WorldWideScience

Sample records for nadh ubiquinone oxidoreductase

  1. Mitochondrial dynamics in human NADH:ubiquinone oxidoreductase deficiency.

    NARCIS (Netherlands)

    Willems, P.H.G.M.; Smeitink, J.A.M.; Koopman, W.J.H.

    2009-01-01

    Mitochondrial NADH:ubiquinone oxidoreductase or complex I (CI) is a frequently affected enzyme in cases of mitochondrial disorders. However, the cytopathological mechanism of the associated pediatric syndromes is poorly understood. Evidence in the literature suggests a connection between mitochondri

  2. Human NADH : ubiquinone oxidoreductase deficiency : radical changes in mitochondrial morphology?

    NARCIS (Netherlands)

    Koopman, W.J.H.; Verkaart, S.A.J.; Visch, H.J.; Vries, S. de; Nijtmans, L.G.J.; Smeitink, J.A.M.; Willems, P.H.G.M.

    2007-01-01

    Malfunction of NADH:ubiquinone oxidoreductase or complex I (CI), the first and largest complex of the mitochondrial oxidative phosphorylation system, has been implicated in a wide variety of human disorders. To demonstrate a quantitative relationship between CI amount and activity and mitochondrial

  3. Origin and evolution of the sodium -pumping NADH: ubiquinone oxidoreductase.

    Science.gov (United States)

    Reyes-Prieto, Adrian; Barquera, Blanca; Juárez, Oscar

    2014-01-01

    The sodium -pumping NADH: ubiquinone oxidoreductase (Na+-NQR) is the main ion pump and the primary entry site for electrons into the respiratory chain of many different types of pathogenic bacteria. This enzymatic complex creates a transmembrane gradient of sodium that is used by the cell to sustain ionic homeostasis, nutrient transport, ATP synthesis, flagellum rotation and other essential processes. Comparative genomics data demonstrate that the nqr operon, which encodes all Na+-NQR subunits, is found in a large variety of bacterial lineages with different habitats and metabolic strategies. Here we studied the distribution, origin and evolution of this enzymatic complex. The molecular phylogenetic analyses and the organizations of the nqr operon indicate that Na+-NQR evolved within the Chlorobi/Bacteroidetes group, after the duplication and subsequent neofunctionalization of the operon that encodes the homolog RNF complex. Subsequently, the nqr operon dispersed through multiple horizontal transfer events to other bacterial lineages such as Chlamydiae, Planctomyces and α, β, γ and δ -proteobacteria. Considering the biochemical properties of the Na+-NQR complex and its physiological role in different bacteria, we propose a detailed scenario to explain the molecular mechanisms that gave rise to its novel redox- dependent sodium -pumping activity. Our model postulates that the evolution of the Na+-NQR complex involved a functional divergence from its RNF homolog, following the duplication of the rnf operon, the loss of the rnfB gene and the recruitment of the reductase subunit of an aromatic monooxygenase.

  4. Origin and evolution of the sodium -pumping NADH: ubiquinone oxidoreductase.

    Directory of Open Access Journals (Sweden)

    Adrian Reyes-Prieto

    Full Text Available The sodium -pumping NADH: ubiquinone oxidoreductase (Na+-NQR is the main ion pump and the primary entry site for electrons into the respiratory chain of many different types of pathogenic bacteria. This enzymatic complex creates a transmembrane gradient of sodium that is used by the cell to sustain ionic homeostasis, nutrient transport, ATP synthesis, flagellum rotation and other essential processes. Comparative genomics data demonstrate that the nqr operon, which encodes all Na+-NQR subunits, is found in a large variety of bacterial lineages with different habitats and metabolic strategies. Here we studied the distribution, origin and evolution of this enzymatic complex. The molecular phylogenetic analyses and the organizations of the nqr operon indicate that Na+-NQR evolved within the Chlorobi/Bacteroidetes group, after the duplication and subsequent neofunctionalization of the operon that encodes the homolog RNF complex. Subsequently, the nqr operon dispersed through multiple horizontal transfer events to other bacterial lineages such as Chlamydiae, Planctomyces and α, β, γ and δ -proteobacteria. Considering the biochemical properties of the Na+-NQR complex and its physiological role in different bacteria, we propose a detailed scenario to explain the molecular mechanisms that gave rise to its novel redox- dependent sodium -pumping activity. Our model postulates that the evolution of the Na+-NQR complex involved a functional divergence from its RNF homolog, following the duplication of the rnf operon, the loss of the rnfB gene and the recruitment of the reductase subunit of an aromatic monooxygenase.

  5. Three-Dimensional Structure of Bovine NADH : Ubiquinone Oxidoreductase of the Mitochondrial Respiratory Chain

    NARCIS (Netherlands)

    Boekema, Egbert J.; Heel, Marin G. van; Bruggen, Ernst F.J. van

    1984-01-01

    We have studied the structure of bovine heart mitochondrial NADH:ubiquinone (Q) oxidoreductase (EC 1.6.99.3) by image analysis of electron micrographs. A three-dimensional reconstruction was calculated from a tilt-series of a two-dimensional crystal of the molecule. Our interpretation of the

  6. Assembly of the Escherichia coli NADH:ubiquinone oxidoreductase (respiratory complex I).

    Science.gov (United States)

    Friedrich, Thorsten; Dekovic, Doris Kreuzer; Burschel, Sabrina

    2016-03-01

    Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of four protons across the membrane. The Escherichia coli complex I is made up of 13 different subunits encoded by the so-called nuo-genes. The electron transfer is catalyzed by nine cofactors, a flavin mononucleotide and eight iron-sulfur (Fe/S)-clusters. The individual subunits and the cofactors have to be assembled together in a coordinated way to guarantee the biogenesis of the active holoenzyme. Only little is known about the assembly of the bacterial complex compared to the mitochondrial one. Due to the presence of so many Fe/S-clusters the assembly of complex I is intimately connected with the systems responsible for the biogenesis of these clusters. In addition, a few other proteins have been reported to be required for an effective assembly of the complex in other bacteria. The proposed role of known bacterial assembly factors is discussed and the information from other bacterial species is used in this review to draw an as complete as possible model of bacterial complex I assembly. In addition, the supramolecular organization of the complex in E. coli is briefly described. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof. Conrad Mullineaux.

  7. NADH: ubiquinone oxidoreductase inhibitors block induction of ornithine decarboxylase activity in MCF-7 human breast cancer cells.

    Science.gov (United States)

    Rowlands, J C; Casida, J E

    1998-11-01

    Rotenone is the classical inhibitor of NADH: ubiquinone oxidoreductase and its analogue deguelin is a potent inhibitor of 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced ornithine decarboxylase mRNA steady state level and enzyme activity in mouse 308 cells (Gerhäuser et al. 1995). In MCF-7 human breast cancer cells, rotenone, deguelin and two structurally-unrelated miticides (pyridaben and fenazaquin) inhibit not only NADH: ubiquinone oxidoreductase but also induced ornithine decarboxylase activity with IC50 values of < 1 to 70 nM. Rotenone inhibits ornithine decarboxylase activity equally well as induced by TPA, insulin-like growth factor I and 17 beta-oestradiol. Pyridaben is the most potent of the four inhibitors not only for NADH: ubiquinone oxidoreductase activity (bovine heart enzyme) and TPA-induced ornithine decarboxylase activity and mRNA steady state level but also for TPA-induced reactive oxygen species. It is therefore proposed that NADH: ubiquinone oxidoreductase inhibitors block multiple and possibly reactive oxygen species-modulated pathways which regulate ornithine decarboxylase activity.

  8. Mitochondrial Ca2+ homeostasis in human NADH:ubiquinone oxidoreductase deficiency.

    Science.gov (United States)

    Willems, Peter H G M; Valsecchi, Federica; Distelmaier, Felix; Verkaart, Sjoerd; Visch, Henk-Jan; Smeitink, Jan A M; Koopman, Werner J H

    2008-07-01

    NADH:ubiquinone oxidoreductase or complex I is a large multisubunit assembly of the mitochondrial inner membrane that channels high-energy electrons from metabolic NADH into the electron transport chain (ETC). Its dysfunction is associated with a range of progressive neurological disorders, often characterized by a very early onset and short devastating course. To better understand the cytopathological mechanisms of these disorders, we use live cell luminometry and imaging microscopy of patient skin fibroblasts with mutations in nuclear-encoded subunits of the complex. Here, we present an overview of our recent work, showing that mitochondrial membrane potential, Ca(2+) handling and ATP production are to a variable extent impaired among a large cohort of patient fibroblast lines. From the results obtained, the picture emerges that a reduction in cellular complex I activity leads to a depolarization of the mitochondrial membrane potential, resulting in a decreased supply of mitochondrial ATP to the Ca(2+)-ATPases of the intracellular stores and thus to a reduced Ca(2+) content of these stores. As a consequence, the increase in cytosolic Ca(2+) concentration evoked by a Ca(2+) mobilizing stimulus is decreased, leading to a reduction in mitochondrial Ca(2+) accumulation and ensuing ATP production and thus to a hampered energization of stimulus-induced cytosolic processes.

  9. Human NADH:ubiquinone oxidoreductase deficiency: radical changes in mitochondrial morphology?

    Science.gov (United States)

    Koopman, Werner J H; Verkaart, Sjoerd; Visch, Henk Jan; van Emst-de Vries, Sjenet; Nijtmans, Leo G J; Smeitink, Jan A M; Willems, Peter H G M

    2007-07-01

    Malfunction of NADH:ubiquinone oxidoreductase or complex I (CI), the first and largest complex of the mitochondrial oxidative phosphorylation system, has been implicated in a wide variety of human disorders. To demonstrate a quantitative relationship between CI amount and activity and mitochondrial shape and cellular reactive oxygen species (ROS) levels, we recently combined native electrophoresis and confocal and video microscopy of dermal fibroblasts of healthy control subjects and children with isolated CI deficiency. Individual mitochondria appeared fragmented and/or less branched in patient fibroblasts with a severely reduced CI amount and activity (class I), whereas patient cells in which these latter parameters were only moderately reduced displayed a normal mitochondrial morphology (class II). Moreover, cellular ROS levels were significantly more increased in class I compared with class II cells. We propose a mechanism in which a mutation-induced decrease in the cellular amount and activity of CI leads to enhanced ROS levels, which, in turn, induce mitochondrial fragmentation when not appropriately counterbalanced by the cell's antioxidant defense systems.

  10. Crystallization of the NADH-oxidizing domain of the Na{sup +}-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Minli [Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland); Türk, Karin [School of Engineering and Science, International University Bremen, 28759 Bremen (Germany); Diez, Joachim [Swiss Light Source at Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Grütter, Markus G. [Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland); Fritz, Günter, E-mail: guenter.fritz@uni-konstanz.de [Fachbereich Biologie, Universität Konstanz, Postfach M665, Universitätsstrasse 10, 78457 Konstanz (Germany); Steuber, Julia, E-mail: guenter.fritz@uni-konstanz.de [Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland)

    2006-02-01

    The FAD domain of the NqrF subunit from the Na{sup +}-translocating NADH dehydrogenase from V. cholerae has been purified and crystallized. A complete data set was recorded at 3.1 Å. The Na{sup +}-translocating NADH:quinone oxidoreductase (Na{sup +}-NQR) from pathogenic and marine bacteria is a respiratory complex that couples the exergonic oxidation of NADH by quinone to the transport of Na{sup +} across the membrane. The NqrF subunit oxidizes NADH and transfers the electrons to other redox cofactors in the enzyme. The FAD-containing domain of NqrF has been expressed, purified and crystallized. The purified NqrF FAD domain exhibited high rates of NADH oxidation and contained stoichiometric amounts of the FAD cofactor. Initial crystallization of the flavin domain was achieved by the sitting-drop technique using a Cartesian MicroSys4000 robot. Optimization of the crystallization conditions yielded yellow hexagonal crystals with dimensions of 30 × 30 × 70 µm. The protein mainly crystallizes in long hexagonal needles with a diameter of up to 30 µm. Crystals diffract to 2.8 Å and belong to space group P622, with unit-cell parameters a = b = 145.3, c = 90.2 Å, α = β = 90, γ = 120°.

  11. The reaction of NADPH with bovine mitochondrial NADH:ubiquinone oxidoreductase revisited: II. Comparison of the proposed working hypothesis with literature data.

    NARCIS (Netherlands)

    Albracht, S.P.J.

    2010-01-01

    The first purification of bovine NADH:ubiquinone oxidoreductase (Complex I) was reported nearly half a century ago (Hatefi et al. J Biol Chem 237:1676-1680, 1962). The pathway of electron-transfer through the enzyme is still under debate. A major obstacle is the assignment of EPR signals to the indi

  12. The conformational changes induced by ubiquinone binding in the Na+-pumping NADH:ubiquinone oxidoreductase (Na+-NQR) are kinetically controlled by conserved glycines 140 and 141 of the NqrB subunit.

    Science.gov (United States)

    Strickland, Madeleine; Juárez, Oscar; Neehaul, Yashvin; Cook, Darcie A; Barquera, Blanca; Hellwig, Petra

    2014-08-22

    Na(+)-pumping NADH:ubiquinone oxidoreductase (Na(+)-NQR) is responsible for maintaining a sodium gradient across the inner bacterial membrane. This respiratory enzyme, which couples sodium pumping to the electron transfer between NADH and ubiquinone, is not present in eukaryotes and as such could be a target for antibiotics. In this paper it is shown that the site of ubiquinone reduction is conformationally coupled to the NqrB subunit, which also hosts the final cofactor in the electron transport chain, riboflavin. Previous work showed that mutations in conserved NqrB glycine residues 140 and 141 affect ubiquinone reduction and the proper functioning of the sodium pump. Surprisingly, these mutants did not affect the dissociation constant of ubiquinone or its analog HQNO (2-n-heptyl-4-hydroxyquinoline N-oxide) from Na(+)-NQR, which indicates that these residues do not participate directly in the ubiquinone binding site but probably control its accessibility. Indeed, redox-induced difference spectroscopy showed that these mutations prevented the conformational change involved in ubiquinone binding but did not modify the signals corresponding to bound ubiquinone. Moreover, data are presented that demonstrate the NqrA subunit is able to bind ubiquinone but with a low non-catalytically relevant affinity. It is also suggested that Na(+)-NQR contains a single catalytic ubiquinone binding site and a second site that can bind ubiquinone but is not active.

  13. Three classes of inhibitors share a common binding domain in mitochondrial complex I (NADH:ubiquinone oxidoreductase).

    Science.gov (United States)

    Okun, J G; Lümmen, P; Brandt, U

    1999-01-29

    We have developed two independent methods to measure equilibrium binding of inhibitors to membrane-bound and partially purified NADH:ubiquinone oxidoreductase (complex I) to characterize the binding sites for the great variety of hydrophobic compounds acting on this large and complicated enzyme. Taking advantage of a partial quench of fluorescence upon binding of the fenazaquin-type inhibitor 2-decyl-4-quinazolinyl amine to complex I in bovine submitochondrial particles, we determined a Kd of 17 +/- 3 nM and one binding site per complex I. Equilibrium binding studies with [3H]dihydrorotenone and the aminopyrimidine [3H]AE F119209 (4(cis-4-[3H]isopropyl cyclohexylamino)-5-chloro-6-ethyl pyrimidine) using partially purified complex I from Musca domestica exhibited little unspecific binding and allowed reliable determination of dissociation constants. Competition experiments consistently demonstrated that all tested hydrophobic inhibitors of complex I share a common binding domain with partially overlapping sites. Although the rotenone site overlaps with both the piericidin A and the capsaicin site, the latter two sites do not overlap. This is in contrast to the interpretation of enzyme kinetics that have previously been used to define three classes of complex I inhibitors. The existence of only one large inhibitor binding pocket in the hydrophobic part of complex I is discussed in the light of possible mechanisms of proton translocation.

  14. Insecticidal quinazoline derivatives with (trifluoromethyl)diazirinyl and azido substituents as NADH:ubiquinone oxidoreductase inhibitors and candidate photoaffinity probes.

    Science.gov (United States)

    Latli, B; Wood, E; Casida, J E

    1996-03-01

    Two candidate photoaffinity probes are designed from 4-substituted quinazolines known to be potent insecticides/acaricides and NADH:ubiquinone oxidoreductase inhibitors acting at or near the rotenone site. 4-(11-Azidoundecyl-2-amino)quinazoline, based on the undecylamino analog SAN 548A as a prototype, was synthesized in 18% overall yield from ethyl 10-undecenoate by oxidation of the terminal double bond, reductive amination, coupling to 4-chloroquinazoline, and functional group manipulation of the terminal ethyl ester to an alcohol, a mesylate and finally nucleophilic displacement with azide ions. 4-(4-(3-(Trifluoromethyl)-3H-diazirin-3-yl)phenethoxy)quinaz oline [the (trifluoromethyl)diazirinyl analog of fenazaquin insecticide/acaricide] was prepared from 4-bromophenethyl alcohol in 31% overall yield by first introducing the trifluoromethylketone moiety followed by its conversion to the (trifluoromethyl)-diazirine and finally coupling to 4-chloroquinazoline as above. Both candidate photoaffinity probes have the inhibitory potency of rotenone (IC50 of 3-4 nM in each case). The azidoundecylamino compound has inadequate photoreactivity whereas that of the (trifluoromethyl)diazirinyl analog is ideal at 350 nm. Radiosynthesis of the latter photoaffinity ligand included introduction of the diazirinyl moiety as the carbene precursor, oxidation of (trifluoromethyl)diazirinylphenethyl alcohol to the corresponding acid with Jones' reagent, and reduction of the phenacetyl chloride intermediate with sodium borotritide to incorporate tritium.

  15. Mammalian NADH:ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H(2)O (2)-Implications for their role in disease, especially cancer

    NARCIS (Netherlands)

    Albracht, S.P.J.; Meijer, A.J.; Rydström, J.

    2011-01-01

    Mammalian NADH:ubiquinone oxidoreductase (Complex I) in the mitochondrial inner membrane catalyzes the oxidation of NADH in the matrix. Excess NADH reduces nine of the ten prosthetic groups of the enzyme in bovine-heart submitochondrial particles with a rate of at least 3,300 s(-1). This results in

  16. Mammalian NADH:ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H₂O₂--implications for their role in disease, especially cancer

    NARCIS (Netherlands)

    Albracht, S.P.J.; Meijer, A.J.; Rydström, J.

    2011-01-01

    Mammalian NADH:ubiquinone oxidoreductase (Complex I) in the mitochondrial inner membrane catalyzes the oxidation of NADH in the matrix. Excess NADH reduces nine of the ten prosthetic groups of the enzyme in bovine-heart submitochondrial particles with a rate of at least 3,300 s−1. This results in an

  17. Infrared spectroscopic studies on reaction induced conformational changes in the NADH ubiquinone oxidoreductase (complex I).

    Science.gov (United States)

    Hellwig, Petra; Kriegel, Sébastien; Friedrich, Thorsten

    2016-07-01

    Redox-dependent conformational changes are currently discussed to be a crucial part of the reaction mechanism of the respiratory complex I. Specialized difference Fourier transform infrared techniques allow the detection of side-chain movements and minute secondary structure changes. For complex I, (1)H/(2)H exchange kinetics of the amide modes revealed a better accessibility of the backbone in the presence of NADH and quinone. Interestingly, the presence of phospholipids, that is crucial for the catalytic activity of the isolated enzyme complex, changes the overall conformation. When comparing complex I samples from different species, very similar electrochemically induced FTIR difference spectra and very similar rearrangements are reported. Finally, the information obtained with variants and from Zn(2+) inhibited samples for the conformational reorganization of complex I upon electron transfer are discussed in this review. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.

  18. Inhibition of the sodium-translocating NADH-ubiquinone oxidoreductase [Na+-NQR] decreases cholera toxin production in Vibrio cholerae O1 at the late exponential growth phase.

    Science.gov (United States)

    Minato, Yusuke; Fassio, Sara R; Reddekopp, Rylan L; Häse, Claudia C

    2014-01-01

    Two virulence factors produced by Vibrio cholerae, cholera toxin (CT) and toxin-corregulated pilus (TCP), are indispensable for cholera infection. ToxT is the central regulatory protein involved in activation of CT and TCP expression. We previously reported that lack of a respiration-linked sodium-translocating NADH-ubiquinone oxidoreductase (Na(+)-NQR) significantly increases toxT transcription. In this study, we further characterized this link and found that Na(+)-NQR affects toxT expression only at the early-log growth phase, whereas lack of Na(+)-NQR decreases CT production after the mid-log growth phase. Such decreased CT production was independent of toxT and ctxB transcription. Supplementing a respiratory substrate, l-lactate, into the growth media restored CT production in the nqrA-F mutant, suggesting that decreased CT production in the Na(+)-NQR mutant is dependent on electron transport chain (ETC) activity. This notion was supported by the observations that two chemical inhibitors, a Na(+)-NQR specific inhibitor 2-n-Heptyl-4-hydroxyquinoline N-oxide (HQNO) and a succinate dehydrogenase (SDH) inhibitor, thenoyltrifluoroacetone (TTFA), strongly inhibited CT production in both classical and El Tor biotype strains of V. cholerae. Accordingly, we propose the main respiratory enzyme of V. cholerae, as a potential drug target to treat cholera because human mitochondria do not contain Na(+)-NQR orthologs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Potential plant growth-promoting strain Bacillus sp. SR-2-1/1 decolorized azo dyes through NADH-ubiquinone:oxidoreductase activity.

    Science.gov (United States)

    Mahmood, Faisal; Shahid, Muhammad; Hussain, Sabir; Shahzad, Tanvir; Tahir, Muhammad; Ijaz, Muhammad; Hussain, Athar; Mahmood, Khalid; Imran, Muhammad; Babar, Shahid Ali Khan

    2017-03-22

    In this study, a bacterial strain SR-2-1/1 was isolated from textile wastewater-irrigated soil for its concurrent potential of plant growth promotion and azo-dye decolorization. Analysis of 16S rRNA gene sequence confirmed its identity as Bacillus sp. The strain tolerated high concentrations (i.e. up to 1000mgL(-1)) of metals (Ni(2+), Cd(2+), Co(2+), Zn(2+), and Cr(6+)) and efficiently decolorized the azo dyes (i.e. reactive black-5, reactive red-120, direct blue-1 and congo red). It also demonstrated considerable in vitro phosphate solubilizing and 1-aminocyclopropane-1-carboxylic acid deaminase abilities at high metal and salt levels. Bioinformatics analysis of its 537bp azoreductase gene and deduced protein revealed that it decolorized azo dyes through NADH-ubiquinone:oxidoreductase enzyme activity. The deduced protein was predicted structurally and functionally different to those of its closely related database proteins. Thus, the strain SR-2-1/1 is a powerful bioinoculant for bioremediation of textile wastewater contaminated soils in addition to stimulation of plant growth.

  20. Metformin Inhibits the Production of Reactive Oxygen Species from NADH:Ubiquinone Oxidoreductase to Limit Induction of Interleukin-1β (IL-1β) and Boosts Interleukin-10 (IL-10) in Lipopolysaccharide (LPS)-activated Macrophages.

    Science.gov (United States)

    Kelly, Beth; Tannahill, Gillian M; Murphy, Michael P; O'Neill, Luke A J

    2015-08-14

    Metformin, a frontline treatment for type II diabetes mellitus, decreases production of the pro-form of the inflammatory cytokine IL-1β in response to LPS in macrophages. We found that it specifically inhibited pro-IL-1β production, having no effect on TNF-α. Furthermore, metformin boosted induction of the anti-inflammatory cytokine IL-10 in response to LPS. We ruled out a role for AMP-activated protein kinase (AMPK) in the effect of metformin because activation of AMPK with A769662 did not mimic metformin here. Furthermore, metformin was still inhibitory in AMKPα1- or AMPKβ1-deficient cells. The activity of NADH:ubiquinone oxidoreductase (complex I) was inhibited by metformin. Another complex I inhibitor, rotenone, mimicked the effect of metformin on pro-IL-1β and IL-10. LPS induced reactive oxygen species production, an effect inhibited by metformin or rotenone pretreatment. MitoQ, a mitochondrially targeted antioxidant, decreased LPS-induced IL-1β without affecting TNF-α. These results, therefore, implicate complex I in LPS action in macrophages.

  1. Roles of subunit NuoL in the proton pumping coupling mechanism of NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli.

    Science.gov (United States)

    Narayanan, Madhavan; Sakyiama, Joseph A; Elguindy, Mahmoud M; Nakamaru-Ogiso, Eiko

    2016-10-01

    Respiratory complex I has an L-shaped structure formed by the hydrophilic arm responsible for electron transfer and the membrane arm that contains protons pumping machinery. Here, to gain mechanistic insights into the role of subunit NuoL, we investigated the effects of Mg(2+), Zn(2+) and the Na(+)/H(+) antiporter inhibitor 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) on proton pumping activities of various isolated NuoL mutant complex I after reconstitution into Escherichia coli double knockout (DKO) membrane vesicles lacking complex I and the NADH dehydrogenase type 2. We found that Mg(2+) was critical for proton pumping activity of complex I. At 2 µM Zn(2+), proton pumping of the wild-type was selectively inhibited without affecting electron transfer; no inhibition in proton pumping of D178N and D400A was observed, suggesting the involvement of these residues in Zn(2+) binding. Fifteen micromolar of EIPA caused up to ∼40% decrease in the proton pumping activity of the wild-type, D303A and D400A/E, whereas no significant change was detected in D178N, indicating its possible involvement in the EIPA binding. Furthermore, when menaquinone-rich DKO membranes were used, the proton pumping efficiency in the wild-type was decreased significantly (∼50%) compared with NuoL mutants strongly suggesting that NuoL is involved in the high efficiency pumping mechanism in complex I.

  2. Localization and function of the membrane-bound riboflavin in the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from Vibrio cholerae.

    Science.gov (United States)

    Casutt, Marco S; Huber, Tamara; Brunisholz, René; Tao, Minli; Fritz, Günter; Steuber, Julia

    2010-08-27

    The sodium ion-translocating NADH:quinone oxidoreductase (Na(+)-NQR) from the human pathogen Vibrio cholerae is a respiratory membrane protein complex that couples the oxidation of NADH to the transport of Na(+) across the bacterial membrane. The Na(+)-NQR comprises the six subunits NqrABCDEF, but the stoichiometry and arrangement of these subunits are unknown. Redox-active cofactors are FAD and a 2Fe-2S cluster on NqrF, covalently attached FMNs on NqrB and NqrC, and riboflavin and ubiquinone-8 with unknown localization in the complex. By analyzing the cofactor content and NADH oxidation activity of subcomplexes of the Na(+)-NQR lacking individual subunits, the riboflavin cofactor was unequivocally assigned to the membrane-bound NqrB subunit. Quantitative analysis of the N-terminal amino acids of the holo-complex revealed that NqrB is present in a single copy in the holo-complex. It is concluded that the hydrophobic NqrB harbors one riboflavin in addition to its covalently attached FMN. The catalytic role of two flavins in subunit NqrB during the reduction of ubiquinone to ubiquinol by the Na(+)-NQR is discussed.

  3. Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis.

    Science.gov (United States)

    Moreadith, R W; Batshaw, M L; Ohnishi, T; Kerr, D; Knox, B; Jackson, D; Hruban, R; Olson, J; Reynafarje, B; Lehninger, A L

    1984-09-01

    We report the case of an infant with hypoglycemia, progressive lactic acidosis, an increased serum lactate/pyruvate ratio, and elevated plasma alanine, who had a moderate to profound decrease in the ability of mitochondria from four organs to oxidize pyruvate, malate plus glutamate, citrate, and other NAD+-linked respiratory substrates. The capacity to oxidize the flavin adenine dinucleotide-linked substrate, succinate, was normal. The most pronounced deficiency was in skeletal muscle, the least in kidney mitochondria. Enzymatic assays on isolated mitochondria ruled out defects in complexes II, III, and IV of the respiratory chain. Further studies showed that the defect was localized in the inner membrane mitochondrial NADH-ubiquinone oxidoreductase (complex I). When ferricyanide was used as an artificial electron acceptor, complex I activity was normal, indicating that electrons from NADH could reduce the flavin mononucleotide cofactor. However, electron paramagnetic resonance spectroscopy performed on liver submitochondrial particles showed an almost total loss of the iron-sulfur clusters characteristic of complex I, whereas normal signals were noted for other mitochondrial iron-sulfur clusters. This infant is presented as the first reported case of congenital lactic acidosis caused by a deficiency of the iron-sulfur clusters of complex I of the mitochondrial electron transport chain.

  4. Oxidant-induced formation of a neutral flavosemiquinone in the Na+-translocating NADH:Quinone oxidoreductase (Na+-NQR) from Vibrio cholerae.

    Science.gov (United States)

    Tao, Minli; Casutt, Marco S; Fritz, Günter; Steuber, Julia

    2008-01-01

    The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) from the human pathogen Vibrio cholerae is a respiratory flavo-FeS complex composed of the six subunits NqrA-F. The Na(+)-NQR was produced as His(6)-tagged protein by homologous expression in V. cholerae. The isolated complex contained near-stoichiometric amounts of non-covalently bound FAD (0.78 mol/mol Na(+)-NQR) and riboflavin (0.70 mol/mol Na(+)-NQR), catalyzed NADH-driven Na(+) transport (40 nmol Na(+)min(-1) mg(-1)), and was inhibited by 2-n-heptyl-4-hydroxyquinoline-N-oxide. EPR spectroscopy showed that Na(+)-NQR as isolated contained very low amounts of a neutral flavosemiquinone (10(-3) mol/mol Na(+)-NQR). Reduction with NADH resulted in the formation of an anionic flavosemiquinone (0.10 mol/mol Na(+)-NQR). Subsequent oxidation of the Na(+)-NQR with ubiquinone-1 or O(2) led to the formation of a neutral flavosemiquinone (0.24 mol/mol Na(+)-NQR). We propose that the Na(+)-NQR is fully oxidized in its resting state, and discuss putative schemes of NADH-triggered redox transitions.

  5. Roles of the sodium-translocating NADH:quinone oxidoreductase (Na+-NQR) on vibrio cholerae metabolism, motility and osmotic stress resistance.

    Science.gov (United States)

    Minato, Yusuke; Fassio, Sara R; Kirkwood, Jay S; Halang, Petra; Quinn, Matthew J; Faulkner, Wyatt J; Aagesen, Alisha M; Steuber, Julia; Stevens, Jan F; Häse, Claudia C

    2014-01-01

    The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog), transcriptome and metabolomics analyses. We found that the V. cholerae ΔnqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ΔnqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ΔnqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s) can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology.

  6. Roles of the sodium-translocating NADH:quinone oxidoreductase (Na+-NQR on vibrio cholerae metabolism, motility and osmotic stress resistance.

    Directory of Open Access Journals (Sweden)

    Yusuke Minato

    Full Text Available The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I. Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog, transcriptome and metabolomics analyses. We found that the V. cholerae ΔnqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ΔnqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ΔnqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology.

  7. Aspartic Acid 397 in Subunit B of the Na+-pumping NADH:Quinone Oxidoreductase from Vibrio cholerae Forms Part of a Sodium-binding Site, Is Involved in Cation Selectivity, and Affects Cation-binding Site Cooperativity

    Science.gov (United States)

    Shea, Michael E.; Juárez, Oscar; Cho, Jonathan; Barquera, Blanca

    2013-01-01

    The Na+-pumping NADH:quinone complex is found in Vibrio cholerae and other marine and pathogenic bacteria. NADH:ubiquinone oxidoreductase oxidizes NADH and reduces ubiquinone, using the free energy released by this reaction to pump sodium ions across the cell membrane. In a previous report, a conserved aspartic acid residue in the NqrB subunit at position 397, located in the cytosolic face of this protein, was proposed to be involved in the capture of sodium. Here, we studied the role of this residue through the characterization of mutant enzymes in which this aspartic acid was substituted by other residues that change charge and size, such as arginine, serine, lysine, glutamic acid, and cysteine. Our results indicate that NqrB-Asp-397 forms part of one of the at least two sodium-binding sites and that both size and charge at this position are critical for the function of the enzyme. Moreover, we demonstrate that this residue is involved in cation selectivity, has a critical role in the communication between sodium-binding sites, by promoting cooperativity, and controls the electron transfer step involved in sodium uptake (2Fe-2S → FMNC). PMID:24030824

  8. Over-expression of NADH-dependent oxidoreductase (fucO) for increasing furfural or 5-hydroxymethylfurfural tolerance

    Science.gov (United States)

    Miller, Elliot N.; Zhang, Xueli; Yomano, Lorraine P.; Wang, Xuan; Shanmugam, Keelnatham T.; Ingram, Lonnie O'Neal

    2015-10-13

    The subject invention pertains to the discovery that the NADH-dependent propanediol oxidoreductase (FucO) can reduce furfural. This allows for a new approach to improve furfural tolerance in bacterial and/or yeast cells used to produce desired products. Thus, novel biocatalysts (bacterial, fungal or yeast cells) exhibiting increased tolerance to furfural and 5-hydroxymethylfurfural (5-HMF) are provided as are methods of making and using such biocatalysts for the production of a desired product.

  9. Polymyxin B identified as an inhibitor of alternative NADH dehydrogenase and malate: quinone oxidoreductase from the Gram-positive bacterium Mycobacterium smegmatis.

    Science.gov (United States)

    Mogi, Tatsushi; Murase, Yoshiro; Mori, Mihoko; Shiomi, Kazuro; Omura, Satoshi; Paranagama, Madhavi P; Kita, Kiyoshi

    2009-10-01

    Tuberculosis is the leading cause of death due to a single infectious agent in the world and the emergence of multidrug-resistant strains prompted us to develop new drugs with novel targets and mechanism. Here, we screened a natural antibiotics library with Mycobacterium smegmatis membrane-bound dehydrogenases and identified polymyxin B (cationic decapeptide) and nanaomycin A (naphtoquinone derivative) as inhibitors of alternative NADH dehydrogenase [50% inhibitory concentration (IC(50)) values of 1.6 and 31 microg/ml, respectively] and malate: quinone oxidoreductase (IC(50) values of 4.2 and 49 microg/ml, respectively). Kinetic analysis on inhibition by polymyxin B showed that the primary site of action was the quinone-binding site. Because of the similarity in K(m) value for ubiquinone-1 and inhibitor sensitivity, we examined amino acid sequences of actinobacterial enzymes and found possible binding sites for L-malate and quinones. Proposed mechanisms of polymyxin B and nanaomycin A for the bacteriocidal activity were the destruction of bacterial membranes and production of reactive oxygen species, respectively, while this study revealed their inhibitory activity on bacterial membrane-bound dehydrogenases. Screening of the library with bacterial respiratory enzymes resulted in unprecedented findings, so we are hoping that continuing efforts could identify lead compounds for new drugs targeting to mycobacterial respiratory enzymes.

  10. Identification, design and biological evaluation of heterocyclic quinolones targeting Plasmodium falciparum type II NADH:quinone oxidoreductase (PfNDH2).

    Science.gov (United States)

    Leung, Suet C; Gibbons, Peter; Amewu, Richard; Nixon, Gemma L; Pidathala, Chandrakala; Hong, W David; Pacorel, Bénédicte; Berry, Neil G; Sharma, Raman; Stocks, Paul A; Srivastava, Abhishek; Shone, Alison E; Charoensutthivarakul, Sitthivut; Taylor, Lee; Berger, Olivier; Mbekeani, Alison; Hill, Alasdair; Fisher, Nicholas E; Warman, Ashley J; Biagini, Giancarlo A; Ward, Stephen A; O'Neill, Paul M

    2012-03-08

    Following a program undertaken to identify hit compounds against NADH:ubiquinone oxidoreductase (PfNDH2), a novel enzyme target within the malaria parasite Plasmodium falciparum, hit to lead optimization led to identification of CK-2-68, a molecule suitable for further development. In order to reduce ClogP and improve solubility of CK-2-68 incorporation of a variety of heterocycles, within the side chain of the quinolone core, was carried out, and this approach led to a lead compound SL-2-25 (8b). 8b has IC(50)s in the nanomolar range versus both the enzyme and whole cell P. falciparum (IC(50) = 15 nM PfNDH2; IC(50) = 54 nM (3D7 strain of P. falciparum) with notable oral activity of ED(50)/ED(90) of 1.87/4.72 mg/kg versus Plasmodium berghei (NS Strain) in a murine model of malaria when formulated as a phosphate salt. Analogues in this series also demonstrate nanomolar activity against the bc(1) complex of P. falciparum providing the potential added benefit of a dual mechanism of action. The potent oral activity of 2-pyridyl quinolones underlines the potential of this template for further lead optimization studies.

  11. The sodium pumping NADH:quinone oxidoreductase (Na⁺-NQR), a unique redox-driven ion pump.

    Science.gov (United States)

    Barquera, Blanca

    2014-08-01

    The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is a unique Na(+) pumping respiratory complex found only in prokaryotes, that plays a key role in the metabolism of marine and pathogenic bacteria, including Vibrio cholerae and other human pathogens. Na(+)-NQR is the main entrance for reducing equivalents into the respiratory chain of these bacteria, catalyzing the oxidation of NADH and the reduction of quinone, the free energy of this redox reaction drives the selective translocation of Na(+) across the cell membrane, which energizes key cellular processes. In this review we summarize the unique properties of Na(+)-NQR in terms of its redox cofactor composition, electron transfer reactions and a possible mechanism of coupling and pumping.

  12. Identification, design and biological evaluation of bisaryl quinolones targeting Plasmodium falciparum type II NADH:quinone oxidoreductase (PfNDH2).

    Science.gov (United States)

    Pidathala, Chandrakala; Amewu, Richard; Pacorel, Bénédicte; Nixon, Gemma L; Gibbons, Peter; Hong, W David; Leung, Suet C; Berry, Neil G; Sharma, Raman; Stocks, Paul A; Srivastava, Abhishek; Shone, Alison E; Charoensutthivarakul, Sitthivut; Taylor, Lee; Berger, Olivier; Mbekeani, Alison; Hill, Alasdair; Fisher, Nicholas E; Warman, Ashley J; Biagini, Giancarlo A; Ward, Stephen A; O'Neill, Paul M

    2012-03-08

    A program was undertaken to identify hit compounds against NADH:ubiquinone oxidoreductase (PfNDH2), a dehydrogenase of the mitochondrial electron transport chain of the malaria parasite Plasmodium falciparum. PfNDH2 has only one known inhibitor, hydroxy-2-dodecyl-4-(1H)-quinolone (HDQ), and this was used along with a range of chemoinformatics methods in the rational selection of 17 000 compounds for high-throughput screening. Twelve distinct chemotypes were identified and briefly examined leading to the selection of the quinolone core as the key target for structure-activity relationship (SAR) development. Extensive structural exploration led to the selection of 2-bisaryl 3-methyl quinolones as a series for further biological evaluation. The lead compound within this series 7-chloro-3-methyl-2-(4-(4-(trifluoromethoxy)benzyl)phenyl)quinolin-4(1H)-one (CK-2-68) has antimalarial activity against the 3D7 strain of P. falciparum of 36 nM, is selective for PfNDH2 over other respiratory enzymes (inhibitory IC(50) against PfNDH2 of 16 nM), and demonstrates low cytotoxicity and high metabolic stability in the presence of human liver microsomes. This lead compound and its phosphate pro-drug have potent in vivo antimalarial activity after oral administration, consistent with the target product profile of a drug for the treatment of uncomplicated malaria. Other quinolones presented (e.g., 6d, 6f, 14e) have the capacity to inhibit both PfNDH2 and P. falciparum cytochrome bc(1), and studies to determine the potential advantage of this dual-targeting effect are in progress.

  13. Increased Furfural Tolerance Due to Overexpression of NADH-Dependent Oxidoreductase FucO in Escherichia coli Strains Engineered for the Production of Ethanol and Lactate▿

    OpenAIRE

    X. Wang; Miller, E. N.; Yomano, L. P.; Zhang, X.; Shanmugam, K. T.; Ingram, L. O.

    2011-01-01

    Furfural is an important fermentation inhibitor in hemicellulose sugar syrups derived from woody biomass. The metabolism of furfural by NADPH-dependent oxidoreductases, such as YqhD (low Km for NADPH), is proposed to inhibit the growth and fermentation of xylose in Escherichia coli by competing with biosynthesis for NADPH. The discovery that the NADH-dependent propanediol oxidoreductase (FucO) can reduce furfural provided a new approach to improve furfural tolerance. Strains that produced eth...

  14. The role of a conserved tyrosine in the 49-kDa subunit of complex I for ubiquinone binding and reduction.

    Science.gov (United States)

    Tocilescu, Maja A; Fendel, Uta; Zwicker, Klaus; Dröse, Stefan; Kerscher, Stefan; Brandt, Ulrich

    2010-01-01

    Iron-sulfur cluster N2 of complex I (proton pumping NADH:quinone oxidoreductase) is the immediate electron donor to ubiquinone. At a distance of only approximately 7A in the 49-kDa subunit, a highly conserved tyrosine is found at the bottom of the previously characterized quinone binding pocket. To get insight into the function of this residue, we have exchanged it for six different amino acids in complex I from Yarrowia lipolytica. Mitochondrial membranes from all six mutants contained fully assembled complex I that exhibited very low dNADH:ubiquinone oxidoreductase activities with n-decylubiquinone. With the most conservative exchange Y144F, no alteration in the electron paramagnetic resonance spectra of complex I was detectable. Remarkably, high dNADH:ubiquinone oxidoreductase activities were observed with ubiquinones Q1 and Q2 that were coupled to proton pumping. Apparent Km values for Q1 and Q2 were markedly increased and we found pronounced resistance to the complex I inhibitors decyl-quinazoline-amine (DQA) and rotenone. We conclude that Y144 directly binds the head group of ubiquinone, most likely via a hydrogen bond between the aromatic hydroxyl and the ubiquinone carbonyl. This places the substrate in an ideal distance to its electron donor iron-sulfur cluster N2 for efficient electron transfer during the catalytic cycle of complex I.

  15. Central role of the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) in sodium bioenergetics of Vibrio cholerae.

    Science.gov (United States)

    Steuber, Julia; Halang, Petra; Vorburger, Thomas; Steffen, Wojtek; Vohl, Georg; Fritz, Günter

    2014-12-01

    Vibrio cholerae is a Gram-negative bacterium that lives in brackish or sea water environments. Strains of V. cholerae carrying the pathogenicity islands infect the human gut and cause the fatal disease cholera. Vibrio cholerae maintains a Na(+) gradient at its cytoplasmic membrane that drives substrate uptake, motility, and efflux of antibiotics. Here, we summarize the major Na(+)-dependent transport processes and describe the central role of the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR), a primary Na(+) pump, in maintaining a Na(+)-motive force. The Na(+)-NQR is a membrane protein complex with a mass of about 220 kDa that couples the exergonic oxidation of NADH to the transport of Na(+) across the cytoplasmic membrane. We describe the molecular architecture of this respiratory complex and summarize the findings how electron transport might be coupled to Na(+)-translocation. Moreover, recent advances in the determination of the three-dimensional structure of this complex are reported.

  16. Three Classes of Inhibitors Share a Common Binding Domain in Mitochondrial Complex I (NADH:Ubiquinone Oxidoreductase)

    National Research Council Canada - National Science Library

    Jürgen G. Okun; Peter Lümmen; Ulrich Brandt

    1999-01-01

    .... Taking advantage of a partial quench of fluorescence upon binding of the fenazaquin-type inhibitor 2-decyl-4-quinazolinyl amine to complex I in bovine submitochondrial particles, we determined a K d of 17 Â...

  17. The key role of glutamate 172 in the mechanism of type II NADH:quinone oxidoreductase of Staphylococcus aureus.

    Science.gov (United States)

    Sousa, Filipe M; Sena, Filipa V; Batista, Ana P; Athayde, Diogo; Brito, José A; Archer, Margarida; Oliveira, A Sofia F; Soares, Cláudio M; Catarino, Teresa; Pereira, Manuela M

    2017-10-01

    Type II NADH:quinone oxidoreductases (NDH-2s) are membrane bound enzymes that deliver electrons to the respiratory chain by oxidation of NADH and reduction of quinones. In this way, these enzymes also contribute to the regeneration of NAD(+), allowing several metabolic pathways to proceed. As for the other members of the two-Dinucleotide Binding Domains Flavoprotein (tDBDF) superfamily, the enzymatic mechanism of NDH-2s is still little explored and elusive. In this work we addressed the role of the conserved glutamate 172 (E172) residue in the enzymatic mechanism of NDH-2 from Staphylococcus aureus. We aimed to test our earlier hypothesis that E172 plays a key role in proton transfer to allow the protonation of the quinone. For this we performed a complete biochemical characterization of the enzyme's variants E172A, E172Q and E172S. Our steady state kinetic measurements show a clear decrease in the overall reaction rate, and our substrate interaction studies indicate the binding of the two substrates is also affected by these mutations. Interestingly our fast kinetic results show quinone reduction is more affected than NADH oxidation. We have also determined the X-ray crystal structure of the E172S mutant (2.55Ǻ) and compared it with the structure of the wild type (2.32Ǻ). Together these results support our hypothesis for E172 being of central importance in the catalytic mechanism of NDH-2, which may be extended to other members of the tDBDF superfamily. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Characterization and expression of a cDNA, AmphiSDHD,encoding the amphioxus cytochrome b small subunit in mitochondrial succinate-ubiquinone oxidoreductase

    Institute of Scientific and Technical Information of China (English)

    MA Lifang; ZHANG Shicui; ZHUANG Zhimeng; LIU Zhenhui; LI Hongyan; XIA Jianjun

    2005-01-01

    In this study, an amphioxus cDNA, AmphiSDHD, encoding the cytochrome b small subunit in mitochondrial succinate-ubiquinone oxidoreductase, was isolated from the gut cDNA library of amphioxus Branchiostoma belcheri tsingtauense. It is 1429 bp in length, with an open reading frame of 465 bp coding for a protein of 154 amino acids. The deduced protein contains a mitochondrial targeting presequence of 65 amino acids rich in basic residues like arginine and hydroxy residues such as serine and threonine. Alignment of the amino acid sequences of AmphiSDHD and other eukaryotic SDHD proteins showed that AmphiSDHD has three transmembrane segments, and includes two histidine residues in the second transmembrane segment that are the putative binding sites for the heme b molecule. The phylogenetic tree constructed suggests that AmphiSDHD appears more closely related to vertebrate SDHD proteins than invertebrate ones. Northern blotting demonstrated that AmphiSDHD is ubiquitously expressed in amphioxus, being in line with the fact that SDHD is a house-keeping protein.

  19. The Na+-Translocating NADH:Quinone Oxidoreductase Enhances Oxidative Stress in the Cytoplasm of Vibrio cholerae.

    Science.gov (United States)

    Muras, Valentin; Dogaru-Kinn, Paul; Minato, Yusuke; Häse, Claudia C; Steuber, Julia

    2016-09-01

    We searched for a source of reactive oxygen species (ROS) in the cytoplasm of the human pathogen Vibrio cholerae and addressed the mechanism of ROS formation using the dye 2',7'-dichlorofluorescein diacetate (DCFH-DA) in respiring cells. By comparing V. cholerae strains with or without active Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR), this respiratory sodium ion redox pump was identified as a producer of ROS in vivo The amount of cytoplasmic ROS detected in V. cholerae cells producing variants of Na(+)-NQR correlated well with rates of superoxide formation by the corresponding membrane fractions. Membranes from wild-type V. cholerae showed increased superoxide production activity (9.8 ± 0.6 μmol superoxide min(-1) mg(-1) membrane protein) compared to membranes from the mutant lacking Na(+)-NQR (0.18 ± 0.01 μmol min(-1) mg(-1)). Overexpression of plasmid-encoded Na(+)-NQR in the nqr deletion strain resulted in a drastic increase in the formation of superoxide (42.6 ± 2.8 μmol min(-1) mg(-1)). By analyzing a variant of Na(+)-NQR devoid of quinone reduction activity, we identified the reduced flavin adenine dinucleotide (FAD) cofactor of cytoplasmic NqrF subunit as the site for intracellular superoxide formation in V. cholerae The impact of superoxide formation by the Na(+)-NQR on the virulence of V. cholerae is discussed. In several studies, it was demonstrated that the Na(+)-NQR in V. cholerae affects virulence in a yet unknown manner. We identified the reduced FAD cofactor in the NADH-oxidizing NqrF subunit of the Na(+)-NQR as the site of superoxide formation in the cytoplasm of V. cholerae Our study provides the framework to understand how reactive oxygen species formed during respiration could participate in the regulated expression of virulence factors during the transition from aerobic to microaerophilic (intestinal) habitats. This hypothesis may turn out to be right for many other pathogens which, like V. cholerae, depend on the Na

  20. NADH:ubiquinone reductase and succinate dehydrogenase activity in the liver of rats with acetaminophen-induced toxic hepatitis on the background of alimentary protein deficiency

    Directory of Open Access Journals (Sweden)

    G. P. Kopylchuk

    2015-02-01

    Full Text Available The ratio between the redox forms of the nicotinamide coenzymes and key enzymatic activity of the I and II respiratory chain complexes in the liver cells mitochondria of rats with acetaminophen-induced hepatitis under the conditions of alimentary deprivation of protein was studied. It was estimated, that under the conditions of acute acetaminophen-induced hepatitis of rats kept on a low-protein diet during 4 weeks a significant decrease of the NADH:ubiquinone reductase and succinate dehydrogenase activity with simultaneous increase of the ratio between redox forms of the nicotinamide coenzymes (NAD+/NADН is observed compared to the same indices in the liver cells of animals with experimental hepatitis kept on the ration balanced by all nutrients. Results of research may become basic ones for the biochemical rationale for the approaches directed to the correction and elimination of the consequences­ of energy exchange in the toxic hepatitis, induced on the background of protein deficiency.

  1. Mitochondrial targeting of human NADH dehydrogenase (ubiquinone flavoprotein 2 (NDUFV2 and its association with early-onset hypertrophic cardiomyopathy and encephalopathy

    Directory of Open Access Journals (Sweden)

    Kao Mou-Chieh

    2011-05-01

    Full Text Available Abstract Background NADH dehydrogenase (ubiquinone flavoprotein 2 (NDUFV2, containing one iron sulfur cluster ([2Fe-2S] binuclear cluster N1a, is one of the core nuclear-encoded subunits existing in human mitochondrial complex I. Defects in this subunit have been associated with Parkinson's disease, Alzheimer's disease, Bipolar disorder, and Schizophrenia. The aim of this study is to examine the mitochondrial targeting of NDUFV2 and dissect the pathogenetic mechanism of one human deletion mutation present in patients with early-onset hypertrophic cardiomyopathy and encephalopathy. Methods A series of deletion and point-mutated constructs with the c-myc epitope tag were generated to identify the location and sequence features of mitochondrial targeting sequence for NDUFV2 in human cells using the confocal microscopy. In addition, various lengths of the NDUFV2 N-terminal and C-terminal fragments were fused with enhanced green fluorescent protein to investigate the minimal region required for correct mitochondrial import. Finally, a deletion construct that mimicked the IVS2+5_+8delGTAA mutation in NDUFV2 gene and would eventually produce a shortened NDUFV2 lacking 19-40 residues was generated to explore the connection between human gene mutation and disease. Results We identified that the cleavage site of NDUFV2 was located around amino acid 32 of the precursor protein, and the first 22 residues of NDUFV2 were enough to function as an efficient mitochondrial targeting sequence to carry the passenger protein into mitochondria. A site-directed mutagenesis study showed that none of the single-point mutations derived from basic, hydroxylated and hydrophobic residues in the NDUFV2 presequence had a significant effect on mitochondrial targeting, while increasing number of mutations in basic and hydrophobic residues gradually decreased the mitochondrial import efficacy of the protein. The deletion mutant mimicking the human early-onset hypertrophic

  2. Mitochondrial targeting of human NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2) and its association with early-onset hypertrophic cardiomyopathy and encephalopathy.

    Science.gov (United States)

    Liu, Hsin-Yu; Liao, Pin-Chao; Chuang, Kai-Tun; Kao, Mou-Chieh

    2011-05-06

    NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2), containing one iron sulfur cluster ([2Fe-2S] binuclear cluster N1a), is one of the core nuclear-encoded subunits existing in human mitochondrial complex I. Defects in this subunit have been associated with Parkinson's disease, Alzheimer's disease, Bipolar disorder, and Schizophrenia. The aim of this study is to examine the mitochondrial targeting of NDUFV2 and dissect the pathogenetic mechanism of one human deletion mutation present in patients with early-onset hypertrophic cardiomyopathy and encephalopathy. A series of deletion and point-mutated constructs with the c-myc epitope tag were generated to identify the location and sequence features of mitochondrial targeting sequence for NDUFV2 in human cells using the confocal microscopy. In addition, various lengths of the NDUFV2 N-terminal and C-terminal fragments were fused with enhanced green fluorescent protein to investigate the minimal region required for correct mitochondrial import. Finally, a deletion construct that mimicked the IVS2+5_+8delGTAA mutation in NDUFV2 gene and would eventually produce a shortened NDUFV2 lacking 19-40 residues was generated to explore the connection between human gene mutation and disease. We identified that the cleavage site of NDUFV2 was located around amino acid 32 of the precursor protein, and the first 22 residues of NDUFV2 were enough to function as an efficient mitochondrial targeting sequence to carry the passenger protein into mitochondria. A site-directed mutagenesis study showed that none of the single-point mutations derived from basic, hydroxylated and hydrophobic residues in the NDUFV2 presequence had a significant effect on mitochondrial targeting, while increasing number of mutations in basic and hydrophobic residues gradually decreased the mitochondrial import efficacy of the protein. The deletion mutant mimicking the human early-onset hypertrophic cardiomyopathy and encephalopathy lacked 19-40 residues in

  3. The single NqrB and NqrC subunits in the Na(+)-translocating NADH: quinone oxidoreductase (Na(+)-NQR) from Vibrio cholerae each carry one covalently attached FMN.

    Science.gov (United States)

    Casutt, Marco S; Schlosser, Andreas; Buckel, Wolfgang; Steuber, Julia

    2012-10-01

    The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is the prototype of a novel class of flavoproteins carrying a riboflavin phosphate bound to serine or threonine by a phosphodiester bond to the ribityl side chain. This membrane-bound, respiratory complex also contains one non-covalently bound FAD, one non-covalently bound riboflavin, ubiquinone-8 and a [2Fe-2S] cluster. Here, we report the quantitative analysis of the full set of flavin cofactors in the Na(+)-NQR and characterize the mode of linkage of the riboflavin phosphate to the membrane-bound NqrB and NqrC subunits. Release of the flavin by β-elimination and analysis of the cofactor demonstrates that the phosphate group is attached at the 5'-position of the ribityl as in authentic FMN and that the Na(+)-NQR contains approximately 1.7mol covalently bound FMN per mol non-covalently bound FAD. Therefore, each of the single NqrB and NqrC subunits in the Na(+)-NQR carries a single FMN. Elimination of the phosphodiester bond yields a dehydro-2-aminobutyrate residue, which is modified with β-mercaptoethanol by Michael addition. Proteolytic digestion followed by mass determination of peptide fragments reveals exclusive modification of threonine residues, which carry FMN in the native enzyme. The described reactions allow quantification and localization of the covalently attached FMNs in the Na(+)-NQR and in related proteins belonging to the Rhodobacter nitrogen fixation (RNF) family of enzymes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).

  4. The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from Vibrio cholerae enhances insertion of FeS in overproduced NqrF subunit.

    Science.gov (United States)

    Tao, Minli; Fritz, Günter; Steuber, Julia

    2008-01-01

    The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from Vibrio cholerae is a membrane-bound, respiratory Na+ pump. Its NqrF subunit contains one FAD and a [2Fe-2S] cluster and catalyzes the initial oxidation of NADH. A soluble variant of NqrF lacking its hydrophobic, N-terminal helix (NqrF') was produced in V. cholerae wild type and nqr deletion strain. Under identical conditions of growth and induction, the yield of NqrF' increased by 30% in the presence of the Na+-NQR. FAD-containing NqrF' species with or without the FeS cluster were observed, indicating that assembly of the FeS center, but not insertion of the flavin cofactor, was limited during overproduction in V. cholerae. A comparison of these distinct NqrF' species with regard to specific NADH dehydrogenase activity, pH dependence of activity and thermal inactivation showed that NqrF' lacking the [2Fe-2S] cluster was less stable, partially unfolded, and therefore prone to proteolytic degradation in V. cholerae. We conclude that the overall yield of NqrF' critically depends on the amount of fully assembled, FeS-containing NqrF' in the V. cholerae host cells. The Na+-NQR is proposed to increase the stability of NqrF' by stimulating the maturation of FeS centers.

  5. Increased availability of NADH in metabolically engineered baker's yeast improves transaminase-oxidoreductase coupled asymmetric whole-cell bioconversion

    DEFF Research Database (Denmark)

    Knudsen, Jenny Dahl; Hägglöf, Cecilia; Weber, Nora

    2016-01-01

    yeast for transamination-reduction coupled asymmetric one-pot conversion was investigated. RESULTS: A series of active whole-cell biocatalysts were constructed by over-expressing the (S)-selective ω-transaminase (VAMT) from Capsicum chinense together with the NADH-dependent (S)-selective alcohol...... dehydrogenase (SADH) originating from Rhodococcus erythropolis in strains with or without deletion of glycerol-3-phosphate dehydrogenases 1 and 2 (GPD1 and GPD2). The yeast strains were evaluated as catalysts for simultaneous: (a) kinetic resolution of the racemic mixture to (R)-1-phenylethylamine, and (b...

  6. Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:FAD oxidoreductase (TftC) of Burkholderia cepacia AC1100.

    Science.gov (United States)

    Webb, Brian N; Ballinger, Jordan W; Kim, Eunjung; Belchik, Sara M; Lam, Ka-Sum; Youn, Buhyun; Nissen, Mark S; Xun, Luying; Kang, Chulhee

    2010-01-15

    Burkholderia cepacia AC1100 completely degrades 2,4,5-trichlorophenol, in which an FADH(2)-dependent monooxygenase (TftD) and an NADH:FAD oxidoreductase (TftC) catalyze the initial steps. TftD oxidizes 2,4,5-trichlorophenol (2,4,5-TCP) to 2,5-dichloro-p-benzoquinone, which is chemically reduced to 2,5-dichloro-p-hydroquinone (2,5-DiCHQ). Then, TftD oxidizes the latter to 5-chloro-2-hydroxy-p-benzoquinone. In those processes, TftC provides all the required FADH(2). We have determined the crystal structures of dimeric TftC and tetrameric TftD at 2.0 and 2.5 A resolution, respectively. The structure of TftC was similar to those of related flavin reductases. The stacked nicotinamide:isoalloxazine rings in TftC and sequential reaction kinetics suggest that the reduced FAD leaves TftC after NADH oxidation. The structure of TftD was also similar to the known structures of FADH(2)-dependent monooxygenases. Its His-289 residue in the re-side of the isoalloxazine ring is within hydrogen bonding distance with a hydroxyl group of 2,5-DiCHQ. An H289A mutation resulted in the complete loss of activity toward 2,5-DiCHQ and a significant decrease in catalytic efficiency toward 2,4,5-TCP. Thus, His-289 plays different roles in the catalysis of 2,4,5-TCP and 2,5-DiCHQ. The results support that free FADH(2) is generated by TftC, and TftD uses FADH(2) to separately transform 2,4,5-TCP and 2,5-DiCHQ. Additional experimental data also support the diffusion of FADH(2) between TftC and TftD without direct physical interaction between the two enzymes.

  7. Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:flavin adenine dinucleotide oxidoreductase (TftC) of Burkholderia cepacia AC1100.

    Science.gov (United States)

    Gisi, Michelle R; Xun, Luying

    2003-05-01

    Burkholderia cepacia AC1100 uses 2,4,5-trichlorophenoxyacetic acid, an environmental pollutant, as a sole carbon and energy source. Chlorophenol 4-monooxygenase is a key enzyme in the degradation of 2,4,5-trichlorophenoxyacetic acid, and it was originally characterized as a two-component enzyme (TftC and TftD). Sequence analysis suggests that they are separate enzymes. The two proteins were separately produced in Escherichia coli, purified, and characterized. TftC was an NADH:flavin adenine dinucleotide (FAD) oxidoreductase. A C-terminally His-tagged fusion TftC used NADH to reduce either FAD or flavin mononucleotide (FMN) but did not use NADPH or riboflavin as a substrate. Kinetic and binding property analysis showed that FAD was a better substrate than FMN. TftD was a reduced FAD (FADH(2))-utilizing monooxygenase, and FADH(2) was supplied by TftC. It converted 2,4,5-trichlorophenol to 2,5-dichloro-p-quinol and then to 5-chlorohydroxyquinol but converted 2,4,6-trichlorophenol only to 2,6-dichloro-p-quinol as the final product. TftD interacted with FADH(2) and retarded its rapid oxidation by O(2). A spectrum of possible TftD-bound FAD-peroxide was identified, indicating that the peroxide is likely the active oxygen species attacking the aromatic substrates. The reclassification of the two enzymes further supports the new discovery of FADH(2)-utilizing enzymes, which have homologues in the domains Bacteria and Archaea.

  8. Structural and functional investigation of flavin binding center of the NqrC subunit of sodium-translocating NADH:quinone oxidoreductase from Vibrio harveyi.

    Directory of Open Access Journals (Sweden)

    Valentin Borshchevskiy

    Full Text Available Na+-translocating NADH:quinone oxidoreductase (NQR is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium.

  9. Structural and functional investigation of flavin binding center of the NqrC subunit of sodium-translocating NADH:quinone oxidoreductase from Vibrio harveyi.

    Science.gov (United States)

    Borshchevskiy, Valentin; Round, Ekaterina; Bertsova, Yulia; Polovinkin, Vitaly; Gushchin, Ivan; Ishchenko, Andrii; Kovalev, Kirill; Mishin, Alexey; Kachalova, Galina; Popov, Alexander; Bogachev, Alexander; Gordeliy, Valentin

    2015-01-01

    Na+-translocating NADH:quinone oxidoreductase (NQR) is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN) residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium.

  10. The human mitochondrial NADH: Ubiquinone oxidoreductase 51-kDa subunit oxidoreductase 51-kDa subunit maps adjacent to the glutathione S-transferase P1-1 gene on chromosome 11q13

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.R.; Taylor, J.B.; Cowell, I.G.; Xia, C.L.; Pemble, S.E.; Ketterer, B. (Univ. College and Middlesex School of Medicine, London (United Kingdom))

    1992-12-01

    The soluble glutathione transferases (GSTs) are a family of dimeric isoenymes catalyzing the conjugation of glutathione to hydrophobic electropiles. Their subunits can be grouped into four families, alpha, mu, pi, and theta, on the basis of their primary structures. In man, the pi class is represented by a single gene, GSTP1-1 (GST[pi]) localized to human chromosome 11, band q13. The oncogenes INT2, HSTF1, and PRAD1 are also localized at 11q13, and together with the GSTP1 locus and other gene loci mapped to 11q13, i.e., BCL1 and EMS1, they form a unit of DNA approximately 2000-2500 kb, known as the 11q13 amplicon, which is often amplified in a range of solid tumors. Any gene locus at 11q13 is of interest because it may influence tumorigenesis. 14 refs., 1 fig.

  11. Roles of Pyruvate, NADH, and Mitochondrial Complex I in Redox Balance and Imbalance in β Cell Function and Dysfunction

    Directory of Open Access Journals (Sweden)

    Xiaoting Luo

    2015-01-01

    Full Text Available Pancreatic β cells not only use glucose as an energy source, but also sense blood glucose levels for insulin secretion. While pyruvate and NADH metabolic pathways are known to be involved in regulating insulin secretion in response to glucose stimulation, the roles of many other components along the metabolic pathways remain poorly understood. Such is the case for mitochondrial complex I (NADH/ubiquinone oxidoreductase. It is known that normal complex I function is absolutely required for episodic insulin secretion after a meal, but the role of complex I in β cells in the diabetic pancreas remains to be investigated. In this paper, we review the roles of pyruvate, NADH, and complex I in insulin secretion and hypothesize that complex I plays a crucial role in the pathogenesis of β cell dysfunction in the diabetic pancreas. This hypothesis is based on the establishment that chronic hyperglycemia overloads complex I with NADH leading to enhanced complex I production of reactive oxygen species. As nearly all metabolic pathways are impaired in diabetes, understanding how complex I in the β cells copes with elevated levels of NADH in the diabetic pancreas may provide potential therapeutic strategies for diabetes.

  12. Assembly of respiratory complexes I, III, and IV into NADH oxidase supercomplex stabilizes complex I in Paracoccus denitrificans.

    Science.gov (United States)

    Stroh, Anke; Anderka, Oliver; Pfeiffer, Kathy; Yagi, Takao; Finel, Moshe; Ludwig, Bernd; Schägger, Hermann

    2004-02-01

    Stable supercomplexes of bacterial respiratory chain complexes III (ubiquinol:cytochrome c oxidoreductase) and IV (cytochrome c oxidase) have been isolated as early as 1985 (Berry, E. A., and Trumpower, B. L. (1985) J. Biol. Chem. 260, 2458-2467). However, these assemblies did not comprise complex I (NADH:ubiquinone oxidoreductase). Using the mild detergent digitonin for solubilization of Paracoccus denitrificans membranes we could isolate NADH oxidase, assembled from complexes I, III, and IV in a 1:4:4 stoichiometry. This is the first chromatographic isolation of a complete "respirasome." Inactivation of the gene for tightly bound cytochrome c552 did not prevent formation of this supercomplex, indicating that this electron carrier protein is not essential for structurally linking complexes III and IV. Complex I activity was also found in the membranes of mutant strains lacking complexes III or IV. However, no assembled complex I but only dissociated subunits were observed following the same protocols used for electrophoretic separation or chromatographic isolation of the supercomplex from the wild-type strain. This indicates that the P. denitrificans complex I is stabilized by assembly into the NADH oxidase supercomplex. In addition to substrate channeling, structural stabilization of a membrane protein complex thus appears as one of the major functions of respiratory chain supercomplexes.

  13. Actinomycin D-induced enhancement of ubiquinone biosynthesis in rat.

    Science.gov (United States)

    Gopalaswamy, U V; Aiyar, A S

    1976-07-01

    Administration of actinomycin D to fasted rats induces an enhancement of the labeling of hepatic ubiquinone by [2-14C] acetate both in vivo and in vitro. The incorporation of [2-14C] mevalonate into ubiquinone is also increased, although to a significantly lesser extent; this, however, presumably results from greater uptake of the labeled precursor by liver of drug-treated rats. The drug-administered animals show increased activity of liver microsomal mevalonate: NADP oxidoreductase, the rate-limiting enzyme in isoprenoid biogenesis. The incorporation of [u-14C] benzoic acid and CH3-[14C] methionine into ubiquinone in liver slices, however, reveals a decrease in actinomycin D administered rats. This appears to be due to a specific inhibition of the pathway leading to the benzoquinone moiety of ubiquinone and not to an increase in the pool-size of the precursors. The stimulatory effect of the drug on ubiquinone biosynthesis is also observable in cholesterol-fed rats. The actinomycin D-induced increase in ubiquinone biosynthesis is dependent on new protein synthesis since the effect is abolished by treating the animals with either cycloheximide or puromycin.

  14. Electron transport in Paracoccus halodenitrificans and the role of Ubiquinone

    Science.gov (United States)

    Hochstein, L. I.; Cronin, S. E.

    1984-01-01

    The membrane-bound NADH oxidase of Paracoccus halodenitrificans was inhibited by dicoumarol, 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO), and exposure to ultraviolet light (at 366 nm). When the membranes were extracted with n-pentane, NADH oxidase activity was lost. Partial restoration was achieved by adding the ubiquinone fraction extracted from the membranes. Succinate oxidation was not inhibited by dicoumarol or HQNO but was affected by ultraviolet irradiation or n-pentane extraction. However, the addition of the ubiquinone fraction to the n-pentane-extracted membranes did not restore enzyme activity. These observations suggested the reducing equivalents from succinate entered the respiratory chain on the oxygen side of the HQNO-sensitive site and probably did not proceed through a quinone.

  15. Location and activity of ubiquinone 10 and ubiquinone analogues in model and biological membranes

    Energy Technology Data Exchange (ETDEWEB)

    Cornell, B.A.; Keniry, M.A.; Post, A.; Roberston, R.N.; Weir, L.E.; Westerman, P.W.

    1987-12-01

    Deuteriated analogues of ubiquinone 10 (Q/sup 10/) have been dispersed with plasma membranes of Escherichia coli and with the inner membranes of beetroot mitochondria. Orientational order at various deuteriated sites was measured by solid-state deuterium nuclear magnetic resonance (/sup 2/H NMR). Similar measurements were made, using the compounds dispersed in dimyristoylphosphatidylcholine (DMPC) and egg yolk lecithin and dispersions prepared from the lipid extracts of beetroot mitochondria. In all cases only a single unresolved /sup 2/H NMR spectrum (typically 1000-Hz full width at half-height) was observed at concentrations down to 0.02 mol % Q/sub 10/ per membrane lipid. This result shows that most Q/sub 10/ is in a mobile environment which is physically separate from the orientational constraints of the bilayer lipid chains. In contrast, a short-chain analog of Q/sub 10/, in which the 10 isoprene groups have been replaced by a perdeuteriated tridecyl chain, showed /sup 2/H NMR spectra with quadrupolar splittings typical of an ordered lipid that is intercalated into the bilayer. The NADH oxidase activity and O/sub 2/ uptake in Escherichia coli and in mitochondria were independent of which analog was incorporated into the membrane. Thus, despite the major difference in their physical association with membranes, or their lipid extracts, the electron transport function of the long- and short-chain ubiquinones is similar, suggesting that the bulk of the long-chain ubiquinone does not have a direct function in electron transporting activity. The physiologically active Q/sub 10/ may only be a small fraction of the total ubiquinone, a fraction that is below the level of detection of the present NMR equipment. However, our results do not support any model of Q/sub 10/ electron transport action that includes intercalation of the long isoprenoid chain in lipid.

  16. The NADH oxidase-Prx system in Amphibacillus xylanus.

    Science.gov (United States)

    Niimura, Youichi

    2007-01-01

    Amphibacillus NADH oxidase belongs to a growing new family of peroxiredoxin-linked oxidoreductases including alkyl hydroperoxide reductase F (AhpF). Like AhpF it displays extremely high hydroperoxide reductase activity in the presence of a Prx, thus making up the NADH oxidase-Prx system. The NADH oxidase primarily catalyzes the reduction of oxygen by NADH to form H2O2, while the Prx immediately reduces H2O2 (or ROOH) to water (or ROH). Consequently, the NADH oxidase-Prx system catalyzes the reduction of both oxygen and hydrogen peroxide to water with NADH as the preferred electron donor. The NADH oxidase-Prx system is widely distributed in aerobically growing bacteria lacking a respiratory chain and catalase, and plays an important role not only in scavenging hydroperoxides but also in regenerating NAD in these bacteria.

  17. NCBI nr-aa BLAST: CBRC-ACAR-01-0970 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-ACAR-01-0970 ref|ZP_01433876.1| NADH [Shewanella baltica OS195] ref|YP_0010493...19.1| NADH:ubiquinone oxidoreductase, subunit B [Shewanella baltica OS155] ref|ZP_01841447.1| NADH:ubiquinon...e oxidoreductase, subunit B [Shewanella baltica OS223] gb|EAU28006.1| NADH [Shewanella baltica OS195] gb|ABN...60450.1| NADH:ubiquinone oxidoreductase, subunit B [Shewanella baltica OS155] gb|...EDK50875.1| NADH:ubiquinone oxidoreductase, subunit B [Shewanella baltica OS223] ZP_01433876.1 0.52 33% ...

  18. Sequence Analysis of mtDNA NADH-Ubiquinone Oxidoreductase Chain 1 Gene (ND1) of the Asian Black Bear Sichuan Subspecies (Ursus thibetanus mupinensis)%四川黑熊(Ursus thibetanus mupinensis)线粒体NADH脱氢酶亚基1基因(ND1)的序列分析

    Institute of Scientific and Technical Information of China (English)

    侯万儒; 陈瑜; 吴夏; 彭正松; 周才权; 杨军

    2007-01-01

    以四川境内的四川黑熊(Ursus thibetanus mupinensis)为研究对象,根据已报道的若干物种的NADH脱氢酶亚基1基因(ND1)序列信息设计引物. 运用PCR技术从四川黑熊毛囊组织的总DNA中扩增出ND1基因序列. 采用GenScan、Blast 2.1、ORF finder和Clustal W等软件分别对DNA序列进行预测、相似性比较、ORF查找以及多序列比对,并利用PredictProtein软件对蛋白质进行预测和结构分析. 结果表明;PCR扩增所得DNA序列长度为957 bp,包含了ND1基因,其ORF为957 bp,编码317个氨基酸,编码蛋白的分子量为35.6×103 Da,pI为7.83. 四川黑熊的ND1基因序列及其所编码的氨基酸序列与其它熊、浣熊和小熊猫等动物的ND1基因序列和对应的氨基酸序列具有较高的相似性.

  19. NCBI nr-aa BLAST: CBRC-CPOR-01-1994 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CPOR-01-1994 ref|YP_001249299.1| NADH:ubiquinone oxidoreductase subunit 2 [Gibberella zea...e] gb|ABC86611.1| NADH:ubiquinone oxidoreductase subunit 2 [Gibberella zeae] YP_001249299.1 2.0 26% ...

  20. AcEST: BP914257 [AcEST

    Lifescience Database Archive (English)

    Full Text Available PSIVKLYSFSESPEHYF 199 >tr|Q1WNV4|Q1WNV4_9SALA NADH-ubiquinone oxidoreductase chain 2 OS=Plethodon electromor...H Sbjct: 203 YSLAH 207 >tr|Q1WNU9|Q1WNU9_9SALA NADH-ubiquinone oxidoreductase chain 2 OS=Plethodon richmondi

  1. AcEST: BP914201 [AcEST

    Lifescience Database Archive (English)

    Full Text Available ition tr|Q2QG48|Q2QG48_9SAUR NADH-ubiquinone oxidoreductase chain 5 OS=Testudo hermanni Align length 47 Scor...2QG48_9SAUR NADH-ubiquinone oxidoreductase chain 5 OS=Testudo hermanni GN=ND5 PE=3 SV=1 Length = 598 Score =

  2. Manganese ions enhance mitochondrial H2O2 emission from Krebs cycle oxidoreductases by inducing permeability transition.

    Science.gov (United States)

    Bonke, Erik; Siebels, Ilka; Zwicker, Klaus; Dröse, Stefan

    2016-10-01

    Manganese-induced toxicity has been linked to mitochondrial dysfunction and an increased generation of reactive oxygen species (ROS). We could recently show in mechanistic studies that Mn(2+) ions induce hydrogen peroxide (H2O2) production from the ubiquinone binding site of mitochondrial complex II (IIQ) and generally enhance H2O2 formation by accelerating the rate of superoxide dismutation. The present study with intact mitochondria reveals that manganese additionally enhances H2O2 emission by inducing mitochondrial permeability transition (mPT). In mitochondria fed by NADH-generating substrates, the combination of Mn(2+) and different respiratory chain inhibitors led to a dynamically increasing H2O2emission which was sensitive to the mPT inhibitor cyclosporine A (CsA) as well as Ru-360, an inhibitor of the mitochondrial calcium uniporter (MCU). Under these conditions, flavin-containing enzymes of the mitochondrial matrix, e.g. the mitochondrial 2-oxoglutaratedehydrogenase (OGDH), were major sources of ROS. With succinate as substrate, Mn(2+) stimulated ROS production mainly at complex II, whereby the applied succinate concentration had a marked effect on the tendency for mPT. Also Ca(2+) increased the rate of H2O2 emission by mPT, while no direct effect on ROS-production of complex II was observed. The present study reveals a complex scenario through which manganese affects mitochondrial H2O2 emission: stimulating its production from distinct sites (e.g. site IIQ), accelerating superoxide dismutation and enhancing the emission via mPT which also leads to the loss of soluble components of the mitochondrial antioxidant systems and favors the ROS production from flavin-containing oxidoreductases of the Krebs cycle.

  3. Identification of oxidoreductases from the petroleum Bacillus safensis strain

    Directory of Open Access Journals (Sweden)

    Francine S.A. da Fonseca

    2015-12-01

    Full Text Available A gram-positive bacterium, denominated CFA-06, was isolated from Brazilian petroleum in the Campos Basin and is responsible for the degradation of aromatic compounds and petroleum aromatic fractions. The CFA-06 strain was identified as Bacillus safensis using the 16S rRNA and gyrase B sequence. Enzymatic assays revealed the presence of two oxidoreductases: a catalase and a new oxidoreductase. The oxidoreductases were enzymatically digested and analyzed via ESI-LTQ-Orbitrap mass spectrometry. The mass data revealed a novel oxidoreductase (named BsPMO containing 224 amino acids and 89% homology with a hypothetic protein from B. safensis (CFA-06 and a catalase (named BsCat with 491 amino acids and 60% similarity with the catalase from Bacillus pumilus (SAFR-032. The new protein BsPMO contains iron atom(s and shows catalytic activity toward a monooxygenase fluorogenic probe in the presence of cofactors (NADH, NADPH and NAD. This study enhances our knowledge of the biodegradation process of petroleum by B. safensis.

  4. Ubiquinone and carotene production in the Mucorales Blakeslea and Phycomyces

    DEFF Research Database (Denmark)

    Kuzina, Vera; Cerda-Olmedo, E.

    2007-01-01

    The filamentous fungi Phycomyces blakesleeanus and Blakeslea trispora (Zygomycota, Mucorales) are actual or potential industrial sources of beta-carotene and lycopene. These chemicals and the large terpenoid moiety of ubiquinone derive from geranylgeranyl pyrophosphate. We measured the ubiquinone...... interaction and mutations in both organisms made the carotene content vary from traces to 23 mg/g dry mass, while the ubiquinone content remained unchanged at 0.3 mg/g dry mass. We concluded that the biosyntheses of ubiquinone and carotene are not coregulated. The specific regulation for carotene biosynthesis...... does not affect even indirectly the production of ubiquinone, as would be expected if terpenoids were synthesized through a branched pathway that could divert precursor flows from one branch to another....

  5. Effects of L-malate on mitochondrial oxidoreductases in liver of aged rats.

    Science.gov (United States)

    Wu, J-L; Wu, Q-P; Peng, Y-P; Zhang, J-M

    2011-01-01

    Accumulation of oxidative damage has been implicated to be a major causative factor in the decline in physiological functions that occur during the aging process. The mitochondrial respiratory chain is a powerful source of reactive oxygen species (ROS), considered as the pathogenic agent of many diseases and aging. L-malate, a tricarboxylic acid cycle intermediate, plays an important role in transporting NADH from cytosol to mitochondria for energy production. Previous studies in our laboratory reported L-malate as a free radical scavenger in aged rats. In the present study we focused on the effect of L-malate on the activities of electron transport chain in young and aged rats. We found that mitochondrial membrane potential (MMP) and the activities of succinate dehydrogenase, NADH-cytochrome c oxidoreductase and cytochrome c oxidase in liver of aged rats were significantly decreased when compared to young control rats. Supplementation of L-malate to aged rats for 30 days slightly increased MMP and improved the activities of NADH-dehydrogenase, NADH-cytochrome c oxidoreductase and cytochrome c oxidase in liver of aged rats when compared with aged control rats. In young rats, L-malate administration increased only the activity of NADH-dehydrogenase. Our result suggested that L-malate could improve the activities of electron transport chain enzymes in aged rats.

  6. AcEST: BP911689 [AcEST

    Lifescience Database Archive (English)

    Full Text Available NADH-ubiquinone oxidoreductase chain 4 OS... 33 7.2 >tr|Q9G861|Q9G861_9EUKA NADH-ubiquinone oxidoreductase chain 4 OS=Malawimonas...TrEMBL tr_hit_id Q9G861 Definition tr|Q9G861|Q9G861_9EUKA NADH-ubiquinone oxidoreductase chain 4 OS=Malawi...monas jakobiformis Align length 58 Score (bit) 33.1 E-value 7.2 Report BLASTX 2.2.1

  7. Annotated compound data for modulators of detergent-solubilised or lipid-reconstituted respiratory type II NADH dehydrogenase activity obtained by compound library screening

    OpenAIRE

    Dunn, Elyse A.; Cook, Gregory M.; Adam Heikal

    2015-01-01

    The energy-generating membrane protein NADH dehydrogenase (NDH-2), a proposed antibacterial drug target (see “Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs” Weinstein et al. 2005 [1]), was screened for modulators of activity in either detergent-solublised or lipid reconstituted (proteolipsome) form. Here we present an annotated list of compounds identified in a small-scale screen against NDH-2. The dataset contains information regarding the li...

  8. Exploring the ubiquinone binding cavity of respiratory complex I.

    Science.gov (United States)

    Tocilescu, Maja A; Fendel, Uta; Zwicker, Klaus; Kerscher, Stefan; Brandt, Ulrich

    2007-10-05

    Proton pumping respiratory complex I is a major player in mitochondrial energy conversion. Yet little is known about the molecular mechanism of this large membrane protein complex. Understanding the details of ubiquinone reduction will be prerequisite for elucidating this mechanism. Based on a recently published partial structure of the bacterial enzyme, we scanned the proposed ubiquinone binding cavity of complex I by site-directed mutagenesis in the strictly aerobic yeast Yarrowia lipolytica. The observed changes in catalytic activity and inhibitor sensitivity followed a consistent pattern and allowed us to define three functionally important regions near the ubiquinone-reducing iron-sulfur cluster N2. We identified a likely entry path for the substrate ubiquinone and defined a region involved in inhibitor binding within the cavity. Finally, we were able to highlight a functionally critical structural motif in the active site that consisted of Tyr-144 in the 49-kDa subunit, surrounded by three conserved hydrophobic residues.

  9. InterProScan Result: FS735090 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS735090 FS735090_6_ORF1 572734424613A708 PFAM PF00361 Oxidored_q1 1.9e-07 T IPR001...750 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activit

  10. InterProScan Result: FS734597 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS734597 FS734597_1_ORF3 C92A57B5A0D49E9C PFAM PF00361 Oxidored_q1 9.5e-09 T IPR001...750 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activit

  11. InterProScan Result: FY011491 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FY011491 FY011491_5_ORF2 014FA900E6EE219A PFAM PF00361 Oxidored_q1 3.7e-16 T IPR001...750 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activit

  12. InterProScan Result: FS869288 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS869288 FS869288_5_ORF2 1D3ECC3A57ADFC41 PFAM PF00361 Oxidored_q1 4.6e-11 T IPR001...750 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activit

  13. InterProScan Result: BY923257 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available BY923257 BY923257_5_ORF1 1EB3A30D2880F4F6 PFAM PF00361 Oxidored_q1 9.7e-19 T IPR001...750 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activit

  14. InterProScan Result: FY753405 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FY753405 FY753405_5_ORF2 313FD8C31FB02CB3 PFAM PF00507 Oxidored_q4 3.8e-20 T IPR000...440 NADH:ubiquinone/plastoquinone oxidoreductase, chain 3 Molecular Function: NADH dehydrogenase (ubiquinone

  15. InterProScan Result: FY014756 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FY014756 FY014756_6_ORF2 4D576B5385D80C4C PFAM PF00361 Oxidored_q1 1.4e-08 T IPR001...750 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activit

  16. InterProScan Result: FS743341 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS743341 FS743341_6_ORF2 BA93D6A420096127 PFAM PF00361 Oxidored_q1 6.3e-06 T IPR001...750 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activit

  17. InterProScan Result: FS829327 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS829327 FS829327_6_ORF2 D2CE6E2FA5DA3BCD PFAM PF00361 Oxidored_q1 3.8e-08 T IPR001...750 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activit

  18. InterProScan Result: FS741017 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS741017 FS741017_5_ORF1 F8D38551C554A77B PFAM PF00361 Oxidored_q1 3.9e-07 T IPR001...750 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activit

  19. InterProScan Result: FS742309 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS742309 FS742309_4_ORF2 02541CCE20034F52 PFAM PF00361 Oxidored_q1 1.6e-15 T IPR001...750 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activit

  20. InterProScan Result: FS740290 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS740290 FS740290_5_ORF1 E124A401EB75FF5D PFAM PF00361 Oxidored_q1 1.6e-11 T IPR001...750 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activit

  1. InterProScan Result: BY923557 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available BY923557 BY923557_1_ORF3 38F27729654F91D9 PFAM PF00361 Oxidored_q1 7e-18 T IPR00175...0 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activity

  2. InterProScan Result: FS740290 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS740290 FS740290_4_ORF2 118993BD5B239CF7 PFAM PF00361 Oxidored_q1 1e-14 T IPR00175...0 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activity

  3. InterProScan Result: FS724441 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS724441 FS724441_2_ORF1 AA52C8F0F6FA2F4E PFAM PF00361 Oxidored_q1 4.5e-05 T IPR001...750 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activit

  4. InterProScan Result: FS750468 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS750468 FS750468_5_ORF2 B85FB143184D3063 PFAM PF00361 Oxidored_q1 4.8e-10 T IPR001...750 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activit

  5. InterProScan Result: FS742309 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS742309 FS742309_4_ORF1 C305CF864A14CE85 PFAM PF00361 Oxidored_q1 3.1e-09 T IPR001...750 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activit

  6. InterProScan Result: FS777021 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS777021 FS777021_6_ORF2 F6175A0867F64315 PFAM PF00499 Oxidored_q3 3.4e-06 T IPR001...457 NADH:ubiquinone/plastoquinone oxidoreductase, chain 6 Molecular Function: NADH dehydrogenase (ubiquinone

  7. InterProScan Result: BB988450 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available BB988450 BB988450_3_ORF3 334E71F0E13380BF PFAM PF00361 Oxidored_q1 6e-08 T IPR00175...0 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activity

  8. InterProScan Result: FY014756 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FY014756 FY014756_6_ORF3 AF6E7F3050CE7ED9 PFAM PF00361 Oxidored_q1 4.4e-07 T IPR001...750 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activit

  9. InterProScan Result: FS728834 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS728834 FS728834_3_ORF1 B4E54D416C3B12B0 PFAM PF00507 Oxidored_q4 4.2e-14 T IPR000...440 NADH:ubiquinone/plastoquinone oxidoreductase, chain 3 Molecular Function: NADH dehydrogenase (ubiquinone

  10. InterProScan Result: FY011491 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FY011491 FY011491_5_ORF1 7E2E4D364EC76BF7 PFAM PF00361 Oxidored_q1 1.5e-09 T IPR001...750 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activit

  11. InterProScan Result: BB990129 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available BB990129 BB990129_2_ORF3 6DA886178EF7B933 PFAM PF00499 Oxidored_q3 4.9e-09 T IPR001...457 NADH:ubiquinone/plastoquinone oxidoreductase, chain 6 Molecular Function: NADH dehydrogenase (ubiquinone

  12. InterProScan Result: FY743749 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FY743749 FY743749_2_ORF2 55F0BC508B8E537B PFAM PF00361 Oxidored_q1 3.7e-28 T IPR001...750 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activit

  13. InterProScan Result: FS869288 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS869288 FS869288_5_ORF1 8506AEB15BE3748E PFAM PF00361 Oxidored_q1 1.8e-08 T IPR001...750 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activit

  14. InterProScan Result: FS777601 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS777601 FS777601_3_ORF3 03EB30105C7D39BE PFAM PF00361 Oxidored_q1 1.7e-06 T IPR001...750 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activit

  15. InterProScan Result: BY923557 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available BY923557 BY923557_1_ORF2 9E8695D0E871C3AC PFAM PF00361 Oxidored_q1 4.8e-10 T IPR001...750 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activit

  16. InterProScan Result: BY931715 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available BY931715 BY931715_3_ORF1 47383307009BD781 PFAM PF00361 Oxidored_q1 2.1e-16 T IPR001...750 NADH:ubiquinone/plastoquinone oxidoreductase Molecular Function: NADH dehydrogenase (ubiquinone) activit

  17. InterProScan Result: BY942597 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available BY942597 BY942597_6_ORF1 D5CA04E43A9F95DF PFAM PF00507 Oxidored_q4 2.4e-23 T IPR000...440 NADH:ubiquinone/plastoquinone oxidoreductase, chain 3 Molecular Function: NADH dehydrogenase (ubiquinone

  18. InterProScan Result: FS737726 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS737726 FS737726_1_ORF1 4AA8E2187CCAB3E0 PFAM PF00507 Oxidored_q4 5.9e-18 T IPR000...440 NADH:ubiquinone/plastoquinone oxidoreductase, chain 3 Molecular Function: NADH dehydrogenase (ubiquinone

  19. Toward high-throughput screening of NAD(P)-dependent oxidoreductases using boron-doped diamond microelectrodes and microfluidic devices.

    Science.gov (United States)

    Oyobiki, Ryo; Kato, Taisuke; Katayama, Michinobu; Sugitani, Ai; Watanabe, Takeshi; Einaga, Yasuaki; Matsumoto, Yoshinori; Horisawa, Kenichi; Doi, Nobuhide

    2014-10-07

    Although oxidoreductases are widely used in many applications, such as biosensors and biofuel cells, improvements in the function of existing oxidoreductases or the discovery of novel oxidoreductases with greater activities is desired. To increase the activity of oxidoreductases by directed evolution, a powerful screening technique for oxidoreductases is required. In this study, we demonstrate the utility of boron-doped diamond (BDD) microelectrodes for quantitative and potentially high-throughput measurement of the activity of NAD(P)-dependent oxidoreductases. We first confirmed that BDD microelectrodes can quantify the activity of low concentrations (10-100 pM) of glucose-6-phosphate dehydrogenase and alcohol dehydrogenase with a measuring time of 1 ms per sample. In addition, we found that poisoning of BDD microelectrodes can be repressed by optimizing the pH and by adding l-arginine to the enzyme solution as an antiaggregation agent. Finally, we fabricated a microfluidic device containing a BDD electrode for the first time and observed the elevation of the oxidation current of NADH with increasing flow rate. These results imply that the combination of a BDD microelectrode and microfluidics can be used for high-throughput screening of an oxidoreductase library containing a large number (>10(6)) of samples, each with a small (nanoliter) sample volume.

  20. [Lacrimators as acceptors for NADH].

    Science.gov (United States)

    Wallenfels, K; Ertel, W; Höckendorf, A; Rieser, J; Uberschär, K H

    1975-10-01

    Lachrymators of varied structure are reduced either by hydrogen addition or halogen substitution using NADH model compounds as donors. Similar compounds without lachrymatory activity were reduced either very slowly or not at all. CS (o-Chlorobenzalmalonitril) is reduced by NADH, the reaction being catalyzed by an enzyme present in erythrocytes. Thus the lachrymatory action follows a general scheme for the activity of sensory transduction. This scheme consists of a reception in the nerve cell membrane and a fast or simultaneous chemical transformation in an enzymic reaction.

  1. Inhibition of mitochondrial Na+-Ca2+ exchange restores agonist-induced ATP production and Ca2+ handling in human complex I deficiency.

    NARCIS (Netherlands)

    Visch, H.J.; Rutter, G.A.; Koopman, W.J.H.; Koenderink, J.B.; Verkaart, S.A.J.; Groot, T. de; Varadi, A.; Mitchell, K.J.; Heuvel, L.P.W.J. van den; Smeitink, J.A.M.; Willems, P.H.G.M.

    2004-01-01

    Human mitochondrial complex I (NADH:ubiquinone oxidoreductase) of the oxidative phosphorylation system is a multiprotein assembly comprising both nuclear and mitochondrially encoded subunits. Deficiency of this complex is associated with numerous clinical syndromes ranging from highly progressive, o

  2. Mitochondrial network complexity and pathological decrease in complex I activity are tightly correlated in isolated human complex I deficiency

    NARCIS (Netherlands)

    Koopman, W.J.H.; Visch, H.J.; Verkaart, S.A.J.; Heuvel, L.W. van den; Smeitink, J.A.M.; Willems, P.H.G.M.

    2005-01-01

    Complex I (NADH:ubiquinone oxidoreductase) is the largest multisubunit assembly of the oxidative phosphorylation system, and its malfunction is associated with a wide variety of clinical syndromes ranging from highly progressive, often early lethal, encephalopathies to neurodegenerative disorders in

  3. A novel method for preparation of MNP@CS-tethered coenzyme for coupled oxidoreductase system.

    Science.gov (United States)

    Chen, Guo; Wu, Zhichao; Ma, Yunhui

    2015-02-20

    The immobilized cofactor NAD(H) is easily recovered from the reaction bulk, which is essential for repeated use of NAD(H) in the bioprocess catalyzed by NAD(H)-dependent oxidoreductase. Here, a magnetic nanoparticle platform was designed to immobilize both of the NADH and the NAD(+). The design was based on chitosan-coated magnetic nanoparticles (MNP@CS) which was activated by the EDC/NHS with the aid of azelaic acid as spacer. Interestingly, the succinimide group at the end of spacer arm catalyzed direct coupling of a carboxyl-terminal to the 6-amino group of the adenine residue of NAD(H). Our results indicated that 150 μmol NADH and 50 μmol NAD(+) was effectively attached to 1g MNP@CS at 25°C in 120 min and the prepared MNP@CS-NAD(H) showed good activity according to the coupling reaction of benzyl alcohol and acetaldehyde catalyzed by alcohol dehydrogenase.

  4. Optimizing Cofactor Specificity of Oxidoreductase Enzymes for the Generation of Microbial Production Strains—OptSwap

    DEFF Research Database (Denmark)

    King, Zachary A.; Feist, Adam

    2013-01-01

    Central oxidoreductase enzymes (eg, dehydrogenases, reductases) in microbial metabolism often have preferential binding specificity for one of the two major currency metabolites NAD(H) and NADP(H). These enzyme specificities result in a division of the metabolic functionality of the currency...... specificities of oxidoreductase enzyme and complementary reaction knockouts. Using the Escherichia coli genome-scale metabolic model iJO1366, OptSwap predicted eight growth-coupled production designs with significantly greater product yields or substrate-specific productivities than designs predicted with gene...... knockouts alone. These designs were identified for the production of L-alanine, succinate, acetate, and D-lactate under modeled conditions. Simulations predicted that production of L-alanine and D-lactate can be strongly coupled to growth by knocking out three reactions and swapping the cofactor specificity...

  5. New complexes containing the internal alternative NADH dehydrogenase (Ndi1) in mitochondria of Saccharomyces cerevisiae.

    Science.gov (United States)

    Matus-Ortega, M G; Cárdenas-Monroy, C A; Flores-Herrera, O; Mendoza-Hernández, G; Miranda, M; González-Pedrajo, B; Vázquez-Meza, H; Pardo, J P

    2015-10-01

    Mitochondria of Saccharomyces cerevisiae lack the respiratory complex I, but contain three rotenone-insensitive NADH dehydrogenases distributed on both the external (Nde1 and Nde2) and internal (Ndi1) surfaces of the inner mitochondrial membrane. These enzymes catalyse the transfer of electrons from NADH to ubiquinone without the translocation of protons across the membrane. Due to the high resolution of the Blue Native PAGE (BN-PAGE) technique combined with digitonin solubilization, several bands with NADH dehydrogenase activity were observed on the gel. The use of specific S. cerevisiae single and double mutants of the external alternative elements (ΔNDE1, ΔNDE2, ΔNDE1/ΔNDE2) showed that the high and low molecular weight complexes contained the Ndi1. Some of the Ndi1 associations took place with complexes III and IV, suggesting the formation of respirasome-like structures. Complex II interacted with other proteins to form a high molecular weight supercomplex with a molecular mass around 600 kDa. We also found that the majority of the Ndi1 was in a dimeric form, which is in agreement with the recently reported three-dimensional structure of the protein.

  6. Cloning and sequence analysis of the gene encoding 19-kD subunit of Complex I from Dunaliella salina.

    Science.gov (United States)

    Liu, Yi; Qiao, Dai Rong; Zheng, Hong Bo; Dai, Xu Lan; Bai, Lin Han; Zeng, Jing; Cao, Yi

    2008-09-01

    NADH:ubiquinone oxidoreductase (complex I ) of the mitochondrial respiratory chain catalyzes the transfer of electrons from NADH to ubiquinone coupled to proton translocation across the membrane. The cDNA sequence of Dunaliella salina mitochondrial NADH: ubiquinone oxidoreductase 19-kD subunit contains a 682-bp ORF encoding a protein with an apparent molecular mass of 19 kD. The sequence has been submitted to the GenBank database under Accession No. EF566890 (cDNA sequences) and EF566891 (genomic sequence). The deduced amino-acid sequence is 74% identical to Chlamydomonas reinhardtii mitochondrial NADH:ubiquinone oxidoreductase 18-kD subunit. The 19-kD subunit mRNA expression was observed in oxygen deficiency, salt treatment, and rotenone treatment with lower levels. It demonstrate that the 19-kD subunit of Complex I from Dunaliella salina is regulated by these stresses.

  7. AcEST: BP913605 [AcEST

    Lifescience Database Archive (English)

    Full Text Available H-ubiquinone oxidoreductase 2, ... 130 3e-30 sp|P32340|NDI1_YEAST Rotenone-insensitive NADH-ubiquinone oxido...KRIEVPYGMVVWSTG 53 V +V E + ++ ++ YGM+VW+TG Sbjct: 333 VNTAV-KVVEPTYIRTLQNGQTNTDIEYGMLVWATG 367 >sp|P32340|NDI1_YEAST Rote

  8. Functional characterization of the chloroplast ferric chelate oxidoreductase enzyme.

    Science.gov (United States)

    Solti, Adám; Müller, Brigitta; Czech, Viktória; Sárvári, Éva; Fodor, Ferenc

    2014-05-01

    Iron (Fe) has an essential role in the biosynthesis of chlorophylls and redox cofactors, and thus chloroplast iron uptake is a process of special importance. The chloroplast ferric chelate oxidoreductase (cFRO) has a crucial role in this process but it is poorly characterized. To study the localization and mechanism of action of cFRO, sugar beet (Beta vulgaris cv Orbis) chloroplast envelope fractions were isolated by gradient ultracentrifugation, and their purity was tested by western blotting against different marker proteins. The ferric chelate reductase (FCR) activity of envelope fractions was studied in the presence of NAD(P)H (reductants) and FAD coenzymes. Reduction of Fe(III)-ethylenediaminetetraacetic acid was monitored spectrophotometrically by the Fe(II)-bathophenanthroline disulfonate complex formation. FCR activity, that is production of free Fe(II) for Fe uptake, showed biphasic saturation kinetics, and was clearly associated only to chloroplast inner envelope (cIE) vesicles. The reaction rate was > 2.5 times higher with NADPH than with NADH, which indicates the natural coenzyme preference of cFRO activity and its dependence on photosynthesis. FCR activity of cIE vesicles isolated from Fe-deficient plants also showed clear biphasic kinetics, where the KM of the low affinity component was elevated, and thus this component was down-regulated.

  9. Expansion and evolution of insect GMC oxidoreductases

    Directory of Open Access Journals (Sweden)

    Ko Wen-Ya

    2007-05-01

    Full Text Available Abstract Background The GMC oxidoreductases comprise a large family of diverse FAD enzymes that share a homologous backbone. The relationship and origin of the GMC oxidoreductase genes, however, was unknown. Recent sequencing of entire genomes has allowed for the evolutionary analysis of the GMC oxidoreductase family. Results Although genes that encode enzyme families are rarely linked in higher eukaryotes, we discovered that the majority of the GMC oxidoreductase genes in the fruit fly (D. melanogaster, mosquito (A. gambiae, honeybee (A. mellifera, and flour beetle (T. castaneum are located in a highly conserved cluster contained within a large intron of the flotillin-2 (Flo-2 gene. In contrast, the genomes of vertebrates and the nematode C. elegans contain few GMC genes and lack a GMC cluster, suggesting that the GMC cluster and the function of its resident genes are unique to insects or arthropods. We found that the development patterns of expression of the GMC cluster genes are highly complex. Among the GMC oxidoreductases located outside of the GMC gene cluster, the identities of two related enzymes, glucose dehydrogenase (GLD and glucose oxidase (GOX, are known, and they play major roles in development and immunity. We have discovered that several additional GLD and GOX homologues exist in insects but are remotely similar to fungal GOX. Conclusion We speculate that the GMC oxidoreductase cluster has been conserved to coordinately regulate these genes for a common developmental or physiological function related to ecdysteroid metabolism. Furthermore, we propose that the GMC gene cluster may be the birthplace of the insect GMC oxidoreductase genes. Through tandem duplication and divergence within the cluster, new GMC genes evolved. Some of the GMC genes have been retained in the cluster for hundreds of millions of years while others might have transposed to other regions of the genome. Consistent with this hypothesis, our analysis indicates

  10. The Kinetic Reaction Mechanism of the Vibrio cholerae Sodium-dependent NADH Dehydrogenase*♦

    Science.gov (United States)

    Tuz, Karina; Mezic, Katherine G.; Xu, Tianhao; Barquera, Blanca; Juárez, Oscar

    2015-01-01

    The sodium-dependent NADH dehydrogenase (Na+-NQR) is the main ion transporter in Vibrio cholerae. Its activity is linked to the operation of the respiratory chain and is essential for the development of the pathogenic phenotype. Previous studies have described different aspects of the enzyme, including the electron transfer pathways, sodium pumping structures, cofactor and subunit composition, among others. However, the mechanism of the enzyme remains to be completely elucidated. In this work, we have studied the kinetic mechanism of Na+-NQR with the use of steady state kinetics and stopped flow analysis. Na+-NQR follows a hexa-uni ping-pong mechanism, in which NADH acts as the first substrate, reacts with the enzyme, and the oxidized NAD leaves the catalytic site. In this conformation, the enzyme is able to capture two sodium ions and transport them to the external side of the membrane. In the last step, ubiquinone is bound and reduced, and ubiquinol is released. Our data also demonstrate that the catalytic cycle involves two redox states, the three- and five-electron reduced forms. A model that gathers all available information is proposed to explain the kinetic mechanism of Na+-NQR. This model provides a background to understand the current structural and functional information. PMID:26004776

  11. Muscle Fibre Types, Ubiquinone Content and Exercise Capacity in Hypertension and Effort Angina

    DEFF Research Database (Denmark)

    Karlsson, Jan; Diamant, Bertil; Folkers, Karl;

    1991-01-01

    Farmakologi, hypertension, IHD, skeletal muscle fibre composition, muscle coenzyme Q10, ischaemic heart disease, effort angina, muscle fibre lesion, muscle ubiquinone......Farmakologi, hypertension, IHD, skeletal muscle fibre composition, muscle coenzyme Q10, ischaemic heart disease, effort angina, muscle fibre lesion, muscle ubiquinone...

  12. Sequence of b cytochromes relative to ubiquinone in the electron transport chain of Escherichia coli.

    Science.gov (United States)

    Downie, J A; Cox, G B

    1978-01-01

    A ubiquinone-deficient mutant, carrying mutations in two genes affecting ubiquinone biosynthesis, has been used, in comparison with a normal strain, to determine the sequence of some of the components of the electron transport chain of Escherichia coli. The amounts of cytochromes reduced during aerobic steady-state conditions were estimated by comparing low-temperature difference spectra of normal or ubiquinone-deficient membranes with either D-lactate or reduced nicotinamide adenine dinucleotide as substrate. From the amounts of cytochromes reduced it was concluded that ubiquinone functions at two sites, one site being between the dehydrogenases and cytochromes and the second site being after cytochromes b562 and b556 but before cytochromes b558, d, and o. The scheme proposed is discussed in relation to the Mitchell protonmotive ubiquinone cycle. PMID:203570

  13. AcEST: BP919508 [AcEST

    Lifescience Database Archive (English)

    Full Text Available none oxidoreductase chain 5 (Fragment) OS=Andreaea rupestris GN=nad5 PE=3 SV=1 Length = 368 Score = 196 bits...Q6W3Y6|Q6W3Y6_9BRYO NADH-ubiquinone oxidoreductase chain 5 (Fragment) OS=Andreaea wilsonii GN=Nad5 PE=3 SV=1

  14. Congenital deficiency of two polypeptide subunits of the iron-protein fragment of mitochondrial complex I.

    OpenAIRE

    Moreadith, R W; Cleeter, M. W.; Ragan, C I; Batshaw, M L; Lehninger, A L

    1987-01-01

    Recently, we described a patient with severe lactic acidosis due to congenital complex I (NADH-ubiquinone oxidoreductase) deficiency. We now report further enzymatic and immunological characterizations. Both NADH and ferricyanide titrations of complex I activity (measured as NADH-ferricyanide reductase) were distinctly altered in the mitochondria from the patient's tissues. In addition, antisera against complex I immunoprecipitated NADH-ferricyanide reductase from the control but not the pati...

  15. InterProScan Result: FS750468 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS750468 FS750468_5_ORF2 B85FB143184D3063 PFAM PF00662 Oxidored_q1_N 3.1e-05 T IPR001516 NADH:ubiquinone oxi...doreductase, chain 5/L, N-terminal Molecular Function: NADH dehydrogenase (ubiquino

  16. InterProScan Result: BY923557 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available BY923557 BY923557_1_ORF2 9E8695D0E871C3AC PFAM PF00662 Oxidored_q1_N 8.7e-06 T IPR001516 NADH:ubiquinone oxi...doreductase, chain 5/L, N-terminal Molecular Function: NADH dehydrogenase (ubiquino

  17. Programming Saposin-Mediated Compensatory Metabolic Sinks for Enhanced Ubiquinone Production.

    Science.gov (United States)

    Xu, Wen; Yuan, Jifeng; Yang, Shuiyun; Ching, Chi-Bun; Liu, Jiankang

    2016-12-16

    Microbial synthesis of ubiquinone by fermentation processes has been emerging in recent years. However, as ubiquinone is a primary metabolite that is tightly regulated by the host central metabolism, tweaking the individual pathway components could only result in a marginal improvement on the ubiquinone production. Given that ubiquinone is stored in the lipid bilayer, we hypothesized that introducing additional metabolic sink for storing ubiquinone might improve the CoQ10 production. As human lipid binding/transfer protein saposin B (hSapB) was reported to extract ubiquinone from the lipid bilayer and form the water-soluble complex, hSapB was chosen to build a compensatory metabolic sink for the ubiquinone storage. As a proof-of-concept, hSapB-mediated metabolic sink systems were devised and systematically investigated in the model organism of Escherichia coli. The hSapB-mediated periplasmic sink resulted in more than 200% improvement of CoQ8 over the wild type strain. Further investigation revealed that hSapB-mediated sink systems could also improve the CoQ10 production in a CoQ10-hyperproducing E. coli strain obtained by a modular pathway rewiring approach. As the design principles and the engineering strategies reported here are generalizable to other microbes, compensatory sink systems will be a method of significant interest to the synthetic biology community.

  18. Free [NADH]/[NAD(+)] regulates sirtuin expression.

    Science.gov (United States)

    Gambini, Juan; Gomez-Cabrera, Mari Carmen; Borras, Consuelo; Valles, Soraya L; Lopez-Grueso, Raul; Martinez-Bello, Vladimir E; Herranz, Daniel; Pallardo, Federico V; Tresguerres, Jesus A F; Serrano, Manuel; Viña, Jose

    2011-08-01

    Sirtuins are deacetylases involved in metabolic regulation and longevity. Our aim was to test the hypothesis that they are subjected to redox regulation by the [NADH]/[NAD(+)] ratio. We used NIH3T3 fibroblasts in culture, Drosophila fed with or without ethanol and exercising rats. In all three models an increase in [NADH]/[NAD(+)] came up with an increased expression of sirtuin mRNA and protein. PGC-1α (a substrate of sirtuins) protein level was significantly increased in fibroblasts incubated with lactate and pyruvate but this effect was lost in fibroblasts obtained from sirtuin-deficient mice. We conclude that the expression of sirtuins is subject to tight redox regulation by the [NADH]/[NAD(+)] ratio, which is a major sensor for metabolite availability conserved from invertebrates to vertebrates. Copyright © 2011. Published by Elsevier Inc.

  19. Pyruvate Oxidoreductases Involved in Glycolytic Anaerobic Metabolism of Polychaetes from the Continental Shelf off Central-South Chile

    Science.gov (United States)

    González, R. R.; Quiñones, R. A.

    2000-10-01

    The presence of low oxygen conditions in extensive areas of the continental shelf off central-south Chile has important effects on the biochemical adaptations of the organisms living in this ecosystem. Polychaetes assemblages cohabit on the shelf with an extensively distributed prokaryotic community made up of giant filamentous sulfur bacteria (mainly Thioploca sp.). The aim of this research was to characterize the pyruvate oxidoreductases enzymes involved in the biochemical adaptation of these benthic polychaetes. Nine polychaete species ( Paraprionospio pinnata, Nephtys ferruginea, Glycera americana, Haploscoloplos sp., Lumbrineris composita, Sigambra bassi, Aricidea pigmentata , Cossura chilensis, and Pectinaria chilensis) were assayed for lactic dehydrogenase (LDH), octopine dehydrogenase (OPDH), strombine dehydrogenase (STRDH) and alanopine dehydrogenase (ALPDH). Each species had a characteristic number of the pyruvate oxidoreductases assayed ranging from 4 in Paraprionospio pinnata to 1 in Pectinaria chilensis . The pyruvate saturation curves obtained for the enzymes from all species analysed, except L. composita, suggest that NADH can be oxidized at different rates depending on the amino acid used in the reaction with pyruvate. Our results indicate that organisms having more that one pyruvate oxidoreductase present a greater metabolic capacity to cope with functional and environmental hypoxia because these enzymes would better regulate the pyruvate consumption rate during the transition period. Thus, the dominance of Paraprionospio pinnata in the study area and its worldwide distribution is consistent with its higher number of pyruvate oxidoreductases with different pyruvate consumption rates involved in anaerobic metabolism. Finally, a positive allometric relationship was found between body size and the specific activity of ALPDH, STRDH, and maximum pyruvate oxidoreductase specific activity. This latter result suggests a positive scaling of the specific

  20. Ubiquinone (Coenzyme Q) Biosynthesis in Chlamydophila pneumoniae AR39: Identification of the ubiD Gene

    Institute of Scientific and Technical Information of China (English)

    Jun LIU; Jian-Hua LIU

    2006-01-01

    Ubiquinone is an essential electron carrier in prokaryotes. Ubiquinone biosynthesis involves at least nine reactions in Escherichia coli. 3-octaprenyl-4-hydroxybenzoate decarboxylase (UbiD) is an important enzyme on the pathway and deletion of the ubiD gene in E. coli gives rise to ubiquinone deficiency in vivo.A protein from Chlamydophila pneumoniae AR39 had significant similarity compared with protein UbiD from E. coli. Based on this information, the protein-encoding gene was used to swap its counterpart in E. coli, and gene expression in resultant strain DYC was confirmed by RT-PCR. Strain DYC grew using succinate as carbon source and rescued ubiquinone content in vivo, while ubiD deletion strain DYD did not.Results suggest that the chlamydial protein exerts the function of UbiD.

  1. Plasma membrane ubiquinone controls ceramide production and prevents cell death induced by serum withdrawal.

    Science.gov (United States)

    Barroso, M P; Gómez-Díaz, C; Villalba, J M; Burón, M I; López-Lluch, G; Navas, P

    1997-06-01

    Serum provides cultured cells with survival factors required to maintain growth. Its withdrawal induces the development of programmed cell death. HL-60 cells were sensitive to serum removal, and an increase of lipid peroxidation and apoptosis was observed. Long-term treatment with ethidium bromide induced the mitochondria-deficient rho(o)HL-60 cell line. These cells were surprisingly more resistant to serum removal, displaying fewer apoptotic cells and lower lipid peroxidation. HL-60 cells contained less ubiquinone at the plasma membrane than rho(o)HL-60 cells. Both cell types increased plasma membrane ubiquinone in response to serum removal, although this increase was much higher in rho(o) cells. Addition of ubiquinone to both cell cultures in the absence of serum improved cell survival with decreasing lipid peroxidation and apoptosis. Ceramide was accumulated after serum removal in HL-60 but not in rho(o)HL-60 cells, and exogenous ubiquinone reduced this accumulation. These results demonstrate a relationship between ubiquinone levels in the plasma membrane and the induction of serum withdrawal-induced apoptosis, and ceramide accumulation. Thus, ubiquinone, which is a central component of the plasma membrane electron transport system, can represent a first level of protection against oxidative damage caused by serum withdrawal.

  2. Highly stable and reusable immobilized formate dehydrogenases: Promising biocatalysts for in situ regeneration of NADH

    Directory of Open Access Journals (Sweden)

    Barış Binay

    2016-02-01

    Full Text Available This study aimed to prepare robust immobilized formate dehydrogenase (FDH preparations which can be used as effective biocatalysts along with functional oxidoreductases, in which in situ regeneration of NADH is required. For this purpose, Candida methylica FDH was covalently immobilized onto Immobead 150 support (FDHI150, Immobead 150 support modified with ethylenediamine and then activated with glutaraldehyde (FDHIGLU, and Immobead 150 support functionalized with aldehyde groups (FDHIALD. The highest immobilization yield and activity yield were obtained as 90% and 132%, respectively when Immobead 150 functionalized with aldehyde groups was used as support. The half-life times (t1/2 of free FDH, FDHI150, FDHIGLU and FDHIALD were calculated as 10.6, 28.9, 22.4 and 38.5 h, respectively at 35 °C. FDHI150, FDHIGLU and FDHIALD retained 69, 38 and 51% of their initial activities, respectively after 10 reuses. The results show that the FDHI150, FDHIGLU and FDHIALD offer feasible potentials for in situ regeneration of NADH.

  3. Soluble expression and purification of the oxidoreductase component of toluene 4-monooxygenase.

    Science.gov (United States)

    Bailey, Lucas J; Elsen, Nathaniel L; Pierce, Brad S; Fox, Brian G

    2008-01-01

    Toluene 4-monooxygenase (T4MO) is a member of the bacterial multicomponent monooxygenases, an enzyme family that utilizes a soluble diiron hydroxylase to oxidize a variety of hydrocarbons as the initial step in their metabolism. The hydroxylases obtain reducing equivalents from NAD(P)H via an electron transfer chain that is initiated by an oxidoreductase containing an N-terminal ferredoxin domain and C-terminal flavin- and NAD-binding domains. T4moF, the NADH oxidoreductase of T4MO, was expressed as a soluble protein in Escherichia coli BL21(DE3) from the pUC-derived expression vector pRS205. This vector contains a lac promoter instead of a T7 promoter. A three step purification from the soluble cell lysate yielded approximately 1 mg of T4moF per gram of wet cell paste with greater than 90% purity. The purified protein contained 1 mol of FAD and 2 mol of Fe per mol of T4moF; quantitative EPR spectroscopy showed approximately 1 mol of the S=1/2 signal from the reduced [2Fe-2S] cluster per mol of T4moF. Steady state kinetic analysis of p-cresol formation activity treating T4moF as the variable substrate while all other proteins and substrates were held constant gave apparent K(M-) and apparent k(cat)-values of 0.15 microM and 3.0 s(-1), respectively. This expression system and purification allows for the recovery of the soluble oxidoreductase in yields that facilitate further biochemical and structural characterizations.

  4. Identification of proteins capable of metal reduction from the proteome of the Gram-positive bacterium Desulfotomaculum reducens MI-1 using an NADH-based activity assay

    Science.gov (United States)

    Otwell, A.E.; Sherwood, R.W.; Zhang, S.; Nelson, O.D.; Li, Z.; Lin, H.; Callister, S.J.; Richardson, R.E.

    2015-01-01

    Summary Understanding of microbial metal reduction is based almost solely on studies of Gram-negative organisms. In this study, we focus on Desulfotomaculum reducens MI-1, a Gram-positive metal reducer whose genome lacks genes with similarity to any characterized metal reductase. Using non-denaturing separations and mass spectrometry identification, in combination with a colorimetric screen for chelated Fe(III)-NTA reduction with NADH as electron donor, we have identified proteins from the D. reducens proteome not previously characterized as iron reductases. Their function was confirmed by heterologous expression in E. coli. Furthermore, we show that these proteins have the capability to reduce soluble Cr(VI) and U(VI) with NADH as electron donor. The proteins identified are NADH:flavin oxidoreductase (Dred_2421) and a protein complex composed of oxidoreductase FAD/NAD(P)-binding subunit (Dred_1685) and dihydroorotate dehydrogenase 1B (Dred_1686). Dred_2421 was identified in the soluble proteome and is predicted to be a cytoplasmic protein. Dred_1685 and Dred_1686 were identified in both the soluble as well as the insoluble protein fraction, suggesting a type of membrane-association, although PSORTb predicts both proteins are cytoplasmic. This study is the first functional proteomic analysis of D. reducens and one of the first analyses of metal and radionuclide reduction in an environmentally relevant Gram-positive bacterium. PMID:25389064

  5. Ferredoxin:NAD + Oxidoreductase of Thermoanaerobacterium saccharolyticum and Its Role in Ethanol Formation

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Liang; Lo, Jonathan; Shao, Xiongjun; Zheng, Tianyong; Olson, Daniel G.; Lynd, Lee R.; Atomi, H.

    2016-09-30

    ABSTRACT

    Ferredoxin:NAD+oxidoreductase (NADH-FNOR) catalyzes the transfer of electrons from reduced ferredoxin to NAD+. This enzyme has been hypothesized to be the main enzyme responsible for ferredoxin oxidization in the NADH-based ethanol pathway inThermoanaerobacterium saccharolyticum; however, the corresponding gene has not yet been identified. Here, we identified the Tsac_1705 protein as a candidate FNOR based on the homology of its functional domains. We then confirmed its activityin vitrowith a ferredoxin-based FNOR assay. To determine its role in metabolism, thetsac_1705gene was deleted in different strains ofT. saccharolyticum. In wild-typeT. saccharolyticum, deletion oftsac_1705resulted in a 75% loss of NADH-FNOR activity, which indicated that Tsac_1705 is the main NADH-FNOR inT.saccharolyticum. When both NADH- and NADPH-linked FNOR genes were deleted, the ethanol titer decreased and the ratio of ethanol to acetate approached unity, indicative of the absence of FNOR activity. Finally, we tested the effect of heterologous expression of Tsac_1705 inClostridium thermocellumand found improvements in both the titer and the yield of ethanol.

    IMPORTANCERedox balance plays a crucial role in many metabolic engineering strategies. Ferredoxins are widely used as electron carriers for anaerobic microorganism and plants. This study identified the gene responsible for electron transfer from ferredoxin to NAD+, a key reaction in the

  6. A unifying kinetic framework for modeling oxidoreductase-catalyzed reactions

    OpenAIRE

    Chang, Ivan; Baldi, Pierre

    2013-01-01

    Motivation: Oxidoreductases are a fundamental class of enzymes responsible for the catalysis of oxidation–reduction reactions, crucial in most bioenergetic metabolic pathways. From their common root in the ancient prebiotic environment, oxidoreductases have evolved into diverse and elaborate protein structures with specific kinetic properties and mechanisms adapted to their individual functional roles and environmental conditions. While accurate kinetic modeling of oxidoreductases is thus imp...

  7. The Origin and Biosynthesis of the Benzenoid Moiety of Ubiquinone (Coenzyme Q) in Arabidopsis.

    Science.gov (United States)

    Block, Anna; Widhalm, Joshua R; Fatihi, Abdelhak; Cahoon, Rebecca E; Wamboldt, Yashitola; Elowsky, Christian; Mackenzie, Sally A; Cahoon, Edgar B; Chapple, Clint; Dudareva, Natalia; Basset, Gilles J

    2014-05-01

    It is not known how plants make the benzenoid ring of ubiquinone, a vital respiratory cofactor. Here, we demonstrate that Arabidopsis thaliana uses for that purpose two separate biosynthetic branches stemming from phenylalanine and tyrosine. Gene network modeling and characterization of T-DNA mutants indicated that acyl-activating enzyme encoded by At4g19010 contributes to the biosynthesis of ubiquinone specifically from phenylalanine. CoA ligase assays verified that At4g19010 prefers para-coumarate, ferulate, and caffeate as substrates. Feeding experiments demonstrated that the at4g19010 knockout cannot use para-coumarate for ubiquinone biosynthesis and that the supply of 4-hydroxybenzoate, the side-chain shortened version of para-coumarate, can bypass this blockage. Furthermore, a trans-cinnamate 4-hydroxylase mutant, which is impaired in the conversion of trans-cinnamate into para-coumarate, displayed similar defects in ubiquinone biosynthesis to that of the at4g19010 knockout. Green fluorescent protein fusion experiments demonstrated that At4g19010 occurs in peroxisomes, resulting in an elaborate biosynthetic architecture where phenylpropanoid intermediates have to be transported from the cytosol to peroxisomes and then to mitochondria where ubiquinone is assembled. Collectively, these results demonstrate that At4g19010 activates the propyl side chain of para-coumarate for its subsequent β-oxidative shortening. Evidence is shown that the peroxisomal ABCD transporter (PXA1) plays a critical role in this branch.

  8. Annotated compound data for modulators of detergent-solubilised or lipid-reconstituted respiratory type II NADH dehydrogenase activity obtained by compound library screening.

    Science.gov (United States)

    Dunn, Elyse A; Cook, Gregory M; Heikal, Adam

    2016-03-01

    The energy-generating membrane protein NADH dehydrogenase (NDH-2), a proposed antibacterial drug target (see "Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs" Weinstein et al. 2005 [1]), was screened for modulators of activity in either detergent-solublised or lipid reconstituted (proteolipsome) form. Here we present an annotated list of compounds identified in a small-scale screen against NDH-2. The dataset contains information regarding the libraries screened, the identities of hit compounds and the physicochemical properties governing solubility and permeability. The implications of these data for future antibiotic discovery are discussed in our associated report, "Comparison of lipid and detergent enzyme environments for identifying inhibitors of membrane-bound energy-transducing proteins" [2].

  9. Annotated compound data for modulators of detergent-solubilised or lipid-reconstituted respiratory type II NADH dehydrogenase activity obtained by compound library screening

    Directory of Open Access Journals (Sweden)

    Elyse A. Dunn

    2016-03-01

    Full Text Available The energy-generating membrane protein NADH dehydrogenase (NDH-2, a proposed antibacterial drug target (see “Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs” Weinstein et al. 2005 [1], was screened for modulators of activity in either detergent-solublised or lipid reconstituted (proteolipsome form. Here we present an annotated list of compounds identified in a small-scale screen against NDH-2. The dataset contains information regarding the libraries screened, the identities of hit compounds and the physicochemical properties governing solubility and permeability. The implications of these data for future antibiotic discovery are discussed in our associated report, “Comparison of lipid and detergent enzyme environments for identifying inhibitors of membrane-bound energy-transducing proteins” [2].

  10. Riboflavin is an active redox cofactor in the Na+-pumping NADH: quinone oxidoreductase (Na+-NQR) from Vibrio cholerae.

    Science.gov (United States)

    Juárez, Oscar; Nilges, Mark J; Gillespie, Portia; Cotton, Jennifer; Barquera, Blanca

    2008-11-28

    Here we present new evidence that riboflavin is present as one of four flavins in Na+-NQR. In particular, we present conclusive evidence that the source of the neutral radical is not one of the FMNs and that riboflavin is the center that gives rise to the neutral flavosemiquinone. The riboflavin is a bona fide redox cofactor and is likely to be the last redox carrier of the enzyme, from which electrons are donated to quinone. We have constructed a double mutant that lacks both covalently bound FMN cofactors (NqrB-T236Y/NqrC-T225Y) and have studied this mutant together with the two single mutants (NqrB-T236Y and NqrC-T225Y) and a mutant that lacks the noncovalently bound FAD in NqrF (NqrF-S246A). The double mutant contains riboflavin and FAD in a 0.6:1 ratio, as the only flavins in the enzyme; noncovalently bound flavins were detected. In the oxidized form, the double mutant exhibits an EPR signal consistent with a neutral flavosemiquinone radical, which is abolished on reduction of the enzyme. The same radical can be observed in the FAD deletion mutant. Furthermore, when the oxidized enzyme reacts with ubiquinol (the reduced form of the usual electron acceptor) in a process that reverses the physiological direction of the electron flow, a single kinetic phase is observed. The kinetic difference spectrum of this process is consistent with one-electron reduction of a neutral flavosemiquinone. The presence of riboflavin in the role of a redox cofactor is thus far unique to Na+-NQR.

  11. NADH/NADPH Oxidase and Vascular Function.

    Science.gov (United States)

    Griendling, K K; Ushio-Fukai, M

    1997-11-01

    The vascular NADH/NADPH oxidase has been shown to be the major source of superoxide in the vessel wall. Recent work has provided insight into its structure and activity in vascular cells. This enzyme is involved in both vascular smooth muscle hypertrophy and in some forms of impaired endothelium-dependent relaxation. Because oxidative stress in general participates in the pathogenesis of hypertension and atherosclerosis, the enzymes that produce reactive oxygen species may be important determinants of the course of vascular disease. (Trends Cardiovasc Med 1997;7:301-307). © 1997, Elsevier Science Inc.

  12. Identification of the Ndh (NAD(P)H-plastoquinone-oxidoreductase) complex in etioplast membranes of barley: changes during photomorphogenesis of chloroplasts.

    Science.gov (United States)

    Guéra, A; de Nova, P G; Sabater, B

    2000-01-01

    In the last few years the presence in thylakoid membranes of chloroplasts of a NAD(P)H-plastoquinone oxidoreductase complex (Ndh complex) homologous to mitochondrial complex I has been well established. Herein, we report the identification of the Ndh complex in barley etioplast membranes. Two plastid DNA-encoded polypeptides of the Ndh complex (NDH-A and NDH-F) were relatively more abundant in etioplast membranes than in thylakoids from greening chloroplasts. Conversion of etioplast into chloroplast, after light exposure of barley seedlings grown in the dark, was accompanied by a decrease in the NADH dehydrogenase activity associated to plastid membranes. Using native-PAGE and immunolabelling techniques we have determined that a NADH specific dehydrogenase activity associated with plastid membranes, which was more active in etioplasts than in greening chloroplasts, contained the NDH-A and NDH-F polypeptides. These results complemented by those obtained through blue-native-PAGE indicated that NDH-A and NDH-F polypeptides are part of a 580 kDa NADH dependent dehydrogenase complex present in etioplast membranes. This finding proves that accumulation of the Ndh complex is independent of light. The decrease in the relative levels and specific activity of this complex during the transition from etioplast to chloroplasts was accompanied by a parallel decrease in the specific activity of peroxidase associated to plastid membranes. Based on the mentioned observations it is proposed that an electron transport chain from NADH to H2O2 could be active in barley etioplasts.

  13. cDNA cloning, functional expression and cellular localization of rat liver mitochondrial electron-transfer flavoprotein-ubiquinone oxidoreductase protein

    Institute of Scientific and Technical Information of China (English)

    HUANG; Shengbing; SONG; Wei; LIN; Qishui

    2005-01-01

    A membrane-bound protein was purified from rat liver mitochondria. After being digested with V8 protease, two peptides containing identical 14 amino acid residue sequences were obtained. Using the 14 amino acid peptide derived DNA sequence as gene specific primer, the cDNA of correspondent gene 5'-terminal and 3'-terminal were obtained by RACE technique. The full-length cDNA that encoded a protein of 616 amino acids was thus cloned, which included the above mentioned peptide sequence. The full length cDNA was highly homologous to that of human ETF-QO, indicating that it may be the cDNA of rat ETF-QO. ETF-QO is an iron sulfur protein located in mitochondria inner membrane containing two kinds of redox center: FAD and [4Fe-4S] center. After comparing the sequence from the cDNA of the 616 amino acids protein with that of the mature protein of rat liver mitochondria, it was found that the N terminal 32 amino acid residues did not exist in the mature protein, indicating that the cDNA was that of ETF-Qop. When the cDNA was expressed in Saccharomyces cerevisiae with inducible vectors, the protein product was enriched in mitochondrial fraction and exhibited electron transfer activity (NBT reductase activity) of ETF-QO. Results demonstrated that the 32 amino acid peptide was a mitochondrial targeting peptide, and both FAD and iron-sulfur cluster were inserted properly into the expressed ETF-QO. ETF-QO had a high level expression in rat heart, liver and kidney. The fusion protein of GFP-ETF-QO co-localized with mitochondria in COS-7 cells.

  14. Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis.

    OpenAIRE

    Moreadith, R W; Batshaw, M L; Ohnishi, T; Kerr, D.; Knox, B; Jackson, D.; Hruban, R; Olson, J.; Reynafarje, B; Lehninger, A L

    1984-01-01

    We report the case of an infant with hypoglycemia, progressive lactic acidosis, an increased serum lactate/pyruvate ratio, and elevated plasma alanine, who had a moderate to profound decrease in the ability of mitochondria from four organs to oxidize pyruvate, malate plus glutamate, citrate, and other NAD+-linked respiratory substrates. The capacity to oxidize the flavin adenine dinucleotide-linked substrate, succinate, was normal. The most pronounced deficiency was in skeletal muscle, the le...

  15. A water-forming NADH oxidase from Lactobacillus pentosus and its potential application in the regeneration of synthetic biomimetic cofactors

    Directory of Open Access Journals (Sweden)

    Claudia eNowak

    2015-09-01

    Full Text Available The cell-free biocatalytic production of fine chemicals by oxidoreductases has continuously grown over the past years. Since especially dehydrogenases depend on the stoichiometric use of nicotinamide pyridine cofactors, an integrated efficient recycling system is crucial to allow process operation under economic conditions. Lately, the variety of cofactors for biocatalysis was broadened by the utilization of totally synthetic and cheap biomimetics. Though, to date the regeneration has been limited to chemical or electrochemical methods. Here, we report an enzymatic recycling by the flavoprotein NADH-oxidase from Lactobacillus pentosus (LpNox. Since this enzyme has not been described before, we first characterized it in regard to its optimal reaction parameters. We found that the heterologously overexpressed enzyme only contained 13 % FAD. In vitro loading of the enzyme with FAD, resulted in a higher specific activity towards its natural cofactor NADH as well as different nicotinamide derived biomimetics. Apart from the enzymatic recycling, which gives water as a by-product by transferring four electrons onto oxygen, unbound FAD can also catalyse the oxidation of biomimetic cofactors. Here a two electron process takes place yielding H2O2 instead. The enzymatic and chemical recycling was compared in regard to reaction kinetics for the natural and biomimetic cofactors. With LpNox and FAD, two recycling strategies for biomimetic cofactors are described with either water or hydrogen peroxide as a by-product.

  16. A water-forming NADH oxidase from Lactobacillus pentosus suitable for the regeneration of synthetic biomimetic cofactors.

    Science.gov (United States)

    Nowak, Claudia; Beer, Barbara; Pick, André; Roth, Teresa; Lommes, Petra; Sieber, Volker

    2015-01-01

    The cell-free biocatalytic production of fine chemicals by oxidoreductases has continuously grown over the past years. Since especially dehydrogenases depend on the stoichiometric use of nicotinamide pyridine cofactors, an integrated efficient recycling system is crucial to allow process operation under economic conditions. Lately, the variety of cofactors for biocatalysis was broadened by the utilization of totally synthetic and cheap biomimetics. Though, to date the regeneration has been limited to chemical or electrochemical methods. Here, we report an enzymatic recycling by the flavoprotein NADH-oxidase from Lactobacillus pentosus (LpNox). Since this enzyme has not been described before, we first characterized it in regard to its optimal reaction parameters. We found that the heterologously overexpressed enzyme only contained 13% FAD. In vitro loading of the enzyme with FAD, resulted in a higher specific activity towards its natural cofactor NADH as well as different nicotinamide derived biomimetics. Apart from the enzymatic recycling, which gives water as a by-product by transferring four electrons onto oxygen, unbound FAD can also catalyze the oxidation of biomimetic cofactors. Here a two electron process takes place yielding H2O2 instead. The enzymatic and chemical recycling was compared in regard to reaction kinetics for the natural and biomimetic cofactors. With LpNox and FAD, two recycling strategies for biomimetic cofactors are described with either water or hydrogen peroxide as by-product.

  17. Measurement of mitochondrial NADH and FAD autofluorescence in live cells.

    Science.gov (United States)

    Bartolomé, Fernando; Abramov, Andrey Y

    2015-01-01

    In the process of energy production, mitochondrial networks are key elements to allow metabolism of substrates into ATP. Many pathological conditions have been associated with mitochondrial dysfunction as mitochondria are associated with a wide range of cellular processes. Therefore, any disruption in the energy production induces devastating effects that can ultimately lead to cell death due to chemical ischemia. To address the mitochondrial health and function, there are several bioenergetic parameters reflecting either whole mitochondrial functionality or individual mitochondrial complexes. Particularly, metabolism of nutrients in the tricarboxylic acid cycle provides substrates used to generate electron carriers (nicotinamide adenine dinucleotide [NADH] and flavin adenine dinucleotide [FADH2]) which ultimately donate electrons to the mitochondrial electron transport chain. The levels of NADH and FADH2 can be estimated through imaging of NADH/NAD(P)H or FAD autofluorescence. This report demonstrates how to perform and analyze NADH/NAD(P)H and FAD autofluorescence in a time-course-dependent manner and provides information about NADH and FAD redox indexes both reflecting the activity of the mitochondrial electron transport chain (ETC). Furthermore, total pools of NADH and FAD can be estimated providing information about the rate of substrate supply into the ETC. Finally, the analysis of NADH autofluorescence after induction of maximal respiration can offer information about the pentose phosphate pathway activity where glucose can be alternatively oxidized instead of pyruvate.

  18. Evaluation of ubiquinone concentration and mitochondrial function relative to cerivastatin-induced skeletal myopathy in rats.

    Science.gov (United States)

    Schaefer, William H; Lawrence, Jeffery W; Loughlin, Amy F; Stoffregen, Dana A; Mixson, Lori A; Dean, Dennis C; Raab, Conrad E; Yu, Nathan X; Lankas, George R; Frederick, Clay B

    2004-01-01

    As a class, hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors can potentially cause skeletal myopathy. One statin, cerivastatin, has recently been withdrawn from the market due to an unacceptably high incidence of rhabdomyolysis. The mechanism underlying statin-induced myopathy is unknown. This paper sought to investigate the relationship among statin-induced myopathy, mitochondrial function, and muscle ubiquinone levels. Rats were administered cerivastatin at 0.1, 0.5, and 1.0 (mg/kg)/day or dose vehicle (controls) by oral gavage for 15 days. Samples of type I-predominant skeletal muscle (soleus) and type II-predominant skeletal muscle [quadriceps and extensor digitorum longus (EDL)], and blood were collected on study days 5, 10, and 15 for morphological evaluation, clinical chemistry, mitochondrial function tests, and analysis of ubiquinone levels. No histological changes were observed in any of the animals on study days 5 or 10, but on study day 15, mid- and high-dose animals had necrosis and inflammation in type II skeletal muscle. Elevated creatine kinase (CK) levels in blood (a clinical marker of myopathy) correlated with the histopathological diagnosis of myopathy. Ultrastructural characterization of skeletal muscle revealed disruption of the sarcomere and altered mitochondria only in myofibers with degeneration, while adjacent myofibers were unaffected and had normal mitochondria. Thus, mitochondrial effects appeared not to precede myofiber degeneration. Mean coenzyme Q9 (CoQ9) levels in all dose groups were slightly decreased relative to controls in type II skeletal muscle, although the difference was not significantly different in most cases. Mitochondrial function in skeletal muscle was not affected by the changes in ubiquinone levels. The ubiquinone levels in high-dose-treated animals exhibiting myopathy were not significantly different from low-dose animals with no observable toxic effects. Furthermore, ubiquinone levels did not correlate

  19. Identification of proteins capable of metal reduction from the proteome of the Gram-positive bacterium Desulfotomaculum reducens MI-1 using an NADH-based activity assay

    Energy Technology Data Exchange (ETDEWEB)

    Otwell, Annie E.; Sherwood, Roberts; Zhang, Sheng; Nelson, Ornella D.; Li, Zhi; Lin, Hening; Callister, Stephen J.; Richardson, Ruth E.

    2015-01-01

    Metal reduction capability has been found in numerous species of environmentally abundant Gram-positive bacteria. However, understanding of microbial metal reduction is based almost solely on studies of Gram-negative organisms. In this study, we focus on Desulfotomaculum reducens MI-1, a Gram-positive metal reducer whose genome lacks genes with similarity to any characterized metal reductase. D. reducens has been shown to reduce not only Fe(III), but also the environmentally important contaminants U(VI) and Cr(VI). By extracting, separating, and analyzing the functional proteome of D. reducens, using a ferrozine-based assay in order to screen for chelated Fe(III)-NTA reduction with NADH as electron donor, we have identified proteins not previously characterized as iron reductases. Their function was confirmed by heterologous expression in E. coli. These are the protein NADH:flavin oxidoreductase (Dred_2421) and a protein complex composed of oxidoreductase FAD/NAD(P)-binding subunit (Dred_1685) and dihydroorotate dehydrogenase 1B (Dred_1686). Dred_2421 was identified in the soluble proteome and is predicted to be a cytoplasmic protein. Dred_1685 and Dred_1686 were identified in both the soluble as well as the insoluble (presumably membrane) protein fraction, suggesting a type of membrane-association, although PSORTb predicts both proteins are cytoplasmic. Furthermore, we show that these proteins have the capability to reduce soluble Cr(VI) and U(VI) with NADH as electron donor. This study is the first functional proteomic analysis of D. reducens, and one of the first analyses of metal and radionuclide reduction in an environmentally relevant Gram-positive bacterium.

  20. InterProScan Result: FS777601 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS777601 FS777601_3_ORF2 46C290F451F14923 PFAM PF01059 Oxidored_q5_N 6.1e-06 T IPR000260 NADH:ubiquinone oxi...doreductase, chain 4, N-terminal Cellular Component: mitochondrion (GO:0005739)|Mol

  1. InterProScan Result: FS872940 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS872940 FS872940_4_ORF2 EF1A312451EC8923 PFAM PF01059 Oxidored_q5_N 2.7e-05 T IPR000260 NADH:ubiquinone oxi...doreductase, chain 4, N-terminal Cellular Component: mitochondrion (GO:0005739)|Mol

  2. InterProScan Result: BY943640 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available BY943640 BY943640_3_ORF2 1A5A29DABF684387 PFAM PF00420 Oxidored_q2 1.3e-14 T IPR001...133 NADH:ubiquinone/quinone oxidoreductase, chain 4L Biological Process: ATP synthesis coupled electron transport (GO:0042773)|Biological Process: oxidation reduction (GO:0055114) ...

  3. InterProScan Result: FS817035 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS817035 FS817035_1_ORF2 B027832D7CA10145 PFAM PF00420 Oxidored_q2 6.7e-13 T IPR001...133 NADH:ubiquinone/quinone oxidoreductase, chain 4L Biological Process: ATP synthesis coupled electron transport (GO:0042773)|Biological Process: oxidation reduction (GO:0055114) ...

  4. InterProScan Result: BB988450 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available BB988450 BB988450_1_ORF2 3834FAB5D3F21F02 PFAM PF00420 Oxidored_q2 7e-10 T IPR00113...3 NADH:ubiquinone/quinone oxidoreductase, chain 4L Biological Process: ATP synthesis coupled electron transport (GO:0042773)|Biological Process: oxidation reduction (GO:0055114) ...

  5. InterProScan Result: FS872940 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS872940 FS872940_6_ORF2 F693A02F4F60091F PFAM PF00420 Oxidored_q2 5.6e-10 T IPR001...133 NADH:ubiquinone/quinone oxidoreductase, chain 4L Biological Process: ATP synthesis coupled electron transport (GO:0042773)|Biological Process: oxidation reduction (GO:0055114) ...

  6. InterProScan Result: FY028411 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FY028411 FY028411_1_ORF2 F006CE54DB614664 PFAM PF00420 Oxidored_q2 9.3e-10 T IPR001...133 NADH:ubiquinone/quinone oxidoreductase, chain 4L Biological Process: ATP synthesis coupled electron transport (GO:0042773)|Biological Process: oxidation reduction (GO:0055114) ...

  7. InterProScan Result: BB988450 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available BB988450 BB988450_3_ORF2 68BA312451F1493A PFAM PF01059 Oxidored_q5_N 2.7e-05 T IPR000260 NADH:ubiquinone oxi...doreductase, chain 4, N-terminal Cellular Component: mitochondrion (GO:0005739)|Mol

  8. AcEST: BP919125 [AcEST

    Lifescience Database Archive (English)

    Full Text Available ase OS=Photorhabdus lu... 30 6.7 sp|P48903|NU2M_CHOCR NADH-ubiquinone oxidoreductase chain 2 OS=C... 30 6.7 sp|P09762|WIN2_SOLTU Woun...S 300 L F RTS Sbjct: 150 ILASFKRTS 158 >sp|P09762|WIN2_SOLTU Wound-induced protei

  9. SwissProt search result: AK068580 [KOME

    Lifescience Database Archive (English)

    Full Text Available plex I-13Kd-B) (CI-13Kd-B) (Complex I subunit B13) NUFM_RAT 2e-15 ... ...AK068580 J013157B08 (Q63362) NADH-ubiquinone oxidoreductase 13 kDa-B subunit (EC 1.6.5.3) (EC 1.6.99.3) (Com

  10. SwissProt search result: AK068580 [KOME

    Lifescience Database Archive (English)

    Full Text Available plex I-13Kd-B) (CI-13Kd-B) (Complex I subunit B13) NUFM_HUMAN 9e-16 ... ...AK068580 J013157B08 (Q16718) NADH-ubiquinone oxidoreductase 13 kDa-B subunit (EC 1.6.5.3) (EC 1.6.99.3) (Com

  11. Metallothionein isoform 2A expression is inducible and protects against ROS-mediated cell death in rotenone-treated HeLa cells.

    NARCIS (Netherlands)

    Reinecke, F.; Levanets, O.; Olivier, Y.; Louw, R.; Semete, B.; Grobler, A.; Hidalgo, J.; Smeitink, J.A.M.; Olckers, A.; Westhuizen, F.H. van der

    2006-01-01

    The role of MT (metallothionein) gene expression was investigated in rotenone-treated HeLa cells to induce a deficiency of NADH:ubiquinone oxidoreductase (complex I). Complex I deficiency leads to a diversity of cellular consequences, including production of ROS (reactive oxygen species) and apoptos

  12. Decreased agonist-stimulated mitochondrial ATP production caused by a pathological reduction in endoplasmic reticulum calcium content in human complex I deficiency.

    NARCIS (Netherlands)

    Visch, H.J.; Koopman, W.J.H.; Leusink, A.; Emst-de Vries, S.E. van; Heuvel, L.W. van den; Willems, P.H.G.M.; Smeitink, J.A.M.

    2006-01-01

    Although a large number of mutations causing malfunction of complex I (NADH:ubiquinone oxidoreductase) of the OXPHOS system is now known, their cell biological consequences remain obscure. We previously showed that the bradykinin (Bk)-induced increase in mitochondrial [ATP] ([ATP](M)) is significant

  13. Decreased agonist-stimulated mitochondrial ATP production caused by a pathological reduction in endoplasmic reticulum calcium content in human complex I deficiency.

    NARCIS (Netherlands)

    Visch, H.J.; Koopman, W.J.H.; Leusink, A.; Emst-de Vries, S.E. van; Heuvel, L.W. van den; Willems, P.H.G.M.; Smeitink, J.A.M.

    2005-01-01

    Although a large number of mutations causing malfunction of complex I (NADH:ubiquinone oxidoreductase) of the OXPHOS system is now known, their cell biological consequences remain obscure. We previously showed that the bradykinin (Bk)-induced increase in mitochondrial [ATP] ([ATP](M)) is significant

  14. AcEST: BP913530 [AcEST

    Lifescience Database Archive (English)

    Full Text Available lue sp|P04540|NU5M_TRYBB NADH-ubiquinone oxidoreductase chain 5 OS=T... 34 0.47 sp|P14612|NXLH_PSEAU Long neurotoxi...FWYRFFA 160 >sp|P14612|NXLH_PSEAU Long neurotoxin homolog Pa ID OS=Pseudechis australis PE=1 SV=1 Length = 6

  15. Dynamic Function of the Alkyl Spacer of Acetogenins as Potent Inhibitors of Mitochondrial Complex I. A Molecular Dynamics Simulation Approach

    NARCIS (Netherlands)

    Abel Bombasaro, Jose; Barrera Guisasola, Exequiel Ernesto; Masman, Marcelo Fabricio; Angel Zamora, Miguel; Maria Rodriguez, Ana

    2013-01-01

    Acetogenins are among the most potent of the known inhibitors of complex I (NADH-ubiquinone oxidoreductase) in mitochondrial electron transfer system. Elucidation of the dynamic function of the alkyl spacer linking the two toxophores (i.e., the hydroxylated tetrahydrofuran and the gamma-lactone

  16. Mutation of C20orf7 Disrupts Complex I Assembly and Causes Lethal Neonatal Mitochondrial Disease

    NARCIS (Netherlands)

    Sugiana, Canny; Pagliarini, David J.; McKenzie, Matthew; Kirby, Denise M.; Salemi, Renato; Abu-Amero, Khaled K.; Dahl, Hans-Henrik M.; Hutchison, Wendy M.; Vascotto, Katherine A.; Smith, Stacey M.; Newbold, Robert F.; Christodoulou, John; Calvo, Sarah; Mootha, Vamsi K.; Ryan, Michael T.; Thorburn, David R.

    2008-01-01

    Complex I (NADH:ubiquinone oxidoreductase) is the first and largest multimeric complex of the mitochondrial respiratory chain. Human complex I comprises seven Subunits encoded by mitochondrial DNA and 38 nuclear-encoded subunits that are assembled together in a process that is only partially

  17. AcEST: BP915203 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 110 5e-24 sp|O14121|NDH1_SCHPO Probable NADH-ubiquinone oxidoreductase C3A... 104 2e-22 sp|P32340|NDI1_YEAST Rote...YGLLVW+ G K L Sbjct: 323 HIKIRTNTALKKVTAENIHVEVKNPDGSKQEEVIPYGLLVWAGGNRARPLTKKL 376 >sp|P32340|NDI1_YEAST Rote

  18. AcEST: BP912836 [AcEST

    Lifescience Database Archive (English)

    Full Text Available NADH-ubiquinone oxidoreductase chain 5 OS=Testudo hermanni Align length 47 Score (bit) 35.8 E-value 1.2 Repo...xidoreductase chain 5 OS=Testudo hermanni GN=ND5 PE=3 SV=1 Length = 598 Score = 3

  19. Respiratory Complex I in Bos taurus and Paracoccus denitrificans Pumps Four Protons across the Membrane for Every NADH Oxidized.

    Science.gov (United States)

    Jones, Andrew J Y; Blaza, James N; Varghese, Febin; Hirst, Judy

    2017-03-24

    Respiratory complex I couples electron transfer between NADH and ubiquinone to proton translocation across an energy-transducing membrane to support the proton-motive force that drives ATP synthesis. The proton-pumping stoichiometry of complex I (i.e. the number of protons pumped for each two electrons transferred) underpins all mechanistic proposals. However, it remains controversial and has not been determined for any of the bacterial enzymes that are exploited as model systems for the mammalian enzyme. Here, we describe a simple method for determining the proton-pumping stoichiometry of complex I in inverted membrane vesicles under steady-state ADP-phosphorylating conditions. Our method exploits the rate of ATP synthesis, driven by oxidation of NADH or succinate with different sections of the respiratory chain engaged in catalysis as a proxy for the rate of proton translocation and determines the stoichiometry of complex I by reference to the known stoichiometries of complexes III and IV. Using vesicles prepared from mammalian mitochondria (from Bos taurus) and from the bacterium Paracoccus denitrificans, we show that four protons are pumped for every two electrons transferred in both cases. By confirming the four-proton stoichiometry for mammalian complex I and, for the first time, demonstrating the same value for a bacterial complex, we establish the utility of P. denitrificans complex I as a model system for the mammalian enzyme. P. denitrificans is the first system described in which mutagenesis in any complex I core subunit may be combined with quantitative proton-pumping measurements for mechanistic studies.

  20. The free NADH concentration is kept constant in plant mitochondria under different metabolic conditions

    DEFF Research Database (Denmark)

    Kasimova, M.R.; Grigiene, J.; Krab, K.

    2006-01-01

    The reduced coenzyme NADH plays a central role in mitochondrial respiratory metabolism. However, reports on the amount of free NADH in mitochondria are sparse and contradictory. We first determined the emission spectrum of NADH bound to proteins using isothermal titration calorimetry combined...... with fluorescence spectroscopy. The NADH content of actively respiring mitochondria (from potato tubers [Solanum tuberosum cv Bintje]) in different metabolic states was then measured by spectral decomposition analysis of fluorescence emission spectra. Most of the mitochondrial NADH is bound to proteins...

  1. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Vemuri, Goutham; Eiteman, M.A; McEwen, J.E

    2007-01-01

    Respiratory metabolism plays an important role in energy production in the form of ATP in all aerobically growing cells. However, a limitation in respiratory capacity results in overflow metabolism, leading to the formation of byproducts, a phenomenon known as ‘‘overflow metabolism’’ or ‘‘the...... Crabtree effect.’’ The yeast Saccharomyces cerevisiae has served as an important model organism for studying the Crabtree effect. When subjected to increasing glycolytic fluxes under aerobic conditions, there is a threshold value of the glucose uptake rate at which the metabolism shifts from purely...... by overexpression of a water-forming NADH oxidase reduced aerobic glycerol formation. The metabolic response to elevated alternative oxidase occurred predominantly in the mitochondria, whereas NADH oxidase affected genes that catalyze cytosolic reactions. Moreover, NADH oxidase restored the deficiency of cytosolic...

  2. Molybdenum incorporation in tungsten aldehyde oxidoreductase enzymes from Pyrococcus furiosus

    NARCIS (Netherlands)

    Sevcenco, A.M; Bevers, L.E.; Pinkse, M.W.H.; Krijger, G.C.; Wolterbeek, H.T.; Verhaert, P.D.E.M.; Hagen, W.R.; Hagedoorn, P.L.

    2010-01-01

    The hyperthermophilic archaeon Pyrococcus furiosus expresses five aldehyde oxidoreductase (AOR) enzymes, all containing a tungsto-bispterin cofactor. The growth of this organism is fully dependent on the presence of tungsten in the growth medium. Previous studies have suggested that molybdenum is no

  3. Molybdenum incorporation in tungsten aldehyde oxidoreductase enzymes from Pyrococcus furiosus

    NARCIS (Netherlands)

    Sevcenco, A.M; Bevers, L.E.; Pinkse, M.W.H.; Krijger, G.C.; Wolterbeek, H.T.; Verhaert, P.D.E.M.; Hagen, W.R.; Hagedoorn, P.L.

    2010-01-01

    The hyperthermophilic archaeon Pyrococcus furiosus expresses five aldehyde oxidoreductase (AOR) enzymes, all containing a tungsto-bispterin cofactor. The growth of this organism is fully dependent on the presence of tungsten in the growth medium. Previous studies have suggested that molybdenum is no

  4. Identification of NADH kinase activity in filamentous fungi and structural modelling of the novel enzyme from Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Papadakis, Emmanouil; Topakas, E.

    2008-01-01

    ATP-NADH kinase phosphorylates NADH to produce NADPH at the expense of ATP. The present study describes Fusarium oxysporum NADH kinase (ATP:NADH 2'-phosphotransferase, EC 2.7.1.86), a novel fungal enzyme capable of synthesizing NADPH using NADH as the preferred diphosphonicotinamide (diphosphopyr...

  5. Fluorescence analysis of ubiquinone and its application in quality control of medical supplies

    Science.gov (United States)

    Timofeeva, Elvira O.; Gorbunova, Elena V.; Chertov, Aleksandr N.

    2017-02-01

    The presence of antioxidant issues such as redox potential imbalance in human body is a very important question for modern clinical diagnostics. Implementation of fluorescence analysis into optical diagnostics of such wide distributed in a human body antioxidant as ubiquinone is one of the steps for development of the device with a view to clinical diagnostics of redox potential. Recording of fluorescence was carried out with spectrometer using UV irradiation source with thin band (max at 287 and 330 nm) as a background radiation. Concentrations of ubiquinone from 0.25 to 2.5 mmol/l in explored samples were used for investigation. Recording data was processed using correlation analysis and differential analytical technique. The fourth derivative spectrum of fluorescence spectrum provided the basis for a multicomponent analysis of the solutions. As a technique in clinical diagnostics fluorescence analysis with processing method including differential spectrophotometry, it is step forward towards redox potential calculation and quality control in pharmacy for better health care.

  6. Elucidation of roles for vitamin B12 in regulation of folate, ubiquinone, and methionine metabolism.

    Science.gov (United States)

    Romine, Margaret F; Rodionov, Dmitry A; Maezato, Yukari; Anderson, Lindsey N; Nandhikonda, Premchendar; Rodionova, Irina A; Carre, Alexandre; Li, Xiaoqing; Xu, Chengdong; Clauss, Therese R W; Kim, Young-Mo; Metz, Thomas O; Wright, Aaron T

    2017-02-14

    Only a small fraction of vitamin B12-requiring organisms are able to synthesize B12 de novo, making it a common commodity in microbial communities. Initially recognized as an enzyme cofactor of a few enzymes, recent studies have revealed additional B12-binding enzymes and regulatory roles for B12 Here we report the development and use of a B12-based chemical probe to identify B12-binding proteins in a nonphototrophic B12-producing bacterium. Two unexpected discoveries resulted from this study. First, we identified a light-sensing B12-binding transcriptional regulator and demonstrated that it controls folate and ubiquinone biosynthesis. Second, our probe captured proteins involved in folate, methionine, and ubiquinone metabolism, suggesting that it may play a role as an allosteric effector of these processes. These metabolic processes produce precursors for synthesis of DNA, RNA, and protein. Thereby, B12 likely modulates growth, and by limiting its availability to auxotrophs, B12-producing organisms may facilitate coordination of community metabolism.

  7. Elucidation of roles for vitamin B12 in regulation of folate, ubiquinone, and methionine metabolism

    Science.gov (United States)

    Romine, Margaret F.; Rodionov, Dmitry A.; Maezato, Yukari; Anderson, Lindsey N.; Nandhikonda, Premchendar; Rodionova, Irina A.; Carre, Alexandre; Li, Xiaoqing; Xu, Chengdong; Clauss, Therese R. W.; Metz, Thomas O.; Wright, Aaron T.

    2017-01-01

    Only a small fraction of vitamin B12-requiring organisms are able to synthesize B12 de novo, making it a common commodity in microbial communities. Initially recognized as an enzyme cofactor of a few enzymes, recent studies have revealed additional B12-binding enzymes and regulatory roles for B12. Here we report the development and use of a B12-based chemical probe to identify B12-binding proteins in a nonphototrophic B12-producing bacterium. Two unexpected discoveries resulted from this study. First, we identified a light-sensing B12-binding transcriptional regulator and demonstrated that it controls folate and ubiquinone biosynthesis. Second, our probe captured proteins involved in folate, methionine, and ubiquinone metabolism, suggesting that it may play a role as an allosteric effector of these processes. These metabolic processes produce precursors for synthesis of DNA, RNA, and protein. Thereby, B12 likely modulates growth, and by limiting its availability to auxotrophs, B12-producing organisms may facilitate coordination of community metabolism. PMID:28137868

  8. Bridge- and Solvent-Mediated Intramolecular Electronic Communications in Ubiquinone-Based Biomolecular Wires

    Science.gov (United States)

    Liu, Xiao-Yuan; Ma, Wei; Zhou, Hao; Cao, Xiao-Ming; Long, Yi-Tao

    2015-05-01

    Intramolecular electronic communications of molecular wires play a crucial role for developing molecular devices. In the present work, we describe different degrees of intramolecular electronic communications in the redox processes of three ubiquinone-based biomolecular wires (Bis-CoQ0s) evaluated by electrochemistry and Density Functional Theory (DFT) methods in different solvents. We found that the bridges linkers have a significant effect on the electronic communications between the two peripheral ubiquinone moieties and solvents effects are limited and mostly depend on the nature of solvents. The DFT calculations for the first time indicate the intensity of the electronic communications during the redox processes rely on the molecular orbital elements VL for electron transfer (half of the energy splitting of the LUMO and LUMO+1), which is could be affected by the bridges linkers. The DFT calculations also demonstrates the effect of solvents on the latter two-electron transfer of Bis-CoQ0s is more significant than the former two electrons transfer as the observed electrochemical behaviors of three Bis-CoQ0s. In addition, the electrochemistry and theoretical calculations reveal the intramolecular electronic communications vary in the four-electron redox processes of three Bis-CoQ0s.

  9. An Escherichia coli mutant resistant to phleomycin, bleomycin, and heat inactivation is defective in ubiquinone synthesis.

    Science.gov (United States)

    Collis, C M; Grigg, G W

    1989-01-01

    A mutant of Escherichia coli, selected for resistance to the antibiotic and antitumor agent phleomycin, has been characterized, and the phleomycin resistance determinant has been identified. The mutant is equally resistant to bleomycins. The resistance to phleomycin is strongly dependent on the nature of the C-terminal amine of the drug, with the greatest resistance being shown to phleomycins and bleomycins with the most basic terminal amines. The mutation also confers resistance to the lethal effects of heating at 52 degrees C. Other characteristics of the phleomycin-resistant strain include a slow growth rate, an inability to grow on succinate as the sole carbon source (Suc- phenotype), cross resistance to aminoglycoside antibiotics, and a slight sensitivity to hydrogen peroxide, methyl methanesulfonate, and gamma-irradiation. Some of these characteristics, together with mapping data, suggested that the phleomycin resistance and Suc- determinant probably lies within the ubiF gene coding for an enzyme effecting a step in the biosynthesis of ubiquinone. The phenotypes of known mutants defective in this and other steps of the ubiquinone pathway were found to be closely similar to those of the original phleomycin-resistant strain. PMID:2475481

  10. Biphasic kinetic behavior of E. coli WrbA, an FMN-dependent NAD(PH:quinone oxidoreductase.

    Directory of Open Access Journals (Sweden)

    Iryna Kishko

    Full Text Available The E. coli protein WrbA is an FMN-dependent NAD(PH:quinone oxidoreductase that has been implicated in oxidative defense. Three subunits of the tetrameric enzyme contribute to each of four identical, cavernous active sites that appear to accommodate NAD(PH or various quinones, but not simultaneously, suggesting an obligate tetramer with a ping-pong mechanism in which NAD departs before oxidized quinone binds. The present work was undertaken to evaluate these suggestions and to characterize the kinetic behavior of WrbA. Steady-state kinetics results reveal that WrbA conforms to a ping-pong mechanism with respect to the constancy of the apparent Vmax to Km ratio with substrate concentration. However, the competitive/non-competitive patterns of product inhibition, though consistent with the general class of bi-substrate reactions, do not exclude a minor contribution from additional forms of the enzyme. NMR results support the presence of additional enzyme forms. Docking and energy calculations find that electron-transfer-competent binding sites for NADH and benzoquinone present severe steric overlap, consistent with the ping-pong mechanism. Unexpectedly, plots of initial velocity as a function of either NADH or benzoquinone concentration present one or two Michaelis-Menten phases depending on the temperature at which the enzyme is held prior to assay. The effect of temperature is reversible, suggesting an intramolecular conformational process. WrbA shares these and other details of its kinetic behavior with mammalian DT-diaphorase, an FAD-dependent NAD(PH:quinone oxidoreductase. An extensive literature review reveals several other enzymes with two-plateau kinetic plots, but in no case has a molecular explanation been elucidated. Preliminary sedimentation velocity analysis of WrbA indicates a large shift in size of the multimer with temperature, suggesting that subunit assembly coupled to substrate binding may underlie the two-plateau behavior. An

  11. Detection of ATP and NADH: A Bioluminescent Experience.

    Science.gov (United States)

    Selig, Ted C.; And Others

    1984-01-01

    Described is a bioluminescent assay for adenosine triphosphate (ATP) and reduced nicotineamide-adenine dinucleotide (NADH) that meets the requirements of an undergraduate biochemistry laboratory course. The 3-hour experiment provides students with experience in bioluminescence and analytical biochemistry yet requires limited instrumentation,…

  12. Stabilized NADH as a Countermeasure for Jet Lag

    Science.gov (United States)

    Kay, Gary G.; Viirre, Erik; Clark, Jonathan

    2001-01-01

    Current remedies for jet lag (phototherapy, melatonin, stimulant, and sedative medications) are limited in efficacy and practicality. The efficacy of a stabilized, sublingual form of reduced nicotin amide adenine dinucleotide (NADH, ENADAlert, Menuco Corp.) as a countermeasure for jet lag was examined. Because NADH increases cellular production of ATP and facilitates dopamine synthesis, it may counteract the effects of jet lag on cognitive functioning and sleepiness. Thirty-five healthy, employed subjects participated in this double-blind, placebo-controlled study. Training and baseline testing were conducted on the West Coast before subjects flew overnight to the East Coast, where they would experience a 3-hour time difference. Upon arrival, individuals were randomly assigned to receive either 20 mg of sublingual stabilized ADH (n=18) or identical placebo tablets (n=17). All participants completed computer-administered tests (including CogScreen7) to assess changes in cognitive functioning, mood, and sleepiness in the morning and afternoon. Jet lag resulted in increased sleepiness for over half the participants and deterioration of cognitive functioning for approximately one third. The morning following the flight, subjects experienced lapses of attention in addition to disruptions in working memory, divided attention, and visual perceptual speed. Individuals who received NADH performed significantly better on 5 of 8 cognitive and psychomotor test measures (P less than or equal to 0.5) and showed a trend for better performance on the other three measures (P less than or equal to .l0). Subjects also reported less sleepiness compared with those who received placebo. No adverse effects were observed with NADH treatment. Stabilized NADH significantly reduced jet lag-induced disruptions of cognitive functioning, was easily administered, and was found to have no adverse side effects.

  13. Overproduction of stromal ferredoxin:NADPH oxidoreductase in H2O 2-accumulating Brassica napus leaf protoplasts.

    Science.gov (United States)

    Tewari, Rajesh Kumar; Satoh, Mamoru; Kado, Sayaka; Mishina, Kohei; Anma, Misato; Enami, Kazuhiko; Hanaoka, Mitsumasa; Watanabe, Masami

    2014-12-01

    The isolation of Brassica napus leaf protoplasts induces reactive oxygen species generation and accumulation in the chloroplasts. An activated isoform of NADPH oxidase-like protein was detected in the protoplasts and the protoplast chloroplasts. The purpose of this study is to define the NADH oxidase-like activities in the H2O2-accumulating protoplast chloroplasts. Proteomic analysis of this protein revealed an isoform of ferredoxin:NADPH oxidoreductase (FNR1). While leaves highly expressed the LFNR1 transcript, protoplasts decreased the expression significantly. The protoplast chloroplasts predominantly expressed soluble FNR1 proteins. While the albino leaves of white kale (Brassica oleracea var. acephala f. tricolor cv. white pigeon) expressed FNR1 protein at the same level as B. napus leaves, the protoplasts of albino leaves displayed reduced FNR1 expression. The albino leaf protoplasts of white kale generated and accumulated H2O2 in the cytoplasm and on the plasma membrane. Intracellular pH showed that the chloroplasts were acidic, which suggest that excess H(+) was generated in chloroplast stroma. NADPH content of the protoplast chloroplasts increased by over sixfold during the isolation of protoplasts. This study reports a possibility of mediating electrons to oxygen by an overproduced soluble FNR, and suggests that the FNR has a function in utilizing any excess reducing power of NADPH.

  14. Investigations concerning the determination of NADH concentrations using optical biopsy

    Science.gov (United States)

    Beuthan, Juergen; Bocher, Thomas; Minet, Olaf; Roggan, Andre; Schmitt, Isabella; Weber, A.; Mueller, Gerhard J.

    1994-05-01

    The intrinsic NADH autofluorescence intensity of biological tissue depends on the local, cellular concentration of this coenzyme. It plays a dominant role in the Krebs-Cycle and therefore serves as indicator for the vitality of the observed cells. Due to individually and locally varying boundary conditions and optical tissue properties, which are scattering coefficients, absorption coefficients and g-factors the fluorescence signal needs to be rescaled. One possible rescaling method is the theoretical derived Photon Migration Theory. Our new rescaling method is partly based on measurements and partly theoretical derived. By using the 4 information channels: LIF time-resolved signal, biochemical concentration measurements, Monte Carlo simulations with optical parameters and microscopic investigations we demonstrate that simultaneous detection of the fluorescence and the backscattering signal can easily and accurately provide rescaled, quantitative values for the NADH concentrations.

  15. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis.

    Directory of Open Access Journals (Sweden)

    Xiuchun Ge

    Full Text Available Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation.

  16. NADH fluorescence imaging of isolated biventricular working rabbit hearts.

    Science.gov (United States)

    Asfour, Huda; Wengrowski, Anastasia M; Jaimes, Rafael; Swift, Luther M; Kay, Matthew W

    2012-07-24

    Since its inception by Langendorff(1), the isolated perfused heart remains a prominent tool for studying cardiac physiology(2). However, it is not well-suited for studies of cardiac metabolism, which require the heart to perform work within the context of physiologic preload and afterload pressures. Neely introduced modifications to the Langendorff technique to establish appropriate left ventricular (LV) preload and afterload pressures(3). The model is known as the isolated LV working heart model and has been used extensively to study LV performance and metabolism(4-6). This model, however, does not provide a properly loaded right ventricle (RV). Demmy et al. first reported a biventricular model as a modification of the LV working heart model(7, 8). They found that stroke volume, cardiac output, and pressure development improved in hearts converted from working LV mode to biventricular working mode(8). A properly loaded RV also diminishes abnormal pressure gradients across the septum to improve septal function. Biventricular working hearts have been shown to maintain aortic output, pulmonary flow, mean aortic pressure, heart rate, and myocardial ATP levels for up to 3 hours(8). When studying the metabolic effects of myocardial injury, such as ischemia, it is often necessary to identify the location of the affected tissue. This can be done by imaging the fluorescence of NADH (the reduced form of nicotinamide adenine dinucleotide)(9-11), a coenzyme found in large quantities in the mitochondria. NADH fluorescence (fNADH) displays a near linearly inverse relationship with local oxygen concentration(12) and provides a measure of mitochondrial redox state(13). fNADH imaging during hypoxic and ischemic conditions has been used as a dye-free method to identify hypoxic regions(14, 15) and to monitor the progression of hypoxic conditions over time(10). The objective of the method is to monitor the mitochondrial redox state of biventricular working hearts during protocols

  17. Molecular cloning, characterization and regulation of two different NADH-glutamate synthase cDNAs in bean nodules

    Science.gov (United States)

    NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14) is a key enzyme in primary ammonia assimilation in bean (Phaseolus vulgaris L.) nodules. Two different types of cDNA clones of PvNADH-GOGAT were isolated from two independent nodule cDNA libraries. The full-length cDNA clones of PvNADH-GOGA...

  18. [Forms of xanthine oxidoreductase in the tissues of Japanese quail].

    Science.gov (United States)

    Jankela, J; Baranovská, M; Antalíková, J

    1993-01-01

    The Japanese quail tissues--liver, kidney and pancreas were analysed for the presence of forms of xanthine oxidoreductase utilised cofactors NAD+, molecular oxygen or artificial acceptor--methylene blue, as well as for the validity of correlation between enzymatic activity and diet protein content. Four groups of animals with the experimental diets, the formulae of which are given in Tab. I, and control group with a commercial mash were fed for ten days. For enzyme preparation, the rough purification of cytoplasmic fraction with subsequent dialysis was used. The xanthine oxidoreductase utilised NAD+ (XOR-NAD) was detected in all examined tissues (Fig. 1), whereby the correlation of enzymatic activity with diet protein content was shown only in liver, according our previous findings (Jankela; 1978; Baranovská and Gazo, 1990). The values in liver and pancreas of animals fed a commercial mash were somewhat out of the range of linearity, probably because of the presence of nonprotein substances in mash, which affected the XOR activity in these organs (Jankela, 1992). The XOR utilised O2 (Fig. 2) was only detected in liver and kidney with certain activity in animals fed free protein diet. The percentage of this enzyme form was below 18% of the total activity (Fig. 5). The xanthine oxidoreductase utilised methylene blue (XOR-MM) was detected in liver, kidney and pancreas (Fig. 3). The correlation of enzymatic activity with diet protein content was linear in liver and kidney. The percentage of XOR-MM activity was very high, it amounted to 55% of the total activity (Fig. 4).(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Fluorescence Lifetime Imaging of Free and Protein-Bound NADH

    Science.gov (United States)

    Lakowicz, Joseph R.; Szmacinski, Henryk; Nowaczyk, Kazimierz; Johnson, Michael L.

    1992-02-01

    We introduce a methodology, fluorescence lifetime imaging (FLIM), in which the contrast depends on the fluorescence lifetime at each point in a two-dimensional image and not on the local concentration and/or intensity of the fluorophore. We used FLIM to create lifetime images of NADH when free in solution and when bound to malate dehydrogenase. This represents a challenging case for lifetime imaging because the NADH decay times are just 0.4 and 1.0 ns in the free and bound states, respectively. In the present apparatus, lifetime images are created from a series of phase-sensitive images obtained with a gain-modulated image intensifier and recorded with a charge-coupled device (CCD) camera. The intensifier gain is modulated at the light-modulation frequency or a harmonic thereof. A series of stationary phase-sensitive images, each obtained with various phase shifts of the gain-modulation signal, is used to determine the phase angle or modulation of the emission at each pixel, which is in essence the lifetime image. We also describe an imaging procedure that allows specific decay times to be suppressed, allowing in this case suppression of the emission from either free or bound NADH. Since the fluorescence lifetimes of probes are known to be sensitive to numerous chemical and physical factors such as pH, oxygen, temperature, cations, polarity, and binding to macromolecules, this method allows imaging of the chemical or property of interest in macroscopic and microscopic samples. The concept of FLIM appears to have numerous potential applications in the biosciences.

  20. Chemosensitive nanocomposite for conductometric detection of hydrazine and NADH

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Ulrich [Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93047 Regensburg (Germany); Mirsky, Vladimir M., E-mail: vmirsky@hs-lausitz.d [Department of Nanobiotechnology, Lausitz University of Applied Sciences, 01968 Senftenberg (Germany)

    2011-04-01

    A new chemosensitive material based on palladium nanoparticles and PEDOT-PSS is described. The composite was characterized by transmission electron microscopy, cyclic voltammetry and in situ resistance measurements. The material was applied for conductometric detection of hydrazine and NADH. Upon exposure to these analytes PEDOT is reduced leading to an increase in its conductance. This process is catalyzed by palladium. A model for description of the potential dependence of polymer conductivity was suggested, tested and applied for the development of new calibration procedure of chemiresistors based on electroactive polymers.

  1. CRYSTAL STRUCTURE ANALYSIS OF A PUTATIVE OXIDOREDUCTASE FROM KLEBSIELLA PNEUMONIAE

    Energy Technology Data Exchange (ETDEWEB)

    Baig, M.; Brown, A.; Eswaramoorthy, S.; Swaminathan, S.

    2009-01-01

    Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.

  2. Characterization of a Plasmodium falciparum Orthologue of the Yeast Ubiquinone-Binding Protein, Coq10p.

    Directory of Open Access Journals (Sweden)

    Bethany J Jenkins

    Full Text Available Coenzyme Q (CoQ, ubiquinone is a central electron carrier in mitochondrial respiration. CoQ is synthesized through multiple steps involving a number of different enzymes. The prevailing view that the CoQ used in respiration exists as a free pool that diffuses throughout the mitochondrial inner membrane bilayer has recently been challenged. In the yeast Saccharomyces cerevisiae, deletion of the gene encoding Coq10p results in respiration deficiency without inhibiting the synthesis of CoQ, suggesting that the Coq10 protein is critical for the delivery of CoQ to the site(s of respiration. The precise mechanism by which this is achieved remains unknown at present. We have identified a Plasmodium orthologue of Coq10 (PfCoq10, which is predominantly expressed in trophozoite-stage parasites, and localizes to the parasite mitochondrion. Expression of PfCoq10 in the S. cerevisiae coq10 deletion strain restored the capability of the yeast to grow on respiratory substrates, suggesting a remarkable functional conservation of this protein over a vast evolutionary distance, and despite a relatively low level of amino acid sequence identity. As the antimalarial drug atovaquone acts as a competitive inhibitor of CoQ, we assessed whether over-expression of PfCoq10 altered the atovaquone sensitivity in parasites and in yeast mitochondria, but found no alteration of its activity.

  3. Effect of radiation therapy on small-cell lung cancer is reduced by ubiquinone intake

    DEFF Research Database (Denmark)

    Lund, E L; Quistorff, B; Spang-Thomsen, M

    1998-01-01

    The effect of oral ubiquinone (Q10) intake on the in vivo response of tumors to single dose radiotherapy was examined. The human small-cell lung cancer (SCLC) line CPH 054A, which is sensitive to relatively low doses of X-radiation, was grown as subcutaneous transplants in the flanks of nude nu...... radiation dose of 5 Gy, using a 300 kV therapeutic unit. The macroscopic growth pre- and posttreatment was analyzed according to a transformed Gompertz algorithm using the software program GROWTH. Treatment with Q10 or soy oil alone had no effect on tumor growth compared with untreated controls. Groups....../nu mice. When macroscopical growth was established, groups of mice received either 10, 20 or 40 mg/kg Q10 in 30 mL soy oil intragastrically daily on 4 consecutive days. Controls received either 30 mL of pure soy oil or nothing. Three h after the last dose half of the tumors in each group received a single...

  4. In situ Regeneration of NADH via Lipoamide Dehydrogenase-catalyzed Electron Transfer Reaction Evidenced by Spectroelectrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Tsz Kin; Chen, Baowei; Lei, Chenghong; Liu, Jun

    2012-08-01

    NAD/NADH is a coenzyme found in all living cells, carrying electrons from one reaction to another. We report on characterizations of in situ regeneration of NADH via lipoamide dehydrogenase (LD)-catalyzed electron transfer reaction to regenerate NADH using UV-vis spectroelectrochemistry. The Michaelis-Menten constant (Km) and maximum velocity (Vmax) of NADH regeneration were measured as 0.80 {+-} 0.15 mM and 1.91 {+-} 0.09 {micro}M s-1 in a 1-mm thin-layer spectroelectrochemical cell using gold gauze as the working electrode at the applied potential -0.75 V (vs. Ag/AgCl). The electrocatalytic reduction of the NAD system was further coupled with the enzymatic conversion of pyruvate to lactate by lactate dehydrogenase to examine the coenzymatic activity of the regenerated NADH. Although the reproducible electrocatalytic reduction of NAD into NADH is known to be difficult compared to the electrocatalytic oxidation of NADH, our spectroelectrochemical results indicate that the in situ regeneration of NADH via LD-catalyzed electron transfer reaction is fast and sustainable and can be potentially applied to many NAD/NADH-dependent enzyme systems.

  5. Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation.

    Science.gov (United States)

    Kluckova, K; Sticha, M; Cerny, J; Mracek, T; Dong, L; Drahota, Z; Gottlieb, E; Neuzil, J; Rohlena, J

    2015-05-07

    Respiratory complex II (CII, succinate dehydrogenase, SDH) inhibition can induce cell death, but the mechanistic details need clarification. To elucidate the role of reactive oxygen species (ROS) formation upon the ubiquinone-binding (Qp) site blockade, we substituted CII subunit C (SDHC) residues lining the Qp site by site-directed mutagenesis. Cell lines carrying these mutations were characterized on the bases of CII activity and exposed to Qp site inhibitors MitoVES, thenoyltrifluoroacetone (TTFA) and Atpenin A5. We found that I56F and S68A SDHC variants, which support succinate-mediated respiration and maintain low intracellular succinate, were less efficiently inhibited by MitoVES than the wild-type (WT) variant. Importantly, associated ROS generation and cell death induction was also impaired, and cell death in the WT cells was malonate and catalase sensitive. In contrast, the S68A variant was much more susceptible to TTFA inhibition than the I56F variant or the WT CII, which was again reflected by enhanced ROS formation and increased malonate- and catalase-sensitive cell death induction. The R72C variant that accumulates intracellular succinate due to compromised CII activity was resistant to MitoVES and TTFA treatment and did not increase ROS, even though TTFA efficiently generated ROS at low succinate in mitochondria isolated from R72C cells. Similarly, the high-affinity Qp site inhibitor Atpenin A5 rapidly increased intracellular succinate in WT cells but did not induce ROS or cell death, unlike MitoVES and TTFA that upregulated succinate only moderately. These results demonstrate that cell death initiation upon CII inhibition depends on ROS and that the extent of cell death correlates with the potency of inhibition at the Qp site unless intracellular succinate is high. In addition, this validates the Qp site of CII as a target for cell death induction with relevance to cancer therapy.

  6. Structure and function of Caulobacter crescentus aldose-aldose oxidoreductase.

    Science.gov (United States)

    Taberman, Helena; Andberg, Martina; Koivula, Anu; Hakulinen, Nina; Penttilä, Merja; Rouvinen, Juha; Parkkinen, Tarja

    2015-12-15

    Aldose-aldose oxidoreductase (Cc AAOR) is a recently characterized enzyme from the bacterial strain Caulobacter crescentus CB15 belonging to the glucose-fructose oxidoreductase/inositol dehydrogenase/rhizopine catabolism protein (Gfo/Idh/MocA) family. Cc AAOR catalyses the oxidation and reduction of a panel of aldose monosaccharides using a tightly bound NADP(H) cofactor that is regenerated in the catalytic cycle. Furthermore, Cc AAOR can also oxidize 1,4-linked oligosaccharides. In the present study, we present novel crystal structures of the dimeric Cc AAOR in complex with the cofactor and glycerol, D-xylose, D-glucose, maltotriose and D-sorbitol determined to resolutions of 2.0, 1.8, 1.7, 1.9 and 1.8 Å (1 Å=0.1 nm), respectively. These complex structures allowed for a detailed analysis of the ligand-binding interactions. The structures showed that the C1 carbon of a substrate, which is either reduced or oxidized, is close to the reactive C4 carbon of the nicotinamide ring of NADP(H). In addition, the O1 hydroxy group of the substrate, which is either protonated or deprotonated, is unexpectedly close to both Lys(104) and Tyr(189), which may both act as a proton donor or acceptor. This led us to hypothesize that this intriguing feature could be beneficial for Cc AAOR to catalyse the reduction of a linear form of a monosaccharide substrate and the oxidation of a pyranose form of the same substrate in a reaction cycle, during which the bound cofactor is regenerated.

  7. Overexpression of a novel endogenous NADH kinase in Aspergillus nidulans enhances growth

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Grotkjær, Thomas; Hofmann, Gerald;

    2009-01-01

    The complete genome sequence of the filamentous fungi Aspergillus nidulans has paved the way for fundamental research on this industrially important species. To the best of our knowledge, this is the first time a gene encoding for ATP-dependent NADH kinase (ATP: NADH 2'-phosphotransferase, EC 2...

  8. An Improvement of Oxidative Stress in Diabetic Rats by Ubiquinone-10 and Ubiquinol-10 and Bioavailability after Short- and Long-Term Coenzyme Q10 Supplementation.

    Science.gov (United States)

    Prangthip, Pattaneeya; Kettawan, Aikkarach; Posuwan, Juthathip; Okuno, Masaaki; Okamoto, Tadashi

    2016-11-01

    This study explored effects of ubiquinol-10 and ubiquinone-10, two different forms of coenzyme Q10, in diabetic rats. Oxidative stress is characterized by the depletion of antioxidant defenses and overproduction of free radicals that might contribute to, and even accelerate, the development of diabetes mellitus (DM) complications. Coenzyme Q10 was administered orally to diabetic rats and oxidative stress markers were then assessed. Bioavailability in normal rats was additionally assessed in various tissues and subcellular fractions after short-term and long-term coenzyme Q10 supplementation. Elevated nonfasting blood glucose and blood pressure in diabetic rats were decreased by ubiquinone-10. Both ubiquinol-10 and ubiquinone-10 ameliorated oxidative stress, based on assays for reactive oxygen metabolites and malondialdehyde. Coenzyme Q10 levels increased with both treatments and liver nicotinamide adenine dinucleotide phosphate (NADPH) coenzyme Q reductase with ubiquinone-10. Ubiquinol-10 was better absorbed in the liver and pancreas than ubiquinone-10, though both were similarly effective. In bioavailability study, a longer period of coenzyme Q10 supplementation did not lead to its accumulation in tissues or organelles. Both forms of coenzyme Q10 reduced oxidative stress in diabetic rats. Long-term supplementation of coenzyme Q10 appeared to be safe.

  9. Activation of the human neutrophil NADPH oxidase results in coupling of electron carrier function between ubiquinone-10 and cytochrome b559.

    Science.gov (United States)

    Gabig, T G; Lefker, B A

    1985-04-10

    The enzymatic activity underlying the respiratory burst in human neutrophils was examined in a subcellular fraction with high specific activity and shown to be a membrane-associated complex of a flavoprotein, ubiquinone-10, and cytochrome b559 in an approximate 1.3:1:2 molar ratio. Study of the redox poise of these electron carriers indicated that electron flow in the intact complex from unstimulated cells proceeded: NADPH----E-FAD----ubiquinone-10. Similar studies on the complex prepared from stimulated neutrophils indicated that electron flow proceeded: NADPH----E-FAD----ubiquinone-10----cytochrome b559----oxygen. The active enzyme complex was inhibited by p-chloromercuribenzoate. Inhibition persisted after removal of excess inhibitor, was reversed by dithiothreitol, and could be blocked by prior addition of substrate (NADPH). Inhibition of the active oxidase complex by p-chloromercuribenzoate also inhibited electron flow from NADPH to all purported electron carriers in the chain (i.e. E-FAD, ubiquinone-10, and cytochrome b559). We conclude that activation of the oxidase enzyme complex in the intact neutrophil resulted in linkage of electron carrier function between endogenous ubiquinone-10 and cytochrome b559 and was without demonstrable effect on proximal electron flow. The p-chloromercuribenzoate sensitive site(s) proximal to the initial electron acceptor (E-FAD) did not appear to be altered by the cellular activation process.

  10. Plastoquinone and Ubiquinone in Plants: Biosynthesis, Physiological Function and Metabolic Engineering

    Science.gov (United States)

    Liu, Miaomiao; Lu, Shanfa

    2016-01-01

    Plastoquinone (PQ) and ubiquinone (UQ) are two important prenylquinones, functioning as electron transporters in the electron transport chain of oxygenic photosynthesis and the aerobic respiratory chain, respectively, and play indispensable roles in plant growth and development through participating in the biosynthesis and metabolism of important chemical compounds, acting as antioxidants, being involved in plant response to stress, and regulating gene expression and cell signal transduction. UQ, particularly UQ10, has also been widely used in people’s life. It is effective in treating cardiovascular diseases, chronic gingivitis and periodontitis, and shows favorable impact on cancer treatment and human reproductive health. PQ and UQ are made up of an active benzoquinone ring attached to a polyisoprenoid side chain. Biosynthesis of PQ and UQ is very complicated with more than thirty five enzymes involved. Their synthetic pathways can be generally divided into two stages. The first stage leads to the biosynthesis of precursors of benzene quinone ring and prenyl side chain. The benzene quinone ring for UQ is synthesized from tyrosine or phenylalanine, whereas the ring for PQ is derived from tyrosine. The prenyl side chains of PQ and UQ are derived from glyceraldehyde 3-phosphate and pyruvate through the 2-C-methyl-D-erythritol 4-phosphate pathway and/or acetyl-CoA and acetoacetyl-CoA through the mevalonate pathway. The second stage includes the condensation of ring and side chain and subsequent modification. Homogentisate solanesyltransferase, 4-hydroxybenzoate polyprenyl diphosphate transferase and a series of benzene quinone ring modification enzymes are involved in this stage. PQ exists in plants, while UQ widely presents in plants, animals and microbes. Many enzymes and their encoding genes involved in PQ and UQ biosynthesis have been intensively studied recently. Metabolic engineering of UQ10 in plants, such as rice and tobacco, has also been tested. In this

  11. Plastoquinone and ubiquinone in plants: biosynthesis, physiological function and metabolic engineering

    Directory of Open Access Journals (Sweden)

    Miaomiao Liu

    2016-12-01

    Full Text Available Plastoquinone (PQ and ubiquinone (UQ are two important prenylquinones, functioning as electron transporters in the electron transport chain of oxygenic photosynthesis and the aerobic respiratory chain, respectively, and play indispensable roles in plant growth and development through participating in the biosynthesis and metabolism of important chemical compounds, acting as antioxidants, being involved in plant response to stress, and regulating gene expression and cell signal transduction. UQ, particularly UQ10, has also been widely used in people’s life. It is effective in treating cardiovascular diseases, chronic gingivitis and periodontitis, and shows favorable impact on cancer treatment and human reproductive health. PQ and UQ are made up of an active benzoquinone ring attached to a polyisoprenoid side chain. Biosynthesis of PQ and UQ is very complicated with more than thirty five enzymes involved. Their synthetic pathways can be generally divided into two stages. The first stage leads to the biosynthesis of precursors of benzene quinone ring and prenyl side chain. The benzene quinone ring for UQ is synthesized from tyrosine or phenylalanine, whereas the ring for PQ is derived from tyrosine. The prenyl side chains of PQ and UQ are derived from glyceraldehyde 3-phosphate and pyruvate through the 2-C-methyl-D-erythritol 4-phosphate pathway and/or acetyl-CoA and acetoacetyl-CoA through the mevalonate pathway. The second stage includes the condensation of ring and side chain and subsequent modification. Homogentisate solanesyltransferase, 4-hydroxybenzoate polyprenyl diphosphate transferase and a series of benzene quinone ring modification enzymes are involved in this stage. PQ exists in plants, while UQ widely presents in plants, animals and microbes. Many enzymes and their encoding genes involved in PQ and UQ biosynthesis have been intensively studied recently. Metabolic engineering of UQ10 in plants, such as rice and tobacco, has also been

  12. Genotype-Phenotype Analysis in Congenital Adrenal Hyperplasia due to P450 Oxidoreductase Deficiency

    NARCIS (Netherlands)

    Krone, Nils; Reisch, Nicole; Idkowiak, Jan; Dhir, Vivek; Ivison, Hannah E.; Hughes, Beverly A.; Rose, Ian T.; O'Neil, Donna M.; Vijzelaar, Raymon; Smith, Matthew J.; MacDonald, Fiona; Cole, Trevor R.; Adolphs, Nicolai; Barton, John S.; Blair, Edward M.; Braddock, Stephen R.; Collins, Felicity; Cragun, Deborah L.; Dattani, Mehul T.; Day, Ruth; Dougan, Shelley; Feist, Miriam; Gottschalk, Michael E.; Gregory, John W.; Haim, Michaela; Harrison, Rachel; Olney, Ann Haskins; Hauffa, Berthold P.; Hindmarsh, Peter C.; Hopkin, Robert J.; Jira, Petr E.; Kempers, Marlies; Kerstens, Michiel N.; Khalifa, Mohamed M.; Koehler, Birgit; Maiter, Dominique; Nielsen, Shelly; O'Riordan, Stephen M.; Roth, Christian L.; Shane, Kate P.; Silink, Martin; Stikkelbroeck, Nike M. M. L.; Sweeney, Elizabeth; Szarras-Czapnik, Maria; Waterson, John R.; Williamson, Lori; Hartmann, Michaela F.; Taylor, Norman F.; Wudy, Stefan A.; Malunowicz, Ewa M.; Shackleton, Cedric H. L.; Arlt, Wiebke; Smith, M.J.

    2012-01-01

    Context: P450 oxidoreductase deficiency (PORD) is a unique congenital adrenal hyperplasia variant that manifests with glucocorticoid deficiency, disordered sex development (DSD), and skeletal malformations. No comprehensive data on genotype-phenotype correlations in Caucasian patients are available.

  13. Clinical, genetic, and enzymatic characterization of P450 oxidoreductase deficiency in four patients.

    LENUS (Irish Health Repository)

    Sahakitrungruang, Taninee

    2009-12-01

    P450 oxidoreductase (POR) deficiency causes disordered steroidogenesis; severe mutations cause genital ambiguity in both sexes plus the Antley-Bixler skeletal malformation syndrome, whereas mild mutations can cause adult infertility.

  14. The induction of microsomal NADPH:cytochrome P450 and NADH:cytochrome b(5) reductases by long-term salt treatment of cotton (Gossypium hirsutum L.) and bean (Phaseolus vulgaris L.) plants.

    Science.gov (United States)

    Brankova, Liliana; Ivanov, Sergei; Alexieva, Vera

    2007-09-01

    We studied the effect of salinity on the activity of microsomal NADPH:cytochrome P450 reductase (CPR, EC 1.6.2.4) and NADH:ferricytochrome b(5) oxidoreductase (B5R, EC 1.6.2.2) in two dicotyledonous plant species differing in their sensitivity to salt, cotton (Gossypium hirsutum L. cv Ogosta) and common bean (Phaseolus vulgaris L. cv Dobrujanski 7). A significant inhibition of fresh weight of salt-treated bean plants was observed, while cotton was affected to a much lesser degree. NaCl application resulted in a significant increase in the activity of both reductases, but was more pronounced in salt-tolerant cotton. We suppose that alterations in B5R and CPR activities may be targeted to the maintenance of membrane lipids. Most probably, plants use both enzymes (B5R and CPR) and their respective electron donors (NADH and NADPH) to reduce cytochrome b(5), which can donate reducing equivalents to a series of lipid-modification reactions such as desaturation and hydroxylation.

  15. Multiphoton fluorescence imaging of NADH to quantify metabolic changes in epileptic tissue in vitro

    Science.gov (United States)

    Chia, Thomas H.; Zinter, Joseph; Spencer, Dennis D.; Williamson, Anne; Levene, Michael J.

    2007-02-01

    A powerful advantage of multiphoton microscopy is its ability to image endogenous fluorophores such as the ubiquitous coenzyme NADH in discrete cellular populations. NADH is integral in both oxidative and non-oxidative cellular metabolism. NADH loses fluorescence upon oxidation to NAD +; thus changes in NADH fluorescence can be used to monitor metabolism. Recent studies have suggested that hypo metabolic astrocytes play an important role in cases of temporal lobe epilepsy (TLE). Current theories suggest this may be due to defective and/or a reduced number of mitochondria or dysfunction of the neuronal-astrocytic metabolic coupling. Measuring NADH fluorescence changes following chemical stimulation enables the quantification of the cellular distribution of metabolic anomalies in epileptic brain tissue compared to healthy tissue. We present what we believe to be the first multiphoton microscopy images of NADH from the human brain. We also present images of NADH fluorescence from the hippocampus of the kainate-treated rat TLE model. In some experiments, human and rat astrocytes were selectively labeled with the fluorescent dye sulforhodamine 101 (SR101). Our results demonstrate that multiphoton microscopy is a powerful tool for assaying the metabolic pathologies associated with temporal lobe epilepsy in humans and in rodent models.

  16. Conformational differences between the methoxy groups of QA and QB site ubisemiquinones in bacterial reaction centers: a key role for methoxy group orientation in modulating ubiquinone redox potential.

    Science.gov (United States)

    Taguchi, Alexander T; O'Malley, Patrick J; Wraight, Colin A; Dikanov, Sergei A

    2013-07-09

    Ubiquinone is an almost universal, membrane-associated redox mediator. Its ability to accept either one or two electrons allows it to function in critical roles in biological electron transport. The redox properties of ubiquinone in vivo are determined by its environment in the binding sites of proteins and by the dihedral angle of each methoxy group relative to the ring plane. This is an attribute unique to ubiquinone among natural quinones and could account for its widespread function with many different redox complexes. In this work, we use the photosynthetic reaction center as a model system for understanding the role of methoxy conformations in determining the redox potential of the ubiquinone/semiquinone couple. Despite the abundance of X-ray crystal structures for the reaction center, quinone site resolution has thus far been too low to provide a reliable measure of the methoxy dihedral angles of the primary and secondary quinones, QA and QB. We performed 2D ESEEM (HYSCORE) on isolated reaction centers with ubiquinones (13)C-labeled at the headgroup methyl and methoxy substituents, and have measured the (13)C isotropic and anisotropic components of the hyperfine tensors. Hyperfine couplings were compared to those derived by DFT calculations as a function of methoxy torsional angle allowing estimation of the methoxy dihedral angles for the semiquinones in the QA and QB sites. Based on this analysis, the orientation of the 2-methoxy groups are distinct in the two sites, with QB more out of plane by 20-25°. This corresponds to an ≈50 meV larger electron affinity for the QB quinone, indicating a substantial contribution to the experimental difference in redox potentials (60-75 mV) of the two quinones. The methods developed here can be readily extended to ubiquinone-binding sites in other protein complexes.

  17. Conformational differences between the methoxy groups of QA and QB site ubisemiquinones in bacterial reaction centers: a key role for methoxy group orientation in modulating ubiquinone redox potential†

    Science.gov (United States)

    Taguchi, Alexander T.; O'Malley, Patrick J.; Wraight, Colin A.; Dikanov, Sergei A.

    2013-01-01

    Ubiquinone is an almost universal, membrane-associated redox mediator. Its ability to accept either one or two electrons allows it to function in critical roles in biological electron transport. The redox properties of ubiquinone in vivo are determined by its environment in the binding sites of proteins and by the dihedral angle of each methoxy group relative to the ring plane. This is an attribute unique to ubiquinone among natural quinones and could account for its widespread function with many different redox complexes. In this work, we use the photosynthetic reaction center as a model system for understanding the role of methoxy conformations in determining the redox potential of the ubiquinone/semiquinone couple. Despite the abundance of X-ray crystal structures for the reaction center, quinone site resolution has thus far been too low to provide a reliable measure of the methoxy dihedral angles of the primary and secondary quinones, QA and QB. We performed 2D ESEEM (HYSCORE) on isolated reaction centers with ubiquinones 13C-labeled at the headgroup methyl and methoxy substituents, and have measured the 13C isotropic and anisotropic components of the hyperfine tensors. Hyperfine couplings were compared to those derived by DFT calculations as a function of methoxy torsional angle allowing estimation of the methoxy dihedral angles for the semiquinones in the QA and QB sites. Based on this analysis, the orientation of the 2-methoxy groups are distinct in the two sites, with QB more out of plane by 20-30°. This corresponds to an ≈50 meV larger electron affinity for the QB quinone, indicating a substantial contribution to the experimental difference in redox potentials (60-75 mV) of the two quinones. The methods developed here can be readily extended to ubiquinone-binding sites in other protein complexes. PMID:23745576

  18. Elucidation of roles for vitamin B 12 in regulation of folate, ubiquinone, and methionine metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Romine, Margaret F.; Rodionov, Dmitry A.; Maezato, Yukari; Anderson, Lindsey N.; Nandhikonda, Premchendar; Rodionova, Irina A.; Carre, Alexandre; Li, Xiaoqing; Xu, Chengdong; Clauss, Therese R. W.; Kim, Young-Mo; Metz, Thomas O.; Wright, Aaron T.

    2017-01-30

    Only a small fraction of vitamin B12-requiring organisms are able to synthesize B12 de novo, making it a common commodity in microbial communities. Initially recognized as an enzyme cofactor of a few enzymes, recent studies have revealed additional B12-binding enzymes and regulatory roles for B12. Here we report the development and use of a B12-based chemical probe to identify B12-binding proteins in a nonphototrophic B12-producing bacterium. Two unexpected discoveries resulted from this study. First, we identified a new light-sensing B12-binding transcriptional regulator and demonstrated that it controls folate and ubiquinone biosynthesis. Second, our probe captured proteins involved in folate, methionine, and ubiquinone metabolism suggesting that it may play a role as an allosteric effector of these processes. These metabolic processes produce precursors for synthesis of DNA, RNA, and protein. Thereby, B12 modulates growth, and by limiting its availability to auxotrophs, B12-producing organisms may facilitate coordination of community metabolism.

  19. Thermodynamics of Enzyme-Catalyzed Reactions: Part 1. Oxidoreductases

    Science.gov (United States)

    Goldberg, Robert N.; Tewari, Yadu B.; Bell, Donna; Fazio, Kari; Anderson, Ellen

    1993-03-01

    Equilibrium constants and enthalpy changes for reactions catalyzed by oxidoreductases have been compiled. For each reaction the following information is given: the reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement (temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used); the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it. The thermodynamic conventions pertinent to the tabulation of equilibrium data are discussed. A distinction is made between those thermodynamic quantities which pertain to the overall biochemical reaction and those which pertain to a reference reaction that involves specific species. The data from 205 references have been examined and evaluated. Chemical Abstract Service Registry Numbers have been assigned to the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participated.

  20. Xanthine Oxidoreductase-Derived Reactive Species: Physiological and Pathological Effects.

    Science.gov (United States)

    Battelli, Maria Giulia; Polito, Letizia; Bortolotti, Massimo; Bolognesi, Andrea

    2016-01-01

    Xanthine oxidoreductase (XOR) is the enzyme that catalyzes the oxidation of hypoxanthine to xanthine and xanthine to uric acid and is widely distributed among species. In addition to this housekeeping function, mammalian XOR is a physiological source of superoxide ion, hydrogen peroxide, and nitric oxide, which can function as second messengers in the activation of various pathways. This review intends to address the physiological and pathological roles of XOR-derived oxidant molecules. The cytocidal action of XOR products has been claimed in relation to tissue damage, in particular damage induced by hypoxia and ischemia. Attempts to exploit this activity to eliminate unwanted cells via the construction of conjugates have also been reported. Moreover, different aspects of XOR activity related to phlogosis, endothelial activation, leukocyte activation, and vascular tone regulation, have been taken into consideration. Finally, the positive and negative outcomes concerning cancer pathology have been analyzed because XOR products may induce mutagenesis, cell proliferation, and tumor progression, but they are also associated with apoptosis and cell differentiation. In conclusion, XOR activity generates free radicals and other oxidant reactive species that may result in either harmful or beneficial outcomes.

  1. Xanthine Oxidoreductase-Derived Reactive Species: Physiological and Pathological Effects

    Directory of Open Access Journals (Sweden)

    Maria Giulia Battelli

    2016-01-01

    Full Text Available Xanthine oxidoreductase (XOR is the enzyme that catalyzes the oxidation of hypoxanthine to xanthine and xanthine to uric acid and is widely distributed among species. In addition to this housekeeping function, mammalian XOR is a physiological source of superoxide ion, hydrogen peroxide, and nitric oxide, which can function as second messengers in the activation of various pathways. This review intends to address the physiological and pathological roles of XOR-derived oxidant molecules. The cytocidal action of XOR products has been claimed in relation to tissue damage, in particular damage induced by hypoxia and ischemia. Attempts to exploit this activity to eliminate unwanted cells via the construction of conjugates have also been reported. Moreover, different aspects of XOR activity related to phlogosis, endothelial activation, leukocyte activation, and vascular tone regulation, have been taken into consideration. Finally, the positive and negative outcomes concerning cancer pathology have been analyzed because XOR products may induce mutagenesis, cell proliferation, and tumor progression, but they are also associated with apoptosis and cell differentiation. In conclusion, XOR activity generates free radicals and other oxidant reactive species that may result in either harmful or beneficial outcomes.

  2. Xanthine oxidoreductase and its inhibitors: relevance for gout.

    Science.gov (United States)

    Day, Richard O; Kamel, Bishoy; Kannangara, Diluk R W; Williams, Kenneth M; Graham, Garry G

    2016-12-01

    Xanthine oxidoreductase (XOR) is the rate-limiting enzyme in purine catabolism and converts hypoxanthine to xanthine, and xanthine into uric acid. When concentrations of uric acid exceed its biochemical saturation point, crystals of uric acid, in the form of monosodium urate, emerge and can predispose an individual to gout, the commonest form of inflammatory arthritis in men aged over 40 years. XOR inhibitors are primarily used in the treatment of gout, reducing the formation of uric acid and thereby, preventing the formation of monosodium urate crystals. Allopurinol is established as first-line therapy for gout; a newer alternative, febuxostat, is used in patients unable to tolerate allopurinol. This review provides an overview of gout, a detailed analysis of the structure and function of XOR, discussion on the pharmacokinetics and pharmacodynamics of XOR inhibitors-allopurinol and febuxostat, and the relevance of XOR in common comorbidities of gout. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  3. Elementary tetrahelical protein design for diverse oxidoreductase functions

    Science.gov (United States)

    Lichtenstein, Bruce R; Sheehan, Molly M; Fry, Bryan A; Bialas, Chris; Ennist, Nathan M; Siedlecki, Jessica A; Zhao, Zhenyu; Stetz, Matthew A; Valentine, Kathleen G; Anderson, J L Ross; Wand, A Joshua; Discher, Bohdana M; Moser, Christopher C; Dutton, P Leslie

    2014-01-01

    Emulating functions of natural enzymes in man-made constructs has proven challenging. Here we describe a man-made protein platform that reproduces many of the diverse functions of natural oxidoreductases without importing the complex and obscure interactions common to natural proteins. Our design is founded on an elementary, structurally stable 4-α-helix protein monomer with a minimalist interior malleable enough to accommodate various light- and redox-active cofactors and with an exterior tolerating extensive charge patterning for modulation of redox cofactor potentials and environmental interactions. Despite its modest size, the construct offers several independent domains for functional engineering that targets diverse natural activities, including dioxygen binding and superoxide and peroxide generation, interprotein electron transfer to natural cytochrome c and light-activated intraprotein energy transfer and charge separation approximating the core reactions of photosynthesis, cryptochrome and photolyase. The highly stable, readily expressible and biocompatible characteristics of these open-ended designs promise development of practical in vitro and in vivo applications. PMID:24121554

  4. Characterization of apoptosis-related oxidoreductases from Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Patrícia Carneiro

    Full Text Available The genome from Neurospora crassa presented three open reading frames homologous to the genes coding for human AIF and AMID proteins, which are flavoproteins with oxidoreductase activities implicated in caspase-independent apoptosis. To investigate the role of these proteins, namely within the mitochondrial respiratory chain, we studied their cellular localization and characterized the respective null mutant strains. Efficiency of the respiratory chain was analyzed by oxygen consumption studies and supramolecular organization of the OXPHOS system was assessed through BN-PAGE analysis in the respective null mutant strains. The results demonstrate that, unlike in mammalian systems, disruption of AIF in Neurospora does not affect either complex I assembly or function. Furthermore, the mitochondrial respiratory chain complexes of the mutant strains display a similar supramolecular organization to that observed in the wild type strain. Further characterization revealed that N. crassa AIF appears localized to both the mitochondria and the cytoplasm, whereas AMID was found exclusively in the cytoplasm. AMID2 was detected in both mitochondria and cytoplasm of the amid mutant strain, but was barely discernible in wild type extracts, suggesting overlapping functions for the two proteins.

  5. DnaK dependence of mutant ethanol oxidoreductases evolved for aerobic function and protective role of the chaperone against protein oxidative damage in Escherichia coli

    Science.gov (United States)

    Echave, Pedro; Esparza-Cerón, M. Angel; Cabiscol, Elisa; Tamarit, Jordi; Ros, Joaquim; Membrillo-Hernández, Jorge; Lin, E. C. C.

    2002-01-01

    The adhE gene of Escherichia coli encodes a multifunctional ethanol oxidoreductase (AdhE) that catalyzes successive reductions of acetyl-CoA to acetaldehyde and then to ethanol reversibly at the expense of NADH. Mutant JE52, serially selected for acquired and improved ability to grow aerobically on ethanol, synthesized an AdhEA267T/E568K with two amino acid substitutions that sequentially conferred improved catalytic properties and stability. Here we show that the aerobic growth ability on ethanol depends also on protection of the mutant AdhE against metal-catalyzed oxidation by the chaperone DnaK (a member of the Hsp70 family). No DnaK protection of the enzyme is evident during anaerobic growth on glucose. Synthesis of DnaK also protected E. coli from H2O2 killing under conditions when functional AdhE is not required. Our results therefore suggest that, in addition to the known role of protecting cells against heat stress, DnaK also protects numerous kinds of proteins from oxidative damage. PMID:11917132

  6. Ferredoxin:NADP+ Oxidoreductase Association with Phycocyanin Modulates Its Properties*

    Science.gov (United States)

    Korn, Anja; Ajlani, Ghada; Lagoutte, Bernard; Gall, Andrew; Sétif, Pierre

    2009-01-01

    In photosynthetic organisms, ferredoxin:NADP+ oxidoreductase (FNR) is known to provide NADPH for CO2 assimilation, but it also utilizes NADPH to provide reduced ferredoxin. The cyanobacterium Synechocystis sp. strain PCC6803 produces two FNR isoforms, a small one (FNRS) similar to the one found in plant plastids and a large one (FNRL) that is associated with the phycobilisome, a light-harvesting complex. Here we show that a mutant lacking FNRL exhibits a higher NADP+/NADPH ratio. We also purified to homogeneity a phycobilisome subcomplex comprising FNRL, named FNRL-PC. The enzymatic activities of FNRL-PC were compared with those of FNRS. During NADPH oxidation, FNRL-PC exhibits a 30% decrease in the Michaelis constant Km(NADPH), and a 70% increase in Km(ferredoxin), which is in agreement with its predicted lower activity of ferredoxin reduction. During NADP+ reduction, the FNRL-PC shows a 29/43% decrease in the rate of single electron transfer from reduced ferredoxin in the presence/absence of NADP+. The increase in Km(ferredoxin) and the rate decrease of single reduction are attributed to steric hindrance by the phycocyanin moiety of FNRL-PC. Both isoforms are capable of catalyzing the NADP+ reduction under multiple turnover conditions. Furthermore, we obtained evidence that, under high ionic strength conditions, electron transfer from reduced ferredoxin is rate limiting during this process. The differences that we observe might not fully explain the in vivo properties of the Synechocystis mutants expressing only one of the isoforms. Therefore, we advocate that FNR localization and/or substrates availability are essential in vivo. PMID:19759024

  7. Regulation of hydrogen production by Enterobacter aerogenes by external NADH and NAD{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chong; Ma, Kun; Xing, Xin-Hui [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2009-02-15

    Experiments involving the addition of external nicotinamide adenine dinucleotide, reduced form (NADH) or nicotinamide adenine dinucleotide (NAD{sup +}) have been designed to examine how the hydrogen in Enterobacter aerogenes is liberated by NADH or NAD{sup +}. The addition of external NADH or NAD{sup +} was found to regulate hydrogen production by E. aerogenes in resting cells, batch cultures, and chemostat cultures. Particularly in chemostat cultivation, with the external addition of NADH, hydrogen production via the NADH pathway was decreased, while that via the formate pathway was increased; in the end, the overall hydrogen p was decreased. The addition of NAD{sup +}, on the other hand, gave the opposite results. The membrane-bound hydrogenase was found to play a central role in regulating hydrogen production. The occurrence of NADH oxidation (NAD{sup +} reduction) on the cell membrane resulted in an electron flow across the membrane; this changed the oxidation state and metabolic pattern of the cells, which eventually affected the hydrogen evolution. (author)

  8. Electrocatalytic Efficiency Analysis of Catechol Molecules for NADH Oxidation during Nanoparticle Collision.

    Science.gov (United States)

    Zhao, Li-Jun; Qian, Ruo-Can; Ma, Wei; Tian, He; Long, Yi-Tao

    2016-09-06

    Electrocatalysis of molecules is a hot research topic in biological and energy-related chemistry. Here, we develop a new system to study the electrocatalytic efficiency of a single catechol molecule for NADH oxidation by single functionalized nanoparticle collision at ultramicroelectrodes (UMEs). The proposed system is composed of gold nanoparticles (AuNPs) functionalized with catechol molecules and a carbon-fiber ultramicroelectrode. In the absence of NADH, when a functionalized AuNP collides with an UME at a suitable voltage, a small current spike is generated due to the oxidation of catechol molecules modified on the surface of AuNP. In the presence of NADH, the current spike is significantly amplified by the combined effects of the oxidation and electrocatalysis for NADH of catechol molecules. By analyzing the variations of the average peak charges and durations without or with NADH, we calculate that around five thousands NADH molecules could be catalyzed per second by a single catechol molecule, suggesting the successful establishment of this novel catalytic system. Thus, the proposed strategy could be used as a promising platform for research of other molecular electrocatalytic systems.

  9. NADH-generating substrates reduce peroxyl radical toxicity in RL-34 cells.

    Science.gov (United States)

    Antosiewicz, J; Spodnik, J H; Teranishi, M; Herman-Antosiewicz, A; Kurono, Ch; Soji, T; Woźniak, M; Borkowska, A; Wakabayashi, T

    2009-11-01

    There is general agreement that oxidative stress may induce apoptotic and necrotic cell death. Recently it has been shown that NADH can be considered an important antioxidant as it reacts with peroxyl and alkoxyl radicals under in vitro conditions. Therefore, in the present study we hypothesized that an increase in intracellular NADH using specific substrates will protect RL-34 cells against cytotoxicity of 2'-azobis (2-amidinopropane) dihydrochloride (AAPH), which is a peroxyl radical generating compound. Cells treated for 24 hours with 6.0 mM AAPH were severely damaged: mitochondria were vacuolated, and the level of free radicals significantly increased. Both apoptotic and necrotic cells were detected (11.1% and 11.4%, respectively) even after 5 hours of treatment. Pretreatment of the cells with substrates which increase the intracellular level of NADH, such as lactate, beta-hydroxybutyrate, and ethanol, distinctly inhibited AAPH-induced reactive oxygen species (ROS) formation and cell death. On the other hand, acetoacetate (AcA), which decrease the intracellular level of NADH, had opposite effects. Interestingly, NADH-generating substrates augment, while AcA reduced superoxide radical formation induced by AAPH. These results may suggest that although NADH generating substrates may exert some deleterious effects within a cell by inducing reductive stress, they diminish alkoxyl or peroxyl radical cytotoxicity. The protection is associated with a decrease in ROS formation measured by dichlorofluorescein, but with an increase in superoxide radical formation.

  10. Combinatorial application of two aldehyde oxidoreductases on isobutanol production in the presence of furfural.

    Science.gov (United States)

    Seo, Hyung-Min; Jeon, Jong-Min; Lee, Ju Hee; Song, Hun-Suk; Joo, Han-Byul; Park, Sung-Hee; Choi, Kwon-Young; Kim, Yong Hyun; Park, Kyungmoon; Ahn, Jungoh; Lee, Hongweon; Yang, Yung-Hun

    2016-01-01

    Furfural is a toxic by-product formulated from pretreatment processes of lignocellulosic biomass. In order to utilize the lignocellulosic biomass on isobutanol production, inhibitory effect of the furfural on isobutanol production was investigated and combinatorial application of two oxidoreductases, FucO and YqhD, was suggested as an alternative strategy. Furfural decreased cell growth and isobutanol production when only YqhD or FucO was employed as an isobutyraldehyde oxidoreductase. However, combinatorial overexpression of FucO and YqhD could overcome the inhibitory effect of furfural giving higher isobutanol production by 110% compared with overexpression of YqhD. The combinatorial oxidoreductases increased furfural detoxification rate 2.1-fold and also accelerated glucose consumption 1.4-fold. When it compares to another known system increasing furfural tolerance, membrane-bound transhydrogenase (pntAB), the combinatorial aldehyde oxidoreductases were better on cell growth and production. Thus, to control oxidoreductases is important to produce isobutanol using furfural-containing biomass and the combinatorial overexpression of FucO and YqhD can be an alternative strategy.

  11. Research of spectral characteristics of ubiquinone solution and explore of the solvent effect on the experimental results

    Science.gov (United States)

    Timofeeva, Elvira O.; Gorbunova, Elena V.; Korotaev, Valery V.

    2016-04-01

    This work is dedicated to the research of the clinical diagnosis method of determining the antioxidant status of the human body. The existing methods for determining the level of antioxidants in connection with biological functions of the human antioxidant system were studied. Antioxidants in the human body, in the form of solutions were chosen as a research objects. The technique of experimental studies of ubiquinone solutions in oil and alcohol by spectroscopic method was offered. The experimental results connected with the optical density and color characteristics confirm the possibility of applying the clinical diagnosis method of estimation antioxidant balance. Also, it was found that this method can be applicable to the quality control of medicines for treating diseases provoked by oxidative stress, which means that this method may be developed not only for using in the clinic.

  12. Molecular cloning, characterization and regulation of two different NADH-glutamate synthase cDNAs in bean nodules.

    Science.gov (United States)

    Blanco, Lourdes; Reddy, Pallavolu M; Silvente, Sonia; Bucciarelli, Bruna; Khandual, Sanghamitra; Alvarado-Affantranger, Xochitl; Sánchez, Federico; Miller, Susan; Vance, Carroll; Lara-Flores, Miguel

    2008-04-01

    NADH-dependent glutamate synthase (NADH-GOGAT) is a key enzyme in primary ammonia assimilation in Phaseolus vulgaris nodules. Two different types of cDNA clones of PvNADH-GOGAT were isolated from the nodule cDNA libraries. The full-length cDNA clones of PvNADH-GOGAT-I (7.4 kb) and PvNADH-GOGAT-II (7.0 kb), which displayed an 83% homology between them, were isolated using cDNA library screening, 'cDNA library walking' and RT-PCR amplification. Southern analysis employing specific 5' cDNA probes derived from PvNADH-GOGAT-I and PvNADH-GOGAT-II indicated the existence of a single copy of each gene in the bean genome. Both these proteins contain approximately 100 amino acid sequences theoretically addressing each isoenzyme to different subcellular compartments. RT-PCR analysis indicated that PvNADH-GOGAT-II expression is higher than PvNADH-GOGAT-I during nodule development. Expression analysis by RT-PCR also revealed that both of these genes are differentially regulated by sucrose. On the other hand, the expression of PvNADH-GOGAT-I, but not PvNADH-GOGAT-II, was inhibited with nitrogen compounds. In situ hybridization and promoter expression analyses demonstrated that the NADH-GOGAT-I and -II genes are differentially expressed in bean root and nodule tissues. In silico analyses of the NADH-GOGAT promoters revealed the presence of potential cis elements in them that could mediate differential tissue-specific, and sugar and amino acid responsive expression of these genes.

  13. Directed Molecular Evolution of Nitrite Oxido-reductase by DNA-shuffling

    Institute of Scientific and Technical Information of China (English)

    JUN-WEN LI; JIN-LAI ZHENG; XIN-WEI WANG; MIN JIN; FU-HUAN CHAO

    2007-01-01

    Objective To develtop directly molecular evolution of nitrite oxido-reductase using DNA-shuffling technique because nitrobacteria grow extremely slow and are unable to nitrify effectively inorganic nitrogen in wastewater treatment. Methods The norB gene coding the nitrite oxido-reductase in nitrobacteria was cloned and sequenced. Then, directed molecular evolution of nitrite oxido-reductase was developed by DNA-shuffling of 15 norB genes from different nitrobacteria. Results After DNA-shuffling with sexual PCR and staggered extension process PCR, the sequence was different from its parental DNA fragments and the homology ranged from 98% to 99%. The maximum nitrification rate of the modified bacterium of X16 by modified bacterium had the same characteristics of its parental bacteria of E. coli and could grow rapidly in normal cultures.Conclusion DNA-shuffling was successfully used to engineer E. coli, which had norB gene and could degrade inorganic nitrogen effectively.

  14. Changes in oxidative damage, inflammation and [NAD(H] with age in cerebrospinal fluid.

    Directory of Open Access Journals (Sweden)

    Jade Guest

    Full Text Available An extensive body of evidence indicates that oxidative stress and inflammation play a central role in the degenerative changes of systemic tissues in aging. However a comparatively limited amount of data is available to verify whether these processes also contribute to normal aging within the brain. High levels of oxidative damage results in key cellular changes including a reduction in available nicotinamide adenine dinucleotide (NAD(+, an essential molecule required for a number of vital cellular processes including DNA repair, immune signaling and epigenetic processing. In this study we quantified changes in [NAD(H] and markers of inflammation and oxidative damage (F2-isoprostanes, 8-OHdG, total antioxidant capacity in the cerebrospinal fluid (CSF of healthy humans across a wide age range (24-91 years. CSF was collected from consenting patients who required a spinal tap for the administration of anesthetic. CSF of participants aged >45 years was found to contain increased levels of lipid peroxidation (F2-isoprostanes (p = 0.04 and inflammation (IL-6 (p = 0.00 and decreased levels of both total antioxidant capacity (p = 0.00 and NAD(H (p = 0.05, compared to their younger counterparts. A positive association was also observed between plasma [NAD(H] and CSF NAD(H levels (p = 0.03. Further analysis of the data identified a relationship between alcohol intake and CSF [NAD(H] and markers of inflammation. The CSF of participants who consumed >1 standard drink of alcohol per day contained lower levels of NAD(H compared to those who consumed no alcohol (p0-1 (p1 (p<0.05 standard alcoholic drinks per day compared to those who did not drink alcohol. Taken together these data suggest a progressive age associated increase in oxidative damage, inflammation and reduced [NAD(H] in the brain which may be exacerbated by alcohol intake.

  15. Single sample extraction and HPLC processing for quantification of NAD and NADH levels in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Sporty, J; Kabir, M M; Turteltaub, K; Ognibene, T; Lin, S; Bench, G

    2008-01-10

    A robust redox extraction protocol for quantitative and reproducible metabolite isolation and recovery has been developed for simultaneous measurement of nicotinamide adenine dinucleotide (NAD) and its reduced form, NADH, from Saccharomyces cerevisiae. Following culture in liquid media, approximately 10{sup 8} yeast cells were harvested by centrifugation and then lysed under non-oxidizing conditions by bead blasting in ice-cold, nitrogen-saturated 50-mM ammonium acetate. To enable protein denaturation, ice cold nitrogen-saturated CH{sub 3}CN + 50-mM ammonium acetate (3:1; v:v) was added to the cell lysates. After sample centrifugation to pellet precipitated proteins, organic solvent removal was performed on supernatants by chloroform extraction. The remaining aqueous phase was dried and resuspended in 50-mM ammonium acetate. NAD and NADH were separated by HPLC and quantified using UV-VIS absorbance detection. Applicability of this procedure for quantifying NAD and NADH levels was evaluated by culturing yeast under normal (2% glucose) and calorie restricted (0.5% glucose) conditions. NAD and NADH contents are similar to previously reported levels in yeast obtained using enzymatic assays performed separately on acid (for NAD) and alkali (for NADH) extracts. Results demonstrate that it is possible to perform a single preparation to reliably and robustly quantitate both NAD and NADH contents in the same sample. Robustness of the protocol suggests it will be (1) applicable to quantification of these metabolites in mammalian and bacterial cell cultures; and (2) amenable to isotope labeling strategies to determine the relative contribution of specific metabolic pathways to total NAD and NADH levels in cell cultures.

  16. NADH changes during hypoxia, ischemia, and increased work differ between isolated heart preparations.

    Science.gov (United States)

    Wengrowski, Anastasia M; Kuzmiak-Glancy, Sarah; Jaimes, Rafael; Kay, Matthew W

    2014-02-15

    Langendorff-perfused hearts and working hearts are established isolated heart preparation techniques that are advantageous for studying cardiac physiology and function, especially when fluorescence imaging is a key component. However, oxygen and energy requirements vary widely between isolated heart preparations. When energy supply and demand are not in harmony, such as when oxygen is not adequately available, the imbalance is reflected in NADH fluctuations. As such, NADH imaging can provide insight into the metabolic state of tissue. Hearts from New Zealand white rabbits were prepared as mechanically silenced Langendorff-perfused hearts, Langendorff-perfused hearts, or biventricular working hearts and subjected to sudden changes in workload, instantaneous global ischemia, and gradual hypoxia while heart rate, aortic pressure, and epicardial NADH fluorescence were monitored. Fast pacing resulted in a dip in NADH upon initiation and a spike in NADH when pacing was terminated in biventricular working hearts only, with the magnitude of the changes greatest at the fastest pacing rate. Working hearts were also most susceptible to changes in oxygen supply; NADH was at half-maximum value when perfusate oxygen was at 67.8 ± 13.7%. Langendorff-perfused and mechanically arrested hearts were the least affected by low oxygen supply, with half-maximum NADH occurring at 42.5 ± 5.0% and 23.7 ± 4.6% perfusate oxygen, respectively. Although the biventricular working heart preparation can provide a useful representation of mechanical in vivo heart function, it is not without limitations. Understanding the limitations of isolated heart preparations is crucial when studying cardiac function in the context of energy supply and demand.

  17. Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence

    Directory of Open Access Journals (Sweden)

    H. V. Danylovych

    2016-02-01

    Full Text Available We prove the feasibility of evaluation of mitochondrial electron transport chain function in isolated mitochondria of smooth muscle cells of rats from uterus using fluorescence of NADH and FAD coenzymes. We found the inversely directed changes in FAD and NADH fluorescence intensity under normal functioning of mitochondrial electron transport chain. The targeted effect of inhibitors of complex I, III and IV changed fluorescence of adenine nucleotides. Rotenone (5 μM induced rapid increase in NADH fluorescence due to inhibition of complex I, without changing in dynamics of FAD fluorescence increase. Antimycin A, a complex III inhibitor, in concentration of 1 μg/ml caused sharp increase in NADH fluorescence and moderate increase in FAD fluorescence in comparison to control. NaN3 (5 mM, a complex IV inhibitor, and CCCP (10 μM, a protonophore, caused decrease in NADH and FAD fluorescence. Moreover, all the inhibitors caused mitochondria swelling. NO donors, e.g. 0.1 mM sodium nitroprusside and sodium nitrite similarly to the effects of sodium azide. Energy-dependent Ca2+ accumulation in mitochondrial matrix (in presence of oxidation substrates and Mg-ATP2- complex is associated with pronounced drop in NADH and FAD fluorescence followed by increased fluorescence of adenine nucleotides, which may be primarily due to Ca2+-dependent activation of dehydrogenases of citric acid cycle. Therefore, the fluorescent signal of FAD and NADH indicates changes in oxidation state of these nucleotides in isolated mitochondria, which may be used to assay the potential of effectors of electron transport chain.

  18. 40 CFR 174.524 - Glyphosate Oxidoreductase GOX or GOXv247 in all plants; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Glyphosate Oxidoreductase GOX or... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.524 Glyphosate... Glyphosate Oxidoreductase GOX or GOXv247 enzyme in all plants are exempt from the requirement of a tolerance...

  19. Single molecule activity measurements of cytochrome P450 oxidoreductase reveal the existence of two discrete functional states

    DEFF Research Database (Denmark)

    Laursen, Tomas; Singha, Aparajita; Rantzau, Nicolai;

    2014-01-01

    Electron transfer between membrane spanning oxidoreductase enzymes controls vital metabolic processes. Here we studied for the first time with single molecule resolution the function of P450 oxidoreductase (POR), the canonical membrane spanning activator of all microsomal cytochrome P450 enzymes....

  20. Single sample extraction protocol for the quantification of NAD and NADH redox states in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sporty, Jennifer L; Kabir, Md Mohiuddin; Turteltaub, Kenneth W; Ognibene, Ted; Lin, Su-Ju; Bench, Graham

    2008-10-01

    A robust redox extraction protocol for quantitative and reproducible metabolite isolation and recovery has been developed for simultaneous measurement of nicotinamide adenine dinucleotide (NAD) and its reduced form, NADH, from Saccharomyces cerevisiae. Following culture in liquid media, yeast cells were harvested by centrifugation and then lysed under nonoxidizing conditions by bead blasting in ice-cold, nitrogen-saturated 50 mM ammonium acetate. To enable protein denaturation, ice cold nitrogen-saturated CH(3)CN/50 mM ammonium acetate (3:1 v/v) was added to the cell lysates. Chloroform extractions were performed on supernatants to remove organic solvent. Samples were lyophilized and resuspended in 50 mM ammonium acetate. NAD and NADH were separated by HPLC and quantified using UV-Vis absorbance detection. NAD and NADH levels were evaluated in yeast grown under normal (2% glucose) and calorie restricted (0.5% glucose) conditions. Results demonstrate that it is possible to perform a single preparation to reliably and robustly quantitate both NAD and NADH contents in the same sample. Robustness of the protocol suggests it will be (i) applicable to quantification of these metabolites in other cell cultures; and (ii) amenable to isotope labeling strategies to determine the relative contribution of specific metabolic pathways to total NAD and NADH levels in cell cultures.

  1. X-ray induced L02 cells damage rescued by new anti-oxidant NADH

    Institute of Scientific and Technical Information of China (English)

    Fa-Quan Liu; Ji-Ren Zhang

    2003-01-01

    AIM: To explore molecular mechanism of nicotinamide adenine dinucleotide (NADH) antagonization against X-ray induced L02 cells damage.METHODS: L02 liver cells were cultured in RPMI 1640,exposed to X-ray irradiation and continued to culture in the presence or absence of NADH. Cellular viability was analyzed by routine MTT methods. The percent age of apoptotic cells and positive expressions of p53, bax and bcl-2, fas, fasL proteins were determined by FCM. Level of intracellular ROS was determined by confocal microscope scanning. Morphological change was detected by scanning electron micrograph.RESULTS: The viability of L02 cells was decreased with increasing dose of X-ray irradiation. NADH could not only eliminate the apoptosis induced by X-ray irradiation, but also up-regulate expression of bcl-2 protein and down-regulate expression of p53, bax, fas and fasL proteins (P<0.05). At the same time, NADH could reduce level of intracellular ROS in radiated L02 cells.CONCLUSION: NADH has marked anti-radiation effect, its mechanism may be associated with up-regulation of bcl-2expression and down-regulation of p53, bax fas and fasL expression, as well as decline of intracellular ROS. However,further investigation of its mechanism is worthwhile.

  2. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: Role of NADH and consequences for insulin secretion

    Energy Technology Data Exchange (ETDEWEB)

    Heart, Emma [Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, MA, 02543 (United States); Palo, Meridith; Womack, Trayce [Department of Science, United States Coast Guard Academy, New London, CT, 06320 (United States); Smith, Peter J.S. [Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, MA, 02543 (United States); Institute for Life Sciences, University of Southampton (United Kingdom); Gray, Joshua P., E-mail: Joshua.p.gray@uscga.edu [Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, MA, 02543 (United States); Department of Science, United States Coast Guard Academy, New London, CT, 06320 (United States)

    2012-01-15

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4–7 mM) to stimulatory (8–16 mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H{sub 2}O{sub 2}), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H{sub 2}O{sub 2} inhibit insulin secretion. Menadione, which produces H{sub 2}O{sub 2} via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H{sub 2}O{sub 2} production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1–10 μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H{sub 2}O{sub 2} formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H{sub 2}O{sub 2} and menadione on insulin secretion. -- Highlights: ► Menadione stimulation or inhibition of insulin secretion is dependent upon applied glucose levels. ► Menadione-dependent H{sub 2}O{sub 2} production is proportional to applied glucose levels. ► Quinone-mediated redox cycling

  3. Molecular cloning and characterization of a broad substrate terpenoid oxidoreductase from Artemisia annua.

    NARCIS (Netherlands)

    Ryden, A.M.; Ruyter-Spira, C.P.; Litjens, R.; Takahashi, S.; Quax, W.J.; Osada, H.; Bouwmeester, H.J.; Kayser, O.

    2010-01-01

    From Artemisia annua L., a new oxidoreductase (Red 1) was cloned, sequenced and functionally characterized. Through bioinformatics, heterologous protein expression, and enzyme substrate conversion assays, the elucidation of the enzymatic capacities of Red1 was achieved. Red1 acts on monoterpenoids,

  4. Endoplasmic reticulum (ER Chaperones and Oxidoreductases: Critical Regulators of Tumor Cell Survival and Immunorecognition

    Directory of Open Access Journals (Sweden)

    Thomas eSimmen

    2014-10-01

    Full Text Available Endoplasmic reticulum (ER chaperones and oxidoreductases are abundant enzymes that mediate the production of fully folded secretory and transmembrane proteins. Resisting the Golgi and plasma membrane-directed bulk flow, ER chaperones and oxidoreductases enter retrograde trafficking whenever they are pulled outside of the ER. However, solid tumors are characterized by the increased production of reactive oxygen species (ROS, combined with reduced blood flow that leads to low oxygen supply and ER stress. Under these conditions, hypoxia and the unfolded protein response (UPR upregulate ER chaperones and oxidoreductases. When this occurs, ER oxidoreductases and chaperones become important regulators of tumor growth. However, under these conditions, these proteins not only promote the production of proteins, but also alter the properties of the plasma membrane and hence modulate tumor immune recognition. For instance, high levels of calreticulin serve as an eat-me signal on the surface of tumor cells. Conversely, both intracellular and surface BiP/GRP78 promotes tumor growth. Other ER folding assistants able to modulate the properties of tumor tissue include protein disulfide isomerase (PDI, Ero1α and GRP94. Understanding the roles and mechanisms of ER chaperones in regulating tumor cell functions and immunorecognition will lead to important insight for the development of novel cancer therapies.

  5. Molecular Cloning and Characterization of a Broad Substrate Terpenoid Oxidoreductase from Artemisia annua

    NARCIS (Netherlands)

    Ryden, Anna-Margareta; Ruyter-Spira, Carolien; Litjens, Ralph; Takahashi, Shunji; Quax, Wim; Osada, Hiroyuki; Bouwmeester, Harro; Kayser, Oliver

    2010-01-01

    From Artemisia annua L., a new oxidoreductase (Red 1) was cloned, sequenced and functionally characterized. Through bioinformatics, heterologous protein expression and enzyme substrate conversion assays, the elucidation of the enzymatic capacities of Red1 was achieved. Red1 acts on monoterpenoids, a

  6. Molecular cloning and characterization of a broad substrate terpenoid oxidoreductase from Artemisia annua.

    NARCIS (Netherlands)

    Ryden, A.M.; Ruyter-Spira, C.P.; Litjens, R.; Takahashi, S.; Quax, W.J.; Osada, H.; Bouwmeester, H.J.; Kayser, O.

    2010-01-01

    From Artemisia annua L., a new oxidoreductase (Red 1) was cloned, sequenced and functionally characterized. Through bioinformatics, heterologous protein expression, and enzyme substrate conversion assays, the elucidation of the enzymatic capacities of Red1 was achieved. Red1 acts on monoterpenoids,

  7. Inflammatory Role of Macrophage Xanthine Oxidoreductase in Pulmonary Hypertension: Implications for Novel Therapeutic Approaches

    Science.gov (United States)

    2015-10-01

    inflammatory macrophages. Recently we have obtained preliminary data showing XOR as a critical regulator of mitochondrial function during hypoxia (SA1b...TERMS Xanthine Oxidoreductase, Macrophage, Pulmonary hypertension, Inflammasone, Mitochondrial Repiration 16. SECURITY CLASSIFICATION OF: 17...Shift To verify the effect of XOR ablation on mitochondrial OXPHOS, we measured levels of lactate and pyruvate in purified BMDM derived from XORfl/fl

  8. H2O2-Forming NADH Oxidase with Diaphorase (Cytochrome) Activity from Archaeoglobus fulgidus

    OpenAIRE

    Reed, David W.; Millstein, Jack; Hartzell, Patricia L.

    2001-01-01

    An enzyme exhibiting NADH oxidase (diaphorase) activity was isolated from the hyperthermophilic sulfate-reducing anaerobe Archaeoglobus fulgidus. N-terminal sequence of the protein indicates that it is coded for by open reading frame AF0395 in the A. fulgidus genome. The gene AF0395 was cloned and its product was purified from Escherichia coli. Like the native NADH oxidase (NoxA2), the recombinant NoxA2 (rNoxA2) has an apparent molecular mass of 47 kDa, requires flavin adenine dinucleotide fo...

  9. Membrane-Associated Glucose-Methanol-Choline Oxidoreductase Family Enzymes PhcC and PhcD Are Essential for Enantioselective Catabolism of Dehydrodiconiferyl Alcohol

    Science.gov (United States)

    Takahashi, Kenji; Hirose, Yusaku; Kamimura, Naofumi; Hishiyama, Shojiro; Hara, Hirofumi; Araki, Takuma; Kasai, Daisuke; Kajita, Shinya; Katayama, Yoshihiro; Fukuda, Masao

    2015-01-01

    Sphingobium sp. strain SYK-6 is able to degrade various lignin-derived biaryls, including a phenylcoumaran-type compound, dehydrodiconiferyl alcohol (DCA). In SYK-6 cells, the alcohol group of the B-ring side chain of DCA is initially oxidized to the carboxyl group to generate 3-(2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydrobenzofuran-5-yl) acrylic acid (DCA-C). Next, the alcohol group of the A-ring side chain of DCA-C is oxidized to the carboxyl group, and then the resulting metabolite is catabolized through vanillin and 5-formylferulate. In this study, the genes involved in the conversion of DCA-C were identified and characterized. The DCA-C oxidation activities in SYK-6 were enhanced in the presence of flavin adenine dinucleotide and an artificial electron acceptor and were induced ca. 1.6-fold when the cells were grown with DCA. Based on these observations, SLG_09480 (phcC) and SLG_09500 (phcD), encoding glucose-methanol-choline oxidoreductase family proteins, were presumed to encode DCA-C oxidases. Analyses of phcC and phcD mutants indicated that PhcC and PhcD are essential for the conversion of (+)-DCA-C and (−)-DCA-C, respectively. When phcC and phcD were expressed in SYK-6 and Escherichia coli, the gene products were mainly observed in their membrane fractions. The membrane fractions of E. coli that expressed phcC and phcD catalyzed the specific conversion of DCA-C into the corresponding carboxyl derivatives. In the oxidation of DCA-C, PhcC and PhcD effectively utilized ubiquinone derivatives as electron acceptors. Furthermore, the transcription of a putative cytochrome c gene was significantly induced in SYK-6 grown with DCA. The DCA-C oxidation catalyzed by membrane-associated PhcC and PhcD appears to be coupled to the respiratory chain. PMID:26362985

  10. Treatment of CoQ(10 deficient fibroblasts with ubiquinone, CoQ analogs, and vitamin C: time- and compound-dependent effects.

    Directory of Open Access Journals (Sweden)

    Luis C López

    Full Text Available BACKGROUND: Coenzyme Q(10 (CoQ(10 and its analogs are used therapeutically by virtue of their functions as electron carriers, antioxidant compounds, or both. However, published studies suggest that different ubiquinone analogs may produce divergent effects on oxidative phosphorylation and oxidative stress. METHODOLOGY/PRINCIPAL FINDINGS: To test these concepts, we have evaluated the effects of CoQ(10, coenzyme Q(2 (CoQ(2, idebenone, and vitamin C on bioenergetics and oxidative stress in human skin fibroblasts with primary CoQ(10 deficiency. A final concentration of 5 microM of each compound was chosen to approximate the plasma concentration of CoQ(10 of patients treated with oral ubiquinone. CoQ(10 supplementation for one week but not for 24 hours doubled ATP levels and ATP/ADP ratio in CoQ(10 deficient fibroblasts therein normalizing the bioenergetics status of the cells. Other compounds did not affect cellular bioenergetics. In COQ2 mutant fibroblasts, increased superoxide anion production and oxidative stress-induced cell death were normalized by all supplements. CONCLUSIONS/SIGNIFICANCE: THESE RESULTS INDICATE THAT: 1 pharmacokinetics of CoQ(10 in reaching the mitochondrial respiratory chain is delayed; 2 short-tail ubiquinone analogs cannot replace CoQ(10 in the mitochondrial respiratory chain under conditions of CoQ(10 deficiency; and 3 oxidative stress and cell death can be counteracted by administration of lipophilic or hydrophilic antioxidants. The results of our in vitro experiments suggest that primary CoQ(10 deficiencies should be treated with CoQ(10 supplementation but not with short-tail ubiquinone analogs, such as idebenone or CoQ(2. Complementary administration of antioxidants with high bioavailability should be considered if oxidative stress is present.

  11. Role of the NAD(P)H quinone oxidoreductase NQR and the cytochrome b AIR12 in controlling superoxide generation at the plasma membrane.

    Science.gov (United States)

    Biniek, Catherine; Heyno, Eiri; Kruk, Jerzy; Sparla, Francesca; Trost, Paolo; Krieger-Liszkay, Anja

    2017-04-01

    The quinone reductase NQR and the b-type cytochrome AIR12 of the plasma membrane are important for the control of reactive oxygen species in the apoplast. AIR12 and NQR are two proteins attached to the plant plasma membrane which may be important for generating and controlling levels of reactive oxygen species in the apoplast. AIR12 (Auxin Induced in Root culture) is a single gene of Arabidopsis that codes for a mono-heme cytochrome b. The NADPH quinone oxidoreductase NQR is a two-electron-transferring flavoenzyme that contributes to the generation of O 2(•-) in isolated plasma membranes. A. thaliana double knockout plants of both NQR and AIR12 generated more O 2(•-) and germinated faster than the single mutant affected in AIR12. To test whether NQR and AIR12 are able to interact functionally, recombinant purified proteins were added to plasma membranes isolated from soybean hypocotyls. In vitro NADH-dependent O 2(•-) production at the plasma membrane in the presence of NQR was reduced upon addition of AIR12. Electron donation from semi-reduced menadione to AIR12 was shown to take place. Biochemical analysis showed that purified plasma membrane from soybean hypocotyls or roots contained phylloquinone and menaquinone-4 as redox carriers. This is the first report on the occurrence of menaquinone-4 in eukaryotic photosynthetic organisms. We propose that NQR and AIR12 interact via the quinone, allowing an electron transfer from cytosolic NAD(P)H to apoplastic monodehydroascorbate and control thereby the level of reactive oxygen production and the redox state of the apoplast.

  12. The kinetics behavior of the reduction of formaldehyde catalyzed by Alcohol Dehydrogenase (ADH) and partial uncompetitive substrate inhibition by NADH.

    Science.gov (United States)

    Wen, Nuan; Liu, Wenfang; Hou, Yanhui; Zhao, Zhiping

    2013-05-01

    Alcohol dehydrogenase (ADH) catalyzes the final step in the biosynthesis of methanol from CO2. Here, we report the steady-state kinetics for ADH, using a homogeneous enzyme preparation with formaldehyde as the substrate and nicotinamide adenine dinucleotide (NADH) as the cofactor. When changing NADH concentrations with the fixed concentrations of HCHO (more or less than NADH), kinetic studies revealed a particular zigzag phenomenon for the first time. Increasing formaldehyde concentration can weaken substrate inhibition and improve catalytic efficiency. The kinetic mechanism of ADH was analyzed using the secondary fitting method. The double reciprocal plots (1/v∼1/[HCHO] and 1/[NADH]) strongly demonstrated that the substrate inhibition by NADH was uncompetitive versus formaldehyde and partial. In the direction of formaldehyde reduction, ADH has an ordered kinetic mechanism with formaldehyde adding to enzyme first and product methanol released last. The second reactant NADH can combine with the enzyme-methanol complex and then methanol dissociates from it at a slower rate than from enzyme-methanol. The reaction velocity depends on the relative rates of the alternative pathways. The addition of NADH also accelerates the releasing of methanol. As a result, substrate inhibition and activation occurred intermittently, and the zigzag double reciprocal plot (1/v∼1/[NADH]) was obtained.

  13. Synergistic effect of NADH on NADPH-dependent acetaminophen activation in liver microsomes and its inhibition by cyanide

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Chifumi; Marumo, Fumiaki (Tokyo Medical and Dental Univ. (Japan))

    1991-01-01

    The effects of NADH and cyanide on NADPH-dependent acetaminophen activation in rat and mouse liver microsomes were studied. In both rat and mouse microsomes, NADPH-dependent acetaminophen-glutathione conjugate production was synergistically enhanced by the addition of NADH, whereas NADH alone did not initiate this reaction. The data suggest that the second electron in this reaction may be transferred from NADH. The present findings are different from a previous report in a reconstituted system that NADH decreases covalent binding of acetaminophen to proteins. This reaction was inhibited by low concentrations of sodium cyanide. The role of the cyanide sensitive factor in this reaction in liver microsomes remains to be further clarified.

  14. Studies on electron transfer reactions of Keggin-type mixed addenda heteropolytungstovanadophosphates with NADH

    Indian Academy of Sciences (India)

    Ponnusamy Sami; Kasi Rajasekaran

    2009-03-01

    The coenzyme nicotinamide adenine dinucleotide (NADH) undergoes facile electron transfer reaction with vanadium (V) substituted Keggin-type heteropolyanions (HPA) [PVVW11O40]4- (PV1) and [PV$^{V}_{2}$W10O40]5- (PV2) in aqueous phosphate buffer of pH 6 at ambient temperature. Electrochemical and optical studies show that the stoichiometry of the reaction is 1 : 2 (NADH : HPA). EPR and optical studies show that HPA act as one electron acceptor and the products of electron transfer reactions are one electron reduced heteropoly blues (HPB), viz. [PVIVW11O40]5- and [PVIVVVW10O40]6-. Oxygraph measurements show that there is no uptake of molecular oxygen during the course of reaction. The reaction proceeds through multi-step electron-proton-electron transfer mechanism, with rate limiting initial one electron transfer from NADH to HPA by outer sphere electron transfer process. Bimolecular rate constant for electron transfer reaction between NADH and PV2 in phosphate buffer of pH = 6 has been determined spectrophotometrically.

  15. Photoelectrocatalytic determination of NADH in a flow injection system with electropolymerized methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Dilgin, Yusuf, E-mail: ydilgin@yahoo.co [Canakkale Onsekiz Mart University, Science and Art Faculty, Department of Chemistry, TR-17100 Canakkale (Turkey); Dilgin, Didem Giray [Canakkale Onsekiz Mart University, Biga Vocational College, TR-17200 Biga Canakkale (Turkey); Ege University, Science Faculty, Department of Chemistry, TR-35100 Bornova/Izmir (Turkey); Dursun, Zekerya; Goekcel, H. Ismet [Ege University, Science Faculty, Department of Chemistry, TR-35100 Bornova/Izmir (Turkey); Gligor, Delia [Department of Environmental Physics, Chemistry and Engineering, ' Babes-Bolyai' University, 30 Fantanele St., 400294 Cluj-Napoca (Romania); Bayrak, Burcu; Ertek, Bensu [Canakkale Onsekiz Mart University, Science and Art Faculty, Department of Chemistry, TR-17100 Canakkale (Turkey)

    2011-01-01

    It was firstly described that a glassy carbon electrode electropolymerized with methylene blue shows an efficient photoelectrocatalytic activity towards NADH oxidation in a phosphate buffer solution (pH 7.0). In order to perform the photoelectrocatalytic determination of NADH in a flow injection analysis (FIA) system, a home-made flow electrochemical cell with a suitable transparent window for the irradiation of the electrode surface was constructed. The currents obtained from the photoamperometric measurements in the FIA system at optimum conditions (flow rate of carrier solution, 1.3 mL min{sup -1}; transmission tubing length, 10 cm; injection volume, 100 {mu}L; and constant applied potential, +150 mV vs. Ag/AgCl) were linearly dependent on the NADH concentration and linear calibration curves were obtained in the range of 1.0 x 10{sup -7}-2.0 x 10{sup -4} M. The detection limit was found to be 4.0 x 10{sup -8} M for photoamperometric determination of NADH.

  16. Optical isopropanol biosensor using NADH-dependent secondary alcohol dehydrogenase (S-ADH).

    Science.gov (United States)

    Chien, Po-Jen; Ye, Ming; Suzuki, Takuma; Toma, Koji; Arakawa, Takahiro; Iwasaki, Yasuhiko; Mitsubayashi, Kohji

    2016-10-01

    Isopropanol (IPA) is an important solvent used in industrial activity often found in hospitals as antiseptic alcohol rub. Also, IPA may have the potential to be a biomarker of diabetic ketoacidosis. In this study, an optical biosensor using NADH-dependent secondary alcohol dehydrogenase (S-ADH) for IPA measurement was constructed and evaluated. An ultraviolet light emitting diode (UV-LED, λ=340nm) was employed as the excitation light to excite nicotinamide adenine dinucleotide (NADH). A photomultiplier tube (PMT) was connected to a two-way branch optical fiber for measuring the fluorescence emitted from the NADH. S-ADH was immobilized on the membrane to catalyze IPA to acetone and reduce NAD(+) to be NADH. This IPA biosensor shows highly sensitivity and selectivity, the calibration range is from 500 nmol L(-1) to 1mmolL(-1). The optimization of buffer pH, temperature, and the enzyme-immobilized method were also evaluated. The detection of IPA in nail related cosmetic using our IPA biosensor was also carried out. The results showed that large amounts of IPA were used in these kinds of cosmetics. This IPA biosensor comes with the advantages of rapid reaction, good reproducibility, and wide dynamic range, and is also expected to use for clinical IPA detections in serum or other medical and health related applications.

  17. Spatial dynamics of SIRT1 and the subnuclear distribution of NADH species

    Science.gov (United States)

    Aguilar-Arnal, Lorena; Ranjit, Suman; Stringari, Chiara; Orozco-Solis, Ricardo; Gratton, Enrico; Sassone-Corsi, Paolo

    2016-01-01

    Sirtuin 1 (SIRT1) is an NAD+-dependent deacetylase that functions as metabolic sensor of cellular energy and modulates biochemical pathways in the adaptation to changes in the environment. SIRT1 substrates include histones and proteins related to enhancement of mitochondrial function as well as antioxidant protection. Fluctuations in intracellular NAD+ levels regulate SIRT1 activity, but how SIRT1 enzymatic activity impacts on NAD+ levels and its intracellular distribution remains unclear. Here, we show that SIRT1 determines the nuclear organization of protein-bound NADH. Using multiphoton microscopy in live cells, we show that free and bound NADH are compartmentalized inside of the nucleus, and its subnuclear distribution depends on SIRT1. Importantly, SIRT6, a chromatin-bound deacetylase of the same class, does not influence NADH nuclear localization. In addition, using fluorescence fluctuation spectroscopy in single living cells, we reveal that NAD+ metabolism in the nucleus is linked to subnuclear dynamics of active SIRT1. These results reveal a connection between NAD+ metabolism, NADH distribution, and SIRT1 activity in the nucleus of live cells and pave the way to decipher links between nuclear organization and metabolism. PMID:27791113

  18. A NADH-accepting imine reductase variant: Immobilization and cofactor regeneration by oxidative deamination.

    Science.gov (United States)

    Gand, Martin; Thöle, Christian; Müller, Hubertus; Brundiek, Henrike; Bashiri, Ghader; Höhne, Matthias

    2016-07-20

    Engineering cofactor specificity of enzymes is a promising approach that can expand the application of enzymes for biocatalytic production of industrially relevant chemicals. Until now, only NADPH-dependent imine reductases (IREDs) are known. This limits their applications to reactions employing whole cells as a cost-efficient cofactor regeneration system. For applications of IREDs as cell-free catalysts, (i) we created an IRED variant showing an improved activity for NADH. With rational design we were able to identify four residues in the (R)-selective IRED from Streptomyces GF3587 (IR-Sgf3587), which coordinate the 2'-phosphate moiety of the NADPH cofactor. From a set of 15 variants, the highest NADH activity was caused by the single amino acid exchange K40A resulting in a 3-fold increased acceptance of NADH. (ii) We showed its applicability using an immobilisate obtained either from purified enzyme or from lysate using the EziG(™) carriers. Applying the variant and NADH, we reached 88% conversion in a preparative scale biotransformation when employing 4% (w/v) 2-methylpyrroline. (iii) We demonstrated a one-enzyme cofactor regeneration approach using the achiral amine N-methyl-3-aminopentanone as a hydrogen donor co-substrate. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Crosstalk of Signaling and Metabolism Mediated by the NAD(+)/NADH Redox State in Brain Cells.

    Science.gov (United States)

    Winkler, Ulrike; Hirrlinger, Johannes

    2015-12-01

    The energy metabolism of the brain has to be precisely adjusted to activity to cope with the organ's energy demand, implying that signaling regulates metabolism and metabolic states feedback to signaling. The NAD(+)/NADH redox state constitutes a metabolic node well suited for integration of metabolic and signaling events. It is affected by flux through metabolic pathways within a cell, but also by the metabolic state of neighboring cells, for example by lactate transferred between cells. Furthermore, signaling events both in neurons and astrocytes have been reported to change the NAD(+)/NADH redox state. Vice versa, a number of signaling events like astroglial Ca(2+) signals, neuronal NMDA-receptors as well as the activity of transcription factors are modulated by the NAD(+)/NADH redox state. In this short review, this bidirectional interdependence of signaling and metabolism involving the NAD(+)/NADH redox state as well as its potential relevance for the physiology of the brain and the whole organism in respect to blood glucose regulation and body weight control are discussed.

  20. Sources and implications of NADH/NAD+ redox imbalance in diabetes and its complications

    Directory of Open Access Journals (Sweden)

    Wu J

    2016-05-01

    Full Text Available Jinzi Wu,1Zhen Jin,1Hong Zheng,1,2Liang-Jun Yan1 1Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA; 2Department of Basic Theory of Traditional Chinese Medicine, College of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China Abstract: NAD+ is a fundamental molecule in metabolism and redox signaling. In diabetes and its complications, the balance between NADH and NAD+ can be severely perturbed. On one hand, NADH is overproduced due to influx of hyperglycemia to the glycolytic and Krebs cycle pathways and activation of the polyol pathway. On the other hand, NAD+ can be diminished or depleted by overactivation of poly ADP ribose polymerase that uses NAD+ as its substrate. Moreover, sirtuins, another class of enzymes that also use NAD+ as their substrate for catalyzing protein deacetylation reactions, can also affect cellular content of NAD+. Impairment of NAD+ regeneration enzymes such as lactate dehydrogenase in erythrocytes and complex I in mitochondria can also contribute to NADH accumulation and NAD+ deficiency. The consequence of NADH/NAD+ redox imbalance is initially reductive stress that eventually leads to oxidative stress and oxidative damage to macromolecules, including DNA, lipids, and proteins. Accordingly, redox imbalance-triggered oxidative damage has been thought to be a major factor contributing to the development of diabetes and its complications. Future studies on restoring NADH/NAD+ redox balance could provide further insights into design of novel antidiabetic strategies. Keywords: mitochondria, complex I, reactive oxygen species, polyol pathway, poly ADP ribosylation, sirtuins, oxidative stress, oxidative damage

  1. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.

    Science.gov (United States)

    Xiao, Wusheng; Wang, Rui-Sheng; Handy, Diane E; Loscalzo, Joseph

    2017-07-28

    The nicotinamide adenine dinucleotide (NAD(+))/reduced NAD(+) (NADH) and NADP(+)/reduced NADP(+) (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD(+)-consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD(+) precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 00, 000-000.

  2. Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP⁺-oxidoreductase (FNR) enzymes in vitro

    National Research Council Canada - National Science Library

    Iftach Yacoby; Sergii Pochekailov; Hila Toporik; Maria L. Ghirardi; Paul W. King; Shuguang Zhang

    2011-01-01

    .... To elucidate the basis for competition, we bioengineered a ferredoxin-hydrogenase fusion and characterized hydrogen production kinetics in the presence of Fd, ferredoxin:NADP⁺-oxidoreductase (FNR), and NADP...

  3. Lactic acid-producing yeast cells having nonfunctional L- or D-lactate:ferricytochrome C oxidoreductase cells

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Matthew [Boston, MA; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Highland Ranch, CO; Hause, Benjamin Matthew [Currie, MN; Van Hoek, Pim [Camarillo, CA; Dundon, Catherine Asleson [Minneapolis, MN

    2012-03-20

    Yeast cells having an exogenous lactate dehydrogenase gene ae modified by reducing L- or D-lactate:ferricytochrome c oxidoreductase activity in the cell. This leads to reduced consumption of lactate by the cell and can increase overall lactate yields in a fermentation process. Cells having the reduced L- or D-lactate:ferricytochrome c oxidoreductase activity can be screened for by resistance to organic acids such as lactic or glycolic acid.

  4. Lactic acid-producing yeast cells having nonfunctional L- or D-lactate:ferricytochrome C oxidoreductase cells

    Science.gov (United States)

    Miller, Matthew [Boston, MA; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Highland Ranch, CO; Hause, Benjamin Matthew [Currie, MN; Van Hoek, Pim [Camarillo, CA; Dundon, Catherine Asleson [Minneapolis, MN

    2012-03-20

    Yeast cells having an exogenous lactate dehydrogenase gene ae modified by reducing L- or D-lactate:ferricytochrome c oxidoreductase activity in the cell. This leads to reduced consumption of lactate by the cell and can increase overall lactate yields in a fermentation process. Cells having the reduced L- or D-lactate:ferricytochrome c oxidoreductase activity can be screened for by resistance to organic acids such as lactic or glycolic acid.

  5. Antioxidant Defense by Thioredoxin Can Occur Independently of Canonical Thiol-Disulfide Oxidoreductase Enzymatic Activity

    Directory of Open Access Journals (Sweden)

    Miryoung Song

    2016-03-01

    Full Text Available The thiol-disulfide oxidoreductase CXXC catalytic domain of thioredoxin contributes to antioxidant defense in phylogenetically diverse organisms. We find that although the oxidoreductase activity of thioredoxin-1 protects Salmonella enterica serovar Typhimurium from hydrogen peroxide in vitro, it does not appear to contribute to Salmonella’s antioxidant defenses in vivo. Nonetheless, thioredoxin-1 defends Salmonella from oxidative stress resulting from NADPH phagocyte oxidase macrophage expression during the innate immune response in mice. Thioredoxin-1 binds to the flexible linker, which connects the receiver and effector domains of SsrB, thereby keeping this response regulator in the soluble fraction. Thioredoxin-1, independently of thiol-disulfide exchange, activates intracellular SPI2 gene transcription required for Salmonella resistance to both reactive species generated by NADPH phagocyte oxidase and oxygen-independent lysosomal host defenses. These findings suggest that the horizontally acquired virulence determinant SsrB is regulated post-translationally by ancestrally present thioredoxin.

  6. Plant science. Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein.

    Science.gov (United States)

    Winzer, Thilo; Kern, Marcelo; King, Andrew J; Larson, Tony R; Teodor, Roxana I; Donninger, Samantha L; Li, Yi; Dowle, Adam A; Cartwright, Jared; Bates, Rachel; Ashford, David; Thomas, Jerry; Walker, Carol; Bowser, Tim A; Graham, Ian A

    2015-07-17

    Morphinan alkaloids from the opium poppy are used for pain relief. The direction of metabolites to morphinan biosynthesis requires isomerization of (S)- to (R)-reticuline. Characterization of high-reticuline poppy mutants revealed a genetic locus, designated STORR [(S)- to (R)-reticuline] that encodes both cytochrome P450 and oxidoreductase modules, the latter belonging to the aldo-keto reductase family. Metabolite analysis of mutant alleles and heterologous expression demonstrate that the P450 module is responsible for the conversion of (S)-reticuline to 1,2-dehydroreticuline, whereas the oxidoreductase module converts 1,2-dehydroreticuline to (R)-reticuline rather than functioning as a P450 redox partner. Proteomic analysis confirmed that these two modules are contained on a single polypeptide in vivo. This modular assembly implies a selection pressure favoring substrate channeling. The fusion protein STORR may enable microbial-based morphinan production.

  7. Oxidoreductases from Trametes spp. in Biotechnology: A Wealth of Catalytic Activity

    Directory of Open Access Journals (Sweden)

    Gibson S. Nyanhongo

    2007-01-01

    Full Text Available Those oxidoreductases that are part of the ligninolytic complex of basidiomycete and ascomycete fungi have played an increasingly important role in biotechnological applications during the last decade. The stability of these extracellular enzymes, their good solubility, and a multitude of catalyzed reactions contribute to this trend. This review focuses on a single genus of white-rot basidiomycetes, Trametes, to highlight the numerous possibilities for the application of this microorganism as well as three of its enzymes: laccase, cellobiose dehydrogenase, and pyranose 2-oxidase. Whereas laccase is without doubt a major player in biotechnology, the two other enzymes are less well known, but represent emerging biocatalysts with potential. Both cellobiose dehydrogenase and pyranose 2-oxidase are presumed to participate in lignin breakdown and will be used to exemplify the potential of less prominent oxidoreductases from this genus.

  8. Determination of ubiquinone in blood by high-performance liquid chromatography with post-column fluorescence derivatization using 2-cyanoacetamide.

    Science.gov (United States)

    Nohara, Yukio; Suzuki, Junko; Kubo, Hiroaki

    2011-11-01

    It was shown that ubiquinone (CoQ(10)) and ubiquinol (CoQ(10)H(2)) produce fluorescence products under alkaline conditions when reacted with 2-cyanoacetamide. The reaction mixture from CoQ(10) gave fluorescence with excitation and emission maximum wavelengths at 442 nm and 549 nm, respectively. This reaction was considered to proceed via Craven's reaction. Moreover, 2-cyanoacetamide was shown to be a useful reagent for high-performance liquid chromatography (HPLC) with post-column fluorescence derivatization of CoQ(10) and CoQ(10)H(2) in blood. CoQ(10) showed a linear response in the range of 0.32-1276 ng, and the detection limit (S/N = 3) was 0.16 ng. Moreover, the sample pretreatment by deproteinization and extraction of CoQ(10) and CoQ(10)H(2) from plasma using 1-propanol with potassium formate was effective for excellent separation of CoQ(10) and CoQ(10)H(2) from other fluorescent substances in the blood. This simple and rapid pretreatment was considered to minimize the oxidation of CoQ(10)H(2). On the other hand, CoQ(10) and CoQ(10)H(2) in plasma samples obtained by finger prick were detected, as in venous blood obtained by venipuncture. Our method involving the simple and rapid collection of plasma by finger prick and sample pretreatment is thought to be applicable for the determination of CoQ(10)H(2)/total CoQ(10) ratio as a biomarker of oxidative stress.

  9. A mitochondrial-targeted ubiquinone modulates muscle lipid profile and improves mitochondrial respiration in obesogenic diet-fed rats.

    Science.gov (United States)

    Coudray, Charles; Fouret, Gilles; Lambert, Karen; Ferreri, Carla; Rieusset, Jennifer; Blachnio-Zabielska, Agnieszka; Lecomte, Jérôme; Ebabe Elle, Raymond; Badia, Eric; Murphy, Michael P; Feillet-Coudray, Christine

    2016-04-14

    The prevalence of the metabolic syndrome components including abdominal obesity, dyslipidaemia and insulin resistance is increasing in both developed and developing countries. It is generally accepted that the development of these features is preceded by, or accompanied with, impaired mitochondrial function. The present study was designed to analyse the effects of a mitochondrial-targeted lipophilic ubiquinone (MitoQ) on muscle lipid profile modulation and mitochondrial function in obesogenic diet-fed rats. For this purpose, twenty-four young male Sprague-Dawley rats were divided into three groups and fed one of the following diets: (1) control, (2) high fat (HF) and (3) HF+MitoQ. After 8 weeks, mitochondrial function markers and lipid metabolism/profile modifications in skeletal muscle were measured. The HF diet was effective at inducing the major features of the metabolic syndrome--namely, obesity, hepatic enlargement and glucose intolerance. MitoQ intake prevented the increase in rat body weight, attenuated the increase in adipose tissue and liver weights and partially reversed glucose intolerance. At the muscle level, the HF diet induced moderate TAG accumulation associated with important modifications in the muscle phospholipid classes and in the fatty acid composition of total muscle lipid. These lipid modifications were accompanied with decrease in mitochondrial respiration. MitoQ intake corrected the lipid alterations and restored mitochondrial respiration. These results indicate that MitoQ protected obesogenic diet-fed rats from some features of the metabolic syndrome through its effects on muscle lipid metabolism and mitochondrial activity. These findings suggest that MitoQ is a promising candidate for future human trials in the metabolic syndrome prevention.

  10. Arabidopsis FNRL protein is an NADPH-dependent chloroplast oxidoreductase resembling bacterial ferredoxin-NADP(+) reductases.

    Science.gov (United States)

    Koskela, Minna M; Dahlström, Käthe M; Goñi, Guillermina; Lehtimäki, Nina; Nurmi, Markus; Velazquez-Campoy, Adrian; Hanke, Guy; Bölter, Bettina; Salminen, Tiina A; Medina, Milagros; Mulo, Paula

    2017-08-18

    Plastidic ferredoxin-NADP(+) oxidoreductases (FNRs; EC:1.18.1.2) together with bacterial type FNRs (FPRs) form the plant-type FNR family. Members of this group contain a two-domain scaffold that forms the basis of an extended superfamily of FAD dependent oxidoreductases. In the present study, we show that the Arabidopsis thaliana At1g15140 (FERREDOXIN-NADP(+) OXIDOREDUCTASE -LIKE, FNRL) is an FAD-containing NADPH dependent oxidoreductase present in the chloroplast stroma. Determination of the kinetic parameters using the DCPIP NADPH-dependent diaphorase assay revealed that the reaction catalysed by a recombinant FNRL protein followed a saturation Michaelis-Menten profile on the NADPH concentration with kcat = 3.24 ± 0.17 s(-1) , Km(NADPH) = 1.6 ± 0.3 μM and kcat / Km(NADPH) = 2.0 ± 0.4 μM(-1) s(-1) . Biochemical assays suggested that FNRL is not likely to interact with Arabidopsis ferredoxin 1 (AtFd1), which is supported by the sequence analysis implying that the known Fd-binding residues in plastidic FNRs differ from those of FNRL. Additionally, based on structural modelling FNRL has an FAD-binding N-terminal domain built from a six-stranded β-sheet and one α-helix, and a C-terminal NADP(+) -binding α/β domain with a five-stranded β-sheet with a pair of α-helices on each side. The FAD-binding site is highly hydrophobic and predicted to bind FAD in a bent conformation typically seen in bacterial FPRs. This article is protected by copyright. All rights reserved.

  11. Visualization and quantification of NAD(H) in brain sections by a novel histo-enzymatic nitrotetrazolium blue staining technique.

    Science.gov (United States)

    Balan, Irina S; Fiskum, Gary; Kristian, Tibor

    2010-02-26

    A histo-enzymatic technique for visualizing and quantifying endogenous NAD(H) in brain tissue was developed, based on coupled enzymatic cycling reactions that reduce nitrotetrazolium blue chloride to produce formazan. Conditions were used where the endogenous level of nicotinamide adenine dinucleotides (NAD(H)) was the rate limiting factor for formazan production. Spontaneous degradation of NAD(+) that occurs during incubation of thawed tissue was minimized by the addition of nicotinamide mononucleotide, an inhibitor of NAD(+) glycohydrolases. Cryostat sections of brains obtained from rats immediately after decapitation and 30 min later were used to determine the effects of ischemia alone on brain NAD(H) levels and neuroanatomic distribution. The ischemic insult resulted in a greater than 50% decline in the rate of formazan generation in the CA1 pyramidal neuronal layer of the hippocampus and in the parietal cortex and striatum, but not in the CA3 and dentate gyrus (DG) subregions of the hippocampus. The ischemia-induced changes in NAD(H) levels were confirmed by utilizing spectrofluorimetric measurements of NAD(H) present in perchloric acid extracts of brain samples. This new histo-enzymatic technique is suitable for visualizing and quantifying relative NAD(H) levels in the brain. This assay could prove useful in identifying region-selective NAD(H) catabolism that may contribute to neurodegeneration.

  12. Arxula adeninivorans xanthine oxidoreductase and its application in the production of food with low purine content.

    Science.gov (United States)

    Jankowska, D A; Trautwein-Schult, A; Cordes, A; Hoferichter, P; Klein, C; Bode, R; Baronian, K; Kunze, G

    2013-09-01

    Isolation and characterization of xanthine oxidoreductase and its application in the production of food with low purine content. The A. adeninivorans xanthine oxidoreductase is an inducible enzyme. The best inducers were identified by enzyme activity tests and real-time PCR and used to produce large amounts of the protein. Xanthine oxidoreductase was partially purified and biochemically characterized, showing pH and temperature optimum of 8·5 and 43°C, respectively. The enzyme decreased xanthine and hypoxanthine concentrations in yeast extract and was active simultaneously with other purine-degrading enzymes so that all of the substrates for uric acid production were reduced in a single step. It was shown that induced A. adeninivorans can produce sufficient amount of xanthine dehydrogenase and that the enzyme is able to reduce xanthine and hypoxanthine content in food, and when used in conjunction with other enzymes of the pathway, uric acid concentration is significantly reduced. Reduction in dietary purines is recommended to people suffering from hyperuricemia. Elimination of most purine-rich foods may affect balanced nutrition. Food with lowered purine concentration will assist in controlling the disease. This study is a continuation of previous studies that characterized and overexpressed other enzymes of the purine degradation pathway. © 2013 The Society for Applied Microbiology.

  13. Characterization of an 8-hydroxy-5-deazaflavin:NADPH oxidoreductase from Streptomyces griseus.

    Science.gov (United States)

    Eker, A P; Hessels, J K; Meerwaldt, R

    1989-01-27

    An 8-hydroxy-5-deazaflavin-dependent oxidoreductase was isolated from the actinomycete Streptomyces griseus and purified 590-fold with 72% overall yield. The enzyme catalyzes electron transfer between 8-hydroxy-5-deazaflavins and NADPH. It seems to be more specific than methanogenic oxidoreductase as it has an absolute requirement for both the 5-deazaflavin structure and the presence of an 8-hydroxy group in the substrate. A molecular weight of 42,000 was found with gel permeation chromatography, while SDS gel electrophoresis indicated the presence of two identical subunits. Maximal enzymatic activity was found at 0.32 M NaCl and pH 5.9 for reduction of 8-hydroxy-5-deazaflavin and pH 7.9 for the reverse reaction. From the kinetic constants it was estimated that the main function of this oxidoreductase is probably to provide cells with reduced 8-hydroxy-5-deazaflavin to be used in specific reduction reactions. These results indicate the occurrence of 8-hydroxy-5-deazaflavin-dependent electron transfer in microorganisms not belonging to the archaebacteria.

  14. Auxin-activated NADH oxidase activity of soybean plasma membranes is distinct from the constitutive plasma membrane NADH oxidase and exhibits prion-like properties

    Science.gov (United States)

    Morre, D. James; Morre, Dorothy M.; Ternes, Philipp

    2003-01-01

    The hormone-stimulated and growth-related cell surface hydroquinone (NADH) oxidase activity of etiolated hypocotyls of soybeans oscillates with a period of about 24 min or 60 times per 24-h day. Plasma membranes of soybean hypocotyls contain two such NADH oxidase activities that have been resolved by purification on concanavalin A columns. One in the apparent molecular weight range of 14-17 kDa is stimulated by the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The other is larger and unaffected by 2,4-D. The 2,4-D-stimulated activity absolutely requires 2,4-D for activity and exhibits a period length of about 24 min. Also exhibiting 24-min oscillations is the rate of cell enlargement induced by the addition of 2,4-D or the natural auxin indole-3-acetic acid (IAA). Immediately following 2,4-D or IAA addition, a very complex pattern of oscillations is frequently observed. However, after several hours a dominant 24-min period emerges at the expense of the constitutive activity. A recruitment process analogous to that exhibited by prions is postulated to explain this behavior.

  15. Studies of interaction of homo-dimeric ferredoxin-NAD(P)+ oxidoreductases of Bacillus subtilis and Rhodopseudomonas palustris, that are closely related to thioredoxin reductases in amino acid sequence, with ferredoxins and pyridine nucleotide coenzymes.

    Science.gov (United States)

    Seo, Daisuke; Okabe, Seisuke; Yanase, Mitsuhiro; Kataoka, Kunishige; Sakurai, Takeshi

    2009-04-01

    Ferredoxin-NADP(+) oxidoreductases (FNRs) of Bacillus subtilis (YumC) and Rhodopseudomonas palustris CGA009 (RPA3954) belong to a novel homo-dimeric type of FNR with high amino acid sequence homology to NADPH-thioredoxin reductases. These FNRs were purified from expression constructs in Escherichia coli cells, and their steady-state reactions with [2Fe-2S] type ferredoxins (Fds) from spinach and R. palustris, [4Fe-4S] type Fd from B. subtilis, NAD(P)(+)/NAD(P)H and ferricyanide were studied. From the K(m) and k(cat) values for the diaphorase activity with ferricyanide, it is demonstrated that both FNRs are far more specific for NADPH than for NADH. The UV-visible spectral changes induced by NADP(+) and B. subtilis Fd indicated that both FNRs form a ternary complex with NADP(+) and Fd, and that each of the two ligands decreases the affinities of the others. The steady-state kinetics of NADPH-cytochrome c reduction activity of YumC is consistent with formation of a ternary complex of NADPH and Fd during catalysis. These results indicate that despite their low sequence homology to other FNRs, these enzymes possess high FNR activity but with measurable differences in affinity for different types of Fds as compared to other more conventional FNRs.

  16. Characterization of water-forming NADH oxidases for co-factor regeneration

    DEFF Research Database (Denmark)

    Rehn, Gustav; Pedersen, Asbjørn Toftgaard; J. Charnock, Simon

    an environmentaland economic perspective [1]. Alcohol dehydrogenases (ADH) offer one such alternative. However, the reaction requires the oxidized nicotinamide co-factor (NAD+) that must be recycled due to its high cost contribution. One regeneration method that offers certain advantages is the oxidation of NADH...... using water forming NADH oxidases (NOX-2). The implementation of the ADH/NOX system for alcohol oxidation, however, requires consideration of several different issues. Enzyme activity and stability at relevant pH and temperature conditions, but also the tolerance to the substrates and products present......Traditional chemical methods for alcohol oxidation are often associated with issues such as high consumption of expensive oxidizing agents, generation of metal waste and the use of environmentally undesirable organic solvents. Developing green, selective catalysts is therefore important from...

  17. LHON/MELAS overlap mutation in ND1 subunit of mitochondrial complex I affects ubiquinone binding as revealed by modeling in Escherichia coli NDH-1.

    Science.gov (United States)

    Pätsi, Jukka; Maliniemi, Pilvi; Pakanen, Salla; Hinttala, Reetta; Uusimaa, Johanna; Majamaa, Kari; Nyström, Thomas; Kervinen, Marko; Hassinen, Ilmo E

    2012-02-01

    Defects in complex I due to mutations in mitochondrial DNA are associated with clinical features ranging from single organ manifestation like Leber hereditary optic neuropathy (LHON) to multiorgan disorders like mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome. Specific mutations cause overlap syndromes combining several phenotypes, but the mechanisms of their biochemical effects are largely unknown. The m.3376G>A transition leading to p.E24K substitution in ND1 with LHON/MELAS phenotype was modeled here in a homologous position (NuoH-E36K) in the Escherichia coli enzyme and it almost totally abolished complex I activity. The more conservative mutation NuoH-E36Q resulted in higher apparent K(m) for ubiquinone and diminished inhibitor sensitivity. A NuoH homolog of the m.3865A>G transition, which has been found concomitantly in the overlap syndrome patient with the m.3376G>A, had only a minor effect. Consequences of a primary LHON-mutation m.3460G>A affecting the same extramembrane loop as the m.3376G>A substitution were also studied in the E. coli model and were found to be mild. The results indicate that the overlap syndrome-associated m.3376G>A transition in MTND1 is the pathogenic mutation and m.3865A>G transition has minor, if any, effect on presentation of the disease. The kinetic effects of the NuoH-E36Q mutation suggest its proximity to the putative ubiquinone binding domain in 49kD/PSST subunits. In all, m.3376G>A perturbs ubiquinone binding, a phenomenon found in LHON, and decreases the activity of fully assembled complex I as in MELAS.

  18. Contribution of NADH increases to ethanol’s inhibition of retinol oxidation by human ADH isoforms

    Science.gov (United States)

    Chase, Jennifer R.; Poolman, Mark G.; Fell, David A.

    2010-01-01

    Background A decrease in retinoic acid levels due to alcohol consumption has been proposed as a contributor to such conditions as fetal alcohol spectrum diseases and ethanol-induced cancers. One molecular mechanism, competitive inhibition by ethanol of the catalytic activity of human alcohol dehydrogenase (EC 1.1.1.1) (ADH) on all-trans retinol oxidation has been shown for the ADH7 isoform. Ethanol metabolism also causes an increase in the free NADH in cells, which might reasonably be expected to decrease the retinol oxidation rate by product inhibition of ADH isoforms. Method To understand the relative importance of these two mechanisms by which ethanol decreases the retinol oxidation in vivo we need to assess them quantitatively. We have built a model system of four reactions: (1) ADH oxidation of ethanol and NAD+ (2) ADH oxidation of retinol and NAD+ (3) oxidation of ethanol by a generalized Ethanoloxidase that uses NAD+ (4) NADHoxidase which carries out NADH turnover. Results Using the metabolic modeling package SCRUMPY, we have shown that the ethanol-induced increase in NADH contributes from 0–90% of the inhibition by ethanol, depending on [ethanol] and ADH isoform. Furthermore, while the majority of flux control of retinaldehyde production is exerted by ADH, Ethanoloxidase and the NADHoxidase contribute as well. Discussion Our results show that the ethanol-induced increase in NADH makes a contribution of comparable importance to the ethanol competitive inhibition throughout the range of conditions likely to occur in vivo, and must be considered in the assessment of the in vivo mechanism of ethanol interference with fetal development and other diseases. PMID:19183134

  19. Engineering Pichia pastoris for improved NADH regeneration: A novel chassis strain for whole-cell catalysis

    Directory of Open Access Journals (Sweden)

    Martina Geier

    2015-09-01

    Full Text Available Many synthetically useful reactions are catalyzed by cofactor-dependent enzymes. As cofactors represent a major cost factor, methods for efficient cofactor regeneration are required especially for large-scale synthetic applications. In order to generate a novel and efficient host chassis for bioreductions, we engineered the methanol utilization pathway of Pichia pastoris for improved NADH regeneration. By deleting the genes coding for dihydroxyacetone synthase isoform 1 and 2 (DAS1 and DAS2, NADH regeneration via methanol oxidation (dissimilation was increased significantly. The resulting Δdas1 Δdas2 strain performed better in butanediol dehydrogenase (BDH1 based whole-cell conversions. While the BDH1 catalyzed acetoin reduction stopped after 2 h reaching ~50% substrate conversion when performed in the wild type strain, full conversion after 6 h was obtained by employing the knock-out strain. These results suggest that the P. pastoris Δdas1 Δdas2 strain is capable of supplying the actual biocatalyst with the cofactor over a longer reaction period without the over-expression of an additional cofactor regeneration system. Thus, focusing the intrinsic carbon flux of this methylotrophic yeast on methanol oxidation to CO2 represents an efficient and easy-to-use strategy for NADH-dependent whole-cell conversions. At the same time methanol serves as co-solvent, inductor for catalyst and cofactor regeneration pathway expression and source of energy.

  20. Cloning, Expression and Characterization of Recombinant, NADH Oxidase from Giardia lamblia.

    Science.gov (United States)

    Castillo-Villanueva, Adriana; Méndez, Sara Teresa; Torres-Arroyo, Angélica; Reyes-Vivas, Horacio; Oria-Hernández, Jesús

    2016-02-01

    The NADH oxidase family of enzymes catalyzes the oxidation of NADH by reducing molecular O2 to H2O2, H2O or both. In the protozoan parasite Giardia lamblia, the NADH oxidase enzyme (GlNOX) produces H2O as end product without production of H2O2. GlNOX has been implicated in the parasite metabolism, the intracellular redox regulation and the resistance to drugs currently used against giardiasis; therefore, it is an interesting protein from diverse perspectives. In this work, the GlNOX gene was amplified from genomic G. lamblia DNA and expressed in Escherichia coli as a His-Tagged protein; then, the enzyme was purified by immobilized metal affinity chromatography, characterized, and its properties compared with those of the endogenous enzyme previously isolated from trophozoites (Brown et al. in Eur J Biochem 241(1):155-161, 1996). In comparison with the trophozoite-extracted enzyme, which was scarce and unstable, the recombinant heterologous expression system and one-step purification method produce a stable protein preparation with high yield and purity. The recombinant enzyme mostly resembles the endogenous protein; where differences were found, these were attributable to methodological discrepancies or artifacts. This homogenous, pure and functional protein preparation can be used for detailed structural or functional studies of GlNOX, which will provide a deeper understanding of the biology and pathogeny of G. lamblia.

  1. Activated barrier crossing dynamics in the non-radiative decay of NADH and NADPH

    Energy Technology Data Exchange (ETDEWEB)

    Blacker, Thomas S., E-mail: t.blacker@ucl.ac.uk [Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London WC1E 6BT (United Kingdom); Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom); Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT (United Kingdom); Marsh, Richard J., E-mail: richard.marsh@ucl.ac.uk [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom); Duchen, Michael R., E-mail: m.duchen@ucl.ac.uk [Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT (United Kingdom); Bain, Angus J., E-mail: a.bain@ucl.ac.uk [Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London WC1E 6BT (United Kingdom); Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2013-08-30

    Highlights: ► NADH and NADPH have a high rate of non-radiative excited state decay. ► Conformational relaxation is shown to be a significant non-radiative pathway. ► The Kramers equation describes the barrier crossing dynamics of the relaxation. ► Conformational restriction upon enzyme binding will alter NAD(P)H lifetimes. - Abstract: In live tissue, alterations in metabolism induce changes in the fluorescence decay of the biological coenzyme NAD(P)H, the mechanism of which is not well understood. In this work, the fluorescence and anisotropy decay dynamics of NADH and NADPH were investigated as a function of viscosity in a range of water–glycerol solutions. The viscosity dependence of the non-radiative decay is well described by Kramers and Kramers–Hubbard models of activated barrier crossing over a wide viscosity range. Our combined lifetime and anisotropy analysis indicates common mechanisms of non-radiative relaxation in the two emitting states (conformations) of both molecules. The low frequencies associated with barrier crossing suggest that non-radiative decay is mediated by small scale motion (e.g. puckering) of the nicotinamide ring. Variations in the fluorescence lifetimes of NADH and NADPH when bound to different enzymes may therefore be attributed to differing levels of conformational restriction upon binding.

  2. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Jo, Jung-Hyun; Oh, Sun-Young; Lee, Hyeun-Soo; Park, Yong-Cheol; Seo, Jin-Ho

    2015-12-01

    Xylitol, a natural sweetener, can be produced by hydrogenation of xylose in hemicelluloses. In microbial processes, utilization of only NADPH cofactor limited commercialization of xylitol biosynthesis. To overcome this drawback, Saccharomyces cerevisiae D452-2 was engineered to express two types of xylose reductase (XR) with either NADPH-dependence or NADH-preference. Engineered S. cerevisiae DWM expressing both the XRs exhibited higher xylitol productivity than the yeast strain expressing NADPH-dependent XR only (DWW) in both batch and glucose-limited fed-batch cultures. Furthermore, the coexpression of S. cerevisiae ZWF1 and ACS1 genes in the DWM strain increased intracellular concentrations of NADPH and NADH and improved maximum xylitol productivity by 17%, relative to that for the DWM strain. Finally, the optimized fed-batch fermentation of S. cerevisiae DWM-ZWF1-ACS1 resulted in 196.2 g/L xylitol concentration, 4.27 g/L h productivity and almost the theoretical yield. Expression of the two types of XR utilizing both NADPH and NADH is a promising strategy to meet the industrial demands for microbial xylitol production.

  3. Real-time and high-throughput analysis of mitochondrial metabolic states in living cells using genetically encoded NAD(+)/NADH sensors.

    Science.gov (United States)

    Zhao, Yuzheng; Yang, Yi

    2016-11-01

    Mitochondria are central organelles that regulate cellular bioenergetics, biosynthesis, and signaling processes. NADH, a key player in cell metabolism, is often considered as a marker of mitochondrial function. However, traditional methods for NADH measurements are either destructive or unable to distinguish between NADH and NADPH. In contrast to traditional methods, genetically encoded NADH sensors can be used for the real-time tracking and quantitative measurement of subcellular NADH levels in living cells. Therefore, these sensors provide innovative tools and address the limitations of current techniques. We herein summarize the properties of different types of recently developed NADH biosensors, discuss their advantages and disadvantages, and focus on the high-throughput analysis of mitochondrial function by using highly responsive NAD(+)/NADH sensors.

  4. The anti-carcinogenic effect of statins in a rat model correlates with levels and synthesis of ubiquinone.

    Science.gov (United States)

    Acimovic, Jure; Lövgren-Sandblom, Anita; Eriksson, Lennart C; Björkhem-Bergman, Linda

    2012-08-24

    Ubiquinone (Q) is a product in the cholesterol synthesis pathway and is an essential component of the respiratory chain in the mitochondrial membrane. In addition, extra-mitochondrial Q has anti-oxidative properties and this fraction is increased during carcinogenesis. The aim of the present study was to investigate if extra-mitochondrial level of Q is affected by statin treatment in a rat model for liver cancer, and if this change correlates with inhibited carcinogenesis. To do this we isolated sub-cellular fractions of rat livers from a previous experiment where we have shown anti-carcinogenic effects of statins. The levels of Q(8), Q(9) and Q(10) were analysed with liquid chromatography-mass spectrometry. The Q(9)-levels, constituting the major part of Q in rats, were not significantly affected in any of the sub-cellular compartments. The levels of Q(10), constituting a minor part of Q in rats but the major part of Q in humans, were significantly decreased by about 60% in the statin treated rats. The decrease was present in all sub-cellular compartments, but was most pronounced in the cytosol. There was a significant correlation between extra-mitochondrial Q(10) levels and inhibited carcinogenesis. No such correlation was observed with extra-mitochondrial Q(9). The reduced Q(10)-levels might be explained by the reduced availability of isoprene units during statin treatment, shifting the synthesis towards isoforms with shorter side-chains. In line with this hypothesis there were increased levels of Q(8)-levels during statin treatment. The results support our previous suggestion that at least part of the anti-carcinogenic effect of statins in our rat model is mediated by effects on synthesis of Q. We also demonstrate a shift in the Q-synthesis pathway towards isoforms with shorter side-chains during statin treatment. The ratio between the different Q-isoforms might be used as a more sensitive marker of statin-induced inhibition of Q than measuring total Q levels.

  5. Influence of NADH Concetration in the AST Reagent on Assay Performance%AST 试剂中 NADH 含量变化对线性范围影响的研究

    Institute of Scientific and Technical Information of China (English)

    穆润清; 王银铃; 颜青

    2016-01-01

    Objective To estimate the assay performance of two different kind of reagent with different concentration of NADH.Methods Verificated function index of these two reagents,such as accuracy,sensitiveness,blank space and so on, and determined the molar extinction coefficient of NADH using hexokinase method and calculated the NADH density in two kind of AST reagents.Then estimated the effect of concentation of NADH on the analysis performance.Results NADH concentration was 0.21 mmol/L,and the sample detection limit of the linear was 1 629 U/L.NADH concentration was 0.13 mmol/L,and the sample detection limit of the linear was 1 263 U/L.So the gap between the two reagent’s detection linear was visible.But there were no significant changes in other performance indicators such as detection sensitivity,reagent blank,precision.Conclusion The NADH concentration in the reagent of AST had greatimpact on the detecting linear range, so should pay attention to the potential change of linear range in the daily work.%目的:评估天门冬氨酸氨基转移酶(AST)试剂中还原型辅酶(NADH)含量变化对试剂盒线性范围的影响。方法对两个具有不同 NADH 含量的同一品牌 AST 试剂的线性范围、精密度、灵敏度、试剂空白等性能指标分别进行验证,利用己糖激酶法测定葡萄糖浓度的方法测定 NADH 的摩尔消光系数,进而评估 NADH 浓度变化对分析性能的影响。结果较高及较低 NADH 浓度 AST 试剂的 R1试剂中 NADH 浓度分别为0.21 mmol/L(基础吸光度为1.1876)和0.13 mmol/L(基础吸光度为0.7567),NADH 浓度降低可造成试剂盒的线性范围减小,检测上限由1629 U/L 降至1263 U/L。NADH 浓度变化对两种试剂的精密度、灵敏度、试剂空白等性能指标无明显影响。结论AST 试剂盒的 R1试剂中NADH 浓度降低(基础吸光度减小)可造成样品检测线性范围减小,因此实验室通过合适

  6. Alterations in cerebral metabolism observed in living rodents using fluorescence lifetime microscopy of intrinsic NADH (Conference Presentation)

    Science.gov (United States)

    Yaseen, Mohammad A.; Sakadžić, Sava; Sutin, Jason; Wu, Weicheng; Fu, Buyin; Boas, David A.

    2017-02-01

    Monitoring cerebral energy metabolism at a cellular level is essential to improve our understanding of healthy brain function and its pathological alterations. In this study, we resolve specific alterations in cerebral metabolism utilizing minimally-invasive 2-Photon fluorescence lifetime imaging (2P-FLIM) measurements of reduced nicotinamide adenine dinucleotide (NADH) fluorescence, collected in vivo from anesthetized rats and mice. Time-resolved lifetime measurements enables distinction of different components contributing to NADH autofluorescence. These components reportedly represent different enzyme-bound formulations of NADH. Our observations from this study confirm the hypothesis that NADH FLIM can identify specific alterations in cerebral metabolism. Using time-correlated single photon counting (TCSPC) equipment and a custom-built multimodal imaging system, 2-photon fluorescence lifetime imaging (FLIM) was performed in cerebral tissue with high spatial and temporal resolution. Multi-exponential fits for NADH fluorescence lifetimes indicate 4 distinct components, or 'species.' We observed distinct variations in the relative proportions of these components before and after pharmacological-induced impairments to several reactions involved in anaerobic glycolysis and aerobic oxidative metabolism. Classification models developed with experimental data correctly predict the metabolic impairments associated with bicuculline-induced focal seizures in separate experiments. Compared to traditional intensity-based NADH measurements, lifetime imaging of NADH is less susceptible to the adverse effects of overlying blood vessels. Evaluating NADH measurements will ultimately lead to a deeper understanding of cerebral energetics and its pathology-related alterations. Such knowledge will likely aid development of therapeutic strategies for neurodegenerative diseases such as Alzheimer's Disease, Parkinson's disease, and stroke.

  7. An Oxidoreductase AioE is Responsible for Bacterial Arsenite Oxidation and Resistance

    Science.gov (United States)

    Wang, Qian; Han, Yushan; Shi, Kaixiang; Fan, Xia; Wang, Lu; Li, Mingshun; Wang, Gejiao

    2017-01-01

    Previously, we found that arsenite (AsIII) oxidation could improve the generation of ATP/NADH to support the growth of Agrobacterium tumefaciens GW4. In this study, we found that aioE is induced by AsIII and located in the arsenic island near the AsIII oxidase genes aioBA and co-transcripted with the arsenic resistant genes arsR1-arsC1-arsC2-acr3-1. AioE belongs to TrkA family corresponding the electron transport function with the generation of NADH and H+. An aioE in-frame deletion strain showed a null AsIII oxidation and a reduced AsIII resistance, while a cytC mutant only reduced AsIII oxidation efficiency. With AsIII, aioE was directly related to the increase of NADH, while cytC was essential for ATP generation. In addition, cyclic voltammetry analysis showed that the redox potential (ORP) of AioBA and AioE were +0.297 mV vs. NHE and +0.255 mV vs. NHE, respectively. The ORP gradient is AioBA > AioE > CytC (+0.217 ~ +0.251 mV vs. NHE), which infers that electron may transfer from AioBA to CytC via AioE. The results indicate that AioE may act as a novel AsIII oxidation electron transporter associated with NADH generation. Since AsIII oxidation contributes AsIII detoxification, the essential of AioE for AsIII resistance is also reasonable. PMID:28128323

  8. Dopamine sensitized nanoporous TiO2 film on electrodes: photoelectrochemical sensing of NADH under visible irradiation.

    Science.gov (United States)

    Wang, Guang-Li; Xu, Jing-Juan; Chen, Hong-Yuan

    2009-04-15

    Dopamine-coordinated photoactive TiO(2) nanoporous films with a wide excitation range of light in the visible region (up to 580 nm) were prepared and used for sensitive detection of NADH. Colloidal TiO(2) was firstly covered on an indium-tin oxide (ITO) electrode surface and sintered at 450 degrees C to form a nanoporous TiO(2) film, then the electrode was dipped in a dopamine solution to form a dopamine-TiO(2) charge transfer complex via coordinating dopamine with undercoordinated titanium atoms on the electrode surface. This charge transfer complex provided an anodic photocurrent under visible light and the photocurrent could be largely enhanced by NADH. The photocurrent enhancement might be due to the electron transfer between NADH and the holes localized on dopamine. A new photoelectrochemical methodology for sensitive detection of NADH at a relatively low potential was developed. The detection limit of NADH was 1.4x10(-7) M, and the detection range could extend up to 1.2x10(-4) M. The dopamine-TiO(2) modified electrode exhibits its major advantages such as effective electronic transducer, fast response and easy fabrication for photoelectrochemical determination of NADH. This strategy largely reduces the destructive effect of UV light and the photogenerated holes of illuminated TiO(2) to biomolecules and opens a new avenue for the applications of TiO(2) in photoelectrochemical biosensing.

  9. Comparsion of the Effects of Succinate and NADH on Postmortem Metmyoglobin Redcutase Activity and Beef Colour Stability

    Institute of Scientific and Technical Information of China (English)

    GAO Xiao-guang; WANG Zhen-yu; TANG Meng-tian; MA Chang-wei; DAI Rui-tong

    2014-01-01

    In two experiments, the effects of succinate and NADH (reduced nicotinamide adenine dinucleotide) on metmyoglobin reductase activity and electron transport chain-linked metmyoglobin reduction were investigated and compared. In experiment 1, metmyoglobin (MetMb), substrate and inhibitors were incubated with mitochondria. Comparsion of the effects of succinate and NADH on MetMb reduction was investigated. The MetMb percentage in sample treated with 8 mol L-1 succinate decreased by about 69%after 3 h incubation, and the effect was inhibited by the addition of 10 mol L-1 electron transfer chain complex II inhibitor malonic acid;the MetMb percentage in samples treated with 2 mol L-1 NADH decreased by 56%and the effect was inhibited by the addition of 0.02 mol L-1 electron transport chain complex I inhibitor rotenone. These results indicated that electron transport chain played an important role in MetMb reduction. Both complex II and complex I take part in the MetMb reduction in mitochondria through different pathways. NADH-MetMb reduction system was less stable than succinate-MetMb system. In experiment 2, the beef longissimus dorsi muscle was blended with different concentrations of succinate or NADH. Enhancing patties with higher concentration of succinate or NADH improved colour stability in vacuum packaged samples (P<0.05). These results veriifed that mitochondria electron transport chain is related to the MetMb reduction in meat system.

  10. Cytosolic NADH-NAD+ Redox Visualized in Brain Slices by Two-Photon Fluorescence Lifetime Biosensor Imaging

    Science.gov (United States)

    Mongeon, Rebecca; Venkatachalam, Veena

    2016-01-01

    Abstract Aim: Cytosolic NADH-NAD+ redox state is central to cellular metabolism and a valuable indicator of glucose and lactate metabolism in living cells. Here we sought to quantitatively determine NADH-NAD+ redox in live cells and brain tissue using a fluorescence lifetime imaging of the genetically-encoded single-fluorophore biosensor Peredox. Results: We show that Peredox exhibits a substantial change in its fluorescence lifetime over its sensing range of NADH-NAD+ ratio. This allows changes in cytosolic NADH redox to be visualized in living cells using a two-photon scanning microscope with fluorescence lifetime imaging capabilities (2p-FLIM), using time-correlated single photon counting. Innovation: Because the lifetime readout is absolutely calibrated (in nanoseconds) and is independent of sensor concentration, we demonstrate that quantitative assessment of NADH redox is possible using a single fluorophore biosensor. Conclusion: Imaging of the sensor in mouse hippocampal brain slices reveals that astrocytes are typically much more reduced (with higher NADH:NAD+ ratio) than neurons under basal conditions, consistent with the hypothesis that astrocytes are more glycolytic than neurons. Antioxid. Redox Signal. 25, 553–563. PMID:26857245

  11. Mutational analysis of the hyc-operon determining the relationship between hydrogenase-3 and NADH pathway in Enterobacter aerogenes.

    Science.gov (United States)

    Pi, Jian; Jawed, Muhammad; Wang, Jun; Xu, Li; Yan, Yunjun

    2016-01-01

    In this study, the hydrogenase-3 gene cluster (hycDEFGH) was isolated and identified from Enterobacter aerogenes CCTCC AB91102. All gene products were highly homologous to the reported bacterial hydrogenase-3 (Hyd-3) proteins. The genes hycE, hycF, hycG encoding the subunits of hydrogenase-3 were targeted for genetic knockout to inhibit the FHL hydrogen production pathway via the Red recombination system, generating three mutant strains AB91102-E (ΔhycE), AB91102-F (ΔhycF) and AB91102-G (ΔhycG). Deletion of the three genes affected the integrity of hydrogenase-3. The hydrogen production experiments with the mutant strains showed that no hydrogen was detected compared with the wild type (0.886 mol/mol glucose), demonstrating that knocking out any of the three genes could inhibit NADH hydrogen production pathway. Meanwhile, the metabolites of the mutant strains were significantly changed in comparison with the wild type, indicating corresponding changes in metabolic flux by mutation. Additionally, the activity of NADH-mediated hydrogenase was found to be nil in the mutant strains. The chemostat experiments showed that the NADH/NAD(+) ratio of the mutant strains increased nearly 1.4-fold compared with the wild type. The NADH-mediated hydrogenase activity and NADH/NAD(+) ratio analysis both suggested that NADH pathway required the involvement of the electron transport chain of hydrogenase-3.

  12. NADH dehydrogenase-like behavior of nitrogen-doped graphene and its application in NAD(+)-dependent dehydrogenase biosensing.

    Science.gov (United States)

    Gai, Pan-Pan; Zhao, Cui-E; Wang, Ying; Abdel-Halim, E S; Zhang, Jian-Rong; Zhu, Jun-Jie

    2014-12-15

    A novel electrochemical biosensing platform for nicotinamide adenine dinucleotide (NAD(+))-dependent dehydrogenase catalysis was designed using the nitrogen-doped graphene (NG), which had properties similar to NADH dehydrogenase (CoI). NG mimicked flavin mononucleotide (FMN) in CoI and efficiently catalyzed NADH oxidation. NG also acted as an electron transport "bridge" from NADH to the electrode due to its excellent conductivity. In comparison with a bare gold electrode, an 800 mV decrease in the overpotential for NADH oxidation and CoI-like behavior were observed at NG-modified electrode, which is the largest decrease in overpotential for NADH oxidation reported to date. The catalytic rate constant (k) for the CoI-like behavior of NG was estimated to be 2.3×10(5) M(-1) s(-1), which is much higher than that of other previously reported FMN analogs. The Michaelis-Menten constant (Km) of NG was 26 μM, which is comparable to the Km of CoI (10 μM). Electrodes modified with NG and NG/gold nanoparticals/formate dehydrogenase (NG/AuNPs/FDH) showed excellent analytical performance for the detection of NADH and formate. This electrode fabrication strategy could be used to create a universal biosensing platform for developing NAD(+)-dependent dehydrogenase biosensors and biofuel cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Aqueous soluble tetrazolium/formazan MTS as an indicator of NADH- and NADPH-dependent dehydrogenase activity.

    Science.gov (United States)

    Dunigan, D D; Waters, S B; Owen, T C

    1995-10-01

    Recently a new tetrazolium was described for the use of monitoring cell viability in culture. This tetrazolium, commonly referred to as MTS [3-(4,5-dimethylthiazol-2-yl)- 5-(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt], has the unusual property that it can be reduced to a water-soluble formazan. beta-Nicotinamide adenine dinucleotide/reduced (NADH) and beta-nicotinamide adenine dinucleotide phosphate/reduced (NADPH) are examples of physiologically important reducing agents. In cell-free studies, MTS was reduce to the soluble formazan in the presence of NADH and NADPH, and reaction were compared to those with dithiothreitol (DTT) or 2-mercaptoethanol (2-ME). The efficiency of these reactions was enhanced 1000-fold by the presence of phenazine methosulfate. Selectivity in the electron transfer from NADPH was slightly greater than NADH, and NADPH or NADH was much greater than the thiols DTT or 2-ME. Generation of either NADH or NADPH in solution by malate dehydrogenase or isocitrate dehydrogenase, respectively, was monitored by the MTS reduction reaction. The rate of formazan formation was comparable to the formation of NADH or NADPH. This system represents a useful tool for evaluating reaction kinetics in solutions of NAD- or NADP-dependent dehydrogenase enzymes, and these reactions can be performed in typical biological buffers containing reducing agents without significant interference to the MTS/formazan system.

  14. An electrochemical biosensor based on DNA tetrahedron/graphene composite film for highly sensitive detection of NADH.

    Science.gov (United States)

    Li, Zonglin; Su, Wenqiong; Liu, Shuopeng; Ding, Xianting

    2015-07-15

    Dihydronicotinamide adenine dinucleotide (NADH) is a major biomarker correlated with lethal diseases such as cancers and bacterial infection. Herein, we report a graphene-DNA tetrahedron-gold nanoparticle modified gold disk electrode for highly sensitive NADH detection. By assembling the DNA tetrahedron/graphene composite film on the gold disk electrode surface which prior harnessed electrochemical deposition of gold nanoparticles to enhance the effective surface area, the oxidation potential of NADH was substantially decreased to 0.28V (vs. Ag/AgCl) and surface fouling effects were successfully eliminated. Furthermore, the lower detection limit of NADH by the presented platform was reduced down to 1fM, with an upper limit of 10pM. Both the regeneration and selectivity of composite film-modified electrode are investigated and proved to be robust. The novel sensor developed here could serve as a highly sensitive probe for NADH detection, which would further benefit the field of NADH related disease diagnostics.

  15. Preparation and electrochemical application of rutin biosensor for differential pulse voltammetric determination of NADH in the presence of acetaminophen

    Directory of Open Access Journals (Sweden)

    HAMID R. ZARE

    2010-10-01

    Full Text Available The electrocatalytic behavior of reduced nicotinamide adenine di-nucleotide (NADH was studied at the surface of a rutin biosensor, using various electrochemical methods. According to the results, the rutin biosensor had a strongly electrocatalytic effect on the oxidation of NADH with the overpotential being decreased by about 450 mV as compared to the process at a bare glassy carbon electrode, GCE. This value is significantly greater than the value of 220 mV that was reported for rutin embedded in a lipid-cast film. The kinetic parameters of the electron transfer coefficient, a, and the heterogeneous charge transfer rate constant, kh, for the electrocatalytic oxidation of NADH at the rutin biosensor were estimated. Furthermore, the linear dynamic range; sensitivity and limit of detection for NADH were evaluated using the differential pulse voltammetry method. The advantages of this biosensor for the determination of NADH are excellent catalytic activity and reproducibility, good detection limit and high exchange current density. The rutin biosensor could separate the oxidation peak potentials of NADH and acetaminophen present in the same solution while at a bare GCE, the peak potentials were indistinguishable.

  16. Lifespan extension and paraquat resistance in a ubiquinone-deficient Escherichia coli mutant depend on transcription factors ArcA and TdcA.

    Science.gov (United States)

    Gonidakis, Stavros; Finkel, Steven E; Longo, Valter D

    2011-03-01

    We recently reported a genome-wide screen for extended stationary phase survival in Escherichia coli. One of the mutants recovered is deleted for ubiG, which encodes a methyltransferase required for the biosynthesis of ubiquinone. The ubiG mutant exhibits longer lifespan, as well as enhanced resistance to thermal and oxidative stress compared to wt at extracellular pH9. The longevity of the mutant, as well as its resistance to the superoxide-generating agent paraquat, is partially dependent on the hypoxia-inducible transcription factor ArcA. A microarray analysis revealed several genes whose expression is either suppressed or enhanced by ArcA in the ubiG mutant. TdcA is a transcription factor involved in the transport and metabolism of amino acids during anaerobic growth. Its enhanced expression in the ubiG mutant is dependent on ArcA. Our data are consistent with the hypothesis that ArcA and TdcA function in the same genetic pathway to increase lifespan and enhance oxidative stress resistance in the ubiG mutant. Our results might be relevant for the elucidation of the mechanism of lifespan extension in mutant mice and worms bearing mutations in ubiquinone biosynthetic genes.

  17. Oxidoreductases in early gestational monkey placenta during maternal malarial infection : histochemical localisation

    Directory of Open Access Journals (Sweden)

    Nishi Saxena , P.S.R. Murthy

    2007-06-01

    Full Text Available Background & objectives: Early gestational malaria is more deleterious than late gestational infection.Still the pathophysiology of maternofoetal organ—the placenta in malaria remains almost unexploredduring early gestation. Present study dealing with oxidoreductases in early gestational placenta duringmaternal malarial infection of Plasmodium cynomolgi bastianellii in rhesus monkeys was anticipatedto provide a better insight into the functional impairment of this organ leading to foetal abnormalities.Methods: Three control and four experimental monkeys (Macaca mulatta were quarantined for onemonth prior to experimentation. Experimental monkeys at 2–2½ months of gestation were inoculatedwith P. cynomolgi bastianellii. On attaining first peak of parasitaemia the placentae were collectedfrom anesthetised animals. The snap-frozen, cryostat sections were subjected to histochemicallocalisation for 3 (or 17 β-hydroxysteroid dehydrogenase (β-HSD [3 (or 17 β-hydroxysteroid:NAD (P+ oxidoreductase, EC 1.1.1.51 hydroxysteroid dehydrogenases] and NADPH-tetrazoliumreductase [NADPH : (acceptor oxidoreductase, EC 1.6.99.1 NADPH-TR]. Comparative microscopyof control and malaria infected placental sections was performed and analysed.Results: A localised decrease in both the enzymes was observed in syncytiotrophoblast layer ofmalaria infected monkey placenta. The areas showing morphological damage of syncytiotrophoblastwere also depicting gross reduction in NADPH-TR activity.Interpretation & conclusion: The altered enzymatic activities [3 (or 17 β-HSD and NADPH-TR] inmalaria infected early gestational monkey placenta have been discussed in the light of placentalfunction. It could be concluded by present studies that these alterations would affect the cellularmetabolism especially steroidogenesis and detoxification process which in turn would affect thenormal development of the foetus as well as maintenance of gestation.

  18. Investigations on the performance of poly(o-anisidine)/graphene nanocomposites for the electrochemical detection of NADH

    Energy Technology Data Exchange (ETDEWEB)

    Sangamithirai, D. [Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India); Narayanan, V. [Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600025 (India); Muthuraaman, B. [Department of Energy, University of Madras, Guindy Campus, Chennai 600025 (India); Stephen, A., E-mail: stephen_arum@hotmail.com [Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India)

    2015-10-01

    The electrocatalytic oxidation of dihydronicotinamide adenine dinucleotide (NADH) based on poly(o-anisidine)/graphene (POA/GR) nanocomposites modified glassy carbon electrode (GCE) was explored for the first time. POA/GR nanocomposites were synthesized via chemical oxidative polymerization method. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and UV–Vis spectroscopy results demonstrate that nanocomposites are successfully synthesized. An intriguing composite structure was observed using different ratios of o-anisidine monomer and graphene. The electrical properties and electrochemical properties of these nanocomposites are investigated by impedance spectroscopy technique and cyclic voltammetric (CV) method, respectively. The synthesized nanocomposites were used to modify glassy carbon electrode (GCE), and the modified electrodes were found to exhibit electrocatalytic activity for oxidation of NADH at low potential range of + 0.045 V in a neutral environment. The fabricated sensor based on POA/GR31-modified GCE exhibited enhanced current response with very high sensitivity of 47.1 μA μM{sup −1} for the detection of NADH. The developed POA/GR-modified GCE exhibited excellent reproducibility, stability, and selectivity for the determination of NADH. The practical analytical utility of the proposed method was demonstrated by NADH spiked ascorbic acid (AA) and the results confirmed that the proposed method is suitable for the determination of NADH in the presence of AA. This can open up new opportunities for simple and selective detection of NADH and provide a promising platform for biosensor designs. - Highlights: • NADH sensor was prepared by poly(o-anisidine)/graphene nanocomposite modified GCE. • FESEM technique revealed the growth of POA nanofibers on the surface of graphene. • Good

  19. Respiratory chain complex I, a main regulatory target of the cAMP/PKA pathway is defective in different human diseases

    DEFF Research Database (Denmark)

    Papa, S.; De Rasmo, D.; Technikova-Dobrova, Z.;

    2012-01-01

    In mammals, complex I (NADH-ubiquinone oxidoreductase) of the mitochondrial respiratory chain has 31 supernumerary subunits in addition to the 14 conserved from prokaryotes to humans. Multiplicity of structural protein components, as well as of biogenesis factors, makes complex I a sensible pace...... to genetic and sporadic pathological factors. Complex I dysfunction has, indeed, been found, to be associated with several human diseases. Knowledge of the pathogenetic mechanisms of these diseases can help to develop new therapeutic strategies. (C) 2011 Federation of European Biochemical Societies...

  20. AcEST: BP918556 [AcEST

    Lifescience Database Archive (English)

    Full Text Available d Q54YL3 Definition sp|Q54YL3|INT11_DICDI Integrator complex subunit 11 homolog O...ignificant alignments: (bits) Value sp|Q54YL3|INT11_DICDI Integrator complex subu...nit 11 homolog OS=D... 30 5.4 sp|Q9B6E8|NU1M_YARLI NADH-ubiquinone oxidoreductase chain 1 OS=Y... 29 9.3 >sp|Q54YL3|INT11_DICDI Integ...rator complex subunit 11 homolog OS=Dictyostelium discoideum GN=ints11 PE=3 SV=1 Le

  1. Cold stress decreases the capacity for respiratory NADH oxidation in potato leaves

    DEFF Research Database (Denmark)

    Svensson, Å.S.; Johansson, F.I.; Møller, I.M.

    2002-01-01

    Cold stress effects on the expression of genes for respiratory chain enzymes were investigated in potato (Solarium tuberosum L., cv. Desiree) leaves. The nda1 and ndb1 genes, homologues to genes encoding the non-proton-pumping respiratory chain NADH dehydrogenases of Escherichia coli and yeast, w....... The results are discussed in relation to the recent finding that the nda1 gene expression is completely light-dependent. (C) 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved....

  2. The blood perfusion and NADH/FAD content combined analysis in patients with diabetes foot

    Science.gov (United States)

    Dremin, Victor V.; Sidorov, Victor V.; Krupatkin, Alexander I.; Galstyan, Gagik R.; Novikova, Irina N.; Zherebtsova, Angelina I.; Zherebtsov, Evgeny A.; Dunaev, Andrey V.; Abdulvapova, Zera N.; Litvinova, Karina S.; Rafailov, Ilya E.; Sokolovski, Sergei G.; Rafailov, Edik U.

    2016-03-01

    Skin blood microcirculation and the metabolism activity of tissue were examined on the patients with type 2 diabetes. Laser Doppler flowmetry (LDF) with 1064 nm laser light source and fluorescence spectroscopy (FS) with excitation light of 365 nm and 450 nm have been used to monitor the blood perfusion and the content of coenzymes NADH and FAD. Concluding, the proposed combined LDF and tissue FS approach allows to identify the significant violations in the blood microcirculation and metabolic activity for type 2 diabetes patients.

  3. The role of oxidoreductases in determining the function of the neisserial lipid A phosphoethanolamine transferase required for resistance to polymyxin.

    Directory of Open Access Journals (Sweden)

    Susannah Piek

    Full Text Available The decoration of the lipid A headgroups of the lipooligosaccharide (LOS by the LOS phosphoethanolamine (PEA transferase (LptA in Neisseria spp. is central for resistance to polymyxin. The structure of the globular domain of LptA shows that the protein has five disulphide bonds, indicating that it is a potential substrate of the protein oxidation pathway in the bacterial periplasm. When neisserial LptA was expressed in Escherichia coli in the presence of the oxidoreductase, EcDsbA, polymyxin resistance increased 30-fold. LptA decorated one position of the E. coli lipid A headgroups with PEA. In the absence of the EcDsbA, LptA was degraded in E. coli. Neisseria spp. express three oxidoreductases, DsbA1, DsbA2 and DsbA3, each of which appear to donate disulphide bonds to different targets. Inactivation of each oxidoreductase in N. meningitidis enhanced sensitivity to polymyxin with combinatorial mutants displaying an additive increase in sensitivity to polymyxin, indicating that the oxidoreductases were required for multiple pathways leading to polymyxin resistance. Correlates were sought between polymyxin sensitivity, LptA stability or activity and the presence of each of the neisserial oxidoreductases. Only meningococcal mutants lacking DsbA3 had a measurable decrease in the amount of PEA decoration on lipid A headgroups implying that LptA stability was supported by the presence of DsbA3 but did not require DsbA1/2 even though these oxidoreductases could oxidise the protein. This is the first indication that DsbA3 acts as an oxidoreductase in vivo and that multiple oxidoreductases may be involved in oxidising the one target in N. meningitidis. In conclusion, LptA is stabilised by disulphide bonds within the protein. This effect was more pronounced when neisserial LptA was expressed in E. coli than in N. meningitidis and may reflect that other factors in the neisserial periplasm have a role in LptA stability.

  4. Mass Transfer in Amperometric Biosensors Based on Nanocomposite Thin Films of Redox Polymers and Oxidoreductases

    Directory of Open Access Journals (Sweden)

    Aleksandr L. Simonian

    2002-03-01

    Full Text Available Mass transfer in nanocomposite hydrogel thin films consisting of alternating layers of an organometallic redox polymer (RP and oxidoreductase enzymes was investigated. Multilayer nanostructures were fabricated on gold surfaces by the deposition of an anionic self-assembled monolayer of 11-mercaptoundecanoic acid, followed by the electrostatic binding of a cationic redox polymer, poly[vinylpyridine Os(bis-bipyridine2Clco-allylamine], and an anionic oxidoreductase. Surface plasmon resonance spectroscopy, Fourier transform infrared external reflection spectroscopy (FTIR-ERS, ellipsometry and electrochemistry were employed to characterize the assembly of these nanocomposite films. Simultaneous SPR/electrochemistry enabled real time observation of the assembly of sensing components, changes in film structure with electrode potential, and the immediate, in situ electrochemical verification of substrate-dependent current upon the addition of enzyme to the multilayer structure. SPR and FTIR-ERS studies also showed no desorption of polymer or enzyme from the nanocomposite structure when stored in aqueous environment occurred over the period of three weeks, suggesting that decreasing in substrate sensitivity were due to loss of enzymatic activity rather than loss of film compounds from the nanostructure.

  5. Secreted CLIC3 drives cancer progression through its glutathione-dependent oxidoreductase activity

    Science.gov (United States)

    Hernandez-Fernaud, Juan R.; Ruengeler, Elena; Casazza, Andrea; Neilson, Lisa J.; Pulleine, Ellie; Santi, Alice; Ismail, Shehab; Lilla, Sergio; Dhayade, Sandeep; MacPherson, Iain R.; McNeish, Iain; Ennis, Darren; Ali, Hala; Kugeratski, Fernanda G.; Al Khamici, Heba; van den Biggelaar, Maartje; van den Berghe, Peter V.E.; Cloix, Catherine; McDonald, Laura; Millan, David; Hoyle, Aoisha; Kuchnio, Anna; Carmeliet, Peter; Valenzuela, Stella M.; Blyth, Karen; Yin, Huabing; Mazzone, Massimiliano; Norman, Jim C.; Zanivan, Sara

    2017-01-01

    The secretome of cancer and stromal cells generates a microenvironment that contributes to tumour cell invasion and angiogenesis. Here we compare the secretome of human mammary normal and cancer-associated fibroblasts (CAFs). We discover that the chloride intracellular channel protein 3 (CLIC3) is an abundant component of the CAF secretome. Secreted CLIC3 promotes invasive behaviour of endothelial cells to drive angiogenesis and increases invasiveness of cancer cells both in vivo and in 3D cell culture models, and this requires active transglutaminase-2 (TGM2). CLIC3 acts as a glutathione-dependent oxidoreductase that reduces TGM2 and regulates TGM2 binding to its cofactors. Finally, CLIC3 is also secreted by cancer cells, is abundant in the stromal and tumour compartments of aggressive ovarian cancers and its levels correlate with poor clinical outcome. This work reveals a previously undescribed invasive mechanism whereby the secretion of a glutathione-dependent oxidoreductase drives angiogenesis and cancer progression by promoting TGM2-dependent invasion. PMID:28198360

  6. Crystal structures of Pseudomonas syringae pv. tomato DC3000 quinone oxidoreductase and its complex with NADPH

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Xiaowei [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Hongmei; Gao, Yu; Li, Mei [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Chang, Wenrui, E-mail: wrchang@sun5.ibp.ac.cn [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China)

    2009-12-18

    Zeta-crystallin-like quinone oxidoreductase is NAD(P)H-dependent and catalyzes one-electron reduction of certain quinones to generate semiquinone. Here we present the crystal structures of zeta-crystallin-like quinone oxidoreductase from Pseudomonas syringae pv. tomato DC3000 (PtoQOR) and its complexes with NADPH determined at 2.4 and 2.01 A resolutions, respectively. PtoQOR forms as a homologous dimer, each monomer containing two domains. In the structure of the PtoQOR-NADPH complex, NADPH locates in the groove between the two domains. NADPH binding causes obvious conformational changes in the structure of PtoQOR. The putative substrate-binding site of PtoQOR is wider than that of Escherichia coli and Thermus thermophilus HB8. Activity assays show that PtoQOR has weak 1,4-benzoquinone catalytic activity, and very strong reduction activity towards large substrates such as 9,10-phenanthrenequinone. We propose a model to explain the conformational changes which take place during reduction reactions catalyzed by PtoQOR.

  7. Redox regulation of SurR by protein disulfide oxidoreductase in Thermococcus onnurineus NA1.

    Science.gov (United States)

    Lim, Jae Kyu; Jung, Hae-Chang; Kang, Sung Gyun; Lee, Hyun Sook

    2017-03-01

    Protein disulfide oxidoreductases are redox enzymes that catalyze thiol-disulfide exchange reactions. These enzymes include thioredoxins, glutaredoxins, protein disulfide isomerases, disulfide bond formation A (DsbA) proteins, and Pyrococcus furiosus protein disulfide oxidoreductase (PfPDO) homologues. In the genome of a hyperthermophilic archaeon, Thermococcus onnurineus NA1, the genes encoding one PfPDO homologue (TON_0319, Pdo) and three more thioredoxin- or glutaredoxin-like proteins (TON_0470, TON_0472, TON_0834) were identified. All except TON_0470 were recombinantly expressed and purified. Three purified proteins were reduced by a thioredoxin reductase (TrxR), indicating that each protein can form redox complex with TrxR. SurR, a transcription factor involved in the sulfur response, was tested for a protein target of a TrxR-redoxin system and only Pdo was identified to be capable of catalyzing the reduction of SurR. Electromobility shift assay demonstrated that SurR reduced by the TrxR-Pdo system could bind to the DNA probe with the SurR-binding motif, GTTttgAAC. In this study, we present the TrxR-Pdo couple as a redox-regulator for SurR in T. onnurineus NA1.

  8. Another unusual type of citric acid cycle enzyme in Helicobacter pylori: the malate:quinone oxidoreductase.

    Science.gov (United States)

    Kather, B; Stingl, K; van der Rest, M E; Altendorf, K; Molenaar, D

    2000-06-01

    The only enzyme of the citric acid cycle for which no open reading frame (ORF) was found in the Helicobacter pylori genome is the NAD-dependent malate dehydrogenase. Here, it is shown that in this organism the oxidation of malate to oxaloacetate is catalyzed by a malate:quinone oxidoreductase (MQO). This flavin adenine dinucleotide-dependent membrane-associated enzyme donates electrons to quinones of the electron transfer chain. Similar to succinate dehydrogenase, it is part of both the electron transfer chain and the citric acid cycle. MQO activity was demonstrated in isolated membranes of H. pylori. The enzyme is encoded by the ORF HP0086, which is shown by the fact that expression of the HP0086 sequence from a plasmid induces high MQO activity in mqo deletion mutants of Escherichia coli or Corynebacterium glutamicum. Furthermore, this plasmid was able to complement the phenotype of the C. glutamicum mqo deletion mutant. Interestingly, the protein predicted to be encoded by this ORF is only distantly related to known or postulated MQO sequences from other bacteria. The presence of an MQO shown here and the previously demonstrated presence of a 2-ketoglutarate:ferredoxin oxidoreductase and a succinyl-coenzyme A (CoA):acetoacetyl-CoA transferase indicate that H. pylori possesses a complete citric acid cycle, but one which deviates from the standard textbook example in three steps.

  9. Purification of two putative type II NADH dehydrogenases with different substrate specificities from alkaliphilic Bacillus pseudofirmus OF4.

    Science.gov (United States)

    Liu, Jun; Krulwich, Terry A; Hicks, David B

    2008-05-01

    A putative Type II NADH dehydrogenase from Halobacillus dabanensis was recently reported to have Na+/H+ antiport activity (and called Nap), raising the possibility of direct coupling of respiration to antiport-dependent pH homeostasis. This study characterized a homologous type II NADH dehydrogenase of genetically tractable alkaliphilic Bacillus pseudofirmus OF4, in which evidence supports antiport-based pH homeostasis that is mediated entirely by secondary antiport. Two candidate type II NADH dehydrogenase genes with canonical GXGXXG motifs were identified in a draft genome sequence of B. pseudofirmus OF4. The gene product designated NDH-2A exhibited homology to enzymes from Bacillus subtilis and Escherichia coli whereas NDH-2B exhibited homology to the H. dabanensis Nap protein and its alkaliphilic Bacillus halodurans C-125 homologue. The ndh-2A, but not the ndh-2B, gene complemented the growth defect of an NADH dehydrogenase-deficient E. coli mutant. Neither gene conferred Na+-resistance on an antiporter-deficient E. coli strain, nor did they confer Na+/H+ antiport activity in vesicle assays. The purified hexa-histidine-tagged gene products were approximately 50 kDa, contained noncovalently bound FAD and oxidized NADH. They were predominantly cytoplasmic in E. coli, consonant with the absence of antiport activity. The catalytic properties of NDH-2A were more consistent with a major respiratory role than those of NDH-2B.

  10. Unassigned MURF1 of kinetoplastids codes for NADH dehydrogenase subunit 2

    Directory of Open Access Journals (Sweden)

    Burger Gertraud

    2008-10-01

    Full Text Available Abstract Background In a previous study, we conducted a large-scale similarity-free function prediction of mitochondrion-encoded hypothetical proteins, by which the hypothetical gene murf1 (maxicircle unidentified reading frame 1 was assigned as nad2, encoding subunit 2 of NADH dehydrogenase (Complex I of the respiratory chain. This hypothetical gene occurs in the mitochondrial genome of kinetoplastids, a group of unicellular eukaryotes including the causative agents of African sleeping sickness and leishmaniasis. In the present study, we test this assignment by using bioinformatics methods that are highly sensitive in identifying remote homologs and confront the prediction with available biological knowledge. Results Comparison of MURF1 profile Hidden Markov Model (HMM against function-known profile HMMs in Pfam, Panther and TIGR shows that MURF1 is a Complex I protein, but without specifying the exact subunit. Therefore, we constructed profile HMMs for each individual subunit, using all available sequences clustered at various identity thresholds. HMM-HMM comparison of these individual NADH subunits against MURF1 clearly identifies this hypothetical protein as NAD2. Further, we collected the relevant experimental information about kinetoplastids, which provides additional evidence in support of this prediction. Conclusion Our in silico analyses provide convincing evidence for MURF1 being a highly divergent member of NAD2.

  11. Structure and properties of the recombinant NADH-cytochrome b5 reductase of Physarum polycephalum.

    Science.gov (United States)

    Ikegami, Terumi; Kameyama, Eiji; Yamamoto, Shin-ya; Minami, Yoshiko; Yubisui, Toshitsugu

    2007-03-01

    A cDNA for NADH-cytochrome b(5) reductase of Physarum polycephalum was cloned from a cDNA library, and the nucleotide sequence of the cDNA was determined (accession no. AB259870). The DNA of 943 base pairs contains 5'- and 3'-noncoding sequences, including a polyadenylation sequence, and a coding sequence of 843 base pairs. The amino acid sequence (281 residues) deduced from the nucleotide sequence was 25 residues shorter than those of vertebrate enzymes. Nevertheless, the recombinant Physarum enzyme showed enzyme activity comparable to that of the human enzyme. The recombinant Physarum enzyme showed a pH optimum of around 6.0, and apparent K(m) values of 2 microM and 14 microM for NADH and cytochrome b(5) respectively. The purified recombinant enzyme showed a typical FAD-derived absorption peak of cytochrome b(5) reductase at around 460 nm, with a shoulder at 480 nm. These results suggest that the Physarum enzyme plays an important role in the organism.

  12. Characterization of Truncated Tumor-Associated NADH Oxidase (ttNOX)

    Science.gov (United States)

    Karr, Laurel J.; Malone, Christine C.; Burk, Melissa; Moore, Blake P.; Achari, Aniruddha; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Bacterial, plant and animal cells possess novel surface proteins that exhibit both NADH oxidation (NOX) or hydroquinone and protein disulfide-thiol interchange. These enzymatic activities alternate to yield oscillating patterns wjth period lengths of approximately 24 minutes. The catalytic period of NOX proteins are temperature compensated and gravity responsive. We report the cloning, expression and characterization of truncated tumor-associated NADH oxidase (ttNOX), in which the membrane spanning region has been deleted. The cDNA (originated from HeLa cells) was cloned into pET-34b and pET-14b (Novagen) vectors for E. coli expression. Optimized expression and purification protocols yielded greater than 300mg per liter of culture with greater than 95% purity. Circular dichroism data was collected from a 2.7mg/ml solution in a 0.1mm cuvette with variable scanning using an Olis RSM CD spectrophotometer. The ellipticity values were scanned from 190 to 260nm. The spectra recorded have characteristics for alpha proteins with band maxima at 216nm and a possible shoulder at 212nm at 12OC and 250 C. Protein crystal screens are in progress and, to date, only small crystals have been observed. The regular periodic oscillatory change in the ttNOX protein is indicative of a possible time-keeping functional role. A single protein possessing alternating catalytic activities, with a potential biological clock function, is unprecedented and structural determination is paramount to understanding this role.

  13. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hou, Jin; Vemuri, G. N.; Bao, X. M.;

    2009-01-01

    During growth of Saccharomyces cerevisiae on glucose, the redox cofactors NADH and NADPH are predominantly involved in catabolism and biosynthesis, respectively. A deviation from the optimal level of these cofactors often results in major changes in the substrate uptake and biomass formation....... However, the metabolism of xylose by recombinant S. cerevisiae carrying xylose reductase and xylitol dehydrogenase from the fungal pathway requires both NADH and NADPH and creates cofactor imbalance during growth on xylose. As one possible solution to overcoming this imbalance, the effect...... in the cytosol redirected carbon flow from CO2 to ethanol during aerobic growth on glucose and to ethanol and acetate during anaerobic growth on glucose. However, cytosolic NADH kinase has an opposite effect during anaerobic metabolism of xylose consumption by channeling carbon flow from ethanol to xylitol...

  14. Characteristics of endogenous flavin fluorescence of Photobacterium leiognathi luciferase and Vibrio fisheri NAD(P)H:FMN-oxidoreductase

    NARCIS (Netherlands)

    Vetrova, E.V.; Kudryasheva, N.S.; Visser, A.J.W.G.; Hoek, van A.

    2005-01-01

    The bioluminescent bacterial enzyme system NAD(P)H:FMN-oxidoreductase-luciferase has been used as a test system for ecological monitoring. One of the modes to quench bioluminescence is the interaction of xenobiotics with the enzymes, which inhibit their activity. The use of endogenous flavin fluores

  15. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies.

    Science.gov (United States)

    Li, Yanjun; Dash, Ranjan K; Kim, Jaeyeon; Saidel, Gerald M; Cabrera, Marco E

    2009-01-01

    Skeletal muscle can maintain ATP concentration constant during the transition from rest to exercise, whereas metabolic reaction rates may increase substantially. Among the key regulatory factors of skeletal muscle energy metabolism during exercise, the dynamics of cytosolic and mitochondrial NADH and NAD+ have not been characterized. To quantify these regulatory factors, we have developed a physiologically based computational model of skeletal muscle energy metabolism. This model integrates transport and reaction fluxes in distinct capillary, cytosolic, and mitochondrial domains and investigates the roles of mitochondrial NADH/NAD+ transport (shuttling) activity and muscle glycogen concentration (stores) during moderate intensity exercise (60% maximal O2 consumption). The underlying hypothesis is that the cytosolic redox state (NADH/NAD+) is much more sensitive to a metabolic disturbance in contracting skeletal muscle than the mitochondrial redox state. This hypothesis was tested by simulating the dynamic metabolic responses of skeletal muscle to exercise while altering the transport rate of reducing equivalents (NADH and NAD+) between cytosol and mitochondria and muscle glycogen stores. Simulations with optimal parameter estimates showed good agreement with the available experimental data from muscle biopsies in human subjects. Compared with these simulations, a 20% increase (or approximately 20% decrease) in mitochondrial NADH/NAD+ shuttling activity led to an approximately 70% decrease (or approximately 3-fold increase) in cytosolic redox state and an approximately 35% decrease (or approximately 25% increase) in muscle lactate level. Doubling (or halving) muscle glycogen concentration resulted in an approximately 50% increase (or approximately 35% decrease) in cytosolic redox state and an approximately 30% increase (or approximately 25% decrease) in muscle lactate concentration. In both cases, changes in mitochondrial redox state were minimal. In conclusion, the

  16. Electroanalysis of NADH Using Conducting and Redox Active Polymer/Carbon Nanotubes Modified Electrodes-A Review

    Directory of Open Access Journals (Sweden)

    Shen-Ming Chen

    2008-01-01

    Full Text Available Past few decades, conducting and redox active polymers play a critical role in the development of transducers for biosensing. It has been evidenced by increasing numerous reports on conducting and redox active polymers incorporated electrodes for assay of biomolcules. This review highlights the potential uses of electrogenerated polymer modified electrodes and polymer/carbon nanotubes composite modified electrodes for electroanalysis of reduced form of nicotinamide adenine dinuceltoide (NADH. In addition, carbon electrodes modified with organic and inorganic materials as modifier have been discussed in detail for the quantification of NADH based on mediator or mediator-less methods.

  17. NCBI nr-aa BLAST: CBRC-AGAM-04-0109 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-AGAM-04-0109 ref|ZP_01563785.1| NADH:flavin oxidoreductase/NADH oxidase [Burkholderia... cenocepacia MC0-3] gb|EAV58290.1| NADH:flavin oxidoreductase/NADH oxidase [Burkholderia cenocepacia ...MC0-3] gb|EAY65940.1| NADH:flavin oxidoreductase/NADH oxidase [Burkholderia cenocepacia PC184] ZP_01563785.1 4.6 26% ...

  18. Regulation of adhE (Encoding Ethanol Oxidoreductase) by the Fis Protein in Escherichia coli

    Science.gov (United States)

    Membrillo-Hernández, Jorge; Kwon, Ohsuk; De Wulf, Peter; Finkel, Steven E.; Lin, E. C. C.

    1999-01-01

    The adhE gene of Escherichia coli encodes a multifunctional ethanol oxidoreductase whose expression is 10-fold higher under anaerobic than aerobic conditions. Transcription of the gene is under the negative control of the Cra (catabolite repressor-activator) protein, whereas translation of the adhE mRNA requires processing by RNase III. In this report, we show that the expression of adhE also depends on the Fis (factor for inversion stimulation) protein. A strain bearing a fis::kan null allele failed to grow anaerobically on glucose solely because of inadequate adhE transcription. However, fis expression itself is not under redox control. Sequence inspection of the adhE promoter revealed three potential Fis binding sites. Electrophoretic mobility shift analysis, using purified Fis protein and adhE promoter DNA, showed three different complexes. PMID:10572146

  19. NADPH: Protochlorophyllide Oxidoreductase-Structure, Catalytic Function, and Role in Prolamellar Body Formation and Morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Timko, Michael P

    2013-02-01

    The biosynthesis of chlorophyll is a critical biochemical step in the development of photosynthetic vascular plants and green algae. From photosynthetic bacteria (cyanobacteria) to algae, non-vascular plants, gymnosperms and vascular plants, mechanisms have evolved for protochlorophyllide reduction a key step in chlorophyll synthesis. Protochlorophyllide reduction is carried out by both a light-dependent (POR) and light-independent (LIPOR) mechanisms. NADPH: protochlorophyllide oxidoreductase (EC 1.3.1.33, abbreviated POR) catalyzes the light-dependent reduction of protochlorophyllide (PChlide) to chlorophyllide (Chlide). In contrast, a light-independent protochlorophyllide reductase (LIPOR) involves three plastid gene products (chlL, chlN, and chlB) and several nuclear factors. Our work focused on characterization of both the POR and LIPOR catalyzed processes.

  20. Structural domains in NADPH: Protochlorophyllide oxidoreductases involved in catalysis and substrate binding. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Timko, Michael P.

    1999-09-24

    Until recently little direct information was available about specific structural determinants within the light-dependent NADPH: protochlorophyllide oxidoreductases (PORs) required for substrate and cofactor binding, catalytic activity, and thylakoid membrane localization. Based on our previous DOE-funded studies, during the past year we brought to fruition a number of ongoing experiments, initiated several new avenues of investigations, and overall have made considerable progress towards establishing the basic structural parameters governing POR function. Our studies to date have defined residues and domains involved in substrate and cofactor binding and catalysis, and elaborated on the mechanism for membrane localization of POR in developing plastids. Our results and their significance, as well as our work in progress, are detailed.

  1. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    Directory of Open Access Journals (Sweden)

    Margit Winkler

    2013-08-01

    Full Text Available Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S-selectivity and together with a highly (R-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  2. Schistosoma mansoni ferredoxin NADP(H) oxidoreductase and its role in detoxification.

    Science.gov (United States)

    Girardini, Javier E; Dissous, Colette; Serra, Esteban

    2002-01-01

    Ferredoxin NADP(H) oxidoreductases (FNR) are flavoenzymes that catalyze the electron transfer between NADP(H) and a wide range of compounds including ferredoxins and bacterial flavodoxins. FNRs are classified into two major groups: plant- and vertebrate-type. Plant-type FNRs are implicated in photosynthesis and nitrogen fixation in plastids and photosynthetic bacteria, and were recently implicated in cell protection against reactive oxygen species (ROS). Vertebrate-type FNRs are mitochondrial enzymes implicated in steroid hormone biosynthesis in mammals and in Fe(+) uptake and metabolism in yeasts. We have cloned and sequenced a cDNA coding for the vertebrate-type Schistosoma mansoni FNR. Gel diaphorase activity and western blot assays demonstrated that SmFNR represented the major diaphorase activity of adult worms. An active recombinant SmFNR was expressed in Escherichia coli that made the bacteria tolerant to oxygen peroxide, cumene hydroperoxide and the superoxide-generating herbicide, methyl viologen (MV).

  3. A new concept for ferredoxin-NADP(H) oxidoreductase binding to plant thylakoids.

    Science.gov (United States)

    Benz, J Philipp; Lintala, Minna; Soll, Jürgen; Mulo, Paula; Bölter, Bettina

    2010-11-01

    During the evolution of photosynthesis, regulatory circuits were established that allow the precise coupling of light-driven electron transfer chains with downstream processes such as carbon fixation. The ferredoxin (Fd):ferredoxin-NADP(+) oxidoreductase (FNR) couple is an important mediator for these processes because it provides the transition from exclusively membrane-bound light reactions to the mostly stromal metabolic pathways. Recent progress has allowed us to revisit how FNR is bound to thylakoids and to revaluate the current view that only membrane-bound FNR is active in photosynthetic reactions. We argue that the vast majority of thylakoid-bound FNR of higher plants is not necessary for photosynthesis. We furthermore propose that the correct distribution of FNR between stroma and thylakoids is used to efficiently regulate Fd-dependent electron partitioning in the chloroplast. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. A novel insight into the oxidoreductase activity of Helicobacter pylori HP0231 protein.

    Directory of Open Access Journals (Sweden)

    Paula Roszczenko

    Full Text Available BACKGROUND: The formation of a disulfide bond between two cysteine residues stabilizes protein structure. Although we now have a good understanding of the Escherichia coli disulfide formation system, the machineries at work in other bacteria, including pathogens, are poorly characterized. Thus, the objective of this work was to improve our understanding of the disulfide formation machinery of Helicobacter pylori, a leading cause of ulcers and a risk factor for stomach cancer worldwide. METHODS AND RESULTS: The protein HP0231 from H. pylori, a structural counterpart of E. coli DsbG, is the focus of this research. Its function was clarified by using a combination of biochemical, microbiological and genetic approaches. In particular, we determined the biochemical properties of HP0231 as well as its redox state in H. pylori cells. CONCLUSION: Altogether our results show that HP0231 is an oxidoreductase that catalyzes disulfide bond formation in the periplasm. We propose to call it HpDsbA.

  5. Characterization of a unique Caulobacter crescentus aldose-aldose oxidoreductase having dual activities.

    Science.gov (United States)

    Andberg, Martina; Maaheimo, Hannu; Kumpula, Esa-Pekka; Boer, Harry; Toivari, Mervi; Penttilä, Merja; Koivula, Anu

    2016-01-01

    We describe here the characterization of a novel enzyme called aldose-aldose oxidoreductase (Cc AAOR; EC 1.1.99) from Caulobacter crescentus. The Cc AAOR exists in solution as a dimer, belongs to the Gfo/Idh/MocA family and shows homology with the glucose-fructose oxidoreductase from Zymomonas mobilis. However, unlike other known members of this protein family, Cc AAOR is specific for aldose sugars and can be in the same catalytic cycle both oxidise and reduce a panel of monosaccharides at the C1 position, producing in each case the corresponding aldonolactone and alditol, respectively. Cc AAOR contains a tightly-bound nicotinamide cofactor, which is regenerated in this oxidation-reduction cycle. The highest oxidation activity was detected on D-glucose but significant activity was also observed on D-xylose, L-arabinose and D-galactose, revealing that both hexose and pentose sugars are accepted as substrates by Cc AAOR. The configuration at the C2 and C3 positions of the saccharides was shown to be especially important for the substrate binding. Interestingly, besides monosaccharides, Cc AAOR can also oxidise a range of 1,4-linked oligosaccharides having aldose unit at the reducing end, such as lactose, malto- and cello-oligosaccharides as well as xylotetraose. (1)H NMR used to monitor the oxidation and reduction reaction simultaneously, demonstrated that although D-glucose has the highest affinity and is also oxidised most efficiently by Cc AAOR, the reduction of D-glucose is clearly not as efficient. For the overall reaction catalysed by Cc AAOR, the L-arabinose, D-xylose and D-galactose were the most potent substrates.

  6. Genotype-Phenotype Analysis in Congenital Adrenal Hyperplasia due to P450 Oxidoreductase Deficiency

    Science.gov (United States)

    Krone, Nils; Reisch, Nicole; Idkowiak, Jan; Dhir, Vivek; Ivison, Hannah E.; Hughes, Beverly A.; Rose, Ian T.; O'Neil, Donna M.; Vijzelaar, Raymon; Smith, Matthew J.; MacDonald, Fiona; Cole, Trevor R.; Adolphs, Nicolai; Barton, John S.; Blair, Edward M.; Braddock, Stephen R.; Collins, Felicity; Cragun, Deborah L.; Dattani, Mehul T.; Day, Ruth; Dougan, Shelley; Feist, Miriam; Gottschalk, Michael E.; Gregory, John W.; Haim, Michaela; Harrison, Rachel; Haskins Olney, Ann; Hauffa, Berthold P.; Hindmarsh, Peter C.; Hopkin, Robert J.; Jira, Petr E.; Kempers, Marlies; Kerstens, Michiel N.; Khalifa, Mohamed M.; Köhler, Birgit; Maiter, Dominique; Nielsen, Shelly; O'Riordan, Stephen M.; Roth, Christian L.; Shane, Kate P.; Silink, Martin; Stikkelbroeck, Nike M. M. L.; Sweeney, Elizabeth; Szarras-Czapnik, Maria; Waterson, John R.; Williamson, Lori; Hartmann, Michaela F.; Taylor, Norman F.; Wudy, Stefan A.; Malunowicz, Ewa M.; Shackleton, Cedric H. L.

    2012-01-01

    Context: P450 oxidoreductase deficiency (PORD) is a unique congenital adrenal hyperplasia variant that manifests with glucocorticoid deficiency, disordered sex development (DSD), and skeletal malformations. No comprehensive data on genotype-phenotype correlations in Caucasian patients are available. Objective: The objective of the study was to establish genotype-phenotype correlations in a large PORD cohort. Design: The design of the study was the clinical, biochemical, and genetic assessment including multiplex ligation-dependent probe amplification (MLPA) in 30 PORD patients from 11 countries. Results: We identified 23 P450 oxidoreductase (POR) mutations (14 novel) including an exonic deletion and a partial duplication detected by MLPA. Only 22% of unrelated patients carried homozygous POR mutations. p.A287P was the most common mutation (43% of unrelated alleles); no other hot spot was identified. Urinary steroid profiling showed characteristic PORD metabolomes with variable impairment of 17α-hydroxylase and 21-hydroxylase. Short cosyntropin testing revealed adrenal insufficiency in 89%. DSD was present in 15 of 18 46,XX and seven of 12 46,XY individuals. Homozygosity for p.A287P was invariably associated with 46,XX DSD but normal genitalia in 46,XY individuals. The majority of patients with mild to moderate skeletal malformations, assessed by a novel scoring system, were compound heterozygous for missense mutations, whereas nearly all patients with severe malformations carried a major loss-of-function defect on one of the affected alleles. Conclusions: We report clinical, biochemical, and genetic findings in a large PORD cohort and show that MLPA is a useful addition to POR mutation analysis. Homozygosity for the most frequent mutation in Caucasians, p.A287P, allows for prediction of genital phenotype and moderate malformations. Adrenal insufficiency is frequent, easily overlooked, but readily detected by cosyntropin testing. PMID:22162478

  7. Characterization of cyanobacterial ferredoxin-NADP+ oxidoreductase molecular heterogeneity using chromatofocusing.

    Science.gov (United States)

    Serrano, A

    1986-05-01

    Chromatofocusing has been used as an analytical tool to check preparations of the enzyme ferredoxin-NADP+ oxidoreductase (EC 1.18.1.2) purified in either the presence or absence of the serine protease inhibitor phenylmethylsulfonyl fluoride from the cyanobacterium Anabaena sp. strain 7119. Only one isoelectric species was found when the crude extract was processed in the presence of the protease inhibitor. Nevertheless, when the inhibitor was omitted, four ionic forms of the enzyme--showing apparent pI's in the range 4.3-4.6--were separated after chromatofocusing of the purified preparation. These forms were found to differ in their specific activities, exhibiting, on the other hand, lower values than the single one obtained in the presence of the protease inhibitor. Analysis by acrylamide gel electrophoresis revealed virtually a single main protein band except for the ionic form of pI 4.39, which was clearly resolved into two active components. Except for the more basic form, which seems to be an homodimer of Mr 80,000, all the protein components were found to be monomeric species in the range Mr 33,000-38,000. These results indicate that the molecular heterogeneity of the ferredoxin-NADP+ oxidoreductase purified from the cyanobacterium Anabaena sp. strain 7119 may result from the activity of a protease present in the whole cell homogenates. On the other hand, these data also point out that chromatofocusing should be considered as an effective technique in the isolation and characterization of the different molecular forms of this enzyme.

  8. FLIM data analysis of NADH and Tryptophan autofluorescence in prostate cancer cells

    Science.gov (United States)

    O'Melia, Meghan J.; Wallrabe, Horst; Svindrych, Zdenek; Rehman, Shagufta; Periasamy, Ammasi

    2016-03-01

    Fluorescence lifetime imaging microscopy (FLIM) is one of the most sensitive techniques to measure metabolic activity in living cells, tissues and whole animals. We used two- and three-photon fluorescence excitation together with time-correlated single photon counting (TCSPC) to acquire FLIM signals from normal and prostate cancer cell lines. FLIM requires complex data fitting and analysis; we explored different ways to analyze the data to match diverse cellular morphologies. After non-linear least square fitting of the multi-photon TCSPC images by the SPCImage software (Becker & Hickl), all image data are exported and further processed in ImageJ. Photon images provide morphological, NAD(P)H signal-based autofluorescent features, for which regions of interest (ROIs) are created. Applying these ROIs to all image data parameters with a custom ImageJ macro, generates a discrete, ROI specific database. A custom Excel (Microsoft) macro further analyzes the data with charts and statistics. Applying this highly automated assay we compared normal and cancer prostate cell lines with respect to their glycolytic activity by analyzing the NAD(P)H-bound fraction (a2%), NADPH/NADH ratio and efficiency of energy transfer (E%) for Tryptophan (Trp). Our results show that this assay is able to differentiate the effects of glucose stimulation and Doxorubicin in these prostate cell lines by tracking the changes in a2% of NAD(P)H, NADPH/NADH ratio and the changes in Trp E%. The ability to isolate a large, ROI-based data set, reflecting the heterogeneous cellular environment and highlighting even subtle changes -- rather than whole cell averages - makes this assay particularly valuable.

  9. FAD binding properties of a cytosolic version of Escherichia coli NADH dehydrogenase-2.

    Science.gov (United States)

    Villegas, Josefina M; Valle, Lorena; Morán Vieyra, Faustino E; Rintoul, María R; Borsarelli, Claudio D; Rapisarda, Viviana A

    2014-03-01

    Respiratory NADH dehydrogenase-2 (NDH-2) of Escherichia coli is a peripheral membrane-bound flavoprotein. By eliminating its C-terminal region, a water soluble truncated version was obtained in our laboratory. Overall conformation of the mutant version resembles the wild-type protein. Considering these data and the fact that the mutant was obtained as an apo-protein, the truncated version is an ideal model to study the interaction between the enzyme and its cofactor. Here, the FAD binding properties of this version were characterized using far-UV circular dichroism (CD), differential scanning calorimetry (DSC), limited proteolysis, and steady-state and dynamic fluorescence spectroscopy. CD spectra, thermal unfolding and DSC profiles did not reveal any major difference in secondary structure between apo- and holo-protein. In addition, digestion site accessibility and tertiary conformation were similar for both proteins, as seen by comparable chymotryptic cleavage patterns. FAD binding to the apo-protein produced a parallel increment of both FAD fluorescence quantum yield and steady-state emission anisotropy. On the other hand, addition of FAD quenched the intrinsic fluorescence emission of the truncated protein, indicating that the flavin cofactor should be closely located to the protein Trp residues. Analysis of the steady-state and dynamic fluorescence data confirms the formation of the holo-protein with a 1:1 binding stoichiometry and an association constant KA=7.0(±0.8)×10(4)M(-1). Taken together, the FAD-protein interaction is energetically favorable and the addition of FAD is not necessary to induce the enzyme folded state. For the first time, a detailed characterization of the flavin:protein interaction was performed among alternative NADH dehydrogenases.

  10. Electropolymerized poly(Toluidine Blue)-modified carbon felt for highly sensitive amperometric determination of NADH in flow injection analysis

    Institute of Scientific and Technical Information of China (English)

    Yasushi Hasebe; Yue Wang; Kazuya Fukuoka

    2011-01-01

    Poly(pheniothiazine) films were prepared on a porous carbon felt (CF) electrode surface by an electrooxidative polymerization of three phenothiazine derivatives (i.e.,Tthionine (TN), Toluidine Blue (TB) and Methylene Blue (MB)) from 0.1 mol/L phosphate buffer solution (pH 7.0).Among the three phenothiazies, the poly(TB) film-modified CF exhibited an excellent electrocatalytic activity for the oxidation of nicotinamide adenine dinucleotide reduced form (NADH) at +0.2 V vs.Ag/AgCl.The poly(TB) film-modified CF was successfully used as working electrode unit of highly sensitive amperometric flow-through detector for NADH.The peak currents (peak heights) were almost unchanged, irrespective of a carrier flow rate ranging from 2.0 to 4.1 mL/min, resulting in the measurement of NADH (ca.30 samples/hr) at 4.1 mL/min.The peak current responses of NADH showed linear relationship over the concentration range from 1 to 30 μmol/L (sensitivity: 0.318 μA/(μmol/L); correlation coefficient: 0.997).The lower detection limit was found to be 0.3 μmol/L (S/N = 3).

  11. Single-walled carbon nanotubes covalently functionalized with polytyrosine: A new material for the development of NADH-based biosensors.

    Science.gov (United States)

    Eguílaz, Marcos; Gutierrez, Fabiana; González-Domínguez, Jose Miguel; Martínez, María T; Rivas, Gustavo

    2016-12-15

    We report for the first time the use of single-walled carbon nanotubes (SWCNT) covalently functionalized with polytyrosine (Polytyr) (SWCNT-Polytyr) as a new electrode material for the development of nicotinamide adenine dinucleotide (NADH)-based biosensors. The oxidation of glassy carbon electrodes (GCE) modified with SWCNT-Polytyr at potentials high enough to oxidize the tyrosine residues have allowed the electrooxidation of NADH at low potentials due to the catalytic activity of the quinones generated from the primary oxidation of tyrosine without any additional redox mediator. The amperometric detection of NADH at 0.200V showed a sensitivity of (217±3)µAmM(-1)cm(-2) and a detection limit of 7.9nM. The excellent electrocatalytic activity of SWCNT-Polytyr towards NADH oxidation has also made possible the development of a sensitive ethanol biosensor through the immobilization of alcohol dehydrogenase (ADH) via Nafion entrapment, with excellent analytical characteristics (sensitivity of (5.8±0.1)µAmM(-1)cm(-2), detection limit of 0.67µM) and very successful application for the quantification of ethanol in different commercial beverages.

  12. A fiber-optic sorbitol biosensor based on NADH fluorescence detection toward rapid diagnosis of diabetic complications.

    Science.gov (United States)

    Gessei, Tomoko; Arakawa, Takahiro; Kudo, Hiroyuki; Mitsubayashi, Kohji

    2015-09-21

    Accumulation of sorbitol in the tissue is known to cause microvascular diabetic complications. In this paper, a fiber-optic biosensor for sorbitol which is used as a biomarker of diabetic complications was developed and tested. The biosensor used a sorbitol dehydrogenase from microorganisms of the genus Flavimonas with high substrate specificity and detected the fluorescence of reduced nicotinamide adenine dinucleotide (NADH) by the enzymatic reaction. An ultraviolet light emitting diode (UV-LED) was used as the excitation light source of NADH. The fluorescence of NADH was detected using a spectrometer or a photomultiplier tube (PMT). The UV-LED and the photodetector were coupled using a Y-shaped optical fiber. In the experiment, an optical fiber probe with a sorbitol dehydrogenase immobilized membrane was placed in a cuvette filled with a phosphate buffer containing the oxidized form of nicotinamide adenine dinucleotide (NAD(+)). The changes in NADH fluorescence intensity were measured after adding a standard sorbitol solution. According to the experimental assessment, the calibration range of the sorbitol biosensor systems using a spectrometer and a PMT was 5.0-1000 μmol L(-1) and 1.0-1000 μmol L(-1), respectively. The sorbitol biosensor system using the sorbitol dehydrogenase from microorganisms of the genus Flavimonas has high selectivity and sensitivity compared with that from sheep liver. The sorbitol biosensor allows for point-of-care testing applications or daily health care tests for diabetes patients.

  13. Neutral red interlinked gold nanoparticles/multiwalled carbon nanotubes hybrid nanomaterial and its application for the detection of NADH

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Ida, E-mail: sensorsbhu@yahoo.co.in; Gupta, Mandakini

    2014-01-01

    Graphical abstract: - Highlights: • Fabricated a nanostructured hybrid material of GNPs/neutral red/MWCNTs. • GNPs decorated on MWCNT template by using neutral red as interlinker for first time. • Nanocomposite modified electrode employed successfully as sensor for NADH. • The electrode has high stability as it does not involve any biological entity. - Abstract: A novel nanocomposite of gold nanoparticles/neutral red/MWCNTs was prepared which was used to modify glassy carbon electrode. The prepared nanocomposite was physically characterized by scanning electron microscopy, transmission electron microscopy, zeta potential measurement, energy dispersive X-ray, FTIR spectroscopy, UV–visible spectroscopy. Electrochemical characterization was done using cyclic voltammetry technique. The modified glassy carbon electrode showed electrocatalytic activity toward the oxidation of NADH in 0.1 M phosphate buffer solution, pH 5.0. The modified electrode has better adhesion over the electrode surface, good stability as no leaching of neutral red based nanocomposite was observed. The oxidation of NADH started at 0.37 V and reached maxima at 0.52 V at the modified electrode surface. So the prepared composite modified electrode can be applied as electrochemical sensor for NADH. The sensitivity and detection limits of the modified glassy carbon electrode were found to be 0.588 μA/mM and 5 × 10{sup −7} at signal to noise ratio 3.

  14. A New Type of NADH Model Compound: Synthesis and Enantioselective Reduction of Benzoylformates to the Corresponding Mandelates

    Directory of Open Access Journals (Sweden)

    Xin-Liang Tang

    2007-05-01

    Full Text Available A new type of NADH model compound with good reactivity and enantioselectivity has been synthesized in good yields by an efficient and convenient synthetic method. The structures of these model compounds were confirmed by 1H and 13C-NMR and MS.

  15. Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumoniae

    Directory of Open Access Journals (Sweden)

    Ji Xiao-Jun

    2013-01-01

    Full Text Available Abstract Background Acetoin is an important bio-based platform chemical. However, it is usually existed as a minor byproduct of 2,3-butanediol fermentation in bacteria. Results The present study reports introducing an exogenous NAD+ regeneration sysytem into a 2,3-butanediol producing strain Klebsiella pneumoniae to increse the accumulation of acetoin. Batch fermentation suggested that heterologous expression of the NADH oxidase in K. pneumoniae resulted in large decreases in the intracellular NADH concentration (1.4 fold and NADH/NAD+ ratio (2.0 fold. Metabolic flux analysis revealed that fluxes to acetoin and acetic acid were enhanced, whereas, production of lactic acid and ethanol were decreased, with the accumualation of 2,3-butanediol nearly unaltered. By fed-batch culture of the recombinant, the highest reported acetoin production level (25.9 g/L by Klebsiella species was obtained. Conclusions The present study indicates that microbial production of acetoin could be improved by decreasing the intracellular NADH/NAD+ ratio in K. pneumoniae. It demonstrated that the cofactor engineering method, which is by manipulating the level of intracellular cofactors to redirect cellular metabolism, could be employed to achieve a high efficiency of producing the NAD+-dependent microbial metabolite.

  16. NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit I sequences compared for members of the genus Taenia (Cestoda).

    Science.gov (United States)

    Gasser, R B; Zhu, X; McManus, D P

    1999-12-01

    Nine members of the genus Taenia (Taenia taeniaeformis, Taenia hydatigena, Taenia pisiformis, Taenia ovis, Taenia multiceps, Taenia serialis, Taenia saginata, Taenia solium and the Asian Taenia) were characterised by their mitochondrial NADH dehydrogenase subunit 1 gene sequences and their genetic relationships were compared with those derived from the cytochrome c oxidase subunit 1 sequence data. The extent of inter-taxon sequence difference in NADH dehydrogenase subunit 1 (approximately 5.9-30.8%) was usually greater than in cytochrome c oxidase subunit 1 (approximately 2.5-18%). Although topology of the phenograms derived from NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit 1 sequence data differed, there was concordance in that T. multiceps, T. serialis (of canids), T. saginata and the Asian Taenia (of humans) were genetically most similar, and those four members were genetically more similar to T. ovis and T. solium than they were to T. hydatigena and T. pisiformis (of canids) or T. taeniaeformis (of cats). The NADH dehydrogenase subunit 1 sequence data may prove useful in studies of the systematics and population genetic structure of the Taeniidae.

  17. Enzymatic reduction of complex redox dyes using NADH-dependent reductase from Bacillus subtilis coupled with cofactor regeneration.

    Science.gov (United States)

    Bozic, Mojca; Pricelius, Sina; Guebitz, Georg M; Kokol, Vanja

    2010-01-01

    Conventional vat dyeing involves chemical reduction of dyes into their water-soluble leuco form generating considerable amounts of toxic chemicals in effluents. In the present study, a new beta-nicotinamide adenine dinucleotide disodium salt (NADH)-dependent reductase isolated from Bacillus subtilis was used to reduce the redox dyes CI Acid Blue 74, CI Natural Orange 6, and CI Vat Blue 1 into their water-soluble leuco form. Enzymatic reduction was optimized in relation to pH and temperature conditions. The reductase was able to reduce Acid Blue 74 and Natural Orange 6 in the presence of the stoichiometrically consumed cofactor NADH; meanwhile, Vat Blue 1 required the presence of mediator 1,8-dihydroxyanthraquinone. Oxygen from air was used to reoxidize the dyes into their initial forms. The enzymatic reduction of the dyes was studied and the kinetic constants determined, and these were compared to the chemically-reduced leuco form. The enzyme responsible for the reduction showed homology to a NADH-dependent reductase from B. subtilis based on results from the MS/MS peptide mass mapping of the tryptically digested protein. Additionally, the reduction of Acid Blue 74 to its leuco form by reductase from B. subtilis was confirmed using NADH regenerated by the oxidation of formic acid with formate dehydrogenase from Candida boidinii in the same solution.

  18. Structural analysis of the wheat genes encoding NADH-dependent glutamine-2-oxoglutarate amidotransferases and correlation with grain protein content.

    Directory of Open Access Journals (Sweden)

    Domenica Nigro

    Full Text Available BACKGROUND: Nitrogen uptake and the efficient absorption and metabolism of nitrogen are essential elements in attempts to breed improved cereal cultivars for grain or silage production. One of the enzymes related to nitrogen metabolism is glutamine-2-oxoglutarate amidotransferase (GOGAT. Together with glutamine synthetase (GS, GOGAT maintains the flow of nitrogen from NH4 (+ into glutamine and glutamate, which are then used for several aminotransferase reactions during amino acid synthesis. RESULTS: The aim of the present work was to identify and analyse the structure of wheat NADH-GOGAT genomic sequences, and study the expression in two durum wheat cultivars characterized by low and high kernel protein content. The genomic sequences of the three homoeologous A, B and D NADH-GOGAT genes were obtained for hexaploid Triticum aestivum and the tetraploid A and B genes of Triticum turgidum ssp. durum. Analysis of the gene sequences indicates that all wheat NADH-GOGAT genes are composed of 22 exons and 21 introns. The three hexaploid wheat homoeologous genes have high conservation of sequence except intron 13 which shows differences in both length and sequence. A comparative analysis of sequences among di- and mono-cotyledonous plants shows both regions of high conservation and of divergence. qRT-PCR performed with the two durum wheat cvs Svevo and Ciccio (characterized by high and low protein content, respectively indicates different expression levels of the two NADH-GOGAT-3A and NADH-GOGAT-3B genes. CONCLUSION: The three hexaploid wheat homoeologous NADH-GOGAT gene sequences are highly conserved - consistent with the key metabolic role of this gene. However, the dicot and monocot amino acid sequences show distinctive patterns, particularly in the transit peptide, the exon 16-17 junction, and the C-terminus. The lack of conservation in the transit peptide may indicate subcellular differences between the two plant divisions - while the sequence

  19. The structural and functional basis of catalysis mediated by NAD(PH:acceptor Oxidoreductase (FerB of Paracoccus denitrificans.

    Directory of Open Access Journals (Sweden)

    Vojtěch Sedláček

    Full Text Available FerB from Paracoccus denitrificans is a soluble cytoplasmic flavoprotein that accepts redox equivalents from NADH or NADPH and transfers them to various acceptors such as quinones, ferric complexes and chromate. The crystal structure and small-angle X-ray scattering measurements in solution reported here reveal a head-to-tail dimer with two flavin mononucleotide groups bound at the opposite sides of the subunit interface. The dimers tend to self-associate to a tetrameric form at higher protein concentrations. Amino acid residues important for the binding of FMN and NADH and for the catalytic activity are identified and verified by site-directed mutagenesis. In particular, we show that Glu77 anchors a conserved water molecule in close proximity to the O2 of FMN, with the probable role of facilitating flavin reduction. Hydride transfer is shown to occur from the 4-pro-S position of NADH to the solvent-accessible si side of the flavin ring. When using deuterated NADH, this process exhibits a kinetic isotope effect of about 6 just as does the NADH-dependent quinone reductase activity of FerB; the first, reductive half-reaction of flavin cofactor is thus rate-limiting. Replacing the bulky Arg95 in the vicinity of the active site with alanine substantially enhances the activity towards external flavins that obeys the standard bi-bi ping-pong reaction mechanism. The new evidence for a cryptic flavin reductase activity of FerB justifies the previous inclusion of this enzyme in the protein family of NADPH-dependent FMN reductases.

  20. Over-expression of a putative oxidoreductase (UcpA) for increasing furfural or 5-hydroxymethylfurfural tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuan; Miller, Elliot N.; Yomano, Lorraine P.; Shanmugam, Keelnatham T.; Ingram, Lonnie O' Neal

    2016-05-24

    The subject invention pertains to overexpression of a putative oxidoreductase (ucpA) for increasing furfural tolerance in genetically modified microorganisms. Genetically modified microorganisms capable of overexpressing UcpA are also provided. Increased expression of ucpA was shown to increase furfural tolerance by 50%, and to permit the fermentation of sugars to products in the presence of 15 mM furfural.

  1. Measurement and Identification of NADPH : Protochlorophyllide Oxidoreductase Solubilized with Triton X-100 from Etioplast Membranes of Squash Cotyledons

    OpenAIRE

    Masahiko, IKEUCHI; Satoru, Murakami; Department of Biology, College of General Education, University of Tokyo

    1982-01-01

    Etioplast membranes were solubilized with 1 mM Triton X-100 in the presence of excess NADPH and protochlorophyllide to isolate NADPH:protochlorophyllide oxidoreductase. The activity of this reductase was assayed as the formation of chlorophyllide by a single flash and was equivalent to the amount of photoactive protochlorophyllide-NADPH-enzyme complex present before illumination. The rate of regeneration of the phtoactive complex was estimated from the time course of chlorophyllide formation ...

  2. Determination of NAD+ and NADH level in a Single Cell Under H2O2 Stress by Capillary Electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Wenjun [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    A capillary electrophoresis (CE) method is developed to determine both NAD+ and NADH levels in a single cell, based on an enzymatic cycling reaction. The detection limit can reach down to 0.2 amol NAD+ and 1 amol NADH on a home-made CE-LIF setup. The method showed good reproducibility and specificity. After an intact cell was injected into the inlet of a capillary and lysed using a Tesla coil, intracellular NAD+ and NADH were separated, incubated with the cycling buffer, and quantified by the amount of fluorescent product generated. NADH and NAD+ levels of single cells of three cell lines and primary astrocyte culture were determined using this method. Comparing cellular NAD+ and NADH levels with and without exposure to oxidative stress induced by H2O2, it was found that H9c2 cells respond to the stress by reducing both cellular NAD+ and NADH levels, while astrocytes respond by increasing cellular NADH/NAD+ ratio.

  3. Suppression of B-Raf(V600E) melanoma cell survival by targeting mitochondria using triphenyl-phosphonium-conjugated nitroxide or ubiquinone.

    Science.gov (United States)

    Hong, Seung-Keun; Starenki, Dmytro; Wu, Pui-Kei; Park, Jong-In

    2017-02-01

    Most BRAF-mutated melanomas initially responsive to the FDA-approved inhibitors preferentially targeting B-Raf mutated in Val600 residue eventually relapse, requiring additional therapeutic modalities. Recent studies report the significance of metabolic reprograming in mitochondria for maintenance of BRAF-mutated melanomas and for development of their drug resistance to B-Raf inhibitors, providing a rationale for targeting mitochondria as a potential therapeutic strategy for melanoma. We therefore determined whether mitochondria-targeted metabolism-interfering agents can effectively suppress human B-Raf(V600E) melanoma cell lines and their dabrafenib/PLX4032-resistant progenies using mitochondria-targeted carboxy-proxyl (Mito-CP) and ubiquinone (Mito-Q). These agents exhibited comparable efficacy to PLX4032 in suppressing SK-MEL28, A375, and RPMI-7951 cells in vitro. As determined in SK-MEL28 and A375 cells, Mito-CP induced apoptotic cell death mediated by mitochondrial membrane depolarization and subsequent oxidative stress, which PLX4032 could not induce. Of note, Mito-CP also effectively suppressed PLX4032-resistant progenies of SK-MEL28 and A375. Moreover, when orally administered, Mito-CP suppressed SK-MEL28 xenografts in mice as effectively as PLX4032 without serious adverse effects. These data demonstrate that mitochondria-targeted agents have therapeutic potential to effectively suppress BRAF-mutated melanomas via an effect(s) distinct from those of B-Raf inhibitors.

  4. Effects of dietary lipid, vitamins and minerals on total amounts and redox status of glutathione and ubiquinone in tissues of Atlantic salmon (Salmo salar): a multivariate approach.

    Science.gov (United States)

    Hamre, Kristin; Torstensen, Bente E; Maage, Amund; Waagbø, Rune; Berge, Rolf K; Albrektsen, Sissel

    2010-10-01

    The hypothesis of the present study was that Atlantic salmon (Salmo salar) would respond to large variations in supplementation of dietary pro- and antioxidants, and marine lipid, with adjustment of the endogenously synthesised antioxidants, glutathione (GSH) and ubiquinone (UQ). An experiment with 2(7-3) reduced factorial design (the number of cases reduced systematically from 2(7) (full design) to 2(4) (reduced design)) was conducted, where vitamins, minerals and lipid were supplemented in the diet at high and low levels. For the vitamins and minerals the high levels were chosen to be just below anticipated toxic levels and the low levels were just above the requirement (vitamin C, 30 and 1000 mg/kg; vitamin E, 70 and 430 mg/kg; Fe, 70 and 1200 mg/kg; Cu, 8 and 110 mg/kg; Mn, 12 and 200 mg/kg). For astaxanthin, the dietary levels were 10 and 50 mg/kg and for lipid, 150 and 330 g/kg. The experiment was started with post-smolts (148 (sd 17 g)) and lasted for 5 months. The only effect on GSH was a minor increase ( vitamin E, both with regard to total concentration and redox state. Except for an effect of Fe on plasma GSH, the trace elements and vitamin C had no effect on tissue levels and oxidation state of GSH and UQ. This shows that the endogenous redox state is quite robust with regard to variation of dietary pro- and antioxidants in Atlantic salmon.

  5. Crystal Structure of Epiphyas Postvittana Takeout 1 With Bound Ubiquinone Supports a Role As Ligand Carriers for Takeout Proteins in Insects

    Energy Technology Data Exchange (ETDEWEB)

    Hamiaux, C.; Stanley, D.; Greenwood, D.R.; Baker, E.N.; Newcomb, R.D.

    2009-05-19

    Takeout (To) proteins are found exclusively in insects and have been proposed to have important roles in various aspects of their physiology and behavior. Limited sequence similarity with juvenile hormone-binding proteins (JHBPs), which specifically bind and transport juvenile hormones in Lepidoptera, suggested a role for To proteins in binding hydrophobic ligands. We present the first crystal structure of a To protein, EpTo1 from the light brown apple moth Epiphyas postvittana, solved in-house by the single-wavelength anomalous diffraction technique using sulfur anomalous dispersion, and refined to 1.3 {angstrom} resolution. EpTo1 adopts the unusual {alpha}/{beta}-wrap fold, seen only for JHBP and several mammalian lipid carrier proteins, a scaffold tailored for the binding and/or transport of hydrophobic ligands. EpTo1 has a 45 {angstrom} long, purely hydrophobic, internal tunnel that extends for the full length of the protein and accommodates a bound ligand. The latter was shown by mass spectrometry to be ubiquinone-8 and is probably derived from Escherichia coli. The structure provides the first direct experimental evidence that To proteins are ligand carriers; gives insights into the nature of endogenous ligand(s) of EpTo1; shows, by comparison with JHBP, a basis for different ligand specificities; and suggests a mechanism for the binding/release of ligands.

  6. Preventive effect of Monascus-fermented products enriched with ubiquinones on type 2 diabetic rats induced by a high-fructose plus high-fat diet.

    Science.gov (United States)

    Pyo, Young-Hee; Lee, Kyung-Won

    2014-07-01

    The aim of the present study was to investigate whether the aqueous extract of Monascus-fermented grains (MFGEs) enriched with ubiquinones (Coenzyme Qs, CoQ9+CoQ10) alleviates high-fructose (60%) plus high-fat (20%) diet (HFD)-induced hyperglycemia and hepatic oxidative stress in male Sprague-Dawley rats. Animals were fed HFD for 16 weeks and orally administered with MFGEs (300 mg/kg/day) or atorvastatin (20 mg/kg/day) for the last 4 weeks of the study. HFD-fed rats exhibited hyperglycemia, hyperinsulinemia, impaired glucose tolerance, and impaired insulin sensitivity. MFGE treatment prevented the increase in glucose levels and index of insulin resistance in the HFD-induced diabetic rats. A significant decrease in hepatic lipid peroxidation and significant increases in hepatic superoxide dismutase, catalase, and glutathione peroxidase were observed in the MFGE supplemented group. The results suggest that dietary supplementation with MFGEs enriched with CoQs exerts an antidiabetic effect in type 2 diabetic rats by improving insulin resistance and hepatic antioxidant enzymes.

  7. Spectroscopic and kinetic properties of a recombinant form of the flavin domain of spinach NADH: nitrate reductase.

    Science.gov (United States)

    Quinn, G B; Trimboli, A J; Prosser, I M; Barber, M J

    1996-03-01

    The C-terminal 268 residues of the spinach assimilatory NADH:nitrate reductase amino acid sequence that correspond to the flavin-containing domain of the enzyme have been selectively amplified and expressed as a recombinant protein in Escherichia coli. The recombinant protein, which was produced in both soluble and insoluble forms, was purified to homogeneity using a combination of ammonium sulfate precipitation, affinity chromatography on 5'-ADP-agarose and FPLC gel filtration. The purified domain exhibited a molecular weight of approximately 30 kDa, estimated by polyacrylamide gel electrophoresis, and a molecular mass of 30,169 for the apoprotein determined by mass spectrometry, which also confirmed the presence of FAD. The UV/visible spectrum was typical of a flavoprotein, with maxima at 272, 386, and 461 nm in the oxidized form while CD spectroscopy yielded both positive and negative maxima at 313 and 382 nm and 461 and 484 nm, respectively. The purified domain showed immunological cross-reactivity with anti-spinach nitrate reductase polyclonal antibodies while both N-terminal and internal amino acid sequencing of isolated peptides confirmed the fidelity of the domain's primary sequence. The protein retained NADH-ferricyanide reductase activity (Vmax=84 micromol NADH consumer/min/nmol FAD) with Km's of 17 and 34 microM for NADH and ferricyanide, respectively, with a pH optimum of approximately 6.5 A variety of NADH-analogs could also function as electron donors, though with decreased efficiency, the most effective being reduced nicotinamide hypoxanthine dinucleotide (V(max) = 35 micromol NHDH consumer/min/nmol FAD) and Km = 22 microM). NAD+ was demonstrated to be a competitive inhibitor (Ki = 1.9 mM) while analysis of inhibition by a variety of NAD+-analogs indicated the most efficient inhibitor to be ADP (Ki = 0.2 mM), with analogs devoid of either the phosphate, ribose, or adenine moieties proving to be markedly less-efficient inhibitors. The isolated domain

  8. Overexpression of a water-forming NADH oxidase improves the metabolism and stress tolerance of Saccharmyces cerevisiae in aerobic fermenation

    Directory of Open Access Journals (Sweden)

    Xinchi Shi

    2016-09-01

    Full Text Available Redox homeostasis is fundamental to the maintenance of metabolism. Redox imbalance can cause oxidative stress, which affects metabolism and growth. Water-forming NADH oxidase regulates the redox balance by oxidizing cytosolic NADH to NAD+, which relieves cytosolic NADH accumulation through rapid glucose consumption in Saccharomyces cerevisiae, thus decreasing the production of the byproduct glycerol in industrial ethanol production. Here, we studied the effects of overexpression of a water-forming NADH oxidase from Lactococcus lactis on the stress response of S. cerevisiae in aerobic batch fermentation, and we constructed an interaction network of transcriptional regulation and metabolic networks to study the effects of and mechanisms underlying NADH oxidase regulation. The oxidase-overexpressing strain (NOX showed increased glucose consumption, growth, and ethanol production, while glycerol production was remarkably lower. Glucose was exhausted by NOX at 26 h, while 18.92 ± 0.94 g/L residual glucose was left in the fermentation broth of the control strain (CON at this time point. At 29.5 h, the ethanol concentration for NOX peaked at 35.25 ± 1.76 g/L, which was 14.37 % higher than that for CON (30.82 ± 1.54 g/L. Gene expression involved in the synthesis of thiamine, which is associated with stress responses in various organisms, was increased in NOX. The transcription factor HAP4 was significantly upregulated in NOX at the late-exponential phase, indicating a diauxic shift in response to starvation. The apoptosis-inducing factor Nuc1 was downregulated while the transcription factor Sok2, which regulates the production of the small signaling molecule ammonia, was upregulated at the late-exponential phase, benefiting young cells on the rim. Reactive oxygen species production was decreased by 10% in NOX, supporting a decrease in apoptosis. The HOG pathway was not activated, although the osmotic stress was truly higher, indicating improved

  9. Xanthine oxidoreductase-catalyzed reactive species generation: A process in critical need of reevaluation.

    Science.gov (United States)

    Cantu-Medellin, Nadiezhda; Kelley, Eric E

    2013-06-10

    Nearly 30 years have passed since the discovery of xanthine oxidoreductase (XOR) as a critical source of reactive species in ischemia/reperfusion injury. Since then, numerous inflammatory disease processes have been associated with elevated XOR activity and allied reactive species formation solidifying the ideology that enhancement of XOR activity equates to negative clinical outcomes. However, recent evidence may shatter this paradigm by describing a nitrate/nitrite reductase capacity for XOR whereby XOR may be considered a crucial source of beneficial (•)NO under ischemic/hypoxic/acidic conditions; settings similar to those that limit the functional capacity of nitric oxide synthase. Herein, we review XOR-catalyzed reactive species generation and identify key microenvironmental factors whose interplay impacts the identity of the reactive species (oxidants vs. (•)NO) produced. In doing so, we redefine existing dogma and shed new light on an enzyme that has weathered the evolutionary process not as gadfly but a crucial component in the maintenance of homeostasis.

  10. Chemical nature and reaction mechanisms of the molybdenum cofactor of xanthine oxidoreductase.

    Science.gov (United States)

    Okamoto, Ken; Kusano, Teruo; Nishino, Takeshi

    2013-01-01

    Xanthine oxidoreductase (XOR), a complex flavoprotein, catalyzes the metabolic reactions leading from hypoxanthine to xanthine and from xanthine to urate, and both reactions take place at the molybdenum cofactor. The enzyme is a target of drugs for therapy of gout or hyperuricemia. We review the chemical nature and reaction mechanisms of the molybdenum cofactor of XOR, focusing on molybdenum-dependent reactions of actual or potential medical importance, including nitric oxide (NO) synthesis. It is now generally accepted that XOR transfers the water-exchangeable -OH ligand of the molybdenum atom to the substrate. The hydroxyl group at OH-Mo(IV) can be replaced by urate, oxipurinol and FYX-051 derivatives and the structures of these complexes have been determined by xray crystallography under anaerobic conditions. Although formation of NO from nitrite or formation of xanthine from urate by XOR ischemically feasible, it is not yet clear whether these reactions have any physiological significance since the reactions are catalyzed at a slow rate even under anaerobic conditions.

  11. Purification and characterization of an (S)-3-hydroxycarboxylate oxidoreductase from Clostridium tyrobutyricum.

    Science.gov (United States)

    Bayer, M; Günther, H; Simon, H

    1994-10-01

    An NADP(+)-dependent reversible 3-hydroxycarboxylate oxidoreductase present in Clostridium tyrobutyricum has been purified. As judged by gel electrophoresis the enzyme was pure after a 940-fold enrichment by four chromatographic steps. Its molecular mass was estimated to be 40-43 kDa. The enzyme was most active at pH 4.5 in the reduction of 3-oxobutyrate. Other substrates were 3-oxovalerate, 3-oxocaproate, 3-oxoisocaproate and 4-chloro-3-oxobutyrate. Except for the latter all substrates were converted enantioselectively to (S)-3-hydroxy acids in the presence of NADPH. 4-Chloro-3-oxobutyrate was reduced to the (R)-3-hydroxy acid. The specific activity of the enzyme was about 1400 mumol min-1 mg-1 protein for the reduction of 3-oxobutyrate at pH 5.0. The Michaelis constant (Km) values for 3-oxobutyrate, 3-oxovalerate and 3-oxocaproate were determined to be 0.22, 1.6 and 3.0 mM, respectively. The Km values for dehydrogenation of (S)-3-hydroxybutyrate, (S)-3-hydroxyvalerate and (S)-3-hydroxycaproate were found to be 2.6, 1.1 and 5.2 mM, respectively. The identity of 43 of the first 45 N-terminal amino acid residues has been determined. So far such enzyme activities have been described in eucaryotes only.

  12. Reduction of xylose to xylitol catalyzed by glucose-fructose oxidoreductase from Zymomonas mobilis.

    Science.gov (United States)

    Zhang, Xiaomei; Chen, Guanjun; Liu, Weifeng

    2009-04-01

    Genetic improvements of Zymomonas mobilis for pentose utilization have a huge potential in fuel ethanol production. The production of xylitol and the resulting growth inhibition by xylitol phosphate have been considered to be one of the important factors affecting the rates and yields from xylose metabolism by the recombinant Z. mobilis, but the mechanism of xylitol formation is largely unknown. Here, we reported that glucose-fructose oxidoreductase (GFOR), a periplasmic enzyme responsible for sorbitol production, catalyzed the reduction of xylose to xylitol in vitro, operating via a ping-pong mechanism similar to that in the formation of sorbitol. However, the specific activity of GFOR for sorbitol was higher than that for xylitol (68.39 vs. 1.102 micromol min(-1) mg(-1)), and an apparent substrate-induced positive cooperativity occurred during the catalyzed formation of xylitol, with the Hill coefficient being about 2. While a change of the potential acid-base catalyst Tyr269 to Phe almost completely abolished the activity toward xylose as well as fructose, mutant S116D, which has been shown to lose tight cofactor binding, displayed an even slower catalytic process against xylose.

  13. Associations of cytochrome P450 oxidoreductase genetic polymorphisms with smoking cessation in a Chinese population.

    Science.gov (United States)

    Li, Huijie; Li, Suyun; Wang, Qiang; Jia, Chongqi

    2016-12-01

    Recently, a single nucleotide polymorphism (SNP) A503V (rs1057868) in cytochrome P450 oxidoreductase (POR) gene was reported to influence nicotine metabolism. Considering the importance of nicotine metabolism to smoking cessation, the aim of this study was to investigate the association between POR gene polymorphisms and smoking cessation in a Chinese population. A case-control study was conducted with 363 successful smoking quitters as the cases, and 345 failed smoking quitters as the controls. Eight tagSNPs which cover the entire gene and four functional SNPs were selected and genotyped. Logistic regression was used to explore the relationship between POR SNPs and smoking cessation in codominant, additive, dominant and recessive models. After adjustment for potential confounders, multiple logistic regression analysis indicated that POR rs3823884 and rs3898649 were associated with increased possibility of smoking cessation. Meanwhile, POR rs17685 and rs239953 were shown to have negative effect on successful smoking cessation. No significant differences in the distribution of haplotypes between cases and controls were detected. In conclusion, this study reveals that four SNPs in the POR gene (rs3823884, rs3898649, rs239953 and rs17685) may affect the susceptibility of smoking cessation in a Chinese Han population.

  14. WW domain-containing oxidoreductase in neuronal injury and neurological diseases.

    Science.gov (United States)

    Chang, Hsin-Tzu; Liu, Chan-Chuan; Chen, Shur-Tzu; Yap, Ye Vone; Chang, Nan-Shang; Sze, Chun-I

    2014-12-15

    The human and mouse WWOX/Wwox gene encodes a candidate tumor suppressor WW domain-containing oxidoreductase protein. This gene is located on a common fragile site FRA16D. WWOX participates in a variety of cellular events and acts as a transducer in the many signal pathways, including TNF, chemotherapeutic drugs, UV irradiation, Wnt, TGF-β, C1q, Hyal-2, sex steroid hormones, and others. While transiently overexpressed WWOX restricts relocation of transcription factors to the nucleus for suppressing cancer survival, physiological relevance of this regard in vivo has not been confirmed. Unlike many tumor suppressor genes, mutation of WWOX is rare, raising a question whether WWOX is a driver for cancer initiation. WWOX/Wwox was initially shown to play a crucial role in neural development and in the pathogenesis of Alzheimer's disease and neuronal injury. Later on, WWOX/Wwox was shown to participate in the development of epilepsy, mental retardation, and brain developmental defects in mice, rats and humans. Up to date, most of the research and review articles have focused on the involvement of WWOX in cancer. Here, we review the role of WWOX in neural injury and neurological diseases, and provide perspectives for the WWOX-regulated neurodegeneration.

  15. Untargeted plasma metabolite profiling reveals the broad systemic consequences of xanthine oxidoreductase inactivation in mice.

    Directory of Open Access Journals (Sweden)

    Qiuying Chen

    Full Text Available A major challenge in systems biology is integration of molecular findings for individual enzyme activities into a cohesive high-level understanding of cellular metabolism and physiology/pathophysiology. However, meaningful prediction for how a perturbed enzyme activity will globally impact metabolism in a cell, tissue or intact organisms is precluded by multiple unknowns, including in vivo enzymatic rates, subcellular distribution and pathway interactions. To address this challenge, metabolomics offers the potential to simultaneously survey changes in thousands of structurally diverse metabolites within complex biological matrices. The present study assessed the capability of untargeted plasma metabolite profiling to discover systemic changes arising from inactivation of xanthine oxidoreductase (XOR, an enzyme that catalyzes the final steps in purine degradation. Using LC-MS coupled with a multivariate statistical data analysis platform, we confidently surveyed >3,700 plasma metabolites (50-1,000 Da for differential expression in XOR wildtype vs. mice with inactivated XOR, arising from gene deletion or pharmacological inhibition. Results confirmed the predicted derangements in purine metabolism, but also revealed unanticipated perturbations in metabolism of pyrimidines, nicotinamides, tryptophan, phospholipids, Krebs and urea cycles, and revealed kidney dysfunction biomarkers. Histochemical studies confirmed and characterized kidney failure in xor-nullizygous mice. These findings provide new insight into XOR functions and demonstrate the power of untargeted metabolite profiling for systemic discovery of direct and indirect consequences of gene mutations and drug treatments.

  16. NAD(P)H:quinone oxidoreductase 1 inducer activity of some novel anilinoquinazoline derivatives

    Science.gov (United States)

    Ghorab, Mostafa M; Alsaid, Mansour S; Higgins, Maureen; Dinkova-Kostova, Albena T; Shahat, Abdelaaty A; Elghazawy, Nehal H; Arafa, Reem K

    2016-01-01

    The Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response elements pathway enables cells to survive oxidative stress conditions through regulating the expression of cytoprotective enzymes such as NAD(P)H:quinone oxidoreductase 1 (NQO1). This work presents the design and synthesis of novel anilinoquinazoline derivatives (2–16a) and evaluation of their NQO1 inducer activity in murine cells. Molecular docking of the new compounds was performed to assess their ability to inhibit Keap1–Nrf2 protein–protein interaction through occupying the Keap1–Nrf2-binding domain, which leads to Nrf2 accumulation and enhanced gene expression of NQO1. Docking results showed that all compounds can potentially interact with Keap1; however, 1,5-dimethyl-2-phenyl-4-(2-phenylquinazolin-4-ylamino)-1,2-dihydropyrazol-3-one (9), the most potent inducer, showed the largest number of interactions with key amino acids in the binding pocket (Arg483, Tyr525, and Phe478) compared to the native ligand or any other compound in this series. PMID:27540279

  17. Stoichiometry of ATP hydrolysis and chlorophyllide formation of dark-operative protochlorophyllide oxidoreductase from Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Nomata, Jiro [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 (Japan); Terauchi, Kazuki [Department of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 (Japan); Fujita, Yuichi, E-mail: fujita@agr.nagoya-u.ac.jp [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 (Japan)

    2016-02-12

    Dark-operative protochlorophyllide (Pchlide) oxidoreductase (DPOR) is a nitrogenase-like enzyme catalyzing a reduction of the C17 = C18 double bond of Pchlide to form chlorophyllide a (Chlide) in bacteriochlorophyll biosynthesis. DPOR consists of an ATP-dependent reductase component, L-protein (a BchL dimer), and a catalytic component, NB-protein (a BchN–BchB heterotetramer). The L-protein transfers electrons to the NB-protein to reduce Pchlide, which is coupled with ATP hydrolysis. Here we determined the stoichiometry of ATP hydrolysis and the Chlide formation of DPOR. The minimal ratio of ATP to Chlide (ATP/2e{sup –}) was 4, which coincides with that of nitrogenase. The ratio increases with increasing molar ratio of L-protein to NB-protein. This profile differs from that of nitrogenase. These results suggest that DPOR has a specific intrinsic property, while retaining the common features shared with nitrogenase. - Highlights: • The stoichiometry of nitrogenase-like protochlorophyllide reductase was determined. • The minimal ATP/2e{sup –} ratio was 4, which coincides with that of nitrogenase. • The ATP/2e{sup –} ratio increases with increasing L-protein/NB-protein molar ratio. • DPOR has an intrinsic property, but retains features shared with nitrogenase.

  18. Subcellular localization of ferredoxin-NADP(+) oxidoreductase in phycobilisome retaining oxygenic photosysnthetic organisms.

    Science.gov (United States)

    Morsy, Fatthy Mohamed; Nakajima, Masato; Yoshida, Takayuki; Fujiwara, Tatsuki; Sakamoto, Toshio; Wada, Keishiro

    2008-01-01

    Ferredoxin-NADP(+) oxidoreductase (FNR) catalyzing the terminal step of the linear photosynthetic electron transport was purified from the cyanobacterium Spirulina platensis and the red alga Cyanidium caldarium. FNR of Spirulina consisted of three domains (CpcD-like domain, FAD-binding domain, and NADP(+)-binding domain) with a molecular mass of 46 kDa and was localized in either phycobilisomes or thylakoid membranes. The membrane-bound FNR with 46 kDa was solublized by NaCl and the solublized FNR had an apparent molecular mass of 90 kDa. FNR of Cyanidium consisted of two domains (FAD-binding domain and NADP(+)-binding domain) with a molecular mass of 33 kDa. In Cyanidium, FNR was found on thylakoid membranes, but there was no FNR on phycobilisomes. The membrane-bound FNR of Cyanidium was not solublized by NaCl, suggesting the enzyme is tightly bound in the membrane. Although both cyanobacteria and red algae are photoautotrophic organisms bearing phycobilisomes as light harvesting complexes, FNR localization and membrane-binding characteristics were different. These results suggest that FNR binding to phycobilisomes is not characteristic for all phycobilisome retaining oxygenic photosynthetic organisms, and that the rhodoplast of red algae had possibly originated from a cyanobacterium ancestor, whose FNR lacked the CpcD-like domain.

  19. Mutations Associated with Functional Disorder of Xanthine Oxidoreductase and Hereditary Xanthinuria in Humans

    Directory of Open Access Journals (Sweden)

    Takeshi Nishino

    2012-11-01

    Full Text Available Xanthine oxidoreductase (XOR catalyzes the conversion of hypoxanthine to xanthine and xanthine to uric acid with concomitant reduction of either NAD+ or O2. The enzyme is a target of drugs to treat hyperuricemia, gout and reactive oxygen-related diseases. Human diseases associated with genetically determined dysfunction of XOR are termed xanthinuria, because of the excretion of xanthine in urine. Xanthinuria is classified into two subtypes, type I and type II. Type I xanthinuria involves XOR deficiency due to genetic defect of XOR, whereas type II xanthinuria involves dual deficiency of XOR and aldehyde oxidase (AO, a molybdoflavo enzyme similar to XOR due to genetic defect in the molybdenum cofactor sulfurase. Molybdenum cofactor deficiency is associated with triple deficiency of XOR, AO and sulfite oxidase, due to defective synthesis of molybdopterin, which is a precursor of molybdenum cofactor for all three enzymes. The present review focuses on mutation or chemical modification studies of mammalian XOR, as well as on XOR mutations identified in humans, aimed at understanding the reaction mechanism of XOR and the relevance of mutated XORs as models to estimate the possible side effects of clinical application of XOR inhibitors.

  20. Influence of 120 kDa Pyruvate:Ferredoxin Oxidoreductase on Pathogenicity of Trichomonas vaginalis.

    Science.gov (United States)

    Song, Hyun-Ouk

    2016-02-01

    Trichomonas vaginalis is a flagellate protozoan parasite and commonly infected the lower genital tract in women and men. Iron is a known nutrient for growth of various pathogens, and also reported to be involved in establishment of trichomoniasis. However, the exact mechanism was not clarified. In this study, the author investigated whether the 120 kDa protein of T. vaginalis may be involved in pathogenicity of trichomonads. Antibodies against 120 kDa protein of T. vaginalis, which was identified as pyruvate:ferredoxin oxidoreductase (PFOR) by peptide analysis of MALDI-TOF-MS, were prepared in rabbits. Pretreatment of T. vaginalis with anti-120 kDa Ab decreased the proliferation and adherence to vaginal epithelial cells (MS74) of T. vaginalis. Subcutaneous tissue abscess in anti-120 kDa Ab-treated T. vaginalis-injected mice was smaller in size than that of untreated T. vaginalis-infected mice. Collectively, the 120 kDa protein expressed by iron may be involved in proliferation, adhesion to host cells, and abscess formation, thereby may influence on the pathogenicity of T. vaginalis.

  1. Pyruvate:NADP+ oxidoreductase is stabilized by its cofactor, thiamin pyrophosphate, in mitochondria of Euglena gracilis.

    Science.gov (United States)

    Nakazawa, Masami; Takenaka, Shigeo; Ueda, Mitsuhiro; Inui, Hiroshi; Nakano, Yoshihisa; Miyatake, Kazutaka

    2003-03-15

    Pyruvate:NADP(+) oxidoreductase (PNO) is a thiamin pyrophosphate (TPP)-dependent enzyme that plays a central role in the respiratory metabolism of Euglena gracilis, which requires thiamin for growth. When thiamin was depleted in Euglena cells, PNO protein level was greatly reduced, but its mRNA level was barely changed. In addition, a large part of PNO occurred as an apoenzyme lacking TPP in the deficient cells. The PNO protein level increased rapidly, without changes in the mRNA level, after supplementation of thiamin into its deficient cells. In the deficient cells, in contrast to the sufficient ones, a steep decrease in the PNO protein level was induced when the cells were incubated with cycloheximide. Immunofluorescence microscopy indicated that most of the PNO localized in the mitochondria in either the sufficient or the deficient cells. These findings suggest that PNO is readily degraded when TPP is not provided in mitochondria, and consequently the PNO protein level is greatly reduced by thiamin deficiency in E. gracilis.

  2. Up-regulation of NAD(P)H quinone oxidoreductase 1 during human liver injury

    Institute of Scientific and Technical Information of China (English)

    Lauren M Aleksunes; Michael Goedken; José E Manautou

    2006-01-01

    AIM: To investigate the expression and activity of NAD(P)H quinone oxidoreductase 1 (NQO1) in human liver specimens obtained from patients with liver damage due to acetaminophen (APAP) overdose or primary biliary cirrhosis (PBC).METHODS: NQO1 activity was determined in cytosol from normal, APAP and PBC liver specimens. Western blot and immunohistochemical staining were used to determine patterns of NQO1 expression using a specific antibody against NQO1.RESULTS: NQO1 protein was very low in normal human livers. In both APAP and PBC livers, there was strong induction of NQO1 protein levels on Western blot.Correspondingly, significant up-regulation of enzyme activity (16- and 22-fold, P< 0.05) was also observed in APAP and PBC livers, respectively. Immunohistochemical analysis highlighted injury-specific patterns of NQO1 staining in both APAP and PBC livers.CONCLUSION: These data demonstrate that NQO1 protein and activity are markedly induced in human livers during both APAP overdose and PBC. Up-regulation of this cytoprotective enzyme may represent an adaptive stress response to limit further disease progression by detoxifying reactive species.

  3. Size controlled synthesis of biocompatible gold nanoparticles and their activity in the oxidation of NADH.

    Science.gov (United States)

    Chandran, Parvathy R; Naseer, M; Udupa, N; Sandhyarani, N

    2012-01-13

    Size and shape controlled synthesis remains a major bottleneck in the research on nanoparticles even after the development of different methods for their preparation. By tuning the size and shape of a nanoparticle, the intrinsic properties of the nanoparticle can be controlled leading tremendous potential applications in different fields of science and technology. We describe a facile route for the one pot synthesis of gold nanoparticles in water using monosodium glutamate as the reducing and stabilizing agent in the absence of seed particles. The particle diameter can be easily controlled by varying the pH of the reaction medium. Nanoparticles were characterized using scanning electron microscopy, UV-vis absorption spectroscopy, cyclic voltammetry, and dynamic light scattering. Zeta potential measurements were made to compare the stability of the different nanoparticles. The results suggest that lower pH favours a nucleation rate giving rise to smaller particles and higher pH favours a growth rate leading to the formation of larger particles. The synthesized nanoparticles are found to be stable and biocompatible. The nanoparticles synthesized at high pH exhibited a good electrocatalytic activity towards oxidation of nicotinamide adenine dinucleotide (NADH).

  4. Metabolic impact of an NADH-producing glucose-6-phosphate dehydrogenase in Escherichia coli

    DEFF Research Database (Denmark)

    Olavarria, K.; De Ingeniis, J.; Zielinski, D. C.

    2014-01-01

    PDH(R46E,Q47E). Through homologous recombination, the zwf loci (encoding G6PDH) in the chromosomes of WT and Δpgi E. coli strains were replaced by DNA encoding LmG6PDH(R46E,Q47E). Contrary to some predictions performed with flux balance analysis, the replacements caused a substantial effect......, we studied the metabolic response of this bacterium to the replacement of its glucose-6-phosphate dehydrogenase (G6PDH) by an NADH-producing variant. The homologous enzyme from Leuconostoc mesenteroides was studied by molecular dynamics and site-directed mutagenesis to obtain the NAD-preferring LmG6...... on the growth rates, increasing 59 % in the Δpgi strain, while falling 44 % in the WT. Quantitative PCR (qPCR) analysis of the zwf locus showed that the expression level of the mutant enzyme was similar to the native enzyme and the expression of genes encoding key enzymes of the central pathways also showed...

  5. Active site dynamics in NADH oxidase from Thermus thermophilus studied by NMR spin relaxation.

    Science.gov (United States)

    Miletti, Teresa; Farber, Patrick J; Mittermaier, Anthony

    2011-09-01

    We have characterized the backbone dynamics of NADH oxidase from Thermus thermophilus (NOX) using a recently-developed suite of NMR experiments designed to isolate exchange broadening, together with (15)N R (1), R (1ρ ), and {(1)H}-(15)N steady-state NOE relaxation measurements performed at 11.7 and 18.8 T. NOX is a 54 kDa homodimeric enzyme that belongs to a family of structurally homologous flavin reductases and nitroreductases with many potential biotechnology applications. Prior studies have suggested that flexibility is involved in the catalytic mechanism of the enzyme. The active site residue W47 was previously identified as being particularly important, as its level of solvent exposure correlates with enzyme activity, and it was observed to undergo "gating" motions in computer simulations. The NMR data are consistent with these findings. Signals from W47 are dynamically broadened beyond detection and several other residues in the active site have significant R ( ex ) contributions to transverse relaxation rates. In addition, the backbone of S193, whose side chain hydroxyl proton hydrogen bonds directly with the FMN cofactor, exhibits extensive mobility on the ns-ps timescale. We hypothesize that these motions may facilitate structural rearrangements of the active site that allow NOX to accept both FMN and FAD as cofactors.

  6. Exploring the inhibitor binding pocket of respiratory complex I.

    Science.gov (United States)

    Fendel, Uta; Tocilescu, Maja A; Kerscher, Stefan; Brandt, Ulrich

    2008-01-01

    Numerous hydrophobic and amphipathic compounds including several detergents are known to inhibit the ubiquinone reductase reaction of respiratory chain complex I (proton pumping NADH:ubiquinone oxidoreductase). Guided by the X-ray structure of the peripheral arm of complex I from Thermus thermophilus we have generated a large collection of site-directed mutants in the yeast Yarrowia lipolytica targeting the proposed ubiquinone and inhibitor binding pocket of this huge multiprotein complex at the interface of the 49-kDa and PSST subunits. We could identify a number of residues where mutations changed I(50) values for representatives from all three groups of hydrophobic inhibitors. Many mutations around the domain of the 49-kDa subunit that is homologous to the [NiFe] centre binding region of hydrogenase conferred resistance to DQA (class I/type A) and rotenone (class II/type B) indicating a wider overlap of the binding sites for these two types of inhibitors. In contrast, a region near iron-sulfur cluster N2, where the binding of the n-alkyl-polyoxyethylene-ether detergent C(12)E(8) (type C) was exclusively affected, appeared comparably well separated. Taken together, our data provide structure-based support for the presence of distinct but overlapping binding sites for hydrophobic inhibitors possibly extending into the ubiquinone reduction site of mitochondrial complex I.

  7. Developmental and hormone-induced changes of mitochondrial electron transport chain enzyme activities during the last instar larval development of maize stem borer, Chilo partellus (Lepidoptera: Crambidae).

    Science.gov (United States)

    VenkatRao, V; Chaitanya, R K; Naresh Kumar, D; Bramhaiah, M; Dutta-Gupta, A

    2016-12-01

    The energy demand for structural remodelling in holometabolous insects is met by cellular mitochondria. Developmental and hormone-induced changes in the mitochondrial respiratory activity during insect metamorphosis are not well documented. The present study investigates activities of enzymes of mitochondrial electron transport chain (ETC) namely, NADH:ubiquinone oxidoreductase or complex I, Succinate: ubiquinone oxidoreductase or complex II, Ubiquinol:ferricytochrome c oxidoreductase or complex III, cytochrome c oxidase or complex IV and F1F0ATPase (ATPase), during Chilo partellus development. Further, the effect of juvenile hormone (JH) analog, methoprene, and brain and corpora-allata-corpora-cardiaca (CC-CA) homogenates that represent neurohormones, on the ETC enzyme activities was monitored. The enzymatic activities increased from penultimate to last larval stage and thereafter declined during pupal development with an exception of ATPase which showed high enzyme activity during last larval and pupal stages compared to the penultimate stage. JH analog, methoprene differentially modulated ETC enzyme activities. It stimulated complex I and IV enzyme activities, but did not alter the activities of complex II, III and ATPase. On the other hand, brain homogenate declined the ATPase activity while the injected CC-CA homogenate stimulated complex I and IV enzyme activities. Cumulatively, the present study is the first to show that mitochondrial ETC enzyme system is under hormone control, particularly of JH and neurohormones during insect development.

  8. Impaired Mitochondrial Respiratory Functions and Oxidative Stress in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Subbuswamy K. Prabu

    2011-05-01

    Full Text Available We have previously shown a tissue-specific increase in oxidative stress in the early stages of streptozotocin (STZ-induced diabetic rats. In this study, we investigated oxidative stress-related long-term complications and mitochondrial dysfunctions in the different tissues of STZ-induced diabetic rats (>15 mM blood glucose for 8 weeks. These animals showed a persistent increase in reactive oxygen and nitrogen species (ROS and RNS, respectively production. Oxidative protein carbonylation was also increased with the maximum effect observed in the pancreas of diabetic rats. The activities of mitochondrial respiratory enzymes ubiquinol: cytochrome c oxidoreductase (Complex III and cytochrome c oxidase (Complex IV were significantly decreased while that of NADH:ubiquinone oxidoreductase (Complex I and succinate:ubiquinone oxidoreductase (Complex II were moderately increased in diabetic rats, which was confirmed by the increased expression of the 70 kDa Complex II sub-unit. Mitochondrial matrix aconitase, a ROS sensitive enzyme, was markedly inhibited in the diabetic rat tissues. Increased expression of oxidative stress marker proteins Hsp-70 and HO-1 was also observed along with increased expression of nitric oxide synthase. These results suggest that mitochondrial respiratory complexes may play a critical role in ROS/RNS homeostasis and oxidative stress related changes in type 1 diabetes and may have implications in the etiology of diabetes and its complications.

  9. Silver nanoparticles embedded in amine-functionalized silicate sol-gel network assembly for sensing cysteine, adenosine and NADH

    Energy Technology Data Exchange (ETDEWEB)

    Maduraiveeran, Govindhan; Ramaraj, Ramasamy, E-mail: ramarajr@yahoo.com [Madurai Kamaraj University, Centre for Photoelectrochemistry, School of Chemistry (India)

    2011-09-15

    Silver nanoparticles embedded in amine-functionalized silicate sol-gel network were synthesized and used for sensing biomolecules such as cysteine, adenosine, and {beta}-nicotinamide adenine dinucleotide (NADH). The sensing of these biomolecules by the assembly of silver nanoparticles was triggered by the optical response of the surface plasmon resonance (SPR) of the silver nanoparticles. The optical sensor exhibited the lowest detection limit (LOD) of 5, 20, and 5 {mu}M for cysteine, adenosine, and NADH, respectively. The sensing of biomolecules in the micromolar range by using the amine-functionalized silicate sol-gel embedded silver nanoparticles was studied in the presence of interference molecules like uridine, glycine, guanine, and guanosine. Thus, the present approach might open up a new avenue for the development of silver nanoparticles-based optical sensor devices for biomolecules.

  10. Electrocatalytic activity of oxidation products of guanine and 5'-GMP towards the oxidation of NADH

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Alvarez, Noemi de los; Lobo-Castanon, Maria Jesus; Miranda-Ordieres, Arturo J. [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Tunon-Blanco, Paulino [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)], E-mail: ptb@uniovi.es

    2007-12-01

    We have studied the potential electrocatalytic activity towards the oxidation of NADH of several oxidation products of guanine and its derivative guanosine-5'-monophosphate (5'-GMP) on pyrolytic graphite electrodes (PGE). The distribution of products generated strongly depends on the experimental conditions. Our investigations focused on the oxidation products that are adsorbed on the electrode surface, are redox active and, exhibited electrocatalytic activity toward the oxidation of NADH. These compounds were electrochemically and kinetically characterized in terms of dependence of the formal potential on pH and electron transfer rate constant (k{sub s}). The voltammetric and catalytic behavior of both guanine and 5'-GMP oxidation products was compared with that of other guanine derivatives we have previously studied. Some mechanistic aspects concerning the generation of the catalysts are also discussed.

  11. Electrocatalytic Oxidation of NADH Based on Self-assembled Colloidal Gold and Nafion Matrixes and Co Complex Mediator

    Institute of Scientific and Technical Information of China (English)

    Na WANG; Ruo YUAN; Ya Qin CHAI; Dian Ping TANG; Qiang ZHU; Xue Lian LI

    2006-01-01

    A novel approach based on self-assembled colloidal gold and Nafion matrixes and Co complex mediator to construct Co(bpy)33+/nano-Au/Co(bpy)33+/nafion/GC electrode, on which formed stable redox-active films. This electrode can decrease the overpotential about 330 mV for the oxidation of NADH with high stability, wide linear range and low detection limit.

  12. Cobalt ferrite nanoparticles decorated on exfoliated graphene oxide, application for amperometric determination of NADH and H2O2.

    Science.gov (United States)

    Ensafi, Ali A; Alinajafi, Hossein A; Jafari-Asl, M; Rezaei, B; Ghazaei, F

    2016-03-01

    Here, cobalt ferrite nanohybrid decorated on exfoliated graphene oxide (CoFe2O4/EGO) was synthesized. The nanohybrid was characterized by different methods such as X-ray diffraction spectroscopy, scanning electron microscopy, energy dispersive X-ray diffraction microanalysis, transmission electron microscopy, FT-IR, Raman spectroscopy and electrochemical methods. The CoFe2O4/EGO nanohybrid was used to modify glassy carbon electrode (GCE). The voltammetric investigations showed that CoFe2O4/EGO nanohybrid has synergetic effect towards the electro-reduction of H2O2 and electro-oxidation of nicotinamide adenine dinucleotide (NADH). Rotating disk chronoamperometry was used for their quantitative analysis. The calibration curves were observed in the range of 0.50 to 100.0 μmol L(-1) NADH and 0.9 to 900.0 μmol L(-1) H2O2 with detections limit of 0.38 and 0.54 μmol L(-1), respectively. The repeatability, reproducibility and selectivity of the electrochemical sensor for analysis of the analytes were studied. The new electrochemical sensor was successfully applied for the determination of NADH and H2O2 in real samples with satisfactory results.

  13. Non-invasive in-cell determination of free cytosolic [NAD+]/[NADH] ratios using hyperpolarized glucose show large variations in metabolic phenotypes

    DEFF Research Database (Denmark)

    Christensen, Caspar Elo; Karlsson, Magnus; Winther, Jakob R.;

    2014-01-01

    a magnetic enhancement technique (hyperpolarization) with cellular glycolytic activity. The bioprobe reports free cytosolic [NAD+]/[NADH] ratios based on dynamically measured in-cell [pyruvate]/ [lactate] ratios. We demonstrate its utility in breast and prostate cancer cells. The free cytosolic [NAD......+]/[NADH] ratio determined in prostate cancer cells was 4 times higher than in breast cancer cells. This higher ratio reflects a distinct metabolic phenotype of prostate cancer cells consistent with previously reported alterations in the energy metabolism of these cells. As a reporter on free cytosolic [NAD...... death and oxidative stress. It has been suggested that changes in the ratio of free cytosolic [NAD+]/[NADH] reflects metabolic alterations leading to, or correlating with, pathological states. We have designed an isotopically labelled metabolic bioprobe of free cytosolic [NAD+]/[NADH] by combining...

  14. Association of Ferredoxin:NADP(+) oxidoreductase with the photosynthetic apparatus modulates electron transfer in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Mosebach, Laura; Heilmann, Claudia; Mutoh, Risa; Gäbelein, Philipp; Steinbeck, Janina; Happe, Thomas; Ikegami, Takahisa; Hanke, Guy; Kurisu, Genji; Hippler, Michael

    2017-06-07

    Ferredoxins (FDX) and the FDX:NADP(+) oxidoreductase (FNR) represent a key junction of electron transport downstream of photosystem I (PSI). Dynamic recruitment of FNR to the thylakoid membrane has been considered as a potential mechanism to define the fate of photosynthetically derived electrons. In this study, we investigated the functional importance of the association of FNR with the photosynthetic apparatus in Chlamydomonas reinhardtii. In vitro assays based on NADP(+) photoreduction measurements as well as NMR chemical shift perturbation analyses showed that FNR preferentially interacts with FDX1 compared to FDX2. Notably, binding of FNR to a PSI supercomplex further enhanced this preference for FDX1 over FDX2, suggesting that FNR is potentially capable of channelling electrons towards distinct routes. NADP(+) photoreduction assays and immunoblotting revealed that the association of FNR with the thylakoid membrane including the PSI supercomplex is impaired in the absence of Proton Gradient Regulation 5 (PGR5) and/or Proton Gradient Regulation 5-Like photosynthetic phenotype 1 (PGRL1), implying that both proteins, directly or indirectly, contribute to the recruitment of FNR to the thylakoid membrane. As assessed via in vivo absorption spectroscopy and immunoblotting, PSI was the primary target of photodamage in response to high-light stress in the absence of PGR5 and/or PGRL1. Anoxia preserved the activity of PSI, pointing to enhanced electron donation to O2 as the source of the observed PSI inactivation and degradation. These findings establish another perspective on PGR5/PGRL1 knockout-related phenotypes and potentially interconnect FNR with the regulation of photosynthetic electron transport and PSI photoprotection in C. reinhardtii.

  15. Identification of a lactate-quinone oxidoreductase (Lqo in staphylococcus aureus that is essential for virulence

    Directory of Open Access Journals (Sweden)

    James R Fuller

    2011-12-01

    Full Text Available Staphylococcus aureus is an important human pathogen commonly infecting nearly every host tissue. The ability of S. aureus to resist innate immunity is critical to its success as a pathogen, including its propensity to grow in the presence of host nitric oxide (NO·. Upon exogenous NO· exposure, S. aureus immediately excretes copious amounts of L-lactate to maintain redox balance. However, after prolonged NO·-exposure, S. aureus reassimilates L-lactate specifically and in this work, we identify the enzyme responsible for this L-lactate consumption as a L-lactate-quinone oxidoreductase (Lqo, SACOL2623. Originally annotated as Mqo2 and thought to oxidize malate, we show that this enzyme exhibits no affinity for malate but reacts specifically with L-lactate (KM = ~330 µM. In addition to its requirement for reassimilation of L-lactate during NO·-stress, Lqo is also critical to respiratory growth on L-lactate as a sole carbon source. Moreover, ∆lqo mutants exhibit attenuation in a murine model of sepsis, particularly in their ability to cause myocarditis. Interestingly, this cardiac-specific attenuation is completely abrogated in mice unable to synthesize inflammatory NO· (iNOS-/-. We demonstrate that S. aureus NO·-resistance is highly dependent on the availability of a glycolytic carbon sources. However, S. aureus can utilize the combination of peptides and L-lactate as carbon sources during NO·-stress in an Lqo-dependent fashion. Murine cardiac tissue has markedly high levels of L-lactate in comparison to renal or hepatic tissue consistent with the NO·-dependent requirement for Lqo in S. aureus myocarditis. Thus, Lqo provides S. aureus with yet another means of replicating in the presence of host NO·.

  16. Update of the NAD(PH:quinone oxidoreductase (NQO gene family

    Directory of Open Access Journals (Sweden)

    Vasiliou Vasilis

    2006-03-01

    Full Text Available Abstract The NAD(PH:quinone acceptor oxidoreductase (NQO gene family belongs to the flavoprotein clan and, in the human genome, consists of two genes (NQO1 and NQO2. These two genes encode cytosolic flavoenzymes that catalyse the beneficial two-electron reduction of quinones to hydroquinones. This reaction prevents the unwanted one-electron reduction of quinones by other quinone reductases; one-electron reduction results in the formation of reactive oxygen species, generated by redox cycling of semiquinones in the presence of molecular oxygen. Both the mammalian NQO1 and NQO2 genes are upregulated as a part of the oxidative stress response and are inexplicably overexpressed in particular types of tumours. A non-synonymous mutation in the NQO1 gene, leading to absence of enzyme activity, has been associated with an increased risk of myeloid leukaemia and other types of blood dyscrasia in workers exposed to benzene. NQO2 has a melatonin-binding site, which may explain the anti-oxidant role of melatonin. An ancient NQO3 subfamily exists in eubacteria and the authors suggest that there should be additional divisions of the NQO family to include the NQO4 subfamily in fungi and NQO5 subfamily in archaebacteria. Interestingly, no NQO genes could be identified in the worm, fly, sea squirt or plants; because these taxa carry quinone reductases capable of one- and two-electron reductions, there has been either convergent evolution or redundancy to account for the appearance of these enzyme functions whenever they have been needed during evolution.

  17. Cytochrome P450 oxidoreductase participates in nitric oxide consumption by rat brain.

    Science.gov (United States)

    Hall, Catherine N; Keynes, Robert G; Garthwaite, John

    2009-04-15

    In low nanomolar concentrations, NO (nitric oxide) functions as a transmitter in brain and other tissues, whereas near-micromolar NO concentrations are associated with toxicity and cell death. Control of the NO concentration, therefore, is critical for proper brain function, but, although its synthesis pathway is well-characterized, the major route of breakdown of NO in brain is unclear. Previous observations indicate that brain cells actively consume NO at a high rate. The mechanism of this consumption was pursued in the present study. NO consumption by a preparation of central glial cells was abolished by cell lysis and recovered by addition of NADPH. NADPH-dependent consumption of NO localized to cell membranes and was inhibited by proteinase K, indicating the involvement of a membrane-bound protein. Purification of this activity yielded CYPOR (cytochrome P450 oxidoreductase). Antibodies against CYPOR inhibited NO consumption by brain membranes and the amount of CYPOR in several cell types correlated with their rate of NO consumption. NO was also consumed by purified CYPOR but this activity was found to depend on the presence of the vitamin E analogue Trolox (6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid), included in the buffer as a precaution against inadvertent NO consumption by lipid peroxidation. In contrast, NO consumption by brain membranes was independent of Trolox. Hence, it appears that, during the purification process, CYPOR becomes separated from a partner needed for NO consumption. Cytochrome P450 inhibitors inhibited NO consumption by brain membranes, making these proteins likely candidates.

  18. Renoprotective effect of the xanthine oxidoreductase inhibitor topiroxostat on adenine-induced renal injury.

    Science.gov (United States)

    Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Hibi, Chihiro; Nakamura, Takashi; Murase, Takayo; Oikawa, Tsuyoshi; Hoshino, Seiko; Hisamichi, Mikako; Hirata, Kazuaki; Kimura, Kenjiro; Shibagaki, Yugo

    2016-06-01

    The aim of the present study was to reveal the effect of a xanthine oxidoreductase (XOR) inhibitor, topiroxostat (Top), compared with another inhibitor, febuxostat (Feb), in an adenine-induced renal injury model. We used human liver-type fatty acid-binding protein (L-FABP) chromosomal transgenic mice, and urinary L-FABP, a biomarker of tubulointerstitial damage, was used to evaluate tubulointerstitial damage. Male transgenic mice (n = 24) were fed a 0.2% (wt/wt) adenine-containing diet. Two weeks after the start of this diet, renal dysfunction was confirmed, and the mice were divided into the following four groups: the adenine group was given only the diet containing adenine, and the Feb, high-dose Top (Top-H), and low-dose Top (Top-L) groups were given diets containing Feb (3 mg/kg), Top-H (3 mg/kg), and Top-L (1 mg/kg) in addition to adenine for another 2 wk. After withdrawal of the adenine diet, each medication was continued for 2 wk. Serum creatinine levels, the degree of macrophage infiltration, tubulointerstitial damage, renal fibrosis, urinary 15-F2t-isoprostane levels, and renal XOR activity were significantly attenuated in the kidneys of the Feb, Top-L, and Top-H groups compared with the adenine group. Serum creatinine levels in the Top-L and Top-H groups as well as renal XOR in the Top-H group were significantly lower than those in the Feb group. Urinary excretion of L-FABP in both the Top-H and Top-L groups was significantly lower than in the adenine and Feb groups. In conclusion, Top attenuated renal damage in an adenine-induced renal injury model.

  19. Two isoforms of ferredoxin:NADP(+) oxidoreductase from wheat leaves: purification and initial biochemical characterization.

    Science.gov (United States)

    Grzyb, Joanna; Malec, Przemysław; Rumak, Izabela; Garstka, Maciej; Strzałka, Kazimierz

    2008-04-01

    Ferredoxin:NADP(+) oxidoreductase is an enzyme associated with the stromal side of the thylakoid membrane in the chloroplast. It is involved in photosynthetic linear electron transport to produce NADPH and is supposed to play a role in cyclic electron transfer, generating a transmembrane pH gradient allowing ATP production, if photosystem II is non-functional or no NADP(+) is available for reduction. Different FNR isoforms have been described in non-photosynthetic tissues, where the enzyme catalyses the NADPH-dependent reduction of ferredoxin (Fd), necessary for some biosynthetic pathways. Here, we report the isolation and purification of two FNR isoproteins from wheat leaves, called FNR-A and FNR-B. These forms of the enzyme were identified as products of two different genes, as confirmed by mass spectrometry. The molecular masses of FNR-A and FNR-B were 34.3 kDa and 35.5 kDa, respectively. The isoelectric point of both FNR-A and FNR-B was about 5, but FNR-B appeared more acidic (of about 0.2 pH unit) than FNR-A. Both isoenzymes were able to catalyse a NADPH-dependent reduction of dibromothymoquinone and the mixture of isoforms catalysed reduction of cytochrome c in the presence of Fd. For the first time, the pH- and ionic strength dependent oligomerization of FNRs is observed. No other protein was necessary for complex formation. The putative role of the two FNR isoforms in photosynthesis is discussed based on current knowledge of electron transport in chloroplasts.

  20. Structural basis for human NADPH-cytochrome P450 oxidoreductase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Chuanwu; Panda, Satya P.; Marohnic, Christopher C.; Martásek, Pavel; Masters, Bettie Sue; Kim, Jung-Ja P. (MCW); (Charles U); (UTSMC)

    2012-03-15

    NADPH-cytochrome P450 oxidoreductase (CYPOR) is essential for electron donation to microsomal cytochrome P450-mediated monooxygenation in such diverse physiological processes as drug metabolism (approximately 85-90% of therapeutic drugs), steroid biosynthesis, and bioactive metabolite production (vitamin D and retinoic acid metabolites). Expressed by a single gene, CYPOR's role with these multiple redox partners renders it a model for understanding protein-protein interactions at the structural level. Polymorphisms in human CYPOR have been shown to lead to defects in bone development and steroidogenesis, resulting in sexual dimorphisms, the severity of which differs significantly depending on the degree of CYPOR impairment. The atomic structure of human CYPOR is presented, with structures of two naturally occurring missense mutations, V492E and R457H. The overall structures of these CYPOR variants are similar to wild type. However, in both variants, local disruption of H bonding and salt bridging, involving the FAD pyrophosphate moiety, leads to weaker FAD binding, unstable protein, and loss of catalytic activity, which can be rescued by cofactor addition. The modes of polypeptide unfolding in these two variants differ significantly, as revealed by limited trypsin digestion: V492E is less stable but unfolds locally and gradually, whereas R457H is more stable but unfolds globally. FAD addition to either variant prevents trypsin digestion, supporting the role of the cofactor in conferring stability to CYPOR structure. Thus, CYPOR dysfunction in patients harboring these particular mutations may possibly be prevented by riboflavin therapy in utero, if predicted prenatally, or rescued postnatally in less severe cases.

  1. Multiple orientations in a physiological complex: the pyruvate-ferredoxin oxidoreductase-ferredoxin system.

    Science.gov (United States)

    Pieulle, Laetitia; Nouailler, Matthieu; Morelli, Xavier; Cavazza, Christine; Gallice, Philippe; Blanchet, Stéphane; Bianco, Pierre; Guerlesquin, Françoise; Hatchikian, E Claude

    2004-12-14

    Ferredoxin I from Desulfovibrio africanus (Da FdI) is a small acidic [4Fe-4S] cluster protein that exchanges electrons with pyruvate-ferredoxin oxidoreductase (PFOR), a key enzyme in the energy metabolism of anaerobes. The thermodynamic properties and the electron transfer between PFOR and either native or mutated FdI have been investigated by microcalorimetry and steady-state kinetics, respectively. The association constant of the PFOR-FdI complex is 3.85 x 10(5) M(-1), and the binding affinity has been found to be highly sensitive to ionic strength, suggesting the involvement of electrostatic forces in formation of the complex. Surprisingly, the punctual or combined neutralizations of carboxylate residues surrounding the [4Fe-4S] cluster slightly affect the PFOR-FdI interaction. Furthermore, hydrophobic residues around the cluster do not seem to be crucial for the PFOR-FdI system activity; however, some of them play an important role in the stability of the FeS cluster. NMR restrained docking associated with site-directed mutagenesis studies suggested the presence of various interacting sites on Da FdI. The modification of additional acidic residues at the interacting interface, generating a FdI pentamutant, evidenced at least two distinct FdI binding sites facing the distal [4Fe-4S] cluster of the PFOR. We also used a set of various small acidic partners to investigate the specificity of PFOR toward redox partners. The remarkable flexibility of the PFOR-FdI system supports the idea that the specificity of the physiological complex has probably been "sacrificed" to improve the turnover rate and thus the efficiency of bacterial electron transfer.

  2. NAD(PH:quinone oxidoreductase 1 (NQO1 localizes to the mitotic spindle in human cells.

    Directory of Open Access Journals (Sweden)

    David Siegel

    Full Text Available NAD(PH:quinone oxidoreductase 1 (NQO1 is an FAD containing quinone reductase that catalyzes the 2-electron reduction of a broad range of quinones. The 2-electron reduction of quinones to hydroquinones by NQO1 is believed to be a detoxification process since this reaction bypasses the formation of the highly reactive semiquinone. NQO1 is expressed at high levels in normal epithelium, endothelium and adipocytes as well as in many human solid tumors. In addition to its function as a quinone reductase NQO1 has been shown to reduce superoxide and regulate the 20 S proteasomal degradation of proteins including p53. Biochemical studies have indicated that NQO1 is primarily located in the cytosol, however, lower levels of NQO1 have also been found in the nucleus. In these studies we demonstrate using immunocytochemistry and confocal imaging that NQO1 was found associated with mitotic spindles in cells undergoing division. The association of NQO1 with the mitotic spindles was observed in many different human cell lines including nontransformed cells (astrocytes, HUVEC immortalized cell lines (HBMEC, 16HBE and cancer (pancreatic adenocarcinoma, BXPC3. Confocal analysis of double-labeling experiments demonstrated co-localization of NQO1with alpha-tubulin in mitotic spindles. In studies with BxPc-3 human pancreatic cancer cells the association of NQO1 with mitotic spindles appeared to be unchanged in the presence of NQO1 inhibitors ES936 or dicoumarol suggesting that NQO1 can associate with the mitotic spindle and still retain catalytic activity. Analysis of archival human squamous lung carcinoma tissue immunostained for NQO1 demonstrated positive staining for NQO1 in the spindles of mitotic cells. The purpose of this study is to demonstrate for the first time the association of the quinone reductase NQO1 with the mitotic spindle in human cells.

  3. Mechanistic reappraisal of early stage photochemistry in the light-driven enzyme protochlorophyllide oxidoreductase.

    Directory of Open Access Journals (Sweden)

    Derren J Heyes

    Full Text Available The light-driven enzyme protochlorophyllide oxidoreductase (POR catalyzes the reduction of protochlorophyllide (Pchlide to chlorophyllide (Chlide. This reaction is a key step in the biosynthesis of chlorophyll. Ultrafast photochemical processes within the Pchlide molecule are required for catalysis and previous studies have suggested that a short-lived excited-state species, known as I675*, is the first catalytic intermediate in the reaction and is essential for capturing excitation energy to drive subsequent hydride and proton transfers. The chemical nature of the I675* excited state species and its role in catalysis are not known. Here, we report time-resolved pump-probe spectroscopy measurements to study the involvement of the I675* intermediate in POR photochemistry. We show that I675* is not unique to the POR-catalyzed photoreduction of Pchlide as it is also formed in the absence of the POR enzyme. The I675* species is only produced in samples that contain both Pchlide substrate and Chlide product and its formation is dependent on the pump excitation wavelength. The rate of formation and the quantum yield is maximized in 50∶50 mixtures of the two pigments (Pchlide and Chlide and is caused by direct energy transfer between Pchlide and neighboring Chlide molecules, which is inhibited in the polar solvent methanol. Consequently, we have re-evaluated the mechanism for early stage photochemistry in the light-driven reduction of Pchlide and propose that I675* represents an excited state species formed in Pchlide-Chlide dimers, possibly an excimer. Contrary to previous reports, we conclude that this excited state species has no direct mechanistic relevance to the POR-catalyzed reduction of Pchlide.

  4. Proton transfer from the bulk to the bound ubiquinone QB of the reaction center in chromatophores of Rhodobacter sphaeroides: Retarded conveyance by neutral water

    Science.gov (United States)

    Gopta, Oksana A.; Cherepanov, Dmitry A.; Junge, Wolfgang; Mulkidjanian, Armen Y.

    1999-01-01

    The mechanism of proton transfer from the bulk into the membrane protein interior was studied. The light-induced reduction of a bound ubiquinone molecule QB by the photosynthetic reaction center is accompanied by proton trapping. We used kinetic spectroscopy to measure (i) the electron transfer to QB (at 450 nm), (ii) the electrogenic proton delivery from the surface to the QB site (by electrochromic carotenoid response at 524 nm), and (iii) the disappearance of protons from the bulk solution (by pH indicators). The electron transfer to QB− and the proton-related electrogenesis proceeded with the same time constant of ≈100 μs (at pH 6.2), whereas the alkalinization in the bulk was distinctly delayed (τ ≈ 400 μs). We investigated the latter reaction as a function of the pH indicator concentration, the added pH buffers, and the temperature. The results led us to the following conclusions: (i) proton transfer from the surface-located acidic groups into the QB site followed the reduction of QB without measurable delay; (ii) the reprotonation of these surface groups by pH indicators and hydronium ions was impeded, supposedly, because of their slow diffusion in the surface water layer; and (iii) as a result, the protons were slowly donated by neutral water to refill the proton vacancies at the surface. It is conceivable that the same mechanism accounts for the delayed relaxation of the surface pH changes into the bulk observed previously with bacteriorhodopsin membranes and thylakoids. Concerning the coupling between proton pumps in bioenergetic membranes, our results imply a tendency for the transient confinement of protons at the membrane surface. PMID:10557290

  5. Exceptional longevity and exceptionally high metabolic rates in anthropoid primates are linked to a major modification of the ubiquinone reduction site of cytochrome b.

    Science.gov (United States)

    Rottenberg, Hagai

    2014-10-01

    The maximal lifespan of Anthropoid primates (monkeys, apes and humans) exceed the lifespan of most other mammals of equal body mass. Unexpectedly, their exceptional longevity is associated with exceptionally high metabolic rates, in apparent contradiction to the Free Radical Theory of Aging. It was therefore suggested that in anthropoid primates (and several other taxa of mammals and birds) the mitochondrial electron transport complexes evolved to modify the relationship between basal electron transport and superoxide generation to allow for the evolution of exceptional longevity. Cytochrome b, the core protein of the bc1 complex is a major source of superoxide. The amino-acid sequence of cytochrome b evolved much faster in anthropoid than in prosimian primates, and most other mammals, resulting in a large change in the amino-acids composition of the protein. As a result of these changes cytochrome b in anthropoid primates is significantly less hydrophobic and contains more polar residues than other primates and most other mammals. Most of these changes are clustered around the reduction site of uboiquinone. In particular a key positively charged residue, arginine 313, that interacts with propionate D of heme bH, and thus raises its redox potential, is substituted in anthropoid primates with the neutral residue glutamine, most likely resulting in a lower redox potential of heme bH and faster reduction of ubiquinone at high proton motive force. It is suggested that these changes contribute to the observed increased rates of basal metabolism and reduce the rates of superoxide production, thus allowing for increased lifespan.

  6. Life without complex I: proteome analyses of an Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex.

    Science.gov (United States)

    Fromm, Steffanie; Senkler, Jennifer; Eubel, Holger; Peterhänsel, Christoph; Braun, Hans-Peter

    2016-05-01

    The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific 'carbonic anhydrase domain' of mitochondrial complex I. The mutant lacks complex I completely. Here we report extended analyses for systematically characterizing the proteome of the ca1ca2 mutant. Using various proteomic tools, we show that lack of complex I causes reorganization of the cellular respiration system. Reduced electron entry into the respiratory chain at the first segment of the mETC leads to induction of complexes II and IV as well as alternative oxidase. Increased electron entry at later segments of the mETC requires an increase in oxidation of organic substrates. This is reflected by higher abundance of proteins involved in glycolysis, the tricarboxylic acid cycle and branched-chain amino acid catabolism. Proteins involved in the light reaction of photosynthesis, the Calvin cycle, tetrapyrrole biosynthesis, and photorespiration are clearly reduced, contributing to the significant delay in growth and development of the double-mutant. Finally, enzymes involved in defense against reactive oxygen species and stress symptoms are much induced. These together with previously reported insights into the function of plant complex I, which were obtained by analysing other complex I mutants, are integrated in order to comprehensively describe 'life without complex I'.

  7. Chloroplast NDH: A different enzyme with a structure similar to that of respiratory NADH dehydrogenase.

    Science.gov (United States)

    Shikanai, Toshiharu

    2016-07-01

    Eleven genes encoding chloroplast NADH dehydrogenase-like (NDH) complex have been discovered in plastid genomes on the basis of their homology with genes encoding respiratory complex I. Despite this structural similarity, chloroplast NDH and its evolutionary origin NDH-1 in cyanobacteria accept electrons from ferredoxin (Fd), indicating that chloroplast NDH is an Fd-dependent plastoquinone (PQ) reductase rather than an NAD(P)H dehydrogenase. In Arabidopsis thaliana, chloroplast NDH interacts with photosystem I (PSI); this interaction is needed to stabilize NDH, especially under high light. On the basis of these distinct characters of chloroplast and cyanobacterial NDH, it can be distinguished as a photosynthetic NDH from respiratory complex I. In fact, chloroplast NDH forms part of the machinery of photosynthesis by mediating the minor pathway of PSI cyclic electron transport. Along with the antimycin A-sensitive main pathway of PSI cyclic electron transport, chloroplast NDH compensates the ATP/NADPH production ratio in the light reactions of photosynthesis. In this review, I revisit the original concept of chloroplast NDH on the basis of its similarity to respiratory complex I and thus introduce current progress in the field to researchers focusing on respiratory complex I. I summarize recent progress on the basis of structure and function. Finally, I introduce the results of our examination of the process of assembly of chloroplast NDH. Although the process requires many plant-specific non-subunit factors, the core processes of assembly are conserved between chloroplast NDH and respiratory complex I. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Novel structural features in the GMC family of oxidoreductases revealed by the crystal structure of fungal aryl-alcohol oxidase.

    Science.gov (United States)

    Fernández, Israel S; Ruíz-Dueñas, Francisco J; Santillana, Elena; Ferreira, Patricia; Martínez, María Jesús; Martínez, Angel T; Romero, Antonio

    2009-11-01

    Lignin biodegradation, a key step in carbon recycling in land ecosystems, is carried out by white-rot fungi through an H(2)O(2)-dependent process defined as enzymatic combustion. Pleurotus eryngii is a selective lignin-degrading fungus that produces H(2)O(2) during redox cycling of p-anisylic compounds involving the secreted flavoenzyme aryl-alcohol oxidase (AAO). Here, the 2.4 A resolution X-ray crystal structure of this oxidoreductase, which catalyzes dehydrogenation reactions on various primary polyunsaturated alcohols, yielding the corresponding aldehydes, is reported. The AAO crystal structure was solved by single-wavelength anomalous diffraction of a selenomethionine derivative obtained by Escherichia coli expression and in vitro folding. This monomeric enzyme is composed of two domains, the overall folding of which places it into the GMC (glucose-methanol-choline oxidase) oxidoreductase family, and a noncovalently bound FAD cofactor. However, two additional structural elements exist in the surroundings of its active site that modulate the access of substrates; these are absent in the structure of the model GMC oxidoreductase glucose oxidase. The folding of these novel elements gives rise to a funnel-like hydrophobic channel that connects the solvent region to the buried active-site cavity of AAO. This putative active-site cavity is located in front of the re side of the FAD isoalloxazine ring and near two histidines (His502 and His546) that could contribute to alcohol activation as catalytic bases. Moreover, three aromatic side chains from two phenylalanines (Phe397 and Phe502) and one tyrosine (Tyr92) at the inner region of the channel form an aromatic gate that may regulate the access of the enzyme substrates to the active site as well as contribute to the recognition of the alcohols that can effectively be oxidized by AAO.

  9. Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase

    DEFF Research Database (Denmark)

    Bavishi, Krutika; Laursen, Tomas; Martinez, Karen Laurence

    2016-01-01

    Direct electrochemistry of cytochrome P450 containing systems has primarily focused on investigating enzymes from microbes and animals for bio-sensing applications. Plant P450s receive electrons from NADPH P450 oxidoreductase (POR) to orchestrate the bio-synthesis of a plethora of commercially...... was electro-catalytically active while the P450s generated hydrogen peroxide (H2O2). These nanodisc-based investigations lay the prospects and guidelines for construction of a simplified platform to perform mediator-free, direct electrochemistry of non-engineered cytochromes P450 under native-like conditions...

  10. Neurônios NADH-diaforase positivos do jejuno de ratos adultos (Rattus norvegicus desnutridos: aspectos quantitativos NADH-diaphorase positive neurons of the jejunum of disnurtured adult rats (Rattus norvegicus: quantitative aspects

    Directory of Open Access Journals (Sweden)

    Sônia Trannin de Mello Zanin

    2003-09-01

    Full Text Available Temos por objetivo contribuir com informações sobre os aspectos quantitativos dos neurônios mioentéricos NADH-diaforase positivos do jejuno de ratos submetidos a desnutrição protéica. Foram utilizados 10 ratos (90 dias de idade, divididos em grupos: controle (n=5, ±278g e desnutrido (n=5, ±280g. Nos 120 dias seguintes, os ratos do grupo controle receberam ração com teor protéico de 22%, os do grupo desnutrido, 8%. Ao final deste período, os ratos do grupo controle pesaram ±394,4g e os desnutrido ±273,5g.O jejuno foi submetido à técnica histoquímica da NADH-diaforase para evidenciação de células nervosas em preparado de membranas. Foram contados os neurônios presentes em 80 campos microscópicos em ambos os grupos. Verificaram-se no controle ±674,6 neurônios e no desnutrido ±1326,8 neurônios; A dieta não alterou a organização dos neurônios entretanto, levou a um menor desenvolvimento corporal nos animais desnutridos, contribuindo para que os neurônios destes sofressem menor dispersão e apresentassem maior densidade por mm².We aim at contributing with information on the quantitative aspects of the NADH-diaphorase positive myenteric neurons of the jejunum of adult rats subjected to protein desnutrition. Ten rats aging 90 days were divided into two groups: control (n=5, ±278 g and disnurtured (n=5, ±280 g. In the following 120 days, the rats from the control group had chow with 22% protein level, and those from the disnurtured group, with 8% protein level. After this period, the control rats weighted ±394.4g and the disnurtured ±273.5g. The jejunum was subjected to the histochemical technique of the NADH-diaphorase to stain nerve cells in whole-mounts. The neurons found in 80 microscopic fields of both groups were counted. In the control ±674.6 neurons were observed, and ±1326.8 neurons were counted in the disnurtured group. The low-protein diet did not alter the organization of the neurons, but led to a

  11. Chorion peroxidase-mediated NADH/O2 oxidoreduction cooperated by chorion malate dehydrogenase-catalyzed NADH production: a feasible pathway leading to H2O2 formation during chorion hardening in Aedes aegypti mosquitoes

    OpenAIRE

    Han, Qian; Li, Guoyu; Li, Jianyong

    2000-01-01

    A specific chorion peroxidase is present in Aedes aegypti and this enzyme is responsible for catalyzing chorion protein cross-linking through dityrosine formation during chorion hardening. Peroxidase-mediated dityrosine cross-linking requires H2O2, and this study discusses the possible involvement of the chorion peroxidase in H2O2 formation by mediating NADH/O2 oxidoreduction during chorion hardening in A. aegypti eggs. Our data show that mosquito chorion peroxidase is able to catalyze pH-dep...

  12. Identification of NAD(PH quinone oxidoreductase activity in azoreductases from P. aeruginosa: azoreductases and NAD(PH quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes.

    Directory of Open Access Journals (Sweden)

    Ali Ryan

    Full Text Available Water soluble quinones are a group of cytotoxic anti-bacterial compounds that are secreted by many species of plants, invertebrates, fungi and bacteria. Studies in a number of species have shown the importance of quinones in response to pathogenic bacteria of the genus Pseudomonas. Two electron reduction is an important mechanism of quinone detoxification as it generates the less toxic quinol. In most organisms this reaction is carried out by a group of flavoenzymes known as NAD(PH quinone oxidoreductases. Azoreductases have previously been separate from this group, however using azoreductases from Pseudomonas aeruginosa we show that they can rapidly reduce quinones. Azoreductases from the same organism are also shown to have distinct substrate specificity profiles allowing them to reduce a wide range of quinones. The azoreductase family is also shown to be more extensive than originally thought, due to the large sequence divergence amongst its members. As both NAD(PH quinone oxidoreductases and azoreductases have related reaction mechanisms it is proposed that they form an enzyme superfamily. The ubiquitous and diverse nature of azoreductases alongside their broad substrate specificity, indicates they play a wide role in cellular survival under adverse conditions.

  13. GMC oxidoreductase, a highly expressed protein in a potent biocontrol agent Fusarium oxysporum Cong:1-2, is dispensable for biocontrol activity.

    Science.gov (United States)

    Kawabe, Masato; Okabe Onokubo, Akiko; Arimoto, Yutaka; Yoshida, Takanobu; Azegami, Koji; Teraoka, Tohru; Arie, Tsutomu

    2011-01-01

    A spontaneous non-pathogenic variant (Cong:1-2) derived from Fusarium oxysporum f. sp. conglutinans (Cong: 1-1), a causal agent of cabbage yellows, carries biocontrol activity for cabbage yellows. We found a GMC oxidoreductase (ODX1) among the proteins expressed much more in Cong:1-2 than Cong:1-1 by 2D-DIGE comparison. GMC oxidoreductases have been reported to be involved in biocontrol activity of several plant pathogenic fungi. The gene encoding ODX1 in Cong:1-2 was cloned, and targeted disruption of the gene in Cong:1-2 did not affect its biocontrol activity, suggesting that GMC oxidoreductase is dispensable for biocontrol activity in the fungal biocontrol agent.

  14. Regulation of P450 oxidoreductase by gonadotropins in rat ovary and its effect on estrogen production

    Directory of Open Access Journals (Sweden)

    Uesaka Miki

    2008-12-01

    Full Text Available Abstract Background P450 oxidoreductase (POR catalyzes electron transfer to microsomal P450 enzymes. Its deficiency causes Antley-Bixler syndrome (ABS, and about half the patients with ABS have ambiguous genitalia and/or impaired steroidogenesis. POR mRNA expression is up-regulated when mesenchymal stem cells (MSCs differentiate into steroidogenic cells, suggesting that the regulation of POR gene expression is important for steroidogenesis. In this context we examined the regulation of POR expression in ovarian granulosa cells by gonadotropins, and its possible role in steroidogenesis. Methods Changes in gene expression in MSCs during differentiation into steroidogenic cells were examined by DNA microarray analysis. Changes in mRNA and protein expression of POR in the rat ovary or in granulosa cells induced by gonadotropin treatment were examined by reverse transcription-polymerase chain reaction and western blotting. Effects of transient expression of wild-type or mutant (R457H or V492E POR proteins on the production of estrone in COS-7 cells were examined in vitro. Effects of POR knockdown were also examined in estrogen producing cell-line, KGN cells. Results POR mRNA was induced in MSCs following transduction with the SF-1 retrovirus, and was further increased by cAMP treatment. Expression of POR mRNA, as well as Cyp19 mRNA, in the rat ovary were induced by equine chorionic gonadotropin and human chorionic gonadotropin. POR mRNA and protein were also induced by follicle stimulating hormone in primary cultured rat granulosa cells, and the induction pattern was similar to that for aromatase. Transient expression of POR in COS-7 cells, which expressed a constant amount of aromatase protein, greatly increased the rate of conversion of androstenedione to estrone, in a dose-dependent manner. The expression of mutant POR proteins (R457H or V492E, such as those found in ABS patients, had much less effect on aromatase activity than expression of wild

  15. Biochemical characterization and sequence analysis of the gluconate:NADP 5-oxidoreductase gene from Gluconobacter oxydans.

    Science.gov (United States)

    Klasen, R; Bringer-Meyer, S; Sahm, H

    1995-01-01

    Gluconate:NADP 5-oxidoreductase (GNO) from the acetic acid bacterium Gluconobacter oxydans subsp. oxydans DSM3503 was purified to homogeneity. This enzyme is involved in the nonphosphorylative, ketogenic oxidation of glucose and oxidizes gluconate to 5-ketogluconate. GNO was localized in the cytoplasm, had an isoelectric point of 4.3, and showed an apparent molecular weight of 75,000. In sodium dodecyl sulfate gel electrophoresis, a single band appeared corresponding to a molecular weight of 33,000, which indicated that the enzyme was composed of two identical subunits. The pH optimum of gluconate oxidation was pH 10, and apparent Km values were 20.6 mM for the substrate gluconate and 73 microM for the cosubstrate NADP. The enzyme was almost inactive with NAD as a cofactor and was very specific for the substrates gluconate and 5-ketogluconate. D-Glucose, D-sorbitol, and D-mannitol were not oxidized, and 2-ketogluconate and L-sorbose were not reduced. Only D-fructose was accepted, with a rate that was 10% of the rate of 5-ketogluconate reduction. The gno gene encoding GNO was identified by hybridization with a gene probe complementary to the DNA sequence encoding the first 20 N-terminal amino acids of the enzyme. The gno gene was cloned on a 3.4-kb DNA fragment and expressed in Escherichia coli. Sequencing of the gene revealed an open reading frame of 771 bp, encoding a protein of 257 amino acids with a predicted relative molecular mass of 27.3 kDa. Plasmid-encoded gno was functionally expressed, with 6.04 U/mg of cell-free protein in E. coli and with 6.80 U/mg of cell-free protein in G. oxydans, which corresponded to 85-fold overexpression of the G. oxydans wild-type GNO activity. Multiple sequence alignments showed that GNO was affiliated with the group II alcohol dehydrogenases, or short-chain dehydrogenases, which display a typical pattern of six strictly conserved amino acid residues. PMID:7751271

  16. Differential Regulation of Duplicate Light-Dependent Protochlorophyllide Oxidoreductases in the Diatom Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Heather M Hunsperger

    Full Text Available Diatoms (Bacilliariophyceae encode two light-dependent protochlorophyllide oxidoreductases (POR1 and POR2 that catalyze the penultimate step of chlorophyll biosynthesis in the light. Algae live in dynamic environments whose changing light levels induce photoacclimative metabolic shifts, including altered cellular chlorophyll levels. We hypothesized that the two POR proteins may be differentially adaptive under varying light conditions. Using the diatom Phaeodactylum tricornutum as a test system, differences in POR protein abundance and por gene expression were examined when this organism was grown on an alternating light:dark cycles at different irradiances; exposed to continuous light; and challenged by a significant decrease in light availability.For cultures maintained on a 12h light: 12h dark photoperiod at 200μE m-2 s-1 (200L/D, both por genes were up-regulated during the light and down-regulated in the dark, though por1 transcript abundance rose and fell earlier than that of por2. Little concordance occurred between por1 mRNA and POR1 protein abundance. In contrast, por2 mRNA and POR2 protein abundances followed similar diurnal patterns. When 200L/D P. tricornutum cultures were transferred to continuous light (200L/L, the diurnal regulatory pattern of por1 mRNA abundance but not of por2 was disrupted, and POR1 but not POR2 protein abundance dropped steeply. Under 1200μE m-2 s-1 (1200L/D, both por1 mRNA and POR1 protein abundance displayed diurnal oscillations. A compromised diel por2 mRNA response under 1200L/D did not impact the oscillation in POR2 abundance. When cells grown at 1200L/D were then shifted to 50μE m-2 s-1 (50L/D, por1 and por2 mRNA levels decreased swiftly but briefly upon light reduction. Thereafter, POR1 but not POR2 protein levels rose significantly in response to this light stepdown.Given the sensitivity of diatom por1/POR1 to real-time light cues and adherence of por2/POR2 regulation to the diurnal cycle, we suggest

  17. Crystal Structure of Human Dihydrolipoamide Dehydrogenase: NAD[superscript +]/NADH Binding and the Structural Basis of Disease-causing Mutations

    Energy Technology Data Exchange (ETDEWEB)

    Brautigam, Chad A.; Chuang, Jacinta L.; Tomchick, Diana R.; Machius, Mischa; Chuang, David T. (U. of Texas-SMED)

    2010-07-13

    Human dihydrolipoamide dehydrogenase (hE3) is an enzymatic component common to the mitochondrial {alpha}-ketoacid dehydrogenase and glycine decarboxylase complexes. Mutations to this homodimeric flavoprotein cause the often-fatal human disease known as E3 deficiency. To catalyze the oxidation of dihydrolipoamide, hE3 uses two molecules: noncovalently bound FAD and a transiently bound substrate, NAD{sup +}. To address the catalytic mechanism of hE3 and the structural basis for E3 deficiency, the crystal structures of hE3 in the presence of NAD{sup +} or NADH have been determined at resolutions of 2.5 {angstrom} and 2.1 {angstrom}, respectively. Although the overall fold of the enzyme is similar to that of yeast E3, these two structures differ at two loops that protrude from the proteins and at their FAD-binding sites. The structure of oxidized hE3 with NAD{sup +} bound demonstrates that the nicotinamide moiety is not proximal to the FAD. When NADH is present, however, the nicotinamide base stacks directly on the isoalloxazine ring system of the FAD. This is the first time that this mechanistically requisite conformation of NAD{sup +} or NADH has been observed in E3 from any species. Because E3 structures were previously available only from unicellular organisms, speculations regarding the molecular mechanisms of E3 deficiency were based on homology models. The current hE3 structures show directly that the disease-causing mutations occur at three locations in the human enzyme: the dimer interface, the active site, and the FAD and NAD{sup +}-binding sites. The mechanisms by which these mutations impede the function of hE3 are discussed.

  18. Optically measured NADH concentrations are unaffected by propofol induced EEG silence during transient cerebral hypoperfusion in anesthetized rabbits.

    Science.gov (United States)

    Wang, Mei; Agarwal, Sachin; Mayevsky, Avraham; Joshi, Shailendra

    2011-06-17

    The neuroprotective benefit of intra-operative anesthetics is widely described and routinely aimed to invoke electroencephalographic (EEG) silence in anticipation of transient cerebral ischemia. Previous rat survival studies have questioned an additional benefit from achieving EEG silence during transient global cerebral hypoperfusion. Surgical preparation on twelve New Zealand white rabbits under ketamine-propofol anesthesia, included placement of skull screws for bilateral EEG monitoring, skull shaving for laser Doppler probes, and a 5 mm diameter right temporal craniotomy for the NADH probe. Transient global cerebral hypoperfusion was achieved with bilateral internal carotid artery occlusion and pharmacologically induced systemic hypotension. All animals acted as controls, and had cerebral hypoperfusion under baseline propofol anesthesia with an active EEG. Thereafter, animals were randomized to receive bolus injection of intracarotid (3-5 mg) or intravenous (10-20 mg) 1% propofol to create EEG silence for 1-2 min. The data collected at baseline, peak hypoperfusion, and 5 and 10 min post hypoperfusion was analyzed by repeated measures ANOVA with post hoc Bonferroni-Dunn test. Eleven of the twelve rabbits completed the protocol. Hemodynamics and cerebral blood flow changes were comparable in all the animals. Compared to controls, the increase in NADH during ischemia was unaffected by EEG silence with either intravenous or intraarterial propofol. We failed to observe any significant additional attenuation of the elevation in NADH levels with propofol induced EEG silence during transient global cerebral hypoperfusion. This is consistent with previous rat survival studies showing that EEG silence was not required for full neuroprotective effects of pentothal anesthesia. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Initial Evidence for Adaptive Selection on the NADH Subunit Two of Freshwater Dolphins by Analyses of Mitochondrial Genomes

    Science.gov (United States)

    Caballero, Susana; Duchêne, Sebastian; Garavito, Manuel F.; Slikas, Beth; Baker, C. Scott

    2015-01-01

    A small number of cetaceans have adapted to an entirely freshwater environment, having colonized rivers in Asia and South America from an ancestral origin in the marine environment. This includes the ‘river dolphins’, early divergence from the odontocete lineage, and two species of true dolphins (Family Delphinidae). Successful adaptation to the freshwater environment may have required increased demands in energy involved in processes such as the mitochondrial osmotic balance. For this reason, riverine odontocetes provide a compelling natural experiment in adaptation of mammals from marine to freshwater habitats. Here we present initial evidence of positive selection in the NADH dehydrogenase subunit 2 of riverine odontocetes by analyses of full mitochondrial genomes, using tests of selection and protein structure modeling. The codon model with highest statistical support corresponds to three discrete categories for amino acid sites, those under positive, neutral, and purifying selection. With this model we found positive selection at site 297 of the NADH dehydrogenase subunit 2 (dN/dS>1.0,) leading to a substitution of an Ala or Val from the ancestral state of Thr. A phylogenetic reconstruction of 27 cetacean mitogenomes showed that an Ala substitution has evolved at least four times in cetaceans, once or more in the three ‘river dolphins’ (Families Pontoporidae, Lipotidae and Inidae), once in the riverine Sotalia fluviatilis (but not in its marine sister taxa), once in the riverine Orcaella brevirostris from the Mekong River (but not in its marine sister taxa) and once in two other related marine dolphins. We located the position of this amino acid substitution in an alpha-helix channel in the trans-membrane domain in both the E. coli structure and Sotalia fluviatilis model. In E. coli this position is located in a helix implicated in a proton translocation channel of respiratory complex 1 and may have a similar role in the NADH dehydrogenases of

  20. Initial Evidence for Adaptive Selection on the NADH Subunit Two of Freshwater Dolphins by Analyses of Mitochondrial Genomes.

    Directory of Open Access Journals (Sweden)

    Susana Caballero

    Full Text Available A small number of cetaceans have adapted to an entirely freshwater environment, having colonized rivers in Asia and South America from an ancestral origin in the marine environment. This includes the 'river dolphins', early divergence from the odontocete lineage, and two species of true dolphins (Family Delphinidae. Successful adaptation to the freshwater environment may have required increased demands in energy involved in processes such as the mitochondrial osmotic balance. For this reason, riverine odontocetes provide a compelling natural experiment in adaptation of mammals from marine to freshwater habitats. Here we present initial evidence of positive selection in the NADH dehydrogenase subunit 2 of riverine odontocetes by analyses of full mitochondrial genomes, using tests of selection and protein structure modeling. The codon model with highest statistical support corresponds to three discrete categories for amino acid sites, those under positive, neutral, and purifying selection. With this model we found positive selection at site 297 of the NADH dehydrogenase subunit 2 (dN/dS>1.0, leading to a substitution of an Ala or Val from the ancestral state of Thr. A phylogenetic reconstruction of 27 cetacean mitogenomes showed that an Ala substitution has evolved at least four times in cetaceans, once or more in the three 'river dolphins' (Families Pontoporidae, Lipotidae and Inidae, once in the riverine Sotalia fluviatilis (but not in its marine sister taxa, once in the riverine Orcaella brevirostris from the Mekong River (but not in its marine sister taxa and once in two other related marine dolphins. We located the position of this amino acid substitution in an alpha-helix channel in the trans-membrane domain in both the E. coli structure and Sotalia fluviatilis model. In E. coli this position is located in a helix implicated in a proton translocation channel of respiratory complex 1 and may have a similar role in the NADH dehydrogenases of

  1. New biotechnological perspectives of a NADH oxidase variant from Thermus thermophilus HB27 as NAD+-recycling enzyme

    Directory of Open Access Journals (Sweden)

    Rocha-Martín Javier

    2011-11-01

    Full Text Available Abstract Background The number of biotransformations that use nicotinamide recycling systems is exponentially growing. For this reason one of the current challenges in biocatalysis is to develop and optimize more simple and efficient cofactor recycling systems. One promising approach to regenerate NAD+ pools is the use of NADH-oxidases that reduce oxygen to hydrogen peroxide while oxidizing NADH to NAD+. This class of enzymes may be applied to asymmetric reduction of prochiral substrates in order to obtain enantiopure compounds. Results The NADH-oxidase (NOX presented here is a flavoenzyme which needs exogenous FAD or FMN to reach its maximum velocity. Interestingly, this enzyme is 6-fold hyperactivated by incubation at high temperatures (80°C under limiting concentrations of flavin cofactor, a change that remains stable even at low temperatures (37°C. The hyperactivated form presented a high specific activity (37.5 U/mg at low temperatures despite isolation from a thermophile source. Immobilization of NOX onto agarose activated with glyoxyl groups yielded the most stable enzyme preparation (6-fold more stable than the hyperactivated soluble enzyme. The immobilized derivative was able to be reactivated under physiological conditions after inactivation by high solvent concentrations. The inactivation/reactivation cycle could be repeated at least three times, recovering full NOX activity in all cases after the reactivation step. This immobilized catalyst is presented as a recycling partner for a thermophile alcohol dehydrogenase in order to perform the kinetic resolution secondary alcohols. Conclusion We have designed, developed and characterized a heterogeneous and robust biocatalyst which has been used as recycling partner in the kinetic resolution of rac-1-phenylethanol. The high stability along with its capability to be reactivated makes this biocatalyst highly re-useable for cofactor recycling in redox biotransformations.

  2. Comprehensively Characterizing the Thioredoxin Interactome In Vivo Highlights the Central Role Played by This Ubiquitous Oxidoreductase in Redox Control.

    Science.gov (United States)

    Arts, Isabelle S; Vertommen, Didier; Baldin, Francesca; Laloux, Géraldine; Collet, Jean-François

    2016-06-01

    Thioredoxin (Trx) is a ubiquitous oxidoreductase maintaining protein-bound cysteine residues in the reduced thiol state. Here, we combined a well-established method to trap Trx substrates with the power of bacterial genetics to comprehensively characterize the in vivo Trx redox interactome in the model bacterium Escherichia coli Using strains engineered to optimize trapping, we report the identification of a total 268 Trx substrates, including 201 that had never been reported to depend on Trx for reduction. The newly identified Trx substrates are involved in a variety of cellular processes, ranging from energy metabolism to amino acid synthesis and transcription. The interaction between Trx and two of its newly identified substrates, a protein required for the import of most carbohydrates, PtsI, and the bacterial actin homolog MreB was studied in detail. We provide direct evidence that PtsI and MreB contain cysteine residues that are susceptible to oxidation and that participate in the formation of an intermolecular disulfide with Trx. By considerably expanding the number of Trx targets, our work highlights the role played by this major oxidoreductase in a variety of cellular processes. Moreover, as the dependence on Trx for reduction is often conserved across species, it also provides insightful information on the interactome of Trx in organisms other than E. coli.

  3. Thiol-disulfide Oxidoreductases TRX1 and TMX3 Decrease Neuronal Atrophy in a Lentiviral Mouse Model of Huntington's Disease.

    Science.gov (United States)

    Fox, Jonathan; Lu, Zhen; Barrows, Lorraine

    2015-11-06

    Huntington's disease (HD) is caused by a trinucleotide CAG repeat in the huntingtin gene (HTT) that results in expression of a polyglutamine-expanded mutant huntingtin protein (mHTT). N-terminal fragments of mHTT accumulate in brain neurons and glia as soluble monomeric and oligomeric species as well as insoluble protein aggregates and drive the disease process. Decreasing mHTT levels in brain provides protection and reversal of disease signs in HD mice making mHTT a prime target for disease modification. There is evidence for aberrant thiol oxidation within mHTT and other proteins in HD models. Based on this, we hypothesized that a specific thiol-disulfide oxidoreductase exists that decreases mHTT levels in cells and provides protection in HD mice. We undertook an in-vitro genetic screen of key thiol-disulfide oxidoreductases then completed secondary screens to identify those with mHTT decreasing properties. Our in-vitro experiments identified thioredoxin 1 and thioredoxin-related transmembrane protein 3 as proteins that decrease soluble mHTT levels in cultured cells. Using a lentiviral mouse model of HD we tested the effect of these proteins in striatum. Both proteins decreased mHTT-induced striatal neuronal atrophy. Findings provide evidence for a role of dysregulated protein-thiol homeostasis in the pathogenesis of HD.

  4. Enhanced activity of yqhD oxidoreductase in synthesis of 1,3-propanediol by error-prone PCR

    Institute of Scientific and Technical Information of China (English)

    Hongmei Li; Jia Chen; Yinghua Li

    2008-01-01

    yqhD oxidoreductase was determined to be an NADP-dependent dehydrogenase,and was more active toward 3-HPA when compared to 1,3-propanediol oxidoreductase.To further improve enzyme activity towards 3-hydroxypropionaldehyde (3-HPA),error-prone PCR was implemented to mutant yqhD gene.Two mutants,D99QN147H and Q202A with increased catalytic and affinity efficiency,were obtained after one round of error-prone polymerase chain reaction.And the catalytic efficiency of the mutant D99QN147H was up to 4-fold greater than the wild enzyme (0.0375 min-1 mM-1 vs.0.0078 min-1 mM-1).The recombined strain containing pET28yqhD D99QNI47H yielded 28 g L-1 of 1,3-propanediol in the fed-batch LB cultures (1 L volume) with an initial 3-HPA concentration of 40 g L-1,which was higher than the 21 and 17 g L-1 of 1,3-propanediol from the mutant Q202A and the wild-type,respectively.Except for propionaldehyde,the optimal mutant D99QN147H also exhibited higher activity on a range of substituted aldehydes than the wild-type.

  5. Efficient catalytic interconversion between NADH and NAD+ accompanied by generation and consumption of hydrogen with a water-soluble iridium complex at ambient pressure and temperature.

    Science.gov (United States)

    Maenaka, Yuta; Suenobu, Tomoyoshi; Fukuzumi, Shunichi

    2012-01-11

    Regioselective hydrogenation of the oxidized form of β-nicotinamide adenine dinucleotide (NAD(+)) to the reduced form (NADH) with hydrogen (H(2)) has successfully been achieved in the presence of a catalytic amount of a [C,N] cyclometalated organoiridium complex [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(H(2)O)](2) SO(4) [1](2)·SO(4) under an atmospheric pressure of H(2) at room temperature in weakly basic water. The structure of the corresponding benzoate complex Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))-benzoate-κC(3))(H(2)O) 2 has been revealed by X-ray single-crystal structure analysis. The corresponding iridium hydride complex formed under an atmospheric pressure of H(2) undergoes the 1,4-selective hydrogenation of NAD(+) to form 1,4-NADH. On the other hand, in weakly acidic water the complex 1 was found to catalyze the hydrogen evolution from NADH to produce NAD(+) without photoirradiation at room temperature. NAD(+) exhibited an inhibitory behavior in both catalytic hydrogenation of NAD(+) with H(2) and H(2) evolution from NADH due to the binding of NAD(+) to the catalyst. The overall catalytic mechanism of interconversion between NADH and NAD(+) accompanied by generation and consumption of H(2) was revealed on the basis of the kinetic analysis and detection of the catalytic intermediates.

  6. A physiological threshold for protection against menadione toxicity by human NAD(P)H : quinone oxidoreductase (NQO1) in Chinese hamster ovary (CHO) cells

    NARCIS (Netherlands)

    Haan, de L.H.J.; Boerboom, A.M.J.F.; Rietjens, I.M.C.M.; Capelle, van D.; Ruijter, de A.J.M.; Jaiswal, A.K.; Aarts, J.M.M.J.G.

    2002-01-01

    NAD(P)H:quinone oxidoreductase 1 (NQO1) has often been suggested to be involved in cancer prevention by means of detoxification of electrophilic quinones. In the present study, a series of Chinese hamster ovary (CHO) cell lines expressing various elevated levels of human NQO1 were generated by stabl

  7. Laboratory Prototype of Bioreactor for Oxidation of Toxic D-Lactate Using Yeast Cells Overproducing D-Lactate Cytochrome c Oxidoreductase

    Directory of Open Access Journals (Sweden)

    Maria Karkovska

    2016-01-01

    Full Text Available D-lactate is a natural component of many fermented foods like yogurts, sour milk, cheeses, and pickles vegetable products. D-lactate in high concentrations is toxic for children and people with short bowel syndrome and provokes encephalopathy. These facts convincingly demonstrate a need for effective tools for the D-lactate removal from some food products. The main idea of investigation is focused on application of recombinant thermotolerant methylotrophic yeast Hansenula polymorpha “tr6,” overproducing D-lactate: cytochrome c oxidoreductase (EC 1.1.2.4, D-lactate cytochrome c oxidoreductase, D-lactate dehydrogenase (cytochrome, DLDH. In addition to 6-fold overexpression of DLDH under a strong constitutive promoter (prAOX, the strain of H. polymorpha “tr6” (gcr1 catX/Δcyb2, prAOX_DLDH is characterized by impairment in glucose repression of AOX promoter, devoid of catalase and L-lactate-cytochrome c oxidoreductase activities. Overexpression of DLDH coupling with the deletion of L-lactate-cytochrome c oxidoreductase activity opens possibility for usage of the strain as a base for construction of bioreactor for removing D-lactate from fermented products due to oxidation to nontoxic pyruvate. A laboratory prototype of column-type bioreactor for removing a toxic D-lactate from model solution based on permeabilized cells of the H. polymorpha “tr6” and alginate gel was constructed and efficiency of this process was tested.

  8. Requirement of Signal Peptidase ComC and Thiol-Disulfide Oxidoreductase DsbA for Optimal Cell Surface Display of Pseudopilin ComGC in Staphylococcus aureus

    NARCIS (Netherlands)

    van der Kooi-Pol, Magdalena M.; Reilman, Ewoud; Sibbald, Mark J. J. B.; Veenstra-Kyuchukova, Yanka K.; Kouwen, Thijs R. H. M.; Buist, Girbe; van Dijl, Jan Maarten

    2012-01-01

    Staphylococcus aureus is an important Gram-positive bacterial pathogen producing many secreted and cell surface-localized virulence factors. Here we report that the staphylococcal thiol-disulfide oxidoreductase DsbA is essential for stable biogenesis of the ComGC pseudopilin. The signal peptidase

  9. The activity of uridine diphosphate-D-glucose: Nicotinamide-adenine dinucleotide oxidoreductase in cambial tissue and differentiating xylem isolated from sycamore trees.

    Science.gov (United States)

    Rubery, P H

    1972-06-01

    The activity of UDPGlc: NAD oxidoreductase is measured in enzyme preparations obtained from sycamore cambium and xylem tissue. The activity of this enzyme is greater in xylem than in cambium whether expressed on a specific activity basis or on a per-cell basis. It is suggested that, in developing xylem, direct oxidation of UDPGlc may contribute significantly to the biosynthesis of polysaccharide precursors.

  10. A highly efficient ADH-coupled NADH-recycling system for the asymmetric bioreduction of carbon-carbon double bonds using enoate reductases.

    Science.gov (United States)

    Tauber, Katharina; Hall, Melanie; Kroutil, Wolfgang; Fabian, Walter M F; Faber, Kurt; Glueck, Silvia M

    2011-06-01

    The asymmetric bioreduction of activated alkenes catalyzed by flavin-dependent enoate reductases from the OYE-family represents a powerful method for the production of optically active compounds. For its preparative-scale application, efficient and economic NADH-recycling is crucial. A novel enzyme-coupled NADH-recycling system is proposed based on the concurrent oxidation of a sacrificial sec-alcohol catalyzed by an alcohol dehydrogenase (ADH-A). Due to the highly favorable position of the equilibrium of ene-reduction versus alcohol-oxidation, the cosubstrate is only required in slight excess.

  11. A di-arginine motif contributes to the ER localization of the type I transmembrane ER oxidoreductase TMX4

    DEFF Research Database (Denmark)

    Roth, D.; Lynes, E.; Riemer, Jan

    2010-01-01

    The thiol-disulfide oxidoreductases of the PDI (protein disulfide isomerase) family assist in disulfide-bond formation in the ER (endoplasmic reticulum). In the present study, we have shown that the previously uncharacterized PDI family member TMX4 (thioredoxin-like transmembrane 4) is an N......-glycosylated type I membrane protein that localizes to the ER. We also demonstrate that TMX4 contains a single ER-luminal thioredoxin-like domain, which, in contrast with similar domains in other PDIs, is mainly oxidized in living cells. The TMX4 transcript displays a wide tissue distribution, and is strongly...... of the protein. Moreover, whereas the cytoplasmic region of TMX4 confers ER localization to a reporter protein, the KQK mutant of the same protein redistributes to the cell surface. Overall, features not commonly found in other PDIs characterize TMX4 and suggest unique functional properties of the protein...

  12. Encurtamento pelo frio de fibras musculares oxidativas de bovinos pela técnica de NADH-TR Cold shortening on bovine oxidative muscle fibers by NADH-TR

    Directory of Open Access Journals (Sweden)

    Juliana Maria Pereira Felício Gonfiantini Fernandes

    2006-12-01

    Full Text Available Carcaças bovinas resfriadas rapidamente podem apresentar uma contração muscular conhecida como encurtamento pelo frio. Esse fenômeno, prejudicial à textura da carne, ocorre principalmente nas fibras musculares oxidativas. O objetivo deste trabalho foi disponibilizar uma ferramenta analítica para distinguir essas fibras e determinar com maior precisão a contração do tecido muscular pela mensuração do comprimento dos sarcômeros. Amostras do músculo Longissimus dorsi de 12 novilhas nelore foram coletadas. As amostras obtidas de uma das meias-carcaças foram submetidas a uma refrigeração rápida, e as amostras provenientes da outra meia-carcaça à refrigeração lenta. Foi testado um método analítico, baseado na técnica de coloração por Nicotinamida Adenina Dinucleotídeo - Tetrazolium Redutase (NADH-TR, para mensurar, por microscopia, o comprimento dos sarcômeros das fibras vermelhas. Foram determinadas as velocidades de queda de pH e temperatura, a área do olho de lombo (AOL e a força de cisalhamento. Os resultados demonstraram que a temperatura é o principal fator responsável pelo comprimento do sarcômero quando a velocidade de resfriamento é rápida, sendo essa influência menor quando a queda de temperatura é mais lenta. Desta forma, demonstrou-se que a técnica de coloração com NADH-TR é capaz de detectar a ocorrência do encurtamento pelo frio nos músculos esqueléticos de bovinos.Bovine carcasses quickly cooled may develop a muscle contraction known as cold shortening. This process, harmful to meat texture, occurs mainly in the oxidative muscle fibers. This work was aimed at studing an analytical tool to distinguish these fibers and to evaluate, more precisely, the muscle contraction through the measurement of sarcomeres length. Longissimus dorsi muscles of 12 heifers were used as samples. Samples from one of the half carcasses were fast cooled and the samples from the others half carcasses were slowly cooled

  13. Mechanism of porcine liver xanthine oxidoreductase mediated N-oxide reduction of cyadox as revealed by docking and mutagenesis studies.

    Directory of Open Access Journals (Sweden)

    Chigang Chen

    Full Text Available Xanthine oxidoreductase (XOR is a cytoplasmic molybdenum-containing oxidoreductase, catalyzing both endogenous purines and exogenous compounds. It is suggested that XOR in porcine hepatocytes catalyzes the N-oxide reduction of quinoxaline 1,4-di-N-oxides (QdNOs. To elucidate the molecular mechanism underlying this metabolism, the cDNA of porcine XOR was cloned and heterologously expressed in Spodoptera frugiperda insect cells. The bovine XOR, showing sequence identity of 91% to porcine XOR, was employed as template for homology modeling. By docking cyadox, a representative compound of QdNOs, into porcine XOR model, eight amino acid residues, Gly47, Asn352, Ser360, Arg427, Asp430, Asp431, Ser1227 and Lys1230, were located at distances of less than 4Å to cyadox. Site-directed mutagenesis was performed to analyze their catalytic functions. Compared with wild type porcine XOR, G47A, S360P, D431A, S1227A, and K1230A displayed altered kinetic parameters in cyadox reduction, similarly to that in xanthine oxidation, indicating these mutations influenced electron-donating process of xanthine before subsequent electron transfer to cyadox to fulfill the N-oxide reduction. Differently, R427E and D430H, both located in the 424-434 loop, exhibited a much lower K(m and a decreased V(max respectively in cyadox reduction. Arg427 may be related to the substrate binding of porcine XOR to cyadox, and Asp430 is suggested to be involved in the transfer of electron to cyadox. This study initially reveals the possible catalytic mechanism of porcine XOR in cyadox metabolism, providing with novel insights into the structure-function relationship of XOR in the reduction of exogenous di-N-oxides.

  14. Organization of the Escherichia coli aerobic enzyme complexes of oxidative phosphorylation in dynamic domains within the cytoplasmic membrane.

    Science.gov (United States)

    Erhardt, Heiko; Dempwolff, Felix; Pfreundschuh, Moritz; Riehle, Marc; Schäfer, Caspar; Pohl, Thomas; Graumann, Peter; Friedrich, Thorsten

    2014-06-01

    The Escherichia coli cytoplasmic membrane contains the enzyme complexes of oxidative phosphorylation (OXPHOS). Not much is known about their supramolecular organization and their dynamics within the membrane in this model organism. In mitochondria and other bacteria, it was demonstrated by nondenaturing electrophoretic methods and electron microscopy that the OXPHOS complexes are organized in so-called supercomplexes, stable assemblies with a defined number of the individual enzyme complexes. To investigate the organization of the E. coli enzyme complexes of aerobic OXPHOS in vivo, we established fluorescent protein fusions of the NADH:ubiquinone oxidoreductase, the succinate:ubiquinone oxidoreductase, the cytochrome bd-I, and the cytochrome bo3 terminal oxidases, and the FoF1 ATP-synthase. The fusions were integrated in the chromosome to prevent artifacts caused by protein overproduction. Biochemical analysis revealed that all modified complexes were fully assembled, active, and stable. The distribution of the OXPHOS complexes in living cells was determined using total internal reflection fluorescence microscopy. The dynamics within the membrane were detected by fluorescence recovery after photobleaching. All aerobic OXPHOS complexes showed an uneven distribution in large mobile patches within the E. coli cytoplasmic membrane. It is discussed whether the individual OXPHOS complexes are organized as clustered individual complexes, here called "segrazones."

  15. Correlation between the Structure and Catalytic Activity of [Cp*Rh(Substituted Bipyridine)] Complexes for NADH Regeneration.

    Science.gov (United States)

    Ganesan, Vinothkumar; Sivanesan, Dharmalingam; Yoon, Sungho

    2017-02-06

    A series of water-soluble half-sandwich [Cp*Rh(III)(N^N)Cl](+) (Cp* = pentamethylcyclopentadiene, N^N-substituted 2,2'-bipyridine) complexes containing electron-donating substituents around the 2,2'-bipyridyl ligand were synthesized and fully characterized for the regioselective reduction of nicotinamide coenzyme (NAD(+)). The influence of the positional effect of the substituents on the structural, electrochemical, and catalytic properties of the catalyst was systematically studied in detail. The catalytic efficiency of the substituted bipyridine Cp*Rh(III) complexes are inversely correlated with their redox potentials. The 5,5'-substituted bipyridine Cp*Rh(III) complex, which had the lowest reduction potential, most effectively regenerated NADH with a turnover frequency of 1100 h(-1). Detailed kinetic studies on the generation of intermediate(s) provide valuable mechanistic insight into this catalytic cycle and help to direct the future design strategy of corresponding catalysts.

  16. Purification and characterization of the NADH-dependent (S)-specific 3-oxobutyryl-CoA reductase from Clostridium tyrobutyricum.

    Science.gov (United States)

    Bayer, M; Günther, H; Simon, H

    1995-04-01

    An NADH-dependent (S)-specific 3-oxobutyryl-CoA reductase from Clostridium tyrobutyricum was purified 15-fold with a yield of 46%. It was homogeneous by gel electrophoresis after three chromatographic steps. The apparent molecular mass was estimated by column chromatography to be 240 kDa. SDS-gel electrophoresis revealed the presence of 33 kDa subunits. Substrates of the enzyme were ethyl and methyl 3-oxobutyrate, 3-oxobutyryl-N-acetylcysteamine thioester, and 3-oxobutyryl coenzyme A. The specific activities were 340 and 10U (mg protein)-1 for the reduction of 3-oxobutyryl coenzyme A and ethyl 3-oxobutyrate, respectively; the Michaelis constants were 300 microM and 300 mM, respectively. The identity of 12 N-terminal amino acid residues was determined. The enzyme was used in a preparative reduction of substrate, yielding ethyl (S)-3-hydroxybutyrate (> 99% enantiomeric excess).

  17. Electrochemical study in both classical cell and microreactors of flavin adenine dinucleotide as a redox mediator for NADH regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Tzedakis, Theodore, E-mail: tzedakis@chimie.ups-tlse.f [Laboratoire de Genie Chimique, UMR 5503, Universite Paul Sabatier, 31062 Toulouse cedex 04 (France); Cheikhou, Kane [Ecole Superieure Polytechnique de Dakar BP: 16263 Dakar-Fann (Senegal); Jerome, Roche; Karine, Groenen Serrano; Olivier, Reynes [Laboratoire de Genie Chimique, UMR 5503, Universite Paul Sabatier, 31062 Toulouse cedex 04 (France)

    2010-02-28

    The electrochemical reduction of flavin adenine dinucleotide (FAD) is studied in a classical electrochemical cell as well as in two types of microreactors: the first one is a one-channel reactor and the other one, a multichannel filter-press reactor. The ultimate goal is to use the reduced form of flavin (FADH{sub 2}), in the presence of formate dehydrogenase (FDH), in order to continuously regenerate the reduced form of nicotinamide adenine dinucleotide (NADH) for chiral syntheses. Various voltammetric and adsorption measurements were carried out for a better understanding of the redox behavior of the FAD as well as its adsorption on gold. Diffusivity and kinetic electrochemical parameters of FAD were determined.

  18. Involvement of the NADH oxidase-encoding noxA gene in oxidative stress responses in Corynebacterium glutamicum.

    Science.gov (United States)

    Park, Jung Chul; Kim, Younhee; Lee, Heung-Shick

    2015-02-01

    Corynebacterium glutamicum ORF NCgl0328, designated noxA, encodes an NADH oxidase enzyme. The noxA gene, which was preferentially expressed in the log growth phase, was found to be under the control of the whcA, whcB, and whcE genes, which play regulatory roles in cells under oxidative stress. While noxA transcription was minimal in whcE-deleted mutant cells (ΔwhcE) during growth, its transcription was maximal even in the stationary phase in ΔwhcA cells. The transcription levels of noxA in ΔwhcB and whcB-overexpressing cells were comparable to the levels only in the log growth phase in ΔwhcA and whcA-overexpressing cells, respectively. Direct binding of purified WhcA to the promoter region of noxA was observed in vitro. The DNA-protein interaction was only possible in the presence of the reducing agent dithiothreitol. A noxA-deleted mutant strain and a strain overexpressing the noxA gene (P180-noxA) were established, and these strains were found to exhibit defective cell growth. The ΔnoxA and P180-noxA strains were sensitive to the redox-cycling oxidant menadione, suggesting a role of noxA in redox balancing. Accordingly, the purified NoxA enzyme exhibited NADH-oxidizing activity. Taken together, these data show that noxA plays a role in oxidative stress responses and also that the gene is under direct control of the WhcA protein, which was shown to be a regulatory DNA-binding protein. Furthermore, the involvement and roles of the whcA, whcB, and whcE genes in regulating the expression of noxA were demonstrated.

  19. The mechanism of RNA 5' capping with NAD+, NADH and desphospho-CoA

    Energy Technology Data Exchange (ETDEWEB)

    Bird, Jeremy G.; Zhang, Yu; Tian, Yuan; Panova, Natalya; Barvík, Ivan; Greene, Landon; Liu, Min; Buckley, Brian; Krásný, Libor; Lee, Jeehiun K.; Kaplan, Craig D.; Ebright, Richard H.; Nickels, Bryce E.

    2016-07-06

    The chemical nature of the 5' end of RNA is a key determinant of RNA stability, processing, localization and translation efficiency and has been proposed to provide a layer of ‘epitranscriptomic’ gene regulation. Recently it has been shown that some bacterial RNA species carry a 5'-end structure reminiscent of the 5' 7-methylguanylate ‘cap’ in eukaryotic RNA. In particular, RNA species containing a 5'-end nicotinamide adenine dinucleotide (NAD+) or 3'-desphospho-coenzyme A (dpCoA) have been identified in both Gram-negative and Gram-positive bacteria. It has been proposed that NAD+, reduced NAD+ (NADH) and dpCoA caps are added to RNA after transcription initiation, in a manner analogous to the addition of 7-methylguanylate caps. Here we show instead that NAD+, NADH and dpCoA are incorporated into RNA during transcription initiation, by serving as non-canonical initiating nucleotides (NCINs) for de novo transcription initiation by cellular RNA polymerase (RNAP). We further show that both bacterial RNAP and eukaryotic RNAP II incorporate NCIN caps, that promoter DNA sequences at and upstream of the transcription start site determine the efficiency of NCIN capping, that NCIN capping occurs in vivo, and that NCIN capping has functional consequences. We report crystal structures of transcription initiation complexes containing NCIN-capped RNA products. Our results define the mechanism and structural basis of NCIN capping, and suggest that NCIN-mediated ‘ab initio capping’ may occur in all organisms.

  20. NCBI nr-aa BLAST: CBRC-ACAR-01-0563 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-ACAR-01-0563 ref|YP_657415.1| NADH dehydrogenase, subunit L (ubiquinone) [Haloquad...ratum walsbyi DSM 16790] emb|CAJ51774.1| NADH dehydrogenase, subunit L (ubiquinone) [Haloquadratum walsbyi DSM 16790] YP_657415.1 9.4 35% ...

  1. NCBI nr-aa BLAST: CBRC-TBEL-01-0326 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TBEL-01-0326 ref|YP_872485.1| NADH/Ubiquinone/plastoquinone (complex I) [Acido...thermus cellulolyticus 11B] gb|ABK52499.1| NADH/Ubiquinone/plastoquinone (complex I) [Acidothermus cellulolyticus 11B] YP_872485.1 0.90 39% ...

  2. NCBI nr-aa BLAST: CBRC-DYAK-08-0013 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DYAK-08-0013 ref|YP_001041063.1| NADH/Ubiquinone/plastoquinone (complex I) [St...aphylothermus marinus F1] gb|ABN70155.1| NADH/Ubiquinone/plastoquinone (complex I) [Staphylothermus marinus F1] YP_001041063.1 6.0 30% ...

  3. NCBI nr-aa BLAST: CBRC-DYAK-02-0039 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DYAK-02-0039 ref|YP_586802.1| NADH/Ubiquinone/plastoquinone (complex I) [Ralst...onia metallidurans CH34] gb|ABF11533.1| NADH/Ubiquinone/plastoquinone (complex I) [Ralstonia metallidurans CH34] YP_586802.1 0.65 28% ...

  4. InterProScan Result: FS883911 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS883911 FS883911_3_ORF2 384259B9A1436B3C PIR PIRSF017016 NADH dehydrogenase [ubiquinone] (complex... I), alpha subcomplex, subunit 8 1.2e-57 T IPR016680 NADH dehydrogenase [ubiquinone] (complex I), alpha subcomplex, subunit 8 ...

  5. InterProScan Result: FS926437 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS926437 FS926437_3_ORF2 6A2D1689EFC3B699 PIR PIRSF017016 NADH dehydrogenase [ubiquinone] (complex... I), alpha subcomplex, subunit 8 2.5e-74 T IPR016680 NADH dehydrogenase [ubiquinone] (complex I), alpha subcomplex, subunit 8 ...

  6. A novel approach to regulate cell membrane permeability for ATP and NADH formation in Saccharomyces cerevisiae induced by air cold plasma

    Science.gov (United States)

    Xiaoyu, DONG; Tingting, LIU; Yuqin, XIONG

    2017-02-01

    Air cold plasma has been used as a novel method for enhancing microbial fermentation. The aim of this work was to explore the effect of plasma on membrane permeability and the formation of ATP and NADH in Saccharomyces cerevisiae, so as to provide valuable information for large-scale application of plasma in the fermentation industry. Suspensions of S. cerevisiae cells were exposed to air cold plasma for 0, 1, 2, 3, 4 and 5 min, and then subjected to various analyses prior to fermentation (0 h) and at the 9 and 21 h stages of fermentation. Compared with non-exposed cells, cells exposed to plasma for 1 min exhibited a marked increase in cytoplasmic free Ca2+ concentration as a result of the significant increase in membrane potential prior to fermentation. At the same time, the ATP level in the cell suspension decreased by about 40%, resulting in a reduction of about 60% in NADH prior to culturing. However, the levels of ATP and NADH in the culture at the 9 and 21 h fermentation stages were different from the level at 0 h. Taken together, the results indicated that exposure of S. cerevisiae to air cold plasma could increase its cytoplasmic free Ca2+ concentration by improving the cell membrane potential, consequently leading to changes in ATP and NADH levels. Supported by National Natural Science Foundation of China (Nos. 21246012, 21306015 and 21476032).

  7. Facile fabrication of FeN nanoparticles/nitrogen-doped graphene core-shell hybrid and its use as a platform for NADH detection in human blood serum.

    Science.gov (United States)

    Balamurugan, Jayaraman; Thanh, Tran Duy; Kim, Nam Hoon; Lee, Joong Hee

    2016-09-15

    Herein, we present a novel strategy for the synthesis of an iron nitride nanoparticles-encapsulated nitrogen-doped graphene (FeN NPs/NG) core-shell hierarchical nanostructure to boost the electrochemical performance in a highly sensitive, selective, reproducible, and stable sensing platform for nicotinamide adenine dinucleotide (NADH). This core-shell hierarchical nanostructure provides an excellent conductive network for effective charge transfer and avoids the agglomeration and restacking of NG sheets, which provides better access to the electrode material for NADH oxidation. The FeN NPs/NG core-shell hierarchical nanostructure demonstrates direct and mediatorless responses to NADH oxidation at a low potential. This material displays a high sensitivity of 0.028μA/μMcm(2), a wide linear range from 0.4 to 718μM, and a detection limit of 25nM with a fast response time of less than 3s. The interferences from common interferents, such as glucose, uric acid, dopamine, and ascorbic acid, are negligible. The fabricated sensor was further tested for the determination of NADH in human blood serum. The resulting high sensitivity, excellent selectivity, outstanding stability, and good reproducibility make the proposed FeN NPs/NG core-shell hierarchical nanostructure as a promising candidate for biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. NADH-fluorescence scattering correction for absolute concentration determination in a liquid tissue phantom using a novel multispectral magnetic-resonance-imaging-compatible needle probe

    Science.gov (United States)

    Braun, Frank; Schalk, Robert; Heintz, Annabell; Feike, Patrick; Firmowski, Sebastian; Beuermann, Thomas; Methner, Frank-Jürgen; Kränzlin, Bettina; Gretz, Norbert; Rädle, Matthias

    2017-07-01

    In this report, a quantitative nicotinamide adenine dinucleotide hydrate (NADH) fluorescence measurement algorithm in a liquid tissue phantom using a fiber-optic needle probe is presented. To determine the absolute concentrations of NADH in this phantom, the fluorescence emission spectra at 465 nm were corrected using diffuse reflectance spectroscopy between 600 nm and 940 nm. The patented autoclavable Nitinol needle probe enables the acquisition of multispectral backscattering measurements of ultraviolet, visible, near-infrared and fluorescence spectra. As a phantom, a suspension of calcium carbonate (Calcilit) and water with physiological NADH concentrations between 0 mmol l-1 and 2.0 mmol l-1 were used to mimic human tissue. The light scattering characteristics were adjusted to match the backscattering attributes of human skin by modifying the concentration of Calcilit. To correct the scattering effects caused by the matrices of the samples, an algorithm based on the backscattered remission spectrum was employed to compensate the influence of multiscattering on the optical pathway through the dispersed phase. The monitored backscattered visible light was used to correct the fluorescence spectra and thereby to determine the true NADH concentrations at unknown Calcilit concentrations. Despite the simplicity of the presented algorithm, the root-mean-square error of prediction (RMSEP) was 0.093 mmol l-1.

  9. Influence of Altered NADH Metabolic Pathway on the Respiratory-deficient Mutant of Rhizopus oryzae and its L-lactate Production.

    Science.gov (United States)

    Shu, Chang; Guo, Chenchen; Luo, Shuizhong; Jiang, Shaotong; Zheng, Zhi

    2015-08-01

    Respiratory-deficient mutants of Rhizopus oryzae (R. oryzae) AS 3.3461 were acquired by ultraviolet (UV) irradiation to investigate changes in intracellular NADH metabolic pathway and its influence on the fermentation characteristics of the strain. Compared with R. oryzae AS 3.3461, the intracellular ATP level of the respiratory-deficient strain UV-1 decreased by 52.7 % and the glucose utilization rate rose by 8.9 %; When incubated for 36 h, the activities of phosphofructokinase (PFK), hexokinase (HK), and pyruvate kinase (PK) in the mutant rose by 74.2, 7.2, and 12.0 %, respectively; when incubated for 48 h, the intracellular NADH/NAD(+) ratio of the mutant rose by 14.6 %; when a mixed carbon source with a glucose/gluconic acid ratio of 1:1 was substituted to culture the mutant, the NADH/NAD(+) ratio decreased by 4.6 %; the ATP content dropped by 27.6 %; the lactate dehydrogenase (LDH) activity rose by 22.7 %; and the lactate yield rose by 11.6 %. These results indicated that changes to the NADH metabolic pathway under a low-energy charge level can effectively increase the glycolytic rate and further improve the yield of L-lactate of R. oryzae.

  10. Congenital deficiency of two polypeptide subunits of the iron-protein fragment of mitochondrial complex I.

    Science.gov (United States)

    Moreadith, R W; Cleeter, M W; Ragan, C I; Batshaw, M L; Lehninger, A L

    1987-02-01

    Recently, we described a patient with severe lactic acidosis due to congenital complex I (NADH-ubiquinone oxidoreductase) deficiency. We now report further enzymatic and immunological characterizations. Both NADH and ferricyanide titrations of complex I activity (measured as NADH-ferricyanide reductase) were distinctly altered in the mitochondria from the patient's tissues. In addition, antisera against complex I immunoprecipitated NADH-ferricyanide reductase from the control but not the patient's mitochondria. However, immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of complex I polypeptides demonstrated that the majority of the 25 polypeptides comprising complex I were present in the affected mitochondria. A more detailed analysis using subunit selective antisera against the main polypeptides of the iron-protein fragments of complex I revealed a selective absence of the 75- and 13-kD polypeptides. These findings suggest that the underlying basis for this patient's disease was a congenital deficiency of at least two polypeptides comprising the iron-protein fragment of complex I, which resulted in the inability to correctly assemble a functional enzyme complex.

  11. Architecture of mammalian respiratory complex I.

    Science.gov (United States)

    Vinothkumar, Kutti R; Zhu, Jiapeng; Hirst, Judy

    2014-11-06

    Complex I (NADH:ubiquinone oxidoreductase) is essential for oxidative phosphorylation in mammalian mitochondria. It couples electron transfer from NADH to ubiquinone with proton translocation across the energy-transducing inner membrane, providing electrons for respiration and driving ATP synthesis. Mammalian complex I contains 44 different nuclear- and mitochondrial-encoded subunits, with a combined mass of 1 MDa. The 14 conserved 'core' subunits have been structurally defined in the minimal, bacterial complex, but the structures and arrangement of the 30 'supernumerary' subunits are unknown. Here we describe a 5 Å resolution structure of complex I from Bos taurus heart mitochondria, a close relative of the human enzyme, determined by single-particle electron cryo-microscopy. We present the structures of the mammalian core subunits that contain eight iron-sulphur clusters and 60 transmembrane helices, identify 18 supernumerary transmembrane helices, and assign and model 14 supernumerary subunits. Thus, we considerably advance knowledge of the structure of mammalian complex I and the architecture of its supernumerary ensemble around the core domains. Our structure provides insights into the roles of the supernumerary subunits in regulation, assembly and homeostasis, and a basis for understanding the effects of mutations that cause a diverse range of human diseases.

  12. In vivo monitoring of cellular energy metabolism using SoNar, a highly responsive sensor for NAD(+)/NADH redox state.

    Science.gov (United States)

    Zhao, Yuzheng; Wang, Aoxue; Zou, Yejun; Su, Ni; Loscalzo, Joseph; Yang, Yi

    2016-08-01

    NADH and its oxidized form NAD(+) have a central role in energy metabolism, and their concentrations are often considered to be among the most important readouts of metabolic state. Here, we present a detailed protocol to image and monitor NAD(+)/NADH redox state in living cells and in vivo using a highly responsive, genetically encoded fluorescent sensor known as SoNar (sensor of NAD(H) redox). The chimeric SoNar protein was initially developed by inserting circularly permuted yellow fluorescent protein (cpYFP) into the NADH-binding domain of Rex protein from Thermus aquaticus (T-Rex). It functions by binding to either NAD(+) or NADH, thus inducing protein conformational changes that affect its fluorescent properties. We first describe steps for how to establish SoNar-expressing cells, and then discuss how to use the system to quantify the intracellular redox state. This approach is sensitive, accurate, simple and able to report subtle perturbations of various pathways of energy metabolism in real time. We also detail the application of SoNar to high-throughput chemical screening of candidate compounds targeting cell metabolism in a microplate-reader-based assay, along with in vivo fluorescence imaging of tumor xenografts expressing SoNar in mice. Typically, the approximate time frame for fluorescence imaging of SoNar is 30 min for living cells and 60 min for living mice. For high-throughput chemical screening in a 384-well-plate assay, the whole procedure generally takes no longer than 60 min to assess the effects of 380 compounds on cell metabolism.

  13. Cobalt ferrite nanoparticles decorated on exfoliated graphene oxide, application for amperometric determination of NADH and H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ensafi, Ali A., E-mail: Ensafi@cc.iut.ac.ir; Alinajafi, Hossein A.; Jafari-Asl, M.; Rezaei, B.; Ghazaei, F.

    2016-03-01

    Here, cobalt ferrite nanohybrid decorated on exfoliated graphene oxide (CoFe{sub 2}O{sub 4}/EGO) was synthesized. The nanohybrid was characterized by different methods such as X-ray diffraction spectroscopy, scanning electron microscopy, energy dispersive X-ray diffraction microanalysis, transmission electron microscopy, FT-IR, Raman spectroscopy and electrochemical methods. The CoFe{sub 2}O{sub 4}/EGO nanohybrid was used to modify glassy carbon electrode (GCE). The voltammetric investigations showed that CoFe{sub 2}O{sub 4}/EGO nanohybrid has synergetic effect towards the electro-reduction of H{sub 2}O{sub 2} and electro-oxidation of nicotinamide adenine dinucleotide (NADH). Rotating disk chronoamperometry was used for their quantitative analysis. The calibration curves were observed in the range of 0.50 to 100.0 μmol L{sup −1} NADH and 0.9 to 900.0 μmol L{sup −1} H{sub 2}O{sub 2} with detections limit of 0.38 and 0.54 μmol L{sup −1}, respectively. The repeatability, reproducibility and selectivity of the electrochemical sensor for analysis of the analytes were studied. The new electrochemical sensor was successfully applied for the determination of NADH and H{sub 2}O{sub 2} in real samples with satisfactory results. - Highlights: • Cobalt ferrite nanoparticles decorated on exfoliated graphene oxide was synthesized. • It was characterized by different electrochemical and spectroscopic methods. • The nanocomposites have synergic effect on H{sub 2}O{sub 2} reduction and NADH oxidation. • NADH and H{sub 2}O{sub 2} could be detected as low as 0.38 and 0.54 μmol/L respectively.

  14. Determination of the in vivo NAD:NADH ratio in Saccharomyces cerevisiae under anaerobic conditions, using alcohol dehydrogenase as sensor reaction.

    Science.gov (United States)

    Bekers, K M; Heijnen, J J; van Gulik, W M

    2015-08-01

    With the current quantitative metabolomics techniques, only whole-cell concentrations of NAD and NADH can be quantified. These measurements cannot provide information on the in vivo redox state of the cells, which is determined by the ratio of the free forms only. In this work we quantified free NAD:NADH ratios in yeast under anaerobic conditions, using alcohol dehydrogenase (ADH) and the lumped reaction of glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase as sensor reactions. We showed that, with an alternative accurate acetaldehyde determination method, based on rapid sampling, instantaneous derivatization with 2,4 diaminophenol hydrazine (DNPH) and quantification with HPLC, the ADH-catalysed oxidation of ethanol to acetaldehyde can be applied as a relatively fast and simple sensor reaction to quantify the free NAD:NADH ratio under anaerobic conditions. We evaluated the applicability of ADH as a sensor reaction in the yeast Saccharomyces cerevisiae, grown in anaerobic glucose-limited chemostats under steady-state and dynamic conditions. The results found in this study showed that the cytosolic redox status (NAD:NADH ratio) of yeast is at least one order of magnitude lower, and is thus much more reduced, under anaerobic conditions compared to aerobic glucose-limited steady-state conditions. The more reduced state of the cytosol under anaerobic conditions has major implications for (central) metabolism. Accurate determination of the free NAD:NADH ratio is therefore of importance for the unravelling of in vivo enzyme kinetics and to judge accurately the thermodynamic reversibility of each redox reaction.

  15. Recovery of ascorbic oxidoreductase from crude extract with an aqueous two-phase system in a perforated rotating disc contactor

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Figueiredo Porto

    2004-09-01

    Full Text Available A continuous perforated rotating disc contactor was used to extract the enzyme ascorbic oxidoreductase (E.C.1.10.3.3 from crude extract of Curcubita maxima with an aqueous two-phase system of poly (ethylene glycol and phosphate salts. The effect of dispersed phase velocity on either protein mass transfer coefficients or separation efficiency at 1, 2 and 3 mL/min was studied. An increase of the mass transfer coefficients was observed with the dispersed phase velocity, while the separation efficiency showed a small decrease with the increase of this parameter. The experimental results obtained during continuous extraction showed that the ascorbic oxidoreductase activity was partitioned preferentially into the salt-rich phase in all conditions studied. The best recovery of enzyme activity was 236%, with a purification factor of 34 in flow rates of 1 mL/min for dispersed phase.Uma coluna de discos perfurados rotativos foi utilizada na extração da enzima ascorbato oxidorredutase (E.C.1.10.3.3, obtida do extrato bruto de Curcubita maxima, através da utilização do sistema bifásico aquoso Polietilenoglicol-sais de fosfato. Os efeitos da velocidade da fase dispersa nos coeficientes de transferência de massa e na eficiência de separação para valores de 1, 2 e 3 mL/min foram estudados. Observou-se um aumento da transferência de massa com a velocidade da fase dispersa, enquanto que a eficiência de separação demonstrou uma ligeira redução com o aumento deste parâmetro. Os resultados experimentais obtidos durante a extração contínua demonstraram que a atividade da ascorbato oxidorredutase se concentrou preferencialmente na fase rica em sal para todas as condições estudadas. A maior recuperação da atividade enzimática foi de 236%, com um fator de purificação de 34 para o valor de 1 mL/min para a fase dispersa.

  16. The Rnf Complex of Clostridium ljungdahlii Is a Proton-Translocating Ferredoxin:NAD(+) Oxidoreductase Essential for Autotrophic Growth

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, PL; Zhang, T; Dar, SA; Leang, C; Lovley, DR

    2012-12-26

    It has been predicted that the Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin: NAD(+) oxidoreductase which contributes to ATP synthesis by an H+-translocating ATPase under both autotrophic and heterotrophic growth conditions. The recent development of methods for genetic manipulation of C. ljungdahlii made it possible to evaluate the possible role of the Rnf complex in energy conservation. Disruption of the C. ljungdahlii rnf operon inhibited autotrophic growth. ATP synthesis, proton gradient, membrane potential, and proton motive force collapsed in the Rnf-deficient mutant with H-2 as the electron source and CO2 as the electron acceptor. Heterotrophic growth was hindered in the absence of a functional Rnf complex, as ATP synthesis, proton gradient, and proton motive force were significantly reduced with fructose as the electron donor. Growth of the Rnf-deficient mutant was also inhibited when no source of fixed nitrogen was provided. These results demonstrate that the Rnf complex of C. ljungdahlii is responsible for translocation of protons across the membrane to elicit energy conservation during acetogenesis and is a multifunctional device also implicated in nitrogen fixation. IMPORTANCE Mechanisms for energy conservation in the acetogen Clostridium ljungdahlii are of interest because of its potential value as a chassis for the production of biocommodities with novel electron donors such as carbon monoxide, syngas, and electrons derived from electrodes. Characterizing the components implicated in the chemiosmotic ATP synthesis during acetogenesis by C. ljungdahlii is a prerequisite for the development of highly productive strains. The Rnf complex has been considered the prime candidate to be the pump responsible for the formation of an ion gradient coupled with ATP synthesis in multiple acetogens. However, experimental evidence for a proton-pumping Rnf complex has been lacking. This study establishes the C. ljungdahlii Rnf complex as

  17. Identification of the Ndh (NAD(P)H-Plastoquinone-oxidoreductase) Complex in Etioplast Membranes of Barley : Changes during Photomorphogenesis of Chloroplasts

    OpenAIRE

    Alfredo, Guera; Pedro G.de, Nova; Bartolome, Sabater; Departamento de Biologia Vegetal, Universidad de Alcala de Henares

    2000-01-01

    In the last few years the presence in thylakoid membranes of chloroplasts of a NAD(P)H-plastoquinone oxidoreductase complex (Ndh complex) homologous to mitochondrial complex I has been well established. Herein, we report the identification of the Ndh complex in barley etioplast membranes. Two plastid DNA-encoded polypeptides of the Ndh complex (NDH-A and NDH-F) were relatively more abundant in etioplast membranes than in thylakoids from greening chloroplasts. Conversion of etioplast into chlo...

  18. Studies on NADH (NADPH)-cytochrome c reductase (FMN-containing) from yeast. Isolation and physicochemical properties of the enzyme from top-fermenting ale yeast.

    Science.gov (United States)

    Johnson, M S; Kuby, S A

    1985-10-05

    Only three major NADPH-nitrotetrazolium blue (NTB) reductases may be detected in a unique top-ale yeast (Saccharomyces cerevisiae, Narragansett strain), which appears to be of a near anaerobic type with the absence of cytochromes c and a/a3 and the presence of cytochromes P-450 and b5. Two of these three major NADPH-NTB reductases possessed NADH-NTB reductase activity; the third was specific for NADPH and was isolated in this laboratory (Tryon, E., Cress, M. C., Hamada, M., and Kuby, S. A. (1979) Arch. Biochem. Biophys. 197, 104-118) vis. NADPH-cytochrome c reductase (FAD-containing). A description of the isolation procedure is provided for one of these two NADH(NADPH)-NTB reductases, viz. NADH(NADPH)-cytochrome c reductase (FMN-containing), which accounts for about one-half of the total cyanide-insensitive menadione-activated respiration of this yeast. This NADH(NADPH)-cytochrome c reductase has been isolated from an extract of an acetone powder of the top-fermenting ale yeast, with an apparent purification of more than 67-fold and a final specific activity of 0.41 and 0.31 mumol/min/mg for NADH- and NADPH-dependent reduction, respectively. The isolated enzyme proved to be homogeneous by electrophoresis on cellulose acetate and on polyacrylamide gels. It had a pI of 5.25 (at gamma/2 = 0.05) and a molecular size under nondenaturing conditions (as determined by chromatography on Sephadex G-100 and Sephacryl S-200) of 70,000 daltons. On denaturation, the enzyme dissociated into two similar, if not identical, subunits which possessed a molecular weight of 34,000 by sodium dodecyl sulfate/urea-polyacrylamide gel electrophoresis and a weight average molecular weight of 35,000 by sedimentation equilibrium in the presence of 4.0 M guanidinium chloride. The absorbance spectrum of NADH(NADPH)-cytochrome c reductase (FMN-containing) showed three maxima at 464, 383, and 278 nm, with extinction coefficients of 9.88, 9.98, and 64.6 mM-1 cm-1, respectively. The reductase, as

  19. Inactivation of corticosteroids in intestinal mucosa by 11 beta-hydroxysteroid: NADP oxidoreductase (EC 1. 1. 1. 146)

    Energy Technology Data Exchange (ETDEWEB)

    Burton, A.F.; Anderson, F.H.

    1983-10-01

    Activity of the enzyme 11 beta-hydroxysteroid:NADP oxidoreductase (EC 1.1.1.146) in human intestinal mucosa was determined by incubating scraped mucosa with /sup 3/H-cortisone and /sup 14/C-cortisol; these steroids were then extracted, separated chromatographically, and the radioactivity assayed to determine simultaneously both reductase and dehydrogenase activities. This was the only significant metabolic alteration which the substrate underwent. Only two cases had slight (5 and 13%) reductase activity. In 35 patients, 16 male and 19 female, including seven cases of Crohn's disease, three ulcerative colitis, five diverticulitis, two undergoing surgery for repair of injuries and 18 for carcinoma of colon or rectum, cortisol was converted to cortisone in 15 min with a wide range of values distributed uniformly up to 85% dehydrogenation, with a mean of 42%. When tissue homogenates were fortified with coenzymes, excess NADPH lowered dehydrogenase activity 81%; excess NADP increased dehydrogenase activity 2-fold in three cases. It is possible that a value is characteristic of an individual but perhaps more likely enzyme activity varies with metabolic events involving changes in the coenzyme levels in mucosa, and a random sampling might be expected to yield such a distribution of values. In any event, where activity is high most of the cortisol is inactivated within minutes. It is suggested that synthetic corticoids which escape such metabolic alteration might, except during pregnancy, prove superior in the treatment of conditions such as inflammatory bowel disease.

  20. Hybrid neural network model for simulating sorbitol synthesis by glucose-fructose oxidoreductase in Zymomonas mobilis CP4

    Directory of Open Access Journals (Sweden)

    Bravo S.

    2004-01-01

    Full Text Available A hybrid neural network model for simulating the process of enzymatic reduction of fructose to sorbitol process catalyzed by glucose-fructose oxidoreductase in Zymomonas mobilis CP4 is presented. Data used to derive and validate the model was obtained from experiments carried out under different conditions of pH, temperature and concentrations of both substrates (glucose and fructose involved in the reaction. Sonicated and lyophilized cells were used as source of the enzyme. The optimal pH for sorbitol synthesis at 30º C is 6.5. For a value of pH of 6, the optimal temperature is 35º C. The neural network in the model computes the value of the kinetic relationship. The hybrid neural network model is able to simulate changes in the substrates and product concentrations during sorbitol synthesis under pH and temperature conditions ranging between 5 and 7.5 and 25 and 40º C, respectively. Under these conditions the rate of sorbitol synthesis shows important differences. Values computed using the hybrid neural network model have an average error of 1.7·10-3 mole.

  1. New insights into the operative network of FaEO, an enone oxidoreductase from Fragaria x ananassa Duch.

    Science.gov (United States)

    Collu, Gabriella; Farci, Domenica; Esposito, Francesca; Pintus, Francesca; Kirkpatrick, Joanna; Piano, Dario

    2017-05-01

    The 2-methylene-furan-3-one reductase or Fragaria x ananassa Enone Oxidoreductase (FaEO) catalyses the last reductive step in the biosynthesis of 4-hydroxy-2,5-dimethyl-3(2H)-furanone, a major component in the characteristic flavour of strawberries. In the present work, we describe the association between FaEO and the vacuolar membrane of strawberry fruits. Even if FaEO lacks epitopes for stable or transient membrane-interactions, it contains a calmodulin-binding region, suggesting that in vivo FaEO may be associated with the membrane via a peripheral protein complex with calmodulin. Moreover, we also found that FaEO occurs in dimeric form in vivo and, as frequently observed for calmodulin-regulated proteins, it may be expressed in different isoforms by alternative gene splicing. Further mass spectrometry analysis confirmed that the isolated FaEO consists in the already known isoform and that it is the most characteristic during ripening. Finally, a characterization by absorption spectroscopy showed that FaEO has specific flavoprotein features. The relevance of these findings and their possible physiological implications are discussed.

  2. ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases

    Science.gov (United States)

    Zargar, Kamrun; Conrad, Alison; Bernick, David L.; Lowe, Todd M.; Stolc, Viktor; Hoeft, Shelley; Oremland, Ronald S.; Stolz, John; Saltikov, Chad W.

    2012-01-01

    Arsenotrophy, growth coupled to autotrophic arsenite oxidation or arsenate respiratory reduction, occurs only in the prokaryotic domain of life. The enzymes responsible for arsenotrophy belong to distinct clades within the DMSO reductase family of molybdenum-containing oxidoreductases: specifically arsenate respiratory reductase, ArrA, and arsenite oxidase, AioA (formerly referred to as AroA and AoxB). A new arsenite oxidase clade, ArxA, represented by the haloalkaliphilic bacterium Alkalilimnicola ehrlichii strain MLHE-1 was also identified in the photosynthetic purple sulfur bacterium Ectothiorhodospira sp. strain PHS-1. A draft genome sequence of PHS-1 was completed and an arx operon similar to MLHE-1 was identified. Gene expression studies showed that arxA was strongly induced with arsenite. Microbial ecology investigation led to the identification of additional arxA-like sequences in Mono Lake and Hot Creek sediments, both arsenic-rich environments in California. Phylogenetic analyses placed these sequences as distinct members of the ArxA clade of arsenite oxidases. ArxA-like sequences were also identified in metagenome sequences of several alkaline microbial mat environments of Yellowstone National Park hot springs. These results suggest that ArxA-type arsenite oxidases appear to be widely distributed in the environment presenting an opportunity for further investigations of the contribution of Arx-dependent arsenotrophy to the arsenic biogeochemical cycle.

  3. The Crystal Structure and Mechanism of an Unusual Oxidoreductase, GilR, Involved in Gilvocarcin V Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Noinaj, Nicholas; Bosserman, Mary A.; Schickli, M. Alexandra; Piszczek, Grzegorz; Kharel, Madan K.; Pahari, Pallab; Buchanan, Susan K.; Rohr, Jürgen (NIH); (Kentucky)

    2012-11-26

    GilR is a recently identified oxidoreductase that catalyzes the terminal step of gilvocarcin V biosynthesis and is a unique enzyme that establishes the lactone core of the polyketide-derived gilvocarcin chromophore. Gilvocarcin-type compounds form a small distinct family of anticancer agents that are involved in both photo-activated DNA-alkylation and histone H3 cross-linking. High resolution crystal structures of apoGilR and GilR in complex with its substrate pregilvocarcin V reveals that GilR belongs to the small group of a relatively new type of the vanillyl-alcohol oxidase flavoprotein family characterized by bicovalently tethered cofactors. GilR was found as a dimer, with the bicovalently attached FAD cofactor mediated through His-65 and Cys-125. Subsequent mutagenesis and functional assays indicate that Tyr-445 may be involved in reaction catalysis and in mediating the covalent attachment of FAD, whereas Tyr-448 serves as an essential residue initiating the catalysis by swinging away from the active site to accommodate binding of the 6R-configured substrate and consequently abstracting the proton of the hydroxyl residue of the substrate hemiacetal 6-OH group. These studies lay the groundwork for future enzyme engineering to broaden the substrate specificity of this bottleneck enzyme of the gilvocarcin biosynthetic pathway for the development of novel anti-cancer therapeutics.

  4. Continuous production of gluconic acid and sorbitol from Jerusalem artichoke and glucose using an oxidoreductase of Zymomonas mobilis and inulinase.

    Science.gov (United States)

    Kim, D M; Kim, H S

    1992-02-01

    Gluconic acid and sorbitol were simultaneously produced from glucose and Jerusalem artichoke using a glucose-fructose oxidoreductase of Zymomonas mobilis and inulinase. Inulinase was immobilized on chitin by cross-linking with glutaraldehyde. Cells of Z. mobilis permeabilized with toluene were coimmobilized with chitin-immobilized inulinase in alginate beads. The optimum amounts of both chitin-immobilized inulinase and permeabilized cells for coimmobilization were determined, and operational conditions were optimized. In a continuous stirred tank reactor operation, the maximum productivities for gluconic acid and sorbitol were about 19.2 and 21.3 g/L/h, respectively, at the dilution rate of 0.23 h(-1) and the substrate concentration of 20%, but operational stability was low because of the abrasion of the beads. As an approach to increase the operational stability, a recycle packed-bed reactor (RPBR) was employed. In RPBR operation, the maximum productivities for gluconic acid and sorbitol were found to be 23.4 and 26.0 g/L/h, respectively, at the dilution rate of 0.35 h(-1) and the substrate concentration of 20% when the recirculation rate was fixed at 900 mL/h. Coimmobilized enzymes were stable for 250 h in a recycle packed-bed reactor without any loss of activity, while half-life in a continuous stirred tank reactor (CSTR) was observed to be about 150 h.

  5. Insight Into the Radical Mechanism of Phycocyanobilin-Ferredoxin Oxidoreductase (Pcya) Revealed By X-Ray Crystallography And Biochemical Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tu, S.-L.; Rockwell, N.; Lagarias, J.C.; Fisher, A.J.; /Inst. Plant Microb. Biol., Taipei /UC, Davis

    2007-07-13

    The X-ray crystal structure of the substrate-free form of phycocyanobilin (PCB)-ferredoxin oxidoreductase (PcyA; EC 1.3.7.5) from the cyanobacterium Nostoc sp. PCC7120 has been solved at 2.5 angstrom resolution. A comparative analysis of this structure with those recently reported for substrate-bound and substrate-free forms of PcyA from the cyanobacterium Synechocystis sp. PCC6803 (Hagiwara et al. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 27-32; Hagiwara et al. (2006) FEBS Lett. 580, 3823-3828) provides a compelling picture of substrate-induced changes in the PcyA enzyme and the chemical basis of PcyA's catalytic activity. On the basis of these structures and the biochemical analysis of site-directed mutants of Nostoc PcyA, including mutants reported in recent studies (Tu et al. (2006) J. Biol. Chem. 281, 3127-3136) as well as mutants described in this study, a revised mechanism for the PcyA-mediated four-electron reduction of biliverdin IX{alpha} to 3E/3Z-phycocyanobilin via enzyme-bound bilin radical intermediates is proposed. The mechanistic insight of these studies, along with homology modeling, have provided new insight into the catalytic mechanisms of other members of the ferredoxin-dependent bilin reductase family that are widespread in oxygenic photosynthetic organisms.

  6. Staphylococcus aureus DsbA is a membrane-bound lipoprotein with thiol-disulfide oxidoreductase activity.

    Science.gov (United States)

    Dumoulin, Alexis; Grauschopf, Ulla; Bischoff, Markus; Thöny-Meyer, Linda; Berger-Bächi, Brigitte

    2005-11-01

    DsbA proteins, the primary catalysts of protein disulfide bond formation, are known to affect virulence and penicillin resistance in Gram-negative bacteria. We identified a putative DsbA homologue in the Gram-positive pathogen Staphylococcus aureus that was able to restore the motility phenotype of an Escherichia coli dsbA mutant and thus demonstrated a functional thiol oxidoreductase activity. The staphylococcal DsbA (SaDsbA) had a strong oxidative redox potential of -131 mV. The persistence of the protein throughout the growth cycle despite its predominant transcription during exponential growth phase suggested a rather long half-life for the SaDsbA. SaDsbA was found to be a membrane localised lipoprotein, supporting a role in disulfide bond formation. But so far, neither in vitro nor in vivo phenotype could be identified in a staphylococcal dsbA mutant, leaving its physiological role unknown. The inability of SaDsbA to interact with the E. coli DsbB and the lack of an apparent staphylococcal DsbB homologue suggest an alternative re-oxidation pathway for the SaDsbA.

  7. NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of homocysteine-induced endoplasmic reticulum protein

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Tomoji, E-mail: t-maeda@nichiyaku.ac.jp [Department of Neuroscience, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-Cho, Shiwagun, Iwate, 028-3603 (Japan); Tanabe-Fujimura, Chiaki; Fujita, Yu; Abe, Chihiro; Nanakida, Yoshino; Zou, Kun; Liu, Junjun; Liu, Shuyu [Department of Neuroscience, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-Cho, Shiwagun, Iwate, 028-3603 (Japan); Nakajima, Toshihiro [Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku, Tokyo, Tokyo, 160-8402 (Japan); Komano, Hiroto, E-mail: hkomano@iwate-med.ac.jp [Department of Neuroscience, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-Cho, Shiwagun, Iwate, 028-3603 (Japan)

    2016-05-13

    Homocysteine-induced endoplasmic reticulum (ER) protein (Herp) is an ER stress-inducible key regulatory component of ER-associated degradation (ERAD) that has been implicated in insulin hypersecretion in diabetic mouse models. Herp expression is tightly regulated. Additionally, Herp is a highly labile protein and interacts with various proteins, which are characteristic features of ubiquitinated protein. Previously, we reported that ubiquitination is not required for Herp degradation. In addition, we found that the lysine residues of Herp (which are ubiquitinated by E3 ubiquitin ligase) are not sufficient for regulation of Herp degradation. In this study, we found that NAD(P)H quinone oxidoreductase 1 (NQO1)-mediated targeting of Herp to the proteasome was involved in Herp degradation. In addition, we found that Herp protein levels were markedly elevated in synoviolin-null cells. The E3 ubiquitin ligase synoviolin is a central component of ERAD and is involved in the degradation of nuclear factor E2-related factor-2 (Nrf2), which regulates cellular reactive oxygen species. Additionally, NQO1 is a target of Nrf2. Thus, our findings indicated that NQO1 could stabilize Herp protein expression via indirect regulation of synoviolin. -- Highlights: •Herp interacts with NQO1. •NQO1 regulates Herp degradation.

  8. Atomic-resolution structure of the phycocyanobilin:ferredoxin oxidoreductase I86D mutant in complex with fully protonated biliverdin.

    Science.gov (United States)

    Hagiwara, Yoshinori; Wada, Kei; Irikawa, Teppei; Sato, Hideaki; Unno, Masaki; Yamamoto, Ken; Fukuyama, Keiichi; Sugishima, Masakazu

    2016-10-01

    Phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes the reduction of biliverdin (BV) to produce phycocyanobilin, a linear tetrapyrrole pigment used for light harvesting and light sensing. Spectroscopic and HPLC analyses inidicate that BV bound to the I86D mutant of PcyA is fully protonated (BVH(+) ) and can accept an electron, but I86D is unable to donate protons for the reduction; therefore, compared to the wild-type PcyA, the I86D mutant stabilizes BVH(+) . To elucidate the structural basis of the I86D mutation, we determined the atomic-resolution structure of the I86D-BVH(+) complex and the protonation states of the essential residues Asp105 and Glu76 in PcyA. Our study revealed that Asp105 adopted a fixed conformation in the I86D mutant, although it had dual conformations in wild-type PcyA which reflected the protonation states of BV. Taken together with biochemical/spectroscopic results, our analysis of the I86D-BVH(+) structure supports the hypothesis that flexibility of Asp105 is essential for the catalytic activity of PcyA.

  9. A larger transcript is required for the synthesis of the smaller isoform of ferredoxin:NADP oxidoreductase.

    Science.gov (United States)

    Omairi-Nasser, Amin; de Gracia, Adrienne Gomez; Ajlani, Ghada

    2011-09-01

    Ferredoxin:NADP oxidoreductases (FNRs) constitute a family of flavoenzymes that catalyse the exchange of electrons between ferredoxin and NADP(H). In cyanobacteria FNR provides NADPH for photoautotrophic metabolism, but the enzyme is also capable of oxidizing NADPH providing reduced ferredoxin. In the cyanobacterium Synechocystis sp. strain PCC6803, the unique petH gene has two translation products depending on growth conditions. As a consequence two isoforms of the FNR accumulate - FNR(L) and FNR(S) . In the present work, analysis of petH expression reveals that different transcriptional start points (tsp) are responsible for this differential translation initiation. Under standard conditions (where FNR(L) accumulates), two tsps were found at -52 and -34 relative to the first translation start site. Under nitrogen-starvation conditions (where FNR(S) accumulates) a tsp was mapped at -126 relative to the first translation start site. Therefore, the transcript responsible for FNR(S) translation is longer than that producing FNR(L) . In addition, expression of the short or long transcript in E. coli resulted in the accumulation of FNR(L) or FNR(S) respectively. This result demonstrates that translation can initiate at two different sites, 336-bases apart (ATG-1 to ATG-113), depending only on the 5'UTR structure. © 2011 Blackwell Publishing Ltd.

  10. A second isoform of the ferredoxin:NADP oxidoreductase generated by an in-frame initiation of translation.

    Science.gov (United States)

    Thomas, Jean-Claude; Ughy, Bettina; Lagoutte, Bernard; Ajlani, Ghada

    2006-11-28

    Ferredoxin:NADP oxidoreductases (FNRs) constitute a family of flavoenzymes that catalyze the exchange of reducing equivalents between one-electron carriers and the two-electron-carrying NADP(H). The main role of FNRs in cyanobacteria and leaf plastids is to provide the NADPH for photoautotrophic metabolism. In root plastids, a distinct FNR isoform is found that has been postulated to function in the opposite direction, providing electrons for nitrogen assimilation at the expense of NADPH generated by heterotrophic metabolism. A multiple gene family encodes FNR isoenzymes in plants, whereas there is only one FNR gene (petH) in cyanobacteria. Nevertheless, we detected two FNR isoforms in the cyanobacterium Synechocystis sp. strain PCC6803. One of them (FNR(S) approximately 34 kDa) is similar in size to the plastid FNR and specifically accumulates under heterotrophic conditions, whereas the other one (FNR(L) approximately 46 kDa) contains an extra N-terminal domain that allows its association with the phycobilisome. Site-directed mutants allowed us to conclude that the smaller isoform, FNR(S), is produced from an internal ribosome entry site within the petH ORF. Thus we have uncovered a mechanism by which two isoforms are produced from a single gene, which is, to our knowledge, novel in photosynthetic bacteria. Our results strongly suggest that FNR(L) is an NADP(+) reductase, whereas FNR(S) is an NADPH oxidase.

  11. Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production.

    Science.gov (United States)

    Zachariou, M; Scopes, R K

    1986-09-01

    The enzymes responsible for sorbitol formation in Zymomonas mobilis were investigated. A previously undescribed enzyme catalyzes the intermolecular oxidation-reduction of glucose and fructose to form gluconolactone and sorbitol. This enzyme has been purified; it had a subunit size of 40,000 daltons and is probably tetrameric at low pH. It contained tightly bound NADP as the hydrogen carrier and did not require any added cofactor for activity. In addition, a gluconolactonase has been isolated, although not completely purified. Together these two enzymes were capable of completely converting a 54% (wt/vol) equimolar mixture of glucose and fructose to sorbitol and sodium gluconate at the optimum pH of close to 6.2. The oxidoreductase had low affinities for its substrates, but natural environmental conditions would expose it to high concentrations of sugars. The amount of the enzyme in Z. mobilis cells was sufficient to account for the rate of sorbitol formation in vivo. However, the enzyme was present in the highest amounts when the cells were grown on glucose alone, and it was repressed by the presence of fructose; this was not the case with the gluconolactonase.

  12. Inhibitory Effects of Tart Cherry (Prunus cerasus) Juice on Xanthine Oxidoreductase Activity and its Hypouricemic and Antioxidant Effects on Rats.

    Science.gov (United States)

    Haidari, F; Mohammad Shahi, M; Keshavarz, S A; Rashidi, M R

    2009-03-01

    The aim of this study was to investigate the effect of tart cherry juice on serum uric acid levels, hepatic xanthine oxidoreductase activity and two non-invasive biomarkers of oxidative stress (total antioxidant capacity and malondialdehyde concentration), in normal and hyperuricemic rats. Tart cherry juice (5 ml/kg) was given by oral gavage to rats for 2 weeks. Allopurinol (5 mg/kg) was used as a positive control and was also given by oral gavage. Data showed that tart cherry juice treatment did not cause any significant reduction in the serum uric acid levels in normal rats, but significantly reduced (PTart cherry juice treatment also inhibited hepatic xanthine oxidase/dehydrogenase activity. Moreover, a significant increase (Ptart cherry juice treated-rats in both normal and hyperuricemic groups. The oral administration of tart cherry juice also led to a significant reduction (Ptart cherry, it could not significantly change anti-oxidative parameters. These features of tart cherry make it an attractive candidate for the prophylactic treatment of hyperuricaemia, particularly if it is to be taken on a long-term basis. Further investigations to define its clinical efficacy would be highly desirable.

  13. Long-term follow-up of a female with congenital adrenal hyperplasia due to P450-oxidoreductase deficiency.

    Science.gov (United States)

    Bonamichi, Beatriz D S F; Santiago, Stella L M; Bertola, Débora R; Kim, Chong A; Alonso, Nivaldo; Mendonca, Berenice B; Bachega, Tania A S S; Gomes, Larissa G

    2016-10-01

    P450 oxidoreductase deficiency (PORD) is a variant of congenital adrenal hyperplasia that is caused by POR gene mutations. The POR gene encodes a flavor protein that transfers electrons from nicotinamide adenine dinucleotide phosphate (NADPH) to all microsomal cytochrome P450 type II (including 21-hydroxylase, 17α-hydroxylase 17,20 lyase and aromatase), which is fundamental for their enzymatic activity. POR mutations cause variable impairments in steroidogenic enzyme activities that result in wide phenotypic variability ranging from 46,XX or 46,XY disorders of sexual differentiation, glucocorticoid deficiency, with or without skeletal malformations similar to Antley-Bixler syndrome to asymptomatic newborns diagnosed during neonatal screening test. Little is known about the PORD long-term evolution. We described a 46,XX patient with mild atypical genitalia associated with severe bone malformation, who was diagnosed after 13 years due to sexual infantilism. She developed large ovarian cysts and late onset adrenal insufficiency during follow-up, both of each regressed after hormone replacement therapies. We also described a late surgical approach for the correction of facial hypoplasia in a POR patient.

  14. Molecular and biochemical characterization of bifunctional pyruvate decarboxylases and pyruvate ferredoxin oxidoreductases from Thermotoga maritima and Thermotoga hypogea.

    Science.gov (United States)

    Eram, Mohammad S; Wong, Alton; Oduaran, Erica; Ma, Kesen

    2015-12-01

    Hyperthermophilic bacteria Thermotoga maritima and Thermotoga hypogea produce ethanol as a metabolic end product, which is resulted from acetaldehyde reduction catalysed by an alcohol dehydrogenase (ADH). However, the enzyme that is involved in the production of acetaldehyde from pyruvate is not well characterized. An oxygen sensitive and coenzyme A-dependent pyruvate decarboxylase (PDC) activity was found to be present in cell free extracts of T. maritima and T. hypogea. Both enzymes were purified and found to have pyruvate ferredoxin oxidoreductase (POR) activity, indicating their bifunctionality. Both PDC and POR activities from each of the purified enzymes were characterized in regards to their optimal assay conditions including pH dependency, oxygen sensitivity, thermal stability, temperature dependency and kinetic parameters. The close relatedness of the PORs that was shown by sequence analysis could be an indication of the presence of such bifunctionality in other hyperthermophilic bacteria. This is the first report of a bifunctional PDC/POR enzyme in hyperthermophilic bacteria. The PDC and the previously reported ADHs are most likely the key enzymes catalysing the production of ethanol from pyruvate in bacterial hyperthermophiles.

  15. Rational proteomics I. Fingerprint identification and cofactor specificity in the short-chain oxidoreductase (SCOR) enzyme family.

    Science.gov (United States)

    Duax, William L; Pletnev, Vladimir; Addlagatta, Anthony; Bruenn, Jeremy; Weeks, Charles M

    2003-12-01

    The short-chain oxidoreductase (SCOR) family of enzymes includes over 2000 members identified in sequenced genomes. Of these enzymes, approximately 200 have been characterized functionally, and the three-dimensional crystal structures of approximately 40 have been reported. Since some SCOR enzymes are involved in hypertension, diabetes, breast cancer, and polycystic kidney disease, it is important to characterize the other members of the family for which the biological functions are currently unknown. Although the SCOR family appears to have only a single fully conserved residue, it was possible, using bioinformatics methods, to determine characteristic fingerprints composed of 30-40 residues that are conserved at the 70% or greater level in SCOR subgroups. These fingerprints permit reliable prediction of several important structure-function features including NAD/NADP cofactor preference. For example, the correlation of aspartate or arginine residues with NAD or NADP binding, respectively, predicts the cofactor preference of more than 70% of the SCOR proteins with unknown function. The analysis of conserved residues surrounding the cofactor has revealed the presence of previously undetected CH em leader O hydrogen bonds in the majority of the SCOR crystal structures, predicts the presence of similar hydrogen bonds in 90% of the SCOR proteins of unknown function, and suggests that these hydrogen bonds may play a critical role in the catalytic functions of these enzymes.

  16. Rational proteomics II: electrostatic nature of cofactor preference in the short-chain oxidoreductase (SCOR) enzyme family.

    Science.gov (United States)

    Pletnev, Vladimir Z; Weeks, Charles M; Duax, William L

    2004-11-01

    The dominant role of long-range electrostatic interatomic interactions in nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NAD/NADP) cofactor recognition has been shown for enzymes of the short-chain oxidoreductase (SCOR) family. An estimation of cofactor preference based only on the contribution of the electrostatic energy term to the total energy of enzyme-cofactor interaction has been tested for approximately 40 known three-dimensional (3D) crystal complexes and approximately 330 SCOR enzymes, with cofactor preference predicted by the presence of Asp or Arg recognition residues at specific 3D positions in the beta2alpha3 loop (Duax et al., Proteins 2003;53:931-943). The results obtained were found to be consistent with approximately 90% reliable cofactor assignments for those subsets. The procedure was then applied to approximately 170 SCOR enzymes with completely uncertain NAD/NADP dependence, due to the lack of Asp and Arg marker residues. The proposed 3D electrostatic approach for cofactor assignment ("3D_DeltaE(el)") has been implemented in an automatic screening procedure, and together with the use of marker residues proposed earlier (Duax et al., Proteins 2003;53:931-943), increases the level of reliable predictions for the putative SCORs from approximately 70% to approximately 90%. It is expected to be applicable for any NAD/NADP-dependent enzyme subset having at least 25-30% sequence identity, with at least one enzyme of known 3D crystal structure.

  17. A New Class of Tungsten-Containing Oxidoreductase in Caldicellulosiruptor, a Genus of Plant Biomass-Degrading Thermophilic Bacteria.

    Science.gov (United States)

    Scott, Israel M; Rubinstein, Gabe M; Lipscomb, Gina L; Basen, Mirko; Schut, Gerrit J; Rhaesa, Amanda M; Lancaster, W Andrew; Poole, Farris L; Kelly, Robert M; Adams, Michael W W

    2015-10-01

    Caldicellulosiruptor bescii grows optimally at 78°C and is able to decompose high concentrations of lignocellulosic plant biomass without the need for thermochemical pretreatment. C. bescii ferments both C5 and C6 sugars primarily to hydrogen gas, lactate, acetate, and CO2 and is of particular interest for metabolic engineering applications given the recent availability of a genetic system. Developing optimal strains for technological use requires a detailed understanding of primary metabolism, particularly when the goal is to divert all available reductant (electrons) toward highly reduced products such as biofuels. During an analysis of the C. bescii genome sequence for oxidoreductase-type enzymes, evidence was uncovered to suggest that the primary redox metabolism of C. bescii has a completely uncharacterized aspect involving tungsten, a rarely used element in biology. An active tungsten utilization pathway in C. bescii was demonstrated by the heterologous production of a tungsten-requiring, aldehyde-oxidizing enzyme (AOR) from the hyperthermophilic archaeon Pyrococcus furiosus. Furthermore, C. bescii also contains a tungsten-based AOR-type enzyme, here termed XOR, which is phylogenetically unique, representing a completely new member of the AOR tungstoenzyme family. Moreover, in C. bescii, XOR represents ca. 2% of the cytoplasmic protein. XOR is proposed to play a key, but as yet undetermined, role in the primary redox metabolism of this cellulolytic microorganism.

  18. Accessory NUMM (NDUFS6) subunit harbors a Zn-binding site and is essential for biogenesis of mitochondrial complex I

    Science.gov (United States)

    Kmita, Katarzyna; Wirth, Christophe; Warnau, Judith; Guerrero-Castillo, Sergio; Hunte, Carola; Hummer, Gerhard; Kaila, Ville R. I.; Zwicker, Klaus; Brandt, Ulrich; Zickermann, Volker

    2015-01-01

    Mitochondrial proton-pumping NADH:ubiquinone oxidoreductase (respiratory complex I) comprises more than 40 polypeptides and contains eight canonical FeS clusters. The integration of subunits and insertion of cofactors into the nascent complex is a complicated multistep process that is aided by assembly factors. We show that the accessory NUMM subunit of complex I (human NDUFS6) harbors a Zn-binding site and resolve its position by X-ray crystallography. Chromosomal deletion of the NUMM gene or mutation of Zn-binding residues blocked a late step of complex I assembly. An accumulating assembly intermediate lacked accessory subunit N7BM (NDUFA12), whereas a paralog of this subunit, the assembly factor N7BML (NDUFAF2), was found firmly bound instead. EPR spectroscopic analysis and metal content determination after chromatographic purification of the assembly intermediate showed that NUMM is required for insertion or stabilization of FeS cluster N4. PMID:25902503

  19. Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber's hereditary optic neuropathy in a mouse model.

    Science.gov (United States)

    Yu, Hong; Koilkonda, Rajeshwari D; Chou, Tsung-Han; Porciatti, Vittorio; Ozdemir, Sacide S; Chiodo, Vince; Boye, Sanford L; Boye, Shannon E; Hauswirth, William W; Lewin, Alfred S; Guy, John

    2012-05-15

    To introduce DNA into mitochondria efficiently, we fused adenoassociated virus capsid VP2 with a mitochondrial targeting sequence to carry the mitochondrial gene encoding the human NADH ubiquinone oxidoreductase subunit 4 (ND4). Expression of WT ND4 in cells with the G11778A mutation in ND4 led to restoration of defective ATP synthesis. Furthermore, with injection into the rodent eye, human ND4 DNA levels in mitochondria reached 80% of its mouse homolog. The construct expressed in most inner retinal neurons, and it also suppressed visual loss and optic atrophy induced by a mutant ND4 homolog. The adenoassociated virus cassette accommodates genes of up to ∼5 kb in length, thus providing a platform for introduction of almost any mitochondrial gene and perhaps even allowing insertion of DNA encompassing large deletions of mtDNA, some associated with aging, into the organelle of adults.

  20. AcEST: BP915153 [AcEST

    Lifescience Database Archive (English)

    Full Text Available YMU001_000067_B05 590 Adiantum capillus-veneris mRNA. clone: YMU001_000067_B05. BP91515...3 CL2049Contig1 Show BP915153 Clone id YMU001_000067_B05 Library YMU01 Length 590 Definition Adiantum ca...pillus-veneris mRNA. clone: YMU001_000067_B05. Accession BP915153 Tissue type prothallium Developmental stag...AST: a new generation of protein database search programs, Nucleic Acids Res. 25:3389-3402. Query= BP915153|... OS=C... 30 6.9 sp|P48656|NU5M_HORSE NADH-ubiquinone oxidoreductase chain 5 OS=E... 30 9.0 sp|P15173|MYOG_HU

  1. AcEST: DK945783 [AcEST

    Lifescience Database Archive (English)

    Full Text Available |Q6INH0|RBP4B_XENLA Histone-binding protein RBBP4-B OS=Xenopus... 30 3.8 sp|O9337...7|RBP4A_XENLA Histone-binding protein RBBP4-A OS=Xenopus... 30 3.8 sp|Q5M7K4|RBBP4_XENTR Histone-binding protein RBBP4... OS=Xenopus t... 30 3.8 sp|P24996|NU2M_PISOC NADH-ubiquinone oxidoreductase chain 2 OS=P... 30 4.9 sp|Q5RF92|RBBP4..._PONAB Histone-binding protein RBBP4 OS=Pongo abe... 29 6.5 sp|Q60972|RBBP4..._MOUSE Histone-binding protein RBBP4 OS=Mus muscu... 29 6.5 sp|Q09028|RBBP4_HUMAN Histone-binding protein RBBP4

  2. Single-cell analysis of intercellular heteroplasmy of mtDNA in Leber hereditary optic neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y.; Sharpe, H.; Brown, N.

    1994-07-01

    The authors have investigated the distribution of mutant mtDNA molecules in single cells from a patient with Leber hereditary optic neuropathy (LHON). LHON is a maternally inherited disease that is characterized by a sudden-onset bilateral loss of central vision, which typically occurs in early adulthood. More than 50% of all LHON patients carry an mtDNA mutation at nucleotide position 11778. This nucleotide change converts a highly conserved arginine residue to histidine at codon 340 in the NADH-ubiquinone oxidoreductase subunit 4 (ND4) gene of mtDNA. In the present study, the authors used PCR amplification of mtDNA from lymphocytes to investigate mtDNA heteroplasmy at the single-cell level in a LHON patient. They found that most cells were either homoplasmic normal or homoplasmic mutant at nucleotide position 11778. Some (16%) cells contained both mutant and normal mtDNA.

  3. Previously Unclassified Mutation of mtDNA m.3472T>C: Evidence of Pathogenicity in Leber's Hereditary Optic Neuropathy.

    Science.gov (United States)

    Sheremet, N L; Nevinitsyna, T A; Zhorzholadze, N V; Ronzina, I A; Itkis, Y S; Krylova, T D; Tsygankova, P G; Malakhova, V A; Zakharova, E Y; Tokarchuk, A V; Panteleeva, A A; Karger, E M; Lyamzaev, K G; Avetisov, S E

    2016-07-01

    Leber's hereditary optic neuropathy (LHON) refers to a group of mitochondrial diseases and is characterized by defects of the mitochondrial electron transport chain and decreased level of oxidative phosphorylation. The list of LHON primary mtDNA mutations is regularly updated. In this study, we describe the homoplasmic nucleotide substitution m.3472T>C in the MT-ND1 (NADH-ubiquinone oxidoreductase chain 1) gene and specific changes in cell metabolism in a patient with LHON and his asymptomatic sister. To confirm the presence of mutation-related mitochondrial dysfunction, respiration of skin fibroblasts and platelets from the patient and his sister was studied, as well as the mitochondrial potential and production of reactive oxygen species in the skin fibroblasts. In addition, based on characteristics of the toxic effect of paraquat, a new approach was developed for detecting the functional activity of complex I of the mitochondrial respiratory chain.

  4. The gross structure of the respiratory complex I: a Lego System.

    Science.gov (United States)

    Friedrich, Thorsten; Böttcher, Bettina

    2004-01-30

    The proton-pumping NADH:ubiquinone oxidoreductase, also called complex I, is the entry point for electrons into the respiratory chains of many bacteria and mitochondria of most eucaryotes. It couples electron transfer with the translocation of protons across the membrane, thus providing the proton motive force essential for energy-consuming processes. Electron microscopy revealed the 'L'-shaped structure of the bacterial and mitochondrial complex with two arms arranged perpendicular to each other. Recently, we showed that the Escherichia coli complex I takes on another stable conformation with the two arms arranged side by side resulting in a horseshoe-shaped structure. This model reflects the evolution of complex I from pre-existing modules for electron transfer and proton translocation.

  5. Protective Role of rAAV-NDI1, Serotype 5, in an Acute MPTP Mouse Parkinson's Model

    Directory of Open Access Journals (Sweden)

    Jennifer Barber-Singh

    2011-01-01

    Full Text Available Defects in mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I have been implicated in a number of acquired and hereditary diseases including Leigh's syndrome and more recently Parkinson's disease. A limited number of strategies have been attempted to repair the damaged complex I with little or no success. We have recently shown that the non-proton-pumping, internal NADH-ubiquinone oxidoreductase (Ndi1 from Saccharomyces cerevisiae (baker's yeast can be successfully inserted into the mitochondria of mice and rats, and the enzyme was found to be fully active. Using recombinant adenoassociated virus vectors (serotype 5 carrying our NDI1 gene, we were able to express the Ndi1 protein in the substantia nigra (SN of C57BL/6 mice with an expression period of two months. The results show that the AAV serotype 5 was highly efficient in expressing Ndi1 in the SN, when compared to a previous model using serotype 2, which led to nearly 100% protection when using an acute MPTP model. It is conceivable that the AAV-serotype5 carrying the NDI1 gene is a powerful tool for proof-of-concept study to demonstrate complex I defects as the causable factor in diseases of the brain.

  6. Intravitreal delivery of AAV-NDI1 provides functional benefit in a murine model of Leber hereditary optic neuropathy.

    Science.gov (United States)

    Chadderton, Naomi; Palfi, Arpad; Millington-Ward, Sophia; Gobbo, Oliverio; Overlack, Nora; Carrigan, Matthew; O'Reilly, Mary; Campbell, Matthew; Ehrhardt, Carsten; Wolfrum, Uwe; Humphries, Peter; Kenna, Paul F; Farrar, G Jane

    2013-01-01

    Leber hereditary optic neuropathy (LHON) is a mitochondrially inherited form of visual dysfunction caused by mutations in several genes encoding subunits of the mitochondrial respiratory NADH-ubiquinone oxidoreductase complex (complex I). Development of gene therapies for LHON has been impeded by genetic heterogeneity and the need to deliver therapies to the mitochondria of retinal ganglion cells (RGCs), the cells primarily affected in LHON. The therapy under development entails intraocular injection of a nuclear yeast gene NADH-quinone oxidoreductase (NDI1) that encodes a single subunit complex I equivalent and as such is mutation independent. NDI1 is imported into mitochondria due to an endogenous mitochondrial localisation signal. Intravitreal injection represents a clinically relevant route of delivery to RGCs not previously used for NDI1. In this study, recombinant adenoassociated virus (AAV) serotype 2 expressing NDI1 (AAV-NDI1) was shown to protect RGCs in a rotenone-induced murine model of LHON. AAV-NDI1 significantly reduced RGC death by 1.5-fold and optic nerve atrophy by 1.4-fold. This led to a significant preservation of retinal function as assessed by manganese enhanced magnetic resonance imaging and optokinetic responses. Intraocular injection of AAV-NDI1 overcomes many barriers previously associated with developing therapies for LHON and holds great therapeutic promise for a mitochondrial disorder for which there are no effective therapies.

  7. Carbon nanotubes-ionic liquid nanocomposites sensing platform for NADH oxidation and oxygen, glucose detection in blood.

    Science.gov (United States)

    Bai, Lu; Wen, Dan; Yin, Jianyuan; Deng, Liu; Zhu, Chengzhou; Dong, Shaojun

    2012-03-15

    An excellent electrochemical sensing platform has been designed by combining the huge specific surface area of carbon nanotubes (CNTs) and the remarkable conductivity of ionic liquid (IL). IL can easily untangle CNTs bundles and disperse CNTs by itself under grinding condition due to the π-π interaction between CNTs and IL. The resulting nanocomposites showed an augmentation on the voltammetric and amperometric behaviors of electrocatalytic activity toward O(2) and NADH. Therefore, such an efficient platform was developed to fabricate mediator-free oxygen sensor and glucose biosensor based on glucose dehydrogenase (GDH). O(2) could be determined in the range of zero to one hundred percent of O(2) content with the detection limit of 126 μg L(-1) (S/N=3). The glucose biosensor which was constructed by entrapping GDH into chitosan on the nanocomposites modified glassy carbon electrode surface, exhibited good electrocatalytic oxidation toward glucose with a detection limit of 9 μM in the linear range of 0.02-1mM. We also applied the as-prepared sensors to detect oxygen and glucose in real blood samples and acquired satisfied results. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Imaging of a glucose analog, calcium and NADH in neurons and astrocytes: dynamic responses to depolarization and sensitivity to pioglitazone.

    Science.gov (United States)

    Pancani, Tristano; Anderson, Katie L; Porter, Nada M; Thibault, Olivier

    2011-12-01

    Neuronal Ca(2+) dyshomeostasis associated with cognitive impairment and mediated by changes in several Ca(2+) sources has been seen in animal models of both aging and diabetes. In the periphery, dysregulation of intracellular Ca(2+) signals may contribute to the development of insulin resistance. In the brain, while it is well-established that type 2 diabetes mellitus is a risk factor for the development of dementia in the elderly, it is not clear whether Ca(2+) dysregulation might also affect insulin sensitivity and glucose utilization. Here we present a combination of imaging techniques testing the disappearance of the fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) as an indication of glycolytic activity in neurons and astrocytes. Our work shows that glucose utilization at rest is greater in neurons compared to astrocytes, and ceases upon activation in neurons with little change in astrocytes. Pretreatment of hippocampal cultures with pioglitazone, a drug used in the treatment of type 2 diabetes, significantly reduced glycolytic activity in neurons and enhanced it in astrocytes. This series of experiments, including Fura-2 and NADH imaging, provides results that are consistent with the idea that Ca(2+) levels may rapidly alter glycolytic activity, and that downstream events beyond Ca(2+) dysregulation with aging, may alter cellular metabolism in the brain.

  9. Genetic diversity of Echinococcus granulosus in southwest China determined by the mitochondrial NADH dehydrogenase subunit 2 gene.

    Science.gov (United States)

    Wang, Jiahai; Wang, Ning; Hu, Dandan; Zhong, Xiuqin; Wang, Shuxian; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou

    2014-01-01

    We evaluated genetic diversity and structure of Echinococcus granulosus by analyzing the complete mitochondrial NADH dehydrogenase subunit 2 (ND2) gene in 51 isolates of E. granulosus sensu stricto metacestodes collected at three locations in this region. We detected 19 haplotypes, which formed a distinct clade with the standard sheep strain (G1). Hence, all 51 isolates were identified as E. granulosus sensu stricto (G1-G3). Genetic relationships among haplotypes were not associated with geographical divisions, and fixation indices (Fst) among sampling localities were low. Hence, regional populations of E. granulosus in the southwest China are not differentiated, as gene flow among them remains high. This information is important for formulating unified region-wide prevention and control measures. We found large negative Fu's Fs and Tajima's D values and a unimodal mismatch distribution, indicating that the population has undergone a demographic expansion. We observed high genetic diversity among the E. granulosus s. s. isolates, indicating that the parasite population in this important bioregion is genetically robust and likely to survive and spread. The data from this study will prove valuable for future studies focusing on improving diagnosis and prevention methods and developing robust control strategies.

  10. Mitochondrial genome from the facultative anaerobe and petite-positive yeast Dekkera bruxellensis contains the NADH dehydrogenase subunit genes.

    Science.gov (United States)

    Procházka, Emanuel; Poláková, Silvia; Piskur, Jure; Sulo, Pavol

    2010-08-01

    The progenitor of the Dekkera/Brettanomyces clade separated from the Saccharomyces/Kluyveromyces clade over 200 million years ago. However, within both clades, several lineages developed similar physiological traits. Both Saccharomyces cerevisiae and Dekkera bruxellensis are facultative anaerobes; in the presence of excess oxygen and sugars, they accumulate ethanol (Crabtree effect) and they both spontaneously generate respiratory-deficient mutants (petites). In order to understand the role of respiratory metabolism, the mitochondrial DNA (mtDNA) molecules of two Dekkera/Brettanomyces species were analysed. Dekkera bruxellensis mtDNA shares several properties with S. cerevisiae, such as the large genome size (76 453 bp), and the organization of the intergenic sequences consisting of spacious AT-rich regions containing a number of hairpin GC-rich cluster-like elements. In addition to a basic set of the mitochondrial genes coding for the components of cytochrome oxidase, cytochrome b, subunits of ATPase, two rRNA subunits and 25 tRNAs, D. bruxellensis also carries genes for the NADH dehydrogenase complex. Apparently, in yeast, the loss of this complex is not a precondition to develop a petite-positive, Crabtree-positive and anaerobic nature. On the other hand, mtDNA from a petite-negative Brettanomyces custersianus is much smaller (30 058 bp); it contains a similar gene set and has only short intergenic sequences.

  11. Oxygen reduction activity of carbon fibers cathode, and application for current generation from the NAD+ and NADH recycling reaction

    Directory of Open Access Journals (Sweden)

    H. Maeda

    2012-03-01

    Full Text Available Carbon fibers treated at 700 oC for 10 min were found to have O2 reduction activity when being used as a cathode. The special type of partition combined with both cationic and anionic exchange membranes was applied between anode cell and cathode cell in order to use a highly acidic solution such as 0.5 M H2SO4 as an electrolyte of the cathode cell for increasing the efficiency of O2 reduction activity. The current generation from NAD+ and NADH recycling system combined with D-gluconolactone production from 500 mg of D-glucose was performed by applying only carbon fibers for both anode and cathode. The total current volume obtained was 81.4 mAh during the reaction for 10 h, and the current efficiency was 93%. One gram of carbon fibers was pressed with Nafion paste on a piece of carbon paper(area : 50 mm×50mm with heating to prepare the cathode, and this construct was combined with conventional fuel cell. The power density was 3.6 mW/cm2, and the total power volume was calculated to be 90 mW per 1 g of carbon fibers.

  12. Electrocatalytic reaction of hydrogen peroxide and NADH based on poly(neutral red) and FAD hybrid film.

    Science.gov (United States)

    Lin, Kuo Chiang; Lin, Yu Ching; Chen, Shen Ming

    2012-01-07

    A simple method to immobilize poly(neutral red) (PNR) and flavin adenine dinucleotide (FAD) hybrid film (PNR/FAD) by cyclic voltammetry is proposed. The PNR/FAD hybrid film can be easily prepared on an electrode surface involving electropolymerization of neutral red (NR) monomers and the electrostatic interaction between the positively charged PNR and the negatively charged FAD. It exhibits electroactive, stable, surface-confined, pH-dependent, nano-sized, and compatible properties. It provides good electrocatalytic properties to various species. It shows a sensitivity of 5.4 μA mM(-1) cm(-2) and 21.5 μA mM(-1) cm(-2) for hydrogen peroxide (H(2)O(2)) and nicotinamide adenine dinucleotide (NADH) with the linear range of 0.1 μM-39 mM and 5 × 10(-5) to 2.5 × 10(-4) M, respectively. It shows another linear range of 48.8-355.5 mM with the sensitivity of 12.3 μA mM(-1) cm(-2) for H(2)O(2). In particular, the PNR/FAD hybrid film has potential to replace some hemoproteins to be a cathode of biofuel cells and provide the biosensing system for glucose and ethanol.

  13. Studies on NADH(NADPH)-cytochrome c reductase (FMN-containing) from yeast: steady-state kinetic properties of the flavoenzyme from top-fermenting ale yeast.

    Science.gov (United States)

    Johnson, M S; Kuby, S A

    1986-02-15

    A study of the steady-state kinetics of NADH(NADPH)-cytochrome c reductase (FMN-containing) from ale yeast (M. S. Johnson and S. A. Kuby (1985) J. Biol. Chem. 260, 12341-12350) has led to a postulated three-substrate random-ordered hybrid mechanism, where NAD(P)H and FMN add randomly and very likely in a steady-state fashion, followed by an ordered addition of cytochrome c. Kinetic parameters have been derived from this mechanism. Arrhenius plots showed large differences between NADH and NADPH, as the substrate-reductant. Menadione accelerated cytochrome c reduction and also O2 uptake, but vitamin K1 and coenzyme Q10 were ineffective as electron mediators, possibly as a result of their insolubility. With NADPH as the substrate-reductant, the order of the rate of reduction of electron acceptors was ferricyanide greater than DCIP greater than cytochrome c greater than oxygen; with menadione, the specificity sequence was cytochrome c greater than ferricyanide greater than DCIP greater than oxygen. With NADH, the order was ferricyanide greater than cytochrome c greater than oxygen greater than DCIP, which changed to cytochrome c greater than ferricyanide greater than oxygen greater than DCIP on addition of menadione. Cytochrome b5 was also reduced in the absence of oxygen. No transhydrogenase activity was observed, but the reduced thionicotinamide analogs of NADH and NADPH acted as substrates. Superoxide dismutase inhibited cytochrome c reduction in air by 50%, but O2-. was not necessary for cytochrome c reduction, as evidenced by the increase in rate in the absence of O2. The product of the reaction with oxygen appeared to be H2O2.

  14. Quantitative fluorescence kinetic analysis of NADH and FAD in human plasma using three- and four-way calibration methods capable of providing the second-order advantage

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chao [School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025 (China); Wu, Hai-Long, E-mail: hlwu@hnu.edu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Zhou, Chang; Xiang, Shou-Xia; Zhang, Xiao-Hua; Yu, Yong-Jie; Yu, Ru-Qin [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2016-03-03

    The metabolic coenzymes reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are the primary electron donor and acceptor respectively, participate in almost all biological metabolic pathways. This study develops a novel method for the quantitative kinetic analysis of the degradation reaction of NADH and the formation reaction of FAD in human plasma containing an uncalibrated interferent, by using three-way calibration based on multi-way fluorescence technique. In the three-way analysis, by using the calibration set in a static manner, we directly predicted the concentrations of both analytes in the mixture at any time after the start of their reactions, even in the presence of an uncalibrated spectral interferent and a varying background interferent. The satisfactory quantitative results indicate that the proposed method allows one to directly monitor the concentration of each analyte in the mixture as the function of time in real-time and nondestructively, instead of determining the concentration after the analytical separation. Thereafter, we fitted the first-order rate law to their concentration data throughout their reactions. Additionally, a four-way calibration procedure is developed as an alternative for highly collinear systems. The results of the four-way analysis confirmed the results of the three-way analysis and revealed that both the degradation reaction of NADH and the formation reaction of FAD in human plasma fit the first-order rate law. The proposed methods could be expected to provide promising tools for simultaneous kinetic analysis of multiple reactions in complex systems in real-time and nondestructively. - Highlights: • A novel three-way calibration method for the quantitative kinetic analysis of NADH and FAD in human plasma is proposed. • The method can directly monitor the concentration of each analyte in the reaction in real-time and nondestructively. • The method has the second-order advantage. • A

  15. Water-insoluble material from apple pomace makes changes in intracellular NAD⁺/NADH ratio and pyrophosphate content and stimulates fermentative production of hydrogen.

    Science.gov (United States)

    Sato, Osamu; Suzuki, Yuma; Sato, Yuki; Sasaki, Shinsuke; Sonoki, Tomonori

    2015-05-01

    Apple pomace is one of the major agricultural residues in Aomori prefecture, Japan, and it would be useful to develop effective applications for it. As apple pomace contains easily fermentable sugars such as glucose, fructose and sucrose, it can be used as a feedstock for the fermentation of fuels and chemicals. We previously isolated a new hydrogen-producing bacterium, Clostridium beijerinckii HU-1, which could produce H2 at a production rate of 14.5 mmol of H2/L/h in a fed-batch culture at 37 °C, pH 6.0. In this work we found that the HU-1 strain produces H2 at an approximately 20% greater rate when the fermentation medium contains the water-insoluble material from apple pomace. The water-insoluble material from apple pomace caused a metabolic shift that stimulated H2 production. HU-1 showed a decrease of lactate production, which consumes NADH, accompanied by an increase of the intracellular pyrophosphate content, which is an inhibitor of lactate dehydrogenase. The intracellular NAD(+)/NADH ratios of HU-1 during H2 fermentation were maintained in a more reductive state than those observed without the addition of the water insoluble material. To correct the abnormal intracellular redox balance, caused by the repression of lactate production, H2 production with NADH oxidation must be stimulated.

  16. Electrocatalytic activity of 2,3,5,6-tetrachloro-1,4-benzoquinone/multi-walled carbon nanotubes immobilized on edge plane pyrolytic graphite electrode for NADH oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Cassia Silva Luz, Rita de [Institute of Chemistry, UNICAMP, P.O. Box 6154, 13084-971, Campinas, SP (Brazil)], E-mail: rcsluz@iqm.unicamp.br; Damos, Flavio Santos [Institute of Chemistry, UNICAMP, P.O. Box 6154, 13084-971, Campinas, SP (Brazil); Tanaka, Auro Atsushi [Center of Science and Technology, UFMA, Avenida dos Portugueses s/n, 65085-040, Sao Luis, MA (Brazil); Kubota, Lauro Tatsuo; Gushikem, Yoshitaka [Institute of Chemistry, UNICAMP, P.O. Box 6154, 13084-971, Campinas, SP (Brazil)

    2008-05-30

    This work reports the electrocatalytic activity of 2,3,5,6-tetrachloro-1,4-benzoquinone (TCBQ)/multi-walled carbon nanotubes (MWCNT) immobilized on an edge plane pyrolytic graphite electrode for nicotinamide adenine dinucleotide (NADH) oxidation. Scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS) were used to confirms the presence of chloro after the nanotube modification with 2,3,5,6-tetrachloro-1,4-benzoquinone. The surface charge transfer constant, k{sub s}, and the charge transfer coefficient for the modified electrode, {alpha}, were estimated as 98.5 ({+-}0.6) s{sup -1} and 0.5, respectively. With this modified electrode the oxidation potential of the NADH was shifted about 300 mV toward a less positive value, presenting a peak current much higher than those measured on an unmodified edge plane pyrolytic graphite electrode (EPPG). Cyclic voltammetry and rotating disk electrode (RDE) experiments indicated that the NADH oxidation reaction involves 2 electrons and a heterogenous rate constant (k{sub obs}) of 3.1 x 10{sup 5} mol{sup -1} l s{sup -1}. The detection limit, repeatability, long-term stability, time of response and linear response range were also investigated.

  17. NaDC3 Induces Premature Cellular Senescence by Promoting Transport of Krebs Cycle Intermediates, Increasing NADH, and Exacerbating Oxidative Damage.

    Science.gov (United States)

    Ma, Yuxiang; Bai, Xue-Yuan; Du, Xuan; Fu, Bo; Chen, Xiangmei

    2016-01-01

    High-affinity sodium-dependent dicarboxylate cotransporter 3 (NaDC3) is a key metabolism-regulating membrane protein responsible for transport of Krebs cycle intermediates. NaDC3 is upregulated as organs age, but knowledge regarding the underlying mechanisms by which NaDC3 modulates mammalian aging is limited. In this study, we showed that NaDC3 overexpression accelerated cellular senescence in young human diploid cells (MRC-5 and WI-38) and primary renal tubular cells, leading to cell cycle arrest in G1 phase and increased expression of senescent biomarkers, senescence-associated β-galactosidase and p16. Intracellular levels of reactive oxygen species, 8-hydroxy-2'-deoxyguanosine, malondialdehyde, and carbonyl were significantly enhanced, and activities of respiratory complexes I and III and ATP level were significantly decreased in NaDC3-infected cells. Stressful premature senescent phenotypes induced by NaDC3 were markedly ameliorated via treatment with the antioxidants Tiron and Tempol. High expression of NaDC3 caused a prominent increase in intracellular levels of Krebs cycle intermediates and NADH. Exogenous NADH and NAD(+) may aggravate and attenuate the aging phenotypes induced by NaDC3, respectively. These results suggest that NaDC3 can induce premature cellular senescence by promoting the transport of Krebs cycle intermediates, increasing generation of NADH and reactive oxygen species and leading to oxidative damage. Our results clarify the aging signaling pathway regulated by NaDC3.

  18. Nitrate decreases xanthine oxidoreductase-mediated nitrite reductase activity and attenuates vascular and blood pressure responses to nitrite

    Directory of Open Access Journals (Sweden)

    Célio Damacena-Angelis

    2017-08-01

    Full Text Available Nitrite and nitrate restore deficient endogenous nitric oxide (NO production as they are converted back to NO, and therefore complement the classic enzymatic NO synthesis. Circulating nitrate and nitrite must cross membrane barriers to produce their effects and increased nitrate concentrations may attenuate the nitrite influx into cells, decreasing NO generation from nitrite. Moreover, xanthine oxidoreductase (XOR mediates NO formation from nitrite and nitrate. However, no study has examined whether nitrate attenuates XOR-mediated NO generation from nitrite. We hypothesized that nitrate attenuates the vascular and blood pressure responses to nitrite either by interfering with nitrite influx into vascular tissue, or by competing with nitrite for XOR, thus inhibiting XOR-mediated NO generation. We used two independent vascular function assays in rats (aortic ring preparations and isolated mesenteric arterial bed perfusion to examine the effects of sodium nitrate on the concentration-dependent responses to sodium nitrite. Both assays showed that nitrate attenuated the vascular responses to nitrite. Conversely, the aortic responses to the NO donor DETANONOate were not affected by sodium nitrate. Further confirming these results, we found that nitrate attenuated the acute blood pressure lowering effects of increasing doses of nitrite infused intravenously in freely moving rats. The possibility that nitrate could compete with nitrite and decrease nitrite influx into cells was tested by measuring the accumulation of nitrogen-15-labeled nitrite (15N-nitrite by aortic rings using ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS. Nitrate exerted no effect on aortic accumulation of 15N-nitrite. Next, we used chemiluminescence-based NO detection to examine whether nitrate attenuates XOR-mediated nitrite reductase activity. Nitrate significantly shifted the Michaelis Menten saturation curve to the right, with a 3-fold increase in

  19. Dispelling dogma and misconceptions regarding the most pharmacologically targetable source of reactive species in inflammatory disease, xanthine oxidoreductase.

    Science.gov (United States)

    Kelley, Eric E

    2015-08-01

    Xanthine oxidoreductase (XOR), the molybdoflavin enzyme responsible for the terminal steps of purine degradation in humans, is also recognized as a significant source of reactive species contributory to inflammatory disease. In animal models and clinical studies, inhibition of XOR has resulted in diminution of symptoms and enhancement of function in a number of pathologies including heart failure, diabetes, sickle cell anemia, hypertension and ischemia-reperfusion injury. For decades, XOR involvement in pathologic processes has been established by salutary outcomes attained from treatment with the XOR inhibitor allopurinol. This has served to frame a working dogma that elevation of XOR-specific activity is associated with enhanced rates of reactive species generation that mediate negative outcomes. While adherence to this narrowly focused practice of designating elevated XOR activity to be "bad" has produced some benefit, it has also led to significant underdevelopment of the processes mediating XOR regulation, identification of alternative reactants and products as well as micro-environmental factors that alter enzymatic activity. This is exemplified by recent reports: (1) identifying XOR as a nitrite reductase and thus a source of beneficial nitric oxide ((•)NO) under in vivo conditions similar to those where XOR inhibition has been assumed an optimal treatment choice, (2) describing XOR-derived uric acid (UA) as a critical pro-inflammatory mediator in vascular and metabolic disease and (3) ascribing an antioxidant/protective role for XOR-derived UA. When taken together, these proposed and countervailing functions of XOR affirm the need for a more comprehensive evaluation of product formation as well as the factors that govern product identity. As such, this review will critically evaluate XOR-catalyzed oxidant, (•)NO and UA formation as well as identify factors that mediate their production, inhibition and the resultant impact on inflammatory disease.

  20. Deletion of P399{sub E}401 in NADPH cytochrome P450 oxidoreductase results in partial mixed oxidase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Flueck, Christa E., E-mail: christa.flueck@dkf.unibe.ch [Pediatric Endocrinology, Diabetology and Metabolism, University Children' s Hospital, Bern (Switzerland); Mallet, Delphine [Service d' Endocrinologie Moleculaire et Maladies Rares, Hospices Civils de Lyon, Bron (France); Hofer, Gaby [Pediatric Endocrinology, Diabetology and Metabolism, University Children' s Hospital, Bern (Switzerland); Samara-Boustani, Dinane [Hopital Necker-Enfants malades, Paris (France); Leger, Juliane [Hopital Robert Debre, Paris (France); Polak, Michel [Hopital Necker-Enfants malades, Paris (France); Morel, Yves [Service d' Endocrinologie Moleculaire et Maladies Rares, Hospices Civils de Lyon, Bron (France); Pandey, Amit V., E-mail: amit@pandeylab.org [Pediatric Endocrinology, Diabetology and Metabolism, University Children' s Hospital, Bern (Switzerland)

    2011-09-09

    Highlights: {yields} Mutations in human POR cause congenital adrenal hyperplasia. {yields} We are reporting a novel 3 amino acid deletion mutation in POR P399{sub E}401del. {yields} POR mutation P399{sub E}401del decreased P450 activities by 60-85%. {yields} Impairment of steroid metabolism may be caused by multiple hits. {yields} Severity of aromatase inhibition is related to degree of in utero virilization. -- Abstract: P450 oxidoreductase (POR) is the electron donor for all microsomal P450s including steroidogenic enzymes CYP17A1, CYP19A1 and CYP21A2. We found a novel POR mutation P399{sub E}401del in two unrelated Turkish patients with 46,XX disorder of sexual development. Recombinant POR proteins were produced in yeast and tested for their ability to support steroid metabolizing P450 activities. In comparison to wild-type POR, the P399{sub E}401del protein was found to decrease catalytic efficiency of 21-hydroxylation of progesterone by 68%, 17{alpha}-hydroxylation of progesterone by 76%, 17,20-lyase action on 17OH-pregnenolone by 69%, aromatization of androstenedione by 85% and cytochrome c reduction activity by 80%. Protein structure analysis of the three amino acid deletion P399{sub E}401 revealed reduced stability and flexibility of the mutant. In conclusion, P399{sub E}401del is a novel mutation in POR that provides valuable genotype-phenotype and structure-function correlation for mutations in a different region of POR compared to previous studies. Characterization of P399{sub E}401del provides further insight into specificity of different P450s for interaction with POR as well as nature of metabolic disruptions caused by more pronounced effect on specific P450s like CYP17A1 and aromatase.

  1. Contribution of xanthine oxidoreductase to mammary epithelial and breast cancer cell differentiation in part modulates inhibitor of differentiation-1.

    Science.gov (United States)

    Fini, Mehdi A; Monks, Jenifer; Farabaugh, Susan M; Wright, Richard M

    2011-09-01

    Loss of xanthine oxidoreductase (XOR) has been linked to aggressive breast cancer in vivo and to breast cancer cell aggressiveness in vitro. In the present study, we hypothesized that the contribution of XOR to the development of the normal mammary gland may underlie its capacity to modulate breast cancer. We contrasted in vitro and in vivo developmental systems by differentiation marker and microarray analyses. Human breast cancer microarray was used for clinical outcome studies. The role of XOR in differentiation and proliferation was examined in human breast cancer cells and in a mouse xenograft model. Our data show that XOR was required for functional differentiation of mammary epithelial cells both in vitro and in vivo. Poor XOR expression was observed in a mouse ErbB2 breast cancer model, and pharmacologic inhibition of XOR increased breast cancer tumor burden in mouse xenograft. mRNA microarray analysis of human breast cancer revealed that low XOR expression was significantly associated with time to tumor relapse. The opposing expression of XOR and inhibitor of differentiation-1 (Id1) during HC11 differentiation and mammary gland development suggested a potential functional relationship. While overexpression of Id1 inhibited HC11 differentiation and XOR expression, XOR itself modulated expression of Id1 in differentiating HC11 cells. Overexpression of XOR both inhibited Id1-induced proliferation and -stimulated differentiation of Heregulin-β1-treated human breast cancer cells. These results show that XOR is an important functional component of differentiation whose diminished expression contributes to breast cancer aggressiveness, and they support XOR as both a breast cancer biomarker and a target for pharmacologic activation in therapeutic management of aggressive breast cancer.

  2. Chlamydomonas reinhardtii Chloroplasts Contain a Homodimeric Pyruvate:Ferredoxin Oxidoreductase That Functions with FDX11[W][OA

    Science.gov (United States)

    van Lis, Robert; Baffert, Carole; Couté, Yohann; Nitschke, Wolfgang; Atteia, Ariane

    2013-01-01

    Eukaryotic algae have long been known to live in anoxic environments, but interest in their anaerobic energy metabolism has only recently gained momentum, largely due to their utility in biofuel production. Chlamydomonas reinhardtii figures remarkably in this respect, because it efficiently produces hydrogen and its genome harbors many genes for anaerobic metabolic routes. Central to anaerobic energy metabolism in many unicellular eukaryotes (protists) is pyruvate:ferredoxin oxidoreductase (PFO), which decarboxylates pyruvate and forms acetyl-coenzyme A with concomitant reduction of low-potential ferredoxins or flavodoxins. Here, we report the biochemical properties of the homodimeric PFO of C. reinhardtii expressed in Escherichia coli. Electron paramagnetic resonance spectroscopy of the recombinant enzyme (Cr-rPFO) showed three distinct [4Fe-4S] iron-sulfur clusters and a thiamine pyrophosphate radical upon reduction by pyruvate. Purified Cr-rPFO exhibits a specific decarboxylase activity of 12 µmol pyruvate min−1 mg−1 protein using benzyl viologen as electron acceptor. Despite the fact that the enzyme is very oxygen sensitive, it localizes to the chloroplast. Among the six known chloroplast ferredoxins (FDX1–FDX6) in C. reinhardtii, FDX1 and FDX2 were the most efficient electron acceptors from Cr-rPFO, with comparable apparent Km values of approximately 4 µm. As revealed by immunoblotting, anaerobic conditions that lead to the induction of CrPFO did not increase levels of either FDX1 or FDX2. FDX1, being by far the most abundant ferredoxin, is thus likely the partner of PFO in C. reinhardtii. This finding postulates a direct link between CrPFO and hydrogenase and provides new opportunities to better study and engineer hydrogen production in this protist. PMID:23154536

  3. Cooperation of NAD(P)H:quinone oxidoreductase 1 and UDP-glucuronosyltransferases reduces menadione cytotoxicity in HEK293 cells.

    Science.gov (United States)

    Nishiyama, Takahito; Izawa, Tadashi; Usami, Mami; Ohnuma, Tomokazu; Ogura, Kenichiro; Hiratsuka, Akira

    2010-04-01

    Previous studies have shown that NAD(P)H:quinone oxidoreductase 1 (NQO1) plays an important role in the detoxification of menadione (2-methyl-1,4-naphthoquinone, also known as vitamin K3). However, menadiol (2-methyl-1,4-naphthalenediol) formed from menadione by NQO1-mediated reduction continues to be an unstable substance, which undergoes the reformation of menadione with concomitant formation of reactive oxygen species (ROS). Hence, we focused on the roles of phase II enzymes, with particular attention to UDP-glucuronosyltransferases (UGTs), in the detoxification process of menadione. In this study, we established an HEK293 cell line stably expressing NQO1 (HEK293/NQO1) and HEK293/NQO1 cell lines with doxycycline (DOX)-regulated expression of UGT1A6 (HEK293/NQO1/UGT1A6) and UGT1A10 (HEK293/NQO1/UGT1A10), and evaluated the role of NQO1 and UGTs against menadione-induced cytotoxicity. Our results differed from those of previous studies. HEK293/NQO1 was the most sensitive cell line to menadione cytotoxicity among cell lines established in this study. These phenomena were also observed in HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells in which the expression of UGT was suppressed by DOX treatment. On the contrary, HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells without DOX treatment were resistant to menadione-induced cytotoxicity. These results demonstrated that NQO1 is not a detoxification enzyme for menadione and that UGT-mediated glucuronidation of menadiol is the most important detoxification process.

  4. 黄嘌呤氧化还原酶与代谢综合征%Xanthine oxidoreductase and metabolic syndrome

    Institute of Scientific and Technical Information of China (English)

    严天连; 徐承富; 厉有名

    2013-01-01

    黄嘌呤氧化还原酶(XOR)通过将嘌呤分解为尿酸,控制着人体内嘌呤代谢的限速步骤.近年来研究表明XOR活性的异常不仅可导致高尿酸血症和痛风,还积极地参与了代谢综合征的发生、发展.XOR如何影响肥胖、高血压、动脉粥样硬化、糖尿病等代谢综合征相关疾病尚不明确,其可能机制包括调节脂质代谢转录调控因子,影响尿酸、一氧化氮及活性氧簇的生成等.XOR抑制剂如别嘌呤醇和非布索坦对上述疾病有一定的保护效果,这为代谢综合征的防治提供了新思路.%Xanthine oxidoreductase (XOR) controls the rate limiting step of purine catabolism by converting xanthine to uric acid.Recent studies showed that the abnormal activity of XOR not only led to hyperuricemia and gout,but also actively participated in the development of metabolic syndrome.However,how XOR affects obesity,hypertension,atherosclerosis,diabetes and other metabolic syndrome related diseases remains unclear.Its possible mechanism includes regulating the transcription factors of adipogenesis,affecting the synthesis of uric acid,nitric oxide and reactive oxygen species,etc.XOR inhibitor such as allopurinol and febuxostat has a protective effect of the diseases mentioned above.These findings would provide new ideas for treatment of metabolic syndrome.

  5. Tenebrionid secretions and a fungal benzoquinone oxidoreductase form competing components of an arms race between a host and pathogen.

    Science.gov (United States)

    Pedrini, Nicolás; Ortiz-Urquiza, Almudena; Huarte-Bonnet, Carla; Fan, Yanhua; Juárez, M Patricia; Keyhani, Nemat O

    2015-07-14

    Entomopathogenic fungi and their insect hosts represent a model system for examining invertebrate-pathogen coevolutionary selection processes. Here we report the characterization of competing components of an arms race consisting of insect protective antimicrobial compounds and evolving fungal mechanisms of detoxification. The insect pathogenic fungus Beauveria bassiana has a remarkably wide host range; however, some insects are resistant to fungal infection. Among resistant insects is the tenebrionid beetle Tribolium castaneum that produces benzoquinone-containing defensive secretions. Reduced fungal germination and growth was seen in media containing T. castaneum dichloromethane extracts or synthetic benzoquinone. In response to benzoquinone exposure, the fungus expresses a 1,4-benzoquinone oxidoreductase, BbbqrA, induced >40-fold. Gene knockout mutants (ΔBbbqrA) showed increased growth inhibition, whereas B. bassiana overexpressing BbbqrA (Bb::BbbqrA(O)) displayed increased resistance to benzoquinone compared with wild type. Increased benzoquinone reductase activity was detected in wild-type cells exposed to benzoquinone and in the overexpression strain. Heterologous expression and purification of BbBqrA in Escherichia coli confirmed NAD(P)H-dependent benzoquinone reductase activity. The ΔBbbqrA strain showed decreased virulence toward T. castaneum, whereas overexpression of BbbqrA increased mortality versus T. castaneum. No change in virulence was seen for the ΔBbbqrA or Bb::BbbqrA(O) strains when tested against the greater wax moth Galleria mellonella or the beetle Sitophilus oryzae, neither of which produce significant amounts of cuticular quinones. The observation that artificial overexpression of BbbqrA results in increased virulence only toward quinone-secreting insects implies the lack of strong selection or current failure of B. bassiana to counteradapt to this particular host defense throughout evolution.

  6. Activities of Secreted Aryl Alcohol Quinone Oxidoreductases from Pycnoporus cinnabarinus Provide Insights into Fungal Degradation of Plant Biomass.

    Science.gov (United States)

    Mathieu, Yann; Piumi, Francois; Valli, Richard; Aramburu, Juan Carro; Ferreira, Patricia; Faulds, Craig B; Record, Eric

    2016-04-01

    Auxiliary activities family 3 subfamily 2 (AA3_2) from the CAZy database comprises various functions related to ligninolytic enzymes, such as fungal aryl alcohol oxidases (AAO) and glucose oxidases, both of which are flavoenzymes. The recent study of the Pycnoporus cinnabarinus CIRM BRFM 137 genome combined with its secretome revealed that four AA3_2 enzymes are secreted during biomass degradation. One of these AA3_2 enzymes, scf184803.g17, has recently been produced heterologously in Aspergillus niger Based on the enzyme's activity and specificity, it was assigned to the glucose dehydrogenases (PcinnabarinusGDH [PcGDH]). Here, we analyze the distribution of the other three AA3_2 enzymes (scf185002.g8, scf184611.g7, and scf184746.g13) to assess their putative functions. These proteins showed the highest homology with aryl alcohol oxidase from Pleurotus eryngii Biochemical characterization demonstrated that they were also flavoenzymes harboring flavin adenine dinucleotide (FAD) as a cofactor and able to oxidize a wide variety of phenolic and nonphenolic aryl alcohols and one aliphatic polyunsaturated primary alcohol. Though presenting homology with fungal AAOs, these enzymes exhibited greater efficiency in reducing electron acceptors (quinones and one artificial acceptor) than molecular oxygen and so were defined as aryl-alcohol:quinone oxidoreductases (AAQOs) with two enzymes possessing residual oxidase activity (PcAAQO2 and PcAAQO3). Structural comparison of PcAAQO homology models with P. eryngii AAO demonstrated a wider substrate access channel connecting the active-site cavity to the solvent, explaining the absence of activity with molecular oxygen. Finally, the ability of PcAAQOs to reduce radical intermediates generated by laccase from P. cinnabarinus was demonstrated, shedding light on the ligninolytic system of this fungus.

  7. Crystal structure analysis of Bacillus subtilis ferredoxin-NADP(+) oxidoreductase and the structural basis for its substrate selectivity.

    Science.gov (United States)

    Komori, Hirofumi; Seo, Daisuke; Sakurai, Takeshi; Higuchi, Yoshiki

    2010-12-01

    Bacillus subtilis yumC encodes a novel type of ferredoxin-NADP+ oxidoreductase (FNR) with a primary sequence and oligomeric conformation distinct from those of previously known FNRs. In this study, the crystal structure of B. subtilis FNR (BsFNR) complexed with NADP+ has been determined. BsFNR features two distinct binding domains for FAD and NADPH in accordance with its structural similarity to Escherichia coli NADPH-thioredoxin reductase (TdR) and TdR-like protein from Thermus thermophilus HB8 (PDB code: 2ZBW). The deduced mode of NADP+ binding to the BsFNR molecule is nonproductive in that the nicotinamide and isoalloxazine rings are over 15 Å apart. A unique C-terminal extension, not found in E. coli TdR but in TdR-like protein from T. thermophilus HB8, covers the re-face of the isoalloxazine moiety of FAD. In particular, Tyr50 in the FAD-binding region and His324 in the C-terminal extension stack on the si- and re-faces of the isoalloxazine ring of FAD, respectively. Aromatic residues corresponding to Tyr50 and His324 are also found in the plastid-type FNR superfamily of enzymes, and the residue corresponding to His324 has been reported to be responsible for nucleotide specificity. In contrast to the plastid-type FNRs, replacement of His324 with Phe or Ser had little effect on the specificity or reactivity of BsFNR with NAD(P)H, whereas replacement of Arg190, which interacts with the 2'-phosphate of NADP+, drastically decreased its affinity toward NADPH. This implies that BsFNR adopts the same nucleotide binding mode as the TdR enzyme family and that aromatic residue on the re-face of FAD is hardly relevant to the nucleotide selectivity. Copyright © 2010 The Protein Society.

  8. Legionella pneumophila utilizes a single-player disulfide-bond oxidoreductase system to manage disulfide bond formation and isomerization.

    Science.gov (United States)

    Kpadeh, Zegbeh Z; Day, Shandra R; Mills, Brandy W; Hoffman, Paul S

    2015-03-01

    Legionella pneumophila uses a single homodimeric disulfide bond (DSB) oxidoreductase DsbA2 to catalyze extracytoplasmic protein folding and to correct DSB errors through protein-disulfide isomerase (PDI) activity. In Escherichia coli, these functions are separated to avoid futile cycling. In L. pneumophila, DsbA2 is maintained as a mixture of disulfides (S-S) and free thiols (SH), but when expressed in E. coli, only the SH form is observed. We provide evidence to suggest that structural differences in DsbB oxidases (LpDsbB1 and LpDsbB2) and DsbD reductases (LpDsbD1 and LpDsbD2) (compared with E. coli) permit bifunctional activities without creating a futile cycle. LpdsbB1 and LpdsbB2 partially complemented an EcdsbB mutant while neither LpdsbD1 nor LpdsbD2 complemented an EcdsbD mutant unless DsbA2 was also expressed. When the dsb genes of E. coli were replaced with those of L. pneumophila, motility was restored and DsbA2 was present as a mixture of redox forms. A dominant-negative approach to interfere with DsbA2 function in L. pneumophila determined that DSB oxidase activity was necessary for intracellular multiplication and assembly/function of the Dot/Icm Type IVb secretion system. Our studies show that a single-player system may escape the futile cycle trap by limiting transfer of reducing equivalents from LpDsbDs to DsbA2.

  9. The short-chain oxidoreductase Q9HYA2 from Pseudomonas aeruginosa PAO1 contains an atypical catalytic center.

    Science.gov (United States)

    Huether, Robert; Mao, Qilong; Duax, William L; Umland, Timothy C

    2010-05-01

    The characteristic oxidation or reduction reaction mechanisms of short-chain oxidoreductase (SCOR) enzymes involve a highly conserved Asp-Ser-Tyr-Lys catalytic tetrad. The SCOR enzyme Q9HYA2 from the pathogenic bacterium Pseudomonas aeruginosa was recognized to possess an atypical catalytic tetrad composed of Lys118-Ser146-Thr159-Arg163. Orthologs of Q9HYA2 containing the unusual catalytic tetrad along with conserved substrate and cofactor recognition residues were identified in 27 additional species, the majority of which are bacterial pathogens. However, this atypical catalytic tetrad was not represented within the Protein Data Bank. The crystal structures of unligated and NADPH-complexed Q9HYA2 were determined at 2.3 A resolution. Structural alignment to a polyketide ketoreductase (KR), a typical SCOR, demonstrated that Q9HYA2's Lys118, Ser146, and Arg163 superimposed upon the KR's catalytic Asp114, Ser144, and Lys161, respectively. However, only the backbone of Q9HYA2's Thr159 overlapped KR's catalytic Tyr157. The Thr159 hydroxyl in apo Q9HYA2 is poorly positioned for participating in catalysis. In the Q9HYA2-NADPH complex, the Thr159 side chain was modeled in two alternate rotamers, one of which is positioned to interact with other members of the tetrad and the bound cofactor. A chloride ion is bound at the position normally occupied by the catalytic tyrosine hydroxyl. The putative active site of Q9HYA2 contains a chemical moiety at each catalytically important position of a typical SCOR enzyme. This is the first observation of a SCOR protein with this alternate catalytic center that includes threonine replacing the catalytic tyrosine and an ion replacing the hydroxyl moiety of the catalytic tyrosine.

  10. Simultaneous involvement of a tungsten-containing aldehyde:ferredoxin oxidoreductase and a phenylacetaldehyde dehydrogenase in anaerobic phenylalanine metabolism.

    Science.gov (United States)

    Debnar-Daumler, Carlotta; Seubert, Andreas; Schmitt, Georg; Heider, Johann

    2014-01-01

    Anaerobic phenylalanine metabolism in the denitrifying betaproteobacterium Aromatoleum aromaticum is initiated by conversion of phenylalanine to phenylacetate, which is further metabolized via benzoyl-coenzyme A (CoA). The formation of phenylacetate is catalyzed by phenylalanine transaminase, phenylpyruvate decarboxylase, and a phenylacetaldehyde-oxidizing enzyme. The presence of these enzymes was detected in extracts of cells grown with phenylalanine and nitrate. We found that two distinct enzymes are involved in the oxidation of phenylacetaldehyde to phenylacetate, an aldehyde:ferredoxin oxidoreductase (AOR) and a phenylacetaldehyde dehydrogenase (PDH). Based on sequence comparison, growth studies with various tungstate concentrations, and metal analysis of the enriched enzyme, AOR was shown to be a tungsten-containing enzyme, necessitating specific cofactor biosynthetic pathways for molybdenum- and tungsten-dependent enzymes simultaneously. We predict from the genome sequence that most enzymes of molybdopterin biosynthesis are shared, while the molybdate/tungstate uptake systems are duplicated and specialized paralogs of the sulfur-inserting MoaD and the metal-inserting MoeA proteins seem to be involved in dedicating biosynthesis toward molybdenum or tungsten cofactors. We also characterized PDH biochemically and identified both NAD(+) and NADP(+) as electron acceptors. We identified the gene coding for the enzyme and purified a recombinant Strep-tagged PDH variant. The homotetrameric enzyme is highly specific for phenylacetaldehyde, has cooperative kinetics toward the substrate, and shows considerable substrate inhibition. Our data suggest that A. aromaticum utilizes PDH as the primary enzyme during anaerobic phenylalanine degradation, whereas AOR is not essential for the metabolic pathway. We hypothesize a function as a detoxifying enzyme if high aldehyde concentrations accumulate in the cytoplasm, which would lead to substrate inhibition of PDH.

  11. A transcriptome-proteome integrated network identifies endoplasmic reticulum thiol oxidoreductase (ERp57) as a hub that mediates bone metastasis.

    Science.gov (United States)

    Santana-Codina, Naiara; Carretero, Rafael; Sanz-Pamplona, Rebeca; Cabrera, Teresa; Guney, Emre; Oliva, Baldo; Clezardin, Philippe; Olarte, Omar E; Loza-Alvarez, Pablo; Méndez-Lucas, Andrés; Perales, Jose Carlos; Sierra, Angels

    2013-08-01

    Bone metastasis is the most common distant relapse in breast cancer. The identification of key proteins involved in the osteotropic phenotype would represent a major step toward the development of new prognostic markers and therapeutic improvements. The aim of this study was to characterize functional phenotypes that favor bone metastasis in human breast cancer. We used the human breast cancer cell line MDA-MB-231 and its osteotropic BO2 subclone to identify crucial proteins in bone metastatic growth. We identified 31 proteins, 15 underexpressed and 16 overexpressed, in BO2 cells compared with parental cells. We employed a network-modeling approach in which these 31 candidate proteins were prioritized with respect to their potential in metastasis formation, based on the topology of the protein-protein interaction network and differential expression. The protein-protein interaction network provided a framework to study the functional relationships between biological molecules by attributing functions to genes whose functions had not been characterized. The combination of expression profiles and protein interactions revealed an endoplasmic reticulum-thiol oxidoreductase, ERp57, functioning as a hub that retained four down-regulated nodes involved in antigen presentation associated with the human major histocompatibility complex class I molecules, including HLA-A, HLA-B, HLA-E, and HLA-F. Further analysis of the interaction network revealed an inverse correlation between ERp57 and vimentin, which influences cytoskeleton reorganization. Moreover, knockdown of ERp57 in BO2 cells confirmed its bone organ-specific prometastatic role. Altogether, ERp57 appears as a multifunctional chaperone that can regulate diverse biological processes to maintain the homeostasis of breast cancer cells and promote the development of bone metastasis.

  12. Coordinated production and utilization of FADH2 by NAD(P)H-flavin oxidoreductase and 4-hydroxyphenylacetate 3-monooxygenase.

    Science.gov (United States)

    Louie, Tai Man; Xie, X Sunney; Xun, Luying

    2003-06-24

    4-Hydroxyphenylacetate (4HPA) 3-monooxygenase (HpaB) is a reduced flavin adenine dinucleotide (FADH(2)) utilizing monooxygenase. Its cosubstrate, FADH(2), is supplied by HpaC, an NAD(P)H-flavin oxidoreductase. Because HpaB is the first enzyme for 4HPA metabolism, FADH(2) production and utilization become a major metabolic event when Escherichia coli W grows on 4HPA. An important question is how FADH(2) is produced and used, as FADH(2) is unstable in the presence of free O(2). One solution is metabolic channeling by forming a transitory HpaB-HpaC complex. However, our in vivo and in vitro data failed to support the interaction. Further investigation pointed to an alternative scheme for HpaB to sequester FADH(2). The intracellular HpaB concentration was about 122 microM in 4HPA-growing cells, much higher than the total intracellular FAD concentration, and HpaB had a high affinity for FADH(2) (K(d) of 70 nM), suggesting that most FADH(2) is bound to HpaB in vivo. The HpaB-bound FADH(2) was either used to rapidly oxidize 4HPA or slowly oxidized by O(2) to FAD and H(2)O(2) in the absence of 4HPA. Thus, HpaB's high intracellular concentration, its high affinity for FADH(2), its property of protecting bound FADH(2) in the absence of 4HPA, and its ability to rapidly use FADH(2) to oxidize 4HPA when 4HPA is available can coordinate FADH(2) production and utilization by HpaB and HpaC in vivo. This type of coordination, in responding to demand, for production and utilization of labile metabolites has not been reported to date.

  13. A microplate reader-based method to quantify NADH-cytochrome b5 reductase activity for diagnosis of recessive congenital methaemoglobinemia.

    Science.gov (United States)

    Kedar, Prabhakar; Desai, Anand; Warang, Prashant; Colah, Roshan

    2017-05-01

    Congenital methemoglobinemia due to NADH-cytochrome b5 reductase 3 (CYB5R3) deficiencies is an autosomal recessive disorder that occurs sporadically worldwide, A sensitive, accurate, and rapid analysis of NADH-CYB5R enzyme concentrations is necessary for the diagnosis of RCM. Here we present an alternative microplate method that is based on a standard 96-well microplate format and microplate reader that simplify the quantification of NADH-CYB5R activity. TECAN (Infinite 200 PRO series) microplate reader with Tecan's proven Magellan™ software measured the NADH-CYB5R enzyme activity in 250 normal controls and previously diagnosed 25 cases of RCM due to NADH-CYB5R deficiency in the Indian population using 96-well microplates using 200 μl of total reaction mixture and also compared with standard spectrophotometric assay. We have also studied stability of the hemolysate stored at 4 and -20°C temperature. Enzyme activity in all 25 samples ranged from 6.09 to 10.07 IU/g Hb (mean ± SD: 8.08 ± 1.99 IU/g Hb) where as normal control ranged (n = 250) between 13.42 and 21.58 IU/g Hb) (mean ± SD: 17.5 ± 4.08 IU/g of Hb). Data obtained from the microplate reader were compared with standard spectrophotometer method and found 100% concordance using both methods. Microplate method allows differentiating between normal, deficient and intermediate enzyme activity. It was observed that samples had significant loss of activity when stored at 4°C and retained stable activity at -20°C for 1 week time. Our new method, incorporating a whole process of enzyme assay into a microplate format is readily applicable and allows rapid monitoring of enzyme assay. It is readily applicable to quantitative assay on pediatric sample as well as large number of samples for population screening.

  14. Characterization of the NADH-linked acetylacetoin reductase/2,3-butanediol dehydrogenase gene from Bacillus cereus YUF-4.

    Science.gov (United States)

    Hosaka, T; Ui, S; Ohtsuki, T; Mimura, A; Ohkuma, M; Kudo, T

    2001-01-01

    A 1.4-kbp DNA fragment, including the NADH-linked acetylacetoin reductase/2,3-butanediol dehydrogenase (AACRII/BDH) gene from the chromosomal DNA of Bacillus cereus YUF-4, was cloned in Escherichia coli DH5alpha after its insertion into pUC119, and the resulting plasmid was named pAACRII119. The AACRII/BDH gene had an open reading frame consisting of 1047 bp encoding 349 amino acids. The enzyme exhibited not only AACR activity, but also BDH activity. However, the gene was not located in a 2,3-butanediol (BD) operon, as is the case in the BDH gene of Klebsiella pneumoniae and that of K. terrigena. In addition, there was no BD-cycle-related enzyme gene in the region surrounding the AACRII/BDH gene. The AACR and BDH activities in E. coli DH5alpha/pAACRII119 were 200-fold higher than those in the original B. cereus YUF-4. The characteristics of the AACRII/BDH from E. coli DH 5alpha/pAACRII119 are similar to those of the AACRII/BDH from B. cereus YUF-4. The AACRII/BDH was considered to belong to the NAD(P)- and zinc-dependent long-chain alcohol dehydrogenase (group I ADH) family on the basis of the following distinctive characteristics: it possessed 14 strictly conserved residues of microbial group I ADH and consisted of about 350 amino acids. The enzymatic and genetic characteristics of AACRII/BDH were completely different from those of BDHs belonging to the short-chain dehydrogenase/reductase family. These findings indicated that the AACRII/BDH could be considered a new type of BDH.

  15. NADH oxidase functions as an adhesin in Streptococcus pneumoniae and elicits a protective immune response in mice.

    Directory of Open Access Journals (Sweden)

    Lena Muchnik

    Full Text Available The initial event in disease caused by S. pneumoniae is adhesion of the bacterium to respiratory epithelial cells, mediated by surface expressed molecules including cell-wall proteins. NADH oxidase (NOX, which reduces free oxygen to water in the cytoplasm, was identified in a non-lectin enriched pneumococcal cell-wall fraction. Recombinant NOX (rNOX was screened with sera obtained longitudinally from children and demonstrated age-dependent immunogenicity. NOX ablation in S. pneumoniae significantly reduced bacterial adhesion to A549 epithelial cells in vitro and their virulence in the intranasal or intraperitoneal challenge models in mice, compared to the parental strain. Supplementation of Δnox WU2 with the nox gene restored its virulence. Saturation of A549 target cells with rNOX or neutralization of cell-wall residing NOX using anti-rNOX antiserum decreased adhesion to A549 cells. rNOX-binding phages inhibited bacterial adhesion. Moreover, peptides derived from the human proteins contactin 4, chondroitin 4 sulfotraferase and laminin5, homologous to the insert peptides in the neutralizing phages, inhibited bacterial adhesion to the A549 cells. Furthermore, rNOX immunization of mice elicited a protective immune response to intranasal or intraperitoneal S. pneumoniae challenge, whereas pneumococcal virulence was neutralized by anti-rNOX antiserum prior to intraperitoneal challenge. Our results suggest that in addition to its enzymatic activity, NOX contributes to S. pneumoniae virulence as a putative adhesin and thus peptides derived from its target molecules may be considered for the treatment of pneumococcal infections. Finally, rNOX elicited a protective immune response in both aerobic and anaerobic environments, which renders NOX a candidate for future pneumococcal vaccine.

  16. Hydroxynonenal, a lipid peroxidation end product, stimulates uncoupling protein activity in Acanthamoeba castellanii mitochondria; the sensitivity of the inducible activity to purine nucleotides depends on the membranous ubiquinone redox state.

    Science.gov (United States)

    Woyda-Ploszczyca, Andrzej M; Jarmuszkiewicz, Wieslawa

    2012-10-01

    We studied the influence of exogenously generated superoxide and exogenous 4-hydroxy-2-nonenal (HNE), a lipid peroxidation end product, on the activity of the Acanthamoeba castellanii uncoupling protein (AcUCP). The superoxide-generating xanthine/xanthine oxidase system was insufficient to induce mitochondrial uncoupling. In contrast, exogenously added HNE induced GTP-sensitive AcUCP-mediated mitochondrial uncoupling. In non-phosphorylating mitochondria, AcUCP activation by HNE was demonstrated by increased oxygen consumption accompanied by a decreased membrane potential and ubiquinone (Q) reduction level. The HNE-induced GTP-sensitive proton conductance was similar to that observed with linoleic acid. In phosphorylating mitochondria, the HNE-induced AcUCP-mediated uncoupling decreased the yield of oxidative phosphorylation. We demonstrated that the efficiency of GTP to inhibit HNE-induced AcUCP-mediated uncoupling was regulated by the endogenous Q redox state. A high Q reduction level activated AcUCP by relieving the inhibition caused by GTP while a low Q reduction level favoured the inhibition. We propose that the regulation of UCP activity involves a rapid response through the endogenous Q redox state that modulates the inhibition of UCP by purine nucleotides, followed by a late response through lipid peroxidation products resulting from an increase in the formation of reactive oxygen species that modulate the UCP activation.

  17. FaQR, required for the biosynthesis of the strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone, encodes an enone oxidoreductase.

    Science.gov (United States)

    Raab, Thomas; López-Ráez, Juan Antonio; Klein, Dorothée; Caballero, Jose Luis; Moyano, Enriqueta; Schwab, Wilfried; Muñoz-Blanco, Juan

    2006-04-01

    The flavor of strawberry (Fragaria x ananassa) fruit is dominated by an uncommon group of aroma compounds with a 2,5-dimethyl-3(H)-furanone structure. We report the characterization of an enzyme involved in the biosynthesis of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF; Furaneol), the key flavor compound in strawberries. Protein extracts were partially purified, and the observed distribution of enzymatic activity correlated with the presence of a single polypeptide of approximately 37 kD. Sequence analysis of two peptide fragments showed total identity with the protein sequence of a strongly ripening-induced, auxin-dependent putative quinone oxidoreductase, Fragaria x ananassa quinone oxidoreductase (FaQR). The open reading frame of the FaQR cDNA consists of 969 bp encoding a 322-amino acid protein with a calculated molecular mass of 34.3 kD. Laser capture microdissection followed by RNA extraction and amplification demonstrated the presence of FaQR mRNA in parenchyma tissue of the strawberry fruit. The FaQR protein was functionally expressed in Escherichia coli, and the monomer catalyzed the formation of HDMF. After chemical synthesis and liquid chromatography-tandem mass spectrometry analysis, 4-hydroxy-5-methyl-2-methylene-3(2H)-furanone was confirmed as a substrate of FaQR and the natural precursor of HDMF. This study demonstrates the function of the FaQR enzyme in the biosynthesis of HDMF as enone oxidoreductase and provides a foundation for the improvement of strawberry flavor and the biotechnological production of HDMF.

  18. ns-μs Time-Resolved Step-Scan FTIR of ba3 Oxidoreductase from Thermus thermophilus: Protonic Connectivity of w941-w946-w927

    Science.gov (United States)

    Nicolaides, Antonis; Soulimane, Tewfik; Varotsis, Constantinos

    2016-01-01

    Time-resolved step-scan FTIR spectroscopy has been employed to probe the dynamics of the ba3 oxidoreductase from Thermus thermophilus in the ns-μs time range and in the pH/pD 6–9 range. The data revealed a pH/pD sensitivity of the D372 residue and of the ring-A propionate of heme a3. Based on the observed transient changes a model in which the protonic connectivity of w941-w946-927 to the D372 and the ring-A propionate of heme a3 is described. PMID:27690021

  19. A novel aldose-aldose oxidoreductase for co-production of D-xylonate and xylitol from D-xylose with Saccharomyces cerevisiae

    OpenAIRE

    Wiebe, Marilyn G.; Nygård, Yvonne; Oja, Merja; Andberg, Martina; Ruohonen, Laura; Koivula, Anu; Penttilä, Merja; Toivari, Mervi

    2015-01-01

    An open reading frame CC1225 from the Caulobacter crescentus CB15 genome sequence belongs to the Gfo/Idh/MocA protein family and has 47 % amino acid sequence identity with the glucose-fructose oxidoreductase from Zymomonas mobilis (Zm GFOR). We expressed the ORF CC1225 in the yeast Saccharomyces cerevisiae and used a yeast strain expressing the gene coding for Zm GFOR as a reference. Cell extracts of strains overexpressing CC1225 (renamed as Cc aaor) showed some Zm GFOR type of activity, prod...

  20. The activity of some oxidoreductases in Hordeum vulgare L. plants treated with ethylmethanesulfonate and Rosmarinus officinalis L. hydro-alcoholic extracts

    Directory of Open Access Journals (Sweden)

    Gogu Gheorghita

    2011-02-01

    Full Text Available This paper focuses on the activity of some oxidoreductases (catalase, peroxidase, superoxide- dismutase in barley seedlings (Hordeum vulgare L. after 6 hours of seeds treatment with different concentrations (0,01 – 0,50% of ethyl-methane-sulfonate and 12 hours with hydro-alcoholic 0,5% rosemary (Rosmarinus officinalis L. extract (EHR. The EMS treatments led to an obvious increase of the superoxide dismutase, catalase and peroxidase activity in plants, while the application of the hydro-alcoholic rosemary extract, after the EMS treatment, led to a significant decrease of the activities of these enzymes, since the rosemary extract has an obvious antioxidant effect.

  1. Screening differentially expressed genes in an amphipod (Hyalella azteca) exposed to fungicide vinclozolin by suppression subtractive hybridization.

    Science.gov (United States)

    Wu, Yun H; Wu, Tsung M; Hong, Chwan Y; Wang, Yei S; Yen, Jui H

    2014-01-01

    Vinclozolin, a dicarboximide fungicide, is an endocrine disrupting chemical that competes with an androgenic endocrine disruptor compound. Most research has focused on the epigenetic effect of vinclozolin in humans. In terms of ecotoxicology, understanding the effect of vinclozolin on non-target organisms is important. The expression profile of a comprehensive set of genes in the amphipod Hyalella azteca exposed to vinclozolin was examined. The expressed sequence tags in low-dose vinclozolin-treated and -untreated amphipods were isolated and identified by suppression subtractive hybridization. DNA dot blotting was used to confirm the results and establish a subtracted cDNA library for comparing all differentially expressed sequences with and without vinclozolin treatment. In total, 494 differentially expressed genes, including hemocyanin, heatshock protein, cytochrome, cytochrome oxidase and NADH dehydrogenase were detected. Hemocyanin was the most abundant gene. DNA dot blotting revealed 55 genes with significant differential expression. These genes included larval serum protein 1 alpha, E3 ubiquitin-protein ligase, mitochondrial cytochrome c oxidase, mitochondrial protein, proteasome inhibitor, hemocyanin, zinc-finger-containing protein, mitochondrial NADH-ubiquinone oxidoreductase and epididymal sperm-binding protein. Vinclozolin appears to upregulate stress-related genes and hemocyanin, related to immunity. Moreover, vinclozolin downregulated NADH dehydrogenase, related to respiration. Thus, even a non-lethal concentration of vinclozolin still has an effect at the genetic level in H. azteca and presents a potential risk, especially as it would affect non-target organism hormone metabolism.

  2. Modulation of Sonic hedgehog signaling and WW domain containing oxidoreductase WOX1 expression enhances radiosensitivity of human glioblastoma cells.

    Science.gov (United States)

    Chiang, Ming-Fu; Chen, Hsin-Hong; Chi, Chih-Wen; Sze, Chun-I; Hsu, Ming-Ling; Shieh, Hui-Ru; Lin, Chin-Ping; Tsai, Jo-Ting; Chen, Yu-Jen

    2015-03-01

    WW domain containing oxidoreductase, designated WWOX, FOR or WOX1, is a known pro-apoptotic factor when ectopically expressed in various types of cancer cells, including glioblastoma multiforme (GBM). The activation of sonic hedgehog (Shh) signaling, especially paracrine Shh secretion in response to radiation, is associated with impairing the effective irradiation of cancer cells. Here, we examined the role of Shh signaling and WOX1 overexpression in the radiosensitivity of human GBM cells. Our results showed that ionizing irradiation (IR) increased the cytoplasmic Shh and nuclear Gli-1 content in GBM U373MG and U87MG cells. GBM cells with exogenous Shh treatment exhibited similar results. Pretreatment with Shh peptides protected U373MG and U87MG cells against IR in a dose-dependent manner. Cyclopamine, a Hedgehog/Smoothened (SMO) inhibitor, reversed the protective effect of Shh in U87MG cells. Cyclopamine increased Shh plus IR-induced H2AX, a marker of DNA double-strand breaks, in these cells. To verify the role of Shh signaling in the radiosensitivity of GBM cells, we tested the effect of the Gli family zinc finger 1 (Gli-1) inhibitor zerumbone and found that it could sensitize GBM cells to IR. We next examined the role of WOX1 in radiosensitivity. Overexpression of WOX1 enhanced the radiosensitivity of U87MG (possessing wild type p53 or WTp53) but not U373MG (harboring mutant p53 or MTp53) cells. Pretreatment with Shh peptides protected both WOX1-overexpressed U373MG and U87MG cells against IR and increased the cytoplasmic Shh and nuclear Gli-1 content. Zerumbone enhanced the radiosensitivity of WOX1-overexpressed U373MG and U87MG cells. In conclusion, overexpression of WOX1 preferentially sensitized human GBM cells possessing wild type p53 to radiation therapy. Blocking of Shh signaling may enhance radiosensitivity independently of the expression of p53 and WOX1. The crosstalk between Shh signaling and WOX1 expression in human glioblastoma warrants further

  3. Structural and functional insights into the catalytic inactivity of the major fraction of buffalo milk xanthine oxidoreductase.

    Directory of Open Access Journals (Sweden)

    Kaustubh S Gadave

    Full Text Available BACKGROUND: Xanthine oxidoreductase (XOR existing in two interconvertible forms, xanthine dehydrogenase (XDH and xanthine oxidase (XO, catabolises xanthine to uric acid that is further broken down to antioxidative agent allantoin. XOR also produces free radicals serving as second messenger and microbicidal agent. Large variation in the XO activity has been observed among various species. Both hypo and hyper activity of XOR leads to pathophysiological conditions. Given the important nutritional role of buffalo milk in human health especially in south Asia, it is crucial to understand the functional properties of buffalo XOR and the underlying structural basis of variations in comparison to other species. METHODS AND FINDINGS: Buffalo XO activity of 0.75 U/mg was almost half of cattle XO activity. Enzymatic efficiency (k cat/K m of 0.11 sec(-1 µM(-1 of buffalo XO was 8-10 times smaller than that of cattle XO. Buffalo XOR also showed lower antibacterial activity than cattle XOR. A CD value (Δε430 nm of 46,000 M(-1 cm(-1 suggested occupancy of 77.4% at Fe/S I centre. Buffalo XOR contained 0.31 molybdenum atom/subunit of which 48% existed in active sulfo form. The active form of XO in buffalo was only 16% in comparison to ∼30% in cattle. Sequencing revealed 97.4% similarity between buffalo and cattle XOR. FAD domain was least conserved, while metal binding domains (Fe/S and Molybdenum were highly conserved. Homology modelling of buffalo XOR showed several variations occurring in clusters, especially close to FAD binding pocket which could affect NAD(+ entry in the FAD centre. The difference in XO activity seems to be originating from cofactor deficiency, especially molybdenum. CONCLUSION: A major fraction of buffalo milk XOR exists in a catalytically inactive form due to high content of demolybdo and desulfo forms. Lower Fe/S content and structural factors might be contributing to lower enzymatic efficiency of buffalo XOR in a minor way.

  4. Functional and Bioinformatics Analysis of Two Campylobacter jejuni Homologs of the Thiol-Disulfide Oxidoreductase, DsbA

    Science.gov (United States)

    Grabowska, Anna D.; Wywiał, Ewa; Dunin-Horkawicz, Stanislaw; Łasica, Anna M.; Wösten, Marc M. S. M.; Nagy-Staroń, Anna; Godlewska, Renata; Bocian-Ostrzycka, Katarzyna; Pieńkowska, Katarzyna; Łaniewski, Paweł; Bujnicki, Janusz M.; van Putten, Jos P. M.; Jagusztyn-Krynicka, E. Katarzyna

    2014-01-01

    Background Bacterial Dsb enzymes are involved in the oxidative folding of many proteins, through the formation of disulfide bonds between their cysteine residues. The Dsb protein network has been well characterized in cells of the model microorganism Escherichia coli. To gain insight into the functioning of the Dsb system in epsilon-Proteobacteria, where it plays an important role in the colonization process, we studied two homologs of the main Escherichia coli Dsb oxidase (EcDsbA) that are present in the cells of the enteric pathogen Campylobacter jejuni, the most frequently reported bacterial cause of human enteritis in the world. Methods and Results Phylogenetic analysis suggests the horizontal transfer of the epsilon-Proteobacterial DsbAs from a common ancestor to gamma-Proteobacteria, which then gave rise to the DsbL lineage. Phenotype and enzymatic assays suggest that the two C. jejuni DsbAs play different roles in bacterial cells and have divergent substrate spectra. CjDsbA1 is essential for the motility and autoagglutination phenotypes, while CjDsbA2 has no impact on those processes. CjDsbA1 plays a critical role in the oxidative folding that ensures the activity of alkaline phosphatase CjPhoX, whereas CjDsbA2 is crucial for the activity of arylsulfotransferase CjAstA, encoded within the dsbA2-dsbB-astA operon. Conclusions Our results show that CjDsbA1 is the primary thiol-oxidoreductase affecting life processes associated with bacterial spread and host colonization, as well as ensuring the oxidative folding of particular protein substrates. In contrast, CjDsbA2 activity does not affect the same processes and so far its oxidative folding activity has been demonstrated for one substrate, arylsulfotransferase CjAstA. The results suggest the cooperation between CjDsbA2 and CjDsbB. In the case of the CjDsbA1, this cooperation is not exclusive and there is probably another protein to be identified in C. jejuni cells that acts to re-oxidize CjDsbA1. Altogether

  5. Functional and bioinformatics analysis of two Campylobacter jejuni homologs of the thiol-disulfide oxidoreductase, DsbA.

    Directory of Open Access Journals (Sweden)

    Anna D Grabowska

    Full Text Available BACKGROUND: Bacterial Dsb enzymes are involved in the oxidative folding of many proteins, through the formation of disulfide bonds between their cysteine residues. The Dsb protein network has been well characterized in cells of the model microorganism Escherichia coli. To gain insight into the functioning of the Dsb system in epsilon-Proteobacteria, where it plays an important role in the colonization process, we studied two homologs of the main Escherichia coli Dsb oxidase (EcDsbA that are present in the cells of the enteric pathogen Campylobacter jejuni, the most frequently reported bacterial cause of human enteritis in the world. METHODS AND RESULTS: Phylogenetic analysis suggests the horizontal transfer of the epsilon-Proteobacterial DsbAs from a common ancestor to gamma-Proteobacteria, which then gave rise to the DsbL lineage. Phenotype and enzymatic assays suggest that the two C. jejuni DsbAs play different roles in bacterial cells and have divergent substrate spectra. CjDsbA1 is essential for the motility and autoagglutination phenotypes, while CjDsbA2 has no impact on those processes. CjDsbA1 plays a critical role in the oxidative folding that ensures the activity of alkaline phosphatase CjPhoX, whereas CjDsbA2 is crucial for the activity of arylsulfotransferase CjAstA, encoded within the dsbA2-dsbB-astA operon. CONCLUSIONS: Our results show that CjDsbA1 is the primary thiol-oxidoreductase affecting life processes associated with bacterial spread and host colonization, as well as ensuring the oxidative folding of particular protein substrates. In contrast, CjDsbA2 activity does not affect the same processes and so far its oxidative folding activity has been demonstrated for one substrate, arylsulfotransferase CjAstA. The results suggest the cooperation between CjDsbA2 and CjDsbB. In the case of the CjDsbA1, this cooperation is not exclusive and there is probably another protein to be identified in C. jejuni cells that acts to re

  6. Adaptive hepatic and intestinal alterations in mice after deletion of NADPH-cytochrome P450 Oxidoreductase (Cpr) in hepatocytes.

    Science.gov (United States)

    Cheng, Xingguo; Gu, Jun; Klaassen, Curtis D

    2014-11-01

    Cytochrome P450 enzymes (P450) play an important role in first-pass metabolism in both the intestine and liver. NADPH-cytochrome P450 oxidoreductase (Cpr) is an essential electron transfer protein required for microsomal P450 activity. Mice with conditional knockout of Cpr in hepatocytes develop normally and survive even with complete loss of liver microsomal P450 activity. Our current studies were performed to determine whether alternative drug-metabolizing pathways increase in an attempt to maintain whole-body homeostasis. In addition to the liver, Cpr is mainly expressed in tissues such as lung, kidney, and gastrointestinal tract. In livers of H-Cpr-null mice, there is a marked increase in mRNA expression of phase I enzymes (Aldh1a1, 1a7, 3a2; Ces1b2, 2a6, and 2a12), antioxidant enzymes (Ho-1, Nqo1, and epoxide hydrolase), phase II enzymes (Ugt1a9; Gsta1/2, m3, m4, m6, t1, and t3; and Sult1a1 and 1d1), and drug transporters (Oatp1a4, Oct3, Mate1, Mdr1a, and Mrp3 and 4). In addition, glucuronide-conjugated bilirubin concentrations are doubled in serum of H-Cpr-null mice. Both constitutive androstane receptor (CAR) and nuclear factor erythroid 2-related factor 2 (Nrf2) protein in nuclei are higher in the livers of H-Cpr-null mice, indicating that CAR and Nrf2 are activated. In the small intestine of H-Cpr-null mice, mRNA expression of Cyp3a11 and Mdr1a, two genes critical for intestinal first-pass metabolism, are markedly up-regulated. In addition, nutrient (Pept1) and cholesterol (Npc1l1) transporters are induced in the small intestine of H-Cpr-null mice. In conclusion, in H-Cpr-null mice, adaptive regulation of alternative detoxification genes in liver and small intestine appear to partially compensate for the loss of microsomal P450 function in liver.

  7. The hybrid-cluster protein ('prismane protein') from Escherichia coli. Characterization of the hybrid-cluster protein, redox properties of the [2Fe-2S] and [4Fe-2S-2O] clusters and identification of an associated NADH oxidoreductase containing FAD and[2Fe-2S

    NARCIS (Netherlands)

    Berg, van den W.A.M.; Hagen, W.R.; Dongen, van W.M.A.M.

    2000-01-01

    Hybrid-cluster proteins ('prismane proteins') have previously been isolated and characterized from strictly anaerobic sulfate-reducing bacteria. These proteins contain two types of Fe/S clusters unique in biological systems: a [4Fe-4S] cubane cluster with spin-admixed S = 3/2 ground-state

  8. The hybrid-cluster protein ('prismane protein') from Escherichia coli. Characterization of the hybrid-cluster protein, redox properties of the [2Fe-2S] and [4Fe-2S-2O] clusters and identification of an associated NADH oxidoreductase containing FAD and[2Fe-2S

    NARCIS (Netherlands)

    Berg, van den W.A.M.; Hagen, W.R.; Dongen, van W.M.A.M.

    2000-01-01

    Hybrid-cluster proteins ('prismane proteins') have previously been isolated and characterized from strictly anaerobic sulfate-reducing bacteria. These proteins contain two types of Fe/S clusters unique in biological systems: a [4Fe-4S] cubane cluster with spin-admixed S = 3/2 ground-state paramagnet

  9. A novel nine base deletion mutation in NADH-cytochrome b5 reductase gene in an Indian family with recessive congenital methemoglobinemia-type-II

    Directory of Open Access Journals (Sweden)

    Prashant Warang

    2015-12-01

    Full Text Available Recessive hereditary methemoglobinemia (RCM associated with severe neurological abnormalities is a very rare disorder caused by NADH- cytochrome b5 reductase (cb5r deficiency (Type II. We report a case of 11 month old male child who had severe mental retardation, microcephaly and gross global developmental delay with methemoglobin level of 61.1%. The diagnosis of NADH-CYB5R3 deficiency was made by the demonstration of significantly reduced NADH-CYB5R3 activity in the patient and intermediate enzyme activity in both the parents. Mutation analysis of the CYB5R gene revealed a novel nine nucleotide deletion in exon 6 leading to the elimination of 3 amino acid residues (Lys173, Ser174 and Val 175. To confirm that this mutation was not an artifact, we performed PCR-RFLP analysis using the restriction enzyme Drd I. As the normal sequence has a restriction recognition site for Drd I which was eliminated by the deletion, a single band of 603-bp was seen in the presence of the homozygous mutation. Molecular modeling analysis showed a significant effect of these 3 amino acids deletion on the protein structure and stability leading to a severe clinical presentation. A novel homozygous 9 nucleotide deletion (p.K173–p.V175del3 is shown to be segregated with the disease in this family. Knowing the profile of mutations would allow us to offer prenatal diagnosis in families with severe neurological disorders associated with RCM — Type II.

  10. Quantitative fluorescence kinetic analysis of NADH and FAD in human plasma using three- and four-way calibration methods capable of providing the second-order advantage.

    Science.gov (United States)

    Kang, Chao; Wu, Hai-Long; Zhou, Chang; Xiang, Shou-Xia; Zhang, Xiao-Hua; Yu, Yong-Jie; Yu, Ru-Qin

    2016-03-03

    The metabolic coenzymes reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are the primary electron donor and acceptor respectively, participate in almost all biological metabolic pathways. This study develops a novel method for the quantitative kinetic analysis of the degradation reaction of NADH and the formation reaction of FAD in human plasma containing an uncalibrated interferent, by using three-way calibration based on multi-way fluorescence technique. In the three-way analysis, by using the calibration set in a static manner, we directly predicted the concentrations of both analytes in the mixture at any time after the start of their reactions, even in the presence of an uncalibrated spectral interferent and a varying background interferent. The satisfactory quantitative results indicate that the proposed method allows one to directly monitor the concentration of each analyte in the mixture as the function of time in real-time and nondestructively, instead of determining the concentration after the analytical separation. Thereafter, we fitted the first-order rate law to their concentration data throughout their reactions. Additionally, a four-way calibration procedure is developed as an alternative for highly collinear systems. The results of the four-way analysis confirmed the results of the three-way analysis and revealed that both the degradation reaction of NADH and the formation reaction of FAD in human plasma fit the first-order rate law. The proposed methods could be expected to provide promising tools for simultaneous kinetic analysis of multiple reactions in complex systems in real-time and nondestructively.

  11. Thiol-disulfide Oxidoreductases TRX1 and TMX3 Decrease Neuronal Atrophy in a Lentiviral Mouse Model of Huntington’s Disease

    Science.gov (United States)

    Fox, Jonathan; Lu, Zhen; Barrows, Lorraine

    2015-01-01

    Huntington’s disease (HD) is caused by a trinucleotide CAG repeat in the huntingtin gene (HTT) that results in expression of a polyglutamine-expanded mutant huntingtin protein (mHTT). N-terminal fragments of mHTT accumulate in brain neurons and glia as soluble monomeric and oligomeric species as well as insoluble protein aggregates and drive the disease process. Decreasing mHTT levels in brain provides protection and reversal of disease signs in HD mice making mHTT a prime target for disease modification. There is evidence for aberrant thiol oxidation within mHTT and other proteins in HD models. Based on this, we hypothesized that a specific thiol-disulfide oxidoreductase exists that decreases mHTT levels in cells and provides protection in HD mice. We undertook an in-vitro genetic screen of key thiol-disulfide oxidoreductases then completed secondary screens to identify those with mHTT decreasing properties. Our in-vitro experiments identified thioredoxin 1 and thioredoxin-related transmembrane protein 3 as proteins that decrease soluble mHTT levels in cultured cells. Using a lentiviral mouse model of HD we tested the effect of these proteins in striatum. Both proteins decreased mHTT-induced striatal neuronal atrophy. Findings provide evidence for a role of dysregulated protein-thiol homeostasis in the pathogenesis of HD. PMID:26664998

  12. Progesterone Exerts a Neuromodulatory Effect on Turning Behavior of Hemiparkinsonian Male Rats: Expression of 3α-Hydroxysteroid Oxidoreductase and Allopregnanolone as Suggestive of GABAA Receptors Involvement

    Directory of Open Access Journals (Sweden)

    Roberto Yunes

    2015-01-01

    Full Text Available There is a growing amount of evidence for a neuroprotective role of progesterone and its neuroactive metabolite, allopregnanolone, in animal models of neurodegenerative diseases. By using a model of hemiparkinsonism in male rats, injection of the neurotoxic 6-OHDA in left striatum, we studied progesterone’s effects on rotational behavior induced by amphetamine or apomorphine. Also, in order to find potential explanatory mechanisms, we studied expression and activity of nigrostriatal 3α-hydroxysteroid oxidoreductase, the enzyme that catalyzes progesterone to its active metabolite allopregnanolone. Coherently, we tested allopregnanolone for a possible neuromodulatory effect on rotational behavior. Also, since allopregnanolone is known as a GABAA modulator, we finally examined the action of GABAA antagonist bicuculline. We found that progesterone, in addition to an apparent neuroprotective effect, also increased ipsilateral expression and activity of 3α-hydroxysteroid oxidoreductase. It was interesting to note that ipsilateral administration of allopregnanolone reversed a clear sign of motor neurodegeneration, that is, contralateral rotational behavior. A possible GABAA involvement modulated by allopregnanolone was shown by the blocking effect of bicuculline. Our results suggest that early administration of progesterone possibly activates genomic mechanisms that promote neuroprotection subchronically. This, in turn, could be partially mediated by fast, nongenomic, actions of allopregnanolone acting as an acute modulator of GABAergic transmission.

  13. A thiol-disulfide oxidoreductase of the Gram-positive pathogen Corynebacterium diphtheriae is essential for viability, pilus assembly, toxin production and virulence.

    Science.gov (United States)

    Reardon-Robinson, Melissa E; Osipiuk, Jerzy; Jooya, Neda; Chang, Chungyu; Joachimiak, Andrzej; Das, Asis; Ton-That, Hung

    2015-12-01

    The Gram-positive pathogen Corynebacterium diphtheriae exports through the Sec apparatus many extracellular proteins that include the key virulence factors diphtheria toxin and the adhesive pili. How these proteins attain their native conformations after translocation as unfolded precursors remains elusive. The fact that the majority of these exported proteins contain multiple cysteine residues and that several membrane-bound oxidoreductases are encoded in the corynebacterial genome suggests the existence of an oxidative protein-folding pathway in this organism. Here we show that the shaft pilin SpaA harbors a disulfide bond in vivo and alanine substitution of these cysteines abrogates SpaA polymerization and leads to the secretion of degraded SpaA peptides. We then identified a thiol-disulfide oxidoreductase (MdbA), whose structure exhibits a conserved thioredoxin-like domain with a CPHC active site. Remarkably, deletion of mdbA results in a severe temperature-sensitive cell division phenotype. This mutant also fails to assemble pilus structures and is greatly defective in toxin production. Consistent with these defects, the ΔmdbA mutant is attenuated in a guinea pig model of diphtheritic toxemia. Given its diverse cellular functions in cell division, pilus assembly and toxin production, we propose that MdbA is a component of the general oxidative folding machine in C. diphtheriae.

  14. The malate-aspartate NADH shuttle member Aralar1 determines glucose metabolic fate, mitochondrial activity, and insulin secretion in beta cells.

    Science.gov (United States)

    Rubi, Blanca; del Arco, Araceli; Bartley, Clarissa; Satrustegui, Jorgina; Maechler, Pierre

    2004-12-31

    The NADH shuttle system, which transports reducing equivalents from the cytosol to the mitochondria, is essential for the coupling of glucose metabolism to insulin secretion in pancreatic beta cells. Aralar1 and citrin are two isoforms of the mitochondrial aspartate/glutamate carrier, one key constituent of the malate-aspartate NADH shuttle. Here, the effects of Aralar1 overexpression in INS-1E beta cells and isolated rat islets were investigated for the first time. We prepared a recombinant adenovirus encoding for human Aralar1 (AdCA-Aralar1), tagged with the small FLAG epitope. Transduction of INS-1E cells and isolated rat islets with AdCA-Aralar1 increased aralar1 protein levels and immunostaining revealed mitochondrial localization. Compared with control INS-1E cells, overexpression of Aralar1 potentiated metabolism secretion coupling stimulated by 15 mm glucose. In particular, there was an increase of NAD(P)H generation, of mitochondrial membrane hyperpolarization, ATP levels, glucose oxidation, and insulin secretion (+45%, p < 0.01). Remarkably, this was accompanied by reduced lactate production. Rat islets overexpressing Aralar1 secreted more insulin at 16.7 mm glucose (+65%, p < 0.05) compared with controls. These results show that aspartate-glutamate carrier capacity limits glucose-stimulated insulin secretion and that Aralar1 overexpression enhances mitochondrial metabolism.

  15. Morphometric and quantitative evaluation of the NADH-diaphorase positive myenteric neurons of the jejunum of streptozotocin-diabetic rats supplemented with acetyl-L-carnitine.

    Science.gov (United States)

    De Miranda Neto, M H; Defani, M A; Fregonesi, C E P T; Natali, M R M; Pereira, A

    2005-06-01

    Summary In this study we investigated the effect of the acetyl-L-carnitine (ALC) supplementation on the myenteric neurons of the jejunum of rats made diabetic at the age of 105 days by streptozotocin (35 mg/kg body weight). Four groups were used: non-diabetic (C), non-diabetic supplemented with ALC (CC), diabetic (D), diabetic supplemented with ALC (DC). After 15 weeks of diabetes induction the blood was collected by cardiac puncture to evaluate glycaemia and glycated haemoglobin. Next the animals were killed and the jejunum was collected and subjected to whole-mount preparation to evidence the myenteric neurons through the histochemical technique of the NADH-diaphorase. The neuronal counts were made in 80 microscopic fields, in tissue samples of five animals of each group. The profiles of the cell bodies of 1000 neurons per group were analysed. Diabetes induced a significant increase in the area of the cell body and decrease in the number of NADH-diaphorase positive myoenteric neurons. ALC suplementation to the diabetic group promoted smaller hypertrophic effects and less neuronal loss than in the myoenteric neurons of the diabetic rats, and in addition diminished the body weight decrease and reduced the fasting glycaemia.

  16. Poly(neutral red) as a NAD{sup +} reduction catalyst and a NADH oxidation catalyst: Towards the development of a rechargeable biobattery

    Energy Technology Data Exchange (ETDEWEB)

    Arechederra, Marguerite N.; Addo, Paul K. [Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO 63103 (United States); Minteer, Shelley D., E-mail: minteers@slu.ed [Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO 63103 (United States)

    2011-01-01

    In this paper, we have established that poly(neutral red), PNR, functions as an electrocatalyst for the reduction and oxidation of NAD{sup +}/NADH in a rechargeable biobattery environment. The reversibility of this catalyst was possible only with the addition of Zn{sup 2+} for complexation to the redox polymer. The zinc ion complexation with the polymer facilitates electron and proton transfer to/from the substrate and the NAD{sup +}/NADH coenzyme without forming covalent bonds between the nicotinamide and the substrate surface. This research presents use of this reversible catalyst in a rechargeable biobattery. The rechargeable battery includes a Prussian blue cathode and a bioanode including NAD{sup +}-dependent alcohol dehydrogenase and zinc complexed PNR. This bioanode was coupled to the cathode with Nafion 212 acting as the ion exchange membrane separator between the two compartments. The biobattery has an open circuit potential of 0.545({+-}0.009) V when first assembled and 0.053({+-}0.005) V when fully discharged. However, when fully charged, the biobattery has an open circuit potential of 1.263({+-}0.051) V, a maximum power density of 16.3({+-}4.03) {mu}W cm{sup -3} and a maximum current density of 221({+-}13.2) {mu}A cm{sup -3}. The efficiency and stability of the biobattery were studied by cycling continuously at a discharging rate of 1 C and the results obtained showed reasonable stability over 50 cycles.

  17. A complicated biocomputing system based on multi-responsive P(NIPAM-co-APBA) copolymer film electrodes and electrocatalysis of NADH.

    Science.gov (United States)

    Liang, Jiying; Yu, Xue; Yang, Tiangang; Li, Menglu; Shen, Li; Jin, Yue; Liu, Hongyun

    2017-08-23

    In this paper, poly(N-isopropylacrylamide-co-3-aminophenylboronic acid) (P(NIPAM-co-APBA)) copolymer films were successfully electropolymerized on the Au electrode surface. The electroactive probe ferrocene carboxylic acid (FCA) in solution showed reversible thermal-, glucose- and pH-responsive on-off cyclic voltammetric (CV) behaviors at the film electrodes. The comparative experiments demonstrated that the thermo-responsive property of the film electrode was ascribed to the PNIPAM component of the films, whereas the glucose- and pH-sensitive behaviors came from the PAPBA constituent. The reduced form of nicotinamide adenine dinucleotide (NADH) could be electrocatalytically oxidized by FCA at the film electrodes, which would greatly amplify the multi-responsive CV signal difference between the on and off states. On the basis of these results, a binary 4-input/4-output logic circuit was fabricated with temperature, glucose, pH and NADH as inputs and the CV responses at 4 different levels as outputs. Moreover, a ternary CONSENSUS logic circuit was established on the same platform, which was the first report on the combination of ternary logic gate and bioelectrocatalysis without using enzymes. This work provided a novel idea for constructing complicated biocomputing systems by increasing the number of inputs/outputs with multi-sensitive interfaces and by designing new types of multi-valued logic gates on the basis of bioelectrocatalysis.

  18. Characterization of a NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism.

    Science.gov (United States)

    Fontaine, Jean-Xavier; Tercé-Laforgue, Thérèse; Armengaud, Patrick; Clément, Gilles; Renou, Jean-Pierre; Pelletier, Sandra; Catterou, Manuella; Azzopardi, Marianne; Gibon, Yves; Lea, Peter J; Hirel, Bertrand; Dubois, Frédéric

    2012-10-01

    The role of NADH-dependent glutamate dehydrogenase (GDH) was investigated by studying the physiological impact of a complete lack of enzyme activity in an Arabidopsis thaliana plant deficient in three genes encoding the enzyme. This study was conducted following the discovery that a third GDH gene is expressed in the mitochondria of the root companion cells, where all three active GDH enzyme proteins were shown to be present. A gdh1-2-3 triple mutant was constructed and exhibited major differences from the wild type in gene transcription and metabolite concentrations, and these differences appeared to originate in the roots. By placing the gdh triple mutant under continuous darkness for several days and comparing it to the wild type, the evidence strongly suggested that the main physiological function of NADH-GDH is to provide 2-oxoglutarate for the tricarboxylic acid cycle. The differences in key metabolites of the tricarboxylic acid cycle in the triple mutant versus the wild type indicated that, through metabolic processes operating mainly in roots, there was a strong impact on amino acid accumulation, in particular alanine, γ-aminobutyrate, and aspartate in both roots and leaves. These results are discussed in relation to the possible signaling and physiological functions of the enzyme at the interface of carbon and nitrogen metabolism.

  19. Redox specificity of 2-hydroxyacid-coupled NAD(+)/NADH dehydrogenases: a study exploiting "reactive" arginine as a reporter of protein electrostatics.

    Science.gov (United States)

    Gupta, Pooja; Jairajpuri, Mohamad Aman; Durani, Susheel

    2013-01-01

    With "reactive" arginine as a kinetic reporter, 2-hydroxyacid dehydrogenases are assessed in basis of their specialization as NAD(+)-reducing or NADH-oxidizing enzymes. Specifically, M4 and H4 lactate dehydrogenases (LDHs) and cytoplasmic and mitochondrial malate dehydrogenases (MDHs) are compared to assess if their coenzyme specificity may involve electrostatics of cationic or neutral nicotinamide structure as the basis. The enzymes from diverse eukaryote and prokaryote sources thus are assessed in "reactivity" of functionally-critical arginine as a function of salt concentration and pH. Electrostatic calculations were performed on "reactive" arginines and found good correspondence with experiment. The reductive and oxidative LDHs and MDHs are assessed in their count over ionizable residues and in placement details of the residues in their structures as proteins. The variants found to be high or low in ΔpKa of "reactive" arginine are found to be also strong or weak cations that preferentially oxidize NADH (neutral nicotinamide structure) or reduce NAD(+) (cationic nicotinamide structure). The ionized groups of protein structure may thus be important to redox specificity of the enzyme on basis of electrostatic preference for the oxidized (cationic nicotinamide) or reduced (neutral nicotinamide) coenzyme. Detailed comparisons of isozymes establish that the residues contributing in their redox specificity are scrambled in structure of the reductive enzyme.

  20. Redox specificity of 2-hydroxyacid-coupled NAD(+/NADH dehydrogenases: a study exploiting "reactive" arginine as a reporter of protein electrostatics.

    Directory of Open Access Journals (Sweden)

    Pooja Gupta

    Full Text Available With "reactive" arginine as a kinetic reporter, 2-hydroxyacid dehydrogenases are assessed in basis of their specialization as NAD(+-reducing or NADH-oxidizing enzymes. Specifically, M4 and H4 lactate dehydrogenases (LDHs and cytoplasmic and mitochondrial malate dehydrogenases (MDHs are compared to assess if their coenzyme specificity may involve electrostatics of cationic or neutral nicotinamide structure as the basis. The enzymes from diverse eukaryote and prokaryote sources thus are assessed in "reactivity" of functionally-critical arginine as a function of salt concentration and pH. Electrostatic calculations were performed on "reactive" arginines and found good correspondence with experiment. The reductive and oxidative LDHs and MDHs are assessed in their count over ionizable residues and in placement details of the residues in their structures as proteins. The variants found to be high or low in ΔpKa of "reactive" arginine are found to be also strong or weak cations that preferentially oxidize NADH (neutral nicotinamide structure or reduce NAD(+ (cationic nicotinamide structure. The ionized groups of protein structure may thus be important to redox specificity of the enzyme on basis of electrostatic preference for the oxidized (cationic nicotinamide or reduced (neutral nicotinamide coenzyme. Detailed comparisons of isozymes establish that the residues contributing in their redox specificity are scrambled in structure of the reductive enzyme.