WorldWideScience

Sample records for nana protein promotes

  1. Isoetes nana

    Science.gov (United States)

    Pereira, Jovani B S; Stützel, Thomas; Schulz, Christian

    2017-01-01

    Isoetes nana , a new species from the coastal mountains of southeastern Brazil (Serra de Itatiaia), is described, illustrated and compared to similar species. This species can be distinguished from similar species by a set of characters that include 5-15 small erect leaves reaching only up to 3.5cm long, megaspores rugulate (rarely laevigate or obscurely cristate) and microspores sparsely echinate. We include a key to identify this new species and spore images for all species that are discussed in this study. Isoetes nana is known only from the type locality, where it was reported to occur in small ponds on rocky outcrops at high elevations. We suggest it should be classified as a data deficient species based on the IUCN criteria.

  2. PENGARUH TINGKAT YOGURT DAN WAKTU FERMENTASI TERHADAP KECERNAAN IN VITRO BAHAN KERING, BAHAN ORGANIK, PROTEIN, DAN SERAT KASAR KULIT NANAS FERMENTASI

    Directory of Open Access Journals (Sweden)

    Nurhayati (Nurhayati

    2014-10-01

    Full Text Available Penelitian dilaksanakan untuk melihat pengaruh tingkat yogurt dan waktu fermentasi terhadap kecernaan in vitro bahan kering, bahan organik, protein, dan serat kasar kulit nanas fermentasi. Penelitian dilakukan menggunakan Rancangan Acak Lengkap pola faktorial dengan 2 faktor yaitu tingkat yogurt (0, 3, 6, dan 9 ml/kg dan lama waktu fermentasi (24, 48, dan 72 jam yang diulang sebanyak 5 kali. Bahan yang digunakan adalah kulit nanas, plain yogurt yang mengandung bakteri Lactobacillus delbrueckii subsp. bulgaricus dan Streptococcus salivarius subsp. thermophilus, bahan kimia yang digunakan untuk analisis proksimat protein dan serat kasar kulit nanas fermentasi, larutan saliva buatan McDougall dan cairan rumen. Hasil penelitian menunjukkan perbedaan pengaruh yang nyata (P<0,05 tingkat yogurt terhadap kecernaan in vitro bahan kering, bahan organik, dan protein kasar tetapi tidak berbeda nyata terhadap kecernaan serat kasar. Waktu fermentasi berpengaruh nyata (P<0,05 terhadap kecernaan bahan kering, bahan organik, protein kasar, dan serat kasar secara in vitro. Interaksi tingkat yogurt dengan waktu fermentasi memberikan perbedaan pengaruh yang nyata (P<0,05 terhadap kecernaan bahan kering, bahan organik dan protein kasar tetapi tidak memberikan perbedaan pengaruh nyata terhadap kecernaan serat kasar. Kesimpulan dari penelitian ini bahwa tingkat yogurt 6 ml/kg dan waktu fermentasi 72 jam dapat meningkatkan kecernaan in vitro bahan kering, bahan organik, dan protein kasar serta menurunkan kecernaan in vitro serat kasar kulit nanas fermentasi. (Kata kunci: Fermentasi, Kecernaan in vitro, Kulit nanas, Yogurt

  3. In vivo effects of UV radiation on multiple endpoints and expression profiles of DNA repair and heat shock protein (Hsp) genes in the cycloid copepod Paracyclopina nana.

    Science.gov (United States)

    Won, Eun-Ji; Han, Jeonghoon; Lee, Yeonjung; Kumar, K Suresh; Shin, Kyung-Hoon; Lee, Su-Jae; Park, Heum Gi; Lee, Jae-Seong

    2015-08-01

    To evaluate the effects of ultraviolet (UV) radiation on energy acquisition and consumption, the copepod Paracyclopina nana was irradiated with several doses (0-3kJ/m(2)) of UV. After UV radiation, we measured the re-brooding success, growth pattern of newly hatched nauplii, ingestion rate, and assimilation of diet. In addition, we checked the modulated patterns of DNA repair and heat shock protein (hsp) chaperoning genes of P. nana. UV-B radiation induced a significant reduction (7-87%) of the re-brooding rate of ovigerous females, indicating that UV-induced egg sac damage is closely correlated with a reduction in the hatching rate of UV-irradiated ovigerous female offspring. Using chlorophyll a and stable carbon isotope incubation experiments, we found a dose-dependent decrease (PUV radiation, implying that P. nana has an underlying ability to shift its balanced-energy status from growth and reproduction to DNA repair and adaptation. Also, expression of P. nana base excision repair (BER)-associated genes and hsp chaperoning genes was significantly increased in response to UV radiation in P. nana. These findings indicate that even 1kJ/m(2) of UV radiation induces a reduction in reproduction and growth patterns, alters the physiological balance and inhibits the ability to cope with UV-induced damage in P. nana. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. In vivo effects of UV radiation on multiple endpoints and expression profiles of DNA repair and heat shock protein (Hsp) genes in the cycloid copepod Paracyclopina nana

    Energy Technology Data Exchange (ETDEWEB)

    Won, Eun-Ji; Han, Jeonghoon [Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Yeonjung; Kumar, K. Suresh; Shin, Kyung-Hoon [Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, Su-Jae [Department of Life Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Park, Heum Gi, E-mail: hgpark@gwnu.ac.kr [Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 210-702 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@skku.edu [Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-08-15

    Highlights: • UV-B radiation induced a significant reduction of the re-brooding rate of ovigerous females. • A dose-dependent decrease in food ingestion and the rate of assimilation to the body upon UV radiation. • Expression of base excision repair-associated and hsp chaperoning genes was significantly increased upon UV radiation in P. nana. - Abstract: To evaluate the effects of ultraviolet (UV) radiation on energy acquisition and consumption, the copepod Paracyclopina nana was irradiated with several doses (0–3 kJ/m{sup 2}) of UV. After UV radiation, we measured the re-brooding success, growth pattern of newly hatched nauplii, ingestion rate, and assimilation of diet. In addition, we checked the modulated patterns of DNA repair and heat shock protein (hsp) chaperoning genes of P. nana. UV-B radiation induced a significant reduction (7–87%) of the re-brooding rate of ovigerous females, indicating that UV-induced egg sac damage is closely correlated with a reduction in the hatching rate of UV-irradiated ovigerous female offspring. Using chlorophyll a and stable carbon isotope incubation experiments, we found a dose-dependent decrease (P < 0.05) in food ingestion and the rate of assimilation to the body in response to UV radiation, implying that P. nana has an underlying ability to shift its balanced-energy status from growth and reproduction to DNA repair and adaptation. Also, expression of P. nana base excision repair (BER)-associated genes and hsp chaperoning genes was significantly increased in response to UV radiation in P. nana. These findings indicate that even 1 kJ/m{sup 2} of UV radiation induces a reduction in reproduction and growth patterns, alters the physiological balance and inhibits the ability to cope with UV-induced damage in P. nana.

  5. Pneumococcal Neuraminidase A (NanA) Promotes Biofilm Formation and Synergizes with Influenza A Virus in Nasal Colonization and Middle Ear Infection.

    Science.gov (United States)

    Wren, John T; Blevins, Lance K; Pang, Bing; Basu Roy, Ankita; Oliver, Melissa B; Reimche, Jennifer L; Wozniak, Jessie E; Alexander-Miller, Martha A; Swords, W Edward

    2017-04-01

    Even in the vaccine era, Streptococcus pneumoniae (the pneumococcus) remains a leading cause of otitis media, a significant public health burden, in large part because of the high prevalence of nasal colonization with the pneumococcus in children. The primary pneumococcal neuraminidase, NanA, which is a sialidase that catalyzes the cleavage of terminal sialic acids from host glycoconjugates, is involved in both of these processes. Coinfection with influenza A virus, which also expresses a neuraminidase, exacerbates nasal colonization and disease by S. pneumoniae , in part via the synergistic contributions of the viral neuraminidase. The specific role of its pneumococcal counterpart, NanA, in this interaction, however, is less well understood. We demonstrate in a mouse model that NanA-deficient pneumococci are impaired in their ability to cause both nasal colonization and middle ear infection. Coinfection with neuraminidase-expressing influenza virus and S. pneumoniae potentiates both colonization and infection but not to wild-type levels, suggesting an intrinsic role of NanA. Using in vitro models, we show that while NanA contributes to both epithelial adherence and biofilm viability, its effect on the latter is actually independent of its sialidase activity. These data indicate that NanA contributes both enzymatically and nonenzymatically to pneumococcal pathogenesis and, as such, suggest that it is not a redundant bystander during coinfection with influenza A virus. Rather, its expression is required for the full synergism between these two pathogens. Copyright © 2017 American Society for Microbiology.

  6. Prevalence of Giardia intestinalis and Hymenolepis nana in Afghan ...

    African Journals Online (AJOL)

    Background: Present study aimed to investigate prevalence of Giardia intestinalis and Hymenolepis nana in Afghan refugees visiting Central Health Unit (CHU), Kot ... are common among Afghan refugees and serious preventive measures should be implemented to promote the safety and healthy lifestyle of these people.

  7. Pemanfaatan Biji Turi Sebagai Bahan Baku Pembuatan Kecap Secara Hidrolisis dengan Menggunakan Ekstrak dan Nanas

    Directory of Open Access Journals (Sweden)

    Aminah Asngad

    2015-04-01

    Full Text Available Selama ini pemanfaatan tanaman turi oleh  masyarakat masih terbatas, bagian dari tanaman turi yang banyak dimanfaatkan oleh masyarakat hanya bunganya.  Padahal biji turi yang berbentuk bulat berwarna kuning kecoklatan mempunyai rasa dan aroma khas jenis kacang-kacangan juga dapat dimanfaatkan karena kaya dengan mineral dan vitamin serta mengandung protein. Biji dari tanaman turi dapat digunakan sebagai bahan baku alternatif  dalam pembuatan  kecap karena biji tanaman turi tersebut  mempunyai komposisi  kandungan gizi yang tidak jauh berbeda dengan kedelai, terutama kandungan  protein biji turi sebesar 36,21%  yang setara  dengan kandungan protein kedelai sebesar 37,5% Pembuatan kecap dengan menggunakan ekstrak pepaya dan nanas dapat mempercepat waktu pembuatan kecap secara hidrolisis protein karena adanya enzim papain pada pepaya dan enzim bromelin pada nanas. Tujuan dari penelitian ini adalah untuk mengetahui kadar protein kecap biji turi dengan menggunakan ekstrak pepaya dan nanas serta untuk  mengetahui organoleptik kecap biji turi dengan menggunakan ekstrak pepaya dan nanas. Metode yang digunakan dalam penelitian ini adalah Rancangan Acak Lengkap (RAL pola faktorial. Faktor tersebut yaitu jenis ekstrak yang digunakan (ekstrak pepaya dan ekstrak nanas dan penambahan volume ekstrak (80 ml, 100 ml, dan 120 ml dengan 6 kombinasi perlakuan. Hasil penelitian menunjukkan bahwa penambahan ekstrak pepaya dan nanas berpengaruh pada kadar protein kecap. Hasil kadar protein tertinggi pada perlakuan J1V1 yaitu 12,11%,  sedangkan  kadar protein terendah pada perlakuan J2V1 yaitu 7,53 %. Kecap dengan perlakuan menggunakan ekstrak nanas, volume 120 ml merupakan kecap yang dapat diterima oleh masyarakat.

  8. Prevalence of Giardia intestinalis and Hymenolepis nana in Afghan refugee population of Mianwali district, Pakistan.

    Science.gov (United States)

    Abrar Ul Haq, Khan; Gul, Naz Asma; Hammad, Hussain Muhammad; Bibi, Yasmeen; Bibi, Asma; Mohsan, Javed

    2015-06-01

    Present study aimed to investigate prevalence of Giardia intestinalis and Hymenolepis nana in Afghan refugees visiting Central Health Unit (CHU), Kot Chandana (Mianwali, Northern Punjab) during two years period (February 2007 to December 2009). A total of 687 stool samples were collected from different age groups of both genders. Samples were processed under sterile conditions after gross examination. Microscopic examination was done on same day along with eggs (H. nana), cyst and trophozoites (G. intestinalis) detection after staining. The prevalence of G. intestinalis was significantly higher (x2=59.54, pintestinal clinical symptoms observed in G. intestinalis. Whereas, bloody diarrhea (OR: 1.56, 95%CI=1.00-2.43) and rectal prolapse (OR: 5.79, 95%CI=1.87-17.91) were associated with H. nana infections. Intestinal parasitic infections are common among Afghan refugees and serious preventive measures should be implemented to promote the safety and healthy lifestyle of these people.

  9. NANA Wind Resource Assessment Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jay Hermanson

    2010-09-23

    NANA Regional Corporation (NRC) of northwest Alaska is located in an area with abundant wind energy resources. In 2007, NRC was awarded grant DE-FG36-07GO17076 by the US Department of Energy's Tribal Energy Program for funding a Wind Resource Assessment Project (WRAP) for the NANA region. The NANA region, including Kotzebue Electric Association (KEA) and Alaska Village Electric Cooperative (AVEC) have been national leaders at developing, designing, building, and operating wind-diesel hybrid systems in Kotzebue (starting in 1996) and Selawik (2002). Promising sites for the development of new wind energy projects in the region have been identified by the WRAP, including Buckland, Deering, and the Kivalina/Red Dog Mine Port Area. Ambler, Shungnak, Kobuk, Kiana, Noorvik & Noatak were determined to have poor wind resources at sites in or very near each community. However, all five of these communities may have better wind resources atop hills or at sites with slightly higher elevations several miles away.

  10. NANA Geothermal Assessment Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jay Hermanson

    2010-06-22

    In 2008, NANA Regional Corporation (NRC) assessed geothermal energy potential in the NANA region for both heat and/or electricity production. The Geothermal Assessment Project (GAP) was a systematic process that looked at community resources and the community's capacity and desire to develop these resources. In October 2007, the US Department of Energy's Tribal Energy Program awarded grant DE-FG36-07GO17075 to NRC for the GAP studies. Two moderately remote sites in the NANA region were judged to have the most potential for geothermal development: (1) Granite Mountain, about 40 miles south of Buckland, and (2) the Division Hot Springs area in the Purcell Mountains, about 40 miles south of Shungnak and Kobuk. Data were collected on-site at Granite Mountain Hot Springs in September 2009, and at Division Hot Springs in April 2010. Although both target geothermal areas could be further investigated with a variety of exploration techniques such as a remote sensing study, a soil geochemical study, or ground-based geophysical surveys, it was recommended that on-site or direct heat use development options are more attractive at this time, rather than investigations aimed more at electric power generation.

  11. NANA Strategic Energy Plan & Energy Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jay Hermanson; Brian Yanity

    2008-12-31

    NANA Strategic Energy Plan summary NRC, as an Alaska Native Corporation, has committed to addressing the energy needs for its shareholders. The project framework calls for implicit involvement of the IRA Councils in the Steering Committee. Tribal Members, from the NRC to individual communities, will be involved in development of the NANA Energy Plan. NRC, as the lead tribal entity, will serve as the project director of the proposed effort. The NRC team has communicated with various governmental and policy stakeholders via meetings and discussions, including Denali Commission, Alaska Energy Authority, and other governmental stakeholders. Work sessions have been initiated with the Alaska Village Electric Cooperative, the NW Arctic Borough, and Kotzebue Electric Association. The NRC Strategic Energy Plan (SEP) Steering committee met monthly through April and May and weekly starting in June 2008 in preparation of the energy summit that was held from July 29-31, 2008. During preparations for the energy summit and afterwards, there was follow through and development of project concepts for consideration. The NANA regional energy summit was held from July 29-31, 2008, and brought together people from all communities of the Northwest Arctic Borough. The effort was planned in conjunction with the Alaska Energy Authority’s state-wide energy planning efforts. Over $80,000 in cash contributions was collected from various donors to assist with travel from communities and to develop the summit project. Available funding resources have been identified and requirements reviewed, including the Denali Commission, U.S. Dept. of Agriculture, and the Alaska Energy Authority. A component of the overall plan will be a discussion of energy funding and financing. There are current project concepts submitted, or are ready for submittal, in the region for the following areas: • Wind-diesel in Deering, Buckland, Noorik, and Kiana areas; potential development around Red Dog mine.

  12. The architecture of mammalian ribosomal protein promoters

    Directory of Open Access Journals (Sweden)

    Perry Robert P

    2005-02-01

    Full Text Available Abstract Background Mammalian ribosomes contain 79 different proteins encoded by widely scattered single copy genes. Coordinate expression of these genes at transcriptional and post-transcriptional levels is required to ensure a roughly equimolar accumulation of ribosomal proteins. To date, detailed studies of only a very few ribosomal protein (rp promoters have been made. To elucidate the general features of rp promoter architecture, I made a detailed sequence comparison of the promoter regions of the entire set of orthologous human and mouse rp genes. Results A striking evolutionarily conserved feature of most rp genes is the separation by an intron of the sequences involved in transcriptional and translational regulation from the sequences with protein encoding function. Another conserved feature is the polypyrimidine initiator, which conforms to the consensus (Y2C+1TY(T2(Y3. At least 60 % of the rp promoters contain a largely conserved TATA box or A/T-rich motif, which should theoretically have TBP-binding capability. A remarkably high proportion of the promoters contain conserved binding sites for transcription factors that were previously implicated in rp gene expression, namely upstream GABP and Sp1 sites and downstream YY1 sites. Over 80 % of human and mouse rp genes contain a transposable element residue within 900 bp of 5' flanking sequence; very little sequence identity between human and mouse orthologues was evident more than 200 bp upstream of the transcriptional start point. Conclusions This analysis has provided some valuable insights into the general architecture of mammalian rp promoters and has identified parameters that might coordinately regulate the transcriptional activity of certain subsets of rp genes.

  13. Redox-Promoting Protein Motions in Rubredoxin

    Energy Technology Data Exchange (ETDEWEB)

    Myles, Dean A A [ORNL; He, Junhong [ORNL; Meilleur, Flora [ORNL; Weiss, Kevin L [ORNL; Agarwal, Pratul K [ORNL; Borreguero Calvo, Jose M [ORNL; Barthes, Mariette [Universite Montpellier II; Brown, Craig [National Institute of Standards and Technology (NIST); Herwig, Kenneth W [ORNL

    2011-01-01

    Proteins are dynamic objects, constantly undergoing conformational fluctuations, yet the linkage between internal protein motion and function is widely debated. This manuscript reports on the characterization of temperature-activated collective and individual atomic motions of oxidized rubredoxin, a small 53 residue protein from thermophilic Pyrococcus furiosus (RdPf), by neutron scattering and computational simulations. The changes in motion have been explored in connection to their role in promoting reduction of the Fe+3 ion which is responsible for the electron transfer function of RdPf. Just above the dynamical transition temperature of 220 K which marks the onset of significant anharmonic motions of the protein, the computer simulations show both a significant reorientation of the average electrostatic force experienced by the Fe+3 ion and a dramatic rise in its strength. At higher temperatures, additional anharmonic modes become activated which dominate the electrostatic fluctuations experienced by the ion. At 360 K, close to the optimal growth temperature of Pyrococcus furiosus, computer simulations show that three anharmonic modes involving two conserved residues located at the protein active site (Ile7 and Ile40) give rise to the majority of the electrostatic fluctuations experienced by the Fe+3 ion and include displacements which allow solvent access to the ion. The low-frequency, high amplitude motions of these residues at low temperatures may be precursors of the high temperature, anharmonic motions necessary for protein function.

  14. Reproductive characteristics of Brazilian dwarf brocket deer (Mazama nana)

    OpenAIRE

    Abreu, Cassiana O. de; Martinez, Antonio C.; Moraes, Wanderlei de; Juvenal, Julio C.; Moreira, Nei

    2009-01-01

    Dos cervídeos brasileiros, a espécie Mazama nana é a menos conhecida. Os parâmetros reprodutivos para os machos ainda são desconhecidos, mas parece que não apresentam sazonalidade reprodutiva. Neste trabalho foram utilizados nove machos de Mazama nana em idade reprodutiva, mantidos em cativeiro. Foram avaliados quanto ao peso corporal, altura de cernelha, comprimento crânio-caudal, situação dos chifres, volume e consistência testicular. O sêmen foi colhido por eletroejaculação e submetido a a...

  15. Health issues of whey proteins: 3. gut health promotion

    NARCIS (Netherlands)

    Gertjan Schaafsma

    2007-01-01

    This paper reviews the potential of whey protein to promote gut health. The high digestibility and specific amino acid composition of whey protein, as present in whey powder, whey protein concentrate and whey protein isolate, explain why ingestion of whey protein will exert this beneficial effect.

  16. Prevalence of Giardia intestinalis and Hymenolepis nana in Afghan ...

    African Journals Online (AJOL)

    Background: Present study aimed to investigate prevalence of Giardia intestinalis and Hymenolepis nana in Afghan refugees visiting Central Health Unit (CHU), Kot Chandana (Mianwali, Northern Punjab) during two years period (February 2007 to December 2009). Methods: A total of 687 stool samples were collected from ...

  17. Tourism: A Promoter of Human Development | Nana | UJAH: Unizik ...

    African Journals Online (AJOL)

    Its impact on bio-physical environment is well acknowledged, hence the emphasis on sustainable tourism and human development. ... of the past, but also in spite of the realities of the global economy nowadays, has demonstrated a tendency towards stable development on the economic, social and environmental planes.

  18. PENGARUH SARI BUAH NANAS (ANANAS COMOSUS DAN LAMA PENYIMPANAN TERHADAP JUMLAH KOLONI BAKTERI DAN KADAR PROTEIN IKAN BANDENG (CHANOS CHANOS SEBAGAI SUMBER BELAJAR DALAM PERENCANAAN PEMBELAJARAN BIOLOGI MATERI KINGDOM MONERA

    Directory of Open Access Journals (Sweden)

    Qorry Aulya Rohmana

    2015-03-01

    Full Text Available The aims of this research is to know effect of any pineaple extract juice concentration and duration of saving and to determine concentration of the pineaple fruit extract juice and duration of saving which are the most optimal to the sum of bacterial colony and protein degree in bandeng fish. Research type used was True Experiment Design. A scheme used was Complete Random Scheme of factorial pattern. Data was as such the total of bacterial colony and protein contained in bandeng fish. Result of the research shows that concentration of pineaple fruit extract juise and duration of saving effect the bacterial colony total and protein containe in bandeng fish. The total of bacterial colony gets more as the duration of saving gets longer. As for protein contained in the bandeng fish gets lower as the saving duration goes.

  19. Health issues of whey proteins: 3. Gut health promotion

    NARCIS (Netherlands)

    Schaafsma, G.

    2007-01-01

    This paper reviews the potential of whey protein to promote gut health. The high digestibility and specific amino acid composition of whey protei, as present in whey powder, whey protein concentrate and whey protein isolate, explain why ingestion of whey protein will exert this beneficial effect.

  20. KAPASITAS REPRODUKSI PARASITOID TELUR Trichogrammatoidea nana Zehntner (Hymenoptera:Trichogrammatidae

    Directory of Open Access Journals (Sweden)

    - Sujak

    2011-09-01

    Full Text Available Trichogramma nana is one species of egg parasitoids that are polifag. insect pests that attack crops such as soybean pod borer and rice. Research conducted at the Laboratory of Entomology Research Institute for Tobacco and Fiber Crops Malang in March until June 2009 that aims to determine the reproductive capacity of T. nana on eggs  C. cephalonica. Reproductive capacity of T. nana allegedly using the net reproductive rate (Ro, estimatedtime of one generation (T, the capacity of population growth (r, and the rate of parasitoids per day (λ. T. nana were tested  came from the rice stem borer  eggs collected from the land in the district of East Java Beji Pasuruan. Eggs C.cephalonica which is used as the host is the result of breeding in the laboratory of Entomology Research Institute for Tobacco and Fiber Crops. The results showed that T. nana has greatpotential  as  biological agents.  Most  female  progeny  produced by adult females aged 1-2 days . On the first day produced 12 and 8 tails on the second day or 40% and 27% of the total of 30 females produced by a female during life.  Reproductive capacity of  T. nana on eggs C. cephalonica the net reproductive rate  Ro = 44.7, Capacity of population growth (r = 1.78,  parasitoid growth rate per day (λ=5.9, and mean - mean length of generation (T = 10, 9 days.

  1. Promoters and proteins from Clostridium thermocellum and uses thereof

    Science.gov (United States)

    Wu, J. H. David; Newcomb, Michael

    2012-11-13

    The present invention relates to an inducible and a high expression nucleic acid promoter isolated from Clostridium thermocellum. These promoters are useful for directing expression of a protein or polypeptide encoded by a nucleic acid molecule operably associated with the nucleic acid promoters. The present invention also relates to nucleic acid constructs including the C. thermocellum promoters, and expression vectors and hosts containing such nucleic acid constructs. The present invention also relates to protein isolated from Clostridium thermocellum, including a repressor protein. The present invention also provides methods of using the isolated promoters and proteins from Clostridium thermocellum, including methods for directing inducible in vitro and in vivo expression of a protein or polypeptide in a host, and methods of producing ethanol from a cellulosic biomass.

  2. Enhanced Degradation of Misfolded Proteins Promotes Tumorigenesis.

    Science.gov (United States)

    Chen, Liang; Brewer, Michael D; Guo, Lili; Wang, Ruoxing; Jiang, Peng; Yang, Xiaolu

    2017-03-28

    An adequate cellular capacity to degrade misfolded proteins is critical for cell survival and organismal health. A diminished capacity is associated with aging and neurodegenerative diseases; however, the consequences of an enhanced capacity remain undefined. Here, we report that the ability to clear misfolded proteins is increased during oncogenic transformation and is reduced upon tumor cell differentiation. The augmented capacity mitigates oxidative stress associated with oncogenic growth and is required for both the initiation and maintenance of malignant phenotypes. We show that tripartite motif-containing (TRIM) proteins select misfolded proteins for proteasomal degradation. The higher degradation power in tumor cells is attributed to the upregulation of the proteasome and especially TRIM proteins, both mediated by the antioxidant transcription factor Nrf2. These findings establish a critical role of TRIMs in protein quality control, connect the clearance of misfolded proteins to antioxidant defense, and suggest an intrinsic characteristic of tumor cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption

    Directory of Open Access Journals (Sweden)

    Yanan Li

    2017-06-01

    Full Text Available Iron (Fe is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements.

  4. Transport proteins promoting Escherichia coli pathogenesis

    Science.gov (United States)

    Tang, Fengyi; Saier, Milton H.

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. PMID:24747185

  5. Transport proteins promoting Escherichia coli pathogenesis.

    Science.gov (United States)

    Tang, Fengyi; Saier, Milton H

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Characterization of a Lactococcus lactis promoter for heterologous protein production

    Directory of Open Access Journals (Sweden)

    Christian E. Ogaugwu

    2018-03-01

    Full Text Available Constitutively active promoter elements for heterologous protein production in Lactococcus lactis are scarce. Here, the promoter of the PTS-IIC gene cluster from L. lactis NZ3900 is described. This promoter was cloned upstream of an enhanced green fluorescent protein, GFPmut3a, and transformed into L. lactis. Transformants produced up to 13.5 μg of GFPmut3a per milliliter of log phase cells. Addition of cellobiose further increased the production of GFPmut3a by up to two-fold when compared to glucose. Analysis of mutations at two specific positions in the PTS-IIC promoter showed that a ‘T’ to ‘G’ mutation within the −35 element resulted in constitutive expression in glucose, while a ‘C’ at nucleotide 7 in the putative cre site enhanced promoter activity in cellobiose. Finally, this PTS-IIC promoter is capable of mediating protein expression in Bacillus subtilis and Escherichia coli Nissle 1917, suggesting the potential for future biotechnological applications of this element and its derivatives.

  7. Efecto protector de oncósferas homólogas en la infección por Hymenolepis nana var. nana

    Directory of Open Access Journals (Sweden)

    Oriana Vásquez

    2013-03-01

    Full Text Available El efecto protector de oncósferas homólogas fue evaluado en Mus musculus infectados por Hymenolepis nana var. nana. El estudio se realizó en 20 ejemplares hembras de Mus musculus de dos meses de edad y libres de infección por helmintos, los cuáles fueron seleccionados al azar en dos grupos (experimental y control de 10 ratones cada uno. Cada animal del grupo experimental recibió una dosis única del inmunógeno vía subcutánea, constituido por la mezcla de 0,05 mL de PBS con 15—24 oncósferas y 0,05 mL de Adyuvante Completo de Freund’s para inducir la respuesta inmune. El grupo control recibió por igual vía la misma dosis, pero sin oncósferas. La evaluación del efecto protector de las oncósferas se realizó después de 25 días de la inmunización, para lo cuál 200 huevos viables de H. nana var. nana fueron administrados por vía oral a cada uno de los 20 ratones, los que fueron mantenidos durante 15 días más antes de ser sacrificados para obtener los parásitos intestinales y comprobar la eficiencia de la inmunización. Las formas adultas de Hymenolepis nana var. nana fueron encontrados en dos ratones del grupo experimental y en 5 ratones del grupo control; siendo la eficiencia de la inmunización del 60%, observandose diferencia significativa entre el grupo control y el grupo experimental.

  8. Evolution of Drosophila ribosomal protein gene core promoters.

    Science.gov (United States)

    Ma, Xiaotu; Zhang, Kangyu; Li, Xiaoman

    2009-03-01

    The coordinated expression of ribosomal protein genes (RPGs) has been well documented in many species. Previous analyses of RPG promoters focus only on Fungi and mammals. Recognizing this gap and using a comparative genomics approach, we utilize a motif-finding algorithm that incorporates cross-species conservation to identify several significant motifs in Drosophila RPG promoters. As a result, significant differences of the enriched motifs in RPG promoter are found among Drosophila, Fungi, and mammals, demonstrating the evolutionary dynamics of the ribosomal gene regulatory network. We also report a motif present in similar numbers of RPGs among Drosophila species which does not appear to be conserved at the individual RPG gene level. A module-wise stabilizing selection theory is proposed to explain this observation. Overall, our results provide significant insight into the fast-evolving nature of transcriptional regulation in the RPG module.

  9. Knotted vs. unknotted proteins: evidence of knot-promoting loops.

    Directory of Open Access Journals (Sweden)

    Raffaello Potestio

    Full Text Available Knotted proteins, because of their ability to fold reversibly in the same topologically entangled conformation, are the object of an increasing number of experimental and theoretical studies. The aim of the present investigation is to assess, on the basis of presently available structural data, the extent to which knotted proteins are isolated instances in sequence or structure space, and to use comparative schemes to understand whether specific protein segments can be associated to the occurrence of a knot in the native state. A significant sequence homology is found among a sizeable group of knotted and unknotted proteins. In this family, knotted members occupy a primary sub-branch of the phylogenetic tree and differ from unknotted ones only by additional loop segments. These "knot-promoting" loops, whose virtual bridging eliminates the knot, are found in various types of knotted proteins. Valuable insight into how knots form, or are encoded, in proteins could be obtained by targeting these regions in future computational studies or excision experiments.

  10. Pengaruh Suhu Penggorengan dan Ketebalan Irisan Buah Terhadap Karakteristik Keripik Nanas Menggunakan Penggorengan Vakum

    Directory of Open Access Journals (Sweden)

    Asmawit Asmawit

    2014-12-01

    Full Text Available Pineapple is one of the fruits that are produced in West Kalimantan. The production which is relatively high and it had a relatively short shelf life that is necessary to diversify the products from pineapple fruit that can add the sale value and extend the shelf life. One potential alternative is to develop the processing become chips. Pineapple chips processing was done by using a vacuum frying.  In the making process of pineapple chips was done by varying of frying temperature at 80, 85 and 90 degC and slice thickness 3, 4 and 5 mm. The research goal was to determine the effect of frying temperature and slice thickness of fruit on the characteristics of pineapple chips. The analysis showed that the frying temperature between 85-90oC and slices thick 3 mm were a good combination in the making of pineapple chips and met the SNI 01-4304-1996.ABSTRAK Nanas merupakan salah satu buah yang banyak dihasilkan di Kalimantan Barat. Produksi nanas yang relatif tinggi dan umur simpan yang relatif pendek mendasari perlu dilakukan diversifikasi produk dari buah nanas sehingga dapat menambah nilai jual dan memperpanjang umur simpan buah. Salah satu alternatif yang potensial untuk dikembangkan adalah dengan mengolahnya menjadi keripik. Pengolahan keripik nanas dilakukan dengan menggunakan alat penggorengan hampa (vacuum frying. Pada proses pembuatan keripik nanas ini dilakukan penelitian berupa variasi suhu penggorengan yaitu 80, 85 dan 90oC dan tebal irisan yaitu 3, 4 dan 5 mm. Tujuan penelitian ini adalah  untuk mengetahui pengaruh suhu penggorengan dan tebal irisan buah terhadap karakteristik keripik nanas. Hasil analisa  menunjukkan bahwa suhu penggorengan antara 85-90oC dan tebal irisan 3 mm, merupakan kombinasi yang baik dalam pembuatan keripik nanas dan sudah memenuhi SNI 01-4304-1996.

  11. G protein-coupled receptor kinase 2 promotes cardiac hypertrophy

    Science.gov (United States)

    Tscheschner, Henrike; Gao, Erhe; Schumacher, Sarah M.; Yuan, Ancai; Backs, Johannes; Most, Patrick; Wieland, Thomas; Koch, Walter J.; Katus, Hugo A.; Raake, Philip W.

    2017-01-01

    The increase in protein activity and upregulation of G-protein coupled receptor kinase 2 (GRK2) is a hallmark of cardiac stress and heart failure. Inhibition of GRK2 improved cardiac function and survival and diminished cardiac remodeling in various animal heart failure models. The aim of the present study was to investigate the effects of GRK2 on cardiac hypertrophy and dissect potential molecular mechanisms. In mice we observed increased GRK2 mRNA and protein levels following transverse aortic constriction (TAC). Conditional GRK2 knockout mice showed attenuated hypertrophic response with preserved ventricular geometry 6 weeks after TAC operation compared to wild-type animals. In isolated neonatal rat ventricular cardiac myocytes stimulation with angiotensin II and phenylephrine enhanced GRK2 expression leading to enhanced signaling via protein kinase B (PKB or Akt), consecutively inhibiting glycogen synthase kinase 3 beta (GSK3β), such promoting nuclear accumulation and activation of nuclear factor of activated T-cells (NFAT). Cardiac myocyte hypertrophy induced by in vitro GRK2 overexpression increased the cytosolic interaction of GRK2 and phosphoinositide 3-kinase γ (PI3Kγ). Moreover, inhibition of PI3Kγ as well as GRK2 knock down prevented Akt activation resulting in halted NFAT activity and reduced cardiac myocyte hypertrophy. Our data show that enhanced GRK2 expression triggers cardiac hypertrophy by GRK2-PI3Kγ mediated Akt phosphorylation and subsequent inactivation of GSK3β, resulting in enhanced NFAT activity. PMID:28759639

  12. POTENSI HIDROLISAT TEMPE SEBAGAI PENYEDAP RASA MELALUI PEMANFAATAN EKSTRAK BUAH NANAS

    Directory of Open Access Journals (Sweden)

    Achmad Machin

    2012-09-01

    Full Text Available Penelitian bertujuan untuk mendeskripsikan perlunya pengembangan penyedap rasa alternatif berbahan hidrolisat tempe dan proses pembuatannya, menguji jenis asam amino, kadar protein dan uji organoleptik. Metode eksperimen digunakan pada penelitian ini. Pengujian jenis asam amino melalui teknik kromatografi, kadar protein terlarut melalui metode Biuret dan uji organoleptik produk dibandingkan penyedap rasa sintetis. Hasil yang didapatkan adalah pengembangan penyedap rasa hidrolisat tempe perlu dilakukan karena alasan dampak mengkonsumsi penyedap rasa sintetis, pengembangan teknologi, sumber penghasilan dan potensi penelitian. Proses pembuatannya melalui penambahan sari nanas pada tempe yang telah dikukus dan diblender dengan perbandingan tempe:air:sari nanas 1: 0,5:0,5. Pengovenan selama 2 jam pada suhu 55ºC, penambahan dektrin + NaCl (masing-masing sebanyak 0,5 gr/100 gr tempe, pengovenan kembali selama 2 jam pada suhu 55ºC. Perlakuan B2 (pengovenan pada suhu 55ºC selama 2 jam menghasilkan asam glutamat. Produk ini berpotensi membentuk monosodium glutamat dengan penambahan NaCl. Jumlah protein terlarut dipengaruhi oleh lama pengovenan dan suhu. Produk hidrolisat tempe sebagai penyedap rasa menghasilkan rerata kesukaan warna (3,3 = menarik, aroma (3,9 = sangat suka dan menghasilkan cita rasa sama jika ditambahakan sebanyak 2 kali dibandingkan penyedap rasa sintetis.This research was aimed to describe the need for the development of alternative flavor made from hydrolyzated tempe and its manufacturing process, to test the types of amino acid, to measure the protein levels and to test the favor organoleptically. This was an experimental study. The types of amino acid was tested using chromatographic technique, the level of soluble protein was tested using Biuret method and the products were compared organoleptically. The study showed that the development of hydrolyzated tempe flavoring needs to be performed by the reason of the impact of

  13. Multi-protein delivery by nanodiamonds promotes bone formation.

    Science.gov (United States)

    Moore, L; Gatica, M; Kim, H; Osawa, E; Ho, D

    2013-11-01

    Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE(®) for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation.

  14. Anthelmintic Activities of Aporphine from Nelumbo nucifera Gaertn. cv. Rosa-plena against Hymenolepis nana

    Directory of Open Access Journals (Sweden)

    Rong-Jyh Lin

    2014-02-01

    Full Text Available Nelumbo nucifera Gaertn. cv. Rosa-plena (Nelumbonaceae, commonly known as lotus, is a perennial aquatic plant grown and consumed throughout Asia. All parts of N. nucifera have been used for various medicinal purposes in oriental medicine. From the leaves of Nelumbo nucifera Gaertn. cv. Rosa-plena (an aquatic plant, liriodenine (1, lysicamine (2, (--anonaine (3, (--asimilobine (4, (--caaverine (5, (--N-methylasimilobine (6, (--nuciferine (7, (--nornuciferine (8, (--roemerine (9, 7-hydroxydehydronuciferine (10 and cepharadione B (11 were isolated and identification and anthelmintic activities of aporphine was evaluated against Anisakis simplex and Hymenolepis nana. This study found that the above constituents killed H. nana or reduced their spontaneous movements (oscillation/peristalsis. However, the above constituents at various concentrations demonstrated no larvicidal effect or ability to halt spontaneous parasite movement for 72 h against A. simplex, respectively. In addition, according to an assay of cestocidal activity against H. nana and nematocidal activity against A. simplex, we found that the above compounds showed greater lethal efficacy on H. nana than against A. simplex. Further investigation showed that these above constituents have effects against peroxyl radicals under cestocidal effect. Together, these findings suggest that these constituents of Nelumbo nucifera Gaertn. cv. Rosa-plena might be used as anthelmintic agents against H. nana.

  15. CHIP Regulates Osteoclast Formation through Promoting TRAF6 Protein Degradation

    Science.gov (United States)

    Li, Shan; Shu, Bing; Zhang, Yanquan; Li, Jia; Guo, Junwei; Wang, Yinyin; Ren, Fangli; Xiao, Guozhi; Chang, Zhijie; Chen, Di

    2014-01-01

    Objective Carboxyl terminus of Hsp70-interacting protein (CHIP or STUB1) is an E3 ligase and regulates the stability of several proteins which are involved in tumor growth and metastasis. However, the role of CHIP in bone growth and bone remodeling in vivo has not been reported. The objective of this study is to investigate the role and mechanism of CHIP in regulation of bone mass and bone remodeling. Methods The bone phenotype of Chip−/− mice was examined by histology, histomorphometry and micro-CT analyses. The regulatory mechanism of CHIP on the degradation of TRAF6 and the inhibition of NF-κB signaling was examined by immunoprecipitation (IP), western blotting and luciferase reporter assays. Results In this study, we found that deletion of the Chip gene leads to osteopenic phenotype and increased osteoclast formation. We further found that TRAF6, as a novel substrate of CHIP, is up-regulated in Chip−/− osteoclasts. TRAF6 is critical for RANKL-induced osteoclastogenesis. TRAF6 is an adaptor protein which functions as an E3 ligase to regulate the activation of TAK1 and the I-κB kinase (IKK) and is a key regulator of NF-κB signaling. CHIP interacts with TRAF6 to promote TRAF6 ubiquitination and proteasome degradation. CHIP inhibits p65 nuclear translocation, leading to the repression of the TRAF6-mediated NF-κB transcription. Conclusion CHIP inhibits NF-κB signaling via promoting TRAF6 degradation and plays an important role in osteoclastogenesis and bone remodeling, suggesting that it may be a novel therapeutic target for the treatment of bone loss associated diseases. PMID:24578159

  16. Exposure of E. coli to DNA-methylating agents impairs biofilm formation and invasion of eukaryotic cells via down regulation of the N-acetylneuraminate lyase NanA

    Directory of Open Access Journals (Sweden)

    Pamela eDi Pasquale

    2016-02-01

    Full Text Available DNA methylation damage can be induced by endogenous and exogenous chemical agents, which has led every living organism to develop suitable response strategies. We investigated protein expression profiles of Escherichia coli upon exposure to the alkylating agent methyl-methane sulfonate (MMS by differential proteomics. Quantitative proteomic data showed a massive downregulation of enzymes belonging to the glycolytic pathway and fatty acids degradation, strongly suggesting a decrease of energy production. A strong reduction in the expression of the N-acetylneuraminate lyases (NanA involved in the sialic acid metabolism was also observed. Using a null NanA mutant and DANA, a substrate analogue acting as competitive inhibitor, we demonstrated that down regulation of NanA affects biofilm formation and adhesion properties of E. coli MV1161. Exposure to alkylating agents also decreased biofilm formation and bacterial adhesion to Caco-2 eukaryotic cell line by the adherent invasive E. coli (AIEC strain LF82. Our data showed that methylation stress impairs E. coli adhesion properties and suggest a possible role of NanA in biofilm formation and bacteria host interactions.

  17. Sulfated neo-clerodane diterpenoids and triterpenoid saponins from Sheareria nana S. Moore.

    Science.gov (United States)

    Tang, Zhongyan; Shen, Junmei; Zhang, Feng; Liang, Jingyu; Xia, Zhengxiang

    2018-01-01

    Three novel neo-clerodane diterpenoids Sheareria A-C (1-3) together with three known triterpenoid saponins were isolated from the whole herb of Sheareria nana S. Moore. Their structures were established by spectroscopic and chemical method. This is the first natural sulfated neo-clerodane diterpenoids. This is the first report of all these compounds from this plant. These neo-clerodane diterpenoids and triterpenoid saponins from S. nana S. Moore may be considered as chemotaxonomic markers for the genus. The compounds isolated were evaluated for their cytotoxic effects against three cancer cell lines, the test substances demonstrated selectivity toward the cancer cells. To date, this is the first report on the phytochemical and biological activity of secondary metabolites from S. nana S. Moore. Copyright © 2017. Published by Elsevier B.V.

  18. p53 protein aggregation promotes platinum resistance in ovarian cancer.

    Science.gov (United States)

    Yang-Hartwich, Y; Soteras, M G; Lin, Z P; Holmberg, J; Sumi, N; Craveiro, V; Liang, M; Romanoff, E; Bingham, J; Garofalo, F; Alvero, A; Mor, G

    2015-07-01

    High-grade serous ovarian carcinoma (HGSOC), the most lethal gynecological cancer, often leads to chemoresistant diseases. The p53 protein is a key transcriptional factor regulating cellular homeostasis. A majority of HGSOCs have inactive p53 because of genetic mutations. However, genetic mutation is not the only cause of p53 inactivation. The aggregation of p53 protein has been discovered in different types of cancers and may be responsible for impairing the normal transcriptional activation and pro-apoptotic functions of p53. We demonstrated that in a unique population of HGSOC cancer cells with cancer stem cell properties, p53 protein aggregation is associated with p53 inactivation and platinum resistance. When these cancer stem cells differentiated into their chemosensitive progeny, they lost tumor-initiating capacity and p53 aggregates. In addition to the association of p53 aggregation and chemoresistance in HGSOC cells, we further demonstrated that the overexpression of a p53-positive regulator, p14ARF, inhibited MDM2-mediated p53 degradation and led to the imbalance of p53 turnover that promoted the formation of p53 aggregates. With in vitro and in vivo models, we demonstrated that the inhibition of p14ARF could suppress p53 aggregation and sensitize cancer cells to platinum treatment. Moreover, by two-dimensional gel electrophoresis and mass spectrometry we discovered that the aggregated p53 may function uniquely by interacting with proteins that are critical for cancer cell survival and tumor progression. Our findings help us understand the poor chemoresponse of a subset of HGSOC patients and suggest p53 aggregation as a new marker for chemoresistance. Our findings also suggest that inhibiting p53 aggregation can reactivate p53 pro-apoptotic function. Therefore, p53 aggregation is a potential therapeutic target for reversing chemoresistance. This is paramount for improving ovarian cancer patients' responses to chemotherapy, and thus increasing their

  19. Lytic Promoters Express Protein during Herpes Simplex Virus Latency

    Science.gov (United States)

    Russell, Tiffany A.; Tscharke, David C.

    2016-01-01

    Herpes simplex virus (HSV) has provided the prototype for viral latency with previously well-defined acute or lytic and latent phases. More recently, the deep quiescence of HSV latency has been questioned with evidence that lytic genes can be transcribed in this state. However, to date the only evidence that these transcripts might be translated has come from immunological studies that show activated T cells persist in the nervous system during latency. Here we use a highly sensitive Cre-marking model to show that lytic and latent phases are less clearly defined in two significant ways. First, around half of the HSV spread leading to latently infected sites occurred beyond the initial acute infection and second, we show direct evidence that lytic promoters can drive protein expression during latency. PMID:27348812

  20. [Hymenolepis nana infection: associated factors with this parasitism in a health area of Southern Spain].

    Science.gov (United States)

    Cabeza, M Isabel; Cabezas, M Teresa; Cobo, Fernando; Salas, Joaquín; Vázquez, José

    2015-10-01

    Hymenolepis nana is the most common tapeworm in humans; prevalence rates of 0.1%-58% have been reported. The aim of this study was to determine the prevalence in a health area of Southern Spain and identify the demographic variables potentially associated with increased rates of hymenolepiasis in this area. A retrospective study was performed with patients, who had H. nana eggs in fecal samples during january 2000 to december 2013. Parasitological diagnosis relied on microscopic detection in concentrated stool samples. During the study period, 73.660 stool samples were analyzed. H. nana eggs were observed in 158 patients (31 female) with a mean age of 18,9 years. The prevalence during the study period was 0,21% and 61% of the infected patients had more than one intestinal parasite. In conclusion, the prevalence of parasitism by H. nana in our population was higher than the national average and higher in adults than in children due to the characteristics of our population.

  1. Colonic protein fermentation and promotion of colon carcinogenesis by thermolyzed casein

    Science.gov (United States)

    Corpet, Denis E.; Yin, Y.; Zhang, X. M.; Rémésy, C.; Stamp, D.; Medline, A.; Thompson, L.U.; Bruce, W. R.; Archer, M. C.

    1995-01-01

    Thermolyzed casein is known to promote the growth of aberrant crypt foci (ACF) and colon cancer when it is fed to rats that have been initiated with azoxymethane. We speculated that the promotion was a consequence of increased colonic protein fermentation (i.e., that the thermolysis of the casein decreases its digestibility, increases the amount of protein reaching the colon, and increases colonic protein fermentation and that the potentially toxic products of this fermentation promote colon carcinogenesis). We found that the thermolysis of casein reduces its digestibility and increases colonic protein fermentation, as assessed by fecal ammonium and urinary phenol, cresol, and indol-3-ol. Thermolysis of two other proteins, soy and egg white protein, also increases colonic protein fermentation with increased fecal ammonia and urinary phenols, and thermolysis of all three proteins increases the levels of ammonia and butyric, valeric, and i-valeric acids in the cecal contents. We found, however, that the increased protein fermentation observed with thermolysis is not associated with promotion of colon carcinogenesis. With casein, the kinetics of protein fermentation with increasing thermolysis time are clearly different from the kinetics of promotion of ACF growth. The formation of the fermentation products was highest when the protein was thermolyzed for one hour, whereas promotion was highest for protein that had been thermolyzed for two or more hours. With soy and egg white, thermolysis increased colonic protein fermentation but did not promote colon carcinogenesis. Thus, although thermolysis of dietary casein increases colonic protein fermentation, products of this fermentation do not appear to be responsible for the promotion of colon carcinogenesis. Indeed, the results suggest that protein fermentation products do not play an important role in colon cancer promotion. PMID:7603887

  2. Studi Waktu dan Beban Kerja untuk Penentuan Kebutuhan dan Distribusi Pekerja pada Alur Produksi Nanas Kaleng

    Directory of Open Access Journals (Sweden)

    Arnal Novistiara

    2017-04-01

    Full Text Available Abstract Ergonomic considerations are important approach in determining the optimal number of worker on such an industrial production line. Ergonomical approach may assess suitability of labor characteristic to the condition of the task, hence the optimum results will be achieved on minimum risk and maximum productivity. The aim of this study was to determine the work elements and production flow, standard time, workload and energy consumption rate on production processes of caned pineapple. With the ergonomic parameters obtained, optimum number and distribution of workers for sequencial work elements to meet company's production targets were designed. The results revealed that a line production of canned pineapple consist 22 work elements. The standard time to produce 420 gram (A2-size canned pineapple was 27.608 s consumed 0.714 kcal equivalent of work energy cost. Based on the analysis of standard time and workload it was 383 workers required to produce 250000 canned pineapple in the production line. Abstrak Pertimbangan ergonomika merupakan pendekatan penting dalam menentukan jumlah tenaga kerja optimal dalam suatu alur produksi sebuah industri. Dengan melakukan pendekatan ergonomika dapat mengevaluasi kesesuaian antara tenaga kerja dengan kondisi pekerjaan sehingga hasil optimal akan dicapai pada resiko pekerjaan yang minimal dan produktivitas yang maksimal. Tujuan dari penelitian ini adalah menentukan elemen kerja dan alur proses, waktu baku, beban kerja dan laju konsumsi energi dalam kegiatan produksi nanas kaleng. Berdasarkan parameter-parameter ergonomika yang telah diperoleh, kebutuhan tenaga kerja dan distribusinya yang optimal pada setiap sekuensial elemen kerja untuk mencapai target produksi perusahaan dapat didesain. Hasil yang diperoleh dari penelitian ini menunjukkan bahwa terdapat 22 elemen kerja dalam proses produksi nanas kaleng. Waktu baku untuk memproduksi satu buah kaleng nanas 420 gram (ukuran A2 adalah 27.608 detik dengan

  3. Cohesin proteins promote ribosomal RNA production and protein translation in yeast and human cells.

    Directory of Open Access Journals (Sweden)

    Tania Bose

    Full Text Available Cohesin is a protein complex known for its essential role in chromosome segregation. However, cohesin and associated factors have additional functions in transcription, DNA damage repair, and chromosome condensation. The human cohesinopathy diseases are thought to stem not from defects in chromosome segregation but from gene expression. The role of cohesin in gene expression is not well understood. We used budding yeast strains bearing mutations analogous to the human cohesinopathy disease alleles under control of their native promoter to study gene expression. These mutations do not significantly affect chromosome segregation. Transcriptional profiling reveals that many targets of the transcriptional activator Gcn4 are induced in the eco1-W216G mutant background. The upregulation of Gcn4 was observed in many cohesin mutants, and this observation suggested protein translation was reduced. We demonstrate that the cohesinopathy mutations eco1-W216G and smc1-Q843Δ are associated with defects in ribosome biogenesis and a reduction in the actively translating fraction of ribosomes, eiF2α-phosphorylation, and (35S-methionine incorporation, all of which indicate a deficit in protein translation. Metabolic labeling shows that the eco1-W216G and smc1-Q843Δ mutants produce less ribosomal RNA, which is expected to constrain ribosome biogenesis. Further analysis shows that the production of rRNA from an individual repeat is reduced while copy number remains unchanged. Similar defects in rRNA production and protein translation are observed in a human Roberts syndrome cell line. In addition, cohesion is defective specifically at the rDNA locus in the eco1-W216G mutant, as has been previously reported for Roberts syndrome. Collectively, our data suggest that cohesin proteins normally facilitate production of ribosomal RNA and protein translation, and this is one way they can influence gene expression. Reduced translational capacity could contribute to the

  4. Nuclear pore protein NUP88 activates anaphase-promoting complex to promote aneuploidy

    Science.gov (United States)

    Naylor, Ryan M.; Jeganathan, Karthik B.; Cao, Xiuqi; van Deursen, Jan M.

    2016-01-01

    The nuclear pore complex protein NUP88 is frequently elevated in aggressive human cancers and correlates with reduced patient survival; however, it is unclear whether and how NUP88 overexpression drives tumorigenesis. Here, we show that mice overexpressing NUP88 are cancer prone and form intestinal tumors. To determine whether overexpression of NUP88 drives tumorigenesis, we engineered transgenic mice with doxycycline-inducible expression of Nup88. Surprisingly, NUP88 overexpression did not alter global nuclear transport, but was a potent inducer of aneuploidy and chromosomal instability. We determined that NUP88 and the nuclear transport factors NUP98 and RAE1 comprise a regulatory network that inhibits premitotic activity of the anaphase-promoting complex/cyclosome (APC/C). When overexpressed, NUP88 sequesters NUP98-RAE1 away from APC/CCDH1, triggering proteolysis of polo-like kinase 1 (PLK1), a tumor suppressor and multitasking mitotic kinase. Premitotic destruction of PLK1 disrupts centrosome separation, causing mitotic spindle asymmetry, merotelic microtubule-kinetochore attachments, lagging chromosomes, and aneuploidy. These effects were replicated by PLK1 insufficiency, indicating that PLK1 is responsible for the mitotic defects associated with NUP88 overexpression. These findings demonstrate that the NUP88-NUP98-RAE1-APC/CCDH1 axis contributes to aneuploidy and suggest that it may be deregulated in the initiating stages of a broad spectrum of human cancers. PMID:26731471

  5. Promotion of bone morphogenetic protein signaling by tetraspanins and glycosphingolipids.

    Directory of Open Access Journals (Sweden)

    Zhiyu Liu

    2015-05-01

    Full Text Available Bone morphogenetic proteins (BMPs belong to the transforming growth factor β (TGFβ superfamily of secreted molecules. BMPs play essential roles in multiple developmental and homeostatic processes in metazoans. Malfunction of the BMP pathway can cause a variety of diseases in humans, including cancer, skeletal disorders and cardiovascular diseases. Identification of factors that ensure proper spatiotemporal control of BMP signaling is critical for understanding how this pathway is regulated. We have used a unique and sensitive genetic screen to identify the plasma membrane-localized tetraspanin TSP-21 as a key new factor in the C. elegans BMP-like "Sma/Mab" signaling pathway that controls body size and postembryonic M lineage development. We showed that TSP-21 acts in the signal-receiving cells and genetically functions at the ligand-receptor level. We further showed that TSP-21 can associate with itself and with two additional tetraspanins, TSP-12 and TSP-14, which also promote Sma/Mab signaling. TSP-12 and TSP-14 can also associate with SMA-6, the type I receptor of the Sma/Mab pathway. Finally, we found that glycosphingolipids, major components of the tetraspanin-enriched microdomains, are required for Sma/Mab signaling. Our findings suggest that the tetraspanin-enriched membrane microdomains are important for proper BMP signaling. As tetraspanins have emerged as diagnostic and prognostic markers for tumor progression, and TSP-21, TSP-12 and TSP-14 are all conserved in humans, we speculate that abnormal BMP signaling due to altered expression or function of certain tetraspanins may be a contributing factor to cancer development.

  6. Isoetes nana, a new species from the coastal mountains of southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Jovani Pereira

    2017-11-01

    Full Text Available Isoetes nana, a new species from the coastal mountains of southeastern Brazil (Serra de Itatiaia, is described, illustrated and compared to similar species. This species can be distinguished from similar species by a set of characters that include 5–15 small erect leaves reaching only up to 3.5cm long, megaspores rugulate (rarely laevigate or obscurely cristate and microspores sparsely echinate. We include a key to identify this new species and spore images for all species that are discussed in this study. Isoetes nana is known only from the type locality, where it was reported to occur in small ponds on rocky outcrops at high elevations. We suggest it should be classified as a data deficient species based on the IUCN criteria.

  7. HPLC-DAD finger printing, antioxidant, cholinesterase, and α-glucosidase inhibitory potentials of a novel plant Olax nana

    OpenAIRE

    Ovais, Muhammad; Ayaz, Muhammad; Khalil, Ali Talha; Shah, Sayed Afzal; Jan, Muhammad Saeed; Raza, Abida; Shahid, Muhammad; Shinwari, Zabta Khan

    2018-01-01

    Background The medicinal importance of a novel plant Olax nana Wall. ex Benth. (family: Olacaceae) was revealed for the first time via HPLC-DAD finger printing, qualitative phytochemical analysis, antioxidant, cholinesterase, and α-glucosidase inhibitory assays. Methods The crude methanolic extract of O. nana (ON-Cr) was subjected to qualitative phytochemical analysis and HPLC-DAD finger printing. The antioxidant potential of ON-Cr was assessed via 1,1-diphenyl,2-picrylhydrazyl (DPPH), 2,2-az...

  8. AISOLASI DAN UJI DAYA ANTIMIKROBA EKSTRAK KULIT NANAS (Ananas comosus L. Merr

    Directory of Open Access Journals (Sweden)

    M H Setiawan

    2017-03-01

    Full Text Available Kandungan senyawa flavonoid dalam limbah kulit nanas memiliki prospek positif sebagai antimikroba. Penelitian ini bertujuan untuk mengetahui efektivitas antimikroba ekstrak kulit nanas basah (KNB dan ekstrak kulit nanas kering (KNK dan mengetahui jenis senyawa flavonoid yang berperan sebagai antimikroba terhadap S. aureus dan E. coli. Flavonoid diisolasi menggunakan metode Domestic Microwave Maceration Extraction (DMME dan partisi. Aktivitas antimikroba diuji menggunakan metode difusi sumuran. Berdasarkan hasil penelitian, ekstrak etil asetat KNB maupun ekstrak etil asetat KNK berpotensi sebagai antimikroba, namun ekstrak etil asetat KNB lebih efektif menghambat bakteri S. aureus dan E. coli dengan diameter daerah hambat (DDH berturut-turut 13 mm dan 15 mm dibanding ekstrak etil asetat KNK dengan nilai DDH berturut-turut 12 dan 14,25 mm. Senyawa flavonoid dalam kulit nanas yang berperan sebagai antimikroba diduga merupakan golongan flavanon (KNB dan dihidroflavonol (KNK.Flavonoid compound in pineapple peel waste have positive prospects for antimicrobial. This study aims at understanding effectiveness of wet pineapple peel extract and dried pineapple peel extract antimicrobial and to know the type of flavonoid compound which act as antimicrobial against S.aureus and E.coli. Flavonoid was isolated using Domestic Microwave Maceration Extraction (DMME and partitions. Antimicrobial activity was tested using pitting diffusion method. Based on the research result, wet pineapple peel extract and dried pineapple peel extract are potential to be antimicrobial. However wet pineapple peel extract is more effective to inhibit bacteria S.aureus and E.coli with Inhibitory Regional Diameter respectively 13 mm and 15 mm compared to dried pineapple peel extract with Inhibitory Regional Diameter respectively 12 and 14,25 mm. Flavonoid compound in pineapple peel that acts as an antimicrobial is thought to be flavanones (wet pineapple peel and dihydroflavonol (dried

  9. Screening of cesticidal compounds on a tapeworm hymenolepis nana in vitro

    Science.gov (United States)

    Sen, A. B.; Hawking, F.

    1960-01-01

    A simple and convenient in vitro technique is described for the screening of compounds for action against Hymenolepis nana and probably many other intestinal worms. The results obtained from this test are in broad agreement with the findings of clinical experience and of a small series of in vivo tests. Among the substances tested, the most active ones were oil of chenopodium, dichlorophen, extract of cashew nut (Anacardium occidentale), antimony potassium tartrate, and BIQ 20 [eicosamethylenebis(isoquinolinium iodide)]. PMID:13750047

  10. Chromosome polymorphism in the Brazilian dwarf brocket deer, Mazama nana (Mammalia, Cervidae)

    OpenAIRE

    Abril,Vanessa Veltrini; Duarte,José Maurício Barbanti

    2008-01-01

    The Brazilian dwarf brocket deer (Mazama nana) is the smallest deer species in Brazil and is considered threatened due to the reduction and alteration of its habitat, the Atlantic Rainforest. Moreover, previous work suggested the presence of intraspecific chromosome polymorphisms which may contribute to further population instability because of the reduced fertility arising from the deleterious effects of chromosome rearrangements during meiosis. We used G- and C-banding, and nucleolus organi...

  11. The prevalence of Hymenolepis nana among preschool children of displacement communities in Khartoum state, Sudan: a cross-sectional study.

    Science.gov (United States)

    Abdel Hamid, Muzamil Mahdi; Eljack, Ibrahim A; Osman, Mohammad Khatim M; Elaagip, Arwa Hassan; Muneer, Mohamed S

    2015-01-01

    Hymenolepis nana is among the most common intestinal parasitic infections causing a public health threat in poor communities in Sub-Saharan Africa. The present study was conducted to determine the prevalence of H. nana infections and associated risk factors among preschool children of displacement communities in Khartoum state, Sudan. A cross-sectional survey was conducted in May 2013 in displacement camps, Khartoum state, Sudan. A simple random sample of preschool children from the displacement camps, aged between 1 and 5 years, were included. Information was collected by presenting a questionnaire and taking 500 fresh stool specimens which were examined microscopically for the presence of eggs, using direct saline and formal-ether concentration techniques. The prevalence of H. nana was determined to be 32.6% (163/500), 95% CI (28.5%-36.9%). Infections of H. nana were more prevalent among males than females, and this association was statistically significant (P Sudan. Being male, aged between 2.6 and 5.0 years, and having diarrhea were identified as important risk factors for H. nana infection. Measures including health education, environmental hygiene, water supply and treatment should be taken into account to reduce the high prevalence of H. nana. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The host factor polyhedrin promoter binding protein (PPBP) is involved in transcription from the baculovirus polyhedrin gene promoter.

    Science.gov (United States)

    Ghosh, S; Jain, A; Mukherjee, B; Habib, S; Hasnain, S E

    1998-09-01

    Hypertranscription and temporal expression from the Autographa californica nuclear polyhedrosis (AcNPV) baculovirus polyhedrin promoter involves an alpha-amanitin-resistant RNA polymerase and requires a trans-acting viral factor(s). We previously reported that a 30-kDa host factor, polyhedrin promoter binding protein (PPBP), binds with unusual affinity, specificity, and stability to the transcriptionally important motif AATAAATAAGTATT within the polyhedrin (polh) initiator promoter and also displays coding strand-specific single-stranded DNA (ssDNA)-binding activity (S. Burma, B. Mukherjee, A. Jain, S. Habib, and S. E. Hasnain, J. Biol. Chem. 269:2750-2757, 1994; B. Mukherjee, S. Burma, and S. E. Hasnain, J. Biol. Chem. 270:4405-4411, 1995). We now present evidence which indicates that an additional factor(s) is involved in stabilizing PPBP-duplex promoter and PPBP-ssDNA interactions. TBP (TATA box binding protein) present in Spodoptera frugiperda (Sf9) cells is characteristically distinct from PPBP and does not interact directly with the polh promoter. Replacement of PPBP cognate sequences within the polh promoter with random nucleotides abolished PPBP binding in vitro and also failed to express the luciferase reporter gene in vivo. Phosphocellulose fractions of total nuclear extract from virus-infected cells which support in vitro transcription from the polh promoter contain PPBP activity. When PPBP was sequestered by the presence of oligonucleotides containing PPBP cognate sequence motifs, in vitro transcription of a C-free reporter cassette was affected but was restored by the exogenous addition of nuclear extract containing PPBP. When PPBP was mopped out in vivo by a plasmid carrying PPBP cognate sequence present in trans, polh promoter-driven expression of the luciferase reporter was abolished, demonstrating that binding of PPBP to the polh promoter is essential for transcription.

  13. Prognostic and predictive roles of MGMT protein expression and promoter methylation in sporadic pancreatic neuroendocrine neoplasms.

    Science.gov (United States)

    Schmitt, Anja Maria; Pavel, Marianne; Rudolph, Thomas; Dawson, Heather; Blank, Annika; Komminoth, Paul; Vassella, Erik; Perren, Aurel

    2014-01-01

    O(6)-methylguanine-methyltransferase (MGMT) is an important enzyme of DNA repair. MGMT promoter methylation is detectable in a subset of pancreatic neuroendocrine neoplasms (pNEN). A subset of pNEN responds to the alkylating agent temozolomide (TMZ). We wanted to correlate MGMT promoter methylation with MGMT protein loss in pNEN, correlate the findings with clinico-pathological data and determine the role of MGMT to predict response to TMZ chemotherapy. We analysed a well-characterized collective of 141 resected pNEN with median follow-up of 83 months for MGMT protein expression and promoter methylation using methylation-specific PCR (MSP). A second collective of 10 metastasized, pretreated and progressive patients receiving TMZ was used to examine the predictive role of MGMT by determining protein expression and promoter methylation using primer extension-based quantitative PCR. In both collectives there was no correlation between MGMT protein expression and promoter methylation. Loss of MGMT protein was associated with an adverse outcome, this prognostic value, however, was not independent from grade and stage in multivariate analysis. Promoter hypermethylation was significantly associated with response to TMZ. Loss of MGMT protein expression is associated with adverse outcome in a surgical series of pNET. MGMT promoter methylation could be a predictive marker for TMZ chemotherapy in pNEN, but further, favourably prospective studies will be needed to confirm this result and before this observation can influence clinical routine. © 2014 S. Karger AG, Basel.

  14. Multistage skin tumor promotion: involvement of a protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Mamrack, M.; Slaga, T. J.

    1980-01-01

    Current information suggests that chemical carcinogenesis is a multistep process with one of the best studied models in this regard being the two-stage carcinogenesis system using mouse skin. The effects of several carcinogens and tumor promoters in various sequences of application were studied to examine the nature of the process. The actions of several tumor inhibitors were compared. (ACR)

  15. Methods for promoting wound healing and muscle regeneration with the cell signaling protein nell1

    Energy Technology Data Exchange (ETDEWEB)

    Culiat, Cymbeline T.

    2018-03-20

    The present invention provides methods for promoting wound healing and treating muscle atrophy in a mammal in need. The method comprises administering to the mammal a Nell1 protein or a Nell1 nucleic acid molecule.

  16. Methods for promoting wound healing and muscle regeneration with the cell signaling protein Nell1

    Science.gov (United States)

    Culiat, Cymbeline T [Oak Ridge, TN

    2011-03-22

    The present invention provides methods for promoting wound healing and treating muscle atrophy in a mammal in need. The method comprises administering to the mammal a Nell1 protein or a Nell1 nucleic acid molecule.

  17. Soy protein isolate inhibits hepatic tumor promotion in mice fed a high-fat liquid diet.

    Science.gov (United States)

    Mercer, Kelly E; Pulliam, Casey F; Pedersen, Kim B; Hennings, Leah; Ronis, Martin Jj

    2017-03-01

    Alcoholic and nonalcoholic fatty liver diseases are risk factors for development of hepatocellular carcinoma, but the underlying mechanisms are poorly understood. On the other hand, ingestion of soy-containing diets may oppose the development of certain cancers. We previously reported that replacing casein with a soy protein isolate reduced tumor promotion in the livers of mice with alcoholic liver disease after feeding a high fat ethanol liquid diet following initiation with diethylnitrosamine. Feeding soy protein isolate inhibited processes that may contribute to tumor promotion including inflammation, sphingolipid signaling, and Wnt/β-catenin signaling. We have extended these studies to characterize liver tumor promotion in a model of nonalcoholic fatty liver disease produced by chronic feeding of high-fat liquid diets in the absence of ethanol. Mice treated with diethylnitrosamine on postnatal day 14 were fed a high-fat liquid diet made with casein or SPI as the sole protein source for 16 weeks in adulthood. Relative to mice fed normal chow, a high fat/casein diet led to increased tumor promotion, hepatocyte proliferation, steatosis, and inflammation. Replacing casein with soy protein isolate counteracted these effects. The high fat diets also resulted in a general increase in transcripts for Wnt/β-catenin pathway components, which may be an important mechanism, whereby hepatic tumorigenesis is promoted. However, soy protein isolate did not block Wnt signaling in this nonalcoholic fatty liver disease model. We conclude that replacing casein with soy protein isolate blocks development of steatosis, inflammation, and tumor promotion in diethylnitrosamine-treated mice fed high fat diets. Impact statement The impact of dietary components on cancer is a topic of great interest for both the general public and the scientific community. Liver cancer is currently the second leading form of cancer deaths worldwide. Our study has addressed the effect of the protein

  18. Interaction of cholesterol-crystallization-promoting proteins with vesicles

    NARCIS (Netherlands)

    de Bruijn, M. A.; Goldhoorn, B. G.; Zijlstra, A. I.; Tytgat, G. N.; Groen, A. K.

    1995-01-01

    In this study, the interaction of mucin and concanavalin A-binding proteins isolated from human bile with cholesterol/phospholipid vesicles was investigated. Using resonance energy transfer assays originally developed by Struck, Hoekstra and Pagano [(1981) Biochemistry 20, 4093-4099], no significant

  19. Efek Anti Inflamasi Enzim Bromelin Nanas Terhadap Osteoartritis

    Directory of Open Access Journals (Sweden)

    Andini Bakti Putri

    2017-11-01

    Full Text Available Inflammation is a complex reaction of the body's immune system in the vascular tissue that causes the accumulation and activation of leukocytes and plasma proteins that occur during infection, poisoning or cell damage. Inflammation can be treated by using anti-inflammatory drugs such as NSAIDs (Non-Steroidal Anti-Inflammatory Drugs that serve as pain reliever, febrifuge, and anti-inflammatory. One of the most common chronic inflammatory diseases is osteoarthritis. Osteoarthritis is the most common form of arthritis in society,which has a major impact on public health problems. Currently there are many therapeutic modalities of both pharmacology and non-pharmacology for the management of osteoarthritis, therefore it is necessary to recommend effective treatment of osteoarthritis in Indonesia based on the latest scientific evidence. The use of NSAIDs that do not correspond to doses can cause side effects such as bleeding, gastric ulcers, worsening asthma symptoms and acute kidney failure. This is the health problem in Indonesia, especially for ordinary people who use NSAIDs with excessive doses, because they want to quickly relieve pain. Therefore, it is necessary to look for a safe anti-inflammatory drug and can reduce the pain caused to arthritis. Ananascomosus (pineapple has long been used for various medical purposes. There are four different proteases in the pineapple, the two major enzymes in pineapple defined as bromelain’s stems and bromelain’s fruit. In the latest study there are various therapeutic benefits that have been proposed for bromelin, such as anti-inflammatory, reducing swelling, reducing pain, facilitating the digestive system, accelerating wound healing and acting as an anticoagulant.

  20. A Secreted Protein Promotes Cleavage Furrow Maturation during Cytokinesis

    OpenAIRE

    Xu, Xuehong; Vogel, Bruce E.

    2011-01-01

    Developmental modifications in cell shape depend on dynamic interactions between the extracellular matrix and cytoskeleton. In contrast, existing models of cytokinesis describe substantial cell surface remodeling that involves many intracellular regulatory and structural proteins but includes no contribution from the extracellular matrix [1–3]. Here, we show that extracellular hemicentins assemble at the cleavage furrow of dividing cells in the C. elegans germline and in preimplantation mouse...

  1. Drying Kinetics of Banana Slices (cvs. Musa nana and Musa Cavendish)

    OpenAIRE

    Guiné, Raquel; Barroca, Maria João

    2013-01-01

    In the present work, bananas of cvs. Musa nana and Musa Cavendish were dehydrated by hot air drying at 50 ºC and 70 ºC. The purpose of this work was to fit the kinetic data to different thin layer models found in the literature to describe the drying rates of bananas, in order to find out which model better describes the drying kinetics of these two varieties of bananas. The selection of the appropriate drying model was based on their coefficients of determination, which were predicted by no...

  2. Plant Checklist of the Bukit Nanas Forest Reserve, Kuala Lumpur, Malaysia

    OpenAIRE

    Salleh,Norzielawati; Azeman,Syazwani; Kiew,Ruth; Kamin,Imin; CHUNG,Richard Cheng Kong

    2017-01-01

    Bukit Nanas Forest Reserve, the oldest forest reserve in Malaysia established in 1900, lies in the center of Kuala Lumpur, the capital city. Over time it has been reduced from 17.5 ha to 9.37 ha but still retains important biodiversity. Its lowland equatorial rain forest has never been logged and tall emergent species to 35 m tall and 124 cm diameter persist. Since 1900, 499 plant species (2 lycophytes, 25 ferns, 39 monocots and 433 dicots) have been recorded. This year-long survey refound 42...

  3. Nuclear pore protein NUP88 activates anaphase-promoting complex to promote aneuploidy

    NARCIS (Netherlands)

    Naylor, R.M.; Jeganathan, K.B.; Cao, X.; Deursen, J.M. van

    2016-01-01

    The nuclear pore complex protein NUP88 is frequently elevated in aggressive human cancers and correlates with reduced patient survival; however, it is unclear whether and how NUP88 overexpression drives tumorigenesis. Here, we show that mice overexpressing NUP88 are cancer prone and form intestinal

  4. Strong seed-specific protein expression from the Vigna radiata storage protein 8SGα promoter in transgenic Arabidopsis seeds.

    Science.gov (United States)

    Chen, Mo-Xian; Zheng, Shu-Xiao; Yang, Yue-Ning; Xu, Chao; Liu, Jie-Sheng; Yang, Wei-Dong; Chye, Mee-Len; Li, Hong-Ye

    2014-03-20

    Vigna radiata (mung bean) is an important crop plant and is a major protein source in developing countries. Mung bean 8S globulins constitute nearly 90% of total seed storage protein and consist of three subunits designated as 8SGα, 8SGα' and 8SGβ. The 5'-flanking sequences of 8SGα' has been reported to confer high expression in transgenic Arabidopsis seeds. In this study, a 472-bp 5'-flanking sequence of 8SGα was identified by genome walking. Computational analysis subsequently revealed the presence of numerous putative seed-specific cis-elements within. The 8SGα promoter was then fused to the gene encoding β-glucuronidase (GUS) to create a reporter construct for Arabidopsis thaliana transformation. The spatial and temporal expression of 8SGα∷GUS, as investigated using GUS histochemical assays, showed GUS expression exclusively in transgenic Arabidopsis seeds. Quantitative GUS assays revealed that the 8SGα promoter showed 2- to 4-fold higher activity than the Cauliflower Mosaic Virus (CaMV) 35S promoter. This study has identified a seed-specific promoter of high promoter strength, which is potentially useful for directing foreign protein expression in seed bioreactors. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Correlation of MGMT promoter methylation status with gene and protein expression levels in glioblastoma

    Science.gov (United States)

    Uno, Miyuki; Oba-Shinjo, Sueli Mieko; Camargo, Anamaria Aranha; Moura, Ricardo Pereira; de Aguiar, Paulo Henrique; Cabrera, Hector Navarro; Begnami, Marcos; Rosemberg, Sérgio; Teixeira, Manoel Jacobsen; Marie, Suely Kazue Nagahashi

    2011-01-01

    OBJECTIVES: 1) To correlate the methylation status of the O6-methylguanine-DNA-methyltransferase (MGMT) promoter to its gene and protein expression levels in glioblastoma and 2) to determine the most reliable method for using MGMT to predict the response to adjuvant therapy in patients with glioblastoma. BACKGROUND: The MGMT gene is epigenetically silenced by promoter hypermethylation in gliomas, and this modification has emerged as a relevant predictor of therapeutic response. METHODS: Fifty-one cases of glioblastoma were analyzed for MGMT promoter methylation by methylation-specific PCR and pyrosequencing, gene expression by real time polymerase chain reaction, and protein expression by immunohistochemistry. RESULTS: MGMT promoter methylation was found in 43.1% of glioblastoma by methylation-specific PCR and 38.8% by pyrosequencing. A low level of MGMT gene expression was correlated with positive MGMT promoter methylation (p = 0.001). However, no correlation was found between promoter methylation and MGMT protein expression (p = 0.297). The mean survival time of glioblastoma patients submitted to adjuvant therapy was significantly higher among patients with MGMT promoter methylation (log rank = 0.025 by methylation-specific PCR and 0.004 by pyrosequencing), and methylation was an independent predictive factor that was associated with improved prognosis by multivariate analysis. DISCUSSION AND CONCLUSION: MGMT promoter methylation status was a more reliable predictor of susceptibility to adjuvant therapy and prognosis of glioblastoma than were MGMT protein or gene expression levels. Methylation-specific polymerase chain reaction and pyrosequencing methods were both sensitive methods for determining MGMT promoter methylation status using DNA extracted from frozen tissue. PMID:22012047

  6. Correlation of MGMT promoter methylation status with gene and protein expression levels in glioblastoma

    Directory of Open Access Journals (Sweden)

    Miyuki Uno

    2011-01-01

    Full Text Available OBJECTIVES: 1 To correlate the methylation status of the O6-methylguanine-DNA-methyltransferase (MGMT promoter to its gene and protein expression levels in glioblastoma and 2 to determine the most reliable method for using MGMT to predict the response to adjuvant therapy in patients with glioblastoma. BACKGROUND: The MGMT gene is epigenetically silenced by promoter hypermethylation in gliomas, and this modification has emerged as a relevant predictor of therapeutic response. METHODS: Fifty-one cases of glioblastoma were analyzed for MGMT promoter methylation by methylation-specific PCR and pyrosequencing, gene expression by real time polymerase chain reaction, and protein expression by immunohistochemistry. RESULTS: MGMT promoter methylation was found in 43.1% of glioblastoma by methylation-specific PCR and 38.8% by pyrosequencing. A low level of MGMT gene expression was correlated with positive MGMT promoter methylation (p = 0.001. However, no correlation was found between promoter methylation and MGMT protein expression (p = 0.297. The mean survival time of glioblastoma patients submitted to adjuvant therapy was significantly higher among patients with MGMT promoter methylation (log rank = 0.025 by methylation-specific PCR and 0.004 by pyrosequencing, and methylation was an independent predictive factor that was associated with improved prognosis by multivariate analysis. DISCUSSION AND CONCLUSION: MGMT promoter methylation status was a more reliable predictor of susceptibility to adjuvant therapy and prognosis of glioblastoma than were MGMT protein or gene expression levels. Methylation-specific polymerase chain reaction and pyrosequencing methods were both sensitive methods for determining MGMT promoter methylation status using DNA extracted from frozen tissue.

  7. Chromosome polymorphism in the Brazilian dwarf brocket deer, Mazama nana (Mammalia, Cervidae

    Directory of Open Access Journals (Sweden)

    Vanessa Veltrini Abril

    2008-01-01

    Full Text Available The Brazilian dwarf brocket deer (Mazama nana is the smallest deer species in Brazil and is considered threatened due to the reduction and alteration of its habitat, the Atlantic Rainforest. Moreover, previous work suggested the presence of intraspecific chromosome polymorphisms which may contribute to further population instability because of the reduced fertility arising from the deleterious effects of chromosome rearrangements during meiosis. We used G- and C-banding, and nucleolus organizer regions localization by silver-nitrate staining (Ag-NOR to investigate the causes of this variation. Mazama nana exhibited eight different karyotypes (2n = 36 through 39 and FN = 58 resulting from centric fusions and from inter and intraindividual variation in the number of B chromosomes (one to six. Most of the animals were heterozygous for a single fusion, suggesting one or several of the following: a genetic instability in a species that has not reached its optimal karyotypic evolutionary state yet; b negative selective pressure acting on accumulated rearrangements; and c probable positive selection pressure for heterozygous individuals which maintains the polymorphism in the population (in contrast with the negative selection for many rearrangements within a single individual.

  8. Is Malassezia nana the main species in horses' ear canal microbiome?

    Science.gov (United States)

    Aldrovandi, Ana Lúcia; Osugui, Lika; Acqua Coutinho, Selene Dall'

    2016-01-01

    The objective of this study was to characterize genotypically Malassezia spp. isolated from the external ear canal of healthy horses. Fifty-five horses, 39 (70.9%) males and 16 (29.1%) females, from different breeds and adults were studied. External ear canals were cleaned and a sterile cotton swab was introduced to collect cerumen. A total of 110 samples were cultured into Dixon medium and were incubated at 32°C for up to 15 days. Macro- and micromorphology and phenotypic identification were performed. DNA was extracted, strains were submitted to polymerase chain reaction technique, and the products obtained were submitted to Restriction Fragment Length Polymorphism using the restriction enzymes BstCI and HhaI. Strains were sent off to genetic sequencing of the regions 26S rDNA D1/D2 and ITS1-5.8S-ITS2 rDNA. Malassezia spp. were isolated from 33/55 (60%) animals and 52/110 (47%) ear canals. No growth on Sabouraud dextrose agar was observed, confirming the lipid dependence of all strains. Polymerase chain reaction-Restriction fragment length polymorphism permitted the molecular identification of Malassezia nana - 42/52 (81%) and Malassezia slooffiae - 10/52 (19%). Sequencing confirmed RFLP identification. It was surprising that M. nana represented over 80% of the strains and no Malassezia equina was isolated in this study, differing from what was expected. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  9. Challenges and Prospect of Non-aqueous Non-alkali (NANA) Metal-Air Batteries.

    Science.gov (United States)

    Gelman, Danny; Shvartsev, Boris; Ein-Eli, Yair

    2016-12-01

    Non-aqueous non-alkali (NANA) metal-air battery technologies promise to provide electrochemical energy storage with the highest specific energy density. Metal-air battery technology is particularly advantageous being implemented in long-range electric vehicles. Up to now, almost all the efforts in the field are focused on Li-air cells, but other NANA metal-air battery technologies emerge. The major concern, which the research community should be dealing with, is the limited and rather poor rechargeability of these systems. The challenges we are covering in this review are related to the initial limited discharge capacities and cell performances. By comprehensively reviewing the studies conducted so far, we show that the implementation of advanced materials is a promising approach to increase metal-air performance and, particularly, metal surface activation as a prime achievement leading to respectful discharge currents. In this review, we address the most critical areas that need careful research attention in order to achieve progress in the understanding of the physical and electrochemical processes in non-aqueous electrolytes applied in beyond lithium and zinc air generation of metal-air battery systems.

  10. Isolation and characterization of an ubiquitin extension protein gene (JcUEP) promoter from Jatropha curcas.

    Science.gov (United States)

    Tao, Yan-Bin; He, Liang-Liang; Niu, Long-Jian; Xu, Zeng-Fu

    2015-04-01

    The JcUEP promoter is active constitutively in the bio-fuel plant Jatropha curcas , and is an alternative to the widely used CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha. Well-characterized promoters are required for transgenic breeding of Jatropha curcas, a biofuel feedstock with great potential for production of bio-diesel and bio-jet fuel. In this study, an ubiquitin extension protein gene from Jatropha, designated JcUEP, was identified to be ubiquitously expressed. Thus, we isolated a 1.2 kb fragment of the 5' flanking region of JcUEP and evaluated its activity as a constitutive promoter in Arabidopsis and Jatropha using the β-glucuronidase (GUS) reporter gene. As expected, histochemical GUS assay showed that the JcUEP promoter was active in all Arabidopsis and Jatropha tissues tested. We also compared the activity of the JcUEP promoter with that of the cauliflower mosaic virus 35S (CaMV35S) promoter, a well-characterized constitutive promoter conferring strong transgene expression in dicot species, in various tissues of Jatropha. In a fluorometric GUS assay, the two promoters showed similar activities in stems, mature leaves and female flowers; while the CaMV35S promoter was more effective than the JcUEP promoter in other tissues, especially young leaves and inflorescences. In addition, the JcUEP promoter retained its activity under stress conditions in low temperature, high salt, dehydration and exogenous ABA treatments. These results suggest that the plant-derived JcUEP promoter could be an alternative to the CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha and other plants.

  11. Protein Kinase C-ε Promotes EMT in Breast Cancer

    Science.gov (United States)

    Jain, Kirti; Basu, Alakananda

    2014-01-01

    Protein kinase C (PKC), a family of serine/threonine kinases, plays critical roles in signal transduction and cell regulation. PKCε, a member of the novel PKC family, is known to be a transforming oncogene and a tumor biomarker for aggressive breast cancers. In this study, we examined the involvement of PKCε in epithelial to mesenchymal transition (EMT), the process that leads the way to metastasis. Overexpression of PKCε was sufficient to induce a mesenchymal phenotype in non-tumorigenic mammary epithelial MCF-10 A cells. This was accompanied by a decrease in the epithelial markers, such as E-cadherin, zonula occludens (ZO)-1, and claudin-1, and an increase in mesenchymal marker vimentin. Transforming growth factor β (TGFβ) induced Snail expression and mesenchymal morphology in MCF-10 A cells, and these effects were partially reversed by the PKCε knockdown. PKCε also mediated cell migration and anoikis resistance, which are hallmarks of EMT. Thus, our study demonstrates that PKCε is an important mediator of EMT in breast cancer. PMID:24701121

  12. Gene promoter evolution targets the center of the human protein interaction network.

    Directory of Open Access Journals (Sweden)

    Jordi Planas

    Full Text Available Assessing the contribution of promoters and coding sequences to gene evolution is an important step toward discovering the major genetic determinants of human evolution. Many specific examples have revealed the evolutionary importance of cis-regulatory regions. However, the relative contribution of regulatory and coding regions to the evolutionary process and whether systemic factors differentially influence their evolution remains unclear. To address these questions, we carried out an analysis at the genome scale to identify signatures of positive selection in human proximal promoters. Next, we examined whether genes with positively selected promoters (Prom+ genes show systemic differences with respect to a set of genes with positively selected protein-coding regions (Cod+ genes. We found that the number of genes in each set was not significantly different (8.1% and 8.5%, respectively. Furthermore, a functional analysis showed that, in both cases, positive selection affects almost all biological processes and only a few genes of each group are located in enriched categories, indicating that promoters and coding regions are not evolutionarily specialized with respect to gene function. On the other hand, we show that the topology of the human protein network has a different influence on the molecular evolution of proximal promoters and coding regions. Notably, Prom+ genes have an unexpectedly high centrality when compared with a reference distribution (P=0.008, for Eigenvalue centrality. Moreover, the frequency of Prom+ genes increases from the periphery to the center of the protein network (P=0.02, for the logistic regression coefficient. This means that gene centrality does not constrain the evolution of proximal promoters, unlike the case with coding regions, and further indicates that the evolution of proximal promoters is more efficient in the center of the protein network than in the periphery. These results show that proximal promoters

  13. Characterization and functional analyses of the human G protein-coupled receptor kinase 4 gene promoter.

    Science.gov (United States)

    Hasenkamp, Sandra; Telgmann, Ralph; Staessen, Jan A; Hagedorn, Claudia; Dördelmann, Corinna; Bek, Martin; Brand-Herrmann, Stefan-Martin; Brand, Eva

    2008-10-01

    The G protein-coupled receptor kinase 4 is involved in renal sodium handling and blood pressure regulation. Missense variants have already been tested functionally and are associated with hypertension, but no data on promoter analyses are yet available. We scanned 94 hypertensive white subjects for genetic variation and performed promoter reporter gene analyses in HEK293T, COS7, and SaOs-2 cells. Transient transfections with various full lengths and wild-type deletion constructs revealed that 1851 bp of the flanking region and 275 bp of the 5'-untranslated region were sufficient for transcriptional activities and composed a powerful cis-active element in the distal 293 bp. The -1702T and +2T alleles resulted in drastic general reductions of promoter function, whereas an activity increasing effect of +268C was cell type specific. Electrophoretic mobility-shift assay, supershift, and cotransfection analyses of transcription factor binding sites predicted in silico (Alibaba2.1/Transfac7) resulted in allele-specific binding patterns of nuclear proteins and identified the participation of CCAAT/enhancer-binding protein transcription factor family members. The G protein-coupled receptor kinase 4 core promoter resides in the first 1851 bp upstream of its transcription start site. The 4 identified genetic variants within this region exert allele-specific impact on both cell type- and stimulation-dependent transcription and may affect the expression balance of renal G protein-coupled receptor kinase 4.

  14. A whole-genome approach to identifying protein binding sites: promoters in Methanocaldococcus (Methanococcus) jannaschii.

    Science.gov (United States)

    Li, Enhu; Reich, Claudia I; Olsen, Gary J

    2008-12-01

    We have adapted an electrophoretic mobility shift assay (EMSA) to isolate genomic DNA fragments that bind the archaeal transcription initiation factors TATA-binding protein (TBP) and transcription factor B (TFB) to perform a genome-wide search for promoters. Mobility-shifted fragments were cloned, tested for their ability to compete with known promoter-containing fragments for a limited concentration of transcription factors, and sequenced. We applied the method to search for promoters in the genome of Methanocaldococcus jannaschii. Selection was most efficient for promoters of tRNA genes and genes for several presumed small non-coding RNAs (ncRNA). Protein-coding gene promoters were dramatically underrepresented relative to their frequency in the genome. The repeated isolation of these genomic regions was partially rectified by including a hybridization-based screening. Sequence alignment of the affinity-selected promoters revealed previously identified TATA box, BRE, and the putative initiator element. In addition, the conserved bases immediately upstream and downstream of the BRE and TATA box suggest that the composition and structure of archaeal natural promoters are more complicated.

  15. Microtubule-Associated Protein Mdp3 Promotes Breast Cancer Growth and Metastasis

    OpenAIRE

    Tala,; Xie, Songbo; Sun, Xiaodong; Sun, Xiaoou; Ran, Jie; Zhang, Linlin; Li, Dengwen; Liu, Min; Bao, Gang; Zhou, Jun

    2014-01-01

    Breast cancer is the most prevalent cancer in women worldwide with a high mortality rate, and the identification of new biomarkers and targets for this disease is greatly needed. Here we present evidence that microtubule-associated protein (MAP) 7 domain-containing protein 3 (Mdp3) is highly expressed in clinical samples and cell lines of breast cancer. The expression of Mdp3 correlates with clinicopathological parameters indicating breast cancer malignancy. In addition, Mdp3 promotes breast ...

  16. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Directory of Open Access Journals (Sweden)

    Fauteux François

    2009-10-01

    Full Text Available Abstract Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP gene promoters from three plant families, namely Brassicaceae (mustards, Fabaceae (legumes and Poaceae (grasses using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L. Heynh., soybean (Glycine max (L. Merr. and rice (Oryza sativa L. respectively. We have identified three conserved motifs (two RY-like and one ACGT-like in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination

  17. TPA-inducible proteins may account for sensitivity to promotion of transformation

    International Nuclear Information System (INIS)

    Hirano, K.; Smith, B.; Colburn, N.H.

    1986-01-01

    The preneoplastic JB6 mouse epidermal cell system includes cell lines sensitive (P + ) or resistant (P - ) to tumor promoter induced neoplastic transformation. The authors investigated whether a difference in TPA-inducible proteins may explain this differential sensitivity. The synthesis of a 39 Kd cytoplasmic protein (Major Excreted Protein) was TPA-inducible, but to a similar extent in both P + and P - cells. TPA stimulated phosphorylation but not synthesis of the previously described stress protein pp80 in both P + and P - cells from 1 to 5 hr after treatment. Pulse labelling of P + and P - cells with 35 S-methionine revealed a TPA dependent P + specific transient increase in the synthesis of 58Kd protein. Induction was observed at 1 hr, and returned to basal levels by 4 hr and 20 hr, in nuclear and cytoplasmic fractions, respectively. This protein is not phosphorylated in response to TPA treatment. P + cells differ from P - cells in one or more genes that specify sensitivity to promotion of transformation, designated pro genes. Antibodies to three peptides representing the pro-1 open reading frame were used in immunoprecipitation and Western blotting to isolate the pro-1 gene product. A 43 Kd protein was immunologically responsive to the pro-1 peptide antibodies, and showed an increased signal 40 min after TPA treatment. Since the predicted molecular weight of a pro-1 gene product is only 7 Kd, the possibility of a modification of the protein by poly(ADP-ribosylation) or glycosylation is being investigated

  18. Surface Density of the Hendra G Protein Modulates Hendra F Protein-Promoted Membrane Fusion: Role for Hendra G Protein Trafficking and Degradation

    OpenAIRE

    Whitman, Shannon D.; Dutch, Rebecca Ellis

    2007-01-01

    Hendra virus, like most paramyxoviruses, requires both a fusion (F) and attachment (G) protein for promotion of cell-cell fusion. Recent studies determined that Hendra F is proteolytically processed by the cellular protease cathepsin L after endocytosis. This unique cathepsin L processing results in a small percentage of Hendra F on the cell surface. To determine how the surface densities of the two Hendra glycoproteins affect fusion promotion, we performed experiments that varied the levels ...

  19. Functional promoter variant in zinc finger protein 202 predicts severe atherosclerosis and ischemic heart disease

    DEFF Research Database (Denmark)

    Frikke-Schmidt, R.; Nordestgaard, Børge; Grande, Peer

    2008-01-01

    Objectives This study was designed to test the hypotheses that single nucleotide polymorphisms ( SNPs), in zinc finger protein 202 ( ZNF202), predict severe atherosclerosis and ischemic heart disease ( IHD). Background ZNF202 is a transcriptional repressor controlling promoter elements in genes...

  20. Fluorescent protein vectors for promoter analysis in lactic acid bacteria and Escherichia coli

    NARCIS (Netherlands)

    García-Cayuela, T.; Cadiñanos, de L.P.; Mohedano, M.L.; Palencia, de P.F.; Boden, D.; Wells, J.; Peláez, C.; López, P.; Requena, T.

    2012-01-01

    Fluorescent reporter genes are valuable tools for real-time monitoring of gene expression in living cells. In this study we describe the construction of novel promoter-probe vectors containing a synthetic mCherry fluorescent protein gene, codon-optimized for lactic acid bacteria, divergently linked,

  1. Study of the glucoamylase promoter in Aspergillus niger using green fluorescent protein

    NARCIS (Netherlands)

    Santerre Henriksen, A.L.; Even, S.; Müller, C.; Punt, P.J.; Hondel, C.A.M.J.J. van den; Nielsen, J.

    1999-01-01

    An Aspergillus niger strain expressing a red-shifted green fluorescent protein (GFP) in the cytoplasm under the control of the glucoamylase promoter (PglaA) was characterized with respect to its physiology and morphology. Although xylose acted as a repressor carbon source during batch cultivations,

  2. Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria.

    Science.gov (United States)

    Zhou, Jie; Zhang, Haifeng; Meng, Hengkai; Zhu, Yan; Bao, Guanhui; Zhang, Yanping; Li, Yin; Ma, Yanhe

    2014-03-28

    Cyanobacteria are oxygenic photosynthetic prokaryotes that play important roles in the global carbon cycle. Recently, engineered cyanobacteria capable of producing various small molecules from CO2 have been developed. However, cyanobacteria are seldom considered as factories for producing proteins, mainly because of the lack of efficient strong promoters. Here, we report the discovery and verification of a super-strong promoter P(cpc560), which contains two predicted promoters and 14 predicted transcription factor binding sites (TFBSs). Using P(cpc560), functional proteins were produced at a level of up to 15% of total soluble protein in the cyanobacterium Synechocystis sp. 6803, a level comparable to that produced in Escherichia coli. We demonstrated that the presence of multiple TFBSs in P(cpc560) is crucial for its promoter strength. Genetically transformable cyanobacteria neither have endotoxins nor form inclusion bodies; therefore, P(cpc560) opens the possibility to use cyanobacteria as alternative hosts for producing heterogeneous proteins from CO2 and inorganic nutrients.

  3. Ursodeoxycholic acid reduces protein levels and nucleation-promoting activity in human gallbladder bile

    NARCIS (Netherlands)

    van Erpecum, K. J.; Portincasa, P.; Eckhardt, E.; Go, P. M.; vanBerge-Henegouwen, G. P.; Groen, A. K.

    1996-01-01

    Background & Aims: Ursodeoxycholic acid prevents gallstone formation in selected patients. The aim of this study was to examine whether decreased concentration and nucleation-promoting activity of various proteins contribute to this beneficial effect. Methods: Gallbladder bile of 13 patients with

  4. Ubiquitin-like protein UBL5 promotes the functional integrity of the Fanconi anemia pathway

    DEFF Research Database (Denmark)

    Oka, Yasuyoshi; Bekker-Jensen, Simon; Mailand, Niels

    2015-01-01

    in promoting the function of the Fanconi anemia (FA) pathway for repair of DNA interstrand crosslinks (ICLs), mediated by a specific interaction with the central FA pathway component FANCI. UBL5-deficient cells display spliceosome-independent reduction of FANCI protein stability, defective FANCI function...

  5. Tobacco arabinogalactan protein NtEPc can promote banana (Musa AAA) somatic embryogenesis.

    Science.gov (United States)

    Shu, H; Xu, L; Li, Z; Li, J; Jin, Z; Chang, S

    2014-12-01

    Banana is an important tropical fruit worldwide. Parthenocarpy and female sterility made it impossible to improve banana varieties through common hybridization. Genetic transformation for banana improvement is imperative. But the low rate that banana embryogenic callus was induced made the transformation cannot be performed in many laboratories. Finding ways to promote banana somatic embryogenesis is critical for banana genetic transformation. After tobacco arabinogalactan protein gene NtEPc was transformed into Escherichia coli (DE3), the recombinant protein was purified and filter-sterilized. A series of the sterilized protein was added into tissue culture medium. It was found that the number of banana immature male flowers developing embryogenic calli increased significantly in the presence of NtEPc protein compared with the effect of the control medium. Among the treatments, explants cultured on medium containing 10 mg/l of NtEPc protein had the highest chance to develop embryogenic calli. The percentage of lines that developed embryogenic calli on this medium was about 12.5 %. These demonstrated that NtEPc protein can be used to promote banana embryogenesis. This is the first paper that reported that foreign arabinogalactan protein (AGP) could be used to improve banana somatic embryogenesis.

  6. The screening and functional study of proteins binding with the BmNPV polyhedrin promoter.

    Science.gov (United States)

    Yu, Wei; Li, Jia; Wang, Meihui; Quan, Yanping; Chen, Jian; Nie, Zuoming; Lv, Zhengbing; Zhang, Yaozhou

    2012-05-06

    The polyhedrin gene promoter has an essential role in regulating foreign gene expression in baculovirus expression vector systems (BEVS); however, the high-level transcription mechanism is still unknown. One-hybrid screening in yeast is a powerful way of identifying rapidly heterologous transcription factors that can interact with the polyhedrin promoter DNA sequence. In the current study, total RNA was extracted from the fat bodies of fifth-instar silkworm larvae that had been infected with Bombyx mori nuclear polyhedrosis virus (BmNPV) for 5 days; complementary DNA (cDNA) was then generated using reverse-transcription (RT)-PCR to construct a silkworm gene expression library. Key polyhedrin promoter bait sequences were synthesized to generate a bait yeast strain, which was used to screen the one-hybrid cDNA library. In total, 12 positive yeast colonies were obtained from the SD/-Leu/AbA plates; sequencing analysis showed that they belong to two different protein cDNA colonies. Positive colonies underwent bioinformatics analysis, which revealed one colony to be ribosomal proteins [B. mori ribosomal protein SA (BmRPSA)] and the other to be NPV DNA-binding proteins (DBP). To further verify the regulatory function of these two protein groups, transient expression vectors (pSK-IE-dbp and pSK-IE-BmRPSA) were constructed. The recombinant plasmids were then transfected into cultured B. mori N (BmN) cells, which had been infected with a recombinant bacmid containing the gene encoding luciferase (luc). The results showed that overexpression of either dbp or BmRPSA upregulated the polh promoter-driven transcription of luc in BmN cells. In addition, dbp or BmRPSA RNA interference (RNAi) resulted in the downregulation of luciferase reporter expression in BmN cells, demonstrating that DBP and BmRPSA are important for luc transcription. EMSA results further confirmed that DBP could directly bind to the conserved single-stranded polh promoter region in intro. However, EMSA

  7. The screening and functional study of proteins binding with the BmNPV polyhedrin promoter

    Directory of Open Access Journals (Sweden)

    Yu Wei

    2012-05-01

    Full Text Available Abstract Background The polyhedrin gene promoter has an essential role in regulating foreign gene expression in baculovirus expression vector systems (BEVS; however, the high-level transcription mechanism is still unknown. One-hybrid screening in yeast is a powerful way of identifying rapidly heterologous transcription factors that can interact with the polyhedrin promoter DNA sequence. In the current study, total RNA was extracted from the fat bodies of fifth-instar silkworm larvae that had been infected with Bombyx mori nuclear polyhedrosis virus (BmNPV for 5 days; complementary DNA (cDNA was then generated using reverse-transcription (RT-PCR to construct a silkworm gene expression library. Key polyhedrin promoter bait sequences were synthesized to generate a bait yeast strain, which was used to screen the one-hybrid cDNA library. Results In total, 12 positive yeast colonies were obtained from the SD/-Leu/AbA plates; sequencing analysis showed that they belong to two different protein cDNA colonies. Positive colonies underwent bioinformatics analysis, which revealed one colony to be ribosomal proteins [B. mori ribosomal protein SA (BmRPSA] and the other to be NPV DNA-binding proteins (DBP. To further verify the regulatory function of these two protein groups, transient expression vectors (pSK-IE-dbp and pSK-IE-BmRPSA were constructed. The recombinant plasmids were then transfected into cultured B. mori N (BmN cells, which had been infected with a recombinant bacmid containing the gene encoding luciferase (luc. The results showed that overexpression of either dbp or BmRPSA upregulated the polh promoter-driven transcription of luc in BmN cells. In addition, dbp or BmRPSA RNA interference (RNAi resulted in the downregulation of luciferase reporter expression in BmN cells, demonstrating that DBP and BmRPSA are important for luc transcription. EMSA results further confirmed that DBP could directly bind to the conserved single-stranded polh

  8. Oct-1 acts as a transcriptional repressor on the C-reactive protein promoter

    Science.gov (United States)

    Voleti, Bhavya; Hammond, David J.; Thirumalai, Avinash; Agrawal, Alok

    2012-01-01

    C-reactive protein (CRP), a plasma protein of the innate immune system, is produced by hepatocytes. A critical regulatory region (−42 to −57) on the CRP promoter contains binding site for the IL-6-activated transcription factor C/EBPβ. The IL-1β-activated transcription factor NF-κB binds to a κB site located nearby (−63 to −74). The κB site overlaps an octamer motif (−59 to −66) which is the binding site for the constitutively active transcription factor Oct-1. Oct-1 is known to function both as a transcriptional repressor and as an activator depending upon the promoter context. Also, Oct-1 can regulate gene expression either by binding directly to the promoter or by interacting with other transcription factors bound to the promoter. The aim of this study was to investigate the functions of Oct-1 in regulating CRP expression. In luciferase transactivation assays, overexpressed Oct-1 inhibited (IL-6+IL-1β)-induced CRP expression in Hep3B cells. Deletion of the Oct-1 site from the promoter drastically reduced the cytokine response because the κB site was altered as a consequence of deleting the Oct-1 site. Surprisingly, overexpressed Oct-1 inhibited the residual (IL-6+IL-1β)-induced CRP expression through the promoter lacking the Oct-1 site. Similarly, deletion of the Oct-1 site reduced the induction of CRP expression in response to overexpressed C/EBPβ, and overexpressed Oct-1 inhibited C/EBPβ-induced CRP expression through the promoter lacking the Oct-1 site. We conclude that Oct-1 acts as a transcriptional repressor of CRP expression and it does so by occupying its cognate site on the promoter and also via other transcription factors by an as yet undefined mechanism. PMID:22750226

  9. Evaluation of the Saccharomyces cerevisiae ADH2 promoter for protein synthesis.

    Science.gov (United States)

    Lee, K Michael; DaSilva, Nancy A

    2005-04-30

    The Saccharomyces cerevisiae ADH2 promoter (P(ADH2)) is repressed several hundred-fold in the presence of glucose; transcription is initiated once the glucose in the medium is exhausted. The promoter can thus be utilized for effective regulation of recombinant gene expression in S. cerevisiae without the addition of an inducer. To evaluate this promoter in the absence of plasmid copy number and stability variations, the P(ADH2)-lacZ cassette was integrated into the yeast chromosomes. The effects of medium composition, glucose concentration and cultivation time on promoter derepression and expression level were investigated. Maximum protein activity was obtained after 48 h of growth in complex YPD medium containing 1% glucose. The widely used S. cerevisiae GAL1 and CUP1 promoters both require the addition of an inducer [galactose and copper(II) ion, respectively] before regulated genes will be expressed. The strengths of these three different promoters were compared for cells containing one copy of an integrated lacZ gene under their control. The ADH2 promoter was superior for all induction strategies investigated.

  10. Tubulin Polymerization-promoting Protein (TPPP/p25α) Promotes Unconventional Secretion of α-Synuclein through Exophagy by Impairing Autophagosome-Lysosome Fusion

    DEFF Research Database (Denmark)

    Ejlerskov, Patrick; Rasmussen, Izabela; Nielsen, Troels Tolstrup

    2013-01-01

    Aggregation of α-synuclein can be promoted by the tubulin polymerization-promoting protein/p25α, which we have used here as a tool to study the role of autophagy in the clearance of α-synuclein. In NGF-differentiated PC12 catecholaminergic nerve cells, we show that de novo expressed p25α co...

  11. Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription.

    Science.gov (United States)

    Knight, Britta; Kubik, Slawomir; Ghosh, Bhaswar; Bruzzone, Maria Jessica; Geertz, Marcel; Martin, Victoria; Dénervaud, Nicolas; Jacquet, Philippe; Ozkan, Burak; Rougemont, Jacques; Maerkl, Sebastian J; Naef, Félix; Shore, David

    2014-08-01

    In yeast, ribosome production is controlled transcriptionally by tight coregulation of the 138 ribosomal protein genes (RPGs). RPG promoters display limited sequence homology, and the molecular basis for their coregulation remains largely unknown. Here we identify two prevalent RPG promoter types, both characterized by upstream binding of the general transcription factor (TF) Rap1 followed by the RPG-specific Fhl1/Ifh1 pair, with one type also binding the HMG-B protein Hmo1. We show that the regulatory properties of the two promoter types are remarkably similar, suggesting that they are determined to a large extent by Rap1 and the Fhl1/Ifh1 pair. Rapid depletion experiments allowed us to define a hierarchy of TF binding in which Rap1 acts as a pioneer factor required for binding of all other TFs. We also uncovered unexpected features underlying recruitment of Fhl1, whose forkhead DNA-binding domain is not required for binding at most promoters, and Hmo1, whose binding is supported by repeated motifs. Finally, we describe unusually micrococcal nuclease (MNase)-sensitive nucleosomes at all RPG promoters, located between the canonical +1 and -1 nucleosomes, which coincide with sites of Fhl1/Ifh1 and Hmo1 binding. We speculate that these "fragile" nucleosomes play an important role in regulating RPG transcriptional output. © 2014 Knight et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Phage phi 29 regulatory protein p4 stabilizes the binding of the RNA polymerase to the late promoter in a process involving direct protein-protein contacts.

    Science.gov (United States)

    Nuez, B; Rojo, F; Salas, M

    1992-12-01

    Transcription from the late promoter, PA3, of Bacillus subtilis phage phi 29 is activated by the viral regulatory protein p4. A kinetic analysis of the activation process has revealed that the role of protein p4 is to stabilize the binding of RNA polymerase to the promoter as a closed complex without significantly affecting further steps of the initiation process. Electrophoretic band-shift assays performed with a DNA fragment spanning only the protein p4 binding site showed that RNA polymerase could efficiently retard the complex formed by protein p4 bound to the DNA. Similarly, when a DNA fragment containing only the RNA polymerase-binding region of PA3 was used, p4 greatly stimulated the binding of RNA polymerase to the DNA. These results strongly suggest that p4 and RNA polymerase contact each other at the PA3 promoter. In the light of current knowledge of the p4 activation mechanism, we propose that direct contacts between the two proteins participate in the activation process.

  13. Promoter architecture and transcriptional regulation of Abf1-dependent ribosomal protein genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Fermi, Beatrice; Bosio, Maria Cristina; Dieci, Giorgio

    2016-07-27

    In Saccharomyces cerevisiae, ribosomal protein gene (RPG) promoters display binding sites for either Rap1 or Abf1 transcription factors. Unlike Rap1-associated promoters, the small cohort of Abf1-dependent RPGs (Abf1-RPGs) has not been extensively investigated. We show that RPL3, RPL4B, RPP1A, RPS22B and RPS28A/B share a common promoter architecture, with an Abf1 site upstream of a conserved element matching the sequence recognized by Fhl1, a transcription factor which together with Ifh1 orchestrates Rap1-associated RPG regulation. Abf1 and Fhl1 promoter association was confirmed by ChIP and/or gel retardation assays. Mutational analysis revealed a more severe requirement of Abf1 than Fhl1 binding sites for RPG transcription. In the case of RPS22B an unusual Tbf1 binding site promoted both RPS22B and intron-hosted SNR44 expression. Abf1-RPG down-regulation upon TOR pathway inhibition was much attenuated at defective mutant promoters unable to bind Abf1. TORC1 inactivation caused the expected reduction of Ifh1 occupancy at RPS22B and RPL3 promoters, but unexpectedly it entailed largely increased Abf1 association with Abf1-RPG promoters. We present evidence that Abf1 recruitment upon nutritional stress, also observed for representative ribosome biogenesis genes, favours RPG transcriptional rescue upon nutrient replenishment, thus pointing to nutrient-regulated Abf1 dynamics at promoters as a novel mechanism in ribosome biogenesis control. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Promoting Tag Removal of a MBP-Fused Integral Membrane Protein by TEV Protease.

    Science.gov (United States)

    Chen, Yanke; Li, Qichang; Yang, Jun; Xie, Hao

    2017-03-01

    Tag removal is a prerequisite issue for structural and functional analysis of affinity-purified membrane proteins. The present study took a MBP-fused membrane protein, MrpF, as a model to investigate the tag removal by TEV protease. Influences of the linking sequence between TEV cleavage site and MrpF on protein expression and predicted secondary structure were investigated. The steric accessibility of TEV protease to cleavage site of MBP-fused MrpF was explored. It was found that reducing the size of hydrophilic group of detergents and/or extending the linking sequence between cleavage site and target protein can significantly improve the accessibility of the cleavage site and promote tag removal by TEV protease.

  15. Developmental regulation of tandem promoters for the major outer membrane protein gene of Chlamydia trachomatis.

    Science.gov (United States)

    Stephens, R S; Wagar, E A; Edman, U

    1988-01-01

    Chlamydia trachomatis has a biphasic developmental cycle which is characterized by qualitative and quantitative changes in protein expression. The molecular mechanisms that mediate these changes are unknown. Evidence for transcriptional regulation of the chlamydial major outer membrane protein gene (omp1) was found by Northern hybridization of RNA isolated sequentially during the chlamydial developmental cycle. Early in the growth cycle a single transcript was detected, which was followed hours later in the cycle by an additional transcript. Mapping of the initiating nucleotide for each transcript suggested that this gene is regulated by differential transcription from tandem promoters. Images PMID:2448291

  16. Microtubule-associated protein Mdp3 promotes breast cancer growth and metastasis.

    Science.gov (United States)

    Tala; Xie, Songbo; Sun, Xiaodong; Sun, Xiaoou; Ran, Jie; Zhang, Linlin; Li, Dengwen; Liu, Min; Bao, Gang; Zhou, Jun

    2014-01-01

    Breast cancer is the most prevalent cancer in women worldwide with a high mortality rate, and the identification of new biomarkers and targets for this disease is greatly needed. Here we present evidence that microtubule-associated protein (MAP) 7 domain-containing protein 3 (Mdp3) is highly expressed in clinical samples and cell lines of breast cancer. The expression of Mdp3 correlates with clinicopathological parameters indicating breast cancer malignancy. In addition, Mdp3 promotes breast cancer cell proliferation and motility in vitro and stimulates breast cancer growth and metastasis in mice. Mechanistic studies reveal that γ-tubulin interacts with and recruits Mdp3 to the centrosome and that the centrosomal localization of Mdp3 is required for its activity to promote breast cancer cell proliferation and motility. These findings suggest a critical role for Mdp3 in the growth and metastasis of breast cancer and may have important implications for the management of this disease.

  17. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum.

    Science.gov (United States)

    Heiss, Silvia; Hörmann, Angelika; Tauer, Christopher; Sonnleitner, Margot; Egger, Esther; Grabherr, Reingard; Heinl, Stefan

    2016-03-10

    Engineering lactic acid bacteria (LAB) is of growing importance for food and feed industry as well as for in vivo vaccination or the production of recombinant proteins in food grade organisms. Often, expression of a transgene is only desired at a certain time point or period, e.g. to minimize the metabolic burden for the host cell or to control the expression time span. For this purpose, inducible expression systems are preferred, though cost and availability of the inducing agent must be feasible. We selected the plasmid free strain Lactobacillus plantarum 3NSH for testing and characterization of novel inducible promoters/repressor systems. Their feasibility in recombinant protein production was evaluated. Expression of the reporter protein mCherry was monitored with the BioLector(®) micro-fermentation system. Reporter gene mCherry expression was compared under the control of different promoter/repressor systems: PlacA (an endogenous promoter/repressor system derived from L. plantarum 3NSH), PxylA (a promoter/repressor system derived from Bacillus megaterium DSMZ 319) and PlacSynth (synthetic promoter and codon-optimized repressor gene based on the Escherichia coli lac operon). We observed that PlacA was inducible solely by lactose, but not by non-metabolizable allolactose analoga. PxylA was inducible by xylose, yet showed basal expression under non-induced conditions. Growth on galactose (as compared to exponential growth phase on glucose) reduced basal mCherry expression at non-induced conditions. PlacSynth was inducible with TMG (methyl β-D-thiogalactopyranoside) and IPTG (isopropyl β-D-1-thiogalactopyranoside), but also showed basal expression without inducer. The promoter PlacSynth was used for establishment of a dual plasmid expression system, based on T7 RNA polymerase driven expression in L. plantarum. Comparative Western blot supported BioLector(®) micro-fermentation measurements. Conclusively, overall expression levels were moderate (compared to a

  18. Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C.

    Science.gov (United States)

    Lin, Zhaoyu; Liu, Fei; Shi, Peiliang; Song, Anying; Huang, Zan; Zou, Dayuan; Chen, Qin; Li, Jianxin; Gao, Xiang

    2018-02-26

    Changes in metabolic pathway preferences are key events in the reprogramming process of somatic cells to induced pluripotent stem cells (iPSCs). The optimization of metabolic conditions can enhance reprogramming; however, the detailed underlying mechanisms are largely unclear. By comparing the gene expression profiles of somatic cells, intermediate-phase cells, and iPSCs, we found that carnitine palmitoyltransferase (Cpt)1b, a rate-limiting enzyme in fatty acid oxidation, was significantly upregulated in the early stage of the reprogramming process. Mouse embryonic fibroblasts isolated from transgenic mice carrying doxycycline (Dox)-inducible Yamanaka factor constructs were used for reprogramming. Various fatty acid oxidation-related metabolites were added during the reprogramming process. Colony counting and fluorescence-activated cell sorting (FACS) were used to calculate reprogramming efficiency. Fatty acid oxidation-related metabolites were measured by liquid chromatography-mass spectrometry. Seahorse was used to measure the level of oxidative phosphorylation. We found that overexpression of cpt1b enhanced reprogramming efficiency. Furthermore, palmitoylcarnitine or acetyl-CoA, the primary and final products of Cpt1-mediated fatty acid oxidation, also promoted reprogramming. In the early reprogramming process, fatty acid oxidation upregulated oxidative phosphorylation and downregulated protein kinase C activity. Inhibition of protein kinase C also promoted reprogramming. We demonstrated that fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C activity in the early stage of the reprogramming process. This study reveals that fatty acid oxidation is crucial for the reprogramming efficiency.

  19. Growth-promoting effect on iron-sulfur proteins on axenic cultures of Entamoeba dispar

    Directory of Open Access Journals (Sweden)

    Khalifa S.A.M.

    2006-03-01

    Full Text Available A growth-promoting factor (GPF that promotes the growth of Entamoeba dispar under axenic culture conditions was found in fractions of mitochondria (Mt, hydrogenosomes (Hg and chloroplasts (Cp obtained from cells of six different protozoan, mammalian and plant species. We were able to extract the GPF from the Cp-rich leaf cells of a plant (spiderwort: Commelina communis L. in an acetone-soluble fraction as a complex of chlorophyll with low molecular weight proteins (molecular weight [MW] approximately 4,600. We also found that on treatment with 0.6 % complexes of 2-mercapthoethanol (2ME, complexes of chlorophyll-a with iron-sulphur (Fe-S proteins (e.g., ferredoxins [Fd] from spinach and Clostridium pasteurianum and noncomplex rubredoxin (Rd from C. pasteurianum have a growth-promoting effect on E. dispar. These findings suggest that E. dispar may lack a sufficient quantity of some essential components of Fe-S proteins, such as Fe-S center.

  20. Resuscitation promoting factors: a family of microbial proteins in survival and resuscitation of dormant mycobacteria.

    Science.gov (United States)

    Gupta, Ravi Kr; Srivastava, Ranjana

    2012-06-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is an extraordinarily successful pathogen of humankind. It has been estimated that up to one-third of the world's population is infected with M. tuberculosis, and this population is an important reservoir for disease reactivation. Resuscitation promoting factor (Rpf) is a secretory protein, which was first reported in Micrococcus luteus. There are five functionally redundant Rpf-like proteins found in M. tuberculosis. Rpf promotes the resuscitation of dormant bacilli to yield normal, viable colony forming bacteria. All Rpfs share a conserved domain of about 70 amino acids and possess a lysozyme-like activity. The structural studies of the conserved domain suggest that Rpfs could be considered as a c-type lysozyme and lytic transglycosylases. Recently a novel class of nitrophenylthiocyanates (NPT) inhibitors of the muralytic activity of Rpf were reported which opens a new approach in the study of cell-wall hydrolyzing enzymes. This review describes molecular and structural studies conducted on Rpf proteins, their role in the resuscitation of dormant bacteria, in the reactivation of latent infection and identification of low molecular weight inhibitors of resuscitation promoting factors.

  1. Histologi Tubulus Seminiferus dan Kadar Testosteron Tikus yang Diberi Pakan Imbuhan Tepung Daun Kaliandra dan Kulit Nanas (HISTOLOGY OF SEMINIFEROUS TUBULES AND TESTOSTERONE LEVEL OF RAT GIVEN CALLIANDRA LEAF MEAL AND PINEAPPLE PEELS IN THE DIETS

    Directory of Open Access Journals (Sweden)

    Iriani Setyawati

    2017-09-01

    Full Text Available Calliandra calothyrsus leaf contains 17-28% protein which is hihly potential for use as source of protein supplement for animal feed. However, the plants also contain high level (>10% of condensed tannins as antinutritional effects which may reduce consumtion efficiency of diet. The addition of protease (bromelain into feed containing tannin is expected to decrease the negative effects of tannins. Bromelain can be obtained from the pineapple plant (Ananas comosus including on the peels. This study was conducted to determine the effect of calliandra tannin combined with bromelain protease of pineapple peels in the feed on testicular histology and testosterone level of rats feeded during the growth period. The feeding experiment on post-weaning male rats was conducted using a completely randomized factorial design (4 main factors x 4 subfactors. The main factors were calliandra leaf meal substitution of 0; 10; 17.5 and 25% in the diets and subfactors were addition of pineapple peels, 0; 4.35; 8.70 and 13.05 g/rat/day. Rats were divided into 16 groups and were feeded the diets for two months (during the growth period. The results showed the susbtituion of feed with calliandra leaf had no sigbnificant effecton the thickness of the seminiferous tubules, but it appeared to have significant effect on the histology of seminiferous tubules. Increased pineapple peels level in the diets containing calliandra decreased wall thickness of the seminiferous tubules of the rat testes, indicating that bromalein fastened the maturation of spermatozoa. The addition of pineapple peels into the diet containing calliandra had a significant interaction effect on testoteron levels of male rats, but the testoteron levels among all treated rats were still within the normal range. ABSTRAK Daun kaliandra (Calliandra calothyrsus mengandung protein 17-28% sehingga potensial sebagai sumber protein pakan ternak, namun tanaman ini mengandung condensed tannin cukup tinggi (>10

  2. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution

    Science.gov (United States)

    Maida, Adriano; Zota, Annika; Sjøberg, Kim A.; Sijmonsma, Tjeerd P.; Pfenninger, Anja; Christensen, Marie M.; Gantert, Thomas; Fuhrmeister, Jessica; Rothermel, Ulrike; Schmoll, Dieter; Heikenwälder, Mathias; Iovanna, Juan L.; Stemmer, Kerstin; Herzig, Stephan; Rose, Adam J.

    2016-01-01

    Dietary protein intake is linked to an increased incidence of type 2 diabetes (T2D). Although dietary protein dilution (DPD) can slow the progression of some aging-related disorders, whether this strategy affects the development and risk for obesity-associated metabolic disease such as T2D is unclear. Here, we determined that DPD in mice and humans increases serum markers of metabolic health. In lean mice, DPD promoted metabolic inefficiency by increasing carbohydrate and fat oxidation. In nutritional and polygenic murine models of obesity, DPD prevented and curtailed the development of impaired glucose homeostasis independently of obesity and food intake. DPD-mediated metabolic inefficiency and improvement of glucose homeostasis were independent of uncoupling protein 1 (UCP1), but required expression of liver-derived fibroblast growth factor 21 (FGF21) in both lean and obese mice. FGF21 expression and secretion as well as the associated metabolic remodeling induced by DPD also required induction of liver-integrated stress response–driven nuclear protein 1 (NUPR1). Insufficiency of select nonessential amino acids (NEAAs) was necessary and adequate for NUPR1 and subsequent FGF21 induction and secretion in hepatocytes in vitro and in vivo. Taken together, these data indicate that DPD promotes improved glucose homeostasis through an NEAA insufficiency–induced liver NUPR1/FGF21 axis. PMID:27548521

  3. Identifying and engineering promoters for high level and sustainable therapeutic recombinant protein production in cultured mammalian cells.

    Science.gov (United States)

    Ho, Steven C L; Yang, Yuansheng

    2014-08-01

    Promoters are essential on plasmid vectors to initiate transcription of the transgenes when generating therapeutic recombinant proteins expressing mammalian cell lines. High and sustained levels of gene expression are desired during therapeutic protein production while gene expression is useful for cell engineering. As many finely controlled promoters exhibit cell and product specificity, new promoters need to be identified, optimized and carefully evaluated before use. Suitable promoters can be identified using techniques ranging from simple molecular biology methods to modern high-throughput omics screenings. Promoter engineering is often required after identification to either obtain high and sustained expression or to provide a wider range of gene expression. This review discusses some of the available methods to identify and engineer promoters for therapeutic recombinant protein expression in mammalian cells.

  4. The effect of praziquantel and Carica papaya seeds on Hymenolepis nana infection in mice using scanning electron microscope.

    Science.gov (United States)

    Abou Shady, Omayma M; Basyoni, Maha M A; Mahdy, Olfat A; Bocktor, Nardden Zakka

    2014-08-01

    Hymenolepis nana (H. nana) is the most common tapeworm infection worldwide. It is more prevalent in warm climates where sanitation is poor, particularly among children. The effect and mechanism of action of praziquantel (PZQ), given at a dose of 25-mg/kg BW, and Carica papaya dried seed crude aqueous extract (CAE), given at a dose of 1.2-g/kg BW, were assessed on H. nana worms in experimentally infected mice. Tegumental changes were studied using the scanning electron microscope (SEM) and different parasitological parameters were observed. Each group of infected mice was divided into two subgroups. The first subgroup received either treatment before the 4th day after infection to investigate their effects on the cysticercoid stage. The other subgroup received treatments after the development of the adult stage, confirmed by eggs detection in stool. Both PZQ and C. papaya dried seed CAE resulted in a significant reduction of worm burden, total egg output and viable egg count. Marked tegumental changes were evident in adult worms treated with either treatment including shrinkage of the scolex and neck region with rostellar edema and complete loss of its hooks. However, all previous effects were exerted more rapidly in the case of PZQ treatment. They both significantly reduced cysticercoid stage size. Nevertheless, C. papaya outstand PZQ in having a deforming effect on adults arising from treated cysticercoids. It was concluded that C. papaya has significant anti-cestodal properties that enable its seed extract to be a very effective alternative to PZQ against H. nana.

  5. Effects of UV radiation on hatching, lipid peroxidation, and fatty acid composition in the copepod Paracyclopina nana.

    Science.gov (United States)

    Won, Eun-Ji; Lee, Yeonjung; Han, Jeonghoon; Hwang, Un-Ki; Shin, Kyung-Hoon; Park, Heum Gi; Lee, Jae-Seong

    2014-09-01

    To evaluate the effects of UV radiation on the reproductive physiology and macromolecules in marine zooplankton, several doses of UV radiation were used to treat the copepod Paracyclopina nana, and we analyzed in vivo endpoints of their life cycle such as mortality and reproductive parameters with in vitro biochemical biomarkers such as reactive oxygen species (ROS), the modulated enzyme activity of glutathione S-transferase (GST) and superoxide dismutase (SOD), and the production of a byproduct of peroxidation (e.g. malonedialdehyde, MDA). After UV radiation, the survival rate of P. nana was significantly reduced. Also, egg sac damage and a reduction in the hatching rate of offspring were observed in UV-irradiated ovigerous females. According to the assessed biochemical parameters, we found dose-dependent increases in ROS levels and high levels of the lipid peroxidation decomposition product by 2 kJ m(-2), implying that P. nana was under off-balanced status by oxidative stress-mediated cellular damage. Antioxidant enzyme activities of GST and SOD increased over different doses of UV radiation. To measure UV-induced lipid peroxidation, we found a slight reduction in the composition of essential fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These findings indicate that UV radiation can induce oxidative stress-triggered lipid peroxidation with modulation of antioxidant enzyme activity, leading to a significant effect on mortality and reproductive physiology (e.g. fecundity). These results demonstrate the involvement of UV radiation on essential fatty acids and its susceptibility to UV radiation in the copepod P. nana compared to other species. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Achieving efficient protein expression in Trichoderma reesei by using strong constitutive promoters

    Directory of Open Access Journals (Sweden)

    Li Junxin

    2012-06-01

    Full Text Available Abstract Backgrounds The fungus Trichoderma reesei is an important workhorse for expression of homologous or heterologous genes, and the inducible cbh1 promoter is generally used. However, constitutive expression is more preferable in some cases than inducible expression that leads to production of unwanted cellulase components. In this work, constitutive promoters of T. reesei were screened and successfully used for high level homologous expression of xylanase II. Results The transcriptional profiles of 13 key genes that participate in glucose metabolism in T. reesei were analyzed by quantitative real-time reverse-transcription polymerase chain reaction (RT-qPCR. The results indicated that the mRNA levels of pdc (encoding pyruvate decarboxylase and eno (encoding enolase genes were much higher than other genes under high glucose conditions. Recombinant T. reesei strains that homologously expressed xylanase II were constructed by using the promoters of the pdc and eno genes, and they respectively produced 9266 IU/ml and 8866 IU/ml of xylanase activities in the cultivation supernatant in a medium with high glucose concentration. The productivities of xylanase II were 1.61 g/L (with the pdc promoter and 1.52 g/L (with the eno promoter, approximately accounted for 83% and 82% of the total protein secreted by T. reesei, respectively. Conclusions This work demonstrates the screening of constitutive promoters by using RT-qPCR in T. reesei, and has obtained the highest expression of recombinant xylanase II to date by using these promoters.

  7. Interplay between unfolded protein response and autophagy promotes tumor drug resistance.

    Science.gov (United States)

    Yan, Ming-Ming; Ni, Jiang-Dong; Song, Deye; Ding, Muliang; Huang, Jun

    2015-10-01

    The endoplasmic reticulum (ER) is involved in the quality control of secreted protein via promoting the correct folding of nascent protein and mediating the degradation of unfolded or misfolded protein, namely ER-associated degradation. When the unfolded or misfolded proteins are abundant, the unfolded protein response (UPR) is elicited, an adaptive signaling cascade from the ER to the nucleus, which restores the homeostatic functions of the ER. Autophagy is a conserved catabolic process where cellular long-lived proteins and damaged organelles are engulfed and degraded for recycling to maintain homeostasis. The UPR and autophagy occur simultaneously and are involved in pathological processes, including tumorigenesis, chemoresistance of malignancies and neurodegeneration. Accumulative data has indicated that the UPR may induce autophagy and that autophagy is able to alleviate the UPR. However, the detailed mechanism of interplay between autophagy and UPR remains to be fully understood. The present review aimed to depict the core pathways of the two processes and to elucidate how autophagy and UPR are regulated. Moreover, the review also discusses the molecular mechanism of crosstalk between the UPR and autophagy and their roles in malignant survival and drug resistance.

  8. Influence of twisted tape turbulence promoter on fouling reduction in microfiltration of milk proteins

    Directory of Open Access Journals (Sweden)

    Popović Svetlana S.

    2011-01-01

    Full Text Available Membrane filtration has become one of the major technologies in the food industry. It is widely applied in the dairy industry, and it is mostly used for the concentration and fractionation of milk proteins and for the whey processing. Of all pressure driven membrane processes, ultrafiltration is the most widely used. The major disadvantage of pressure driven membrane processes is severe fouling of membrane during filtration particularly when the fluids containing proteins are processed. Fouling with proteins is complex phenomenon because it occurs at the membrane surface as well as in the pores of membrane, and depends on the operating conditions and on the interactions of proteins and membrane material. In order to reduce fouling of the membrane different techniques have been developed, and one of them relies on the changing of the hydrodynamic conditions in the membrane or module. In this study, influence of twisted tape turbulence promoters on the fouling reduction in cross-flow microfiltration of skim milk was investigated. Twisted tapes with tree characteristic ratios of helix element length to the tape diameter (aspect ratio were studied. It was shown that twisted tapes with different aspect ratios reduce fouling of membrane by a factor of three or more. The presence of twisted tape induces changes in the flow patterns from straight to helicoidally thus producing turbulence flow at the lower cross-flow rates. Turbulence intensification prevents accumulation of proteins at membrane surface enabling reduction in reversible fouling what results in the reduction of overall membrane fouling. The best performance was achieved using a twisted tape with the lowest aspect ratio of 1.0. This promoter reduces fouling seven times at low transmembrane pressure and low cross-flow velocity. The twisted tape with aspect ratio 1.0 induces the most intensive turbulence, the longest helicoidal flow path, and appearance of vortices near the membrane surfaces

  9. RNA-seq based whole transcriptome analysis of the cyclopoid copepod Paracyclopina nana focusing on xenobiotics metabolism.

    Science.gov (United States)

    Lee, Bo-Young; Kim, Hui-Su; Choi, Beom-Soon; Hwang, Dae-Sik; Choi, Ah Young; Han, Jeonghoon; Won, Eun-Ji; Choi, Ik-Young; Lee, Seung-Hwi; Om, Ae-Son; Park, Heum Gi; Lee, Jae-Seong

    2015-09-01

    Copepods are among the most abundant taxa in marine invertebrates, and cyclopoid copepods include more than 1500 species and subspecies. In marine ecosystems, planktonic copepods play a significant role as food resources in the food web and sensitively respond to environmental changes. The copepod Paracylopina nana is one of the planktonic brackish water copepods and considered as a promising model species in ecotoxicology. We sequenced the whole transcriptome of P. nana using RNA-seq technology. De novo sequence assembly by Trinity integrated with TransDecoder produced 67,179 contigs including putative alternative spliced variants. A total of 12,474 genes were identified based on BLAST analysis, and gene sequences were most similar to the sequences of the branchiopod Daphnia. Gene Ontology and KEGG pathway analysis showed that most transcripts annotated were involved in pathways of various metabolisms, immune system, signal transduction, and translation. Considering numbers of sequences and enzymes involved in the pathways, particularly attention was paid to genes potentially involved in xenobiotics biodegradation and metabolism. With regard to xenobiotics metabolism, various xenobiotic metabolizing enzymes such as oxidases, dehydrogenases, and transferases were obtained from the annotated transcripts. The whole transcriptome analysis of P. nana provides valuable resources for future studies of xenobiotics-related metabolism in this marine copepod species. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Functional analysis of promoter variants in the microsomal triglyceride transfer protein (MTTP) gene.

    Science.gov (United States)

    Rubin, Diana; Schneider-Muntau, Alexandra; Klapper, Maja; Nitz, Inke; Helwig, Ulf; Fölsch, Ulrich R; Schrezenmeir, Jürgen; Döring, Frank

    2008-01-01

    The microsomal triglyceride transfer protein (MTTP) is required for the assembly and secretion of apolipoprotein B (apoB)-containing lipoproteins from the intestine and liver. According to this function, polymorphic sites in the MTTP gene showed associations to low-density lipoprotein (LDL) cholesterol and related traits of the metabolic syndrome. Here we studied the functional impact of common MTTP promoter polymorphisms rs1800804:T>C (-164T>C), rs1800803:A>T (-400A>T), and rs1800591:G>T (-493G>T) using gene-reporter assays in intestinal Caco-2 and liver Huh-7 cells. Significant results were obtained in Huh-7 cells. The common MTTP promoter haplotype -164T/-400A/-493G showed about two-fold lower activity than the rare haplotype -164C/-400T/-493T. MTTP promoter mutant constructs -164T/-400A/-493T and -164T/-400T/-493T exhibited similar activity than the common haplotype. Activities of mutants -164C/-400A/-493G and -164C/-400A/-493T resembled the rare MTTP promoter haplotype. Electrophoretic mobility shift assays (EMSAs) revealed higher binding capacity of the transcriptional factor Sterol regulatory element binding protein1a (SREBP1a) to the -164T probe in comparison to the -164C probe. In conclusion, our study indicates that the polymorphism -164T>C mediates different activities of common MTTP promoter haplotypes via SREBP1a. This suggested that the already described SREBP-dependent modulation of MTTP expression by diet is more effective in -164T than in -164C carriers. (c) 2007 Wiley-Liss, Inc.

  11. Potensi Anthelmintik Akar Tanaman Putri Malu (Mimosa pudica L. terhadap Hymenolepis nana pada Mencit

    Directory of Open Access Journals (Sweden)

    A. A. Candra

    2008-08-01

    Full Text Available The objective of this experiment was to observe the anthelmintic effect of different concentration of root extract of the sensitive plant (Mimosa pudica L. to Hymenolepis nana (Hymenolepis sp. in mice. Sixty mice were divided into 6 groups consisting of 10 mice per group. Mice were infected with 100 infective eggs of Hymenolepis sp. after deworming by mebendazol. After reaching the prepaten phase ( 21st day, mice were treated with different concentration of root extract per oral, namely 100%, 50%, 25%, 12.5%. Positive control treated with mebendazole and negative control treated with distilled water. Fecal eggs were counted using McMaster method on day 2, 4, 6 and 8 after treatment. Mice were sacrificed for worm counting of Hymenolepis sp. in mice intestine on the day 10 day after treatment. Efication of the root extract to Hymenolepis sp. in mice for concentration 100%, 50%, 25% and 12.5% were 59.62%, 86.38%, 45.54%, 92.49% respectively. Reducing in the number of Hymenolepis sp. was inconsistency decreasing in the eggs number per gram fecal.

  12. PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length.

    Science.gov (United States)

    Hayama, Ryosuke; Sarid-Krebs, Liron; Richter, René; Fernández, Virginia; Jang, Seonghoe; Coupland, George

    2017-04-03

    Seasonal reproduction in many organisms requires detection of day length. This is achieved by integrating information on the light environment with an internal photoperiodic time-keeping mechanism. Arabidopsis thaliana promotes flowering in response to long days (LDs), and CONSTANS (CO) transcription factor represents a photoperiodic timer whose stability is higher when plants are exposed to light under LDs. Here, we show that PSEUDO RESPONSE REGULATOR (PRR) proteins directly mediate this stabilization. PRRs interact with and stabilize CO at specific times during the day, thereby mediating its accumulation under LDs. PRR-mediated stabilization increases binding of CO to the promoter of FLOWERING LOCUS T ( FT ), leading to enhanced FT transcription and early flowering under these conditions. PRRs were previously reported to contribute to timekeeping by regulating CO transcription through their roles in the circadian clock. We propose an additional role for PRRs in which they act upon CO protein to promote flowering, directly coupling information on light exposure to the timekeeper and allowing recognition of LDs. © 2017 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  13. Combination of the Endogenous lhcsr1 Promoter and Codon Usage Optimization Boosts Protein Expression in the Moss Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Manuel Hiss

    2017-10-01

    Full Text Available The moss Physcomitrella patens is used both as an evo-devo model and biotechnological production system for metabolites and pharmaceuticals. Strong in vivo expression of genes of interest is important for production of recombinant proteins, e.g., selectable markers, fluorescent proteins, or enzymes. In this regard, the choice of the promoter sequence as well as codon usage optimization are two important inside factors to consider in order to obtain optimum protein accumulation level. To reliably quantify fluorescence, we transfected protoplasts with promoter:GFP fusion constructs and measured fluorescence intensity of living protoplasts in a plate reader system. We used the red fluorescent protein mCherry under 2x 35S promoter control as second reporter to normalize for different transfection efficiencies. We derived a novel endogenous promoter and compared deletion variants with exogenous promoters. We used different codon-adapted green fluorescent protein (GFP genes to evaluate the influence of promoter choice and codon optimization on protein accumulation in P. patens, and show that the promoter of the gene of P. patens chlorophyll a/b binding protein lhcsr1 drives expression of GFP in protoplasts significantly (more than twofold better than the commonly used 2x 35S promoter or the rice actin1 promoter. We identified a shortened 677 bp version of the lhcsr1 promoter that retains full activity in protoplasts. The codon optimized GFP yields significantly (more than twofold stronger fluorescence signals and thus demonstrates that adjusting codon usage in P. patens can increase expression strength. In combination, new promotor and codon optimized GFP conveyed sixfold increased fluorescence signal.

  14. Crystal structure of the tumor-promoter okadaic acid bound to protein phosphatase-1.

    Science.gov (United States)

    Maynes, J T; Bateman, K S; Cherney, M M; Das, A K; Luu, H A; Holmes, C F; James, M N

    2001-11-23

    Protein phosphatase-1 (PP1) plays a key role in dephosphorylation in numerous biological processes such as glycogen metabolism, cell cycle regulation, smooth muscle contraction, and protein synthesis. Microorganisms produce a variety of inhibitors of PP1, which include the microcystin class of inhibitors and okadaic acid, the latter being the major cause of diarrhetic shellfish poisoning and a powerful tumor promoter. We have determined the crystal structure of the molecular complex of okadaic acid bound to PP1 to a resolution of 1.9 A. This structure reveals that the acid binds in a hydrophobic groove adjacent to the active site of the protein and interacts with basic residues within the active site. Okadaic acid exhibits a cyclic structure, which is maintained via an intramolecular hydrogen bond. This is reminiscent of other macrocyclic protein phosphatase inhibitors. The inhibitor-bound enzyme shows very little conformational change when compared with two other PP1 structures, except in the inhibitor-sensitive beta12-beta13 loop region. The selectivity of okadaic acid for protein phosphatases-1 and -2A but not PP-2B (calcineurin) may be reassessed in light of this study.

  15. Activation of a calcium-dependent protein kinase involved in the Azospirillum growth promotion in rice.

    Science.gov (United States)

    Ribaudo, Claudia M; Curá, José A; Cantore, María L

    2017-02-01

    Rice seedlings (Oryza sativa) inoculated with the plant growth-promoting rhizobacteria Azospirillum brasilense FT326 showed an enhanced development of the root system 3 days after inoculation. Later on, a remarkable enlargement of shoots was also evident. An increase in the Ca 2+ -dependent histone kinase activity was also detected as a result of inoculation. The biochemical characterization and Western-blot analysis of the kinase strongly supports the hypothesis that it belongs to a member of the rice CDPK family. The fact that the amount of the protein did not change upon inoculation seems to indicate that a posttranslational activation is responsible for the change in the enzymatic activity. An in-gel kinase experiment identified a 46 kDa CDPK like protein kinase as a putative component of the signal transduction pathway triggered by Azospirillum inoculation. To our knowledge, this is the first report on the possible involvement of a Ca 2+ -dependent protein kinase in promotion of rice plants growth by A. brasilense.

  16. The Effect of Salts in Promoting Specific and Competitive Interactions between Zinc Finger Proteins and Metals

    Science.gov (United States)

    Li, Gongyu; Yuan, Siming; Zheng, Shihui; Chen, Yuting; Zheng, Zhen; Liu, Yangzhong; Huang, Guangming

    2017-12-01

    Specific protein-metal interactions (PMIs) fulfill essential functions in cells and organic bodies, and activation of these functions in vivo are mostly modulated by the complex environmental factors, including pH value, small biomolecules, and salts. Specifically, the role of salts in promoting specific PMIs and their competition among various metals has remained untapped mainly due to the difficulty to distinguish nonspecific PMIs from specific PMIs by classic spectroscopic techniques. Herein, we report Hofmeister salts differentially promote the specific PMIs by combining nanoelectrospray ionization mass spectrometry and spectroscopic techniques (fluorescence measurement and circular dichroism). Furthermore, to explore the influence of salts in competitive binding between metalloproteins and various metals, we designed a series of competitive experiments and applied to a well-defined model system, the competitive binding of zinc (II) and arsenic (III) to holo-promyelocytic leukemia protein (PML). These experiments not only provided new insights at the molecular scale as complementary to previous NMR and spectroscopic results, but also deduced the relative binding ability between zinc finger proteins and metals at the molecular scale, which avoids the mass spectrometric titration-based determination of binding constants that is frequently affected and often degraded by variable solution conditions including salt contents. [Figure not available: see fulltext.

  17. MiR-1228 promotes breast cancer cell growth and metastasis through targeting SCAI protein.

    Science.gov (United States)

    Lin, Luoqiang; Liu, Dan; Liang, Hongyan; Xue, Li; Su, Changlei; Liu, Ming

    2015-01-01

    Breast cancer is the most common cancer in women around the world. However, the molecular mechanisms underlying breast cancer pathogenesis are only partially understood. Here, in this study, we found that miR-1228 was up-regulated in breast cancer cell lines and tissues. Ectopic expression of miR-1228 mimics leads to promoted cell growth, invasion and migration. Using bioinfomatic analysis and 3'UTR luciferase reporter assay, we determined SCAI can be directly targeted by miR-1228, which can down-regulate endogenous SCAI protein level. Furthermore, our findings demonstrate that SCAI was down-regulated in breast cancer cell lines and tissues. Rescue experiment demonstrated that miR-1228 promoted cell growth is attenuated by over-expression of MOAP1 and miR-1228 promoted cell invasion and migration can be attenuated by over-expression of SCAI. Taken together, this study provides evidences that miR-1228 serves as an oncogene to promote breast cancer proliferation, invasion and migration, which may become a critical therapeutic target for breast cancer treatment.

  18. Sumoylation of Rap1 mediates the recruitment of TFIID to promote transcription of ribosomal protein genes.

    Science.gov (United States)

    Chymkowitch, Pierre; Nguéa, Aurélie P; Aanes, Håvard; Koehler, Christian J; Thiede, Bernd; Lorenz, Susanne; Meza-Zepeda, Leonardo A; Klungland, Arne; Enserink, Jorrit M

    2015-06-01

    Transcription factors are abundant Sumo targets, yet the global distribution of Sumo along the chromatin and its physiological relevance in transcription are poorly understood. Using Saccharomyces cerevisiae, we determined the genome-wide localization of Sumo along the chromatin. We discovered that Sumo-enriched genes are almost exclusively involved in translation, such as tRNA genes and ribosomal protein genes (RPGs). Genome-wide expression analysis showed that Sumo positively regulates their transcription. We also discovered that the Sumo consensus motif at RPG promoters is identical to the DNA binding motif of the transcription factor Rap1. We demonstrate that Rap1 is a molecular target of Sumo and that sumoylation of Rap1 is important for cell viability. Furthermore, Rap1 sumoylation promotes recruitment of the basal transcription machinery, and sumoylation of Rap1 cooperates with the target of rapamycin kinase complex 1 (TORC1) pathway to promote RPG transcription. Strikingly, our data reveal that sumoylation of Rap1 functions in a homeostatic feedback loop that sustains RPG transcription during translational stress. Taken together, Sumo regulates the cellular translational capacity by promoting transcription of tRNA genes and RPGs. © 2015 Chymkowitch et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle

    DEFF Research Database (Denmark)

    Hunter, Roger W; Treebak, Jonas Thue; Wojtaszewski, Jørgen

    2011-01-01

    OBJECTIVE During energy stress, AMP-activated protein kinase (AMPK) promotes glucose transport and glycolysis for ATP production, while it is thought to inhibit anabolic glycogen synthesis by suppressing the activity of glycogen synthase (GS) to maintain the energy balance in muscle. Paradoxically......, chronic activation of AMPK causes an increase in glycogen accumulation in skeletal and cardiac muscles, which in some cases is associated with cardiac dysfunction. The aim of this study was to elucidate the molecular mechanism by which AMPK activation promotes muscle glycogen accumulation. RESEARCH DESIGN...... caused a modest inactivation of GS, it stimulated muscle glycogen synthesis that was accompanied by increases in glucose transport and intracellular [G6P]. These effects of AICAR required the catalytic activity of AMPK. Strikingly, AICAR-induced glycogen synthesis was completely abolished in G6P...

  20. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling

    Directory of Open Access Journals (Sweden)

    Thiruvengadam Raguchander

    2009-12-01

    Full Text Available Abstract Background Plant Growth Promoting Rhizobacteria (PGPR, Pseudomonas fluorescens strain KH-1 was found to exhibit plant growth promotional activity in rice under both in-vitro and in-vivo conditions. But the mechanism underlying such promotional activity of P. fluorescens is not yet understood clearly. In this study, efforts were made to elucidate the molecular responses of rice plants to P. fluorescens treatment through protein profiling. Two-dimensional polyacrylamide gel electrophoresis strategy was adopted to identify the PGPR responsive proteins and the differentially expressed proteins were analyzed by mass spectrometry. Results Priming of P. fluorescens, 23 different proteins found to be differentially expressed in rice leaf sheaths and MS analysis revealed the differential expression of some important proteins namely putative p23 co-chaperone, Thioredoxin h- rice, Ribulose-bisphosphate carboxylase large chain precursor, Nucleotide diPhosphate kinase, Proteosome sub unit protein and putative glutathione S-transferase protein. Conclusion Functional analyses of the differential proteins were reported to be directly or indirectly involved in growth promotion in plants. Thus, this study confirms the primary role of PGPR strain KH-1 in rice plant growth promotion.

  1. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling.

    Science.gov (United States)

    Kandasamy, Saveetha; Loganathan, Karthiba; Muthuraj, Raveendran; Duraisamy, Saravanakumar; Seetharaman, Suresh; Thiruvengadam, Raguchander; Ponnusamy, Balasubramanian; Ramasamy, Samiyappan

    2009-12-24

    Plant Growth Promoting Rhizobacteria (PGPR), Pseudomonas fluorescens strain KH-1 was found to exhibit plant growth promotional activity in rice under both in-vitro and in-vivo conditions. But the mechanism underlying such promotional activity of P. fluorescens is not yet understood clearly. In this study, efforts were made to elucidate the molecular responses of rice plants to P. fluorescens treatment through protein profiling. Two-dimensional polyacrylamide gel electrophoresis strategy was adopted to identify the PGPR responsive proteins and the differentially expressed proteins were analyzed by mass spectrometry. Priming of P. fluorescens, 23 different proteins found to be differentially expressed in rice leaf sheaths and MS analysis revealed the differential expression of some important proteins namely putative p23 co-chaperone, Thioredoxin h- rice, Ribulose-bisphosphate carboxylase large chain precursor, Nucleotide diPhosphate kinase, Proteosome sub unit protein and putative glutathione S-transferase protein. Functional analyses of the differential proteins were reported to be directly or indirectly involved in growth promotion in plants. Thus, this study confirms the primary role of PGPR strain KH-1 in rice plant growth promotion.

  2. Recombination-stable multimeric green fluorescent protein for characterization of weak promoter outputs in Saccharomyces cerevisiae.

    Science.gov (United States)

    Rugbjerg, Peter; Knuf, Christoph; Förster, Jochen; Sommer, Morten O A

    2015-12-01

    Green fluorescent proteins (GFPs) are widely used for visualization of proteins to track localization and expression dynamics. However, phenotypically important processes can operate at too low expression levels for routine detection, i.e. be overshadowed by autofluorescence noise. While GFP functions well in translational fusions, the use of tandem GFPs to amplify fluorescence signals is currently avoided in Saccharomyces cerevisiae and many other microorganisms due to the risk of loop-out by direct-repeat recombination. We increased GFP fluorescence by translationally fusing three different GFP variants, yeast-enhanced GFP, GFP+ and superfolder GFP to yield a sequence-diverged triple GFP molecule 3vGFP with 74-84% internal repeat identity. Unlike a single GFP, the brightness of 3vGFP allowed characterization of a weak promoter in S. cerevisiae. Utilizing 3vGFP, we further engineered a less leaky Cu(2+)-inducible promoter based on CUP1. The basal expression level of the new promoter was approximately 61% below the wild-type CUP1 promoter, thus expanding the absolute range of Cu(2+)-based gene control. The stability of 3vGFP towards direct-repeat recombination was assayed in S. cerevisiae cultured for 25 generations under strong and slightly toxic expression after which only limited reduction in fluorescence was detectable. Such non-recombinogenic GFPs can help quantify intracellular responses operating a low copy number in recombination-prone organisms. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. MGMT promoter methylation and correlation with protein expression in primary central nervous system lymphoma.

    Science.gov (United States)

    Toffolatti, L; Scquizzato, E; Cavallin, S; Canal, F; Scarpa, M; Stefani, P M; Gherlinzoni, F; Dei Tos, A P

    2014-11-01

    The O (6)-methylguanine-DNA-methyltransferase (MGMT) gene encodes for a DNA repairing enzyme of which silencing by promoter methylation is involved in brain tumorigenesis. MGMT promoter methylation represents a favorable prognostic factor and has been associated with a better response to alkylating agents in glioma and systemic lymphoma. Primary central nervous system lymphoma (PCNSL) is a rare and aggressive extranodal malignant lymphoma. The current standard of care, based on high-dose methotrexate chemotherapy, has improved prognosis but outcome remains poor for a majority of patients. Therapeutic progress in this field is conditioned by limited biological and molecular knowledge about the disease. Temozolomide has recently emerged as an alternative option for PCNSL treatment. We aimed to analyze the MGMT gene methylation status in a series of 24 PCNSLs, to investigate the relationship between methylation status of the gene and immunohistochemical expression of MGMT protein and to evaluate the possible prognostic significance of these biomarkers. Our results confirm that methylation of the MGMT gene and loss of MGMT protein are frequent events in these lymphomas (54 % of our cases) and suggest that they are gender and age related. MGMT methylation showed high correlation with loss of protein expression (concordance correlation coefficient = -0.49; Fisher exact test: p methylated MGMT promoter (n = 4), seems to be associated with a prolonged overall survival (>60 months in three of four patients). The prognostic significance of these molecular markers in PCNSL needs to be further studied in groups of patients treated in a homogeneous way.

  4. Polymorphisms within the C-reactive protein (CRP) promoter region are associated with plasma CRP levels.

    Science.gov (United States)

    Carlson, Christopher S; Aldred, Shelley Force; Lee, Philip K; Tracy, Russell P; Schwartz, Stephen M; Rieder, Mark; Liu, Kiang; Williams, O Dale; Iribarren, Carlos; Lewis, E Cora; Fornage, Myriam; Boerwinkle, Eric; Gross, Myron; Jaquish, Cashell; Nickerson, Deborah A; Myers, Richard M; Siscovick, David S; Reiner, Alexander P

    2005-07-01

    Elevated plasma levels of C-reactive protein (CRP), an inflammation-sensitive marker, have emerged as an important predictor of future cardiovascular disease and metabolic abnormalities in apparently healthy men and women. Here, we performed a systematic survey of common nucleotide variation across the genomic region encompassing the CRP gene locus. Of the common single-nucleotide polymorphisms (SNPs) identified, several in the CRP promoter region are strongly associated with CRP levels in a large cohort study of cardiovascular risk in European American and African American young adults. We also demonstrate the functional importance of these SNPs in vitro.

  5. The membrane protein LasM Promotes the Culturability of Legionella pneumophila in Water

    Directory of Open Access Journals (Sweden)

    Laam Li

    2016-09-01

    Full Text Available The water-borne pathogen Legionella pneumophila (Lp strongly expresses the lpg1659 gene in water. This gene encodes a hypothetical protein predicted to be a membrane protein using in silico analysis. While no conserved domains were identified in Lpg1659, similar proteins are found in many Legionella species and other aquatic bacteria. RT-qPCR showed that lpg1659 is positively regulated by the alternative sigma factor RpoS, which is essential for Lp to survive in water. These observations suggest an important role of this novel protein in the survival of Lp in water. Deletion of lpg1659 did not affect cell morphology, membrane integrity or tolerance to high temperature. Moreover, lpg1659 was dispensable for growth of Lp in rich medium, and during infection of the amoeba Acanthamoeba castellanii and of THP-1 human macrophages. However, deletion of lpg1659 resulted in an early loss of culturability in water, while over-expression of this gene promoted the culturability of Lp. Therefore, these results suggest that lpg1659 is required for Lp to maintain culturability, and possibly long-term survival, in water. Since the loss of culturability observed in the absence of Lpg1659 was complemented by the addition of trace metals into water, this membrane protein is likely a transporter for acquiring essential trace metal for maintaining culturability in water and potentially in other metal-deprived conditions. Given its role in the survival of Lp in water, Lpg1659 was named LasM for Legionella aquatic survival membrane protein.

  6. Protein secretion is required for pregnancy-associated plasma protein-A to promote lung cancer growth in vivo.

    Directory of Open Access Journals (Sweden)

    Hong Pan

    Full Text Available Pregnancy-associated plasma protein-A (PAPPA has been reported to regulate the activity of insulin-like growth factor (IGF signal pathway through proteolytic degradation of IGF binding proteins (IGFBPs thereby increasing the local concentration of free IGFs available to receptors. In this study we found that PAPPA is secreted from two out of seven lung cancer cell lines examined. None of immortalized normal bronchial epithelial cells (HBE tested secrets PAPPA. There is no correlation between expression level and secretion of PAPPA in these cells. A cell line over-expressing PAPPA accompanied with secretion shows no notable changes in proliferation under cell culture conditions in vitro, but displays significantly augmentation of tumor growth in vivo in a xenograft model. In contrast, a cell line over-expressing PAPPA without secretion exhibits reduction of tumor growth both in vitro and in vivo. Down-regulation of PAPPA expression and secretion by RNAi knockdown decreases tumor growth after implanted in vivo. The tumor promoting activity of PAPPA appears to be mediated mainly through augmentation of the IGF signaling pathway as indicated by notable increases in downstream Akt kinase phosphorylation in tumor samples. Our results indicate that PAPPA secretion may play an important role in lung cancer growth and progression.

  7. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1

    International Nuclear Information System (INIS)

    Tan, Yongsheng; Li, Yan

    2015-01-01

    This study investigated the effect of HCV core protein on the proliferation of hepatocytes and hepatocellular carcinoma cells (HCC), the influence of HCV core protein on HCC apoptosis induced by the chemotherapeutic agent cisplatin, and the mechanism through which HCV core protein acts as a potential oncoprotein in HCV-related HCC by measuring the levels of NR4A1 and Runt-related transcription factor 3 (RUNX3), which are associated with tumor suppression and chemotherapy resistance. In the present study, PcDNA3.1-core and RUNX3 siRNA were transfected into LO2 and HepG2 cells using Lipofectamine 2000. LO2-core, HepG2-core, LO2-RUNX3 low and control cells were treated with different concentrations of cisplatin for 72 h, and cell proliferation and apoptosis were assayed using the CellTiter 96 ® Aqueous Non-Radioactive Cell Proliferation Assay Kit. Western blot and real time PCR analyses were used to detect NR4A1, RUNX3, smad7, Cyclin D1 and BAX. Confocal microscopy was used to determine the levels of NR4A1 in HepG2 and HepG2-core cells. The growth rate of HepG2-core cells was considerably greater than that of HepG2 cells. HCV core protein increased the expression of cyclin D1 and decreased the expressions of NR4A1 and RUNX3. In LO2 – RUNX3 low , the rate of cell proliferation and the level of cisplatin resistance were the same as in the LO2 -core. These results suggest that HCV core protein decreases the sensitivity of hepatocytes to cisplatin by inhibiting the expression of NR4A1 and promoting the expression of smad7, which negatively regulates the TGF-β pathway. This effect results in down regulation of RUNX3, a target of the TGF-β pathway. Taken together, these findings indicate that in hepatocytes, HCV core protein increases drug resistance and inhibits cell apoptosis by inhibiting the expressions of NR4A1 and RUNX3. - Highlights: • HCV core protein inhibits HepG2 cell sensitivity to cisplatin. • Core expression in HepG2 decreases expression of NR4A1.

  8. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Yongsheng, E-mail: yongshengtanwhu@126.com; Li, Yan, E-mail: liyansd2@163.com

    2015-10-23

    This study investigated the effect of HCV core protein on the proliferation of hepatocytes and hepatocellular carcinoma cells (HCC), the influence of HCV core protein on HCC apoptosis induced by the chemotherapeutic agent cisplatin, and the mechanism through which HCV core protein acts as a potential oncoprotein in HCV-related HCC by measuring the levels of NR4A1 and Runt-related transcription factor 3 (RUNX3), which are associated with tumor suppression and chemotherapy resistance. In the present study, PcDNA3.1-core and RUNX3 siRNA were transfected into LO2 and HepG2 cells using Lipofectamine 2000. LO2-core, HepG2-core, LO2-RUNX3 {sup low} and control cells were treated with different concentrations of cisplatin for 72 h, and cell proliferation and apoptosis were assayed using the CellTiter 96{sup ®}Aqueous Non-Radioactive Cell Proliferation Assay Kit. Western blot and real time PCR analyses were used to detect NR4A1, RUNX3, smad7, Cyclin D1 and BAX. Confocal microscopy was used to determine the levels of NR4A1 in HepG2 and HepG2-core cells. The growth rate of HepG2-core cells was considerably greater than that of HepG2 cells. HCV core protein increased the expression of cyclin D1 and decreased the expressions of NR4A1 and RUNX3. In LO2 – RUNX3 {sup low}, the rate of cell proliferation and the level of cisplatin resistance were the same as in the LO2 -core. These results suggest that HCV core protein decreases the sensitivity of hepatocytes to cisplatin by inhibiting the expression of NR4A1 and promoting the expression of smad7, which negatively regulates the TGF-β pathway. This effect results in down regulation of RUNX3, a target of the TGF-β pathway. Taken together, these findings indicate that in hepatocytes, HCV core protein increases drug resistance and inhibits cell apoptosis by inhibiting the expressions of NR4A1 and RUNX3. - Highlights: • HCV core protein inhibits HepG2 cell sensitivity to cisplatin. • Core expression in HepG2 decreases

  9. Shrub encroachment in Arctic tundra: Betula nana effects on above- and belowground litter decomposition.

    Science.gov (United States)

    McLaren, Jennie R; Buckeridge, Kate M; van de Weg, Martine J; Shaver, Gaius R; Schimel, Joshua P; Gough, Laura

    2017-05-01

    Rapid arctic vegetation change as a result of global warming includes an increase in the cover and biomass of deciduous shrubs. Increases in shrub abundance will result in a proportional increase of shrub litter in the litter community, potentially affecting carbon turnover rates in arctic ecosystems. We investigated the effects of leaf and root litter of a deciduous shrub, Betula nana, on decomposition, by examining species-specific decomposition patterns, as well as effects of Betula litter on the decomposition of other species. We conducted a 2-yr decomposition experiment in moist acidic tundra in northern Alaska, where we decomposed three tundra species (Vaccinium vitis-idaea, Rhododendron palustre, and Eriophorum vaginatum) alone and in combination with Betula litter. Decomposition patterns for leaf and root litter were determined using three different measures of decomposition (mass loss, respiration, extracellular enzyme activity). We report faster decomposition of Betula leaf litter compared to other species, with support for species differences coming from all three measures of decomposition. Mixing effects were less consistent among the measures, with negative mixing effects shown only for mass loss. In contrast, there were few species differences or mixing effects for root decomposition. Overall, we attribute longer-term litter mass loss patterns to patterns created by early decomposition processes in the first winter. We note numerous differences for species patterns between leaf and root decomposition, indicating that conclusions from leaf litter experiments should not be extrapolated to below-ground decomposition. The high decomposition rates of Betula leaf litter aboveground, and relatively similar decomposition rates of multiple species below, suggest a potential for increases in turnover in the fast-decomposing carbon pool of leaves and fine roots as the dominance of deciduous shrubs in the Arctic increases, but this outcome may be tempered by

  10. The T-LAK Cell-originated Protein Kinase Signal Pathway Promotes Colorectal Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Tatyana A. Zykova

    2017-04-01

    Full Text Available Approximately 90% of all cancer deaths arise from the metastatic dissemination of primary tumors. Metastasis is the most lethal attribute of colorectal cancer. New data regarding the molecules contributing to the metastatic phenotype, the pathways they control and the genes they regulate are very important for understanding the processes of metastasis prognosis and prevention in the clinic. The purpose of this study was to investigate the role of T-LAK cell-originated protein kinase (TOPK in the promotion of colorectal cancer metastasis. TOPK is highly expressed in human metastatic colorectal cancer tissue compared with malignant adenocarcinoma. We identified p53-related protein kinase (PRPK as a new substrate of TOPK. TOPK binds with and phosphorylates PRPK at Ser250 in vitro and ex vivo. This site plays a critical role in the function of PRPK. Cell lines stably expressing mutant PRPK (S250A, knockdown TOPK, knockdown PRPK or knockdown of both TOPK and PRPK significantly inhibited liver metastasis of human HCT116 colon cancer cells in a xenograft mouse model. Therefore, we conclude that TOPK directly promotes metastasis of colorectal cancer by modulating PRPK. Thus, these findings may assist in the prediction of prognosis or development of new therapeutic strategies against colon cancer.

  11. Regulatory elements in the promoter region of the rat gene encoding the acyl-CoA-binding protein

    DEFF Research Database (Denmark)

    Elholm, M; Bjerking, G; Knudsen, J

    1996-01-01

    Acyl-CoA-binding protein (ACBP) is an ubiquitously expressed 10-kDa protein which is present in high amounts in cells involved in solute transport or secretion. Rat ACBP is encoded by a gene containing the typical hallmarks of a housekeeping gene. Analysis of the promoter region of the rat ACBP g...

  12. Methylation of ras association domain protein 10 (RASSF10) promoter negative association with the survival of gastric cancer.

    Science.gov (United States)

    Deng, Jingyu; Liang, Han; Ying, Guoguang; Li, Haixin; Xie, Xingming; Yu, Jun; Fan, Daiming; Hao, Xishan

    2014-01-01

    The present study was conducted to elucidate the prognostic prediction value of the methylation of the RASSF10 promoter in gastric cancer (GC). A total of 300 patients with GC revealed the methylation degrees of the DNA of the RASSF10 promoter. Methylation-specific PCR (MSP) analysis was performed to qualitatively detect the methylated degrees of the DNA of the RASSF10 promoter of 300 patients with GC. Associations between molecular, clinicopathological and survival data were analyzed. The protein and mRNA expressions of RASSF10 in GC tissues were lower than those in normal gastric mucosal tissues. In the MSP analysis cohort, patients with methylated RASSF10 promoter exhibited significantly shorter median OS than those with unmethylated RASSF10 promoter (P promoter was an independent predictor of the survival of patients with GC. The methylation of the RASSF10 promoter could be applied for the clinical prediction of the prognosis of GC.

  13. Tentativa de controle de Hymenolepis nana através de tratamentos clínicos repetidos, com praziquantel, em uma comunidade fechada The use of repeated praziquantel treatments in an attempt to control Hymenolepis nana in an orphanage

    Directory of Open Access Journals (Sweden)

    R. S. Rocha

    1981-08-01

    Full Text Available Foi feita tentativa de controle do Hymenolepis nana em uma comunidade fechada utilizando-se o praziquantel em repetidos tratamentos. Concomitantemente, foram estudados os prováveis mecanismos de transmissão da parasitose. A comunidade trabalhada possuia inicialmente 161 pessoas, sendo 109 crianças internas, com idade variando de dias e/ou meses a 8 anos, e de 52 adultos, funcionários da instituição. O diagnóstico parasitológico foi realizado aproximadamente de 2 em 2 meses em toda a população, pelo método de Hoffman, Pons e Janer, e o controle de cura, pelo mesmo método, entre o 7.º e o 14.º dia. Quinzenalmente foram realizadas pesquisas para ovos de H. nana no leito ungueal das crianças, em insetos, no lixo doméstico, nas maçanetas das portas e geladeiras, nos botões e cordões de descarga. Posteriormente examinou-se água recolhida dos urinóis e do chão do "box" do chuveiro. Todos os pacientes eliminando ovos de H. nana nas fezes foram tratados com praziquantel, após exame clínico, na dose única oral de 25mg/kg, após o almoço. Em 4 tratamentos realizados (66 pacientes, não foram observadas reações colterais importantes, e o controle de cura foi sempre de 100%. No 5.º e último tratamento, grupos de pacientes positivos e negativos para H. nana foram divididos em subgrupos e tratados com uma dose da droga (25mg/kg ou duas doses espaçadas de 4 dias (total: 50mg/kg. No levantamento realizado dois meses após o tratamento, foram encontrados apenas 6 indivíduos eliminando ovos do parasita. Estes pertenciam ao subgrupo de crianças com himenolepíase tratado com uma única dose da droga. Ovos e larvas de helmintos e cistos de protozoários foram encontrados no lixo doméstico, insetos (baratas e maçanetas de portas, enquanto ovos de H. nana só foram achados em água aspirada do "box" do chuveiro e da lavagem dos urinóis. Apesar da elevada percentagem de cura e dos vários tratamentos realizados, não se conseguiu o

  14. Double-stranded RNA-induced activation of activating protein-1 promoter is differentially regulated by the non-structural protein 1 of avian influenza A viruses.

    Science.gov (United States)

    Munir, Muhammad; Zohari, Siamak; Belák, Sándor; Berg, Mikael

    2012-02-01

    Non-structural protein 1 (NS1) of influenza A viruses is a multifunctional protein that antagonizes the host immune response by interfering with several host signaling pathways. Based on putative amino acid sequences, NS1 proteins are categorized into two gene pools, allele A and allele B. Here we identified that allele A NS1 proteins of H6N8 and H4N6 are able to inhibit double-stranded RNA (dsRNA)-induced activating protein-1 (AP-1) promoter in cultured cell lines (human A549 and mink lung cells). Allele B NS1 proteins from corresponding subtypes of influenza A viruses are weak in this inhibition, despite significant levels of expression of each NS1 protein in human A549 cells. Furthermore, the capability to inhibit AP-1 promoter was mapped in the effector domain, since RNA binding domain alone lost its ability to inhibit this promoter activation. Chimeric forms of NS1 protein, composed of either RNA binding domain of allele A or B and effector domain of allele A or B, showed comparable inhibition to that of their wild-type NS1 proteins, or to the effector domain of corresponding NS1 proteins. Both alleles A and B NS1 proteins of H6N8 and H4N6 were expressed to significant levels, and were localized predominantly in the nucleus of human A549 cells. These results underscore the importance of the effector domain in inhibiting AP-1 promoter activation, and the biological function of the effector domain in stabilizing the RNA binding domain. Further, we revealed the versatile nature of NS1 in inhibiting the AP-1 transcription factor, in a manner dependent on allele type. Comprehensive studies, focusing on the molecular mechanisms behind this differential inhibition, may facilitate exploration of the zoonotic and pathogenic potential of influenza A viruses.

  15. Characteristic differences between the promoters of intron-containing and intronless ribosomal protein genes in yeast

    Directory of Open Access Journals (Sweden)

    Vingron Martin

    2008-10-01

    Full Text Available Abstract Background More than two thirds of the highly expressed ribosomal protein (RP genes in Saccharomyces cerevisiae contain introns, which is in sharp contrast to the genome-wide five percent intron-containing genes. It is well established that introns carry regulatory sequences and that the transcription of RP genes is extensively and coordinately regulated. Here we test the hypotheses that introns are innately associated with heavily transcribed genes and that introns of RP genes contribute regulatory TF binding sequences. Moreover, we investigate whether promoter features are significantly different between intron-containing and intronless RP genes. Results We find that directly measured transcription rates tend to be lower for intron-containing compared to intronless RP genes. We do not observe any specifically enriched sequence motifs in the introns of RP genes other than those of the branch point and the two splice sites. Comparing the promoters of intron-containing and intronless RP genes, we detect differences in number and position of Rap1-binding and IFHL motifs. Moreover, the analysis of the length distribution and the folding free energies suggest that, at least in a sub-population of RP genes, the 5' untranslated sequences are optimized for regulatory function. Conclusion Our results argue against the direct involvement of introns in the regulation of transcription of highly expressed genes. Moreover, systematic differences in motif distributions suggest that RP transcription factors may act differently on intron-containing and intronless gene promoters. Thus, our findings contribute to the decoding of the RP promoter architecture and may fuel the discussion on the evolution of introns.

  16. Weak correlation between sequence conservation in promoter regions and in protein-coding regions of human-mouse orthologous gene pairs

    Directory of Open Access Journals (Sweden)

    Nakai Kenta

    2008-04-01

    Full Text Available Abstract Background Interspecies sequence comparison is a powerful tool to extract functional or evolutionary information from the genomes of organisms. A number of studies have compared protein sequences or promoter sequences between mammals, which provided many insights into genomics. However, the correlation between protein conservation and promoter conservation remains controversial. Results We examined promoter conservation as well as protein conservation for 6,901 human and mouse orthologous genes, and observed a very weak correlation between them. We further investigated their relationship by decomposing it based on functional categories, and identified categories with significant tendencies. Remarkably, the 'ribosome' category showed significantly low promoter conservation, despite its high protein conservation, and the 'extracellular matrix' category showed significantly high promoter conservation, in spite of its low protein conservation. Conclusion Our results show the relation of gene function to protein conservation and promoter conservation, and revealed that there seem to be nonparallel components between protein and promoter sequence evolution.

  17. Invited review: Whey proteins as antioxidants and promoters of cellular antioxidant pathways.

    Science.gov (United States)

    Corrochano, Alberto R; Buckin, Vitaly; Kelly, Phil M; Giblin, Linda

    2018-03-28

    Oxidative stress contributes to cell injury and aggravates several chronic diseases. Dietary antioxidants help the body to fight against free radicals and, therefore, avoid or reduce oxidative stress. Recently, proteins from milk whey liquid have been described as antioxidants. This review summarizes the evidence that whey products exhibit radical scavenging activity and reducing power. It examines the processing and treatment attempts to increase the antioxidant bioactivity and identifies 1 enzyme, subtilisin, which consistently produces the most potent whey fractions. The review compares whey from different milk sources and puts whey proteins in the context of other known food antioxidants. However, for efficacy, the antioxidant activity of whey proteins must not only survive processing, but also upper gut transit and arrival in the bloodstream, if whey products are to promote antioxidant levels in target organs. Studies reveal that direct cell exposure to whey samples increases intracellular antioxidants such as glutathione. However, the physiological relevance of these in vitro assays is questionable, and evidence is conflicting from dietary intervention trials, with both rats and humans, that whey products can boost cellular antioxidant biomarkers. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Regulators of G protein signaling 12 promotes osteoclastogenesis in bone remodeling and pathological bone loss.

    Science.gov (United States)

    Yuan, X; Cao, J; Liu, T; Li, Y-P; Scannapieco, F; He, X; Oursler, M J; Zhang, X; Vacher, J; Li, C; Olson, D; Yang, S

    2015-12-01

    Regulators of G protein signaling (Rgs) have pivotal roles in controlling various cellular processes, such as cell differentiation. How Rgs proteins regulate osteoclast (OC) differentiation, function and bone homeostasis is poorly understood. It was previously demonstrated that Rgs12, the largest protein in the Rgs family, is predominantly expressed in OCs and regulates OC differentiation in vitro. To further understand the role and mechanism of Rgs12 in OC differentiation and bone diseases in vivo, we created OC-targeted Rgs12 knockout mice by using inducible Mx1-Cre and CD11b-Cre. Deletion of Rgs12 in hematopoietic cells or specifically in OC precursors resulted in increased bone mass with decreased OC numbers. Loss of Rgs12 impaired OC differentiation and function with impaired Ca(2+) oscillations and reduced nuclear factor of activated T cells (NFAT) 2 expression. The introduction of wild-type osteoblasts did not rescue the defective osteoclastogenesis. Ectopic expression of NFAT2 rescued defective OC differentiation in CD11b;Rgs12(fl/fl) cells and promoted normal OC differentiation. Moreover, deletion of Rgs12 significantly inhibited pathological osteoclastogenesis and bone destruction in Rgs12-deficient mice that were subjected to ovariectomy and lipodysaccharide for bone loss. Thus our findings demonstrate that Rgs12 is an important regulator in OC differentiation and function and identify Rgs12 as a potential therapeutic target for osteoporosis and inflammation-induced bone loss.

  19. The nuclear protein Artemis promotes AMPK activation by stabilizing the LKB1–AMPK complex

    International Nuclear Information System (INIS)

    Nakagawa, Koji; Uehata, Yasuko; Natsuizaka, Mitsuteru; Kohara, Toshihisa; Darmanin, Stephanie; Asaka, Masahiro; Takeda, Hiroshi; Kobayashi, Masanobu

    2012-01-01

    Highlights: ► The nuclear protein Artemis physically interacts with AMPKα2. ► Artemis co-localizes with AMPKα2 in the nucleus. ► Artemis promotes phosphorylation and activation of AMPK. ► The interaction between AMPKα2 and LKB1 is stabilized by Artemis. -- Abstract: AMP-activated protein kinase (AMPK) is a hetero-trimeric Ser/Thr kinase composed of a catalytic α subunit and regulatory β and γ subunits; it functions as an energy sensor that controls cellular energy homeostasis. In response to an increased cellular AMP/ATP ratio, AMPK is activated by phosphorylation at Thr172 in the α-subunit by upstream AMPK kinases (AMPKKs), including tumor suppressor liver kinase B1 (LKB1). To elucidate more precise molecular mechanisms of AMPK activation, we performed yeast two-hybrid screening and isolated the complementary DNA (cDNA) encoding the nuclear protein Artemis/DNA cross-link repair 1C (DCLRE1C) as an AMPKα2-binding protein. Artemis was found to co-immunoprecipitate with AMPKα2, and the co-localization of Artemis with AMPKα2 in the nucleus was confirmed by immunofluorescence staining in U2OS cells. Moreover, over-expression of Artemis enhanced the phosphorylation of AMPKα2 and the AMPK substrate acetyl-CoA carboxylase (ACC). Conversely, RNAi-mediated knockdown of Artemis reduced AMPK and ACC phosphorylation. In addition, Artemis markedly increased the physical association between AMPKα2 and LKB1. Taken together, these results suggest that Artemis functions as a positive regulator of AMPK signaling by stabilizing the LKB1–AMPK complex.

  20. The nuclear protein Artemis promotes AMPK activation by stabilizing the LKB1-AMPK complex

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Koji, E-mail: k_nakagawa@pharm.hokudai.ac.jp [Department of Pathophysiology and Therapeutics, Division of Pharmascience, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Uehata, Yasuko; Natsuizaka, Mitsuteru; Kohara, Toshihisa; Darmanin, Stephanie [Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Asaka, Masahiro [Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Department of Cancer Preventive Medicine, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Takeda, Hiroshi [Department of Pathophysiology and Therapeutics, Division of Pharmascience, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Kobayashi, Masanobu [Department of Cancer Preventive Medicine, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); School of Nursing and Social Services, Health Sciences University of Hokkaido, Ishikari-Toubetsu, Hokkaido 061-0293 (Japan)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer The nuclear protein Artemis physically interacts with AMPK{alpha}2. Black-Right-Pointing-Pointer Artemis co-localizes with AMPK{alpha}2 in the nucleus. Black-Right-Pointing-Pointer Artemis promotes phosphorylation and activation of AMPK. Black-Right-Pointing-Pointer The interaction between AMPK{alpha}2 and LKB1 is stabilized by Artemis. -- Abstract: AMP-activated protein kinase (AMPK) is a hetero-trimeric Ser/Thr kinase composed of a catalytic {alpha} subunit and regulatory {beta} and {gamma} subunits; it functions as an energy sensor that controls cellular energy homeostasis. In response to an increased cellular AMP/ATP ratio, AMPK is activated by phosphorylation at Thr172 in the {alpha}-subunit by upstream AMPK kinases (AMPKKs), including tumor suppressor liver kinase B1 (LKB1). To elucidate more precise molecular mechanisms of AMPK activation, we performed yeast two-hybrid screening and isolated the complementary DNA (cDNA) encoding the nuclear protein Artemis/DNA cross-link repair 1C (DCLRE1C) as an AMPK{alpha}2-binding protein. Artemis was found to co-immunoprecipitate with AMPK{alpha}2, and the co-localization of Artemis with AMPK{alpha}2 in the nucleus was confirmed by immunofluorescence staining in U2OS cells. Moreover, over-expression of Artemis enhanced the phosphorylation of AMPK{alpha}2 and the AMPK substrate acetyl-CoA carboxylase (ACC). Conversely, RNAi-mediated knockdown of Artemis reduced AMPK and ACC phosphorylation. In addition, Artemis markedly increased the physical association between AMPK{alpha}2 and LKB1. Taken together, these results suggest that Artemis functions as a positive regulator of AMPK signaling by stabilizing the LKB1-AMPK complex.

  1. Tentativa de controle da himenolepíase devida à Hymenolepis nana, por meio do praziquantel, em coletividade semifechada An attempt at control of hymenolepiasis caused by Hymenolepis nana, by means of praziquantel, in a semi-closed community

    Directory of Open Access Journals (Sweden)

    Rubens Campos

    1984-12-01

    Full Text Available Em virtude de sugestão decorrente da investigação experimental, foi usado o praziquantel, através de duas administrações intervaladas por dez dias, como tentativa para controlar a himenolepíase devida à Hymenolepis nana, em coletividade semifechada. Houve emprego, em cada oportunidade, de 25 mg/kg, tendo ficado comprovada a validade dessa conduta, a despeito da ocorrência de raras positivações, interpretadas como reinfecções, durante o seguimento. O presente estudo afigura-se importante no contexto das medidas destinadas a combater globalmente a himenolepíase em apreço, em comunidades fechadas ou semifechadas, diante da possibilidade de aproveitamento da elevada atividade curativa do praziquantel.As a consequence of results obtained from an experimental investigation praziquantel was employed in an attempt to control hymenolepiasis, caused by Hymenolepis nana, in a semi-closed community. Two administrations of 25 mg/kg b. w. each of praziquantel were used with a ten-days interval. This dose and method of administration were proved valid, though there was a very low number of failures, these latter probably due to re-infection during the follow-up period. The above observation seems to be of importance along with measures aiming to combat hymenolepiasis as a whole, in closed or semi-closed communities, taking into consdieration the higly curative efficacy of praziquantel.

  2. Comparisons of Ribosomal Protein Gene Promoters Indicate Superiority of Heterologous Regulatory Sequences for Expressing Transgenes in Phytophthora infestans.

    Science.gov (United States)

    Poidevin, Laetitia; Andreeva, Kalina; Khachatoorian, Careen; Judelson, Howard S

    2015-01-01

    Molecular genetics approaches in Phytophthora research can be hampered by the limited number of known constitutive promoters for expressing transgenes and the instability of transgene activity. We have therefore characterized genes encoding the cytoplasmic ribosomal proteins of Phytophthora and studied their suitability for expressing transgenes in P. infestans. Phytophthora spp. encode a standard complement of 79 cytoplasmic ribosomal proteins. Several genes are duplicated, and two appear to be pseudogenes. Half of the genes are expressed at similar levels during all stages of asexual development, and we discovered that the majority share a novel promoter motif named the PhRiboBox. This sequence is enriched in genes associated with transcription, translation, and DNA replication, including tRNA and rRNA biogenesis. Promoters from the three P. infestans genes encoding ribosomal proteins S9, L10, and L23 and their orthologs from P. capsici were tested for their ability to drive transgenes in stable transformants of P. infestans. Five of the six promoters yielded strong expression of a GUS reporter, but the stability of expression was higher using the P. capsici promoters. With the RPS9 and RPL10 promoters of P. infestans, about half of transformants stopped making GUS over two years of culture, while their P. capsici orthologs conferred stable expression. Since cross-talk between native and transgene loci may trigger gene silencing, we encourage the use of heterologous promoters in transformation studies.

  3. Efficient expression of green fluorescent protein (GFP) mediated by a chimeric promoter in Chlamydomonas reinhardtii

    Science.gov (United States)

    Wu, Jinxia; Hu, Zhangli; Wang, Chaogang; Li, Shuangfei; Lei, Anping

    2008-08-01

    To improve the expression efficiency of exogenous genes in Chlamydomonas reinhardtii, a high efficient expression vector was constructed. Green fluorescent protein (GFP) was expressed in C. reinhardtii under the control of promoters: RBCS2 and HSP70A-RBCS2. Efficiency of transformation and expression were compared between two transgenic algae: RBCS2 mediated strain Tran-I and HSP70A-RBCS2 mediated strain Tran-II. Results show that HSP70A-RBCS2 could improve greatly the transformation efficiency by approximately eightfold of RBCS2, and the expression efficiency of GFP in Tran-II was at least double of that in Tran-I. In addition, a threefold increase of GFP in Tran-II was induced by heat shock at 40°C. All of the results demonstrated that HSP70A-RBCS2 was more efficient than RBCS2 in expressing exogenous gene in C. reinhardtii.

  4. Fibroblast activation protein-α-expressing fibroblasts promote the progression of pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Kawase, Tomoya; Yasui, Yumiko; Nishina, Sohji; Hara, Yuichi; Yanatori, Izumi; Tomiyama, Yasuyuki; Nakashima, Yoshihiro; Yoshida, Koji; Kishi, Fumio; Nakamura, Masafumi; Hino, Keisuke

    2015-09-02

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by an extensive desmoplastic stromal response. Fibroblast activation protein-α (FAP) is best known for its presence in stromal cancer-associated fibroblasts (CAFs). Our aim was to assess whether FAP expression was associated with the prognosis of patients with PDAC and to investigate how FAP expressing CAFs contribute to the progression of PDAC. FAP expression was immunohistochemically assessed in 48 PDAC specimens. We also generated a fibroblastic cell line stably expressing FAP, and examined the effect of FAP-expressing fibroblasts on invasiveness and the cell cycle in MiaPaCa-2 cells (a pancreatic cancer cell line). Stromal FAP expression was detected in 98% (47/48) of the specimens of PDAC, with the intensity being weak in 16, moderate in 19, and strong in 12 specimens, but was not detected in the 3 control noncancerous pancreatic specimens. Patients with moderate or strong FAP expression had significantly lower cumulative survival rates than those with negative or weak FAP expression (mean survival time; 352 vs. 497 days, P = 0.006). Multivariate analysis identified moderate to strong expression of FAP as one of the factors associated with the prognosis in patients with PDAC. The intensity of stromal FAP expression was also positively correlated to the histological differentiation of PDAC (P fibroblasts promoted the invasiveness of MiaPaCa-2 cells more intensively than fibroblasts not expressing FAP. Coculture with FAP-expressing fibroblasts significantly activated cell cycle shift in MiaPaCa-2 cells compared to coculture with fibroblasts not expressing FAP. Furthermore, coculture with FAP expressing fibroblasts inactivated retinoblastoma (Rb) protein, an inhibitor of cell cycle progression, in MiaPaCa-2 cells by promoting phosphorylation of Rb. The present in vitro results and the association of FAP expression with clinical outcomes provide us with a better understanding of the effect of FAP

  5. Free fatty acid palmitate activates unfolded protein response pathway and promotes apoptosis in meniscus cells.

    Science.gov (United States)

    Haywood, J; Yammani, R R

    2016-05-01

    Obesity is the major risk factor for the development of osteoarthritis (OA); however, the mechanisms involved are not clearly understood. Obesity is associated with increased production of adipokine and elevated levels of circulating free fatty acids (FFA). A recent study has shown that saturated fatty acid palmitate induced pro-inflammatory and pro-apoptotic pathways in chondrocytes. Meniscus has been shown to be more susceptible than articular cartilage to catabolic stimuli. Thus, the aim of this study was to determine the effect of FFA (specifically, palmitate) on meniscus cells. Cultured primary porcine meniscus cells were stimulated with 500 μM FFA (palmitate and oleate) for 24 h to induce endoplasmic reticulum (ER) stress. After treatment, cell lysates were prepared and immunoblotted for C/EBP homologous protein (CHOP). To determine the activation of unfolded protein response (UPR) signaling, cell lysates were probed for cJun n-terminal kinase (JNK), cleaved caspase -3 and Xbp-1s, an alternative mRNA splicing product generated due to Ire1α activation. Treatment of isolated primary meniscus cells with palmitate but not oleate induced expression of CHOP and Xbp-1s. Palmitate treatment of meniscus cells also activated JNK and increased expression of caspase-3, thus promoting apoptosis in meniscus cells. Palmitate induces ER stress and promotes apoptotic pathways in meniscus cells. This is the first study to establish ER stress as a key metabolic mechanistic link between obesity and OA, in addition to (or operating with) biomechanical factors. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. Thymic Stromal Lymphopoietin Promotes Fibrosis and Activates Mitogen-Activated Protein Kinases in MRC-5 Cells.

    Science.gov (United States)

    Li, Li; Tang, Su; Tang, Xiaodong

    2016-07-06

    BACKGROUND Acute lung injury (ALI) is a life-threatening hypoxemic respiratory disorder with high incidence and mortality. ALI usually manifests as widespread inflammation and lung fibrosis with the accumulation of pro-inflammatory and pro-fibrotic factors and collagen. Thymic stromal lymphopoietin (TSLP) has a significant role in regulation of inflammation but little is known about its roles in lung fibrosis or ALI. This study aimed to define the role and possible regulatory mechanism of TSLP in lung fibrosis. MATERIAL AND METHODS We cultured human lung fibroblast MRC-5 cells and overexpressed or inhibited TSLP by the vector or small interfering RNA transfection. Then, the pro-fibrotic factors skeletal muscle actin alpha (α-SMA) and collagen I, and the 4 mitogen-activated protein kinases (MAPKs) - MAPK7, p38, extracellular signal-regulated kinase 1 (ERK1), and c-Jun N-terminal kinase 1 (JNK1) - were detected by Western blot. RESULTS Results showed that TSLP promoted the production of α-SMA and collagen I (PMRC-5 cell fibrosis. It also activated the expression of MAPK7, p-p38, p-ERK1, and p-JNK1, but the total MAPK7, p-38, ERK1, and JNK1 protein levels were mostly unchanged, indicating the activated MAPK pathways that might contribute to the promotion of cell fibrosis. CONCLUSIONS This study shows the pro-fibrotic role of TSLP in MRC-5 cells, suggesting TSLP is a potential therapeutic target for treating lung fibrosis in ALI. It possibly functions via activating MAPKs. These findings add to our understanding of the mechanism of fibrosis.

  7. Synthetic Promoters and Transcription Factors for Heterologous Protein Expression in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Fabian Machens

    2017-10-01

    Full Text Available Orthogonal systems for heterologous protein expression as well as for the engineering of synthetic gene regulatory circuits in hosts like Saccharomyces cerevisiae depend on synthetic transcription factors (synTFs and corresponding cis-regulatory binding sites. We have constructed and characterized a set of synTFs based on either transcription activator-like effectors or CRISPR/Cas9, and corresponding small synthetic promoters (synPs with minimal sequence identity to the host’s endogenous promoters. The resulting collection of functional synTF/synP pairs confers very low background expression under uninduced conditions, while expression output upon induction of the various synTFs covers a wide range and reaches induction factors of up to 400. The broad spectrum of expression strengths that is achieved will be useful for various experimental setups, e.g., the transcriptional balancing of expression levels within heterologous pathways or the construction of artificial regulatory networks. Furthermore, our analyses reveal simple rules that enable the tuning of synTF expression output, thereby allowing easy modification of a given synTF/synP pair. This will make it easier for researchers to construct tailored transcriptional control systems.

  8. Secreted Frizzled related protein-4 (sFRP4) promotes epidermal differentiation and apoptosis

    International Nuclear Information System (INIS)

    Maganga, Richard; Giles, Natalie; Adcroft, Katharine; Unni, Ambili; Keeney, Diane; Wood, Fiona; Fear, Mark; Dharmarajan, Arunasalam

    2008-01-01

    The skin provides vital protection from infection and dehydration. Maintenance of the skin is through a constant program of proliferation, differentiation and apoptosis of epidermal cells, whereby proliferating cells in the basal layer differentiating to form the keratinized, anucleated stratum corneum. The WNT signalling pathway is known to be important in the skin. WNT signalling has been shown to be important both in epidermal development and in the maintenance and cycling of hair follicles and epidermal stem cells. However, the precise role for this pathway in epidermal differentiation remains unknown. We investigated the role of the WNT signalling inhibitor sFRP4 in epidermal differentiation. sFRP4 is expressed in both normal skin and keratinocytes in culture. Expression of sFRP4 mRNA and protein increases with keratinocyte differentiation and apoptosis, whilst exposure of keratinocytes to exogenous sFRP4 promotes apoptosis and expression of the terminal differentiation marker Involucrin. These data suggest sFRP4 promotes epidermal differentiation.

  9. DNA damage response clamp 9-1-1 promotes assembly of ZMM proteins for formation of crossovers and synaptonemal complex

    Science.gov (United States)

    Shinohara, Miki; Hayashihara, Kayoko; Grubb, Jennifer T.; Bishop, Douglas K.; Shinohara, Akira

    2015-01-01

    Formation of crossovers between homologous chromosomes during meiosis is positively regulated by the ZMM proteins (also known as SIC proteins). DNA damage checkpoint proteins also promote efficient formation of interhomolog crossovers. Here, we examined, in budding yeast, the meiotic role of the heterotrimeric DNA damage response clamp composed of Rad17, Ddc1 and Mec3 (known as ‘9-1-1’ in other organisms) and a component of the clamp loader, Rad24 (known as Rad17 in other organisms). Cytological analysis indicated that the 9-1-1 clamp and its loader are not required for the chromosomal loading of RecA homologs Rad51 or Dmc1, but are necessary for the efficient loading of ZMM proteins. Interestingly, the loading of ZMM proteins onto meiotic chromosomes was independent of the checkpoint kinase Mec1 (the homolog of ATR) as well as Rad51. Furthermore, the ZMM member Zip3 (also known as Cst9) bound to the 9-1-1 complex in a cell-free system. These data suggest that, in addition to promoting interhomolog bias mediated by Rad51–Dmc1, the 9-1-1 clamp promotes crossover formation through a specific role in the assembly of ZMM proteins. Thus, the 9-1-1 complex functions to promote two crucial meiotic recombination processes, the regulation of interhomolog recombination and crossover formation mediated by ZMM. PMID:25736290

  10. Características reprodutivas de veado-bororó-do-sul ou veado-mão-curta (Mazama nana)

    OpenAIRE

    Abreu,Cassiana O. de; Martinez,Antonio C.; Moraes,Wanderlei de; Juvenal,Julio C.; Moreira,Nei

    2009-01-01

    Dos cervídeos brasileiros, a espécie Mazama nana é a menos conhecida. Os parâmetros reprodutivos para os machos ainda são desconhecidos, mas parece que não apresentam sazonalidade reprodutiva. Neste trabalho foram utilizados nove machos de Mazama nana em idade reprodutiva, mantidos em cativeiro. Foram avaliados quanto ao peso corporal, altura de cernelha, comprimento crânio-caudal, situação dos chifres, volume e consistência testicular. O sêmen foi colhido por eletroejaculação e submetido a a...

  11. Bone morphogenetic protein-7 promotes chondrogenesis in human amniotic epithelial cells.

    Science.gov (United States)

    Zhou, Junjie; Yu, Guangrong; Cao, Chengfu; Pang, Jinhui; Chen, Xianqi

    2011-06-01

    Bone morphogenetic proteins (BMPs) play important roles at multiple stages of chondrogenesis. This study was undertaken to investigate the potential role of bone morphogenetic protein-7 (BMP-7) in the differentiation of chondrocytes using tissue engineering techniques. The impact of BMP-7 on human amniotic epithelial cells (hAECs) was tested. The hAECs were treated either with recombinant human BMP-7 cDNA or with transforming growth factor beta 1 (TGF-β1) as a positive control for three weeks in vitro. Cartilaginous differentiation and proliferation were assayed by quantitative RT-PCR, histology, and in situ hybridization. Our results were such that hAECs treated with either BMP-7 or TGF-β1 expressed cartilage markers (aggrecan, Sox9, CEP-68, and type II and X collagens) within three weeks. Compared with a control vector, BMP-7 induced a decrease in type I collagen expression, while the transcription of the cartilage-specific type II collagen remained stable. In induction experiments, BMP-7 transgenic hAECs exhibited the largest amount of matrix synthesis. In conclusion, these data indicate that BMP-7 plays an important role in inducing the production of cartilage by hAECs in vitro. Cartilage differentiation and matrix maturation can be promoted by BMPs in a cartilage engineering paradigm. These properties make BMPs promising tools in the engineering of cartilaginous joint bio-prostheses and as candidate biological agents or genes for cartilage stabilisation.

  12. The Zn finger protein Iguana impacts Hedgehog signaling by promoting ciliogenesis.

    Science.gov (United States)

    Glazer, Andrew M; Wilkinson, Alex W; Backer, Chelsea B; Lapan, Sylvain W; Gutzman, Jennifer H; Cheeseman, Iain M; Reddien, Peter W

    2010-01-01

    Hedgehog signaling is critical for metazoan development and requires cilia for pathway activity. The gene iguana was discovered in zebrafish as required for Hedgehog signaling, and encodes a novel Zn finger protein. Planarians are flatworms with robust regenerative capacities and utilize epidermal cilia for locomotion. RNA interference of Smed-iguana in the planarian Schmidtea mediterranea caused cilia loss and failure to regenerate new cilia, but did not cause defects similar to those observed in hedgehog(RNAi) animals. Smed-iguana gene expression was also similar in pattern to the expression of multiple other ciliogenesis genes, but was not required for expression of these ciliogenesis genes. iguana-defective zebrafish had too few motile cilia in pronephric ducts and in Kupffer's vesicle. Kupffer's vesicle promotes left-right asymmetry and iguana mutant embryos had left-right asymmetry defects. Finally, human Iguana proteins (dZIP1 and dZIP1L) localize to the basal bodies of primary cilia and, together, are required for primary cilia formation. Our results indicate that a critical and broadly conserved function for Iguana is in ciliogenesis and that this function has come to be required for Hedgehog signaling in vertebrates.

  13. Inhibition of SNW1 association with spliceosomal proteins promotes apoptosis in breast cancer cells

    International Nuclear Information System (INIS)

    Sato, Naoki; Maeda, Masao; Sugiyama, Mai; Ito, Satoko; Hyodo, Toshinori; Masuda, Akio; Tsunoda, Nobuyuki; Kokuryo, Toshio; Hamaguchi, Michinari; Nagino, Masato; Senga, Takeshi

    2015-01-01

    RNA splicing is a fundamental process for protein synthesis. Recent studies have reported that drugs that inhibit splicing have cytotoxic effects on various tumor cell lines. In this report, we demonstrate that depletion of SNW1, a component of the spliceosome, induces apoptosis in breast cancer cells. Proteomics and biochemical analyses revealed that SNW1 directly associates with other spliceosome components, including EFTUD2 (Snu114) and SNRNP200 (Brr2). The SKIP region of SNW1 interacted with the N-terminus of EFTUD2 as well as two independent regions in the C-terminus of SNRNP200. Similar to SNW1 depletion, knockdown of EFTUD2 increased the numbers of apoptotic cells. Furthermore, we demonstrate that exogenous expression of either the SKIP region of SNW1 or the N-terminus region of EFTUD2 significantly promoted cellular apoptosis. Our results suggest that the inhibition of SNW1 or its associating proteins may be a novel therapeutic strategy for cancer treatment

  14. Acupuncture promotes mTOR-independent autophagic clearance of aggregation-prone proteins in mouse brain.

    Science.gov (United States)

    Tian, Tian; Sun, Yanhong; Wu, Huangan; Pei, Jian; Zhang, Jing; Zhang, Yi; Wang, Lu; Li, Bin; Wang, Lihua; Shi, Jiye; Hu, Jun; Fan, Chunhai

    2016-01-21

    Acupuncture has historically been practiced to treat medical disorders by mechanically stimulating specific acupoints with fine needles. Despite its well-documented efficacy, its biological basis remains largely elusive. In this study, we found that mechanical stimulation at the acupoint of Yanglingquan (GB34) promoted the autophagic clearance of α-synuclein (α-syn), a well known aggregation-prone protein closely related to Parkinson's disease (PD), in the substantia nigra par compacta (SNpc) of the brain in a PD mouse model. We found the protein clearance arose from the activation of the autophagy-lysosome pathway (ALP) in a mammalian target of rapamycin (mTOR)-independent approach. Further, we observed the recovery in the activity of dopaminergic neurons in SNpc, and improvement in the motor function at the behavior level of PD mice. Whereas acupuncture and rapamycin, a chemical mTOR inhibitor, show comparable α-syn clearance and therapeutic effects in the PD mouse model, the latter adopts a distinctly different, mTOR-dependent, autophagy induction process. Due to this fundamental difference, acupuncture may circumvent adverse effects of the rapamycin treatment. The newly discovered connection between acupuncture and autophagy not only provides a new route to understanding the molecular mechanism of acupuncture but also sheds new light on cost-effective and safe therapy of neurodegenerative diseases.

  15. The Zn Finger protein Iguana impacts Hedgehog signaling by promoting ciliogenesis

    Science.gov (United States)

    Glazer, Andrew; Wilkinson, Alex; Backer, Chelsea B.; Lapan, Sylvain; Gutzman, Jennifer H.; Cheeseman, Iain M.; Reddien, Peter W.

    2009-01-01

    Hedgehog signaling is critical for metazoan development and requires cilia for pathway activity. The gene iguana was discovered in zebrafish as required for Hedgehog signaling, and encodes a novel Zn finger protein. Planarians are flatworms with robust regenerative capacities and that utilize epidermal cilia for locomotion. RNA interference of Smed-iguana in the planarian S. mediterranea caused cilia loss and failure to regenerate new cilia, but did not cause defects similar to those observed in hedgehog(RNAi) animals. Smed-iguana gene expression was also similar in pattern to the expression of multiple other ciliogenesis genes, but was not required for expression of these ciliogenesis genes. iguana-defective zebrafish had too few motile cilia in pronephric ducts and in Kupffer's vesicle. Kupffer's vesicle promotes left-right asymmetry and iguana mutant embryos had left-right asymmetry defects. Finally, human Iguana proteins (dZIP1 and dZIP1L) localize to the basal bodies of primary cilia and, together, are required for primary cilia formation. Our results indicate that a critical and broadly conserved function for Iguana is in ciliogenesis and that this function has come to be required for Hedgehog signaling in vertebrates. PMID:19852954

  16. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth.

    Science.gov (United States)

    Orr, Brent A; Bai, Haibo; Odia, Yazmin; Jain, Deepali; Anders, Robert A; Eberhart, Charles G

    2011-07-01

    The hippo pathway and its downstream mediator yes-associated protein 1 (YAP1) regulate mammalian organ size in part through modulating progenitor cell numbers. YAP1 has also been implicated as an oncogene in multiple human cancers. Currently, little is known about the expression of YAP1 either in normal human brain tissue or in central nervous system neoplasms. We used immunohistochemistry to evaluate nuclear YAP1 expression in the fetal and normal adult human brains and in 264 brain tumors. YAP1 was expressed in fetal and adult brain regions known to harbor neural progenitor cells, but there was little YAP1 immunoreactivity in the adult cerebral cortex. YAP1 protein was also readily detected in the nuclei of human brain tumors. In medulloblastoma, the expression varied between histologic subtypes and was most prominent in nodular/desmoplastic tumors. In gliomas, it was frequently expressed in infiltrating astrocytomas and oligodendrogliomas but rarely in pilocytic astrocytomas. Using a loss-of-function approach, we show that YAP1 promoted growth of glioblastoma cell lines in vitro. High levels of YAP1 messenger RNA expression were associated with aggressive molecular subsets of glioblastoma and with a nonsignificant trend toward reduced mean survival in human astrocytoma patients. These findings suggest that YAP1 may play an important role in normal human brain development and that it could represent a new target in human brain tumors.

  17. Epithelial membrane protein-2 promotes endometrial tumor formation through activation of FAK and Src.

    Directory of Open Access Journals (Sweden)

    Maoyong Fu

    Full Text Available Endometrial cancer is the most common gynecologic malignancy diagnosed among women in developed countries. One recent biomarker strongly associated with disease progression and survival is epithelial membrane protein-2 (EMP2, a tetraspan protein known to associate with and modify surface expression of certain integrin isoforms. In this study, we show using a xenograft model system that EMP2 expression is necessary for efficient endometrial tumor formation, and we have started to characterize the mechanism by which EMP2 contributes to this malignant phenotype. In endometrial cancer cells, the focal adhesion kinase (FAK/Src pathway appears to regulate migration as measured through wound healing assays. Manipulation of EMP2 levels in endometrial cancer cells regulates the phosphorylation of FAK and Src, and promotes their distribution into lipid raft domains. Notably, cells with low levels of EMP2 fail to migrate and poorly form tumors in vivo. These findings reveal the pivotal role of EMP2 in endometrial cancer carcinogenesis, and suggest that the association of elevated EMP2 levels with endometrial cancer prognosis may be causally linked to its effect on integrin-mediated signaling.

  18. Benzoylphenyl thiocyanates are new, effective inhibitors of the mycobacterial resuscitation promoting factor B protein

    Directory of Open Access Journals (Sweden)

    Galina R. Demina

    2017-11-01

    Full Text Available Abstract Background Resuscitation promoting factors (Rpfs are the proteins involved in the process of reactivation of the dormant cells of mycobacteria. Recently a new class of nitrophenylthiocyanates (NPTs, capable of inhibiting the biological and enzymatic activities of Rpfs has been discovered. In the current study the inhibitory properties of the compounds containing both nitro and thiocyanate groups alongside with the compounds with the modified number and different spatial location of the substituents are compared. Methods New benzoylphenyl thiocyanates alongside with nitrophenylthiocyanates were tested in the enzymatic assay of bacterial peptidoglycan hydrolysis as well as against strains of several actinobacteria (Mycobacterium smegmatis, Mycobacterium tuberculosis on in-lab developed models of resuscitation of the dormant forms. Results Introduction of the additional nitro and thiocyanate groups to the benzophenone scaffold did not influence the inhibitory activity of the compounds. Removal of the nitro groups analogously did not impair the functional properties of the molecules. Among the tested compounds two molecules without nitro group: 3-benzoylphenyl thiocyanate and 4-benzoylphenyl thiocyanate demonstrated the maximum activity in both enzymatic assay (inhibition of the Rpf-mediated peptidoglycan hydrolysis and in the resuscitation assay of the dormant M. tuberculosis cells. Conclusions The current study demonstrates dispensability of the nitro group in the NPT’s structure for inhibition of the enzymatic and biological activities of the Rpf protein molecules. These findings provide new prospects in anti-TB drug discovery especially in finding of molecular scaffolds effective for the latent infection treatment.

  19. Hepatitis C Virus Core Protein Promotes miR-122 Destabilization by Inhibiting GLD-2.

    Directory of Open Access Journals (Sweden)

    Geon-Woo Kim

    2016-07-01

    Full Text Available The liver-specific microRNA miR-122, which has essential roles in liver development and metabolism, is a key proviral factor for hepatitis C virus (HCV. Despite its crucial role in the liver and HCV life cycle, little is known about the molecular mechanism of miR-122 expression regulation by HCV infection. Here, we show that the HCV core protein downregulates the abundance of miR-122 by promoting its destabilization via the inhibition of GLD-2, a non-canonical cytoplasmic poly(A polymerase. The decrease in miR-122 expression resulted in the dysregulation of the known functions of miR-122, including its proviral activity for HCV. By high-throughput sequencing of small RNAs from human liver biopsies, we found that the 22-nucleotide (nt prototype miR-122 is modified at its 3' end by 3'-terminal non-templated and templated nucleotide additions. Remarkably, the proportion of miR-122 isomers bearing a single nucleotide tail of any ribonucleotide decreased in liver specimens from patients with HCV. We found that these single-nucleotide-tailed miR-122 isomers display increased miRNA activity and stability over the 22-nt prototype miR-122 and that the 3'-terminal extension is catalyzed by the unique terminal nucleotidyl transferase activity of GLD-2, which is capable of adding any single ribonucleotide without preference of adenylate to the miR-122 3' end. The HCV core protein specifically inhibited GLD-2, and its interaction with GLD-2 in the cytoplasm was found to be responsible for miR-122 downregulation. Collectively, our results provide new insights into the regulatory role of the HCV core protein in controlling viral RNA abundance and miR-122 functions through miR-122 stability modulation.

  20. Hepatitis C Virus Core Protein Promotes miR-122 Destabilization by Inhibiting GLD-2.

    Science.gov (United States)

    Kim, Geon-Woo; Lee, Seung-Hoon; Cho, Hee; Kim, Minwoo; Shin, Eui-Cheol; Oh, Jong-Won

    2016-07-01

    The liver-specific microRNA miR-122, which has essential roles in liver development and metabolism, is a key proviral factor for hepatitis C virus (HCV). Despite its crucial role in the liver and HCV life cycle, little is known about the molecular mechanism of miR-122 expression regulation by HCV infection. Here, we show that the HCV core protein downregulates the abundance of miR-122 by promoting its destabilization via the inhibition of GLD-2, a non-canonical cytoplasmic poly(A) polymerase. The decrease in miR-122 expression resulted in the dysregulation of the known functions of miR-122, including its proviral activity for HCV. By high-throughput sequencing of small RNAs from human liver biopsies, we found that the 22-nucleotide (nt) prototype miR-122 is modified at its 3' end by 3'-terminal non-templated and templated nucleotide additions. Remarkably, the proportion of miR-122 isomers bearing a single nucleotide tail of any ribonucleotide decreased in liver specimens from patients with HCV. We found that these single-nucleotide-tailed miR-122 isomers display increased miRNA activity and stability over the 22-nt prototype miR-122 and that the 3'-terminal extension is catalyzed by the unique terminal nucleotidyl transferase activity of GLD-2, which is capable of adding any single ribonucleotide without preference of adenylate to the miR-122 3' end. The HCV core protein specifically inhibited GLD-2, and its interaction with GLD-2 in the cytoplasm was found to be responsible for miR-122 downregulation. Collectively, our results provide new insights into the regulatory role of the HCV core protein in controlling viral RNA abundance and miR-122 functions through miR-122 stability modulation.

  1. The double bromodomain protein Brd2 promotes B cell expansion and mitogenesis.

    Science.gov (United States)

    Belkina, Anna C; Blanton, Wanda P; Nikolajczyk, Barbara S; Denis, Gerald V

    2014-03-01

    Bromodomain-containing transcriptional regulators represent new epigenetic targets in different hematologic malignancies. However, bromodomain-mediated mechanisms that couple histone acetylation to transcription in lymphopoiesis and govern mature lymphocyte mitogenesis are poorly understood. Brd2, a transcriptional coregulator that contains dual bromodomains and an extraterminal domain (the BET family), couples chromatin to cell-cycle progression. We reported previously the first functional characterization of a BET protein as an effector of mammalian mitogenic signal transduction: Eμ-Brd2 Tg mice develop "activated B cell" diffuse large B cell lymphoma. No other animal models exist for genetic or lentiviral expression of BET proteins, hampering testing of novel anti-BET anticancer drugs, such as JQ1. We transduced HSCs with Brd2 lentivirus and reconstituted recipient mice to test the hypothesis that Brd2 regulates hematopoiesis in BM and mitogenesis in the periphery. Forced expression of Brd2 provides an expansion advantage to the donor-derived B cell compartment in BM and increases mature B cell mitogenic responsiveness in vitro. Brd2 binds the cyclin A promoter in B cells, shown by ChIP, and increases cyclin A mRNA and protein levels, and S-phase progression in vitro in mitogen-stimulated primary B cells, but not T cells, reinforcing results from Eμ-Brd2 mice. The small molecule BET inhibitor JQ1 reduces B cell mitogenesis, consistent with the interpretation that BET inhibitors are antiproliferative. Brd2-specific knockdown experiments show that Brd2 is also required for hematopoiesis. We conclude that Brd2 plays a critical, independent role in regulation of mitogenic response genes, particularly cyclin A, in B cells.

  2. Dickkopf-related protein 3 promotes pathogenic stromal remodeling in benign prostatic hyperplasia and prostate cancer.

    Science.gov (United States)

    Zenzmaier, Christoph; Sampson, Natalie; Plas, Eugen; Berger, Peter

    2013-09-01

    Compartment-specific epithelial and stromal expression of the secreted glycoprotein Dickkopf-related protein (Dkk)-3 is altered in age-related proliferative disorders of the human prostate. This study aimed to determine the effect of Dkk-3 on prostate stromal remodeling that is stromal proliferation, fibroblast-to-myofibroblast differentiation and expression of angiogenic factors in vitro. Lentiviral-delivered overexpression and shRNA-mediated knockdown of DKK3 were applied to primary human prostatic stromal cells (PrSCs). Cellular proliferation was analyzed by BrdU incorporation ELISA. Expression of Dkk-3, apoptosis-related genes, cyclin-dependent kinase inhibitors and angiogenic factors were analyzed by qPCR, Western blot analysis or ELISA. Fibroblast-to-myofibroblast differentiation was monitored by smooth muscle cell actin and insulin-like growth factor binding protein 3 mRNA and protein levels. The relevance of Wnt/β-catenin and PI3K/AKT signaling pathways was assessed by cytoplasmic/nuclear β-catenin levels and phosphorylation of AKT. Knockdown of DKK3 significantly attenuated PrSC proliferation as well as fibroblast-to-myofibroblast differentiation and increased the expression of the vessel stabilizing factor angiopoietin-1. DKK3 knockdown did not affect subcellular localization or levels of β-catenin but attenuated AKT phosphorylation in PrSCs. Consistently the PI3K/AKT inhibitor LY294002 mimicked the effects of DKK3 knockdown. Dkk-3 promotes fibroblast proliferation and myofibroblast differentiation and regulates expression of angiopoietin-1 in prostatic stroma potentially via enhancing PI3K/AKT signaling. Thus, elevated Dkk-3 in the stroma of the diseased prostate presumably regulates stromal remodeling by enhancing proliferation and differentiation of stromal cells and contributing to the angiogenic switch observed in BPH and PCa. Therefore, Dkk-3 represents a potential therapeutic target for stromal remodeling in BPH and PCa. © 2013 Wiley

  3. Hepatitis B X-interacting protein promotes cisplatin resistance and regulates CD147 via Sp1 in ovarian cancer.

    Science.gov (United States)

    Zou, Wei; Ma, Xiangdong; Yang, Hong; Hua, Wei; Chen, Biliang; Cai, Guoqing

    2017-03-01

    Ovarian cancer is the highest mortality rate of all female reproductive malignancies. Drug resistance is a major cause of treatment failure in malignant tumors. Hepatitis B X-interacting protein acts as an oncoprotein, regulates cell proliferation, and migration in breast cancer. We aimed to investigate the effects and mechanisms of hepatitis B X-interacting protein on resistance to cisplatin in human ovarian cancer cell lines. The mRNA and protein levels of hepatitis B X-interacting protein were detected using RT-PCR and Western blotting in cisplatin-resistant and cisplatin-sensitive tissues, cisplatin-resistant cell lines A2780/CP and SKOV3/CP, and cisplatin-sensitive cell lines A2780 and SKOV3. Cell viability and apoptosis were measured to evaluate cellular sensitivity to cisplatin in A2780/CP cells. Luciferase reporter gene assay was used to determine the relationship between hepatitis B X-interacting protein and CD147. The in vivo function of hepatitis B X-interacting protein on tumor burden was assessed in cisplatin-resistant xenograft models. The results showed that hepatitis B X-interacting protein was highly expressed in ovarian cancer of cisplatin-resistant tissues and cells. Notably, knockdown of hepatitis B X-interacting protein significantly reduced cell viability in A2780/CP compared with cisplatin treatment alone. Hepatitis B X-interacting protein and cisplatin cooperated to induce apoptosis and increase the expression of c-caspase 3 as well as the Bax/Bcl-2 ratio. We confirmed that hepatitis B X-interacting protein up-regulated CD147 at the protein expression and transcriptional levels. Moreover, we found that hepatitis B X-interacting protein was able to activate the CD147 promoter through Sp1. In vivo, depletion of hepatitis B X-interacting protein decreased the tumor volume and weight induced by cisplatin. Taken together, these results indicate that hepatitis B X-interacting protein promotes cisplatin resistance and regulated CD147 via Sp1 in

  4. A single cysteine post-translational oxidation suffices to compromise globular proteins kinetic stability and promote amyloid formation

    Directory of Open Access Journals (Sweden)

    Patrizia Marinelli

    2018-04-01

    Full Text Available Oxidatively modified forms of proteins accumulate during aging. Oxidized protein conformers might act as intermediates in the formation of amyloids in age-related disorders. However, it is not known whether this amyloidogenic conversion requires an extensive protein oxidative damage or it can be promoted just by a discrete, localized post-translational modification of certain residues. Here, we demonstrate that the irreversible oxidation of a single free Cys suffices to severely perturb the folding energy landscape of a stable globular protein, compromise its kinetic stability, and lead to the formation of amyloids under physiological conditions. Experiments and simulations converge to indicate that this specific oxidation-promoted protein aggregation requires only local unfolding. Indeed, a large scale analysis indicates that many cellular proteins are at risk of undergoing this kind of deleterious transition; explaining how oxidative stress can impact cell proteostasis and subsequently lead to the onset of pathological states. Keywords: Protein oxidation, Protein misfolding, Protein aggregation, Oxidative stress, Post-translational modification

  5. IN-MACA-MCC: Integrated Multiple Attractor Cellular Automata with Modified Clonal Classifier for Human Protein Coding and Promoter Prediction.

    Science.gov (United States)

    Pokkuluri, Kiran Sree; Inampudi, Ramesh Babu; Nedunuri, S S S N Usha Devi

    2014-01-01

    Protein coding and promoter region predictions are very important challenges of bioinformatics (Attwood and Teresa, 2000). The identification of these regions plays a crucial role in understanding the genes. Many novel computational and mathematical methods are introduced as well as existing methods that are getting refined for predicting both of the regions separately; still there is a scope for improvement. We propose a classifier that is built with MACA (multiple attractor cellular automata) and MCC (modified clonal classifier) to predict both regions with a single classifier. The proposed classifier is trained and tested with Fickett and Tung (1992) datasets for protein coding region prediction for DNA sequences of lengths 54, 108, and 162. This classifier is trained and tested with MMCRI datasets for protein coding region prediction for DNA sequences of lengths 252 and 354. The proposed classifier is trained and tested with promoter sequences from DBTSS (Yamashita et al., 2006) dataset and nonpromoters from EID (Saxonov et al., 2000) and UTRdb (Pesole et al., 2002) datasets. The proposed model can predict both regions with an average accuracy of 90.5% for promoter and 89.6% for protein coding region predictions. The specificity and sensitivity values of promoter and protein coding region predictions are 0.89 and 0.92, respectively.

  6. IN-MACA-MCC: Integrated Multiple Attractor Cellular Automata with Modified Clonal Classifier for Human Protein Coding and Promoter Prediction

    Directory of Open Access Journals (Sweden)

    Kiran Sree Pokkuluri

    2014-01-01

    Full Text Available Protein coding and promoter region predictions are very important challenges of bioinformatics (Attwood and Teresa, 2000. The identification of these regions plays a crucial role in understanding the genes. Many novel computational and mathematical methods are introduced as well as existing methods that are getting refined for predicting both of the regions separately; still there is a scope for improvement. We propose a classifier that is built with MACA (multiple attractor cellular automata and MCC (modified clonal classifier to predict both regions with a single classifier. The proposed classifier is trained and tested with Fickett and Tung (1992 datasets for protein coding region prediction for DNA sequences of lengths 54, 108, and 162. This classifier is trained and tested with MMCRI datasets for protein coding region prediction for DNA sequences of lengths 252 and 354. The proposed classifier is trained and tested with promoter sequences from DBTSS (Yamashita et al., 2006 dataset and nonpromoters from EID (Saxonov et al., 2000 and UTRdb (Pesole et al., 2002 datasets. The proposed model can predict both regions with an average accuracy of 90.5% for promoter and 89.6% for protein coding region predictions. The specificity and sensitivity values of promoter and protein coding region predictions are 0.89 and 0.92, respectively.

  7. Herpesviral ICP0 Protein Promotes Two Waves of Heterochromatin Removal on an Early Viral Promoter during Lytic Infection

    Directory of Open Access Journals (Sweden)

    Jennifer S. Lee

    2016-01-01

    Full Text Available Herpesviruses must contend with host cell epigenetic silencing responses acting on their genomes upon entry into the host cell nucleus. In this study, we confirmed that unchromatinized herpes simplex virus 1 (HSV-1 genomes enter primary human foreskin fibroblasts and are rapidly subjected to assembly of nucleosomes and association with repressive heterochromatin modifications such as histone 3 (H3 lysine 9-trimethylation (H3K9me3 and lysine 27-trimethylation (H3K27me3 during the first 1 to 2 h postinfection. Kinetic analysis of the modulation of nucleosomes and heterochromatin modifications over the course of lytic infection demonstrates a progressive removal that coincided with initiation of viral gene expression. We obtained evidence for three phases of heterochromatin removal from an early gene promoter: an initial removal of histones and heterochromatin not dependent on ICP0, a second ICP0-dependent round of removal of H3K9me3 that is independent of viral DNA synthesis, and a third phase of H3K27me3 removal that is dependent on ICP0 and viral DNA synthesis. The presence of ICP0 in transfected cells is also sufficient to promote removal of histones and H3K9me3 modifications of cotransfected genes. Overall, these results show that ICP0 promotes histone removal, a reduction of H3K9me3 modifications, and a later indirect reduction of H3K27me3 modifications following viral early gene expression and DNA synthesis. Therefore, HSV ICP0 promotes the reversal of host epigenetic silencing mechanisms by several mechanisms.

  8. Light response and potential interacting proteins of a grape flavonoid 3'-hydroxylase gene promoter.

    Science.gov (United States)

    Sun, Run-Ze; Pan, Qiu-Hong; Duan, Chang-Qing; Wang, Jun

    2015-12-01

    Flavonoid 3'-hydroxylase (F3'H), a member of cytochrome P450 protein family, introduces B-ring hydroxyl group in the 3' position of the flavonoid. In this study, the cDNA sequence of a F3'H gene (VviF3'H), which contains an open reading frame of 1530 bp encoding a polypeptide of 509 amino acids, was cloned and characterized from Vitis vinifera L. cv. Cabernet Sauvignon. VviF3'H showed high homology to known F3'H genes, especially F3'Hs from the V. vinifera reference genome (Pinot Noir) and lotus. Expression profiling analysis using real-time PCR revealed that VviF3'H was ubiquitously expressed in all tested tissues including berries, leaves, flowers, roots, stems and tendrils, suggesting its important physiological role in plant growth and development. Moreover, the transcript level of VviF3'H gene in grape berries was relatively higher at early developmental stages and gradually decreased during véraison, and then increased in the mature phase. In addition, the promoter of VviF3'H was isolated by using TAIL-PCR. Yeast one-hybrid screening of the Cabernet Sauvignon cDNA library and subsequent in vivo/vitro validations revealed the interaction between VviF3'H promoter and several transcription factors, including members of HD-Zip, NAC, MYB and EIN families. A transcriptional regulation mechanism of VviF3'H expression is proposed for the first time. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Mycobacterium tuberculosis UvrD1 and UvrA proteins suppress DNA strand exchange promoted by cognate and noncognate RecA proteins.

    Science.gov (United States)

    Singh, Pawan; Patil, K Neelakanteshwar; Khanduja, Jasbeer Singh; Kumar, P Sanjay; Williams, Alan; Rossi, Franca; Rizzi, Menico; Davis, Elaine O; Muniyappa, K

    2010-06-15

    DNA helicases are present in all kingdoms of life and play crucial roles in processes of DNA metabolism such as replication, repair, recombination, and transcription. To date, however, the role of DNA helicases during homologous recombination in mycobacteria remains unknown. In this study, we show that Mycobacterium tuberculosis UvrD1 more efficiently inhibited the strand exchange promoted by its cognate RecA, compared to noncognate Mycobacterium smegmatis or Escherichia coli RecA proteins. The M. tuberculosis UvrD1(Q276R) mutant lacking the helicase and ATPase activities was able to block strand exchange promoted by mycobacterial RecA proteins but not of E. coli RecA. We observed that M. tuberculosis UvrA by itself has no discernible effect on strand exchange promoted by E. coli RecA but impedes the reaction catalyzed by the mycobacterial RecA proteins. Our data also show that M. tuberculosis UvrA and UvrD1 can act together to inhibit strand exchange promoted by mycobacterial RecA proteins. Taken together, these findings raise the possibility that UvrD1 and UvrA might act together in vivo to counter the deleterious effects of RecA nucleoprotein filaments and/or facilitate the dissolution of recombination intermediates. Finally, we provide direct experimental evidence for a physical interaction between M. tuberculosis UvrD1 and RecA on one hand and RecA and UvrA on the other hand. These observations are consistent with a molecular mechanism, whereby M. tuberculosis UvrA and UvrD1, acting together, block DNA strand exchange promoted by cognate and noncognate RecA proteins.

  10. Compound A, a Selective Glucocorticoid Receptor Modulator, Enhances Heat Shock Protein Hsp70 Gene Promoter Activation

    Science.gov (United States)

    Beck, Ilse M.; Drebert, Zuzanna J.; Hoya-Arias, Ruben; Bahar, Ali A.; Devos, Michael; Clarisse, Dorien; Desmet, Sofie; Bougarne, Nadia; Ruttens, Bart; Gossye, Valerie; Denecker, Geertrui; Lievens, Sam; Bracke, Marc; Tavernier, Jan; Declercq, Wim; Gevaert, Kris; Berghe, Wim Vanden; Haegeman, Guy; De Bosscher, Karolien

    2013-01-01

    Compound A possesses glucocorticoid receptor (GR)-dependent anti-inflammatory properties. Just like classical GR ligands, Compound A can repress NF-κB-mediated gene expression. However, the monomeric Compound A-activated GR is unable to trigger glucocorticoid response element-regulated gene expression. The heat shock response potently activates heat shock factor 1 (HSF1), upregulates Hsp70, a known GR chaperone, and also modulates various aspects of inflammation. We found that the selective GR modulator Compound A and heat shock trigger similar cellular effects in A549 lung epithelial cells. With regard to their anti-inflammatory mechanism, heat shock and Compound A are both able to reduce TNF-stimulated IκBα degradation and NF-κB p65 nuclear translocation. We established an interaction between Compound A-activated GR and Hsp70, but remarkably, although the presence of the Hsp70 chaperone as such appears pivotal for the Compound A-mediated inflammatory gene repression, subsequent novel Hsp70 protein synthesis is uncoupled from an observed CpdA-induced Hsp70 mRNA upregulation and hence obsolete in mediating CpdA’s anti-inflammatory effect. The lack of a Compound A-induced increase in Hsp70 protein levels in A549 cells is not mediated by a rapid proteasomal degradation of Hsp70 or by a Compound A-induced general block on translation. Similar to heat shock, Compound A can upregulate transcription of Hsp70 genes in various cell lines and BALB/c mice. Interestingly, whereas Compound A-dependent Hsp70 promoter activation is GR-dependent but HSF1-independent, heat shock-induced Hsp70 expression alternatively occurs in a GR-independent and HSF1-dependent manner in A549 lung epithelial cells. PMID:23935933

  11. A milk protein, casein, as a proliferation promoting factor in prostate cancer cells.

    Science.gov (United States)

    Park, Sung-Woo; Kim, Joo-Young; Kim, You-Sun; Lee, Sang Jin; Lee, Sang Don; Chung, Moon Kee

    2014-08-01

    Despite most epidemiologic studies reporting that an increase in milk intake affects the growth of prostate cancer, the results of experimental studies are not consistent. In this study, we investigated the proliferation of prostate cancer cells treated with casein, the main protein in milk. Prostate cancer cells (LNCaP and PC3), lung cancer cells (A459), stomach cancer cells (SNU484), breast cancer cells (MCF7), immortalized human embryonic kidney cells (HEK293), and immortalized normal prostate cells (RWPE1) were treated with either 0.1 or 1 mg/mL of α-casein and total casein extracted from bovine milk. Treatments were carried out in serum-free media for 72 hours. The proliferation of each cell line was evaluated by an 3-(4,5-Dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. α-Casein and total casein did not affect the proliferations of RWPE1, HEK293, A459, SNU484, MCF7, HEK293, or RWPE1 cells. However, PC3 cells treated with 1 mg/mL of α-casein and casein showed increased proliferation (228% and 166%, respectively), and the proliferation of LNCaP cells was also enhanced by 134% and 142%, respectively. The proliferation mechanism of α-casein in PC3 and LNCaP cells did not appear to be related to the induction of Insulin-like growth factor-1 (IGF-1), since the level of IGF-1 did not change upon the supplementation of casein. The milk protein, casein, promotes the proliferation of prostate cancer cells such as PC3 and LNCaP.

  12. Anti-Restriction Protein, KlcAHS, Promotes Dissemination of Carbapenem Resistance

    Directory of Open Access Journals (Sweden)

    Xiaofei Jiang

    2017-05-01

    Full Text Available Carbapenemase-producing Klebsiella pneumoniae (KPC has emerged and spread throughout the world. A retrospective analysis was performed on carbapenem-resistant K. pneumoniae isolated at our teaching hospital during the period 2009–2010, when the initial outbreak occurred. To determine the mechanism(s that underlies the increased infectivity exhibited by KPC, Multilocus Sequence Typing (MLST was conducted. A series of plasmids was also extracted, sequenced and analyzed. Concurrently, the complete sequences of blaKPC−2-harboring plasmids deposited in GenBank were summarized and aligned. The blaKPC−2 and KlcAHS genes in the carbapenem-resistant K. pneumoniae isolates were examined. E. coli strains, carrying different Type I Restriction and Modification (RM systems, were selected to study the interaction between RM systems, anti-RM systems and horizontal gene transfer (HGT. The ST11 clone predominated among 102 carbapenem-resistant K. pneumoniae isolates, all harbored the blaKPC−2 gene; 98% contained the KlcAHS gene. KlcAHS was one of the core genes in the backbone region of most blaKPC−2 carrying plasmids. Type I RM systems in the host bacteria reduced the rate of pHS10842 plasmid transformation by 30- to 40-fold. Presence of the anti-restriction protein, KlcAHS, on the other hand, increased transformation efficiency by 3- to 6-fold. These results indicate that RM systems can significantly restrict HGT. In contrast, KlcAHS can disrupt the RM systems and promote HGT by transformation. These findings suggest that the anti-restriction protein, KlcAHS, represents a novel mechanism that facilitates the increased transfer of blaKPC-2 and KlcAHS-carrying plasmids among K. pneumoniae strains.

  13. An Alphavirus E2 Membrane-Proximal Domain Promotes Envelope Protein Lateral Interactions and Virus Budding

    Directory of Open Access Journals (Sweden)

    Emily A. Byrd

    2017-11-01

    Full Text Available Alphaviruses are members of a group of small enveloped RNA viruses that includes important human pathogens such as Chikungunya virus and the equine encephalitis viruses. The virus membrane is covered by a lattice composed of 80 spikes, each a trimer of heterodimers of the E2 and E1 transmembrane proteins. During virus endocytic entry, the E1 glycoprotein mediates the low-pH-dependent fusion of the virus membrane with the endosome membrane, thus initiating virus infection. While much is known about E1 structural rearrangements during membrane fusion, it is unclear how the E1/E2 dimer dissociates, a step required for the fusion reaction. A recent Alphavirus cryo-electron microscopy reconstruction revealed a previously unidentified D subdomain in the E2 ectodomain, close to the virus membrane. A loop within this region, here referred to as the D-loop, contains two highly conserved histidines, H348 and H352, which were hypothesized to play a role in dimer dissociation. We generated Semliki Forest virus mutants containing the single and double alanine substitutions H348A, H352A, and H348/352A. The three D-loop mutations caused a reduction in virus growth ranging from 1.6 to 2 log but did not significantly affect structural protein biosynthesis or transport, dimer stability, virus fusion, or specific infectivity. Instead, growth reduction was due to inhibition of a late stage of virus assembly at the plasma membrane. The virus particles that are produced show reduced thermostability compared to the wild type. We propose the E2 D-loop as a key region in establishing the E1-E2 contacts that drive glycoprotein lattice formation and promote Alphavirus budding from the plasma membrane.

  14. Parkin Promotes Degradation of the Mitochondrial Pro-Apoptotic ARTS Protein

    Science.gov (United States)

    Kemeny, Stav; Dery, Dikla; Loboda, Yelena; Rovner, Marshall; Lev, Tali; Zuri, Dotan; Finberg, John P. M.; Larisch, Sarit

    2012-01-01

    Parkinson’s disease (PD) is associated with excessive cell death causing selective loss of dopaminergic neurons. Dysfunction of the Ubiquitin Proteasome System (UPS) is associated with the pathophysiology of PD. Mutations in Parkin which impair its E3-ligase activity play a major role in the pathogenesis of inherited PD. ARTS (Sept4_i2) is a mitochondrial protein, which initiates caspase activation upstream of cytochrome c release in the mitochondrial apoptotic pathway. Here we show that Parkin serves as an E3-ubiquitin ligase to restrict the levels of ARTS through UPS-mediated degradation. Though Parkin binds equally to ARTS and Sept4_i1 (H5/PNUTL2), the non-apoptotic splice variant of Sept4, Parkin ubiquitinates and degrades only ARTS. Thus, the effect of Parkin on ARTS is specific and probably related to its pro-apoptotic function. High levels of ARTS are sufficient to promote apoptosis in cultured neuronal cells, and rat brains treated with 6-OHDA reveal high levels of ARTS. However, over-expression of Parkin can protect cells from ARTS-induced apoptosis. Furthermore, Parkin loss-of-function experiments reveal that reduction of Parkin causes increased levels of ARTS and apoptosis. We propose that in brain cells in which the E3-ligase activity of Parkin is compromised, ARTS levels increase and facilitate apoptosis. Thus, ARTS is a novel substrate of Parkin. These observations link Parkin directly to a pro-apoptotic protein and reveal a novel connection between Parkin, apoptosis, and PD. PMID:22792159

  15. The potency of STAT (signal transducers and activators of transcription) 3 protein as growth promoter for chicken

    Science.gov (United States)

    Ma'ruf, Anwar; Iswati, Sri; Hidajati, Nove; Damayanti, Ratna

    2017-09-01

    The long-term objective of this study was to produce STAT synthetic protein in chicken during growth period resulting from the increase of growth hormone (GH) as growth promoter. This study used ten male chicken Lohman from PT. Multibreeder Indonesia. The chicken were kept within batteried cage, with a capacity of one chicken in each cage. The chickens were fed twice a day, at 6 a.m. and 6 p.m. with the amount of feed 10% less than standard. On day 21 the chicken were slaughtered to obtain the samples, i.e., adipose, liver and muscles for the following examinations (1) isolation of STAT-3 signaling protein from adipose, liver and muscles of the chicken, (2) analysis of STAT-3 signaling protein using SDS-PAGE method, and (3) identification of STAT-3 signaling protein using Western blot method by means of protein detection using electrophoresis with polyacrylamide gels. Results of examination on protein in hepatic, muscle and adipose of chickens in growth period revealed that STAT protein was positively present in those tissues. This finding was followed-up with SDS-PAGE examination, from which we found the presence of protein band between the markers of 116 kDa and 14.4 kDa. The protein band was supposedly the STAT-3 protein. To prove that protein band formed was the STAT-3, Western blot examination was conducted using rabbit polyclonal antibody STAT-3. The result showed the formation of the protein band, indicating the presence of reaction between antigen (STAT-3 protein) and STAT-3 protein antibody. In conclusion, STAT-3 protein is present in hepatic, muscular, and adipose tissues, with molecular weight of 59.4 kDa.

  16. Características reprodutivas de veado-bororó-do-sul ou veado-mão-curta (Mazama nana Reproductive characteristics of Brazilian dwarf brocket deer (Mazama nana

    Directory of Open Access Journals (Sweden)

    Cassiana O. de Abreu

    2009-12-01

    Full Text Available Dos cervídeos brasileiros, a espécie Mazama nana é a menos conhecida. Os parâmetros reprodutivos para os machos ainda são desconhecidos, mas parece que não apresentam sazonalidade reprodutiva. Neste trabalho foram utilizados nove machos de Mazama nana em idade reprodutiva, mantidos em cativeiro. Foram avaliados quanto ao peso corporal, altura de cernelha, comprimento crânio-caudal, situação dos chifres, volume e consistência testicular. O sêmen foi colhido por eletroejaculação e submetido a análises de motilidade, vigor e morfologia espermática. As correlações entre idade, peso, comprimento crânio-caudal, altura de cernelha, volume testicular e características do ejaculado (volume, motilidade, vigor e concentração do sêmen foram avaliadas pelo procedimento Corr., do SAS®. As médias ± desvio padrão observados para peso (kg, comprimento crânio-caudal (cm e altura de cernelha (cm foram: 15,72±1,98, 74,9±3,05 e 48,5±2,06, respectivamente. Em relação aos parâmetros reprodutivos primários foram observados: volume do ejaculado (91,46±68,24µl; motilidade (70±8,16%; vigor (3,0±0,67; concentração espermática (1536x10(6 ±351x10(6 espermatozóides por ml. Em relação à morfologia espermática, foi observada uma alta porcentagem de células anormais (40,90%, sendo predominante os defeitos de cauda (25,95%.Mazama nana is the least known of Brazilian deer species. The male reproductive parameters are still unknown, but apparently they did not show reproductive seasonality. In this work were used nine males of M. nana in reproductive age, kept in captivity. They were assessed for weight, height of wither, crown-rump length, the situation of horns, testicular volume and consistency. The sperm was collected by electro-ejaculation and subjected to analyses of motility, vigor and morphology. The correlation between age, weight, height of wither, crown-rump length, testicular volume and characteristics of the ejaculate

  17. Adipocyte spliced form of X-box-binding protein 1 promotes adiponectin multimerization and systemic glucose homeostasis

    NARCIS (Netherlands)

    Sha, H.; Yang, L.; Liu, M.; Xia, S.; Liu, Y.; Liu, F.; Kersten, A.H.; Qi, L.

    2014-01-01

    The physiological role of the spliced form of X-box–binding protein 1 (XBP1s), a key transcription factor of the endoplasmic reticulum (ER) stress response, in adipose tissue remains largely unknown. In this study, we show that overexpression of XBP1s promotes adiponectin multimerization in

  18. The role of summer precipitation and summer temperature in establishment and growth of dwarf shrub Betula nana in northeast Siberian tundra

    DEFF Research Database (Denmark)

    Li, Bingxi; Heijmans, Monique M P D; Berendse, Frank

    2016-01-01

    It is widely believed that deciduous tundra-shrub dominance is increasing in the pan-Arctic region, mainly due to rising temperature. We sampled dwarf birch (Betula nana L.) at a northeastern Siberian tundra site and used dendrochronological methods to explore the relationship between climatic...

  19. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein.

    Science.gov (United States)

    Babault, Nicolas; Païzis, Christos; Deley, Gaëlle; Guérin-Deremaux, Laetitia; Saniez, Marie-Hélène; Lefranc-Millot, Catherine; Allaert, François A

    2015-01-01

    The effects of protein supplementation on muscle thickness and strength seem largely dependent on its composition. The current study aimed at comparing the impact of an oral supplementation with vegetable Pea protein (NUTRALYS®) vs. Whey protein and Placebo on biceps brachii muscle thickness and strength after a 12-week resistance training program. One hundred and sixty one males, aged 18 to 35 years were enrolled in the study and underwent 12 weeks of resistance training on upper limb muscles. According to randomization, they were included in the Pea protein (n = 53), Whey protein (n = 54) or Placebo (n = 54) group. All had to take 25 g of the proteins or placebo twice a day during the 12-week training period. Tests were performed on biceps muscles at inclusion (D0), mid (D42) and post training (D84). Muscle thickness was evaluated using ultrasonography, and strength was measured on an isokinetic dynamometer. Results showed a significant time effect for biceps brachii muscle thickness (P supplementation with pea protein promoted a greater increase of muscle thickness as compared to Placebo and especially for people starting or returning to a muscular strengthening. Since no difference was obtained between the two protein groups, vegetable pea proteins could be used as an alternative to Whey-based dietary products. The present trial has been registered at ClinicalTrials.gov (NCT02128516).

  20. The Protein Elicitor PevD1 Enhances Resistance to Pathogens and Promotes Growth in Arabidopsis.

    Science.gov (United States)

    Liu, Mengjie; Khan, Najeeb Ullah; Wang, Ningbo; Yang, Xiufen; Qiu, Dewen

    2016-01-01

    The protein elicitor PevD1, isolated from Verticillium dahlia, could enhance resistance to TMV in tobacco and Verticillium wilt in cotton. Here, the pevd1 gene was over-expressed in wild type (WT) Arabidopsis, and its biological functions were investigated. Our results showed that the transgenic lines were more resistant to Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 than the WT line was. In transgenic plants, both the germination time and bolting time required were significantly shorter and fresh weights and plant heights were significantly higher than those in the WT line. A transcriptomics study using digital gene expression profiling (DGE) was performed in transgenic and WT Arabidopsis. One hundred and thirty-six differentially expressed genes were identified. In transgenic Arabidopsis, three critical regulators of JA biosynthesis were up-regulated and JA levels were slightly increased. Three important repressors of the ABA-responsive pathway were up-regulated, indicating that ABA signal transduction may be suppressed. One CML and two WRKY TFs involved in Ca(2+)-responsive pathways were up-regulated, indicating that this pathway may have been triggered. In conclusion, we show that PevD1 is involved in regulating several plant endogenous signal transduction pathways and regulatory networks to enhance resistance and promote growth and development in Arabidopsis.

  1. C2 domain protein MIN1 promotes eyespot organization in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Mittelmeier, Telsa M; Berthold, Peter; Danon, Avihai; Lamb, Mary Rose; Levitan, Alexander; Rice, Michael E; Dieckmann, Carol L

    2008-12-01

    Assembly and asymmetric localization of the photosensory eyespot in the biflagellate, unicellular green alga Chlamydomonas reinhardtii requires coordinated organization of photoreceptors in the plasma membrane and pigment granule/thylakoid membrane layers in the chloroplast. min1 (mini-eyed) mutant cells contain abnormally small, disorganized eyespots in which the chloroplast envelope and plasma membrane are no longer apposed. The MIN1 gene, identified here by phenotypic rescue, encodes a protein with an N-terminal C2 domain and a C-terminal LysM domain separated by a transmembrane sequence. This novel domain architecture led to the hypothesis that MIN1 is in the plasma membrane or the chloroplast envelope, where membrane association of the C2 domain promotes proper eyespot organization. Mutation of conserved C2 domain loop residues disrupted association of the MIN1 C2 domain with the chloroplast envelope in moss cells but did not abolish eyespot assembly in Chlamydomonas. In min1 null cells, channelrhodopsin-1 (ChR1) photoreceptor levels were reduced, indicating a role for MIN1 in ChR1 expression and/or stability. However, ChR1 localization was only minimally disturbed during photoautotrophic growth of min1 cells, conditions under which the pigment granule layers are disorganized. The data are consistent with the hypothesis that neither MIN1 nor proper organization of the plastidic components of the eyespot is essential for localization of ChR1.

  2. ABCB5 promotes melanoma metastasis through enhancing NF-κB p65 protein stability.

    Science.gov (United States)

    Wang, Shenghao; Tang, Li; Lin, Junyu; Shen, Zhongliang; Yao, Yikun; Wang, Wei; Tao, Shuai; Gu, Chenjian; Ma, Jie; Xie, Youhua; Liu, Yanfeng

    2017-10-07

    Melanoma is the most aggressive type of skin cancer. Melanoma has an extremely poor prognosis because of its high potential for vascular invasion, metastasis and recurrence. The mechanism of melanoma metastasis is not well understood. ATP-binding cassette sub-family B member 5 (ABCB5) plays a key role in melanoma growth. However, it is uncertain what function ABCB5 may exert in melanoma metastasis. In this report, we for the first time demonstrate ABCB5 as a crucial factor that promotes melanoma metastasis. ABCB5 positive (ABCB5 + ) malignant melanoma initiating cells (MMICs) display a higher metastatic potential compared with ABCB5 negative (ABCB5 - ) melanoma subpopulation. Knockdown of ABCB5 expression reduces melanoma cell migration and invasion in vitro and melanoma pulmonary metastasis in tumor xenograft mice. ABCB5 and NF-κB p65 expression levels are positively correlated in both melanoma tissues and cell lines. Consequently, ABCB5 activates the NF-κB pathway by inhibiting p65 ubiquitination to enhance p65 protein stability. Our finding highlights ABCB5 as a novel pro-metastasis factor and provides a potential therapeutic target for melanoma. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The novel protein C9orf116 promotes rat liver cell line BRL-3A proliferation.

    Directory of Open Access Journals (Sweden)

    Chunyan Zhang

    Full Text Available Our previous study has proved that the chromosome 9 open reading frame 116 (C9orf116 (NM_001106564.1 was significantly up-regulated in the proliferation phase of liver regeneration. To study its possible physiological function, we analyzed the effect of C9orf116 on BRL-3A cells via over-expression and interference technique. MTT results showed that the cell viability of the interference group was significantly lower than the control group at 48h after transfection (P<0.05, whereas it was significantly higher in the over-expression group (P<0.05. The flow cytometry results showed that C9orf116 knockdown or over-expression had little effect on BRL-3A cell apoptosis. However, the number of cells in division phase (G2/M was significantly reduced in the interference group (P<0.05, but significantly increased in the over-expression group (P<0.01. Furthermore, the expressions of cell proliferation-related genes CCNA2, CCND1 and MYC both at mRNA and protein levels were down-regulated in the interference group and up-regulated in the over-expression group. Therefore, we concluded that C9orf116 may promote cell proliferation by modulating cell cycle transition and the expression of key genes CCNA2, CCND1 and MYC in BRL-3A cells.

  4. Zinc finger protein 598 inhibits cell survival by promoting UV-induced apoptosis.

    Science.gov (United States)

    Yang, Qiaohong; Gupta, Romi

    2018-01-19

    UV is one of the major causes of DNA damage induced apoptosis. However, cancer cells adopt alternative mechanisms to evade UV-induced apoptosis. To identify factors that protect cancer cells from UV-induced apoptosis, we performed a genome wide short-hairpin RNA (shRNA) screen, which identified Zinc finger protein 598 (ZNF598) as a key regulator of UV-induced apoptosis. Here, we show that UV irradiation transcriptionally upregulates ZNF598 expression. Additionally, ZNF598 knockdown in cancer cells inhibited UV-induced apoptosis. In our study, we observe that ELK1 mRNA level as well as phosphorylated ELK1 levels was up regulated upon UV irradiation, which was necessary for UV irradiation induced upregulation of ZNF598. Cells expressing ELK1 shRNA were also resistant to UV-induced apoptosis, and phenocopy ZNF598 knockdown. Upon further investigation, we found that ZNF598 knockdown inhibits UV-induced apoptotic gene expression, which matches with decrease in percentage of annexin V positive cell. Similarly, ectopic expression of ZNF598 promoted apoptotic gene expression and also increased annexin V positive cells. Collectively, these results demonstrate that ZNF598 is a UV irradiation regulated gene and its loss results in resistance to UV-induced apoptosis.

  5. Epidermal fatty acid binding protein promotes high-fat diet-induced skin inflammation

    Science.gov (United States)

    Rao, Enyu; Sun, Yanwen; Grossmann, Michael E.; Morris, Rebecca J.; Cleary, Margot P.; Li, Bing

    2015-01-01

    SUMMARY Defining specific cellular and molecular mechanisms in most obesity-related diseases remains an important challenge. Here we report a serendipitous finding that consumption of a high-fat diet (HFD) greatly increased the occurrence of skin lesions in C57BL/6 mice. We demonstrated that HFD induced the accumulation of a specific type of CD11c+ macrophages in skin preceding detectable lesions. These cells primed skin to induce IL-1β and IL-18 signaling, which further promoted the cytokines IFNγ- and IL-17-mediated skin inflammation. Mechanistically, epidermal fatty acid binding protein (E-FABP) was significantly upregulated in skin of obese mice, which coupled lipid droplet formation and NLRP3 inflammasome activation. Deficiency of E-FABP in obese mice decreased recruitment of CD11c+ macrophages in skin tissues, reduced production of IL-1β and IL-18, and consequently dampened activation of effector T cells. Furthermore, E-FABP deficient mice are completely resistant to HFD-induced skin lesions. Collectively, E-FABP represents a molecular sensor triggering HFD-induced skin inflammation. PMID:25992864

  6. Epidermal Fatty Acid binding protein promotes skin inflammation induced by high-fat diet.

    Science.gov (United States)

    Zhang, Yuwen; Li, Qiang; Rao, Enyu; Sun, Yanwen; Grossmann, Michael E; Morris, Rebecca J; Cleary, Margot P; Li, Bing

    2015-05-19

    Defining specific cellular and molecular mechanisms in most obesity-related diseases remains an important challenge. Here we report a serendipitous finding that consumption of a high-fat diet (HFD) greatly increased the occurrence of skin lesions in C57BL/6 mice. We demonstrated that HFD induced the accumulation of a specific type of CD11c(+) macrophages in skin preceding detectable lesions. These cells primed skin to induce IL-1β and IL-18 signaling, which further promoted the cytokines IFN-γ- and IL-17-mediated skin inflammation. Mechanistically, epidermal fatty acid binding protein (E-FABP) was significantly upregulated in skin of obese mice, which coupled lipid droplet formation and NLRP3 inflammasome activation. Deficiency of E-FABP in obese mice decreased recruitment of CD11c(+) macrophages in skin tissues, reduced production of IL-1β and IL-18, and consequently dampened activation of effector T cells. Furthermore, E-FABP-deficient mice are completely resistant to HFD-induced skin lesions. Collectively, E-FABP represents a molecular sensor triggering HFD-induced skin inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The human nuclear poly(a-binding protein promotes RNA hyperadenylation and decay.

    Directory of Open Access Journals (Sweden)

    Stefan M Bresson

    Full Text Available Control of nuclear RNA stability is essential for proper gene expression, but the mechanisms governing RNA degradation in mammalian nuclei are poorly defined. In this study, we uncover a mammalian RNA decay pathway that depends on the nuclear poly(A-binding protein (PABPN1, the poly(A polymerases (PAPs, PAPα and PAPγ, and the exosome subunits RRP6 and DIS3. Using a targeted knockdown approach and nuclear RNA reporters, we show that PABPN1 and PAPα, redundantly with PAPγ, generate hyperadenylated decay substrates that are recognized by the exosome and degraded. Poly(A tail extension appears to be necessary for decay, as cordycepin treatment or point mutations in the PAP-stimulating domain of PABPN1 leads to the accumulation of stable transcripts with shorter poly(A tails than controls. Mechanistically, these data suggest that PABPN1-dependent promotion of PAP activity can stimulate nuclear RNA decay. Importantly, efficiently exported RNAs are unaffected by this decay pathway, supporting an mRNA quality control function for this pathway. Finally, analyses of both bulk poly(A tails and specific endogenous transcripts reveals that a subset of nuclear RNAs are hyperadenylated in a PABPN1-dependent fashion, and this hyperadenylation can be either uncoupled or coupled with decay. Our results highlight a complex relationship between PABPN1, PAPα/γ, and nuclear RNA decay, and we suggest that these activities may play broader roles in the regulation of human gene expression.

  8. The Adaptor Protein Rai/ShcC Promotes Astrocyte-Dependent Inflammation during Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Ulivieri, Cristina; Savino, Maria Teresa; Luccarini, Ilaria; Fanigliulo, Emanuela; Aldinucci, Alessandra; Bonechi, Elena; Benagiano, Marisa; Ortensi, Barbara; Pelicci, Giuliana; D'Elios, Mario Milco; Ballerini, Clara; Baldari, Cosima Tatiana

    2016-07-15

    Th17 cells have been casually associated to the pathogenesis of autoimmune disease. We have previously demonstrated that Rai/ShcC, a member of the Shc family of adaptor proteins, negatively regulates Th17 cell differentiation and lupus autoimmunity. In this study, we have investigated the pathogenic outcome of the Th17 bias associated with Rai deficiency on multiple sclerosis development, using the experimental autoimmune encephalomyelitis (EAE) mouse model. We found that, unexpectedly, EAE was less severe in Rai(-/-) mice compared with their wild-type counterparts despite an enhanced generation of myelin-specific Th17 cells that infiltrated into the CNS. Nevertheless, when adoptively transferred into immunodeficient Rai(+/+) mice, these cells promoted a more severe disease compared with wild-type encephalitogenic Th17 cells. This paradoxical phenotype was caused by a dampened inflammatory response of astrocytes, which were found to express Rai, to IL-17. The results provide evidence that Rai plays opposite roles in Th17 cell differentiation and astrocyte activation, with the latter dominant over the former in EAE, highlighting this adaptor as a potential novel target for the therapy of multiple sclerosis. Copyright © 2016 by The American Association of Immunologists, Inc.

  9. Promoter Analysis Reveals Globally Differential Regulation of Human Long Non-Coding RNA and Protein-Coding Genes

    KAUST Repository

    Alam, Tanvir

    2014-10-02

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptional regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.

  10. Optimization of the green fluorescent protein (GFP) expression from a lactose-inducible promoter in Lactobacillus casei.

    Science.gov (United States)

    Pérez-Arellano, Isabel; Pérez-Martínez, Gaspar

    2003-05-16

    An expression vector for Lactobacillus casei has been constructed containing the inducible lac promoter and the gene encoding ultraviolet visible green fluorescent protein (GFP(UV)) as reporter. Different conditions to grow L. casei were assayed and fluorescence as well as total protein synthesized were quantified. The maintenance of neutral pH had the greatest incidence on GFP(UV) expression, followed by aeration and a temperature of 30 degrees C. Environmental factors favoring GFP(UV) accumulation did not exactly correlate with those enhancing fluorescence. Therefore, oxygenation, by stirring the culture, had the greatest influence on the proportion of fluorescent protein, which is in accordance with the structural requirements of this protein. The highest yield obtained was 1.3 microg of GFP per mg of total protein, from which 55% was fluorescent.

  11. High-level expression and improved folding of proteins by using the vp39 late promoter enhanced with homologous DNA regions.

    Science.gov (United States)

    Ishiyama, Seiji; Ikeda, Masahiro

    2010-11-01

    Some recombinant proteins expressed by baculovirus expression vector systems (BEVS) aggregate because the BEVS can produce large amounts of protein late during infection, when post-translational modification and protein quality control mechanisms are inactive. For expression during earlier stages than that driven by the polyhedrin (polh) very late promoter, transfer vectors were generated in which this promoter was replaced with a green fluorescent protein (GFP) gene controlled by a vp39 late promoter modified to contain HR3, one of the homologous DNA regions (HRs) of Bombyx mori nuclear polyhedrosis virus (BmNPV). The rise times of the fluorescence of GFP expressed by using recombinant viruses carrying the modified vp39 promoter were earlier than those associated with either the polh promoter or the native vp39 promoter lacking HR3. In transient expression assays, the vp39 late promoter in transfer vectors behaved like a delayed-early promoter, and was enhanced by HR3, and required IE-1 protein and various viral gene products encoded on both sides of BmNPV polh. When the vp39 promoter with HR3 was used, the aggregation of several foreign proteins expressed by the BEVS was markedly decreased. This study provides a new option for the expression of sufficiently quality-controlled proteins by using the vp39 promoter and HR3 in BEVS early in baculovirus infection, when the infection has caused little damage in the host cells.

  12. Solar UV-B effects on PSII performance in Betula nana are influenced by PAR level and reduced by EDU

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, Helge

    2012-01-01

    The long-term and diurnal responses of photosystem II (PSII) performance to near-ambient UV-B radiation were investigated in High Arctic Betula nana. We conducted an UV exclusion experiment with five replicated blocks consisting of open control (no filter), photosynthetic active radiation and UV...... the effects of UV-B. Chlorophyll-a fluorescence induction curves were used for analysis of OJIP test parameters. Near-ambient UV-B radiation reduced across season maximum quantum yield (TRo /ABS = Fv /Fm ), approximated number of active PSII reaction center (RC/ABS) and the performance index (PIABS ), despite...... improved leaf screening against UV-B with higher content of UV-B-absorbing compounds and a lower specific leaf area. EDU application counteracted the negative impact of UV-B on TR(o) /ABS, RC/ABS and PI(ABS) . This indicates that the mechanisms behind UV-B and ozone damage share some common features...

  13. Haemaphysalis juxtakochi Cooley, 1946 (Acari: Ixodidae) parasitando Mazama nana (Hensel, 1872) (Artiodactyla: Cervidae) no estado do Rio Grande do Sul

    OpenAIRE

    Martins, João Ricardo; Salomão, Edson Luís; Doyle, Rovaina L.; Onofrio, Valéria; Barros-Battesti, Darci M.; Guglielmone, Alberto A.

    2007-01-01

    O encontro de Haemaphysalis juxtakochi Cooley, um carrapato ixodídeo, no veado bororó-do-sul, Mazama nana (Hensel), representa novo relato de ocorrência, após 34 anos de seu registro no Estado do Rio Grande do Sul. Os exemplares de carrapatos (3 machos e 1 fêmea) foram encontrados em Cachoeira do Sul, RS (30º02’21"S, 52º53’38"W). O local está a 72 m acima do nível do mar, com uma média anual de temperatura de 18,8°C, e uma precipitação média anual de 1.438 mm. Este é o primeiro registro de H....

  14. Haemaphysalis juxtakochi Cooley, 1946 (Acari: Ixodidae) parasitando Mazama nana (Hensel, 1872) (Artiodactyla: Cervidae) no estado do Rio Grande do Sul

    OpenAIRE

    Martins,João Ricardo; Salomão,Edson Luís; Doyle,Rovaina L.; Onofrio,Valéria; Barros-Battesti,Darci M.; Guglielmone,Alberto A.

    2007-01-01

    O encontro de Haemaphysalis juxtakochi Cooley, um carrapato ixodídeo, no veado bororó-do-sul, Mazama nana (Hensel), representa novo relato de ocorrência, após 34 anos de seu registro no Estado do Rio Grande do Sul. Os exemplares de carrapatos (3 machos e 1 fêmea) foram encontrados em Cachoeira do Sul, RS (30º02’21"S, 52º53’38"W). O local está a 72 m acima do nível do mar, com uma média anual de temperatura de 18,8°C, e uma precipitação média anual de 1.438 mm. Este é o primeiro re...

  15. Hymenolepis diminuta and Rodentolepis nana (Hymenolepididae: Cyclophyllidea) in urban rodents of Gran La Plata: association with socio-environmental conditions.

    Science.gov (United States)

    Fitte, B; Robles, M R; Dellarupe, A; Unzaga, J M; Navone, G T

    2017-10-11

    The aim of this survey was to study two Hymenolepididae species in urban rodents, Rattus rattus and Rattus norvegicus, and to analyse factors that favour their presence in the environment and pose a sanitary risk. Hymenolepis diminuta and Rodentolepis nana were found in R. rattus and R. norvegicus in different proportions. Values of prevalence, mean abundance and mean intensity were recorded, and new morphometric characters were described, adding to previously known information. No significant differences were found. However, the results revealed that there is a tendency for these parasites to develop in areas with deficient socio-structural conditions and in water bodies. This study thereby shows that certain areas on the periphery of the Gran La Plata favour the existence of rodents, which act as sentinels of zoonotic diseases, and stresses the need to take action to minimize them in order to avoid putting human and animal health at risk.

  16. Winter warming as an important co-driver for Betula nana growth in western Greenland during the past century.

    Science.gov (United States)

    Hollesen, Jørgen; Buchwal, Agata; Rachlewicz, Grzegorz; Hansen, Birger U; Hansen, Marc O; Stecher, Ole; Elberling, Bo

    2015-06-01

    Growing season conditions are widely recognized as the main driver for tundra shrub radial growth, but the effects of winter warming and snow remain an open question. Here, we present a more than 100 years long Betula nana ring-width chronology from Disko Island in western Greenland that demonstrates a highly significant and positive growth response to both summer and winter air temperatures during the past century. The importance of winter temperatures for Betula nana growth is especially pronounced during the periods from 1910-1930 to 1990-2011 that were dominated by significant winter warming. To explain the strong winter importance on growth, we assessed the importance of different environmental factors using site-specific measurements from 1991 to 2011 of soil temperatures, sea ice coverage, precipitation and snow depths. The results show a strong positive growth response to the amount of thawing and growing degree-days as well as to winter and spring soil temperatures. In addition to these direct effects, a strong negative growth response to sea ice extent was identified, indicating a possible link between local sea ice conditions, local climate variations and Betula nana growth rates. Data also reveal a clear shift within the last 20 years from a period with thick snow depths (1991-1996) and a positive effect on Betula nana radial growth, to a period (1997-2011) with generally very shallow snow depths and no significant growth response towards snow. During this period, winter and spring soil temperatures have increased significantly suggesting that the most recent increase in Betula nana radial growth is primarily triggered by warmer winter and spring air temperatures causing earlier snowmelt that allows the soils to drain and warm quicker. The presented results may help to explain the recently observed 'greening of the Arctic' which may further accelerate in future years due to both direct and indirect effects of winter warming. © 2015 John Wiley & Sons

  17. Evaluation of inducible promoters on the secretion of a ZZ-proinsulin fusion protein in Escherichia coli.

    Science.gov (United States)

    Mergulhão, Filipe J M; Monteiro, Gabriel A; Larsson, Gen; Bostrom, Maria; Farewell, Anne; Nyström, Thomas; Cabral, Joaquim M S; Taipa, M Angela

    2003-08-01

    Four inducible promoters, uspA, uspB, lacUV5 and malK, were evaluated in the expression of the fusion protein ZZ-proinsulin by Escherichia coli. The aim was to select for their effects on the most appropriate expression system (promoter and culture medium) for secretion of ZZ-proinsulin to the periplasmic space and culture medium. All the expression vectors contained the RNase III cleavage site to ensure that the mRNA translation rate remained independent of 5'-untranslated regions thus making promoter strength comparisons more accurate. The highest ZZ-proinsulin secretion yields were 6.2 mg/g of dry cell weight in the periplasmic space and 2.6 mg/g of dry cell weight in the culture medium using the malK promoter. It was also demonstrated that the use of M9 minimal medium favours secretion.

  18. Multi-Year Leaf-Level Response to Sub-Ambient and Elevated Experimental CO2 in Betula nana

    Science.gov (United States)

    Broere, Tom; Kürschner, Wolfram M.; Donders, Timme H.; Wagner-Cremer, Friederike

    2016-01-01

    The strong link between stomatal frequency and CO2 in woody plants is key for understanding past CO2 dynamics, predicting future change, and evaluating the significant role of vegetation in the hydrological cycle. Experimental validation is required to evaluate the long-term adaptive leaf response of C3 plants to CO2 conditions; however, studies to date have only focused on short-term single-season experiments and may not capture (1) the full ontogeny of leaves to experimental CO2 exposure or (2) the true adjustment of structural stomatal properties to CO2, which we postulate is likely to occur over several growing seasons. We conducted controlled growth chamber experiments at 150 ppmv, 450 ppmv and 800 ppmv CO2 with woody C3 shrub Betula nana (dwarf birch) over two successive annual growing seasons and evaluated the structural stomatal response to atmospheric CO2 conditions. We find that while some adjustment of leaf morphological and stomatal parameters occurred in the first growing season where plants are exposed to experimental CO2 conditions, amplified adjustment of non-plastic stomatal properties such as stomatal conductance occurred in the second year of experimental CO2 exposure. We postulate that the species response limit to CO2 of B. nana may occur around 400–450 ppmv. Our findings strongly support the necessity for multi-annual experiments in C3 perennials in order to evaluate the effects of environmental conditions and provide a likely explanation of the contradictory results between historical and palaeobotanical records and experimental data. PMID:27285314

  19. The diagnostic importance of species specific and cross-reactive components of Taenia solium, Echinococcus granulosus, and Hymenolepis nana Importância diagnóstica da reação cruzada espécie-específica de componentes da Taenia solium, Echinococcus granulosus e Hymenolepis nana

    Directory of Open Access Journals (Sweden)

    Teresa Montenegro

    1994-08-01

    Full Text Available Sera from patients infected with Taenia solium, Hymenolepis nana and Echinococcus granulosus were tested against homologous and heterologous parasite antigens using an ELISA assay, and a high degree of cross-reactivity was verified. To identify polypeptides responsible for this cross reactivity, the Enzyme Linked Immunoelectro Transfer Blot (EITB was used. Sera from infected patients with T.solium, H.nana, and E.granulosus were assessed against crude, ammonium sulphate precipitated (TSASP, and lentil-lectin purified antigens of T.solium and crude antigens of.H.nana and E.granulosus. Several bands, recognized by sera from patients with T.solium, H.nana, and E.granulosus infections, were common to either two or all three cestodes. Unique reactive bands in H.nana were noted at 49 and 66 K-Da and in E.granulosus at 17-21 K-Da and at 27-32 K-Da. In the crude cysticercosis extract, a specific non glycoprotein band was present at 61-67 K-Da in addiction to specific glycoprotein bands of 50, 42, 24, 21, 18, 14, and 13 K-Da. None of the sera from patients with H.nana or E.granulosus infection cross reacted with these seven glycoprotein bands considered specific for T.solium infection.Soros de pacientes infectados com Taenia solium, Hymenolepis nana e Echinococcus granulosus foram testados contra antígenos parasitários homólogos e heterólogos usando o teste de ELISA e foi verificado alto grau de reatividade cruzada. Para identificar os polipetídeos responsáveis por esta reatividade cruzada foi utilizado o teste "Enzyme Linked Immunoelectro Transfer Blot (EITB". Soros de pacientes infectados por T.solium, H.nana, e E.granulosus foram colocados em contato com precipitado de sulfato de amônia e antígenos não purificados de T.solium e os de H.nana e E.granulosus. Várias bandas reconhecidas pelos soros de pacientes com infecção por T.solium, H.nana e E.granulosus foram comuns a dois ou três destes cestódeos. Uma única banda foi notada em H.nana

  20. Vaccinia virus phospholipase protein F13 promotes the rapid entry of extracellular virions into cells.

    Science.gov (United States)

    Bryk, Peter; Brewer, Matthew G; Ward, Brian M

    2018-03-14

    The vaccinia virus protein F13, encoded by the F13L gene, is conserved across the subfamily Chordopoxvirinae and is critical among orthopoxviruses to produce the wrapped form of virus that is required for cell-to-cell spread. F13 is the major envelope protein on the membrane of extracellular forms of virus, however it is not known if F13 is required in steps post-wrapping. In this report, we utilize two temperature-sensitive vaccinia virus mutants from the Condit collection of temperature-sensitive viruses whose small plaque phenotypes have been mapped to the F13L gene. Despite the drastic reduction in plaque size, the temperature-sensitive viruses were found to produce similar levels of extracellular virions to the parental strain, Western Reserve (WR), at the permissive and non-permissive temperature, suggesting that they are not defective in extracellular virion formation. Analyses of extracellular virions produced by one temperature-sensitive mutant found that those produced at the non-permissive temperature had undetectable levels of F13 and bound cells with similar efficiency to WR, but displayed delayed cell entry kinetics. Additionally, low-pH treatment of cells bound by extracellular virions produced at the non-permissive temperature by the temperature-sensitive reporter virus was unable to overcome a block in infection by bafilomycin A1, suggesting that these virions display increased resistance to dissolution of the extracellular virion envelope. Taken together, our results suggest F13 plays a role in both the formation of extracellular virions, and promotes their rapid entry into cells by enhancing the sensitivity of the membrane to acid-induced dissolution. IMPORTANCE Vaccinia virus (VACV) is an orthopoxvirus, and produces two infectious forms, mature virions (MV) and extracellular virions (EV). EV are derived from MV and contain an additional membrane that must first be removed prior to cell entry. F13 is critical for the formation of EV, but a post

  1. Flavodoxin-Like Proteins Protect Candida albicans from Oxidative Stress and Promote Virulence.

    Directory of Open Access Journals (Sweden)

    Lifang Li

    2015-09-01

    Full Text Available The fungal pathogen Candida albicans causes lethal systemic infections in humans. To better define how pathogens resist oxidative attack by the immune system, we examined a family of four Flavodoxin-Like Proteins (FLPs in C. albicans. In agreement with previous studies showing that FLPs in bacteria and plants act as NAD(PH quinone oxidoreductases, a C. albicans quadruple mutant lacking all four FLPs (pst1Δ, pst2Δ, pst3Δ, ycp4Δ was more sensitive to benzoquinone. Interestingly, the quadruple mutant was also more sensitive to a variety of oxidants. Quinone reductase activity confers important antioxidant effects because resistance to oxidation was restored in the quadruple mutant by expressing either Escherichia coli wrbA or mammalian NQO1, two distinct types of quinone reductases. FLPs were detected at the plasma membrane in C. albicans, and the quadruple mutant was more sensitive to linolenic acid, a polyunsaturated fatty acid that can auto-oxidize and promote lipid peroxidation. These observations suggested that FLPs reduce ubiquinone (coenzyme Q, enabling it to serve as an antioxidant in the membrane. In support of this, a C. albicans coq3Δ mutant that fails to synthesize ubiquinone was also highly sensitive to oxidative stress. FLPs are critical for survival in the host, as the quadruple mutant was avirulent in a mouse model of systemic candidiasis under conditions where infection with wild type C. albicans was lethal. The quadruple mutant cells initially grew well in kidneys, the major site of C. albicans growth in mice, but then declined after the influx of neutrophils and by day 4 post-infection 33% of the mice cleared the infection. Thus, FLPs and ubiquinone are important new antioxidant mechanisms that are critical for fungal virulence. The potential of FLPs as novel targets for antifungal therapy is further underscored by their absence in mammalian cells.

  2. The CytR repressor antagonizes cyclic AMP-cyclic AMP receptor protein activation of the deoCp2 promoter of Escherichia coli K-12

    DEFF Research Database (Denmark)

    Søgaard-Andersen, L; Martinussen, J; Møllegaard, N E

    1990-01-01

    We have investigated the regulation of the Escherichia coli deoCp2 promoter by the CytR repressor and the cyclic AMP (cAMP) receptor protein (CRP) complexed to cAMP. Promoter regions controlled by these two proteins characteristically contain tandem cAMP-CRP binding sites. Here we show that (i) Cyt...

  3. Bee bread increases honeybee haemolymph protein and promote better survival despite of causing higher Nosema ceranae abundance in honeybees.

    Science.gov (United States)

    Basualdo, Marina; Barragán, Sergio; Antúnez, Karina

    2014-08-01

    Adequate protein nutrition supports healthy honeybees and reduces the susceptibility to disease. However little is known concerning the effect of the diet on Nosema ceranae development, an obligate intracellular parasite that disturbs the protein metabolism of honeybees (Apis mellifera). Here we tested the effect of natural (bee bread) and non-natural protein diets (substitute) on haemolymph proteins titers of honeybee and N. ceranae spore production. The natural diet induced higher levels of protein and parasite development, but the survival of bees was also higher than with non-natural diets. The data showed that the administration of an artificially high nutritious diet in terms of crude protein content is not sufficient to promote healthy bees; rather the protein ingested should be efficiently assimilated. The overall results support the idea that the physiological condition of the bees is linked to protein levels in the haemolymph, which affects the tolerance to parasite; consequently the negative impact of the parasite on host fitness is not associated only with the level of infection. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Combined analysis of O6-methylguanine-DNA methyltransferase protein expression and promoter methylation provides optimized prognostication of glioblastoma outcome

    Science.gov (United States)

    Lalezari, Shadi; Chou, Arthur P.; Tran, Anh; Solis, Orestes E.; Khanlou, Negar; Chen, Weidong; Li, Sichen; Carrillo, Jose A.; Chowdhury, Reshmi; Selfridge, Julia; Sanchez, Desiree E.; Wilson, Ryan W.; Zurayk, Mira; Lalezari, Jonathan; Lou, Jerry J.; Ormiston, Laurel; Ancheta, Karen; Hanna, Robert; Miller, Paul; Piccioni, David; Ellingson, Benjamin M.; Buchanan, Colin; Mischel, Paul S.; Nghiemphu, Phioanh L.; Green, Richard; Wang, He-Jing; Pope, Whitney B.; Liau, Linda M.; Elashoff, Robert M.; Cloughesy, Timothy F.; Yong, William H.; Lai, Albert

    2013-01-01

    Background Promoter methylation of the DNA repair gene, O-6-methylguanine-DNA methyltransferase (MGMT), is associated with improved treatment outcome for newly diagnosed glioblastoma (GBM) treated with standard chemoradiation. To determine the prognostic significance of MGMT protein expression as assessed by immunohistochemistry (IHC) and its relationship with methylation, we analyzed MGMT expression and promoter methylation with survival in a retrospective patient cohort. Methods We identified 418 patients with newly diagnosed GBM at University of California Los Angeles Kaiser Permanente Los Angeles, nearly all of whom received chemoradiation, and determined MGMT expression by IHC, and MGMT promoter methylation by methylation-specific PCR (MSP) and bisulfite sequencing (BiSEQ) of 24 neighboring CpG sites. Results With use of the median percentage of cells staining by IHC as the threshold, patients with <30% staining had progression-free survival (PFS) of 10.9 months and overall survival (OS) of 20.5 months, compared with PFS of 7.8 months (P < .0001) and OS of 16.7 months (P < .0001) among patients with ≥30% staining. Inter- and intrareader correlation of IHC staining was high. Promoter methylation status by MSP was correlated with IHC staining. However, low IHC staining was frequently observed in the absence of promoter methylation. Increased methylation density determined by BiSEQ correlated with both decreased IHC staining and increased survival, providing a practical semiquantitative alternative to MSP. On the basis of multivariate analysis validated by bootstrap analysis, patients with tandem promoter methylation and low expression demonstrated improved OS and PFS, compared with the other combinations. Conclusions Optimal assessment of MGMT status as a prognostic biomarker for patients with newly diagnosed GBM treated with chemoradiation requires determination of both promoter methylation and IHC protein expression. PMID:23328811

  5. Phorbol ester tumor promoter induced the synthesis of two major cytoplasmic proteins: identity with two proteins induced under heat-shocked and glucose-starved conditions

    International Nuclear Information System (INIS)

    Zhang, H.; Chen, K.Y.; Liu, A.Y.C.

    1987-01-01

    The regulation of specific protein synthesis by the phorbol ester tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), was evaluated using the L-8 and C-2 myoblast and the 3T3-L1 fibroblast cell cultures. TPA increased, by 2-4 fold, the synthesis rates of two cytoplasmic proteins with apparent molecular weights of 89,000 and 74,000 as determined by SDS-polyacrylamide gel electrophoresis and autoradiography. The concentration of TPA and the time of incubation needed to elicit this induction was determined to be 10 μg/ml and 20 hrs, respectively. Increasing the concentration of TPA to 100, 200, and 500 ng/ml did not result in a greater magnitude of induction. The possibility that these two TPA-induced proteins may be identical to proteins with similar molecular weights induced under heat-shocked or glucose-starved conditions was evaluated by 1-D and 2-D gel electrophoresis and autoradiography. Results provided evidence that the TPA-induced 89,000- and 74,000-dalton proteins were identical to hsp 89 and hsp 74, 2 out of a set of 8-9 proteins induced under heat shocked conditions. Furthermore, they are identical to two of the set of glucose-regulated proteins induced under a glucose-starved condition

  6. In vitro oxidation of fibrinogen promotes functional alterations and formation of advanced oxidation protein products, an inflammation mediator.

    Science.gov (United States)

    Torbitz, Vanessa Dorneles; Bochi, Guilherme Vargas; de Carvalho, José Antônio Mainardi; de Almeida Vaucher, Rodrigo; da Silva, José Edson Paz; Moresco, Rafael Noal

    2015-01-01

    Fibrinogen (FB) is a soluble blood plasma protein and is a key molecule involved in coagulation. Oxidative modification of proteins, such as the formation of advanced oxidation protein products (AOPP), a heterogeneous family of protein compounds structurally modified and derived from oxidative stress, may be associated with the pathophysiology of a number of chronic inflammatory diseases. Therefore, the aim of this study was to determine whether the formation of this mediator of inflammation occurs from FB and whether its generation is associated with structural changes. Results of the present study suggest that the oxidation of FB may provoke the formation of AOPP, which in turn, may promote functional alterations in FB, thus causing changes in its structural domains and increasing its procoagulant activity.

  7. Potassium Bicarbonate Attenuates the Urinary Nitrogen Excretion That Accompanies an Increase in Dietary Protein and May Promote Calcium Absorption

    Science.gov (United States)

    Ceglia, Lisa; Harris, Susan S.; Abrams, Steven A.; Rasmussen, Helen M.; Dallal, Gerard E.; Dawson-Hughes, Bess

    2009-01-01

    Context: Protein is an essential component of muscle and bone. However, the acidic byproducts of protein metabolism may have a negative impact on the musculoskeletal system, particularly in older individuals with declining renal function. Objective: We sought to determine whether adding an alkaline salt, potassium bicarbonate (KHCO3), allows protein to have a more favorable net impact on intermediary indices of muscle and bone conservation than it does in the usual acidic environment. Design: We conducted a 41-d randomized, placebo-controlled, double-blind study of KHCO3 or placebo with a 16-d phase-in and two successive 10-d metabolic diets containing low (0.5 g/kg) or high (1.5 g/kg) protein in random order with a 5-d washout between diets. Setting: The study was conducted in a metabolic research unit. Participants: Nineteen healthy subjects ages 54–82 yr participated. Intervention: KHCO3 (up to 90 mmol/d) or placebo was administered for 41 d. Main Outcome Measures: We measured 24-h urinary nitrogen excretion, IGF-I, 24-h urinary calcium excretion, and fractional calcium absorption. Results: KHCO3 reduced the rise in urinary nitrogen excretion that accompanied an increase in protein intake (P = 0.015) and was associated with higher IGF-I levels on the low-protein diet (P = 0.027) with a similar trend on the high-protein diet (P = 0.050). KHCO3 was also associated with higher fractional calcium absorption on the low-protein diet (P = 0.041) with a similar trend on the high-protein diet (P = 0.064). Conclusions: In older adults, KHCO3 attenuates the protein-induced rise in urinary nitrogen excretion, and this may be mediated by IGF-I. KHCO3 may also promote calcium absorption independent of the dietary protein content. PMID:19050051

  8. The actin cytoskeleton inhibits pore expansion during PIV5 fusion protein-promoted cell-cell fusion

    OpenAIRE

    Wurth, Mark A.; Schowalter, Rachel M.; Smith, Everett Clinton; Moncman, Carole L.; Dutch, Rebecca Ellis; McCann, Richard O.

    2010-01-01

    Paramyxovirus fusion (F) proteins promote both virus-cell fusion, required for viral entry, and cell-cell fusion, resulting in syncytia formation. We used the F-actin stabilizing drug, jasplakinolide, and the G-actin sequestrant, latrunculin A, to examine the role of actin dynamics in cell-cell fusion mediated by the parainfluenza virus 5 (PIV5) F protein. Jasplakinolide treatment caused a dose-dependent increase in cell-cell fusion as measured by both syncytia and reporter gene assays, and l...

  9. Combination of existing and alternative technologies to promote oilseeds and pulses proteins in food applications

    Directory of Open Access Journals (Sweden)

    Chéreau Denis

    2016-07-01

    Full Text Available The continuous world population growth induces a total protein demand increase based mainly on plant sources. To meet these global nutritional challenges, existing and innovative dry and wet fractionation processes will have to be combined to better valorise plant protein fraction from pulses and oilseeds. The worldwide success of soy protein isolates originate from the intrinsic qualities of soybean proteins but also from a continuous R&D effort since mid-twenty century. Therefore, the soy protein development model can be applied to protein isolates from diverse pulses and oilseeds meals as rapeseed which has already been recognised as novel food protein in Europe. To boost the delivery of plant proteins, agrofood-industries and academics must pool their respective expertise. Innovative and issue solving R&D projects have to be launched to better valorise pulses and oilseed proteins by (i creating oil extraction processes which preserve native proteins structure; (ii developing novel protein extraction processes from lab up to industrial pilot scale; (iii producing plant protein isolates having comparable foaming, emulsifying or gelling functionality than animal; and (iv generating hydrolysed proteins with high digestibility adapted to human nutrition. It is also essential to initiate research programs to innovate in wet and dry fractionations of plants or to design in vitro models to evaluate proteins digestibility and allergenicity. The increased awareness regarding plant protein valorisation resulted in the creation by agro-industries and academics of the open platform IMPROVE which propose a combination of competencies and equipment to boost market uptake of Plant Based Proteins.

  10. [Hepatitis B virus X protein promotes insulin-like growth factor II gene expression by inducing hypomethylation of the P3 promoter in hepatocellular carcinoma].

    Science.gov (United States)

    Tang, Shaohui; Zhang, Shaohua; Zhang, Xiaojuan; Wu, Shenglan; Li, Junfeng; Jiang, Xiangwu; Zhou, Hongke; Luo, Yuhong; Cao, Mingrong

    2014-04-01

    To explore the involvement of hepatitis B X protein (HBx) in promoter 3 (P3)-driven mRNA overexpression of the insulin-like growth factor II gene (IGF-II) and investigate the underlying epigenetic mechanism. Levels of P3 and HBx mRNA and status of P3 methylation were analyzed in human hepatocellular carcinoma (HCC) samples, with and without hepatitis B virus (HBV) infection, using quantitative reverse transcription-PCR and bisulfite sequencing. In addition, the levels of P3 mRNA and P3 methylation were examined in HepG2 cells stably overexpressing HBx (HepG2-HBx). Finally, P3 promoter-luciferase constructs were cotransfected into HepG2 cells along with an HBx-expressing plasmid, and the effects of HBx on transcriptional activity and methylation of P3 were analyzed. Statistical analyses of the data were conducted by chi square test, Fisher's exact test, Student's t-test, Marn-Whitney U test, and Pearson's correlation coefficient test. The HBV-positive HCC specimens had significantly higher levels of P3 mRNA than the HBV-negative HCC specimens (-9.59 ± 3.22 vs. -12.97 ± 3.08 delta CT; P=0.006) but significantly lower levels of P3 methylation (mean values for the 17 CpG sites (36.9% ± 15.5% vs. 52.1% ± 19.1%; P=0.025). The P3 transcript abundance was positively correlated with the level of HBx expression and negatively correlated with the level of P3 methylation. The epigenetic results from experiments with the HepG2-HBx cells were similar. Transfection of HBx significantly decreased P3 methylation level and increased its activity. HBx expression may promote IGF-II expression by inducing hypomethylation of its P3 promoter in hepatocellular carcinoma.

  11. Promoter polymorphisms in two overlapping 6p25 genes implicate mitochondrial proteins in cognitive deficit in schizophrenia.

    LENUS (Irish Health Repository)

    Jablensky, A

    2011-10-04

    In a previous study, we detected a 6p25-p24 region linked to schizophrenia in families with high composite cognitive deficit (CD) scores, a quantitative trait integrating multiple cognitive measures. Association mapping of a 10 Mb interval identified a 260 kb region with a cluster of single-nucleotide polymorphisms (SNPs) significantly associated with CD scores and memory performance. The region contains two colocalising genes, LYRM4 and FARS2, both encoding mitochondrial proteins. The two tagging SNPs with strongest evidence of association were located around the overlapping putative promoters, with rs2224391 predicted to alter a transcription factor binding site (TFBS). Sequencing the promoter region identified 22 SNPs, many predicted to affect TFBSs, in a tight linkage disequilibrium block. Luciferase reporter assays confirmed promoter activity in the predicted promoter region, and demonstrated marked downregulation of expression in the LYRM4 direction under the haplotype comprising the minor alleles of promoter SNPs, which however is not driven by rs2224391. Experimental evidence from LYRM4 expression in lymphoblasts, gel-shift assays and modelling of DNA breathing dynamics pointed to two adjacent promoter SNPs, rs7752203-rs4141761, as the functional variants affecting expression. Their C-G alleles were associated with higher transcriptional activity and preferential binding of nuclear proteins, whereas the G-A combination had opposite effects and was associated with poor memory and high CD scores. LYRM4 is a eukaryote-specific component of the mitochondrial biogenesis of Fe-S clusters, essential cofactors in multiple processes, including oxidative phosphorylation. LYRM4 downregulation may be one of the mechanisms involved in inefficient oxidative phosphorylation and oxidative stress, increasingly recognised as contributors to schizophrenia pathogenesis.Molecular Psychiatry advance online publication, 4 October 2011; doi:10.1038\\/mp.2011.129.

  12. Microsatellite instability, promoter methylation and protein expression of the DNA mismatch repair genes in epithelial ovarian cancer.

    Science.gov (United States)

    V, Shilpa; Bhagat, Rahul; C S, Premalata; V R, Pallavi; Krishnamoorthy, Lakshmi

    2014-10-01

    The role of defective mismatch repair (MMR) system in ovarian carcinoma is not well defined. The purpose of the study was to determine the relationship between microsatellite instability (MSI), promoter methylation and protein expression of MMR genes in epithelial ovarian carcinoma (EOC). MSI and promoter methylation of MLH1, MSH2 and PMS2 genes were studied using PCR methods in the study cohort. A small subset of samples was used to analyze the protein expression by immunohistochemistry (IHC). MSI was observed in >60% of tumor samples and 47% of normal ovaries. MLH1 was methylated in 37.5% and 64.3% EOCs and LMP tumors. The loss of immunoexpression of MMR genes was not seen in ovarian tumors. There was no correlation between MSI, promoter methylation and protein expression of the MMR genes suggesting that each may function independently. MSI is a common event in ovarian carcinoma and may increase the clinical awareness of the subset of tumors. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana

    Science.gov (United States)

    Jeong, Chang-Bum; Kang, Hye-Min; Lee, Min-Chul; Kim, Duck-Hyun; Han, Jeonghoon; Hwang, Dae-Sik; Souissi, Sami; Lee, Su-Jae; Shin, Kyung-Hoon; Park, Heum Gi; Lee, Jae-Seong

    2017-01-01

    Microplastic pollution causes a major concern in the marine environment due to their worldwide distribution, persistence, and adverse effects of these pollutants in the marine ecosystem. Despite its global presence, there is still a lack of information on the effect of microplastics on marine organisms at the molecular level. Herein we demonstrated ingestion and egestion of nano- (0.05 μm) and micro-sized (0.5 and 6 μm) polystyrene microbeads in the marine copepod Paracyclopina nana, and examined molecular responses to exposure to microbeads with in vivo endpoints such as growth rate and fecundity. Also, we proposed an adverse outcome pathway for microplastic exposure that covers molecular and individual levels. This study provides the first insight into the mode of action in terms of microplastic-induced oxidative stress and related signaling pathways in P. nana.

  14. A novel firmicute protein family related to the actinobacterial resuscitation-promoting factors by non-orthologous domain displacement

    Directory of Open Access Journals (Sweden)

    Finan Christopher L

    2005-03-01

    Full Text Available Abstract Background In Micrococcus luteus growth and resuscitation from starvation-induced dormancy is controlled by the production of a secreted growth factor. This autocrine resuscitation-promoting factor (Rpf is the founder member of a family of proteins found throughout and confined to the actinobacteria (high G + C Gram-positive bacteria. The aim of this work was to search for and characterise a cognate gene family in the firmicutes (low G + C Gram-positive bacteria and obtain information about how they may control bacterial growth and resuscitation. Results In silico analysis of the accessory domains of the Rpf proteins permitted their classification into several subfamilies. The RpfB subfamily is related to a group of firmicute proteins of unknown function, represented by YabE of Bacillus subtilis. The actinobacterial RpfB and firmicute YabE proteins have very similar domain structures and genomic contexts, except that in YabE, the actinobacterial Rpf domain is replaced by another domain, which we have called Sps. Although totally unrelated in both sequence and secondary structure, the Rpf and Sps domains fulfil the same function. We propose that these proteins have undergone "non-orthologous domain displacement", a phenomenon akin to "non-orthologous gene displacement" that has been described previously. Proteins containing the Sps domain are widely distributed throughout the firmicutes and they too fall into a number of distinct subfamilies. Comparative analysis of the accessory domains in the Rpf and Sps proteins, together with their weak similarity to lytic transglycosylases, provide clear evidence that they are muralytic enzymes. Conclusions The results indicate that the firmicute Sps proteins and the actinobacterial Rpf proteins are cognate and that they control bacterial culturability via enzymatic modification of the bacterial cell envelope.

  15. Receptor protein tyrosine phosphatase alpha enhances rheumatoid synovial fibroblast signaling and promotes arthritis in mice

    NARCIS (Netherlands)

    Stanford, Stephanie M; Svensson, Mattias N D; Sacchetti, Cristiano; Pilo, Caila A; Wu, Dennis J; Kiosses, William B; Hellvard, Annelie; Bergum, Brith; Aleman Muench, German R; Elly, Christian; Liu, Yun-Cai; den Hertog, Jeroen; Elson, Ari; Sap, Jan; Mydel, Piotr; Boyle, David L; Corr, Maripat; Firestein, Gary S; Bottini, Nunzio

    2016-01-01

    OBJECTIVE: During rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLS) critically promote disease pathogenesis by aggressively invading the joint extracellular matrix. The focal adhesion kinase (FAK) signaling pathway is emerging as a contributor to RA FLS anomalous behavior. The receptor

  16. The Dietary Constituent Falcarindiol Promotes Cholesterol Efflux from THP-1 Macrophages by Increasing ABCA1 Gene Transcription and Protein Stability

    Directory of Open Access Journals (Sweden)

    Limei Wang

    2017-09-01

    Full Text Available We report increased cholesterol efflux from macrophages in the presence of falcarindiol, an important dietary constituent present in commonly used vegetables and medicinal plants. Falcarindiol (3–20 μM increased cholesterol efflux from THP-1-derived macrophages. Western blot analysis showed an increased protein level of ABCA1 upon falcarindiol exposure. Quantitative real-time PCR revealed that also ABCA1 mRNA level rise with falcarindiol (10 μM treatment. The effect of falcarindiol on ABCA1 protein as well as mRNA level were counteracted by co-treatment with BADGE, an antagonist of PPARγ. Furthermore, falcarindiol significantly inhibited ABCA1 protein degradation in the presence of cycloheximide. This post-translational regulation of ABCA1 by falcarindiol occurs most likely by inhibition of lysosomal cathepsins, resulting in decreased proteolysis and extended protein half-life of ABCA1. Taken together, falcarindiol increases ABCA1 protein level by two complementary mechanisms, i.e., promoting ABCA1 gene expression and inhibiting ABCA1 protein degradation, which lead to enhanced cholesterol efflux.

  17. The Dietary Constituent Falcarindiol Promotes Cholesterol Efflux from THP-1 Macrophages by Increasing ABCA1 Gene Transcription and Protein Stability.

    Science.gov (United States)

    Wang, Limei; Palme, Veronika; Schilcher, Nicole; Ladurner, Angela; Heiss, Elke H; Stangl, Herbert; Bauer, Rudolf; Dirsch, Verena M; Atanasov, Atanas G

    2017-01-01

    We report increased cholesterol efflux from macrophages in the presence of falcarindiol, an important dietary constituent present in commonly used vegetables and medicinal plants. Falcarindiol (3-20 μM) increased cholesterol efflux from THP-1-derived macrophages. Western blot analysis showed an increased protein level of ABCA1 upon falcarindiol exposure. Quantitative real-time PCR revealed that also ABCA1 mRNA level rise with falcarindiol (10 μM) treatment. The effect of falcarindiol on ABCA1 protein as well as mRNA level were counteracted by co-treatment with BADGE, an antagonist of PPARγ. Furthermore, falcarindiol significantly inhibited ABCA1 protein degradation in the presence of cycloheximide. This post-translational regulation of ABCA1 by falcarindiol occurs most likely by inhibition of lysosomal cathepsins, resulting in decreased proteolysis and extended protein half-life of ABCA1. Taken together, falcarindiol increases ABCA1 protein level by two complementary mechanisms, i.e., promoting ABCA1 gene expression and inhibiting ABCA1 protein degradation, which lead to enhanced cholesterol efflux.

  18. HIV-1 matrix protein p17 and its variants promote human triple negative breast cancer cell aggressiveness.

    Science.gov (United States)

    Caccuri, Francesca; Giordano, Francesca; Barone, Ines; Mazzuca, Pietro; Giagulli, Cinzia; Andò, Sebastiano; Caruso, Arnaldo; Marsico, Stefania

    2017-01-01

    The introduction of cART has changed the morbidity and mortality patterns affecting HIV-infected (HIV + ) individuals. The risk of breast cancer in HIV + patients has now approached the general population risk. However, breast cancer has a more aggressive clinical course and poorer outcome in HIV + patients than in general population, without correlation with the CD4 or virus particles count. These findings suggest a likely influence of HIV-1 proteins on breast cancer aggressiveness and progression. The HIV-1 matrix protein (p17) is expressed in different tissues and organs of successfully cART-treated patients and promotes migration of different cells. Variants of p17 (vp17s), characterized by mutations and amino acid insertions, differently from the prototype p17 (refp17), also promote B-cell proliferation and transformation. Wound-healing assay, matrigel-based invasion assay, and anchorage-independent proliferation assay were employed to compare the biological activity exerted by refp17 and three different vp17s on the triple-negative human breast cancer cell line MDA-MB 231. Intracellular signaling was investigated by western blot analysis. Motility and invasiveness increased in cells treated with both refp17 and vp17s compared to untreated cells. The effects of the viral proteins were mediated by binding to the chemokine receptor CXCR2 and activation of the ERK1/2 signaling pathway. However, vp17s promoted MDA-MB 231 cell growth and proliferation in contrast to refp17-treated or not treated cells. In the context of the emerging role of the microenvironment in promoting and supporting cancer cell growth and metastatic spreading, here we provide the first evidence that exogenous p17 may play a crucial role in sustaining breast cancer cell migration and invasiveness, whereas some p17 variants may also be involved in cancer cell growth and proliferation.

  19. The MAM (meprin/A5-protein/PTPmu) domain is a homophilic binding site promoting the lateral dimerization of receptor-like protein-tyrosine phosphatase mu.

    Science.gov (United States)

    Cismasiu, Valeriu B; Denes, Stefan A; Reiländer, Helmut; Michel, Hartmut; Szedlacsek, Stefan E

    2004-06-25

    The MAM (meprin/A5-protein/PTPmu) domain is present in numerous proteins with diverse functions. PTPmu belongs to the MAM-containing subclass of protein-tyrosine phosphatases (PTP) able to promote cell-to-cell adhesion. Here we provide experimental evidence that the MAM domain is a homophilic binding site of PTPmu. We demonstrate that the MAM domain forms oligomers in solution and binds to the PTPmu ectodomain at the cell surface. The presence of two disulfide bridges in the MAM molecule was evidenced and their integrity was found to be essential for MAM homophilic interaction. Our data also indicate that PTPmu ectodomain forms oligomers and mediates the cellular adhesion, even in the absence of MAM domain homophilic binding. Reciprocally, MAM is able to interact homophilically in the absence of ectodomain trans binding. The MAM domain therefore contains independent cis and trans interaction sites and we predict that its main role is to promote lateral dimerization of PTPmu at the cell surface. This finding contributes to the understanding of the signal transduction mechanism in MAM-containing PTPs.

  20. Thioredoxin-interacting protein promotes islet amyloid polypeptide expression through miR-124a and FoxA2.

    Science.gov (United States)

    Jing, Gu; Westwell-Roper, Clara; Chen, Junqin; Xu, Guanlan; Verchere, C Bruce; Shalev, Anath

    2014-04-25

    Thioredoxin-interacting protein (TXNIP) is up-regulated by glucose and diabetes and plays a critical role in glucotoxicity, inflammation, and beta-cell apoptosis, whereas we have found that TXNIP deficiency protects against diabetes. Interestingly, human islet amyloid polypeptide (IAPP) is also induced by glucose, aggregates into insoluble amyloid fibrils found in islets of most individuals with type 2 diabetes and promotes inflammation and beta-cell cytotoxicity. However, so far no connection between TXNIP and IAPP signaling had been reported. Using TXNIP gain and loss of function experiments, INS-1 beta-cells and beta-cell-specific Txnip knock-out mice, we now found that TXNIP regulates IAPP expression. Promoter analyses and chromatin-immunoprecipitation assays further demonstrated that TXNIP increases IAPP expression at the transcriptional level, and we discovered that TXNIP-induced FoxA2 (forkhead box A2) transcription factor expression was conferring this effect by promoting FoxA2 enrichment at the proximal FoxA2 site in the IAPP promoter. Moreover, we found that TXNIP down-regulates miR-124a expression, a microRNA known to directly target FoxA2. Indeed, miR-124a overexpression led to decreased FoxA2 expression and IAPP promoter occupancy and to a significant reduction in IAPP mRNA and protein expression and also effectively inhibited TXNIP-induced IAPP expression. Thus, our studies have identified a novel TXNIP/miR-124a/FoxA2/IAPP signaling cascade linking the critical beta-cell signaling pathways of TXNIP and IAPP and thereby provide new mechanistic insight into an important aspect of transcriptional regulation and beta-cell biology.

  1. Thioredoxin-interacting Protein Promotes Islet Amyloid Polypeptide Expression through miR-124a and FoxA2*

    Science.gov (United States)

    Jing, Gu; Westwell-Roper, Clara; Chen, Junqin; Xu, Guanlan; Verchere, C. Bruce; Shalev, Anath

    2014-01-01

    Thioredoxin-interacting protein (TXNIP) is up-regulated by glucose and diabetes and plays a critical role in glucotoxicity, inflammation, and beta-cell apoptosis, whereas we have found that TXNIP deficiency protects against diabetes. Interestingly, human islet amyloid polypeptide (IAPP) is also induced by glucose, aggregates into insoluble amyloid fibrils found in islets of most individuals with type 2 diabetes and promotes inflammation and beta-cell cytotoxicity. However, so far no connection between TXNIP and IAPP signaling had been reported. Using TXNIP gain and loss of function experiments, INS-1 beta-cells and beta-cell-specific Txnip knock-out mice, we now found that TXNIP regulates IAPP expression. Promoter analyses and chromatin-immunoprecipitation assays further demonstrated that TXNIP increases IAPP expression at the transcriptional level, and we discovered that TXNIP-induced FoxA2 (forkhead box A2) transcription factor expression was conferring this effect by promoting FoxA2 enrichment at the proximal FoxA2 site in the IAPP promoter. Moreover, we found that TXNIP down-regulates miR-124a expression, a microRNA known to directly target FoxA2. Indeed, miR-124a overexpression led to decreased FoxA2 expression and IAPP promoter occupancy and to a significant reduction in IAPP mRNA and protein expression and also effectively inhibited TXNIP-induced IAPP expression. Thus, our studies have identified a novel TXNIP/miR-124a/FoxA2/IAPP signaling cascade linking the critical beta-cell signaling pathways of TXNIP and IAPP and thereby provide new mechanistic insight into an important aspect of transcriptional regulation and beta-cell biology. PMID:24627476

  2. Ran GTPase protein promotes human pancreatic cancer proliferation by deregulating the expression of Survivin and cell cycle proteins

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Lin [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032 (China); Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710038 (China); Lu, Yuanyuan; Zhao, Xiaodi; Sun, Yi; Shi, Yongquan; Fan, Hongwei; Liu, Changhao; Zhou, Jinfeng; Nie, Yongzhan; Wu, Kaichun [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032 (China); Fan, Daiming, E-mail: daimingfan@fmmu.edu.cn [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032 (China); Guo, Xuegang, E-mail: xuegangguo@126.com [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032 (China)

    2013-10-18

    Highlights: •Overexpression of Ran in pancreatic cancer was correlated with histological grade. •Downregulation of Ran could induce cell apoptosis and inhibit cell proliferation. •The effects were mediated by cell cycle proteins, Survivin and cleaved Caspase-3. -- Abstract: Ran, a member of the Ras GTPase family, has important roles in nucleocytoplasmic transport. Herein, we detected Ran expression in pancreatic cancer and explored its potential role on tumour progression. Overexpressed Ran in pancreatic cancer tissues was found highly correlated with the histological grade. Downregulation of Ran led to significant suppression of cell proliferation, cell cycle arrest at the G1/S phase and induction of apoptosis. In vivo studies also validated that result. Further studies revealed that those effects were at least partly mediated by the downregulation of Cyclin A, Cyclin D1, Cyclin E, CDK2, CDK4, phospho-Rb and Survivin proteins and up regulation of cleaved Caspase-3.

  3. Ran GTPase protein promotes human pancreatic cancer proliferation by deregulating the expression of Survivin and cell cycle proteins

    International Nuclear Information System (INIS)

    Deng, Lin; Lu, Yuanyuan; Zhao, Xiaodi; Sun, Yi; Shi, Yongquan; Fan, Hongwei; Liu, Changhao; Zhou, Jinfeng; Nie, Yongzhan; Wu, Kaichun; Fan, Daiming; Guo, Xuegang

    2013-01-01

    Highlights: •Overexpression of Ran in pancreatic cancer was correlated with histological grade. •Downregulation of Ran could induce cell apoptosis and inhibit cell proliferation. •The effects were mediated by cell cycle proteins, Survivin and cleaved Caspase-3. -- Abstract: Ran, a member of the Ras GTPase family, has important roles in nucleocytoplasmic transport. Herein, we detected Ran expression in pancreatic cancer and explored its potential role on tumour progression. Overexpressed Ran in pancreatic cancer tissues was found highly correlated with the histological grade. Downregulation of Ran led to significant suppression of cell proliferation, cell cycle arrest at the G1/S phase and induction of apoptosis. In vivo studies also validated that result. Further studies revealed that those effects were at least partly mediated by the downregulation of Cyclin A, Cyclin D1, Cyclin E, CDK2, CDK4, phospho-Rb and Survivin proteins and up regulation of cleaved Caspase-3

  4. Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms

    DEFF Research Database (Denmark)

    Rohde, Mikkel; Daugaard, Mads; Jensen, Mette Hartvig

    2005-01-01

    Whereas the stress-inducible heat-shock protein 70 (Hsp70) has gained plenty of attention as a putative target for tumor therapy, little is known about the role of other Hsp70 proteins in cancer. Here we present the first thorough analysis of the expression and function of the cytosolic Hsp70 pro...

  5. Construction and validation of a mCherry protein vector for promoter analysis in Lactobacillus acidophilus

    NARCIS (Netherlands)

    Mohedano, M.L.; Garcia-Cayuela, T.; Perez-Ramos, A.; Gaiser, R.A.; Requena, T.; Lopez, P.

    2015-01-01

    Lactobacilli are widespread in natural environments and are increasingly being investigated as potential health modulators. In this study, we have adapted the broad-host-range vector pNZ8048 to express the mCherry protein (pRCR) to expand the usage of the mCherry protein for analysis of gene

  6. Electrostatics promotes molecular crowding and selects the aggregation pathway in fibril-forming protein solutions

    International Nuclear Information System (INIS)

    Raccosta, S.; Martorana, V.; Manno, M.; Blanco, M.; Roberts, C.J.

    2016-01-01

    The role of intermolecular interaction in fibril-forming protein solutions and its relation with molecular conformation are crucial aspects for the control and inhibition of amyloid structures. Here, we study the fibril formation and the protein-protein interactions for two proteins at acidic ph, lysozyme and α-chymotrypsinogen. By using light scattering experiments and the Kirkwood-Buff integral approach, we show how concentration fluctuations are damped even at moderate protein concentrations by the dominant long-ranged electrostatic repulsion, which determines an effective crowded environment. In denaturing conditions, electrostatic repulsion keeps the monomeric solution in a thermodynamically metastable state, which is escaped through kinetically populated conformational sub-states. This explains how electrostatics acts as a gatekeeper in selecting a specific aggregation pathway.

  7. Electrostatics promotes molecular crowding and selects the aggregation pathway in fibril-forming protein solutions

    Science.gov (United States)

    Raccosta, S.; Blanco, M.; J. Roberts, C.; Martorana, V.; Manno, M.

    2016-05-01

    The role of intermolecular interaction in fibril-forming protein solutions and its relation with molecular conformation are crucial aspects for the control and inhibition of amyloid structures. Here, we study the fibril formation and the protein-protein interactions for two proteins at acidic p H, lysozyme and α -chymotrypsinogen. By using light scattering experiments and the Kirkwood-Buff integral approach, we show how concentration fluctuations are damped even at moderate protein concentrations by the dominant long-ranged electrostatic repulsion, which determines an effective crowded environment. In denaturing conditions, electrostatic repulsion keeps the monomeric solution in a thermodynamically metastable state, which is escaped through kinetically populated conformational sub-states. This explains how electrostatics acts as a gatekeeper in selecting a specific aggregation pathway.

  8. Hypermethylation of the GATA binding protein 4 (GATA4) promoter in Chinese pediatric acute myeloid leukemia.

    Science.gov (United States)

    Tao, Yan-Fang; Fang, Fang; Hu, Shao-Yan; Lu, Jun; Cao, Lan; Zhao, Wen-Li; Xiao, Pei-Fang; Li, Zhi-Heng; Wang, Na-Na; Xu, Li-Xiao; Du, Xiao-Juan; Sun, Li-Chao; Li, Yan-Hong; Li, Yi-Ping; Xu, Yun-Yun; Ni, Jian; Wang, Jian; Feng, Xing; Pan, Jian

    2015-10-21

    Acute myeloid leukemia (AML) is the second-most common form of leukemia in children. Aberrant DNA methylation patterns are a characteristic feature of AML. GATA4 has been suggested to be a tumor suppressor gene regulated by promoter hypermethylation in various types of human cancers although the expression and promoter methylation of GATA4 in pediatric AML is still unclear. Transcriptional expression levels of GATA4 were evaluated by semi-quantitative and real-time PCR. Methylation status was investigated by methylation-specific PCR (MSP) and bisulfate genomic sequencing (BGS). The prognostic significance of GATA4 expression and promoter methylation was assessed in 105 cases of Chinese pediatric acute myeloid leukemia patients with clinical follow-up records. MSP and BGS analysis showed that the GATA4 gene promoter is hypermethylated in AML cells, such as the HL-60 and MV4-11 human myeloid leukemia cell lines. 5-Aza treatment significantly upregulated GATA4 expression in HL-60 and MV4-11 cells. Aberrant methylation of GATA4 was observed in 15.0 % (3/20) of the normal bone marrow control samples compared to 56.2 % (59/105) of the pediatric AML samples. GATA4 transcript levels were significantly decreased in AML patients (33.06 ± 70.94; P = 0.011) compared to normal bone marrow/idiopathic thrombocytopenic purpura controls (116.76 ± 105.39). GATA4 promoter methylation was correlated with patient leukocyte counts (WBC, white blood cells) (P = 0.035) and minimal residual disease MRD (P = 0.031). Kaplan-Meier survival analysis revealed significantly shorter overall survival time in patients with GATA4 promoter methylation (P = 0.014). Epigenetic inactivation of GATA4 by promoter hypermethylation was observed in both AML cell lines and pediatric AML samples; our study implicates GATA4 as a putative tumor suppressor gene in pediatric AML. In addition, our findings imply that GATA4 promoter methylation is correlated with WBC and MRD. Kaplan

  9. Hypermethylation of the GATA binding protein 4 (GATA4) promoter in Chinese pediatric acute myeloid leukemia

    International Nuclear Information System (INIS)

    Tao, Yan-Fang; Fang, Fang; Hu, Shao-Yan; Lu, Jun; Cao, Lan; Zhao, Wen-Li; Xiao, Pei-Fang; Li, Zhi-Heng; Wang, Na-Na; Xu, Li-Xiao; Du, Xiao-Juan; Sun, Li-Chao; Li, Yan-Hong; Li, Yi-Ping; Xu, Yun-Yun; Ni, Jian; Wang, Jian; Feng, Xing; Pan, Jian

    2015-01-01

    Acute myeloid leukemia (AML) is the second-most common form of leukemia in children. Aberrant DNA methylation patterns are a characteristic feature of AML. GATA4 has been suggested to be a tumor suppressor gene regulated by promoter hypermethylation in various types of human cancers although the expression and promoter methylation of GATA4 in pediatric AML is still unclear. Transcriptional expression levels of GATA4 were evaluated by semi-quantitative and real-time PCR. Methylation status was investigated by methylation-specific PCR (MSP) and bisulfate genomic sequencing (BGS). The prognostic significance of GATA4 expression and promoter methylation was assessed in 105 cases of Chinese pediatric acute myeloid leukemia patients with clinical follow-up records. MSP and BGS analysis showed that the GATA4 gene promoter is hypermethylated in AML cells, such as the HL-60 and MV4-11 human myeloid leukemia cell lines. 5-Aza treatment significantly upregulated GATA4 expression in HL-60 and MV4-11 cells. Aberrant methylation of GATA4 was observed in 15.0 % (3/20) of the normal bone marrow control samples compared to 56.2 % (59/105) of the pediatric AML samples. GATA4 transcript levels were significantly decreased in AML patients (33.06 ± 70.94; P = 0.011) compared to normal bone marrow/idiopathic thrombocytopenic purpura controls (116.76 ± 105.39). GATA4 promoter methylation was correlated with patient leukocyte counts (WBC, white blood cells) (P = 0.035) and minimal residual disease MRD (P = 0.031). Kaplan-Meier survival analysis revealed significantly shorter overall survival time in patients with GATA4 promoter methylation (P = 0.014). Epigenetic inactivation of GATA4 by promoter hypermethylation was observed in both AML cell lines and pediatric AML samples; our study implicates GATA4 as a putative tumor suppressor gene in pediatric AML. In addition, our findings imply that GATA4 promoter methylation is correlated with WBC and MRD. Kaplan-Meier survival analysis

  10. Activation of protein kinase A and exchange protein directly activated by cAMP promotes adipocyte differentiation of human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Bingbing Jia

    Full Text Available Human mesenchymal stem cells are primary multipotent cells capable of differentiating into several cell types including adipocytes when cultured under defined in vitro conditions. In the present study we investigated the role of cAMP signaling and its downstream effectors, protein kinase A (PKA and exchange protein directly activated by cAMP (Epac in adipocyte conversion of human mesenchymal stem cells derived from adipose tissue (hMADS. We show that cAMP signaling involving the simultaneous activation of both PKA- and Epac-dependent signaling is critical for this process even in the presence of the strong adipogenic inducers insulin, dexamethasone, and rosiglitazone, thereby clearly distinguishing the hMADS cells from murine preadipocytes cell lines, where rosiglitazone together with dexamethasone and insulin strongly promotes adipocyte differentiation. We further show that prostaglandin I(2 (PGI(2 may fully substitute for the cAMP-elevating agent isobutylmethylxanthine (IBMX. Moreover, selective activation of Epac-dependent signaling promoted adipocyte differentiation when the Rho-associated kinase (ROCK was inhibited. Unlike the case for murine preadipocytes cell lines, long-chain fatty acids, like arachidonic acid, did not promote adipocyte differentiation of hMADS cells in the absence of a PPARγ agonist. However, prolonged treatment with the synthetic PPARδ agonist L165041 promoted adipocyte differentiation of hMADS cells in the presence of IBMX. Taken together our results emphasize the need for cAMP signaling in concert with treatment with a PPARγ or PPARδ agonist to secure efficient adipocyte differentiation of human hMADS mesenchymal stem cells.

  11. Network of anatomical texts (NAnaTex), an open-source project for visualizing the interaction between anatomical terms.

    Science.gov (United States)

    Momota, Ryusuke; Ohtsuka, Aiji

    2018-01-01

    Anatomy is the science and art of understanding the structure of the body and its components in relation to the functions of the whole-body system. Medicine is based on a deep understanding of anatomy, but quite a few introductory-level learners are overwhelmed by the sheer amount of anatomical terminology that must be understood, so they regard anatomy as a dull and dense subject. To help them learn anatomical terms in a more contextual way, we started a new open-source project, the Network of Anatomical Texts (NAnaTex), which visualizes relationships of body components by integrating text-based anatomical information using Cytoscape, a network visualization software platform. Here, we present a network of bones and muscles produced from literature descriptions. As this network is primarily text-based and does not require any programming knowledge, it is easy to implement new functions or provide extra information by making changes to the original text files. To facilitate collaborations, we deposited the source code files for the network into the GitHub repository ( https://github.com/ryusukemomota/nanatex ) so that anybody can participate in the evolution of the network and use it for their own non-profit purposes. This project should help not only introductory-level learners but also professional medical practitioners, who could use it as a quick reference.

  12. Bovine binder-of-sperm protein BSP1 promotes protrusion and nanotube formation from liposomes

    Energy Technology Data Exchange (ETDEWEB)

    Lafleur, Michel, E-mail: michel.lafleur@umontreal.ca [Department of Chemistry, Center for Self-Assembled Chemical Systems, Universite de Montreal, C.P. 6128, Succ. Centre Ville, Montreal, Quebec, Canada H3C 3J7 (Canada); Courtemanche, Lesley [Department of Chemistry, Center for Self-Assembled Chemical Systems, Universite de Montreal, C.P. 6128, Succ. Centre Ville, Montreal, Quebec, Canada H3C 3J7 (Canada); Karlsson, Goeran; Edwards, Katarina [Department of Physical and Analytical Chemistry, Uppsala University, Box 579, S-751 23 Uppsala (Sweden); Schwartz, Jean-Louis [Department of Physiology, Groupe d' etude des Proteines Membranaires, Universite de Montreal, C.P. 6128, Succ. Centre Ville, Montreal, Quebec, Canada H3C 3J7 (Canada); Manjunath, Puttaswamy [Maisonneuve-Rosemont Hospital Research Center and Faculty of Medecine, Universite de Montreal, 5415 L' Assomption Blvd, Montreal, Quebec, Canada H1T 2M4 (Canada)

    2010-08-27

    Research highlights: {yields} Binder-of-sperm protein 1 (BSP1) modifies the morphology of lipidic vesicles inducing bead necklace-like and thread-like structures. {yields} In the presence of multilamellar liposomes, BSP1 leads to the formation of long nanotubes. {yields} The insertion of BSP1 in the external lipid leaflet of membranes induces local changes in bilayer curvature. -- Abstract: Binder-of-sperm (BSP) proteins interact with sperm membranes and are proposed to extract selectively phosphatidylcholine and cholesterol from these. This change in lipid composition is a key step in sperm capacitation. The present work demonstrates that the interactions between the protein BSP1 and model membranes composed with phosphatidylcholine lead to drastic changes in the morphology of the lipidic self-assemblies. Using cryo-electron microscopy and fluorescence microscopy, we show that, in the presence of the protein, the lipid vesicles elongate, and form bead necklace-like structures that evolve toward small vesicles or thread-like structures. In the presence of multilamellar vesicles, where a large reservoir of lipid is available, the presence of BSP proteins lead to the formation of long nanotubes. Long spiral-like threads, associated with lipid/protein complexes, are also observed. The local curvature of lipid membranes induced by the BSP proteins may be involved in lipid domain formation and the extraction of some lipids during the sperm maturation process.

  13. Bovine binder-of-sperm protein BSP1 promotes protrusion and nanotube formation from liposomes

    International Nuclear Information System (INIS)

    Lafleur, Michel; Courtemanche, Lesley; Karlsson, Goeran; Edwards, Katarina; Schwartz, Jean-Louis; Manjunath, Puttaswamy

    2010-01-01

    Research highlights: → Binder-of-sperm protein 1 (BSP1) modifies the morphology of lipidic vesicles inducing bead necklace-like and thread-like structures. → In the presence of multilamellar liposomes, BSP1 leads to the formation of long nanotubes. → The insertion of BSP1 in the external lipid leaflet of membranes induces local changes in bilayer curvature. -- Abstract: Binder-of-sperm (BSP) proteins interact with sperm membranes and are proposed to extract selectively phosphatidylcholine and cholesterol from these. This change in lipid composition is a key step in sperm capacitation. The present work demonstrates that the interactions between the protein BSP1 and model membranes composed with phosphatidylcholine lead to drastic changes in the morphology of the lipidic self-assemblies. Using cryo-electron microscopy and fluorescence microscopy, we show that, in the presence of the protein, the lipid vesicles elongate, and form bead necklace-like structures that evolve toward small vesicles or thread-like structures. In the presence of multilamellar vesicles, where a large reservoir of lipid is available, the presence of BSP proteins lead to the formation of long nanotubes. Long spiral-like threads, associated with lipid/protein complexes, are also observed. The local curvature of lipid membranes induced by the BSP proteins may be involved in lipid domain formation and the extraction of some lipids during the sperm maturation process.

  14. An amplified promoter system for targeted expression of calcium indicator proteins in the cerebellar cortex

    Directory of Open Access Journals (Sweden)

    Bernd eKuhn

    2012-07-01

    Full Text Available Recording of identified neuronal network activity using genetically encoded calcium indicators (GECIs requires labeling that is cell type-specific and bright enough for the detection of functional signals. However, specificity and strong expression are often not achievable using the same promoter. Here we present a combinatorial approach for targeted expression and single-cell-level quantification in which a weak promoter is used to drive trans-amplification under a strong general promoter. We demonstrated this approach using recombinant adeno-associated viruses (rAAVs to deliver the sequence of the GECI D3cpv in the mouse cerebellar cortex. Direct expression under the human synapsin promoter (hSYN led to high levels of expression (50-100 µM in five interneuron types of the cerebellar cortex but not in Purkinje cells (PCs (≤10 μM, yielding sufficient contrast to allow functional signals to be recorded from somata and processes in awake animals using two-photon microscopy. When the hSYN promoter was used to drive expression of the tetracycline transactivator (tTA, a second rAAV containing the bidirectional TET promoter (Ptetbi could drive strong D3cpv expression in PCs (10-300 µM, enough to allow reliable complex spike detection in the dendritic arbor. An amplified approach should be of use in monitoring neural processing in selected cell types and boosting expression of optogenetic probes. Additionally, we overcome cell toxicity associated with rAAV injection and/or local GECI overexpression by combining the virus injection with systemic pre-injection of hyperosmotic D-mannitol, and by this double the time window for functional imaging.

  15. G1/S-regulated E2F-containing protein complexes bind to the mouse thymidine kinase gene promoter

    DEFF Research Database (Denmark)

    Dou, Q P; Zhao, S; Levin, A H

    1994-01-01

    By performing DNase I footprint analysis, we had identified three distinct protein binding sequences (MT1, MT2, and MT3) located on the mouse thymidine kinase (TK) upstream promoter (Dou, Q.-P., Fridovich-Keil, J. L., and Pardee, A.B. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 1157-1161). Here we...... report that MT2 includes an E2F-like binding site (GTTCGCGGGCAAA), as shown by the following evidence. (i) MT2 bound specifically to an affinity-purified fusion human E2F protein. (ii) Both MT2 and an authentic E2F site (TTTCGCGCGCTTT) bound specifically to similar or identical nuclear protein complexes....... (iii) Formation of both these DNA-protein complexes were cell cycle-dependent: a G0/G1 phase-specific complex (E2F.G0/G1) was replaced by an S phase-specific complex(es) (E2F.S), whereas "free" E2F increased after the G1/S transition. (iv) Pulse inhibition of protein synthesis with cycloheximide...

  16. FKBP8 interact with classical swine fever virus NS5A protein and promote virus RNA replication.

    Science.gov (United States)

    Li, Helin; Zhang, Chengcheng; Cui, Hongjie; Guo, Kangkang; Wang, Fang; Zhao, Tianyue; Liang, Wulong; Lv, Qizhuang; Zhang, Yanming

    2016-02-01

    The non-structural 5A (NS5A) protein of classical swine fever virus (CSFV) is proven to be involved in viral replication and can also modulate cellular signaling and host cellular responses via to its ability to interact with various cellular proteins. FKBP8 is also reported to promote virus replication. Here, we show that NS5A specifically interacts with FKBP8 through coimmunoprecipitation and GST-pulldown studies. Additionally, confocal microscopy study showed that NS5A and FKBP8 colocalized in the cytoplasm. Overexpression of FKBP8 via the eukaryotic expression plasmid pDsRED N1 significantly promoted viral RNA synthesis. The cells knockdown of FKBP8 by lentivirus-mediated shRNA markedly decreased the virus replication when infected with CSFV. These data suggest that FKBP8 plays a critical role in the viral life cycle, particularly during the virus RNA replication period. The investigation of FKBP8 protein functions may be beneficial for developing new strategies to treat CSFV infection.

  17. Hepatitis B virus X protein amplifies TGF-β promotion on HCC motility through down-regulating PPM1a.

    Science.gov (United States)

    Liu, Yuan; Xu, Yong; Ma, Hongxin; Wang, Bo; Xu, Leiqi; Zhang, Hualin; Song, Xiaojia; Gao, Lifen; Liang, Xiaohong; Ma, Chunhong

    2016-05-31

    Over-activation of transforming growth factor-β (TGF-β) signaling pathway promotes cell migration and invasion in hepatocellular carcinoma (HCC). The Hepatitis B virus X protein (HBx) is involved in the enhancement of TGF-β signaling pathway in HCC while the mechanism remains unclear. Protein phosphatase magnesium dependent 1A (PPM1a) functions as a phosphatase essential for terminating the TGF-β signaling pathway by dephosphorylating p-Smad2/3. In this study, we found that HBx dose-dependently downregulated PPM1a protein level in the presence of TGF-β, while having no effect on its mRNA level. Further study showed that HBx increased the ubiquitination of PPM1a and accelerated its proteasomal degradation. Restoration of PPM1a almost completely abrogated HBx mediated promotion on HCC migration and invasion. This involvement of PPM1a in HBx-related HCC was further confirmed with immunohistochemical analysis in HCC tissue. Compared with paired pericarcinous tissue, HCC tissue showed decreased PPM1a level. Besides, PPM1a level is negatively correlated with HBx expression. Taken together, our present study suggests that HBx-induced degradation of PPM1a is a novel mechanism for over-activation of TGF-β pathway in HCC development, which might provide potential candidates for clinical diagnosis and treatment.

  18. Construction and use of a Cupriavidus necator H16 soluble hydrogenase promoter (PSH fusion to gfp (green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Bat-Erdene Jugder

    2016-07-01

    Full Text Available Hydrogenases are metalloenzymes that reversibly catalyse the oxidation or production of molecular hydrogen (H2. Amongst a number of promising candidates for application in the oxidation of H2 is a soluble [Ni–Fe] uptake hydrogenase (SH produced by Cupriavidus necator H16. In the present study, molecular characterisation of the SH operon, responsible for functional SH synthesis, was investigated by developing a green fluorescent protein (GFP reporter system to characterise PSH promoter activity using several gene cloning approaches. A PSH promoter-gfp fusion was successfully constructed and inducible GFP expression driven by the PSH promoter under de-repressing conditions in heterotrophic growth media was demonstrated in the recombinant C. necator H16 cells. Here we report the first successful fluorescent reporter system to study PSH promoter activity in C. necator H16. The fusion construct allowed for the design of a simple screening assay to evaluate PSH activity. Furthermore, the constructed reporter system can serve as a model to develop a rapid fluorescent based reporter for subsequent small-scale process optimisation experiments for SH expression.

  19. Construction and use of a Cupriavidus necator H16 soluble hydrogenase promoter (PSH) fusion to gfp (green fluorescent protein).

    Science.gov (United States)

    Jugder, Bat-Erdene; Welch, Jeffrey; Braidy, Nady; Marquis, Christopher P

    2016-01-01

    Hydrogenases are metalloenzymes that reversibly catalyse the oxidation or production of molecular hydrogen (H2). Amongst a number of promising candidates for application in the oxidation of H2 is a soluble [Ni-Fe] uptake hydrogenase (SH) produced by Cupriavidus necator H16. In the present study, molecular characterisation of the SH operon, responsible for functional SH synthesis, was investigated by developing a green fluorescent protein (GFP) reporter system to characterise PSH promoter activity using several gene cloning approaches. A PSH promoter-gfp fusion was successfully constructed and inducible GFP expression driven by the PSH promoter under de-repressing conditions in heterotrophic growth media was demonstrated in the recombinant C. necator H16 cells. Here we report the first successful fluorescent reporter system to study PSH promoter activity in C. necator H16. The fusion construct allowed for the design of a simple screening assay to evaluate PSH activity. Furthermore, the constructed reporter system can serve as a model to develop a rapid fluorescent based reporter for subsequent small-scale process optimisation experiments for SH expression.

  20. Stabilization of the c-Myc Protein by CAMKIIγ Promotes T Cell Lymphoma.

    Science.gov (United States)

    Gu, Ying; Zhang, Jiawei; Ma, Xiaoxiao; Kim, Byung-Wook; Wang, Hailong; Li, Jinfan; Pan, Yi; Xu, Yang; Ding, Lili; Yang, Lu; Guo, Chao; Wu, Xiwei; Wu, Jun; Wu, Kirk; Gan, Xiaoxian; Li, Gang; Li, Ling; Forman, Stephen J; Chan, Wing-Chung; Xu, Rongzhen; Huang, Wendong

    2017-07-10

    Although high c-Myc protein expression is observed alongside MYC amplification in some cancers, in most cases protein overexpression occurs in the absence of gene amplification, e.g., T cell lymphoma (TCL). Here, Ca 2+ /calmodulin-dependent protein kinase II γ (CAMKIIγ) was shown to stabilize the c-Myc protein by directly phosphorylating it at serine 62 (S62). Furthermore, CAMKIIγ was shown to be essential for tumor maintenance. Inhibition of CAMKIIγ with a specific inhibitor destabilized c-Myc and reduced tumor burden. Importantly, high CAMKIIγ levels in patient TCL specimens correlate with increased c-Myc and pS62-c-Myc levels. Together, the CAMKIIγ:c-Myc axis critically influences the development and maintenance of TCL and represents a potential therapeutic target for TCL. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Chaperonins fight aminoglycoside-induced protein misfolding and promote short-term tolerance in Escherichia coli

    DEFF Research Database (Denmark)

    Goltermann, Lise; Good, Liam; Bentin, Thomas

    2013-01-01

    For almost half of a century, we have known that aminoglycoside antibiotics corrupt ribosomes, causing translational misreading, yet it remains unclear whether or not misreading triggers protein misfolding, and possible effects of chaperone action on drug susceptibilities are poorly understood...... as measured by reduced minimum inhibitory concentrations, whereas GroEL/GroES overexpression did not increase minimum inhibitory concentrations. Our observations establish misfolding of cytosolic proteins as an effect of aminoglycoside action and reveal that chaperones, chaperonins in particular, help...

  2. Constraints on lateral gene transfer in promoting fimbrial usher protein diversity and function.

    Science.gov (United States)

    Stubenrauch, Christopher J; Dougan, Gordon; Lithgow, Trevor; Heinz, Eva

    2017-11-01

    Fimbriae are long, adhesive structures widespread throughout members of the family Enterobacteriaceae. They are multimeric extrusions, which are moved out of the bacterial cell through an integral outer membrane protein called usher. The complex folding mechanics of the usher protein were recently revealed to be catalysed by the membrane-embedded translocation and assembly module (TAM). Here, we examine the diversity of usher proteins across a wide range of extraintestinal (ExPEC) and enteropathogenic (EPEC) Escherichia coli , and further focus on a so far undescribed chaperone-usher system, with this usher referred to as UshC. The fimbrial system containing UshC is distributed across a discrete set of EPEC types, including model strains like E2348/67, as well as ExPEC ST131, currently the most prominent multi-drug-resistant uropathogenic E. coli strain worldwide. Deletion of the TAM from a naive strain of E. coli results in a drastic time delay in folding of UshC, which can be observed for a protein from EPEC as well as for two introduced proteins from related organisms, Yersinia and Enterobacter We suggest that this models why the TAM machinery is essential for efficient folding of proteins acquired via lateral gene transfer. © 2017 The Authors.

  3. Myostatin promotes distinct responses on protein metabolism of skeletal and cardiac muscle fibers of rodents

    Directory of Open Access Journals (Sweden)

    L.H. Manfredi

    2017-10-01

    Full Text Available Myostatin is a novel negative regulator of skeletal muscle mass. Myostatin expression is also found in heart in a much less extent, but it can be upregulated in pathological conditions, such as heart failure. Myostatin may be involved in inhibiting protein synthesis and/or increasing protein degradation in skeletal and cardiac muscles. Herein, we used cell cultures and isolated muscles from rats to determine protein degradation and synthesis. Muscles incubated with myostatin exhibited an increase in proteolysis with an increase of Atrogin-1, MuRF1 and LC3 genes. Extensor digitorum longus muscles and C2C12 myotubes exhibited a reduction in protein turnover. Cardiomyocytes showed an increase in proteolysis by activating autophagy and the ubiquitin proteasome system, and a decrease in protein synthesis by decreasing P70S6K. The effect of myostatin on protein metabolism is related to fiber type composition, which may be associated to the extent of atrophy mediated effect of myostatin on muscle.

  4. Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans.

    Science.gov (United States)

    Churchward-Venne, Tyler A; Murphy, Caoileann H; Longland, Thomas M; Phillips, Stuart M

    2013-08-01

    Amino acids are major nutrient regulators of muscle protein turnover. After protein ingestion, hyperaminoacidemia stimulates increased rates of skeletal muscle protein synthesis, suppresses muscle protein breakdown, and promotes net muscle protein accretion for several hours. These acute observations form the basis for strategized protein intake to promote lean mass accretion, or prevent lean mass loss over the long term. However, factors such as protein dose, protein source, and timing of intake are important in mediating the anabolic effects of amino acids on skeletal muscle and must be considered within the context of evaluating the reported efficacy of long-term studies investigating protein supplementation as part of a dietary strategy to promote lean mass accretion and/or prevent lean mass loss. Current research suggests that dietary protein supplementation can augment resistance exercise-mediated gains in skeletal muscle mass and strength and can preserve skeletal muscle mass during periods of diet-induced energy restriction. Perhaps less appreciated, protein supplementation can augment resistance training-mediated gains in skeletal muscle mass even in individuals habitually consuming 'adequate' (i.e., >0.8 g kg⁻¹ day⁻¹) protein. Additionally, overfeeding energy with moderate to high-protein intake (15-25 % protein or 1.8-3.0 g kg⁻¹ day⁻¹) is associated with lean, but not fat mass accretion, when compared to overfeeding energy with low protein intake (5 % protein or ~0.68 g kg⁻¹ day⁻¹). Amino acids represent primary nutrient regulators of skeletal muscle anabolism, capable of enhancing lean mass accretion with resistance exercise and attenuating the loss of lean mass during periods of energy deficit, although factors such as protein dose, protein source, and timing of intake are likely important in mediating these effects.

  5. Capping protein regulatory cycle driven by CARMIL and V-1 may promote actin network assembly at protruding edges.

    Science.gov (United States)

    Fujiwara, Ikuko; Remmert, Kirsten; Piszczek, Grzegorz; Hammer, John A

    2014-05-13

    Although capping protein (CP) terminates actin filament elongation, it promotes Arp2/3-dependent actin network assembly and accelerates actin-based motility both in vitro and in vivo. In vitro, capping protein Arp2/3 myosin I linker (CARMIL) antagonizes CP by reducing its affinity for the barbed end and by uncapping CP-capped filaments, whereas the protein V-1/myotrophin sequesters CP in an inactive complex. Previous work showed that CARMIL can readily retrieve CP from the CP:V-1 complex, thereby converting inactive CP into a version with moderate affinity for the barbed end. Here we further clarify the mechanism of this exchange reaction, and we demonstrate that the CP:CARMIL complex created by complex exchange slows the rate of barbed-end elongation by rapidly associating with, and dissociating from, the barbed end. Importantly, the cellular concentrations of V-1 and CP determined here argue that most CP is sequestered by V-1 at steady state in vivo. Finally, we show that CARMIL is recruited to the plasma membrane and only at cell edges undergoing active protrusion. Assuming that CARMIL is active only at this location, our data argue that a large pool of freely diffusing, inactive CP (CP:V-1) feeds, via CARMIL-driven complex exchange, the formation of weak-capping complexes (CP:CARMIL) at the plasma membrane of protruding edges. In vivo, therefore, CARMIL should promote Arp2/3-dependent actin network assembly at the leading edge by promoting barbed-end capping there.

  6. Respiratory syncytial virus fusion protein promotes TLR-4-dependent neutrophil extracellular trap formation by human neutrophils.

    Directory of Open Access Journals (Sweden)

    Giselle A Funchal

    Full Text Available Acute viral bronchiolitis by Respiratory Syncytial Virus (RSV is the most common respiratory illness in children in the first year of life. RSV bronchiolitis generates large numbers of hospitalizations and an important burden to health systems. Neutrophils and their products are present in the airways of RSV-infected patients who developed increased lung disease. Neutrophil Extracellular Traps (NETs are formed by the release of granular and nuclear contents of neutrophils in the extracellular space in response to different stimuli and recent studies have proposed a role for NETs in viral infections. In this study, we show that RSV particles and RSV Fusion protein were both capable of inducing NET formation by human neutrophils. Moreover, we analyzed the mechanisms involved in RSV Fusion protein-induced NET formation. RSV F protein was able to induce NET release in a concentration-dependent fashion with both neutrophil elastase and myeloperoxidase expressed on DNA fibers and F protein-induced NETs was dismantled by DNase treatment, confirming that their backbone is chromatin. This viral protein caused the release of extracellular DNA dependent on TLR-4 activation, NADPH Oxidase-derived ROS production and ERK and p38 MAPK phosphorylation. Together, these results demonstrate a coordinated signaling pathway activated by F protein that led to NET production. The massive production of NETs in RSV infection could aggravate the inflammatory symptoms of the infection in young children and babies. We propose that targeting the binding of TLR-4 by F protein could potentially lead to novel therapeutic approaches to help control RSV-induced inflammatory consequences and pathology of viral bronchiolitis.

  7. Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells

    Directory of Open Access Journals (Sweden)

    Muyrers Joep PP

    2003-01-01

    Full Text Available Abstract Background The phage protein pairs, RecE/RecT from Rac or Redα/Redβ from λ, initiate efficient double strand break repair (DSBR in Escherichia coli that has proven very useful for DNA engineering. These phage pairs initiate DSBR either by annealing or by another mechanism that is not defined. Results Here we report that these proteins also mediate single strand oligonucleotide repair (ssOR at high efficiencies. The ssOR activity, unlike DSBR, does not require a phage exonuclease (RecE or Redα but only requires a phage annealing protein (RecT or Redβ. Notably, the P22 phage annealing protein Erf, which does not mediate the same DSBR reactions, also delivers ssOR activity. By altering aspects of the oligonucleotides, we document length and design parameters that affect ssOR efficiency to show a simple relationship to homologies either side of the repair site. Notably, ssOR shows strand bias. Oligonucleotides that can prime lagging strand replication deliver more ssOR than their leading complements. This suggests a model in which the annealing proteins hybridize the oligonucleotides to single stranded regions near the replication fork. We also show that ssOR is a highly efficient way to engineer BACs and can be detected in a eukaryotic cell upon expression of a phage annealing protein. Conclusion Phage annealing proteins can initiate the recombination of single stranded oligonucleotides into endogenous targets in Escherichia coli at very high efficiencies. This expands the repertoire of useful DNA engineering strategies, shows promise for applications in eukaryotic cells, and has implications for the unanswered questions regarding DSBR mediated by RecE/RecT and Redα/Redβ.

  8. A C-reactive protein promoter polymorphism is associated with type 2 diabetes mellitus in Pima Indians

    DEFF Research Database (Denmark)

    Wolford, Johanna K; Gruber, Jonathan D; Ossowski, Victoria M

    2003-01-01

    Linkage analysis has identified a susceptibility locus for type 2 diabetes mellitus (T2DM) on chromosome 1q21-q23 in several populations. Results from recent prospective studies indicate that increased levels of C-reactive protein (CRP), a marker of immune system activation, are predictive...... disequilibrium clusters. We genotyped representative SNPs in approximately 1300 Pima samples and found a single variant in the CRP promoter (SNP 133552) that was associated with T2DM (P=0.014), as well as a common haplotype (CGCG) that was associated with both T2DM (P=0.029) and corrected insulin response...

  9. Characterization of PTEN mutations in brain cancer reveals that pten mono-ubiquitination promotes protein stability and nuclear localization.

    Science.gov (United States)

    Yang, Jr-M; Schiapparelli, P; Nguyen, H-N; Igarashi, A; Zhang, Q; Abbadi, S; Amzel, L M; Sesaki, H; Quiñones-Hinojosa, A; Iijima, M

    2017-06-29

    PTEN is a PIP3 phosphatase that antagonizes oncogenic PI3-kinase signalling. Due to its critical role in suppressing the potent signalling pathway, it is one of the most mutated tumour suppressors, especially in brain tumours. It is generally thought that PTEN deficiencies predominantly result from either loss of expression or enzymatic activity. By analysing PTEN in malignant glioblastoma primary cells derived from 16 of our patients, we report mutations that block localization of PTEN at the plasma membrane and nucleus without affecting lipid phosphatase activity. Cellular and biochemical analyses as well as structural modelling revealed that two mutations disrupt intramolecular interaction of PTEN and open its conformation, enhancing polyubiquitination of PTEN and decreasing protein stability. Moreover, promoting mono-ubiquitination increases protein stability and nuclear localization of mutant PTEN. Thus, our findings provide a molecular mechanism for cancer-associated PTEN defects and may lead to a brain cancer treatment that targets PTEN mono-ubiquitination.

  10. Chromosome movements promoted by the mitochondrial protein SPD-3 are required for homology search during Caenorhabditis elegans meiosis.

    Directory of Open Access Journals (Sweden)

    Leticia Labrador

    2013-05-01

    Full Text Available Pairing of homologous chromosomes during early meiosis is essential to prevent the formation of aneuploid gametes. Chromosome pairing includes a step of homology search followed by the stabilization of homolog interactions by the synaptonemal complex (SC. These events coincide with dramatic changes in nuclear organization and rapid chromosome movements that depend on cytoskeletal motors and are mediated by SUN-domain proteins on the nuclear envelope, but how chromosome mobility contributes to the pairing process remains poorly understood. We show that defects in the mitochondria-localizing protein SPD-3 cause a defect in homolog pairing without impairing nuclear reorganization or SC assembly, which results in promiscuous installation of the SC between non-homologous chromosomes. Preventing SC assembly in spd-3 mutants does not improve homolog pairing, demonstrating that SPD-3 is required for homology search at the start of meiosis. Pairing center regions localize to SUN-1 aggregates at meiosis onset in spd-3 mutants; and pairing-promoting proteins, including cytoskeletal motors and polo-like kinase 2, are normally recruited to the nuclear envelope. However, quantitative analysis of SUN-1 aggregate movement in spd-3 mutants demonstrates a clear reduction in mobility, although this defect is not as severe as that seen in sun-1(jf18 mutants, which also show a stronger pairing defect, suggesting a correlation between chromosome-end mobility and the efficiency of pairing. SUN-1 aggregate movement is also impaired following inhibition of mitochondrial respiration or dynein knockdown, suggesting that mitochondrial function is required for motor-driven SUN-1 movement. The reduced chromosome-end mobility of spd-3 mutants impairs coupling of SC assembly to homology recognition and causes a delay in meiotic progression mediated by HORMA-domain protein HTP-1. Our work reveals how chromosome mobility impacts the different early meiotic events that promote

  11. Cdc42 Interacting Protein 4 promotes breast cancer cell invasion and formation of invadopodia through activation of N-WASp

    Science.gov (United States)

    Pichot, Christina S.; Arvanitis, Constadina; Hartig, Sean M.; Jensen, Samuel A.; Bechill, John; Marzouk, Saad; Yu, Jindan; Frost, Jeffrey A.; Corey, Seth J.

    2010-01-01

    In the earliest stages of metastasis, breast cancer cells must reorganize the cytoskeleton to affect cell shape change and promote cell invasion and motility. These events require the cytoskeletal regulators Cdc42 and Rho, their effectors, such as N-WASp/WAVE, and direct inducers of actin polymerization such as Arp2/3. Little consideration has been given to molecules that shape the cell membrane. The F-BAR proteins CIP4, TOCA-1, and FBP17 generate membrane curvature and act as scaffolding proteins for activated Cdc42 and N-WASp. We found that expression of CIP4, but not TOCA-1 or FBP17, was increased in invasive breast cancer cell lines in comparison to weakly or non-invasive breast cancer cell lines. Endogenous CIP4 localized to the leading edge of migrating cells and to invadopodia in cells invading gelatin. Because CIP4 serves as a scaffolding protein for Cdc42, Src, and N-WASp, we tested whether loss of CIP4 could result in decreased N-WASp function. Interaction between CIP4 and N-WASp was EGF-responsive, and CIP4 silencing by siRNA caused decreased tyrosine phosphorylation of N-WASp at a Src-dependent activation site (Y256). CIP4 silencing also impaired the migration and invasion of MDA-MB-231 cells and was associated with decreased formation of invadopodia and gelatin degradation. This study presents a new role for CIP4 in the promotion of migration and invasion of MDA-MB-231 breast cancer cells and establishes the contribution of F-BAR proteins to cancer cell motility and invasion. PMID:20940394

  12. Methanol-inducible promoter of thermotolerant methylotrophic yeast Ogataea thermomethanolica BCC16875 potential for production of heterologous protein at high temperatures.

    Science.gov (United States)

    Promdonkoy, Peerada; Tirasophon, Witoon; Roongsawang, Niran; Eurwilaichitr, Lily; Tanapongpipat, Sutipa

    2014-08-01

    Methanol-utilizing metabolism is generally found in methylotrophic yeasts. Several potential promoters regulating enzymes in this pathway have been extensively studied, especially alcohol oxidase. Here, we characterized the alcohol oxidase gene promoter from thermotolerant Ogataea thermomethanolica (OthAOX). This promoter can be induced by methanol, and was shown to regulate expression of phytase up to 45 °C. The pattern of heterologous phytase N-glycosylation depends on the induction temperature. Unlike the AOX promoter from Pichia pastoris, this OthAOX initially turns on the expression of the heterologous protein at the de-repression stage in the presence of glycerol. Full induction of protein is observed when methanol is present. With this methanol-inducible promoter, target protein can be initially produced prior to the induction phase, which would help shorten the time for protein production. Being able to drive protein expression at various temperatures prompts this newly identified AOX promoter to be potential tool for heterologous protein production in high temperature conditions.

  13. Kosmotropic anions promote conversion of recombinant prion protein into a PrPSc-like misfolded form.

    Directory of Open Access Journals (Sweden)

    Rodrigo Diaz-Espinoza

    Full Text Available Prions are self-propagating proteins involved in transmissible spongiform encephalopaties in mammals. An aberrant conformation with amyloid-like features of a cell surface protein, termed prion protein (PrP, is thought to be the essential component of the infectious particle, though accessory co-factor molecules such as lipids and nucleotides may be involved. The cellular co-factors and environmental conditions implicated in PrP misfolding are not completely understood. To address this issue, several studies have been done inducing misfolding of recombinant PrP (recPrP into classical amyloid structures using partially denaturing conditions. In this work, we report that misfolding of recPrP into PrP(Sc-like aggregates can be induced by simply incubating the protein in the presence of kosmotropic salts at concentrations that are known to retain or increase the stability of the protein. We used a simple experimental reaction (protein, buffer and salts submitted to agitation/incubation cycles at physiological temperature and pH. The formation of protease resistant-recPrP was time and salt-concentration dependent and required the presence of kosmotropic anions such as F(- or SO(4(-2. The molecular weights of the protease resistant recPrP fragments are reminiscent of those found in degradation assays of bona fide PrP(Sc. The aggregates also exhibited PrP(Sc-like ultrastructural features including rod-shape morphology under electron microscope, high beta-sheet content and thioflavin-T positive signal. The formation of recPrP aggregates with PrP(Sc biochemical features under conditions closer to physiological in the absence of organic co-factor molecules provides a simple setup that may prove helpful to understand the molecular mechanism of PrP misfolding.

  14. Kosmotropic anions promote conversion of recombinant prion protein into a PrPSc-like misfolded form.

    Science.gov (United States)

    Diaz-Espinoza, Rodrigo; Mukherjee, Abhisek; Soto, Claudio

    2012-01-01

    Prions are self-propagating proteins involved in transmissible spongiform encephalopaties in mammals. An aberrant conformation with amyloid-like features of a cell surface protein, termed prion protein (PrP), is thought to be the essential component of the infectious particle, though accessory co-factor molecules such as lipids and nucleotides may be involved. The cellular co-factors and environmental conditions implicated in PrP misfolding are not completely understood. To address this issue, several studies have been done inducing misfolding of recombinant PrP (recPrP) into classical amyloid structures using partially denaturing conditions. In this work, we report that misfolding of recPrP into PrP(Sc)-like aggregates can be induced by simply incubating the protein in the presence of kosmotropic salts at concentrations that are known to retain or increase the stability of the protein. We used a simple experimental reaction (protein, buffer and salts) submitted to agitation/incubation cycles at physiological temperature and pH. The formation of protease resistant-recPrP was time and salt-concentration dependent and required the presence of kosmotropic anions such as F(-) or SO(4)(-2). The molecular weights of the protease resistant recPrP fragments are reminiscent of those found in degradation assays of bona fide PrP(Sc). The aggregates also exhibited PrP(Sc)-like ultrastructural features including rod-shape morphology under electron microscope, high beta-sheet content and thioflavin-T positive signal. The formation of recPrP aggregates with PrP(Sc) biochemical features under conditions closer to physiological in the absence of organic co-factor molecules provides a simple setup that may prove helpful to understand the molecular mechanism of PrP misfolding.

  15. Seminal Plasma Proteins as Androgen Receptor Coregulators Promote Prostate Cancer Growth

    Science.gov (United States)

    2014-10-01

    the presence of zinc was found to induce androgen-mediated PSA expression in AR-positive prostate cancer cells. Reportable Outcomes Ishiguro ...prostatectomy. Hum Pathol 43: 6 1991–2000, 2012. Appendix Ishiguro H, Izumi K, Zheng Y, Kashiwagi E, Kawahara T, Miyamoto H: Semenogelin I promotes...PROSTATE CANCER CELL GROWTH VIA FUNCTIONING AS AN ANDROGEN RECEPTOR COACTIVATOR AND PROTECTING AGAINST ZINC CYTOTOXICITY Hitoshi Ishiguro *, Baltimore

  16. The actin cytoskeleton inhibits pore expansion during PIV5 fusion protein-promoted cell-cell fusion

    International Nuclear Information System (INIS)

    Wurth, Mark A.; Schowalter, Rachel M.; Smith, Everett Clinton; Moncman, Carole L.; Ellis Dutch, Rebecca; McCann, Richard O.

    2010-01-01

    Paramyxovirus fusion (F) proteins promote both virus-cell fusion, required for viral entry, and cell-cell fusion, resulting in syncytia formation. We used the F-actin stabilizing drug, jasplakinolide, and the G-actin sequestrant, latrunculin A, to examine the role of actin dynamics in cell-cell fusion mediated by the parainfluenza virus 5 (PIV5) F protein. Jasplakinolide treatment caused a dose-dependent increase in cell-cell fusion as measured by both syncytia and reporter gene assays, and latrunculin A treatment also resulted in fusion stimulation. Treatment with jasplakinolide or latrunculin A partially rescued a fusion pore opening defect caused by deletion of the PIV5 F protein cytoplasmic tail, but these drugs had no effect on fusion inhibited at earlier stages by either temperature arrest or by a PIV5 heptad repeat peptide. These data suggest that the cortical actin cytoskeleton is an important regulator of fusion pore enlargement, an energetically costly stage of viral fusion protein-mediated membrane merger.

  17. PME-1 modulates protein phosphatase 2A activity to promote the malignant phenotype of endometrial cancer cells.

    Science.gov (United States)

    Wandzioch, Ewa; Pusey, Michelle; Werda, Amy; Bail, Sophie; Bhaskar, Aishwarya; Nestor, Mariya; Yang, Jing-Jing; Rice, Lyndi M

    2014-08-15

    Protein phosphatase 2A (PP2A) negatively regulates tumorigenic signaling pathways, in part, by supporting the function of tumor suppressors like p53. The PP2A methylesterase PME-1 limits the activity of PP2A by demethylating its catalytic subunit. Here, we report the finding that PME-1 overexpression correlates with increased cell proliferation and invasive phenotypes in endometrial adenocarcinoma cells, where it helps maintain activated ERK and Akt by inhibiting PP2A. We obtained evidence that PME-1 could bind and regulate protein phosphatase 4 (PP4), a tumor-promoting protein, but not the related protein phosphatase 6 (PP6). When the PP2A, PP4, or PP6 catalytic subunits were overexpressed, inhibiting PME-1 was sufficient to limit cell proliferation. In clinical specimens of endometrial adenocarcinoma, PME-1 levels were increased and we found that PME-1 overexpression was sufficient to drive tumor growth in a xenograft model of the disease. Our findings identify PME-1 as a modifier of malignant development and suggest its candidacy as a diagnostic marker and as a therapeutic target in endometrial cancer. ©2014 American Association for Cancer Research.

  18. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution

    DEFF Research Database (Denmark)

    Maida, Adriano; Zota, Annika; Sjøberg, Kim Anker

    2016-01-01

    expression and secretion as well as the associated metabolic remodeling induced by DPD also required induction of liver-integrated stress response-driven nuclear protein 1 (NUPR1). Insufficiency of select nonessential amino acids (NEAAs) was necessary and adequate for NUPR1 and subsequent FGF21 induction...

  19. Transgenic overexpression of Niemann-Pick C2 protein promotes cholesterol gallstone formation in mice

    NARCIS (Netherlands)

    Acuna, Mariana; Gonzalez-Hodar, Lila; Amigo, Ludwig; Castro, Juan; Gabriela Morales, M.; Cancino, Gonzalo I.; Groen, Albert K.; Young, Juan; Francisco Miquel, Juan; Zanlungo, Silvana

    Background & Aims: Niemann-Pick C2 (NPC2) is a lysosomal protein involved in the egress of low-density lipoprotein-derived cholesterol from lysosomes to other intracellular compartments. NPC2 has been detected in several tissues and is also secreted from the liver into bile. We have previously shown

  20. Invadopodia proteins, cortactin, N-WASP and WIP differentially promote local invasiveness in ameloblastoma.

    Science.gov (United States)

    Siar, Chong Huat; Rahman, Zainal Ariff Bin Abdul; Tsujigiwa, Hidetsugu; Mohamed Om Alblazi, Kamila; Nagatsuka, Hitoshi; Ng, Kok Han

    2016-09-01

    Cell migration and invasion through interstitial tissues are dependent upon several specialized characteristics of the migratory cell notably generation of proteolytic membranous protrusions or invadopodia. Ameloblastoma is a benign odontogenic epithelial neoplasm with a locally infiltrative behaviour. Cortactin and MMT1-MMP are two invadopodia proteins implicated in its local invasiveness. Other invadopodia regulators, namely N-WASP, WIP and Src kinase remain unclarified. This study addresses their roles in ameloblastoma. Eighty-seven paraffin-embedded ameloblastoma cases (20 unicystic, 47 solid/multicystic, 3 desmoplastic and 17 recurrent) were subjected to immunohistochemistry for expression of cortactin, N-WASP, WIP, Src kinase and F-actin, and findings correlated with clinicopathological parameters. Invadopodia proteins (except Src kinase) and F-actin were widely detected in ameloblastoma (cortactin: n = 73/87, 83.9%; N-WASP: n = 59/87; 67.8%; WIP: n = 77/87; 88.5%; and F-actin: n = 87/87, 100%). Protein localization was mainly cytoplasmic and/or membranous, and occasionally nuclear for F-actin. Cortactin, which functions as an actin-scaffolding protein, demonstrated significantly higher expression levels within ameloblastoma tumoral epithelium than in stroma (P ameloblastoma is dependent upon the migratory potential of its tumour cells as defined by their distribution of cortactin, N-WASP and WIP in correlation with F-actin cytoskeletal dynamics. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. A conserved small RNA promotes silencing of the outer membrane protein YbfM

    DEFF Research Database (Denmark)

    Rasmussen, Anders Aamann; Johansen, Jesper; Nielsen, Jesper S

    2009-01-01

    In the past few years an increasing number of small non-coding RNAs (sRNAs) in enterobacteria have been found to negatively regulate the expression of outer membrane proteins (OMPs) at the post-transcriptional level. These RNAs act under various growth and stress conditions, suggesting that one...

  2. The metastasis-promoting S100A4 protein confers neuroprotection in brain injury

    DEFF Research Database (Denmark)

    Dmytriyeva, Oksana; Pankratova, Stanislava; Owczarek, Sylwia

    2012-01-01

    unclear. Here we show that the S100A4 protein, mostly studied in cancer, is overexpressed in the damaged human and rodent brain and released from stressed astrocytes. Genetic deletion of S100A4 exacerbates neuronal loss after brain trauma or excitotoxicity, increasing oxidative cell damage...

  3. Enzyme-treated asparagus extract promotes expression of heat shock protein and exerts antistress effects.

    Science.gov (United States)

    Ito, Tomohiro; Maeda, Takahiro; Goto, Kazunori; Miura, Takehito; Wakame, Koji; Nishioka, Hiroshi; Sato, Atsuya

    2014-03-01

    A novel enzyme-treated asparagus extract (ETAS) has been developed as a functional material produced from asparagus stem. Studies were conducted to determine the effect of ETAS on heat shock protein 70 (HSP70) expression and alleviation of stress. HeLa cells were treated with ETAS, and HSP70 mRNA and protein levels were measured using a reverse transcription-polymerase chain reaction (RT-PCR) assay and an enzyme-linked immunosorbent assay (ELISA), respectively. ETAS showed significant increases in HSP70 mRNA at more than 0.125 mg/mL and the protein at more than 1.0 mg/mL. The antistress effect was evaluated in a murine sleep-deprivation model. A sleep-deprivation stress load resulted in elevation of blood corticosterone and lipid peroxide concentrations, while supplementation with ETAS at 200 and 1000 mg/kg body weight was associated with significantly reduced levels of both stress markers, which were in the normal range. The HSP70 protein expression level in mice subjected to sleep-deprivation stress and supplemented with ETAS was significantly enhanced in stomach, liver, and kidney, compared to ETAS-untreated mice. A preliminary and small-sized human study was conducted among healthy volunteers consuming up to 150 mg/d of ETAS daily for 7 d. The mRNA expression of HSP70 in peripheral leukocytes was significantly elevated at intakes of 100 or 150 mg/d, compared to their baseline levels. Since HSP70 is known to be a stress-related protein and its induction leads to cytoprotection, the present results suggest that ETAS might exert antistress effects under stressful conditions, resulting from enhancement of HSP70 expression. © 2014 Institute of Food Technologists®

  4. E11/Podoplanin Protein Stabilization Through Inhibition of the Proteasome Promotes Osteocyte Differentiation in Murine in Vitro Models.

    Science.gov (United States)

    Staines, Katherine A; Prideaux, Matt; Allen, Steve; Buttle, David J; Pitsillides, Andrew A; Farquharson, Colin

    2016-06-01

    The transmembrane glycoprotein E11 is considered critical in early osteoblast-osteocyte transitions (osteocytogenesis), however its function and regulatory mechanisms are still unknown. Using the late osteoblast MLO-A5 cell line we reveal increased E11 protein/mRNA expression (P < 0.001) concomitant with extensive osteocyte dendrite formation and matrix mineralization (P < 0.001). Transfection with E11 significantly increased mRNA levels (P < 0.001), but immunoblotting failed to detect any correlative increases in E11 protein levels, suggestive of post-translational degradation. We found that exogenous treatment of MLO-A5 and osteocytic IDG-SW3 cells with 10 μM ALLN (calpain and proteasome inhibitor) stabilized E11 protein levels and induced a profound increase in osteocytic dendrite formation (P < 0.001). Treatment with other calpain inhibitors failed to promote similar osteocytogenic changes, suggesting that these effects of ALLN rely upon its proteasome inhibitor actions. Accordingly we found that proteasome-selective inhibitors (MG132/lactacystin/ Bortezomib/Withaferin-A) produced similar dose-dependent increases in E11 protein levels in MLO-A5 and primary osteoblast cells. This proteasomal targeting was confirmed by immunoprecipitation of ubiquitinylated proteins, which included E11, and by increased levels of ubiquitinylated E11 protein upon addition of the proteasome inhibitors MG132/Bortezomib. Activation of RhoA, the small GTPase, was found to be increased concomitant with the peak in E11 levels and its downstream signaling was also observed to promote MLO-A5 cell dendrite formation. Our data indicate that a mechanism reliant upon blockade of proteasome-mediated E11 destabilization contributes to osteocytogenesis and that this may involve downstream targeting of RhoA. This work adds to our mechanistic understanding of the factors regulating bone homeostasis, which may lead to future therapeutic approaches. © 2015 The Authors. Journal of

  5. Deregulated Methionine Adenosyltransferase α1, c-Myc and Maf Proteins Interplay Promotes Cholangiocarcinoma Growth in Mice and Humans

    Science.gov (United States)

    Yang, Heping; Liu, Ting; Wang, Jiaohong; Li, Tony W.H.; Fan, Wei; Peng, Hui; Krishnan, Anuradha; Gores, Gregory J.; Mato, Jose M.; Lu, Shelly C.

    2016-01-01

    We reported c-Myc induction drives cholestatic liver injury and cholangiocarcinoma (CCA) in mice. We also showed induction of Maf proteins (MafG and c-Maf) contributed to cholestatic liver injury, whereas S-adenosylmethionine (SAMe) administration was protective. Here we determined whether there is interplay between c-Myc, Maf proteins and methionine adenosyltransferase α1 (MATα1), which is responsible for SAMe biosynthesis in liver. We used bile duct ligation (BDL) and lithocholic acid (LCA) treatment in mice as chronic cholestasis models, a murine CCA model, human CCA cell lines KMCH and Huh-28, human liver cancer HepG2, and human CCA specimens to study gene and protein expression, protein-protein interactions, molecular mechanisms and functional outcomes. We found c-Myc, MATα1 (encoded by MAT1A), MafG and c-Maf interact with each other directly. MAT1A expression fell in hepatocytes and bile duct epithelial cells during chronic cholestasis and in murine and human CCA. The opposite occurred with c-Myc, MafG and c-Maf expression. MATα1 interacts mainly with Mnt in normal liver but this switches to c-Maf, MafG and c-Myc in cholestatic livers and CCA. Promoter regions of these genes have E-boxes that are bound by MATα1 and Mnt in normal liver and benign bile duct epithelial cells that switched to c-Myc, c-Maf and MafG in cholestasis and CCA cells. E-box positively regulates c-Myc, MafG and c-Maf, but it negatively regulates MAT1A. MATα1 represses whereas c-Myc, MafG and c-Maf enhance E-box-driven promoter activity. Knocking down MAT1A or overexpressing MafG or c-Maf enhanced CCA growth and invasion in vivo. Conclusion We have uncovered a novel interplay between MATα1, c-Myc and Maf proteins and their deregulation during chronic cholestasis may facilitate CCA oncogenesis. PMID:26969892

  6. The Host E3-Ubiquitin Ligase TRIM6 Ubiquitinates the Ebola Virus VP35 Protein and Promotes Virus Replication.

    Science.gov (United States)

    Bharaj, Preeti; Atkins, Colm; Luthra, Priya; Giraldo, Maria Isabel; Dawes, Brian E; Miorin, Lisa; Johnson, Jeffrey R; Krogan, Nevan J; Basler, Christopher F; Freiberg, Alexander N; Rajsbaum, Ricardo

    2017-09-15

    Ebola virus (EBOV), a member of the Filoviridae family, is a highly pathogenic virus that causes severe hemorrhagic fever in humans and is responsible for epidemics throughout sub-Saharan, central, and West Africa. The EBOV genome encodes VP35, an important viral protein involved in virus replication by acting as an essential cofactor of the viral polymerase as well as a potent antagonist of the host antiviral type I interferon (IFN-I) system. By using mass spectrometry analysis and coimmunoprecipitation assays, we show here that VP35 is ubiquitinated on lysine 309 (K309), a residue located on its IFN antagonist domain. We also found that VP35 interacts with TRIM6, a member of the E3-ubiquitin ligase tripartite motif (TRIM) family. We recently reported that TRIM6 promotes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, to induce efficient antiviral IFN-I-mediated responses. Consistent with this notion, VP35 also associated noncovalently with polyubiquitin chains and inhibited TRIM6-mediated IFN-I induction. Intriguingly, we also found that TRIM6 enhances EBOV polymerase activity in a minigenome assay and TRIM6 knockout cells have reduced replication of infectious EBOV, suggesting that VP35 hijacks TRIM6 to promote EBOV replication through ubiquitination. Our work provides evidence that TRIM6 is an important host cellular factor that promotes EBOV replication, and future studies will focus on whether TRIM6 could be targeted for therapeutic intervention against EBOV infection. IMPORTANCE EBOV belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans and other mammals with high mortality rates (40 to 90%). Because of its high pathogenicity and lack of licensed antivirals and vaccines, EBOV is listed as a tier 1 select-agent risk group 4 pathogen. An important mechanism for the severity of EBOV infection is its suppression of innate immune responses. The EBOV VP35

  7. Protein expression and promoter methylation of the candidate biomarker TCF21 in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Weiss, Daniel; Stockmann, Christian; Schrödter, Katrin; Rudack, Claudia

    2013-06-01

    Epigenetic alterations of the transcription factor 21 (TCF21) gene have been associated with head and neck squamous cell carcinoma (HNSCC) and other tumor entities. So far, however, no reports have appeared in the literature on TCF21 protein expression in HNSCC and its relevance as a putative biomarker. TCF21 protein expression was assessed in 74 HNSCCs and 31 benign tonsils by immunohistochemistry. Methylation analyses of the corresponding gene promoter were performed in 45 HNSCCs and 31 benign tonsils. The TCF21 expression levels in the tumors and controls were compared with each other and within each group and, in addition, with the TCF21 promoter methylation status and various clinicopathological characteristics. Overall, both the expression levels and methylation frequencies of TCF21 were significantly higher in the HNSCCs than in the benign controls (p human papilloma virus (HPV)-negative tumors (p = 0.042), tumors located in the oral cavity (p = 0.016) and early-stage tumors (p = 0.025). Interestingly, expression rates in tumors of the oropharynx, where HPV-positive tumors were most frequently found, tended to be lower (p = 0.065). The methylation frequencies of TCF21 were found to be significantly higher in tumors of patients without nicotine abuse (p = 0.030), in HPV-positive tumors (p = 0.014) and in tumors exhibiting over-expression of p16, a protein induced by HPV (p = 0.006). Both over-expression and increased promoter methylation of TCF21 were frequently observed in HNSCCs. TCF21 promoter hypermethylation was found to lead to gene silencing in the HNSCCs, but not in the benign tonsils. These epigenetic, and possibly also genetic, alterations of the TCF21 gene in HNSCCs may be driven by HPV infection, nicotine and alcohol abuse, or both. These findings, together with its stage- and primary site-dependent expression, turn TCF21 into a promising candidate biomarker in HNSCC.

  8. Using enhanced green fluorescent protein (EGFP) promoter fusions to study gene regulation at single cell and population levels.

    Science.gov (United States)

    Utratna, Marta; O'Byrne, Conor P

    2014-01-01

    Reporter gene fusions based on the enhanced green fluorescent protein (EGFP) are powerful experimental tools that allow real-time changes in gene expression to be monitored both in single cells and in populations. Here we describe the development of a chromosomally integrated transcriptional reporter fusion in Listeria monocytogenes that allows real-time measurements of gene expression. To construct a single copy of an EGFP-based fluorescent reporter fused to a promoter of interest (Px) in L. monocytogenes, a suicide shuttle vector carrying the Px::egfp gene fusion is first constructed in Escherichia coli (as an intermediate host). Then, the vector is transformed into L. monocytogenes and integrated into its chromosome by homologous recombination within the selected promoter region. Subsequently, analysis of fluorescence exhibited by cells carrying a single copy reporter can be performed under selected experimental conditions by stringent sample preparation, optimized image acquisition, and processing of the digital data with the image analysis freeware ImageJ. Thus, the methodology described here can be adapted to investigate the activity and regulation of any promoter in L. monocytogenes both at the cell and population levels.

  9. Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a MYB domain protein.

    Science.gov (United States)

    Zhu, Xiaolei; Liang, Wanqi; Cui, Xiao; Chen, Mingjiao; Yin, Changsong; Luo, Zhijing; Zhu, Jiaying; Lucas, William J; Wang, Zhiyong; Zhang, Dabing

    2015-05-01

    Transport of photoassimilates from leaf tissues (source regions) to the sink organs is essential for plant development. Here, we show that a phytohormone, the brassinosteroids (BRs) promotes pollen and seed development in rice by directly promoting expression of Carbon Starved Anther (CSA) which encodes a MYB domain protein. Over-expression of the BR-synthesis gene D11 or a BR-signaling factor OsBZR1 results in higher sugar accumulation in developing anthers and seeds, as well as higher grain yield compared with control non-transgenic plants. Conversely, knockdown of D11 or OsBZR1 expression causes defective pollen maturation and reduced seed size and weight, with less accumulation of starch in comparison with the control. Mechanically, OsBZR1 directly promotes CSA expression and CSA directly triggers expression of sugar partitioning and metabolic genes during pollen and seed development. These findings provide insight into how BRs enhance plant reproduction and grain yield in an important agricultural crop. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  10. G Protein-coupled Receptor Kinase 2 (GRK2 Promotes Breast Tumorigenesis Through a HDAC6-Pin1 Axis

    Directory of Open Access Journals (Sweden)

    Laura Nogués

    2016-11-01

    Full Text Available In addition to oncogenic drivers, signaling nodes can critically modulate cancer-related cellular networks to strength tumor hallmarks. We identify G-protein-coupled receptor kinase 2 (GRK2 as a relevant player in breast cancer. GRK2 is up-regulated in breast cancer cell lines, in spontaneous tumors in mice, and in a proportion of invasive ductal carcinoma patients. Increased GRK2 functionality promotes the phosphorylation and activation of the Histone Deacetylase 6 (HDAC6 leading to de-acetylation of the Prolyl Isomerase Pin1, a central modulator of tumor progression, thereby enhancing its stability and functional interaction with key mitotic regulators. Interestingly, a correlation between GRK2 expression and Pin1 levels and de-acetylation status is detected in breast cancer patients. Activation of the HDAC6-Pin1 axis underlies the positive effects of GRK2 on promoting growth factor signaling, cellular proliferation and anchorage-independent growth in both luminal and basal breast cancer cells. Enhanced GRK2 levels promote tumor growth in mice, whereas GRK2 down-modulation sensitizes cells to therapeutic drugs and abrogates tumor formation. Our data suggest that GRK2 acts as an important onco-modulator by strengthening the functionality of key players in breast tumorigenesis such as HDAC6 and Pin1.

  11. MiR-1228 promotes breast cancer cell growth and metastasis through targeting SCAI protein

    OpenAIRE

    Lin, Luoqiang; Liu, Dan; Liang, Hongyan; Xue, Li; Su, Changlei; Liu, Ming

    2015-01-01

    Breast cancer is the most common cancer in women around the world. However, the molecular mechanisms underlying breast cancer pathogenesis are only partially understood. Here, in this study, we found that miR-1228 was up-regulated in breast cancer cell lines and tissues. Ectopic expression of miR-1228 mimics leads to promoted cell growth, invasion and migration. Using bioinfomatic analysis and 3’UTR luciferase reporter assay, we determined SCAI can be directly targeted by miR-1228, which can ...

  12. Tissue-specific interactions between nuclear proteins and the aminopeptidase N promoter

    DEFF Research Database (Denmark)

    Kärnström, U; Sjöström, H; Norén, O

    1991-01-01

    Aminopeptidase N/CD13 is a metallopeptidase found in many tissues. Aminopeptidase N activity is high in the small intestinal mucosa, moderate in the liver, and low in the spleen. Using DNase I footprinting and electrophoretic mobility shift assays with nuclear extracts from these tissues, three cis...... intestinal mucosa. The UF region (-112 to -90) interacts with nuclear factors which seem to be expressed differentially in the liver and the small intestine. Transfection of promoter deletions into HepG2 cells showed that the LF-B1 region is necessary for high expression of the aminopeptidase N gene in liver...

  13. Myeloid-Related Protein 14 Promotes Inflammation and Injury in Meningitis

    DEFF Research Database (Denmark)

    Wache, Christina; Klein, Matthias; Andersen, Christian Østergaard

    2015-01-01

    BACKGROUND:  Neutrophilic inflammation often persists for days despite effective antibiotic treatment and contributes to brain damage in bacterial meningitis. We propose here that myeloid-related protein 14 (MRP14), an abundant cytosolic protein in myeloid cells, acts as an endogenous danger signal......, driving inflammation and aggravating tissue injury. METHODS:  The release pattern of MRP14 was analyzed in human and murine cerebrospinal fluid (CSF), as well as in isolated neutrophils. Its functional role was assessed in a mouse meningitis model, using MRP14-deficient mice. RESULTS:  We detected large...... quantities of MRP14 in CSF specimens from patients and mice with pneumococcal meningitis. Immunohistochemical analyses and a cell-depletion approach indicated neutrophils as the major source of MRP14. In a meningitis model, MRP14-deficient mice showed a better resolution of inflammation during antibiotic...

  14. Recombination-stable multimeric green fluorescent protein for characterization of weak promoter outputs in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Rugbjerg, Peter; Knuf, Christoph; Förster, Jochen

    2015-01-01

    Green fluorescent proteins (GFPs) are widely used for visualization of proteins to track localization and expression dynamics. However, phenotypically important processes can operate at too low expression levels for routine detection, i.e. be overshadowed by autofluorescence noise. While GFP...... functions well in translational fusions, the use of tandem GFPs to amplify fluorescence signals is currently avoided in Saccharomyces cerevisiae and many other microorganisms due to the risk of loop-out by direct-repeat recombination. We increased GFP fluorescence by translationally fusing three different...... cultured for 25 generations under strong and slightly toxic expression after which only limited reduction in fluorescence was detectable. Such non-recombinogenic GFPs can help quantify intracellular responses operating a low copy number in recombination-prone organisms....

  15. A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy

    Science.gov (United States)

    Khweek, Arwa Abu; Caution, Kyle; Akhter, Anwari; Abdulrahman, Basant A.; Tazi, Mia; Hassan, Hoda; Majumdar, Neal; Doran, Andrew; Guirado, Evelyn; Schlesinger, Larry S.; Shuman, Howard; Amer, Amal O.

    2013-01-01

    Legionella pneumophila (L. pneumophila) is an intracellular bacterium of human alveolar macrophages that causes Legionnaires' disease. In contrast to humans, most inbred mouse strains are restrictive to L. pneumophila replication. We demonstrate that autophagy targets L. pneumophila vacuoles to lysosomes and that this process requires ubiquitination of L. pneumophila vacuoles and the subsequent binding of the autophagic adaptor p62/SQSTM1 to ubiquitinated vacuoles. The L. pneumophila legA9 encodes for an ankyrin-containing protein with unknown role. We show that the legA9 mutant is the first L. pneumophila mutant to replicate in wild-type (WT) mice and their bone marrow derived macrophages (BMDMs). Less legA9 mutant- containing vacuoles acquired ubiquitin labeling and p62/SQSTM1 staining, evading autophagy uptake and avoiding lysosomal fusion. Thus, we describe a bacterial protein that targets the L. pneumophila -containing vacuole for autophagy uptake. PMID:23420491

  16. Unfolded protein response inducers tunicamycin and dithiothreitol promote myeloma cell differentiation mediated by XBP-1.

    Science.gov (United States)

    Jiang, Hua; Zou, Jianfeng; Zhang, Hui; Fu, Weijun; Zeng, Tianmei; Huang, Hejing; Zhou, Fan; Hou, Jian

    2015-02-01

    The unfolded protein response (UPR) is an essential pathway for both normal and malignant plasma cells to maintain endoplasmic reticulum (ER) homeostasis in response to the large amount of immunoglobulin (Ig) output. The inositol-requiring enzyme 1-X-box binding protein-1 (IRE1-XBP-1) arm of the UPR pathway has been shown to play crucial roles not only in relieving the ER stress by up-regulating a series of genes favoring ER-associated protein degradation and protein folding, but in mediating terminal plasmacytic differentiation and maturation. Myeloma cells comprise various subsets arrested in diverse differentiated phases, and the immaturity of myeloma cells has been taken as a marker for poor prognosis, suggesting that differentiation induction would be a promising therapeutic strategy for myeloma. Herein, we used low-dose pharmacological UPR inducers such as tunicamycin (TM) and dithiothreitol (DTT) to efficiently activate the IRE1-XBP-1 pathway in myeloma cells characterized by transcriptional expression increase in spliced XBP-1 and molecular chaperons, accompanied by significant differentiation and maturation of these myeloma cells, without concomitant cytotoxicity. These differentiated myeloma cells exhibited a more mature appearance with well-developed cytoplasm and a reduced nucleocytoplasmic ratio, and a further differentiated phenotype with markedly increased expression of CD49e together with significantly elevated cellular secretion of Ig light chain as shown by flow cytometry and ELISA, in contrast to the control myeloma cells without exposed to TM or DTT. Moreover, siRNA knockdown of XBP-1 disrupted TM- or DTT-induced myeloma cell differentiation and maturation. Our study, for the first time, validated that the modest activation of the UPR pathway enables myeloma cells to further differentiate, and identified that XBP-1 plays an indispensable role in UPR-mediated myeloma cell differentiation and maturation. Thus, we provided the rationale and

  17. The Protein Elicitor PevD1 Enhances Resistance to Pathogens and Promotes Growth in Arabidopsis

    OpenAIRE

    Liu, Mengjie; Khan, Najeeb Ullah; Wang, Ningbo; Yang, Xiufen; Qiu, Dewen

    2016-01-01

    The protein elicitor PevD1, isolated from Verticillium dahlia, could enhance resistance to TMV in tobacco and Verticillium wilt in cotton. Here, the pevd1 gene was over-expressed in wild type (WT) Arabidopsis, and its biological functions were investigated. Our results showed that the transgenic lines were more resistant to Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 than the WT line was. In transgenic plants, both the germination time and bolting time required were significan...

  18. Flavodiiron Proteins Promote Fast and Transient O2 Photoreduction in Chlamydomonas.

    Science.gov (United States)

    Chaux, Frédéric; Burlacot, Adrien; Mekhalfi, Malika; Auroy, Pascaline; Blangy, Stéphanie; Richaud, Pierre; Peltier, Gilles

    2017-07-01

    During oxygenic photosynthesis, the reducing power generated by light energy conversion is mainly used to reduce carbon dioxide. In bacteria and archae, flavodiiron (Flv) proteins catalyze O 2 or NO reduction, thus protecting cells against oxidative or nitrosative stress. These proteins are found in cyanobacteria, mosses, and microalgae, but have been lost in angiosperms. Here, we used chlorophyll fluorescence and oxygen exchange measurement using [ 18 O]-labeled O 2 and a membrane inlet mass spectrometer to characterize Chlamydomonas reinhardtii flvB insertion mutants devoid of both FlvB and FlvA proteins. We show that Flv proteins are involved in a photo-dependent electron flow to oxygen, which drives most of the photosynthetic electron flow during the induction of photosynthesis. As a consequence, the chlorophyll fluorescence patterns are strongly affected in flvB mutants during a light transient, showing a lower PSII operating yield and a slower nonphotochemical quenching induction. Photoautotrophic growth of flvB mutants was indistinguishable from the wild type under constant light, but severely impaired under fluctuating light due to PSI photo damage. Remarkably, net photosynthesis of flv mutants was higher than in the wild type during the initial hour of a fluctuating light regime, but this advantage vanished under long-term exposure, and turned into PSI photo damage, thus explaining the marked growth retardation observed in these conditions. We conclude that the C. reinhardtii Flv participates in a Mehler-like reduction of O 2 , which drives a large part of the photosynthetic electron flow during a light transient and is thus critical for growth under fluctuating light regimes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Malin decreases glycogen accumulation by promoting the degradation of protein targeting to glycogen (PTG)

    OpenAIRE

    Worby, Carolyn A.; Gentry, Matthew S.; Dixon, Jack E.

    2007-01-01

    Lafora disease (LD) is an autosomal recessive neurodegenerative disease that results in progressive myoclonus epilepsy and death. LD is caused by mutations in either the E3 ubiquitin ligase malin or the dual-specificity phosphatase laforin. A hallmark of LD is the accumulation of insoluble glycogen in the cytoplasm of cells from most tissues. Glycogen metabolism is regulated by phosphorylation of key metabolic enzymes. One regulator of this phosphorylation is protein targeting to glycogen (PT...

  20. Methyl-CpG binding domain proteins inhibit interspecies courtship and promote aggression in Drosophila.

    Science.gov (United States)

    Gupta, Tarun; Morgan, Hannah R; Andrews, Jonathan C; Brewer, Edmond R; Certel, Sarah J

    2017-07-14

    Reproductive isolation and speciation are driven by the convergence of environmental and genetic variation. The integration of these variation sources is thought to occur through epigenetic marks including DNA methylation. Proteins containing a methyl-CpG-binding domain (MBD) bind methylated DNA and interpret epigenetic marks, providing a dynamic yet evolutionarily adapted cellular output. Here, we report the Drosophila MBD-containing proteins, dMBD-R2 and dMBD2/3, contribute to reproductive isolation and survival behavioral strategies. Drosophila melanogaster males with a reduction in dMBD-R2 specifically in octopamine (OA) neurons exhibit courtship toward divergent interspecies D. virilis and D. yakuba females and a decrease in conspecific mating success. Conspecific male-male courtship is increased between dMBD-R2-deficient males while aggression is reduced. These changes in adaptive behavior are separable as males with a hypermethylated OA neuronal genome exhibited a decrease in aggression without altering male-male courtship. These results suggest Drosophila MBD-containing proteins are required within the OA neural circuitry to inhibit interspecies and conspecific male-male courtship and indicate that the genetically hard-wired neural mechanisms enforcing behavioral reproductive isolation include the interpretation of the epigenome.

  1. Vesicle amine transport protein-1 (VAT-1) is upregulated in glioblastomas and promotes migration.

    Science.gov (United States)

    Mertsch, S; Becker, M; Lichota, A; Paulus, W; Senner, V

    2009-08-01

    Diffuse invasion of single-glioma cells is the main obstacle to successful therapy of these tumours. After identifying vesicle amine transport protein-1 (VAT-1) as being upregulated in invasive human gliomas, we study its possible function in glioblastoma cell migration. Based on data obtained from previous oligonucleotide arrays, we investigated expression of VAT-1 in glioblastoma tissue and cell lines on mRNA levels using reverse transcriptase PCR. Furthermore, we examined the amount and localization of VAT-1 protein using immunoblotting and immunohistochemistry. Using small interfering RNA technology we repressed VAT-1 expression in human glioma cell lines and analysed their migration using wound healing and transwell migration assays. Increased VAT-1 mRNA and protein levels were found in glioblastoma tissues and cell lines compared with normal human brain. Small interfering RNA-mediated VAT-1 knockdown led to significantly reduced migration of human glioma cells. VAT-1 is overexpressed in glioblastomas and functionally involved in glioma cell migration, representing a new component involved in glioma invasion

  2. Pin1 promotes production of Alzheimer's amyloid β from β-cleaved amyloid precursor protein

    International Nuclear Information System (INIS)

    Akiyama, Hirotada; Shin, Ryong-Woon; Uchida, Chiyoko; Kitamoto, Tetsuyuki; Uchida, Takafumi

    2005-01-01

    Here we show that prolyl isomerase Pin1 is involved in the Aβ production central to the pathogenesis of Alzheimer's disease. Enzyme immunoassay of brains of the Pin1-deficient mice revealed that production of Aβ40 and Aβ42 was lower than that of the wild-type mice, indicating that Pin1 promotes Aβ production in the brain. GST-Pin1 pull-down and immunoprecipitation assay revealed that Pin1 binds phosphorylated Thr668-Pro of C99. In the Pin1 -/- MEF transfected with C99, Pin1 co-transfection enhanced the levels of Aβ40 and Aβ42 compared to that without Pin1 co-transfection. In COS7 cells transfected with C99, Pin1 co-transfection enhanced the generation of Aβ40 and Aβ42, and reduced the expression level of C99, facilitating the C99 turnover. Thus, Pin1 interacts with C99 and promotes its γ-cleavage, generating Aβ40 and Aβ42. Further, GSK3 inhibitor lithium blocked Pin1 binding to C99 by decreasing Thr668 phosphorylation and attenuated Aβ generation, explaining the inhibitory effect of lithium on Aβ generation

  3. GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy.

    Directory of Open Access Journals (Sweden)

    Shvetank Sharma

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is a known outcome of hepatosteatosis. Free fatty acids (FFA induce the unfolded protein response (UPR or endoplasmic reticulum (ER stress that may induce apoptosis. Recent data indicate ER stress to be a major player in the progression of fatty liver to more aggressive lesions. Autophagy on the other hand has been demonstrated to be protective against ER stress-induced cell death. We hypothesized that exendin-4 (GLP-1 analog treatment of fat loaded hepatocytes can reduce steatosis by autophagy which leads to reduced ER stress-related hepatocyte apoptosis.Primary human hepatocytes were loaded with saturated, cis- and trans-unsaturated fatty acids (palmitic, oleic and elaidic acid respectively. Steatosis, induced with all three fatty acids, was significantly resolved after exendin-4 treatment. Exendin-4 sustained levels of GRP78 expression in fat-loaded cells when compared to untreated fat-loaded cells alone. In contrast, CHOP (C/EBP homologous protein; the penultimate protein that leads to ER stress-related cell death was significantly decreased by exendin-4 in hepatocytes loaded with fatty acids. Finally, exendin-4 in fat loaded hepatocytes clearly promoted gene products associated with macroautophagy as measured by enhanced production of both Beclin-1 and LC3B-II, markers for autophagy; and visualized by transmission electron microscopy (TEM. Similar observations were made in mouse liver lysates after mice were fed with high fat high fructose diet and treated with a long acting GLP-1 receptor agonist, liraglutide.GLP-1 proteins appear to protect hepatocytes from fatty acid-related death by prohibition of a dysfunctional ER stress response; and reduce fatty acid accumulation, by activation of both macro-and chaperone-mediated autophagy. These findings provide a novel role for GLP-1 proteins in halting the progression of more aggressive lesions from underlying steatosis in humans afflicted with NAFLD.

  4. Stress Response Protein BolA Influences Fitness and Promotes Salmonella enterica Serovar Typhimurium Virulence.

    Science.gov (United States)

    Mil-Homens, Dalila; Barahona, Susana; Moreira, Ricardo N; Silva, Inês J; Pinto, Sandra N; Fialho, Arsénio M; Arraiano, Cecília M

    2018-04-15

    The intracellular pathogen Salmonella enterica serovar Typhimurium has emerged as a major cause of foodborne illness, representing a severe clinical and economic concern worldwide. The capacity of this pathogen to efficiently infect and survive inside the host depends on its ability to synchronize a complex network of virulence mechanisms. Therefore, the identification of new virulence determinants has become of paramount importance in the search of new targets for drug development. BolA-like proteins are widely conserved in all kingdoms of life. In Escherichia coli , this transcription factor has a critical regulatory role in several mechanisms that are tightly related to bacterial virulence. Therefore, in the present work we used the well-established infection model Galleria mellonella to evaluate the role of BolA protein in S Typhimurium virulence. We have shown that BolA is an important player in S Typhimurium pathogenesis. Specifically, the absence of BolA leads to a defective virulence capacity that is most likely related to the remarkable effect of this protein on S Typhimurium evasion of the cellular response. Furthermore, it was demonstrated that BolA has a critical role in bacterial survival under harsh conditions since BolA conferred protection against acidic and oxidative stress. Hence, we provide evidence that BolA is a determining factor in the ability of Salmonella to survive and overcome host defense mechanisms, and this is an important step in progress to an understanding of the pathways underlying bacterial virulence. IMPORTANCE BolA has been described as an important protein for survival in the late stages of bacterial growth and under harsh environmental conditions. High levels of BolA in stationary phase and under stresses have been connected with a plethora of phenotypes, strongly suggesting its important role as a master regulator. Here, we show that BolA is a determining factor in the ability of Salmonella to survive and overcome host

  5. Abscisic acid promotion of arbuscular mycorrhizal colonization requires a component of the PROTEIN PHOSPHATASE 2A complex.

    Science.gov (United States)

    Charpentier, Myriam; Sun, Jongho; Wen, Jiangqi; Mysore, Kirankumar S; Oldroyd, Giles E D

    2014-12-01

    Legumes can establish intracellular interactions with symbiotic microbes to enhance their fitness, including the interaction with arbuscular mycorrhizal (AM) fungi. AM fungi colonize root epidermal cells to gain access to the root cortex, and this requires the recognition by the host plant of fungus-made mycorrhizal factors. Genetic dissection has revealed the symbiosis signaling pathway that allows the recognition of AM fungi, but the downstream processes that are required to promote fungal infection are poorly understood. Abscisic acid (ABA) has been shown to promote arbuscule formation in tomato (Solanum lycopersicum). Here, we show that ABA modulates the establishment of the AM symbiosis in Medicago truncatula by promoting fungal colonization at low concentrations and impairing it at high concentrations. We show that the positive regulation of AM colonization via ABA requires a PROTEIN PHOSPHATASE 2A (PP2A) holoenzyme subunit, PP2AB'1. Mutations in PP2AB'1 cause reduced levels of AM colonization that cannot be rescued with permissive ABA application. The action of PP2AB'1 in response to ABA is unlinked to the generation of calcium oscillations, as the pp2aB'1 mutant displays a normal calcium response. This contrasts with the application of high concentrations of ABA that impairs mycorrhizal factor-induced calcium oscillations, suggesting different modes of action of ABA on the AM symbiosis. Our work reveals that ABA functions at multiple levels to regulate the AM symbiosis and that a PP2A phosphatase is required for the ABA promotion of AM colonization. © 2014 American Society of Plant Biologists. All Rights Reserved.

  6. High-level intracellular expression of heterologous proteins in Brevibacillus choshinensis SP3 under the control of a xylose inducible promoter

    Directory of Open Access Journals (Sweden)

    D’Urzo Nunzia

    2013-02-01

    Full Text Available Abstract Background In past years research has focused on the development of alternative Gram positive bacterial expression systems to produce industrially relevant proteins. Brevibacillus choshinensis is an easy to handle non-sporulating bacterium, lacking extracellular proteases, that has been already shown to provide a high level of recombinant protein expression. One major drawback, limiting the applicability of the Brevibacillus expression system, is the absence of expression vectors based on inducible promoters. Here we used the PxylA inducible promoter, commonly employed in other Bacillae expression systems, in Brevibacillus. Results Using GFP, α-amylase and TcdA-GT as model proteins, high level of intracellular protein expression (up to 250 mg/L for the GFP was achieved in Brevibacillus, using the pHis1522 vector carrying the B. megaterium xylose-inducible promoter (PxylA. The GFP expression yields were more than 25 fold higher than those reported for B. megaterium carrying the same vector. All the tested proteins show significant increment in their expression levels (2-10 folds than those obtained using the available plasmids based on the P2 constitutive promoter. Conclusion Combining the components of two different commercially available Gram positive expression systems, such as Brevibacillus (from Takara Bio and B. megaterium (from Mobitec, we demonstrate that vectors based on the B. megaterium PxylA xylose inducible promoter can be successfully used to induce high level of intracellular expression of heterologous proteins in Brevibacillus.

  7. Early Involvement of Death-Associated Protein Kinase Promoter Hypermethylation in the Carcinogenesis of Barrett's Esophageal Adenocarcinoma and Its Association with Clinical Progression

    Directory of Open Access Journals (Sweden)

    Doerthe Kuester

    2007-03-01

    Full Text Available Esophageal Barrett's adenocarcinoma (BA develops through a multistage process, which is associated with the transcriptional silencing of tumor-suppressor genes by promoter CpG island hypermethylation. In this study, we explored the promoter hypermethylation and protein expression of proapoptotic deathassociated protein kinase (DAPK during the multistep Barrett's carcinogenesis cascade. Early BA and paired samples of premalignant lesions of 61 patients were analyzed by methylation-specific polymerase chain reaction and immunohistochemistry. For the association of clinicopathological markers and protein expression, an immunohistochemical tissue microarray analysis of 66 additional BAs of advanced tumor stages was performed. Hypermethylation of DAPK promoter was detected in 20% of normal mucosa, 50% of Barrett's metaplasia, 53% of dysplasia, and 60% of adenocarcinomas, and resulted in a marked decrease in DAPK protein expression (P < .01. The loss of DAPK protein was significantly associated with advanced depth of tumor invasion and advanced tumor stages (P < .001. Moreover, the severity of reflux esophagitis correlated significantly with the hypermethylation rate of the DAPK promoter (P < .003. Thus, we consider DAPK inactivation by promoter hypermethylation as an early event in Barrett's carcinogenesis and suggest that a decreased protein expression of DAPK likely plays a role in the development and progression of BA.

  8. Anti-citrullinated protein antibodies promote apoptosis of mature human Saos-2 osteoblasts via cell-surface binding to citrullinated heat shock protein 60.

    Science.gov (United States)

    Lu, Ming-Chi; Yu, Chia-Li; Yu, Hui-Chun; Huang, Hsien-Bin; Koo, Malcolm; Lai, Ning-Sheng

    2016-01-01

    We hypothesized that anti-citrullinated protein antibodies (ACPAs) react with osteoblast surface citrullinated proteins and affect cell function, leading to joint damage in patients with rheumatoid arthritis (RA). First, we purified ACPAs by cyclic citrullinated peptide (CCP)-conjugated affinity column chromatography. The cognate antigens of ACPAs on Saos-2 cells, a sarcoma osteogenic cell line generated from human osteoblasts, were probed by ACPAs, and the reactive bands were analyzed using proteomic analyses. We found that ACPAs bind to Saos-2 cell membrane, and several protein candidates, including HSP60, were identified. We then cloned and purified recombinant heat shock protein 60 (HSP60) and citrullinated HSP60 (citHSP60) and investigated the effect of ACPAs on Saos-2 cell. We confirmed that HSP60 obtained from Saos-2 cell membrane were citrullinated and reacted with ACPAs, which induces Saos-2 cells apoptosis via binding to surface-expressed citHSP60 through Toll-like receptor 4 signaling. ACPAs promoted interleukin (IL)-6 and IL-8 expression in Saos-2 cells. Finally, sera from patients with RA and healthy controls were examined for their titers of anti-HSP60 and anti-citHSP60 antibodies using an enzyme-linked immunosorbent assay. The radiographic change in patients with RA was evaluated using the Genant-modified Sharp scoring system. Patients with RA showed higher sera titers of anti-citHSP60, but not anti-HSP60, antibodies when compared with controls. In addition, the anti-citHSP60 level was positively associated with increased joint damage in patients with RA. In conclusion, Saos-2 cell apoptosis was mediated by ACPAs via binding to cell surface-expressed citHSP60 and the titer of anti-citHSP60 in patients with RA positively associated with joint damage. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. An activated unfolded protein response promotes retinal degeneration and triggers an inflammatory response in the mouse retina.

    Science.gov (United States)

    Rana, T; Shinde, V M; Starr, C R; Kruglov, A A; Boitet, E R; Kotla, P; Zolotukhin, S; Gross, A K; Gorbatyuk, M S

    2014-12-18

    Recent studies on the endoplasmic reticulum stress have shown that the unfolded protein response (UPR) is involved in the pathogenesis of inherited retinal degeneration caused by mutant rhodopsin. However, the main question of whether UPR activation actually triggers retinal degeneration remains to be addressed. Thus, in this study, we created a mouse model for retinal degeneration caused by a persistently activated UPR to assess the physiological and morphological parameters associated with this disease state and to highlight a potential mechanism by which the UPR can promote retinal degeneration. We performed an intraocular injection in C57BL6 mice with a known unfolded protein response (UPR) inducer, tunicamycin (Tn) and examined animals by electroretinography (ERG), spectral domain optical coherence tomography (SD-OCT) and histological analyses. We detected a significant loss of photoreceptor function (over 60%) and retinal structure (35%) 30 days post treatment. Analysis of retinal protein extracts demonstrated a significant upregulation of inflammatory markers including interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and IBA1. Similarly, we detected a strong inflammatory response in mice expressing either Ter349Glu or T17M rhodopsin (RHO). These mutant rhodopsin species induce severe retinal degeneration and T17M rhodopsin elicits UPR activation when expressed in mice. RNA and protein analysis revealed a significant upregulation of pro- and anti-inflammatory markers such as IL-1β, IL-6, p65 nuclear factor kappa B (NF-kB) and MCP-1, as well as activation of F4/80 and IBA1 microglial markers in both the retinas expressing mutant rhodopsins. We then assessed if the Tn-induced inflammatory marker IL-1β was capable of inducing retinal degeneration by injecting C57BL6 mice with a recombinant IL-1β. We observed ~19% reduction in ERG a-wave amplitudes and a 29% loss of photoreceptor cells compared with

  10. Collagen peptide-based biomaterials for protein delivery and peptide-promoted self-assembly of gold nanoparticles

    Science.gov (United States)

    Ernenwein, Dawn M.

    2011-12-01

    Bottom-up self-assembly of peptides has driven the research progress for the following two projects: protein delivery vehicles of collagen microflorettes and the assembly of gold nanoparticles with coiled-coil peptides. Collagen is the most abundant protein in the mammals yet due to immunogenic responses, batch-to-batch variability and lack of sequence modifications, synthetic collagen has been designed to self-assemble into native collagen-like structures. In particular with this research, metal binding ligands were incorporated on the termini of collagen-like peptides to generate micron-sized particles, microflorettes. The over-arching goal of the first research project is to engineer MRI-active microflorettes, loaded with His-tagged growth factors with differential release rates while bound to stem cells that can be implemented toward regenerative cell-based therapies. His-tagged proteins, such as green fluorescent protein, have successfully been incorporated on the surface and throughout the microflorettes. Protein release was monitored under physiological conditions and was related to particle degradation. In human plasma full release was obtained within six days. Stability of the microflorettes under physiological conditions was also examined for the development of a therapeutically relevant delivery agent. Additionally, MRI active microflorettes have been generated through the incorporation of a gadolinium binding ligand, DOTA within the collagen-based peptide sequence. To probe peptide-promoted self-assemblies of gold nanoparticles (GNPs) by non-covalent, charge complementary interactions, a highly anionic coiled-coil peptide was designed and synthesized. Upon formation of peptide-GNP interactions, the hydrophobic domain of the coiled-coil were shown to promote the self-assembly of peptide-GNPs clustering. Hydrophobic forces were found to play an important role in the assembly process, as a peptide with an equally overall negative charge, but lacking an

  11. Resistin-like molecule β is a bactericidal protein that promotes spatial segregation of the microbiota and the colonic epithelium.

    Science.gov (United States)

    Propheter, Daniel C; Chara, Andrew L; Harris, Tamia A; Ruhn, Kelly A; Hooper, Lora V

    2017-10-17

    The mammalian intestine is colonized by trillions of bacteria that perform essential metabolic functions for their hosts. The mutualistic nature of this relationship depends on maintaining spatial segregation between these bacteria and the intestinal epithelial surface. This segregation is achieved in part by the presence of a dense mucus layer at the epithelial surface and by the production of antimicrobial proteins that are secreted by epithelial cells into the mucus layer. Here, we show that resistin-like molecule β (RELMβ) is a bactericidal protein that limits contact between Gram-negative bacteria and the colonic epithelial surface. Mouse and human RELMβ selectively killed Gram-negative bacteria by forming size-selective pores that permeabilized bacterial membranes. In mice lacking RELMβ, Proteobacteria were present in the inner mucus layer and invaded mucosal tissues. Another RELM family member, human resistin, was also bactericidal, suggesting that bactericidal activity is a conserved function of the RELM family. Our findings thus identify the RELM family as a unique family of bactericidal proteins and show that RELMβ promotes host-bacterial mutualism by regulating the spatial segregation between the microbiota and the intestinal epithelium.

  12. A network of PUF proteins and Ras signaling promote mRNA repression and oogenesis in C. elegans

    Science.gov (United States)

    Hubstenberger, Arnaud; Cameron, Cristiana; Shtofman, Rebecca; Gutman, Shiri; Evans, Thomas C.

    2012-01-01

    Cell differentiation requires integration of gene expression controls with dynamic changes in cell morphology, function, and control. Post-transcriptional mRNA regulation and signaling systems are important to this process but their mechanisms and connections are unclear. During C. elegans oogenesis, we find that two groups of PUF RNA binding proteins (RNABPs), PUF-3/11 and PUF-5/6/7, control different specific aspects of oocyte formation. PUF-3/11 limits oocyte growth, while PUF-5/6/7 promotes oocyte organization and formation. These two PUF groups repress mRNA translation through overlapping but distinct sets of 3’ untranslated regions (3’UTRs). Several PUF-dependent mRNAs encode other mRNA regulators suggesting both PUF groups control developmental patterning of mRNA regulation circuits. Furthermore, we find that the Ras-MapKinase/ERK pathway functions with PUF-5/6/7 to repress specific mRNAs and control oocyte organization and growth. These results suggest that diversification of PUF proteins and their integration with Ras-MAPK signaling modulates oocyte differentiation. Together with other studies, these findings suggest positive and negative interactions between the Ras-MAPK system and PUF RNA-binding proteins likely occur at multiple levels. Changes in these interactions over time can influence spatiotemporal patterning of tissue development. PMID:22542599

  13. Analysis of single nucleotide polymorphism in the promoter and protein expression of the chemokine Eotaxin-1 in colorectal cancer patients

    Directory of Open Access Journals (Sweden)

    Dienus Olaf

    2007-07-01

    Full Text Available Abstract Background Previous studies suggest that chemokines (chemotactic cytokines promote and regulate neoplastic progression including metastasis and angiogenesis. The chemokine eotaxin-1 is a powerful eosinophil attractant but also exerts chemotaxis of other leukocytes. Eotaxin-1 has been implicated in gastrointestinal disorders and may play an important role in colorectal mucosal immunity. Patients and methods The objective of this study was to assess the role of eotaxin-1 in colorectal cancer (CRC. Levels of eotaxin-1 protein in CRC tissues (n = 86 and paired normal mucosa were compared after determination by ELISA. Plasma eotaxin-1 levels from CRC patients (n = 67 were also compared with controls (n = 103 using the same method. Moreover, a TaqMan system was used to evaluate the -384A>G eotaxin-1 gene variant in CRC patients (n = 241 and in a control group (n = 253. Results Eotaxin-1 protein levels in colorectal tumours were significantly (P Conclusion The up-regulated eotaxin-1 protein expression in cancer tissue may reflect an eotaxin-1 mediated angiogenesis and/or a recruitment of leukocytes with potential antitumourigenic role. We noticed a dominance of the G allele in rectal cancer patients compared with colon cancer patients that was independent of eotaxin-1 expression.

  14. Identification of translationally controlled tumor protein in promotion of DNA homologous recombination repair in cancer cells by affinity proteomics.

    Science.gov (United States)

    Li, Y; Sun, H; Zhang, C; Liu, J; Zhang, H; Fan, F; Everley, R A; Ning, X; Sun, Y; Hu, J; Liu, J; Zhang, J; Ye, W; Qiu, X; Dai, S; Liu, B; Xu, H; Fu, S; Gygi, S P; Zhou, C

    2017-12-14

    Translationally controlled tumor protein(TCTP) has been implicated in the regulation of apoptosis, DNA repair and drug resistance. However, the underlying molecular mechanisms are poorly defined. To better understand the molecular mechanisms underlying TCTP involved in cellular processes, we performed an affinity purification-based proteomic profiling to identify proteins interacting with TCTP in human cervical cancer HeLa cells. We found that a group of proteins involved in DNA repair are enriched in the potential TCTP interactome. Silencing TCTP by short hairpin RNA in breast carcinoma MCF-7 cells leads to the declined repair efficiency for DNA double-strand breaks on the GFP-Pem1 reporter gene by homologous recombination, the persistent activation and the prolonged retention of γH2AX and Rad51 foci following ionizing radiation. Reciprocal immunoprecipitations indicated that TCTP forms complexes with Rad51 in vivo, and the stability maintenance of Rad51 requires TCTP in MCF-7 cells under normal cell culture conditions. Moreover, inactivation of TCTP by sertraline treatment enhances UVC irradiation-induced apoptosis in MCF-7 cells, and causes sensitization to DNA-damaging drug etoposide and DNA repair inhibitor olaparib. Thus, we have identified an important role of TCTP in promoting DNA double-stand break repair via facilitating DNA homologous recombination processes and highlighted the great potential of TCTP as a drug target to enhance conventional chemotherapy for cancer patients with high levels of TCTP expression.

  15. Hepatitis B virus X promotes hepatocellular carcinoma development via nuclear protein 1 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Bak, Yesol; Shin, Hye-jun; Bak, In seon [Disease Model Research Laboratory, Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon (Korea, Republic of); Yoon, Do-young [Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul (Korea, Republic of); Yu, Dae-Yeul, E-mail: dyyu10@kribb.re.kr [Disease Model Research Laboratory, Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon (Korea, Republic of)

    2015-10-30

    Hepatocellular carcinoma (HCC) is one of the most common malignancies and chronic hepatitis B virus (HBV) infection is a major risk factor for HCC. Hepatitis B virus X (HBx) protein relates to trigger oncogenesis. HBx has oncogenic properties with a hyperproliferative response to HCC. Nuclear protein 1 (NUPR1) is a stress-response protein, frequently upregulated in several cancers. Recent data revealed that NUPR1 is involved in tumor progression, but its function in HCC is not revealed yet. Here we report HBx can induce NUPR1 in patients, mice, and HCC cell lines. In an HBx transgenic mouse model, we found that HBx overexpression upregulates NUPR1 expression consistently with tumor progression. Further, in cultured HBV positive cells, HBx knockdown induces downregulation of NUPR1. Smad4 is a representative transcription factor, regulated by HBx, and we showed that HBx upregulates NUPR1 by Smad4 dependent way. We found that NUPR1 can inhibit cell death and induce vasculogenic mimicry in HCC cell lines. Moreover, NUPR1 silencing in HepG2-HBx showed reduced cell motility. These results suggest that HBx can modulate NUPR1 expression through the Smad4 pathway and NUPR1 has a role in hepatocellular carcinoma progression. - Highlights: • NUPR1 is overexpressed in HBx transgenic mouse and HCC patients. • NUPR1 inactivation hampers the HBx induced growth, VM formation, and migration of HepG2 cells in vitro. • NUPR1 has a role for survival of HCC and mechanistically NUPR1 is activated by HBx-Smad4 axis.

  16. ISL1 protein transduction promotes cardiomyocyte differentiation from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Hananeh Fonoudi

    Full Text Available BACKGROUND: Human embryonic stem cells (hESCs have the potential to provide an unlimited source of cardiomyocytes, which are invaluable resources for drug or toxicology screening, medical research, and cell therapy. Currently a number of obstacles exist such as the insufficient efficiency of differentiation protocols, which should be overcome before hESC-derived cardiomyocytes can be used for clinical applications. Although the differentiation efficiency can be improved by the genetic manipulation of hESCs to over-express cardiac-specific transcription factors, these differentiated cells are not safe enough to be applied in cell therapy. Protein transduction has been demonstrated as an alternative approach for increasing the efficiency of hESCs differentiation toward cardiomyocytes. METHODS: We present an efficient protocol for the differentiation of hESCs in suspension by direct introduction of a LIM homeodomain transcription factor, Islet1 (ISL1 recombinant protein into the cells. RESULTS: We found that the highest beating clusters were derived by continuous treatment of hESCs with 40 µg/ml recombinant ISL1 protein during days 1-8 after the initiation of differentiation. The treatment resulted in up to a 3-fold increase in the number of beating areas. In addition, the number of cells that expressed cardiac specific markers (cTnT, CONNEXIN 43, ACTININ, and GATA4 doubled. This protocol was also reproducible for another hESC line. CONCLUSIONS: This study has presented a new, efficient, and reproducible procedure for cardiomyocytes differentiation. Our results will pave the way for scaled up and controlled differentiation of hESCs to be used for biomedical applications in a bioreactor culture system.

  17. Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties.

    Science.gov (United States)

    Doktorova, Milka; Heberle, Frederick A; Kingston, Richard L; Khelashvili, George; Cuendet, Michel A; Wen, Yi; Katsaras, John; Feigenson, Gerald W; Vogt, Volker M; Dick, Robert A

    2017-11-07

    Binding of the retroviral structural protein Gag to the cellular plasma membrane is mediated by the protein's matrix (MA) domain. Prominent among MA-PM interactions is electrostatic attraction between the positively charged MA domain and the negatively charged plasma membrane inner leaflet. Previously, we reported that membrane association of HIV-1 Gag, as well as purified Rous sarcoma virus (RSV) MA and Gag, depends strongly on the presence of acidic lipids and is enhanced by cholesterol (Chol). The mechanism underlying this enhancement was unclear. Here, using a broad set of in vitro and in silico techniques we addressed molecular mechanisms of association between RSV MA and model membranes, and investigated how Chol enhances this association. In neutron scattering experiments with liposomes in the presence or absence of Chol, MA preferentially interacted with preexisting POPS-rich clusters formed by nonideal lipid mixing, binding peripherally to the lipid headgroups with minimal perturbation to the bilayer structure. Molecular dynamics simulations showed a stronger MA-bilayer interaction in the presence of Chol, and a large Chol-driven increase in lipid packing and membrane surface charge density. Although in vitro MA-liposome association is influenced by disparate variables, including ionic strength and concentrations of Chol and charged lipids, continuum electrostatic theory revealed an underlying dependence on membrane surface potential. Together, these results conclusively show that Chol affects RSV MA-membrane association by making the electrostatic potential at the membrane surface more negative, while decreasing the penalty for lipid headgroup desolvation. The presented approach can be applied to other viral and nonviral proteins. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Engineered Escherichia coli silver-binding periplasmic protein that promotes silver tolerance.

    Science.gov (United States)

    Sedlak, Ruth Hall; Hnilova, Marketa; Grosh, Carolynn; Fong, Hanson; Baneyx, Francois; Schwartz, Dan; Sarikaya, Mehmet; Tamerler, Candan; Traxler, Beth

    2012-04-01

    Silver toxicity is a problem that microorganisms face in medical and environmental settings. Through exposure to silver compounds, some bacteria have adapted to growth in high concentrations of silver ions. Such adapted microbes may be dangerous as pathogens but, alternatively, could be potentially useful in nanomaterial-manufacturing applications. While naturally adapted isolates typically utilize efflux pumps to achieve metal resistance, we have engineered a silver-tolerant Escherichia coli strain by the use of a simple silver-binding peptide motif. A silver-binding peptide, AgBP2, was identified from a combinatorial display library and fused to the C terminus of the E. coli maltose-binding protein (MBP) to yield a silver-binding protein exhibiting nanomolar affinity for the metal. Growth experiments performed in the presence of silver nitrate showed that cells secreting MBP-AgBP2 into the periplasm exhibited silver tolerance in a batch culture, while those expressing a cytoplasmic version of the fusion protein or MBP alone did not. Transmission electron microscopy analysis of silver-tolerant cells revealed the presence of electron-dense silver nanoparticles. This is the first report of a specifically engineered metal-binding peptide exhibiting a strong in vivo phenotype, pointing toward a novel ability to manipulate bacterial interactions with heavy metals by the use of short and simple peptide motifs. Engineered metal-ion-tolerant microorganisms such as this E. coli strain could potentially be used in applications ranging from remediation to interrogation of biomolecule-metal interactions in vivo.

  19. Secreted heat shock protein 90 promotes prostate cancer stem cell heterogeneity

    OpenAIRE

    Nolan, Krystal D.; Kaur, Jasmine; Isaacs, Jennifer S.

    2016-01-01

    Heat-shock protein 90 (Hsp90), a highly conserved molecular chaperone, is frequently upregulated in tumors, and remains an attractive anti-cancer target. Hsp90 is also found extracellularly, particularly in tumor models. Although extracellular Hsp90 (eHsp90) action is not well defined, eHsp90 targeting attenuates tumor invasion and metastasis, supporting its unique role in tumor progression. We herein investigated the potential role of eHsp90 as a modulator of cancer stem-like cells (CSCs) in...

  20. Hepatitis B Virus X Protein Promotes Degradation of SMC5/6 to Enhance HBV Replication

    Directory of Open Access Journals (Sweden)

    Christopher M. Murphy

    2016-09-01

    Full Text Available The hepatitis B virus (HBV regulatory protein X (HBx activates gene expression from the HBV covalently closed circular DNA (cccDNA genome. Interaction of HBx with the DDB1-CUL4-ROC1 (CRL4 E3 ligase is critical for this function. Using substrate-trapping proteomics, we identified the structural maintenance of chromosomes (SMC complex proteins SMC5 and SMC6 as CRL4HBx substrates. HBx expression and HBV infection degraded the SMC5/6 complex in human hepatocytes in vitro and in humanized mice in vivo. HBx targets SMC5/6 for ubiquitylation by the CRL4HBx E3 ligase and subsequent degradation by the proteasome. Using a minicircle HBV (mcHBV reporter system with HBx-dependent activity, we demonstrate that SMC5/6 knockdown, or inhibition with a dominant-negative SMC6, enhance HBx null mcHBV-Gluc gene expression. Furthermore, SMC5/6 knockdown rescued HBx-deficient HBV replication in human hepatocytes. These results indicate that a primary function of HBx is to degrade SMC5/6, which restricts HBV replication by inhibiting HBV gene expression.

  1. Proteins that promote filopodia stability, but not number, lead to more axonal-dendritic contacts.

    Directory of Open Access Journals (Sweden)

    Pamela Arstikaitis

    2011-03-01

    Full Text Available Dendritic filopodia are dynamic protrusions that are thought to play an active role in synaptogenesis and serve as precursors to spine synapses. However, this hypothesis is largely based on a temporal correlation between filopodia formation and synaptogenesis. We investigated the role of filopodia in synapse formation by contrasting the roles of molecules that affect filopodia elaboration and motility, versus those that impact synapse induction and maturation. We used a filopodia inducing motif that is found in GAP-43, as a molecular tool, and found this palmitoylated motif enhanced filopodia number and motility, but reduced the probability of forming a stable axon-dendrite contact. Conversely, expression of neuroligin-1 (NLG-1, a synapse inducing cell adhesion molecule, resulted in a decrease in filopodia motility, but an increase in the number of stable axonal contacts. Moreover, RNAi knockdown of NLG-1 reduced the number of presynaptic contacts formed. Postsynaptic scaffolding proteins such as Shank1b, a protein that induces the maturation of spine synapses, increased the rate at which filopodia transformed into spines by stabilization of the initial contact with axons. Taken together, these results suggest that increased filopodia stability and not density, may be the rate-limiting step for synapse formation.

  2. The widely expressed extracellular matrix protein SMOC-2 promotes keratinocyte attachment and migration.

    Science.gov (United States)

    Maier, Silke; Paulsson, Mats; Hartmann, Ursula

    2008-08-01

    SMOC-2 is a recently discovered member of the BM-40/SPARC/osteonectin family of extracellular multidomain proteins of so far unknown function. While we have shown earlier that the homologous protein SMOC-1 is associated with basement membranes, in this study we demonstrate that, in the mouse, SMOC-2 could be detected in a large number of non-basement membrane localizations, often showing a diffuse tissue distribution. A more distinct expression pattern was seen in skin where SMOC-2 is mainly present in the basal layers of the epidermis. Functionally, recombinant SMOC-2 stimulated attachment of primary epidermal cells as well as several epidermal-derived cell lines but had no effect on the attachment of non-epidermal cells. Inhibition experiments using blocking antibodies against individual integrin subunits allowed the identification of alphavbeta6 and alphavbeta1 integrins as important cellular receptors for SMOC-2. Cell attachment as well as the formation of focal adhesions could be attributed to the extracellular calcium-binding domain. The calcium-binding domain also stimulated migration, but not proliferation of keratinocyte-like HaCaT cells. We conclude that SMOC-2, like other members of the BM40/SPARC family, acts as a regulator of cell-matrix interactions.

  3. Interaction of Fibrinogen and Muramidase-released Protein Promotes the Development of Streptococcus suis Meningitis

    Directory of Open Access Journals (Sweden)

    Junping eWang

    2015-09-01

    Full Text Available Muramidase-released protein (MRP is as an important virulence marker of Streptococcus suis (S. suis serotype 2. Our previous works have shown that MRP can bind human fibrinogen (hFg; however, the function of this interaction in S.suis meningitis is not known. In this study, we found that the deletion of mrp significantly impairs the hFg-mediated adherence and traversal ability of S. suis across human cerebral microvascular endothelial cells (hCMEC/D3. Measurement of the permeability to Lucifer yellow in vitro and Evans blue extravasation in vivo show that the MRP-hFg interaction significantly increases the permeability of the blood-brain barrier (BBB. In the mouse meningitis model, wild type S. suis caused higher bacterial loads in the brain and more severe histopathological signs of meningitis than the mrp mutant at day 3 post-infection. Western blot analysis and immunofluorescence observations reveal that the MRP-hFg interaction can destroy the cell adherens junction protein p120-catenin of hCMEC/D3. These results indicate that the MRP-hFg interaction is important in the development of S. suis meningitis.

  4. Influenza A Virus NS1 Protein Promotes Efficient Nuclear Export of Unspliced Viral M1 mRNA.

    Science.gov (United States)

    Pereira, Carina F; Read, Eliot K C; Wise, Helen M; Amorim, Maria J; Digard, Paul

    2017-08-01

    Influenza A virus mRNAs are transcribed by the viral RNA-dependent RNA polymerase in the cell nucleus before being exported to the cytoplasm for translation. Segment 7 produces two major transcripts: an unspliced mRNA that encodes the M1 matrix protein and a spliced transcript that encodes the M2 ion channel. Export of both mRNAs is dependent on the cellular NXF1/TAP pathway, but it is unclear how they are recruited to the export machinery or how the intron-containing but unspliced M1 mRNA bypasses the normal quality-control checkpoints. Using fluorescent in situ hybridization to monitor segment 7 mRNA localization, we found that cytoplasmic accumulation of unspliced M1 mRNA was inefficient in the absence of NS1, both in the context of segment 7 RNPs reconstituted by plasmid transfection and in mutant virus-infected cells. This effect was independent of any major effect on steady-state levels of segment 7 mRNA or splicing but corresponded to a ∼5-fold reduction in the accumulation of M1. A similar defect in intronless hemagglutinin (HA) mRNA nuclear export was seen with an NS1 mutant virus. Efficient export of M1 mRNA required both an intact NS1 RNA-binding domain and effector domain. Furthermore, while wild-type NS1 interacted with cellular NXF1 and also increased the interaction of segment 7 mRNA with NXF1, mutant NS1 polypeptides unable to promote mRNA export did neither. Thus, we propose that NS1 facilitates late viral gene expression by acting as an adaptor between viral mRNAs and the cellular nuclear export machinery to promote their nuclear export. IMPORTANCE Influenza A virus is a major pathogen of a wide variety of mammalian and avian species that threatens public health and food security. A fuller understanding of the virus life cycle is important to aid control strategies. The virus has a small genome that encodes relatively few proteins that are often multifunctional. Here, we characterize a new function for the NS1 protein, showing that, as well as

  5. Radionuclides and heavy metals in rainbow trout from Tsichomo, Nana Ka, Wen Povi, and Pin De Lakes in Santa Clara Canyon

    Energy Technology Data Exchange (ETDEWEB)

    Fresquez, P.R.; Armstrong, D.R.; Naranjo, L. Jr.

    1998-04-01

    Radionuclide ({sup 3}H, {sup 90}Sr, {sup 137}Cs, {sup 238}Pu, {sup 239}Pu, and total uranium) and heavy metal (Ag, As, Ba, Be, Cd, Cr, Hg, Ni, Pb, Sb, Se, and TI) concentrations were determined in rainbow trout collected from Tsichomo, Nana Ka, Wen Povi, and Pin De lakes in Santa Clara Canyon in 1997. Most radionuclide and heavy metal concentrations in fish collected from these four lakes were within or just above upper limit background concentrations (Abiquiu reservoir), and as a group were statistically (p < 0.05) similar in most parameters to background.

  6. Ras-association domain family 1C protein promotes breast cancer cell migration and attenuates apoptosis

    Directory of Open Access Journals (Sweden)

    Aragon Robert J

    2010-10-01

    Full Text Available Abstract Background The Ras association domain family 1 (RASSF1 gene is a Ras effector encoding two major mRNA forms, RASSF1A and RASSF1C, derived by alternative promoter selection and alternative mRNA splicing. RASSF1A is a tumor suppressor gene. However, very little is known about the function of RASSF1C both in normal and transformed cells. Methods Gene silencing and over-expression techniques were used to modulate RASSF1C expression in human breast cancer cells. Affymetrix-microarray analysis was performed using T47D cells over-expressing RASSF1C to identify RASSF1C target genes. RT-PCR and western blot techniques were used to validate target gene expression. Cell invasion and apoptosis assays were also performed. Results In this article, we report the effects of altering RASSF1C expression in human breast cancer cells. We found that silencing RASSF1C mRNA in breast cancer cell lines (MDA-MB231 and T47D caused a small but significant decrease in cell proliferation. Conversely, inducible over-expression of RASSF1C in breast cancer cells (MDA-MB231 and T47D resulted in a small increase in cell proliferation. We also report on the identification of novel RASSF1C target genes. RASSF1C down-regulates several pro-apoptotic and tumor suppressor genes and up-regulates several growth promoting genes in breast cancer cells. We further show that down-regulation of caspase 3 via overexpression of RASSF1C reduces breast cancer cells' sensitivity to the apoptosis inducing agent, etoposide. Furthermore, we found that RASSF1C over-expression enhances T47D cell invasion/migration in vitro. Conclusion Together, our findings suggest that RASSF1C, unlike RASSF1A, is not a tumor suppressor, but instead may play a role in stimulating metastasis and survival in breast cancer cells.

  7. Integrin-associated protein promotes neuronal differentiation of neural stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Kazuhiko Fujimura

    Full Text Available Neural stem/progenitor cells (NSPCs proliferate and differentiate depending on their intrinsic properties and local environment. During the development of the mammalian nervous system, NSPCs generate neurons and glia sequentially. However, little is known about the mechanism that determines the timing of switch from neurogenesis to gliogenesis. In this study, we established a culture system in which the neurogenic potential of NSPCs is decreased in a time-dependent manner, so that short-term-cultured NSPCs differentiate into more neurons compared with long-term-cultured NSPCs. We found that short-term-cultured NSPCs express high levels of integrin-associated protein form 2 (IAP2; so-called CD47 mRNA using differential display analysis. Moreover, IAP2 overexpression in NSPCs induced neuronal differentiation of NSPCs. These findings reveal a novel mechanism by which IAP2 induces neuronal differentiation of NSPCs.

  8. Myeloid-related protein 14 promotes inflammation and injury in meningitis.

    Science.gov (United States)

    Wache, Christina; Klein, Matthias; Ostergaard, Christian; Angele, Barbara; Häcker, Hans; Pfister, Hans-Walter; Pruenster, Monika; Sperandio, Markus; Leanderson, Tomas; Roth, Johannes; Vogl, Thomas; Koedel, Uwe

    2015-07-15

    Neutrophilic inflammation often persists for days despite effective antibiotic treatment and contributes to brain damage in bacterial meningitis. We propose here that myeloid-related protein 14 (MRP14), an abundant cytosolic protein in myeloid cells, acts as an endogenous danger signal, driving inflammation and aggravating tissue injury. The release pattern of MRP14 was analyzed in human and murine cerebrospinal fluid (CSF), as well as in isolated neutrophils. Its functional role was assessed in a mouse meningitis model, using MRP14-deficient mice. We detected large quantities of MRP14 in CSF specimens from patients and mice with pneumococcal meningitis. Immunohistochemical analyses and a cell-depletion approach indicated neutrophils as the major source of MRP14. In a meningitis model, MRP14-deficient mice showed a better resolution of inflammation during antibiotic therapy, which was accompanied by reduced disease severity. Intrathecal administration of MRP14 before infection reverted the phenotype of MRP14-deficient mice back to wild type. Moreover, intrathecal injection of MRP14 alone was sufficient to induce meningitis in a Toll-like receptor 4 (TLR4)-CXCL2-dependent manner. Finally, treatment with the MRP14 antagonist paquinimod reduced inflammation and disease severity significantly, reaching levels comparable to those achieved after genetic depletion of MRP14. The present study implicates MRP14 as an essential propagator of inflammation and potential therapeutic target in pneumococcal meningitis. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Aerobic Exercise Promotes a Decrease in Right Ventricle Apoptotic Proteins in Experimental Cor Pulmonale.

    Science.gov (United States)

    Colombo, Rafael; Siqueira, Rafaela; Conzatti, Adriana; Fernandes, Tânia Regina Gattelli; Tavares, Angela Maria Vicente; Araújo, Alex Sander da Rosa; Belló-Klein, Adriane

    2015-09-01

    Pulmonary arterial hypertension is characterized by progressive increases in resistance and pressure in the pulmonary artery and Cor pulmonale. The effect of exercise on hydrogen peroxide-dependent signaling in the right ventricle (RV) of Cor pulmonale rats was analyzed. Rats were divided into sedentary control (SC), sedentary monocrotaline (SM), trained control (TC), and trained monocrotaline (TM) groups. Rats underwent exercise training (60% of VO2 max) for 5 weeks, with 3 weeks after monocrotaline injection (60 mg/kg intraperitoneally). Pulmonary resistance was enhanced in SM (2.0-fold) compared with SC. Pulmonary artery pressure was increased in SM (2.7-fold) and TM (2.6-fold) compared with their respective controls (SC and TC). RV hypertrophy indexes increased in SM compared with SC. Hydrogen peroxide was higher in SM (1.7-fold) than SC and was reduced by 47% in TM compared with SM. p-Akt was increased in TM (2.98-fold) compared with SM. The Bax/Bcl-2 ratio and caspase 3 were also increased (2.9-fold and 3.9-fold, respectively) in SM compared with SC. Caspase 3 was decreased in TM compared with SM (P < 0.05). Therefore, exercise training promoted a beneficial response by decreasing hydrogen peroxide concentrations, and consequently, apoptotic signaling in RV.

  10. Adenoviral protein V promotes a process of viral assembly through nucleophosmin 1

    Energy Technology Data Exchange (ETDEWEB)

    Ugai, Hideyo; Dobbins, George C.; Wang, Minghui [Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, and Surgery, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Le, Long P. [Massachusetts General Hospital, Pathology Service, 55 Fruit St.-GRJ 249, Boston, MA 02114 (United States); Matthews, David A. [School of Cellular and Molecular Medicine, Medical Sciences Building, University of Bristol, Bristol BS8 1TD (United Kingdom); Curiel, David T., E-mail: dcuriel@radonc.wustl.edu [Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, and Surgery, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); The Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2012-10-25

    Adenoviral infection induces nucleoplasmic redistribution of a nucleolar nucleophosmin 1/NPM1/B23.1. NPM1 is preferentially localized in the nucleoli of normal cells, whereas it is also present at the nuclear matrix in cancer cells. However, the biological roles of NPM1 during infection are unknown. Here, by analyzing a pV-deletion mutant, Ad5-dV/TSB, we demonstrate that pV promotes the NPM1 translocation from the nucleoli to the nucleoplasm in normal cells, and the NPM1 translocation is correlated with adenoviral replication. Lack of pV causes a dramatic reduction of adenoviral replication in normal cells, but not cancer cells, and Ad5-dV/TSB was defective in viral assembly in normal cells. NPM1 knockdown inhibits adenoviral replication, suggesting an involvement of NPM1 in adenoviral biology. Further, we show that NPM1 interacts with empty adenovirus particles which are an intermediate during virion maturation by immunoelectron microscopy. Collectively, these data implicate that pV participates in a process of viral assembly through NPM1.

  11. RNA polymerase II components and Rrn7 form a preinitiation complex on the HomolD box to promote ribosomal protein gene expression in Schizosaccharomyces pombe.

    Science.gov (United States)

    Montes, Matías; Moreira-Ramos, Sandra; Rojas, Diego A; Urbina, Fabiola; Käufer, Norbert F; Maldonado, Edio

    2017-02-01

    In Schizosaccharomyces pombe, ribosomal protein gene (RPG) promoters contain a TATA box analog, the HomolD box, which is bound by the Rrn7 protein. Despite the importance of ribosome biogenesis for cell survival, the mechanisms underlying RPG transcription remain unknown. In this study, we found that components of the RNA polymerase II (RNAPII) system, consisting of the initiation or general transcription factors (GTFs) TFIIA, IIB, IIE, TATA-binding protein (TBP) and the RNAPII holoenzyme, interacted directly with Rrn7 in vitro, and were able to form a preinitiation complex (PIC) on the HomolD box. PIC complex formation follows an ordered pathway on these promoters. The GTFs and RNAPII can also be cross-linked to HomolD-containing promoters in vivo. In an in vitro reconstituted transcription system, RNAPII components and Rrn7 were necessary for HomolD-directed transcription. The Mediator complex was required for basal transcription from those promoters in whole cell extract (WCE). The Med17 subunit of Mediator also can be cross-linked to the promoter region of HomolD-containing promoters in vivo, suggesting the presence of the Mediator complex on HomolD box-containing promoters. Together, these data show that components of the RNAPII machinery and Rrn7 participate in the PIC assembly on the HomolD box, thereby directing RPG transcription. © 2017 Federation of European Biochemical Societies.

  12. Sequence analysis of the Epstein-Barr virus (EBV) latent membrane protein-1 gene and promoter region

    DEFF Research Database (Denmark)

    Sandvej, K; Gratama, J W; Munch, M

    1997-01-01

    . The widespread prevalence of LMP-1 sequence variations, particularly the Xho I polymorphism and the 30-bp deletion, indicate that they cannot be used as simple markers for oncogenic viruses related to particular forms of EBV-associated tumor. Several of the structural changes detected occur, however, at sites......Sequence variations in the Epstein-Barr virus (EBV) encoded latent membrane protein-1 (LMP-1) gene have been described in a Chinese nasopharyngeal carcinoma-derived isolate (CAO), and in viral isolates from various EBV-associated tumors. It has been suggested that these genetic changes, which...... wild-type virus isolates, we sequenced the LMP-1 promoter and gene in EBV from lymphoblastoid cell lines from healthy carriers and patients without EBV-associated disease. Sequence changes were often present, and defined at least four main groups of viral isolates, which we designate Groups A through D...

  13. Human Epididymis Protein 4 Promotes Events Associated with Metastatic Ovarian Cancer via Regulation of the Extracelluar Matrix

    Directory of Open Access Journals (Sweden)

    Jennifer R. Ribeiro

    2018-01-01

    Full Text Available Human epididymis protein 4 (HE4 has received much attention recently due to its diagnostic and prognostic abilities for epithelial ovarian cancer. Since its inclusion in the Risk of Ovarian Malignancy Algorithm (ROMA, studies have focused on its functional effects in ovarian cancer. Here, we aimed to investigate the role of HE4 in invasion, haptotaxis, and adhesion of ovarian cancer cells. Furthermore, we sought to gain an understanding of relevant transcriptional profiles and protein kinase signaling pathways mediated by this multifunctional protein. Exposure of OVCAR8 ovarian cancer cells to recombinant HE4 (rHE4 promoted invasion, haptotaxis toward a fibronectin substrate, and adhesion onto fibronectin. Overexpression of HE4 or treatment with rHE4 led to upregulation of several transcripts coding for extracellular matrix proteins, including SERPINB2, GREM1, LAMC2, and LAMB3. Gene ontology indicated an enrichment of terms related to extracellular matrix, cell migration, adhesion, growth, and kinase phosphorylation. LAMC2 and LAMB3 protein levels were constitutively elevated in cells overexpressing HE4 and were upregulated in a time-dependent manner in cells exposed to rHE4 in the media. Deposition of laminin-332, the heterotrimer comprising LAMC2 and LAMB3 proteins, was increased in OVCAR8 cells treated with rHE4 or conditioned media from HE4-overexpressing cells. Enzymatic activity of matriptase, a serine protease that cleaves laminin-332 and contributes to its pro-migratory functional activity, was enhanced by rHE4 treatment in vitro. Proteomic analysis revealed activation of focal adhesion kinase signaling in OVCAR8 cells treated with conditioned media from HE4-overexpressing cells. Focal adhesions were increased in cells treated with rHE4 in the presence of fibronectin. These results indicate a direct role for HE4 in mediating malignant properties of ovarian cancer cells and validate the need for HE4-targeted therapies that will suppress

  14. Breast Regression Protein-39/Chitinase 3-Like 1 Promotes Renal Fibrosis after Kidney Injury via Activation of Myofibroblasts.

    Science.gov (United States)

    Montgomery, Tinika A; Xu, Leyuan; Mason, Sherene; Chinnadurai, Amirtha; Lee, Chun Geun; Elias, Jack A; Cantley, Lloyd G

    2017-11-01

    The normal response to kidney injury includes a robust inflammatory infiltrate of PMNs and macrophages. We previously showed that the small secreted protein breast regression protein-39 (BRP-39), also known as chitinase 3-like 1 (CHI3L1) and encoded by the Chi3l1 gene, is expressed at high levels by macrophages during the early stages of kidney repair and promotes tubular cell survival via IL-13 receptor α 2 (IL13R α 2)-mediated signaling. Here, we investigated the role of BRP-39 in profibrotic responses after AKI. In wild-type mice, failure to resolve tubular injury after unilateral ischemia-reperfusion injury (U-IRI) led to sustained low-level Chi3l1 mRNA expression by renal cells and promoted macrophage persistence and severe interstitial fibrosis. Analysis of macrophages isolated from wild-type kidneys 14 days after U-IRI revealed high-level expression of the profibrotic BRP-39 receptor Ptgdr2 / Crth2 and expression of the profibrotic markers Lgals3 , Pdgfb , Egf , and Tgfb In comparison, injured kidneys from mice lacking BRP-39 had significantly fewer macrophages, reduced expression of profibrotic growth factors, and decreased accumulation of extracellular matrix. BRP-39 depletion did not affect myofibroblast accumulation but did attenuate myofibroblast expression of Col1a1 , Col3a1 , and Fn1 Together, these results identify BRP-39 as an important activator of macrophage-myofibroblast crosstalk and profibrotic signaling in the setting of maladaptive kidney repair. Copyright © 2017 by the American Society of Nephrology.

  15. Studies of the structure and function of Mms6, a bacterial protein that promotes the formation of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijun [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Here we report structural and functional studies of Mms6, a biomineralization protein that can promote the formation in vitro of magnetic nanoparticles with sizes and morphologies similar to the magnetites synthesized by magnetotactic bacteria. We found the binding pattern of Mms6 to ferric ion to be two-phase and multivalent. We quantatively determined that Mms6 binds one Fe3+ with a very high affinity (Kd = 1016 M). The second phase of iron binding is multivalent and cooperative with respect to iron with a Kd in the μM range and a stoichiometry of about 20 ferric ion per protein molecule. We found that Mms6 exists in large particles of two sizes, one consisting of 20-40 monomeric units and the other of 200 units. From proteolytic digestion, ultracentrifugation and liposome fusion studies, we found that Mms6 forms a large micellar quaternary structure with the N-terminal domain self-assembling into a uniformly sized micelle and the C-terminal domain on the surface. The two-phase iron-binding pattern may be relevant to iron crystal formation. We propose that the first high affinity phase may stabilize a new conformation of the C-terminal domain that allows interaction with other C-terminal domains leading to a structural change in the multimeric protein complex that enables the second low affinity iron binding phase to organize iron and initiate crystal formation. We also observed a dimeric apparent molecular mass of the Mms6 C-terminal peptide (C21Mms6). We speculate that the C-terminal domain may form higher order quaternary arrangements on the surface of the micelle or when anchored to a membrane by the N-terminal domain. The change in fluorescence quenching in the N-terminal domain with iron binding suggests a structural integrity between the C- and N-terminal domains. The slow change in trp fluorescence as a function of time after adding iron suggests a very slow conformational change in the protein that involves

  16. Deficiency of thioredoxin binding protein-2 (TBP-2 enhances TGF-β signaling and promotes epithelial to mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    So Masaki

    Full Text Available Transforming growth factor beta (TGF-β has critical roles in regulating cell growth, differentiation, apoptosis, invasion and epithelial-mesenchymal transition (EMT of various cancer cells. TGF-β-induced EMT is an important step during carcinoma progression to invasion state. Thioredoxin binding protein-2 (TBP-2, also called Txnip or VDUP1 is downregulated in various types of human cancer, and its deficiency results in the earlier onset of cancer. However, it remains unclear how TBP-2 suppresses the invasion and metastasis of cancer.In this study, we demonstrated that TBP-2 deficiency increases the transcriptional activity in response to TGF-β and also enhances TGF-β-induced Smad2 phosphorylation levels. Knockdown of TBP-2 augmented the TGF-β-responsive expression of Snail and Slug, transcriptional factors related to TGF-β-mediated induction of EMT, and promoted TGF-β-induced spindle-like morphology consistent with the depletion of E-Cadherin in A549 cells.Our results indicate that TBP-2 deficiency enhances TGF-β signaling and promotes TGF-β-induced EMT. The control of TGF-β-induced EMT is critical for the inhibition of the invasion and metastasis. Thus TBP-2, as a novel regulatory molecule of TGF-β signaling, is likely to be a prognostic indicator or a potential therapeutic target for preventing tumor progression.

  17. Transcriptomic analyses of RNA-binding proteins reveal eIF3c promotes cell proliferation in hepatocellular carcinoma.

    Science.gov (United States)

    Li, Tangjian; Li, Shengli; Chen, Di; Chen, Bing; Yu, Tao; Zhao, Fangyu; Wang, Qifeng; Yao, Ming; Huang, Shenglin; Chen, Zhiao; He, Xianghuo

    2017-05-01

    RNA-binding proteins (RBPs) play fundamental roles in the RNA life cycle. The aberrant expression of RBPs is often observed in human disease, including cancer. In this study, we screened for the expression levels of 1542 human RBPs in The Cancer Genome Atlas liver hepatocellular carcinoma samples and found 92 consistently upregulated RBP genes in HCC compared with normal samples. Additionally, we undertook a Kaplan-Meier analysis and found that high expression of 15 RBP genes was associated with poor prognosis in patients with HCC. Furthermore, we found that eIF3c promotes HCC cell proliferation in vitro as well as tumorigenicity in vivo. Gene Set Enrichment Analysis showed that high eIF3c expression is positively associated with KRAS, vascular endothelial growth factor, and Hedgehog signaling pathways, all of which are closely associated with specific cancer-related gene sets. Our study provides the basis for further investigation of the molecular mechanism by which eIF3c promotes the development and progression of HCC. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  18. The combined EGFR protein expression analysis refines the prognostic value of the MGMT promoter methylation status in glioblastoma.

    Science.gov (United States)

    Tini, Paolo; Pastina, Pierpaolo; Nardone, Valerio; Sebaste, Lucio; Toscano, Marzia; Miracco, Clelia; Cerase, Alfonso; Pirtoli, Luigi

    2016-10-01

    To investigate the combined prognostic value of the EGFR expression level and the MGMT promoter methylation status in Glioblastoma (GB). We assessed the EGFR protein expression level by immune-histochemical (IHC) evaluation and the MGMT promoter methylation status by Polymerase Chain Reaction (PCR) in 169 patients affected by GB. We assessed the prognostic significance of combined MGMT methylation status and EGFR expression level in terms of Overall Survival (OS) with univariate and multivariate analysis, and validated this finding using an external data set of GB patient. Clustering survival analysis for the methylation status of MGMT (methMGMT/unmethMGMT) and EGFR expression (High EGFR: H-EGFR; Low EGFR: L-EGFR), identified three different prognostic groups (p=0.001), as follows. Patients with unmethMGMT/H-EGFR had the shortest survival time (median OS: 5 months) and patients co-expressing methMGMT/L-EGFR had the best prognosis (median OS: 35 months), as compared to the other two sub-groups (methMGMT/H-EGFR; unmethMGMT/L-EGFR), which had respectively median OSs of 11 and 12 months. The combined MGMT methylation and EGFR amplification status analysis showed a similar prognostic impact in an independent series, which we used for validation (p=0.001). The EGFR expression evaluation refines the prognostic value of MGMT methylation status in GBs. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Developmental Functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana.

    Science.gov (United States)

    Xu, Mingli; Hu, Tieqiang; Zhao, Jianfei; Park, Mee-Yeon; Earley, Keith W; Wu, Gang; Yang, Li; Poethig, R Scott

    2016-08-01

    Correct developmental timing is essential for plant fitness and reproductive success. Two important transitions in shoot development-the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition-are mediated by a group of genes targeted by miR156, SQUAMOSA PROMOTER BINDING PROTEIN (SBP) genes. To determine the developmental functions of these genes in Arabidopsis thaliana, we characterized their expression patterns, and their gain-of-function and loss-of-function phenotypes. Our results reveal that SBP-LIKE (SPL) genes in Arabidopsis can be divided into three functionally distinct groups: 1) SPL2, SPL9, SPL10, SPL11, SPL13 and SPL15 contribute to both the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition, with SPL9, SP13 and SPL15 being more important for these processes than SPL2, SPL10 and SPL11; 2) SPL3, SPL4 and SPL5 do not play a major role in vegetative phase change or floral induction, but promote the floral meristem identity transition; 3) SPL6 does not have a major function in shoot morphogenesis, but may be important for certain physiological processes. We also found that miR156-regulated SPL genes repress adventitious root development, providing an explanation for the observation that the capacity for adventitious root production declines as the shoot ages. miR156 is expressed at very high levels in young seedlings, and declines in abundance as the shoot develops. It completely blocks the expression of its SPL targets in the first two leaves of the rosette, and represses these genes to different degrees at later stages of development, primarily by promoting their translational repression. These results provide a framework for future studies of this multifunctional family of transcription factors, and offer new insights into the role of miR156 in Arabidopsis development.

  20. Haemophilus influenzae P4 Interacts With Extracellular Matrix Proteins Promoting Adhesion and Serum Resistance.

    Science.gov (United States)

    Su, Yu-Ching; Mukherjee, Oindrilla; Singh, Birendra; Hallgren, Oskar; Westergren-Thorsson, Gunilla; Hood, Derek; Riesbeck, Kristian

    2016-01-15

    Interaction with the extracellular matrix (ECM) is one of the successful colonization strategies employed by nontypeable Haemophilus influenzae (NTHi). Here we identified Haemophilus lipoprotein e (P4) as a receptor for ECM proteins. Purified recombinant P4 displayed a high binding affinity for laminin (Kd = 9.26 nM) and fibronectin (Kd = 10.19 nM), but slightly less to vitronectin (Kd = 16.51 nM). A P4-deficient NTHi mutant showed a significantly decreased binding to these ECM components. Vitronectin acquisition conferred serum resistance to both P4-expressing NTHi and Escherichia coli transformants. P4-mediated bacterial adherence to pharynx, type II alveolar, and bronchial epithelial cells was mainly attributed to fibronectin. Importantly, a significantly reduced bacterial infection was observed in the middle ear of the Junbo mouse model when NTHi was devoid of P4. In conclusion, our data provide new insight into the role of P4 as an important factor for Haemophilus colonization and subsequent respiratory tract infection. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling

    Science.gov (United States)

    Luchetti, Giovanni; Sircar, Ria; Kong, Jennifer H; Nachtergaele, Sigrid; Sagner, Andreas; Byrne, Eamon FX; Covey, Douglas F; Siebold, Christian; Rohatgi, Rajat

    2016-01-01

    Cholesterol is necessary for the function of many G-protein coupled receptors (GPCRs). We find that cholesterol is not just necessary but also sufficient to activate signaling by the Hedgehog (Hh) pathway, a prominent cell-cell communication system in development. Cholesterol influences Hh signaling by directly activating Smoothened (SMO), an orphan GPCR that transmits the Hh signal across the membrane in all animals. Unlike many GPCRs, which are regulated by cholesterol through their heptahelical transmembrane domains, SMO is activated by cholesterol through its extracellular cysteine-rich domain (CRD). Residues shown to mediate cholesterol binding to the CRD in a recent structural analysis also dictate SMO activation, both in response to cholesterol and to native Hh ligands. Our results show that cholesterol can initiate signaling from the cell surface by engaging the extracellular domain of a GPCR and suggest that SMO activity may be regulated by local changes in cholesterol abundance or accessibility. DOI: http://dx.doi.org/10.7554/eLife.20304.001 PMID:27705744

  2. Doxorubicin hinders DNA condensation promoted by the protein bovine serum albumin (BSA).

    Science.gov (United States)

    Lima, C H M; de Paula, H M C; da Silva, L H M; Rocha, M S

    2017-12-01

    In this work, we have studied the interaction between the anticancer drug doxorubicin (doxo) and condensed DNA, using optical tweezers. To perform this task, we use the protein bovine serum albumin (BSA) in the working buffer to mimic two key conditions present in the real intracellular environment: the condensed state of the DNA and the abundant presence of charged macromolecules in the surrounding medium. In particular, we have found that, when doxo is previously intercalated in disperse DNA, the drug hinders the DNA condensation process upon the addition of BSA in the buffer. On the other hand, when bare DNA is firstly condensed by BSA, doxo is capable to intercalate and to unfold the DNA condensates at relatively high concentrations. In addition, a specific interaction between BSA and doxo was verified, which significantly changes the chemical equilibrium of the DNA-doxo interaction. Finally, the presence of BSA in the buffer stabilizes the double-helix structure of the DNA-doxo complexes, preventing partial DNA denaturation induced by the stretching forces. © 2017 Wiley Periodicals, Inc.

  3. The promotion of osseointegration of titanium surfaces by coating with silk protein sericin.

    Science.gov (United States)

    Nayak, Sunita; Dey, Tuli; Naskar, Deboki; Kundu, Subhas C

    2013-04-01

    A promising strategy to influence the osseointegration process around orthopaedic titanium implants is the immobilization of bioactive molecules. This recruits appropriate interaction between the surface and the tissue by directing cells adhesion, proliferation, differentiation and active matrix remodelling. In this study, we aimed to investigate the functionalization of metallic implant titanium with silk protein sericin. Titanium surface was immobilized with non-mulberry Antheraea mylitta sericin using glutaraldehyde as crosslinker. To analyse combinatorial effects the sericin immobilized titanium was further conjugated with integrin binding peptide sequence Arg-Gly-Asp (RGD) using ethyl (dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide as coupling agents. The surface of sericin immobilized titanium was characterized biophysically. Osteoblast-like cells were cultured on sericin and sericin/RGD functionalized titanium and found to be more viable than those on pristine titanium. The enhanced adhesion, proliferation, and differentiation of osteoblast cells were observed. RT-PCR analysis showed that mRNA expressions of bone sialoprotein, osteocalcin and alkaline phosphatase were upregulated in osteoblast cells cultured on sericin and sericin/RGD immobilized titanium substrates. Additionally, no significant amount of pro-inflammatory cytokines TNF-α, IL-1β and nitric oxide production were recorded when macrophages cells and osteoblast-macrophages co culture cells were grown on sericin immobilized titanium. The findings demonstrate that the sericin immobilized titanium surfaces are potentially useful bioactive coated materials for titanium-based medical implants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Bone Morphogenetic Proteins stimulate mammary fibroblasts to promote mammary carcinoma cell invasion.

    Directory of Open Access Journals (Sweden)

    Philip Owens

    Full Text Available Bone Morphogenetic Proteins (BMPs are secreted cytokines that are part of the Transforming Growth Factor β (TGFβ superfamily. BMPs have been shown to be highly expressed in human breast cancers, and loss of BMP signaling in mammary carcinomas has been shown to accelerate metastases. Interestingly, other work has indicated that stimulation of dermal fibroblasts with BMP can enhance secretion of pro-tumorigenic factors. Furthermore, treatment of carcinoma-associated fibroblasts (CAFs derived from a mouse prostate carcinoma with BMP4 was shown to stimulate angiogenesis. We sought to determine the effect of BMP treatment on mammary fibroblasts. A large number of secreted pro-inflammatory cytokines and matrix-metallo proteases (MMPs were found to be upregulated in response to BMP4 treatment. Fibroblasts that were stimulated with BMP4 were found to enhance mammary carcinoma cell invasion, and these effects were inhibited by a BMP receptor kinase antagonist. Treatment with BMP in turn elevated pro-tumorigenic secreted factors such as IL-6 and MMP-3. These experiments demonstrate that BMP may stimulate tumor progression within the tumor microenvironment.

  5. Nuclear Envelope Protein SUN2 Promotes Cyclophilin-A-Dependent Steps of HIV Replication

    Directory of Open Access Journals (Sweden)

    Xavier Lahaye

    2016-04-01

    Full Text Available During the early phase of replication, HIV reverse transcribes its RNA and crosses the nuclear envelope while escaping host antiviral defenses. The host factor Cyclophilin A (CypA is essential for these steps and binds the HIV capsid; however, the mechanism underlying this effect remains elusive. Here, we identify related capsid mutants in HIV-1, HIV-2, and SIVmac that are restricted by CypA. This antiviral restriction of mutated viruses is conserved across species and prevents nuclear import of the viral cDNA. Importantly, the inner nuclear envelope protein SUN2 is required for the antiviral activity of CypA. We show that wild-type HIV exploits SUN2 in primary CD4+ T cells as an essential host factor that is required for the positive effects of CypA on reverse transcription and infection. Altogether, these results establish essential CypA-dependent functions of SUN2 in HIV infection at the nuclear envelope.

  6. Ohmyungsamycins promote antimicrobial responses through autophagy activation via AMP-activated protein kinase pathway.

    Science.gov (United States)

    Kim, Tae Sung; Shin, Yern-Hyerk; Lee, Hye-Mi; Kim, Jin Kyung; Choe, Jin Ho; Jang, Ji-Chan; Um, Soohyun; Jin, Hyo Sun; Komatsu, Masaaki; Cha, Guang-Ho; Chae, Han-Jung; Oh, Dong-Chan; Jo, Eun-Kyeong

    2017-06-13

    The induction of host cell autophagy by various autophagy inducers contributes to the antimicrobial host defense against Mycobacterium tuberculosis (Mtb), a major pathogenic strain that causes human tuberculosis. In this study, we present a role for the newly identified cyclic peptides ohmyungsamycins (OMS) A and B in the antimicrobial responses against Mtb infections by activating autophagy in murine bone marrow-derived macrophages (BMDMs). OMS robustly activated autophagy, which was essentially required for the colocalization of LC3 autophagosomes with bacterial phagosomes and antimicrobial responses against Mtb in BMDMs. Using a Drosophila melanogaster-Mycobacterium marinum infection model, we showed that OMS-A-induced autophagy contributed to the increased survival of infected flies and the limitation of bacterial load. We further showed that OMS triggered AMP-activated protein kinase (AMPK) activation, which was required for OMS-mediated phagosome maturation and antimicrobial responses against Mtb. Moreover, treating BMDMs with OMS led to dose-dependent inhibition of macrophage inflammatory responses, which was also dependent on AMPK activation. Collectively, these data show that OMS is a promising candidate for new anti-mycobacterial therapeutics by activating antibacterial autophagy via AMPK-dependent signaling and suppressing excessive inflammation during Mtb infections.

  7. ALDH2(E487K) mutation increases protein turnover and promotes murine hepatocarcinogenesis.

    Science.gov (United States)

    Jin, Shengfang; Chen, Jiang; Chen, Lizao; Histen, Gavin; Lin, Zhizhong; Gross, Stefan; Hixon, Jeffrey; Chen, Yue; Kung, Charles; Chen, Yiwei; Fu, Yufei; Lu, Yuxuan; Lin, Hui; Cai, Xiujun; Yang, Hua; Cairns, Rob A; Dorsch, Marion; Su, Shinsan M; Biller, Scott; Mak, Tak W; Cang, Yong

    2015-07-21

    Mitochondrial aldehyde dehydrogenase 2 (ALDH2) in the liver removes toxic aldehydes including acetaldehyde, an intermediate of ethanol metabolism. Nearly 40% of East Asians inherit an inactive ALDH2*2 variant, which has a lysine-for-glutamate substitution at position 487 (E487K), and show a characteristic alcohol flush reaction after drinking and a higher risk for gastrointestinal cancers. Here we report the characterization of knockin mice in which the ALDH2(E487K) mutation is inserted into the endogenous murine Aldh2 locus. These mutants recapitulate essentially all human phenotypes including impaired clearance of acetaldehyde, increased sensitivity to acute or chronic alcohol-induced toxicity, and reduced ALDH2 expression due to a dominant-negative effect of the mutation. When treated with a chemical carcinogen, these mutants exhibit increased DNA damage response in hepatocytes, pronounced liver injury, and accelerated development of hepatocellular carcinoma (HCC). Importantly, ALDH2 protein levels are also significantly lower in patient HCC than in peritumor or normal liver tissues. Our results reveal that ALDH2 functions as a tumor suppressor by maintaining genomic stability in the liver, and the common human ALDH2 variant would present a significant risk factor for hepatocarcinogenesis. Our study suggests that the ALDH2*2 allele-alcohol interaction may be an even greater human public health hazard than previously appreciated.

  8. Factor H binds to the hypervariable region of many Streptococcus pyogenes M proteins but does not promote phagocytosis resistance or acute virulence

    DEFF Research Database (Denmark)

    Gustafsson, Caj Ulrik Mattias; Lannergård, Jonas; Nilsson, Olof Rickard

    2013-01-01

    Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against...... complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive...... to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed...

  9. A photo-responsive F-box protein FOF2 regulates floral initiation by promoting FLC expression in Arabidopsis.

    Science.gov (United States)

    He, Reqing; Li, Xinmei; Zhong, Ming; Yan, Jindong; Ji, Ronghuan; Li, Xu; Wang, Qin; Wu, Dan; Sun, Mengsi; Tang, Dongying; Lin, Jianzhong; Li, Hongyu; Liu, Bin; Liu, Hongtao; Liu, Xuanming; Zhao, Xiaoying; Lin, Chentao

    2017-09-01

    Floral initiation is regulated by various genetic pathways in response to light, temperature, hormones and developmental status; however, the molecular mechanisms underlying the interactions between different genetic pathways are not fully understood. Here, we show that the photoresponsive gene FOF2 (F-box of flowering 2) negatively regulates flowering. FOF2 encodes a putative F-box protein that interacts specifically with ASK14, and its overexpression results in later flowering under both long-day and short-day photoperiods. Conversely, transgenic plants expressing the F-box domain deletion mutant of FOF2 (FOF2ΔF), or double loss of function mutant of FOF2 and FOL1 (FOF2-LIKE 1) present early flowering phenotypes. The late flowering phenotype of the FOF2 overexpression lines is suppressed by the flc-3 loss-of-function mutation. Furthermore, FOF2 mRNA expression is regulated by autonomous pathway gene FCA, and the repressive effect of FOF2 in flowering can be overcome by vernalization. Interestingly, FOF2 expression is regulated by light. The protein level of FOF2 accumulates in response to light, whereas it is degraded under dark conditions via the 26S proteasome pathway. Our findings suggest a possible mechanistic link between light conditions and the autonomous floral promotion pathway in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  10. Genome-wide targeting of the epigenetic regulatory protein CTCF to gene promoters by the transcription factor TFII-I.

    Science.gov (United States)

    Peña-Hernández, Rodrigo; Marques, Maud; Hilmi, Khalid; Zhao, Teijun; Saad, Amine; Alaoui-Jamali, Moulay A; del Rincon, Sonia V; Ashworth, Todd; Roy, Ananda L; Emerson, Beverly M; Witcher, Michael

    2015-02-17

    CCCTC-binding factor (CTCF) is a key regulator of nuclear chromatin structure and gene regulation. The impact of CTCF on transcriptional output is highly varied, ranging from repression to transcriptional pausing and transactivation. The multifunctional nature of CTCF may be directed solely through remodeling chromatin architecture. However, another hypothesis is that the multifunctional nature of CTCF is mediated, in part, through differential association with protein partners having unique functions. Consistent with this hypothesis, our mass spectrometry analyses of CTCF interacting partners reveal a previously undefined association with the transcription factor general transcription factor II-I (TFII-I). Biochemical fractionation of CTCF indicates that a distinct CTCF complex incorporating TFII-I is assembled on DNA. Unexpectedly, we found that the interaction between CTCF and TFII-I is essential for directing CTCF to the promoter proximal regulatory regions of target genes across the genome, particularly at genes involved in metabolism. At genes coregulated by CTCF and TFII-I, we find knockdown of TFII-I results in diminished CTCF binding, lack of cyclin-dependent kinase 8 (CDK8) recruitment, and an attenuation of RNA polymerase II phosphorylation at serine 5. Phenotypically, knockdown of TFII-I alters the cellular response to metabolic stress. Our data indicate that TFII-I directs CTCF binding to target genes, and in turn the two proteins cooperate to recruit CDK8 and enhance transcription initiation.

  11. Integrative Effects of Feeding Aspergillus awamori and fructooligosaccharide on Growth Performance and Digestibility in Broilers: Promotion Muscle Protein Metabolism

    Directory of Open Access Journals (Sweden)

    Ahmed A. Saleh

    2014-01-01

    Full Text Available This study was conducted to show the effect of Aspergillus awamori (AA, fructooligosaccharide (FOS, and combined Aspergillus awamori and fructooligosaccharide (AA + FOS on growth, digestibility, blood parameters, and expression of some growth-related genes. A total of 60 broiler chicks at the age of 15 d were divided into a control group (n=15 and 3 treatment groups. The control group was fed a basal diet, and the treatment groups were fed basal diets supplemented with 0.05% AA, 0.05% FOS, and combined of 0.05% AA and 0.05% FOS. Results from measurement of growth performance and digestibility revealed a significant increase in the body weight gain with improved feed conversion rate in the experimental groups. Interestingly, dry matter digestibility (DMD and crude protein utilization (CPU were improved. In addition, plasma total cholesterol and low density lipoprotein-cholesterol (LDL-C were decreased, while plasma high density lipoprotein-cholesterol (HDL-C was increased by feeding AA, FOS, and AA + FOS. Expressions of growth hormone secretagogue receptor (GHSR, insulin-like growth factor 1 (IGF-1, and insulin-like growth factor 1 receptor (IGF1R were increased in experimental groups. In conclusion, the supplementation of either Aspergillus awamori or fructooligosaccharide or both improves digestibility and growth performance probably by promoting skeletal muscle protein metabolism.

  12. Indomethacin promotes apoptosis in gastric cancer cells through concomitant degradation of Survivin and Aurora B kinase proteins.

    Science.gov (United States)

    Chiou, Shiun-Kwei; Hoa, Neil; Hodges, Amy; Ge, Lishen; Jadus, Martin R

    2014-09-01

    Regular usage of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with reduced incidence of a variety of cancers. The molecular mechanisms underlying these chemopreventive effects remain poorly understood. This current investigation showed that in gastric cancer cells: (1) Indomethacin treatment enhanced the degradation of chromosomal passenger proteins, Survivin and Aurora B kinase; (2) Indomethacin treatment down-regulated Aurora B kinase activity in a cell cycle-independent fashion; (3) siRNA knockdown of Survivin level promoted Aurora B kinase protein degradation, and vice versa; (4) ectopic overexpression of Survivin blocked reduction of Aurora B kinase level and activity by indomethacin treatment, and vice versa; (5) siRNA knockdown of Aurora B kinase level and AZD1152 inhibition of its activity induced apoptosis, and overexpression of Aurora B kinase inhibited indomethacin-induced apoptosis; (6) indomethacin treatment reduced Aurora B kinase level, coinciding with reduction of Survivin level and induction of apoptosis, in KATO III and HT-29 cells, and in mouse gastric mucosa. A role for Aurora B kinase function in NSAID-induced apoptosis was not previously explored. Thus this report provides better understanding of the molecular mechanisms underlying the anti-cancer effect of NSAIDs by elucidating a significant role for Aurora B kinase in indomethacin-induced apoptosis.

  13. JNK Promotes Epithelial Cell Anoikis by Transcriptional and Post-translational Regulation of BH3-Only Proteins

    Directory of Open Access Journals (Sweden)

    Nomeda Girnius

    2017-11-01

    Full Text Available Summary: Developmental morphogenesis, tissue injury, and oncogenic transformation can cause the detachment of epithelial cells. These cells are eliminated by a specialized form of apoptosis (anoikis. While the processes that contribute to this form of cell death have been studied, the underlying mechanisms remain unclear. Here, we tested the role of the cJUN NH2-terminal kinase (JNK signaling pathway using murine models with compound JNK deficiency in mammary and kidney epithelial cells. These studies demonstrated that JNK is required for efficient anoikis in vitro and in vivo. Moreover, JNK-promoted anoikis required pro-apoptotic members of the BCL2 family of proteins. We show that JNK acts through a BAK/BAX-dependent apoptotic pathway by increasing BIM expression and phosphorylating BMF, leading to death of detached epithelial cells. : Developmental morphogenesis, tissue injury, and oncogenic transformation can cause epithelial cell detachment. These cells are eliminated by a specialized form of apoptosis termed anoikis. Girnius and Davis show that anoikis is mediated by the cJUN NH2-terminal kinase (JNK, which increases BIM expression and phosphorylates BMF to engage BAK/BAX-dependent apoptosis. Keywords: apoptosis, anoikis, epithelial cell, mammary gland, JNK, BAX, BAK, BH3-only protein, BIM, BMF

  14. Deletion of G-protein-coupled receptor 55 promotes obesity by reducing physical activity.

    Science.gov (United States)

    Meadows, A; Lee, J H; Wu, C-S; Wei, Q; Pradhan, G; Yafi, M; Lu, H-C; Sun, Y

    2016-03-01

    Cannabinoid receptor 1 (CB1) is the best-characterized cannabinoid receptor, and CB1 antagonists are used in clinical trials to treat obesity. Because of the wide range of CB1 functions, the side effects of CB1 antagonists pose serious concerns. G-protein-coupled receptor 55 (GPR55) is an atypical cannabinoid receptor, and its pharmacology and functions are distinct from CB1. GPR55 regulates neuropathic pain, gut, bone, immune functions and motor coordination. GPR55 is expressed in various brain regions and peripheral tissues. However, the roles of GPR55 in energy and glucose homeostasis are unknown. Here we have investigated the roles of GPR55 in energy balance and insulin sensitivity using GPR55-null mice (GPR55(-/-)). Body composition of the mice was measured by EchoMRI. Food intake, feeding behavior, energy expenditure and physical activity of GPR55(-/-) mice were determined by indirect calorimetry. Muscle function was assessed by forced treadmill running test. Insulin sensitivity was evaluated by glucose and insulin tolerance tests. Adipose inflammation was assessed by flow cytometry analysis of adipose tissue macrophages. The expression of inflammatory markers in adipose tissues and orexigenic/anorexigenic peptides in the hypothalamus was also analyzed by real-time PCR. GPR55(-/-) mice had normal total energy intake and feeding pattern (i.e., no changes in meal size, meal number or feeding frequency). Intriguingly, whereas adult GPR55(-/-) mice only showed a modest increase in overall body weight, they exhibited significantly increased fat mass and insulin resistance. The spontaneous locomotor activity of GPR55(-/-) mice was dramatically decreased, whereas resting metabolic rate and non-shivering thermogenesis were unchanged. Moreover, GPR55(-/-) mice exhibited significantly decreased voluntary physical activity, showing reduced running distance on the running wheels, whereas muscle function appeared to be normal. GPR55 has an important role in energy

  15. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    International Nuclear Information System (INIS)

    Kim, Yoon Sik; Seo, Hyun Wook; Jung, Guhung

    2015-01-01

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H 2 O 2 and GSH modulate HBV capsid assembly. • H 2 O 2 facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H 2 O 2 and GSH induce conformation change of Hsp90

  16. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Sik, E-mail: yumshak@naver.com; Seo, Hyun Wook, E-mail: suruk@naver.com; Jung, Guhung, E-mail: drjung@snu.ac.kr

    2015-02-13

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H{sub 2}O{sub 2} and GSH modulate HBV capsid assembly. • H{sub 2}O{sub 2} facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H{sub 2}O{sub 2} and GSH induce conformation change of Hsp90.

  17. 3-Phosphoinositide-dependent Protein Kinase-1 (PDK1 promotes invasion and activation of matrix metalloproteinases

    Directory of Open Access Journals (Sweden)

    Zeng Xiao

    2006-03-01

    Full Text Available Abstract Background Metastasis is a major cause of morbidity and mortality in breast cancer with tumor cell invasion playing a crucial role in the metastatic process. PDK1 is a key molecule that couples PI3K to cell proliferation and survival signals in response to growth factor receptor activation, and is oncogenic when expressed in mouse mammary epithelial cells. We now present evidence showing that PDK1-expressing cells exhibit enhanced anchorage-dependent and -independent cell growth and are highly invasive when grown on Matrigel. These properties correlate with induction of MMP-2 activity, increased MT1-MMP expression and a unique gene expression profile. Methods Invasion assays in Matrigel, MMP-2 zymogram analysis, gene microarray analysis and mammary isografts were used to characterize the invasive and proliferative function of cells expressing PDK1. Tissue microarray analysis of human breast cancers was used to measure PDK1 expression in invasive tumors by IHC. Results Enhanced invasion on Matrigel in PDK1-expressing cells was accompanied by increased MMP-2 activity resulting from stabilization against proteasomal degradation. Increased MMP-2 activity was accompanied by elevated levels of MT1-MMP, which is involved in generating active MMP-2. Gene microarray analysis identified increased expression of the ECM-associated genes decorin and type I procollagen, whose gene products are substrates of MT1-MMP. Mammary fat pad isografts of PDK1-expressing cells produced invasive adenocarcinomas. Tissue microarray analysis of human invasive breast cancer indicated that PDK1pSer241 was strongly expressed in 90% of samples. Conclusion These results indicate that PDK1 serves as an important effector of mammary epithelial cell growth and invasion in the transformed phenotype. PDK1 mediates its effect in part by MT1-MMP induction, which in turn activates MMP-2 and modulates the ECM proteins decorin and collagen. The presence of increased PDK1

  18. Control of mitochondrial pH by uncoupling protein 4 in astrocytes promotes neuronal survival

    KAUST Repository

    Lambert, Hélène Perreten

    2014-09-18

    Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival.

  19. Cytoplasmic retention of protein tyrosine kinase 6 promotes growth of prostate tumor cells.

    Science.gov (United States)

    Brauer, Patrick M; Zheng, Yu; Wang, Lin; Tyner, Angela L

    2010-10-15

    Protein tyrosine kinase 6 (PTK6) is an intracellular tyrosine kinase that is nuclear in epithelial cells of the normal prostate, but cytoplasmic in prostate tumors and in the PC3 prostate tumor cell line. The impact of altered PTK6 intracellular localization in prostate tumor cells has not been extensively explored. Knockdown of endogenous cytoplasmic PTK6 resulted in decreased PC3 cell proliferation and colony formation, suggesting that cytoplasmic PTK6 stimulates oncogenic pathways. In contrast, reintroduction of PTK6 into nuclei of PC3 cells had a negative effect on growth. Enhanced tyrosine phosphorylation of the PTK6 substrate Sam68 was detected in cells expressing nuclear-targeted PTK6. We found that mechanisms regulating nuclear localization of PTK6 are intact in PC3 cells. Transiently overexpressed PTK6 readily enters the nucleus. Ectopic expression of ALT-PTK6, a catalytically inactive splice variant of PTK6, did not affect localization of endogenous PTK6 in PC3 cells. Using leptomycin B, we confirmed that cytoplasmic localization of endogenous PTK6 is not due to Crm-1/exportin-1 mediated nuclear export. In addition, overexpression of the PTK6 nuclear substrate Sam68 is not sufficient to bring PTK6 into the nucleus. While exogenous PTK6 was readily detected in the nucleus when transiently expressed at high levels, low-level expression of inducible wild type PTK6 in stable cell lines resulted in its cytoplasmic retention. Our results suggest that retention of PTK6 in the cytoplasm of prostate cancer cells disrupts its ability to regulate nuclear substrates and leads to aberrant growth. In prostate cancer, restoring PTK6 nuclear localization may have therapeutic advantages.

  20. 3-Phosphoinositide-dependent Protein Kinase-1 (PDK1) promotes invasion and activation of matrix metalloproteinases

    International Nuclear Information System (INIS)

    Xie, Zhihui; Yuan, Hongyan; Yin, Yuzhi; Zeng, Xiao; Bai, Renkui; Glazer, Robert I

    2006-01-01

    Metastasis is a major cause of morbidity and mortality in breast cancer with tumor cell invasion playing a crucial role in the metastatic process. PDK1 is a key molecule that couples PI3K to cell proliferation and survival signals in response to growth factor receptor activation, and is oncogenic when expressed in mouse mammary epithelial cells. We now present evidence showing that PDK1-expressing cells exhibit enhanced anchorage-dependent and -independent cell growth and are highly invasive when grown on Matrigel. These properties correlate with induction of MMP-2 activity, increased MT1-MMP expression and a unique gene expression profile. Invasion assays in Matrigel, MMP-2 zymogram analysis, gene microarray analysis and mammary isografts were used to characterize the invasive and proliferative function of cells expressing PDK1. Tissue microarray analysis of human breast cancers was used to measure PDK1 expression in invasive tumors by IHC. Enhanced invasion on Matrigel in PDK1-expressing cells was accompanied by increased MMP-2 activity resulting from stabilization against proteasomal degradation. Increased MMP-2 activity was accompanied by elevated levels of MT1-MMP, which is involved in generating active MMP-2. Gene microarray analysis identified increased expression of the ECM-associated genes decorin and type I procollagen, whose gene products are substrates of MT1-MMP. Mammary fat pad isografts of PDK1-expressing cells produced invasive adenocarcinomas. Tissue microarray analysis of human invasive breast cancer indicated that PDK1pSer241 was strongly expressed in 90% of samples. These results indicate that PDK1 serves as an important effector of mammary epithelial cell growth and invasion in the transformed phenotype. PDK1 mediates its effect in part by MT1-MMP induction, which in turn activates MMP-2 and modulates the ECM proteins decorin and collagen. The presence of increased PDK1 expression in the majority of invasive breast cancers suggests its

  1. Protein Kinase A Activation Promotes Cancer Cell Resistance to Glucose Starvation and Anoikis.

    Directory of Open Access Journals (Sweden)

    Roberta Palorini

    2016-03-01

    Full Text Available Cancer cells often rely on glycolysis to obtain energy and support anabolic growth. Several studies showed that glycolytic cells are susceptible to cell death when subjected to low glucose availability or to lack of glucose. However, some cancer cells, including glycolytic ones, can efficiently acquire higher tolerance to glucose depletion, leading to their survival and aggressiveness. Although increased resistance to glucose starvation has been shown to be a consequence of signaling pathways and compensatory metabolic routes activation, the full repertoire of the underlying molecular alterations remain elusive. Using omics and computational analyses, we found that cyclic adenosine monophosphate-Protein Kinase A (cAMP-PKA axis activation is fundamental for cancer cell resistance to glucose starvation and anoikis. Notably, here we show that such a PKA-dependent survival is mediated by parallel activation of autophagy and glutamine utilization that in concert concur to attenuate the endoplasmic reticulum (ER stress and to sustain cell anabolism. Indeed, the inhibition of PKA-mediated autophagy or glutamine metabolism increased the level of cell death, suggesting that the induction of autophagy and metabolic rewiring by PKA is important for cancer cellular survival under glucose starvation. Importantly, both processes actively participate to cancer cell survival mediated by suspension-activated PKA as well. In addition we identify also a PKA/Src mechanism capable to protect cancer cells from anoikis. Our results reveal for the first time the role of the versatile PKA in cancer cells survival under chronic glucose starvation and anoikis and may be a novel potential target for cancer treatment.

  2. Prevalence, Age Profile, and Associated Risk Factors for Hymenolepis nana Infection in a Large Population-Based Study in Northern Peru.

    Science.gov (United States)

    Vilchez Barreto, Percy M; Gamboa, Ricardo; Santivañez, Saul; O'Neal, Seth E; Muro, Claudio; Lescano, Andrés G; Moyano, Luz-Maria; Gonzálvez, Guillermo; García, Hector H

    2017-08-01

    Hymenolepis nana , the dwarf tapeworm, is a common intestinal infection of children worldwide. We evaluated infection and risk factor data that were previously collected from 14,761 children aged 2-15 years during a large-scale program in northern Peru. We found that 1,124 of 14,761 children (7.61%) had H. nana infection, a likely underestimate given that only a single stool sample was examined by microscopy for diagnosis. The strongest association with infection was lack of adequate water (adjusted prevalence ratio [aPR] 2.22, 95% confidence interval [CI] 1.82-2.48) and sanitation infrastructure in the house (aPR 1.94, 95% CI 1.64-2.29). One quarter of those tested did not have a bathroom or latrine at home, which doubled their likelihood of infection. Similarly, one quarter did not have piped public water to the house, which also increased the likelihood of infection. Continued efforts to improve access to basic water and sanitation services will likely reduce the burden of infection in children for this and other intestinal infections.

  3. In vivo evaluation of antiparasitic effects of Artemisia abrotanum and Salvia officinalis extracts on Syphacia obvelata, Aspiculoris tetrapetra and Hymenolepis nana parasites

    Directory of Open Access Journals (Sweden)

    Mahdi Amirmohammadi

    2014-02-01

    Full Text Available Objective: To evaluate the effects of Salvia officinalis and Artemisia abrotanum extracts against digestive system parasites of mice. Methods: The ethanol extract was prepared and dissolved in distilled water. The mebendazole was used as positive control and distilled water as negative control. After counting eggs per gram feces, infected mice with 16 eggs per gram feces contained two to three parasites of Syphacia obvelata, Aspicoloris terepetra and Hymenolipis nana designated in 4 groups. The first group was given extracts of Artemisia (150 mg/kg, the second group was given Salvia extract (150 mg/kg, the third group was given mebendazole (10 mg/kg and finally the fourth group was given distilled water (2 mL/kg. Results: The ethanol extracts of Artemisia and Salvia plants reduced the number of parasite eggs per gram of feces. Results showed significant reduction (P-value<0.001 in the number of eggs excreted by Hymenolepis nana, Aspiculuris tetraptera, Syphacia obvelata in mice. Conclusions: These results revealed that antiparasitic effects of Artemisia and Salvia are reasonable and these two plants might be used as antiparasitic natural products.

  4. A set of dual promoter vectors for high throughput cloning, screening, and protein expression in eukaryotic and prokaryotic systems from a single plasmid.

    Science.gov (United States)

    Sinah, Namita; Williams, Charlotte A; Piper, Robert C; Shields, S Brookhart

    2012-08-23

    The ability to produce the same recombinant protein in both prokaryotic and eukaryotic cells offers many experimental opportunities. However, the cloning of the same gene into multiple plasmids is required, which is time consuming, laborious and still may not produce soluble, stable protein in sufficient quantities. We have developed a set of expression vectors that allows for ligation-independent cloning and rapid functional screening for protein expression in both E. coli and S. cerevisiae. A set of expression vectors was made that can express the same open reading frame in E. coli (via the T7 phage promoter) and in S. cerevisiae (via the CUP1 or MET25 promoter). These plasmids also contain the essential elements for replication and selection in both cell types and have several advantages: they allow for cloning of genes by homologous recombination in yeast, protein expression can be determined before plasmid isolation and sequencing, and a GST-fusion tag is added to aid in soluble expression and purification. We have also included a TEV recognition site that allows for the specific cleavage of the fusion proteins to yield native proteins. The dual promoter vectors can be used for rapid cloning, expression, and purification of target proteins from both prokaryotic and eukaryotic systems with the ability to study post-translation modifications.

  5. Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart.

    Science.gov (United States)

    Thapa, Dharendra; Zhang, Manling; Manning, Janet R; Guimarães, Danielle A; Stoner, Michael W; O'Doherty, Robert M; Shiva, Sruti; Scott, Iain

    2017-08-01

    Lysine acetylation is a reversible posttranslational modification and is particularly important in the regulation of mitochondrial metabolic enzymes. Acetylation uses acetyl-CoA derived from fuel metabolism as a cofactor, thereby linking nutrition to metabolic activity. In the present study, we investigated how mitochondrial acetylation status in the heart is controlled by food intake and how these changes affect mitochondrial metabolism. We found that there was a significant increase in cardiac mitochondrial protein acetylation in mice fed a long-term high-fat diet and that this change correlated with an increase in the abundance of the mitochondrial acetyltransferase-related protein GCN5L1. We showed that the acetylation status of several mitochondrial fatty acid oxidation enzymes (long-chain acyl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase, and hydroxyacyl-CoA dehydrogenase) and a pyruvate oxidation enzyme (pyruvate dehydrogenase) was significantly upregulated in high-fat diet-fed mice and that the increase in long-chain and short-chain acyl-CoA dehydrogenase acetylation correlated with increased enzymatic activity. Finally, we demonstrated that the acetylation of mitochondrial fatty acid oxidation proteins was decreased after GCN5L1 knockdown and that the reduced acetylation led to diminished fatty acid oxidation in cultured H9C2 cells. These data indicate that lysine acetylation promotes fatty acid oxidation in the heart and that this modification is regulated in part by the activity of GCN5L1. NEW & NOTEWORTHY Recent research has shown that acetylation of mitochondrial fatty acid oxidation enzymes has greatly contrasting effects on their activity in different tissues. Here, we provide new evidence that acetylation of cardiac mitochondrial fatty acid oxidation enzymes by GCN5L1 significantly upregulates their activity in diet-induced obese mice. Copyright © 2017 the American Physiological Society.

  6. The enteropathogenic E. coli effector EspH promotes actin pedestal formation and elongation via WASP-interacting protein (WIP).

    Science.gov (United States)

    Wong, Alexander R C; Raymond, Benoit; Collins, James W; Crepin, Valerie F; Frankel, Gad

    2012-07-01

    Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC) are diarrheagenic pathogens that colonize the gut mucosa via attaching-and-effacing lesion formation. EPEC and EHEC utilize a type III secretion system (T3SS) to translocate effector proteins that subvert host cell signalling to sustain colonization and multiplication. EspH, a T3SS effector that modulates actin dynamics, was implicated in the elongation of the EHEC actin pedestals. In this study we found that EspH is necessary for both efficient pedestal formation and pedestal elongation during EPEC infection. We report that EspH induces actin polymerization at the bacterial attachment sites independently of the Tir tyrosine residues Y474 and Y454, which are implicated in binding Nck and IRSp53/ITRKS respectively. Moreover, EspH promotes recruitment of neural Wiskott-Aldrich syndrome protein (N-WASP) and the Arp2/3 complex to the bacterial attachment site, in a mechanism involving the C-terminus of Tir and the WH1 domain of N-WASP. Dominant negative of WASP-interacting protein (WIP), which binds the N-WASP WH1 domain, diminished EspH-mediated actin polymerization. This study implicates WIP in EPEC-mediated actin polymerization and pedestal elongation and represents the first instance whereby N-WASP is efficiently recruited to the EPEC attachment sites independently of the Tir:Nck and Tir:IRTKS/IRSp53 pathways. Our study reveals the intricacies of Tir and EspH-mediated actin signalling pathways that comprise of distinct, convergent and synergistic signalling cascades. © 2012 Blackwell Publishing Ltd.

  7. Can Hypocaloric, High-Protein Nutrition Support Be Used in Complicated Bariatric Patients to Promote Weight Loss?

    Science.gov (United States)

    Beebe, Mara Lee; Crowley, Nina

    2015-08-01

    Bariatric surgery, an effective treatment for morbid obesity, may result in complications that require nutrition support. Common goals for nutrition support in post-bariatric surgery patients include nutrition repletion, avoiding overfeeding, preserving lean body mass, and promoting wound healing. It is often questioned if continued weight loss can be part of the nutrition goals and if weight loss is safe for patients who become critically ill following bariatric surgery. Recent clinical practice guidelines from both the American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) and Society of Critical Care Medicine (SCCM) have recommended the use of hypocaloric, high-protein nutrition support in both critically and non-critically ill obese patients. Hypocaloric feedings of 50%-70% of estimated energy requirements based on predictive equations or nutrition support of hospitalized adult patients with obesity. Two small studies in complicated post-bariatric surgery patients requiring nutrition support have shown that the strategy of hypocaloric, high-protein feedings can result in positive outcomes, including positive nitrogen balance, wound healing, weight loss, and successful transition to oral diets. Additional research, including large, randomized studies, is still needed to validate these findings. However, based on a review of available clinical practice guidelines, predictive equations, indirect calorimetry, case studies, and systematic reviews, hypocaloric, high-protein nutrition support appears to at least be equal to eucaloric feedings and may be a useful tool for clinicians to achieve continued weight loss in complicated bariatric surgery patients requiring nutrition support. © 2015 American Society for Parenteral and Enteral Nutrition.

  8. Glutamine reduces myocardial cell apoptosis in a rat model of sepsis by promoting expression of heat shock protein 90.

    Science.gov (United States)

    Li, Wanxia; Tao, Shaoyu; Wu, Qinghua; Wu, Tao; Tao, Ran; Fan, Jun

    2017-12-01

    Myocardial cell injury and cardiac myocyte apoptosis are associated with sepsis. Glutamine (Gln) has been reported to repair myocardial cell injury. The aim of this study was to explore the role of Gln on cardiac myocytes in a cecal ligation and puncture (CLP) model of sepsis in Wistar rats. Following induction of sepsis in a CLP rat model, viral encoding heat shock protein 90 (Hsp90) gene and Hsp90dsDNA were designed to express and knockdown Hsp90, respectively. Rat cardiac tissues were examined histologically, and apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The expression of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein, Hsp90, p53 upregulated modulator of apoptosis, and p53 was measured by western blotting and real-time polymerase chain reaction. Caspase-3, caspase-8, and caspase-9 were detected by enzyme-linked immunosorbent assay. Rat cardiac myocyte damage induced by CLP was reduced by Gln treatment and Hsp90 overexpression, and these changes were reversed by Hsp90 knockdown. Bcl-2 expression, Bcl-2-associated X protein, p53, p53 upregulated modulator of apoptosis, caspase-8, caspase-9, and caspase-3 activities were significantly upregulated in the CLP model, which were reduced by Gln treatment and Hsp90 overexpression. Gln reduced apoptosis of cardiac myocytes in a rat model of sepsis, by promoting Hsp90 expression. Further studies are needed to determine the possible therapeutic action of Gln in sepsis in human tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Overexpression of Zwint predicts poor prognosis and promotes the proliferation of hepatocellular carcinoma by regulating cell-cycle-related proteins

    Directory of Open Access Journals (Sweden)

    Ying H

    2018-02-01

    Full Text Available Hanning Ying,1,2 Zhiyao Xu,3 Mingming Chen,1,2 Senjun Zhou,1,2 Xiao Liang,1,2 Xiujun Cai1,2 1Department of General Surgery, 2Key Laboratory of Endoscopic Technique Research of Zhejiang Province, 3Central Lab of Biomedical Research Center, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China Introduction: Zwint, a centromere-complex component required for the mitotic spindle checkpoint, has been reported to be overexpressed in different human cancers, but it has not been studied in human hepatocellular carcinoma (HCC.Materials and methods: The role of Zwint in hepatocellular carcinoma cell proliferation capacities was evaluated by using cell counting kit-8 (CCK8, flow cytometry, clone formation and tumor formation assay in nude mice. Western blot analysis and qPCR assay were performed to assess Zwint interacting with cell-cycle-related proteins.Results: We report that ZWINT mRNA and protein expression were upregulated in HCC samples and cell lines. An independent set of 106 HCC-tissue pairs and corresponding noncancerous tissues was evaluated for Zwint expression using immunohistochemistry, and elevated Zwint expression in HCC tissues was significantly correlated with clinicopathological features, such as tumor size and number. Kaplan–Meier survival and Cox regression analysis revealed that high expression of Zwint was correlated with poor overall survival and a greater tendency for tumor recurrence. Ectopic expression of Zwint promoted HCC-cell proliferation, and Zwint expression affected the expression of several cell-cycle proteins, including PCNA, cyclin B1, Cdc25C and CDK1.Conclusion: Our findings suggest that upregulation of Zwint may contribute to the progression of HCC and may be a prognostic biomarker and potential therapeutic target for treating HCC. Keywords: Zwint, hepatocellular carcinoma, HCC, prognosis, cell proliferation, cell cycle

  10. Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons.

    Science.gov (United States)

    Yang, Wei-Na; Ma, Kai-Ge; Qian, Yi-Hua; Zhang, Jian-Shui; Feng, Gai-Feng; Shi, Li-Li; Zhang, Zhi-Chao; Liu, Zhao-Hui

    2015-07-01

    Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD) are caused by the intraneuronal accumulation of beta-amyloid protein (Aβ). Reuptake of extracellular Aβ is believed to contribute significantly to the intraneuronal Aβ pool in the early stages of AD. Published reports have claimed that the low-density lipoprotein receptor-related protein 1 (LRP1) mediates Aβ1-42 uptake and lysosomal trafficking in GT1-7 neuronal cells and mouse embryonic fibroblast non-neuronal cells. However, there is no direct evidence supporting the role of LRP1 in Aβ internalization in primary neurons. Our recent study indicated that p38 MAPK and ERK1/2 signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor (α7nAChR)-mediated Aβ1-42 uptake in SH-SY5Y cells. This study was designed to explore the regulation of MAPK signaling pathways on LRP1-mediated Aβ internalization in neurons. We found that extracellular Aβ1-42 oligomers could be internalized into endosomes/lysosomes and mitochondria in cortical neurons. Aβ1-42 and LRP1 were also found co-localized in neurons during Aβ1-42 internalization, and they could form Aβ1-42-LRP1 complex. Knockdown of LRP1 expression significantly decreased neuronal Aβ1-42 internalization. Finally, we identified that p38 MAPK and ERK1/2 signaling pathways regulated the internalization of Aβ1-42 via LRP1. Therefore, these results demonstrated that LRP1, p38 MAPK and ERK1/2 mediated the internalization of Aβ1-42 in neurons and provided evidence that blockade of LRP1 or inhibitions of MAPK signaling pathways might be a potential approach to lowering brain Aβ levels and served a potential therapeutic target for AD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Cyclic adenosine 3',5'-monophosphate (cAMP) enhances cAMP-responsive element binding (CREB) protein phosphorylation and phospho-CREB interaction with the mouse steroidogenic acute regulatory protein gene promoter.

    Science.gov (United States)

    Clem, Brian F; Hudson, Elizabeth A; Clark, Barbara J

    2005-03-01

    Steroidogenic acute regulatory protein (StAR) transcription is regulated through cAMP-protein kinase A-dependent mechanisms that involve multiple transcription factors including the cAMP-responsive element binding protein (CREB) family members. Classically, binding of phosphorylated CREB to cis-acting cAMP-responsive elements (5'-TGACGTCA-3') within target gene promoters leads to recruitment of the coactivator CREB binding protein (CBP). Herein we examined the extent of CREB family member phosphorylation on protein-DNA interactions and CBP recruitment with the StAR promoter. Immunoblot analysis revealed that CREB, cAMP-responsive element modulator (CREM), and activating transcription factor (ATF)-1 are expressed in MA-10 mouse Leydig tumor cells, yet only CREB and ATF-1 are phosphorylated. (Bu)2cAMP treatment of MA-10 cells increased CREB phosphorylation approximately 2.3-fold within 30 min but did not change total nuclear CREB expression levels. Using DNA-affinity chromatography, we now show that CREB and ATF-1, but not CREM, interact with the StAR promoter, and this interaction is dependent on the activator protein-1 (AP-1) cis-acting element within the cAMP-responsive region. In addition, (Bu)2cAMP-treatment increased phosphorylated CREB (P-CREB) association with the StAR promoter but did not influence total CREB interaction. In vivo chromatin immunoprecipitation assays demonstrated CREB binding to the StAR proximal promoter is independent of (Bu)2cAMP-treatment, confirming our in vitro analysis. However, (Bu)2cAMP-treatment increased P-CREB and CBP interaction with the StAR promoter, demonstrating for the first time the physical role of P-CREB:DNA interactions in CBP recruitment to the StAR proximal promoter.

  12. IGF-IR promotes prostate cancer growth by stabilizing α5β1 integrin protein levels.

    Directory of Open Access Journals (Sweden)

    Aejaz Sayeed

    Full Text Available Dynamic crosstalk between growth factor receptors, cell adhesion molecules and extracellular matrix is essential for cancer cell migration and invasion. Integrins are transmembrane receptors that bind extracellular matrix proteins and enable cell adhesion and cytoskeletal organization. They also mediate signal transduction to regulate cell proliferation and survival. The type 1 insulin-like growth factor receptor (IGF-IR mediates tumor cell growth, adhesion and inhibition of apoptosis in several types of cancer. We have previously demonstrated that β1 integrins regulate anchorage-independent growth of prostate cancer (PrCa cells by regulating IGF-IR expression and androgen receptor-mediated transcriptional functions. Furthermore, we have recently reported that IGF-IR regulates the expression of β1 integrins in PrCa cells. We have dissected the mechanism through which IGF-IR regulates β1 integrin expression in PrCa. Here we report that IGF-IR is crucial for PrCa cell growth and that β1 integrins contribute to the regulation of proliferation by IGF-IR. We demonstrate that β1 integrin regulation by IGF-IR does not occur at the mRNA level. Exogenous expression of a CD4 - β1 integrin cytoplasmic domain chimera does not interfere with such regulation and fails to stabilize β1 integrin expression in the absence of IGF-IR. This appears to be due to the lack of interaction between the β1 cytoplasmic domain and IGF-IR. We demonstrate that IGF-IR stabilizes the β1 subunit by protecting it from proteasomal degradation. The α5 subunit, one of the binding partners of β1, is also downregulated along with β1 upon IGF-IR knockdown while no change is observed in the expression of the α2, α3, α4, α6 and α7 subunits. Our results reveal a crucial mechanistic role for the α5β1 integrin, downstream of IGF-IR, in regulating cancer growth.

  13. Activation of olfactory receptors on mouse pulmonary macrophages promotes monocyte chemotactic protein-1 production.

    Directory of Open Access Journals (Sweden)

    Jing Jing Li

    Full Text Available BACKGROUND: Emerging evidence suggests that non-olfactory tissues and cells can express olfactory receptors (ORs, however, the exact function of ectopic OR expression remains unknown. We have previously shown in mouse models that a unique cooperation between interferon-γ (IFN-γ and lipopolysaccharide (LPS drives the activation of pulmonary macrophages and leads to the induction of pathogenic responses in the respiratory tract. Further, through gene array studies, we have shown that activation of macrophages by these molecules results in the selective expression of a number of ORs. In this study, we validated the expression of these ORs in mouse airway and pulmonary macrophages in response to IFN-γ and LPS (γ/LPS stimulation, and further explored the effect of odorant stimulation on macrophage function. METHODOLOGY/PRINCIPAL FINDINGS: OR expression in airway and pulmonary macrophages in response to IFN-γ, LPS or γ/LPS treatments was assessed by microarray and validated by q-PCR. OR expression (e.g. OR622 on macrophages was confirmed by visualization in immunofluoresence assays. Functional responses to odorants were assessed by quantifying inflammatory cytokine and chemokine expression using q-PCR and cell migration was assessed by a modified Boyden chamber migration assay. Our results demonstrate that eight ORs are expressed at basal levels in both airway and pulmonary macrophages, and that γ/LPS stimulation cooperatively increased this expression. Pulmonary macrophages exposed to the combined treatment of γ/LPS+octanal (an odorant exhibited a 3-fold increase in MCP-1 protein production, compared to cells treated with γ/LPS alone. Supernatants from γ/LPS+octanal exposed macrophages also increased macrophage migration in vitro. CONCLUSIONS/SIGNIFICANCE: Eight different ORs are expressed at basal levels in pulmonary macrophages and expression is upregulated by the synergistic action of γ/LPS. Octanal stimulation further increased MCP-1

  14. Extratelomeric Binding of the Telomere Binding Protein TRF2 at the PCGF3 Promoter Is G-Quadruplex Motif-Dependent.

    Science.gov (United States)

    Purohit, Gunjan; Mukherjee, Ananda Kishor; Sharma, Shalu; Chowdhury, Shantanu

    2018-04-11

    Telomere repeat binding factor 2 (TRF2) is critical for the protection of chromosome ends. Mounting evidence suggests that TRF2 associates with extratelomeric sites and TRF2 functions may not be limited to telomeres. Here, we show that the PCGF3 promoter harbors a sequence capable of forming the DNA secondary structure G-quadruplex motif, which is required for binding of TRF2 at the PCGF3 promoter. We demonstrate that promoter binding by TRF2 mediates PCGF3 promoter activity, and both the N-terminal and C-terminal domains of TRF2 are necessary for promoter activity. Altogether, this shows for the first time that a telomere binding factor may regulate a component of the polycomb group of proteins.

  15. Brucella TIR-like protein TcpB/Btp1 specifically targets the host adaptor protein MAL/TIRAP to promote infection.

    Science.gov (United States)

    Li, Wenna; Ke, Yuehua; Wang, Yufei; Yang, Mingjuan; Gao, Junguang; Zhan, Shaoxia; Xinying, Du; Huang, Liuyu; Li, Wenfeng; Chen, Zeliang; Li, Juan

    2016-08-26

    Brucella spp. are known to avoid host immune recognition and weaken the immune response to infection. Brucella like accomplish this by employing two clever strategies, called the stealth strategy and hijacking strategy. The TIR domain-containing protein (TcpB/Btp1) of Brucella melitensis is thought to be involved in inhibiting host NF-κB activation by binding to adaptors downstream of Toll-like receptors. However, of the five TIR domain-containing adaptors conserved in mammals, whether MyD88 or MAL, even other three adaptors, are specifically targeted by TcpB has not been identified. Here, we confirmed the effect of TcpB on B.melitensis virulence in mice and found that TcpB selectively targets MAL. By using siRNA against MAL, we found that TcpB from B.melitensis is involved in intracellular survival and that MAL affects intracellular replication of B.melitensis. Our results confirm that TcpB specifically targets MAL/TIRAP to disrupt downstream signaling pathways and promote intra-host survival of Brucella spp. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Small molecule kaempferol modulates PDX-1 protein expression and subsequently promotes pancreatic β-cell survival and function via CREB

    Science.gov (United States)

    Zhang, Yanling.; Zhen, Wei.; Maechler, Pierre; Liu, Dongmin

    2013-01-01

    Chronic hyperlipidemia causes β-cell apoptosis and dysfunction, thereby contributing to the pathogenesis of T2D. Thus, searching for agents to promote pancreatic β-cell survival and improve its function could be a promising strategy to prevent and treat T2D. We investigated the effects of kaempferol, a small molecule isolated from ginkgo biloba, on apoptosis and function of β-cells and further determined the mechanism underlying its actions. Kaempferol treatment promoted viability, inhibited apoptosis, and reduced caspase-3 activity in INS-1E cells and human islets chronically exposed to palmitate. In addition, kaempferol prevented the lipotoxicity-induced down-regulation of anti-apoptotic proteins Akt and Bcl-2. The cytoprotective effects of kaempferol were associated with improved insulin secretion, synthesis, and PDX-1 expression. Chronic hyperlipidemia significantly diminished cAMP production, PKA activation, and CREB phosphorylation and its regulated transcriptional activity in β-cells, all of which were restored by kaempferol treatment. Disruption of CREB expression by transfection of CREB siRNA in INS-1E cells or adenoviral transfer of dominant-negative forms of CREB in human islets ablated kaempferol protection of β-cell apoptosis and dysfunction caused by palmitate. Incubation of INS-1E cells or human islets with kaempferol for 48 h induced PDX-1 expression. This effect of kaempferol on PDX-1 expression was not shared by a host of structurally related flavonoid compounds. PDX-1 gene knockdown reduced kaempferol–stimulated cAMP generation and CREB activation in INS-1E cells. These findings demonstrate that kaempferol is a novel survivor factor for pancreatic β-cells via up-regulating the PDX-1/cAMP/PKA/CREB signaling cascade. PMID:22819546

  17. miR-367 regulation of DOC-2/DAB2 interactive protein promotes proliferation, migration and invasion of osteosarcoma cells.

    Science.gov (United States)

    Cai, Wei; Jiang, Haitao; Yu, Yifan; Xu, Yong; Zuo, Wenshan; Wang, Shouguo; Su, Zhen

    2017-11-01

    Recently, miR-367 is reported to exert either oncogenic or tumor suppressive effects in human malignancies. Recent study reports that miR-367 is up-regulated in OS tissues and cell lines, and abrogates adriamycin-induced apoptosis. The clinical significance of miR-367 and its function in OS need further investigation. In our study, miR-367 expression in OS was markedly elevated compared with corresponding non-tumor tissues. High miR-367 expression was associated with malignant clinical features and poor prognosis of OS patients. In accordance, the levels of miR-367 were dramatically up-regulated in OS cells. Loss of miR-367 expression in Saos-2 cells obviously inhibited the proliferation, migration and invasion of cancer cells in vitro. Meanwhile, miR-367 restoration promoted these malignant behaviors of MG-63 cells. Mechanistically, miR-367 negatively regulated DOC-2/DAB2 interactive protein (DAB2IP) abundance in OS cells. Hereby, DAB2IP was recognized as a direct target gene of miR-367 in OS. DAB2IP mRNA level was down-regulated and inversely correlated with miR-367 expression in OS specimens. DAB2IP overexpression prohibited proliferation, migration and invasion in Saos-2 cells, while DAB2IP knockdown showed promoting effects on proliferation, migration and invasion of MG-63 cells. Furthermore, the role of miR-367 might be mediated by DAB2IP-regulated phosphorylation of ERK and AKT in OS cells. To conclude, miR-367 may function as a biomarker for prediction of prognosis and a target for OS therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Early growth response-1 protein is induced by JC virus infection and binds and regulates the JC virus promoter

    International Nuclear Information System (INIS)

    Romagnoli, Luca; Sariyer, Ilker K.; Tung, Jacqueline; Feliciano, Mariha; Sawaya, Bassel E.; Del Valle, Luis; Ferrante, Pasquale; Khalili, Kamel; Safak, Mahmut; White, Martyn K.

    2008-01-01

    JC virus (JCV) is a human polyomavirus that can emerge from a latent state to cause the cytolytic destruction of oligodendrocytes in the brain resulting in the fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Previous studies described a cis-acting transcriptional regulatory element in the JCV non-coding control region (NCCR) that is involved in the response of JCV to cytokines. This consists of a 23 base pair GGA/C rich sequence (GRS) near the replication origin (5112 to + 4) that contains potential binding sites for Sp1 and Egr-1. Gel shift analysis showed that Egr-1, but not Sp1, bound to GRS. Evidence is presented that the GRS gel shift seen on cellular stimulation is due to Egr-1. Thus, TPA-induced GRS gel shift could be blocked by antibody to Egr-1. Further, the TPA-induced GRS DNA/protein complex was isolated and found to contain Egr-1 by Western blot. No other Egr-1 sites were found in the JCV NCCR. Functionally, Egr-1 was found to stimulate transcription of JCV late promoter but not early promoter reporter constructs. Mutation of the Egr-1 site abrogated Egr-1 binding and virus with the mutated Egr-1 site showed markedly reduced VP1 expression and DNA replication. Infection of primary astrocytes by wild-type JCV induced Egr-1 nuclear expression that was maximal at 5-10 days post-infection. Finally, upregulation of Egr-1 was detected in PML by immunohistochemistry. These data suggest that Egr-1 induction may be important in the life cycle of JCV and PML pathogenesis

  19. ATF3, an HTLV-1 bZip factor binding protein, promotes proliferation of adult T-cell leukemia cells

    Directory of Open Access Journals (Sweden)

    Ohshima Koichi

    2011-03-01

    Full Text Available Abstract Background Adult T-cell leukemia (ATL is an aggressive malignancy of CD4+ T-cells caused by human T-cell leukemia virus type 1 (HTLV-1. The HTLV-1 bZIP factor (HBZ gene, which is encoded by the minus strand of the viral genome, is expressed as an antisense transcript in all ATL cases. By using yeast two-hybrid screening, we identified activating transcription factor 3 (ATF3 as an HBZ-interacting protein. ATF3 has been reported to be expressed in ATL cells, but its biological significance is not known. Results Immunoprecipitation analysis confirmed that ATF3 interacts with HBZ. Expression of ATF3 was upregulated in ATL cell lines and fresh ATL cases. Reporter assay revealed that ATF3 could interfere with the HTLV-1 Tax's transactivation of the 5' proviral long terminal repeat (LTR, doing so by affecting the ATF/CRE site, as well as HBZ. Suppressing ATF3 expression inhibited proliferation and strongly reduced the viability of ATL cells. As mechanisms of growth-promoting activity of ATF3, comparative expression profiling of ATF3 knockdown cells identified candidate genes that are critical for the cell cycle and cell death, including cell division cycle 2 (CDC2 and cyclin E2. ATF3 also enhanced p53 transcriptional activity, but this activity was suppressed by HBZ. Conclusions Thus, ATF3 expression has positive and negative effects on the proliferation and survival of ATL cells. HBZ impedes its negative effects, leaving ATF3 to promote proliferation of ATL cells via mechanisms including upregulation of CDC2 and cyclin E2. Both HBZ and ATF3 suppress Tax expression, which enables infected cells to escape the host immune system.

  20. Wilms' tumor 1-associating protein promotes renal cell carcinoma proliferation by regulating CDK2 mRNA stability.

    Science.gov (United States)

    Tang, Jingyuan; Wang, Feng; Cheng, Gong; Si, Shuhui; Sun, Xi; Han, Jie; Yu, Hao; Zhang, Wei; Lv, Qiang; Wei, Ji-Fu; Yang, Haiwei

    2018-02-27

    Wilms' tumor 1-associating protein (WTAP) plays an important role in physiological processes and the development of tumor such as cell cycle regulation. The regulation of cell cycle is mainly dependent on cyclins and cyclin-dependent protein kinases (CDKs). Recent studies have shown that CDKs are closely related to the tumor diagnosis, progression and response to treatment. However, their specific biological roles and related mechanism in renal cell carcinoma (RCC) remain unknown. Quantitative real-time PCR, western blotting and immunohistochemistry were used to detect the expression of WTAP and CDK2. The survival analysis was adopted to explore the association between WTAP expression and the prognosis of RCC. Cells were stably transfected with lentivirus approach and cell proliferation and cell cycle, as well as tumorigenesis in nude mice were performed to assess the effect of WTAP in RCC. RNA immunoprecipitation, Luciferase reporter assay and siRNA were employed to identify the direct binding sites of WTAP with CDK2 transcript. Colony formation assay was conducted to confirm the function of CDK2 in WTAP-induced growth promoting. In RCC cell lines and tissues, WTAP was significantly over-expressed. Compared with patients with low expression of WTAP, patients with high expression of WTAP had lower overall survival rate. Additionally, cell function test indicated that cell proliferation abilities in WTAP over-expressed group were enhanced, while WTAP knockdown showed the opposite results. Subcutaneous xenograft tumor model displayed that knockdown of WTAP could impede tumorigenesis in vivo. Mechanism study exhibited that CDK2 expression was positively associated with the expression of WTAP. Moreover, WTAP stabilized CDK2 transcript to enhance CDK2 expression via binding to 3'-UTR of CDK2 transcript. Additionally, specific inhibitors of CDK2 activity and small interfering RNA (siRNA) of CDK2 expression inhibited WTAP-mediated promotion of proliferation. These

  1. Electrostatics and N-glycan-mediated membrane tethering of SCUBE1 is critical for promoting bone morphogenetic protein signalling.

    Science.gov (United States)

    Liao, Wei-Ju; Tsao, Ku-Chi; Yang, Ruey-Bing

    2016-03-01

    SCUBE1 (S1), a secreted and membrane-bound glycoprotein, has a modular protein structure composed of an N-terminal signal peptide sequence followed by nine epidermal growth factor (EGF)-like repeats, a spacer region and three cysteine-rich (CR) motifs with multiple potential N-linked glycosylation sites, and one CUB domain at the C-terminus. Soluble S1 is a biomarker of platelet activation but an active participant of thrombosis via its adhesive EGF-like repeats, whereas its membrane-associated form acts as a bone morphogenetic protein (BMP) co-receptor in promoting BMP signal activity. However, the mechanism responsible for the membrane tethering and the biological importance of N-glycosylation of S1 remain largely unknown. In the present study, molecular mapping analysis identified a polycationic segment (amino acids 501-550) in the spacer region required for its membrane tethering via electrostatic interactions possibly with the anionic heparan sulfate proteoglycans. Furthermore, deglycosylation by peptide N-glycosidase F treatment revealed that N-glycans within the CR motif are essential for membrane recruitment through lectin-mediated surface retention. Injection of mRNA encoding zebrafish wild-type but not N-glycan-deficient scube1 restores the expression of haematopoietic and erythroid markers (scl and gata1) in scube1-knockdown embryos. We describe novel mechanisms in targeting S1 to the plasma membrane and demonstrate that N-glycans are required for S1 functions during primitive haematopoiesis in zebrafish. © 2016 Authors; published by Portland Press Limited.

  2. The effect of cholesteryl ester transfer protein -629C→A promoter polymorphism on high-density lipoprotein cholesterol is dependent on serum triglycerides

    NARCIS (Netherlands)

    S.E. Borggreve (Susanna); H.L. Hillege (Hans); B.H.R. Wolffenbuttel (Bruce); P. de Jong (Paul); S.J.L. Bakker (Stephan); G. van der Steege (Gerrit); A. van Tol (Arie); R.P.F. Dullaart (Robin)

    2005-01-01

    textabstractContext: The -629C→A cholesteryl ester transfer protein (CETP) promoter polymorphism is a determinant of HDL cholesterol (HDL-C). The effect of the closely linked CETP TaqIB polymorphism on HDL-C has been suggested to be modified by obesity and hyperinsulinemia. Objective: Because the

  3. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner

    International Nuclear Information System (INIS)

    Inoue-Toyoda, Maki; Kato, Kohsuke; Nagata, Kyosuke; Yoshikawa, Hiroyuki

    2015-01-01

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX

  4. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Inoue-Toyoda, Maki [Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Kato, Kohsuke [Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp [University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Yoshikawa, Hiroyuki [Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan)

    2015-02-27

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX.

  5. Adhesion and degranulation promoting adapter protein (ADAP is a central hub for phosphotyrosine-mediated interactions in T cells.

    Directory of Open Access Journals (Sweden)

    Marc Sylvester

    Full Text Available TCR stimulation leads to an increase in cellular adhesion among other outcomes. The adhesion and degranulation promoting adapter protein (ADAP is known to be rapidly phosphorylated after T cell stimulation and relays the TCR signal to adhesion molecules of the integrin family. While three tyrosine phosphorylation sites have been characterized biochemically, the binding capabilities and associated functions of several other potential phosphotyrosine motifs remain unclear. Here, we utilize in vitro phosphorylation and mass spectrometry to map novel phosphotyrosine sites in the C-terminal part of human ADAP (486-783. Individual tyrosines were then mutated to phenylalanine and their relevance for cellular adhesion and migration was tested experimentally. Functionally important tyrosine residues include two sites within the folded hSH3 domains of ADAP and two at the C-terminus. Furthermore, using a peptide pulldown approach in combination with stable isotope labeling in cell culture (SILAC we identified SLP-76, PLCgamma, PIK3R1, Nck, CRK, Gads, and RasGAP as phospho-dependent binding partners of a central YDDV motif of ADAP. The phosphorylation-dependent interaction between ADAP and Nck was confirmed by yeast two-hybrid analysis, immunoprecipitation and binary pulldown experiments, indicating that ADAP directly links integrins to modulators of the cytoskeleton independent of SLP-76.

  6. Extracellular Acidic pH Activates the Sterol Regulatory Element-Binding Protein 2 to Promote Tumor Progression.

    Science.gov (United States)

    Kondo, Ayano; Yamamoto, Shogo; Nakaki, Ryo; Shimamura, Teppei; Hamakubo, Takao; Sakai, Juro; Kodama, Tatsuhiko; Yoshida, Tetsuo; Aburatani, Hiroyuki; Osawa, Tsuyoshi

    2017-02-28

    Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic extracellular pH in cancer progression is not studied as extensively as that of hypoxia. Here, we show that extracellular acidic pH (pH 6.8) triggered activation of sterol regulatory element-binding protein 2 (SREBP2) by stimulating nuclear translocation and promoter binding to its targets, along with intracellular acidification. Interestingly, inhibition of SREBP2, but not SREBP1, suppressed the upregulation of low pH-induced cholesterol biosynthesis-related genes. Moreover, acyl-CoA synthetase short-chain family member 2 (ACSS2), a direct SREBP2 target, provided a growth advantage to cancer cells under acidic pH. Furthermore, acidic pH-responsive SREBP2 target genes were associated with reduced overall survival of cancer patients. Thus, our findings show that SREBP2 is a key transcriptional regulator of metabolic genes and progression of cancer cells, partly in response to extracellular acidification. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Antipsychotics promote GABAergic interneuron genesis in the adult rat brain: Role of heat-shock protein production.

    Science.gov (United States)

    Kaneta, Hiroo; Ukai, Wataru; Tsujino, Hanako; Furuse, Kengo; Kigawa, Yoshiyasu; Tayama, Masaya; Ishii, Takao; Hashimoto, Eri; Kawanishi, Chiaki

    2017-09-01

    Current antipsychotics reduce positive symptoms and reverse negative symptoms in conjunction with cognitive behavioral issues with the goal of restoring impaired occupational and social functioning. However, limited information is available on their influence on gliogenesis or their neurogenic properties in adult schizophrenia brains, particularly on GABAergic interneuron production. In the present study, we used young adult subventricular zone (SVZ)-derived progenitor cells expressing proteoglycan NG2 cultures to examine the oligodendrocyte and GABAergic interneuron genesis effects of several kinds of antipsychotics on changes in differentiation function induced by exposure to the NMDA receptor antagonist MK-801. We herein demonstrated that antipsychotics promoted or restored changes in the oligodendrocyte/GABAergic interneuron differentiation functions of NG2(+) cells induced by the exposure to MK-801, which was considered to be one of the drug-induced schizophrenia model. We also demonstrated that antipsychotics restored heat-shock protein (HSP) production in NG2(+) cells with differentiation impairment. The antipsychotics olanzapine, aripiprazole, and blonanserin, but not haloperidol increased HSP90 levels, which were reduced by the exposure to MK-801. Our results showed that antipsychotics, particularly those recently synthesized, exerted similar GABAergic interneuron genesis effects on NG2(+) neuronal/glial progenitor cells in the adult rat brain by increasing cellular HSP production, and also suggest that HSP90 may play a crucial role in the pathophysiology of schizophrenia and is a key target for next drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. RNA G-quadruplex secondary structure promotes alternative splicing via the RNA-binding protein hnRNPF.

    Science.gov (United States)

    Huang, Huilin; Zhang, Jing; Harvey, Samuel E; Hu, Xiaohui; Cheng, Chonghui

    2017-11-15

    It is generally thought that splicing factors regulate alternative splicing through binding to RNA consensus sequences. In addition to these linear motifs, RNA secondary structure is emerging as an important layer in splicing regulation. Here we demonstrate that RNA elements with G-quadruplex-forming capacity promote exon inclusion. Destroying G-quadruplex-forming capacity while keeping G tracts intact abrogates exon inclusion. Analysis of RNA-binding protein footprints revealed that G quadruplexes are enriched in heterogeneous nuclear ribonucleoprotein F (hnRNPF)-binding sites and near hnRNPF-regulated alternatively spliced exons in the human transcriptome. Moreover, hnRNPF regulates an epithelial-mesenchymal transition (EMT)-associated CD44 isoform switch in a G-quadruplex-dependent manner, which results in inhibition of EMT. Mining breast cancer TCGA (The Cancer Genome Atlas) data sets, we demonstrate that hnRNPF negatively correlates with an EMT gene signature and positively correlates with patient survival. These data suggest a critical role for RNA G quadruplexes in regulating alternative splicing. Modulation of G-quadruplex structural integrity may control cellular processes important for tumor progression. © 2017 Huang et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Prostate-specific G-protein-coupled receptor collaborates with loss of PTEN to promote prostate cancer progression.

    Science.gov (United States)

    Rodriguez, M; Siwko, S; Zeng, L; Li, J; Yi, Z; Liu, M

    2016-03-03

    Among frequent events in prostate cancer are loss of the tumor-suppressor phosphatase and tensin homologue (PTEN) and overexpression of prostate-specific G-protein-coupled receptor (PSGR), but the potential tumorigenic synergy between these lesions is unknown. Here, we report a new mouse model (PSGR-Pten(Δ/Δ)) combining prostate-specific loss of Pten with probasin promoter-driven PSGR overexpression. By 12 months PSGR-Pten(Δ/Δ) mice developed invasive prostate tumors featuring Akt activation and extensive inflammatory cell infiltration. PSGR-Pten(Δ/Δ) tumors exhibited E-cadherin loss and increased stromal androgen receptor (AR) expression. PSGR overexpression increased LNCaP proliferation, whereas PSGR short hairpin RNA knockdown inhibited proliferation and migration. In conclusion, we demonstrate that PSGR overexpression synergizes with loss of PTEN to accelerate prostate cancer development, and present a novel bigenic mouse model that mimics the human condition, where both PSGR overexpression and loss of PTEN occur concordantly in the majority of advanced prostate cancers, yielding an environment more relevant to studying human prostate cancer.

  10. Engineering a Biocompatible Scaffold with Either Micrometre or Nanometre Scale Surface Topography for Promoting Protein Adsorption and Cellular Response

    Directory of Open Access Journals (Sweden)

    Xuan Le

    2013-01-01

    Full Text Available Surface topographical features on biomaterials, both at the submicrometre and nanometre scales, are known to influence the physicochemical interactions between biological processes involving proteins and cells. The nanometre-structured surface features tend to resemble the extracellular matrix, the natural environment in which cells live, communicate, and work together. It is believed that by engineering a well-defined nanometre scale surface topography, it should be possible to induce appropriate surface signals that can be used to manipulate cell function in a similar manner to the extracellular matrix. Therefore, there is a need to investigate, understand, and ultimately have the ability to produce tailor-made nanometre scale surface topographies with suitable surface chemistry to promote favourable biological interactions similar to those of the extracellular matrix. Recent advances in nanoscience and nanotechnology have produced many new nanomaterials and numerous manufacturing techniques that have the potential to significantly improve several fields such as biological sensing, cell culture technology, surgical implants, and medical devices. For these fields to progress, there is a definite need to develop a detailed understanding of the interaction between biological systems and fabricated surface structures at both the micrometre and nanometre scales.

  11. TRAF6 promotes myogenic differentiation via the TAK1/p38 mitogen-activated protein kinase and Akt pathways.

    Directory of Open Access Journals (Sweden)

    Fang Xiao

    Full Text Available p38 mitogen-activated protein kinase (MAPK is an essential kinase involved in myogenic differentiation. Although many substrates of p38 MAPK have been identified, little is known about its upstream activators during myogenic differentiation. TRAF6 is known to function in cytokine signaling during inflammatory responses. However, not much is known about its role in myogenic differentiation and muscle regeneration. We showed here that TRAF6 and its intrinsic ubiquitin E3 ligase activity are required for myogenic differentiation. In mouse myoblasts, knockdown of TRAF6 compromised the p38 MAPK and Akt pathways, while deliberate activation of either pathway rescued the differentiation defect caused by TRAF6 knockdown. TAK1 acted as a key signal transducer downstream of TRAF6 in myogenic differentiation. In vivo, knockdown of TRAF6 in mouse muscles compromised the injury-induced muscle regeneration without impairing macrophage infiltration and myoblast proliferation. Collectively, we demonstrated that TRAF6 promotes myogenic differentiation and muscle regeneration via the TAK1/p38 MAPK and Akt pathways.

  12. The G-protein coupled chemoattractant receptor FPR2 promotes malignant phenotype of human colon cancer cells

    Science.gov (United States)

    Xiang, Yi; Yao, Xiaohong; Chen, Keqiang; Wang, Xiafei; Zhou, Jiamin; Gong, Wanghua; Yoshimura, Teizo; Huang, Jiaqiang; Wang, Rongquan; Wu, Yuzhang; Shi, Guochao; Bian, Xiuwu; Wang, Jiming

    2016-01-01

    The G-protein coupled chemoattractant receptor formylpeptide receptor-2 (FPR2 in human, Fpr2 in mice) is expressed by mouse colon epithelial cells and plays a critical role in mediating mucosal homeostasis and inflammatory responses. However, the biological role of FPR2 in human colon is unclear. Our investigation revealed that a considerable number of human colon cancer cell lines expressed FPR2 and its ligands promoted cell migration and proliferation. Human colon cancer cell lines expressing high levels of FPR2 also formed more rapidly growing tumors in immunocompromised mice as compared with cell lines expressing lower levels of FPR2. Knocking down of FPR2 from colon cancer cell lines highly expressing FPR2 reduced their tumorigenicity. Clinically, FPR2 is more highly expressed in progressive colon cancer, associated with poorer patient prognosis. These results suggest that FPR2 can be high-jacked by colon cancer cells for their growth advantage, thus becoming a potential target for therapeutic development. PMID:27904774

  13. Bone morphogenetic protein signaling promotes morphogenesis of blood vessels, wound epidermis, and actinotrichia during fin regeneration in zebrafish.

    Science.gov (United States)

    Thorimbert, Valentine; König, Désirée; Marro, Jan; Ruggiero, Florence; Jaźwińska, Anna

    2015-10-01

    Zebrafish fin regeneration involves initial formation of the wound epidermis and the blastema, followed by tissue morphogenesis. The mechanisms coordinating differentiation of distinct tissues of the regenerate are poorly understood. Here, we applied pharmacologic and transgenic approaches to address the role of bone morphogenetic protein (BMP) signaling during fin restoration. To map the BMP transcriptional activity, we analyzed the expression of the evolutionarily conserved direct phospho-Smad1 target gene, id1, and its homologs id2a and id3. This analysis revealed the BMP activity in the distal blastema, wound epidermis, osteoblasts, and blood vessels of the regenerate. Blocking the BMP function with a selective chemical inhibitor of BMP type I receptors, DMH1, suppressed id1 and id3 expression and arrested regeneration after blastema formation. We identified several previously uncharacterized functions of BMP during fin regeneration. Specifically, BMP signaling is required for remodeling of plexus into structured blood vessels in the rapidly growing regenerate. It organizes the wound epithelium by triggering wnt5b expression and promoting Collagen XIV-A deposition into the basement membrane. BMP represents the first known signaling that induces actinotrichia formation in the regenerate. Our data reveal a multifaceted role of BMP for coordinated morphogenesis of distinct tissues during regeneration of a complex vertebrate appendage. © FASEB.

  14. Convergence of bone morphogenetic protein and laminin-1 signaling pathways promotes proliferation and colony formation by fetal mouse pancreatic cells

    International Nuclear Information System (INIS)

    Jiang Fangxu; Harrison, Leonard C.

    2005-01-01

    We previously reported that bone morphogenetic proteins (BMPs), members of the transforming growth factor superfamily, together with the basement membrane glycoprotein laminin-1 (Ln-1), promote proliferation of fetal pancreatic cells and formation of colonies containing peripheral insulin-positive cells. Here, we further investigate the cross-talk between BMP and Ln-1 signals. By RT-PCR, receptors for BMP (BMPR) (excepting BMPR-1B) and Ln-1 were expressed in the fetal pancreas between E13.5 and E17.5. Specific blocking antibodies to BMP-4 and -6 and selective BMP antagonists partially inhibited colony formation by fetal pancreas cells. Colony formation induced by BMP-6 and Ln-1 was completely abolished in a dose-dependent manner by blocking Ln-1 binding to its α 6 integrin and α-dystroglycan receptors or by blocking the Ln-1 signaling molecules, phosphatidyl-inositol-3-kinase (P13K) and MAP kinase kinase-1. These results demonstrate a convergence of BMP and Ln-1 signaling through P13K and MAP kinase pathways to induce proliferation and colony formation in E15.5 fetal mouse pancreatic cells

  15. EKSPRESI PROTEIN COAT DAN mRNA VIRAL NERVOUS NECROSIS YANG DIKENDALIKAN OLEH PROMOTER β-AKTIN IKAN MEDAKA DAN KERATIN IKAN FLOUNDER JEPANG

    Directory of Open Access Journals (Sweden)

    Wiwien Mukti Andriyani

    2014-03-01

    Full Text Available Kemampuan promoter dalam mengatur ekspresi gen penyandi protein imunogenik sangat menentukan efikasi suatu vaksin DNA. Penelitian ini bertujuan untuk mengukur tingkat ekspresi protein dan mRNA RNA2 penyandi coat protein (CP virus viral nervous necrosis (VNN yang dikendalikan oleh dua promoter berbeda, yaitu promoter β-aktin ikan medaka (mBA, dan keratin ikan flounder Jepang (JfKer. Uji ekspresi CP dilakukan menggunakan embrio ikan lele dumbo (Clarias sp. sebagai model, sedangkan analisis mRNA dilakukan menggunakan ikan kerapu tikus. Konstruksi vektor ekspresi pmBA-CP dan pJKer-CP dengan konsentrasi 50 ng/μL KCl 1 M disuntikkan ke embrio ikan lele dumbo fase 1-2 sel. Sebanyak 30 embrio ikan lele dumbo diambil pada jam ke-6, 8, 10, 12, 14, dan 16 pascainjeksi untuk analisis protein. Hasil SDS-PAGE menunjukkan adanya protein berukuran sekitar 42 kDa, dan analisis western blot menggunakan antibodi (Ab poliklonal anti-VNN membuktikan bahwa protein tersebut adalah CP. Keberhasilan deteksi protein spesifik menggunakan Ab anti-VNN tersebut menunjukkan bahwa embrio ikan lele dapat digunakan untuk menguji potensi produksi protein imunogenik yang dikendalikan oleh promoter berbeda. Pengujian ini juga menunjukkan bahwa, aktivitas promoter mBA lebih tinggi daripada promoter JfKer, sehingga uji ekspresi mRNA dilakukan menggunakan konstruksi pmBA-CP. Benih ikan kerapu tikus (panjang badan sekitar 5 cm diinjeksi dengan pmBA-CP secara intramuskular dengan dosis 12,5 μg/ekor. Total RNA diekstraksi dari daging pada waktu 6, 12, dan 24 jam pascainjeksi. Hasil RT-PCR menunjukkan adanya ekspresi mRNA CP pada 24 jam pascainjeksi. Hal tersebut menunjukkan bahwa promotor mBA aktif mengendalikan ekspresi CP pada ikan kerapu tikus, dan pmBA-CP berpotensi digunakan sebagai vaksin DNA untuk menginduksi kekebalan ikan kerapu terhadap infeksi VNN.

  16. Cloning, expression, and characterization of the TATA-binding protein (TBP) promoter binding factor, a transcription activator of the Acanthamoeba TBP gene.

    Science.gov (United States)

    Huang, W; Bateman, E

    1995-12-01

    TATA-binding protein (TBP) gene promoter binding factor (TPBF) is a transactivator which binds to the TBP promoter element (TPE) sequence of the Acanthamoeba TBP gene promoter and stimulates transcription in vitro. We have isolated a cDNA clone encoding TPBF. TPBF is a polypeptide of 327 amino acids with a calculated molecular mass of 37 kDa. The predicted amino acid sequence of TPBF shows no significant homology to other proteins. TPBF has two potential coiled-coil regions, a basic region, a proline-rich region, a histidine-rich N terminus, and a nuclear targeting sequence. The recombinant protein has an apparent molecular mass of 50 kDa, identical with that of TPBF purified from Acanthamoeba. Recombinant TPBF is able to bind DNA and activate transcription with the same specificity as natural Acanthamoeba TPBF, demonstrating the authenticity of the clone. Mobility shift assays of co-translated TPBF polypeptides and chemical cross-linking demonstrate that TPBF is tetrameric in solution and when bound to DNA. Analyses of TPBF mutants show that Coiled-coil II is essential for DNA binding, but Coiled-coil I and the basic region are also involved. TPBF is thus a novel DNA-binding protein with functional similarity to the tumor suppressor protein p53.

  17. Analysis of the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP-1) gene and promoter in Hodgkin's disease isolates

    DEFF Research Database (Denmark)

    Sandvej, K; Andresen, B S; Zhou, X G

    2000-01-01

    AIMS: To study the distribution of Epstein-Barr virus (EBV) variants containing mutations in the latent membrane protein 1 (LMP-1) oncogene and promoter in EBV associated Hodgkin's disease and infectious mononucleosis compared with previous findings in asymptomatic EBV carriers. METHODS: Sequence...... analysis of the EBV LMP-1 promoter and gene in isolates from Danish patients with Hodgkin's disease (n = 61) and infectious mononucleosis (n = 10). RESULTS: Viruses (previously designated group D) that contain two mutations in the activating transcription factor/cAMP response element (ATF/CRE) in the LMP-1...... promoter, which are known to decrease promoter activity greatly, were significantly less frequent in Hodgkin's disease than in both infectious mononucleosis (p = 0.0081) and asymptomatic EBV carriers (p = 0.0084). In some cases, the LMP-1 gene contained mutations in a recently identified cytotoxic T cell...

  18. Development of a gene therapy strategy to target hepatocellular carcinoma based inhibition of protein phosphatase 2A using the α-fetoprotein promoter enhancer and pgk promoter: an in vitro and in vivo study

    Directory of Open Access Journals (Sweden)

    Li Wei

    2012-11-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is one of the leading causes of cancer-related deaths worldwide. Current therapies are insufficient, making HCC an intractable disease. Our previous studies confirmed that inhibition of protein phosphatase 2A (PP2A may provide a promising therapeutic strategy for cancer. Unfortunately, constitutive expression of PP2A in normal tissues limits the application of PP2A inhibition. Thus, a HCC-specific gene delivery system should be developed. The α-fetoprotein (AFP promoter is commonly used in HCC-specific gene therapy strategies; however, the utility of this approach is limited due to the weak activity of the AFP promoter. It has been shown that linking the AFP enhancer with the promoter of the non-tissue-specific, human housekeeping phosphoglycerate kinase (pgk gene can generate a strong and HCC-selective promoter. Methods We constructed a HCC-specific gene therapy system to target PP2A using the AFP enhancer/pgk promoter, and evaluated the efficiency and specificity of this system both in vitro and in vivo. Results AFP enhancer/pgk promoter-driven expression of the dominant negative form of the PP2A catalytic subunit α (DN-PP2Acα exerted cytotoxic effects against an AFP-positive human hepatoma cell lines (HepG2 and Hep3B, but did not affect AFP-negative human hepatoma cells (SK-HEP-1 or normal human liver cells (L-02. Moreover, AFP enhancer/pgk promoter driven expression of DN-PP2Acα inhibited the growth of AFP-positive HepG2 tumors in nude mice bearing solid tumor xenografts, but did not affect AFP-negative SK-HEP-1 tumors. Conclusions The novel approach of AFP enhancer/pgk promoter-driven expression of DN-PP2Acα may provide a useful cancer gene therapy strategy to selectively target HCC.

  19. Development of a gene therapy strategy to target hepatocellular carcinoma based inhibition of protein phosphatase 2A using the α-fetoprotein promoter enhancer and pgk promoter: an in vitro and in vivo study

    International Nuclear Information System (INIS)

    Li, Wei; Tao, Min; Li, Dao-Ming; Chen, Kai; Chen, Zheng; Zong, Yang; Yin, Hong; Xu, Ze-Kuan; Zhu, Yi; Gong, Fei-Ran

    2012-01-01

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Current therapies are insufficient, making HCC an intractable disease. Our previous studies confirmed that inhibition of protein phosphatase 2A (PP2A) may provide a promising therapeutic strategy for cancer. Unfortunately, constitutive expression of PP2A in normal tissues limits the application of PP2A inhibition. Thus, a HCC-specific gene delivery system should be developed. The α-fetoprotein (AFP) promoter is commonly used in HCC-specific gene therapy strategies; however, the utility of this approach is limited due to the weak activity of the AFP promoter. It has been shown that linking the AFP enhancer with the promoter of the non-tissue-specific, human housekeeping phosphoglycerate kinase (pgk) gene can generate a strong and HCC-selective promoter. We constructed a HCC-specific gene therapy system to target PP2A using the AFP enhancer/pgk promoter, and evaluated the efficiency and specificity of this system both in vitro and in vivo. AFP enhancer/pgk promoter-driven expression of the dominant negative form of the PP2A catalytic subunit α (DN-PP2Acα) exerted cytotoxic effects against an AFP-positive human hepatoma cell lines (HepG2 and Hep3B), but did not affect AFP-negative human hepatoma cells (SK-HEP-1) or normal human liver cells (L-02). Moreover, AFP enhancer/pgk promoter driven expression of DN-PP2Acα inhibited the growth of AFP-positive HepG2 tumors in nude mice bearing solid tumor xenografts, but did not affect AFP-negative SK-HEP-1 tumors. The novel approach of AFP enhancer/pgk promoter-driven expression of DN-PP2Acα may provide a useful cancer gene therapy strategy to selectively target HCC

  20. [Haemaphysalis juxtakochi Cooley, 1946 (Acari: Ixodidae) parasitizing Mazama nana (Hensel, 1872) (Artiodactyla: Cervidae) in the State of Rio Grande do Sul].

    Science.gov (United States)

    Martins, João Ricardo; Salomão, Edson Luís; Doyle, Rovaina L; Onofrio, Valéria; Barros-Battesti, Darci M; Guglielmone, Alberto A

    2007-01-01

    The record of Haemaphysalis juxtakochi Cooley, an ixodid tick, on the brocket deer, Mazama nana (Hensel), represents a new report after 34 years of its last report in the State of Rio Grande do Sul. The tick specimens (three males and one female) were found in Cachoeira do Sul, RS (30 degrees 02'21''S, 52 degrees 53'38''W). This place is elevated 72 m sea above, with an annual average temperature of 18.8 degrees C, and annual average rainfall of 1.438 mm. This is the first record of this tick species in a Cervidae and it is the second occurrence report for the State of Rio Grande do Sul.

  1. Rare sponges from marine caves: discovery of Neophrissospongia nana nov. sp. (Demospongiae, Corallistidae from Sardinia with an annotated checklist of Mediterranean lithistids

    Directory of Open Access Journals (Sweden)

    Renata Manconi

    2008-12-01

    Full Text Available A new record of lithistid demosponges is reported from a western Sardinian karstic cave. The new specimen matches the trait of the genus Neophrissospongia (Corallistidae for an ectosomal skeleton of radial dichotriaenes, a choanosomal skeleton as a network of dicranoclone desmas, and streptaster/amphiaster microscleres with short spiny rays bearing blunt tips. The cave-dwelling N. nana nov. sp. diverges from the other species of the genus in diagnostic characters such as the large irregular plate-like growth form, the topographic distribution of inhalant and exhalant apertures, and a smaller size of all spicular types. Moreover it displays an additional rare second type of dichotriaenes with smooth cladomes, shared with other genera of Corallistidae but never reported before for the genus Neophrissospongia. In addition N. nana nov. sp. bears style-like sub-ectosomal spicules shared with N. microstylifer from deep water of New Caledonia. As for the latter trait, a present in-depth analysis of N. nolitangere from the Atlantic Ocean contrasts with previous historical records reporting monaxial spicules as oxeas/anisoxeas. The diagnosis of the genus Neophrissospongia is therefore emended for the growth form and for the micro-traits of dichotriaenes and monaxial sub-ectosomal spicules. Morphological data indicate that the new species is allied to N. nolitangere and N. microstylifer from Eastern Atlantic and New Caledonian deep water, respectively, and confirm the highly disjunct geographic range of the genus Neophrissospongia in the Lusitanian-Macaronesian-Mediterranean area and the Pacific Ocean supporting the relic condition of the genus in the Mediterranean Sea. This discovery stresses the key status of Mediterranean palaeoendemics as possible remnants of an ancient Tethyan fauna and focuses the need to plan conservation measures for these rare cave-dwelling taxa.

  2. Temporal characterization of protein production levels from baculovirus vectors coding for GFP and RFP genes under non-conventional promoter control.

    Science.gov (United States)

    George, Steve; Jauhar, Altamash M; Mackenzie, Jennifer; Kieβlich, Sascha; Aucoin, Marc G

    2015-09-01

    The ease of use and versatility of the Baculovirus Expression Vector System (BEVS) has made it one of the most widely used systems for recombinant protein production However, co-expression systems currently in use mainly make use of the very strong very late p10 and polyhedron (polh) promoters to drive expression of foreign genes, which does not provide much scope for tailoring expression ratios within the cell. This work demonstrates the use of different Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) promoters to control the timing and expression of two easily traceable fluorescent proteins, the enhanced green fluorescent protein (eGFP), and a red fluorescent protein (DsRed2) in a BEVS co-expression system. Our results show that gene expression levels can easily be controlled using this strategy, and also that modulating the expression level of one protein can influence the level of expression of the other protein within the system, thus confirming the concept of genes "competing" for limited cellular resources. Plots of "expression ratios" of the two model genes over time were obtained, and may be used in future work to tightly control timing and levels of foreign gene expression in an insect cell co-expression system. © 2015 Wiley Periodicals, Inc.

  3. ANTIGENIC PROMOTION

    Science.gov (United States)

    Wu, Chin-Yu; Cinader, Bernard

    1971-01-01

    Rabbits were immunized with p-azobenzene arsonic acid derivatives of human serum albumin (HA-As) or of dissociated keyhole limpet hemocyanin. The IgM response to the hapten was evaluated in terms of the number of hapten-specific plaque-forming cells in the lymph node draining the injection site. In some experiments, antibody was measured by agglutination of tanned and sensitized erythrocytes. The hapten response of animals immunized with HA-As was increased (promoting effect) when the animals were injected with one of several structurally unrelated macromolecules: keyhole limpet hemocyanin (KLH), horse spleen ferritin (HSF), lysozyme (Lys), alum-precipitated human gamma globulin (alum-precipitated HGG). Different macromolecules differed in the magnitude of the promoting effect they induced, e.g., promotion by the associated form of KLH was greater than that by the dissociated form; alum-precipitated HGG was a better promoter than was soluble HGG. The relative magnitude of promotion by different macromolecules (associated vs. dissociated KLH, alum-precipitated vs. soluble HGG) correlated with the relative magnitude of the carrier effect, as judged by the hapten response induced by p-azobenzene arsonic acid conjugated to various proteins. Promotion was detected by agglutination assay of circulating antibody, by plaque assay of cells from the popliteal lymph node draining the site of preinjection, but not by plaque assay of cells from the contralateral lymph node. Promotion was dependent on the dose of the promoting macromolecule and on the dose of the hapten-protein conjugate. It was not observed in animals tolerant to the promoting macromolecule. Inhibition (i.e. antigenic competition), rather than promotion, was observed upon a secondary response to the preinjected macromolecule or when the hapten-protein conjugate was incorporated in Freund's adjuvant. PMID:15776570

  4. Identification of the subgenomic promoter of the coat protein gene of cucumber fruit mottle mosaic virus and development of a heterologous expression vector.

    Science.gov (United States)

    Rhee, Sun-Ju; Jang, Yoon Jeong; Lee, Gung Pyo

    2016-06-01

    Heterologous gene expression using plant virus vectors enables research on host-virus interactions and the production of useful proteins, but the host range of plant viruses limits the practical applications of such vectors. Here, we aimed to develop a viral vector based on cucumber fruit mottle mosaic virus (CFMMV), a member of the genus Tobamovirus, whose members infect cucurbits. The subgenomic promoter (SGP) in the coat protein (CP) gene, which was used to drive heterologous expression, was mapped by analyzing deletion mutants from a CaMV 35S promoter-driven infectious CFMMV clone. The region from nucleotides (nt) -55 to +160 relative to the start codon of the open reading frame (ORF) of CP was found to be a fully active promoter, and the region from nt -55 to +100 was identified as the active core promoter. Based on these SGPs, we constructed a cloning site in the CFMMV vector and successfully expressed enhanced green fluorescent protein (EGFP) in Nicotiana benthamiana and watermelon (Citrullus lanatus). Co-inoculation with the P19 suppressor increased EGFP expression and viral replication by blocking degradation of the viral genome. Our CFMMV vector will be useful as an expression vector in cucurbits.

  5. Facile promoter deletion in Escherichia coli in response to leaky expression of very robust and benign proteins from common expression vectors

    Directory of Open Access Journals (Sweden)

    Kawe Martin

    2009-01-01

    Full Text Available Abstract Background Overexpression of proteins in Escherichia coli is considered routine today, at least when the protein is soluble and not otherwise toxic for the host. We report here that the massive overproduction of even such "benign" proteins can cause surprisingly efficient promoter deletions in the expression plasmid, leading to the growth of only non-producers, when expression is not well repressed in the newly transformed bacterial cell. Because deletion is so facile, it might impact on high-throughput protein production, e.g. for structural genomics, where not every expression parameter will be monitored. Results We studied the high-level expression of several robust non-toxic proteins using a T5 promoter under lac operator control. Full induction leads to no significant growth retardation. We compared expression from almost identical plasmids with or without the lacI gene together in strains expressing different levels of LacI. Any combination without net overexpression of LacI led to an efficient promoter deletion in the plasmid, although the number of growing colonies and even the plasmid size – all antibiotic-resistant non-producers – was almost normal, and thus the problem not immediately recognizable. However, by assuring sufficient repression during the initial establishment phase of the plasmid, deletion was completely prevented. Conclusion The deletions in the insufficiently repressed system are caused entirely by the burden of high-level translation. Since the E. coli Dps protein, known to protect DNA against stress in the stationary phase, is accumulated in the deletion mutants, the mutation may have taken place during a transient stationary phase. The cause of the deletion is thus distinct from the well known interference of high-level transcription with plasmid replication. The deletion can be entirely prevented by overexpressing LacI, a useful precaution even without any signs of stress caused by the protein.

  6. The endoplasmic reticulum membrane J protein C18 executes a distinct role in promoting simian virus 40 membrane penetration.

    Science.gov (United States)

    Bagchi, Parikshit; Walczak, Christopher Paul; Tsai, Billy

    2015-04-01

    The nonenveloped simian virus 40 (SV40) hijacks the three endoplasmic reticulum (ER) membrane-bound J proteins B12, B14, and C18 to escape from the ER into the cytosol en route to successful infection. How C18 controls SV40 ER-to-cytosol membrane penetration is the least understood of these processes. We previously found that SV40 triggers B12 and B14 to reorganize into discrete puncta in the ER membrane called foci, structures postulated to represent the cytosol entry site (C. P. Walczak, M. S. Ravindran, T. Inoue, and B. Tsai, PLoS Pathog 10: e1004007, 2014). We now find that SV40 also recruits C18 to the virus-induced B12/B14 foci. Importantly, the C18 foci harbor membrane penetration-competent SV40, further implicating this structure as the membrane penetration site. Consistent with this, a mutant SV40 that cannot penetrate the ER membrane and promote infection fails to induce C18 foci. C18 also regulates the recruitment of B12/B14 into the foci. In contrast to B14, C18's cytosolic Hsc70-binding J domain, but not the lumenal domain, is essential for its targeting to the foci; this J domain likewise is necessary to support SV40 infection. Knockdown-rescue experiments reveal that C18 executes a role that is not redundant with those of B12/B14 during SV40 infection. Collectively, our data illuminate C18's contribution to SV40 ER membrane penetration, strengthening the idea that SV40-triggered foci are critical for cytosol entry. Polyomaviruses (PyVs) cause devastating human diseases, particularly in immunocompromised patients. As this virus family continues to be a significant human pathogen, clarifying the molecular basis of their cellular entry pathway remains a high priority. To infect cells, PyV traffics from the cell surface to the ER, where it penetrates the ER membrane to reach the cytosol. In the cytosol, the virus moves to the nucleus to cause infection. ER-to-cytosol membrane penetration is a critical yet mysterious infection step. In this study, we

  7. Anthrax lethal toxin rapidly reduces c-Jun levels by inhibiting c-Jun gene transcription and promoting c-Jun protein degradation.

    Science.gov (United States)

    Ouyang, Weiming; Guo, Pengfei; Fang, Hui; Frucht, David M

    2017-10-27

    Anthrax is a life-threatening disease caused by infection with Bacillus anthracis , which expresses lethal factor and the receptor-binding protective antigen. These two proteins combine to form anthrax lethal toxin (LT), whose proximal targets are mitogen-activated kinase kinases (MKKs). However, the downstream mediators of LT toxicity remain elusive. Here we report that LT exposure rapidly reduces the levels of c-Jun, a key regulator of cell proliferation and survival. Blockade of proteasome-dependent protein degradation with the 26S proteasome inhibitor MG132 largely restored c-Jun protein levels, suggesting that LT promotes degradation of c-Jun protein. Using the MKK1/2 inhibitor U0126, we further show that MKK1/2-Erk1/2 pathway inactivation similarly reduces c-Jun protein, which was also restored by MG132 pre-exposure. Interestingly, c-Jun protein rebounded to normal levels 4 h following U0126 exposure but not after LT exposure. The restoration of c-Jun in U0126-exposed cells was associated with increased c-Jun mRNA levels and was blocked by inactivation of the JNK1/2 signaling pathway. These results indicate that LT reduces c-Jun both by promoting c-Jun protein degradation via inactivation of MKK1/2-Erk1/2 signaling and by blocking c-Jun gene transcription via inactivation of MKK4-JNK1/2 signaling. In line with the known functions of c-Jun, LT also inhibited cell proliferation. Ectopic expression of LT-resistant MKK2 and MKK4 variants partially restored Erk1/2 and JNK1/2 signaling in LT-exposed cells, enabling the cells to maintain relatively normal c-Jun protein levels and cell proliferation. Taken together, these findings indicate that LT reduces c-Jun protein levels via two distinct mechanisms, thereby inhibiting critical cell functions, including cellular proliferation.

  8. Identification of the promoter region required for human adiponectin gene transcription: Association with CCAAT/enhancer binding protein-β and tumor necrosis factor-α

    International Nuclear Information System (INIS)

    Kita, Atsushi; Yamasaki, Hironori; Kuwahara, Hironaga; Moriuchi, Akie; Fukushima, Keiko; Kobayashi, Masakazu; Fukushima, Tetsuya; Takahashi, Ryoko; Abiru, Norio; Uotani, Shigeo; Kawasaki, Eiji; Eguchi, Katsumi

    2005-01-01

    Adiponectin, an adipose tissue-specific plasma protein, is involved in insulin sensitizing and has anti-atherosclerotic properties. Plasma levels of adiponectin are decreased in obese individuals and patients with type 2 diabetes with insulin resistance. Tumor necrosis factor-α (TNF-α) decreases the expression of adiponectin in adipocytes. The aims of the present study were: (1) to identify the promoter region responsible for basal transcription of the human adiponectin gene, and (2) to investigate the mechanism by which adiponectin was regulated by TNF-α. The human adiponectin promoter (2.1 kb) was isolated and used for luciferase reporter analysis by transient transfection into 3T3-L1 adipocytes. Deletion analysis demonstrated that the promoter region from -676 to +41 was sufficient for basal transcriptional activity. Mutation analysis of putative response elements for sterol regulatory element binding protein (SREBP) (-431 to -423) and CCAAT/enhancer binding protein (C/EBP) (-230 to -224) showed that both elements were required for basal promoter activity. Adiponectin transcription was increased 3-fold in cells that over-expressed constitutively active C/EBP-β. Electrophoretic mobility shift assay, using nuclear extract from 3T3-L1 cells and the -258 to -199 region as a probe, demonstrated specific DNA-protein binding, which was abolished by TNF-α treatment. The present data indicate that the putative response elements for SREBP and C/EBP are required for human adiponectin promoter activity, and that suppression by TNF-α may, at least in part, be associated with inactivation of C/EBP-β

  9. The impact of protein quality on the promotion of resistance exercise-induced changes in muscle mass.

    Science.gov (United States)

    Phillips, Stuart M

    2016-01-01

    Protein supplementation during resistance exercise training augments hypertrophic gains. Protein ingestion and the resultant hyperaminoacidemia provides the building blocks (indispensable amino acids - IAA) for, and also triggers an increase in, muscle protein synthesis (MPS), suppression of muscle protein breakdown (MPB), and net positive protein balance (i.e., MPS > MPB). The key amino acid triggering the rise in MPS is leucine, which stimulates the mechanistic target of rapamycin complex-1, a key signalling protein, and triggers a rise in MPS. As such, ingested proteins with a high leucine content would be advantageous in triggering a rise in MPS. Thus, protein quality (reflected in IAA content and protein digestibility) has an impact on changes in MPS and could ultimately affect skeletal muscle mass. Protein quality has been measured by the protein digestibility-corrected amino acid score (PDCAAS); however, the digestible indispensable amino acid score (DIAAS) has been recommended as a better method for protein quality scoring. Under DIAAS there is the recognition that amino acids are individual nutrients and that protein quality is contingent on IAA content and ileal (as opposed to fecal) digestibility. Differences in protein quality may have important ramifications for exercise-induced changes in muscle mass gains made with resistance exercise as well as muscle remodelling. Thus, the purpose of this review is a critical appraisal of studies examining the effects of protein quality in supplementation on changes in muscle mass and strength as well as body composition during resistance training.

  10. Biotherapeutic protein formulation variables influence protein integrity and can promote post-translational modifications as shown using chicken egg white lysozyme as a model system.

    Science.gov (United States)

    Gourbatsi, Evdoxia; Povey, Jane; Uddin, Shahid; Smales, C Mark

    2016-04-01

    The effect of different formulations variables on protein integrity were investigated using lysozyme as a model protein for the development of biotherapeutic protein formulations for use in the clinic. Buffer composition/concentration was the key variable of formulation reagents investigated in determining lysozyme stability and authenticity independent of protein concentration whilst the storage temperature and time, not surprisingly, were also key variables. Tryptic peptide mapping of the protein showed that the modifications occurred when formulated under specific conditions but not others. A model peptide system was developed that reflected the same behavior under formulation conditions as intact lysozyme. Peptide models may mirror the stability of proteins, or regions of proteins, in the same formulations and be used to help develop a rapid screen of formulations for stabilisation of biotherapeutic proteins.

  11. Monocyte chemoattractant protein-1 promoter -2518 polymorphism and susceptibility to vasculitis, rheumatoid arthritis, and multiple sclerosis: A meta-analysis.

    Science.gov (United States)

    Lee, Y H; Bae, S-C

    2016-03-20

    The purpose of this study was to examine whether the monocyte chemoattractant protein-1 (MCP-1) promoter -2518 A/G polymorphism (rs1024611) is associated with susceptibility to vasculitis, rheumatoid arthritis (RA), or multiple sclerosis (MS). A meta-analysis was conducted on the association between the MCP-1 -2518 A/G polymorphism and vasculitis, RA, and MS. Fourteen studies from 13 articles, including six on vasculitis, five on RA, and three on MS, consisting of 3,038 patients and 3,545 controls were available for the meta-analysis. The meta-analysis revealed no association between the MCP-1 -2518 G allele and vasculitis (odds ratio [OR] = 0.990, 95% confidence interval [CI] = 0.749-1.309, p = 0.943). Stratification by ethnicity indicated no association between the G allele of the MCP-1 -2518 A/G polymorphism and vasculitis in Asians and Caucasians. Meta-analysis by vasculitis type revealed an association between the GG+GA genotype of the MCP-1 -2518 A/G polymorphism and Behçet's disease (BD; OR = 1.349, 95% CI = 1.013-1.796, p = 0.040). However, sensitivity analysis showed that the association was not statistically significant after removing a study that was conducted in China (OR = 1.030, 95% CI = 0.667-1.590, p = 0.895), which indicated that the association was not statistically robust. The meta-analysis revealed no association between the MCP-1 -2518 G allele and RA (OR = 0.986, 95% CI = 0.890-1.093, p = 0.793) or MS (OR = 1.281, 95% CI = 0.802-2.046, p = 0.301). Our meta-analysis demonstrates that the MCP-1 -2518 A/G polymorphism is not associated with susceptibility to vasculitis, RA, or MS.

  12. Angiopoietin-like protein 3 promotes preservation of stemness during ex vivo expansion of murine hematopoietic stem cells.

    Science.gov (United States)

    Farahbakhshian, Elnaz; Verstegen, Monique M; Visser, Trudi P; Kheradmandkia, Sima; Geerts, Dirk; Arshad, Shazia; Riaz, Noveen; Grosveld, Frank; van Til, Niek P; Meijerink, Jules P P

    2014-01-01

    Allogeneic hematopoietic stem cell (HSC) transplantations from umbilical cord blood or autologous HSCs for gene therapy purposes are hampered by limited number of stem cells. To test the ability to expand HSCs in vitro prior to transplantation, two growth factor cocktails containing stem cell factor, thrombopoietin, fms-related tyrosine kinase-3 ligand (STF) or stem cell factor, thrombopoietin, insulin-like growth factor-2, fibroblast growth factor-1 (STIF) either with or without the addition of angiopoietin-like protein-3 (Angptl3) were used. Culturing HSCs in STF and STIF media for 7 days expanded long-term repopulating stem cells content in vivo by ∼6-fold and ∼10-fold compared to freshly isolated stem cells. Addition of Angptl3 resulted in increased expansion of these populations by ∼17-fold and ∼32-fold, respectively, and was further supported by enforced expression of Angptl3 in HSCs through lentiviral transduction that also promoted HSC expansion. As expansion of highly purified lineage-negative, Sca-1+, c-Kit+ HSCs was less efficient than less pure lineage-negative HSCs, Angptl3 may have a direct effect on HCS but also an indirect effect on accessory cells that support HSC expansion. No evidence for leukemia or toxicity was found during long-term follow up of mice transplanted with ex vivo expanded HSCs or manipulated HSC populations that expressed Angptl3. We conclude that the cytokine combinations used in this study to expand HSCs ex vivo enhances the engraftment in vivo. This has important implications for allogeneic umbilical cord-blood derived HSC transplantations and autologous HSC applications including gene therapy.

  13. The Ewing sarcoma protein (EWS) binds directly to the proximal elements of the macrophage-specific promoter of the CSF-1 receptor (csf1r) gene.

    Science.gov (United States)

    Hume, David A; Sasmono, Tedjo; Himes, S Roy; Sharma, Sudarshana M; Bronisz, Agnieszka; Constantin, Myrna; Ostrowski, Michael C; Ross, Ian L

    2008-05-15

    Many macrophage-specific promoters lack classical transcriptional start site elements such as TATA boxes and Sp1 sites. One example is the CSF-1 receptor (CSF-1R, CD115, c-fms), which is used as a model of the transcriptional regulation of macrophage genes. To understand the molecular basis of start site recognition in this gene, we identified cellular proteins binding specifically to the transcriptional start site (TSS) region. The mouse and human csf1r TSS were identified using cap analysis gene expression (CAGE) data. Conserved elements flanking the TSS cluster were analyzed using EMSAs to identify discrete DNA-binding factors in primary bone marrow macrophages as candidate transcriptional regulators. Two complexes were identified that bind in a highly sequence-specific manner to the mouse and human TSS proximal region and also to high-affinity sites recognized by myeloid zinc finger protein 1 (Mzf1). The murine proteins were purified by DNA affinity isolation from the RAW264.7 macrophage cell line and identified by mass spectrometry as EWS and FUS/TLS, closely related DNA and RNA-binding proteins. Chromatin immunoprecipitation experiments in bone marrow macrophages confirmed that EWS, but not FUS/TLS, was present in vivo on the CSF-1R proximal promoter in unstimulated primary macrophages. Transfection assays suggest that EWS does not act as a conventional transcriptional activator or repressor. We hypothesize that EWS contributes to start site recognition in TATA-less mammalian promoters.

  14. Glucose Induces Protein Targeting to Glycogen in Hepatocytes by Fructose 2,6-Bisphosphate-Mediated Recruitment of MondoA to the Promoter

    Science.gov (United States)

    Petrie, John L.; Al-Oanzi, Ziad H.; Arden, Catherine; Tudhope, Susan J.; Mann, Jelena; Kieswich, Julius; Yaqoob, Muhammad M.; Towle, Howard C.

    2013-01-01

    In the liver, a high glucose concentration activates transcription of genes encoding glucose 6-phosphatase and enzymes for glycolysis and lipogenesis by elevation in phosphorylated intermediates and recruitment of the transcription factor ChREBP (carbohydrate response element binding protein) and its partner, Mlx, to gene promoters. A proposed function for this mechanism is intracellular phosphate homeostasis. In extrahepatic tissues, MondoA, the paralog of ChREBP, partners with Mlx in transcriptional induction by glucose. We tested for glucose induction of regulatory proteins of the glycogenic pathway in hepatocytes and identified the glycogen-targeting proteins, GL and PTG (protein targeting to glycogen), as being encoded by Mlx-dependent glucose-inducible genes. PTG induction by glucose was MondoA dependent but ChREBP independent and was enhanced by forced elevation of fructose 2,6-bisphosphate and by additional xylitol-derived metabolites. It was counteracted by selective depletion of fructose 2,6-bisphosphate with a bisphosphatase-active kinase-deficient variant of phosphofructokinase 2/fructosebisphosphatase 2, which prevented translocation of MondoA to the nucleus and recruitment to the PTG promoter. We identify a novel role for MondoA in the liver and demonstrate that elevated fructose 2,6-bisphosphate is essential for recruitment of MondoA to the PTG promoter. Phosphometabolite activation of MondoA and ChREBP and their recruitment to target genes is consistent with a mechanism for gene regulation to maintain intracellular phosphate homeostasis. PMID:23207906

  15. Biotherapeutic protein formulation variables influence protein integrity and can promote post-translational modifications as shown using chicken egg white lysozyme as a model system

    OpenAIRE

    Gourbatsi, Evdoxia; Povey, Jane; Uddin, Shahid; Smales, C. Mark

    2015-01-01

    Objectives The effect of different formulations variables on protein integrity were investigated using lysozyme as a model protein for the development of biotherapeutic protein formulations for use in the clinic. Results Buffer composition/concentration was the key variable of formulation reagents investigated in determining lysozyme stability and authenticity independent of protein concentration whilst the storage temperature and time, not surprisingly, were also key variables. Tryptic pepti...

  16. Synthetic cold-inducible promoter enhances recombinant protein accumulation during Agrobacterium-mediated transient expression in Nicotiana excelsior at chilling temperatures.

    Science.gov (United States)

    Gerasymenko, I M; Sheludko, Y V

    2017-07-01

    To exploit cold-inducible biochemical processes beneficial for foreign mRNA transcription, translation and storage, as well as protein product stability, during Agrobacterium-mediated transient expression. The efficiency of three different 5'-regulatory sequences to achieve transient expression of the GFP-based reporter gene under chilling conditions (6-8 °C since the 3rd day post inoculation) was compared. We studied the upstream sequences of a cold-inducible Arabidopsis thaliana cor15a gene, the core element of 35S CaMV promoter fused to the TMV omega 5'-UTR, and the synthetic promoter including the 35S core sequence and two binding sites for cold-inducible CBF transcription factors (P_DRE::35S). Cultivation of plants transiently expressing reporter gene under control of the synthetic P_DRE::35S promoter under chilling conditions since the 3rd dpi led to the reliably higher reporter accumulation as compared to the other tested regulatory sequences under chilling or greenhouse conditions. Reporter protein fluorescence under chilling conditions using P_DRE::35S reached 160% as compared to the transient expression in the greenhouse. Period of transient expression considerably extended if plants were cultivated at chilling temperature since the 3rd dpi: reporter protein fluorescence reached its maximum at the 20th dpi and was detected in leaves up to the 65th dpi. The enhanced protein accumulation at low temperature was accompanied by the prolonged period of corresponding mRNA accumulation. Transient expression under chilling conditions using synthetic cold-inducible promoter enhances target protein accumulation and may decrease greenhouse heating expenses.

  17. Recombinant Promoter (MUASCsV8CP) Driven Totiviral Killer Protein 4 (KP4) Imparts Resistance Against Fungal Pathogens in Transgenic Tobacco

    Science.gov (United States)

    Deb, Debasish; Shrestha, Ankita; Maiti, Indu B.; Dey, Nrisingha

    2018-01-01

    Development of disease-resistant plant varieties achieved by engineering anti-microbial transgenes under the control of strong promoters can suffice the inhibition of pathogen growth and simultaneously ensure enhanced crop production. For evaluating the prospect of such strong promoters, we comprehensively characterized the full-length transcript promoter of Cassava Vein Mosaic Virus (CsVMV; -565 to +166) and identified CsVMV8 (-215 to +166) as the highest expressing fragment in both transient and transgenic assays. Further, we designed a new chimeric promoter ‘MUASCsV8CP’ through inter-molecular hybridization among the upstream activation sequence (UAS) of Mirabilis Mosaic Virus (MMV; -297 to -38) and CsVMV8, as the core promoter (CP). The MUASCsV8CP was found to be ∼2.2 and ∼2.4 times stronger than the CsVMV8 and CaMV35S promoters, respectively, while its activity was found to be equivalent to that of the CaMV35S2 promoter. Furthermore, we generated transgenic tobacco plants expressing the totiviral ‘Killer protein KP4’ (KP4) under the control of the MUASCsV8CP promoter. Recombinant KP4 was found to accumulate both in the cytoplasm and apoplast of plant cells. The agar-based killing zone assays revealed enhanced resistance of plant-derived KP4 against two deuteromycetous foliar pathogenic fungi viz. Alternaria alternata and Phoma exigua var. exigua. Also, transgenic plants expressing KP4 inhibited the growth progression of these fungi and conferred significant fungal resistance in detached-leaf and whole plant assays. Taken together, we establish the potential of engineering “in-built” fungal stress-tolerance in plants by expressing KP4 under a novel chimeric caulimoviral promoter in a transgenic approach. PMID:29556246

  18. NF-κB1 p50 promotes p53 protein translation through miR-190 downregulation of PHLPP1.

    Science.gov (United States)

    Yu, Y; Zhang, D; Huang, H; Li, J; Zhang, M; Wan, Y; Gao, J; Huang, C

    2014-02-20

    The biological function of NF-κB1 (p50) in the regulation of protein expression is far from well understood owing to the lack of a transcriptional domain. Here, we report a novel function of p50 in its regulation of p53 protein translation under stress conditions. We found that the deletion of p50 (p50-/-) impaired arsenite-induced p53 protein expression, which could be restored after reconstitutive expression of HA-p50 in p50-/- cells, p50-/-(Ad-HA-p50). Further studies indicated that the amounts of p53 mRNA, p53 promoter-driven transcription activity and p53 protein degradation were comparable between wild-type and p50-/- cells. Moreover, we found that p50 was crucial for Akt/S6 ribosomal protein activation via inhibition of the translation of the PH domain and leucine-rich repeat protein phosphatases 1 (PHLPP1), a phosphatase of Akt. Further studies showed that p50-mediated upregulation of miR-190 was responsible for the inhibition of PHLPP1 translation by targeting the 3'-untranslated region of its mRNA. Collectively, we have identified a novel function of p50 in modulating p53 protein translation via regulation of the miR-190/PHLPP1/Akt-S6 ribosomal protein pathway.

  19. SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability.

    Directory of Open Access Journals (Sweden)

    Glenn M Marshall

    2011-06-01

    Full Text Available The N-Myc oncoprotein is a critical factor in neuroblastoma tumorigenesis which requires additional mechanisms converting a low-level to a high-level N-Myc expression. N-Myc protein is stabilized when phosphorylated at Serine 62 by phosphorylated ERK protein. Here we describe a novel positive feedback loop whereby N-Myc directly induced the transcription of the class III histone deacetylase SIRT1, which in turn increased N-Myc protein stability. SIRT1 binds to Myc Box I domain of N-Myc protein to form a novel transcriptional repressor complex at gene promoter of mitogen-activated protein kinase phosphatase 3 (MKP3, leading to transcriptional repression of MKP3, ERK protein phosphorylation, N-Myc protein phosphorylation at Serine 62, and N-Myc protein stabilization. Importantly, SIRT1 was up-regulated, MKP3 down-regulated, in pre-cancerous cells, and preventative treatment with the SIRT1 inhibitor Cambinol reduced tumorigenesis in TH-MYCN transgenic mice. Our data demonstrate the important roles of SIRT1 in N-Myc oncogenesis and SIRT1 inhibitors in the prevention and therapy of N-Myc-induced neuroblastoma.

  20. Association between small heat shock protein B11 and the prognostic value of MGMT promoter methylation in patients with high-grade glioma.

    Science.gov (United States)

    Cheng, Wen; Li, Mingyang; Jiang, Yang; Zhang, Chuanbao; Cai, Jinquan; Wang, Kuanyu; Wu, Anhua

    2016-07-01

    OBJECT This study investigated the role and prognostic value of heat shock proteins (HSPs) in glioma. METHODS Data from 3 large databases of glioma samples (Chinese Glioma Genome Atlas, Repository for Molecular Brain Neoplasia Data, and GSE16011), which contained whole-genome messenger RNA microarray expression data and patients' clinical data, were analyzed. Immunohistochemical analysis was performed to validate protein expression in another set of 50 glioma specimens. RESULTS Of 28 HSPs, 11 were overexpressed in high-grade glioma (HGG) compared with low-grade glioma. A univariate Cox analysis revealed that HSPB11 has significant prognostic value for each glioma grade, which was validated by a Kaplan-Meier survival analysis. HSPB11 expression was associated with poor prognosis and was independently correlated with overall survival (OS) in HGG. This study further explored the combined role of HSPB11 and other molecular markers in HGG, such as isocitrate dehydrogenase 1 (IDH1) mutation and O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. HSPB11 expression was able to refine the prognostic value of IDH1 mutation in patients with HGG. However, when combined with MGMT promoter methylation status, among patients with a methylated MGMT promoter, those with lower levels of HSPB11 expression had longer OS and progression-free survival than patients with higher levels of HSPB11 expression or with an unmethylated MGMT promoter. Moreover, within the MGMT promoter methylation group, patients with low levels of HSPB11 expression were more sensitive to combined radiochemotherapy than those with high levels of HSPB11 expression, which may explain why some patients with HGG with a methylated MGMT promoter show tolerance to radiochemotherapy. CONCLUSIONS HSPB11 was identified as a novel prognostic marker in patients with HGG. Together with MGMT promoter methylation status, HSPB11 expression can predict outcome for patients with HGG and identify those who

  1. IQ-domain GTPase-activating protein 1 promotes the malignant phenotype of invasive ductal breast carcinoma via canonical Wnt pathway.

    Science.gov (United States)

    Zhao, Huan-Yu; Han, Yang; Wang, Jian; Yang, Lian-He; Zheng, Xiao-Ying; Du, Jiang; Wu, Guang-Ping; Wang, En-Hua

    2017-06-01

    IQ-domain GTPase-activating protein 1 is a scaffolding protein with multidomain which plays a role in modulating dishevelled (Dvl) nuclear translocation in canonical Wnt pathway. However, the biological function and mechanism of IQ-domain GTPase-activating protein 1 in invasive ductal carcinoma (IDC) remain unknown. In this study, we found that IQ-domain GTPase-activating protein 1 expression was elevated in invasive ductal carcinoma, which was positively correlated with tumor grade, lymphatic metastasis, and poor prognosis. Coexpression of IQ-domain GTPase-activating protein 1 and Dvl in the nucleus and cytoplasm of invasive ductal carcinoma was significantly correlated but not in the membrane. Postoperative survival in the patients with their coexpression in the nucleus and cytoplasm was obviously lower than that without coexpression. The positive expression rates of c-myc and cyclin D1 were significantly higher in the patients with nuclear coexpression of Dvl and IQ-domain GTPase-activating protein 1 than that with cytoplasmic coexpression, correlating with poor prognosis. IQ-domain GTPase-activating protein 1 significantly enhanced cell proliferation and invasion in invasive ductal carcinoma cell lines by interacting with Dvl in cytoplasm to promote Dvl nuclear translocation so as to upregulate the expression of c-myc and cyclin D1. Collectively, our data suggest that IQ-domain GTPase-activating protein 1 may promote the malignant phenotype of invasive ductal carcinoma via canonical Wnt signaling, and it could be used as a potential prognostic biomarker for breast cancer patients.

  2. Identification and Characterization of Cyclic AMP Response Element-Binding Protein H Response Element in the Human Apolipoprotein A5 Gene Promoter

    Directory of Open Access Journals (Sweden)

    Kwang Hoon Song

    2013-01-01

    Full Text Available The cyclic AMP response element-binding protein H (CREBH plays important roles in hepatic lipogenesis, fatty acid oxidation, and lipolysis under metabolic stress. Here, we report CREBH as a novel regulator of human APOA5. Knockdown of endogenous CREBH expression via small interfering RNA resulted in the downregulation of human APOA5 mRNA expression in human hepatoma cells, HepG2. Sequence analysis suggested that putative CREBH response element (CREBHRE is located in the human APOA5 promoter region and is highly conserved in both human and rodent. To clarify whether the human APOA5 promoter is regulated by CREBH, we analyzed the human APOA5 promoter region using a transient transfection assay and determined that transfection of CREBH induced human APOA5 promoter activity. Moreover, it was shown that CREBH directly regulated human APOA5 gene expression by binding to a unique CREBHRE located in the proximal human APOA5 promoter region, using 5′-deletion and mutagenesis of human APOA5 promoter analysis and chromatin immunoprecipitation assay. Taken together, our results demonstrated that human APOA5 is directly regulated by CREBH via CREBHRE and provided a new insight into the role of this liver-specific bZIP transcription factor in lipoprotein metabolism and triglyceride homeostasis.

  3. Regulated Erlin-dependent release of the B12 transmembrane J-protein promotes ER membrane penetration of a non-enveloped virus.

    Directory of Open Access Journals (Sweden)

    Takamasa Inoue

    2017-06-01

    Full Text Available The molecular mechanism by which non-enveloped viruses penetrate biological membranes remains enigmatic. The non-enveloped polyomavirus SV40 penetrates the endoplasmic reticulum (ER membrane to reach the cytosol and cause infection. We previously demonstrated that SV40 creates its own membrane penetration structure by mobilizing select transmembrane proteins to distinct puncta in the ER membrane called foci that likely function as the cytosol entry sites. How these ER membrane proteins reorganize into the foci is unknown. B12 is a transmembrane J-protein that mobilizes into the foci to promote cytosol entry of SV40. Here we identify two closely related ER membrane proteins Erlin1 and Erlin2 (Erlin1/2 as B12-interaction partners. Strikingly, SV40 recruits B12 to the foci by inducing release of this J-protein from Erlin1/2. Our data thus reveal how a non-enveloped virus promotes its own membrane translocation by triggering the release and recruitment of a critical transport factor to the membrane penetration site.

  4. A simple promoter containing two Sp1 sites controls the expression of sterol-regulatory-element-binding protein 1a (SREBP-1a)

    OpenAIRE

    Zhang, Chengkang; Shin, Dong-Ju; Osborne, Timothy F.

    2005-01-01

    The mammalian gene for SREBP-1 (sterol-regulatory-element-binding protein 1) contains two promoters that control the production of two proteins, SREBP-1a and -1c, and each contains a unique N-terminal transcriptional activation domain, but they are otherwise identical. The relative level of each mRNA varies from tissue to tissue and they respond differently to regulatory stimuli. SREBP-1c is more abundantly expressed in liver, where its level is also regulated by insulin and liver X receptor ...

  5. The CytR repressor antagonizes cyclic AMP-cyclic AMP receptor protein activation of the deoCp2 promoter of Escherichia coli K-12

    DEFF Research Database (Denmark)

    Søgaard-Andersen, Lotte; Martinussen, J; Møllegaard, N E

    1990-01-01

    We have investigated the regulation of the Escherichia coli deoCp2 promoter by the CytR repressor and the cyclic AMP (cAMP) receptor protein (CRP) complexed to cAMP. Promoter regions controlled by these two proteins characteristically contain tandem cAMP-CRP binding sites. Here we show that (i) Cyt......R selectively regulated cAMP-CRP-dependent initiations, although transcription started from the same site in deoCp2 in the absence or presence of cAMP-CRP; (ii) deletion of the uppermost cAMP-CRP target (CRP-2) resulted in loss of CytR regulation, but had only a minor effect on positive control by the cAMP...

  6. Cellular Transcription Factor Oct-1 Interacts with the Epstein-Barr Virus BRLF1 Protein To Promote Disruption of Viral Latency▿

    Science.gov (United States)

    Robinson, Amanda R.; Kwek, Swee Sen; Hagemeier, Stacy R.; Wille, Coral K.; Kenney, Shannon C.

    2011-01-01

    The Epstein-Barr virus (EBV) latent-to-lytic switch is an essential part of the viral life cycle, but the cellular factors that promote viral reactivation are not well defined. In this report, we demonstrate that the cellular transcription factor Oct-1 cooperates with the EBV immediate-early protein BRLF1 (R, Rta) to induce lytic viral reactivation. We show that cotransfected Oct-1 enhances the ability of BRLF1 to activate lytic gene expression in 293 cells stably infected with a BRLF1-defective EBV mutant (BRLF1-stop) and that Oct-1 increases BRLF1-mediated activation of lytic EBV promoters in reporter gene assays. We find that Oct-1 interacts directly with BRLF1 in vitro and that a mutant BRLF1 protein (the M140A mutant) attenuated for the ability to interact with Oct-1 in vitro is also resistant to Oct-1-mediated transcriptional enhancement in 293 BRLF1-stop cells. Furthermore, we show that cotransfected Oct-1 augments BRLF1 binding to a variety of lytic EBV promoters in chromatin immunoprecipitation (ChIP) assays (including the BZLF1, BMRF1, and SM promoters) and that BRLF1 tethers Oct-1 to lytic EBV promoters. In addition, we demonstrate that an Oct-1 mutant defective in DNA binding (the S335D mutant) still retains the ability to enhance BRLF1 transcriptional effects. Finally, we show that knockdown of endogenous Oct-1 expression reduces the level of constitutive lytic EBV gene expression in both EBV-positive B-cell and EBV-positive epithelial cell lines. These results suggest that Oct-1 acts as a positive regulator of EBV lytic gene expression and that this effect is at least partially mediated through its interaction with the viral protein BRLF1. PMID:21697476

  7. ADAM12/syndecan-4 signaling promotes beta 1 integrin-dependent cell spreading through protein kinase Calpha and RhoA

    DEFF Research Database (Denmark)

    Thodeti, Charles Kumar; Albrechtsen, Reidar; Grauslund, Morten

    2002-01-01

    and stress fiber formation. We demonstrate that syndecan-4, when present in significant amounts, promotes beta(1) integrin-dependent cell spreading and stress fiber formation in response to rADAM12-cys. A mutant form of syndecan-4 deficient in protein kinase C (PKC)alpha activation or a different member...... of the syndecan family, syndecan-2, was unable to promote cell spreading. GF109203X and Gö6976, inhibitors of PKC, completely inhibited ADAM12/syndecan-4-induced cell spreading. Expression of syndecan-4, but not syn4DeltaI, resulted in the accumulation of activated beta(1) integrins at the cell periphery...... insights into syndecan-4 signaling. Syndecan-4 can promote cell spreading in a beta(1) integrin-dependent fashion through PKCalpha and RhoA, and PKCalpha and RhoA likely function in separate pathways....

  8. Differential utilization of TATA box-binding protein (TBP) and TBP-related factor 1 (TRF1) at different classes of RNA polymerase III promoters.

    Science.gov (United States)

    Verma, Neha; Hung, Ko-Hsuan; Kang, Jin Joo; Barakat, Nermeen H; Stumph, William E

    2013-09-20

    In the fruit fly Drosophila melanogaster, RNA polymerase III transcription was found to be dependent not upon the canonical TATA box-binding protein (TBP) but instead upon the TBP-related factor 1 (TRF1) (Takada, S., Lis, J. T., Zhou, S., and Tjian, R. (2000) Cell 101, 459-469). Here we confirm that transcription of fly tRNA genes requires TRF1. However, we unexpectedly find that U6 snRNA gene promoters are occupied primarily by TBP in cells and that knockdown of TBP, but not TRF1, inhibits U6 transcription in cells. Moreover, U6 transcription in vitro effectively utilizes TBP, whereas TBP cannot substitute for TRF1 to promote tRNA transcription in vitro. Thus, in fruit flies, different classes of RNA polymerase III promoters differentially utilize TBP and TRF1 for the initiation of transcription.

  9. Copper modulates zinc metalloproteinase-dependent ectodomain shedding of key signaling and adhesion proteins and promotes the invasion of prostate cancer epithelial cells

    OpenAIRE

    Parr-Sturgess, Catherine A.; Tinker, Claire L.; Hart, Claire A.; Brown, Michael D.; Clarke, Noel W.; Parkin, Edward T.

    2012-01-01

    A disintegrin and metalloproteinases (ADAMs) and matrix metalloproteinases (MMPs) are zinc metalloproteinases (ZMPs) that catalyze the "ectodomain shedding" of a range of cell surface proteins including signaling and adhesion molecules. These "sheddases" are associated with the invasion and metastasis of a range of cancers. Increased serum and tumor tissue levels of copper are also observed in several cancers, although little is known about how the metal might promote disease progression at t...

  10. Gene promoter methylation and protein expression of BRMS1 in uterine cervix in relation to high-risk human papilloma virus infection and cancer.

    Science.gov (United States)

    Panagopoulou, Maria; Lambropoulou, Maria; Balgkouranidou, Ioanna; Nena, Evangelia; Karaglani, Makrina; Nicolaidou, Christina; Asimaki, Anthi; Konstantinidis, Theocharis; Constantinidis, Theodoros C; Kolios, George; Kakolyris, Stylianos; Agorastos, Theodoros; Chatzaki, Ekaterini

    2017-04-01

    Cervical cancer is strongly related to certain high-risk types of human papilloma virus infection. Breast cancer metastasis suppressor 1 (BRMS1) is a tumor suppressor gene, its expression being regulated by DNA promoter methylation in several types of cancers. This study aims to evaluate the methylation status of BRMS1 promoter in relation to high-risk types of human papilloma virus infection and the development of pre-cancerous lesions and describe the pattern of BRMS1 protein expression in normal, high-risk types of human papilloma virus-infected pre-cancerous and malignant cervical epithelium. We compared the methylation status of BRMS1 in cervical smears of 64 women with no infection by high-risk types of human papilloma virus to 70 women with proven high-risk types of human papilloma virus infection, using real-time methylation-specific polymerase chain reaction. The expression of BRMS1 protein was described by immunohistochemistry in biopsies from cervical cancer, pre-cancerous lesions, and normal cervices. Methylation of BRMS1 promoter was detected in 37.5% of women with no high-risk types of human papilloma virus infection and was less frequent in smears with high-risk types of human papilloma virus (11.4%) and in women with pathological histology (cervical intraepithelial neoplasia) (11.9%). Methylation was detected also in HeLa cervical cancer cells. Immunohistochemistry revealed nuclear BRMS1 protein staining in normal high-risk types of human papilloma virus-free cervix, in cervical intraepithelial neoplasias, and in malignant tissues, where staining was occasionally also cytoplasmic. In cancer, expression was stronger in the more differentiated cancer blasts. In conclusion, BRMS1 promoter methylation and aberrant protein expression seem to be related to high-risk types of human papilloma virus-induced carcinogenesis in uterine cervix and is worthy of further investigation.

  11. The Multifunctional Role of the Pallilysin-Associated Treponema pallidum Protein, Tp0750, in Promoting Fibrinolysis and Extracellular Matrix Component Degradation

    Science.gov (United States)

    Houston, Simon; Russell, Shannon; Hof, Rebecca; Roberts, Alanna K.; Cullen, Paul; Irvine, Kyle; Smith, Derek S.; Borchers, Christoph H.; Tonkin, Michelle L.; Boulanger, Martin J.; Cameron, Caroline E.

    2014-01-01

    Summary The mechanisms that facilitate dissemination of the highly invasive spirochete, Treponema pallidum, are incompletely understood. Previous studies showed the treponemal metalloprotease pallilysin (Tp0751) possesses fibrin clot degradation capability, suggesting a role in treponemal dissemination. In the current study we report characterization of the functionally-linked protein Tp0750. Structural modelling predicts Tp0750 contains a von Willebrand factor type A (vWFA) domain, a protein-protein interaction domain commonly observed in extracellular matrix (ECM)-binding proteins. We report Tp0750 is a serine protease that degrades the major clot components fibrinogen and fibronectin. We also demonstrate Tp0750 cleaves a matrix metalloprotease (MMP) peptide substrate that is targeted by several MMPs, enzymes central to ECM remodelling. Through proteomic analyses we show Tp0750 binds the endothelial fibrinolytic receptor, annexin A2, in a specific and dose-dependent manner. These results suggest Tp0750 constitutes a multifunctional protein that is able to (1) degrade infection-limiting clots by both inhibiting clot formation through degradation of host coagulation cascade proteins and promoting clot dissolution by complexing with host proteins involved in the fibrinolytic cascade and (2) facilitate ECM degradation via MMP-like proteolysis of host components. We propose that through these activities Tp0750 functions in concert with pallilysin to enable T. pallidum dissemination. PMID:24303899

  12. Supplementation of enzyme-treated soy protein saves dietary protein and promotes digestive and absorptive ability referring to TOR signaling in juvenile fish.

    Science.gov (United States)

    Xiao, Weiwei; Jiang, Weidan; Feng, Lin; Liu, Yang; Wu, Pei; Jiang, Jun; Zhang, Yongan; Zhou, Xiaoqiu

    2017-12-01

    This study was conducted to evaluate the effect of enzyme-treated soy protein (ETSP) supplementation in the low-protein diet on growth performance, digestive and absorptive capacities, and related signaling molecules' gene expressions in juvenile Jian carp. The results showed that percent weight gain (PWG), specific growth rate (SGR), and feed intake (FI) were decreased by reducing dietary protein from 34 to 32% (P  0.05). Compared with the low-protein diet, appropriate ETSP supplementation in the low-protein diet increased (P alkaline phosphatase (AKP), and Na + /K + -ATPase activities in all intestinal segments; and (4) the messenger RNA (mRNA) levels of trypsin, lipase, and amylase in hepatopancreas and γ-GT in the mid (MI) and distal (DI) intestine, alkaline phosphatase in MI, and Na + /K + -ATPase and target of rapamycin in all intestinal segments. At the same time, appropriate ETSP supplementation in the low-protein diet downregulated the mRNA levels of AKP in the DI and eIF4E-binding protein 2 in all intestinal segments (P dietary protein. Supplementation of optimal ETSP in the low-protein diet enhanced the digestive and absorptive abilities and regulated the signaling molecules related to the TOR signaling pathway.

  13. Factor H Binds to the Hypervariable Region of Many Streptococcus pyogenes M Proteins but Does Not Promote Phagocytosis Resistance or Acute Virulence

    Science.gov (United States)

    Kristensen, Bodil M.; Olsen, John E.; Harris, Claire L.; Ufret-Vincenty, Rafael L.; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar

    2013-01-01

    Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems. PMID:23637608

  14. Factor H binds to the hypervariable region of many Streptococcus pyogenes M proteins but does not promote phagocytosis resistance or acute virulence.

    Directory of Open Access Journals (Sweden)

    Mattias C U Gustafsson

    Full Text Available Many pathogens express a surface protein that binds the human complement regulator factor H (FH, as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems.

  15. A novel rice protein family of OsHIGDs may be involved in early signalling of hypoxia-promoted stem growth in deepwater rice.

    Science.gov (United States)

    Hwang, Soong-Taek; Choi, Dongsu

    2016-10-01

    OsHIGDs was identified as a novel hypoxia-responsive protein family. Among them, OsHIGD2 is characterized as a mitochondrial protein and is related to hypoxia signalling through interacting with mitochondrial proteins of critical functions in reducing cell damages caused by hypoxia. Recent evidence supports ethylene as a key factor in modulating plant responses to submergence stress. Meanwhile, there has been general consent that ethylene is not the only signal for the submergence-induced stem growth. In this study, we confirmed that hypoxia also promotes stem elongation in deepwater rice even in the absence of ethylene. As components of ethylene-independent hypoxia signalling, five HIGD (hypoxia-induced gene domain) protein genes were identified. Among the genes, OsHIGD2 showed the fastest and strongest induction by hypoxia as well as submergence. Co-expression analysis indicated that OsHIGD2 had a simultaneous expression pattern with fermentation-related genes, such as ADH1 (alcohol dehydrogenase 1) and PDC2 (pyruvate decarboxylase 2). Transient expression of OsHIGD2 in leaf epidermal cells of Nicotiana benthamiana provided evidence that the protein is localized to mitochondria. We further identified OsHIGD2-interacting proteins through the yeast two-hybrid assay using OsHIGD2 as bait. As a result, three mitochondrial proteins were discovered that function in the regulation of redox potential or reduction of protein damages caused by reactive oxygen species. In this report, we propose that OsHIGD2 is a mitochondrial protein which takes part in the early stage of hypoxia signalling by interacting with proteins that are related to oxygen utilization.

  16. Increased expression of the dsRNA-activated protein kinase PKR in breast cancer promotes sensitivity to doxorubicin.

    Directory of Open Access Journals (Sweden)

    Richard L Bennett

    Full Text Available It has been reported that the expression and activity of the interferon-inducible, dsRNA-dependent protein kinase, PKR, is increased in mammary carcinoma cell lines and primary tumor samples. To extend these findings and determine how PKR signaling may affect breast cancer cell sensitivity to chemotherapy, we measured PKR expression by immunohistochemical staining of 538 cases of primary breast cancer and normal tissues. Significantly, PKR expression was elevated in ductal, lobular and squamous cell carcinomas or lymph node metastases but not in either benign tumor specimens or cases of inflammation compared to normal tissues. Furthermore, PKR expression was increased in precancerous stages of mammary cell hyperplasia and dysplasia compared to normal tissues, indicating that PKR expression may be upregulated by the process of tumorigenesis. To test the function of PKR in breast cancer, we generated MCF7, T-47D and MDA-MB-231 breast cancer cell lines with significantly reduced PKR expression by siRNA knockdown. Importantly, while knockdown of PKR expression had no effect on cell proliferation under normal growth conditions, MCF7, T-47D or MDA-MB-231 cells with reduced PKR expression or treated with a small molecule PKR inhibitor were significantly less sensitive to doxorubicin or H(2O(2-induced toxicity compared to control cells. In addition, the rate of eIF2α phosphorylation following treatment with doxorubicin was delayed in breast cancer cell lines with decreased PKR expression. Significantly, treatment of breast cancer lines with reduced PKR expression with either interferon-α, which increases PKR expression, or salubrinal, which increases eIF2α phosphorylation, restored doxorubicin sensitivity to normal levels. Taken together these results indicate that increased PKR expression in primary breast cancer tissues may serve as a biomarker for response to doxorubicin-containing chemotherapy and that future therapeutic approaches to promote PKR

  17. A minimal peach type II chlorophyll a/b-binding protein promoter retains tissue-specificity and light regulation in tomato

    Directory of Open Access Journals (Sweden)

    Scorza Ralph

    2007-08-01

    Full Text Available Abstract Background Promoters with tissue-specificity are desirable to drive expression of transgenes in crops to avoid accumulation of foreign proteins in edible tissues/organs. Several photosynthetic promoters have been shown to be strong regulators of expression of transgenes in light-responsive tissues and would be good candidates for leaf and immature fruit tissue-specificity, if expression in the mature fruit were minimized. Results A minimal peach chlorophyll a/b-binding protein gene (Lhcb2*Pp1 promoter (Cab19 was isolated and fused to an uidA (β-glucuronidase [GUS] gene containing the PIV2 intron. A control vector carrying an enhanced mas35S CaMV promoter fused to uidA was also constructed. Two different orientations of the Cab19::GUS fusion relative to the left T-DNA border of the binary vector were transformed into tomato. Ten independent regenerants of each construct and an untransformed control line were assessed both qualitatively and quantitatively for GUS expression in leaves, fruit and flowers, and quantitatively in roots. Conclusion The minimal CAB19 promoter conferred GUS activity primarily in leaves and green fruit, as well as in response to light. GUS activity in the leaves of both Cab19 constructs averaged about 2/3 that observed with mas35S::GUS controls. Surprisingly, GUS activity in transgenic green fruit was considerably higher than leaves for all promoter constructs; however, in red, ripe fruit activities were much lower for the Cab19 promoter constructs than the mas35S::GUS. Although GUS activity was readily detectable in flowers and roots of mas35S::GUStransgenic plants, little activity was observed in plants carrying the Cab19 promoter constructs. In addition, the light-inducibility of the Cab19::GUS constructs indicated that all the requisite cis-elements for light responsiveness were contained on the Cab19 fragment. The minimal Cab19 promoter retains both tissue-specificity and light regulation and can be used to

  18. The use of lactic acid bacteria isolated from intestinal tract of Nile tilapia (Oreochromis niloticus, as growth promoters in fish fed low protein diets

    Directory of Open Access Journals (Sweden)

    Maurilio Lara-Flores

    2013-07-01

    Full Text Available In this study, the effect as growth promoter of five lactic acid strains (Enterococcus faecium, E. durans, Leuconostoc sp., Streptococcus sp. I and Streptococcus sp. II, isolated from intestinal tract of Nile tilapia (Oreochromis niloticus, was evaluated. Eight isocaloric diets were formulated: one containing 40% of protein as positive control, and seven with 27% protein. Five diets with 27% protein were supplemented with one of the isolated lactic acid bacteria in a concentration of 2.5x10(6 cfu g-1 of diet. A commercial probiotic based on S. faecium and Lactobacillus acidophilus was added at the same concentration to one 27% protein diet as a comparative diet, and the last diet was not supplemented with bacteria (negative control. Tilapia fry (280 mg basal weight stocked in 15 L aquaria at a density of two per liter were fed for 12 weeks with experimental diets. Results showed that fry fed with native bacteria supplemented diets presented significantly higher growth and feeding performance than those fed with control diet. Treatment with Streptococcus sp. I isolated from the intestine of Tilapia produced the best growth and feeding efficiency, suggesting that this bacteria is an appropriate native growth promoter.

  19. Trans-activation of the JC virus late promoter by the tat protein of type 1 human immunodeficiency virus in glial cells

    International Nuclear Information System (INIS)

    Tada, Hiroomi; Lashgari, M.; Amini, S.; Khalili, K.; Rappaport, J.; Wong-Staal, F.

    1990-01-01

    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system caused by the JC virus (JCV), a human papovavirus. PML is a relatively rare disease seen predominantly in immunocompromised individuals and is a frequent complication observed in AIDS patients. The significantly higher incidence of PML in AIDS patients than in other immunosuppressive disorders has suggested that the presence of human immunodeficiency virus type 1 (HIV-1) in the brain may directly or indirectly contribute to the pathogenesis of this disease. In the present study the authors have examined the expression of the JCV genome in both glial and non-glial cells in the presence of HIV-1 regulatory proteins. They find that the HIV-1-encoded trans-regulatory protein tat increases the basal activity of the JCV late promoter, JCV L , in glial cells. They conclude that the presence of the HIV-1-encoded tat protein may positively affect the JCV lytic cycle in glial cells by stimulating JCV gene expression. The results suggest a mechanism for the relatively high incidence of PML in AIDS patients than in other immunosuppressive disorders. Furthermore, the findings indicate that the HIV-1 regulatory protein tat may stimulate other viral and perhaps cellular promoters, in addition to its own

  20. Expression pattern conferred by a glutamic acid-rich protein gene promoter in field-grown transgenic cassava (Manihot esculenta Crantz).

    Science.gov (United States)

    Beltrán, J; Prías, M; Al-Babili, S; Ladino, Y; López, D; Beyer, P; Chavarriaga, P; Tohme, J

    2010-05-01

    A major constraint for incorporating new traits into cassava using biotechnology is the limited list of known/tested promoters that encourage the expression of transgenes in the cassava's starchy roots. Based on a previous report on the glutamic-acid-rich protein Pt2L4, indicating a preferential expression in roots, we cloned the corresponding gene including promoter sequence. A promoter fragment (CP2; 731 bp) was evaluated for its potential to regulate the expression of the reporter gene GUSPlus in transgenic cassava plants grown in the field. Intense GUS staining was observed in storage roots and vascular stem tissues; less intense staining in leaves; and none in the pith. Consistent with determined mRNA levels of the GUSPlus gene, fluorometric analyses revealed equal activities in root pulp and stems, but 3.5 times less in leaves. In a second approach, the activity of a longer promoter fragment (CP1) including an intrinsic intron was evaluated in carrot plants. CP1 exhibited a pronounced tissue preference, conferring high expression in the secondary phloem and vascular cambium of roots, but six times lower expression levels in leaf vascular tissues. Thus, CP1 and CP2 may be useful tools to improve nutritional and agronomical traits of cassava by genetic engineering. To date, this is the first study presenting field data on the specificity and potential of promoters for transgenic cassava.

  1. Identification of translationally controlled tumor protein in promotion of DNA homologous recombination repair in cancer cells by affinity proteomics

    OpenAIRE

    Li, Y; Sun, H; Zhang, C; Liu, J; Zhang, H; Fan, F; Everley, R A; Ning, X; Sun, Y; Hu, J; Zhang, J; Ye, W; Qiu, X; Dai, S; Liu, B

    2017-01-01

    Translationally controlled tumor protein(TCTP) has been implicated in the regulation of apoptosis, DNA repair and drug resistance. However, the underlying molecular mechanisms are poorly defined. To better understand the molecular mechanisms underlying TCTP involved in cellular processes, we performed an affinity purification-based proteomic profiling to identify proteins interacting with TCTP in human cervical cancer HeLa cells. We found that a group of proteins involved in DNA repair are en...

  2. The inflammatory and tumor-promoting sesquiterpene lactone, thapsigargin, activates platelets by selective mobilization of calcium as shown by protein phosphorylations

    DEFF Research Database (Denmark)

    Thastrup, Ole; Linnebjerg, H; Bjerrum, P J

    1987-01-01

    , raised cytoplasmic free calcium level and phosphorylation of platelet proteins was examined in platelet-rich plasma and washed platelet suspension. In contrast to A23187 and thrombin, the platelet activation induced by thapsigargin developed slowly, with maximal response obtained after 2-3 min. Both......We have studied the activation of human blood platelets by the inflammatory and tumor-promoting sesquiterpene lactone, thapsigargin. The effect of thapsigargin was compared with other common agonists (calcium ionophore A23187, phorbol ester TPA and thrombin). Platelet aggregation, serotonin release...... the thapsigargin- and the A23187-induced serotonin releases were synergistically increased by TPA. Studies of the phosphorylation of platelet proteins revealed that thapsigargin and A23187 equally well induced a selective phosphorylation of two proteins with apparent molecular masses of 20 kDa and 47 k...

  3. Use of a transfected and amplified Drosophila heat shock promoter construction for inducible production of toxic mouse c-myc proteins in CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, F.M.; Gwinn, K.A.; Papoulas, O.; Pallavicini, M.; Kingston, R.E.

    1987-07-24

    After transfection and selection with methotrexate, CHO cell lines were established which contained up to 2000 copies of an expression vector for c-myc protein. The vector contained the Drosophila heat shock protein 70 (hsp70) promoter fused with the coding region of the mouse c-myc gene. Incubation of cells for up to 3 hours at 43/sup 0/C resulted in at least a 100-fold induction of recombinant c-myc mRNA. When cells were shifted back to 37/sup 0/C, within 1 to 4 hours, this RNA was translated into protein to yield about 250 ..mu..g per 10/sup 9/ cells. Cells died a few hours later, suggesting that high concentrations of intracellular c-myc are cytotoxic. 47 refs., 5 figs.

  4. Use of a transfected and amplified Drosophila heat shock promoter construction for inducible production of toxic mouse c-myc proteins in CHO cells

    International Nuclear Information System (INIS)

    Wurm, F.M.; Gwinn, K.A.; Papoulas, O.; Pallavicini, M.; Kingston, R.E.

    1987-01-01

    After transfection and selection with methotrexate, CHO cell lines were established which contained up to 2000 copies of an expression vector for c-myc protein. The vector contained the Drosophila heat shock protein 70 (hsp70) promoter fused with the coding region of the mouse c-myc gene. Incubation of cells for up to 3 hours at 43 0 C resulted in at least a 100-fold induction of recombinant c-myc mRNA. When cells were shifted back to 37 0 C, within 1 to 4 hours, this RNA was translated into protein to yield about 250 μg per 10 9 cells. Cells died a few hours later, suggesting that high concentrations of intracellular c-myc are cytotoxic. 47 refs., 5 figs

  5. Stimulated initiation of mitogen-activated protein kinase phosphatase-1 (MKP-1) gene transcription involves the synergistic action of multiple cis-acting elements in the proximal promoter.

    Science.gov (United States)

    Ryser, Stephan; Massiha, Abbas; Piuz, Isabelle; Schlegel, Werner

    2004-01-01

    Mitogen-activated protein kinases (MAPKs) are inactivated by a dual specificity phosphatase, MAPK phosphatase-1 (MKP-1). MKP-1 is transcribed as an immediate early response gene (IEG) following various stimuli. In the pituitary cell line GH4C1, MKP-1 gene transcription is strongly induced by thyrotropin-releasing hormone (TRH) as well as by epidermal growth factor (EGF) as a consequence of activated MAPK/extracellular-signal-regulated kinase (ERK) signalling. Intriguingly, reporter gene analysis with the MKP-1 promoter showed strong basal transcription, but only limited induction by TRH and EGF. Site-directed mutagenesis of the reporter construct combined with band-shift and in vivo studies revealed that part of the constitutive activity of the MKP-1 promoter resides in two GC boxes bound by Sp1 and Sp3 transcription factors in the minimal promoter. Basal transcription of transiently transfected luciferase reporter can be initiated by either of the two GC boxes or also by either of the two cAMP/Ca(2+) responsive elements or by the E-box present in the proximal promoter. On the other hand, when analysed by stable transfection, the five responsive elements are acting in synergy to transactivate the MKP-1 proximal promoter. We show in this study that the MKP-1 promoter can function as a constitutive promoter or as a rapid and transient sensor for the activation state of MAPKs/ERKs. This dual mode of transcription initiation may have different consequences for the control of a block to elongation situated in the first exon of the MKP-1 gene, as described previously [Ryser, Tortola, van Haasteren, Muda, Li and Schlegel (2001) J. Biol. Chem. 276, 33319-33327]. PMID:14609431

  6. THAP and ATF-2 regulated sterol carrier protein-2 promoter activities in the larval midgut of the yellow fever mosquito, Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Rong Peng

    Full Text Available Expression of sterol carrier protein-2 (SCP-2 in Aedes aegypti shows a distinct temporal/spatial pattern throughout the life cycle. In order to identify the transcription factors responsible for the larval temporal/spatial regulation of AeSCP-2 transcription, AeSCP-2 promoter activities were studied in vivo via transient transfection of promoter/reporter gene assays. Regulatory sequences upstream -1.3 kb of the transcription start site of AeSCP-2 were found to be critical for the in vivo temporal/spatial promoter activity. Interestingly, the -1.6 kb promoter sequence efficiently drove the larval midgut-specific siRNA expression, indicating that the -1.6 kb upstream sequence is sufficient for temporal/spatial AeSCP-2 transcriptional activity. Four transcription factors were identified in the midgut nuclear extract from feeding larvae via labeled -1.6/-1.3 kb DNA probe pull-down and proteomic analysis. Co-transfection of the promoter/reporter gene with inducible siRNA expression of each transcription factor was performed to confirm the regulatory function of individual transcription factor on AeSCP-2 transcriptional activities in the larval midgut. The results indicate that two of the identified transcription factors, Thanatos-associated protein (THAP and activating transcription factor-2 (ATF-2, antagonistically control AeSCP-2 transcriptional activity in the midgut of feeding larvae via the regulatory sequences between -1.6 to -1.3 kb 5' upstream of the transcription start site. In vivo expression knockdown of THAP and ATF-2 resulted in significant changes in developmental progression, which may be partially due to their effects on AeSCP-2 expression.

  7. Ultraviolet B (UVB) induction of the c-fos promoter is mediated by phospho-cAMP response element binding protein (CREB) binding to CRE and c-fos activator protein 1 site (FAP1) cis elements.

    Science.gov (United States)

    Gonzales, Melissa; Bowden, G Tim

    2002-06-26

    The ultraviolet B (UVB) portion (280-320 nm) of the ultraviolet spectrum has been shown to contribute to the development of non-melanoma skin cancer in humans. Research in the human keratinocyte cell line, HaCaT, revealed that UVB irradiation caused the upregulation of the transcription factor activator protein-1 (AP-1). The AP-1 complex formed in UVB-irradiated HaCaT cells is specifically composed of c-fos and Jun D. c-Fos expression was induced in a manner that correlated with the UVB-induced activation of AP-1. To investigate how c-fos expression is regulated by UVB irradiation, the role of each of four cis elements within the c-fos promoter was evaluated. Clustered point mutations at the sis inducible element (SIE), serum response element (SRE), c-fos AP-1 site (FAP1), or cyclic AMP response elements (CRE) significantly inhibited UVB induction of the c-fos promoter. This indicated that all four cis elements are required for maximum promoter activity. The CRE and FAP1 elements were the two most active cis elements that mediate the UVB transactivation of c-fos. Homodimers of phosphorylated cAMP response element binding protein (CREB) were induced by UVB irradiation to bind to each of these elements. Therefore, CREB may function as an important regulatory protein in the UVB-induced expression of c-fos.

  8. The Barley stripe mosaic virus γb protein promotes chloroplast-targeted replication by enhancing unwinding of RNA duplexes.

    Directory of Open Access Journals (Sweden)

    Kun Zhang

    2017-04-01

    Full Text Available RNA viruses encode various RNA binding proteins that function in many steps of viral infection cycles. These proteins function as RNA helicases, methyltransferases, RNA-dependent RNA polymerases, RNA silencing suppressors, RNA chaperones, movement proteins, and so on. Although many of the proteins bind the viral RNA genome during different stages of infection, our knowledge about the coordination of their functions is limited. In this study, we describe a novel role for the Barley stripe mosaic virus (BSMV γb as an enhancer of αa RNA helicase activity, and we show that the γb protein is recruited by the αa viral replication protein to chloroplast membrane sites of BSMV replication. Mutagenesis or deletion of γb from BSMV resulted in reduced positive strand (+ RNAα accumulation, but γb mutations abolishing viral suppressor of RNA silencing (VSR activity did not completely eliminate genomic RNA replication. In addition, cis- or trans-expression of the Tomato bushy stunt virus p19 VSR protein failed to complement the γb replication functions, indicating that the direct involvement of γb in BSMV RNA replication is independent of VSR functions. These data support a model whereby two BSMV-encoded RNA-binding proteins act coordinately to regulate viral genome replication and provide new insights into strategies whereby double-stranded viral RNA unwinding is regulated, as well as formation of viral replication complexes.

  9. The Barley stripe mosaic virus γb protein promotes chloroplast-targeted replication by enhancing unwinding of RNA duplexes

    Science.gov (United States)

    Yang, Meng; Liu, Songyu; Li, Zhenggang; Wang, Xianbing; Han, Chenggui; Yu, Jialin

    2017-01-01

    RNA viruses encode various RNA binding proteins that function in many steps of viral infection cycles. These proteins function as RNA helicases, methyltransferases, RNA-dependent RNA polymerases, RNA silencing suppressors, RNA chaperones, movement proteins, and so on. Although many of the proteins bind the viral RNA genome during different stages of infection, our knowledge about the coordination of their functions is limited. In this study, we describe a novel role for the Barley stripe mosaic virus (BSMV) γb as an enhancer of αa RNA helicase activity, and we show that the γb protein is recruited by the αa viral replication protein to chloroplast membrane sites of BSMV replication. Mutagenesis or deletion of γb from BSMV resulted in reduced positive strand (+) RNAα accumulation, but γb mutations abolishing viral suppressor of RNA silencing (VSR) activity did not completely eliminate genomic RNA replication. In addition, cis- or trans-expression of the Tomato bushy stunt virus p19 VSR protein failed to complement the γb replication functions, indicating that the direct involvement of γb in BSMV RNA replication is independent of VSR functions. These data support a model whereby two BSMV-encoded RNA-binding proteins act coordinately to regulate viral genome replication and provide new insights into strategies whereby double-stranded viral RNA unwinding is regulated, as well as formation of viral replication complexes. PMID:28388677

  10. HCV core protein-induced down-regulation of microRNA-152 promoted aberrant proliferation by regulating Wnt1 in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Shifeng Huang

    Full Text Available Hepatitis C virus (HCV has been reported to regulate cellular microRNAs (miRNAs. The HCV core protein is considered to be a potential oncoprotein in HCV-related hepatocellular carcinoma (HCV-HCC, but HCV core-regulated miRNAs are largely unknown. Our preliminary experiments revealed significant down-regulation of microRNA-152 (miR-152 by HCV core protein in HepG2 cells. Through target gene prediction softwares, Wnt1 was predicted to be a potential target of miR-152. The present study was initiated to investigate whether miR-152 is aberrantly regulated by the HCV core protein, and involved in the regulation of the aberrant proliferation of HCV-HCC cells.MiR-152 levels were examined by stem-loop real-time RT-PCR (SLqRT-PCR. Cell proliferation was analyzed by MTT and colony formation assay. Cell cycle analysis was performed by flow cytometry. Luciferase reporter assay was conducted to confirm miRNA-target association. Wnt1 expression was determined by real-time qPCR and Western blotting.HCV core protein significantly suppressed miR-152 expression, and led to significant Wnt1 up-regulation with a concomitant aberrantly promoted proliferation. Moreover, we validated that miR-152 inhibition promoted, while miR-152 mimics inhibited cell proliferation. Using, qRT-PCR and western blot, Wnt1 was demonstrated to be regulated by miR-152. Luciferase activity assay showed that while miR-152 mimics significantly reduced the luciferase activity by 83.76% (P<0.0001, miR-152 inhibitor showed no effect on luciferase reporter. Most notably, salvage expression of miR-152 after Ad-HCV core infection for 24 h almost totally reversed the proliferation-promoting effect of the HCV core protein, and meanwhile, reduced the expression of both Wnt1 mRNA and protein to basal levels.These findings provide important evidence that the reduced miR-152 expression by HCV core protein can indirectly lose an inhibitory effect on Wnt1, which might, at least partially lead to cell

  11. Cloning and function analysis of an alfalfa (Medicago sativa L.) zinc finger protein promoter MsZPP.

    Science.gov (United States)

    Li, Yan; Sun, Yan; Yang, Qingchuan; Kang, Junmei; Zhang, Tiejun; Gruber, Margaret Yvonne; Fang, Feng

    2012-08-01

    A 1272 bp upstream sequence of MsZFN gene was cloned from alfalfa, which was designed as MsZPP (Genbank accession number: FJ 161979.2) using an adaptor-mediated genome walking method. A sole transcription start site was located 69 bp upstream of the translation start site. Its pattern of expression included roots, stem vascular tissues, floral reproductive organs, and leaves, but the promoter did not express in seeds, petals or sepals. Transcription levels can be stimulated by dark, MeJA, and IAA. However, GUS fusion activities had no change by treatments of GA, ABA, drought and high salt for 3 days. Deletion analysis revealed that all sections of the promoter can drive gus gene expression in the root, stem, leaves and floral reproductive organs; however, only fragments longer than the -460 bp promoter can stimulate strong gus gene expression in these organs. In addition, the -460 bp promoter fragment can drive gus expression not only in the vascular tissue, but also in leaf guard cells. The results suggest that the promoter MsZPP plays roles in the regulation of transgene expression, particularly due to its darkness, MeJA, and IAA responsiveness.

  12. A late embryogenesis abundant protein HVA1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty.

    Science.gov (United States)

    Chen, Yi-Shih; Lo, Shuen-Fang; Sun, Peng-Kai; Lu, Chung-An; Ho, Tuan-Hua D; Yu, Su-May

    2015-01-01

    Regulation of root architecture is essential for maintaining plant growth under adverse environment. A synthetic abscisic acid (ABA)/stress-inducible promoter was designed to control the expression of a late embryogenesis abundant protein (HVA1) in transgenic rice. The background of HVA1 is low but highly inducible by ABA, salt, dehydration and cold. HVA1 was highly accumulated in root apical meristem (RAM) and lateral root primordia (LRP) after ABA/stress treatments, leading to enhanced root system expansion. Water-use efficiency (WUE) and biomass also increased in transgenic rice, likely due to the maintenance of normal cell functions and metabolic activities conferred by HVA1 which is capable of stabilizing proteins, under osmotic stress. HVA1 promotes lateral root (LR) initiation, elongation and emergence and primary root (PR) elongation via an auxin-dependent process, particularly by intensifying asymmetrical accumulation of auxin in LRP founder cells and RAM, even under ABA/stress-suppressive conditions. We demonstrate a successful application of an inducible promoter in regulating the spatial and temporal expression of HVA1 for improving root architecture and multiple stress tolerance without yield penalty. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Sequence motif upstream of the Hendra virus fusion protein cleavage site is not sufficient to promote efficient proteolytic processing

    International Nuclear Information System (INIS)

    Craft, Willie Warren; Dutch, Rebecca Ellis

    2005-01-01

    The Hendra virus fusion (HeV F) protein is synthesized as a precursor, F 0 , and proteolytically cleaved into the mature F 1 and F 2 heterodimer, following an HDLVDGVK 109 motif. This cleavage event is required for fusogenic activity. To determine the amino acid requirements for processing of the HeV F protein, we constructed multiple mutants. Individual and simultaneous alanine substitutions of the eight residues immediately upstream of the cleavage site did not eliminate processing. A chimeric SV5 F protein in which the furin site was substituted for the VDGVK 109 motif of the HeV F protein was not processed but was expressed on the cell surface. Another chimeric SV5 F protein containing the HDLVDGVK 109 motif of the HeV F protein underwent partial cleavage. These data indicate that the upstream region can play a role in protease recognition, but is neither absolutely required nor sufficient for efficient processing of the HeV F protein

  14. An upstream promoter element of the Acanthamoeba castellanii TBP gene binds a DNA sequence specific transcription activating protein, TPBF.

    Science.gov (United States)

    Liu, F; Bateman, E

    1993-01-01

    We have characterized a positive-acting element in the upstream portion of the Acanthamoeba TBP gene promoter. The 27 bp element (TPE), located within the promoter between -97 and -70, stimulates transcription in an orientation independent fashion and tolerates modest changes in its distance from the TATA box. The TPE does not, however, function synergistically nor when positioned 3000 bp 5' or 260 base pairs 3' of the transcription start site. The TPE binds a DNA sequence-dependent factor, TPBF, which we have partly purified. TPBF was characterized using in vitro transcription, DNase I footprinting, methylation interference and electrophoretic mobility shift assays. TPBF does not have a counterpart in HeLa cells, but nonetheless strongly stimulates transcription of the Acanthamoeba TBP gene in mammalian extracts. Our results also suggest that there are additional positively and negatively acting elements within the TBP gene promoter, for which a model is presented. Images PMID:8414988

  15. Promoter- and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by Methyl-CpG binding proteins and histone modifications

    International Nuclear Information System (INIS)

    Müller, Imke; Wischnewski, Frank; Pantel, Klaus; Schwarzenbach, Heidi

    2010-01-01

    The aim of the current study was to analyze the involvement of methyl-CpG binding proteins (MBDs) and histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in different cellular contexts such as the prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7. Since global chromatin changes have been shown to occur in tumours and regions of tumour-associated genes are affected by epigenetic modifications, these may constitute important regulatory mechanisms for the pathogenesis of malignant transformation. In DU145, LNCaP and MCF-7 cells mRNA expression levels of CD44, Cyclin D2, GLIPR1 and PTEN were determined by quantitative RT-PCR at the basal status as well as after treatment with demethylating agent 5-aza-2'-deoxycytidine and/or histone deacetylase inhibitor Trichostatin A. Furthermore, genomic DNA was bisulfite-converted and sequenced. Chromatin immunoprecipitation was performed with the stimulated and unstimulated cells using antibodies for MBD1, MBD2 and MeCP2 as well as 17 different histone antibodies. Comparison of the different promoters showed that MeCP2 and MBD2a repressed promoter-specifically Cyclin D2 in all cell lines, whereas in MCF-7 cells MeCP2 repressed cell-specifically all methylated promoters. Chromatin immunoprecipitation showed that all methylated promoters associated with at least one MBD. Treatment of the cells by the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR) caused dissociation of the MBDs from the promoters. Only MBD1v1 bound and repressed methylation-independently all promoters. Real-time amplification of DNA immunoprecipitated by 17 different antibodies showed a preferential enrichment for methylated lysine of histone H3 (H3K4me1, H3K4me2 and H3K4me3) at the particular promoters. Notably, the silent promoters were associated with unmodified histones which were acetylated following treatment by 5-aza-CdR. This study is one of the first to reveal the histone code and MBD profile

  16. Promoter- and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by Methyl-CpG binding proteins and histone modifications

    Directory of Open Access Journals (Sweden)

    Schwarzenbach Heidi

    2010-06-01

    Full Text Available Abstract Background The aim of the current study was to analyze the involvement of methyl-CpG binding proteins (MBDs and histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in different cellular contexts such as the prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7. Since global chromatin changes have been shown to occur in tumours and regions of tumour-associated genes are affected by epigenetic modifications, these may constitute important regulatory mechanisms for the pathogenesis of malignant transformation. Methods In DU145, LNCaP and MCF-7 cells mRNA expression levels of CD44, Cyclin D2, GLIPR1 and PTEN were determined by quantitative RT-PCR at the basal status as well as after treatment with demethylating agent 5-aza-2'-deoxycytidine and/or histone deacetylase inhibitor Trichostatin A. Furthermore, genomic DNA was bisulfite-converted and sequenced. Chromatin immunoprecipitation was performed with the stimulated and unstimulated cells using antibodies for MBD1, MBD2 and MeCP2 as well as 17 different histone antibodies. Results Comparison of the different promoters showed that MeCP2 and MBD2a repressed promoter-specifically Cyclin D2 in all cell lines, whereas in MCF-7 cells MeCP2 repressed cell-specifically all methylated promoters. Chromatin immunoprecipitation showed that all methylated promoters associated with at least one MBD. Treatment of the cells by the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR caused dissociation of the MBDs from the promoters. Only MBD1v1 bound and repressed methylation-independently all promoters. Real-time amplification of DNA immunoprecipitated by 17 different antibodies showed a preferential enrichment for methylated lysine of histone H3 (H3K4me1, H3K4me2 and H3K4me3 at the particular promoters. Notably, the silent promoters were associated with unmodified histones which were acetylated following treatment by 5-aza-CdR. Conclusions This study is one

  17. Haemaphysalis juxtakochi Cooley, 1946 (Acari: Ixodidae) parasitando Mazama nana (Hensel, 1872) (Artiodactyla: Cervidae) no estado do Rio Grande do Sul Haemaphysalis juxtakochi Cooley, 1946 (Acari: Ixodidae) parasitizing Mazama nana (Hensel, 1872) (Artiodactyla: Cervidae) in the State of Rio Grande do Sul

    OpenAIRE

    João Ricardo Martins; Edson Luís Salomão; Rovaina L. Doyle; Valéria Onofrio; Darci M. Barros-Battesti; Alberto A. Guglielmone

    2007-01-01

    O encontro de Haemaphysalis juxtakochi Cooley, um carrapato ixodídeo, no veado bororó-do-sul, Mazama nana (Hensel), representa novo relato de ocorrência, após 34 anos de seu registro no Estado do Rio Grande do Sul. Os exemplares de carrapatos (3 machos e 1 fêmea) foram encontrados em Cachoeira do Sul, RS (30º02’21"S, 52º53’38"W). O local está a 72 m acima do nível do mar, com uma média anual de temperatura de 18,8°C, e uma precipitação média anual de 1.438 mm. Este é o primeiro re...

  18. The routine use of antibiotics to promote animal growth does little to benefit protein undernutrition in the developing world

    DEFF Research Database (Denmark)

    Collignon, P.; Wegener, Henrik Caspar; Braam, P.

    2005-01-01

    Some persons argue that the routine addition of antibiotics to animal feed will help alleviate protein undernutrition in developing countries by increasing meat production. In contrast, we estimate that, if all routine antibiotic use in animal feed were ceased, there would be negligible effects...... in these countries. Poultry and pork production are unlikely to decrease by more than 2%. Average daily protein supply would decrease by no more than 0.1 g per person (or 0.2% of total protein intake). Eliminating the routine use of in-feed antibiotics will improve human and animal health, by reducing...... the development and spread of antibiotic-resistant bacteria....

  19. The moderate essential amino acid restriction entailed by low-protein vegan diets may promote vascular health by stimulating FGF21 secretion.

    Science.gov (United States)

    McCarty, Mark F

    2016-02-12

    The serum total and LDL cholesterol levels of long-term vegans tend to be very low. The characteristically low ratio of saturated to unsaturated fat in vegan diets, and the absence of cholesterol in such diets, clearly contribute to this effect. But there is reason to suspect that the quantity and composition of dietary protein also play a role in this regard. Vegan diets of moderate protein intake tend to be relatively low in certain essential amino acids, and as a result may increase hepatic activity of the kinase GCN2, which functions as a gauge of amino acid status. GCN2 activation boosts the liver's production of fibroblast growth factor 21 (FGF21), a factor which favorably affects serum lipids and metabolic syndrome. The ability of FGF21 to decrease LDL cholesterol has now been traced to at least two mechanisms: a suppression of hepatocyte expression of sterol response element-binding protein-2 (SREBP-2), which in turn leads to a reduction in cholesterol synthesis; and up-regulated expression of hepatocyte LDL receptors, reflecting inhibition of a mechanism that promotes proteasomal degradation of these receptors. In mice, the vascular benefits of FGF21 are also mediated by favorable effects on adipocyte function - most notably, increased adipocyte secretion of adiponectin, which directly exerts anti-inflammatory effects on the vasculature which complement the concurrent reduction in LDL particles in preventing or reversing atherosclerosis. If, as has been proposed, plant proteins preferentially stimulate glucagon secretion owing to their amino acid composition, this would represent an additional mechanism whereby plant protein promotes FGF21 activity, as glucagon acts on the liver to boost transcription of the FGF21 gene.

  20. Genome-wide identification and comparative analysis of squamosa-promoter binding proteins (sbp) transcription factor family in gossypium raimondii and arabidopsis thaliana

    International Nuclear Information System (INIS)

    Ali, M.A.; Alia, K.B.; Atif, R.M.; Rasulj, I.; Nadeem, H.U.; Shahid, A.; Azeem, F

    2017-01-01

    SQUAMOSA-Promoter Binding Proteins (SBP) are class of transcription factors that play vital role in regulation of plant tissue growth and development. The genes encoding these proteins have not yet been identified in diploid cotton. Thus here, a comprehensive genome wide analysis of SBP genes/proteins was carried out to identify the genes encoding SBP proteins in Gossypium raimondii and Arabidopsis thaliana. We identified 17 SBP genes from Arabidopsis thaliana genome and 30 SBP genes from Gossypium raimondii. Chromosome localization studies revealed the uneven distribution of SBP encoding genes both in the genomes of A. thaliana and G. raimondii. In cotton, five SBP genes were located on chromosome no. 2, while no gene was found on chromosome 9. In A. thaliana, maximum seven SBP genes were identified on chromosome 9, while chromosome 4 did not have any SBP gene. Thus, the SBP gene family might have expanded as a result of segmental as well as tandem duplications in these species. The comparative phylogenetic analysis of Arabidopsis and cotton SBPs revealed the presence of eight groups. The gene structure analysis of SBP encoding genes revealed the presence of one to eleven inrons in both Arabidopsis and G. raimondii. The proteins sharing the same phyletic group mostly demonstrated the similar intron-exon occurrence pattern; and share the common conserved domains. The SBP DNA-binding domain shared 24 absolutely conserved residues in Arabidopsis. The present study can serve as a base for the functional characterization of SBP gene family in Gossypium raimondii. (author)

  1. Creation of Bt rice expressing a fusion protein of Cry1Ac and Cry1I-like using a green tissue-specific promoter.

    Science.gov (United States)

    Yang, Yong-Yi; Mei, Feng; Zhang, Wei; Shen, Zhicheng; Fang, Jun

    2014-08-01

    The insecticidal genes from Bacillus thuringiensis Berliner (Bt) have long been successfully used for development of insect-resistant rice. However, commercial planting of Bt rice has been delayed by the concern over food safety, although no scientific evidence is ever found to justify the concern. To address this safety concern, we developed a transgenic insect-resistant rice line using a green tissue promoter to minimize the Bt protein expression in the rice seeds. The Bt protein expressed in the rice was a fusion protein of two different Bt toxins, Cry1Ac and Cry1I-like protein. The fusion of the two toxins may be helpful to delay the development of insect resistance to Bt rice. Laboratory and field bioassays demonstrated that the transgenic rice plants created by this study were highly active against the rice leaf folder Cnaphalocrocis medinalis (Guenée) and the striped stem borer Chilo suppressalis (Walker). Western analysis indicated that the fusion protein was specifically expressed in green tissues but not in seeds. Therefore, the transgenic rice created in this study should be useful to mitigate the food safety concern and to delay the development of insect resistance.

  2. Long Non-Coding RNA HOTAIR Promotes Cell Migration and Invasion via Down-Regulation of RNA Binding Motif Protein 38 in Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Chaofeng Ding

    2014-03-01

    Full Text Available Long non-coding RNA HOTAIR exerts regulatory functions in various biological processes in cancer cells, such as proliferation, apoptosis, mobility, and invasion. We previously found that HOX transcript antisense RNA (HOTAIR is a negative prognostic factor and exhibits oncogenic activity in hepatocellular carcinoma (HCC. In this study, we aimed to investigate the role and molecular mechanism of HOTAIR in promoting HCC cell migration and invasion. Firstly, we profiled its gene expression pattern by microarray analysis of HOTAIR loss in Bel-7402 HCC cell line. The results showed that 129 genes were significantly down-regulated, while 167 genes were significantly up-regulated (fold change >2, p < 0.05. Bioinformatics analysis indicated that RNA binding proteins were involved in this biological process. HOTAIR suppression using RNAi strategy with HepG2 and Bel-7402 cells increased the mRNA and protein expression levels of RNA binding motif protein 38 (RBM38. Moreover, the expression levels of RBM38 in HCC specimens were significantly lower than paired adjacent noncancerous tissues. In addition, knockdown of HOTAIR resulted in a decrease of cell migration and invasion, which could be specifically rescued by down-regulation of RBM38. Taken together, HOTAIR could promote migration and invasion of HCC cells by inhibiting RBM38, which indicated critical roles of HOTAIR and RBM38 in HCC progression.

  3. Haemaphysalis juxtakochi Cooley, 1946 (Acari: Ixodidae parasitando Mazama nana (Hensel, 1872 (Artiodactyla: Cervidae no estado do Rio Grande do Sul Haemaphysalis juxtakochi Cooley, 1946 (Acari: Ixodidae parasitizing Mazama nana (Hensel, 1872 (Artiodactyla: Cervidae in the State of Rio Grande do Sul

    Directory of Open Access Journals (Sweden)

    João Ricardo Martins

    2007-09-01

    Full Text Available O encontro de Haemaphysalis juxtakochi Cooley, um carrapato ixodídeo, no veado bororó-do-sul, Mazama nana (Hensel, representa novo relato de ocorrência, após 34 anos de seu registro no Estado do Rio Grande do Sul. Os exemplares de carrapatos (3 machos e 1 fêmea foram encontrados em Cachoeira do Sul, RS (30º02’21"S, 52º53’38"W. O local está a 72 m acima do nível do mar, com uma média anual de temperatura de 18,8°C, e uma precipitação média anual de 1.438 mm. Este é o primeiro registro de H. juxtakochi nesta espécie de cervídeo e um segundo relato de ocorrência para o Estado do Rio Grande do Sul.The record of Haemaphysalis juxtakochi Cooley, an ixodid tick, on the brocket deer, Mazama nana (Hensel, represents a new report after 34 years of its last report in the State of Rio Grande do Sul. The tick specimens (three males and one female were found in Cachoeira do Sul, RS (30º02’21"S, 52º53’38"W. This place is elevated 72 m sea above, with an annual average temperature of 18.8°C, and annual average rainfall of 1.438 mm. This is the first record of this tick species in a Cervidae and it is the second occurrence report for the State of Rio Grande do Sul.

  4. Traffic jam at the blood-brain barrier promotes greater accumulation of Alzheimer's disease amyloid-β proteins in the cerebral vasculature.

    Science.gov (United States)

    Agyare, Edward K; Leonard, Sarah R; Curran, Geoffry L; Yu, Caroline C; Lowe, Val J; Paravastu, Anant K; Poduslo, Joseph F; Kandimalla, Karunya K

    2013-05-06

    Amyloid-β (Aβ) deposition in the brain vasculature results in cerebral amyloid angiopathy (CAA), which occurs in about 80% of Alzheimer's disease (AD) patients. While Aβ42 predominates parenchymal amyloid plaques in AD brain, Aβ40 is prevalent in the cerebrovascular amyloid. Dutch mutation of Aβ40 (E22Q) promotes aggressive cerebrovascular accumulation and leads to severe CAA in the mutation carriers; knowledge of how DutchAβ40 drives this process more efficiently than Aβ40 could reveal various pathophysiological events that promote CAA. In this study we have demonstrated that DutchAβ40 shows preferential accumulation in the blood-brain-barrier (BBB) endothelial cells due to its inefficient blood-to-brain transcytosis. Consequently, DutchAβ40 establishes a permeation barrier in the BBB endothelium, prevents its own clearance from the brain, and promotes the formation of amyloid deposits in the cerebral microvessels. The BBB endothelial accumulation of native Aβ40 is not robust enough to exercise such a significant impact on its brain clearance. Hence, the cerebrovascular accumulation of Aβ40 is slow and may require other copathologies to precipitate into CAA. In conclusion, the magnitude of Aβ accumulation in the BBB endothelial cells is a critical factor that promotes CAA; hence, clearing vascular endothelium of Aβ proteins may halt or even reverse CAA.

  5. Traffic Jam at the Blood Brain Barrier Promotes Greater Accumulation of Alzheimer’s Disease Amyloid-β Proteins in the Cerebral Vasculature

    Science.gov (United States)

    Agyare, Edward K.; Leonard, Sarah R.; Curran, Geoffry L.; Yu, Caroline C.; Lowe, Val J.; Paravastu, Anant K.; Poduslo, Joseph F.; Kandimalla, Karunya K.

    2013-01-01

    Amyloid-β (Aβ) deposition in the brain vasculature results in cerebral amyloid angiopathy (CAA), which occurs in about 80% of Alzheimer’s disease (AD) patients. While Aβ42 predominates parenchymal amyloid plaques in AD brain, Aβ40 is prevalent in the cerebrovascular amyloid. Dutch mutation of Aβ40 (E22Q) promotes aggressive cerebrovascular accumulation and leads to severe CAA in the mutation carriers; knowledge of how DutchAβ40 drives this process more efficiently than Aβ40 could reveal various pathophysiological events that promote CAA. In this study we have demonstrated that DutchAβ40 show preferential accumulation in the blood-brain-barrier (BBB) endothelial cells due to its inefficient blood-to-brain transcytosis. Consequently, DutchAβ40 establishes a permeation barrier in the BBB endothelium, prevents its own clearance from the brain and promotes the formation of amyloid deposits in the cerebral microvessels. The BBB endothelial accumulation of native Aβ40 is not robust enough to exercise such a significant impact on its brain clearance. Hence, the cerebrovascular accumulation of Aβ40 is slow and may require other co-pathologies to precipitate into CAA. In conclusion, the magnitude of Aβ accumulation in the BBB endothelial cells is a critical factor that promotes CAA; hence, clearing vascular endothelium of Aβ proteins may halt or even reverse CAA. PMID:23249146

  6. Facilitating protein denaturation in organic solvent and the contribution to the promoting dispersion of graphite nanoplatelets in a polymer

    Directory of Open Access Journals (Sweden)

    T. Liu

    2015-08-01

    Full Text Available Denatured proteins, natural macromolecules are very attractive for advanced nanocomposites owing to their multiple functional chemical groups. However, denaturation processes were only successfully conducted in an aqueous environment, limiting their broad applications in hydrophobic polymers. In this study, we report an effective approach of denaturing soy protein at nanoscale in an organic solvent. Further, the denatured soy protein was found to be able to infiltrate between the graphite nanoplatelet (GNP layers to reduce the thickness of GNPs and improve the dispersion of the nanoparticles in either the suspension or the final polymeric nanocomposites. As a result, remarkable improvements in transparency and electrical conductivity have been achieved for the nanocomposites with the GNPs treated by the denatured soy protein.

  7. G1/S-regulated E2F-containing protein complexes bind to the mouse thymidine kinase gene promoter

    DEFF Research Database (Denmark)

    Dou, Q P; Zhao, S; Levin, A H

    1994-01-01

    report that MT2 includes an E2F-like binding site (GTTCGCGGGCAAA), as shown by the following evidence. (i) MT2 bound specifically to an affinity-purified fusion human E2F protein. (ii) Both MT2 and an authentic E2F site (TTTCGCGCGCTTT) bound specifically to similar or identical nuclear protein complexes......, a candidate repressor, from the MT2 site in late G1 may be essential for S phase-dependent transcription of the mouse TK gene....

  8. Expanded polyalanine tracts function as nuclear export signals and promote protein mislocalization via eEF1A1 factor.

    Science.gov (United States)

    Li, Li; Ng, Nelson Ka Lam; Koon, Alex Chun; Chan, Ho Yin Edwin

    2017-04-07

    Polyalanine (poly(A)) diseases are caused by the expansion of translated GCN triplet nucleotide sequences encoding poly(A) tracts in proteins. To date, nine human disorders have been found to be associated with poly(A) tract expansions, including congenital central hypoventilation syndrome and oculopharyngeal muscular dystrophy. Previous studies have demonstrated that unexpanded wild-type poly(A)-containing proteins localize to the cell nucleus, whereas expanded poly(A)-containing proteins primarily localize to the cytoplasm. Because most of these poly(A) disease proteins are transcription factors, this mislocalization causes cellular transcriptional dysregulation leading to cellular dysfunction. Correcting this faulty localization could potentially point to strategies to treat the aforementioned disorders, so there is a pressing need to identify the mechanisms underlying the mislocalization of expanded poly(A) protein. Here, we performed a glutathione S -transferase pulldown assay followed by mass spectrometry and identified eukaryotic translation elongation factor 1 α1 (eEF1A1) as an interacting partner with expanded poly(A)-containing proteins. Strikingly, knockdown of eEF1A1 expression partially corrected the mislocalization of the expanded poly(A) proteins in the cytoplasm and restored their functions in the nucleus. We further demonstrated that the expanded poly(A) domain itself can serve as a nuclear export signal. Taken together, this study demonstrates that eEF1A1 regulates the subcellular location of expanded poly(A) proteins and is therefore a potential therapeutic target for combating the pathogenesis of poly(A) diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Incorporating modeling and simulations in undergraduate biophysical chemistry course to promote understanding of structure-dynamics-function relationships in proteins.

    Science.gov (United States)

    Hati, Sanchita; Bhattacharyya, Sudeep

    2016-01-01

    A project-based biophysical chemistry laboratory course, which is offered to the biochemistry and molecular biology majors in their senior year, is described. In this course, the classroom study of the structure-function of biomolecules is integrated with the discovery-guided laboratory study of these molecules using computer modeling and simulations. In particular, modern computational tools are employed to elucidate the relationship between structure, dynamics, and function in proteins. Computer-based laboratory protocols that we introduced in three modules allow students to visualize the secondary, super-secondary, and tertiary structures of proteins, analyze non-covalent interactions in protein-ligand complexes, develop three-dimensional structural models (homology model) for new protein sequences and evaluate their structural qualities, and study proteins' intrinsic dynamics to understand their functions. In the fourth module, students are assigned to an authentic research problem, where they apply their laboratory skills (acquired in modules 1-3) to answer conceptual biophysical questions. Through this process, students gain in-depth understanding of protein dynamics-the missing link between structure and function. Additionally, the requirement of term papers sharpens students' writing and communication skills. Finally, these projects result in new findings that are communicated in peer-reviewed journals. © 2016 The International Union of Biochemistry and Molecular Biology.

  10. A novel type of DNA-binding protein interacts with a conserved sequence in an early nodulin ENOD12 promoter

    DEFF Research Database (Denmark)

    Christiansen, H; Hansen, A C; Vijn, I

    1996-01-01

    The pea genes PsENOD12A and PsENOD12B are expressed in the root hairs shortly after infection with the nitrogen-fixing bacterium Rhizobium leguminosarum bv. viciae or after application of purified Nod factors. A 199 bp promoter fragment of the PsENOD12B gene contains sufficient information for Nod...

  11. Regulation of MLH1 mRNA and protein expression by promoter methylation in primary colorectal cancer

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Rasmussen, Anders Aamann; Byriel, Lene

    2013-01-01

    In colorectal cancer MLH1 deficiency causes microsatellite instability, which is relevant for the patient's prognosis and treatment, and its putative heredity. Dysfunction of MLH1 is caused by sporadic gene promoter hypermethylation or by hereditary mutations as seen in Lynch Syndrome. The aim...

  12. Receptor Protein Tyrosine Phosphatase α-Mediated Enhancement of Rheumatoid Synovial Fibroblast Signaling and Promotion of Arthritis in Mice

    NARCIS (Netherlands)

    Stanford, Stephanie M; Svensson, Mattias N D; Sacchetti, Cristiano; Pilo, Caila A; Wu, Dennis J; Kiosses, William B; Hellvard, Annelie; Bergum, Brith; Muench, German R Aleman; Elly, Christian; Liu, Yun-Cai; den Hertog, Jeroen; Elson, Ari; Sap, Jan; Mydel, Piotr; Boyle, David L; Corr, Maripat; Firestein, Gary S; Bottini, Nunzio

    OBJECTIVE: During rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLS) critically promote disease pathogenesis by aggressively invading the extracellular matrix of the joint. The focal adhesion kinase (FAK) signaling pathway is emerging as a contributor to the anomalous behavior of RA FLS.

  13. Lipid transfer proteins in coffee: isolation of Coffea orthologs, Coffea arabica homeologs, expression during coffee fruit development and promoter analysis in transgenic tobacco plants.

    Science.gov (United States)

    Cotta, Michelle G; Barros, Leila M G; de Almeida, Juliana D; de Lamotte, Fréderic; Barbosa, Eder A; Vieira, Natalia G; Alves, Gabriel S C; Vinecky, Felipe; Andrade, Alan C; Marraccini, Pierre

    2014-05-01

    The aim of the present study was to perform a genomic analysis of non-specific lipid-transfer proteins (nsLTPs) in coffee. Several nsLTPs-encoding cDNA and gene sequences were cloned from Coffea arabica and Coffea canephora species. In this work, their analyses revealed that coffee nsLTPs belong to Type II LTP characterized under their mature forms by a molecular weight of around 7.3 kDa, a basic isoelectric points of 8.5 and the presence of typical CXC pattern, with X being an hydrophobic residue facing towards the hydrophobic cavity. Even if several single nucleotide polymorphisms were identified in these nsLTP-coding sequences, 3D predictions showed that they do not have a significant impact on protein functions. Northern blot and RT-qPCR experiments revealed specific expression of Type II nsLTPs-encoding genes in coffee fruits, mainly during the early development of endosperm of both C. arabica and C. canephora. As part of our search for tissue-specific promoters in coffee, an nsLTP promoter region of around 1.2 kb was isolated. It contained several DNA repeats including boxes identified as essential for grain specific expression in other plants. The whole fragment, and a series of 5' deletions, were fused to the reporter gene β-glucuronidase (uidA) and analyzed in transgenic Nicotiana tabacum plants. Histochemical and fluorimetric GUS assays showed that the shorter (345 bp) and medium (827 bp) fragments of nsLTP promoter function as grain-specific promoters in transgenic tobacco plants.

  14. Hepatitis B virus core protein promotes hepatocarcinogenesis by enhancing Src expression and activating the Src/PI3K/Akt pathway.

    Science.gov (United States)

    Liu, Wei; Guo, Teng-Fei; Jing, Zhen-Tang; Yang, Zhi; Liu, Lei; Yang, Yuan-Ping; Lin, Xu; Tong, Qiao-Yun

    2018-01-17

    Hepatitis B virus core protein (HBc) is expressed preferentially in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC). HBc can function as an oncogene arising from its gene regulatory properties, but how it contributes functionally to hepatocarcinogenesis remains unclear. In this study, we determined the molecular and functional roles of HBc during HBV-associated hepatocellular tumorigenesis. HBc increased tumor formation of hepatoma cells. Moreover, expression of HBc specifically promoted proliferation of hepatoma cells in vitro. Mechanistic investigations revealed that these effects were caused by activation of the Src/PI3K/Akt pathway through proximal switch from inactive Src to the active form of the kinase by HBc. HBc-mediated sarcoma (Src) kinase activation was associated with down-regulation of C-terminal Src kinase (Csk). In addition, HBc enhances Src expression by activation of alternative Src 1A promoter in an Sp1 transcription factor-dependent manner. Proliferation induced by stable HBc expression was associated with increased G 1 -S cell cycle progression mediated by Src kinase activation. HBc-induced cellular proliferation and tumor formation were reversed by administration of the Src inhibitor saracatinib. Together, our findings suggest that HBc promotes tumorigenesis of hepatoma cells by enhancing the expression of total Src and the active form of the kinase and subsequently activates Src/PI3K/Akt signaling pathway, revealing novel insights into the underlying mechanisms of HBV-associated hepatocarcinogenesis.-Liu, W., Guo, T.-F., Jing, Z.-T., Yang, Z., Liu, L., Yang, Y.-P., Lin, X., Tong, Q.-Y. Hepatitis B virus core protein promotes hepatocarcinogenesis by enhancing Src expression and activating the Src/PI3K/Akt pathway.

  15. A cascade of iron-containing proteins governs the genetic iron starvation response to promote