, τ̅(r) is a porosity-dependence, local parameter which generally varies remarkably from site to site, unless we are dealing with highly ordered structures. We have also examined the effect of nano-particle size d on the statistical behavior of τ̅(r). Our simulations indicate that for volume distribution of traps, τ̅(r) scales as d(2). For a surface distribution of traps τ(r) increases almost linearly with d. This leads to the prediction of a linear dependence of the diffusion coefficient D on the particle size d in ordered structures or random structures above the critical concentration which is in accordance with experimental observations.

  5. Machine learning topological states

    Science.gov (United States)

    Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.

    2017-11-01

    Artificial neural networks and machine learning have now reached a new era after several decades of improvement where applications are to explode in many fields of science, industry, and technology. Here, we use artificial neural networks to study an intriguing phenomenon in quantum physics—the topological phases of matter. We find that certain topological states, either symmetry-protected or with intrinsic topological order, can be represented with classical artificial neural networks. This is demonstrated by using three concrete spin systems, the one-dimensional (1D) symmetry-protected topological cluster state and the 2D and 3D toric code states with intrinsic topological orders. For all three cases, we show rigorously that the topological ground states can be represented by short-range neural networks in an exact and efficient fashion—the required number of hidden neurons is as small as the number of physical spins and the number of parameters scales only linearly with the system size. For the 2D toric-code model, we find that the proposed short-range neural networks can describe the excited states with Abelian anyons and their nontrivial mutual statistics as well. In addition, by using reinforcement learning we show that neural networks are capable of finding the topological ground states of nonintegrable Hamiltonians with strong interactions and studying their topological phase transitions. Our results demonstrate explicitly the exceptional power of neural networks in describing topological quantum states, and at the same time provide valuable guidance to machine learning of topological phases in generic lattice models.

  6. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  7. Bionic machines and systems

    Energy Technology Data Exchange (ETDEWEB)

    Halme, A.; Paanajaervi, J. (eds.)

    2004-07-01

    Introduction Biological systems form a versatile and complex entirety on our planet. One evolutionary branch of primates, called humans, has created an extraordinary skill, called technology, by the aid of which it nowadays dominate life on the planet. Humans use technology for producing and harvesting food, healthcare and reproduction, increasing their capability to commute and communicate, defending their territory etc., and to develop more technology. As a result of this, humans have become much technology dependent, so that they have been forced to form a specialized class of humans, called engineers, who take care of the knowledge of technology developing it further and transferring it to later generations. Until now, technology has been relatively independent from biology, although some of its branches, e.g. biotechnology and biomedical engineering, have traditionally been in close contact with it. There exist, however, an increasing interest to expand the interface between technology and biology either by directly utilizing biological processes or materials by combining them with 'dead' technology, or by mimicking in technological solutions the biological innovations created by evolution. The latter theme is in focus of this report, which has been written as the proceeding of the post-graduate seminar 'Bionic Machines and Systems' held at HUT Automation Technology Laboratory in autumn 2003. The underlaying idea of the seminar was to analyze biological species by considering them as 'robotic machines' having various functional subsystems, such as for energy, motion and motion control, perception, navigation, mapping and localization. We were also interested about intelligent capabilities, such as learning and communication, and social structures like swarming behavior and its mechanisms. The word 'bionic machine' comes from the book which was among the initial material when starting our mission to the fascinating world

  8. Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM

    Directory of Open Access Journals (Sweden)

    Ammar Ben Brahim

    2013-05-01

    Full Text Available This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting.

  9. Synthesis and characterization of nano hydroxyapatite using reverse micro emulsions as nano reactors

    International Nuclear Information System (INIS)

    Amin, S.; Siddique, T.

    2015-01-01

    In the present work reverse micro emulsion has been employed as nano reactors to synthesize nano crystalline Hydroxyapatite (HA). Two precursors; calcium and phosphate with different counter ions of each were used for the synthesis of HA at two different temperatures. To maintain the emulsified nano reactor, cyclohexane, TX-100 and 1-butanol including phosphate precursor was the continuous phase while aqueous Ca precursor solution was taken as the dispersed phase. Nano crystalline particles thus produced were evaluated on the basis of synthesis route, counter ions and temperature. It has been shown that emulsified nano reactors control the morphology, particle size and minimize phase transformation of HA. Characterizations of nano powder of HA are carried out using x-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), and scanning electron microscopy (SEM). HA crystallite size was found to be in the range of 20-25 nm whereas the morphology of nano particles changed from spheres to rods. (author)

  10. Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM

    Science.gov (United States)

    Ghorbal, Achraf; Grisotto, Federico; Charlier, Julienne; Palacin, Serge; Goyer, Cédric; Demaille, Christophe; Ben Brahim, Ammar

    2013-01-01

    This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM) electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting. PMID:28348337

  11. Equivalent model of a dually-fed machine for electric drive control systems

    Science.gov (United States)

    Ostrovlyanchik, I. Yu; Popolzin, I. Yu

    2018-05-01

    The article shows that the mathematical model of a dually-fed machine is complicated because of the presence of a controlled voltage source in the rotor circuit. As a method of obtaining a mathematical model, the method of a generalized two-phase electric machine is applied and a rotating orthogonal coordinate system is chosen that is associated with the representing vector of a stator current. In the chosen coordinate system in the operator form the differential equations of electric equilibrium for the windings of the generalized machine (the Kirchhoff equation) are written together with the expression for the moment, which determines the electromechanical energy transformation in the machine. Equations are transformed so that they connect the currents of the windings, that determine the moment of the machine, and the voltages on these windings. The structural diagram of the machine is assigned to the written equations. Based on the written equations and accepted assumptions, expressions were obtained for the balancing the EMF of windings, and on the basis of these expressions an equivalent mathematical model of a dually-fed machine is proposed, convenient for use in electric drive control systems.

  12. Theory and practice in machining systems

    CERN Document Server

    Ito, Yoshimi

    2017-01-01

    This book describes machining technology from a wider perspective by considering it within the machining space. Machining technology is one of the metal removal activities that occur at the machining point within the machining space. The machining space consists of structural configuration entities, e.g., the main spindle, the turret head and attachments such the chuck and mandrel, and also the form-generating movement of the machine tool itself. The book describes fundamental topics, including the form-generating movement of the machine tool and the important roles of the attachments, before moving on to consider the supply of raw materials into the machining space, and the discharge of swarf from it, and then machining technology itself. Building on the latest research findings “Theory and Practice in Machining System” discusses current challenges in machining. Thus, with the inclusion of introductory and advanced topics, the book can be used as a guide and survey of machining technology for students an...

  13. Fabrication and nano-imprintabilities of Zr-, Pd- and Cu-based glassy alloy thin films

    International Nuclear Information System (INIS)

    Takenaka, Kana; Saidoh, Noriko; Nishiyama, Nobuyuki; Inoue, Akihisa

    2011-01-01

    With the aim of investigating nano-imprintability of glassy alloys in a film form, Zr 49 Al 11 Ni 8 Cu 32 , Pd 39 Cu 29 Ni 13 P 19 and Cu 38 Zr 47 Al 9 Ag 6 glassy alloy thin films were fabricated on Si substrate by a magnetron sputtering method. These films exhibit a very smooth surface, a distinct glass transition phenomenon and a large supercooled liquid region of about 80 K, which are suitable for imprinting materials. Moreover, thermal nano-imprintability of these obtained films is demonstrated by using a dot array mold with a dot diameter of 90 nm. Surface observations revealed that periodic nano-hole arrays with a hole diameter of 90 nm were successfully imprinted on the surface of these films. Among them, Pd-based glassy alloy thin film indicated more precise pattern imprintability, namely, flatter residual surface plane and sharper hole edge. It is said that these glassy alloy thin films, especially Pd-based glassy alloy thin film, are one of the promising materials for fabricating micro-machines and nano-devices by thermal imprinting.

  14. Evaluation of Shear Bond Strength of Orthodontic Brackets Bonded with Nano-filled Composites

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Ahmad Akhoundi

    2013-01-01

    Full Text Available Objectives: The purpose of this study was to evaluate the shear bond strength (SBS of orthodontic brackets bonded with two types of nano-composites in comparison to a conventional orthodontic composite. Materials and Methods: Sixty extracted human first premolars were randomly divided into 3 groups each containing 20 teeth. In group I, a conventional orthodontic composite (Transbond XT was used to bond the brackets, while two nano-composites (Filtek TM Supreme XT and AELITE Aesthetic Enamel were used in groups II and III respectively. The teeth were stored in distilled water at 37°C for 24 hours, thermocycled in distilled water and debonded with a universal testing machine at a crosshead speed of 1 mm/min. The adhesive remnant index (ARI was also evaluated using a stereomicroscope. Results: AELITE Aesthetic Enamel nano-composite revealed a SBS value of 8.44±2.09 MPa, which was higher than Transbond XT (6.91± 2.13 and Filtek TM Supreme XT (6.04± 2.01. Statistical analysis revealed a significant difference between groups II and III (P 0.05. Evaluation of ARI showed that Transbond XT left fewer adhesive remains on teeth after debonding. Conclusion: Results of this study indicate that the aforementioned nano-composites can be successfully used for bonding orthodontic brackets.

  15. Evaluation of shear bond strength of orthodontic brackets bonded with nano-filled composites.

    Science.gov (United States)

    Chalipa, Javad; Akhondi, Mohammad Sadegh Ahmad; Arab, Sepideh; Kharrazifard, Mohammad Javad; Ahmadyar, Maryam

    2013-09-01

    The purpose of this study was to evaluate the shear bond strength (SBS) of orthodontic brackets bonded with two types of nano-composites in comparison to a conventional orthodontic composite. Sixty extracted human first premolars were randomly divided into 3 groups each containing 20 teeth. In group I, a conventional orthodontic composite (Transbond XT) was used to bond the brackets, while two nano-composites (Filtek TM Supreme XT and AELITE Aesthetic Enamel) were used in groups II and III respectively. The teeth were stored in distilled water at 37°C for 24 hours, thermocycled in distilled water and debonded with a universal testing machine at a crosshead speed of 1 mm/min. The adhesive remnant index (ARI) was also evaluated using a stereomicroscope. AELITE Aesthetic Enamel nano-composite revealed a SBS value of 8.44±2.09 MPa, which was higher than Transbond XT (6.91±2.13) and Filtek TM Supreme XT (6.04±2.01). Statistical analysis revealed a significant difference between groups II and III (P 0.05). Evaluation of ARI showed that Transbond XT left fewer adhesive remains on teeth after debonding. Results of this study indicate that the aforementioned nano-composites can be successfully used for bonding orthodontic brackets.

  16. Managing collaboration in the nanoManipulator

    DEFF Research Database (Denmark)

    Hudson, Thomas C.; Helser, Aren T.; Sonnenwald, Diane H.

    2004-01-01

    We designed, developed, deployed, and evaluated the Collaborative nanoManipulator (CnM), a distributed, collaborative virtual environment system supporting remote scientific collaboration between users of the nanoManipulator interface to atomic force microscopes. This paper describes the entire...

  17. Instrument platforms for nano liquid chromatography

    Czech Academy of Sciences Publication Activity Database

    Šesták, Jozef; Moravcová, Dana; Kahle, Vladislav

    2015-01-01

    Roč. 1421, NOV (2015), s. 2-17 ISSN 0021-9673 R&D Projects: GA MV VG20112015021 Institutional support: RVO:68081715 Keywords : nano liquid chromatography * splitless gradient generation * nano LC platforms Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.926, year: 2015 http://hdl.handle.net/11104/0250900

  18. Nano cobalt oxides for photocatalytic hydrogen production

    KAUST Repository

    Mangrulkar, Priti A.

    2012-07-01

    Nano structured metal oxides including TiO 2, Co 3O 4 and Fe 3O 4 have been synthesized and evaluated for their photocatalytic activity for hydrogen generation. The photocatalytic activity of nano cobalt oxide was then compared with two other nano structured metal oxides namely TiO 2 and Fe 3O 4. The synthesized nano cobalt oxide was characterized thoroughly with respect to EDX and TEM. The yield of hydrogen was observed to be 900, 2000 and 8275 mmol h -1 g -1 of photocatalyst for TiO 2, Co 3O 4 and Fe 3O 4 respectively under visible light. It was observed that the hydrogen yield in case of nano cobalt oxide was more than twice to that of TiO 2 and the hydrogen yield of nano Fe 3O 4 was nearly four times as compared to nano Co 3O 4. The influence of various operating parameters in hydrogen generation by nano cobalt oxide was then studied in detail. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  19. Application of nano-packaging in aquatics

    Directory of Open Access Journals (Sweden)

    D Jafarpour

    2018-03-01

    Conclusion: With regard to aquatics high nutritional value and their important presence in diet one should think of a way to increase it's survivability and maintaining quality. For this, nano technology can help packaging aquatics. Nano can be applied considerably in food health and environment protection.

  20. Villem Nano, pedagoog ja haritlane / Villem Normak

    Index Scriptorium Estoniae

    Normak, Villem

    2009-01-01

    Matemaatikaõpetaja, koolijuhi Villem Nano elust ja tegevusest. 1. juulil 1919 käivitas Villem Nano Tallinna õpetajate seminari, millest on läbi mitme nime- ja staatusemuudatuse kujunenud välja tänane Tallinna Ülikool