WorldWideScience

Sample records for n-o bond length

  1. Predicted bond length variation in wurtzite and zinc-blende InGaN and AlGaN alloys

    International Nuclear Information System (INIS)

    Mattila, T.; Zunger, A.

    1999-01-01

    Valence force field simulations utilizing large supercells are used to investigate the bond lengths in wurtzite and zinc-blende In x Ga 1-x N and Al x Ga 1-x N random alloys. We find that (i) while the first-neighbor cation endash anion shell is split into two distinct values in both wurtzite and zinc-blende alloys (R Ga-N 1 ≠R In-N 1 ), the second-neighbor cation endash anion bonds are equal (R Ga-N 2 =R In-N 2 ). (ii) The second-neighbor cation endash anion bonds exhibit a crucial difference between wurtzite and zinc-blende binary structures: in wurtzite we find two bond distances which differ in length by 13% while in the zinc-blende structure there is only one bond length. This splitting is preserved in the alloy, and acts as a fingerprint, distinguishing the wurtzite from the zinc-blende structure. (iii) The small splitting of the first-neighbor cation endash anion bonds in the wurtzite structure due to nonideal c/a ratio is preserved in the alloy, but is obscured by the bond length broadening. (iv) The cation endash cation bond lengths exhibit three distinct values in the alloy (Ga endash Ga, Ga endash In, and In endash In), while the anion endash anion bonds are split into two values corresponding to N endash Ga endash N and N endash In endash N. (v) The cation endash related splitting of the bonds and alloy broadening are considerably larger in InGaN alloy than in AlGaN alloy due to larger mismatch between the binary compounds. (vi) The calculated first-neighbor cation endash anion and cation endash cation bond lengths in In x Ga 1-x N alloy are in good agreement with the available experimental data. The remaining bond lengths are provided as predictions. In particular, the predicted splitting for the second-neighbor cation endash anion bonds in the wurtzite structure awaits experimental testing. copyright 1999 American Institute of Physics

  2. Bond length effects during the dissociation of O2 on Ni(1 1 1)

    International Nuclear Information System (INIS)

    Shuttleworth, I.G.

    2015-01-01

    Graphical abstract: - Highlights: • The dissociation of O 2 on Ni(1 1 1) has been investigated using the Nudged Elastic Band (NEB) technique. • An exceptional correlation has been identified between the O/Ni bond order and the O 2 bond length for a series of sterically different reaction paths. • Direct magnetic phenomena accompany these processes suggesting further mechanisms for experimental control. - Abstract: The interaction between O 2 and Ni(1 1 1) has been investigated using spin-polarised density functional theory. A series of low activation energy (E A = 103–315 meV) reaction pathways corresponding to precursor and non-precursor mediated adsorption have been identified. It has been seen that a predominantly pathway-independent correlation exists between O−Ni bond order and the O 2 bond length. This correlation demonstrates that the O−O interaction predominantly determines the bonding of this system

  3. Bond length variation in Zn substituted NiO studied from extended X-ray absorption fine structure

    Science.gov (United States)

    Singh, S. D.; Poswal, A. K.; Kamal, C.; Rajput, Parasmani; Chakrabarti, Aparna; Jha, S. N.; Ganguli, Tapas

    2017-06-01

    Bond length behavior for Zn substituted NiO is determined through extended x-ray absorption fine structure (EXAFS) measurements performed at ambient conditions. We report bond length value of 2.11±0.01 Å for Zn-O of rock salt (RS) symmetry, when Zn is doped in RS NiO. Bond length for Zn substituted NiO RS ternary solid solutions shows relaxed behavior for Zn-O bond, while it shows un-relaxed behavior for Ni-O bond. These observations are further supported by first-principles calculations. It is also inferred that Zn sublattice remains nearly unchanged with increase in lattice parameter. On the other hand, Ni sublattice dilates for Zn compositions up to 20% to accommodate increase in the lattice parameter. However, for Zn compositions more than 20%, it does not further dilate. It has been attributed to the large disorder that is incorporated in the system at and beyond 20% of Zn incorporation in the cubic RS lattice of ternary solid solutions. For these large percentages of Zn incorporation, the Ni and the Zn atoms re-arrange themselves microscopically about the same nominal bond length rather than systematically increase in magnitude to minimize the energy of the system. This results in an increase in the Debye-Waller factor with increase in the Zn concentration rather than a systematic increase in the bond lengths.

  4. Enhanced photocatalytic degradation of Amaranth dye on mesoporous anatase TiO2: evidence of C-N, N[double bond, length as m-dash]N bond cleavage and identification of new intermediates.

    Science.gov (United States)

    Naik, Amarja P; Salkar, Akshay V; Majik, Mahesh S; Morajkar, Pranay P

    2017-07-01

    The photocatalytic degradation mechanism of Amaranth, a recalcitrant carcinogenic azo dye, was investigated using mesoporous anatase TiO 2 under sunlight. Mesoporous anatase TiO 2 of a high photocatalytic activity has been synthesized using a sol-gel method and its photocatalytic activity for the degradation of Amaranth dye has been evaluated with respect to Degussa P25. The effect of bi-dentate complexing agents like oxalic acid, ethylene glycol and urea on the surface properties of TiO 2 catalyst has been investigated using TG-DTA, FTIR, HR-TEM, SAED, PXRD, EDS, UV-DRS, PL, BET N 2 adsorption-desorption isotherm studies and BJH analysis. The influence of catalyst properties such as the mesoporous network, pore volume and surface area on the kinetics of degradation of Amaranth as a function of irradiation time under natural sunlight has been monitored using UV-Vis spectroscopy. The highest rate constant value of 0.069 min -1 was obtained for the photocatalytic degradation of Amaranth using TiO 2 synthesized via a urea assisted sol-gel synthesis method. The effect of the reaction conditions such as pH, TiO 2 concentration and Amaranth concentration on the photodegradation rate has been investigated. The enhanced photocatalytic activity of synthesized TiO 2 in comparison with P25 is attributed to the mesoporous nature of the catalyst leading to increased pore diameter, pore volume, surface area and enhanced charge carrier separation efficiency. New intermediates of photocatalytic degradation of Amaranth, namely, sodium-3-hydroxynaphthalene-2,7-disulphonate, 3-hydroxynaphthalene, sodium-4-aminonaphthalenesulphonate and sodium-4-aminobenzenesulphonate have been identified using LC-ESI-MS for the very first time, providing direct evidence for simultaneous bond cleavage pathways (-C-N-) and (-N[double bond, length as m-dash]N-). A new plausible mechanism of TiO 2 catalysed photodegradation of Amaranth along with the comparison of its toxicity to that of its degradation

  5. Bond length contraction in Au nanocrystals formed by ion implantation into thin SiO2

    International Nuclear Information System (INIS)

    Kluth, P.; Johannessen, B.; Giraud, V.; Cheung, A.; Glover, C.J.; Azevedo, G. de M; Foran, G.J.; Ridgway, M.C.

    2004-01-01

    Au nanocrystals (NCs) fabricated by ion implantation into thin SiO 2 and annealing were investigated by means of extended x-ray absorption fine structure (EXAFS) spectroscopy and transmission electron microscopy. A bond length contraction was observed and can be explained by surface tension effects in a simple liquid-drop model. Such results are consistent with previous reports on nonembedded NCs implying a negligible influence of the SiO 2 matrix. Cumulant analysis of the EXAFS data suggests surface reconstruction or relaxation involving a further shortened bond length. A deviation from the octahedral closed shell structure is apparent for NCs of size 25 A

  6. Hydrogen bonded networks in formamide [HCONH2]n (n = 1 – 10 ...

    Indian Academy of Sciences (India)

    gns

    Table S1: Comparison of interaction energy (I.E) in kcal/mol in four arrangements of formamide n=1-10 at B3LYP/D95** level of theory. n = #monomers. Table S2: O---H bond length (in Å) for formamide clusters n = (2-10). Table S3: N-H bond stretching frequency (in cm-1) for four arrangements of formamide clusters n.

  7. Charge transfer and bond lengths in YBa2Cu3-xMxO6+y

    International Nuclear Information System (INIS)

    Jorgensen, J.D.; Rhyne, J.J.; Neumann, D.A.; Miceli, P.F.; Tarascon, J.M.; Greene, L.H.; Barboux, P.

    1989-01-01

    We discuss the effects of doping on the Cu chain sites in YBa 2 Cu 3-x M x O 6+y . The relationship between bond lengths obtained from neutron scattering and charge transfer is evaluated in terms of bond valence. In particular, it is concluded that removing an oxygen from the chains transfers one electron to the planes. 24 refs., 3 figs

  8. Crystallographic and infrared spectroscopic study of bond distances in Ln[Fe(CN)6].4H2O (Ln=lanthanide)

    International Nuclear Information System (INIS)

    Zhou Xianju; Wong, W.-T.; Faucher, Michele D.; Tanner, Peter A.

    2008-01-01

    Along with crystallographic data of Ln[Fe(CN) 6 ].4H 2 O (Ln=lanthanide), the infrared spectra are reassigned to examine bond length trends across the series of Ln. The changes in mean Ln-O, Ln-N, C≡N and Fe-C distances are discussed and the bond natures of Ln-N and Ln-O are studied by bond length linear or quadratic fitting and comparisons with relevant ionic radii. The two different C≡N bond distances have been simulated by the covalo-electrostatic model. - Graphical abstract: Crystallographic and FTIR data for Ln[Fe(CN) 6 ].4H 2 O enable the changes in Ln-O, Ln-N, C≡N and Fe-C distances to be determined and modeled across the lanthanide series

  9. Insertion reactions into Pd[bond]O and Pd[bond]N bonds: preparation of alkoxycarbonyl, carbonato, carbamato, thiocarbamate, and thioureide complexes of palladium(II).

    Science.gov (United States)

    Ruiz, José; Martínez, M Teresa; Florenciano, Félix; Rodríguez, Venancio; López, Gregorio; Pérez, José; Chaloner, Penny A; Hitchcock, Peter B

    2003-06-02

    Mononuclear palladium hydroxo complexes of the type [Pd(N[bond]N)(C(6)F(5))(OH)] [(N[bond]N = 2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (Me(2)bipy), 1,10-phenanthroline (phen), or N,N,N',N'-tetramethylethylenediamine (tmeda)] have been prepared by reaction of [Pd(N[bond]N)(C(6)F(5))(acetone)]ClO(4) with KOH in methanol. These hydroxo complexes react, in methanol, with CO (1 atm, room temperature) to yield the corresponding methoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)Me)]. Similar alkoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)R)] (N[bond]N = bis(3,5-dimethylpyrazol-1-yl)methane); R = Me, Et, or (i)Pr) are obtained when [Pd(N[bond]N)(C(6)F(5))Cl] is treated with KOH in the corresponding alcohol ROH and CO is bubbled through the solution. The reactions of [Pd(N[bond]N)(C(6)F(5))(OH)] (N[bond]N = bipy or Me(2)bipy) with CO(2), in tetrahydrofuran, lead to the formation of the binuclear carbonate complexes [(N[bond]N)(C(6)F(5))Pd(mu-eta(2)-CO(3))Pd(C(6)F(5))(N[bond]N)]. Complexes [Pd(N[bond]N)(C(6)F(5))(OH)] react in alcohol with PhNCS to yield the corresponding N-phenyl-O-alkylthiocarbamate complexes [Pd(N[bond]N)(C(6)F(5))[SC(OR)NPh

  10. Bond-Length Distortions in Strained Semiconductor Alloys

    International Nuclear Information System (INIS)

    Woicik, J.C.; Pellegrino, J.G.; Steiner, B.; Miyano, K.E.; Bompadre, S.G.; Sorensen, L.B.; Lee, T.; Khalid, S.

    1997-01-01

    Extended x-ray absorption fine structure measurements performed at In-K edge have resolved the outstanding issue of bond-length strain in semiconductor-alloy heterostructures. We determine the In-As bond length to be 2.581±0.004 Angstrom in a buried, 213 Angstrom thick Ga 0.78 In 0.22 As layer grown coherently on GaAs(001). This bond length corresponds to a strain-induced contraction of 0.015±0.004 Angstrom relative to the In-As bond length in bulk Ga 1-x In x As of the same composition; it is consistent with a simple model which assumes a uniform bond-length distortion in the epilayer despite the inequivalent In-As and Ga-As bond lengths. copyright 1997 The American Physical Society

  11. Cocrystals of 6-propyl-2-thiouracil: N-H···O versus N-H···S hydrogen bonds.

    Science.gov (United States)

    Tutughamiarso, Maya; Egert, Ernst

    2011-11-01

    In order to investigate the relative stability of N-H···O and N-H···S hydrogen bonds, we cocrystallized the antithyroid drug 6-propyl-2-thiouracil with two complementary heterocycles. In the cocrystal pyrimidin-2-amine-6-propyl-2-thiouracil (1/2), C(4)H(5)N(3)·2C(7)H(10)N(2)OS, (I), the `base pair' is connected by one N-H···S and one N-H···N hydrogen bond. Homodimers of 6-propyl-2-thiouracil linked by two N-H···S hydrogen bonds are observed in the cocrystal N-(6-acetamidopyridin-2-yl)acetamide-6-propyl-2-thiouracil (1/2), C(9)H(11)N(3)O(2)·2C(7)H(10)N(2)OS, (II). The crystal structure of 6-propyl-2-thiouracil itself, C(7)H(10)N(2)OS, (III), is stabilized by pairwise N-H···O and N-H···S hydrogen bonds. In all three structures, N-H···S hydrogen bonds occur only within R(2)(2)(8) patterns, whereas N-H···O hydrogen bonds tend to connect the homo- and heterodimers into extended networks. In agreement with related structures, the hydrogen-bonding capability of C=O and C=S groups seems to be comparable.

  12. Molecularly Tuning the Radicaloid N-H···O═C Hydrogen Bond.

    Science.gov (United States)

    Lu, Norman; Chung, Wei-Cheng; Ley, Rebecca M; Lin, Kwan-Yu; Francisco, Joseph S; Negishi, Ei-Ichi

    2016-03-03

    Substituent effects on the open shell N-H···O═C hydrogen-bond has never been reported. This study examines how 12 functional groups composed of electron donating groups (EDG), halogen atoms and electron withdrawing groups (EWG) affect the N-H···O═C hydrogen-bond properties in a six-membered cyclic model system of O═C(Y)-CH═C(X)N-H. It is found that group effects on this open shell H-bonding system are significant and have predictive trends when X = H and Y is varied. When Y is an EDG, the N-H···O═C hydrogen-bond is strengthened; and when Y is an EWG, the bond is weakened; whereas the variation in electronic properties of X group do not exhibit a significant impact upon the hydrogen bond strength. The structural impact of the stronger N-H···O═C hydrogen-bond are (1) shorter H and O distance, r(H···O) and (2) a longer N-H bond length, r(NH). The stronger N-H···O═C hydrogen-bond also acts to pull the H and O in toward one another which has an effect on the bond angles. Our findings show that there is a linear relationship between hydrogen-bond angle and N-H···O═C hydrogen-bond energy in this unusual H-bonding system. In addition, there is a linear correlation of the r(H···O) and the hydrogen bond energy. A short r(H···O) distance corresponds to a large hydrogen bond energy when Y is varied. The observed trends and findings have been validated using three different methods (UB3LYP, M06-2X, and UMP2) with two different basis sets.

  13. Microsolvation effect and hydrogen-bonding pattern of taurine-water TA-(H2O)n (n = 1-3) complexes.

    Science.gov (United States)

    Dai, Yumei; Wang, Yuhua; Huang, Zhengguo; Wang, Hongke; Yu, Lei

    2012-01-01

    The microsolvation of taurine (TA) with one, two or three water molecules was investigated by a density functional theory (DFT) approach. Quantum theory of atoms in molecules (QTAIM) analyses were employed to elucidate the hydrogen bond (H-bond) interaction characteristics in TA-(H(2)O)(n) (n = 1-3) complexes. The results showed that the intramolecular H-bond formed between the hydroxyl and the N atom of TA are retained in most TA-(H(2)O)(n) (n = 1-3) complexes, and are strengthened via cooperative effects among multiple H-bonds from n = 1-3. A trend of proton transformation exists from the hydroxyl to the N atom, which finally results in the cleavage of the origin intramolecular H-bond and the formation of a new intramolecular H-bond between the amino and the O atom of TA. Therefore, the most stable TA-(H(2)O)(3) complex becomes a zwitterionic complex rather than a neutral type. A many-body interaction analysis showed that the major contributors to the binding energies for complexes are the two-body energies, while three-body energies and relaxation energies make significant contributions to the binding energies for some complexes, whereas the four-body energies are too small to be significant.

  14. Studies of technetium chemistry. Pt.8. The regularities of the bond length and configuration of rhenium and technetium complexes in crystals

    International Nuclear Information System (INIS)

    Liu Guozheng; Liu Boli

    1995-01-01

    Some bond length regularities in MO 6 , MO-4, MX 5 α and MX 4 αβ moieties of technetium and rhenium compounds are summarized and rationalized by cavity model. The chemical properties of technetium and rhenium are so similar that their corresponding complexes have almost the same configuration and M-X bond lengths when they are in cavity-controlled state. Technetium and Rhenium combine preferably with N, O, F, S, Cl and Br when they are in higher oxidation states (>3), but preferably with P, Se etc. when they are in lower oxidation states ( 4 αβ is approximately constant; (2) the average M-X bond length of MX 6 varies moderately with the oxidation state of M; (3) the bond length of M-X trans to M-α in MX 5 α has a linear relationship with the angle

  15. Safe-by-Design CuO Nanoparticles via Fe-Doping, Cu-O Bond Length Variation, and Biological Assessment in Cells and Zebrafish Embryos.

    Science.gov (United States)

    Naatz, Hendrik; Lin, Sijie; Li, Ruibin; Jiang, Wen; Ji, Zhaoxia; Chang, Chong Hyun; Köser, Jan; Thöming, Jorg; Xia, Tian; Nel, Andre E; Mädler, Lutz; Pokhrel, Suman

    2017-01-24

    The safe implementation of nanotechnology requires nanomaterial hazard assessment in accordance with the material physicochemical properties that trigger the injury response at the nano/bio interface. Since CuO nanoparticles (NPs) are widely used industrially and their dissolution properties play a major role in hazard potential, we hypothesized that tighter bonding of Cu to Fe by particle doping could constitute a safer-by-design approach through decreased dissolution. Accordingly, we designed a combinatorial library in which CuO was doped with 1-10% Fe in a flame spray pyrolysis reactor. The morphology and structural properties were determined by XRD, BET, Raman spectroscopy, HRTEM, EFTEM, and EELS, which demonstrated a significant reduction in the apical Cu-O bond length while simultaneously increasing the planar bond length (Jahn-Teller distortion). Hazard screening was performed in tissue culture cell lines and zebrafish embryos to discern the change in the hazardous effects of doped vs nondoped particles. This demonstrated that with increased levels of doping there was a progressive decrease in cytotoxicity in BEAS-2B and THP-1 cells, as well as an incremental decrease in the rate of hatching interference in zebrafish embryos. The dissolution profiles were determined and the surface reactions taking place in Holtfreter's solution were validated using cyclic voltammetry measurements to demonstrate that the Cu + /Cu 2+ and Fe 2+ /Fe 3+ redox species play a major role in the dissolution process of pure and Fe-doped CuO. Altogether, a safe-by-design strategy was implemented for the toxic CuO particles via Fe doping and has been demonstrated for their safe use in the environment.

  16. Cross-Dehydrogenative Coupling Reactions Between P(O)-H and X-H (X = S, N, O, P) Bonds.

    Science.gov (United States)

    Hosseinian, Akram; Farshbaf, Sepideh; Fekri, Leila Zare; Nikpassand, Mohammad; Vessally, Esmail

    2018-05-26

    P(O)-X (X = S, N, O, P) bond-containing compounds have extensive application in medicinal chemistry, agrochemistry, and material chemistry. These useful organophosphorus compounds also have many applications in organic synthesis. In light of the importance of titled compounds, there is continuing interest in the development of synthetic methods for P(O)-X bonds construction. In the last 4 years, the direct coupling reaction of P(O)-H compounds with thiols, alcohols, and amines/amides has received much attention because of the atom-economic character. This review aims to give an overview of new developments in cross-dehydrogenative coupling reactions between P(O)-H and X-H (X = S, N, O, P) bonds, with special emphasis on the mechanistic aspects of the reactions.

  17. Bond lengths and bond strengths in compounds of the 5f elements

    International Nuclear Information System (INIS)

    Zachariasen, W.H.

    1975-01-01

    The variation of bond length (D) with bond strength (S) in normal valence compounds of 3d, 4d, 5d-4f, and 6d-5f elements can be represented approximately as D(S)=D(0.5) F(S), where D(0.5) is a characteristic constant for a given bond and F(S) an empirical function which is the same for all bonds. A bond strength Ssub(ij)=ssub(ji) is assigned to the bond between atoms i and j such that Σsub(j) Ssub(ij)=vsub(i) and Σsub(i) Ssub(ij)=vsub(j), where vsub(i) and vsub(j) are the normal valences of the two atoms. The function F(S) decreases monotonically with increasing S, and is normalized to unity at S=0.5, so that the constant D(0.5) has the physical meaning of being the bond length adjusted to S=0.5. The method described above was used to interpret and systematize the experimental results on bond lengths in oxides, halides, and oxyhalides of the 5f elements. (U.S.)

  18. Studies of Hydrogen Bonding Between N, N-Dimethylacetamide and Primary Alcohols

    Directory of Open Access Journals (Sweden)

    M. S. Manjunath

    2009-01-01

    Full Text Available Hydrogen bonding between N, N-dimethylacetamide (DMA and alcohols has been studied in carbon tetrachloride solution by an X-band Microwave bench at 936GHz. The dielectric relaxation time (τ of the binary system are obtained by both Higasi's method and Gopalakrishna method. The most likely association complex between alcohol and DMA is 1:1 stoichiometric complex through the hydroxyl group of the alcohol and the carbonyl group of amide. The results show that the interaction between alcohols and amides is 1:1 complex through the free hydroxyl group of the alcohol and the carbonyl group of amide and the alkyl chain-length of both the alcohols and amide plays an important role in the determination of the strength of hydrogen bond (O-H: C=O formed and suggests that the proton donating ability of alcohols is in the order: 1-propanol < 1-butanol < 1-pentanol and the accepting ability of DMA.

  19. Critical effects of alkyl chain length on fibril structures in benzene-trans(RR)- or (SS)-N,N'-alkanoyl-1,2-diaminocyclohexane gels.

    Science.gov (United States)

    Sato, Hisako; Nakae, Takahiro; Morimoto, Kazuya; Tamura, Kenji

    2012-02-28

    Vibrational circular dichroism (VCD) spectra were recorded on benzene-d(6) gels formed by chiral low molecular mass gelators (LMGs), trans(RR)- or trans(SS)-N,N'-alkanoyl-1,2-diaminocyclohexane (denoted by RR-C(n) or SS-C(n), respectively; n = the number of carbon atoms in an introduced alkanoyl group). Attention was focused on the effects of alkyl chain length on the structures of the gels. When n was changed from 6 to 12, the signs of the coupled peaks around 1550 cm(-1) in the VCD spectra, which were assigned to the symmetric and asymmetric C=O stretching vibrations from the higher to lower wavenumber, respectively, critically depended on the alkyl chain length. In the case of RR-C(n), for example, the signs of the couplet were plus and minus for n = 8, 9, 10 and 12, while the signs of the same couplet were reversed for n = 6 and 7. The conformations of LMGs in fibrils were determined by comparing the observed IR and VCD spectra with those calculated for a monomeric molecule. The observed reversal of signs in the C=O couplet was rationalized in terms of the different modes of hydrogen bonding. In the case of C(8), C(9), C(10) and C(12), gelator molecules were stacked with their cyclohexyl rings in parallel, forming double anti-parallel chains of intermolecular hydrogen bonds using two pairs of >NH and >C=O groups. In case of C(6) and C(7), gelator molecules were stacked through a single chain of intermolecular hydrogen bonds using a pair of >NH and >C=O groups. The remaining pair of >NH and >C=O groups formed an intramolecular hydrogen bond.

  20. Bond-length fluctuations in the copper oxide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B [Texas Materials Institute, ETC 9.102, University of Texas at Austin, Austin, TX 78712 (United States)

    2003-02-26

    Superconductivity in the copper oxides occurs at a crossover from localized to itinerant electronic behaviour, a transition that is first order. A spinodal phase segregation is normally accomplished by atomic diffusion; but where it occurs at too low a temperature for atomic diffusion, it may be realized by cooperative atomic displacements. Locally cooperative, fluctuating atomic displacements may stabilize a distinguishable phase lying between a localized-electron phase and a Fermi-liquid phase; this intermediate phase exhibits quantum-critical-point behaviour with strong electron-lattice interactions making charge transport vibronic. Ordering of the bond-length fluctuations at lower temperatures would normally stabilize a charge-density wave (CDW), which suppresses superconductivity. It is argued that in the copper oxide superconductors, crossover occurs at an optimal doping concentration for the formation of ordered two-electron/two-hole bosonic bags of spin S = 0 in a matrix of localized spins; the correlation bags contain two holes in a linear cluster of four copper centres ordered within alternate Cu-O-Cu rows of a CuO{sub 2} sheet. This ordering is optimal at a hole concentration per Cu atom of p {approx} 1/6, but it is not static. Hybridization of the vibronic electrons with the phonons that define long-range order of the fluctuating (Cu-O) bond lengths creates barely itinerant, vibronic quasiparticles of heavy mass. The heavy itinerant vibrons form Cooper pairs having a coherence length of the dimension of the bosonic bags. It is the hybridization of electrons and phonons that, it is suggested, stabilizes the superconductive state relative to a CDW state. (topical review)

  1. Relation between frequency and H bond length in heavy water: Towards the understanding of the unusual properties of H bond dynamics in nanoporous media

    International Nuclear Information System (INIS)

    Pommeret, Stanislas; Leicknam, Jean-Claude; Bratos, Savo; Musat, Raluca; Renault, Jean Philippe

    2009-01-01

    The published work on H bond dynamics mainly refers to diluted solutions HDO/D 2 O rather than to normal water. The reasons for this choice are both theoretical and experimental. Mechanical isolation of the OH vibrator eliminating the resonant energy transfer makes it a better probe of the local H bond network, while the dilution in heavy water reduces the infrared absorption, which permits the use of thicker experimental cells. The isotopic substitution does not alter crucially the nature of the problem. The length r of an OH . . . O group is statistically distributed over a large interval comprised between 2.7 and 3.2 A with a mean value r 0 = 2.86 A. Liquid water may thus be viewed as a mixture of hydrogen bonds of different length. Two important characteristics of hydrogen bonding must be mentioned. (i) The OH stretching vibrations are strongly affected by this interaction. The shorter the length r of the hydrogen bond, the strongest the H bond link and the lower is its frequency ω: the covalent OH bond energy is lent to the OH. . .O bond and reinforces the latter. A number of useful relationships between ω and r were published to express this correlation. The one adopted in our previous work is the relationship due to Mikenda. (ii) Not only the OH vibrations, but also the HDO rotations are influenced noticeably by hydrogen bonding. This is due to steric forces that hinder the HDO rotations. As they are stronger in short than in long hydrogen bonds, rotations are slower in the first case than in the second. This effect was only recently discovered, but its existence is hardly to be contested. In the present contribution, we want to revisit the relationship between the frequency of the OH vibrator and the distance OH. . .O.

  2. Intermolecular and very strong intramolecular C-SeO/N chalcogen bonds in nitrophenyl selenocyanate crystals.

    Science.gov (United States)

    Wang, Hui; Liu, Ju; Wang, Weizhou

    2018-02-14

    Single-crystal X-ray diffraction reveals that polymorphic ortho-nitrophenyl selenocyanate (o-NSC, crystals 1a and 1b) and monomorphic para-nitrophenyl selenocyanate (p-NSC, crystal 2) crystals are all stabilized mainly by intermolecular and very strong intramolecular C-SeO/N chalcogen bonds, as well as by other different interactions. Thermogravimetric (TG) and differential scanning calorimetry thermogram (DSC) analyses show that the starting decomposition temperatures and melting points of the three crystals are different, following the order 1b > 1a > 2, which is consistent with the structural characteristics of the crystals. In addition, atoms in molecules (AIM) and natural bond orbital (NBO) analyses indicate that the total strengths of the C-SeO and C-SeN chalcogen bonds decrease in the order 1b > 1a > 2. This study could be significant for engineering functional crystals based on robust C-SeO and C-SeN chalcogen bonds, and for designing drugs containing selenium as well as understanding their interaction in biosystems.

  3. Structure and bonding in compounds containing the NpO2+ and NpO22+ ions

    International Nuclear Information System (INIS)

    Musikas, C.; Burns, J.H.

    1975-01-01

    Studies of oxo cations of Np(V) and Np(VI) were made on single crystals using X-ray diffraction and spectroscopic methods. Quantitative measurements of the geometry of the triatomic ion and its uranyl(VI) analog made it possible to assess the effects on bond lengths of the nature of equatorial secondary bonds, the change in valence from V to VI, and the actinide contraction. Absorption spectra showed marked changes in the solid state compared to the same ion in solution, especially anisotropy with crystal orientation (dichroism). The compounds analyzed were Na 4 NpO 2 (O 2 ) 3 .9H 2 O, Na 4 UO 2 (O 2 ) 3 .9H 2 O, K 4 NpO 2 (CO 3 ) 3 , and BaNpO 2 (H 3 C 2 O 2 ).2H 2 O. All actinyl ions were found to be linear. The largest difference in M=O bond lengths is between 1.776 in the compound having the relatively weak secondary linkage to carbonate, and 1.843 A in which the peroxide forms much stronger covalent bonds. Between compounds identical except for change of U to Np the M=O bond length contracts by only about 0.01 A. However an elongation of about 0.11A is observed when neptunium(VI) is reduced to neptunium(V) without change in the equatorial ligand. (U.S.)

  4. Efficient C-O and C-N bond forming cross-coupling reactions catalyzed by core-shell structured Cu/Cu2O nanowires

    KAUST Repository

    Elshewy, Ahmed M.

    2013-12-01

    Oxygen and Nitrogen containing compounds are of utmost importance due to their interesting and diverse biological activities. The construction of the C-O and C–N bonds is of significance as it opens avenues for the introduction of ether and amine linkages in organic molecules. Despite significant advancements in this field, the construction of C-O and C–N bonds is still a major challenge for organic chemists, due to the involvement of harsh reaction conditions or the use of expensive catalysts or ligands in many cases. Thus, it is a challenge to develop alternative, milder, cheaper and more reproducible methodologies for the construction of these types of bonds. Herein, we introduce a new efficient ligand free catalytic system for C-O and C-N bond formation reactions.

  5. Determination by vibrational spectra of the strength and the bond length of atoms U and O in uranyl complexes

    International Nuclear Information System (INIS)

    Rodriguez S, A.; Martinez Q, E.

    1996-01-01

    The vibrational spectra of different uranyl compounds were studied. The wave number was related to the harmonic oscillator model and to the mathematical expression of Badger as modified by Jones, to determine the strength and the bond length of atoms U and O in UO 2 2+ . A mathematical simplification develop by us is proposed and its results compared with values obtained by other methods. (Author)

  6. Origin of the X-Hal (Hal = Cl, Br) bond-length change in the halogen-bonded complexes.

    Science.gov (United States)

    Wang, Weizhou; Hobza, Pavel

    2008-05-01

    The origin of the X-Hal bond-length change in the halogen bond of the X-Hal...Y type has been investigated at the MP2(full)/6-311++G(d,p) level of theory using a natural bond orbital analysis, atoms in molecules procedure, and electrostatic potential fitting methods. Our results have clearly shown that various theories explaining the nature of the hydrogen bond cannot be applied to explain the origin of the X-Hal bond-length change in the halogen bond. We provide a new explanation for this change. The elongation of the X-Hal bond length is caused by the electron-density transfer to the X-Hal sigma* antibonding orbital. For the blue-shifting halogen bond, the electron-density transfer to the X-Hal sigma* antibonding orbital is only of minor importance; it is the electrostatic attractive interaction that causes the X-Hal bond contraction.

  7. Analysis of surface bond lengths reported for chemisorption on metal surfaces

    Science.gov (United States)

    Mitchell, K. A. R.

    1985-01-01

    A review is given of bond length information available from the techniques of surface crystallography (particularly with LEED, SEXAFS and photoelectron diffraction) for chemisorption on well-defined surfaces of metals (M). For adsorbed main-group atoms (X), measured X-M interatomic distances for 38 combinations of X and M have been assessed with a bond order-bond length relation in combination with the Schomaker-Stevenson approach for determining single-bond lengths. When the surface bond orders are fixed primarily by the valency of X, this approach appears to provide a simple framework for predicing X-M surface bond lengths. Further, in cases where agreement has been reached from different surface crystallographic techniques, this framework has the potential for assessing refinements to the surface bonding model (e.g. in determining the roles of the effective surface valency of M, and of coordinate bonding and supplementary π bonding between X and M). Preliminary comparisons of structural data are also given for molecular adsorption (CO and ethylidyne) and for the chemisorption of other metal atoms.

  8. Ultrathin silicon oxynitride layer on GaN for dangling-bond-free GaN/insulator interface.

    Science.gov (United States)

    Nishio, Kengo; Yayama, Tomoe; Miyazaki, Takehide; Taoka, Noriyuki; Shimizu, Mitsuaki

    2018-01-23

    Despite the scientific and technological importance of removing interface dangling bonds, even an ideal model of a dangling-bond-free interface between GaN and an insulator has not been known. The formation of an atomically thin ordered buffer layer between crystalline GaN and amorphous SiO 2 would be a key to synthesize a dangling-bond-free GaN/SiO 2 interface. Here, we predict that a silicon oxynitride (Si 4 O 5 N 3 ) layer can epitaxially grow on a GaN(0001) surface without creating dangling bonds at the interface. Our ab initio calculations show that the GaN/Si 4 O 5 N 3 structure is more stable than silicon-oxide-terminated GaN(0001) surfaces. The electronic properties of the GaN/Si 4 O 5 N 3 structure can be tuned by modifying the chemical components near the interface. We also propose a possible approach to experimentally synthesize the GaN/Si 4 O 5 N 3 structure.

  9. Noble gas bond and the behaviour of XeO3 under pressure.

    Science.gov (United States)

    Hou, Chunju; Wang, Xianlong; Botana, Jorge; Miao, Maosheng

    2017-10-18

    Over the past few decades, the concept of hydrogen bonds, in which hydrogen is electrophilic, has been extended to halogen bonds, chalcogen bonds and pnicogen bonds. Herein, we show that such a non-covalent bonding also exists in noble gas compounds. Using first principles calculations, we illustrate the OXe-O bond in molecular crystal XeO 3 and its effect on the behavior of this compound under pressure. Our calculations show that the covalent Xe-O bond lengths were elongated with increasing pressure and correspondingly the Xe-O stretching vibration frequencies were red shifted, which is similar to the change of H-bonds under pressure. The OXe-O bond and related hopping of O between neighboring Xe sites also correspond to the structural changes in the XeO 3 compounds at about 2 GPa. Our study extends the concept of hydrogen bonding to include all p-block elements and show a new bonding type for Noble gas elements in which it acts as an electrophilic species.

  10. C=C bond cleavage on neutral VO3(V2O5)n clusters.

    Science.gov (United States)

    Dong, Feng; Heinbuch, Scott; Xie, Yan; Bernstein, Elliot R; Rocca, Jorge J; Wang, Zhe-Chen; Ding, Xun-Lei; He, Sheng-Gui

    2009-01-28

    The reactions of neutral vanadium oxide clusters with alkenes (ethylene, propylene, 1-butene, and 1,3-butadiene) are investigated by experiments and density function theory (DFT) calculations. Single photon ionization through extreme ultraviolet radiation (EUV, 46.9 nm, 26.5 eV) is used to detect neutral cluster distributions and reaction products. In the experiments, we observe products (V(2)O(5))(n)VO(2)CH(2), (V(2)O(5))(n)VO(2)C(2)H(4), (V(2)O(5))(n)VO(2)C(3)H(4), and (V(2)O(5))(n)VO(2)C(3)H(6), for neural V(m)O(n) clusters in reactions with C(2)H(4), C(3)H(6), C(4)H(6), and C(4)H(8), respectively. The observation of these products indicates that the C=C bonds of alkenes can be broken on neutral oxygen rich vanadium oxide clusters with the general structure VO(3)(V(2)O(5))(n=0,1,2...). DFT calculations demonstrate that the reaction VO(3) + C(3)H(6) --> VO(2)C(2)H(4) + H(2)CO is thermodynamically favorable and overall barrierless at room temperature. They also provide a mechanistic explanation for the general reaction in which the C=C double bond of alkenes is broken on VO(3)(V(2)O(5))(n=0,1,2...) clusters. A catalytic cycle for alkene oxidation on vanadium oxide is suggested based on our experimental and theoretical investigations. The reactions of V(m)O(n) with C(6)H(6) and C(2)F(4) are also investigated by experiments. The products VO(2)(V(2)O(5))(n)C(6)H(4) are observed for dehydration reactions between V(m)O(n) clusters and C(6)H(6). No product is detected for V(m)O(n) clusters reacting with C(2)F(4). The mechanisms of the reactions between VO(3) and C(2)F(4)/C(6)H(6) are also investigated by calculations at the B3LYP/TZVP level.

  11. The extended variant of the bond valence-bond length correlation curve for boron(III)-oxygen bonds

    International Nuclear Information System (INIS)

    Sidey, Vasyl

    2015-01-01

    The extended variant of the bond valence (s)-bond length (r) correlation curve for boron(III)-oxygen bonds has been closely approximated using the three-parameter function s = [k/(r - l)] - m, where s is measured in valence units (vu), r is measured in Aa, k = 0.53 Aa.vu, l = 0.975(1) Aa and m = 0.32 vu. The function s = exp[(r 0 - r)/b] traditionally used in the modern bond valence model requires the separate set of the bond valence parameters (r 0 = 1.362 Aa; b = 0.23 Aa) in order to approximate the above s-r curve for the bonds shorter than ∝1.3 Aa.

  12. Ab initio computational study of –N-C and –O-C bonding formation : functional group modification reaction based chitosan

    Science.gov (United States)

    Siahaan, P.; Salimah, S. N. M.; Sipangkar, M. J.; Hudiyanti, D.; Djunaidi, M. C.; Laksitorini, M. D.

    2018-04-01

    Chitosan application in pharmaceutics and cosmeceutics industries is limited by its solubility issue. Modification of -NH2 and -OH fuctional groups of chitosan by adding carboxyl group has been shown to improve its solubility and application. Attempt to synthesize carboxymethyl chitosan (CMC) from monocloroacetic acid (MCAA) has been done prior this report. However no information is available wether –OH (-O-C bonding formation) or -NH2 (-N-C bonding formation) is the preference for - CH2COOH to attach. In the current study, the reaction mechanism between chitosan and MCAA reactants into carboxymethyl chitosan (CMC) was examined by computational approach. Dimer from of chitosan used as a molecular model in calculation All the molecular structure involved in the reaction mechanism was optimized by ab initio computational on the theory and basis set HF/6-31G(d,p). The results showed that the - N-C bonding formation via SN2 than the -O-C bonding formation via SN2 which have activation energy 469.437 kJ/mol and 533.219 kJ/mol respectively. However, the -O-C bonding formation more spontaneous than the -N-C bonding formation because ΔG the formation of O-CMC-2 reaction is more negative than ΔG of formation N-CMC-2 reaction is -4.353 kJ/mol and -1.095 kJ/mol respectively. The synthesis of N,O-CMC first forms -O-CH2COOH, then continues to form -NH-CH2COOH. This information is valuable to further optimize the reaction codition for CMC synthesis.

  13. Tris(tetrabutylammonium) tris(nitrato-κ2 O,O ')tetrakis(thiocyanato-κN)thorium(IV)

    International Nuclear Information System (INIS)

    Janeth Lozano-Rodriguez, M.; Petit, S.; Copping, R.; Den Auwer, Ch.; Janeth Lozano-Rodriguez, M.; Mustre de Leon, J.; Thuery, P.

    2011-01-01

    The title compound, (C 16 H 36 N) 3 [Th(NCS) 4 (NO 3 ) 3 ], was obtained from the reaction of Th(NO 3 ) 4 .5H 2 O with (Bu 4 N)(NCS). The Th(IV) atom is in a ten-coordinate environment of irregular geometry, being bound to the N atoms of the four thiocyanate ions and to three bidentate nitrate ions. The average Th-N and Th-O bond lengths are 2.481 (10) and 2.57 (3) Angstroms, respectively. (authors)

  14. A method of coupling the Paternò-Büchi reaction with direct infusion ESI-MS/MS for locating the C[double bond, length as m-dash]C bond in glycerophospholipids.

    Science.gov (United States)

    Stinson, Craig A; Xia, Yu

    2016-06-21

    Tandem mass spectrometry (MS/MS) coupled with soft ionization is established as an essential platform for lipid analysis; however, determining high order structural information, such as the carbon-carbon double bond (C[double bond, length as m-dash]C) location, remains challenging. Recently, our group demonstrated a method for sensitive and confident lipid C[double bond, length as m-dash]C location determination by coupling online the Paternò-Büchi (PB) reaction with nanoelectrospray ionization (nanoESI) and MS/MS. Herein, we aimed to expand the scope of the PB reaction for lipid analysis by enabling the reaction with infusion ESI-MS/MS at much higher flow rates than demonstrated in the nanoESI setup (∼20 nL min(-1)). In the new design, the PB reaction was effected in a fused silica capillary solution transfer line, which also served as a microflow UV reactor, prior to ESI. This setup allowed PB reaction optimization and kinetics studies. Under optimized conditions, a maximum of 50% PB reaction yield could be achieved for a standard glycerophosphocholine (PC) within 6 s of UV exposure over a wide flow rate range (0.1-10 μL min(-1)). A solvent composition of 7 : 3 acetone : H2O (with 1% acid or base modifier) allowed the highest PB yields and good lipid ionization, while lower yields were obtained with an addition of a variety of organic solvents. Radical induced lipid peroxidation was identified to induce undesirable side reactions, which could be effectively suppressed by eliminating trace oxygen in the solution via N2 purge. Finally, the utility of coupling the PB reaction with infusion ESI-MS/MS was demonstrated by analyzing a yeast polar lipid extract where C[double bond, length as m-dash]C bond locations were revealed for 35 glycerophospholipids (GPs).

  15. XANES study on Ruddlesdan-Popper phase, Lan+1NinO3n+1 (n = 1, 2 and ∞)

    International Nuclear Information System (INIS)

    Park, Jung-Chul; Kim, Dong-Kuk; Byeon, Song-Hu; Kim, Don

    2001-01-01

    Ruddlesden-Popper phase, La n+1 Ni n O 3n+ 1 (n = 1, 2, and ∞) compounds were prepared by citrate sol-gel method. We revealed the origin of the variation of the electrical conductivities in La n+1 Ni n O 3n+1 (n= 1, 2, and ∞) using resistivity measurements, Rietveld analysis, and X-ray absorption spectroscopy. According to the XANES spectra, it is found that the degree of 4pπ - 4pσ energy splitting between 8345 eV and 8350 eV is qualitatively proportional to the elongation of the out-of-plane Ni-O bond length. With the decrease of 4pπ-4pσ splitting, the strong hybridization of the σ-bonding between Ni-3d and O-2p orbitals creates narrow antibonding σ bands, which finally results in the lower electrical resistivity. (au)

  16. Doping and bond length contributions to Mn K-edge shift in La1 ...

    Indian Academy of Sciences (India)

    ... corresponds to the shift in the center of gravity of the unoccupied Mn 4-band contributing to the Mn K-absorption edge region. This correspondence is then used to separate the doping and size contributions to the edge shift due to variation in the number of electrons in valence band and Mn-O bond lengths, respectively, ...

  17. Structural Characterization of N-Alkylated Twisted Amides: Consequences for Amide Bond Resonance and N-C Cleavage.

    Science.gov (United States)

    Hu, Feng; Lalancette, Roger; Szostak, Michal

    2016-04-11

    Herein, we describe the first structural characterization of N-alkylated twisted amides prepared directly by N-alkylation of the corresponding non-planar lactams. This study provides the first experimental evidence that N-alkylation results in a dramatic increase of non-planarity around the amide N-C(O) bond. Moreover, we report a rare example of a molecular wire supported by the same amide C=O-Ag bonds. Reactivity studies demonstrate rapid nucleophilic addition to the N-C(O) moiety of N-alkylated amides, indicating the lack of n(N) to π*(C=O) conjugation. Most crucially, we demonstrate that N-alkylation activates the otherwise unreactive amide bond towards σ N-C cleavage by switchable coordination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Raman spectroscopy of supported chromium oxide catalysts : determination of chromium-oxygen bond distances and bond orders

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.

    1996-01-01

    An empirical correlation is described for relating Raman stretching frequencies of chromium—oxygen (Cr—O) bonds to their bond lengths in chromium oxide reference compounds. An exponential fit of crystallographically determined Cr—O bond lengths to Cr—O Raman symmetric stretching frequencies

  19. From Stable ZnO and GaN Clusters to Novel Double Bubbles and Frameworks

    Directory of Open Access Journals (Sweden)

    Matthew R. Farrow

    2014-05-01

    Full Text Available A bottom up approach is employed in the design of novel materials: first, gas-phase “double bubble” clusters are constructed from high symmetry, Th, 24 and 96 atom, single bubbles of ZnO and GaN. These are used to construct bulk frameworks. Upon geometry optimization—minimisation of energies and forces computed using density functional theory—the symmetry of the double bubble clusters is reduced to either C1 or C2, and the average bond lengths for the outer bubbles are 1.9 Å, whereas the average bonds for the inner bubble are larger for ZnO than for GaN; 2.0 Å and 1.9 Å, respectively. A careful analysis of the bond distributions reveals that the inter-bubble bonds are bi-modal, and that there is a greater distortion for ZnO. Similar bond distributions are found for the corresponding frameworks. The distortion of the ZnO double bubble is found to be related to the increased flexibility of the outer bubble when composed of ZnO rather than GaN, which is reflected in their bulk moduli. The energetics suggest that (ZnO12@(GaN48 is more stable both in gas phase and bulk frameworks than (ZnO12@(ZnO48 and (GaN12@(GaN48. Formation enthalpies are similar to those found for carbon fullerenes.

  20. What is a hydrogen bond?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. What is a hydrogen bond? Precise definition of a hydrogen bond is still elusive!1. Several criteria are listed usually for X-H•••Y, X and Y initially thought to be F, O and N only1. Structural: The X-Y bond length is less than the sum of their van der Waals radii. X-H•••Y is ...

  1. Crystal structure of catena-poly[silver(I-μ-l-tyrosinato-κ2O:N

    Directory of Open Access Journals (Sweden)

    Aqsa Yousaf

    2015-03-01

    Full Text Available The title compound, [Ag(C9H10NO3]n, is a polymeric silver(I complex of l-tyrosine. The AgI atom is connected to N and O atoms of two different l-tyrosine ligands in an almost linear arrangement, with an Ni—Ag—O1 bond angle of 173.4 (2° [symmetry code: (i x + 1, y, z]. The Ag—Ni and Ag—O bond lengths are 2.156 (5 and 2.162 (4 Å, respectively. The polymeric chains extend along the crystallographic a axis. Strong hydrogen bonds of the N—H...O and O—H...O types and additional C—H...O interactions connect these chains into a double-layer polymeric network in the ab plane.

  2. X-ray diffraction and chemical bonding

    International Nuclear Information System (INIS)

    Bats, J.W.

    1976-01-01

    Chemical bonds are investigated in sulfamic acid (H 3 N-SO 3 ), sodium sulfonlate dihydrate (H 2 NC 6 H 4 SO 3 Na.2H 2 O), 2,5-dimercaptothiadiazole (HS-C 2 N 2 S-SH), sodium cyanide dihydrate (NaCN.2H 2 O), sodium thiocyanate (NaSCN) and ammonium thiocyanate (NH 4 SCN) by X-ray diffraction, and if necessary completed with neutron diffraction. Crystal structures and electron densities are determined together with bond length and angles. Also the effects of thermal motion are discussed

  3. Geometric structure of thin SiO xN y films on Si(100)

    Science.gov (United States)

    Behrens, K.-M.; Klinkenberg, E.-D.; Finster, J.; Meiwes-Broer, K.-H.

    1998-05-01

    Thin films of amorphous stoichometric SiO xN y are deposited on radiation-heated Si(100) by rapid thermal low-pressure chemical vapour deposition. We studied the whole range of possible compositions. In order to determine the geometric structure, we used EXAFS and photoelectron spectroscopy. Tetrahedrons constitute the short-range units with a central Si atom connected to N and O. The distribution of the possible tetrahedrons can be described by a mixture of the Random Bonding Model and the Random Mixture Model. For low oxygen contents x/( x+ y)≤0.3, the geometric structure of the film is almost the structure of a-Si 3N 4, with the oxygen preferably on top of Si-N 3 triangles. Higher oxygen contents induce changes in the bond lengths, bond angles and coordination numbers.

  4. Synthesis and characterization of a pentadentate Schiff base N3O2 ligand and its neutral technetium(V) complex. X-ray structure of (N,N'-3-azapentane-1,5-diylbis(3-(1-iminoethyl)-6-methyl-2H-pyran-2,4(3H)-dionato)(3-)-O,O',N,N',N double-prime)oxotechnetium(V)

    International Nuclear Information System (INIS)

    Shuang Liu; Rettig, S.J.; Orvig, C.

    1991-01-01

    Preparations of a potentially pentadentate ligand, N,N'-3-azapentane-1,5-diylbis(3-(1-iminoethyl)-6-methyl-2H-pyran-2,4-(3H)-dione) (H 3 apa), and its neutral technetium(V) complex, [TcO(apa)], are described. The 13 C and 1 H NMR, infrared, optical, and mass spectra of the pentadentate ligand and its technetium(V) complex are reported. The X-ray structure of [TcO(apa)] has been determined. Crystals are orthorhombic, space group Pbca, with a = 12.833 (2) angstrom, b = 33.320 (5) angstrom, c = 9.942(4) angstrom, V = 4251 (2) angstrom, and Z = 8. The structure was solved by Patterson and Fourier methods and was refined by full-matrix least-squares procedures to R = 0.028 and R W = 0.032 for 4054 reflections with I ≥ 3σ(I). The technetium(V) complex has a highly distorted octahedral coordination geometry comprising a [TcO] 3+ core and the triply deprotonated pentadentate ligand wrapping around the metal center. One of the two oxygen donor atoms of the pentadentate ligand is located trans to the Tc double-bond O bond while the remaining four donor atoms, N 3 O, occupy the equatorial sites. The distance between the deprotonated N(1) atom to the Tc center is significantly shorter than a normal Tc-N single bond length of 2.10 angstroms, but longer than that for a Tc-N triple bond. 1 H NMR spectral data reveal a rigid solution structure for the complex, which undergoes no conformational and configurational exchange at temperatures up to 50C

  5. Bonding characteristics in NiAl intermetallics with O impurity: a first-principles computational tensile test

    International Nuclear Information System (INIS)

    Hu Xuelan; Zhang Ying; Lu Guanghong; Wang Tianmin

    2009-01-01

    We have performed a first-principles computational tensile test on NiAl intermetallics with O impurity along the [001] crystalline direction on the (110) plane to investigate the tensile strength and the bonding characteristics of the NiAl-O system. We show that the ideal tensile strength is largely reduced due to the presence of O impurity in comparison with pure NiAl. The investigations of the atomic configuration and bond-length evolution show that O prefers to bond with Al, forming an O-Al cluster finally with the break of O-Ni bonds. The O-Ni bonds are demonstrated to be weaker than the O-Al bonds, and the reduced tensile strength originates from such weaker O-Ni bonds. A void-like structure forms after the break of the O-Ni and some Ni-Al bonds. Such a void-like structure can act as the initial nucleation or the propagation path of the crack, and thus produce large effects on the mechanical properties of NiAl.

  6. Hydrogen bonded C-H···Y (Y = O, S, Hal) molecular complexes: A natural bond orbital analysis

    Science.gov (United States)

    Isaev, A. N.

    2016-03-01

    Hydrogen bonded C-H···Y complexes formed by H2O, H2S molecules, hydrogen halides, and halogen-ions with methane, halogen substituted methane as well as with the C2H2 and NCH molecules were studied at the MP2/aug-cc-pVDZ level. The structure of NBOs corresponding to lone pair of acceptor Y, n Y, and vacant anti-σ-bond C-H of proton donor was analyzed and estimates of second order perturbation energy E(2) characterizing donor-acceptor n Y → σ C-H * charge-transfer interaction were obtained. Computational results for complexes of methane and its halogen substituted derivatives show that for each set of analogous structures, the EnY→σ*C-H (2) energy tends to grow with an increase in the s-component percentage in the lone pair NBO of acceptor Y. Calculations for different C···Y distances show that the equilibrium geometries of complexes lie in the region where the E(2) energy is highest and it changes symbatically with the length of the covalent E-H bond when the R(C···Y) distance is varied. The performed analysis allows us to divide the hydrogen bonded complexes into two groups, depending on the pattern of overlapping for NBOs of the hydrogen bridge.

  7. (3-Methylbenzonitrile-1κN-cis-tetrakis(μ-N-phenylacetamidato-1:2κ4N:O;1:2κ4O:N-dirhodium(II(Rh—Rh

    Directory of Open Access Journals (Sweden)

    Cassandra T. Eagle

    2014-08-01

    Full Text Available The complex molecule of the title compound, [Rh2{N(C6H5COCH3}4(NCC7H7], has crystallographically-imposed mirror symmetry. The four acetamide ligands bridging the dirhodium core are arranged in a 2,2-cis manner with two N atoms and two O atoms coordinating to the unique RhII atom cis to one another. The Neq—Rh—Rh—Oeq torsion angles on the acetamide bridge are 0.75 (7 and 1.99 (9°. The axial nitrile ligand completes the distorted octahedral coordination sphere of one RhII atom and shows a nonlinear coordination, with an Rh—N—C bond angle of 162.8 (5°; the N—C bond length is 1.154 (7 Å.

  8. MOLECULAR COMPLEXES OF SULPHUR DIOXIDE WITH N,O-CONTAINING ORGANIC BASES (REVIEW

    Directory of Open Access Journals (Sweden)

    R. E. Khoma

    2016-10-01

    Full Text Available The literature data on the synthesis, stoichiometry, structure and relative stability of molecular  complexes of sulphur dioxide with N,O-containing organic bases have been systematized and  generalized. It was shown that the yield of the reaction product of sulfur dioxide with organic  bases (such as amines are strongly influenced by the conditions of synthesis: the nature of  the solvent (basicity, polarity, the temperature and SO2:L ratio in the reaction medium. The stoichiometry of SO2*nL molecular complexes depends on ligand denticity, as well as its  ability to H-bonding. The reaction of the sulfur oxide (IV with organic bases can give S←N and S←O complexes. With the increase of the value of base proton affinity the decrease ΔrSN values has been marked. Characteristic parameter Δr SN = r SN – a1(rS+ rN (where rSNis the S←N donor-acceptor bond length has been determined by microwave spectroscopy and X-ray analysis, rSand rNwere the tabulated values of the homopolar covalent radii of sulphur and nitrogen heteroatoms. The dependence of formation enthalpy of molecular complexes of basic amines and spectral characteristics has been noted; enthalpy-entropy compensation for S←N and S←O complex-es has been stated. Despite the limited experimental data on the thermodynamics of complex formation and the lengths of donor-acceptor bonds for the same compounds it has been found bond S←N strength in SO2 molecular complexes to depend on the intrinsic value of ΔrSN. The contribution of van der Waals forces and charge transfer forces to the formation of molecular complexes of sulphur dioxide has been stated.

  9. Introducing ionic and/or hydrogen bonds into the SAM//Ga2O3 top-interface of Ag(TS)/S(CH2)nT//Ga2O3/EGaIn junctions.

    Science.gov (United States)

    Bowers, Carleen M; Liao, Kung-Ching; Yoon, Hyo Jae; Rappoport, Dmitrij; Baghbanzadeh, Mostafa; Simeone, Felice C; Whitesides, George M

    2014-06-11

    Junctions with the structure Ag(TS)/S(CH2)nT//Ga2O3/EGaIn (where S(CH2)nT is a self-assembled monolayer, SAM, of n-alkanethiolate bearing a terminal functional group T) make it possible to examine the response of rates of charge transport by tunneling to changes in the strength of the interaction between T and Ga2O3. Introducing a series of Lewis acidic/basic functional groups (T = -OH, -SH, -CO2H, -CONH2, and -PO3H) at the terminus of the SAM gave values for the tunneling current density, J(V) in A/cm(2), that were indistinguishable (i.e., differed by less than a factor of 3) from the values observed with n-alkanethiolates of equivalent length. The insensitivity of the rate of tunneling to changes in the terminal functional group implies that replacing weak van der Waals contact interactions with stronger hydrogen- or ionic bonds at the T//Ga2O3 interface does not change the shape (i.e., the height or width) of the tunneling barrier enough to affect rates of charge transport. A comparison of the injection current, J0, for T = -CO2H, and T = -CH2CH3--two groups having similar extended lengths (in Å, or in numbers of non-hydrogen atoms)--suggests that both groups make indistinguishable contributions to the height of the tunneling barrier.

  10. Collision-Induced Dissociation Study of Strong Hydrogen-Bonded Cluster Ions Y-(HF) n (Y=F, O2) Using Atmospheric Pressure Corona Discharge Ionization Mass Spectrometry Combined with a HF Generator.

    Science.gov (United States)

    Sakamoto, Kenya; Sekimoto, Kanako; Takayama, Mitsuo

    2017-01-01

    Hydrogen fluoride (HF) was produced by a homemade HF generator in order to investigate the properties of strong hydrogen-bonded clusters such as (HF) n . The HF molecules were ionized in the form of complex ions associated with the negative core ions Y - produced by atmospheric pressure corona discharge ionization (APCDI). The use of APCDI in combination with the homemade HF generator led to the formation of negative-ion HF clusters Y - (HF) n (Y=F, O 2 ), where larger clusters with n ≥4 were not detected. The mechanisms for the formation of the HF, F - (HF) n , and O 2 - (HF) n species were discussed from the standpoints of the HF generator and APCDI MS. By performing energy-resolved collision-induced dissociation (CID) experiments on the cluster ions F - (HF) n ( n =1-3), the energies for the loss of HF from F - (HF) 3 , F - (HF) 2 , and F - (HF) were evaluated to be 1 eV or lower, 1 eV or higher, and 2 eV, respectively, on the basis of their center-of-mass energy ( E CM ). These E CM values were consistent with the values of 0.995, 1.308, and 2.048 eV, respectively, obtained by ab initio calculations. The stability of [O 2 (HF) n ] - ( n =1-4) was discussed on the basis of the bond lengths of O 2 H-F - (HF) n and O 2 - H-F(HF) n obtained by ab initio calculations. The calculations indicated that [O 2 (HF) 4 ] - separated into O 2 H and F - (HF) 3 .

  11. Impact of post-deposition annealing on interfacial chemical bonding states between AlGaN and ZrO2 grown by atomic layer deposition

    International Nuclear Information System (INIS)

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Wang, Hong; Ng, Serene Lay Geok; Ji, Rong; Liu, Zhi Hong

    2015-01-01

    The effect of post-deposition annealing on chemical bonding states at interface between Al 0.5 Ga 0.5 N and ZrO 2 grown by atomic layer deposition (ALD) is studied by angle-resolved x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. It has been found that both of Al-O/Al 2p and Ga-O/Ga 3d area ratio decrease at annealing temperatures lower than 500 °C, which could be attributed to “clean up” effect of ALD-ZrO 2 on AlGaN. Compared to Ga spectra, a much larger decrease in Al-O/Al 2p ratio at a smaller take-off angle θ is observed, which indicates higher effectiveness of the passivation of Al-O bond than Ga-O bond through “clean up” effect near the interface. However, degradation of ZrO 2 /AlGaN interface quality due to re-oxidation at higher annealing temperature (>500 °C) is also found. The XPS spectra clearly reveal that Al atoms at ZrO 2 /AlGaN interface are easier to get oxidized as compared with Ga atoms

  12. Thermal Neutron Diffraction from the Liquids N2 and O2

    DEFF Research Database (Denmark)

    Pedersen, K. Schou; Hansen, Flemming Yssing; Carneiro, Kim

    1979-01-01

    Using a double axis crystal spectrometer, we have determined the structure factor S (kappa) of the liquids N2 and O2 up to a maximum wavevector kappam=11 Å−1. We derive the parameters characterizing the first nearest neighbor shell and find that the intramolecular bond length is well determined, ...

  13. Impact of SiO2 on Al–Al thermocompression wafer bonding

    International Nuclear Information System (INIS)

    Malik, Nishant; Finstad, Terje G; Schjølberg-Henriksen, Kari; Poppe, Erik U; Taklo, Maaike M V

    2015-01-01

    Al–Al thermocompression bonding suitable for wafer level sealing of MEMS devices has been investigated. This paper presents a comparison of thermocompression bonding of Al films deposited on Si with and without a thermal oxide (SiO 2 film). Laminates of diameter 150 mm containing device sealing frames of width 200 µm were realized. The wafers were bonded by applying a bond force of 36 or 60 kN at bonding temperatures ranging from 300–550 °C for bonding times of 15, 30 or 60 min. The effects of these process variations on the quality of the bonded laminates have been studied. The bond quality was estimated by measurements of dicing yield, tensile strength, amount of cohesive fracture in Si and interfacial characterization. The mean bond strength of the tested structures ranged from 18–61 MPa. The laminates with an SiO 2 film had higher dicing yield and bond strength than the laminates without SiO 2 for a 400 °C bonding temperature. The bond strength increased with increasing bonding temperature and bond force. The laminates bonded for 30 and 60 min at 400 °C and 60 kN had similar bond strength and amount of cohesive fracture in the bulk silicon, while the laminates bonded for 15 min had significantly lower bond strength and amount of cohesive fracture in the bulk silicon. (paper)

  14. Efficient C-O and C-N bond forming cross-coupling reactions catalyzed by core-shell structured Cu/Cu2O nanowires

    KAUST Repository

    Elshewy, Ahmed M.

    2013-01-01

    linkages in organic molecules. Despite significant advancements in this field, the construction of C-O and C–N bonds is still a major challenge for organic chemists, due to the involvement of harsh reaction conditions or the use of expensive catalysts

  15. (Metformin-κ2N,N′(salicylato-κ2O,O′copper(II trihydrate

    Directory of Open Access Journals (Sweden)

    Sandra Julieta Gutiérrez Ojeda

    2018-02-01

    Full Text Available The hydrous title complex [systematic name: (1,1-dimethylbiguanide-κ2N2,N4(2-oxidobenzoato-κ2O,O′copper(II trihydrate], [Cu(C7H4O3(C4H11N5]·3H2O, was synthesized electrolytically from an ethanolic solution of metformin hydrochloride, acetylsalicylic acid, Pepto-Bismol and a copper sacrificial anode. Diffraction data were collected at 0.56 Å resolution, allowing the accurate determination of H-atom positions in the neutral metformin ligand. Both imine groups in metformin have very similar N=C bond lengths, 1.2978 (17 and 1.3033 (17 Å, and the salicylate dianion behaves as a chelating ligand. The coordination sphere of the copper(II cation deviates marginally from a square-planar arrangement. In the crystal, short Cu...Cu separations of 3.5476 (3 Å are observed, along with classical hydrogen-bonding interactions.

  16. X-ray Absorption Spectroscopy and Density Functional Theory Studies of [(H3buea)FeIII-X]n1 (X= S2-, O2-,OH-): Comparison of Bonding and Hydrogen Bonding in Oxo and Sulfido Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Abhishek; Hocking, Rosalie K.; /Stanford U., Chem. Dept.; Larsen, Peter; Borovik, Andrew S.; /Kansas U.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.; /SLAC,

    2006-09-27

    Iron L-edge, iron K-edge, and sulfur K-edge X-ray absorption spectroscopy was performed on a series of compounds [Fe{sup III}H{sub 3}buea(X)]{sup n-} (X = S{sup 2-}, O{sup 2-}, OH{sup -}). The experimentally determined electronic structures were used to correlate to density functional theory calculations. Calculations supported by the data were then used to compare the metal-ligand bonding and to evaluate the effects of H-bonding in Fe{sup III}-O vs Fe{sup III-}S complexes. It was found that the Fe{sup III-}O bond, while less covalent, is stronger than the FeIII-S bond. This dominantly reflects the larger ionic contribution to the Fe{sup III-}O bond. The H-bonding energy (for three H-bonds) was estimated to be -25 kcal/mol for the oxo as compared to -12 kcal/mol for the sulfide ligand. This difference is attributed to the larger charge density on the oxo ligand resulting from the lower covalency of the Fe-O bond. These results were extended to consider an Fe{sup IV-}O complex with the same ligand environment. It was found that hydrogen bonding to Fe{sup IV-}O is less energetically favorable than that to Fe{sup III-}O, which reflects the highly covalent nature of the Fe{sup IV-}O bond.

  17. Scaling of the critical free length for progressive unfolding of self-bonded graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, Kenny; Cranford, Steven W., E-mail: s.cranford@neu.edu [Laboratory of Nanotechnology in Civil Engineering (NICE), Department of Civil and Environmental Engineering, Northeastern University, 400 Snell Engineering, 360 Huntington Avenue, Boston, Massachusetts 02115 (United States)

    2014-05-19

    Like filled pasta, rolled or folded graphene can form a large nanocapsule surrounding a hollow interior. Use as a molecular carrier, however, requires understanding of the opening of such vessels. Here, we investigate a monolayer sheet of graphene as a theoretical trial platform for such a nanocapsule. The graphene is bonded to itself via aligned disulfide (S-S) bonds. Through theoretical analysis and atomistic modeling, we probe the critical nonbonded length (free length, L{sub crit}) that induces fracture-like progressive unfolding as a function of folding radius (R{sub i}). We show a clear linear scaling relationship between the length and radius, which can be used to determine the necessary bond density to predict mechanical opening/closing. However, stochastic dissipated energy limits any exact elastic formulation, and the required energy far exceeds the dissociation energy of the S-S bond. We account for the necessary dissipated kinetic energy through a simple scaling factor (Ω), which agrees well with computational results.

  18. Crystal structure details of La- and Bi-substituted hydroxyapatites: Evidence for LaO+ and BiO+ with a very short metal–oxygen bond

    International Nuclear Information System (INIS)

    Kazin, Pavel E.; Pogosova, Mariam A.; Trusov, Lev A.; Kolesnik, Irina V.; Magdysyuk, Oxana V.; Dinnebier, Robert E.

    2016-01-01

    Crystal structures of substituted apatites with general formula Ca 10−x M x (PO 4 ) 6 (OH 1−δ ) 2−x O x , where M=La, Bi, 0≤x<2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca 2+ and M 3+ -ions localized near Ca2-site were determined. The M 3+ -ion was found shifted toward the hexagonal channel center with respect to the Ca 2+ -ion, forming very short bond with the intrachannel O 2− , while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO + ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra of the compounds. The bond lengths for BiO + and LaO + were estimated to be 2.05(1) and 2.09(1) Å correspondingly. The latter was almost 0.3 Å lower than the shortest La–O bond in La 2 O 3 . The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores. - Graphical abstract: A fragment of the La-for-Ca substituted apatite crystal structure focusing on the La–O bond. - Highlights: • Individual positions in the apatite crystal lattice for a doping atom (La, Bi) and Ca. • The doping atom shifts toward the center of the hexagonal channel. • BiO + and LaO + with estimated short bond lengths of 2.05 and 2.09 Å respectively.

  19. The Influences of Overlap Length, Bond Line Thickness and Pretreatmant on the Mechanical Properties of Adhesives : Focussing on Bonding Glass

    NARCIS (Netherlands)

    Vervloed, J.; Kwakernaak, A.; Poulis, H.

    2008-01-01

    This paper focuses on the influences of overlap length, bond line thickness and pretreatment on the mechanical properties of adhesive bonds. In order to determine the bond strength, lap shear tests were performed. The researched adhesives are a 2 component epoxy and MS polymer. The smallest overlap

  20. Competing intramolecular N-H⋯O=C hydrogen bonds and extended intermolecular network in 1-(4-chlorobenzoyl)-3-(2-methyl-4-oxopentan-2-yl) thiourea analyzed by experimental and theoretical methods

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, Aamer, E-mail: aamersaeed@yahoo.com [Department of Chemistry, Quaid-I-Azam University, Islamabad 45320 (Pakistan); Khurshid, Asma [Department of Chemistry, Quaid-I-Azam University, Islamabad 45320 (Pakistan); Jasinski, Jerry P. [Department of Chemistry, Keene State College, 229 Main Street Keene, NH 03435-2001 (United States); Pozzi, C. Gustavo; Fantoni, Adolfo C. [Instituto de Física La Plata, Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 49 y 115, La Plata, Buenos Aires (Argentina); Erben, Mauricio F., E-mail: erben@quimica.unlp.edu.ar [CEQUINOR (UNLP, CONICET-CCT La Plata), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 962, (1900) La Plata, Buenos Aires (Argentina)

    2014-03-18

    Highlights: • Two distinct N-H⋯O=C intramolecular competing hydrogen bonds are feasible in the title molecule. • Crystal structures and vibrational properties were determined. • The C=O and C=S double bonds of the acyl-thiourea group are mutually oriented in opposite directions. • A strong hyperconjugative lpO1 → σ{sup ∗}(N2-H) remote interaction was detected. • Topological analysis reveals a Cl⋯N interaction playing a relevant role in crystal packing. - Abstract: The synthesis of a novel 1-acyl-thiourea species (C{sub 14}H{sub 17}N{sub 2}O{sub 2}SCl), has been tailored in such a way that two distinct N-H⋯O=C intramolecular competing hydrogen bonds are feasible. The X-ray structure analysis as well as the vibrational (FT-IR and FT-Raman) data reveal that the S conformation is preferred, with the C=O and C=S bonds of the acyl-thiourea group pointing in opposite directions. The preference for the intramolecular N-H⋯O=C hydrogen bond within the -C(O)NHC(S)NH- core is confirmed. The Natural Bond Orbital and the Atom in Molecule approaches demonstrate that a strong hyperconjugative lpO → σ{sup ∗}(N-H) remote interaction between the acyl and the thioamide N-H groups is responsible for the stabilization of the S conformation. Intermolecular interactions have been characterized in the periodic system electron density and the topological analysis reveals the presence of an extended intermolecular network in the crystal, including a Cl⋯N interaction playing a relevant role in crystal packing.

  1. Cleavage of thymine N3-H bonds by low-energy electrons attached to base π* orbitals

    International Nuclear Information System (INIS)

    Theodore, Magali; Sobczyk, Monika; Simons, Jack

    2006-01-01

    In this work, we extend our earlier studies on single strand break (SSB) formation in DNA to consider the possibility of cleaving a thymine N 3 -H bond to generate a nitrogen-centered anion and a hydrogen radical which might proceed to induce further bond cleavages. In earlier studies, we considered SSBs induced by low-energy electrons that attach to DNA bases' π* orbitals or to phosphate P=O π* orbitals to cleave sugar-phosphate C-O bonds or base-sugar N 1 -C bonds. We also studied the effects of base π-stacking on the rates of such bond cleavages. To date, our results suggest that sugar-phosphate C-O bonds have the lowest barriers to cleavage, that attachment of electrons with energies below 2 eV most likely occurs at the base π* orbitals, that electrons with energy above 2 eV can also attach to phosphate P=O π* orbitals, and that base π stacking has a modest but slowing effect on the rates of SSB formation. However, we had not yet examined the possibility that base N 3 -H bonds could rupture subsequent to base π* orbital capture. In the present work, the latter possibility is considered and it is found that the barrier to cleavage of the N 3 -H bond in thymine is considerably higher than for cleaving sugar-phosphate C-O bonds, so our prediction that SSB formation is dominated by C-O bond cleavage remains intact

  2. Determination of Hydrogen Bond Structure in Water versus Aprotic Environments To Test the Relationship Between Length and Stability.

    Science.gov (United States)

    Sigala, Paul A; Ruben, Eliza A; Liu, Corey W; Piccoli, Paula M B; Hohenstein, Edward G; Martínez, Todd J; Schultz, Arthur J; Herschlag, Daniel

    2015-05-06

    Hydrogen bonds profoundly influence the architecture and activity of biological macromolecules. Deep appreciation of hydrogen bond contributions to biomolecular function thus requires a detailed understanding of hydrogen bond structure and energetics and the relationship between these properties. Hydrogen bond formation energies (ΔGf) are enormously more favorable in aprotic solvents than in water, and two classes of contributing factors have been proposed to explain this energetic difference, focusing respectively on the isolated and hydrogen-bonded species: (I) water stabilizes the dissociated donor and acceptor groups much better than aprotic solvents, thereby reducing the driving force for hydrogen bond formation; and (II) water lengthens hydrogen bonds compared to aprotic environments, thereby decreasing the potential energy within the hydrogen bond. Each model has been proposed to provide a dominant contribution to ΔGf, but incisive tests that distinguish the importance of these contributions are lacking. Here we directly test the structural basis of model II. Neutron crystallography, NMR spectroscopy, and quantum mechanical calculations demonstrate that O-H···O hydrogen bonds in crystals, chloroform, acetone, and water have nearly identical lengths and very similar potential energy surfaces despite ΔGf differences >8 kcal/mol across these solvents. These results rule out a substantial contribution from solvent-dependent differences in hydrogen bond structure and potential energy after association (model II) and thus support the conclusion that differences in hydrogen bond ΔGf are predominantly determined by solvent interactions with the dissociated groups (model I). These findings advance our understanding of universal hydrogen-bonding interactions and have important implications for biology and engineering.

  3. Synthesis, crystal structure and magnetic properties of (acetato-κ²O,O')bis(5,5'-dimethyl-2,2'-bipyridine-κ²N,N')nickel(II) perchlorate monohydrate.

    Science.gov (United States)

    Farkašová, Nela; Černák, Juraj; Falvello, Larry R; Orendáč, Martin; Boča, Roman

    2015-04-01

    The title hydrated ionic complex, [Ni(CH3COO)(C12H12N2)2]ClO4·H2O or [Ni(ac)(5,5'-dmbpy)2]ClO4·H2O (where 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine and ac is acetate), (1), was isolated as violet crystals from the aqueous ethanolic nickel acetate-5,5'-dmbpy-KClO4 system. Within the complex cation, the Ni(II) atom is hexacoordinated by two chelating 5,5'-dmbpy ligands and one chelating ac ligand. The mean Ni-N and Ni-O bond lengths are 2.0628 (17) and 2.1341 (15) Å, respectively. The water solvent molecule is disordered over two partially occupied positions and links two complex cations and two perchlorate anions into hydrogen-bonded centrosymmetric dimers, which are further connected by π-π interactions. The magnetic properties of (1) at low temperatures are governed by the action of single-ion anisotropy, D, which arises from the reduced local symmetry of the cis-NiO2N4 chromophore. The fitting of the variable-temperature magnetic data (2-300 K) gives g(iso) = 2.134 and D/hc = 3.13 cm(-1).

  4. Crystal structure of tetraaqua[2-(pyridin-2-yl-1H-imidazole-κ2N2,N3]iron(II sulfate

    Directory of Open Access Journals (Sweden)

    Zouaoui Setifi

    2015-04-01

    Full Text Available In the title compound, [Fe(C8H7N3(H2O4]SO4, the central FeII ion is octahedrally coordinated by two N atoms from the bidentate 2-(pyridin-2-yl-1H-imidazole ligand and by four O atoms of the aqua ligands. The largest deviation from the ideal octahedral geometry is reflected by the small N—Fe—N bite angle of 76.0 (1°. The Fe—N coordination bonds have markedly different lengths [2.1361 (17 and 2.243 (2 Å], with the shorter one to the pyrimidine N atom. The four Fe—O coordination bond lengths vary from 2.1191 (18 to 2.1340 (17 Å. In the crystal, the cations and anions are arranged by means of medium-strength O—H...O hydrogen bonds into layers parallel to the ab plane. Neighbouring layers further interconnect by N—H...O hydrogen bonds involving the imidazole fragment as donor group to one sulfate O atom as an acceptor. The resulting three-dimensional network is consolidated by C—H...O, C—H...π and π–π interactions.

  5. Bond lengths in Cd1-xZnxTe beyond linear laws revisited

    International Nuclear Information System (INIS)

    Koteski, V.; Haas, H.; Holub-Krappe, E.; Ivanovic, N.; Mahnke, H.-E.

    2004-01-01

    We have investigated the development of local bond lengths with composition in the Cd 1-x Zn x Te mixed system by measuring the fine structure in X-ray absorption (EXAFS) at all three constituent atoms. The bond strength is found to dominate over the averaging of the bulk so that the local bond length deviates only slightly from its natural value determined for the pure binary components ZnTe and CdTe, respectively. The deviations are significantly less than predicted by a simple radial force constant model for tetrahedrally co-ordinated binary systems, and the bond-length variation with concentration is significantly non-linear. For the second shell, bimodal anion-anion distances are found while the cation-cation distances can already be described by the virtual crystal approximation. In the diluted regime close to the end-point compounds, we have complemented our experimental work by ab initio calculations based on density functional theory with the WIEN97 program using the linearised augmented plane wave method. Equilibrium atomic lattice positions have been calculated for the substitutional isovalent metal atom in a 32-atom super cell, Zn in the CdTe lattice or Cd in the ZnTe lattice, respectively, yielding good agreement with the atomic distances as determined in our EXAFS experiments

  6. Theoretical investigation on hydrogen bond interaction of diketo/keto-enol form uracil and thymine tautomers with intercalators.

    Science.gov (United States)

    Anithaa, V S; Vijayakumar, S; Sudha, M; Shankar, R

    2017-11-06

    The interaction of diketo and keto-enol form of thymine and uracil tautomers with acridine (Acr), phenazine (Phen), benzo[c]cinnoline (Ben), 1,10-phenanthroline (1,10-Phe), and 4,7-phenenthroline (4,7-Phe) intercalating drug molecules was studied using density functional theory at B3LYP/6-311++G** and M05-2×/6-311++G** levels of theory. From the interaction energy, it is found that keto-enol form tautomers have stronger interaction with intercalators than diketone form tautomers. On complex formation of thymine and uracil tautomers with benzo[c]cinnoline the drug molecules have high interaction energy values of -20.14 (BenT3) and -20.55 (BenU3) kcal mol -1 , while phenazine has the least interaction energy values of -6.52 (PhenT2) and -6.67 (PhenU2) kcal mol -1 . The closed shell intermolecular type interaction between the molecules with minimum elliptical value of 0.018 and 0.019 a.u at both levels of theory has been found from topological analysis. The benzo[c]cinnoline drug molecule with thymine and uracil tautomers has short range intermolecular N-H…N, C-H…O, and O-H...N hydrogen bonds (H-bonds) resulting in higher stability than other drug molecules. The proper hydrogen bonds N-H..N and O-H..N have the frequency shifted toward the lower side (red shifted) with the elongation in their bond length while the improper hydrogen bond C-H...O has the frequency shifted toward the higher side (blue shifted) of the spectral region with the contraction in their bond length. Further, the charge transfer between proton acceptor and donor along with stability of the bond is studied using natural bond orbital (NBO) analysis. Graphical abstract Hydrogen bond interaction of diketo/keto-enol form uracil and thymine tautomers with intercalators.

  7. catena-Poly[[aquabis[N-(pyridin-3-ylisonicotinamide-κN1]copper(II]-μ-fumarato-κ2O1:O4

    Directory of Open Access Journals (Sweden)

    Sultan H. Qiblawi

    2012-12-01

    Full Text Available In the title compound, [Cu(C4H2O4(C11H9N3O2(H2O]n, CuII ions on crystallographic twofold rotation axes are coordinated in a square pyramidal environment by two trans O atoms belonging to two monodentate fumarate anions, two trans isonicotinamide pyridyl N-donor atoms from monodentate, pendant 3-pyridylisonicotinamide (3-pina ligands, and one apical aqua ligand, also sited on the crystallographic twofold rotation axis. The exobidentate fumarate ligands form [Cu(fumarate(3-pina2(H2O]n coordination polymer chains that are arranged parallel to [001]. In the crystal, these polymeric chains are anchored into supramolecular layers parallel to (100 by O—H...O hydrogen bonds between aqua ligands and unligating fumarate O atoms, and N—H...O(=C hydrogen bonds between 3-pina ligands. In turn, the layers aggregate by weak C—H...N and C—H...O hydrogen bonds, affording a three-dimensional network.

  8. N,N,N′,N′-Tetramethyl-N′′-[2-(trimethylazaniumylethyl]guanidinium bis(tetraphenylborate acetone disolvate

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2016-02-01

    Full Text Available The asymmetric unit of the title solvated salt, C10H26N42+·2C24H20B−·2C3H6O, comprises one cation, two tetraphenylborate ions and two acetone solvent molecules. The N and methyl C atoms of the terminal trimethylammonium group are disordered over two sets of sites, with a refined occupancy ratio of 0.846 (3:0.154 (3. The C—N bond lengths in the central C3N unit of the guanidinium ion range between 1.3308 (16 and 1.3508 (16 Å, indicating a degree of double-bond character. The central C atom is bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charge is delocalized in the CN3 plane. The C—N bond lengths in the terminal trimethylammonium group have values close to that of a typical single bond, and the second positive charge is localized there. In the crystal, the guanidinium ion is connected by N—H...O and C—H...O hydrogen bonds with the acetone molecules. C—H...π interactions are present between the guanidinium H atoms and the phenyl rings of the tetraphenylborate ions, leading to the formation of a two-dimensional supramolecular pattern along the bc plane.

  9. Relaxation of the chemical bond skin chemisorption size matter ZTP mechanics H2O myths

    CERN Document Server

    Sun, Chang Q

    2014-01-01

    The aim of this book is to explore the detectable properties of a material to the parameters of bond and non-bond involved and to clarify the interdependence of various properties. This book is composed of four parts; Part I deals with the formation and relaxation dynamics of bond and non-bond during chemisorptions with uncovering of the correlation among the chemical bond, energy band, and surface potential barrier (3B) during reactions; Part II is focused on the relaxation of bonds between atoms with fewer neighbors than the ideal in bulk with unraveling of the bond order-length-strength (BOLS) correlation mechanism, which clarifies the nature difference between nanostructures and bulk of the same substance; Part III deals with the relaxation dynamics of bond under heating and compressing with revealing of rules on the temperature-resolved elastic and plastic properties of low-dimensional materials; Part IV is focused on the asymmetric relaxation dynamics of the hydrogen bond (O:H-O) and the anomalous behav...

  10. Potassium bis(carbonato-O,O')(ethylenediamine-N,N')cobaltate(III) monohydrate at 173 K.

    Science.gov (United States)

    Belai, N; Dickman, M H; Pope, M T

    2001-07-01

    The title salt, K[Co(C2H8N2)(CO3)2].H2O, consists of a distorted octahedral cobalt complex anion and a seven-coordinate potassium cation. Both metal atoms have crystallographic twofold symmetry, one C2 axis passing through the Co atom and C--C bond, and another along a short K--O (water) bond of 2.600 A (corrected for libration). The carbonate is bidentate to both cobalt and potassium and the water forms a hydrogen bond to a carbonate O atom.

  11. Ab initio studies of O-2(-) (H2O)(n) and O-3(-) (H2O)(n) anionic molecular clusters, n

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Kurten, T.; Enghoff, Martin Andreas Bødker

    2011-01-01

    that anionic O-2(-)(H2O)n and O-3(-)(H2O)n clusters are thermally stabilized at typical atmospheric conditions for at least n = 5. The first 4 water molecules are strongly bound to the anion due to delocalization of the excess charge while stabilization of more than 4 H2O is due to normal hydrogen bonding....... Although clustering up to 12 H2O, we find that the O-2 and O-3 anions retain at least ca. 80 % of the charge and are located at the surface of the cluster. The O-2(-) and O-3(-) speicies are thus accessible for further reactions. We consider the distributions of cluster sizes as function of altitude before...

  12. Trends in Strong Chemical Bonding in C2, CN, CN-, CO, N2, NO, NO+, and O2

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    The strong chemical bonds between C, N, and O play a central role in chemistry, and their formation and cleavage are critical steps in very many catalytic processes. The close-lying molecular orbital energies and large correlation effects pose a challenge to electronic structure calculations and ...

  13. Supra-molecular hydrogen-bonding patterns in the N(9)-H protonated and N(7)-H tautomeric form of an N(6) -benzoyl-adenine salt: N (6)-benzoyl-adeninium nitrate.

    Science.gov (United States)

    Karthikeyan, Ammasai; Jeeva Jasmine, Nithianantham; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-02-01

    In the title molecular salt, C12H10N5O(+)·NO3 (-), the adenine unit has an N (9)-protonated N(7)-H tautomeric form with non-protonated N(1) and N(3) atoms. The dihedral angle between the adenine ring system and the phenyl ring is 51.10 (10)°. The typical intra-molecular N(7)-H⋯O hydrogen bond with an S(7) graph-set motif is also present. The benzoyl-adeninium cations also form base pairs through N-H⋯O and C-H⋯N hydrogen bonds involving the Watson-Crick face of the adenine ring and the C and O atoms of the benzoyl ring of an adjacent cation, forming a supra-molecular ribbon with R 2 (2)(9) rings. Benzoyl-adeninum cations are also bridged by one of the oxygen atoms of the nitrate anion, which acts as a double acceptor, forming a pair of N-H⋯O hydrogen bonds to generate a second ribbon motif. These ribbons together with π-π stacking inter-actions between the phenyl ring and the five- and six-membered adenine rings of adjacent mol-ecules generate a three-dimensional supra-molecular architecture.

  14. Crystal structure details of La- and Bi-substituted hydroxyapatites: Evidence for LaO{sup +} and BiO{sup +} with a very short metal–oxygen bond

    Energy Technology Data Exchange (ETDEWEB)

    Kazin, Pavel E., E-mail: kazin@inorg.chem.msu.ru [Department of Chemistry, Moscow State University, 119991 Moscow (Russian Federation); Pogosova, Mariam A.; Trusov, Lev A.; Kolesnik, Irina V. [Department of Chemistry, Moscow State University, 119991 Moscow (Russian Federation); Magdysyuk, Oxana V.; Dinnebier, Robert E. [Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart (Germany)

    2016-05-15

    Crystal structures of substituted apatites with general formula Ca{sub 10−x}M{sub x}(PO{sub 4}){sub 6}(OH{sub 1−δ}){sub 2−x}O{sub x}, where M=La, Bi, 0≤x<2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca{sup 2+} and M{sup 3+}-ions localized near Ca2-site were determined. The M{sup 3+}-ion was found shifted toward the hexagonal channel center with respect to the Ca{sup 2+}-ion, forming very short bond with the intrachannel O{sup 2−}, while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO{sup +} ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra of the compounds. The bond lengths for BiO{sup +} and LaO{sup +} were estimated to be 2.05(1) and 2.09(1) Å correspondingly. The latter was almost 0.3 Å lower than the shortest La–O bond in La{sub 2}O{sub 3}. The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores. - Graphical abstract: A fragment of the La-for-Ca substituted apatite crystal structure focusing on the La–O bond. - Highlights: • Individual positions in the apatite crystal lattice for a doping atom (La, Bi) and Ca. • The doping atom shifts toward the center of the hexagonal channel. • BiO{sup +} and LaO{sup +} with estimated short bond lengths of 2.05 and 2.09 Å respectively.

  15. Topology of charge density of flucytosine and related molecules and characteristics of their bond charge distributions.

    Science.gov (United States)

    Murgich, Juan; Franco, Héctor J; San-Blas, Gioconda

    2006-08-24

    The molecular charge distribution of flucytosine (4-amino-5-fluoro-2-pyrimidone), uracil, 5-fluorouracil, and thymine was studied by means of density functional theory calculations (DFT). The resulting distributions were analyzed by means of the atoms in molecules (AIM) theory. Bonds were characterized through vectors formed with the charge density value, its Laplacian, and the bond ellipticity calculated at the bond critical point (BCP). Within each set of C=O, C-H, and N-H bonds, these vectors showed little dispersion. C-C bonds formed three different subsets, one with a significant degree of double bonding, a second corresponding to single bonds with a finite ellipticity produced by hyperconjugation, and a third one formed by a pure single bond. In N-C bonds, a decrease in bond length (an increase in double bond character) was not reflected as an increase in their ellipticity, as in all C-C bonds studied. It was also found that substitution influenced the N-C, C-O, and C-C bond ellipticity much more than density and its Laplacian at the BCP. The Laplacian of charge density pointed to the existence of both bonding and nonbonding maxima in the valence shell charge concentration of N, O, and F, while only bonding ones were found for the C atoms. The nonbonding maxima related to the sites for electrophilic attack and H bonding in O and N, while sites of nucleophilic attack were suggested by the holes in the valence shell of the C atoms of the carbonyl groups.

  16. Unusually short chalcogen bonds involving organoselenium: insights into the Se-N bond cleavage mechanism of the antioxidant ebselen and analogues.

    Science.gov (United States)

    Thomas, Sajesh P; Satheeshkumar, K; Mugesh, Govindasamy; Guru Row, T N

    2015-04-27

    Structural studies on the polymorphs of the organoselenium antioxidant ebselen and its derivative show the potential of organic selenium to form unusually short Se⋅⋅⋅O chalcogen bonds that lead to conserved supramolecular recognition units. Se⋅⋅⋅O interactions observed in these polymorphs are the shortest such chalcogen bonds known for organoselenium compounds. The FTIR spectral evolution characteristics of this interaction from solution state to solid crystalline state further validates the robustness of this class of supramolecular recognition units. The strength and electronic nature of the Se⋅⋅⋅O chalcogen bonds were explored using high-resolution X-ray charge density analysis and atons-in-molecules (AIM) theoretical analysis. A charge density study unravels the strong electrostatic nature of Se⋅⋅⋅O chalcogen bonding and soft-metal-like behavior of organoselenium. An analysis of the charge density around Se-N and Se-C covalent bonds in conjunction with the Se⋅⋅⋅O chalcogen bonding modes in ebselen and its analogues provides insights into the mechanism of drug action in this class of organoselenium antioxidants. The potential role of the intermolecular Se⋅⋅⋅O chalcogen bonding in forming the intermediate supramolecular assembly that leads to the bond cleavage mechanism has been proposed in terms of electron density topological parameters in a series of molecular complexes of ebselen with reactive oxygen species (ROS). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Crystal structure of bis{2-[(E-(4-fluorobenzyliminomethyl]phenolato-κ2N,O}nickel(II

    Directory of Open Access Journals (Sweden)

    Amalina Mohd Tajuddin

    2014-10-01

    Full Text Available The asymmetric unit of the title complex, [Ni(C14H11FNO2], contains one-half of the molecule with the NiII cation lying on an inversion centre coordinated by a bidentate Schiff base anion. The cationic NiII center is in a distorted square-planar coordination environment chelated by the imine N and phenolate O donor atoms of the two Schiff base ligands. The N and O donor atoms of the two ligands are mutually trans with Ni—N and Ni—O bond lengths of 1.9242 (10 and 1.8336 (9 Å, respectively. The fluorophenyl ring is almost orthogonal to the coordination plane and makes a dihedral angle of 82.98 (7° with the phenolate ring. In the crystal, molecules are linked into screw chains by weak C—H...F hydrogen bonds. Additional C—H...π contacts arrange the molecules into sheets parallel to the ac plane.

  18. Ab Initio Calculations on Halogen Bond Between N-Br and Electron-donating Groups

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-hua; CHEN Xue-song; ZOU Jian-wei; YU Qing-sen

    2007-01-01

    Ab initio calculations of complexes formed between N-bromosuccinimide and a series of electron-donating groups were performed at the level of MP2/Lanl2DZ* to gain a deeper insight into the nature of the N-Br halogen stronger halogen-bonding complex than the C-Br. A comparison of neutral hydrogen bond complex series reveals that the electron-donating capacities of the atoms decrease in the order, N>O>S; O(sp3)>O(sp2), which is adequate for the C-Br halogen bonding. Interaction energies, in conjunction with the geometrical parameters show that the affinitive capacity of trihalide anions X-3 with N-bromosuccinimide are markedly lower than that of the corresponding X- with N-bromosuccinimide, even lower than those of neutral molecules with N-bromosuccinimide. AIM analyses further confirmed the above results.

  19. Quantum mechanics models of the methanol dimer: OH⋯O hydrogen bonds of β-d-glucose moieties from crystallographic data.

    Science.gov (United States)

    Cintrón, Michael Santiago; Johnson, Glenn P; French, Alfred D

    2017-04-18

    The interaction of two methanol molecules, simplified models of carbohydrates and cellulose, was examined using a variety of quantum mechanics (QM) levels of theory. Energy plots for hydrogen bonding distance (H⋯O) and angle (OH⋯O) were constructed. All but two experimental structures were located in stabilized areas on the vacuum phase energy plots. Each of the 399 models was analyzed with Bader's atoms-in-molecules (AIM) theory, which showed a widespread ability by the dimer models to form OH⋯O hydrogen bonds that have bond paths and Bond Critical Points. Continuum solvation calculations suggest that a portion of the energy-stabilized structures could occur in the presence of water. A survey of the Cambridge Structural Database (CSD) for all donor-acceptor interactions in β-D-glucose moieties examined the similarities and differences among the hydroxyl groups and acetal oxygen atoms that participate in hydrogen bonds. Comparable behavior was observed for the O2H, O3H, O4H, and O6H hydroxyls, acting either as acceptors or donors. Ring O atoms showed distinct hydrogen bonding behavior that favored mid-length hydrogen bonds. Published by Elsevier Ltd.

  20. The Golden ratio, ionic and atomic radii and bond lengths

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Rajalakshmi

    2005-01-01

    Roč. 103, 6-8 (2005), s. 877-882 ISSN 0026-8976 R&D Projects: GA MPO(CZ) 1H-PK/42 Institutional research plan: CEZ:AV0Z40400503 Keywords : Bohr radius * bond lengths * axial ratios Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.351, year: 2005

  1. Determination of wafer bonding mechanisms for plasma activated SiN films with x-ray reflectivity

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, S [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Sandhu, R [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Wojtowicz, M [Northrop Grumman Space Technology, Redondo Beach, CA 90278 (United States); Sun, Y [Department of Chemical Engineering, University of California, Los Angeles, CA 90095 (United States); Hicks, R [Department of Chemical Engineering, University of California, Los Angeles, CA 90095 (United States); Goorsky, M S [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States)

    2005-05-21

    Specular and diffuse x-ray reflectivity measurements were employed for wafer bonding studies of surface and interfacial reactions in {approx}800 A thick SiN films deposited on III-V substrates. CuK{sub {alpha}}{sub 1} radiation was employed for these measurements. The as-deposited films show very low surface roughness and uniform, high density SiN. Reflectivity measurements show that an oxygen plasma treatment converts the nitride surface to a somewhat porous SiO{sub x} layer (67 A thick, at 80% of SiO{sub 2} density), with confirmation of the oxide formation from x-ray photoelectron spectroscopy. Reactions at the bonded interface of two oxygen plasma treated SiN layers were examined using a bonded structure from which one of the III-V wafers is removed. Reflectivity measurements of bonded structures annealed at 150 deg. C and 300 deg. C show an increase in the SiO{sub x} layer density and thickness and even a density gradient across this interface. The increase in density is correlated with an increase in bond strength, where after the 300 deg. C anneal, a high interfacial bond strength, exceeding the bulk strength, was achieved.

  2. cis-Dichlorido(dimethyl sulfoxide-κS(N,N,N′,N′-tetramethylguanidine-κN′′platinum(II

    Directory of Open Access Journals (Sweden)

    Ivan I. Eliseev

    2013-02-01

    Full Text Available In the title compound, cis-[PtCl2(C5H13N3(C2H6OS], the four-coordinate PtII atom is bonded to one N atom of the N,N,N′,N′-tetramethylguanidine ligand, one dimethyl sulfoxide S atom and two chloride ligands, forming a cis-square-planar geometry. The bond lengths and angles of the N—Pt—Cl functionality are typical for imine dichloridoplatinum(II complexes. The H atom of the imino group is oriented towards the O atom of the sulfoxide group of a neighboring molecule and forms an N—H...O hydrogen bond.

  3. Synthesis, spectral characterization and structural studies of a novel O, N, O donor semicarbazone and its binuclear copper complex with hydrogen bond stabilized lattice

    Science.gov (United States)

    Layana, S. R.; Saritha, S. R.; Anitha, L.; Sithambaresan, M.; Sudarsanakumar, M. R.; Suma, S.

    2018-04-01

    A novel O,N,O donor salicylaldehyde-N4-phenylsemicarbazone, (H2L) has been synthesized and physicochemically characterized. Detailed structural studies of H2L using single crystal X-ray diffraction technique reveals the existence of intra and inter molecular hydrogen bonding interactions, which provide extra stability to the molecule. We have successfully synthesized a binuclear copper(II) complex, [Cu2(HL)2(NO3)(H2O)2]NO3 with phenoxy bridging between the two copper centers. The complex was characterized by elemental analysis, magnetic susceptibility and conductivity measurements, FT-IR, UV-Visible, mass and EPR spectral methods. The grown crystals of the copper complex were employed for the single crystal X-ray diffraction studies. The complex possesses geometrically different metal centers, in which the ligand coordinates through ketoamide oxygen, azomethine nitrogen and deprotonated phenoxy oxygen. The extensive intermolecular hydrogen bonding interactions of the coordinated and the lattice nitrate groups interconnect the complex units to form a 2D supramolecular assembly. The ESI mass spectrum substantiates the existence of 1:1 complex. The g values obtained from the EPR spectrum in frozen DMF suggest dx2 -y2 ground state for the unpaired electron.

  4. N,N,N′-Trimethyl-N′′-(4-nitrophenyl-N′-phenylguanidine

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2014-05-01

    Full Text Available The C—N bond lengths in the guanidine unit of the title compound, C16H18N4O2, are 1.298 (2, 1.353 (2 and 1.401 (3 Å, indicating double- and single-bond character. The N—C—N angles are 115.81 (16, 118.90 (18 and 125.16 (18°, showing a deviation of the CN3 plane from an ideal trigonal–planar geometry. In the crystal, C—H...O hydrogen bonds are observed between the methyl- and aromatic-H atoms and nitro-O atoms. One H atom of the phenyl ring and of the NMe2 group associate with the O atoms of the nitro group, giving chains along the a- and b-axis directions. Cross-linking of these two chains results in a two-dimensional network along bc.

  5. [2-(Dimethylaminoethanol-κ2N,O][2-(dimethylaminoethanolato-κ2N,O]iodidocopper(II

    Directory of Open Access Journals (Sweden)

    Elena A. Buvaylo

    2012-04-01

    Full Text Available The title compound, [Cu(C4H10NOI(C4H11NO], was obtained unintentionally as the product of an attempted synthesis of a Cu/Zn mixed-metal complex using zerovalent copper, zinc(II oxide and ammonium iodide in pure 2-(dimethylaminoethanol, in air. The molecular complex has no crystallographically imposed symmetry. The coordination geometry around the metal atom is distorted square-pyramidal. The equatorial coordination around copper involves donor atoms of the bidentate chelating 2-(dimethylaminoethanol ligand and the 2-(dimethylaminoethanolate group, which are mutually trans to each other, with four approximately equal short Cu—O/N bond distances. The axial Cu—I bond is substantially elongated. Intermolecular hydrogen-bonding interactions involving the –OH group of the neutral 2-(dimethylaminoethanol ligand to the O atom of the monodeprotonated 2-(dimethylaminoethanolate group of the molecule related by the n-glide plane, as indicated by the O...O distance of 2.482 (12 Å, form chains of molecules propagating along [101].

  6. (3-Methylbenzonitrile-κNtetrakis(μ-N-phenylacetamidato-κ4N:O;κ4O:N-dirhodium(II(Rh—Rh

    Directory of Open Access Journals (Sweden)

    Jennie Tan

    2013-12-01

    Full Text Available In the title compound, [Rh2(C8H8NO4(C8H7N], the four acetamidate ligands bridging the dirhodium core are arranged in a 2,2-trans manner. One RhII atom is five-coordinate, in a distorted pyramidal geometry, while the other is six-coordinate, with a disorted octahedral geometry. For the six-coordinate RhII atom, the axial nitrile ligand shows a non-linear Rh–nitrile coordination with an Rh—N—C bond angle of 166.4 (4° and a nitrile N—C bond length of 1.138 (6 Å. Each unique RhII atom is coordinated by a trans pair of N atoms and a trans pair of O atoms from the four acetamide ligands. The Neq—Rh—Rh—Oeq torsion angles on the acetamide bridge varies between 12.55 (11 and 14.04 (8°. In the crystal, the 3-methylbenzonitrile ring shows a π–π interaction with an inversion-related equivalent [interplanar spacing = 3.360 (6 Å]. A phenyl ring on one of the acetamide ligands also has a face-to-face π–π interaction with an inversion-related equivalent [interplanar spacing = 3.416 (5 Å].

  7. Effect of surface pretreatment on interfacial chemical bonding states of atomic layer deposited ZrO2 on AlGaN

    International Nuclear Information System (INIS)

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Wang, Hong; Ng, Serene Lay Geok; Ji, Rong; Liu, Zhi Hong

    2015-01-01

    Atomic layer deposition (ALD) of ZrO 2 on native oxide covered (untreated) and buffered oxide etchant (BOE) treated AlGaN surface was analyzed by utilizing x-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy. Evidenced by Ga–O and Al–O chemical bonds by XPS, parasitic oxidation during deposition is largely enhanced on BOE treated AlGaN surface. Due to the high reactivity of Al atoms, more prominent oxidation of Al atoms is observed, which leads to thicker interfacial layer formed on BOE treated surface. The results suggest that native oxide on AlGaN surface may serve as a protecting layer to inhibit the surface from further parasitic oxidation during ALD. The findings provide important process guidelines for the use of ALD ZrO 2 and its pre-ALD surface treatments for high-k AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors and other related device applications

  8. The Co-III-C bond in (1-thia-4,7-diazacyclodecyl-kappa N-3(4),N-7,C-10)(1,4,7-triazacyclononane-kappa N-3(1),N-4,N-7)-cobalt(III) dithionate hydrate

    DEFF Research Database (Denmark)

    Harris, Pernille; Kofod, P.; Song, Y.S.

    2003-01-01

    In the title compound, [Co(C6H15N3)(C7H15N2S)]S2O6.H2O, the Co-C bond distance is 1.9930 (13) Angstrom, which is shorter than for related compounds with the linear 1,6-diamino-3-thiahexan-4-ide anion in place of the macrocyclic 1-thia-4,7-diazacyclodecan-8-ide anion. The coordinated carbanion pro...... produces an elongation of 0.102 (7) Angstrom of the Co-N bond to the 1,4,7-triazacyclononane N atom in the trans position. This relatively small trans influence is presumably a result of the triamine ligand forming strong bonds to the Co-III atom....

  9. Bonding Characteristics and Chemical Inertness of Zr–Si–N Coatings with a High Si Content in Glass Molding

    Directory of Open Access Journals (Sweden)

    Li-Chun Chang

    2018-05-01

    Full Text Available High-Si-content transition metal nitride coatings, which exhibited an X-ray amorphous phase, were proposed as protective coatings on glass molding dies. In a previous study, the Zr–Si–N coatings with Si contents of 24–30 at.% exhibited the hardness of Si3N4, which was higher than those of the middle-Si-content (19 at.% coatings. In this study, the bonding characteristics of the constituent elements of Zr–Si–N coatings were evaluated through X-ray photoelectron spectroscopy. Results indicated that the Zr 3d5/2 levels were 179.14–180.22 and 180.75–181.61 eV for the Zr–N bonds in ZrN and Zr3N4 compounds, respectively. Moreover, the percentage of Zr–N bond in the Zr3N4 compound increased with increasing Si content in the Zr–Si–N coatings. The Zr–N bond of Zr3N4 dominated when the Si content was >24 at.%. Therefore, high Si content can stabilize the Zr–N compound in the M3N4 bonding structure. Furthermore, the thermal stability and chemical inertness of Zr–Si–N coatings were evaluated by conducting thermal cycle annealing at 270 °C and 600 °C in a 15-ppm O2–N2 atmosphere. The results indicated that a Zr22Si29N49/Ti/WC assembly was suitable as a protective coating against SiO2–B2O3–BaO-based glass for 450 thermal cycles.

  10. Crystal structure of 4-(dimethylaminopyridinium cis-diaquabis(oxalato-κ2O,O′ferrate(III hemihydrate

    Directory of Open Access Journals (Sweden)

    Edith Dimitri Djomo

    2015-08-01

    Full Text Available The FeIII ions in the hybrid title salt, (C7H11N2[Fe(C2O42(H2O2]·0.5H2O, show a distorted octahedral coordination environment, with four O atoms from two chelating oxalate dianions and two O atoms from two cis aqua ligands. The average Fe—O(oxalate bond length [2.00 (2 Å] is shorter than the average Fe—O(water bond length [2.027 (19 Å]. The ionic components are connected via intermolecular N—H...O and O—H...O hydrogen bonds into a three-dimensional network.

  11. Crystal structure of bis-(3-bromo-pyridine-κN)bis-(O-ethyl di-thio-carbonato-κ(2) S,S')nickel(II).

    Science.gov (United States)

    Kant, Rajni; Kour, Gurvinder; Anthal, Sumati; Neerupama; Sachar, Renu

    2015-01-01

    In the title mol-ecular complex, [Ni(C3H5OS2)2(C5H4BrN)2], the Ni(2+) cation is located on a centre of inversion and has a distorted octa-hedral N2S4 environment defined by two chelating xanthate ligands and two monodentate pyridine ligands. The C-S bond lengths of the thio-carboxyl-ate group are indicative of a delocalized bond and the O-Csp (2) bond is considerably shorter than the O-Csp (3) bond, consistent with a significant contribution of one resonance form of the xanthate anion that features a formal C=O+ unit and a negative charge on each of the S atoms. The packing of the mol-ecules is stabilized by C-H⋯S and C-H⋯π inter-actions. In addition, π-π inter-actions between the pyridine rings [centroid-to-centroid distance = 3.797 (3) Å] are also present. In the crystal structure, mol-ecules are arranged in rows along [100], forming layers parallel to (010) and (001).

  12. Theoretical study of the interaction of N2 with water molecules. (H2O)/sub n/:N2, n = 1--8

    International Nuclear Information System (INIS)

    Curtiss, L.A.; Eisgruber, C.L.

    1984-01-01

    Ab initio molecular orbital calculations including correlation energy have been carried out on the interaction of a single H 2 O molecule with N 2 . The potential energy surface for H 2 O:N 2 is found to have a minimum corresponding to a HOH xxx N 2 structure with a weak ( -1 ) hydrogen bond. A second, less stable, configuration corresponding to a H 2 O xxx N 2 structure with N 2 bonded side on to the oxygen of H 2 O was found to be either a minimum or a saddle point in the potential energy surface depending on the level of calculation. The minimal STO-3G basis set was used to investigate the interaction of up to eight H 2 O molecules with N 2 . Two types of clusters, one containing only HOH xxx N 2 interactions and the other containing both HOH xxxN 2 and H 2 O xxx N 2 interactions, were investigated for [N 2 :(H 2 O)/sub n/, n = 2--8

  13. Effect of Different Bar Embedment Length on Bond-Slip in Plain and Fiber Reinforced Concrete

    NARCIS (Netherlands)

    Jankovic, D.; Chopra, M.B.; Kunnath, S.K.

    2001-01-01

    This research aims to study the behaviour of the concrete-steel bond using numerical models, taking into account the effect of the different bar embedment length. Both plain and fiber reinforced concrete (FRC) are modeled. The interface bond stress as well as load-displacement response of the

  14. N,N,N′,N′,N′′-Pentamethyl-N′′-[2-(trimethylazaniumylethyl]guanidinium bis(tetraphenylborate acetone monosolvate

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2016-02-01

    Full Text Available The asymmetric unit of the title solvated salt, C11H28N42+·2C24H20B−·C3H6O, comprises two cations, four tetraphenylborate anions and two acetone molecules. One cation shows an orientational disorder at the CN3 moiety and two sets of N-atom positions were found related by a 60° rotation, with a refined occupancy ratio of 0.935 (1:0.065 (1. The respective nitrogen-bonded –CH2 and –CH3 groups are included in the disorder model. The C—N bond lengths in the central CN3 units of both guanidinium ions range between 1.3329 (17 and 1.364 (16 Å, indicating a degree of double-bond character. The central C atom is bonded to the three N atoms in a nearly ideal trigonal–planar geometry and one positive charge is delocalized in the CN3 plane. The C—N bond lengths in the terminal trimethylammonium groups have values close to a typical single bond, and the second positive charge is localized there. In the crystal, the guanidinium ions are connected by C—H...O hydrogen bonds with the acetone molecules. C—H...π interactions are present between the guanidinium and acetone hydrogen atoms and the phenyl rings of the tetraphenylborate ions, leading to the formation of a two-dimensional supramolecular pattern along the bc plane.

  15. O efeito do banho de imersão na duração do trabalho de parto El efecto del baño de inmersión en la duración del trabajo de parto The effect of immersion baths on the length of childbirth labor

    Directory of Open Access Journals (Sweden)

    Flora Maria Barbosa da Silva

    2006-03-01

    perjuicios al recién-nacido.The objectives of this experi-mental, randomized, controlled trial study were to evaluate the effect of immersion baths on the length of the first stage of child-birth labor and on the frequency and length of the uterine contractions. Data were collected in a philanthropic public maternity hospital of the city of São Paulo whose month average is 1,100 births. The sample was comprised of 108 women in labor - 54 in the control group and 54 in the experimental group that had immersion baths. The results showed that immersion baths did not have any influence on the length of labor and on the frequency of uterine contractions. However, the length of contractions was statistically shorter in the experimental group (experimental 41.9 versus control 44.6 min. The conclusion was that immersion baths are an alternative for the woman's comfort during labor, since it provides relief to her without interfering on the labor progression or jeopardizing the baby.

  16. Poly[(6-carboxypicolinato-κ3O2,N,O6(μ3-pyridine-2,6-dicarboxylato-κ5O2,N,O6:O2′:O6′dysprosium(III

    Directory of Open Access Journals (Sweden)

    Xu Li

    2009-11-01

    Full Text Available In the title complex, [Dy(C7H3NO4(C7H4NO4]n, one of the ligands is fully deprotonated while the second has lost only one H atom. Each DyIII ion is coordinated by six O atoms and two N atoms from two pyridine-2,6-dicarboxylate and two 6-carboxypicolinate ligands, displaying a bicapped trigonal-prismatic geometry. The average Dy—O bond distance is 2.40 Å, some 0.1Å longer than the corresponding Ho—O distance in the isotypic holmium complex. Adjacent DyIII ions are linked by the pyridine-2,6-dicarboxylate ligands, forming a layer in (100. These layers are further connected by π–π stacking interactions between neighboring pyridyl rings [centroid–centroid distance = 3.827 (3 Å] and C—H...O hydrogen-bonding interactions, assembling a three-dimensional supramolecular network. Within each layer, there are other π–π stacking interactions between neighboring pyridyl rings [centroid–centroid distance = 3.501 (2 Å] and O—H...O and C—H...O hydrogen-bonding interactions, which further stabilize the structure.

  17. The Hydrogen Bonded Structures of Two 5-Bromobarbituric Acids and Analysis of Unequal C5–X and C5–X′ Bond Lengths (X = X′ = F, Cl, Br or Me in 5,5-Disubstituted Barbituric Acids

    Directory of Open Access Journals (Sweden)

    Thomas Gelbrich

    2016-04-01

    Full Text Available The crystal structure of the methanol hemisolvate of 5,5-dibromobarbituric acid (1MH displays an H-bonded layer structure which is based on N–H∙∙∙O=C, N–H∙∙∙O(MeOH and (MeOHO–H∙∙∙O interactions. The barbiturate molecules form an H-bonded substructure which has the fes topology. 5,5′-Methanediylbis(5-bromobarbituric acid 2, obtained from a solution of 5,5-dibromobarbituric acid in nitromethane, displays a N–H···O=C bonded framework of the sxd type. The conformation of the pyridmidine ring and the lengths of the ring substituent bonds C5–X and C5–X′ in crystal forms of 5,5-dibromobarbituric acid and three closely related analogues (X = X′ = Br, Cl, F, Me have been investigated. In each case, a conformation close to a C5-endo envelope is correlated with a significant lengthening of the axial C5–X′ in comparison to the equatorial C5–X bond. Isolated molecule geometry optimizations at different levels of theory confirm that the C5-endo envelope is the global conformational energy minimum of 5,5-dihalogenbarbituric acids. The relative lengthening of the axial bond is therefore interpreted as an inherent feature of the preferred envelope conformation of the pyrimidine ring, which minimizes repulsive interactions between the axial substituent and pyrimidine ring atoms.

  18. Aqua[bis(pyrimidin-2-yl-kappa N)amine](carbonato-kappa 2O,O')copper(II) dihydrate.

    Science.gov (United States)

    van Albada, Gerard A; Mutikainen, Ilpo; Turpeinen, Urho; Reedijk, Jan

    2002-03-01

    The title mononuclear complex, [Cu(CO(3))(C(8)H(7)N(5))(H(2)O)] x 2H(2)O, was obtained by fixation of CO(2) by a mixture of copper(II) tetrafluoroborate and the ligand bis(pyrimidin-2-yl)amine in ethanol/water. The Cu(II) ion of the complex has a distorted square-pyramidal environment, with a basal plane formed by two N atoms of the ligand and two chelating O atoms of the carbonate group, while the apical position is occupied by the O atom of the coordinating water molecule. In the solid state, hydrogen-bonding interactions are dominant, the most unusual being the Watson-Crick-type coplanar ligand pairing through two N--H...N bonds. Lattice water molecules also participate in hydrogen bonding.

  19. Electron densities and chemical bonding in TiC, TiN and TiO derived from energy band calculations

    International Nuclear Information System (INIS)

    Blaha, P.

    1983-10-01

    It was the aim of this paper to describe the chemical bonding of TiC, TiN and TiO by means of energy bands and electron densities. Using the respective potentials we have calculated the bandstructure of a finer k-grid with the linearized APW method to obtain accurate densities of states (DOS). These DOS wer partitioned into local partial contributions and the metal d DOS were further decomposed into tsub(2g) and esub(g) symmetry components in order to additionally characterize bonding. The electron densities corresponding to the occupied valence states are obtained from the LAPW calculations. They provide further insight into characteristic trends in the series from TiC to TiO: around the nonmetal site the density shows increasing localisation; around the metal site the deviation from spherical symmetry changes from esub(g) to tsub(2g). Electron density plots of characteristic band states allow to describe different types of bonding occurring in these systems. For TiC and TiN recent measurements of the electron densities exist for samples of TiCsub(0.94) and TiNsub(0.99), where defects cause static displacements of the Ti atoms. If this effect can be compensated by an atomic model one hopefully can extrapolate to stoichiometric composition. This procedure allows a comparison with structure factors derived from theoretical electron densities. The agreement for TiN is very good. For TiC the extrapolated data agree in terms of the deviations from spherical symmetry near the Ti site with the LAPW data, but the densities around both atoms are more localized than in theory. An explanation could be: a) the defects affect the electronic structure in TiCsub(0.94) with respect to TiCsub(1.0): b) the applied atomic model does not properly extrapolate to stoichiometry, because parameters of this model correlate or become unphysical. (Author)

  20. Ab initio studies of O2-(H2O)n and O3-(H2O)n anionic molecular clusters, n≤12

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Kurtén, T.; Enghoff, Martin Andreas Bødker

    2011-01-01

    that anionic O2−(H2O)n and O3−(H2O)n clusters are thermally stabilized at typical atmospheric conditions for at least n = 5. The first 4 water molecules are strongly bound to the anion due to delocalization of the excess charge while stabilization of more than 4 H2O is due to normal hydrogen bonding. Although...... clustering up to 12 H2O, we find that the O2 and O3 anions retain at least ca. 80 % of the charge and are located at the surface of the cluster. The O2− and O3− speicies are thus accessible for further reactions. Finally, the thermodynamics of a few relevant cluster reactions are considered....

  1. Isolation and X-ray structures of four Rh(PCP) complexes including a Rh(I) dioxygen complex with a short O-O bond

    KAUST Repository

    Hayashi, Yukiko

    2013-07-01

    The reaction of RhCl3·H2O with tBu2P(CH2)5PtBu 2 afforded several complexes including [RhIII(H)Cl{ tBu2- P(CH2)2CH(CH2) 2PtBu2}] (1), [RhIIIHCl 2{tBu2P(CH2)5P tBu2}]2 (2), [RhICl{ tBu2P(CH2)2CH=CHCH2P tBu2}] (3) and [RhICl{tBu 2PCH2C(O)CH=CHCH2PtBu2}] (4). X-ray crystal structures of 3 and 4 showed that the C=C bond on the C 5 unit of tBu2P(CH2) 5PtBu2 is bound to Rh(I) in a η2 configuration. In 4, the Rh atom has a trigonal pyramidal coordination geometry. The X-ray crystal structure of 2 consists of two rhodium( III) centers bridged by two tBu2P(CH2)5P tBu2 ligands with two phosphorus atoms, one from each ligand, trans to one another. The crystal structure of the rhodium oxygen adduct with 1,3-bis(di-t-butylphosphinomethyl) benzene [RhO2{ tBu2PCH2(C6H3)CH 2PtBu2}] (5) was also investigated. In this species the O2 is η2 coordinated to the Rh(I) center with asymmetric Rh-O bond lengths (2.087(7) and 1.998(8) Å). The O-O bond distance is short (1.337(11) Å) with νO-O of 990.5 cm -1. DFT calculations on complex 5 yielded two η2- O2 structures that differed in energy by only 0.76 kcal/mol. The lower energy one (5a) had near C2 symmetry, and had nearly equal Rh-O bond lengths, while the higher energy structure (5b) had near Cs symmetry and generally good agreement with the experimental structure. The calculated UV-Vis and IR spectra of complex 5 are in excellent agreement with experiment. © 2012 Elsevier Ltd. All rights reserved.

  2. Isolation and X-ray structures of four Rh(PCP) complexes including a Rh(I) dioxygen complex with a short O-O bond

    KAUST Repository

    Hayashi, Yukiko; Szalda, David J.; Grills, David C.; Hanson, Jonathan C.; Huang, Kuo-Wei; Muckerman, James T.; Fujita, Etsuko

    2013-01-01

    The reaction of RhCl3·H2O with tBu2P(CH2)5PtBu 2 afforded several complexes including [RhIII(H)Cl{ tBu2- P(CH2)2CH(CH2) 2PtBu2}] (1), [RhIIIHCl 2{tBu2P(CH2)5P tBu2}]2 (2), [RhICl{ tBu2P(CH2)2CH=CHCH2P tBu2}] (3) and [RhICl{tBu 2PCH2C(O)CH=CHCH2PtBu2}] (4). X-ray crystal structures of 3 and 4 showed that the C=C bond on the C 5 unit of tBu2P(CH2) 5PtBu2 is bound to Rh(I) in a η2 configuration. In 4, the Rh atom has a trigonal pyramidal coordination geometry. The X-ray crystal structure of 2 consists of two rhodium( III) centers bridged by two tBu2P(CH2)5P tBu2 ligands with two phosphorus atoms, one from each ligand, trans to one another. The crystal structure of the rhodium oxygen adduct with 1,3-bis(di-t-butylphosphinomethyl) benzene [RhO2{ tBu2PCH2(C6H3)CH 2PtBu2}] (5) was also investigated. In this species the O2 is η2 coordinated to the Rh(I) center with asymmetric Rh-O bond lengths (2.087(7) and 1.998(8) Å). The O-O bond distance is short (1.337(11) Å) with νO-O of 990.5 cm -1. DFT calculations on complex 5 yielded two η2- O2 structures that differed in energy by only 0.76 kcal/mol. The lower energy one (5a) had near C2 symmetry, and had nearly equal Rh-O bond lengths, while the higher energy structure (5b) had near Cs symmetry and generally good agreement with the experimental structure. The calculated UV-Vis and IR spectra of complex 5 are in excellent agreement with experiment. © 2012 Elsevier Ltd. All rights reserved.

  3. Tetrakis(6-methyl-2,2′-bipyridine-1κ2N,N′;2κ2N,N′;3κ2N,N′;4κ2N,N′-tetra-μ-nitrato-1:2κ2O:O′;2:3κ3O:O′,O′′;2:3κ3O,O′:O′′;3:4κ2O:O′-tetranitrato-1κ4O,O′;4κ2O,O′-tetralead(II

    Directory of Open Access Journals (Sweden)

    Roya Ahmadi

    2009-10-01

    Full Text Available In the tetranuclear centrosymmetric title compound, [Pb4(NO38(C11H10N24], irregular PbN2O5 and PbN2O4 coordination polyhedra occur. The heptacoordinated lead(II ion is bonded to two bidentate and one monodentate nitrate ion and one bidentate 6-methyl-2,2′-bipyridine (mbpy ligand. The six-coordinate lead(II ion is bonded to one bidentate and two monodentate nitrate anions and one mbpy ligand. In the crystal, bridging nitrate anions lead to infinite chains propagating in [111]. A number of C—H...O hydrogen bonds may stabilize the structure.

  4. Iron(II)-catalyzed intermolecular amino-oxygenation of olefins through the N-O bond cleavage of functionalized hydroxylamines.

    Science.gov (United States)

    Lu, Deng-Fu; Zhu, Cheng-Liang; Jia, Zhen-Xin; Xu, Hao

    2014-09-24

    An iron-catalyzed diastereoselective intermolecular olefin amino-oxygenation reaction is reported, which proceeds via an iron-nitrenoid generated by the N-O bond cleavage of a functionalized hydroxylamine. In this reaction, a bench-stable hydroxylamine derivative is used as the amination reagent and oxidant. This method tolerates a range of synthetically valuable substrates that have been all incompatible with existing amino-oxygenation methods. It can also provide amino alcohol derivatives with regio- and stereochemical arrays complementary to known amino-oxygenation methods.

  5. Direct bonding of ALD Al2O3 to silicon nitride thin films

    DEFF Research Database (Denmark)

    Laganà, Simone; Mikkelsen, E. K.; Marie, Rodolphe

    2017-01-01

    microscopy (TEM) by improving low temperature annealing bonding strength when using atomic layer deposition of aluminum oxide. We have investigated and characterized bonding of Al2O3-SixNy (low stress silicon rich nitride) and Al2O3-Si3N4 (stoichiometric nitride) thin films annealed from room temperature up......O3 can be bonded to. Preliminary tests demonstrating a well-defined nanochannel system with-100 nm high channels successfully bonded and tests against leaks using optical fluorescence technique and transmission electron microscopy (TEM) characterization of liquid samples are also reported. Moreover...

  6. Crystal structure of N,N,N′,N′,N′′,N′′-hexamethylguanidinium cyanate 1.5-hydrate

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2015-12-01

    Full Text Available The title hydrated salt, C7H18N3+·OCN−.1.5H2O, was synthesized starting from N,N,N′,N′,N′′,N′′-hexamethylguanidinium chloride by a twofold anion-exchange reaction. The asymmetric unit contains two cations, two cyanate anions and three water molecules. One cation shows orientational disorder and two sets of N-atom positions were found related by a 60° rotation, with an occupancy ratio of 0.852 (6:0.148 (6. The C—N bond lengths in both guanidinium ions range from 1.329 (2 to 1.358 (10 Å, indicating double-bond character, pointing towards charge delocalization within the NCN planes. Strong O—H...N hydrogen bonds between the crystal water molecules and the cyanate ions and strong O—H...O hydrogen bonds between the water molecules are present, resulting in a two-dimensional hydrogen bonded network running parallel to the (001 plane. The hexamethylguanidinium ions are packed in between the layers built up by water molecules and cyanate ions.

  7. Resistência de união à dentina de quatro sistemas adesivos Bond strength of four adhesive systems to dentin

    Directory of Open Access Journals (Sweden)

    Marcela Rocha de Oliveira Carrilho

    2002-09-01

    Full Text Available O objetivo do presente estudo foi avaliar a resistência adesiva de quatro sistemas adesivos, composicionalmente diferentes, aplicados à dentina humana. Doze dentes terceiros molares humanos tiveram o esmalte oclusal removido para exposição de uma superfície plana de dentina, na qual foram realizados os procedimentos de adesão. Os dentes foram aleatoriamente divididos em quatro grupos, considerando-se o sistema adesivo e a resina composta a serem empregados: Grupo 1 - Single Bond + P60 (SB; Grupo 2 - Bond 1 + Surefil (B1; Grupo 3 - Prime & Bond NT + Alert (NT e Grupo 4 - Prime & Bond 2.1 + TPH (2.1. Após 24 h de armazenagem em água destilada a 37ºC, os dentes foram seccionados, longitudinalmente, em cortes perpendiculares entre si, para que fossem obtidos espécimes em formato de um paralelogramo com secção transversal retangular de 0,8 mm² de área e 10 mm de comprimento, em média. Os espécimes foram submetidos ao teste de microtração. A análise de variância (alfa = 0,05 demonstrou não haver diferença significante entre os valores médios de resistência obtidos pelos quatro adesivos, embora a análise dos espécimes que sofreram fratura precoce tenha evidenciado menor sensibilidade para o sistema SB.The purpose of the present study was to evaluate the bond strength of four adhesive systems to dentin. Twelve human third molars had their occlusal enamel removed in order to expose a flat dentinal surface, on which the adhesive procedures were carried out. The teeth were divided into four groups, according to the employed adhesive system and composite resin: Group 1 - Single Bond + P60 (SB; Group 2 - Bond 1 + Surefil (B1; Group 3 - Prime & Bond NT + Alert (NT; and Group 4 - Prime & Bond 2.1 + TPH (2.1. After 24 h in distilled water at 37ºC, the teeth were longitudinally sectioned in two perpendicular directions in order to obtain parallelogram-shaped specimens with a cross-sectional area of 0.8 mm² and 10 mm of length, on the

  8. Refinement of hydrogen positions in (NH4)2SeO4

    International Nuclear Information System (INIS)

    Loose, A.; Mel'nik, G.; Zink, N.; Wozniak, K.; Dominiak, P.; Smirnov, L.S.; Pawlukojc, A.; Shuvalov, L.A.

    2005-01-01

    The crystal structure of ammonium selenate has been studied by means of single crystal X-ray and neutron diffraction with the purpose of the refinement of hydrogen positions. The refined hydrogen positions obtained by single crystal neutron diffraction show that N-H bond lengths form a regular tetrahedron in an ammonium ion. The single crystal X-ray diffraction data show that N-H bond lengths are shorter than those obtained by neutron diffraction and are not equal between themselves. Thus, the comparison of the results of X-ray and neutron diffraction allows one to suggest that the shorter N-H bond lengths by X-ray diffraction reflect the distribution of the electron charge density of ammonium ions within the (NH 4 ) 2 SeO 4 crystal lattice

  9. Ti 2p and O 1s core levels and chemical bonding in titanium-bearing oxides

    International Nuclear Information System (INIS)

    Atuchin, Victor V.; Kesler, Valery G.; Pervukhina, Natalia V.; Zhang, Zhaoming

    2006-01-01

    A set of available experimental data on the binding energies of Ti 2p 3/2 and O 1s core levels in titanium-bearing oxides has been presented by using the binding energy difference (O 1s-Ti 2p 3/2 ) as a robust parameter to characterize these compounds. An empirical relationship between the (O 1s-Ti 2p 3/2 ) values measured with XPS and the mean chemical bond length L(Ti-O) in these crystals has been discussed for Ti 4+ -compounds

  10. Influência da adição de carga inorgânica aos sistemas adesivos na resistência adesiva à dentina = Influence of filler addition to bonding agents on dentin bond strength

    Directory of Open Access Journals (Sweden)

    Cesar, Patricia Desiderio

    2005-01-01

    Full Text Available O objetivo desse estudo foi avaliar o papel da presença ou não de partículas de carga nos sistemas adesivos sobre a resistência adesiva à dentina. Foram utilizados 70 dentes bovinos, divididos em 7 grupos, que foram embutidos em resina acrílica e desgastados até a exposição de uma área plana de dentina. Todos os espécimes receberam o condicionamento ácido e aplicação dos sistemas adesivos, contendo ou não as partículas de carga, de acordo com as instruções do fabricante: Prime & Bond 2. 1 (sem carga – SC, Prime & Bond NT (com carga – CC, Prime & Bond 2. 1 + 10% de SiO² (CC, One Step (SC, One Step Plus (CC, Sigle Bond (SC e Single Bond +10% de SiO² (CC. Cilindros de resina composta TPH Spectrum foram realizados sobre a área de adesão. Os espécimes foram armazenados por 24 a 37C°, e então submetidos ao teste de cisalhamento. Os dados obtidos foram submetidos à análise estatística, empregando- se o teste de análise de variância paramétrica, seguida pelo teste de Tukey a um nível de significância de 5%. Concluiu-se que, para todos os sistemas adesivos testados, a adição de partículas de carga não resultou em diferenças significativas na força de adesão. Porém, entre as marcas comerciais, observamos diferenças significativas, o que demonstra a influência dos demais componentes na eficiência adesiva

  11. Vibrational tug-of-war: The pKA dependence of the broad vibrational features of strongly hydrogen-bonded carboxylic acids

    Science.gov (United States)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2018-04-01

    Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm-1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pKA values. Dimers with large pKA differences are found to have features that can extend to frequencies below 1000 cm-1. The relationships between mean OH/NH frequency, aqueous pKA, and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm-1. Understanding how the vibrational features

  12. Cleavage of sp3 C-O bonds via oxidative addition of C-H bonds.

    Science.gov (United States)

    Choi, Jongwook; Choliy, Yuriy; Zhang, Xiawei; Emge, Thomas J; Krogh-Jespersen, Karsten; Goldman, Alan S

    2009-11-04

    (PCP)Ir (PCP = kappa(3)-C(6)H(3)-2,6-[CH(2)P(t-Bu)(2)](2)) is found to undergo oxidative addition of the methyl-oxygen bond of electron-poor methyl aryl ethers, including methoxy-3,5-bis(trifluoromethyl)benzene and methoxypentafluorobenzene, to give the corresponding aryloxide complexes (PCP)Ir(CH(3))(OAr). Although the net reaction is insertion of the Ir center into the C-O bond, density functional theory (DFT) calculations and a significant kinetic isotope effect [k(CH(3))(OAr)/k(CD(3))(OAr) = 4.3(3)] strongly argue against a simple insertion mechanism and in favor of a pathway involving C-H addition and alpha-migration of the OAr group to give a methylene complex followed by hydride-to-methylene migration to give the observed product. Ethoxy aryl ethers, including ethoxybenzene, also undergo C-O bond cleavage by (PCP)Ir, but the net reaction in this case is 1,2-elimination of ArO-H to give (PCP)Ir(H)(OAr) and ethylene. DFT calculations point to a low-barrier pathway for this reaction that proceeds through C-H addition of the ethoxy methyl group followed by beta-aryl oxide elimination and loss of ethylene. Thus, both of these distinct C-O cleavage reactions proceed via initial addition of a C(sp(3))-H bond, despite the fact that such bonds are typically considered inert and are much stronger than C-O bonds.

  13. Ti 2p and O 1s core levels and chemical bonding in titanium-bearing oxides

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, Victor V. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation)]. E-mail: atuchin@thermo.isp.nsc.ru; Kesler, Valery G. [Technical Centre, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Pervukhina, Natalia V. [Laboratory of Crystal Chemistry, Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Zhang, Zhaoming [Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234 (Australia)

    2006-06-15

    A set of available experimental data on the binding energies of Ti 2p{sub 3/2} and O 1s core levels in titanium-bearing oxides has been presented by using the binding energy difference (O 1s-Ti 2p{sub 3/2}) as a robust parameter to characterize these compounds. An empirical relationship between the (O 1s-Ti 2p{sub 3/2}) values measured with XPS and the mean chemical bond length L(Ti-O) in these crystals has been discussed for Ti{sup 4+}-compounds.

  14. Theoretical study of ZnO adsorption and bonding on Al2O3 (0001) surface

    Institute of Scientific and Technical Information of China (English)

    LI Yanrong; YANG Chun; XUE Weidong; LI Jinshan; LIU Yonghua

    2004-01-01

    ZnO adsorption on sapphire (0001) surface is theoretically calculated by using a plane wave ultrasoft pseudo-potential method based on ab initio molecular dynamics. The results reveal that the surface relaxation in the first layer Al-O is reduced, even eliminated after the surface adsorption of ZnO, and the chemical bonding energy is 434.3(±38.6) kJ·mol-1. The chemical bond of ZnO (0.185 ± 0.01 nm) has a 30° angle away from the adjacent Al-O bond, and the stable chemical adsorption position of the Zn is deflected from the surface O-hexagonal symmetry with an angle of about 30°. The analysis of the atomic populations, density of state and bonding electronic density before and after the adsorption indicates that the chemical bond formed by the O2- of the ZnO and the surface Al3+ has a strong ionic bonding characteristic, while the chemical bond formed by the Zn2+ and the surface O2- has an obvious covalent characteristic, which comes mainly from the hybridization of the Zn 4s and the O 2p and partially from that of the Zn 3d and the O 2p.

  15. 共价键长的变化规律及计算%Variation Rule of Covalent Bond Length and Its Calculation Method

    Institute of Scientific and Technical Information of China (English)

    徐永群; 陈年友

    2001-01-01

    研究了共价键长的变化规律,提出了两个影响键长的参数,即配位体的半径与中心原子半径之比Rratio和由中心原子组成的基团的拓扑指数F2,用BP神经网络法逼近了50个、预测了11个简单无机分子中非含氢原子键的键长,其计算误差基本上在2pm以内。%The variation rule of covalent bond lengths is investigated.Two parameters which influence covalent bond lengths are presented: the radius ratio of the ligand to the centre atom and the topological index of the group of centre atom.With BP neural networks, 50 bond lengths have been approached and other 11 bond lengths have been forecasted. Errors of calculated bond lengths is almost within 2pm.

  16. Crystal structure of diquabis (3-hydroxybenzoato-κO)bis(nicotinamide-κN)zinc(II)

    International Nuclear Information System (INIS)

    Sahin, O.; Buyukgungor, O.; Koese, D. A.; Necefoglu, H.

    2010-01-01

    The title compound, [Zn(C 7 H 5 O 3 ) 2 (C 6 H 6 N 2 O) 2 (H 2 O) 2 ], is a two-dimensional hydrogen-bonded supramolecular complex. The Zn I I ion resides on the centre of symmetry and is in an octahedral coordination environment comprising two pyridyl N atoms, two carboxylate O atoms and two O atoms from water molecules. Intermolecular N-H...O and O-H...O hydrogen bonds produce R 1 1 (6), R 2 2 (7), R 2 2 (8), R 2 2 (16), R 2 2 (20), R 2 2 (22) and R 3 3 (30) rings which lead to a one-dimensional polymeric chains. An extensive two-dimensional network of N-H...O, O-H...O, C-H...O hydrogen bonds, and C-H...π interactions are responsible for crystal stabilization.

  17. N6,3′-cyclo-5′-O-Cyanomethylthymidine

    Directory of Open Access Journals (Sweden)

    Jingbo Sun

    2010-06-01

    Full Text Available The title compound, C19H20N4O4, is a cyclonucleoside with a C—N linkage. The furanose ring adopts a twist C3′-endo/C2′-exo (close to 3T2 conformation with a pseudorotational phase angle (P of 8.1° and puckering amplitude (vm of 30.6°. The orientation of the pyrimidine ring with respect to the sugar group is anti. One intramolecular C—H...O hydrogen bond is observed. The packing features an N—H...O hydrogen bond.

  18. Rotational Isomers, Intramolecular Hydrogen Bond, and IR Spectra of o-Vinylphenol Homologs

    Science.gov (United States)

    Glazunov, V. P.; Berdyshev, D. V.; Balaneva, N. N.; Radchenko, O. S.; Novikov, V. L.

    2018-03-01

    The ν(OH) stretching-mode bands in solution IR spectra of five o-vinylphenol (o-VPh) homologs in the slightly polar solvents CCl4 and n-hexane were studied. Several rotamers with free OH groups were found in solutions of o-VPh and its methyl-substituted derivatives in n-hexane. The proportion of rotamers in o-VPh homologs with intramolecular hydrogen bonds (IHBs) O-H...π varied from 22 to 97% in the gas and cyclohexane according to B3LYP/cc-pVTZ calculations. The theoretically estimated effective enthalpies -ΔH of their IHBs varied in the range 0.20-2.24 kcal/mol.

  19. Stable Chloro- and Bromoxenate Cage Anions; [X3(XeO3)3]3- and [X4(XeO3)4]4- (X = Cl or Br).

    Science.gov (United States)

    Goettel, James T; Haensch, Veit G; Schrobilgen, Gary J

    2017-06-28

    The number of isolable compounds which contain different noble-gas-element bonds is limited for xenon and even more so for krypton. Examples of Xe-Cl bonds are rare, and prior to this work, no Xe-Br bonded compound had been isolated in macroscopic quantities. The syntheses, isolation, and characterization of the first compounds to contain Xe-Br bonds and their chlorine analogues are described in the present work. The reactions of XeO 3 with [N(CH 3 ) 4 ]Br and [N(C 2 H 5 ) 4 ]Br have provided two bromoxenate salts, [N(C 2 H 5 ) 4 ] 3 [Br 3 (XeO 3 ) 3 ] and [N(CH 3 ) 4 ] 4 [Br 4 (XeO 3 ) 4 ], in which the cage anions have Xe-Br bond lengths that range from 3.0838(3) to 3.3181(8) Å. The isostructural chloroxenate anions (Xe-Cl bond lengths, 2.9316(2) to 3.101(4) Å) were synthesized by analogy with their bromine analogues. The bromo- and chloroxenate salts are stable in the atmosphere at room temperature and were characterized in the solid state by Raman spectroscopy and low-temperature single-crystal X-ray diffraction, and in the gas phase by quantum-chemical calculations. They are the only known examples of cage anions that contain a noble-gas element. The Xe-Br and Xe-Cl bonds are very weakly covalent and can be viewed as σ-hole interactions, similar to those encountered in halogen bonding. However, the halogen atoms in these cases are valence electron lone pair donors, and the σ* Xe-O orbitals are lone pair acceptors.

  20. Crystal structure of dichlorido{2-methyl-2-[(pyridin-2-ylmethylamino]propan-1-ol-κ3N,N′,O}copper(II from synchrotron data

    Directory of Open Access Journals (Sweden)

    Jong Won Shin

    2016-10-01

    Full Text Available The title compound, [CuCl2(C10H16N2O], has been synthesized and characterized by synchrotron single-crystal X-ray diffraction and FT–IR spectroscopy. The 2-methyl-2-[(pyridin-2-ylmethylamino]propan-1-ol (mpmapOH ligand, including pyridine, amine and hydroxy groups, was synthesized by the reaction of 2-amino-2-methylpropan-1-ol with pyridine-2-carbaldehyde and was characterized by NMR spectroscopy. In its CuII complex, the metal ion has a distorted square-pyramidal coordination geometry with two N and one O atom of the mpmapOH ligand and one chloride anion in the equatorial plane, and the second chloride in an axial position. The bond lengths involving the CuII ion range from 1.9881 (10 to 2.0409 (9 for the Cu—N and Cu—O bonds, and from 2.2448 (5 to 2.5014 (6 Å for the equatorial and axial Cu—Cl bonds, respectively. Intermolecular hydrogen bonds (N—H...Cl and O—H...Cl and face-to-face π–π interactions stabilize the molecular structure and give rise to a two-dimensional supramolecular structure extending parallel to (101.

  1. Bis(2,2'-bipyridyl-κN,N')(carbonato-κO,O')cobalt(III) bromide trihydrate.

    Science.gov (United States)

    Ma, Peng-Tao; Wang, Yu-Xia; Zhang, Guo-Qian; Li, Ming-Xue

    2007-12-06

    The title complex, [Co(CO(3))(C(10)H(8)N(2))(2)]Br·3H(2)O, is isostructural with the chloride analogue. The six-coordinated octahedral [Co(2,2'-bipy)(2)CO(3)](+) cation (2,2'-bipy is 2,2'-bipyrid-yl), bromide ion and water mol-ecules are linked together via O-H⋯Br and O-H⋯O hydrogen bonds, generating a one-dimensional chain.

  2. Syntheses and characterizations of secondary Pb-O bonding supported Pb(II)-sulfonate complexes

    Science.gov (United States)

    Huang, Guo-Zhen; Zou, Xin; Zhu, Zhi-Biao; Deng, Zhao-Peng; Huo, Li-Hua; Gao, Shan

    2018-06-01

    The reaction of Pb(II) salts and mono- or disulfonates leads to the formation of eight new Pb(II)-mono/disulfonate complexes, [Pb(L1)(H2O)]2 (1), [Pb4(L2)2(AcO)2]n·5nH2O (2), [Pb(L3)(H2O)]2 (3), [Pb(HL4)(H2O)2]n·nH2O (4), [Pb(HL5)(H2O)2]n·2nH2O (5), [Pb(H2L6)(H2O)]n·nDMF·2nH2O (6), [Pb2(H3L7)4(H2O)6]·2H2O (7) and [Pb(H2L7)(H2O)]n·nH2O (8) (H2L1= 2-hydroxy-5-methyl-benzenesulfonic acid, H3L2= 2-hydroxyl-5-methyl- 1,3-benzenedisulfonic acid, H2L3= 2-hydroxy-5-nitro-benzenesulfonic acid, H3L4= 2-hydroxyl-5-bromo-1,3- benzenedisulfonic acid, H3L5= 2-hydroxyl-5-carboxyl-benzenesulfonic acid, H4L6= 2,5-dihydroxyl-3-carboxyl- benzenesulfonic acid, H4L7= 2,4-dihydroxyl-5-carboxyl-benzenesulfonic acid, DMF = N,N'-dimethyl-formamide, AcO- = acetate), which have been characterized by elemental analysis, IR, TG, PL, powder and single-crystal X-ray diffraction. In view of the primary Pb-O bonds, these eight complexes exhibit diverse dinuclear (1, 3 and 7), helical chain (4), wave-like chain (5), linear chain (6), zigzag chain (8) and layer structure (2), in which the Pb(II) cations present different hemi-directed geometries. Taking the secondary Pb-O bonds into account, chain structure for complex 7, layer motifs for complexes 1 and 3-6, as well as 3-D framework for complex 8 are observed with Pb(II) cations showing more intricate holo-directed geometries. The various coordination modes of these seven different mono/disulfonate anions are responsible for the formation of these multiple structures. Furthermore, the introduction of hydroxyl and carboxyl groups increases the coordination ability of sulfonate to the p-block metal cation. Luminescent analyses indicate that complex 7 presents purple emission at 395 nm at room temperature.

  3. Mo-Mo Quintuple Bond is Highly Reactive in H-H, C-H, and O-H σ-Bond Cleavages Because of the Polarized Electronic Structure in Transition State.

    Science.gov (United States)

    Chen, Yue; Sakaki, Shigeyoshi

    2017-04-03

    The recently reported high reactivity of the Mo-Mo quintuple bond of Mo 2 (NN) 2 (1) {NN = μ-κ 2 -CH[N(2,6-iPr 2 C 6 H 3 )] 2 } in the H-H σ-bond cleavage was investigated. DFT calculations disclosed that the H-H σ-bond cleavage by 1 occurs with nearly no barrier to afford the cis-dihydride species followed by cis-trans isomerization to form the trans-dihydride product, which is consistent with the experimental result. The O-H and C-H bond cleavages by 1 were computationally predicted to occur with moderate (ΔG° ⧧ = 9.0 kcal/mol) and acceptable activation energies (ΔG° ⧧ = 22.5 kcal/mol), respectively, suggesting that the Mo-Mo quintuple bond can be applied to various σ-bond cleavages. In these σ-bond cleavage reactions, the charge-transfer (CT Mo→XH ) from the Mo-Mo quintuple bond to the X-H (X = H, C, or O) bond and that (CT XH→Mo ) from the X-H bond to the Mo-Mo bond play crucial roles. Though the HOMO (dδ-MO) of 1 is at lower energy and the LUMO + 2 (dδ*-MO) of 1 is at higher energy than those of RhCl(PMe 3 ) 2 (LUMO and LUMO + 1 of 1 are not frontier MO), the H-H σ-bond cleavage by 1 more easily occurs than that by the Rh complex. Hence, the frontier MO energies are not the reason for the high reactivity of 1. The high reactivity of 1 arises from the polarization of dδ-type MOs of the Mo-Mo quintuple bond in the transition state. Such a polarized electronic structure enhances the bonding overlap between the dδ-MO of the Mo-Mo bond and the σ*-antibonding MO of the X-H bond to facilitate the CT Mo→XH and reduce the exchange repulsion between the Mo-Mo bond and the X-H bond. This polarized electronic structure of the transition state is similar to that of a frustrated Lewis pair. The easy polarization of the dδ-type MOs is one of the advantages of the metal-metal multiple bond, because such polarization is impossible in the mononuclear metal complex.

  4. Potassium (2,2'-bipyridine-κN,N')bis-(carbonato-κO,O')cobaltate(III) dihydrate.

    Science.gov (United States)

    Wang, Jian-Fei; Lin, Jian-Li

    2010-09-30

    In the title compound, K[Co(CO(3))(2)(C(10)H(8)N(2))]·2H(2)O, the Co(III) atom is coordinated by two bipyridine N atoms and four O atoms from two bidentate chelating carbonate anions, and thus adopts a distorted octa-hedral N(2)O(4) environment. The [Co(bipy)(CO(3))(2)](-) (bipy is 2,2'-bipyridine) -units are stacked along [100] via π-π stacking inter-actions, with inter-planar distances between the bipyridine rings of 3.36 (4) and 3.44 (6) Å, forming chains. Classical O-H⋯O hydrogen-bonding inter-actions link the chains, forming channels along (100) in which the K(+) ions reside and leading to a three-dimensional supra-molecular architecture.

  5. A theoretical investigation of the interaction of Immucillin-A with N-doped TiO2 anatase nanoparticles: Applications to nanobiosensors and nanocarriers

    Directory of Open Access Journals (Sweden)

    Amirali Abbasi

    2017-02-01

    Full Text Available Objective(s: Adsorption of IMMUCILLIN-A (BCX4430 molecule on the pristine and N-doped TiO2 anatase nanoparticles were studied using the density functional theory (DFT calculations. The adsorption energy analysis indicated that TiO2+IMMUCILLIN-A complexes including OC-substituted TiO2 have higher adsorption energy than the complexes with OT substituted TiO2, thus providing more stable configurations. Methods: The structural properties including bond lengths, adsorption energies and bond angles were analysed. The electronic structure of the adsorption system were investigated in view of the density of states, molecular orbitals and Mulliken charge analysis.Results: The results show that, the interaction of IMMUCILLIN-A drug with N-doped TiO2 nanoparticles is more energetically favorable than the interaction with the pristine ones, suggesting that the N-doped nanoparticles can react with IMMUCILLIN-A drug more efficiently. The Mulliken charge analysis also suggests a charge transfer from IMMUCILLIN-A molecule to the TiO2 nanoparticle.Conclusions: Based on obtained results, it can be concluded that the N-doped TiO2 nanoparticle could be utilized as an efficient candidate for application as highly sensitive nanobiosensors and efficient nanocarriers for IMMUCILLIN-A drugs.

  6. N,N′-(Ethane-1,2-diyldi-o-phenylenebis(pyridine-2-carboxamide

    Directory of Open Access Journals (Sweden)

    Shuranjan Sarkar

    2011-11-01

    Full Text Available The title molecule, C26H22N4O2, is centrosymmetric and adopts an anti conformation. Two intramolecular hydrogen bonds, viz. amide–pyridine N—H...N and phenyl–amide C—H...O, stabilize the trans conformation of the (pyridine-2-carboxamidophenyl group about the amide plane. In the crystal, the presence of weak intermolecular C—H...O hydrogen bonds results in the formation of a three-dimensional network.

  7. Nucleophilicities of Lewis Bases B and Electrophilicities of Lewis Acids A Determined from the Dissociation Energies of Complexes B⋯A Involving Hydrogen Bonds, Tetrel Bonds, Pnictogen Bonds, Chalcogen Bonds and Halogen Bonds

    Directory of Open Access Journals (Sweden)

    Ibon Alkorta

    2017-10-01

    Full Text Available It is shown that the dissociation energy D e for the process B⋯A = B + A for 250 complexes B⋯A composed of 11 Lewis bases B (N2, CO, HC≡CH, CH2=CH2, C3H6, PH3, H2S, HCN, H2O, H2CO and NH3 and 23 Lewis acids (HF, HCl, HBr, HC≡CH, HCN, H2O, F2, Cl2, Br2, ClF, BrCl, H3SiF, H3GeF, F2CO, CO2, N2O, NO2F, PH2F, AsH2F, SO2, SeO2, SF2, and SeF2 can be represented to good approximation by means of the equation D e = c ′ N B E A , in which N B is a numerical nucleophilicity assigned to B, E A is a numerical electrophilicity assigned to A, and c ′ is a constant, conveniently chosen to have the value 1.00 kJ mol−1 here. The 250 complexes were chosen to cover a wide range of non-covalent interaction types, namely: (1 the hydrogen bond; (2 the halogen bond; (3 the tetrel bond; (4 the pnictogen bond; and (5 the chalcogen bond. Since there is no evidence that one group of non-covalent interaction was fitted any better than the others, it appears the equation is equally valid for all the interactions considered and that the values of N B and E A so determined define properties of the individual molecules. The values of N B and E A can be used to predict the dissociation energies of a wide range of binary complexes B⋯A with reasonable accuracy.

  8. [(Nitrato-κO,O')(nitrito-κO,O')(0.25/1.75)]bis-(1,10-phenanthroline-κN,N')cadmium(II).

    Science.gov (United States)

    Najafi, Ezzatollah; Amini, Mostafa M; Ng, Seik Weng

    2011-01-22

    The reaction of cadmium nitrate and sodium nitrite in the presence of 1,10-phenanthroline yields the mixed nitrate-nitrite title complex, [Cd(NO(2))(1.75)(NO(3))(0.25)(C(12)H(8)N(2))(2)]. The metal ion is bis-chelated by two N-heterocycles as well as by the nitrate/nitrite ions in a distorted dodeca-hedral CdN(4)O(4) coordination environment. One nitrite group is ordered; the other is disordered with respect to a nitrate group (ratio 0.75:0.25) concerning the O atom that is not involved in bonding to the metal ion.

  9. Bond-length strain in buried Ga1-xInxAs thin-alloy films grown coherently on InP(001)

    International Nuclear Information System (INIS)

    Woicik, J.C.; Gupta, J.A.; Watkins, S.P.; Crozier, E.D.

    1998-01-01

    The bond lengths in a series of strained, buried Ga 1-x In x As thin-alloy films grown coherently on InP(001) have been determined by high-resolution extended x-ray absorption fine-structure measurements. Comparison with a random-cluster calculation demonstrates that the external in-plane epitaxial strain imposed by pseudomorphic growth opposes the natural bond-length distortions due to alloying.copyright 1998 American Institute of Physics

  10. Hindered Csbnd N bond rotation in triazinyl dithiocarbamates

    Science.gov (United States)

    Jung, Taesub; Do, Hee-Jin; Son, Jongwoo; Song, Jae Hee; Cha, Wansik; Kim, Yeong-Joon; Lee, Kyung-Koo; Kwak, Kyungwon

    2018-01-01

    The substituent and solvent effects on the rotation around a Csbnd N amide bond were studied for a series of triazine dibenzylcarbamodithioates. The Gibbs free energies (ΔG‡) were measured to be 16-18 kcal/mol in DMSO-d6 and toluene-d8 using variable-temperature nuclear magnetic resonance (VT-1H NMR) spectroscopy. Density functional theory (DFT) calculations reproduced the experimental observations with various substituents, as well as solvents. From the detailed analysis of the DFT results, we found that the electron donating dibenzyl amine group increased the electron population on the triazinyl ring, which decreased the rotational barrier of the Csbnd N bond in the dithiocarbamate group attached to the triazinyl ring. The higher electron population on the triazine moiety stabilizes the partial double bond character of the Ssbnd C bond, which competitively excludes the double bond character of the Csbnd N bond. Therefore, the rotational dynamics of the Csbnd N bond in dithiocarbamates can be a sensitive probe to small differences in the electron population of substituents on sulfur.

  11. trans-Bis(N,N-diethylethylenediaminenickel(II dibromide

    Directory of Open Access Journals (Sweden)

    James P. Donahue

    2011-01-01

    Full Text Available The structure of the title compound, [Ni(C6H16N22]Br2 or [Ni(Et2en2]Br2 (Et2en is asymmetric N,N-diethylethylenediamine, containing an NiII atom (site symmetry overline{1} in square-planar NiN4 coordination, is described and contrasted with related structures containing NiII in octahedral coordination with axial X− ligands (X− = variable anions. The dialkylated N atom has an appreciably longer bond length to the NiII atom [1.9666 (13 Å] than does the unsubstituted N atom [1.9202 (14 Å]. The Ni—N bond lengths in [Ni(Et2en2]Br2 are significantly shorter than corresponding values in tetragonally distorted [Ni(Et2en2X2] compounds (X = −O2CCF3, OH2, or −NCS, which have a triplet ground state. The electronic configuration in these axially ligated [Ni(Et2en2X2] compounds populates the metal-based dx2-y2 orbital, which is Ni—N antibonding in character. Each Et2en ligand in each [Ni(Et2en2]2+ cation forms a pair of N—H...Br hydrogen bonds to the Br− anions, one above and below the NiN4 square plane. Thus, a ribbon of alternating Br− pairs and [Ni(Et2en2]2+ cations that are canted at 65° relative to one another is formed by hydrogen bonds.

  12. (Carbonato-κ(2)O,O')bis-(5,5'-dimethyl-2,2'-bipyridyl-κ(2)N,N')cobalt(III) bromide trihydrate.

    Science.gov (United States)

    Arun Kumar, Kannan; Meera, Parthsarathi; Amutha Selvi, Madhavan; Dayalan, Arunachalam

    2012-04-01

    In the title complex, [Co(CO(3))(C(12)H(12)N(2))(2)]Br·3H(2)O, the Co(III) cation has a distorted octa-hedral coordination environment. It is chelated by four N atoms of two different 5,5'-dimethyl-2,2'-bipyridyl (dmbpy) ligands in axial and equatorial positions, and by two O atoms of a carbonate anion completing the equatorial positions. Although the water mol-ecules are disordered and their H atoms were not located, there are typical O⋯O distances between 2.8 and 3.0 Å, indicating O-H⋯O hydrogen bonding. The crystal packing is consolidated by C-H⋯O and C-H⋯Br hydrogen bonds, as well as π-π stacking inter-actions between adjacent pyridine rings of the dmbpy ligands, with centroid-centroid distances of 3.694 (3) and 3.7053 (3) Å.

  13. Chemical Bond Parameters in Sr3MRhO6 (M=Rare earth)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chemical bond parameters, that is, bond covalency, bond valence, macroscopic linear susceptibility, and oxidation states of elements in Sr3MRhO6 (M=Sm, Eu, Tb, Dy, Ho, Er, Yb) have been calculated. The results indicate that the bond covalency of M-O decreases sharply with the decrease of ionic radius of M3+ from Sm to Yb, while no obvious trend has been found for Rh-O and Sr-O bonds. The global instability index indicates that the crystal structures of Sr3MrhO6 (M = Sm, Eu, Tb, Dy, Ho) have strained bonds.

  14. Fine hierarchy of the V-O bonds by advanced solid state NMR: novel Pb4(VO2)(PO4)3 structure as a textbook case.

    Science.gov (United States)

    Tricot, Grégory; Mentré, Olivier; Cristol, Sylvain; Delevoye, Laurent

    2012-12-17

    We report here a complete structural characterization of a new lead Pb(4)(VO(2))(PO(4))(3) vanadophosphate compound by single crystal X-ray diffraction and (51)V and (31)P solid-state NMR spectroscopy. Although structural data are commonly used for the estimation of bond lengths and further delimitation of the true coordination number (e.g., octahedral: 6 versus 5 + 1 versus 4 + 2), we show here for the first time by solid-state NMR a more accurate appreciation of the V-O bonding scheme in this complex oxide which appears well adapted to the full series of vanado-phosphate materials. The direct characterization of V-O-P bridges through the J-mediated correlation (51)V{(31)P} heteronuclear multiple quantum coherence (J-HMQC) technique allows a contrasted hierarchy of the V-O electronic delocalization and indirectly supports the presence or not of the V-O bond. In the reported lead vanado-phosphate structure, the two vanadium polyhedra that have been assigned to octahedra from a bond length point of view have been finally reclassified as tetra- and penta-coordinated units on the basis of the solid-state NMR results. More generally, we believe that the improved characterization of interatomic bonds in various vanado-phosphate structures by solid-state NMR will contribute to a better understanding of the structure/property relationships in this important class of materials.

  15. Theoretical study of the mechanism of formation of a chemical bond between two ions: A+ and B+. Application to CO++. Interpretation of N2O++ photo-dissociation mechanisms

    International Nuclear Information System (INIS)

    Levasseur, Nathalie

    1989-01-01

    This research thesis reports the theoretical study of the mechanism of formation of a chemical bond between two positively charged species, within the frame of the valence-bond theory and in the CO model case. The analysis in terms of orthogonal and non orthogonal orbitals leads to two very different interpretations, and allows potential curves of doubly charged diatomic ions to be simply explained, the generally evoked model to be put into question again, and a predictive model to be developed. The theoretical determination of N 2 O potential energy surfaces and of the first states of N 2 O ++ ( 3 Σ - , 1 Δ, 1 Σ + et 3 Π) allowed experimental results of N 2 O ++ photo-dissociation to be at least qualitatively understood and interpreted. Moreover, the study of electronic configurations involved in dissociation, showed that the model elaborated for a diatomic molecule is also valid for a triatomic system [fr

  16. N-Benzyl-N-[2-(N-benzyl-N′,N′,N′′,N′′-tetramethylguanidiniumylethyl]-N′,N′,N′′,N′′-tetramethylguanidinium dibromide 1.5-hydrate

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2016-01-01

    Full Text Available The asymmetric unit of the hydrated title compound, C26H42N62+·2Br−·1.5H2O, comprises one cation, two bromide anions and one and a half water molecules, as one water molecule is fully occupied and the other is only half occupied [0.500 (6]. Both bromide ions are disordered over two sites with refined occupancies of 0.938 (3:0.062 (3 and 0.520 (9:0.480 (9. The C—N bond lengths in both central C3N units of the bisguanidinium ion range between 1.336 (3 and 1.349 (3 Å, indicating a degree of double-bond character. The central C atoms are bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charges are delocalized in both CN3 planes. The crystal structure is stabilized by a three-dimensional network of O—H...O, O—H...Br and C—H...Br hydrogen bonds.

  17. Nb 3d and O 1s core levels and chemical bonding in niobates

    International Nuclear Information System (INIS)

    Atuchin, V.V.; Kalabin, I.E.; Kesler, V.G.; Pervukhina, N.V.

    2005-01-01

    A set of available experimental data on binding energies of Nb 3d 5/2 and O 1s core levels in niobates has been observed with using energy difference (O 1s-Nb 3d 5/2 ) as a robust parameter for compound characterization. An empirical relationship between (O 1s-Nb 3d 5/2 ) values measured with XPS for Nb 5+ -niobates and mean chemical bond length L(Nb-O) has been discussed. A range of (O 1s-Nb 3d 5/2 ) values possible in Nb 5+ -niobates has been defined. An energy gap ∼1.4-1.8 eV is found between (O 1s-Nb 3d 5/2 ) values reasonable for Nb 5+ and Nb 4+ states in niobates

  18. μ-Adipato-κ2O1:O4-bis{[2,6-bis(1H-benzimidazol-2-yl-κN3pyridine-κN](nitrato-κOlead(II}

    Directory of Open Access Journals (Sweden)

    Lian-Qiang Wei

    2010-01-01

    Full Text Available The dinuclear title compound, [Pb2(C6H8O4(NO32(C19H13N52], lies with the mid-point of the butyl chain of the bridging adipate unit on a center of inversion. The PbII ion is covalently bonded to the nitrate anion and is bonded to a carboxylate group of the adipate unit by another covalent bond. The N-heterocycle functions in a chelating tridentate mode. The metal atom exists in a Ψ-octahedral coordination environment. When weaker Pb...O interactions are also considered, the geometry is a Ψ-tricapped trigonal prism in which the lone-pair electrons occupy one face of the trigonal prism. Adjacent molecules are linked into a layer structure by N—H...O hydrogen bonds.

  19. Directionality of Cation/Molecule Bonding in Lewis Bases Containing the Carbonyl Group.

    Science.gov (United States)

    Valadbeigi, Younes; Gal, Jean-François

    2017-09-14

    Relationship between the C═O-X + (X = H, Li, Na, K, Al, Cu) angle and covalent characteristic of the X + -M (M = CH 2 O, CH 3 CHO, acetone, imidazol-2-one (C 2 H 2 N 2 O), cytosine, γ-butyrolactone) was investigated, theoretically. The calculated electron densities ρ at the bond critical points revealed that the covalency of the M-X + interaction depended on the nature of the cation and varied as H + > Cu + > Al + > Li + > Na + > K + . The alkali cations tended to participate in electrostatic interactions and aligned with the direction of the molecule dipole or local dipole of C═O group to form linear C═O-X geometries. Because of overlapping with lone-pair electrons of the sp 2 carbonyl oxygen, the H + and Cu + formed a bent C═O-X angle. Al + displayed an intermediate behavior; the C═O-Al angle was 180° in [CH 2 O/Al] + (mainly electrostatic), but when the angle was bent (146°) under the effect of local dipole of an adjacent imine group in cytosine, the covalency of the CO-Al + interaction increased. The C═O-X angles in M/X + adduct ions were scanned in different O-X bond lengths. It was found that the most favorable C═O-X angle depended on the O-X bond length. This dependency was attributed to variation of covalent and electrostatic contributions with O-X distance. In addition, the structures of [CH 2 S/X] + and [CH 2 Se/X] + were studied, and only bent C═S-X and C═Se-X angles were obtained for all cations, although the dipole vectors of CH 2 S and CH 2 Se coincide with the C═S and C═Se bonds. The bending of the C═S-X and C═Se-X angles was attributed to the covalent characteristic of S-X and Se-X interactions due to high polarizability of S and Se atoms.

  20. Silylene-Nickel Promoted Cleavage of B-O Bonds: From Catechol Borane to the Hydroborylene Ligand.

    Science.gov (United States)

    Hadlington, Terrance J; Szilvási, Tibor; Driess, Matthias

    2017-06-19

    The first 16 valence electron [bis(NHC)](silylene)Ni 0 complex 1, [( TMS L)ClSi:→Ni(NHC) 2 ], bearing the acyclic amido-chlorosilylene ( TMS L)ClSi: ( TMS L=N(SiMe 3 )Dipp; Dipp=2,6-Pr i 2 C 6 H 4 ) and two NHC ligands (N-heterocyclic carbene=:C[(Pr i )NC(Me)] 2 ) was synthesized in high yield and structurally characterized. Compound 1 is capable of facile dihydrogen activation under ambient conditions to give the corresponding HSi-NiH complex 2. Most notably, 1 reacts with catechol borane to afford the unprecedented hydroborylene-coordinated (chloro)(silyl)nickel(II) complex 3, {[cat( TMS L)Si](Cl)Ni←:BH(NHC) 2 }, via the cleavage of two B-O bonds and simultaneous formation of two Si-O bonds. The mechanism for the formation of 3 was rationalized by means of DFT calculations, which highlight the powerful synergistic effects of the Si:→Ni moiety in the breaking of incredibly strong B-O bonds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A two-dimensional CdII coordination polymer: poly[diaqua[μ3-5,6-bis(pyridin-2-ylpyrazine-2,3-dicarboxylato-κ5O2:O3:O3,N4,N5]cadmium

    Directory of Open Access Journals (Sweden)

    Monserrat Alfonso

    2016-09-01

    Full Text Available The reaction of 5,6-bis(pyridin-2-ylpyrazine-2,3-dicarboxylic acid with cadmium dichloride leads to the formation of the title two-dimensional coordination polymer, [Cd(C16H8N4O4(H2O2]n. The metal atom is sevenfold coordinated by one pyrazine and one pyridine N atom, two water O atoms, and by two carboxylate O atoms, one of which bridges two CdII atoms to form a Cd2O2 unit situated about a centre of inversion. Hence, the ligand coordinates to the cadmium atom in an N,N′,O-tridentate and an O-monodentate manner. Within the polymer network, there are a number of O—H...O hydrogen bonds present, involving the water molecules and the carboxylate O atoms. There are also C—H...N and C—H...O hydrogen bonds present. In the crystal, the polymer networks lie parallel to the bc plane. They are aligned back-to-back along the a axis with the non-coordinating pyridine rings directed into the space between the networks.

  2. Incorporation of TiO2 nanotubes in a polycrystalline zirconia: Synthesis of nanotubes, surface characterization, and bond strength.

    Science.gov (United States)

    Dos Santos, Angélica Feltrin; Sandes de Lucena, Fernanda; Sanches Borges, Ana Flávia; Lisboa-Filho, Paulo Noronha; Furuse, Adilson Yoshio

    2018-04-05

    Despite numerous advantages such as high strength, the bond of yttria-stabilized zirconia polycrystal (Y-TZP) to tooth structure requires improvement. The purpose of this in vitro study was to evaluate the incorporation of TiO 2 nanotubes into zirconia surfaces and the bond strength of resin cement to the modified ceramic. TiO 2 nanotubes were produced by alkaline synthesis, mixed with isopropyl alcohol (50 wt%) and applied on presintered zirconia disks. The ceramics were sintered, and the surfaces were characterized by confocal laser microscopy, scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDS) analysis. For bond strength, the following 6 groups (n=16) were evaluated: without TiO 2 and Single Bond Universal; with TiO 2 nanotubes and Single Bond Universal; without TiO 2 nanotubes and Z-prime; with TiO 2 nanotubes and Z-prime; without TiO 2 and Signum Zirconia Bond; with TiO 2 and Signum Zirconia Bond. After sintering, resin cement cylinders, diameter of 1.40 mm and 1 mm in height, were prepared and polymerized for 20 seconds. Specimens were stored in water at 37°C for 30 days and submitted to a shear test. Data were analyzed by 2-way ANOVA and Tukey honest significant difference (α=.05) tests. EDS analysis confirmed that nanoagglomerates were composed of TiO 2 . The shear bond strength showed statistically significant differences among bonding agents (P<.001). No significant differences were found with the application of nanotubes, regardless of the group analyzed (P=.682). The interaction among the bonding agent factors and addition of nanotubes was significant (P=.025). Nanotubes can be incorporated into zirconia surfaces. However, this incorporation did not improve bond strength. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Hydrogen bond interactions in sulfamerazine: DFT study of the O-17, N-14, and H-2 electric field gradient tensors

    International Nuclear Information System (INIS)

    Aghazadeh, Mustafa; Mirzaei, Mahmoud

    2008-01-01

    Hydrogen bond (HB) interactions are studied in the real crystalline structure of sulfamerazine by density functional theory (DFT) calculations of the electric field gradient (EFG) tensors at the sites of O-17, N-14, and H-2 nuclei. One-molecule (single) and four-molecule (cluster) models of sulfamerazine are created by available crystal coordinates and the EFG tensors are calculated in both models to indicate the influence of HB interactions on the tensors. Directly relate to the experiments, the calculated EFG tensors are converted to the experimentally measurable nuclear quadrupole resonance (NQR) parameters, quadrupole coupling constant (qcc) and asymmetry parameter (η Q ). The evaluated NQR parameters reveal that due to contribution of the target molecule to N-H...N and N-H...O types of HB interactions, the EFG tensors at the sites of various nuclei are influenced from single model to the target molecule in cluster. Additionally, O2, N4, and H2 nuclei of the target molecule are significantly influenced by HB interactions, consequently, they have the major contributions to HB interactions in cluster model of sulfamerazine. The calculations are performed employing B3LYP method and 6-311++G** basis set using GAUSSIAN 98 suite of program

  4. Dependence of the length of the hydrogen bond on the covalent and cationic radii of hydrogen, and additivity of bonding distances

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Raji

    2006-01-01

    Roč. 432, č. 1-3 (2006), s. 348-351 ISSN 0009-2614 R&D Projects: GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507 Keywords : length of the hydrogen bond * ionic radius * Golden ratio Subject RIV: BO - Biophysics Impact factor: 2.462, year: 2006

  5. O envolvimento do pai na gravidez/parto e a ligação emocional com o bebé La participación del padre en el embarazo/parto y el vínculo emocional con el bebé Father’s involvement in pregnancy/childbirth and the emotional bond with the baby

    Directory of Open Access Journals (Sweden)

    João Rui Duarte Farias Nogueira

    2012-12-01

    Full Text Available Enquadramento: a ligação emocional entre pai e filho é determinante na transição para a paternidade e no desenvolvimento do bebé. Objetivos: pretendemos verificar se existe relação entre as variáveis sóciodemográficas, o envolvimento na gravidez ou o corte do cordão umbilical com a ligação emocional do pai com o bebé. Metodologia: efetuámos um estudo transversal, quantitativo de caráter descritivo analítico. Aplicámos um questionário e a escala bonding validada para a população Portuguesa (Figueiredo et al., 2005, em três momentos diferentes (durante o trabalho de parto, no 1º e no 3º dia após o parto a 222 pais, entre novembro de 2010 e janeiro de 2011. Resultados: verificámos que a idade (entre 25 e 40 anos, o acompanhamento da grávida às consultas de vigilância da gravidez, o acompanhamento da grávida nos preparativos para o nascimento do bebé, a leitura de informação sobre o bebé em desenvolvimento, o envolvimento na gravidez e o corte do cordão umbilical influenciam positivamente a ligação emocional do pai com o bebé. Conclusão: os resultados apontam para uma melhoria na ligação afetiva entre o pai e o bebé se os profissionais de saúde promoverem o envolvimento do pai na gravidez e no parto.Marco: el vínculo emocional entre padre e hijo es crucial en la transición hacia la paternidad y el desarrollo del bebé.Objetivos: pretendemos verificar si existe una relación entre las variables sociodemográficas, la participación en el embarazo o el corte del cordón umbilical y el vínculo emocional entre el padre y el bebé. Metodología: se realizó un estudio transversal, cuantitativo, de corte descriptivo-analítico. Se aplicó un cuestionario y la escala de Bonding validado para la población portuguesa (Figueiredo et al., 2005, en tres momentos diferentes (durante el parto, durante el primer y el tercer día después del parto a 222 padres, entre noviembre 2010 y enero de 2011. Resultados: se

  6. Nucleophilicities of Lewis Bases B and Electrophilicities of Lewis Acids A Determined from the Dissociation Energies of Complexes B⋯A Involving Hydrogen Bonds, Tetrel Bonds, Pnictogen Bonds, Chalcogen Bonds and Halogen Bonds.

    Science.gov (United States)

    Alkorta, Ibon; Legon, Anthony C

    2017-10-23

    It is shown that the dissociation energy D e for the process B⋯A = B + A for 250 complexes B⋯A composed of 11 Lewis bases B (N₂, CO, HC≡CH, CH₂=CH₂, C₃H₆, PH₃, H₂S, HCN, H₂O, H₂CO and NH₃) and 23 Lewis acids (HF, HCl, HBr, HC≡CH, HCN, H₂O, F₂, Cl₂, Br₂, ClF, BrCl, H₃SiF, H₃GeF, F₂CO, CO₂, N₂O, NO₂F, PH₂F, AsH₂F, SO₂, SeO₂, SF₂, and SeF₂) can be represented to good approximation by means of the equation D e = c ' N B E A , in which N B is a numerical nucleophilicity assigned to B, E A is a numerical electrophilicity assigned to A, and c ' is a constant, conveniently chosen to have the value 1.00 kJ mol -1 here. The 250 complexes were chosen to cover a wide range of non-covalent interaction types, namely: (1) the hydrogen bond; (2) the halogen bond; (3) the tetrel bond; (4) the pnictogen bond; and (5) the chalcogen bond. Since there is no evidence that one group of non-covalent interaction was fitted any better than the others, it appears the equation is equally valid for all the interactions considered and that the values of N B and E A so determined define properties of the individual molecules. The values of N B and E A can be used to predict the dissociation energies of a wide range of binary complexes B⋯A with reasonable accuracy.

  7. cyclo-Tetrakis(μ-3-acetyl-4-methyl-1H-pyrazole-5-carboxylato-κ4N2,O3:N1,O5tetrakis[aquacopper(II] tetradecahydrate

    Directory of Open Access Journals (Sweden)

    Sergey Malinkin

    2011-09-01

    Full Text Available The title compound, [Cu4(C7H6N2O34(H2O4]·14H2O, a tetranuclear [2 × 2] grid-type complex with S4 symmetry, contains four CuII atoms which are bridged by four pyrazolecarboxylate ligand anions and are additionally bonded to a water molecule. Each CuII atom is coordinated by two O atoms of the carboxylate and acetyl groups, two pyrazole N atoms of doubly deprotonated 3-acetyl-4-methyl-1H-pyrazole-5-carboxylic acid and one O atom of a water molecule. The geometry at each CuII atom is distorted square-pyramidal, with the two N and two O atoms in the equatorial plane and O atoms in the axial positions. O—H...O hydrogen-bonding interactions additionally stabilize the structure. One of the uncoordinated water molecules shows half-occupancy.

  8. Nb 3d and O 1s core levels and chemical bonding in niobates

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V.V. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation)]. E-mail: atuchin@thermo.isp.nsc.ru; Kalabin, I.E. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Kesler, V.G. [Technical Center, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Pervukhina, N.V. [Laboratory of Crystal Chemistry, Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation)

    2005-02-01

    A set of available experimental data on binding energies of Nb 3d{sub 5/2} and O 1s core levels in niobates has been observed with using energy difference (O 1s-Nb 3d{sub 5/2}) as a robust parameter for compound characterization. An empirical relationship between (O 1s-Nb 3d{sub 5/2}) values measured with XPS for Nb{sup 5+}-niobates and mean chemical bond length L(Nb-O) has been discussed. A range of (O 1s-Nb 3d{sub 5/2}) values possible in Nb{sup 5+}-niobates has been defined. An energy gap {approx}1.4-1.8 eV is found between (O 1s-Nb 3d{sub 5/2}) values reasonable for Nb{sup 5+} and Nb{sup 4+} states in niobates.

  9. N-(N-[2-(3,5-Difluorophenyl)acetyl]-(S)-alanyl)-(S)-phenylglycine tert-butyl ester (DAPT): an inhibitor of γ-secretase, revealing fine electronic and hydrogen-bonding features

    Energy Technology Data Exchange (ETDEWEB)

    Czerwinski, Andrzej; Valenzuela, Francisco [Peptides International Inc., 11621 Electron Drive, Louisville, KY 40299 (United States); Afonine, Pavel [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Dauter, Miroslawa, E-mail: dauter@anl.gov [Basic Research Program, SAIC-Frederick Inc., Synchrotron Radiation Research Section, MCL, NCI, Argonne National Laboratory, Biosciences Division, Building 202, Argonne, IL 60439 (United States); Dauter, Zbigniew [Synchrotron Radiation Research Section, MCL, NCI, Argonne National Laboratory, Biosciences Division, Building 202, Argonne, IL 60439 (United States); Peptides International Inc., 11621 Electron Drive, Louisville, KY 40299 (United States)

    2010-12-01

    The title compound, C{sub 23}H{sub 26}F{sub 2}N{sub 2}O{sub 4}, is a dipeptidic inhibitor of γ-secretase, one of the enzymes involved in Alzheimer’s dis@@ease. The mol@@ecule adopts a compact conformation, without intra@@molecular hydrogen bonds. In the crystal structure, one of the amide N atoms forms the only inter@@molecular N—H⋯O hydrogen bond; the second amide N atom does not form hydrogen bonds. High-resolution synchrotron diffraction data permitted the unequivocal location and refinement without restraints of all H atoms, and the identification of the characteristic shift of the amide H atom engaged in the hydrogen bond from its ideal position, resulting in a more linear hydrogen bond. Significant residual densities for bonding electrons were revealed after the usual SHELXL refinement, and modeling of these features as additional inter@@atomic scatterers (IAS) using the program PHENIX led to a significant decrease in the R factor from 0.0411 to 0.0325 and diminished the r.m.s. deviation level of noise in the final difference Fourier map from 0.063 to 0.037 e Å{sup −3}.

  10. (Acetonitrile{2-[bis(pyridin-2-ylmethyl-κ2Namino-κN]-N-(2,6-dimethylphenylacetamide-κO}(perchlorato-κOzinc (acetonitrile{2-[bis(pyridin-2-ylmethyl-κ2Namino-κN]-N-(2,6-dimethylphenylacetamide-κO}zinc tris(perchlorate

    Directory of Open Access Journals (Sweden)

    Ove Alexander Høgmoen Åstrand

    2013-02-01

    Full Text Available In the title salt, [Zn(C22H24N4O(CH3CN][Zn(ClO4(C22H24N4O(CH3CN](ClO43, two differently coordinated zinc cations occur. In the first complex, the metal ion is coordinated by the N,N′,N′′,O-tetradentate acetamide ligand and an acetonitrile N atom, generating an approximate trigonal–bipyramidal coordination geometry, with the O atom in an equatorial site and the acetonitrile N atom in an axial site. In the second complex ion, a perchlorate ion is also bonded to the zinc ion, generating a distorted trans-ZnO2N4 octahedron. Of the uncoordinating perchlorate ions, one lies on a crystallographic twofold axis and one lies close to a twofold axis and has a site occupancy of 0.5. N—H...O and N—H...(O,O hydrogen bonds are observed in the crystal. Disordered solvent molecules occupy about 11% of the unit-cell volume; their contribution to the scattering was removed with the SQUEEZE routine of the PLATON program [Spek (2009. Acta Cryst. D65, 148–155.].

  11. Crystal structure of ({(1R,2R-N,N′-bis[(quinolin-2-ylmethyl]cyclohexane-1,2-diamine}chloridoiron(III-μ-oxido-[trichloridoferrate(III] chloroform monosolvate

    Directory of Open Access Journals (Sweden)

    Hannah Swift

    2017-07-01

    Full Text Available The first FeIII atom in the solvated title compound, [Fe2Cl4O(C26H28N4]·CHCl3, adopts a distorted six-coordinate octahedral geometry. It is coordinated by one chloride ligand, four N atoms from the (1R,2R-N,N′-bis[(quinolin-2-ylmethyl]cyclohexane-1,2-diamine ligand, and a bridging oxido ligand attached to the second FeIII atom, which is also bonded to three chloride ions. A very weak intramolecular N—H...Cl hydrogen bond occurs. In the crystal, the coordination complexes stack in columns, and a grouping of six such columns create channels, which are populated by disordered chloroform solvent molecules. Although the Fe—Cl bond lengths for the two metal atoms are comparable to the mean Fe—Cl bond lengths as derived from the Cambridge Structural Database, the Fe—O bond lengths are notably shorter. The solvent chloroform molecule exhibits `flip' disorder of the C—H moiety in a 0.544 (3:0.456 (3 ratio. The only directional interaction noted is a weak C—H...Cl hydrogen bond.

  12. The hydrogen bond between N-H or O-H and organic fluorine: favourable yes, competitive no.

    Science.gov (United States)

    Taylor, Robin

    2017-06-01

    A study was made of X-H...F-C interactions (X = N or O) in small-molecule crystal structures. It was primarily based on 6728 structures containing X-H and C-F and no atom heavier than chlorine. Of the 28 451 C-F moieties in these structures, 1051 interact with X-H groups. However, over three-quarters of these interactions are either the weaker components of bifurcated hydrogen bonds (so likely to be incidental contacts) or occur in structures where there is a clear insufficiency of good hydrogen-bond acceptors such as oxygen, nitrogen or halide. In structures where good acceptors are entirely absent, there is about a 2 in 3 chance that a given X-H group will donate to fluorine. Viable alternatives are X-H...π hydrogen bonds (especially to electron-rich aromatics) and dihydrogen bonds. The average H...F distances of X-H...F-C interactions are significantly shorter for CR 3 F (R = C or H) and Csp 2 -F acceptors than for CRF 3 . The X-H...F angle distribution is consistent with a weak energetic preference for linearity, but that of H...F-C suggests a flat energy profile in the range 100-180°. X-H...F-C interactions are more likely when the acceptor is Csp 2 -F or CR 3 F, and when the donor is C-NH 2 . They also occur significantly more often in structures containing tertiary alcohols or solvent molecules, or with Z' > 1, i.e. when there may be unusual packing problems. It is extremely rare to find X-H...F-C interactions in structures where there are several unused good acceptors. When it does happen, there is often a clear reason, e.g. awkwardly shaped molecules whose packing isolates a donor group from the good acceptors.

  13. O vínculo na atenção à saúde: revisão sistematizada na literatura, Brasil (1998-2007 El vínculo en la atención a la salud: revisión sistematizada en la literatura, Brasil (1998-2007 Bond in health care: a systematic review of literature in Brazil (1998-2007

    Directory of Open Access Journals (Sweden)

    Maria Eugênia Firmino Brunello

    2010-01-01

    Full Text Available O objetivo do estudo foi levantar produções científicas brasileiras que se relacionavam à dimensão vínculo na atenção primária à saúde. O estudo abrangeu o período de 1998 a 2007, a partir das bases de dados LILACS e SciELO por meio das palavras-chave: atenção primária à saúde, acolhimento, tuberculose (indexados, vínculo, adesão, saúde, atenção básica, longitudinalidade e abandono (não indexados. Foram selecionadas 50 produções que posteriormente foram categorizadas. Os achados mostraram que houve um interesse maior pela temática após o ano de 2004, predominando publicações em periódicos que valorizam a saúde coletiva e estudos que se inserem no nível primário de atenção. Entende-se que o vínculo é fator importante para a atenção à saúde e tende a melhorar o conhecimento dos reais problemas da população atendida pelos serviços, além de facilitar o relacionamento dos usuários com os profissionais que os atendem.El objetivo del estudio fue levantar producciones científicas brasileñas que se relacionaban con la dimensión vínculo en la atención primaria a la salud. El estudio abarcó el período de 1998 a 2007, a partir de las bases de datos LILACS y SciELO por medio de las palabras clave: atención primaria a la salud, acogimiento, tuberculosis (indexados, vínculo, adhesión, salud, atención básica, longitudinal y abandono (no indexados. Fueron seleccionadas 50 producciones que posteriormente fueron categorizadas. Los hallazgos mostraron que hubo un interés mayor por la temática después del año de 2004, predominando publicaciones en periódicos que valorizan la salud colectiva y estudios que se sitúan en el nivel primario de atención. Se entiende que el vínculo es un factor importante para la atención a la salud y tiende a mejorar el conocimiento de los reales problemas de la población atendida por los servicios, además de facilitar la relación de los usuarios con los profesionales

  14. Short Carboxylic Acid–Carboxylate Hydrogen Bonds Can Have Fully Localized Protons

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A.

    2017-01-17

    Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15–0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor–acceptor distance criteria for a LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [O–O> = 2.542(2) Å]. Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O–O distance with increasing H-bond donor pKa. This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid–carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs.

  15. TiO(2) doping by hydroxyurea at the nucleation stage: towards a new photocatalyst in the visible spectral range.

    Science.gov (United States)

    Azouani, R; Tieng, S; Chhor, K; Bocquet, J-F; Eloy, P; Gaigneaux, E M; Klementiev, K; Kanaev, A V

    2010-10-07

    We report an original method of preparation of OCN-doped TiO(2) for photocatalysis in the visible spectral range. The preparation is achieved by a sol-gel route using titanium tetraisopropoxide precursor. Special attention was paid to fluid micromixing, which enables homogeneous reaction conditions in the reactor bulk and monodispersity of the produced clusters/nanoparticles. The dopant hydroxyurea (HyU, CH(4)N(2)O(2)) is injected into the reactive fluid at the nucleation stage, which lasts tens of milliseconds. The doping results in a strong yellow coloration of the nanocolloids due to the absorption band in the spectral range 380-550 nm and accelerates the aggregation kinetics of both nuclei at the induction stage and sub-nuclei units (clusters) at the nucleation stage. FTIR, Raman and UV-visible absorption analyses show the formation of a stable HyU-TiO(2) complex. EXAFS spectra indicate no appreciable changes of the first-shell Ti atom environment. The doping agent takes available surface sites of TiO(2) clusters/nanoparticles attaining ∼10% molar loading. The reaction kinetics then accelerates due to a longer collisional lifetime between nanoparticles induced by the formation of a weak [double bond, length as m-dash]OTi bond. The OCN-group bonding to titanium atoms produces a weakening of the C[double bond, length as m-dash]O double bond and a strengthening of the C-N and N-O bonds.

  16. 4-N, 4-S & 4-O Chloroquine Analogues: Influence of Side Chain Length and Quinolyl Nitrogen pKa on Activity vs. Chloroquine Resistant Malaria+, #

    Science.gov (United States)

    Natarajan, Jayakumar K.; Alumasa, John; Yearick, Kimberly; Ekoue-Kovi, Kekeli A.; Casabianca, Leah B.; de Dios, Angel C.; Wolf, Christian; Roepe, Paul D.

    2009-01-01

    Using predictions from heme – quinoline antimalarial complex structures, previous modifications of chloroquine (CQ), and hypotheses for chloroquine resistance (CQR), we synthesize and assay CQ analogues that test structure – function principles. We vary side chain length for both monoethyl and diethyl 4N CQ derivatives. We alter the pKa of the quinolyl N by introducing alkylthio or alkoxy substituents into the 4 position, and vary side chain length for these analogues. We introduce an additional titratable amino group to the side chain of 4O analogues with promising CQR strain selectivity and increase activity while retaining selectivity. We solve atomic resolution structures for complexes formed between representative 4N, 4S and 4O derivatives vs. μ-oxo dimeric heme, measure binding constants for monomeric vs. dimeric heme, and quantify hemozoin (Hz) formation inhibition in vitro. The data provide additional insight for the design of CQ analogues with improved activity vs. CQR malaria. PMID:18512900

  17. Stability analysis and structural rules of titanium dioxide clusters (TiO2)n with n = 1-9

    International Nuclear Information System (INIS)

    Zhang Weiwei; Han Ye; Yao Shuyu; Sun Haiqing

    2011-01-01

    Highlights: · We investigated the structure and stability of (TiO 2 ) n clusters with n = 1-9. · Some initial structures are introduced and proved to be the real global minimum. · We summarized the structural rules for small (TiO 2 ) n clusters. · The bonding features for the energy increment or decrement of the clusters are investigated. · A general shift of stability and reactivity with size for (TiO 2 ) n clusters. - Abstract: Atomic clusters have been considered as models for fundamental mechanistic insight into complex surfaces and catalysts. The structure and stability of (TiO 2 ) n clusters with n = 1-9 are investigated using the b3lyp hybrid density functional method in this paper. Some of the clusters are proposed initially and proved to be the real global minima. The stability and band gap of the clusters as a function of size are also investigated. The structural rules of the clusters are first summarized. The lowest-lying (TiO 2 ) n isomers tend to form some compact rather than quasi-linear or circular structures. The oxygen atom in 4-fold coordination and the titanium atom in 4-fold coordination favor the cluster stability. The 5-fold coordinated Ti-atom, the Ti-Ti bond and the terminal Ti-O bond lead to stability penalty for the clusters. No evidence for a regular variation in stability or reactivity with size of the clusters has shown. The structural rules can serve as guiding factors for formation research and structure design of (TiO 2 ) n and other transition metal oxide clusters.

  18. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol.

    Science.gov (United States)

    Zhao, Hailiang; Tang, Shanshan; Xu, Xiang; Du, Lin

    2016-12-30

    Amides are important atmospheric organic-nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH) with amides (formamide, N -methylformamide, N , N -dimethylformamide, acetamide, N -methylacetamide and N , N -dimethylacetamide) have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH-amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O-H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components.

  19. (Carbonato-κO,O')bis-(di-2-pyridyl-amine-κN,N')cobalt(III) bromide.

    Science.gov (United States)

    Czapik, Agnieszka; Papadopoulos, Christos; Lalia-Kantouri, Maria; Gdaniec, Maria

    2011-04-01

    In the title compound, [Co(CO(3))(C(10)H(9)N(3))(2)]Br, a distorted octa-hedral coordination of the Co(III) atom is completed by four N atoms of the two chelating di-2-pyridyl-amine ligands and two O atoms of the chelating carbonate anion. The di-2-pyridyl-amine ligands are nonplanar and the dihedral angles between the 2-pyridyl groups are 29.11 (9) and 37.15 (12)°. The coordination cation, which has approximate C(2) symmetry, is connected to the bromide ion via an N-H⋯Br(-) hydrogen bond. The ionic pair thus formed is further assembled into a dimer via N-H⋯O inter-actions about an inversion centre. A set of weaker C-H⋯O and C-H⋯Br(-) inter-actions connect the dimers into a three-dimensional network.

  20. Mechanical properties investigation on single-wall ZrO2 nanotubes: A finite element method with equivalent Poisson's ratio for chemical bonds

    Science.gov (United States)

    Yang, Xiao; Li, Huijian; Hu, Minzheng; Liu, Zeliang; Wärnå, John; Cao, Yuying; Ahuja, Rajeev; Luo, Wei

    2018-04-01

    A method to obtain the equivalent Poisson's ratio in chemical bonds as classical beams with finite element method was proposed from experimental data. The UFF (Universal Force Field) method was employed to calculate the elastic force constants of Zrsbnd O bonds. By applying the equivalent Poisson's ratio, the mechanical properties of single-wall ZrNTs (ZrO2 nanotubes) were investigated by finite element analysis. The nanotubes' Young's modulus (Y), Poisson's ratio (ν) of ZrNTs as function of diameters, length and chirality have been discussed, respectively. We found that the Young's modulus of single-wall ZrNTs is calculated to be between 350 and 420 GPa.

  1. Structural and magnetic properties of Mg doped YbMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sattibabu, Bhumireddi, E-mail: bsb.satti@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Bhatnagar, Anil K., E-mail: anilb42@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); School of Physics, University of Hyderabad, Hyderabad 500046 (India); Rayaprol, Sudhindra [UGC-DAE CSR, Mumbai Centre, R-5 Shed, BARC, Mumbai 400085 (India); Mohan, Dasari; Das, Dibakar; Sundararaman, Mahadevan [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Siruguri, Vasudeva [UGC-DAE CSR, Mumbai Centre, R-5 Shed, BARC, Mumbai 400085 (India)

    2014-09-01

    We have studied the effect of Mg doping on structure and magnetism of multiferroic YbMnO{sub 3}. Room temperature neutron diffraction studies were carried out on polycrystalline Yb{sub 1−x}Mg{sub x}MnO{sub 3} (x=0.00 and 0.05) samples to determine phase formation as well as cation distribution and structural properties such as bond length and bond angles. The structural analysis shows that with Mg substitution, there is a marginal change in a and c parameters of the hexagonal unit cell, c/a ratio remains constant for x=0 and 0.05 samples. Due to changes in bond angle and bond lengths on substituting Mg, there is a slight decrease in the distortion of MnO{sub 5} polyhedra. Magnetic measurements show that the Néel temperature (T{sub N}) increases marginally from 85 K for x=0.00 to 89 K for x=0.05 sample.

  2. Size-dependent disproportionation (in 2-20 nm regime) and hybrid Bond Valence derived interatomic potentials for BaTaO2N

    Science.gov (United States)

    Anbalagan, Kousika; Thomas, Tiju

    2018-05-01

    Interatomic potentials for complex materials (like ceramic systems) are important for realistic molecular dynamics (MD) simulations. Such simulations are relevant for understanding equilibrium, transport and dynamical properties of materials, especially in the nanoregime. Here we derive a hybrid interatomic potential (based on bond valence (BV) derived Morse and Coulomb terms), for modeling a complex ceramic, barium tantalum oxynitride (BaTaO2N). This material has been chosen due to its relevance for capacitive and photoactive applications. However, the material presents processing challenges such as the emergence of non-stoichiometric phases during processing, demonstrating complex processing-property correlations. This makes MD investigations of this material both scientifically and technologically relevant. The BV based hybrid potential presented here has been used for simulating sintering of BaTaO2N nanoparticles ( 2-20 nm) under different conditions (using the relevant canonical ensemble). Notably, we show that sintering of particles of diameter 10 nm in size results in the formation of a cluster of tantalum and oxygen atoms at the interface of the BaTaO2N particles. This is in agreement with the experimental reports. The results presented here suggest that the potential proposed can be used to explore dynamical properties of BaTaO2N and related systems. This work will also open avenues for development of nanoscience-enabled aid-free sintering approaches to this and related materials.

  3. μ-Oxalato-κ4O1,O2:O1′,O2′-bis[aqua(2,2′-bipyridine-κN(nitrato-κ2O,O′lead(II

    Directory of Open Access Journals (Sweden)

    Gang-Hong Pan

    2012-10-01

    Full Text Available The title compound, [Pb2(C2O4(NO32(C10H8N22(H2O2], was synthesized hydrothermally. The binuclear complex molecule is centrosymmetric, the inversion centre being located at the mid-point of the oxalate C—C bond. The PbII ion is heptacoordinated by the O atom of one water molecule, two oxalate O atoms, two nitrate O atoms and two 2,2′-bipyridine N atoms, forming an irregular coordination environemnt. Intermolecular O—H...O hydrogen bonds between water molecules and oxalate and nitrate ions result in the formation of layers parallel to (010. π–π interactions between pyridine rings in adjacent layers, with centroid–centroid distances of 3.584 (2 Å, stabilize the structural set-up.

  4. Aqua{2-(pyridin-2-yl-N-[(pyridin-2-ylmethylidene]ethanamine-κ3N,N′,N′′}(sulfato-κ2O,O′copper(II tetrahydrate

    Directory of Open Access Journals (Sweden)

    Daniel Tinguiano

    2013-01-01

    Full Text Available The title complex, [Cu(SO4(C13H13N3(H2O]·4H2O, was obtained by mixing copper sulfate pentahydrate and 2-(pyridin-2-yl-N-(pyridin-2-ylmethylideneethanamine in ethanol under reflux conditions. The CuII ion shows a Jahn–Teller-distorted octahedral geometry, with equatorial positions occupied by three N atoms from the tridentate ligand (average Cu—N = 2.004 Å and one O atom from a bidentate sulfate anion [Cu—O = 1.963 (2 Å]. The axial positions are occupied by one O atom from a coordinating water molecule [Cu—O = 2.230 (3 Å] and one weakly bonded O atom [Cu—O = 2.750 (2 Å] from the bidentate sulfate ion. The complex molecules are connected through O—H...O hydrogen bonds between the coordinating water molecules and sulfate ions from neighboring complexes, forming a double chain parallel to the c axis. The chains are stabilized through additional hydrogen bonds by one of the non-coordinating water molecules bridging between neighboring strands of the double chains. The remaining three water molecules fill the interstitial space between the double chains and are involved in an intricate hydrogen-bonding network that consolidates the structure.

  5. (Carbonato-κO,O')bis-(1,10-phenan-throline-κN,N')cobalt(III) nitrate monohydrate.

    Science.gov (United States)

    Andaç, Omer; Yolcu, Zuhal; Büyükgüngör, Orhan

    2009-12-12

    The crystal structure of the title compound, [Co(CO(3))(C(12)H(8)N(2))(2)]NO(3)·H(2)O, consists of Co(III) complex cations, nitrate anions and uncoordinated water mol-ecules. The Co(III) cation is chelated by a carbonate anion and two phenanthroline ligands in a distorted octa-hedral coordination geometry. A three-dimensional supra-molecular structure is formed by O-H⋯O and C-H⋯O hydrogen bonding, C-H⋯π and aromatic π-π stacking [centroid-centroid distance = 3.995 (1)Å] inter-actions.

  6. Comparative study on direct and indirect bracket bonding techniques regarding time length and bracket detachment

    Directory of Open Access Journals (Sweden)

    Jefferson Vinicius Bozelli

    2013-12-01

    Full Text Available OBJECTIVE: The aim of this study was to assess the time spent for direct (DBB - direct bracket bonding and indirect (IBB - indirect bracket bonding bracket bonding techniques. The time length of laboratorial (IBB and clinical steps (DBB and IBB as well as the prevalence of loose bracket after a 24-week follow-up were evaluated. METHODS: Seventeen patients (7 men and 10 women with a mean age of 21 years, requiring orthodontic treatment were selected for this study. A total of 304 brackets were used (151 DBB and 153 IBB. The same bracket type and bonding material were used in both groups. Data were submitted to statistical analysis by Wilcoxon non-parametric test at 5% level of significance. RESULTS: Considering the total time length, the IBB technique was more time-consuming than the DBB (p < 0.001. However, considering only the clinical phase, the IBB took less time than the DBB (p < 0.001. There was no significant difference (p = 0.910 for the time spent during laboratorial positioning of the brackets and clinical session for IBB in comparison to the clinical procedure for DBB. Additionally, no difference was found as for the prevalence of loose bracket between both groups. CONCLUSION: the IBB can be suggested as a valid clinical procedure since the clinical session was faster and the total time spent for laboratorial positioning of the brackets and clinical procedure was similar to that of DBB. In addition, both approaches resulted in similar frequency of loose bracket.

  7. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Bonding in O3 and SO2.

    Science.gov (United States)

    Takeshita, Tyler Y; Lindquist, Beth A; Dunning, Thom H

    2015-07-16

    There are many well-known differences in the physical and chemical properties of ozone (O3) and sulfur dioxide (SO2). O3 has longer and weaker bonds than O2, whereas SO2 has shorter and stronger bonds than SO. The O-O2 bond is dramatically weaker than the O-SO bond, and the singlet-triplet gap in SO2 is more than double that in O3. In addition, O3 is a very reactive species, while SO2 is far less so. These disparities have been attributed to variations in the amount of diradical character in the two molecules. In this work, we use generalized valence bond (GVB) theory to characterize the electronic structure of ozone and sulfur dioxide, showing O3 does indeed possess significant diradical character, whereas SO2 is effectively a closed shell molecule. The GVB results provide critical insights into the genesis of the observed difference in these two isoelectronic species. SO2 possesses a recoupled pair bond dyad in the a"(π) system, resulting in SO double bonds. The π system of O3, on the other hand, has a lone pair on the central oxygen atom plus a pair of electrons in orbitals on the terminal oxygen atoms that give rise to a relatively weak π interaction.

  8. Ferromagnetism in 4H-GaN polytype doped by non-magnetic light elements Li, Be, B, C, O, F, Ne, Na, and Mg: Ab-initio study

    International Nuclear Information System (INIS)

    Torrichi, M.; Ferhat, M.; Bouhafs, B.

    2016-01-01

    Using density-functional theory within the generalized-gradient approximation, we explore the magnetic behavior induced by nonmagnetic impurity X atoms, such as Li, Be, B, C, O, F, Ne, Na, and Mg on cation site in 4H-GaN polytype. The results reveal that Ne doped 4H-GaN has the highest magnetic moment of 3µ B , whereas Mg doped 4H-GaN has the lowest magnetic moment of 0.75µ B . Among the systems studied 4H-GaN doped Ne has been found to be half-metallic, whereas 4H-GaN doped F and Na are found to be nearly half-metallic. The partial density of states evidence that magnetism is achieved through a p-p like coupling between the impurity and the host 2p states. Furthermore, we inspect whether there exists a relationship between the spin-polarization and the local structure around the doping X atoms. It is found that for all the compounds studied, the total magnetic moment increases with increasing the X–N bond lengths. Interestingly, 4H-GaN:Be becomes ferromagnetic with increasing the Be–N bond length, whereas 4H-GaN:Na and 4H-GaN:F become half-metallic with increasing Na–N and F–N bond lengths. - Highlights: • The partial densities of states of 4H-GaN polytype doped light nonmagnetic elements have been investigated. • We found that 4H-GaN:Ne is half metallic. • We found that N atoms induced strong local magnetic. • We found that doping with half-filled X-s impurity states promotes ferromagnetism. • We found that doping with full-filled X-s impurity annihilates ferromagnetism.

  9. Substituent Effects on the Hydrogen Bonding between 4-Substituted Phenols and HF, H2O, NH3

    Institute of Scientific and Technical Information of China (English)

    程宇辉; 傅尧; 刘磊; 郭庆祥

    2003-01-01

    Density function theory UB3LYP/6-31+g(d) calculations were performed to study the hydrogen bonds between para-substituted phenols and HF, H2O, or NH3. It revealed that many properties of the non-covalent complexes, such as the interaction energies, donor-acceptor distances, bond lengths and vibration frequencies, showed well-defined substituent effects. Therefore, from the substituent effects not only the mechanism of a certain non-covalent interaction can be better understood, but also the interaction energies and structures of a certain non-covalent complex, which otherwise might be very hard or resource-consuming to estimate, can be easily predicted.

  10. Crystal structure of tetraaqua(5,5′-dimethyl-2,2′-bipyridyl-κ2N,N′iron(II sulfate

    Directory of Open Access Journals (Sweden)

    Yamine Belamri

    2014-12-01

    Full Text Available In the title compound, [Fe(C12H12N2(H2O4]SO4, the central FeII ion is coordinated by two N atoms from the 5,5′-dimethyl-2,2′-bipyridine ligand and four water O atoms in a distorted octahedral geometry. The Fe—O coordination bond lengths vary from 2.080 (3 to 2.110 (3 Å, while the two Fe—N coordination bonds have practically identical lengths [2.175 (3 and 2.177 (3 Å]. The chelating N—Fe—N angle of 75.6 (1° shows the largest deviation from an ideal octahedral geometry; the other coordination angles deviate from ideal values by 0.1 (1 to 9.1 (1°. O—H...O hydrogen bonding between the four aqua ligands of the cationic complex and four O-atom acceptors of the anion leads to the formation of layers parallel to the ab plane. Neighbouring layers further interact by means of C—H...O and π–π interactions involving the laterally positioned bipyridine rings. The perpendicular distance between π–π interacting rings is 3.365 (2 Å, with a centroid–centroid distance of 3.702 (3 Å.

  11. Crystal structure of bis-(μ-3-nitro-benzoato)-κ3O,O':O;κ3O:O,O'-bis-[bis-(3-cyano-pyridine-κN1)(3-nitro-benzoato-κ2O,O')cadmium].

    Science.gov (United States)

    Hökelek, Tuncer; Akduran, Nurcan; Özen, Azer; Uğurlu, Güventürk; Necefoğlu, Hacali

    2017-03-01

    The asymmetric unit of the title compound, [Cd 2 (C 7 H 4 NO 4 ) 4 (C 6 H 4 N 2 ) 4 ], contains one Cd II atom, two 3-nitro-benzoate (NB) anions and two 3-cyano-pyridine (CPy) ligands. The two CPy ligands act as monodentate N(pyridine)-bonding ligands, while the two NB anions act as bidentate ligands through the carboxyl-ate O atoms. The centrosymmetric dinuclear complex is generated by application of inversion symmetry, whereby the Cd II atoms are bridged by the carboxyl-ate O atoms of two symmetry-related NB anions, thus completing the distorted N 2 O 5 penta-gonal-bipyramidal coordination sphere of each Cd II atom. The benzene and pyridine rings are oriented at dihedral angles of 10.02 (7) and 5.76 (9)°, respectively. In the crystal, C-H⋯N hydrogen bonds link the mol-ecules, enclosing R 2 2 (26) ring motifs, in which they are further linked via C-H⋯O hydrogen bonds, resulting in a three-dimensional network. In addition, π-π stacking inter-actions between parallel benzene rings and between parallel pyridine rings of adjacent mol-ecules [shortest centroid-to-centroid distances = 3.885 (1) and 3.712 (1) Å, respectively], as well as a weak C-H⋯π inter-action, may further stabilize the crystal structure.

  12. 4-N-, 4-S-, and 4-O-chloroquine analogues: influence of side chain length and quinolyl nitrogen pKa on activity vs chloroquine resistant malaria.

    Science.gov (United States)

    Natarajan, Jayakumar K; Alumasa, John N; Yearick, Kimberly; Ekoue-Kovi, Kekeli A; Casabianca, Leah B; de Dios, Angel C; Wolf, Christian; Roepe, Paul D

    2008-06-26

    Using predictions from heme-quinoline antimalarial complex structures, previous modifications of chloroquine (CQ), and hypotheses for chloroquine resistance (CQR), we synthesize and assay CQ analogues that test structure-function principles. We vary side chain length for both monoethyl and diethyl 4-N CQ derivatives. We alter the pKa of the quinolyl N by introducing alkylthio or alkoxy substituents into the 4 position and vary side chain length for these analogues. We introduce an additional titratable amino group to the side chain of 4-O analogues with promising CQR strain selectivity and increase activity while retaining selectivity. We solve atomic resolution structures for complexes formed between representative 4-N, 4-S, and 4-O derivatives vs mu-oxo dimeric heme, measure binding constants for monomeric vs dimeric heme, and quantify hemozoin (Hz) formation inhibition in vitro. The data provide additional insight for the design of CQ analogues with improved activity vs CQR malaria.

  13. Revisit the landscape of protonated water clusters H+(H2O)n with n = 10-17: An ab initio global search

    Science.gov (United States)

    Shi, Ruili; Li, Keyao; Su, Yan; Tang, Lingli; Huang, Xiaoming; Sai, Linwei; Zhao, Jijun

    2018-05-01

    Using a genetic algorithm incorporated with density functional theory, we explore the ground state structures of protonated water clusters H+(H2O)n with n = 10-17. Then we re-optimize the isomers at B97-D/aug-cc-pVDZ level of theory. The extra proton connects with a H2O molecule to form a H3O+ ion in all H+(H2O)10-17 clusters. The lowest-energy structures adopt a monocage form at n = 10-16 and core-shell structure at n = 17 based on the MP2/aug-cc-pVTZ//B97-D/aug-cc-pVDZ+ZPE single-point-energy calculation. Using second-order vibrational perturbation theory, we further calculate the infrared spectra with anharmonic correction for the ground state structures of H+(H2O)10-17 clusters at the PBE0/aug-cc-pVDZ level. The anharmonic correction to the spectra is crucial since it reproduces the experimental results quite well. The extra proton weakens the O-H bond strength in the H3O+ ion since the Wiberg bond order of the O-H bond in the H3O+ ion is smaller than that in H2O molecules, which causes a red shift of the O-H stretching mode in the H3O+ ion.

  14. [μ-1,1′-(Butane-1,4-diyldi-1H-benzimidazole-κ2N3:N3′]bis{[N,N′-bis(carboxymethylethylenediamine-N,N′-diacetato-κ5O,O′,O′′,N,N′]mercury(II} methanol disolvate

    Directory of Open Access Journals (Sweden)

    Gang-Sen Li

    2009-08-01

    Full Text Available The binuclear title complex, [Hg2(C10H14N2O82(C18H18N4]·2CH3OH, lies on an inversion center with the unique HgII ion coordinated in a disorted octahedral environment with one Hg—N bond significantly shorter than the other two. In the crystal structure, intermolecular O—H...O hydrogen bonds link complex and solvent molecules into a three-dimensional network.

  15. Crystal structure of di-μ-aqua-μ-(pyrazine N,N′-dioxide-κ2O:O-bis(diaquasodium tetraphenylborate dihydrate pyrazine N,N′-dioxide monosolvate

    Directory of Open Access Journals (Sweden)

    Elaine P. Boron

    2015-12-01

    Full Text Available The search for novel lanthanide coordination networks using pyrazine N,N′-dioxide (pzdo, C4H4N2O2 as a structure-directing unit, led to the synthesis and the structure determination of the title compound, [Na2(C4H4N2O2(H2O6][B(C6H54]2·C4H4N2O2·2H2O. The crystal structure is comprised of discrete [{Na(H2O2}2(μ-H2O2(μ-pzdo]2+ cations and tetraphenylborate anions, as well as pzdo and H2O solvent molecules. The dinuclear cation is located about a twofold rotation axis, and the symmetry-related NaI atoms display a distorted square-pyramidal coordination sphere defined by two O atoms of terminal water ligands, two O atoms of bridging water ligands and one O atom of a bridging pzdo ligand. In the crystal, O—H...O hydrogen bonds link the dinuclear cation and solvent pzdo molecules (point-group symmetry -1 into rectangular grid-like layers parallel to the bc plane. Additional C—H...O, O—H...O, C—H...π and O—H...π interactions link the anion and solvent water molecules to the layers. The layers are further linked into a three-dimensional network through a combination of C—H...π and O—H...π hydrogen bonds involving the tetraphenylborate anion.

  16. Crystal structures of dibromido{N-[(pyridin-2-yl-κNmethylidene]picolinohydrazide-κ2N′,O}cadmium methanol monosolvate and diiodido{N-[(pyridin-2-yl-κNmethylidene]picolinohydrazide-κ2N′,O}cadmium

    Directory of Open Access Journals (Sweden)

    Ali Akbar Khandar

    2017-05-01

    Full Text Available The title compounds, [CdBr2(C12H10N4O]·CH3OH, (I, and [CdI2(C12H10N4O], (II, are cadmium bromide and cadmium iodide complexes of the ligand (E-N′-(pyridin-2-ylmethylenepicolinohydrazide. Complex (I crystallizes as the methanol monosolvate. In both compounds, the Cd2+ cation is ligated by one O atom and two N atoms of the tridentate ligand, and by two bromide anions forming a Br2N2O pentacoordination sphere for (I, and by two iodide anions forming an I2N2O pentacoordination sphere for (II, both with a distorted square-pyramidal geometry. In the crystal of complex (I, molecules are linked by pairs of N—H...O and O—H...Br hydrogen bonds, involving the solvent molecule, forming dimeric units, which are linked by C—H...Br hydrogen bonds forming layers parallel to (101. In the crystal of complex (II, molecules are linked by N—H...I hydrogen bonds, forming chains propagating along [010]. In complex (II, measured at room temperature, the two iodide anions are each disordered over two sites; the refined occupancy ratio is 0.75 (2:0.25 (2.

  17. Density functional theory investigation of the geometric and electronic structures of [UO2(H2O)m(OH)n](2 - n) (n + m = 5).

    Science.gov (United States)

    Ingram, Kieran I M; Häller, L Jonas L; Kaltsoyannis, Nikolas

    2006-05-28

    Gradient corrected density functional theory has been used to calculate the geometric and electronic structures of the family of molecules [UO2(H2O)m(OH)n](2 - n) (n + m = 5). Comparisons are made with previous experimental and theoretical structural and spectroscopic data. r(U-O(yl)) is found to lengthen as water molecules are replaced by hydroxides in the equatorial plane, and the nu(sym) and nu(asym) uranyl vibrational wavenumbers decrease correspondingly. GGA functionals (BP86, PW91 and PBE) are generally found to perform better for the cationic complexes than for the anions. The inclusion of solvent effects using continuum models leads to spurious low frequency imaginary vibrational modes and overall poorer agreement with experimental data for nu(sym) and nu(asym). Analysis of the molecular orbital structure is performed in order to trace the origin of the lengthening and weakening of the U-O(yl) bond as waters are replaced by hydroxides. No evidence is found to support previous suggestions of a competition for U 6d atomic orbitals in U-O(yl) and U-O(hydroxide)pi bonding. Rather, the lengthening and weakening of U-O(yl) is attributed to reduced ionic bonding generated in part by the sigma-donating ability of the hydroxide ligands.

  18. Hydrogren-Bonding between Thioacetamide and Some N,N-dimethylalkylamides in Chloroform.

    OpenAIRE

    Park, Hee-Suk; Choi, Jae-Young; Kim, Young-Ae; Huh, Young-Duk; Yoon, Chang-Ju; Choi, Young-Sang

    1990-01-01

    The near-IR spectra of thioacetamide were recorded for the investigation of hydrogen bonding between thioacetamide (TA) and N,N-dimethylalkylamides (DMF, OMA, DMP) in chloroform over the range of 5°C to 55°C. The v0 + amide II combination band has been resolved into contributions from monomeric TA, 1:1 hydrogen bonded complex and 1:2 complex by the parameterized matrix modeling method. The association constants

  19. Distinguishing the Effects of Bond-Length Alternation versus Bond-Order Alternation on the Nonlinear Optical Properties of π-Conjugated Chromophores

    KAUST Repository

    Gieseking, Rebecca L.; Risko, Chad; Bredas, Jean-Luc

    2015-01-01

    Understanding the relationships between the molecular nonlinear optical (NLO) properties and the bond-length alternation (BLA) or π-bond-order alternation (BOA) along the molecular backbone of linear π-conjugated systems has proven widely useful in the development of NLO organic chromophores and materials. Here, we examine model polymethines to elucidate the reliability of these relationships. While BLA is solely a measure of molecular geometric structure, BOA includes information pertaining to the electronic structure. As a result, BLA is found to be a good predictor of NLO properties only when optimized geometries are considered, whereas BOA is more broadly applicable. Proper understanding of the distinction between BLA and BOA is critical when designing computational studies of NLO properties, especially for molecules in complex environments or in nonequilibrium geometries. © 2015 American Chemical Society.

  20. Distinguishing the Effects of Bond-Length Alternation versus Bond-Order Alternation on the Nonlinear Optical Properties of π-Conjugated Chromophores

    KAUST Repository

    Gieseking, Rebecca L.

    2015-06-18

    Understanding the relationships between the molecular nonlinear optical (NLO) properties and the bond-length alternation (BLA) or π-bond-order alternation (BOA) along the molecular backbone of linear π-conjugated systems has proven widely useful in the development of NLO organic chromophores and materials. Here, we examine model polymethines to elucidate the reliability of these relationships. While BLA is solely a measure of molecular geometric structure, BOA includes information pertaining to the electronic structure. As a result, BLA is found to be a good predictor of NLO properties only when optimized geometries are considered, whereas BOA is more broadly applicable. Proper understanding of the distinction between BLA and BOA is critical when designing computational studies of NLO properties, especially for molecules in complex environments or in nonequilibrium geometries. © 2015 American Chemical Society.

  1. Structure-guided investigation of lipopolysaccharide O-antigen chain length regulators reveals regions critical for modal length control.

    Science.gov (United States)

    Kalynych, Sergei; Ruan, Xiang; Valvano, Miguel A; Cygler, Miroslaw

    2011-08-01

    The O-antigen component of the lipopolysaccharide (LPS) represents a population of polysaccharide molecules with nonrandom (modal) chain length distribution. The number of the repeat O units in each individual O-antigen polymer depends on the Wzz chain length regulator, an inner membrane protein belonging to the polysaccharide copolymerase (PCP) family. Different Wzz proteins confer vastly different ranges of modal lengths (4 to >100 repeat units), despite having remarkably conserved structural folds. The molecular mechanism responsible for the selective preference for a certain number of O units is unknown. Guided by the three-dimensional structures of PCPs, we constructed a panel of chimeric molecules containing parts of two closely related Wzz proteins from Salmonella enterica and Shigella flexneri which confer different O-antigen chain length distributions. Analysis of the O-antigen length distribution imparted by each chimera revealed the region spanning amino acids 67 to 95 (region 67 to 95), region 200 to 255, and region 269 to 274 as primarily affecting the length distribution. We also showed that there is no synergy between these regions. In particular, region 269 to 274 also influenced chain length distribution mediated by two distantly related PCPs, WzzB and FepE. Furthermore, from the 3 regions uncovered in this study, region 269 to 274 appeared to be critical for the stability of the oligomeric form of Wzz, as determined by cross-linking experiments. Together, our data suggest that chain length determination depends on regions that likely contribute to stabilize a supramolecular complex.

  2. Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C-C bond in graphene.

    Science.gov (United States)

    Yang, X X; Li, J W; Zhou, Z F; Wang, Y; Yang, L W; Zheng, W T; Sun, Chang Q

    2012-01-21

    From the perspective of bond relaxation and bond vibration, we have formulated the Raman phonon relaxation of graphene, under the stimuli of the number-of-layers, the uni-axial strain, the pressure, and the temperature, in terms of the response of the length and strength of the representative bond of the entire specimen to the applied stimuli. Theoretical unification of the measurements clarifies that: (i) the opposite trends of the Raman shifts, which are due to the number-of-layers reduction, of the G-peak shift and arises from the vibration of a pair of atoms, while the D- and the 2D-peak shifts involve the z-neighbor of a specific atom; (ii) the tensile strain-induced phonon softening and phonon-band splitting arise from the asymmetric response of the C(3v) bond geometry to the C(2v) uni-axial bond elongation; (iii) the thermal softening of the phonons originates from bond expansion and weakening; and (iv) the pressure stiffening of the phonons results from bond compression and work hardening. Reproduction of the measurements has led to quantitative information about the referential frequencies from which the Raman frequencies shift as well as the length, energy, force constant, Debye temperature, compressibility and elastic modulus of the C-C bond in graphene, which is of instrumental importance in the understanding of the unusual behavior of graphene.

  3. Crystal structure of N′′-(2-ethoxy-2-oxoethyl-N,N,N′,N′-tetramethyl-N′′-[3-(1,3,3-trimethylureidopropyl]guanidinium tetraphenylborate

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2015-12-01

    Full Text Available In the title salt, C16H34N5O3+·C24H20B−, the C—N bond lengths in the cation are 1.3368 (16, 1.3375 (18 and 1.3594 (17 Å, indicating partial double-bond character. The central C atom is bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charge is delocalized in the CN3 plane. In the crystal, weak C—H...O contacts are observed between neighbouring guanidinium ions and between guanidinium ions and tetraphenylborate anions. In addition, C—H...π interactions involving guanidinium H atoms and aromatic rings of the anion are present. The phenyl rings form aromatic pockets, in which the cations are embedded. This leads to the formation of a two-dimensional supramolecular pattern along the ab plane.

  4. First-principle study on bonding mechanism of ZnO by LDA+U method

    International Nuclear Information System (INIS)

    Zhou, G.C.; Sun, L.Z.; Zhong, X.L.; Chen Xiaoshuang; Wei Lu; Wang, J.B.

    2007-01-01

    The electronic structure and the bonding mechanism of ZnO have been studied by using the Full-Potential Linear Augmented Plane Wave (FP-LAPW) method within the density-functional theory (DFT) based on LDA+U exchange correlation potential. The valence and the bonding charge density are calculated and compared with those derived from LDA and GGA to describe the bonding mechanism. The charge transfer along with the bonding process is analyzed by using the theory of Atoms in Molecules (AIM). The bonding, the topological characteristics and the p-d coupling effects on the bonding mechanism of ZnO are shown quantitatively with the critical points (CPs) along the bonding trajectory and the charge in the atomic basins. Meanwhile, the bonding characteristics for wurtzite, zinc blende and rocksalt phase of ZnO are discussed systematically in the present paper

  5. Bismuth-boron multiple bonding in BiB_2O"- and Bi_2B"-

    International Nuclear Information System (INIS)

    Jian, Tian; Cheung, Ling Fung; Chen, Teng-Teng; Wang, Lai-Sheng

    2017-01-01

    Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB_2O"- and Bi_2B"-, containing triple and double B-Bi bonds are presented. The BiB_2O"- and Bi_2B"- clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB_2O"- ([Bi≡B-B≡O]"-) and Bi_2B"- ([Bi=B=Bi]"-), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Enthalpies of solvation of ethylene oxide oligomers CH{sub 3}O(CH{sub 2}CH{sub 2}O){sub n}CH{sub 3} (n = 1 to 4) in different H-bonding solvents: Methanol, chloroform, and water. Group contribution method as applied to the polar oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Barannikov, Vladimir P., E-mail: vpb@isc-ras.ru [Institute of Solution Chemistry, Russian Academy of Sciences, Academicheskaya Str. 1, Ivanovo 153045 (Russian Federation); Guseynov, Sabir S.; Vyugin, Anatoliy I. [Institute of Solution Chemistry, Russian Academy of Sciences, Academicheskaya Str. 1, Ivanovo 153045 (Russian Federation)

    2011-12-15

    Highlights: > Solvation enthalpy is found for ethylene oxide oligomers in chloroform and methanol. > Coefficients of solute-solute interaction are determined for oligomers in methanol. > Enthalpies of hydrogen bonding of oligomers with chloroform and water are estimated. > Additivity scheme is developed for describing enthalpies of solvation of oligomers. - Abstract: The enthalpies of solution and solvation of ethylene oxide oligomers CH{sub 3}O(CH{sub 2}CH{sub 2}O){sub n}CH{sub 3} (n = 1 to 4) in methanol and chloroform have been determined from calorimetric measurements at T = 298.15 K. The enthalpic coefficients of pairwise solute-solute interaction for methanol solutions have been calculated. The enthalpic characteristics of the oligomers in methanol, chloroform, water and tetrachloromethane have been compared. The hydrogen bonding of the oligomers with chloroform and water molecules is exhibited in the values of solvation enthalpy and coefficient of solute-solute interaction. This effect is not observed for methanol solvent. The thermochemical data evidence an existence of multi-centred hydrogen bonds in associates of polyethers with the solvent molecules. Enthalpies of hydrogen bonding of the oligomers with chloroform and water have been estimated. The additivity scheme has been developed to describe the enthalpies of solvation of ethylene oxide oligomers, unbranched monoethers and n-alkanes in chloroform, methanol, water, and tetrachloromethane. The correction parameters for contribution of repeated polar groups and correction term for methoxy-compounds have been introduced. The obtained group contributions permit to describe the enthalpies of solvation of unbranched monoethers and ethylene oxide oligomers in the solvents with standard deviation up to 0.6 kJ . mol{sup -1}. The values of group contributions and corrections are strongly influenced by solvent properties.

  7. Supramolecular structures in N-isonicotinoyl arylaldehydehydrazones: multiple hydrogen-bonding modes in series of geometric isomers.

    Science.gov (United States)

    Wardell, Solange M S V; de Souza, Marcus V N; Wardell, James L; Low, John N; Glidewell, Christopher

    2007-12-01

    Sixteen N-isonicotinoyl arylaldehydehydrazones, NC(5)H(4)CONHN=CHC(6)H(4)R, have been studied and the structures of 14 of them have been determined, including the unsubstituted parent compound with R = H, and the complete sets of 2-, 3- and 4-substituted geometric isomers for R = F, Br and OMe, and two of the three isomers for R = Cl and OEt. The 2-chloro and 3-chloro derivatives are isostructural with the corresponding bromo isomers, and all compounds contain trans amide groups apart from the isostructural pair where R = 2-Cl and 2-Br, which contain cis amide groups. The structures exhibit a wide range of direction-specific intermolecular interactions, including eight types of hydrogen bonds, N-H...N, N-H...O, O-H...O, O-H...N, C-H...N, C-H...O, C-H...pi(arene) and C-H...pi(pyridyl), as well as pi...pi stacking interactions. The structures exhibit a very broad range of combinations of these interactions: the resulting hydrogen-bonded supramolecular structures range from one-dimensional when R = 2-F, 2-OMe or 2-OEt, via two-dimensional when R = 4-F, 3-Cl, 3-Br, 4-OMe or 3-OEt, to three-dimensional when R = H, 3-F, 2-Cl, 2-Br, 4-Br or 3-OMe. Minor changes in either the identity of the substituent or its location can lead to substantial changes in the pattern of supramolecular aggregation, posing significant problems of predictability. The new structures are compared with the recently published structures of the isomeric series having R = NO(2), with several monosubstituted analogues containing 2-pyridyl or 3-pyridyl units rather than 4-pyridyl, and with a number of examples having two or three substituents in the aryl ring: some 30 structures in all are discussed.

  8. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol

    Directory of Open Access Journals (Sweden)

    Hailiang Zhao

    2016-12-01

    Full Text Available Amides are important atmospheric organic–nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH with amides (formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide and N,N-dimethylacetamide have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH–amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O–H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components.

  9. Accurate characterization and understanding of interface trap density trends between atomic layer deposited dielectrics and AlGaN/GaN with bonding constraint theory

    Energy Technology Data Exchange (ETDEWEB)

    Ramanan, Narayanan; Lee, Bongmook; Misra, Veena, E-mail: vmisra@ncsu.edu [Department of Electrical and Computer Engineering, North Carolina State University, 2410 Campus Shore Drive, Raleigh, North Carolina 27695 (United States)

    2015-06-15

    Many dielectrics have been proposed for the gate stack or passivation of AlGaN/GaN based metal oxide semiconductor heterojunction field effect transistors, to reduce gate leakage and current collapse, both for power and RF applications. Atomic Layer Deposition (ALD) is preferred for dielectric deposition as it provides uniform, conformal, and high quality films with precise monolayer control of film thickness. Identification of the optimum ALD dielectric for the gate stack or passivation requires a critical investigation of traps created at the dielectric/AlGaN interface. In this work, a pulsed-IV traps characterization method has been used for accurate characterization of interface traps with a variety of ALD dielectrics. High-k dielectrics (HfO{sub 2}, HfAlO, and Al{sub 2}O{sub 3}) are found to host a high density of interface traps with AlGaN. In contrast, ALD SiO{sub 2} shows the lowest interface trap density (<2 × 10{sup 12 }cm{sup −2}) after annealing above 600 °C in N{sub 2} for 60 s. The trend in observed trap densities is subsequently explained with bonding constraint theory, which predicts a high density of interface traps due to a higher coordination state and bond strain in high-k dielectrics.

  10. Avaliação do efeito de tratamentos superficiais sobre a força de adesão de braquetes em provisórios de resina acrílica Assessment of the effect of different surface treatments on the bond strength of brackets bonded to acrylic resin

    Directory of Open Access Journals (Sweden)

    Deise Lima Cunha Masioli

    2011-02-01

    Full Text Available OBJETIVO: avaliar a influência do tratamento de superfície de resinas acrílicas na resistência ao cisalhamento de braquetes colados com resina composta. MÉTODOS: foram confeccionados 140 discos de resina acrílica autopolimerizável (Duralay®, divididos aleatoriamente em 14 grupos (n=10. Em cada grupo, os corpos de prova receberam um tipo diferente de tratamento de superfície: grupo 1 = sem tratamento de superfície (controle; grupo 2 = silano; grupo 3 = jato de óxido de alumínio (JOA; grupo 4 = JOA + silano; grupo 5 = broca diamantada; grupo 6 = broca diamantada+ silano; grupo 7 = ácido fluorídrico; grupo 8 = ácido fluorídrico + silano; grupo 9 = ácido fosfórico; grupo 10 = ácido fosfórico + silano; grupo 11 = monômero de metilmetacrilato (MMA; grupo 12 = MMA + silano; grupo 13 = Plastic conditioner (Reliance®; grupo 14 = Plastic conditioner (Reliance® + silano. Após o preparo de superfície, os corpos de prova foram analizados através da rugosimetria. Posteriormente, foram colados braquetes (Morelli® de incisivo central "standard edgewise" com resina fotopolimerizável Transbond XT®; de acordo com as instruções do fabricante. RESULTADOS: o agente umectante à base de silano não teve um efeito estatisticamente significativo sobre os valores de força de adesão; os tratamentos com JOA e broca produziram maiores mudanças topográficas na superfície da resina acrílica, bem como os maiores valores de rugosidade; observou-se uma correlação não linear entre a força de adesão e a rugosidade de superfície; tratamentos com monômero e JOA resultaram nas maiores forças de adesão. CONCLUSÕES: o silano não foi capaz de aumentar a força de adesão entre braquete e resina acrílica. Sugere-se mais estudos sobre este tema, pois a força de adesão obtida foi muito baixa.OBJECTIVE: To evaluate the influence of the surface treatment of acrylic resins on the shear bond strength of brackets bonded with composite resin

  11. Electronic parameters of Sr2Nb2O7 and chemical bonding

    DEFF Research Database (Denmark)

    Atuchin, V.V.; Grivel, Jean-Claude; Korotkov, A.S.

    2008-01-01

    /2)) and Delta(O-Sr) = BE(O 1s)-BE(Sr 3d(5/2)), were used to characterize the valence electron transfer on the formation of the Nb-O and Sr-O bonds. The chemical bonding effects were considered on the basis of our XPS results for Sr2Nb2O7 and earlier published structural and XPS data for other Sr- or Nb...

  12. Investigation on Surface Polarization of Al2O3-capped GaN/AlGaN/GaN Heterostructure by Angle-Resolved X-ray Photoelectron Spectroscopy.

    Science.gov (United States)

    Duan, Tian Li; Pan, Ji Sheng; Wang, Ning; Cheng, Kai; Yu, Hong Yu

    2017-08-17

    The surface polarization of Ga-face gallium nitride (GaN) (2 nm)/AlGaN (22 nm)/GaN channel (150 nm)/buffer/Si with Al 2 O 3 capping layer is investigated by angle-resolved X-ray photoelectron spectroscopy (ARXPS). It is found that the energy band varies from upward bending to downward bending in the interface region, which is believed to be corresponding to the polarization variation. An interfacial layer is formed between top GaN and Al 2 O 3 due to the occurrence of Ga-N bond break and Ga-O bond forming during Al 2 O 3 deposition via the atomic layer deposition (ALD). This interfacial layer is believed to eliminate the GaN polarization, thus reducing the polarization-induced negative charges. Furthermore, this interfacial layer plays a key role for the introduction of the positive charges which lead the energy band downward. Finally, a N 2 annealing at 400 °C is observed to enhance the interfacial layer growth thus increasing the density of positive charges.

  13. Syntheses and multi-NMR study of fac- and mer-OsO(3)F(2)(NCCH(3)) and the X-ray crystal structure (n = 2) and Raman spectrum (n = 0) of fac-OsO(3)F(2)(NCCH(3)).nCH(3)CN.

    Science.gov (United States)

    Hughes, Michael J; Gerken, Michael; Mercier, Hélène P A; Schrobilgen, Gary J

    2010-06-07

    Dissolution of the infinite chain polymer, (OsO(3)F(2))(infinity), in CH(3)CN solvent at -40 degrees C followed by solvent removal under vacuum at -40 degrees C yielded fac-OsO(3)F(2)(NCCH(3)).nCH(3)CN (n >/= 2). Continued pumping at -40 degrees C with removal of uncoordinated CH(3)CN yielded fac-OsO(3)F(2)(NCCH(3)). Both fac-OsO(3)F(2)(NCCH(3)).nCH(3)CN and fac-OsO(3)F(2)(NCCH(3)) are yellow-brown solids and were characterized by low-temperature (-150 degrees C) Raman spectroscopy. The crystal structure (-173 degrees C) of fac-OsO(3)F(2)(NCCH(3)).2CH(3)CN consists of two co-crystallized CH(3)CN molecules and a pseudo-octahedral OsO(3)F(2).NCCH(3) molecule in which three oxygen atoms are in a facial arrangement and CH(3)CN is coordinated trans to an oxygen atom in an end-on fashion. The Os---N bond length (2.205(3) A) is among the shortest M---N adduct bonds observed for a d(0) transition metal oxide fluoride. The (19)F NMR spectrum of (OsO(3)F(2))(infinity) in CH(3)CN solvent (-40 degrees C) is a singlet (-99.6 ppm) corresponding to fac-OsO(3)F(2)(NCCH(3)). The (1)H, (15)N, (13)C, and (19)F NMR spectra of (15)N-enriched OsO(3)F(2)(NCCH(3)) were recorded in SO(2)ClF solvent (-84 degrees C). Nitrogen-15 enrichment resulted in splitting of the (19)F resonance of fac-OsO(3)F(2)((15)NCCH(3)) into a doublet ((2)J((15)N-(19)F), 21 Hz). In addition, a doublet of doublets ((2)J((19)F(ax)-(19)F(eq)), 134 Hz; (2)J((15)N-(19)F(eq)), 18 Hz) and a doublet ((2)J((19)F(ax)-(19)F(eq)), 134 Hz) were observed in the (19)F NMR spectrum that have been assigned to mer-OsO(3)F(2)((15)NCCH(3)); however, coupling of (15)N to the axial fluorine-on-osmium environment could not be resolved. The nitrogen atom of CH(3)CN is coordinated trans to a fluorine ligand in the mer-isomer. Quantum-chemical calculations at the SVWN and B3LYP levels of theory were used to calculate the energy-minimized gas-phase geometries, vibrational frequencies of fac- and mer-OsO(3)F(2)(NCCH(3)) and of CH(3)CN. The

  14. Sequential plasma activation methods for hydrophilic direct bonding at sub-200 °C

    Science.gov (United States)

    He, Ran; Yamauchi, Akira; Suga, Tadatomo

    2018-02-01

    We present our newly developed sequential plasma activation methods for hydrophilic direct bonding of silica glasses and thermally grown SiO2 films. N2 plasma was employed to introduce a metastable oxynitride layer on wafer surfaces for the improvement of bond energy. By using either O2-plasma/N2-plasma/N-radical or N2-plasma/N-radical sequential activation, the quartz-quartz bond energy was increased from 2.7 J/m2 to close to the quartz bulk fracture energy that was estimated to be around 9.0 J/m2 after post-bonding annealing at 200 °C. The silicon bulklike bond energy between thermal SiO2 films was also obtained. We suggest that the improvement is attributable to surface modification such as N-related defect formation and asperity softening by the N2 plasma surface treatment.

  15. Architecture of the hydrophobic and hydrophilic layers as found from crystal structure analysis of N-benzyl-N,N-dimethylalkylammonium bromides.

    Science.gov (United States)

    Hodorowicz, Maciej; Stadnicka, Katarzyna; Czapkiewicz, Jan

    2005-10-01

    The molecular and crystal structures of N-benzyl-N,N-dimethylalkylammonium bromides monohydrates with chain length n=8-10 have been determined. The crystals are isostructural with the N-benzyl-N,N-dimethyldodecylammonium bromide monohydrate. The structures consist of alternated hydrophobic and hydrophilic layers perpendicular to [001]. The attraction between N+ of the cation head-groups and Br- anions is achieved through weak C_H...Br interactions. The water molecules incorporated into ionic layers are donors for two O_H...Br hydrogen bonds and serve as the acceptors in two weak interactions of C_H...O type. The methylene chains, with the slightly curved general shape, have the extended all-trans conformation. The mutual packing of the chains in the hydrophobic layers is governed by weak C_H...pi interactions.

  16. Poly[[diaqua-μ4-pyrazine-2,3-dicarboxylato-κ6N,O2:O2′:O3,O3′:O3-strontium(II] monohydrate

    Directory of Open Access Journals (Sweden)

    Vahid Amani

    2008-07-01

    Full Text Available In the title compound, {[Sr(C6H2N2O4(H2O2]·H2O}n, the SrII ions are bridged by the pyrazine-2,3-dicarboxylate ligands with the formation of two-dimensional polymeric layers parallel to the ac plane. Each SrII ion is eight-coordinated by one N and five O atoms from the four ligands and two water molecules. The coordination polyhedron is derived from a pentagonal bipyramid with an O atom at the apex on one side of the equatorial plane and two O atoms sharing the apical site on the other side. The coordinated and uncoordinated water molecules are involved in O—H...O and O—H...N hydrogen bonds, which consolidate the crystal structure.

  17. Synthesis, Structure and Spectroscopy of Two Structurally Related Hydrogen Bonded Compounds in the dpma/HClO4 System; dpma (dimethylphosphorylmethanamine

    Directory of Open Access Journals (Sweden)

    Guido J. Reiss

    2013-06-01

    Full Text Available The new phosphine oxide compound, (dimethylphosphorylmethanaminium perchlorate, dpmaHClO4 (1, was synthesized by the reaction of (dimethylphosphoryl methanamine (dpma with concentrated perchloric acid. (Dimethylphosphorylmethanaminium perchlorate (dimethylphosphorylmethanamine solvate, dpmaHClO4•dpma (2 was obtained by the slow evaporation of an equimolar methanolic solution of 1 and dpma at room temperature. For both compounds, single-crystal X-ray structures, IR and Raman spectra are reported. The assignment of the spectroscopic data were supported by quantum chemical calculations at the B3LYP/6-311G(2d,p level of theory. In 1, the dpmaH cations form polymeric, polar double-strands along [010] by head to tail connections via N–H∙∙∙O hydrogen bonds. The perchlorate anions are located between these strands attached by one medium strong and two weaker un-bifurcated hydrogen bonds (monoclinic, centrosymmetric space group C2/c, a = 17.8796(5 Å, b = 5.66867(14 Å, c = 17.0106(5 Å, β = 104.788(3°, V = 1666.9(1 Å3, Z = 8, T = 293 K, R(F [I > 2σ(I] = 0.0391, wR(F2 [all] = 0.1113. In 2, besides the N–H∙∙∙O hydrogen bonds, medium strong N–H∙∙∙N hydrogen bonds are present. One dpmaH cation and the neutral dpma molecule are connected head to tail by two N–H∙∙∙O hydrogen bonds forming a monocationic cyclic unit. These cyclic units are further connected by N–H∙∙∙O and N–H∙∙∙N hydrogen bonds forming polymeric, polar double-strands along [001]. The perchlorate anions fill the gaps between these strands, and each [ClO4]− anion is weakly connected to the NH2 group by one N–H∙∙∙O hydrogen bond (orthorhombic, non-centrosymmetric space group Pca21 (No. 29, a = 18.5821(5 Å, b = 11.4320(3 Å, c = 6.89400(17 Å, V = 1464.50(6 Å3, Z = 4, T = 100 K, R(F [I > 2σ(I] = 0.0234, wR(F2 [all] = 0.0575. Both structures are structurally related, and their commonalities are discussed in terms of a graph

  18. N-H···S Interaction Continues To Be an Enigma: Experimental and Computational Investigations of Hydrogen-Bonded Complexes of Benzimidazole with Thioethers.

    Science.gov (United States)

    Wategaonkar, Sanjay; Bhattacherjee, Aditi

    2018-05-03

    The N-H···S hydrogen bond, even though classified as an unconventional hydrogen bond, is found to bear important structural implications on protein structure and folding. In this article, we report a gas-phase study of the N-H···S hydrogen bond between the model compounds of histidine (benzimidazole, denoted BIM) and methionine (dimethyl sulfide, diethyl sulfide, and tetrahydrothiophene, denoted Me 2 S, Et 2 S, and THT, respectively). A combination of laser spectroscopic methods such as laser-induced fluorescence (LIF), two-color resonant two-photon ionization (2cR2PI), and fluorescence depletion by infrared spectroscopy (FDIR) is used in conjunction with DFT and ab initio calculations to characterize the nature of this prevalent H-bonding interaction in simple bimolecular complexes. A single conformer was found to exist for the BIM-Me 2 S complex, whereas the BIM-Et 2 S and BIM-THT complexes showed the presence of three and two conformers, respectively. These conformers were characterized on the basis of IR spectroscopic results and electronic structure calculations. Quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO), and energy decomposition (NEDA) analyses were performed to investigate the nature of the N-H···S H-bond. Comparison of the results with the N-H···O type of interactions in BIM and indole revealed that the strength of the N-H···S H-bond is similar to N-H···O in these binary gas-phase complexes.

  19. Intramolecular CH···O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-Crick pairs. Quantum chemical and AIM analysis.

    Science.gov (United States)

    Yurenko, Yevgen P; Zhurakivsky, Roman O; Samijlenko, Svitlana P; Hovorun, Dmytro M

    2011-08-01

    The aim of this work is to cast some light on the H-bonds in double-stranded DNA in its AI and BI forms. For this purpose, we have performed the MP2 and DFT quantum chemical calculations of the canonical nucleoside conformers, relative to the AI and BI DNA forms, and their Watson-Crick pairs, which were regarded as the simplest models of the double-stranded DNA. Based on the atoms-in-molecules analysis (AIM), five types of the CH···O hydrogen bonds, involving bases and sugar, were detected numerically from 1 to 3 per a conformer: C2'H···O5', C1'H···O2, C6H···O5', C8H···O5', and C6H···O4'. The energy values of H-bonds occupy the range of 2.3-5.6 kcal/mol, surely exceeding the kT value (0.62 kcal/mol). The nucleoside CH···O hydrogen bonds appeared to "survive" turns of bases against the sugar, sometimes in rather large ranges of the angle values, pertinent to certain conformations, which points out to the source of the DNA lability, necessary for the conformational adaptation in processes of its functioning. The calculation of the interactions in the dA·T nucleoside pair gives evidence, that additionally to the N6H···O4 and N1···N3H canonical H-bonds, between the bases adenine and thymine the third one (C2H···O2) is formed, which, though being rather weak (about 1 kcal/mol), satisfies the AIM criteria of H-bonding and may be classified as a true H-bond. The total energy of all the CH···O nontraditional intramolecular H-bonds in DNA nucleoside pairs appeared to be commensurable with the energy of H-bonds between the bases in Watson-Crick pairs, which implies their possible important role in the DNA shaping.

  20. Crystal structures of 5-amino-N-phenyl-3H-1,2,4-di-thia-zol-3-iminium chloride and 5-amino-N-(4-chloro-phen-yl)-3H-1,2,4-di-thia-zol-3-iminium chloride monohydrate.

    Science.gov (United States)

    Yeo, Chien Ing; Tan, Yee Seng; Tiekink, Edward R T

    2015-10-01

    The crystal and mol-ecular structures of the title salt, C8H8N3S2 (+)·Cl(-), (I), and salt hydrate, C8H7ClN3S2 (+)·Cl(-)·H2O, (II), are described. The heterocyclic ring in (I) is statistically planar and forms a dihedral angle of 9.05 (12)° with the pendant phenyl ring. The comparable angle in (II) is 15.60 (12)°, indicating a greater twist in this cation. An evaluation of the bond lengths in the H2N-C-N-C-N sequence of each cation indicates significant delocalization of π-electron density over these atoms. The common feature of the crystal packing in (I) and (II) is the formation of charge-assisted amino-N-H⋯Cl(-) hydrogen bonds, leading to helical chains in (I) and zigzag chains in (II). In (I), these are linked by chains mediated by charge-assisted iminium-N(+)-H⋯Cl(-) hydrogen bonds into a three-dimensional architecture. In (II), the chains are linked into a layer by charge-assisted water-O-H⋯Cl(-) and water-O-H⋯O(water) hydrogen bonds with charge-assisted iminium-N(+)-H⋯O(water) hydrogen bonds providing the connections between the layers to generate the three-dimensional packing. In (II), the chloride anion and water mol-ecules are resolved into two proximate sites with the major component being present with a site occupancy factor of 0.9327 (18).

  1. compounds with N=N, C≡C or conjugated double-bonded systems

    Indian Academy of Sciences (India)

    Unusual products in the reactions of phosphorus(III) compounds with. N=N, C≡C or conjugated double-bonded systems. K C KUMARA SWAMY,* E BALARAMAN, M PHANI PAVAN, N N BHUVAN KUMAR,. K PRAVEEN KUMAR and N SATISH KUMAR. School of Chemistry, University of Hyderabad, Hyderabad 500 046.

  2. Substituent Effects on the Hydrogen Bonding Between Phenolate and HF, H2O and NH3

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    B3LYP/6-31+g(d) calculations were performed on the hydrogen bonded complexes between substituted phenolates and HF, H2O as well as NH3. It was found that some properties of the non-covalent complexes, including the interaction energies, donor-acceptor (host-guest) distances, bond lengths, and vibration frequencies, could show well-defined substituent effects. Thus, from the substituent studies we can not only understand the mechanism of a particular non-covalent interaction better, but also easily predict the interaction energies and structures of a particular non-covalent complex, which might otherwise be very hard or resource-consuming to be known. This means that substituent effect is indeed a useful tool to be used in supramolecular chemistry and therefore, many valuable studies remain to be carried out.

  3. Synthesis and crystal structures of new complexes of Np(V) glycolate with 2,2'-bipyridine, [NpO2(C10H8N2)(OOC2H2OH)].1.5H2O and [NpO2(C10H8N2)(OOC2H2OH)].2.5H2O

    International Nuclear Information System (INIS)

    Charushnikova, I.A.; Krot, N.N.; Starikova, Z.A.

    2009-01-01

    Single crystals were prepared, and the structures of two complexes of Np(V) glycolate with 2,2'-bipyridine of the compositions [NpO 2 (C 10 H 8 N 2 )(OOC 2 H 2 OH)].1.5H 2 O (I) and [NpO 2 (C 10 H 8 N 2 )(OOC 2 H 2 OH)]2.5H 2 O (II) were studied. The structures of the compounds are based on neptunyl-glycolate chains in which the glycolate anion manifests its complexation ability in different manner. In structure I, the bidentate-bridging anion links the adjacent NpO 2 - cations through the oxygen atoms of the carboxylate group. The neptunyl-glycolate chains of I exhibits the mutual coordination of the NpO 2 - cations acting toward each other simultaneously as ligands and coordinating centers. In compound II, the glycolate anion is bidentately coordinated to one neptunium atom to form a planar five-membered metallocycle [NpOCCO]. The O atom external with respect to the metallocycle is in the coordination environment of the adjacent neptunyl. The nitrogen-containing molecular ligand Bipy is included into the coordination environment of Np. The coordination polyhedron of the Np atoms in both structures is a pentagonal bipyramid in which the average Np-N bond length is 2.666 Aa (I) and 2.596 Aa (II). (orig.)

  4. Crystal structure of bis(μ-3-nitrobenzoato-κ3O,O′:O;κ3O:O,O′-bis[bis(3-cyanopyridine-κN1(3-nitrobenzoato-κ2O,O′cadmium

    Directory of Open Access Journals (Sweden)

    Tuncer Hökelek

    2017-03-01

    Full Text Available The asymmetric unit of the title compound, [Cd2(C7H4NO44(C6H4N24], contains one CdII atom, two 3-nitrobenzoate (NB anions and two 3-cyanopyridine (CPy ligands. The two CPy ligands act as monodentate N(pyridine-bonding ligands, while the two NB anions act as bidentate ligands through the carboxylate O atoms. The centrosymmetric dinuclear complex is generated by application of inversion symmetry, whereby the CdII atoms are bridged by the carboxylate O atoms of two symmetry-related NB anions, thus completing the distorted N2O5 pentagonal–bipyramidal coordination sphere of each CdII atom. The benzene and pyridine rings are oriented at dihedral angles of 10.02 (7 and 5.76 (9°, respectively. In the crystal, C—H...N hydrogen bonds link the molecules, enclosing R22(26 ring motifs, in which they are further linked via C—H...O hydrogen bonds, resulting in a three-dimensional network. In addition, π–π stacking interactions between parallel benzene rings and between parallel pyridine rings of adjacent molecules [shortest centroid-to-centroid distances = 3.885 (1 and 3.712 (1 Å, respectively], as well as a weak C—H...π interaction, may further stabilize the crystal structure.

  5. Cooperativity of hydrogen-bonded networks in 7-azaindole(CH3OH)n (n=2,3) clusters evidenced by IR-UV ion-dip spectroscopy and natural bond orbital analysis.

    Science.gov (United States)

    Sakota, Kenji; Kageura, Yutaka; Sekiya, Hiroshi

    2008-08-07

    IR-UV ion-dip spectra of the 7-azaindole (7AI)(CH(3)OH)(n) (n=1-3) clusters have been measured in the hydrogen-bonded NH and OH stretching regions to investigate the stable structures of 7AI(CH(3)OH)(n) (n=1-3) in the S(0) state and the cooperativity of the H-bonding interactions in the H-bonded networks. The comparison of the IR-UV ion-dip spectra with IR spectra obtained by quantum chemistry calculations shows that 7AI(CH(3)OH)(n) (n=1-3) have cyclic H-bonded structures, where the NH group and the heteroaromatic N atom of 7AI act as the proton donor and proton acceptor, respectively. The H-bonded OH stretch fundamental of 7AI(CH(3)OH)(2) is remarkably redshifted from the corresponding fundamental of (CH(3)OH)(2) by 286 cm(-1), which is an experimental manifestation of the cooperativity in H-bonding interaction. Similarly, two localized OH fundamentals of 7AI(CH(3)OH)(3) also exhibit large redshifts. The cooperativity of 7AI(CH(3)OH)(n) (n=2,3) is successfully explained by the donor-acceptor electron delocalization interactions between the lone-pair orbital in the proton acceptor and the antibonding orbital in the proton donor in natural bond orbital (NBO) analyses.

  6. Comparative ligational, optical band gap and biological studies on Cr(III) and Fe(III) complexes of hydrazones derived from 2-hydrazinyl-2-oxo-N-phenylacetamide with both vanillin and O-vanillin

    Science.gov (United States)

    Yousef, T. A.; Abu El-Reash, G. M.; Attia, M. I.; El-Tabai, M. N.

    2015-09-01

    The Cr(III) and Fe(III) complexes of hydrazones derived from the condensation of 2-hydrazinyl-2-oxo-N-phenylacetamide with both vanillin and o-vanillin synthesized and characterized by different conventional physicochemical techniques. The kinetic and thermodynamic parameters for the different decomposition steps were calculated using Coats-Redfern and Horowitz-Metzger equations. The bond lengths, bond angles, HOMO, LUMO, dipole moment and binding energy calculated by DFT calculations. The optical band gap (Eg) values equal 3.28, 3.03, 3.58 and 3.57 eV for [Cr(HL1)Cl2(H2O)2](0.75H2O), [Cr(HL2)Cl2(H2O)](H2O), [Fe(HL1)Cl2(H2O)2](0.5H2O) and [Fe(HL2)2Cl(H2O)](3H2O) complexes, respectively. The antibacterial activities tested against Bacillus subtilis and Escherichia coli bacteria.

  7. Zoledronate complexes. III. Two zoledronate complexes with alkaline earth metals: [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)] and [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n).

    Science.gov (United States)

    Freire, Eleonora; Vega, Daniel R; Baggio, Ricardo

    2010-06-01

    Diaquabis[dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato-kappa(2)O,O']magnesium(II), [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)], consists of isolated dimeric units built up around an inversion centre and tightly interconnected by hydrogen bonding. The Mg(II) cation resides at the symmetry centre, surrounded in a rather regular octahedral geometry by two chelating zwitterionic zoledronate(1-) [or dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonate] anions and two water molecules, in a pattern already found in a few reported isologues where the anion is bound to transition metals (Co, Zn and Ni). catena-Poly[[aquacalcium(II)]-mu(3)-[hydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato]-kappa(5)O:O,O':O',O''], [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n), consists instead of a Ca(II) cation in a general position, a zwitterionic zoledronate(2-) anion and a coordinated water molecule. The geometry around the Ca(II) atom, provided by six bisphosphonate O atoms and one water ligand, is that of a pentagonal bipyramid with the Ca(II) atom displaced by 0.19 A out of the equatorial plane. These Ca(II) coordination polyhedra are ;threaded' by the 2(1) axis so that successive polyhedra share edges of their pentagonal basal planes. This results in a strongly coupled rhomboidal Ca(2)-O(2) chain which runs along [010]. These chains are in turn linked by an apical O atom from a -PO(3) group in a neighbouring chain. This O-atom, shared between chains, generates strong covalently bonded planar arrays parallel to (100). Finally, these sheets are linked by hydrogen bonds into a three-dimensional structure. Owing to the extreme affinity of zoledronic acid for bone tissue, in general, and with calcium as one of the major constituents of bone, it is expected that this structure will be useful in modelling some of the biologically interesting processes in which the drug takes part.

  8. Informações contábil-financeiras e custo de captação em mercados de bonds

    Directory of Open Access Journals (Sweden)

    Maurício Ribeiro do Valle

    2002-12-01

    Full Text Available O artigo discute a questão do conteúdo informacional de números contábil-financeiros e analisa a relação entre estas informações e o custo de captação das maiores empresas do setor Papel & Celulose que obtiveram recursos nos mercados americano e internacional de bonds durante o período 1991-98. Os indicadores contábil-financeiros analisados mostraram que as empresas brasileiras não apresentaram um elevado desempenho como as empresas que captaram recursos com um baixo custo, mas, também, não apresentaram características semelhantes às empresas - americanas e canadenses com profundos problemas financeiros - que captaram a um alto custo nos mercados estudados.The article concerns the information provided by accounting/financial variables and analyzes the relationship between this information and the cost of funding for the largest Pulp and Paper companies that raised capital in the U.S. and international bond markets in the period 1991-98. The analyzed accounting/financial variables showed that Brazilian companies neither performed as well as the companies that raised capital with a low cost, nor presented the same characteristics as the companies - American and Canadian companies with large financial problems - that raised capital with a high cost in the studied markets.

  9. Hydrogen bonding donation of N-methylformamide with dimethylsulfoxide and water

    Science.gov (United States)

    Borges, Alexandre; Cordeiro, João M. M.

    2013-04-01

    20% N-methylformamide (NMF) mixtures with water and with dimethylsulfoxide (DMSO) have been studied. A comparison between the hydrogen bonding (H-bond) donation of N-methylformamide with both solvents in the mixtures is presented. Results of radial distribution functions, pair distribution energies, molecular dipole moment correlation, and geometry of the H-bonded species in each case are shown. The results indicate that the NMF - solvent H-bond is significantly stronger with DMSO than with water. The solvation shell is best organized in the DMSO mixture than in the aqueous one.

  10. Bent CNN bond of diazo compounds, RR'(Cdbnd N+dbnd N-)

    Science.gov (United States)

    Akita, Motoko; Takahashi, Mai; Kobayashi, Keiji; Hayashi, Naoto; Tukada, Hideyuki

    2013-02-01

    The reaction of ninhydrin with benzophenone hydrazone afforded 2-diazo-3-diphenylmethylenehydrazono-1-indanone 1 and 2-diazo-1,3-bis(diphenylmethylenehydrazono)indan 2. X-ray crystal structure analyses of these products showed that the diazo functional group Cdbnd N+dbnd N- of 1 is bent by 172.9°, while that of 2 has a linear geometry. The crystal structure data of diazo compounds have been retrieved from the Cambridge Structural Database (CSD), which hit 177 entries to indicate that the angle of 172.9° in 1 lies in one of the most bent structures. The CSD search also indicated that diazo compounds consisting of a distorted diazo carbon tend to bend the Cdbnd N+dbnd N- bond. On the basis of DFT calculations (B3LYP/6-311++G(d,p)) of model compounds, it was revealed that the bending of the CNN bond is principally induced by steric factors and that the neighboring carbonyl group also plays a role in bending toward the carbonyl side owing to an electrostatic attractive interaction. The potential surface along the path of Cdbnd N+dbnd N- bending in 2-diazopropane shows a significantly shallow profile with only 4 kcal/mol needed to bend the Cdbnd N+dbnd N- bond from 180° to 160°. Thus, the bending of the diazo group in 1 is reasonable as it is provided with all of the factors for facile bending disclosed in this investigation.

  11. Preparation and characterizations of electroluminescent p-ZnO : N/n-ZnO : Ga/ITO thin films by spray pyrolysis method

    Directory of Open Access Journals (Sweden)

    C. Panatarani

    2016-02-01

    Full Text Available ZnO thin films were fabricated by spray pyrolysis (SP method with p-ZnO : N/n-ZnO:Ga/ITO structure. The X-ray results show that the deposited films have hexagonal wurtzite structure. The EDS results observed that the composition of Ga in ZnO:Ga and N in ZnO:N was 3.73% and 27.73% respectively. The photoluminescence (PL with excitation wave length of 260 nm shows that ZnO:Ga and ZnO:N films emitted UV emission at ∼393 and ∼388 nm, respectively and the films resistivity was 7.12 and 12.80 Ohm-cm respectively. The electroluminescence of the p-ZnO : N/n-ZnO:Ga/ITO structure was obtained by applying forward bias of 5 volt with 30 mA current, resulting in a 3.35 volt threshold bias with the peak electroluminescence in UV-blue range.

  12. Molecular Structure and Chemical Shift Assignments of 4-(2-Methoxy-4-Methylphenoxy)Phthalonitrile (C16H12N2O2) By DFT And AB Initio HF Calculations

    International Nuclear Information System (INIS)

    Tarcan, E.

    2008-01-01

    The molecular geometry, gauge including atomic orbital (GIAO) 1 H and 13 C chemical shift values of 4-(2-Methoxy-4-methylphenoxy)phthalonitrile (C 1 6H 1 2N 2 O 2 ) in the ground state have been calculated by using the Hartree-Fock (HF) and density functional methods (B3LYP and BLYP) with 6-31G(d) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The optimized bond length numbers with bond angels are in good agreement with the X-ray data

  13. A modification of the Schomaker—Stevenson rule for prediction of single bond distances

    Science.gov (United States)

    Blom, Richard; Haaland, Arne

    1985-04-01

    A modification of the Schomaker—Stevenson rule: ?c = 8.5 pm, n = 1.4, significantly reduces the discrepancy between experimental calculated bond lengths for every polar bonds between main group elements.

  14. Topological analysis of polymeric melts: chain-length effects and fast-converging estimators for entanglement length.

    Science.gov (United States)

    Hoy, Robert S; Foteinopoulou, Katerina; Kröger, Martin

    2009-09-01

    Primitive path analyses of entanglements are performed over a wide range of chain lengths for both bead spring and atomistic polyethylene polymer melts. Estimators for the entanglement length N_{e} which operate on results for a single chain length N are shown to produce systematic O(1/N) errors. The mathematical roots of these errors are identified as (a) treating chain ends as entanglements and (b) neglecting non-Gaussian corrections to chain and primitive path dimensions. The prefactors for the O(1/N) errors may be large; in general their magnitude depends both on the polymer model and the method used to obtain primitive paths. We propose, derive, and test new estimators which eliminate these systematic errors using information obtainable from the variation in entanglement characteristics with chain length. The new estimators produce accurate results for N_{e} from marginally entangled systems. Formulas based on direct enumeration of entanglements appear to converge faster and are simpler to apply.

  15. Blue-shifted and red-shifted hydrogen bonds: Theoretical study of the CH3CHO· · ·HNO complexes

    Science.gov (United States)

    Yang, Yong; Zhang, Weijun; Gao, Xiaoming

    The blue-shifted and red-shifted H-bonds have been studied in complexes CH3CHO?HNO. At the MP2/6-31G(d), MP2/6-31+G(d,p) MP2/6-311++G(d,p), B3LYP/6-31G(d), B3LYP/6-31+G(d,p) and B3LYP/6-311++G(d,p) levels, the geometric structures and vibrational frequencies of complexes CH3CHO?HNO are calculated by both standard and CP-corrected methods, respectively. Complex A exhibits simultaneously red-shifted C bond H?O and blue-shifted N bond H?O H-bonds. Complex B possesses simultaneously two blue-shifted H-bonds: C bond H?O and N bond H?O. From NBO analysis, it becomes evident that the red-shifted C bond H?O H-bond can be explained on the basis of the two opposite effects: hyperconjugation and rehybridization. The blue-shifted C bond H?O H-bond is a result of conjunct C bond H bond strengthening effects of the hyperconjugation and the rehybridization due to existence of the significant electron density redistribution effect. For the blue-shifted N bond H?O H-bonds, the hyperconjugation is inhibited due to existence of the electron density redistribution effect. The large blue shift of the N bond H stretching frequency is observed because the rehybridization dominates the hyperconjugation.

  16. Discovery of S···C≡N Intramolecular Bonding in a Thiophenylcyanoacrylate-Based Dye: Realizing Charge Transfer Pathways and Dye···TiO 2 Anchoring Characteristics for Dye-Sensitized Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Jacqueline M. [Cavendish; ISIS; Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States; Department; Blood-Forsythe, Martin A. [Cavendish; Lin, Tze-Chia [Cavendish; Pattison, Philip [Swiss; Gong, Yun [Cavendish; Vázquez-Mayagoitia, Álvaro [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States; Waddell, Paul G. [Cavendish; Australian Centre for Neutron Scattering, Australian Nuclear Science; Zhang, Lei [Cavendish; Koumura, Nagatoshi [National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Mori, Shogo [Division

    2017-07-25

    Donor-pi-acceptor dyes containing thiophenyl pi-conjugated units and cyanoacrylate acceptor groups are among the best-performing organic chromophores used in dye-sensitized solar cell (DSC) applications. Yet, the molecular origins of their high photovoltaic output have remained unclear until now. This synchrotron-based X-ray diffraction study elucidates these origins for the high-performance thiophenylcyanoacrylate-based dye MK-2 (7.7% DSC device efficiency) and its molecular building block, MK-44. The crystal structures of MK-2 and MK-44 are both determined, while a high-resolution charge-density mapping of the smaller molecule was also possible, enabling the nature of its bonding to be detailed. A strong S center dot center dot center dot C equivalent to N intramolecular interaction is discovered, which bears a bond critical point, thus proving that this interaction should be formally classified as a chemical bond. A topological analysis of the pi-conjugated portion of MK-44 shows that this S center dot center dot center dot C equivalent to N bonding underpins the highly efficient intramolecular charge transfer(ICT) in thiophenylcyanoacrylate dyes. This manifests as two bipartite ICT pathways bearing carboxylate and nitrile end points. In turn, these pathways dictate a preferred COO/CN anchoring mode for the dye as it adsorbs onto TiO2 surfaces, to form the dye TiO2 interface that constitutes the DSC working electrode. These results corroborate a recent proposal that all cyanoacrylate groups anchor onto TiO2 in this COO/CN binding configuration. Conformational analysis of the MK-44 and MK-2 crystal structures reveals that this S center dot center dot center dot C equivalent to N bonding will persist in MK-2. Accordingly, this newly discovered bond affords a rational explanation for the attractive photovoltaic properties of,MK-2. More generally, this study provides the first unequivocal evidence for an S center dot center dot center dot C equivalent to N

  17. Discrimination between O-H…N and O-H…O=C Complexes of 3 ...

    African Journals Online (AJOL)

    NICO

    n. The much larger frequency shift of the base C=O group is due to an increased cooperativity. The presence of an intense absorption band of methanol polymers between 3720 and 3200 cm–1 suggests that. 3M4P is no longer H-bonded by a single methanol molecule, but rather by methanol associates. The structure of this ...

  18. Control of chemical bonding of the ZnO surface grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Ogata, K.; Komuro, T.; Hama, K.; Koike, K.; Sasa, S.; Inoue, M.; Yano, M.

    2004-01-01

    Toward the fabrication of enzyme modified field effect transistors (EnFETs) as one of organic/inorganic hybridized structures, surface bonding of the ZnO grown by molecular beam epitaxy was controlled by ex situ treatments. Angle resolved X-ray photoelectron spectroscopy (XPS) measurement revealed that O-H bonds exist at the surface of ZnO. It was found that the number of O-H bond could be changed with reversibility using plasma and thermal treatments

  19. Non-destructive testing of full-length bonded rock bolts based on HHT signal analysis

    Science.gov (United States)

    Shi, Z. M.; Liu, L.; Peng, M.; Liu, C. C.; Tao, F. J.; Liu, C. S.

    2018-04-01

    Full-length bonded rock bolts are commonly used in mining, tunneling and slope engineering because of their simple design and resistance to corrosion. However, the length of a rock bolt and grouting quality do not often meet the required design standards in practice because of the concealment and complexity of bolt construction. Non-destructive testing is preferred when testing a rock bolt's quality because of the convenience, low cost and wide detection range. In this paper, a signal analysis method for the non-destructive sound wave testing of full-length bonded rock bolts is presented, which is based on the Hilbert-Huang transform (HHT). First, we introduce the HHT analysis method to calculate the bolt length and identify defect locations based on sound wave reflection test signals, which includes decomposing the test signal via empirical mode decomposition (EMD), selecting the intrinsic mode functions (IMF) using the Pearson Correlation Index (PCI) and calculating the instantaneous phase and frequency via the Hilbert transform (HT). Second, six model tests are conducted using different grouting defects and bolt protruding lengths to verify the effectiveness of the HHT analysis method. Lastly, the influence of the bolt protruding length on the test signal, identification of multiple reflections from defects, bolt end and protruding end, and mode mixing from EMD are discussed. The HHT analysis method can identify the bolt length and grouting defect locations from signals that contain noise at multiple reflected interfaces. The reflection from the long protruding end creates an irregular test signal with many frequency peaks on the spectrum. The reflections from defects barely change the original signal because they are low energy, which cannot be adequately resolved using existing methods. The HHT analysis method can identify reflections from the long protruding end of the bolt and multiple reflections from grouting defects based on mutations in the instantaneous

  20. Photosynthetic water oxidation: binding and activation of substrate waters for O-O bond formation.

    Science.gov (United States)

    Vinyard, David J; Khan, Sahr; Brudvig, Gary W

    2015-01-01

    Photosynthetic water oxidation occurs at the oxygen-evolving complex (OEC) of Photosystem II (PSII). The OEC, which contains a Mn4CaO5 inorganic cluster ligated by oxides, waters and amino-acid residues, cycles through five redox intermediates known as S(i) states (i = 0-4). The electronic and structural properties of the transient S4 intermediate that forms the O-O bond are not well understood. In order to gain insight into how water is activated for O-O bond formation in the S4 intermediate, we have performed a detailed analysis of S-state dependent substrate water binding kinetics taking into consideration data from Mn coordination complexes. This analysis supports a model in which the substrate waters are both bound as terminal ligands and react via a water-nucleophile attack mechanism.

  1. 4-Bromo-N-(di-n-propylcarbamothioylbenzamide

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The synthesis of the title compound, C14H19BrN2OS, involves the reaction of 4-bromobenzoyl chloride with potassium thiocyanate in acetone followed by condensation of the resulting 4-bromobenzoyl isothiocyanate with di-n-propylamine. Typical thiourea carbonyl and thiocarbonyl double bonds, as well as shortened C—N bonds, are observed in the title compound. The short C—N bond lengths in the centre of the molecule reveal the effects of resonance in this part of the molecule. The asymmetric unit of the title compound contains two crystallographically independent molecules, A and B. There is very little difference between the bond lengths and angles of these molecules. In molecule B, one di-n-propyl group is twisted in a −antiperiplanar conformation with C—C—C—H = −179.1 (3° and the other adopts a −synclinal conformation with C—C—C—H = −56.7 (4°; in molecule A the two di-n-propyl groups are twisted in + and −antiperiplanar conformations, with C—C—C—H = −179.9 (3 and 178.2 (3°, respectively. In the crystal, the molecules are linked into dimeric pairs via pairs of N—H...S hydrogen bonds.

  2. Synthesis, characterization and crystal structure of the new pentahydrate of bis(2,2'-bipyridine-κ(2)N,N')(oxalato-κ(2)O(1),O(2))nickel(II).

    Science.gov (United States)

    Farkašová, Nela; Cernák, Juraj; Tomás, Milagros; Falvello, Larry R

    2014-05-01

    The reaction of NiCl2, K2C2O4·H2O and 2,2'-bipyridine (bpy) in water-ethanol solution at 281 K yields light-purple needles of the new pentahydrate of bis(2,2'-bipyridine)oxalatonickel(II), [Ni(C2O4)(C10H8N2)2]·5H2O or [Ni(ox)(bpy)2]·5H2O, while at room temperature, deep-pink prisms of the previously reported tetrahydrate [Ni(ox)(bpy)2]·4H2O [Román, Luque, Guzmán-Miralles & Beitia (1995), Polyhedron, 14, 2863-2869] were gathered. The asymmetric unit in the crystal structure of the new pentahydrate incorporates the discrete molecular complex [Ni(ox)(bpy)2] and five solvent water molecules. Within the complex molecule, all three ligands are bonded as chelates. The complex molecules are involved in an extended system of hydrogen bonds with the solvent water molecules. Additionally, π-π interactions also contribute to the stabilization of the extended structure. The dehydration of the pentahydrate starts at 323 K and proceeds in at least two steps as determined by thermal analysis.

  3. Poly[aqua-μ-bromido-(μ2-5-methylpyrazine-2-carboxylato-κ4N1,O2:O2,O2′lead(II

    Directory of Open Access Journals (Sweden)

    Pan Yang

    2012-09-01

    Full Text Available In the title coordination polymer, [PbBr(C6H5N2O2(H2O]n, the PbII atom is coordinated by one pyrazine N atom, two bridging Br atoms, a water molecule and three carboxylate O atoms. Bridging by the two anions generates a layer structure parallel to (001; the layers are linked by O—H...N and O—H...Br hydrogen bonds, forming a three-dimensional network. The lone pair is stereochemically active, resulting in a Ψ-dodecahedral coordination environment for PbII.

  4. Sensitivity of hydrogen bonds of DNA and RNA to hydration, as gauged by 1JNH measurements in ethanol-water mixtures

    International Nuclear Information System (INIS)

    Manalo, Marlon N.; Kong Xiangming; LiWang, Andy

    2007-01-01

    Hydrogen-bond lengths of nucleic acids are (1) longer in DNA than in RNA, and (2) sequence dependent. The physicochemical basis for these variations in hydrogen-bond lengths is unknown, however. Here, the notion that hydration plays a significant role in nucleic acid hydrogen-bond lengths is tested. Watson-Crick N1...N3 hydrogen-bond lengths of several DNA and RNA duplexes are gauged using imino 1 J NH measurements, and ethanol is used as a cosolvent to lower water activity. We find that 1 J NH values of DNA and RNA become less negative with added ethanol, which suggests that mild dehydration reduces hydrogen-bond lengths even as the overall thermal stabilities of these duplexes decrease. The 1 J NH of DNA are increased in 8 mol% ethanol to those of RNA in water, which suggests that the greater hydration of DNA plays a significant role in its longer hydrogen bonds. The data also suggest that ethanol-induced dehydration is greater for the more hydrated G:C base pairs and thereby results in greater hydrogen-bond shortening than for the less hydrated A:T/U base pairs of DNA and RNA

  5. Bond-Slip Relationship for CFRP Sheets Externally Bonded to Concrete under Cyclic Loading.

    Science.gov (United States)

    Li, Ke; Cao, Shuangyin; Yang, Yue; Zhu, Juntao

    2018-02-26

    The objective of this paper was to explore the bond-slip relationship between carbon fiber-reinforced polymer (CFRP) sheets and concrete under cyclic loading through experimental and analytical approaches. Modified beam tests were performed in order to gain insight into the bond-slip relationship under static and cyclic loading. The test variables are the CFRP-to-concrete width ratio, and the bond length of the CFRP sheets. An analysis of the test results in this paper and existing test results indicated that the slope of the ascending segment of the bond-slip curve decreased with an increase in the number of load cycles, but the slip corresponding to the maximum shear stress was almost invariable as the number of load cycles increased. In addition, the rate of reduction in the slope of the ascending range of the bond-slip curve during cyclic loading decreased as the concrete strength increased, and increased as the load level or CFRP-to-concrete width ratio enhanced. However, these were not affected by variations in bond length if the residual bond length was longer than the effective bond length. A bilinear bond-slip model for CFRP sheets that are externally bonded to concrete under cyclic loading, which considered the effects of the cyclic load level, concrete strength, and CFRP-to-concrete ratio, was developed based on the existing static bond-slip model. The accuracy of this proposed model was verified by a comparison between this proposed model and test results.

  6. Uma investigação sobre os co-movimentos na volatilidade dos par bonds latino-americanos

    Directory of Open Access Journals (Sweden)

    Igor A.C. de Morais

    2001-04-01

    Full Text Available Este artigo procura aplicar o método de quase-máxima verossimilhança para estimar a volatilidade estocástica multivariada não-estacionária dos preços de compra dos par bonds de quatro países latino-americanos - México, Brasil, Argentina e Venezuela - no período de 9-8-1994 a 15-9-1999. O objetivo é analisar possíveis movimentos comuns nestas variâncias. Os testes feitos revelam que a volatilidade nos modelos univariados não apresentam inclinação, mas possuem alta persistência. A formulação multivariada relaciona bem os dados, obtendo estimativas consistentes e revelando a existência de um comportamento ao longo do tempo similar entre as volatilidades das quatro séries.This paper uses a quasi-maximum likelihood procedure to estimate the non-stationary stochastic volatility for the par bonds of four Latin American countries: Brazil, Argentina, Mexico and Venezuela. The aim is to investigate the possible presence of co-movements in volatility across countries. The estimation period goes from August 1994 to September 1999, including, therefore, the Asian and Russian crises. The estimated volatility for the univariate model does not show any slope and is highly persistent. The multivariate model gives a good fit to the data and shows that there is common movement.

  7. Nano-regime Length Scales Extracted from the First Sharp Diffraction Peak in Non-crystalline SiO2 and Related Materials: Device Applications

    Directory of Open Access Journals (Sweden)

    Phillips James

    2010-01-01

    Full Text Available Abstract This paper distinguishes between two different scales of medium range order, MRO, in non-crystalline SiO2: (1 the first is ~0.4 to 0.5 nm and is obtained from the position of the first sharp diffraction peak, FSDP, in the X-ray diffraction structure factor, S(Q, and (2 the second is ~1 nm and is calculated from the FSDP full-width-at-half-maximum FWHM. Many-electron calculations yield Si–O third- and O–O fourth-nearest-neighbor bonding distances in the same 0.4–0.5 nm MRO regime. These derive from the availability of empty Si dπ orbitals for back-donation from occupied O pπ orbitals yielding narrow symmetry determined distributions of third neighbor Si–O, and fourth neighbor O–O distances. These are segments of six member rings contributing to connected six-member rings with ~1 nm length scale within the MRO regime. The unique properties of non-crystalline SiO2 are explained by the encapsulation of six-member ring clusters by five- and seven-member rings on average in a compliant hard-soft nano-scaled inhomogeneous network. This network structure minimizes macroscopic strain, reducing intrinsic bonding defects as well as defect precursors. This inhomogeneous CRN is enabling for applications including thermally grown ~1.5 nm SiO2 layers for Si field effect transistor devices to optical components with centimeter dimensions. There are qualitatively similar length scales in nano-crystalline HfO2 and phase separated Hf silicates based on the primitive unit cell, rather than a ring structure. Hf oxide dielectrics have recently been used as replacement dielectrics for a new generation of Si and Si/Ge devices heralding a transition into nano-scale circuits and systems on a Si chip.

  8. Novel ethylenediamine-gallium phosphate containing 6-fold coordinated gallium atoms with unusual four equatorial Ga–N bonds

    Energy Technology Data Exchange (ETDEWEB)

    Torre-Fernández, Laura [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo-CINN, 33006 Oviedo (Spain); Espina, Aránzazu; Khainakov, Sergei A.; Amghouz, Zakariae [Servicios Científico Técnicos, Universidad de Oviedo, 33006 Oviedo (Spain); García, José R. [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo-CINN, 33006 Oviedo (Spain); García-Granda, Santiago, E-mail: sgg@uniovi.es [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo-CINN, 33006 Oviedo (Spain)

    2014-07-01

    A novel ethylenediamine-gallium phosphate, formulated as Ga(H{sub 2}NCH{sub 2}CH{sub 2}NH{sub 2}){sub 2}PO{sub 4}·2H{sub 2}O, was synthesized under hydrothermal conditions. The crystal structure, including hydrogen positions, was determined using single-crystal X-ray diffraction data (monoclinic, a=9.4886(3) Å, b=6.0374(2) Å, c=10.2874(3) Å, and β=104.226(3)°, space group Pc) and the bulk was characterized by chemical (Ga–P–C–H–N) and thermal analysis (TG–MS and DSC), including activation energy data of its thermo-oxidative degradation, powder X-ray diffraction (PXRD), solid-state nuclear magnetic resonance (SS-NMR) measurements, and transmission electron microscopy (TEM, SAED/NBD, and STEM BF-EDX). The crystal structure is built up of infinite zig-zag chains running along the c-axis, formed by vertex-shared (PO{sub 4}) and (GaO{sub 2}N{sub 4}) polyhedra. The new compound is characterized by unusual four equatorial Ga–N bonds coming from two nonequivalent ethylenediamine molecules and exhibits strong blue emission at 430 nm (λ{sub ex}=350 nm) in the solid state at room temperature. - Graphical abstract: Single crystals of a new ethylenediamine-gallium phosphate, Ga(H{sub 2}NCH{sub 2}CH{sub 2}NH{sub 2}){sub 2}PO{sub 4}·2H{sub 2}O, were obtained and the structural features presented. This structure is one of the scarce examples of GaPO with Ga–N bonds reported. - Highlights: • A novel ethylenediamine-gallium phosphate was hydrothermally synthesized. • The new compound is characterized by unusual four equatorial Ga–N bonds. • Void-volume analysis shows cages and channels with sizes ideally suited to accommodate small molecules. • The new compound exhibits strong blue emission.

  9. N-(4-Methoxyphenyl-tert-butanesulfinamide

    Directory of Open Access Journals (Sweden)

    Mrityunjoy Datta

    2009-11-01

    Full Text Available In the title compound, C11H17NO2S, the molecules interact head-to-tail through N—H...OS hydrogen bonds, giving discrete centrosymmetric cyclic dimers. The N—Caryl bond length [1.4225 (14 Å] is intermediate between that in N-phenyl-tert-butanesulfinamide [1.4083 (12 Å] and the N—Calkyl bond lengths in N-alkylalkanesulfinamides (1.470–1.530 Å, suggesting weaker delocalization of electrons over the N atom and the aromatic ring due to the presence of the 4-methoxy group.

  10. The cocrystal μ-oxalato-κ4O1,O2:O1′,O2′-bis(aqua(nitrato-κO{[1-(2-pyridyl-κNethylidene]hydrazine-κN}copper(II μ-oxalato-κ4O1,O2:O1′,O2′-bis((methanol-κO(nitrato-κO{[1-(2-pyridyl-κNethylidene]hydrazine-κN}copper(II (1/1

    Directory of Open Access Journals (Sweden)

    Youssouph Bah

    2008-09-01

    Full Text Available The title cocrystal, [Cu2(C2O4(NO32(C7H9N32(H2O2][Cu2(C2O4(NO32(C7H9N32(CH4O2], is a 1:1 cocrystal of two centrosymmetric CuII complexes with oxalate dianions and Schiff base ligands. In each molecule, the CuII centre is in a distorted octahedral cis-CuN2O4 environment, the donor atoms of the N,N′-bidentate Schiff base ligand and the bridging O,O′-bidentate oxalate group lying in the equatorial plane. In one molecule, a monodentate nitrate anion and a water molecule occupy the axial sites, and in the other, a monodentate nitrate anion and a methanol molecule occupy these sites. In the crystal structure, intermolecular N—H...O, O—H...O and N—H...N hydrogen bonds link the molecules into a network. Weak intramolecular N—H...O interactions are also observed.

  11. Diaqua-2κ2O-bis(μ-1-oxido-2-naphthoato-1:2κ3O1,O2:O2′;2:3κ3O2:O1,O2′-bis(1-oxido-2-naphthoato-1κ1O2,O2;3κ2O1,O2-hexapyridine-1κ2N,2κ2N,3κ2N-trimanganese(II/III pyridine disolvate dihydrate

    Directory of Open Access Journals (Sweden)

    Daqi Wang

    2008-12-01

    Full Text Available The title complex, [Mn3(C11H6O34(C5H5N6(H2O2]·2H2O·2C5H5N, is a trinuclear mixed oxidation state complex of overline1 symmetry. The three Mn atoms are six-coordinated in the shape of distorted octahedra, each coordinated with an O4N2 set of donor atoms, where the ligands exhibit mono- and bidentate modes. However, the coordination of the MnII ion located on the inversion centre involves water molecules at two coordination sites, whereas that of the two symmetry-related MnIII ions involves an O4N2 set of donor atoms orginating from the organic ligands. Intramolecular C—H...π interactions between neighbouring pyridine ligands stabilize this arrangement. A two-dimensional network parallel to (001 is formed by intermolecular O—H...O hydrogen bonds.

  12. Aquabis(3,5-dimethyl-1H-pyrazole-κN(oxalato-κ2O,O′copper(II

    Directory of Open Access Journals (Sweden)

    Andrii I. Buvailo

    2008-01-01

    Full Text Available In the title compound, [Cu(C2O4(C5H8N22(H2O], the CuII atom is coordinated in a slightly distorted square-pyramidal geometry by two N atoms belonging to the two 3,5-dimethyl-1H-pyrazole ligands, two O atoms of the oxalate anion providing an O,O′-chelating coordination mode, and an O atom of the water molecule occupying the apical position. The crystal packing shows a well defined layer structure. Intra-layer connections are realised through a system of hydrogen bonds while the nature of the inter-layer interactions is completely hydrophobic, including no hydrogen-bonding interactions.

  13. Spectroscopic Studies of a Three-dimensional, Five-coordinated Copper(Ⅱ) Complex via Hydrogen Bonds: [Cu(PDA)(H2O)2](H2PDA=Pyridine-2,6-dicarboxylic Acid)

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new copper(Ⅱ) complex [Cu(PDA)(H2O)2] was synthesized and its structure was determined. Cu(Ⅱ) is five-coordinated in a tetragonal pyramid geometry. The two coordinating water molecules are different and the two Cu-O bond lengths differ by nearly 0.02 nm. The whole crystal is linked to form a three-dimensional network by means of hydrogen bonds. The X-band ESR spectrum shows three different g tensors with a well-resolved hyperfine structure in the gz signal, giving the ESR parameters gx=2.05, gy=2.065 and gz=2.29. The covalency of the coordinate bonds and the deviation from tetragonal pyramid geometry for the complex are discussed based on the ESR spectra.

  14. Chemical bonding in Tl cuprates studied by x-ray photoemission

    International Nuclear Information System (INIS)

    Vasquez, R.P.; Siegal, M.P.; Overmyer, D.L.; Ren, Z.F.; Lao, J.Y.; Wang, J.H.

    1999-01-01

    Epitaxial thin films of the Tl cuprate superconductors Tl 2 Ba 2 CaCu 2 O 8 , Tl 2 Ba 2 Ca 2 Cu 3 O 10 , and Tl 0.78 Bi 0.22 Ba 0.4 Sr 1.6 Ca 2 Cu 3 O 9-δ are studied with x-ray photoemission spectroscopy. These data, together with previous measurements in this lab of Tl 2 Ba 2 CuO 6+δ and TlBa 2 CaCu 2 O 7-δ , comprise a comprehensive data set for a comparative study of Tl cuprates with a range of chemical and electronic properties. In the Cu 2p spectra, a larger energy separation between the satellite and main peaks (E s -E m ) and a lower intensity ratio (I s /I m ) are found to correlate with higher values of T c . Analysis of these spectra within a simple configuration interaction model suggests that higher values of T c are related to low values of the O 2p→Cu 3d charge transfer energy. In the O 1s region, a smaller bond length between Ba and Cu-O planar oxygen is found to correlate with a lower binding energy for the signal associated with Cu-O bonding, most likely resulting from the increased polarization screening by Ba 2+ ions. For samples near optimum doping, maximum T c is observed to occur when the Tl 4f 7/2 binding energy is near 117.9 eV, which is near the middle of the range of values observed for Tl cuprates. Higher Tl 4f 7/2 binding energies, corresponding to formal oxidation states nearer Tl 1+ , are also found to correlate with longer bond lengths between Ba and Tl-O planar oxygen, and with higher binding energies of the O 1s signal associated with Tl-O bonding. copyright 1999 The American Physical Society

  15. The adsorption of Run (n = 1-4) on γ-Al2O3 Surface: A DFT study

    Science.gov (United States)

    Liu, Zhe; Guo, Yafei; Chen, Yu; Shen, Rong

    2018-05-01

    The density functional theory (DFT) was adopted to study the adsorption and growth of Run (n = 1-4) clusters on γ-Al2O3 surface, which is of great significances for the design of many important catalysts, especially for carbon dioxide methanation. It is found that both the Rusbnd Ru bond length and adsorption energy Eads of Ru clusters with the surface increase with the Run clusters increasing. The growth ability of the supported Run cluster is weaker than the gas phase Run clusters through comparing their respective growth process, which ascribes to the stabilization of γ-Al2O3 support. An interesting discovery is that the basin structure was supposed to be the most favorable adsorption geometry for Run clusters. Additionally, the distances between Ru atoms in the adsorbed clusters are longer than that in their isolated counterparts. Bader charge analysis was conducted for the most stable configurations of Run (n = 1-4) clusters on γ-Al2O3 surface as well. And the results suggest that Run (n = 1-4) clusters serve as the electron donators. The result of projected density of states (PDOS) shows that strong adsorption of Ru atom on the γ-Al2O3 surface correlates with strong interaction between d orbital of Ru atom and p orbital of Al or O atom of the Al2O3 support.

  16. First-principles calculation on electronic structure and optical property of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Zhi-Fang, E-mail: tongzhifang1998@126.com; Wei, Zhan-Long; Xiao, Cheng

    2017-04-15

    The crystal structure, electronic structure and optical properties of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} with varying Eu doping concentrations are computed by the density functional theory (DFT) and compared with experimental results. The results show that the lattice parameters of primitive cells of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x} become smaller and Eu–N bond length shortens as Eu concentration increases. The band structure of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x} exhibits a direct optical band gap and it's propitious to luminescence. The energy differences from the lowest Eu 5d state to the lowest Eu 4f state decrease with increasing Eu concentrations. The analysis of simulative absorption spectra indicates that the electron transition from Eu 4f states to 5d states of both Eu and Ba atoms contributes to the absorption of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x}. Under the coupling effect between Eu and Ba, Ba in BaSi{sub 2}O{sub 2}N{sub 2} exhibits longer wavelength absorption and increases absorption efficiency. The emission wavelength is deduced by measuring energy differences from the lowest Eu 5d state to the lowest Eu 4f state, and the result is in good agreement with experimental value within experimental Eu{sup 2+} doping range. - Graphical abstract: The structure and optical property of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} are computed by DFT and its absorption mechanism is analysed. Results show that absorption peak α is from the host lattice absorption. The absorption peaks β, γ and δ are from Eu 4f to Eu 5d and Ba 6s 5d states. The absorption is attributed to the coupling effect of Eu and Ba atom. - Highlights: • The crystal, electronic structure and optical properties of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} are computed by DFT. • The lattice parameters of primitive cells reduces and Eu–N bond length shortens as Eu{sup 2+} increases. • The energy gap from Eu 5d state to Eu 4f state

  17. Remarkably enhanced photoluminescence of hexagonal GdPO4·nH2O:Eu with decreasing size

    International Nuclear Information System (INIS)

    Lu Shaozhe; Zhang Jiahua; Zhang Jishen; Zhao Haifeng; Luo Yongshi; Ren Xinguang

    2010-01-01

    The hexagonal rhabdophane-type GdPO 4 hydrate (GdPO 4 ·nH 2 O) was synthesized via a simple hydrothermal process. The size and morphology of the products can be tunable by adjusting the pH of reaction systems through the addition of aqueous NaOH. The nanorods with a width of 50-100 nm and a length of about 1 μm were obtained in the absence of NaOH (pH = 2), while a significant reduction of size (width: ∼ 10 nm, length: ∼ 50 nm) was observed for the product synthesized in the presence of NaOH (pH = 10). Surprisingly, the small-sized product exhibits a remarkably enhanced photoluminescence quantum yield and long excited state lifetime in comparison with those of the large-sized product. This abnormal luminescence phenomenon is discussed and explained. The EDS and XPS measurements revealed the presence of Na + in the small-sized samples. These Na + cations were probably bonded to the surface O 2- dangling bonds, which thus reduces the number of surface defects that usually serve as the nonradiative energy transfer center channels. A considerable reduction of surface defect centers results in the increase of the emission efficiency and excited state lifetime in a small-sized sample. Obviously, the controlled synthesis of rare-earth-doped nanoparticles with a small size, but with relatively strong luminescence, is significant for their applications in the areas of technologies including optoelectronics, sensing and bioimaging.

  18. Crystal structure of (4-cyanopyridine-κN{5,10,15,20-tetrakis[4-(benzoyloxyphenyl]porphyrinato-κ4N}zinc–4-cyanopyridine (1/1

    Directory of Open Access Journals (Sweden)

    Soumaya Nasri

    2016-02-01

    Full Text Available In the title compound, [Zn(C72H44N4O8(C6H4N2]·C6H4N2 or [Zn(TPBP(4-CNpy]·(4-CNpy [where TPBP and 4-CNpy are 5,10,15,20-(tetraphenylbenzoateporphyrinate and 4-cyanopyridine, respectively], the ZnII cation is chelated by four pyrrole-N atoms of the porphyrinate anion and coordinated by a pyridyl-N atom of the 4-CNpy axial ligand in a distorted square-pyramidal geometry. The average Zn—N(pyrrole bond length is 2.060 (6 Å and the Zn—N(4-CNpy bond length is 2.159 (2 Å. The zinc cation is displaced by 0.319 (1 Å from the N4C20 mean plane of the porphyrinate anion toward the 4-cyanopyridine axial ligand. This porphyrinate macrocycle exhibits major saddle and moderate ruffling and doming deformations. In the crystal, the [Zn(TPBP(4-CNpy] complex molecules are linked together via weak C—H...N, C—H...O and C—H...π interactions, forming supramolecular channels parallel to the c axis. The non-coordinating 4-cyanopyridine molecules are located in the channels and linked with the complex molecules, via weak C—H...N interactions and π-π stacking or via weak C—H...O and C—H...π interactions. The non-coordinating 4-cyanopyridine molecule is disordered over two positions with an occupancy ratio of 0.666 (4:0.334 (4.

  19. Evolution of the bonding mechanism of ZnO under isotropic compression: A first-principles study

    International Nuclear Information System (INIS)

    Zhou, G.C.; Sun, L.Z.; Wang, J.B.; Zhong, X.L.; Zhou, Y.C.

    2008-01-01

    The electronic structure and the bonding mechanism of ZnO under isotropic pressure have been studied by using the full-potential linear augmented plane wave (FP-LAPW) method within the density-functional theory (DFT) based on LDA+U exchange correlation (EXC) potential. We used the theory of Atoms in Molecules (AIM) method to analyze the change of the charge transfer and the bonding strength under isotropic pressure. The results of the theoretical analysis show that charge transfer between Zn and O atomic basins nearly linearly increases with the increasing pressure. Charge density along the Zn-O bond increases under the high pressure. The bonding strength and the ionicity of Zn-O bond also increase with the increasing pressure. The linear evolution process of the bonding mechanism under isotropic pressure was shown clearly in the present paper

  20. Effect of Bonding Pressure and Bonding Time on the Tensile Properties of Cu-Foam / Cu-Plate Diffusion Bonded Joint

    International Nuclear Information System (INIS)

    Kim, Sang-Ho; Heo, Hoe-Jun; Kang, Chung-Yun; Yoon, Tae-Jin

    2016-01-01

    Open cell Cu foam, which has been widely utilized in various industries because of its high thermal conductivity, lightweight and large surface area, was successfully joined with Cu plate by diffusion bonding. To prevent excessive deformation of the Cu foam during bonding process, the bonding pressure should be lower than 500 kPa at 800 ℃ for 60 min and bonding pressure should be lowered with increasing holding time. The bonding strength was evaluated by tensile tests. The tensile load of joints increased with the bonding pressure and holding time. In the case of higher bonding pressure or time, the bonded length at the interface was usually longer than the cross-sectional length of the foam, so fracture occurred at the foam. For the same reason, base metal (foam) fracture mainly occurred at the node-plate junction rather than in the strut-plate junction because the bonded surface area of the node was relatively larger than that of the strut.

  1. Determination of carrier diffusion length in p- and n-type GaN

    Science.gov (United States)

    Hafiz, Shopan; Metzner, Sebastian; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Karbaum, Christopher; Bertram, Frank; Christen, Jürgen; Gil, Bernard; Özgür, Ümit

    2014-03-01

    Diffusion lengths of photo-excited carriers along the c-direction were determined from photoluminescence (PL) measurements in p- and n-type GaN epitaxial layers grown on c-plane sapphire by metal-organic chemical vapor deposition. The investigated samples incorporate a 6 nm thick In0.15Ga0.85N active layer capped with either 500 nm p- GaN or 1300 nm n-GaN. The top GaN layers were etched in steps and PL from the InGaN active region and the underlying layers was monitored as a function of the top GaN thickness upon photogeneration near the surface region by above bandgap excitation. Taking into consideration the absorption in the active and underlying layers, the diffusion lengths at 295 K and at 15 K were measured to be about 92 ± 7 nm and 68 ± 7 nm for Mg-doped p-type GaN and 432 ± 30 nm and 316 ± 30 nm for unintentionally doped n-type GaN, respectively. Cross-sectional cathodoluminescence line-scan measurement was performed on a separate sample and the diffusion length in n-type GaN was measured to be 280 nm.

  2. Characterization of remote O2-plasma-enhanced CVD SiO2/GaN(0001) structure using photoemission measurements

    Science.gov (United States)

    Truyen, Nguyen Xuan; Ohta, Akio; Makihara, Katsunori; Ikeda, Mitsuhisa; Miyazaki, Seiichi

    2018-01-01

    The control of chemical composition and bonding features at a SiO2/GaN interface is a key to realizing high-performance GaN power devices. In this study, an ∼5.2-nm-thick SiO2 film has been deposited on an epitaxial GaN(0001) surface by remote O2-plasma-enhanced chemical vapor deposition (O2-RPCVD) using SiH4 and Ar/O2 mixture gases at a substrate temperature of 500 °C. The depth profile of chemical structures and electronic defects of the O2-RPCVD SiO2/GaN structures has been evaluated from a combination of SiO2 thinning examined by X-ray photoelectron spectroscopy (XPS) and the total photoelectron yield spectroscopy (PYS) measurements. As a highlight, we found that O2-RPCVD is effective for fabricating an abrupt SiO2/GaN interface.

  3. Metal-Ligand Bonds of Second- and Third-Row d-Block Metals Characterized by Density Functional Theory

    Science.gov (United States)

    Jensen, Kasper P.

    2009-08-01

    This paper presents systematic data for 200 neutral diatomic molecules ML (M is a second- or third-row d-block metal and L = H, F, Cl, Br, I, C, N, O, S, or Se) computed with the density functionals TPSSh and BP86. With experimental structures and bond enthalpies available for many of these molecules, the computations first document the high accuracy of TPSSh, giving metal-ligand bond lengths with a mean absolute error of ˜0.01 Å for the second row and 0.03 Å for the third row. TPSSh provides metal-ligand bond enthalpies with mean absolute errors of 37 and 44 kJ/mol for the second- and third-row molecules, respectively. Pathological cases (e.g., HgC and HgN) have errors of up to 155 kJ/mol, more than thrice the mean (observed with both functionals). Importantly, the systematic error component is negligible as measured by a coefficient of the linear regression line of 0.99. Equally important, TPSSh provides uniform accuracy across all three rows of the d-block, which is unprecedented and due to the 10% exact exchange, which is close to optimal for the d-block as a whole. This work provides an accurate and systematic prediction of electronic ground-state spins, characteristic metal-ligand bond lengths, and bond enthalpies for many as yet uncharacterized diatomics, of interest to researchers in the field of second- and third-row d-block chemistry. We stress that the success of TPSSh cannot be naively extrapolated to other special situations such as, e.g., metal-metal bonds. The high accuracy of the procedure further implies that the effective core functions used to model relativistic effects are necessary and sufficient for obtaining accurate geometries and bond enthalpies of second- and third-row molecular systems.

  4. A P,O,P′-tridentate mixed-donor scorpionate ligand: 6-[4,6-bis(diphenylphosphino-10H-phenoxazin-10-yl]hexan-1-ol

    Directory of Open Access Journals (Sweden)

    Holger B. Friedrich

    2008-10-01

    Full Text Available The title compound, C42H39NO2P2, is a P,O,P′-tridentate scorpionate-type ligand and has one molecule in the asymmetric unit. The angles involving the P atoms range from 100.21 (7 to 104.89 (7°. The N-hexanol group was found to be disordered and was refined over two positions with final occupancies of 0.683 (3 and 0.317 (3 which affected the C—O and C—N bond lengths. The bond lengths for C—O range from 1.402 (2 to 1.415 (2 Å and for C—N from 1.410 (2 to 1.448 (3 Å for the major disorder component; the corresponding ranges for the minor disorder component are 1.429 (3–1.408 (3 and 1.474 (3–1.474 (4 Å.

  5. UNA METODOLOGÍA PARA VALORAR UN CALLABLE BOND A METHODOLOGY TO VALUE A CALLABLE BOND

    Directory of Open Access Journals (Sweden)

    Carlos Alexander Grajales

    2008-12-01

    Full Text Available En este artículo, la metodología empleada para valorar un bono que tiene una opción call incluida (callable bond o bono redimible viene dada por la implementación numérica del modelo de tasa corta de Hull y White, la cual se logra con un árbol trinomial de tasas. Así mismo, se presenta una aplicación para el caso de la compañía Interconexión Eléctrica S. A. -ISA-, que ha emitido dos instrumentos callable bonds. Para el desarrollo de tal aplicación se construyen algunos algoritmos computacionales, los cuales pueden valorar los dos bonos con opción call que tiene dicha compañía y además permiten la estructuración de un bono con opción call incluida de tipo genérico.In this paper the methodology employed for assessing a bond that includes a call option (callable bond is given by the numeric implementation of Hull and White short rate model, which it is accomplished through an interest rates trinomial tree. It also presents an application for the case of the company Interconexión Eléctrica S. A. -ISA-, which has issued two callable bonds instruments. For the development of such application computer algorithms are implemented to value the two bonds of the company, and they also allow the structuring of a bond with a generic type call option included.

  6. Investigation of the flatband voltage (V(FB)) shift of Al2O3 on N2 plasma treated Si substrate.

    Science.gov (United States)

    Kim, Hyungchul; Lee, Jaesang; Jeon, Heeyoung; Park, Jingyu; Jeon, Hyeongtag

    2013-09-01

    The relationships between the physical and electrical characteristics of films treated with N2 plasma followed by forming gas annealing (FGA) were investigated. The Si substrates were treated with various radio frequency (RF) power levels under a N2 ambient. Al2O3 films were then deposited on Si substrates via remote plasma atomic-layer deposition. The plasma characteristics, such as the radical and ion density, were investigated using optical emission spectroscopy. Through X-ray photoelectron spectroscopy, the chemical-bonding configurations of the samples treated with N2 plasma and FGA were examined. The quantity of Si-N bonds increased as the RF power was increased, and Si--O--N bonds were generated after FGA. The flatband voltage (VFB) was shifted in the negative direction with increasing RF power, but the VFB values of the samples after FGA shifted in the positive direction due to the formation of Si--O--N bonds. N2 plasma treatment with various RF power levels slightly increased the leakage current due to the generation of defect sites.

  7. Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of O-O Bond Formation Pathways by Different Aggregation Patterns.

    Science.gov (United States)

    Yang, Bing; Jiang, Xin; Guo, Qing; Lei, Tao; Zhang, Li-Ping; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-05-17

    The oxidation of water to molecular oxygen is the key step to realize water splitting from both biological and chemical perspective. In an effort to understand how water oxidation occurs on a molecular level, a large number of molecular catalysts have been synthesized to find an easy access to higher oxidation states as well as their capacity to make O-O bond. However, most of them function in a mixture of organic solvent and water and the O-O bond formation pathway is still a subject of intense debate. Herein, we design the first amphiphilic Ru-bda (H2 bda=2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts (WOCs) of formula [Ru(II) (bda)(4-OTEG-pyridine)2 ] (1, OTEG=OCH2 CH2 OCH2 CH2 OCH3 ) and [Ru(II) (bda)(PySO3 Na)2 ] (2, PySO3 (-) =pyridine-3-sulfonate), which possess good solubility in water. Dynamic light scattering (DLS), scanning electron microscope (SEM), critical aggregation concentration (CAC) experiments and product analysis demonstrate that they enable to self-assemble in water and form the O-O bond through different routes even though they have the same bda(2-) backbone. This work illustrates for the first time that the O-O bond formation pathway can be regulated by the interaction of ancillary ligands at supramolecular level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effect of BSO addition on Cu-O bond of GdBa{sub 2}Cu{sub 3}O{sub 7-x} films with varying thickness probed by extended x-ray absorption fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, H. K.; Lee, J. K.; Yang, D. S.; Kang, B. [Chungbuk National University, Cheongju (Korea, Republic of); Kang, W. N. [Dept. of Physics, Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-12-15

    We investigated the relation between the Cu-O bond length and the superconducting properties of BaSnO{sub 3} (BSO)-added GdBa{sub 2}Cu{sub 3}O{sub 7-x} (GdBCO) thin films by using extended x-ray absorption fine structure (EXAFS) spectroscopy. 4 wt.% BaSnO{sub 3} (BSO) added GdBa{sub 2}Cu{sub 3}O{sub 7-x} (GdBCO) thin films with varying thickness from 0.2 μm to 1.0 μm were fabricated by using pulsed laser deposition (PLD) method. The transition temperature (T{sub c}) and the residual resistance ratio (RRR) of the GdBCO films increased with increasing thickness up to 0.8 μm, where the crystalline BSO has the highest peak intensity, and then decreased. This uncommon behaviors of T{sub c} and RRR are likely to be created by the addition of BSO, which may change the ordering of GdBCO atomic bonds. Analysis from the Cu K-edge EXAFS spectroscopy showed an interesting thickness dependence of ordering behavior of BSO-added GdBCO films. It is noticeable that the ordering of Cu-O bond and the transition temperature are found to show opposite behaviors in the thickness dependence. Based on these results, the growth of BSO seemingly have evident effect on the alteration of the local structure of GdBCO film.

  9. Avaliação da utilização dos adesivos dentinários na microinfiltração marginal de resinas compostas = Evaluation of use of dentin bond on the marginal microleakege of composites

    Directory of Open Access Journals (Sweden)

    Peixe, Simone

    2006-01-01

    Full Text Available O objetivo deste trabalho foi o de avaliar a microinfiltração marginal em restaurações de resina composta quando utilizados adesivos dentinários de um mesmo fabricante e associação com os adesivos de fabricantes diferentes. Foram realizados 40 preparos classe II tipo slot vertical, com pontas diamantadas 1094 (K. G. Sorensen nas proximais dos terceiros molares. As restaurações foram divididas em 4 grupos; restaurações com Prime & Bond e TPH (G1, Single Bond e TPH (G2, Single Bond e Z 100 (G3, Prime & Bond e Z 100 (G4. Após a confecção das restaurações, estas foram submetidas à ciclagem térmica, em água a 5°C ± 2°C e 55°C ± 2°C, com o tempo de permanência de 30 segundos, num total de 500 ciclos. As amostras foram imersas no corante, nitrato de prata 50%, em temperatura ambiente por 24 horas em câmara escura, sendo posteriormente colocadas em uma solução fotoreveladora sob luz fluorescente por 6 horas. Foram realizados dois cortes no centro da restauração, no sentido ocluso-gengival. A análise da microinfiltração foi realizada em lupa esterioscópica Zeiss com 50 vezes de aumento, seguindo scores de 0 a 3 graus. Os dados obtidos foram submetidos à análise não paramétrica de Kruskal-Wallis, revelando que os valores medianos (G1 = 3; G2 = 3; G3 = 2. 5; G4 = 1 diferem estatisticamente ao nível de significância de 5%. Mediante ao teste de comparação múltipla de Dunn (5% G4 foi superior aos outros grupos em termos de microinfiltração marginal

  10. cis,trans-Dicarbonyldichlorido(1,10-phenanthroline-5,6-dione-κ2N,N′ruthenium(II

    Directory of Open Access Journals (Sweden)

    Tsugiko Takase

    2017-02-01

    Full Text Available In the title compound, [RuCl2(C12H6N2O2(CO2], the RuII atom (site symmetry ..2 adopts a distorted octahedral coordination sphere defined by two carbonyl C atoms, two Cl− anions and two N atoms from the chelating 1,10-phenanthroline-5,6-dione (phendione ligand. The carbonyl ligands are cis to each other, while the Cl atoms are trans. In the phendione ligand, the C=O [1.239 (5 Å] and the C—C [1.537 (5 Å] bond lengths in the diketone moiety have typical values. In the crystal, C—H...Cl and C—H...O hydrogen bonds lead to the formation of a three-dimensional supramolecular network.

  11. Synthesis and photoluminescence properties of silver(I) complexes based on N-benzoyl-L-glutamic acid and N-donor ligands with different flexibility

    Science.gov (United States)

    Yan, Ming-Jie; Feng, Qi; Song, Hui-Hua

    2016-05-01

    By changing the N-donor ancillary ligand, three novel silver (I) complexes {[Ag(HbzgluO) (4,4‧-bipy)]·H2O}n (1), {[Ag2(HbzgluO)2 (bpe)2]·2H2O}n (2) and {[Ag(HbzgluO)(bpp)]·2H2O}n (3) (H2bzgluO = N-benzoyl-L-glutamic acid, 4,4‧-bipy = 4,4ˊ-bipyridine, bpe = 1,2-di(4-pyridyl)ethane, bpp = 1,3-di(4-pyridyl)propane) were synthesized. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric analyses (TGA). In this study, the N-donor ligands are changed from rigidity (4,4‧-bipy), quasi-flexibility (bpe) to flexibility (bpp), the structures of complexes also change. Complex 1 features a 1D chain structure which is further linked together to construct a 2D supramolecular structure through hydrogen bonds. Complex 2 is a 1D double-chains configuration which eventually forms a 3D supramolecular network via hydrogen bonding interactions. Whereas, complex 3 exhibits a 2D pleated grid structure which is linked by hydrogen bonding interactions into a 3D supramolecular network. The present observations demonstrate that the modulation of coordination polymers with different structures can accomplish by changing the spacer length of N-donor ligands. In addition, the solid-state circular dichroism (CD) spectra indicated that compound 2 exhibited negative cotton effect which originated from the chiral ligands H2bzgluO and the solid-state fluorescence spectra of the three complexes demonstrated the auxiliary ligands have influence on the photoluminescence properties of the complexes.

  12. Crystal structure of diaquabis(N,N-diethylnicotinamide-κN1bis(2,4,6-trimethylbenzoato-κO1cobalt(II

    Directory of Open Access Journals (Sweden)

    Gülçin Şefiye Aşkın

    2016-04-01

    Full Text Available The centrosymmetric molecule in the monomeric title cobalt complex, [Co(C10H11O22(C10H14N2O2(H2O2], contains two water molecules, two 2,4,6-trimethylbenzoate (TMB ligands and two diethylnicotinamide (DENA ligands. All ligands coordinate to the CoII atom in a monodentate fashion. The four O atoms around the CoII atom form a slightly distorted square-planar arrangement, with the distorted octahedral coordination sphere completed by two pyridine N atoms of the DENA ligands. The dihedral angle between the planar carboxylate group and the adjacent benzene ring is 84.2 (4°, while the benzene and pyridine rings are oriented at a dihedral angle of 38.87 (10°. The water molecules exhibit both intramolecular (to the non-coordinating carboxylate O atom and intermolecular (to the amide carbonyl O atom O—H...O hydrogen bonds. The latter lead to the formation of layers parallel to (100, enclosing R44(32 ring motifs. These layers are further linked via weak C—H...O hydrogen bonds, resulting in a three-dimensional network. One of the two ethyl groups of the DENA ligand is disordered over two sets of sites with an occupancy ratio of 0.490 (13:0.510 (13.

  13. UV photolysis of 4-iodo-, 4-bromo-, and 4-chlorophenol: Competition between C-Y (Y = halogen) and O-H bond fission

    Science.gov (United States)

    Sage, Alan G.; Oliver, Thomas A. A.; King, Graeme A.; Murdock, Daniel; Harvey, Jeremy N.; Ashfold, Michael N. R.

    2013-04-01

    The wavelength dependences of C-Y and O-H bond fission following ultraviolet photoexcitation of 4-halophenols (4-YPhOH) have been investigated using a combination of velocity map imaging, H Rydberg atom photofragment translational spectroscopy, and high level spin-orbit resolved electronic structure calculations, revealing a systematic evolution in fragmentation behaviour across the series Y = I, Br, Cl (and F). All undergo O-H bond fission following excitation at wavelengths λ ≲ 240 nm, on repulsive ((n/π)σ*) potential energy surfaces (PESs), yielding fast H atoms with mean kinetic energies ˜11 000 cm-1. For Y = I and Br, this process occurs in competition with prompt C-I and C-Br bond cleavage on another (n/π)σ* PES, but no Cl/Cl* products unambiguously attributable to one photon induced C-Cl bond fission are observed from 4-ClPhOH. Differences in fragmentation behaviour at longer excitation wavelengths are more marked. Prompt C-I bond fission is observed following excitation of 4-IPhOH at all λ ≤ 330 nm; the wavelength dependent trends in I/I* product branching ratio, kinetic energy release, and recoil anisotropy suggest that (with regard to C-I bond fission) 4-IPhOH behaves like a mildly perturbed iodobenzene. Br atoms are observed when exciting 4-BrPhOH at long wavelengths also, but their velocity distributions suggest that dissociation occurs after internal conversion to the ground state. O-H bond fission, by tunnelling (as in phenol), is observed only in the cases of 4-FPhOH and, more weakly, 4-ClPhOH. These observed differences in behaviour can be understood given due recognition of (i) the differences in the vertical excitation energies of the C-Y centred (n/π)σ* potentials across the series Y = I increased spin-orbit coupling in, particularly, 4-IPhOH. The present results provide (another) reminder of the risks inherent in extrapolating photochemical behaviour measured for one molecule at one wavelength to other (related) molecules and to

  14. Determination of carrier diffusion length in GaN

    Science.gov (United States)

    Hafiz, Shopan; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit; Metzner, Sebastian; Bertram, Frank; Christen, Jürgen; Gil, Bernard

    2015-01-01

    Diffusion lengths of photo-excited carriers along the c-direction were determined from photoluminescence (PL) and cross-sectional cathodoluminescence (CL) measurements in p- and n-type GaN epitaxial layers grown on c-plane sapphire by metal-organic chemical vapor deposition. The investigated samples incorporate a 6 nm thick In0.15Ga0.85N active layer capped with either 500 nm p-GaN or 1500 nm n-GaN. The top GaN layers were etched in steps and PL from the InGaN active region and the underlying layers was monitored as a function of the top GaN thickness upon photo-generation near the surface region by above bandgap excitation. Taking into consideration the absorption in the top GaN layer as well as active and underlying layers, the diffusion lengths at 295 K and at 15 K were measured to be 93 ± 7 nm and 70 ± 7 nm for Mg-doped p-type GaN and 432 ± 30 nm and 316 ± 30 nm for unintentionally doped n-type GaN, respectively, at photogenerated carrier densities of 4.2 × 1018 cm-3 using PL spectroscopy. CL measurements of the unintentionally doped n-type GaN layer at much lower carrier densities of 1017 cm-3 revealed a longer diffusion length of 525 ± 11 nm at 6 K.

  15. Microsolvation of the acetanilide cation (AA(+)) in a nonpolar solvent: IR spectra of AA(+)-L(n) clusters (L = He, Ar, N2; n ≤ 10).

    Science.gov (United States)

    Schmies, Matthias; Patzer, Alexander; Schütz, Markus; Miyazaki, Mitsuhiko; Fujii, Masaaki; Dopfer, Otto

    2014-05-07

    Infrared photodissociation (IRPD) spectra of mass-selected cluster ions of acetanilide (N-phenylacetamide), AA(+)-Ln, with the ligands L = He (n = 1-2), Ar (n = 1-7), and N2 (n = 1-10) are recorded in the hydride stretch (amide A, νNH, νCH) and fingerprint (amide I-III) ranges of AA(+) in its (2)A'' ground electronic state. Cold AA(+)-Ln clusters are generated in an electron impact ion source, which predominantly produces the most stable isomer of a given cluster ion. Systematic vibrational frequency shifts of the N-H stretch fundamentals (νNH) provide detailed information about the sequential microsolvation process of AA(+) in a nonpolar (L = He and Ar) and quadrupolar (L = N2) solvent. In the most stable AA(+)-Ln clusters, the first ligand forms a hydrogen bond (H-bond) with the N-H proton of trans-AA(+) (t-AA(+)), whereas further ligands bind weakly to the aromatic ring (π-stacking). There is no experimental evidence for complexes with the less stable cis-AA(+) isomer. Quantum chemical calculations at the M06-2X/aug-cc-pVTZ level confirm the cluster growth sequence derived from the IR spectra. The calculated binding energies of De(H) = 720 and 1227 cm(-1) for H-bonded and De(π) = 585 and 715 cm(-1) for π-bonded Ar and N2 ligands in t-AA(+)-L are consistent with the observed photofragmentation branching ratios of AA(+)-Ln. Comparison between charged and neutral AA((+))-L dimers indicates that ionization switches the preferred ion-ligand binding motif from π-stacking to H-bonding. Electron removal from the HOMO of AA(+) delocalized over both the aromatic ring and the amide group significantly strengthens the C[double bond, length as m-dash]O bond and weakens the N-H bond of the amide group.

  16. Tris-(hydroxyamino)triazines: high-affinity chelating tridentate O,N,O-hydroxylamine ligand for the cis-V(V)O2(+) cation.

    Science.gov (United States)

    Nikolakis, Vladimiros A; Exarchou, Vassiliki; Jakusch, Tamás; Woolins, J Derek; Slawin, Alexandra M Z; Kiss, Tamás; Kabanos, Themistoklis A

    2010-10-14

    The treatment of the trichloro-1,3,5-triazine with N-methylhydroxylamine hydrochloride results in the replacement of the three chlorine atoms of the triazine ring with the function -N(OH)CH(3) yielding the symmetrical tris-(hydroxyamino)triazine ligand H(3)trihyat. Reaction of the ligand H(3)trihyat with NaV(V)O(3) in aqueous solution followed by addition of Ph(4)PCl gave the mononuclear vanadium(V) compound Ph(4)P[V(V)O(2)(Htrihyat)] (1). The structure of compound 1 was determined by X-ray crystallography and indicates that this compound has a distorted square-pyramidal arrangement around vanadium. The ligand Htrihyat(2-) is bonded to vanadium atom in a tridentate fashion at the triazine ring nitrogen atom and the two deprotonated hydroxylamido oxygen atoms. The high electron density of the triazine ring nitrogen atoms, which results from the resonative contribution of electrons of exocyclic nitrogen atoms, leads to a very strong V-N bond. The cis-[V(V)O(2)(Htrihyat)](-) species exhibits high hydrolytic stability in aqueous solution over a wide pH range, 2.5-11.5, as was evidenced by potentiometry.

  17. Development of PNTDs synthesized from monomers with different molecular length and analysis of molecular damages by heavy ion

    International Nuclear Information System (INIS)

    Kawashima, Hajime; Kodaira, Satoshi; Ihara, Daisuke; Yasuda, Nakahiro; Kusumoto, Tamon; Mori, Yutaka; Yamauchi, Tomoya; Kobayashi, Keiichi; Benton, Eric

    2017-01-01

    Our interests for years lay to investigate the reason why CR-39 polymer has such high sensitivity as plastic nuclear track detector (PNTD) on chemical structural aspects. We developed three PNTDs from three diacrylate compounds as monomers bearing different molecular length as well as different numbers of internal ether bonds. The polymer products obtained were colorless and transparent with 3-D molecular structures as CR-39 and different lattice structures each other. Our purpose of the current study was to investigate structural damages caused in newly prepared PNTDs and CR-39 by irradiation of Nitrogen ion (6 MeV/n, fluence of 5 x 10 11 cm -2 ). The structural damage by irradiation was analyzed by the magnitude of the relative absorbance of specific functional groups such as ester, C=O, ether and C-H bonds by means of FT-IR (ATR) method. The correlation between the relative absorbance and the molecular length of the monomers were discussed. (author)

  18. {2-[(3,5-Dichloro-2-oxidobenzylideneamino-κ2N,O]-3-methylpentanoato-κO}(N,N′-dimethylformamide-κOcopper(II

    Directory of Open Access Journals (Sweden)

    Xiao Zhen Feng

    2008-05-01

    Full Text Available In the title compound, [Cu(C13H13Cl2NO3(C3H7NO], the CuII atom is coordinated in a slightly distorted square-planar geometry by two O atoms and one N atom from the tridentate chiral ligand 2-[(3,5-dichloro-2-oxidobenzylideneamino]-3-methylpentanoate and by one O atom from dimethylformamide. In the crystal structure, the Cu atom forms contacts with Cl and O atoms of two units (Cu...Cl and Cu...O = 3.401 and 2.947 Å, respectively, thereby forming an approximately octahedral arrangement. A three-dimensional network is constructed through Cl...Cu, O...Cu, Cl...Cl contacts and C—H...O hydrogen bonds.

  19. Measurements of the microwave spectrum, Re-H bond length, and Re quadrupole coupling for HRe(CO)5

    Science.gov (United States)

    Kukolich, Stephen G.; Sickafoose, Shane M.

    1993-11-01

    Rotational transition frequencies for rhenium pentacarbonyl hydride were measured in the 4-10 GHz range using a Flygare-Balle type microwave spectrometer. The rotational constants and Re nuclear quadrupole coupling constants for the four isotopomers, (1) H187Re(CO)5, (2) H185Re(CO)5, (3) D187Re(CO)5, and (4) D185Re(CO)5, were obtained from the spectra. For the most common isotopomer, B(1)=818.5464(2) MHz and eq Q(187Re)=-900.13(3) MHz. The Re-H bond length (r0) determined by fitting the rotational constants is 1.80(1) Å. Although the Re atom is located at a site of near-octahedral symmetry, the quadrupole coupling is large due to the large Re nuclear moments. A 2.7% increase in Re quadrupole coupling was observed for D-substituted isotopomers, giving a rather large isotope effect on the quadrupole coupling. The Cax-Re-Ceq angle is 96(1)°, when all Re-C-O angles are constrained to 180°.

  20. Hydrogen bonding in (substituted benzene)·(water)n clusters with n≤4

    International Nuclear Information System (INIS)

    Barth, H.-D.; Buchhold, K.; Djafari, S.; Reimann, B.; Lommatzsch, U.; Brutschy, B.

    1998-01-01

    Infrared ion-depletion spectroscopy, a double resonance method combining vibrational predissociation with resonant two-photon ionization (R2PI) spectroscopy, has been applied to study mixed clusters of the type (substituted benzene)·(H 2 O) n with n≤4. The UV chromophores were p-difluorobenzene, fluorobenzene, benzene, toluene, p-xylene and anisole. From the IR depletion spectra in the region of the OH stretching vibrations it could be shown that the water molecules are attached as subclusters to the chromophores. Size and configuration of the subclusters could be deduced from the IR depletion spectra. In the anisole·(H 2 O) 1 a nd 2 complexes the water clusters form an ordinary hydrogen bond to the oxygen atom of the methoxy group. In all other mixed complexes a π-hydrogen bond is formed between one of the free OH groups of a water subcluster and the π-system of the chromophore. According to the strength of this interaction the frequency of the respective absorption band exhibits a characteristic red-shift which could be related to the total atomic charges in the aromatic ring. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. [KDy(Hptc3(H3ptc]n·2n(Hbipy·5n(H2O, a Layered Coordination Polymer Containing DyO6N3 Tri-Capped Trigonal Prisms (H3ptc = Pyridine 2,4,6-Tricarboxylic Acid, C8H5NO6; Bipy = 2,2'-Bipyridine, C10H8N2

    Directory of Open Access Journals (Sweden)

    Shoaib Anwar

    2012-08-01

    Full Text Available The synthesis, structure and properties of the bimetallic layered coordination polymer, [KDy(C8H3NO63(C8H5NO6]n·2n(C10H9N2·5n(H2O = [KDy(Hptc3(H3ptc]n·2n(Hbipy·5n(H2O, are described. The Dy3+ ion is coordinated by three O,N,O-tridentate doubly-deprotonated pyridine tri-carboxylate (Hptc ligands to generate a fairly regular DyO6N3 tri-capped trigonal prism, with the N atoms acting as the caps. The potassium ion is coordinated by an O,N,O-tridentate H3ptc molecule as well as monodentate and bidentate Hptc ligands to result in an irregular KNO9 coordination geometry. The ligands bridge the metal-atom nodes into a bimetallic, layered, coordination polymer, which extends as corrugated layers in the (010 plane, with the mono-protonated bipyridine cations and water molecules occupying the inter-layer regions: Unlike related structures, there are no dysprosium–water bonds. Many O–HLO and N–HLO hydrogen bonds consolidate the structure. Characterization and bioactivity data are described. Crystal data: C52H42DyKN8O29, Mr = 1444.54, triclinic,  (No. 2, Z = 2, a = 9.188(2 Å, b = 15.7332(17 Å, c = 19.1664(19 Å, α = 92.797(6°, β = 92.319(7°, γ = 91.273(9°, V = 2764.3(7 Å3, R(F = 0.029, wR(F2 = 0.084.

  2. Difluorophosphoryl nitrene F2P(O)N: matrix isolation and unexpected rearrangement to F2PNO.

    Science.gov (United States)

    Zeng, Xiaoqing; Beckers, Helmut; Willner, Helge; Neuhaus, Patrik; Grote, Dirk; Sander, Wolfram

    2009-12-14

    Triplet difluorophosphoryl nitrene F(2)P(O)N (X(3)A'') was generated on ArF excimer laser irradiation (lambda=193 nm) of F(2)P(O)N(3) in solid argon matrix at 16 K, and characterized by its matrix IR, UV/Vis, and EPR spectra, in combination with DFT and CBS-QB3 calculations. On visible light irradiation (lambda>420 nm) at 16 K F(2)P(O)N reacts with molecular nitrogen and some of the azide is regenerated. UV irradiation (lambda=255 nm) of F(2)P(O)N (X(3)A'') induced a Curtius-type rearrangement, but instead of a 1,3-fluorine shift, nitrogen migration to give F(2)PON is proposed to be the first step of the photoisomerization of F(2)P(O)N into F(2)PNO (difluoronitrosophosphine). Formation of novel F(2)PNO was confirmed with (15)N- and (18)O-enriched isotopomers by IR spectroscopy and DFT calculations. Theoretical calculations predict a rather long P-N bond of 1.922 A [B3LYP/6-311+G(3df)] and low bond-dissociation energy of 76.3 kJ mol(-1) (CBS-QB3) for F(2)PNO.

  3. 4-Bromo-N-(di-n-propyl-carbamothioyl)-benzamide.

    Science.gov (United States)

    Binzet, Gün; Flörke, Ulrich; Külcü, Nevzat; Arslan, Hakan

    2009-02-04

    The synthesis of the title compound, C(14)H(19)BrN(2)OS, involves the reaction of 4-bromo-benzoyl chloride with potassium thio-cyanate in acetone followed by condensation of the resulting 4-bromo-benzoyl isothio-cyanate with di-n-propyl-amine. Typical thio-urea carbonyl and thio-carbonyl double bonds, as well as shortened C-N bonds, are observed in the title compound. The short C-N bond lengths in the centre of the mol-ecule reveal the effects of resonance in this part of the mol-ecule. The asymmetric unit of the title compound contains two crystallographically independent mol-ecules, A and B. There is very little difference between the bond lengths and angles of these mol-ecules. In mol-ecule B, one di-n-propyl group is twisted in a -anti-periplanar conformation with C-C-C-H = -179.1 (3)° and the other adopts a -synclinal conformation with C-C-C-H = -56.7 (4)°; in mol-ecule A the two di-n-propyl groups are twisted in + and -anti-periplanar conformations, with C-C-C-H = -179.9 (3) and 178.2 (3)°, respectively. In the crystal, the mol-ecules are linked into dimeric pairs via pairs of N-H⋯S hydrogen bonds.

  4. Spectroscopic, DFT, and XRD Studies of Hydrogen Bonds in N-Unsubstituted 2-Aminobenzamides.

    Science.gov (United States)

    Mphahlele, Malose Jack; Maluleka, Marole Maria; Rhyman, Lydia; Ramasami, Ponnadurai; Mampa, Richard Mokome

    2017-01-04

    The structures of the mono- and the dihalogenated N -unsubstituted 2-aminobenzamides were characterized by means of the spectroscopic (¹H-NMR, UV-Vis, FT-IR, and FT-Raman) and X-ray crystallographic techniques complemented with a density functional theory (DFT) method. The hindered rotation of the C(O)-NH₂ single bond resulted in non-equivalence of the amide protons and therefore two distinct resonances of different chemical shift values in the ¹H-NMR spectra of these compounds were observed. 2-Amino-5-bromobenzamide ( ABB ) as a model confirmed the presence of strong intramolecular hydrogen bonds between oxygen and the amine hydrogen. However, intramolecular hydrogen bonding between the carbonyl oxygen and the amine protons was not observed in the solution phase due to a rapid exchange of these two protons with the solvent and fast rotation of the Ar-NH₂ single bond. XRD also revealed the ability of the amide unit of these compounds to function as a hydrogen bond donor and acceptor simultaneously to form strong intermolecular hydrogen bonding between oxygen of one molecule and the NH moiety of the amine or amide group of the other molecule and between the amine nitrogen and the amide hydrogen of different molecules. DFT calculations using the B3LYP/6-311++G(d,p) basis set revealed that the conformer ( A ) with oxygen and 2-amine on the same side predominates possibly due to the formation of a six-membered intramolecular ring, which is assisted by hydrogen bonding as observed in the single crystal XRD structure.

  5. Crystal structures of N2,N3,N5,N6-tetrakis(pyridin-2-ylmethylpyrazine-2,3,5,6-tetracarboxamide and N2,N3,N5,N6-tetrakis(pyridin-4-ylmethylpyrazine-2,3,5,6-tetracarboxamide

    Directory of Open Access Journals (Sweden)

    Dilovan S. Cati

    2017-02-01

    Full Text Available The title compounds, C32H28N10O4· unknown solvent, (I, and C32H28N10O4, (II, are pyrazine-2,3,5,6-tetracarboxamide derivatives. In (I, the substituents are (pyridin-2-ylmethylcarboxamide, while in (II, the substituents are (pyridin-4-ylmethylcarboxamide. Both compounds crystallize in the monoclinic space group P21/n, with Z′ = 1 for (I, and Z′ = 0.5 for (II. The whole molecule of (II is generated by inversion symmetry, the pyrazine ring being situated about a center of inversion. In (I, the four pyridine rings are inclined to the pyrazine ring by 83.9 (2, 82.16 (18, 82.73 (19 and 17.65 (19°. This last dihedral angle involves a pyridine ring that is linked to the adjacent carboxamide O atom by an intramolecular C—H...O hydrogen bond. In compound (II, the unique pyridine rings are inclined to the pyrazine ring by 33.3 (3 and 81.71 (10°. There are two symmetrical intramolecular C—H...O hydrogen bonds present in (II. In the crystal of (I, molecules are linked by N—H...O and N—H...N hydrogen bonds, forming layers parallel to (10-1. The layers are linked by C—H...O and C—H...N hydrogen bonds, forming a three-dimensional framework. In the crystal of (II, molecules are linked by N—H...N hydrogen bonds, forming chains propagating along the [010] direction. The chains are linked by a weaker N—H...N hydrogen bond, forming layers parallel to the (101 plane, which are in turn linked by C—H...O hydrogen bonds, forming a three-dimensional structure. In the crystal of compound (I, a region of disordered electron density was treated with the SQUEEZE routine in PLATON [Spek (2015. Acta Cryst. C71, 9–18]. Their contribution was not taken into account during refinement. In compound (II, one of the pyridine rings is positionally disordered, and the refined occupancy ratio for the disordered Car—Car—Npy atoms is 0.58 (3:0.42 (3.

  6. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    International Nuclear Information System (INIS)

    Omar, M.S.

    2012-01-01

    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å 3 for bulk to 57 Å 3 for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10 −6 K −1 for a bulk crystal down to a minimum value of 0.1 × 10 −6 K −1 for a 6 nm diameter nanoparticle.

  7. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    Energy Technology Data Exchange (ETDEWEB)

    Omar, M.S., E-mail: dr_m_s_omar@yahoo.com [Department of Physics, College of Science, University of Salahaddin-Erbil, Arbil, Kurdistan (Iraq)

    2012-11-15

    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å{sup 3} for bulk to 57 Å{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup −6} K{sup −1} for a bulk crystal down to a minimum value of 0.1 × 10{sup −6} K{sup −1} for a 6 nm diameter nanoparticle.

  8. Alkyl Radicals as Hydrogen Bond Acceptors: Computational Evidence

    DEFF Research Database (Denmark)

    Hammerum, Steen

    2009-01-01

    Spectroscopic, energetic and structural information obtained by DFT and G3-type computational studies demonstrates that charged proton donors can form moderately strong hydrogen bonds to simple alkyl radicals. The presence of these bonds stabilizes the adducts and modifies their structure......, and gives rise to pronounced shifts of IR stretching frequencies and to increased absorption intensities. The hydrogen bond acceptor properties of alkyl radicals equal those of many conventional acceptors, e.g., the bond length changes and IR red-shifts suggest that tert-butyl radicals are slightly better...... acceptors than formaldehyde molecules, while propyl radicals are as good as H2O. The hydrogen bond strength appears to depend on the proton affinity of the proton donor and on the ionization energy of the acceptor alkyl radical, not on the donor-acceptor proton affinity difference, reflecting...

  9. Electronic parameters of Sr2M2O7 (M = V, Nb, Ta) and Sr-O chemical bonding

    DEFF Research Database (Denmark)

    Atuchin, Victor V.; Grivel, Jean-Claude; Zhang, Zhaoming

    2010-01-01

    XPS measurements were carried out on Sr2Nb2O7 and Sr2Ta2O7 powder samples, which were synthesized using standard solid state method. The binding energy differences between the O 1s and cation core level, Δ(O-Sr) = BE(O 1s) - BE(Sr 3d5/2), was used to characterize the valence electron transfer...... on the formation of the Sr-O bonds. The chemical bonding effects were considered on the basis of our XPS results for Sr2Nb2O7 and Sr2Ta2O7 and the previously published structural and XPS data for other Sr-oxide compounds. A new empirical relationship between Δ(O-Sr) and L(Sr-O) was obtained. Possible applications...

  10. Crystal structure of bis­(3-bromo­pyridine-κN)bis­(O-ethyl di­thio­carbonato-κ2 S,S′)nickel(II)

    Science.gov (United States)

    Kant, Rajni; Kour, Gurvinder; Anthal, Sumati; Neerupama; Sachar, Renu

    2015-01-01

    In the title mol­ecular complex, [Ni(C3H5OS2)2(C5H4BrN)2], the Ni2+ cation is located on a centre of inversion and has a distorted octa­hedral N2S4 environment defined by two chelating xanthate ligands and two monodentate pyridine ligands. The C—S bond lengths of the thio­carboxyl­ate group are indicative of a delocalized bond and the O—Csp 2 bond is considerably shorter than the O—Csp 3 bond, consistent with a significant contribution of one resonance form of the xanthate anion that features a formal C=O+ unit and a negative charge on each of the S atoms. The packing of the mol­ecules is stabilized by C—H⋯S and C—H⋯π inter­actions. In addition, π–π inter­actions between the pyridine rings [centroid-to-centroid distance = 3.797 (3) Å] are also present. In the crystal structure, mol­ecules are arranged in rows along [100], forming layers parallel to (010) and (001). PMID:25705471

  11. Bis(5-hydroxyisophthalato-κO1bis[4-(pyridine-3-carboxamido-κN3pyridinium]copper(II tetrahydrate

    Directory of Open Access Journals (Sweden)

    Robert L. LaDuca

    2013-12-01

    Full Text Available In the title compound, [Cu(C11H10N3O2(C8H4O52]·4H2O, the CuII ion, located on a crystallographic inversion center, is coordinated in a square-planar environment by two trans-O atoms belonging to two monodentate 5-hydroxyisophthalate (hip dianions and two trans nicotinamide pyridyl N-donor atoms from monodentate protonated pendant N-(pyridin-4-ylnicotinamide (4-pnaH ligands. The protonated 4-pyridylamine groups engage in N—H+...O− hydrogen-bond donation to unligated hip O atoms to construct supramolecular chain motifs parallel to [100]. Water molecules of crystallization, situated between the chains, engage in O—H...O hydrogen bonding to form supramolecular layers and the overall three-dimensional network structure.

  12. Ground-State Distortion in N-Acyl-tert-butyl-carbamates (Boc) and N-Acyl-tosylamides (Ts): Twisted Amides of Relevance to Amide N-C Cross-Coupling.

    Science.gov (United States)

    Szostak, Roman; Shi, Shicheng; Meng, Guangrong; Lalancette, Roger; Szostak, Michal

    2016-09-02

    Amide N-C(O) bonds are generally unreactive in cross-coupling reactions employing low-valent transition metals due to nN → π*C═O resonance. Herein we demonstrate that N-acyl-tert-butyl-carbamates (Boc) and N-acyl-tosylamides (Ts), two classes of acyclic amides that have recently enabled the development of elusive amide bond N-C cross-coupling reactions with organometallic reagents, are intrinsically twisted around the N-C(O) axis. The data have important implications for the design of new amide cross-coupling reactions with the N-C(O) amide bond cleavage as a key step.

  13. Bis(μ-pyridazine-3-carboxylato-κ2O:O′bis[aquadioxido(pyridazine-3-carboxylato-κ2N2,Ouranium(VI] dihydrate

    Directory of Open Access Journals (Sweden)

    Janusz Leciejewicz

    2009-01-01

    Full Text Available The structure of the binuclear title complex, [U2(C5H3N2O24O4(H2O2]·2H2O, is composed of centrosymmetric dimers in which each UO22+ ion is coordinated by two ligand molecules. One donates its N,O-bonding group and the other donates both carboxylate O atoms. Each of the latter bridges adjacent uranyl ions. The coordination environment of the metal center is a distorted pentagonal bipyramid. The dimers are interconnected by O—H...O hydrogen bonds between coordinated and uncoordinated water molecules and carboxylate O atoms. An intramolecular O—H...N interaction is also present.

  14. Bis(acetylacetonato-κ2O,O′(2-amino-1-methyl-1H-benzimidazole-κN3oxidovanadium(IV

    Directory of Open Access Journals (Sweden)

    Zukhra Ch. Kadirova

    2009-07-01

    Full Text Available The title mixed-ligand oxidovanadium(IV compound, [VO(C5H7O22(C8H9N3], contains a VIV atom in a distorted octahedral coordination, which is typical for such complexes. The vanadyl group and the N-heterocyclic ligand are cis to each other. The coordination bond is located at the endocyclic N atom of the benzimidazole ligand. Intramolecular hydrogen bonds between the exo-NH2 group H atoms and acetylacetonate O atoms stabilize the crystal structure.

  15. Performance of quantum Monte Carlo for calculating molecular bond lengths

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, Deidre M., E-mail: deidre.cleland@csiro.au; Per, Manolo C., E-mail: manolo.per@csiro.au [CSIRO Virtual Nanoscience Laboratory, 343 Royal Parade, Parkville, Victoria 3052 (Australia)

    2016-03-28

    This work investigates the accuracy of real-space quantum Monte Carlo (QMC) methods for calculating molecular geometries. We present the equilibrium bond lengths of a test set of 30 diatomic molecules calculated using variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC) methods. The effect of different trial wavefunctions is investigated using single determinants constructed from Hartree-Fock (HF) and Density Functional Theory (DFT) orbitals with LDA, PBE, and B3LYP functionals, as well as small multi-configurational self-consistent field (MCSCF) multi-determinant expansions. When compared to experimental geometries, all DMC methods exhibit smaller mean-absolute deviations (MADs) than those given by HF, DFT, and MCSCF. The most accurate MAD of 3 ± 2 × 10{sup −3} Å is achieved using DMC with a small multi-determinant expansion. However, the more computationally efficient multi-determinant VMC method has a similar MAD of only 4.0 ± 0.9 × 10{sup −3} Å, suggesting that QMC forces calculated from the relatively simple VMC algorithm may often be sufficient for accurate molecular geometries.

  16. Analyses of Non-bonding Length, Partial Atomics Charge and Electrostatic Energy from Molecular Dynamics Simulation of Phospholipase A2 – Substrate

    Directory of Open Access Journals (Sweden)

    Nirwan Syarif

    2016-11-01

    Full Text Available This paper reports molecular dynamics simulation of phospholipase A2 (PLA2– substrate that has been done. Non-bonding length, partial atomic charge and electrostatic energy were used to evaluation the interaction between PLA2 and substrate. The research was subjected for three types of PLA2 of different sources, i.e, homo sapien, bovinus and porcinus, by using computer files of their molecular structures. The files with code 3elo, 1bp2, dan 1y6o were downloaded from protein data bank. Substrate structure can be found in 1y60 and was separated from its enzyme structure and docked into two other PLA2 structures for simulation purpose. Molecular dynamics simulations were done for 30000 steps with constant in number of molecules, volume and temperature (NVT. The results showed the existing of flip-flop mechanism as basic feature of PLA2 – substrate reactions. Interaction length analysis results indicated the presence of water molecules on the structures of 1bp2 and 3elo at the time of the simulation was completed. The existence of aspagine at the reaction site confirmed the theory that this amino acid is responsible for the survival of the reaction. the electrostatic energy increased substantially in the interaction after homo sapien PLA2 (3elo and Bovinus (1bp2 with the substrate. Inverse effect took place in the PLA porcinus (1y6o.

  17. Microstructure and Properties of Porous Si3N4/Dense Si3N4 Joints Bonded Using RE–Si–Al–O–N (RE = Y or Yb Glasses

    Directory of Open Access Journals (Sweden)

    Ling Li

    2017-11-01

    Full Text Available The joining of porous Si3N4 to dense Si3N4 ceramics has been successfully performed using mixed RE2O3 (RE = Y or Yb, Al2O3, SiO2, and α-Si3N4 powders. The results suggested that the α-Si3N4 powders partly transformed into β-SiAlON and partly dissolved into oxide glass to form oxynitride glass. Thus, composites of glass/β-SiAlON-ceramic formed in the seam of joints. Due to the capillary action of the porous Si3N4 ceramic, the molten glass solder infiltrated into the porous Si3N4 ceramic side during the joining process and formed the “infiltration zone” with a thickness of about 400 μm, which contributed to the heterogeneous distribution of the RE–Si–Al–O–N glasses in the porous Si3N4 substrate. In-situ formation of β-SiAlON in the seam resulted in a high bonding strength. The maximum bending strength of 103 MPa and 88 MPa was reached for the porous Si3N4/dense Si3N4 joints using Y–Si–Al–O–N and Yb–Si–Al–O–N glass solders, respectively.

  18. Synthesis, spectroscopic characterization and structural studies of a new proton transfer (H-bonded) complex of o-phenylenediamine with L-tartaric acid

    Science.gov (United States)

    Khan, Ishaat M.; Ahmad, Afaq

    2013-10-01

    A proton transfer or H-bonded (CT) complex of o-phenylenediamine (OPD) as donor with L-tartaric acid (TART) as acceptor was synthesized and characterized by spectral techniques such as FTIR, 1H NMR, elemental analysis, TGA-TDA, X-ray crystallography and spectrophotometric studies. The structural investigations exhibit that the cation [OPD+] and anion [TART-] are linked together through strong N+-H⋯O- type hydrogen bonds due to transfer of proton from acceptor to donor. Formed H-bonded complex exhibits well resolved proton transfer bands in the regions where neither donor nor acceptor has any absorption. The stoichiometry of the H-bonded complex (HBC) was found to be 1:1, determined by straight line methods. Spectrophotometric studies have been performed at room temperature and Benesi-Hildebrand equation was used to determine formation constant (KCT), molar extinction coefficient (ɛCT) and also transition energy (ECT) of the H-bonded complex. Spectrophotomeric and crystallographic studies have ascertained the formation of 1:1 H-bonded complex. Thermal analysis (TGA-DTA) was also used to confirm the thermal fragmentation and the stability of the synthesized H-bonded complex.

  19. [Effects of magnetron sputtered ZrN on the bonding strength of titanium porcelain].

    Science.gov (United States)

    Zhou, Shu; Zhang, Wen-yan; Guang, Han-bing; Xia, Yang; Zhang, Fei-min

    2009-04-01

    To investigate the effect of magnetron sputtered ZrN on the bonding strength between a low-fusing porcelain (Ti/Vita titankeramik system) and commercially pure cast titanium. Sixteen specimens were randomly assigned to test group and control group (n=8). The control group received no surface treated. Magnetron sputtered ZrN film was deposited on the surface of specimens in the test group. Then the sixteen titanium-porcelain specimens were prepared in a rectangular shape and went through three-point bending test on a universal test machine. The bond strength of Ti/porcelain was recorded. The phase composition of the specimens was analyzed using X-ray diffraction (XRD). The interface at titanium and porcelain and the titanium surface after debonding were observed with a scanning electron microscopy (SEM) and analyzed using energy depressive spectrum (EDS). New phase of ZrN was found with XRD in the test group. Statistical analysis showed higher bond strength following ZrN surface treatment in the test group [(45.991+/-0.648) MPa] than that in the control group [(29.483+/-1.007) MPa] (P=0.000). Bonded ceramic could be observed in test group, the amount of bonded ceramic was more than that in the control group. No obvious bonded ceramic in control group was found. Magnetron sputtered ZrN can improve bond strength of Ti/Vita titankeramik system significantly.

  20. Tug-of-war between classical and multicenter bonds in H-(Be)n-H species

    Science.gov (United States)

    Lundell, Katie A.; Boldyrev, Alexander I.

    2018-05-01

    Quantum chemical calculations were performed for beryllium homocatenated compounds [H-(Be)n-H]. Global minimum structures were found using machine searches (Coalescence Kick method) with density functional theory. Chemical bonding analysis was performed with the Adaptive Natural Density Partitioning method. It was found that H-(Be)2-H and H-(Be)3-H clusters are linear with classical two-center two-electron bonds, while for n > 3, three-dimensional structures are more stable with multicenter bonding. Thus, at n = 4, multicenter bonding wins the tug-of-war vs. the classical bonding.

  1. Hydrogen Bonding With a Hydrogen Bond: The CH4•••H2O Dimer ...

    Indian Academy of Sciences (India)

    X-H•••C hydrogen bonds in n-alkane-HX (X = F, OH) complexes are stronger than C-H•••X hydrogen bonds. R Parajuli* and E Arunan**. *Department of Physics, Amrit Campus, Tribhuvan University, Kathmandu, Nepal. **Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560012, India.

  2. Synthesis of Reusable Silica Nanosphere-Supported Pt(IV Complex for Formation of Disulfide Bonds in Peptides

    Directory of Open Access Journals (Sweden)

    Xiaonan Hou

    2017-02-01

    Full Text Available Some peptide-based drugs, including oxytocin, vasopressin, ziconotide, pramlintide, nesiritide, and octreotide, contain one intramolecular disulfide bond. A novel and reusable monodispersed silica nanosphere-supported Pt(IV complex (SiO2@TPEA@Pt(IV; TPEA: N-[3-(trimethoxysilylpropyl]ethylenediamine was synthesized via a four-step procedure and was used for the formation of intramolecular disulfide bonds in peptides. Transmission electron microscopy (TEM and chemical mapping results for the Pt(II intermediates and for SiO2@TPEA@Pt(IV show that the silica nanospheres possess a monodisperse spherical structure and contain uniformly-distributed Si, O, C, N, Cl, and Pt. The valence state of Pt on the silica nanospheres was characterized by X-ray photoelectron spectroscopy (XPS. The Pt(IV loaded on SiO2@TPEA@Pt(IV was 0.15 mmol/g, as determined by UV-VIS spectrometry. The formation of intramolecular disulfides in six dithiol-containing peptides of variable lengths by the use of SiO2@TPEA@Pt(IV was investigated, and the relative oxidation yields were determined by high-performance liquid chromatography (HPLC. In addition, peptide 1 (Ac-CPFC-NH2 was utilized to study the reusability of SiO2@TPEA@Pt(IV. No significant decrease in the relative oxidation yield was observed after ten reaction cycles. Moreover, the structure of SiO2@TPEA@Pt(IV after being used for ten cycles was determined to be similar to its initial one, demonstrating the cycling stability of the complex.

  3. Chemical Bonding in Tl Cuprates Studied by X-Ray Photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Lao, J.Y.; Overmyer, D.L.; Ren, Z.F.; Siegal, M.P.; Vasquez, R.P.; Wang, J.H.

    1999-04-05

    Epitaxial thin films of the Tl cuprate superconductors Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8}, Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}, and TL{sub 0.78}Bi{sub 0.22}Ba{sub 0.4}Sr{sub 1.6}Ca{sub 2}Cu{sub 3}O{sub 9{minus}{delta}} are studied with x-ray photoemission spectroscopy. These data, together with previous measurements in this lab of Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}} and TlBa{sub 2}CaCu{sub 2}O{sub 7{minus}{delta}}, comprise a comprehensive data set for a comparative study of Tl cuprates with a range of chemical and electronic properties. In the Cu 2p spectra, a larger energy separation between the satellite and main peaks (E{sub s}-E{sub m}) and a lower intensity ratio (I{sub s}/I{sub m}) are found to correlate with higher values of T{sub c}. Analysis of these spectra within a simple configuration interaction model suggests that higher values of T{sub c} are related to low values of the O 2p {r_arrow} Cu 3d charge transfer energy. In the O 1s region, a smaller bond length between Ba and Cu-O planar oxygen is found to correlate with a lower binding energy for the signal associated with Cu-O bonding, most likely resulting from the increased polarization screening by Ba{sup 2+} ions. For samples near optimum doping, maximum T{sub c} is observed to occur when the Tl 4f{sub 7/2} binding energy is near 117.9 eV, which is near the middle of the range of values observed for Tl cuprates. Higher Tl 4f{sub 7/2} binding energies, corresponding to formal oxidation states nearer Tl{sup 1+}, are also found to correlate with longer bond lengths between Ba and Tl-O planar oxygen, and with higher binding energies of the O 1s signal associated with Tl-O bonding.

  4. Chemical bonding in Tl cuprates studied by x-ray photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, R.P. [Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099 (United States); Siegal, M.P.; Overmyer, D.L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Ren, Z.F.; Lao, J.Y.; Wang, J.H. [Materials Synthesis Laboratory, Department of Chemistry, State University of New York, Buffalo, New York 14260-3000 (United States)

    1999-08-01

    Epitaxial thin films of the Tl cuprate superconductors Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8}, Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}, and Tl{sub 0.78}Bi{sub 0.22}Ba{sub 0.4}Sr{sub 1.6}Ca{sub 2}Cu{sub 3}O{sub 9{minus}{delta}} are studied with x-ray photoemission spectroscopy. These data, together with previous measurements in this lab of Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}} and TlBa{sub 2}CaCu{sub 2}O{sub 7{minus}{delta}}, comprise a comprehensive data set for a comparative study of Tl cuprates with a range of chemical and electronic properties. In the Cu 2p spectra, a larger energy separation between the satellite and main peaks (E{sub s}{minus}E{sub m}) and a lower intensity ratio (I{sub s}/I{sub m}) are found to correlate with higher values of T{sub c}. Analysis of these spectra within a simple configuration interaction model suggests that higher values of T{sub c} are related to low values of the O&hthinsp;2p{r_arrow}Cu&hthinsp;3d charge transfer energy. In the O&hthinsp;1s region, a smaller bond length between Ba and Cu-O planar oxygen is found to correlate with a lower binding energy for the signal associated with Cu-O bonding, most likely resulting from the increased polarization screening by Ba{sup 2+} ions. For samples near optimum doping, maximum T{sub c} is observed to occur when the Tl 4f{sub 7/2} binding energy is near 117.9 eV, which is near the middle of the range of values observed for Tl cuprates. Higher Tl&hthinsp;4f{sub 7/2} binding energies, corresponding to formal oxidation states nearer Tl{sup 1+}, are also found to correlate with longer bond lengths between Ba and Tl-O planar oxygen, and with higher binding energies of the O&hthinsp;1s signal associated with Tl-O bonding. {copyright} {ital 1999} {ital The American Physical Society}

  5. Carbonyl(N-nitroso-N-oxido-1-naphtylamine-κ2O,O′(triphenylphosphine-κPrhodium(I acetone solvate

    Directory of Open Access Journals (Sweden)

    T. J. Muller

    2009-12-01

    Full Text Available The title compound, [Rh(C10H7N2O2(C18H15P(CO]·(CH32CO, is the second structural report of a metal complex formed with the O,O′-C10H7N2O2 (neocupferrate ligand. In the crystal structure, the metal centre is surrounded by one carbonyl ligand, one triphenylphosphine ligand and the bidentate neocupferrate ligand, forming a distorted square-planar RhCO2P coordination set which is best illustrated by the small O—Rh—O bite angle of 77.74 (10°. There are no classical hydrogen-bond interactions observed for this complex.

  6. Di-μ-iodido-bis(iodido{methyl 4-[(pyridin-2-ylmethylideneamino]benzoate-κ2N,N′}cadmium

    Directory of Open Access Journals (Sweden)

    Tushar S. Basu Baul

    2013-11-01

    Full Text Available The complete binuclear molecule of the title compound, [Cd2I4(C14H12N2O22], is generated by the application of a centre of inversion. The Cd—I bond lengths of the central core are close and uniformly longer than the exocyclic Cd—I bond. The coordination sphere of the CdII atom is completed by two N atoms of a chelating methyl 4-[(pyridin-2-ylmethylideneamino]benzoate ligand, and is based on a square pyramid with the terminal I atom in the apical position. The three-dimensional crystal packing is stabilized by C—H...O and C—H...π interactions, each involving the pyridine ring.

  7. Avaliação da força de tração em braquetes colados pela técnica indireta com diferentes sistemas de adesão Evaluation of tensile strength of brackets bonded by indirect technique

    Directory of Open Access Journals (Sweden)

    André Tortamano

    2007-06-01

    Full Text Available OBJETIVO: o objetivo do presente estudo foi avaliar a resistência à tração de braquetes ortodônticos colados pela técnica indireta e pela técnica direta convencional. METODOLOGIA: foram utilizados 50 pré-molares humanos íntegros, recém-extraídos por motivos ortodônticos. Esses dentes foram divididos em 5 grupos, nos quais foram colados braquetes ortodônticos metálicos (Abzil-Brasil com as resinas compostas ortodônticas Concise (3M-Unitek-EUA e Transbond XT (3M-Unitek-EUA - utilizadas em ambas as técnicas, direta e indireta - e Transbond Sondhi (3M-Unitek-EUA - desenvolvida exclusivamente para a técnica indireta. O grupo I (controle I foi objeto de colagem direta com Transbond XT; no grupo II (controle II procedeu-se à colagem direta com Concise o grupo III recebeu colagem indireta com Concise; o grupo IV foi submetido à colagem indireta com Transbond XT e no grupo V foi realizada colagem indireta com Transbond Sondhi. Na técnica direta, o braquete foi colado diretamente sobre o esmalte após condicionamento ácido e aplicação de adesivo. Na técnica indireta, os braquetes foram colados primeiramente sobre modelo de gesso e depois transferidos para o dente, com o auxílio de moldeira individualizada. Os corpos-de-prova foram submetidos a testes de tração (Instron 4400 e os resultados foram objeto de testes estatísticos de análise de variância e de Tukey a 1%. RESULTADOS: os grupos III e V revelaram resultados significantemente menores que os dos dois grupos controles. CONCLUSÃO: a força obtida na colagem indireta com a resina Transbond XT não difere da força obtida na colagem direta com as resinas Concise e Transbond XT.AIM: The purpose of this study was to evaluate the bonding strength of brackets for direct and indirect bonding techniques. METHODS: Were used 50 human premolars recently extracted for orthodontic reasons. These teeth were divided in 5 groups and metalic orthodontic brackets (Abzil-Brazil were bonded

  8. Effect of pressure on the solution structure and hydrogen bond properties of aqueous N-methylacetamide

    International Nuclear Information System (INIS)

    Sarma, Rahul; Paul, Sandip

    2012-01-01

    Highlights: ► NMA molecules are associated mostly through their hydrophobic methyl groups. ► High pressure reduces association propensity causing dispersion of these moieties. ► Orientational polarization of vicinal water molecules near O and H atoms of NMA. ► NMA prefers to be a H-bond acceptor rather than a donor in interaction with water. ► Energy of these hydrogen bonds reduces slightly at high pressure. -- Abstract: Effects of high pressure on hydrophobic and hydrogen bonding interactions are investigated by employing molecular dynamics (MD) simulations of aqueous N-methylacetamide (NMA) solutions. Such systems are of interest mainly because high pressure causes protein denaturation and NMA is a computationally effective model to understand the atomic-level picture of pressure-induced structural transitions of protein. Simulations are performed for five different pressure values ranging from 1 atm to 8000 atm. We find that NMA molecules are associated mostly through their hydrophobic methyl groups and high pressure reduces this association propensity, causing dispersion of these moieties. At high pressure, structural void decreases and the packing efficiency of water molecules around NMA molecules increases. Hydrogen bond properties calculations show favorable NMA–NMA hydrogen bonds as compared to those of NMA–water hydrogen bonds and preference of NMA to be a hydrogen bond acceptor rather than a donor in interaction with water.

  9. (Acetato-κO(aqua-κO(2-{bis[(3,5-dimethyl-1H-pyrazol-1-yl-κN2methyl]amino-κN}ethanol-κOnickel(II perchlorate monohydrate

    Directory of Open Access Journals (Sweden)

    Jia Zhou

    2012-04-01

    Full Text Available In the structure of the title complex, [Ni(CH3CO2(C14H23N5O(H2O]ClO4·H2O, the NiII centre has a distorted octahedral environment defined by one O and three N atoms derived from the tetradentate ligand, and two O atoms, one from a water molecule and the other from an acetate anion. The molecules are connected into a three-dimensional architecture by O—H...O hydrogen bonds. The perchlorate anion is disordered over two positions; the major component has a site-occupancy factor of 0.525 (19.

  10. Crystal structure of tris(1,10-phenanthroline-κ2N,N′iron(II bis[bis(trifluoromethylsulfonylimide] monohydrate

    Directory of Open Access Journals (Sweden)

    Kazunori Teramoto

    2015-01-01

    Full Text Available The crystal structure of the title complex, [Fe(C12H8N23][(CF3SO22N]2·H2O, is constructed by one octahedral [Fe(phen3]2+ (phen = 1,10-phenanthroline cation (point group symmetry 2, two Tf2N− [bis(trifluoromethylsulfonylimide] anions, and one water molecule of crystallization (point group 2. The Fe—N bond lengths are indicative of a d6 low-spin state for the FeII ion in the complex. The dihedral angle between the phen ligands in the cation is 87.64 (6°. The Tf2N− counter-anion is non-coordinating, with the –CF3 groups arranged in a trans fashion with respect to each other, leading to an anti,anti conformation of the –CF3 groups and –SO2N– moieties relative to the S—C bonds. The water molecule of crystallization connects two O atoms of the Tf2N− anions through weak hydrogen bonds. C—H...O hydrogen-bonding interactions are also observed, consolidating the packing of the molecules into a three-dimensional network structure.

  11. Interplay of Electronic Cooperativity and Exchange Coupling in Regulating the Reactivity of Diiron(IV)-oxo Complexes towards C-H and O-H Bond Activation.

    Science.gov (United States)

    Ansari, Azaj; Ansari, Mursaleem; Singha, Asmita; Rajaraman, Gopalan

    2017-07-26

    Activation of inert C-H bonds such as those of methane are extremely challenging for chemists but in nature, the soluble methane monooxygenase (sMMO) enzyme readily oxidizes methane to methanol by using a diiron(IV) species. This has prompted chemists to look for similar model systems. Recently, a (μ-oxo)bis(μ-carboxamido)diiron(IV) ([Fe IV 2 O(L) 2 ] 2+ L=N,N-bis-(3',5'-dimethyl-4'-methoxypyridyl-2'-methyl)-N'-acetyl-1,2-diaminoethane) complex has been generated by bulk electrolysis and this species activates inert C-H bonds almost 1000 times faster than mononuclear Fe IV =O species and at the same time selectively activates O-H bonds of alcohols. The very high reactivity and selectivity of this species is puzzling and herein we use extensive DFT calculations to shed light on this aspect. We have studied the electronic and spectral features of diiron {Fe III -μ(O)-Fe III } +2 (complex I), {Fe III -μ(O)-Fe IV } +3 (II), and {Fe IV -μ(O)-Fe IV } +4 (III) complexes. Strong antiferromagnetic coupling between the Fe centers leads to spin-coupled S=0, S=3/2, and S=0 ground state for species I-III respectively. The mechanistic study of the C-H and O-H bond activation reveals a multistate reactivity scenario where C-H bond activation is found to occur through the S=4 spin-coupled state corresponding to the high-spin state of individual Fe IV centers. The O-H bond activation on the other hand, occurs through the S=2 spin-coupled state corresponding to an intermediate state of individual Fe IV centers. Molecular orbital analysis reveals σ-π/π-π channels for the reactivity. The nature of the magnetic exchange interaction is found to be switched during the course of the reaction and this offers lower energy pathways. Significant electronic cooperativity between two metal centers during the course of the reaction has been witnessed and this uncovers the reason behind the efficiency and selectivity observed. The catalyst is found to prudently choose the desired spin

  12. Computational and Empirical Trans-hydrogen Bond Deuterium Isotope Shifts Suggest that N1-N3 A:U Hydrogen Bonds of RNA are Shorter than those of A:T Hydrogen Bonds of DNA

    International Nuclear Information System (INIS)

    Kim, Yong-Ick; Manalo, Marlon N.; Perez, Lisa M.; LiWang, Andy

    2006-01-01

    Density functional theory calculations of isolated Watson-Crick A:U and A:T base pairs predict that adenine 13 C2 trans-hydrogen bond deuterium isotope shifts due to isotopic substitution at the pyrimidine H3, 2h Δ 13 C2, are sensitive to the hydrogen-bond distance between the N1 of adenine and the N3 of uracil or thymine, which supports the notion that 2h Δ 13 C2 is sensitive to hydrogen-bond strength. Calculated 2h Δ 13 C2 values at a given N1-N3 distance are the same for isolated A:U and A:T base pairs. Replacing uridine residues in RNA with 5-methyl uridine and substituting deoxythymidines in DNA with deoxyuridines do not statistically shift empirical 2h Δ 13 C2 values. Thus, we show experimentally and computationally that the C7 methyl group of thymine has no measurable affect on 2h Δ 13 C2 values. Furthermore, 2h Δ 13 C2 values of modified and unmodified RNA are more negative than those of modified and unmodified DNA, which supports our hypothesis that RNA hydrogen bonds are stronger than those of DNA. It is also shown here that 2h Δ 13 C2 is context dependent and that this dependence is similar for RNA and DNA

  13. Bis(2,2′-bipyridyl-κ2N,N′(sulfato-κ2O,O′cobalt(II ethane-1,2-diol monosolvate

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2011-01-01

    Full Text Available The title compound, [Co(SO4(C10H8N22]·C2H6O2, has the Co2+ ion in a distorted octahedral CoN4O2 coordination geometry. A twofold rotation axis passes through the Co and S atoms, and through the mid-point of the C—C bond of the ethanediol molecule. In the crystal, the [CoSO4(C10H8N22] and C2H6O2 units are held together by a pair of O—H...O hydrogen bonds.

  14. (μ-3-Acetyl-5-carboxylato-4-methylpyrazolido-1:2κ4N2,O3:N1,O5-μ-chlorido-tetrapyridine-1κ2N,2κ2N-chlorido-1κCl-dicopper(II propan-2-ol solvate

    Directory of Open Access Journals (Sweden)

    Sergey Malinkin

    2009-10-01

    Full Text Available The title compound, [Cu2(C7H6N2O3Cl2(C5H5N4]·C3H8O, is a binuclear pyrazolate complex, in which the two CuII atoms have different coordination numbers and are connected by a bridging Cl atom. One CuII atom has a distorted square-pyramidal coordination environment formed by two pyridine N atoms, one bridging Cl atom and an N,O-chelating pyrazolate ligand. The other CuII atom adopts an octahedral geometry defined by two pyridine N atoms at the axial positions, two Cl atoms and the coordinated pyrazolate ligand in the equatorial plane. An O—H...O hydrogen bond connects the complex molecules and propan-2-ol solvent molecules into pairs. These pairs form columns along the a axis.

  15. Multicomponent hydrogen-bonding organic solids constructed from 6-hydroxy-2-naphthoic acid and N-heterocycles: Synthesis, structural characterization and synthon discussion

    Science.gov (United States)

    Zong, Yingxia; Shao, Hui; Pang, Yanyan; Wang, Debao; Liu, Kang; Wang, Lei

    2016-07-01

    Seven novel multicomponent crystals involving various substituted organic amine molecules and 6-hydroxy-2-naphthoic acid were prepared and characterized by using single crystal X-ray diffraction, infrared and thermogravimetric analyses (TGA). Crystal structures with 1,4-bis(imidazol) butane (L1) 1, 1,4-bis(imidazol-1-ylmethyl)benzene (L2) 2, 1-phenyl piperazine 3, 2-amino-4-hydroxy-6-methyl pyrimidine 4, 4,4'-bipyridine 5, 5,5'-dimethyl-2,2'-dipyridine 6, 2-amino-4,6-dimethyl pyrimidine 7 were determined. Among the seven molecular complexes, total proton transfer from 6-hydroxy-2-naphthoic acid to coformer has occurred in crystals 1-4, while the remaining were cocrystals. X-ray single-crystal structures of these complexes reveal that strong hydrogen bonding O-H···O/N-H···O/O-H···N and weak C-H···O/C-H···π/π···π intermolecular interactions direct the packing modes of molecular crystals together. The analysis of supramolecular synthons in the present structures shows that some classical supramolecular synthons like pyridine-carboxylic acid heterosynthon R22 (7) and aminopyridine-carboxylic acid heterosynthon R22 (8), are again observed in constructing the hydrogen-bonding networks in this paper. Besides, we noticed that water molecules act as a significant hydrogen-bonding connector in constructing supramolecular architectures of 3, 4, 6, and 7.

  16. A quantitative relationship for the shock sensitivities of energetic compounds based on X-NO(2) (X=C, N, O) bond dissociation energy.

    Science.gov (United States)

    Li, Jinshan

    2010-08-15

    The ZPE-corrected X-NO(2) (X=C, N, O) bond dissociation energies (BDEs(ZPE)) of 11 energetic nitrocompounds of different types have been calculated employing density functional theory methods. Computed results show that using the 6-31G** basis set the UB3LYP calculated BDE(ZPE) is less than the UB3P86. For these typical energetic nitrocompounds the shock-initiated pressure (P(98)) is strongly related to the BDE(ZPE) indeed, and a polynomial correlation of ln(P(98)) with the BDE(ZPE) has been established successfully at different density functional theory levels, which provides a method to address the shock sensitivity problem. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Improving p-type doping efficiency in Al0.83Ga0.17N alloy substituted by nanoscale (AlN)5/(GaN)1 superlattice with MgGa-ON δ-codoping: Role of O-atom in GaN monolayer

    Science.gov (United States)

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2015-01-01

    We calculate Mg-acceptor activation energy EA and investigate the influence of O-atom, occupied the Mg nearest-neighbor, on EA in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. We find that the N-atom bonded with Ga-atom is more easily substituted by O-atom and nMgGa-ON (n = 1-3) complexes are favorable and stable in the SL. The O-atom plays a dominant role in reducing EA. The shorter the Mg-O bond is, the smaller the EA is. The Mg-acceptor activation energy can be reduced significantly by nMgGa-ON δ-codoping. Our calculated EA for 2MgGa-ON is 0.21 eV, and can be further reduced to 0.13 eV for 3MgGa-ON, which results in a high hole concentration in the order of 1020 cm-3 at room temperature in (AlN)5/(GaN)1 SL. Our results prove that nMgGa-ON (n = 2,3) δ-codoping in AlN/GaN SL with ultrathin GaN-layer is an effective way to improve p-type doping efficiency in Al-rich AlGaN.

  18. Improving p-type doping efficiency in Al0.83Ga0.17N alloy substituted by nanoscale (AlN5/(GaN1 superlattice with MgGa-ON δ-codoping: Role of O-atom in GaN monolayer

    Directory of Open Access Journals (Sweden)

    Hong-xia Zhong

    2015-01-01

    Full Text Available We calculate Mg-acceptor activation energy EA and investigate the influence of O-atom, occupied the Mg nearest-neighbor, on EA in nanoscale (AlN5/(GaN1 superlattice (SL, a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. We find that the N-atom bonded with Ga-atom is more easily substituted by O-atom and nMgGa-ON (n = 1-3 complexes are favorable and stable in the SL. The O-atom plays a dominant role in reducing EA. The shorter the Mg-O bond is, the smaller the EA is. The Mg-acceptor activation energy can be reduced significantly by nMgGa-ON δ-codoping. Our calculated EA for 2MgGa-ON is 0.21 eV, and can be further reduced to 0.13 eV for 3MgGa-ON, which results in a high hole concentration in the order of 1020 cm−3 at room temperature in (AlN5/(GaN1 SL. Our results prove that nMgGa-ON (n = 2,3 δ-codoping in AlN/GaN SL with ultrathin GaN-layer is an effective way to improve p-type doping efficiency in Al-rich AlGaN.

  19. Bond breaking and bond making in tetraoxygen: analysis of the O2(X3Sigma(g)-) + O2(X3Sigma(g)-) O4 reaction using the electron pair localization function.

    Science.gov (United States)

    Scemama, Anthony; Caffarel, Michel; Ramírez-Solís, Alejandro

    2009-08-06

    We study the nature of the electron pairing at the most important critical points of the singlet potential energy surface of the 2O2 O4 reaction and its evolution along the reaction coordinate using the electron pair localization function (EPLF) [Scemama, A.; Chaquin, P.; Caffarel, M. J. Chem. Phys. 2004, 121, 1725]. To do that, the 3D topology of the EPLF calculated with quantum Monte Carlo (at both variational and fixed-node-diffusion Monte Carlo levels) using Hartree-Fock, multiconfigurational CASSCF, and explicitly correlated trial wave functions is analyzed. At the O4 equilibrium geometry the EPLF analysis reveals four equivalent covalent bonds and two lone pairs on each oxygen atom. Along the reaction path toward dissociation it is found that the two oxygen-oxygen bonds are not broken simultaneously but sequentially, and then the lone pairs are rearranged. In a more general perspective, the usefulness of the EPLF as a unique tool to analyze the topology of electron pairing in nontrivial chemical bonding situations as well as to visualize the major steps involved in chemical reactivity is emphasized. In contrast with most standard schemes to reveal electron localization (atoms in molecules, electron localization function, natural bond orbital, etc.), the newly introduced EPLF function gives a direct access to electron pairings in molecules.

  20. p-Cu2O-shell/n-TiO2-nanowire-core heterostucture photodiodes

    Directory of Open Access Journals (Sweden)

    Hsueh Ting-Jen

    2011-01-01

    Full Text Available Abstract This study reports the deposition of cuprous oxide [Cu2O] onto titanium dioxide [TiO2] nanowires [NWs] prepared on TiO2/glass templates. The average length and average diameter of these thermally oxidized and evaporated TiO2 NWs are 0.1 to 0.4 μm and 30 to 100 nm, respectively. The deposited Cu2O fills gaps between the TiO2 NWs with good step coverage to form nanoshells surrounding the TiO2 cores. The p-Cu2O/n-TiO2 NW heterostructure exhibits a rectifying behavior with a sharp turn-on at approximately 0.9 V. Furthermore, the fabricated p-Cu2O-shell/n-TiO2-nanowire-core photodiodes exhibit reasonably large photocurrent-to-dark-current contrast ratios and fast responses.

  1. {2-[(2-Acetylhydrazin-1-ylidenemethyl-κ2N1,O]-6-methoxyphenolato-κO1}(nitrato-κOcopper(II monohydrate

    Directory of Open Access Journals (Sweden)

    Ibrahima Elhadj Thiam

    2010-02-01

    Full Text Available In the title complex, [Cu(C10H11N2O3(NO3]·H2O, prepared from the Schiff base N′-(3-methoxy-2-oxidobenzylideneacetohydrazide, the CuII atom is coordinated by two O atoms and one N atom from the ligand and one O atom from a nitrate group in a distorted square-planar geometry. The CuII atom has a weak interaction with another O atom of the nitrate group. The two O atoms of the tridentate Schiff base ligand are in a trans arrangement. O—H...O and N—H...O hydrogen bonds involving the uncoordinated water molecule are observed.

  2. Adaptação transcultural para o português brasileiro do Parental Bonding Instrument (PBI Cross-cultural adaptation of Parental Bonding Instrument (PBI to Brazilian Portuguese

    Directory of Open Access Journals (Sweden)

    Simone Hauck

    2006-08-01

    Full Text Available OBJETIVO: O artigo apresenta a adaptação transcultural do Parental Bonding Instrument, um questionário auto-aplicável desenvolvido em 1979 e usado desde então para avaliar a percepção da qualidade do vínculo com os pais até os 16 anos. MÉTODO: Foram realizadas as etapas de equivalência conceitual, equivalência dos itens, equivalência semântica, equivalência operacional, equivalência funcional e aprovação da versão final pelo autor original do instrumento. RESULTADOS: Os critérios de equivalência foram satisfeitos, tendo a versão final sido aprovada pelo autor do instrumento original. CONCLUSÃO: A adaptação do Parental Bonding Instrument disponibiliza para uso um instrumento que já demonstrou ser extremamente útil em pesquisas de risco e resiliência nas últimas décadas, ao avaliar a percepção de características do comportamento dos pais tradicionalmente associadas ao desenvolvimento da personalidade.OBJETIVE: This article aims to present a cross-cultural adaptation of the Parental Bonding Instrument to Brazilian Portuguese. It is a self-administered questionnaire developed in 1979, which has been used since then to measure the subjective experience of being parented to the age of 16 years. METHOD: The following steps were performed: conceptual equivalence, item equivalence, semantic equivalence, operational equivalence, functional equivalence, and approval of the final version by the author of the original instrument. RESULTS: The study has reached the objectives of equivalence, and the final Brazilian Portuguese version has been approved by the original author. CONCLUSION: The study provides a Brazilian Portuguese version of an instrument that has been proven extremely useful in risk and resilience researches over the past decades, assessing the perception of parental characteristics traditionally related to personality development.

  3. Ab Initio Study of the Dynamical Si–O Bond Breaking Event in α-Quartz

    International Nuclear Information System (INIS)

    Su Rui; Zhang Hong; Han Wei; Chen Jun

    2015-01-01

    The Si–O bond breaking event in the α-quartz at the first triplet (T_1) excitation state is studied by using ab initio molecular dynamics (AIMD) and nudged elastic band calculations. A meta-stable non-bridging oxygen hole center and E′ center (NBOHC-E′) is observed in the AIMD which consists of a broken Si–O bond with a Si–O distance of 2.54 Å. By disallowing the re-bonding of the Si and O atoms, another defect configuration (III-Si/V-Si) is obtained and validated to be stable at both ground and excitation states. The NBOHC-E′ is found to present on the minimal energy pathway of the initial to III-Si/V-Si transition, showing that the generating of the NBOHC-E′ is an important step of the excitation induced structure defect. The energy barriers to produce the NBOHC-E′ and III-Si/V-Si defects are calculated to be 1.19 and 1.28 eV, respectively. The electronic structures of the two defects are calculated by the self-consistent GW calculations and the results show a clear electron transition from the bonding orbital to the non-bonding orbital. (paper)

  4. Deuteriation of an asymmetric short hydrogen bond. X-ray crystal structure of KF.(CH2CO2D)2

    International Nuclear Information System (INIS)

    Emsley, J.; Jones, D.J.; Kuroda, R.

    1981-01-01

    Deuteriation of the strong hydrogen bonds of KF.(CH 2 CO 2 H) 2 shows no isotope effect on the bond lengths. The only significant change is in the bond angle at the fluoride ion which widens to 128.5 from 116 0 . The i.r. spectrum shows very little change. Since the O-H ... F - hydrogen bonds are highly asymmetric, these observations challenge previous predictions about the effects of deuteriation on such bonds. (author)

  5. What is the real value of diffusion length in GaN?

    International Nuclear Information System (INIS)

    Yakimov, E.B.

    2015-01-01

    Highlights: • The applicability of SEM methods for diffusion length measurements in GaN is discussed. • The discussion is based on our own experiments and on the available literature data. • A study of EBIC dependence on beam energy suits well for a small diffusion length. • The most reliable diffusion length values in the state-of-the-art n-GaN are evaluated. - Abstract: The applicability of scanning electron microscopy methods for excess carrier diffusion length measurements in GaN is discussed. The discussion is based on author’s experiments and on the available literature data. It is shown that for semiconductors with submicron diffusion length special attention should be paid to the choice of measuring method and experimental conditions. Some reasons for diffusion length overestimation and underestimation are analyzed. It is shown that a measurement of collected current dependence on electron beam energy is the most suitable method for submicron diffusion length evaluations because it is much easier to meet conditions for a proper application of this method than for other widely used methods. The analysis of data previously reported in literature and author’s results have shown that the diffusion length values in the range from 70 to 400 nm are the most reliable for state-of-the-art n-GaN epilayers

  6. Deuterium isotope effects on 13C and 15N chemical shifts of intramolecularly hydrogen-bonded enaminocarbonyl derivatives of Meldrum’s and Tetronic acid

    Science.gov (United States)

    Ullah, Saif; Zhang, Wei; Hansen, Poul Erik

    2010-07-01

    Secondary deuterium isotope effects on 13C and 15N nuclear shieldings in a series of cyclic enamino-diesters and enamino-esters and acyclic enaminones and enamino-esters have been examined and analysed using NMR and DFT (B3LYP/6-31G(d,p)) methods. One-dimensional and two-dimensional NMR spectra of enaminocarbonyl and their deuterated analogues were recorded in CDCl 3 and CD 2Cl 2 at variable temperatures and assigned. 1JNH coupling constants for the derivatives of Meldrum's and tetronic acids reveal that they exist at the NH-form. It was demonstrated that deuterium isotope effects, for the hydrogen bonded compounds, due to the deuterium substitution at the nitrogen nucleus lead to large one-bond isotope effects at nitrogen, 1Δ 15N(D), and two-bond isotope effects on carbon nuclei, 2ΔC(ND), respectively. A linear correlations exist between 2ΔC(ND) and 1Δ 15N(D) whereas the correlation with δNH is divided into two. A good agreement between the experimentally observed 2ΔC(ND) and calculated dσ 13C/dR NH was obtained. A very good correlation between calculated NH bond lengths and observed NH chemical shifts is found. The observed isotope effects are shown to depend strongly on Resonance Assisted Hydrogen bonding.

  7. Competing hydrogen bonding in methoxyphenols: The rotational spectrum of o-vanillin

    Science.gov (United States)

    Cocinero, Emilio J.; Lesarri, Alberto; Écija, Patricia; Basterretxea, Francisco; Fernández, José A.; Castaño, Fernando

    2011-05-01

    The conformational preferences of o-vanillin have been investigated in a supersonic jet expansion using Fourier transform microwave (FT-MW) spectroscopy. Three molecular conformations were derived from the rotational spectrum. The two most stable structures are characterized by a moderate O sbnd H···O dbnd C hydrogen bond between the aldehyde and the hydroxyl groups, with the methoxy side chain either in plane (global minimum a- cis-trans) or out of plane (a- cis-gauche) with respect to the aromatic ring. In the third conformer the aldehyde group is rotated by ca. 180°, forming a O sbnd H···O hydrogen bond between the methoxy and hydroxyl groups (s- trans-trans). Rotational parameters and relative populations are provided for the three conformations, which are compared with the results of ab initio (MP2) and density-functional (B3LYP, M05-2X) theoretical predictions.

  8. Muon-oxygen bonding in V2O3

    International Nuclear Information System (INIS)

    Chan, K.C.B.; Lichti, R.L.; Boekema, C.

    1986-01-01

    A muon site search using calculated internal fields has been performed for V 2 O 3 , where purely dipolar fields allow a site determination free from covalent complications. The obtained sites are a subset of the Rodriguez and Bates sites found in α-Fe 2 O 3 and indicate muon oxygen bond formation. The sites missing at low temperatures are consistent with the vanadium pairing mechanism for the metal-to-insulator (corundum-to-monoclinic) phase transition. (orig.)

  9. Diaquabis[2-(2-hydroxyethylpyridine-κ2N,O]cobalt(II dichloride

    Directory of Open Access Journals (Sweden)

    Hocine Merazig

    2013-08-01

    Full Text Available In the title salt, [Co(C7H9NO2(H2O2]Cl2, the CoII cation, located on an inversion center, is N,O-chelated by two hydroxyethylpyridine ligands and coordinated by two water molecules in a distorted O4N2 octahedral geometry. In the crystal, the Cl− anions link with the complex cations via O—H...Cl hydrogen bonds, forming a three-dimensional supramolecular architecture. π–π stacking is observed between the pyridine rings of adjacent molecules [centroid–centroid distance = 3.5810 (11 Å].

  10. 1 mil gold bond wire study.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  11. Annealing effect on I-V characteristic of n-ZnO-p-InSe heterojunction

    Directory of Open Access Journals (Sweden)

    Kovalyuk Z. D.

    2015-12-01

    Full Text Available The article is devoted to studying of influence of vacuum low-temperature annealing on the electrical and photoelectric characteristics of n-ZnO-p-InSe heterostructure. Indium monoselenide (InSe is a semiconductor of the A3B6 group of layered compounds. The basic unit consists of two planes of metal atoms sandwiched between two planes of chalcogen atoms (Se-In-In-Se. The absence of dangling bonds on InSe cleaved surface makes it possible to use this semiconductor as a substrate for fabrication of heterostructures based on semiconductor materials with different symmetries and lattice spacings. Zinc oxide (ZnO is the most suitable material for window materials and solar cells buffer layers application due to its marvelous transparency in the range of visible region. InSe single crystals were grown by the Bridgman technique from a nonstoichiometric melt and characterized by a pronounced layered structure along the whole length of a sample. ZnO thin oxide film was formed on freshly cleaved van der Waals surface of InSe layered crystal. n-ZnO-p-InSe heterostructure was prepared by the method of high-frequency magnetron sputtering. Sensitivity spectral areas were identified by MDR-3 monochromator with a resolution of 2.6 nm/mm. The current-voltage characteristics of the n-ZnO-p-InSe heterostructures showed a clearly pronounced diode character. In the forward bias of the initial samples, the diode factor had the value 3.7 at room temperature. It is shown that vacuum low-temperature annealing reduces shunt currents of the heterojunction, which is reflected in the decrease in the values of n from 3.7 to 2.7.

  12. Crystal structures of 5-amino-N-phenyl-3H-1,2,4-dithiazol-3-iminium chloride and 5-amino-N-(4-chlorophenyl-3H-1,2,4-dithiazol-3-iminium chloride monohydrate

    Directory of Open Access Journals (Sweden)

    Chien Ing Yeo

    2015-10-01

    Full Text Available The crystal and molecular structures of the title salt, C8H8N3S2+·Cl−, (I, and salt hydrate, C8H7ClN3S2+·Cl−·H2O, (II, are described. The heterocyclic ring in (I is statistically planar and forms a dihedral angle of 9.05 (12° with the pendant phenyl ring. The comparable angle in (II is 15.60 (12°, indicating a greater twist in this cation. An evaluation of the bond lengths in the H2N—C—N—C—N sequence of each cation indicates significant delocalization of π-electron density over these atoms. The common feature of the crystal packing in (I and (II is the formation of charge-assisted amino-N—H...Cl− hydrogen bonds, leading to helical chains in (I and zigzag chains in (II. In (I, these are linked by chains mediated by charge-assisted iminium-N+—H...Cl− hydrogen bonds into a three-dimensional architecture. In (II, the chains are linked into a layer by charge-assisted water-O—H...Cl− and water-O—H...O(water hydrogen bonds with charge-assisted iminium-N+—H...O(water hydrogen bonds providing the connections between the layers to generate the three-dimensional packing. In (II, the chloride anion and water molecules are resolved into two proximate sites with the major component being present with a site occupancy factor of 0.9327 (18.

  13. Evidence of amino acid precursors: C-N bond coupling in simulated interstellar CO2/NH3 ices

    Science.gov (United States)

    Esmaili, Sasan

    2015-08-01

    Low energy secondary electrons are abundantly produced in astrophysical or planetary ices by the numerous ionizing radiation fields typically encountered in space environments and may thus play a role in the radiation processing of such ices [1]. One approach to determine their chemical effect is to irradiate nanometer thick molecular solids of simple molecular constituents, with energy selected electron beams and to monitor changes in film chemistry with the surface analytical techniques [2].Of particular interest is the formation of HCN, which is a signature of dense gases in interstellar clouds, and is ubiquitous in the ISM. Moreover, the chemistry of HCN radiolysis products such as CN- may be essential to understand of the formation of amino acids [3] and purine DNA bases. Here we present new results on the irradiation of multilayer films of CO2 and NH3 with 70 eV electrons, leading to CN bond formations. The electron stimulated desorption (ESD) yields of cations and anions are recorded as a function of electron fluence. The prompt desorption of cationic reaction/scattering products [4], is observed at low fluence (~4x1013 electrons/cm2). Detected ions include C2+, C2O2+, C2O+, CO3+, C2O3+ or CO4+ from pure CO2, and N+, NH+, NH2+, NH3+, NH4+, N2+, N2H+ from pure NH3, and NO+, NOH+ from CO2/NH3 mixtures. Most saliently, increasing signals of negative ion products desorbing during prolonged irradiation of CO2/NH3 films included C2-, C2H-, C2H2-, as well as CN-, HCN- and H2CN-. The identification of particular product ions was accomplished by using 13CO2 and 15NH3 isotopes. The chemistry induced by electrons in pure films of CO2 and NH3 and mixtures with composition ratios (3:1), (1:1), and (1:3), was also studied by X-ray photoelectron spectroscopy (XPS). Irradiation of CO2/NH3 mixed films at 22 K produces species containing the following bonds/functional groups identified by XPS: C=O, O-H, C-C, C-O, C=N and N=O. (This work has been funded by NSERC).

  14. Making a robust carbon-cobalt(III) bond

    DEFF Research Database (Denmark)

    Larsen, Erik; Madsen, Anders Østergaard; Kofod, Pauli

    2009-01-01

    The coordination ion with a well-characterized carbon-cobalt(III) bond, the (1,4,7-triazacyclononane)(1,6-diamino-3-thia-4-hexanido)cobalt(III) dication, [Co(tacn)(C-aeaps)](2+) (aeaps, for aminoethylaminopropylsulfide), has been reacted with iodomethane, and the S-methyl thionium derivative has...... been isolated. The crystal structure of the resulting [Co(tacn)(C-aeaps-SCH(3))]Br(3) x 3 H(2)O at 122 K has been determined by X-ray diffraction techniques to verify the structure. The crystal structure determination shows that the carbon-cobalt bond length is even shorter (2.001(4) A) than in [Co......(tacn)(C-aeaps)](2+) participates in bonding to cobalt(III), having implications for the transformation between the carbon- and sulfur-bound forms of the aeaps ligand....

  15. Bis(1H-imidazole-κN3bis(1-naphthaleneacetato-κ2O,O′cadmium(II

    Directory of Open Access Journals (Sweden)

    Hong-Mian Wu

    2008-05-01

    Full Text Available In the mononuclear title compound, [Cd(C12H9O22(C3H4N22], the CdII centre has a distorted octahedral coordination geometry defined by four O atoms from two naphthaleneacetate ligands and two N atoms from two imidazole ligands. The molecules are linked by N—H...O hydrogen bonds, forming a layer network.

  16. Absence of magnetic long-range order in Y2CrSbO7 : Bond-disorder-induced magnetic frustration in a ferromagnetic pyrochlore

    Science.gov (United States)

    Shen, L.; Greaves, C.; Riyat, R.; Hansen, T. C.; Blackburn, E.

    2017-09-01

    The consequences of random nonmagnetic-ion dilution for the pyrochlore family Y2(M 1 -xN x)2O7 (M = magnetic ion, N = nonmagnetic ion) have been investigated. As a first step, we experimentally examine the magnetic properties of Y2CrSbO7 (x =0.5 ), in which the magnetic sites (Cr3 +) are percolative. Although the effective Cr-Cr spin exchange is ferromagnetic, as evidenced by a positive Curie-Weiss temperature, ΘCW ≃19.5 K , our high-resolution neutron powder diffraction measurements detect no sign of magnetic long-range order down to 2 K. In order to understand our observations, we construct a lattice model to numerically study the bond disorder introduced by the ionic size mismatch between M and N , which reveals that the bond disorder percolates at xb ≃0.23 , explaining the absence of magnetic long-range order. This model could be applied to a series of frustrated magnets with a pyrochlore sublattice, for example, the spinel compound Zn (Cr1 -xGax )2O4 , wherein a Néel to spin glass phase transition occurs between x =0.2 and 0.25 [Lee et al., Phys. Rev. B 77, 014405 (2008), 10.1103/PhysRevB.77.014405]. Our study stresses the non-negligible role of bond disorder on magnetic frustration, even in ferromagnets.

  17. Inhibition of nuclear T3 binding by fatty acids: dependence on chain length, unsaturated bonds, cis-trans configuration and esterification

    NARCIS (Netherlands)

    Wiersinga, W. M.; Platvoet-ter Schiphorst, M.

    1990-01-01

    1. Fatty acids have the capacity for inhibition of nuclear T3 binding (INB). The present studies were undertaken to describe the INB-activity of fatty acids as a function of chain length, unsaturated bonds, cis-trans configuration, and esterification. 2. Isolated rat liver nuclei were incubated with

  18. Radiation-induced O-glycoside bond scission in carbohydrates

    International Nuclear Information System (INIS)

    Kisel', R.M.

    2005-01-01

    Regularities in formation of products resulting from O-glycoside bond cleavage on radiolysis of aqueous solutions of (-methyl-D-glucopyranoside (I), 3-O-methylglucopyranose (II), maltose and lactose were studied. Oxygen and quinones were shown to inhibit radiation-induced homolytic destruction processes taking place in glycosides. The data obtained in this study enabled the authors to demonstrate an important role played by fragmentation reaction of C-2 radicals generated from the starting substances in formation of final radiolysis products. (authors)

  19. 4-Bromo-N-(di-n-propyl­carbamothioyl)­benzamide

    OpenAIRE

    Binzet, Gün; Flörke, Ulrich; Külcü, Nevzat; Arslan, Hakan

    2009-01-01

    The synthesis of the title compound, C14H19BrN2OS, involves the reaction of 4-bromo­benzoyl chloride with potassium thio­cyanate in acetone followed by condensation of the resulting 4-bromo­benzoyl isothio­cyanate with di-n-propyl­amine. Typical thio­urea carbonyl and thio­carbonyl double bonds, as well as shortened C—N bonds, are observed in the title compound. The short C—N bond lengths in the centre of the mol­ecule reveal the effects of resonance in this part of the mol­ecule. The asymmet...

  20. Normalized fluctuations, H2O vs n-hexane: Site-correlated percolation

    Science.gov (United States)

    Koga, Yoshikata; Westh, Peter; Sawamura, Seiji; Taniguchi, Yoshihiro

    1996-08-01

    Entropy, volume and the cross fluctuations were normalized to the average volume of a coarse grain with a fixed number of molecules, within which the local and instantaneous value of interest is evaluated. Comparisons were made between liquid H2O and n-hexane in the range from -10 °C to 120 °C and from 0.1 MPa to 500 MPa. The difference between H2O and n-hexane in temperature and pressure dependencies of these normalized fluctuations was explained in terms of the site-correlated percolation theory for H2O. In particular, the temperature increase was confirmed to reduce the hydrogen bond probability, while the pressure appeared to have little effect on the hydrogen bond probability. According to the Le Chatelier principle, however, the putative formation of ``ice-like'' patches at low temperatures due to the site-correlated percolation requirement is retarded by pressure increases. Thus, only in the limited region of low pressure (<300 MPa) and temperature (<60 °C), the fluctuating ice-like patches are considered to persist.

  1. Magnetic Properties of NdFe10Mo2-N Bonded Magnet

    Science.gov (United States)

    Zhang, Hong-Wei; Hu, Bo-Ping; Han, Zhong-Fan; Jin, Han-Min; Fu, Quan

    1997-06-01

    The dependence of remanence and coercivity on the magnetizing field is studied for isotropic and anisotropic epoxy resin bonded magnets. It was found that the coercivity of the NdFe10Mo2-N bonded magnet is mainly controlled by nucleation of reversed magnetic domains. Variation of iHc with Zn content and heat treatment conditions is studied. The value of 0 iHc obtained in the best Zn-bonded condition is about 0.15 T higher than before bonding. The variation of the amount of α-Fe with processing conditions is demonstrated for anisotropic Zn-bonded magnets.

  2. Iodide, azide, and cyanide complexes of (N,C), (N,N), and (N,O) metallacycles of tetra- and pentavalent uranium

    International Nuclear Information System (INIS)

    Benaud, Olivier; Berthet, Jean-Claude; Thuery, Pierre; Ephritikhine, Michel

    2011-01-01

    In contrast to the neutral macrocycle [UN* 2 (N,C)] (1) [N* = N(SiMe 3 ) 3 ; N,C = CH 2 SiMe 2 N-(SiMe 3 )] which was quite inert toward I 2 , the anionic bismetallacycle [NaUN*(N,C) 2 ] (2) was readily transformed into the enlarged monometallacycle [UN*(N,N)I] (4) [N,N = (Me 3 Si)NSiMe 2 CH 2 CH 2 SiMe 2 N(SiMe 3 )] resulting from C-C coupling of the two CH 2 groups, and [NaUN*(N,O) 2 ] (3) [N,O = OC(=CH 2 )SiMe 2 N(SiMe 3 )], which is devoid of any U-C bond, was oxidized into the UV bismetallacycle [Na{UN*(N,O) 2 }2(μ-I)] (5). Sodium amalgam reduction of 4 gave the U(III) compound [UN*(N,N)] (6). Addition of MN 3 or MCN to the (N,C), (N,N), and (N,O) metallacycles 1, 4, and 5 led to the formation of the anionic azide or cyanide derivatives M[UN* 2 (N,C)(N 3 )] [M = Na, 7a or Na(15-crown-5), 7b], M[UN* 2 (N,C)(CN)] [M = NEt 4 , 8a or Na(15-crown-5), 8b or K(18-crown-6), 8c], M[UN*(N,N)(N 3 ) 2 ] [M = Na, 9a or Na(THF)4, 9b], [NEt 4 ][UN*(N,N)(CN) 2 ] (10), M[UN*(N,O) 2 (N 3 )] [M = Na, 11a or Na(15-crown-5), 11b], M[UN*(N,O) 2 (CN)] [M = NEt 4 , 12a or Na(15-crown-5), 12b]. In the presence of excess iodine in THF, the cyanide 12a was converted back into the iodide 5, while the azide 11a was transformed into the neutral UV complex [U(N{SiMe 3 }-SiMe 2 C{CHI}O) 2 I(THF)] (13). The X-ray crystal structures of 4, 7b, 8a-c, 9b, 10, 12b, and 13 were determined. (authors)

  3. Core level photoemission spectroscopy and chemical bonding in Sr2Ta2O7

    DEFF Research Database (Denmark)

    Atuchin, V. V.; Grivel, Jean-Claude; Zhang, Z. M.

    2009-01-01

    Electronic parameters of constituent element core levels of strontium pyrotantalate (Sr2Ta2O7) were measured with X-ray photoelectron spectroscopy (XPS). The Sr2Ta2O7 powder sample was synthesized using standard solid state method. The valence electron transfer on the formation of the Sr-O and Ta......-O bonds was characterized by the binding energy differences between the O 1s and cation core levels, Delta(O-Sr) = BE(O 1s) - BE(Sr 3d(5/2)) and Delta(O-Ta) = BE(O 1s) - BE(Ta 4f(7/2)). The chemical bonding effects were considered on the basis of our XPS results for Sr2Ta2O7 and earlier published...

  4. Absolute and relative-rate measurement of the rate coefficient for reaction of perfluoro ethyl vinyl ether (C2F5OCF[double bond, length as m-dash]CF2) with OH.

    Science.gov (United States)

    Srinivasulu, G; Bunkan, A J C; Amedro, D; Crowley, J N

    2018-01-31

    The rate coefficient (k 1 ) for the reaction of OH radicals with perfluoro ethyl vinyl ether (PEVE, C 2 F 5 OCF[double bond, length as m-dash]CF 2 ) has been measured as a function of temperature (T = 207-300 K) using the technique of pulsed laser photolysis with detection of OH by laser-induced fluorescence (PLP-LIF) at pressures of 50 or 100 Torr N 2 bath gas. In addition, the rate coefficient was measured at 298 K and in one atmosphere of air by the relative-rate technique with loss of PEVE and reference reactant monitored in situ by IR absorption spectroscopy. The rate coefficient has a negative temperature dependence which can be parameterized as: k 1 (T) = 6.0 × 10 -13  exp[(480 ± 38/T)] cm 3 molecule -1 s -1 and a room temperature value of k 1 (298 K) = (3.0 ± 0.3) × 10 -12 cm 3 molecule -1 s -1 . Highly accurate rate coefficients from the PLP-LIF experiments were achieved by optical on-line measurements of PEVE and by performing the measurements at two different apparatuses. The large rate coefficient and the temperature dependence indicate that the reaction proceeds via OH addition to the C[double bond, length as m-dash]C double bond, the high pressure limit already being reached at 50 Torr N 2 . Based on the rate coefficient and average OH levels, the atmospheric lifetime of PEVE was estimated to be a few days.

  5. Bismuth-boron multiple bonding in BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Jian, Tian; Cheung, Ling Fung; Chen, Teng-Teng; Wang, Lai-Sheng [Department of Chemistry, Brown University, Providence, RI (United States)

    2017-08-01

    Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -}, containing triple and double B-Bi bonds are presented. The BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -} clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB{sub 2}O{sup -} ([Bi≡B-B≡O]{sup -}) and Bi{sub 2}B{sup -} ([Bi=B=Bi]{sup -}), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. N,N,N′,N′,N′′,N′′-Hexamethylguanidinium 1,1,3,3-tetracyanoprop-2-en-1-ide

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2016-03-01

    Full Text Available The asymmetric unit of the title salt, C7H18N3+·C7HN4−, comprises one cation and one anion. The N,N,N′,N′,N′′,N′′-hexamethylguanidinium ion shows orientational disorder and two sets of N- and C-atom positions were found, with an occupancy ratio of 0.535 (3:0.465 (3. The C—N bond lengths in the guanidinium ion range from 1.339 (16 to 1.35 (2 Å, indicating partial double-bond character pointing towards charge delocalization within the NCN planes. The negative charge in the 1,1,3,3-tetracyanoprop-2-en-1-ide ion is delocalized within the CCC planes with the C—C bonds ranging in length from 1.379 (3 to 1.427 (3 Å, also indicating partial double-bond character.

  7. Crystal structure, vibrational spectra and DFT studies of hydrogen bonded 1,2,4-triazolium hydrogenselenate

    Science.gov (United States)

    Arjunan, V.; Thirunarayanan, S.; Marchewka, M. K.; Mohan, S.

    2017-10-01

    The new hydrogen bonded molecular complex 1,2,4-triazolium hydrogenselenate (THS) is prepared by the reaction of 1H-1,2,4-triazole and selenic acid. This complex is stabilised by N-H⋯O and C-H⋯O hydrogen bonding and electrostatic attractive forces between 1H and 1,2,4-triazolium cations and hydrogen selenate anions. The XRD studies revealed that intermolecular proton transfer occur from selenic acid to 1H-1,2,4-triazole molecule, results in the formation of 1,2,4-triazolium hydrogenselenate which contains 1,2,4-triazolium cations and hydrogenselenate anions. The molecular structure of THS crystal has also been optimised by using Density Functional Theory (DFT) using B3LYP/cc-pVTZ and B3LYP/6-311++G** methods in order to find the whole characteristics of the molecular complex. The theoretical structural parameters such as bond length, bond angle and dihedral angle determined by DFT methods are well agreed with the XRD parameters. The atomic charges and thermodynamic properties are also calculated and analysed. The energies of frontier molecular orbitals HOMO, LUMO, HOMO-1, LUMO+1 and LUMO-HUMO energy gap are calculated to understand the kinetic stability and chemical reactivity of the molecular complex. The natural bond orbital analysis (NBO) has been performed in order to study the intramolecular bonding interactions and delocalisation of electrons. These intra molecular charge transfer may induce biological activities such as antimicrobials, antiinflammatory, antifungal etc. The complete vibrational assignments of THS have been performed by using FT-IR and FT-Raman spectra.

  8. Vínculos e redes sociais em contextos familiares e institucionais: uma reflexão conceitual Vínculos y redes sociales en contextos familiares e institucionales: una reflexión conceptual Bonds and social networks in family and institutional contexts: a conceptual reflection

    Directory of Open Access Journals (Sweden)

    Ana M. A. Carvalho

    2006-12-01

    Full Text Available Propõe-se uma reflexão conceitual sobre os conceitos de vínculo e rede social. São resumidos quatro trabalhos que utilizam esses conceitos e discutidas suas convergências e divergências. Carvalho sintetiza estudos sobre vínculo na interação criança-criança. Sampaio problematiza a vinculação entre crianças de rua e educadores. Rabinovich relata observações de famílias em uma comunidade quilombola. Bastos reflete sobre redes sociais com base no discurso de mães em grupos de encontro. A comparação dessas pesquisas em termos dos conceitos de vínculo e rede social indica a conveniência de explicitação dos seus sentidos em cada caso, para permitir diálogo entre enfoques diversificados sobre as relações humanas.Se propone una reflexión conceptual sobre los conceptos de vínculo y red social. Son resumidos cuatro trabajos que utilizan esos conceptos y discutidas sus convergencias y divergencias. Carvalho sintetiza estudios sobre vínculo en la interacción niño-niño. Sampaio problematiza la vinculación entre "niños de la calle" y educadores. Rabinovich relata observaciones de familias en una comunidad quilombola. Bastos refleja sobre redes sociales basado en el discurso de madres en grupos de encuentro. La comparación de esas pesquisas en términos de los conceptos de vínculo y red social indica la conveniencia de explicitación de sus sentidos en cada caso, para permitir diálogo entre enfoques diversificados sobre las relaciones humanas.This paper suggests a conceptual reflection on bonds and social network concepts. Four studies that use such concepts are synthesized and their convergences and divergences are discussed. Carvalho synthesizes studies on bonds in child-child interaction. Sampaio is concerned with bonds concerning homeless children and educators. Rabinovich reports observations of families in a Quilombola community. Bastos makes reflections on social network, based on the talks of some mothers during

  9. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.

    Science.gov (United States)

    Rice, Derek B; Massie, Allyssa A; Jackson, Timothy A

    2017-11-21

    Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of Mn III -peroxo adducts and hydrogen-atom transfer reactivity of Mn IV -oxo and Mn III -hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of Mn III -peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one Mn III -peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many Mn III -peroxo model complexes that decay to oxo-bridged-Mn III Mn IV dimers, decay of this Mn III -peroxo adduct yielded mononuclear Mn III -hydroxo and Mn IV -oxo products, potentially resulting from O-O bond activation of the Mn III -peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important

  10. Bis[2-(2-pyridylmethyleneaminobenzenesulfonato-κ3N,N′,O]cadmium(II dihydrate

    Directory of Open Access Journals (Sweden)

    Miao Ou-Yang

    2008-11-01

    Full Text Available The title complex, [Cd(Paba2]·2H2O or [Cd(C12H9N2O3S2]·2H2O, was synthesized by the reaction of the potassium salt of 2-(2-pyridylmethyleneaminobenzenesulfonic acid (PabaK with CdCl2·2.5H2O in methanol. The CdII atom lies on a crystallographic twofold axis and is coordinated by four N atoms and two O atoms from two deprotonated tridentate 2-(2-pyridylmethyleneaminobenzenesulfonate ligands in a slightly distorted octahedral environment. There are extensive hydrogen bonds of the type O—H...O between the uncoordinated water molecules and the sulfonate O atoms, through which the complex forms a layered structure parallel to (001.

  11. Bis[μ-2-(2,4-difluorophenyl-1,3-bis(1,2,4-triazol-1-ylpropan-2-olato-κ4N2,O:O,N2′]bis[(acetato-κ2O,O′nickel(II] methanol hemisolvate

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2010-01-01

    Full Text Available In the title complex, [Ni2(C13H11F2N6O2(C2H3O22]·0.5CH3OH, there are two half-molecules in the asymmetric unit. The two centrosymmetrically related NiII atoms, each attached to an acetate ligand, are linked by two fluconazole ligands. Each NiII atom is six-coordinated in a distorted octahedral geometry by two N atoms of the triazole groups and two bridging O atoms from two different fluconazole ligands and two O atoms from a chelating acetate ligand. In the crystal structure, the half-occupied methanol solvent molecule is linked to a triazole group via an O—H...N hydrogen bond.

  12. Ab initio molecular dynamics studies on effect of Zr on oxidation resistance of TiAlN coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pi, Jingwu [State Key Lab of Powder Metallurgy, Central South University, Changsha,Hunan 410083 (China); Kong, Yi, E-mail: yikong@csu.edu.cn [State Key Lab of Powder Metallurgy, Central South University, Changsha,Hunan 410083 (China); Chen, Li [State Key Lab of Powder Metallurgy, Central South University, Changsha,Hunan 410083 (China); Zhuzhou Cemented Carbide Cutting Tools Co., Ltd., Zhuzhou, Hunan 412007 (China); Du, Yong [State Key Lab of Powder Metallurgy, Central South University, Changsha,Hunan 410083 (China)

    2016-08-15

    Highlights: • The lowest bonding energy sequence for dimers in the vacuum: Zr−O < Ti−O < Al−O. • The lowest bonding energy sequence for oxygen above the surface: Ti−O < Zr−O < Al−O. • At 300 K, the addition of Zr benefitting the formation of vacancy and TiO{sub 2}. • At 1123 K, the addition of Zr leading to a more stable surface. • Our findings explain that the oxidation resistance of TiAlZrN superior to TiAlN at 1123 K as well as TiAlZrN at 300 K. - Abstract: It was demonstrated experimentally that doping Zr into TiAlN coatings at room temperature will detriment its oxidation resistance. On the other hand, there are evidences that doping Zr into TiAlN at high temperature will improve coating's oxidation resistance. In the present work, we address the effect of Zr on the oxidation resistance of TiAlN by means of ab initio molecular dynamics simulations. The TiAlN and TiAlZrN (1 Zr atom replacing 1 Ti atom) surfaces covered with 4 oxygen atoms at 300 K and 1123 K were simulated. Based on the analysis of the atomic motion, bond formation after relaxation, and the charge density difference maps we find that at 300 K, the addition of Zr induces escape of Ti atoms from the surface, resulting in formation of surface vacancies and subsequently TiO{sub 2}. Comparison of metal-oxygen dimers in the vacuum and above the TiAlZrN surface further shows that the addition of Zr in the TiAlN surface will change the lowest bonding energy sequence from Zr−O < Ti−O < Al−O in the vacuum to Ti−O < Zr−O < Al−O above the TiAlZrN surface. From Molecular Dynamics simulations at 1123 K, it is find that no Ti vacancies were generated in the surface. Moreover, less charge is transferred from metal to N atoms and the bond lengths between Ti and O atoms become shorter at 1123 K as compared with 300 K, suggesting that the addition of Zr atom promotes the interaction of Ti and O at TiAlZrN surface at 1123 K, leading to a more stable surface. Our simulation

  13. Transition Metal Free C-N Bond Forming Dearomatizations and Aryl C-H Aminations by in Situ Release of a Hydroxylamine-Based Aminating Agent.

    Science.gov (United States)

    Farndon, Joshua J; Ma, Xiaofeng; Bower, John F

    2017-10-11

    We outline a simple protocol that accesses directly unprotected secondary amines by intramolecular C-N bond forming dearomatization or aryl C-H amination. The method is dependent on the generation of a potent electrophilic aminating agent released by in situ deprotection of O-Ts activated N-Boc hydroxylamines.

  14. Effect of Surface Treatment on Shear Bond Strength between Resin Cement and Ce-TZP/Al2O3

    Directory of Open Access Journals (Sweden)

    Jong-Eun Kim

    2016-01-01

    Full Text Available Purpose. Although several studies evaluating the mechanical properties of Ce-TZP/Al2O3 have been published, to date, no study has been published investigating the bonding protocol between Ce-TZP/Al2O3 and resin cement. The aim of this study was to evaluate the shear bond strength to air-abraded Ce-TZP/Al2O3 when primers and two different cement types were used. Materials and Methods. Two types of zirconia (Y-TZP and Ce-TZP/Al2O3 specimens were further divided into four subgroups according to primer application and the cement used. Shear bond strength was measured after water storage for 3 days or 5,000 times thermocycling for artificial aging. Results. The Y-TZP block showed significantly higher shear bond strength than the Ce-TZP/Al2O3 block generally. Primer application promoted high bond strength and less effect on bond strength reduction after thermocycling, regardless of the type of cement, zirconia block, or aging time. Conclusions. Depending on the type of the primer or resin cement used after air-abrasion, different wettability of the zirconia surface can be observed. Application of primer affected the values of shear bond strength after the thermocycling procedure. In the case of using the same bonding protocol, Y-TZP could obtain significantly higher bond strength compared with Ce-TZP/Al2O3.

  15. Crystal structure of di-( N-methylmorpholine betaine)- L(+)-tartrate

    Science.gov (United States)

    Dega-Szafran, Z.; Dutkiewicz, G.; Kosturkiewicz, Z.; Szafran, M.

    2002-11-01

    The crystal structure of di-( N-methylmorpholine betaine)- L(+)-tartrate has been determined by X-ray diffraction method. Crystals are orthorhombic, space group P2 12 12 1, a=9.580(1), b=12.208(1), c=18.677(1) Å, Z=4, R=0.037. The molecule of L(+)-tartaric acid appears in the extended form with the hydroxyl groups as well as carboxyl groups in anti positions. The molecule is involved in a number of the intra- and intermolecular hydrogen bonds. The COOH groups of the tartaric acid link two non-equivalent N-methylmorpholine betaine molecules by a short, intermolecular O-H⋯O bonds of the lengths 2.456(1) and 2.510(1) Å. The OH groups form two different bifurcated hydrogen bonds, the intramolecular with the CO oxygen atoms (2.641(2) and 2.638(2) Å) and the intermolecular (2.919(2) and 3.084(2) Å) with neighbouring tartaric acid molecules, and link complexes in the zigzag ribbon parallel to the x-axis. The morpholine rings of both betaine molecules are in chair conformation with methyl groups in an axial position and CH 2COO - substituents in an equatorial one. In the crystals and the PM3-optimized structures there is no symmetry, both in the tartrate and N-methylmorpholine betaine moieties. FTIR spectrum confirms the complex structure of the investigated molecule.

  16. Butane-1,4-diammonium bis(pyridine-2,6-dicarboxylato-κ3O2,N,O6cadmate(II dihydrate

    Directory of Open Access Journals (Sweden)

    Najmeh Firoozi

    2008-10-01

    Full Text Available In the title compound, (C4H14N2[Cd(C7H3NO42]·2H2O, the CdII ion is coordinated by four O atoms [Cd—O = 2.2399 (17–2.2493 (17 Å] and two N atoms [Cd—N = 2.3113 (15 and 2.3917 (15 Å] from two tridentate pyridine-2,6-dicarboxylato ligands in a distorted octahedral geometry. The uncoordinated water molecules are involved in O—H...O and N—H...O hydrogen bonds, which contribute to the formation of a three-dimensional supramolecular structure, along with π–π stacking interactions [centroid–centroid distances of 3.5313 (13 and 3.6028 (11 Å between the pyridine rings of neighbouring dianions].

  17. Improved optical response and photocatalysis for N-doped titanium oxide (TiO2) films prepared by oxidation of TiN

    International Nuclear Information System (INIS)

    Wan, L.; Li, J.F.; Feng, J.Y.; Sun, W.; Mao, Z.Q.

    2007-01-01

    In order to improve the photocatalytic activity, N-doped titanium oxide (TiO 2 ) films were obtained by thermal oxidation of TiN films, which were prepared on Ti substrates by ion beam assisted deposition (IBAD). The dominating rutile TiO 2 phase was found in films after thermal oxidation. According to the results of X-ray photoelectron spectroscopy (XPS), the residual N atoms occupied O-atom sites in TiO 2 lattice to form Ti-O-N bonds. UV-vis spectra revealed the N-doped TiO 2 film had a red shift of absorption edge. The maximum red shift was assigned to the sample annealed at 750 deg. C, with an onset wavelength at 600 nm. The onset wavelength corresponded to the photon energy of 2.05 eV, which was nearly 1.0 eV below the band gap of pure rutile TiO 2 . The effect of nitrogen was responsible for the enhancement of photoactivity of N-doped TiO 2 films in the range of visible light

  18. The chemical bond in inorganic chemistry the bond valence model

    CERN Document Server

    Brown, I David

    2016-01-01

    The bond valence model is a version of the ionic model in which the chemical constraints are expressed in terms of localized chemical bonds formed by the valence charge of the atoms. Theorems derived from the properties of the electrostatic flux predict the rules obeyed by both ionic and covalent bonds. They make quantitative predictions of coordination number, crystal structure, bond lengths and bond angles. Bond stability depends on the matching of the bonding strengths of the atoms, while the conflicting requirements of chemistry and space lead to the structural instabilities responsible for the unusual physical properties displayed by some materials. The model has applications in many fields ranging from mineralogy to molecular biology.

  19. Structures and Spectroscopic Properties of F-(H2O) n with n = 1-10 Clusters from a Global Search Based On Density Functional Theory.

    Science.gov (United States)

    Shi, Ruili; Wang, Pengju; Tang, Lingli; Huang, Xiaoming; Chen, Yonggang; Su, Yan; Zhao, Jijun

    2018-04-05

    Using a genetic algorithm incorporated in density functional theory, we explore the ground state structures of fluoride anion-water clusters F - (H 2 O) n with n = 1-10. The F - (H 2 O) n clusters prefer structures in which the F - anion remains at the surface of the structure and coordinates with four water molecules, as the F - (H 2 O) n clusters have strong F - -H 2 O interactions as well as strong hydrogen bonds between H 2 O molecules. The strong interaction between the F - anion and adjacent H 2 O molecule leads to a longer O-H distance in the adjacent molecule than in an individual water molecule. The simulated infrared (IR) spectra of the F - (H 2 O) 1-5 clusters obtained via second-order vibrational perturbation theory (VPT2) and including anharmonic effects reproduce the experimental results quite well. The strong interaction between the F - anion and water molecules results in a large redshift (600-2300 cm -1 ) of the adjacent O-H stretching mode. Natural bond orbital (NBO) analysis of the lowest-energy structures of the F - (H 2 O) 1-10 clusters illustrates that charge transfer from the lone pair electron orbital of F - to the antibonding orbital of the adjacent O-H is mainly responsible for the strong interaction between the F - anion and water molecules, which leads to distinctly different geometric and vibrational properties compared with neutral water clusters.

  20. 13C NMR spectra and bonding situation of the B-C bond in alkynylboranes

    International Nuclear Information System (INIS)

    Yamamoto, Yoshinori; Moritani, Ichiro

    1975-01-01

    13 C NMR spectra of boron substituted alkynes reveal that the β-carbon is deshielded by ca. 21 ppm by a B(O-n-C 4 H 9 ) 2 group. This clearly indicates the presence of a B-C π-bonding in alkynylboranes. (auth.)

  1. Tris(N,N,N′,N′,N′′,N′′-hexaethylguanidinium dodecaiodidotribismuthate(III

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2016-03-01

    Full Text Available The asymmetric unit of title compound, (C13H30N33[Bi3I12], comprises one cation and two independent (1/6 fragments of the [Bi3I12]3− ions. The C—N bond lengths in the guanidinium ion range from 1.340 (4 to 1.345 (4 Å, indicating partial double-bond character pointing towards charge delocalization within the NCN planes. The BiIII ions are distorted octahedrally coordinated by six iodide ions, with Bi—I bond lengths ranging from 2.9206 (3 to 3.3507 (3 Å. Three [BiI6]3− octahedra are fused together through face-sharing, forming a trinuclear [Bi3I12]3− unit.

  2. Effect of saliva contamination on bond strength witha hydrophilic composite resin

    Directory of Open Access Journals (Sweden)

    Mauren Bitencourt Deprá

    2013-02-01

    Full Text Available OBJECTIVE: To evaluate the influence of saliva contamination on the bond strength of metallic brackets bonded to enamel with hydrophilic resin composite. METHODS: Eighty premolars were randomly divided into 4 groups (n = 20 according to bonding material and contamination: G1 bonded with Transbond XT with no saliva contamination, G2 bonded with Transbond XT with saliva contamination, G3 bonded with Transbond Plus Color Change with no saliva contamination and G4 bonded with Transbond Plus Color Change with saliva contamination. The results were statistically analyzed (ANOVA/Tukey. RESULTS: The means and standard deviations (MPa were: G110.15 ± 3.75; G2 6.8 ± 2.54; G3 9.3 ± 3.36; G4 8.3 ± 2.95. The adhesive remnant index (ARI ranged between 0 and 1 in G1 and G4. In G2 there was a prevalence of score 0 and similar ARI distribution in G3. CONCLUSION: Saliva contamination reduced bond strength when Transbond XT hydrophobic resin composite was used. However, the hydrophilic resin Transbond Plus Color Change was not affected by the contamination.OBJETIVO: avaliar a influência da contaminação por saliva na resistência de união de braquetes metálicos colados ao esmalte com um compósito resinoso hidrofílico. MÉTODOS: oitenta pré-molares foram divididos aleatoriamente em quatro grupos (n=20, de acordo com o material de colagem e a presença de contaminação - G1 colagem com Transbond XT na ausência de contaminação; G2 colagem com Transbond XT na presença de contaminação; G3 colagem com Transbond Plus Color Change na ausência de contaminação; G4 colagem com Transbond Plus Color Change na presença de contaminação. Os resultados foram tratados estatisticamente (ANOVA/Tukey. RESULTADOS: as médias e desvios-padrão (MPa foram G1 = 10,15 ± 3,75; G2 = 6,8 ± 2,54; G3 = 9,3 ± 3,36; G4 = 8,3 ± 2,95. O índice de adesivo remanescente (IAR variou entre 0 e 1 no G1 e no G4; no G2, houve predomínio do escore 0 e distribuição similar no

  3. Crystal structure of N-[3-(dimethylazaniumylpropyl]-N′,N′,N′′,N′′-tetramethyl-N-(N,N,N′,N′-tetramethylformamidiniumylguanidinium dibromide hydroxide monohydrate

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2015-12-01

    Full Text Available The asymmetric unit of the title hydrated salt, C15H37N63+·2Br−·OH−·H2O, contains one cation, three partial-occupancy bromide ions, one hydroxide ion and one water molecule. Refinement of the site-occupancy factors of the three disordered bromide ions converges with occupancies 0.701 (2, 0.831 (2 and 0.456 (2 summing to approximately two bromide ions per formula unit. The structure was refined as a two-component inversion twin with volume fractions 0.109 (8:0.891 (8 for the two domains. The central C3N unit of the bisamidinium ion is linked to the aliphatic propyl chain by a C—N single bond. The other two bonds in this unit have double-bond character as have the four C—N bonds to the outer NMe2 groups. In contrast, the three C—N bonds to the central N atom of the (dimethylazaniumylpropyl group have single-bond character. Delocalization of the two positive charges occurs in the N/C/N and C/N/C planes, while the third positive charge is localized on the dimethylammonium group. The crystal structure is stabilized by O—H...O, N—H...Br, O—H...Br and C—H...Br hydrogen bonds, forming a three-dimensional network.

  4. Low temperature bonding of heterogeneous materials using Al2O3 as an intermediate layer

    DEFF Research Database (Denmark)

    Sahoo, Hitesh Kumar; Ottaviano, Luisa; Zheng, Yi

    2018-01-01

    Integration of heterogeneous materials is crucial for many nanophotonic devices. The integration is often achieved by bonding using polymer adhesives or metals. A much better and cleaner option is direct wafer bonding, but the high annealing temperatures required make it a much less attractive...... atomic layer deposited Al2O3 an excellent choice for the intermediate layer. The authors have optimized the bonding process to achieve a high interface energy of 1.7 J/m2 for a low temperature annealing of 300 °C. The authors also demonstrate wafer bonding of InP to SiO2 on Si and GaAs to sapphire using...

  5. 26 CFR 1.103(n)-1T - Limitation on aggregrate amount of private activity bonds (temporary).

    Science.gov (United States)

    2010-04-01

    ... activity bonds (temporary). 1.103(n)-1T Section 1.103(n)-1T Internal Revenue INTERNAL REVENUE SERVICE... Excluded from Gross Income § 1.103(n)-1T Limitation on aggregrate amount of private activity bonds (temporary). Q-1: What does section 103(n) provide? A-1: Interest on an issue of private activity bonds will...

  6. Crystal structure of tris[4-(dimethylaminopyridinium] tris(oxalato-κ2O,O′chromate(III tetrahydrate

    Directory of Open Access Journals (Sweden)

    Noé Makon ma Houga

    2015-11-01

    Full Text Available In the title hybrid salt, (C7H11N23[Cr(C2O43]·4H2O, the central CrIII ion of the complex anion (point group symmetry 2 is coordinated by six O atoms from three chelating oxalate(2− ligands in a slightly distorted octahedral coordination sphere. The Cr—O bond lengths vary from 1.9577 (11 to 1.9804 (11 Å, while the chelate O—Cr—O angles range from 82.11 (6 to 93.41 (5°. The 4-(dimethylaminopyridinium cations (one situated in a general position and one on a twofold rotation axis are protonated at the pyridine N atoms. In the crystal, N—H...O and O—H...O hydrogen bonds link the cations and anions into a three-dimensional network. π–π interactions between the pyridine rings of adjacent cations provide additional stabilization of the crystal packing, with the closest centroid-to-centroid distances being 3.541 (1 and 3.575 (1 Å.

  7. Local structure and disorder in crystalline Pb9Al8O21

    International Nuclear Information System (INIS)

    Hannon, Alex C.; Barney, Emma R.; Holland, Diane; Knight, Kevin S.

    2008-01-01

    Crystalline Pb 9 Al 8 O 21 is a model compound for the structure of non-linear optical glasses containing lone-pair ions, and its structure has been investigated by neutron powder diffraction and total scattering, and 27 Al magic angle spinning NMR. Rietveld analysis (space group Pa3-bar (No. 205), a=13.25221(4) A) shows that some of the Pb and O sites have partial occupancies, due to lead volatilisation during sample preparation, and the non-stoichiometric sample composition is Pb 9-δ Al 8 O 21-δ with δ=0.54. The NMR measurements show evidence for a correlation between the chemical shift and the variance of the bond angles at the aluminium sites. The neutron total correlation function shows that the true average Al-O bond length is 0.8% longer than the apparent bond length determined by Rietveld refinement. The thermal variation in bond length is much smaller than the thermal variation in longer interatomic distances determined by Rietveld refinement. The total correlation function is consistent with an interpretation in which AlO 3 groups with an Al-O bond length of 1.651 A occur as a result of the oxygen vacancies in the structure. The width of the tetrahedral Al-O peak in the correlation function for the crystal is very similar to that for lead aluminate glass, indicating that the extent of static disorder is very similar in the two phases. - Graphical abstract: Combined neutron powder diffraction and total scattering, and 27 Al NMR on crystalline Pb 9 Al 8 O 21 shows it to be a non-stoichiometric compound with vacancies due to PbO volatilisation. A detailed consideration of the thermal and static disorder is given, showing that glass and crystal phases have very similar disorder at short range

  8. Avaliação da resistência adesiva e do padrão de descolagem de diferentes sistemas de colagem de braquetes associados à clorexidina Evaluation of the bond strength and debonding pattern of different bracket bonding systems associated with chlorhexidine

    Directory of Open Access Journals (Sweden)

    Jorge Luís de Oliveira Ribeiro

    2008-08-01

    Full Text Available OBJETIVOS: o objetivo deste estudo in vitro foi avaliar a resistência adesiva e o padrão de descolagem de diferentes sistemas de colagem de braquetes (Sistema Transbond XT / 3M-Unitek e Sistema Enlight / Ormco cujos respectivos adesivos foram pré-misturados ao verniz de clorexidina (Cervitec / Ivoclar-Vivadent. METODOLOGIA: a amostra utilizada foi constituída por 60 pré-molares humanos, extraídos por indicações ortodônticas, incluídos em cilindros de PVC e divididos aleatoriamente em quatro grupos: grupo 1 - Sistema Transbond XT conforme prescrito pelo fabricante; grupo 2 - Sistema Transbond XT associado a verniz de clorexidina; grupo 3 - Sistema Enlight conforme prescrito pelo fabricante; grupo 4 - Sistema Enlight associado a verniz de clorexidina. A resistência adesiva foi avaliada pelo teste de cisalhamento na máquina de ensaios universal EMIC (0,5mm/min; o padrão de descolagem foi avaliado, através da lupa estereoscópica STEMI 2000-C / Zeiss (20x, pela observação do Índice de Adesivo Remanescente (IAR na superfície do esmalte dentário, após a descolagem dos braquetes. RESULTADOS: não houve diferença estatisticamente significante (p AIM: The objective of this in vitro study was to evaluate the bond strength and the debonding pattern of different bracket bonding systems (Transbond XT System / 3M-Unitek and Enlight System / Ormco whose respective adhesives were pre-mixed with chlorhexidine varnish (Cervitec / Ivoclar-Vivadent. METHODS: The sample used consisted of sixty human pre-molars extracted for orthodontic purposes, included in PVC cylinder and randomly divided in four experimental groups: group 1 - Transbond XT System according to the manufacturer’s instructions; group 2 - Transbond XT System combined with chlorhexidine varnish; group 3 - Enlight System according to the manufacturer’s instructions; group 4 - Enlight System combined with chlorhexidine varnish. The bond strength evaluation was obtained through

  9. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters.

    Science.gov (United States)

    Pathak, A K; Mukherjee, T; Maity, D K

    2007-07-28

    We report vertical detachment energy (VDE) and IR spectra of Br2.-.(H2O)n clusters (n=1-8) based on first principles electronic structure calculations. Cluster structures and IR spectra are calculated at Becke's half-and-half hybrid exchange-correlation functional (BHHLYP) with a triple split valence basis function, 6-311++G(d,p). VDE for the hydrated clusters is calculated based on second order Moller-Plesset perturbation (MP2) theory with the same set of basis function. On full geometry optimization, it is observed that conformers having interwater hydrogen bonding among solvent water molecules are more stable than the structures having double or single hydrogen bonded structures between the anionic solute, Br2.-, and solvent water molecules. Moreover, a conformer having cyclic interwater hydrogen bonded network is predicted to be more stable for each size hydrated cluster. It is also noticed that up to four solvent H2O units can reside around the solute in a cyclic interwater hydrogen bonded network. The excess electron in these hydrated clusters is localized over the solute atoms. Weighted average VDE is calculated for each size (n) cluster based on statistical population of the conformers at 150 K. A linear relationship is obtained for VDE versus (n+3)(-1/3) and bulk VDE of Br2.- aqueous solution is calculated as 10.01 eV at MP2 level of theory. BHHLYP density functional is seen to make a systematic overestimation in VDE values by approximately 0.5 eV compared to MP2 data in all the hydrated clusters. It is observed that hydration increases VDE of bromine dimer anion system by approximately 6.4 eV. Calculated IR spectra show that the formation of Br2.--water clusters induces large shifts from the normal O-H stretching bands of isolated water keeping bending modes rather insensitive. Hydrated clusters, Br2.-.(H2O)n, show characteristic sharp features of O-H stretching bands of water in the small size clusters.

  10. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters

    Science.gov (United States)

    Pathak, A. K.; Mukherjee, T.; Maity, D. K.

    2007-07-01

    We report vertical detachment energy (VDE) and IR spectra of Br2•-•(H2O)n clusters (n=1-8) based on first principles electronic structure calculations. Cluster structures and IR spectra are calculated at Becke's half-and-half hybrid exchange-correlation functional (BHHLYP) with a triple split valence basis function, 6-311++G(d,p). VDE for the hydrated clusters is calculated based on second order Moller-Plesset perturbation (MP2) theory with the same set of basis function. On full geometry optimization, it is observed that conformers having interwater hydrogen bonding among solvent water molecules are more stable than the structures having double or single hydrogen bonded structures between the anionic solute, Br2•-, and solvent water molecules. Moreover, a conformer having cyclic interwater hydrogen bonded network is predicted to be more stable for each size hydrated cluster. It is also noticed that up to four solvent H2O units can reside around the solute in a cyclic interwater hydrogen bonded network. The excess electron in these hydrated clusters is localized over the solute atoms. Weighted average VDE is calculated for each size (n) cluster based on statistical population of the conformers at 150K. A linear relationship is obtained for VDE versus (n+3)-1/3 and bulk VDE of Br2•- aqueous solution is calculated as 10.01eV at MP2 level of theory. BHHLYP density functional is seen to make a systematic overestimation in VDE values by ˜0.5eV compared to MP2 data in all the hydrated clusters. It is observed that hydration increases VDE of bromine dimer anion system by ˜6.4eV. Calculated IR spectra show that the formation of Br2•--water clusters induces large shifts from the normal O-H stretching bands of isolated water keeping bending modes rather insensitive. Hydrated clusters, Br2•-•(H2O)n, show characteristic sharp features of O-H stretching bands of water in the small size clusters.

  11. Hydrogen bonding in cytosinium dihydrogen phosphite

    OpenAIRE

    Nourredine Benali-Cherif; Amel Messai; Erwann Jeanneau; Dominique Luneau

    2009-01-01

    In the title compound, C4H8N3O4P+·H2PO3−, the cytosine molecule is monoprotonated and the phosphoric acid is in the monoionized state. Strong hydrogen bonds, dominated by N—H...O interactions, are responsible for cohesion between the organic and inorganic layers and maintain the stability of this structure.

  12. Crystal structure of 2-hydroxy-N-(2-hydroxyethyl-N-{2-hydroxy-3-[(E-N-hydroxyethanimidoyl]-5-methylbenzyl}ethanaminium acetate monohydrate

    Directory of Open Access Journals (Sweden)

    Gary S. Nichol

    2015-03-01

    Full Text Available The structure of the title hydrated molecular salt, C14H23N2O4+·C2H3O2−·H2O, was determined as part of a wider study on the use of the molecule as a polydentate ligand in the synthesis of MnIII clusters with magnetic properties. The cation features intramolecular O—H...N and N—H...O hydrogen-bond interactions. The crystal structure features a range of intermolecular hydrogen-bonding interactions, principally O—H...O interactions between all three species in the asymmetric unit. An R24(8 graph-set hydrogen-bonding motif between the anion and water molecules serves as a unit which links to the cation via the diethanolamine group. Each O atom of the acetate anion accepts two hydrogen bonds.

  13. Bond ionicity in crystals of transition metal compounds

    International Nuclear Information System (INIS)

    Kesler, Ya.A.

    1989-01-01

    A unified method of calculating bond ionicity in inorganic crystals is suggested. The approach presented envisages the sealing of d-electron contribution to ξ,p-electron contribution for the retention of community which can only be implemented by a self-consistent procedure. The results of self-consistent calculations of bond parameters of a number of crystals (ScN, Sc 2 O 3 , In 2 O 3 , J 2 O 3 ) as compared with the data for ξ,p-analogues are given. Ionicity changes in the series of analogous compounds utterly correspond to existing chemical concepts. The data for oxides of 4d-, 5d-elements (ZrO 2 , CeO 2 , ThO 2 ) and for a number of ternary compounds containing two types of bonds (LiNbO 3 , CdSc 2 S 4 , CdCr 2 Se 4 etc) are also given. In the case of transition elements ionicity to a great extent depends on the symmetry of anion environment and correlates to orbital population well. Ionicity values are in direct proportion to effective charges of atoms of transition elements

  14. Crystal structure of poly[[hexaqua-1κ4O,2κ2O-bis(μ3-pyridine-2,4-dicarboxylato-1κO2:2κ2N,O2′;1′κO4cobalt(IIstrontium(II] dihydrate

    Directory of Open Access Journals (Sweden)

    Zhaojun Yu

    2015-09-01

    Full Text Available In the title polymeric complex, {[CoSr(C7H3NO42(H2O6]·2H2O}n, the CoII ion, which is situated on a crystallographic centre of inversion, is six-coordinated by two O atoms and two N atoms from two pyridine-2,4-dicarboxylate (pydc2− ligands and two terminal water molecules in a slightly distorted octahedral geometry, to form a trans-[Co(pydc2(H2O2]2− unit. The SrII ion, situated on a C2 axis, is coordinated by four O atoms from four pydc2− ligands and four water molecules. The coordination geometry of the SrII atom can be best described as a distorted dodecahedron. Each SrII ion bridges four [Co(pydc2(H2O2]2− units by four COO− groups of four pydc2− ligands to form a three-dimensional network structure. Two additional solvent water molecules are observed in the crystal structure and are connected to the three-dimensional coordination polymer by O—H...O hydrogen bonds. Further intra- and intermolecular O—H...O hydrogen bonds consolidate the overall structure.

  15. Synthesis and 3D Network Architecture of 1- and 16-Hydrated Salts of 4-Dimethylaminopyridinium Decavanadate, (DMAPH6[V10O28]·nH2O

    Directory of Open Access Journals (Sweden)

    Eduardo Sánchez-Lara

    2016-05-01

    Full Text Available Two hybrid materials based on decavanadates (DMAPH6[V10O28]·H2O, (1 and (DMAPH6[V10O28]·16H2O, (2 (where DMAPH = 4-dimethylaminopyridinium were obtained by reactions under mild conditions at T = 294 and 283 K, respectively. These compounds are pseudopolymorphs, which crystallize in monoclinic P 2 1 / n and triclinic P 1 ¯ space groups. The structural analysis revealed that in both compounds, six cations DMAPH+ interact with decavanadate anion through N-H∙∙∙Odec hydrogen bonds; in 2, the hydrogen-bonding association of sixteen lattice water molecules leads to the formation of an unusual network stabilized by decavanadate clusters; this hydrogen-bond connectivity is described using graph set notation. Compound 2 differs basically in the water content which in turn increases the π∙∙∙π interactions coming from pyridinium rings. Elemental and thermal analysis (TGA/DSC as well as FT-IR, FT-Raman, for 1 and 2 are consistent with both structures and are also presented.

  16. Effect of quantum nuclear motion on hydrogen bonding

    Science.gov (United States)

    McKenzie, Ross H.; Bekker, Christiaan; Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2014-05-01

    This work considers how the properties of hydrogen bonded complexes, X-H⋯Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O-H⋯O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4 - 3.0 Å, i.e., from strong to weak hydrogen bonds. The position of the proton (which determines the X-H bond length) and its longitudinal vibrational frequency, along with the isotope effects in both are described quantitatively. An analysis of the secondary geometric isotope effect, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of bending modes is also considered: their quantum effects compete with those of the stretching mode for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures several trends.

  17. Linear-to-λ-Shape P-O-P Bond Transmutation in Polyphosphates with Infinite (PO3)∞ Chain.

    Science.gov (United States)

    Wang, Ying; Li, Lin; Han, Shujuan; Lei, Bing-Hua; Abudoureheman, Maierhaba; Yang, Zhihua; Pan, Shilie

    2017-09-05

    A new metal polyphosphate, α-CsBa 2 (PO 3 ) 5 , exhibiting the first example of a linear P-O-P bond angle in a one-dimensional (PO 3 ) ∞ chain has been reported. Interestingly, α → β phase transition occurs in CsBa 2 (PO 3 ) 5 along with the P-O-P bonds varying from linear to λ-shape, suggesting that α-CsBa 2 (PO 3 ) 5 with unfavorable linear P-O-P bonds is more stable at ambient temperature.

  18. Crystal structure of N,N-diethylbenzene-1,4-diaminium dinitrate

    Directory of Open Access Journals (Sweden)

    Yasmina Bouaoud

    2014-11-01

    Full Text Available In the structure of the title molecular salt, C10H18N22+·2NO3−, the dinitrate salt of 4-(N,N-diethylaminoaniline, the two ethyl groups lie almost perpendicular to the plane of the benzene ring [the ring-to-ethyl C—C—N—C torsion angles are −59.5 (2 and 67.5 (3°]. The aminium groups of the cation form inter-species N—H...O hydrogen bonds with the nitro O-atom acceptors of both anions, giving rise to chain substructures lying along c. The chains are linked via further N—H...O hydrogen bonds, forming two-dimensional networks lying parallel to (010. These sheets are linked by C—H...O hydrogen bonds, forming a three-dimensional structure.

  19. A theoretical study of the molecular structures and vibrational spectra of the N 2O⋯(HF) 2

    Science.gov (United States)

    de Lima, Nathália B.; Ramos, Mozart N.

    2012-01-01

    Theoretical calculations using both the MP2 and B3LYP levels of calculation with a 6-311++G(3df,3pd) basis set have been performed to determine stable structures and molecular properties for the H-bonded complexes involving nitrous oxide (N 2O) and two HF molecules. Five complex have been characterized as minima since no imaginary frequency was found. Three complex are predicted to be relatively more stable with binding energies varying from 14 kJ mol -1 to 23 kJ mol -1 after BSSE and ZPE corrections. Our calculations have revealed that the second complexation with HF preferably occurs with the first complexed HF molecule, i.e., forming the X⋯H sbnd F⋯H sbnd F skeleton with X = O or N instead the F sbnd H⋯N sbnd N sbnd O⋯H sbnd F one. As expected, the H sbnd F chemical bonds are increased after complexation due to intermolecular charge transfer from "n" isolated pair of the X atom (X = N, O or F) to the σ ∗ anti-bonding orbital of HF. For the strongly bounded complex, the doubly complexed HF molecule acts as a bridge between the two end molecules while transferring electrons from N 2O to HF. Both possess the same amount of residual charge but with opposite signs. The H sbnd F stretching frequency of the monoprotic acid is shifted downward after complexation whereas its IR intensity is much enhanced. This increase has been adequately interpreted in terms of equilibrium hydrogen charge and charge-flux associated to the H sbnd F stretching using the CCFOM model for infrared intensities. This procedure has also allowed to analyze the new vibrational modes arising upon H-bond formation, especially those associated with the out-of-plane and in-plane HF bending modes, which are pure rotations in the HF isolated molecule.

  20. Observation of Vacancies, Faults, and Superstructures in Ln5Mo2O12 (Ln = La, Y, and Lu) Compounds with Direct Mo-Mo Bonding.

    Science.gov (United States)

    Colabello, Diane M; Sobalvarro, Elizabeth M; Sheckelton, John P; Neuefeind, Joerg C; McQueen, Tyrel M; Khalifah, Peter G

    2017-11-06

    Among oxide compounds with direct metal-metal bonding, the Y 5 Mo 2 O 12 (A 5 B 2 O 12 ) structural family of compounds has a particularly intriguing low-dimensional structure due to the presence of bioctahedral B 2 O 10 dimers arranged in one-dimensional edge-sharing chains along the direction of the metal-metal bonds. Furthermore, these compounds can have a local magnetic moment due to the noninteger oxidation state (+4.5) of the transition metal, in contrast to the conspicuous lack of a local moment that is commonly observed when oxide compounds with direct metal-metal bonding have integer oxidation states resulting from the lifting of orbital degeneracy typically induced by the metal-metal bonding. Although a monoclinic C2/m structure has been previously proposed for Ln 5 Mo 2 O 12 (Ln = La-Lu and Y) members of this family based on prior single crystal diffraction data, it is found that this structural model misses many important structural features. On the basis of synchrotron powder diffraction data, it is shown that the C2/m monoclinic unit cell represents a superstructure relative to a previously unrecognized orthorhombic Immm subcell and that the superstructure derives from the ordering of interchangeable Mo 2 O 10 and LaO 6 building blocks. The superstructure for this reason is typically highly faulted, as evidenced by the increased breadth of superstructure diffraction peaks associated with a coherence length of 1-2 nm in the c* direction. Finally, it is shown that oxygen vacancies can occur when Ln = La, producing an oxygen deficient stoichiometry of La 5 Mo 2 O 11.55 and an approximately 10-fold reduction in the number of unpaired electrons due to the reduction of the average Mo valence from +4.5 to +4.05, a result confirmed by magnetic susceptibility measurements. This represents the first observation of oxygen vacancies in this family of compounds and provides an important means of continuously tuning the magnetic interactions within the one

  1. A Cadmium Anionic 1-D Coordination Polymer {[Cd(H2O6][Cd2(atr2(μ2-btc2(H2O4] 2H2O}n within a 3-D Supramolecular Charge-Assisted Hydrogen-Bonded and π-Stacking Network

    Directory of Open Access Journals (Sweden)

    Anas Tahli

    2016-03-01

    Full Text Available The hydrothermal reaction of 4,4′-bis(1,2,4-triazol-4-yl (btr and benzene-1,3,5-tricarboxylic acid (H3btc with Cd(OAc2·2H2O at 125 °C in situ forms 4-amino-1,2,4-triazole (atr from btr, which crystallizes to a mixed-ligand, poly-anionic chain of [Cd2(atr2(µ2-btc2(H2O4]2–. Together with a hexaaquacadmium(II cation and water molecules the anionic coordination-polymeric forms a 3-D supramolecular network of hexaaquacadmium(II-catena-[bis(4-amino-1,2,4-triazoletetraaquabis(benzene-1,3,5-tricarboxylatodicadmate(II] dihydrate, 1-D-{[Cd(H2O6][Cd2(atr2(µ2-btc2(H2O4] 2H2O}n which is based on hydrogen bonds (in part charge-assisted and π–π interactions.

  2. The N2O activation by Rh5 clusters. A quantum chemistry study.

    Science.gov (United States)

    Olvera-Neria, Oscar; Avilés, Roberto; Francisco-Rodríguez, Héctor; Bertin, Virineya; García-Cruz, Raúl; González-Torres, Julio César; Poulain, Enrique

    2015-04-01

    Nitrous oxide (N2O) is a by-product of exhaust pipe gases treatment produced by motor vehicles. Therefore, the N2O reduction to N2 is necessary to meet the actual environmental legislation. The N2O adsorption and dissociation assisted by the square-based pyramidal Rh5 cluster was investigated using the density functional theory and the zero-order regular approximation (ZORA). The Rh5 sextet ground state is the most active in N2O dissociation, though the quartet and octet states are also active because they are degenerate. The Rh5 cluster spontaneously activates the N2─O cleavage, and the reaction is highly exothermic ca. -75 kcal mol(-1). The N2─O breaking is obtained for the geometrical arrangement that maximizes the overlap and electron transfers between the N2O and Rh5 frontier orbitals. The Rh5 high activity is due to the Rh 3d orbitals are located between the N2O HOMO and LUMO orbitals, which makes possible the interactions between them. In particular, the O 2p states strongly interact with Rh 3d orbitals, which finally weaken the N2─O bond. The electron transfer is from the Rh5 HOMO orbital to the N2O antibonding orbital.

  3. σ-Bond Electron Delocalization in Oligosilanes as Function of Substitution Pattern, Chain Length, and Spatial Orientation

    Directory of Open Access Journals (Sweden)

    Johann Hlina

    2016-08-01

    Full Text Available Polysilanes are known to exhibit the interesting property of σ-bond electron delocalization. By employing optical spectroscopy (UV-vis, it is possible to judge the degree of delocalization and also differentiate parts of the molecules which are conjugated or not. The current study compares oligosilanes of similar chain length but different substitution pattern. The size of the substituents determines the spatial orientation of the main chain and also controls the conformational flexibility. The chemical nature of the substituents affects the orbital energies of the molecules and thus the positions of the absorption bands.

  4. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light.

    Science.gov (United States)

    Ananpattarachai, Jirapat; Seraphin, Supapan; Kajitvichyanukul, Puangrat

    2016-02-01

    This work reports on synthesis, characterization, adsorption ability, formation rate of hydroxyl radicals (OH(•)), photocatalytic oxidation kinetics, and mineralization ability of C-doped titanium dioxide (TiO2), N-doped TiO2, and C,N co-doped TiO2 prepared by the sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy were used to analyze the titania. The rate of formation of OH(•) for each type of titania was determined, and the OH-index was calculated. The kinetics of as-synthesized TiO2 catalysts in photocatalytic oxidation of 2-chlorophenol (2-CP) under visible light irradiation were evaluated. Results revealed that nitrogen was incorporated into the lattice of titania with the structure of O-Ti-N linkages in N-doped TiO2 and C,N co-doped TiO2. Carbon was joined to the Ti-O-C bond in the C-doped TiO2 and C,N co-doped TiO2. The 2-CP adsorption ability of C,N co-doped TiO2 and C-doped TiO2 originated from a layer composed of a complex carbonaceous mixture at the surface of TiO2. C,N co-doped TiO2 had highest formation rate of OH(•) and photocatalytic activity due to a synergistic effect of carbon and nitrogen co-doping. The order of photocatalytic activity per unit surface area was the same as that of the formation rate of OH(•) unit surface area in the following order: C,N co-doped TiO2 > C-doped TiO2 > N-doped TiO2 > undoped TiO2.

  5. Perovskite BaBiO3 Transformed Layered BaBiO2.5 Crystals Featuring Unusual Chemical Bonding and Luminescence.

    Science.gov (United States)

    Li, Hong; Zhao, Qing; Liu, Bo-Mei; Zhang, Jun-Ying; Li, Zhi-Yong; Guo, Shao-Qiang; Ma, Ju-Ping; Kuroiwa, Yoshihiro; Moriyoshi, Chikako; Zheng, Li-Rong; Sun, Hong-Tao

    2018-04-14

    Engineering oxygen coordination environments of cations in oxides has received intense interest thanks to the opportunities for the discovery of novel oxides with unusual properties. Here we present the successful synthesis of stoichiometric layered BaBiO2.5 enabled by a non-topotactic phase transformation of perovskite BaBiO3. By analysing the synchrotron X-ray diffraction data using the maximum entropy method/Rietveld technique, we find that Bi forms unusual chemical bondings with four oxygen atoms, featuring one ionic bonding and three covalent bondings that results in an asymmetric coordination geometry. A broad range of photophysical characterizations reveal that this peculiar structure shows near-infrared luminescence differing from conventional Bi-bearing systems. Experimental and theoretical results lead us to propose the excitonic nature of luminescence. Our work highlights that synthesizing materials with uncommon Bi-O bonding and Bi coordination geometry provides a pathway to the discovery of systems with new functionalities. We envisage that this work could inspire interest for the exploration of a range of materials containing heavier p-block elements, offering prospects for the finding of systems with unusual properties. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Neutron diffraction studies of magnetic ordering in Ni-doped LaCoO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Rajeevan, N.E. [Department of Physics, Z.G. College, Calicut 673014, Kerala (India); Kumar, Vinod; Kumar, Rajesh [Department of Physics, National Institute of Technology, Hamirpur 177005, Himachal Pradesh (India); Kumar, Ravi [Beant College of Engineering and Technology, Gurudaspur 143521, Punjab (India); Kaushik, S.D. [UGC-DAE CSR Mumbai Centre, R-5 Shed, BARC, Mumbai 400085, Maharashtra (India)

    2015-11-01

    Research in rare earth cobaltite has recently been intensified due to its fascinating magnetic properties. LaCoO{sub 3}, an important cobaltite, exhibits two prominent susceptibility features at ~90 K and 500 K in low field measurement. The magnetic behavior below 100 K is predominantly antiferromagnetic (AFM), but absence of pure AFM ordering and emergence of ferromagnetic coupling on further decreasing temperature made situation more intricate. The present work of studying the effect of Ni substitution at Co site in polycrystalline LaCo{sub 1−x}Ni{sub x}O{sub 3} (0≤x≤0.3) is motivated by the interesting changes in magnetic and electronic properties. For lucid understanding, temperature dependent neutron diffraction (ND) study was carried out. ND patterns fitted with rhombohedral structure in perovskite form with R-3c space group, elucidated information on phase purity. Further temperature dependent cell parameter, Co–O bond-length and Co–O–Co bond angle were calculated for the series of Ni doped LaCoO{sub 3}. The results are explained in terms of decrease in the crystal field energy which led to the transition of cobalt from low Spin (LS) state to intermediate spin state (IS). - Highlights: • Temperature dependent neutron diffraction (ND) on Ni doped LaCoO{sub 3} are studied. • Microscopic parameters (cell, bond length, bond angle etc.) are determined by ND. • Increase in Co–O bond length and decrease in Co–O–Co bond angle on Ni substitution. • Ionic radii of Co{sup +3} in IS state (0.56 Å) is larger than in LS state (0.54 Å). • Lattice expansion induced increase in Co–O length stabilizes Co{sup +3} in magnetic state.

  7. Maternal-infant bonding and the mother's participation during venipuncture: a psychoanalytic perspective Vínculo materno infantil y la participación de la madre durante la realización de la punción venosa: la ótica del psicoanálisis Vínculo materno-infantil e participação da mãe durante a realização da punção venosa: a ótica da psicanálise

    Directory of Open Access Journals (Sweden)

    Júlia Peres Pinto

    2007-02-01

    Full Text Available Professionals discuss accompanying mothers' participation during painful procedures as a possibility of care to mother and child, but there is no consensus on this subject. To contribute to this topic, this study addresses the child's needs during venipuncture in a hospital environment and the mother's participation in this procedure, based on authors from psychoanalysis and mother-child bonding.La participación de la madre acompañante junto al niño durante la realización de procedimientos dolorosos es discutida por profesionales como una posibilidad de cuidado al binomio, pero no hay un consenso sobre este tema. Para contribuir con esta discusión, el texto trata de las necesidades del niño durante la realización de la punción venosa en un ambiente de hospital y la participación de la madre en el procedimiento, tomando como base autores del psicoanálisis y el vínculo madre y hijo.A participação da mãe acompanhante junto à criança durante a realização de procedimentos dolorosos é discutida pelos profissionais como uma possibilidade de cuidado ao binômio, porém, não há consenso quanto a esse tema. Para contribuir com essa discussão, o texto aborda as necessidades da criança durante a realização da punção venosa no ambiente hospitalar e a participação da mãe no procedimento, tendo como base autores da psicanálise e o vínculo na relação mãe e filho.

  8. catena-Poly[[[trans-diaquabis(pyridine-κNcobalt(II]-μ-(4-{N′-[1-(3-acetyl-4-methyl-1H-pyrazol-5-ylethylidene]hydrazino}benzoato-κ3O:N,N′-[bis(pyridine-κNcobalt(III]-μ-(4-{N′-[1-(3-acetyl-4-methyl-1H-pyrazol-5-ylethylidene]hydrazino}benzoato-κ3N,N′:O]perchlorate 3.66-hydrate

    Directory of Open Access Journals (Sweden)

    Igor O. Fritsky

    2008-02-01

    Full Text Available The title compound, {[Co2(C15H14N4O32(C5H5N4(H2O2]ClO4·3.66H2O}n, is a one-dimensional coordination polymer, with both CoII and CoIII centres in its structure. The ligand environment surrounding CoIII is formed by two N,N-chelating pyrazole-containing ligands and two pyridine molecules in axial positions. The high-spin CoII ions, situated at crystallographic centres of inversion, exhibit a distorted octahedral coordination mode. The ClO4− anion is linked to the polymer chain via hydrogen bonds. The chains are connected by hydrogen bonds to produce a three-dimensional structure.

  9. Anisotropic thermal expansion of La(n)(Ti,Fe)(n)O(3n + 2) (n = 5 and 6).

    Science.gov (United States)

    Wölfel, Alexander; Dorscht, Philipp; Lichtenberg, Frank; van Smaalen, Sander

    2013-04-01

    Crystal structures are reported for two perovskite-related compounds with nominal compositions La5(Ti(0.8)Fe(0.2))5O17 and La6(Ti(0.67)Fe(0.33))6O20 at seven different temperatures between 90 and 350 K. For both compounds no evidence of a structural phase transition in the investigated range of temperatures was found. The thermal expansions are found to be anisotropic, with the largest thermal expansion along a direction parallel to the slabs of these layered compounds. The origin of this anisotropy is proposed to be a temperature dependence of tilts of the octahedral (Ti,Fe)O6 groups. It is likely that the same mechanism will determine similar anisotropic thermal behaviour of other compounds A(n)B(n)O(3n + 2). The crystal structures have revealed partial chemical order of Ti/Fe over the B sites, with iron concentrated towards the centers of the slabs. Local charge compensation is proposed as the driving force for the chemical order, where the highest-valent cation moves to sites near the oxygen-rich borders of the slabs. A linear dependence on the site occupation fraction by Fe of the computed valences leads to extrapolated valence values close to the formal valence of Ti(4+) for sites fully occupied by Ti, and of Fe(3+) for sites fully occupied by Fe. These results demonstrate the power of the bond-valence method, and they show that refined oxygen positions are the weighted average of oxygen positions in TiO6 and FeO6 octahedral groups.

  10. Poly[[aqua(μ2-4,4′-bipyridine-κ2N:N′[μ3-3-bromo-2-(carboxylatomethylbenzoato-κ3O1:O1′:O2]cadmium] monohydrate

    Directory of Open Access Journals (Sweden)

    Yangmei Liu

    2012-08-01

    Full Text Available In the title compound, {[Cd(C9H5BrO4(C10H8N2(H2O]·H2O}n, the CdII atom has a distorted octahedral coordination geometry. Two N atoms from two 4,4′-bipyridine (bipy ligands occupy the axial positions, while the equatorial positions are furnished by three carboxylate O atoms from three 3-bromo-2-(carboxylatomethylbenzoate (bcb ligands and one O atom from a water molecule. The bipy and bcb ligands link the CdII atoms into a three-dimensional network. O—H...O hydrogen bonds and π–π interactions between the pyridine and benzene rings [centroid–centroid distance = 3.736 (4 Å] are present in the crystal.

  11. Quantum N-body problem with a minimal length

    International Nuclear Information System (INIS)

    Buisseret, Fabien

    2010-01-01

    The quantum N-body problem is studied in the context of nonrelativistic quantum mechanics with a one-dimensional deformed Heisenberg algebra of the form [x,p]=i(1+βp 2 ), leading to the existence of a minimal observable length √(β). For a generic pairwise interaction potential, analytical formulas are obtained that allow estimation of the ground-state energy of the N-body system by finding the ground-state energy of a corresponding two-body problem. It is first shown that in the harmonic oscillator case, the β-dependent term grows faster with increasing N than the β-independent term. Then, it is argued that such a behavior should also be observed with generic potentials and for D-dimensional systems. Consequently, quantum N-body bound states might be interesting places to look at nontrivial manifestations of a minimal length, since the more particles that are present, the more the system deviates from standard quantum-mechanical predictions.

  12. Different hydrogen-bonded chains in the crystal structures of three alkyl N-[(E-1-(2-benzylidene-1-methylhydrazinyl-3-hydroxy-1-oxopropan-2-yl]carbamates

    Directory of Open Access Journals (Sweden)

    Thais C. M. Noguiera

    2015-07-01

    Full Text Available The crystal structures of three methylated hydrazine carbamate derivatives prepared by multi-step syntheses from l-serine are presented, namely benzyl N-{(E-1-[2-(4-cyanobenzylidene-1-methylhydrazinyl]-3-hydroxy-1-oxopropan-2-yl}carbamate, C20H20N4O4, tert-butyl N-{(E-1-[2-(4-cyanobenzylidene-1-methylhydrazinyl]-3-hydroxy-1-oxopropan-2-yl}carbamate, C17H22N4O4, and tert-butyl N-[(E-1-(2-benzylidene-1-methylhydrazinyl-3-hydroxy-1-oxopropan-2-yl]carbamate, C16H23N3O4. One of them shows that an unexpected racemization has occurred during the mild-condition methylation reaction. In each crystal structure, the molecules are linked into chains by O—H...O hydrogen bonds, but with significant differences between them.

  13. Sintering of undoped SnO2 Sinterização de SnO2 não dopado

    Directory of Open Access Journals (Sweden)

    E. R. Leite

    2003-04-01

    Full Text Available Pure SnO2 sintering was studied by constant heating rate and isothermal sintering. The constant heating rate study showed no macroscopic shrinkage during the sintering process up to 1500 ºC. Pore size distribution measurements, using gas desorption, and grain size and crystallite size measurements of isothermally sintered samples showed no formation of non-densifying microstructures during the sintering process. These results are a strong indication that densification was prevented by thermodynamic factors, mainly the high ratio of gammaGB/gSV. An explanation, based on the nature of covalent bonding and the balance between attractive and repulsive forces, was proposed to explain the high gammaGB/gammaSV ratio in SnO2.A sinterização de SnO2 puro foi estudado por taxa constante de aquecimento e por sinterização isotérmica. O estudo de taxa constante de aquecimento mostrou que não ocorre retração macroscópica durante o processo de sinterização até temperaturas de 1500 ºC. Medidas de distribuição de tamanho de poros, usando adsorção de gás, tamanho de grão e tamanho de cristalito para amostras sinterizadas isotermicamente mostrou a não formação de uma microestrutura não-densificante durante o processo de sinterização. Estes resultados são um forte indicativo que a densificação foi inibida por fatores termodinâmicos, principalmente o alto valor da razão de gamaGB/gSV. Uma explicação, baseada na natureza covalente da ligação química e no balanço entre forças atrativas e repulsivas, é apresentada para explicar o alto valor da razão gamaGB/gamaSV no SnO2.

  14. Halogen-bonded network of trinuclear copper(II 4-iodopyrazolate complexes formed by mutual breakdown of chloroform and nanojars

    Directory of Open Access Journals (Sweden)

    Stuart A. Surmann

    2016-11-01

    Full Text Available Crystals of bis(tetrabutylammonium di-μ3-chlorido-tris(μ2-4-iodopyrazolato-κ2N:N′tris[chloridocuprate(II] 1,4-dioxane hemisolvate, (C16H36N2[Cu3(C3H2IN23Cl5]·0.5C4H8O or (Bu4N2[CuII3(μ3-Cl2(μ-4-I-pz3Cl3]·0.5C4H8O, were obtained by evaporating a solution of (Bu4N2[{CuII(μ-OH(μ-4-I-pz}nCO3] (n = 27–31 nanojars in chloroform/1,4-dioxane. The decomposition of chloroform in the presence of oxygen and moisture provides HCl, which leads to the breakdown of nanojars to the title trinuclear copper(II pyrazolate complex, and possibly CuII ions and free 4-iodopyrazole. CuII ions, in turn, act as catalyst for the accelerated decomposition of chloroform, ultimately leading to the complete breakdown of nanojars. The crystal structure presented here provides the first structural description of a trinuclear copper(II pyrazolate complex with iodine-substituted pyrazoles. In contrast to related trinuclear complexes based on differently substituted 4-R-pyrazoles (R = H, Cl, Br, Me, the [Cu3(μ-4-I-pz3Cl3] core in the title complex is nearly planar. This difference is likely a result of the presence of the iodine substituent, which provides a unique, novel feature in copper pyrazolate chemistry. Thus, the iodine atoms form halogen bonds with the terminal chlorido ligands of the surrounding complexes [mean length of I...Cl contacts = 3.48 (1 Å], leading to an extended two-dimensional, halogen-bonded network along (-110. The cavities within this framework are filled by centrosymmetric 1,4-dioxane solvent molecules, which create further bridges via C—H...Cl hydrogen bonds with terminal chlorido ligands of the trinuclear complex not involved in halogen bonding.

  15. Crystal structure of (2-formylphenolato-κ2O,O′oxido(2-{[(2-oxidoethylimino]methyl}phenolato-κ3O,N,O′vanadium(V

    Directory of Open Access Journals (Sweden)

    Sowmianarayanan Parimala

    2015-05-01

    Full Text Available In the unsymmetrical title vanadyl complex, [V(C9H9NO2(C7H5O2O], one of the ligands (2-formylphenol is disordered over two sets of sites, with an occupancy ratio of 0.55 (2:0.45 (2. The metal atom is hexacoordinated, with a distorted octahedral geometry. The vanadyl O atom (which subtends the shortest V—O bond occupies one of the apical positions and the remaining axial bond (the longest in the polyhedron is provided by the (disordered formyl O atoms. The basal plane is defined by the two phenoxide O atoms, the iminoalcoholic O and the imino N atom. The planes of the two benzene rings are almost perpendicular to each other, subtending an interplanar angle of 84.1 (2° between the major parts. The crystal structure features weak C—H...O and C—H...π interactions, forming a lateral arrangement of adjacent molecules.

  16. N,N′-Bis(4-bromophenyl-N,N′-dimethylurea

    Directory of Open Access Journals (Sweden)

    Alexandre Pocinho

    2018-02-01

    Full Text Available The structure of the title compound, C15H14Br2N2O, at 180 K has monoclinic (P21/n symmetry. It was obtained unexpectedly from the decomposition of the parent 4-bromo-N-tert-butoxycarbonyl-N-methyl-aniline. It exhibits an `endo' conformation with angles between the two aromatic rings slightly lower than the average values found for similar compounds on the Cambridge Structural Database. In the crystal, C—H...O hydrogen bonds and short Br...Br halogen bonds [3.444 (1 Å] are observed.

  17. Low-temperature Au/a-Si wafer bonding

    International Nuclear Information System (INIS)

    Jing, Errong; Xiong, Bin; Wang, Yuelin

    2011-01-01

    The Si/SiO 2 /Ti/Au–Au/Ti/a-Si/SiO 2 /Si bonding structure, which can also be used for the bonding of non-silicon material, was investigated for the first time in this paper. The bond quality test showed that the bond yield, bond repeatability and average shear strength are higher for this bonding structure. The interfacial microstructure analysis indicated that the Au-induced crystallization of the amorphous silicon process leads to big Si grains extending across the bond interface and Au filling the other regions of the bond interface, which result into a strong and void-free bond interface. In addition, the Au-induced crystallization reaction leads to a change in the IR images of the bond interface. Therefore, the IR microscope can be used to evaluate and compare the different bond strengths qualitatively. Furthermore, in order to verify the superiority of the bonding structure, the Si/SiO 2 /Ti/Au–a-Si/SiO 2 /Si (i.e. no Ti/Au layer on the a-Si surface) and Si/SiO 2 /Ti/Au–Au/Ti/SiO 2 /Si bonding structures (i.e. Au thermocompression bonding) were also investigated. For the Si/SiO 2 /Ti/Au–a-Si/SiO 2 /Si bonding structure, the poor bond quality is due to the native oxide layer on the a-Si surface, and for the Si/SiO 2 /Ti/Au–Au/Ti/SiO 2 /Si bonding structure, the poor bond quality is caused by the wafer surface roughness which prevents intimate contact and limits the interdiffusion at the bond interface.

  18. Hydrogen bonding in cytosinium dihydrogen phosphite

    Directory of Open Access Journals (Sweden)

    Nourredine Benali-Cherif

    2009-05-01

    Full Text Available In the title compound, C4H8N3O4P+·H2PO3−, the cytosine molecule is monoprotonated and the phosphoric acid is in the monoionized state. Strong hydrogen bonds, dominated by N—H...O interactions, are responsible for cohesion between the organic and inorganic layers and maintain the stability of this structure.

  19. Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR)

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Justine P. [Johns Hopkins Univ., Baltimore, MD (United States)

    2015-03-03

    Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR) Research during the project period focused primarily on mechanisms of water oxidation by structurally defined transition metal complexes. Competitive oxygen isotope fractionation of water, mediated by oxidized precursors or reduced catalysts together with ceric, Ce(IV), ammonium nitrate in aqueous media, afforded oxygen-18 kinetic isotope effects (O-18 KIEs). Measurement, calculation, and interpretation of O-18 KIEs, described in the accompanying report has important ramifications for the production of electricity and solar hydrogen (as fuel). The catalysis division of BES has acknowledged that understanding mechanisms of transition metal catalyzed water oxidation has major ramifications, potentially leading to transformation of the global economy and natural environment in years to come. Yet, because of program restructuring and decreased availability of funds, it was recommended that the Solar Photochemistry sub-division of BES would be a more appropriate parent program for support of continued research.

  20. Crystal structure of bis[μ-methoxy(pyridin-2-ylmethanolato-κ3N,O:O]bis[chloridocopper(II

    Directory of Open Access Journals (Sweden)

    Sujirat Boonlue

    2015-02-01

    Full Text Available The racemic title compound, [Cu2(C7H8NO22Cl2], is composed of dinuclear molecules in which methoxy(pyridin-2-ylmethanolate ligands bridge two symmetry-related CuII ions. Each CuII ion is coordinated in a square-planar geometry by one Cl atom, the N and O atoms of the bidentate ligand and the bridging O atom of the centrosymmetrically related bidentate ligand. The separation between the two CuII atoms is 3.005 (1 Å. In the crystal, non-classical C—H...O hydrogen bonds, weak π–π stacking [centroid–centroid distance = 4.073 (1 Å] and weak electrostatic Cu...Cl interactions [3.023 (1 Å] link the dinuclear molecules into chains running parallel to the b axis. These chains are further connected by weak C—H...Cl hydrogen bonds directed approximately along the a axis, forming a three-dimensional supramolecular network.

  1. String matching with variable length gaps

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Vildhøj, Hjalte Wedel

    2012-01-01

    primitive in computational biology applications. Let m and n be the lengths of P and T, respectively, and let k be the number of strings in P. We present a new algorithm achieving time O(nlogk+m+α) and space O(m+A), where A is the sum of the lower bounds of the lengths of the gaps in P and α is the total...... number of occurrences of the strings in P within T. Compared to the previous results this bound essentially achieves the best known time and space complexities simultaneously. Consequently, our algorithm obtains the best known bounds for almost all combinations of m, n, k, A, and α. Our algorithm...

  2. Influence of silicon dangling bonds on germanium thermal diffusion within SiO{sub 2} glass

    Energy Technology Data Exchange (ETDEWEB)

    Barba, D.; Martin, F.; Ross, G. G. [INRS Centre for Energy, Materials and Telecommunications, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2 (Canada); Cai, R. S.; Wang, Y. Q. [The Cultivation Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Demarche, J.; Terwagne, G. [LARN, Centre de Recherche en Physique de la Matière et du Rayonnement (PMR), University of Namur (FUNDP), B-5000 Namur (Belgium); Rosei, F. [INRS Centre for Energy, Materials and Telecommunications, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2 (Canada); Center for Self-Assembled Chemical Structures, McGill University, Montreal, Quebec H3A 2K6 (Canada)

    2014-03-17

    We study the influence of silicon dangling bonds on germanium thermal diffusion within silicon oxide and fused silica substrates heated to high temperatures. By using scanning electron microscopy and Rutherford backscattering spectroscopy, we determine that the lower mobility of Ge found within SiO{sub 2}/Si films can be associated with the presence of unsaturated SiO{sub x} chemical bonds. Comparative measurements obtained by x-ray photoelectron spectroscopy show that 10% of silicon dangling bonds can reduce Ge desorption by 80%. Thus, the decrease of the silicon oxidation state yields a greater thermal stability of Ge inside SiO{sub 2} glass, which could enable to considerably extend the performance of Ge-based devices above 1300 K.

  3. Metallic and/or oxygen ion implantation into AlN ceramics as a method of preparation for its direct bonding with copper

    International Nuclear Information System (INIS)

    Barlak, M.; Borkowska, K.; Olesinska, W.; Kalinski, D.; Piekoszewski, J.; Werner, Z.; Jagielski, J.; Sartowska, B.

    2006-01-01

    Direct bonding (DB) process is recently getting an increasing interest as a method for producing high quality joints between aluminum nitride (AlN) ceramics and copper. The metallic ions were implanted using an MEVVA type TITAN implanter with unseparated beam. Oxygen ions were implanted using a semi-industrial ion implanter without mass separation equipped with a gaseous ion source. The substrate temperature did not exceed 200 o C. Ions were implanted at two acceleration voltages, i.e. 15 and 70 kV. The fluence range was between 1·E16 and 1·E18 cm -2 . After implantation, some of the samples were characterized by the Rutherford backscattering (RBS) method. In conclusion: (a) The investigations performed in the present work confirm an assumption that ion implantation is a very promising technique as a pretreatment of AlN ceramics for the formation of the joints with copper in direct bonding process. (b) It has been shown that titanium implantation gives the best results in comparison to other metals examined (Fe, Cr, Cu) but also in comparison to double Ti+O and O+Ti implantations

  4. N-Benzoyl-2-nitrobenzenesulfonamide

    Directory of Open Access Journals (Sweden)

    P. A. Suchetan

    2012-02-01

    Full Text Available In the title compound, C13H10N2O5S, the N—C bond in the C—SO2—NH—C segment has gauche torsion angles with respect to the S=O bonds. The conformation between the N—H bond and the ortho-nitro group in the sulfonyl benzene ring is syn. The molecule is twisted at the S—N bond with a torsion angle of −63.4 (2°. The sulfonyl benzene ring is tilted by 77.1 (1° relative to the —SO2—NH—C—O segment. The dihedral angle between the sulfonyl and the benzoyl benzene rings is 88.6 (1°. In the crystal, pairs of N—H...O(S hydrogen bonds link the molecules into inversion dimers, which are linked by weak C—H...O and C—H...π interactions along the b axis.

  5. (Nitrato-κ2O,O′bis[(E-N-(pyridin-4-ylmethylidene-κNhydroxyamine]silver(I

    Directory of Open Access Journals (Sweden)

    Shan Gao

    2012-12-01

    Full Text Available In the mononuclear title compound, [Ag(NO3(C6H6N2O2], the AgI atom is located on a twofold rotation axis and the nitrate-chelated AgI atom is further coordinated by two aromatic N atoms of hydroxylamine ligands in a distorted tetrahedral geometry. In the crystal, the nitrate ion has 2 symmetry with the N atom and one O atom located on the twofold rotation axis, and is linked to hydroxy groups of the hydroxylamine ligands by O—H...O hydrogen bonds, generating a chain running along the b axis.

  6. (μ-3-Acetyl-5-carboxyl­ato-4-methyl­pyrazolido-1:2κ4 N 2,O 3:N 1,O 5)-μ-chlorido-tetra­pyridine-1κ2 N,2κ2 N-chlorido-1κCl-dicopper(II) propan-2-ol solvate

    Science.gov (United States)

    Malinkin, Sergey; Penkova, Larisa; Pavlenko, Vadim A.; Haukka, Matti; Fritsky, Igor O.

    2009-01-01

    The title compound, [Cu2(C7H6N2O3)Cl2(C5H5N)4]·C3H8O, is a binuclear pyrazolate complex, in which the two CuII atoms have different coordination numbers and are connected by a bridging Cl atom. One CuII atom has a distorted square-pyramidal coordination environment formed by two pyridine N atoms, one bridging Cl atom and an N,O-chelating pyrazolate ligand. The other CuII atom adopts an octa­hedral geometry defined by two pyridine N atoms at the axial positions, two Cl atoms and the coordinated pyrazolate ligand in the equatorial plane. An O—H⋯O hydrogen bond connects the complex mol­ecules and propan-2-ol solvent mol­ecules into pairs. These pairs form columns along the a axis. PMID:21577764

  7. Report of the specialists' workshop on phase transition studies on hydrogen-bonded crystals by neutron and X-ray diffractometries

    International Nuclear Information System (INIS)

    Tokunaga, M.; Shibuya, I.

    1989-01-01

    The report carries a total of 15 studies on hydrogen-bonded crystals made by means of neutron/X-ray diffraction which were presented at a technical study meeting held on December 12 and 13, 1988, at the Research Reactor Institute of Kyoto University. The report covers 'introduction', 'linear relation between transition temperature and hydrogen-bond length in KDP type crystals', 'X-ray study of crystal structure under high pressure in DKDP', 'crystal structure of ADP in the paraelectric phase', 'crystal structure of Rochelle salt in the paraelectric phase', 'distortion of AsO 4 in KDA', 'study of phase transition in KDP family by dielectric dispersion', 'dielectric relaxation and phase transition in ice Ih', 'Raman scattering study of KDP', 'mechanism of phase transition in KDP by Raman scattering study under high pressure-reinvestigation of the Peercy's conclusion', 'localized modes of proton in KDP', 'hyper-Raman scattering study of hydrogen-bonded crystals', 'phase transition of CDP', 'the 180deg law in phase diagram', and 'comments'. (N.K.)

  8. The reaction between ZnO and Molten K2S2O7 forming K2Zn(SO4)2, studied by Raman and IR Spectroscopy and X-ray Diffraction

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Nielsen, Kurt; Boghosian, Soghomon

    1999-01-01

    .153(3) Å, b = 91.78(3)o, wR2 = 0.0758 for all 1930 ? independent reflections. The compound, K2Zn(SO4)2, contained trigonally bipyramidal zinc coordinated to five oxygen atoms, with Zn-O bonds of normal length (~ 2.04 ± 0.05 Å), equitorial bonds being slightly shorter on the average. The O-Zn-O angles were...

  9. cis-Bis[N′-(4-bromobenzoyl-N,N-dimethylthioureato-κ2O,S]copper(II

    Directory of Open Access Journals (Sweden)

    Gün Binzet

    2011-05-01

    Full Text Available The asymmetric unit of the title compound, [Cu(C10H10BrN2OS2], contains two independent complex molecules with almost identical conformations. Two S and two O atoms form the coordination environment of the Cu atom, resulting in a slightly distorted square-planar coordination. The S atoms are in a cis configuration. The crystal structure is stabilized by weak intermolecular C—H...Br hydrogen-bonding interactions.

  10. Microestructura de Al2O3/TZP codopado con Fe2O3 y TiO2 fabricado por reacción (RBAO

    Directory of Open Access Journals (Sweden)

    Jiménez, M.

    2003-02-01

    Full Text Available Reaction-bonded 80 vol% Al2O3/TZP (2 mol% Y2O3-stabilized tetragonal zirconia polycrystals composites co-doped with 1 vol% Fe2O3 and 1 vol% TiO2 have been produced, and then presureless sintered (1450 ºC, 60 min or sinter-forged (20 MPa, 1200 ºC, 60 min. The resulting microstructures have been characterized using scanning electron microscopy. Both types of materials are dense, with a fine and homogeneous dual microstructure consisting of Al2O3 and TZP grains without intermediate grain boundary phases. Sinter-forged composites exhibit a very narrow pore size distribution, essentially smaller than the grain size of the alumina and zirconia phases. Co-doping promotes the sintering of alumina at lower temperatures, while still retains a fine grain size due to the presence of the dispersed zirconia phase. First results on presureless sintered RBAO materials show a fracture strength higher than in conventionally sintered and sinter-forged composites.Se han fabricado compuestos de 80% vol. Al2O3/TZP (ZrO2 estabilizada con 2% mol Y2O3 codopados con 1% vol. Fe2O3 y 1% vol. TiO2 mediante la tecnología RBAO (“Reaction Bonding of Aluminum Oxide”, que se han sinterizado libremente (1450 ºC, 60 min y bajo carga uniaxial (20 MPa, 1200 ºC, 60 min. Se ha caracterizado la microestructura mediante microscopía electrónica de barrido. Ambos materiales son densos con una microestructura homogénea formada por granos de alúmina y de circona, sin fases en juntas de grano. En el caso de la sinterización bajo carga, la distribución del tamaño de los poros es muy estrecha, y esencialmente menor que las correspondientes a los granos de Al2O3 y TZP. El codopado promueve la sinterización de la alúmina, mientras que los granos dispersos de circona inhiben su crecimiento de grano. Los ensayos preliminares de flexión en cuatro puntos realizados sobre los materiales sinterizados sin carga indican una resistencia a la fractura superior a la que presentan los

  11. (Pyridine-2-aldoximato-κ2N,N′bis[2-(pyridin-2-ylphenyl-κ2C1,N]iridium(III

    Directory of Open Access Journals (Sweden)

    Bimal Chandra Singh

    2013-03-01

    Full Text Available In the title complex, [Ir(C11H8N2(C6H5N2O], the octahedrally coordinated IrIII atom is bonded to two 2-(pyridin-2-ylphenyl ligands, through two phenyl C and two pydidine N atoms, and to one pyridine-2-aldoxime ligand through a pyridine N and an oxime N atom. The oxime O atom of the aldoxime unit forms intermolecular C—H...O hydrogen bonds, which result in a two-dimensional hydrogen-bonded polymeric network parallel to (100. C—H...π interactions are also observed.

  12. Crystal structure of 2-bromo-3-dimethylamino-N,N,N′,N′,4-pentamethyl-4-(trimethylsilyloxypent-2-eneamidinium bromide

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2015-12-01

    Full Text Available The reaction of the orthoamide 1,1,1-tris(dimethylamino-4-methyl-4-(trimethylsilyloxypent-2-yne with bromine in benzene, yields the title salt, C15H33BrN3OSi+·Br−. The C—N bond lengths in the amidinium unit are 1.319 (6 and 1.333 (6 Å, indicating double-bond character, pointing towards charge delocalization within the NCN plane. The C—Br bond length of 1.926 (5 Å is characteristic for a C—Br single bond. Additionally, there is a bromine–bromine interaction [3.229 (3 Å] present involving the anion and cation. In the crystal, weak C—H...Br interactions between the methyl H atoms of the cation and the bromide ions are present.

  13. Room temperature direct bonding of LiNbO3 crystal layers and its application to high-voltage optical sensing

    International Nuclear Information System (INIS)

    Tulli, D; Janner, D; Pruneri, V

    2011-01-01

    LiNbO 3 is a crystal widely used in photonics and acoustics, for example in electro-optic modulation, nonlinear optical frequency conversion, electric field sensing and surface acoustic wave filtering. It often needs to be combined with other materials and used in thin layers to achieve the adequate device performance. In this paper, we investigate direct bonding of LiNbO 3 crystals with other dielectric materials, such as Si and fused silica (SiO 2 ), and we show that specific surface chemical cleaning, together with Ar or O 2 plasma activation, can be used to increase the surface free energy and achieve effective bonding at room temperature. The resulting hybrid material bonding is very strong, making the dicing and grinding of LiNbO 3 layers as thin as 15 µm possible. To demonstrate the application potentials of the proposed bonding technique, we have fabricated and characterized a high-voltage field sensor with high sensitivity in a domain inverted and bonded LiNbO 3 waveguide substrate

  14. Influência da adição de carga inorgânica aos sistemas adesivos dentinários na microinfiltração marginal = Influence of inorganic filler addition to dentin bonding systemson marginal microleakage

    Directory of Open Access Journals (Sweden)

    Yoshida, Kellyn Roberta Ayumi

    2005-01-01

    Full Text Available O objetivo deste estudo foi avaliar os efeitos da adição de carga inorgânica aos adesivos dentinários sobre a microinfiltração marginal. Para tal, oitenta incisivos bovinos receberam preparos classe V na junção amelo-cementária e foram divididos em oito grupos, cada qual recebendo versões com e sem carga de diferentes sistemas adesivos, segundo as recomendações dos fabricantes. Os seguintes Grupos foram avaliados: OS – One Step (Sem Carga – SC, OSP – One Step Plus (Com Carga – CC, PB – Prime & Bond 2. 1 (SC, PBNT – Prime & Bond NT (CC, ST – Stae (SC, STM – Stae + 10% de partículas SiO2 com tamanho de 0,01 µm (CC, SB – Single Bond (SC, SBC – Single Bond 10% de partículas SiO2 com tamanho de 0,01 µm (CC. As cavidades foram restauradas com dois incrementos de Z250. Os dentes foram imersos em água destilada a 37ºC por 24 horas e submetidos a 500 ciclos térmicos (5 e 55ºC. A microinfiltração foi avaliada quantitativamente pelo método do nitrato de prata seguido pela diafanização. Os dados foram submetidos à ANOVA paramétrica a um fator e ao teste de Tukey (a = 5%, obtendo-se um valor de p = 0,00. As médias (± desvio padrão observadas para cada Grupo foram: SB: 1,07 (± 0,20a; OS: 1,25 (± 0,49ab; OSP: 1,64 (± 0,59ab; SBC: 1,69 (± 1,07ab; PBNT: 2,21 (± 0,98ab; PB: 2,60 (± 1,45bc; ST: 3,70 (± 1,29c; STC: 3,86 (± 1,11c. Os Grupos acompanhados das mesmas letras não apresentam diferenças significantes. Podemos concluir que a adição de partículas de carga não influenciou de forma significativa a microinfiltração marginal. Foram constatadas diferenças significativas entre os sistemas adesivos de diferentes marcas

  15. Hydrogen bonds in concreto and in computro: the sequel

    Science.gov (United States)

    Stouten, Pieter F. W.; Van Eijck, Bouke P.; Kroon, Jan

    1991-02-01

    In the framework of our comparative research concerning hydrogen bonding in the crystalline and liquid phases we have carried out molecular dynamics (MD) simulations of liquid methanol. Six different rigid three site models are compared. Five of them had been reported in the literature and one (OM2) we developed by a fit to the experimental molar volume, heat of vaporization and neutron weighted radial distribution function. In general the agreement with experiment is satisfactory for the different models. None of the models has an explicit hydrogen bond potential, but five of the six models show a degree of hydrogen bonding comparable to experiments on liquid methanol. The analysis of the simulation hydrogen bonds indicates that there is a distinct preference of the O⋯O axis to lie in the acceptor lone pairs plane, but hardly any for the lone pair directions. Ab initio calculations and crystal structure statistics of OH⋯O hydrogen bonds agree with this observation. The O⋯O hydrogen bond length distributions are similar for most models. The crystal structures show a sharper O⋯O distribution. Explicit introduction of harmonic motion with a quite realistic root mean square amplitude of 0.08 Å to the thermally averaged crystal distribution results in a distribution comparable to OM2 although the maximum of the former is found at shorter distance. On the basis of the analysis of the static properties of all models we conclude that our OM2, Jorgenson's OPLS and Haughney, Ferrario and McDonald's HFM1 models are good candidates for simulations of liquid methanol under isothermal, isochoric conditions. Partly flexible and completely rigid OM2 are simulated at constant pressure and with fixed volume. The flexible simulations give essentially the same (correct) results under both conditions, which is not surprising because the flexible form was fitted under both conditions. Rigid OM2 has a similar potential energy but larger pressure in the

  16. Different molecular conformations co-exist in each of three 2-aryl-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamides: hydrogen bonding in zero, one and two dimensions.

    Science.gov (United States)

    Narayana, Badiadka; Yathirajan, Hemmige S; Rathore, Ravindranath S; Glidewell, Christopher

    2016-09-01

    4-Antipyrine [4-amino-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one] and its derivatives exhibit a range of biological activities, including analgesic, antibacterial and anti-inflammatory, and new examples are always of potential interest and value. 2-(4-Chlorophenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamide, C19H18ClN3O2, (I), crystallizes with Z' = 2 in the space group P\\overline{1}, whereas its positional isomer 2-(2-chlorophenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamide, (II), crystallizes with Z' = 1 in the space group C2/c; the molecules of (II) are disordered over two sets of atomic sites having occupancies of 0.6020 (18) and 0.3980 (18). The two independent molecules of (I) adopt different molecular conformations, as do the two disorder components in (II), where the 2-chlorophenyl substituents adopt different orientations. The molecules of (I) are linked by a combination of N-H...O and C-H...O hydrogen bonds to form centrosymmetric four-molecule aggregates, while those of (II) are linked by the same types of hydrogen bonds forming sheets. The related compound N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-(3-methoxyphenyl)acetamide, C20H21N3O3, (III), is isomorphous with (I) but not strictly isostructural; again the two independent molecules adopt different molecular conformations, and the molecules are linked by N-H...O and C-H...O hydrogen bonds to form ribbons. Comparisons are made with some related structures, indicating that a hydrogen-bonded R2(2)(10) ring is the common structural motif.

  17. (E-N-[Cyclopentyl(morpholin-4-ylmethylidene]-4-fluorobenzenesulfonamide

    Directory of Open Access Journals (Sweden)

    Ilya Efimov

    2016-01-01

    Full Text Available The title compound, C16H21FN2O3S, was obtained from the reaction between sulfonyl azide, cyclohexanone and morpholine. The bond lengths at the amidine N—C—N grouping are similar [1.326 (3 and 1.338 (3 Å], indicating significant conjugation. The cyclopentyl moiety displays disorder of one of the methylene groups into two orientations with occupancy coefficients 0.75/0.25. No shortened intermolecular contacts in the crystal are observed.

  18. Aquachlorido{6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilodimethylidyne]diphenolato-κ2O1,N,N′,O1′}cobalt(III monohydrate

    Directory of Open Access Journals (Sweden)

    Jianxin Xing

    2009-04-01

    Full Text Available The title compound, [Co(C18H18N2O4Cl(H2O]·H2O, contains a distorted octahedral cobalt(III complex with a 6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilodimethylidyne]diphenolate ligand, a chloride and an aqua ligand, and also a disordered water solvent molecule (half-occupancy. The CoIII ion is coordinated in an N2O3Cl manner. Weak O—H...O hydrogen bonds may help to stabilize the crystal packing.

  19. Una metodología para valorar un Callable Bond

    OpenAIRE

    Grajales, Carlos Alexander; Ocaris Pérez, Fredy

    2008-01-01

    En este artículo, la metodología empleada para valorar un bono que tiene una opción call incluida (callable bond o bono redimible) viene dada por la implementación numérica del modelo de tasa corta de Hull y White, la cual se logra con un árbol trinomial de tasas. Así mismo, se presenta una aplicación para el caso de la compañía Interconexión Eléctrica S. A. –ISA–, que ha emitido dos instrumentos callable bonds. Para el desarrollo de tal aplicación se construyen algunos algoritmos computacion...

  20. Una metodología para valorar un callable bond

    OpenAIRE

    Grajales-Correa, C. A. (Carlos Alexánder); Pérez-Ramírez, F. O. (Fredy Ocaris)

    2008-01-01

    En este artículo, la metodología empleada para valorar un bono que tiene una opción call incluida (callable bond o bono redimible) viene dada por la implementación numérica del modelo de tasa corta de Hull y White, la cual se logra con un árbol trinomial de tasas. Así mismo, se presenta una aplicación para el caso de la compañía Interconexión Eléctrica S. A. –ISA–, que ha emitido dos instrumentos callable bonds. Para el desarrollo de tal aplicación se construyen algunos algoritmos...

  1. Bonding structure and mechanical properties of B-C-N thin films synthesized by pulsed laser deposition at different laser fluences

    International Nuclear Information System (INIS)

    Wang, C.B.; Xiao, J.L.; Shen, Q.; Zhang, L.M.

    2016-01-01

    Boron carbon nitride (B-C-N) thin films have been grown by pulsed laser deposition under different laser fluences changing from 1.0 to 3.0 J/cm"2. The influence of laser fluence on microstructure, bonding structure, and mechanical properties of the films was studied, so as to explore the possibility of improving their mechanical properties by controlling bonding structure. The bonding structure identified by FT-IR and XPS indicated the coexistence of B-N, B-C, N-C and N=C bonds in the films, suggesting the formation of a ternary B-C-N hybridization. There is a clear evolution of bonding structure in the B-C-N films with the increasing of laser fluence. The variation of the mechanical properties as a function of laser fluence was also in accordance with the evolution of B-C and sp"3 N-C bonds whereas contrary to that of sp"2 B-N and N=C bonds. The hardness and modulus reached the maximum value of 33.7 GPa and 256 GPa, respectively, at a laser fluence of 3.0 J/cm"2, where the B-C-N thin films synthesized by pulsed laser deposition possessed the highest intensity of B-C and N-C bonds and the lowest fraction of B-N and N=C bonds. - Highlights: • Improvement of mechanical property by controlling bonding structure is explored. • A clear evolution of bonding structure with the increasing of laser fluence • Variation of property is in accordance with the evolution of B−C and N−C bonds.

  2. [(E-2-(3,5-Dibromo-2-oxidobenzylideneamino-3-(4-hydroxyphenylpropionato-κ3O,N,O′](dimethylformamide-κOcopper(II

    Directory of Open Access Journals (Sweden)

    Hong Liang

    2008-04-01

    Full Text Available In the title complex, [Cu(C16H11Br2NO4(C3H7NO]2, there are two unique molecules in the asymmetric unit. Each CuII atom is coordinated by two O atoms and one N atom from the tridentate ligand L2− [LH2 = (E-2-(3,5-dibromo-2-hydroxybenzylideneamino-2-(4-hydroxyphenylacetic acid] and the O atom of a dimethylformamide molecule to give a slightly distorted square-planar geometry. The two unique molecules form a dimer through weak C—H...O hydrogen bonds. In the dimer, the Cu...Cu distance is 3.712 (1 Å. In the crystal structure, molecules form a one-dimensional chain through C—H...O hydrogen bonds. These are further aggregated into a three-dimensional network by O—H...O and C—H...O hydrogen bonds.

  3. 1H-1H correlations across N-H···N hydrogen bonds in nucleic acids

    International Nuclear Information System (INIS)

    Majumdar, Ananya; Gosser, Yuying; Patel, Dinshaw J.

    2001-01-01

    In 2H J NN -COSY experiments, which correlate protons with donor/acceptor nitrogens across N d ···HN a bonds, the receptor nitrogen needs to be assigned in order to unambiguously identify the hydrogen bond. For many situations this is a non-trivial task which is further complicated by poor dispersion of (N a ,N d ) resonances. To address these problems, we present pulse sequences to obtain direct, internucleotide correlations between protons in uniformly 13 C/ 15 N labeled nucleic acids containing N d ···HN a hydrogen bonds. Specifically, the pulse sequence H2(N1N3)H3 correlates H2(A,ω 1 ):H3(U,ω 2 ) protons across Watson-Crick A-U and mismatched G·A base pairs, the sequences H5(N3N1)H1/H6(N3N1)H1 correlate H5(C,ω 1 )/H6(C,ω 1 ):H1(G,ω 2 ) protons across Watson-Crick G-C base pairs, and the H 2 (N2N7)H8 sequence correlates NH 2 (G,A,C;ω 1 ):H8(G,A;ω 2 ) protons across G·G, A·A, sheared G·A and other mismatch pairs. These 1 H- 1 H connectivities circumvent the need for independent assignment of the donor/acceptor nitrogen and related degeneracy issues associated with poorly dispersed nitrogen resonances. The methodology is demonstrated on uniformly 13 C/ 15 N labeled samples of (a) an RNA regulatory element involving the HIV-1 TAR RNA fragment, (b) a multi-stranded DNA architecture involving a G·(C-A) triad-containing G-quadruplex and (c) a peptide-RNA complex involving an evolved peptide bound to the HIV-1 Rev response element (RRE) RNA fragment

  4. 2D NiFe/CeO2 Basic-Site-Enhanced Catalyst via in-Situ Topotactic Reduction for Selectively Catalyzing the H2 Generation from N2H4·H2O.

    Science.gov (United States)

    Wu, Dandan; Wen, Ming; Gu, Chen; Wu, Qingsheng

    2017-05-17

    An economical catalyst with excellent selectivity and high activity is eagerly desirable for H 2 generation from the decomposition of N 2 H 4 ·H 2 O. Here, a bifunctional two-dimensional NiFe/CeO 2 nanocatalyst with NiFe nanoparticles (∼5 nm) uniformly anchored on CeO 2 nanosheets supports has been successfully synthesized through a dynamic controlling coprecipitation process followed by in-situ topotactic reduction. Even without NaOH as catalyst promoter, as-designed Ni 0.6 Fe 0.4 /CeO 2 nanocatalyst can show high activity for selectively catalyzing H 2 generation (reaction rate (mol N2H4 mol -1 NiFe h -1 ): 5.73 h -1 ). As ceria is easily reducible from CeO 2 to CeO 2-x , the surface of CeO 2 could supply an extremely large amount of Ce 3+ , and the high-density electrons of Ce 3+ can work as Lewis base to facilitate the absorption of N 2 H 4 , which can weaken the N-H bond and promote NiFe active centers to break the N-H bond preferentially, resulting in the high catalytic selectivity (over 99%) and activity for the H 2 generation from N 2 H 4 ·H 2 O.

  5. Origin of the X-Hal (Hal ) Cl, Br) Bond-Length Change in the Halogen-Bonded Complexes

    Czech Academy of Sciences Publication Activity Database

    Wang, Weizhou; Hobza, Pavel

    2008-01-01

    Roč. 112, č. 17 (2008), s. 4114-4119 ISSN 1089-5639 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550510 Institutional research plan: CEZ:AV0Z40550506 Keywords : hal ogen bonded complexes * MP2(full)/6-311++G(d,p) method * natural bond orbital analysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.871, year: 2008

  6. A Family of Bipartite |Cardinality Matching Problems Solvable in O(n\\^2) Time

    DEFF Research Database (Denmark)

    Clausen, Jens; Krarup, J.

    1995-01-01

    For a given, unweighted bipartite graph G with 2n non isolated vertices, we consider the so called bipartite cardinality matching problem (BCMP) for which the time complexity of the fastest exact algorithm available is O(n/sup 5/2/ ). We devise a greedy algorithm which either finds a perfect...... matching in O(n/sup 2/ ) time or identifies cycle of length 4 in the complement G of G...

  7. Determinação da tensão de aderência do bambu-concreto Determination of the bamboo-concrete bond stress

    Directory of Open Access Journals (Sweden)

    Ligia P. Mesquita

    2006-06-01

    Full Text Available Apresenta-se e se discute, neste trabalho, o estudo da aderência entre o bambu e o concreto; através de dois estudos baseados em uma programação estatística de experimento, em que no primeiro se investigaram as influências da dimensão da seção transversal das varetas de bambu e da resistência do concreto na aderência bambu-concreto e, no segundo, avaliou-se o efeito da colocação de pinos artificiais nas varetas de bambu. Em cada estudo realizaram-se 10 réplicas para cada combinação de fatores, resultando no total de 159 ensaios de arrancamento. Curvas tensão de aderência versus deslocamento relativo bambu-concreto, são apresentadas e discutidas, e a tensão de aderência de cálculo é calculada e comparada com os valores sugeridos por normas internacionais para barras lisas de aço. Constatou-se, na primeira fase da investigação, que apenas a resistência do concreto influencia na aderência bambu-concreto e que esta tensão é apenas 20% inferior que a do aço liso-concreto; já na segunda fase verificou-se que os pinos de bambu e de aço elevam a capacidade de transferência de tensões bambu-concreto, de forma significativa.This paper presents and discusses a study about the bamboo-concrete bond stress. Based on a statistical design of experiment, the investigation was divided in two steps: the first one, where the effects of the concrete compressive strength and the dimensions of the bamboo-splint cross-section were investigated; and the second, where the effect of artificial pins studding in the bamboo splints were evaluated. In both steps, ten replicates for each factor combination were done, resulting in 159 push-out tests. Bond stress versus relative displacement curves were presented and discussed. In addition, the design bond stresses of bamboo-concrete were calculated and their values were compared with those specified by International Building Codes for smooth steel and concrete. In the first step, it was

  8. Crystal and Molecular Structure of Bis(2,2-diphenyl-N-(di-n-propylcarbamothioyl acetamidocopper(II Complex

    Directory of Open Access Journals (Sweden)

    Hakan Arslan

    2011-01-01

    Full Text Available Bis(2,2-diphenyl-N-(di-n-propylcarbamothioyl acetamidocopper(II complex has been synthesized and characterized by elemental analysis and FT-IR spectroscopy. The crystal and molecular structure of the title compound has been determined from single crystal X-ray diffraction data. It crystallizes in the triclinic space group P-1, with a = 13.046(2 Å, b = 13.135(2 Å, c = 13.179(2 Å, α= 67.083(4°, β= 67.968(4°, γ = 84.756(4° and Dcalc =1.330 g/cm3 for Z = 2. The crystal structure confirms that the complex is a mononuclear copper(II complex and the 2,2-diphenyl-N-(di-n-propyl-carbamothioylacetamide ligand is a bidentate chelating ligand, coordinating to the copper atom through the thiocarbonyl and carbonyl groups. This coordination has a slightly distorted square-planar geometry (O1-Cu1-O2: 86.48(11°, O1-Cu1-S1: 93.85(9°, O2-Cu1-S2: 94.20(9° and S1-Cu1-S2: 91.21(4°. The title molecule shows a cis-arrangement and C–O, C–S and C–N bond lengths of the complex suggest considerable electronic delocalization in the chelate rings.

  9. Length dependent properties of SNS microbridges

    International Nuclear Information System (INIS)

    Sauvageau, J.E.; Jain, R.K.; Li, K.; Lukens, J.E.; Ono, R.H.

    1985-01-01

    Using an in-situ, self-aligned deposition scheme, arrays of variable length SNS junctions in the range of 0.05 μm to 1 μm have been fabricated. Arrays of SNS microbridges of lead-copper and niobium-copper fabricated using this technique have been used to study the length dependence, at constant temperature, of the critical current I and bridge resistance R /SUB d/ . For bridges with lengths pounds greater than the normal metal coherence length xi /SUB n/ (T), the dependence of I /SUB c/ on L is consistent with an exponential dependence on the reduced length l=L/xi /SUB n/ (T). For shorter bridges, deviations from this behavior is seen. It was also found that the bridge resistance R /SUB d/ does not vary linearly with the geometric bridge length but appears to approach a finite value as L→O

  10. Intramolecular hydrogen bonding in malonaldehyde and its radical analogues.

    Science.gov (United States)

    Lin, Chen; Kumar, Manoj; Finney, Brian A; Francisco, Joseph S

    2017-09-28

    High level Brueckner doubles with triples correction method-based ab initio calculations have been used to investigate the nature of intramolecular hydrogen bonding and intramolecular hydrogen atom transfer in cis-malonaldehyde (MA) and its radical analogues. The radicals considered here are the ones that correspond to the homolytic cleavage of C-H bonds in cis-MA. The results suggest that cis-MA and its radical analogues, cis-MA RS , and cis-MA RA , both exist in planar geometry. The calculated intramolecular O-H⋯O=C bond in cis-MA is shorter than that in the radical analogues. The intramolecular hydrogen bond in cis-MA is stronger than in its radicals by at least 3.0 kcal/mol. The stability of a cis-malonaldehyde radical correlates with the extent of electron spin delocalization; cis-MA RA , in which the radical spin is more delocalized, is the most stable MA radical, whereas cis-MA RS , in which the radical spin is strongly localized, is the least stable radical. The natural bond orbital analysis indicates that the intramolecular hydrogen bonding (O⋯H⋯O) in cis-malonaldehyde radicals is stabilized by the interaction between the lone pair orbitals of donor oxygen and the σ * orbital of acceptor O-H bond (n → σ * OH ). The calculated barriers indicate that the intramolecular proton transfer in cis-MA involves 2.2 kcal/mol lower barrier than that in cis-MA RS .

  11. Formation of a Six-Coordinate fac-[Re(Co)3]+ Complex by the N-C bond cleavage of a potentially tetradentate ligand

    International Nuclear Information System (INIS)

    Booysen, I.; Gerber, T. I. A.; Hosten, E.; Mayer, P.

    2008-01-01

    The rhenium(I) compound fac-[Re(CO) 3 (daa)]. Hpab.H 2 O (Hpab N,N'-(l,2-phenylene)bis(2'-aminobenzamide); Hdaa 2-amino-N-(2-aminophenyl)benzamide) was synthesized from the reaction of [Re(CO) 5 ,Br] with two equivalent of Hpab in toluene. The monoanionic tridentate ligand daa was formed by the rhenium-mediated cleavage of an amido N-C bond of the potentially tetradentate ligand Hpab. The compound was characterized by IR spectroscopy and X-ray crystallography, and daa is coordinated as a diamino amide via three nitrogen-donor atoms

  12. Investigation of Chemical Bond Properties and Mssbauer Spectroscopy in YBa2Cu3O7

    Institute of Scientific and Technical Information of China (English)

    高发明; 李东春; 张思远

    2003-01-01

    Chemical bond properties of YBa2Cu3O7 were studied by using the average band-gap model. The calculated results show that the covalency of Cu(1)-O bond is 0.406, and one of Cu(2)-O is 0.276. Mssbauer isomer shifts of 57Fe in Y-123 were calculated by the chemical surrounding factor hv defined by covalency and electronic polarizability. The charge-state and site of Fe were determined. The relation between the coupling constant of electron-phonon interaction and covalency is employed to explain that the Cu(2)-O plane is more important than the Cu(1)-O chain on the superconductivity in the Y-123 compounds.

  13. Bis(1,10-phenanthroline-κ2N,N′(sulfato-κ2O,O′cobalt(II butane-2,3-diol monosolvate

    Directory of Open Access Journals (Sweden)

    Shi-Juan Wang

    2011-04-01

    Full Text Available In the title compound, [Co(SO4(C12H8N22]·C4H10O2, the Co2+ ion has a distorted octahedral coordination environment composed of four N atoms from two chelating 1,10-phenanthroline ligands and two O atoms from an O,O′-bidentate sulfate anion. The dihedral angle between the two chelating N2C2 groups is 83.48 (1°. The Co2+ ion, the S atom and the mid-point of the central C—C bond of the butane-2,3-diol solvent molecule are situated on twofold rotation axes. The molecules of the complex and the solvent molecules are held together by pairs of symmetry-related O—H...O hydrogen bonds with the uncoordinated O atoms of the sulfate ions as acceptors. The solvent molecule is disordered over two sets of sites with site occupancies of 0.40 and 0.60.

  14. Poly[[diaquabis(2,2′-bipyridine-κ2N,N′(μ3-5-hydroxyisophthalato-κ5O1,O1′:O3,O3′:O3′(μ3-5-hydroxyisophthalato-κ4O1,O1′:O3:O3′(μ2-5-hydroxyisophthalato-κ3O1,O1′:O3didysprosium(III] dihydrate

    Directory of Open Access Journals (Sweden)

    Yan-Lin Zhang

    2011-10-01

    Full Text Available The polymeric title compound, {[Dy2(C8H4O53(C10H8N22(H2O2]·2H2O}n, contains two independent DyIII ions, both of which are nine-coordinated in a distorted tricapped trigonal–prismatic geometry. One DyIII ion is coordinated by five 5-hydroxyisophthalate (hip ligands and one 2,2′-bipyridine (bpy ligand and the other by three hip ligands, one bpy ligand and two water molecules. The DyIII ions are bridged by the carboxylate groups of the hip ligands, forming a three-dimensional framework. O—H...O hydrogen bonds are present in the crystal structure.

  15. (N,N,N′,N′-Tetramethylethylenediamine-κNbis(2,4,6-trimethylphenolato-κOgermanium(II

    Directory of Open Access Journals (Sweden)

    Eduard Rusanov

    2012-03-01

    Full Text Available In the title compound, [Ge(C9H11O2(C6H16N2], the GeII atom is coordinated in a distorted trigonal–pyramidal geometry by two O atoms belonging to two 2,4,6-trimethylphenolate ligands and one N atom of a tetramethylethylenediamine ligand. Comparing the structure with published data of similar compounds shows that the Ge—O bonds are covalent and the Ge—N bond is coordinated.

  16. Resistência ao cisalhamento da colagem com compósitos utilizando potencializador de adesão Shear bond strength of composites using an adhesion booster

    Directory of Open Access Journals (Sweden)

    Edivaldo de Morais

    2011-10-01

    Full Text Available OBJETIVO: avaliar a resistência ao cisalhamento dos compósitos Transbond XT e Concise Ortodôntico utilizando o potencializador de adesão Ortho Primer. MÉTODOS: a amostra consistiu de 90 incisivos bovinos divididos em seis grupos (n=15. Todos os dentes receberam profilaxia com pedra-pomes e condicionamento do esmalte com ácido fosfórico. No Grupo I, utilizou-se Transbond XT de maneira convencional. O Grupo II foi semelhante ao I, porém, aplicou-se o Ortho Primer ao invés do XT Primer. No Grupo III, após condicionamento, o esmalte foi contaminado com saliva, aplicou-se o Ortho Primer e colagem com Transbond XT. No Grupo IV, utilizou-se o Concise Ortodôntico de maneira convencional. O Grupo V foi semelhante ao IV, porém, utilizou-se o Ortho Primer ao invés da resina fluida. No Grupo VI, após condicionamento, o esmalte foi contaminado com saliva, aplicou-se o Ortho Primer e colagem com Concise. Os corpos de prova foram armazenados em água destilada em estufa a 37ºC por 24h e submetidos ao ensaio de resistência ao cisalhamento. Os dados foram submetidos à ANOVA e ao teste de Tukey (5%. RESULTADOS: a resistência da colagem no Grupo IV foi estatisticamente superior à dos Grupos II, III e VI (p0,05. O Transbond XT e o Concise utilizados convencionalmente obtiveram os maiores valores adesivos. O Ortho Primer em esmalte seco atuou efetivamente como agente de união dos compósitos avaliados. Em esmalte contaminado, a colagem com Concise obteve baixa resistência adesiva.OBJECTIVE: The aim of this study was to evaluate the shear bond strength of the Transbond XT and Concise Orthodontics composites using the Ortho Primer adhesion booster. METHODS: The sample consisted of 90 bovine incisors divided in 6 groups (n=15. All teeth were submitted to prophylaxes with pumice stone and etching with phosphoric acid. In Group I the Transbond XT was used conventionally. Group II was similar to Group I, however, Ortho Primer was used instead of XT

  17. A two-dimensional hydrogen-bonded water layer in the structure of a cobalt(III) cubane complex.

    Science.gov (United States)

    Qi, Ji; Zhai, Xiang-Sheng; Zhu, Hong-Lin; Lin, Jian-Li

    2014-02-01

    A tetranuclear Co(III) oxide complex with cubane topology, tetrakis(2,2'-bipyridine-κ(2)N,N')di-μ2-carbonato-κ(4)O:O'-tetra-μ3-oxido-tetracobalt(III) pentadecahydrate, [Co4(CO3)2O4(C10H8N2)4]·15H2O, with an unbounded hydrogen-bonded water layer, has been synthesized by reaction of CoCO3 and 2,2'-bipyridine. The solvent water molecules form a hydrogen-bonded net with tetrameric and pentameric water clusters as subunits. The Co4O4 cubane-like cores are sandwiched between the water layers, which are further stacked into a three-dimensional metallo-supramolecular network.

  18. Dibromidobis[1-(2-bromobenzyl-3-(pyrimidin-2-yl-1H-imidazol-2(3H-one]copper(II

    Directory of Open Access Journals (Sweden)

    Chun-Xin Lu

    2012-06-01

    Full Text Available In the title complex, [CuBr2(C14H11BrN4O2], the CuII ion is located on an inversion centre and is coordinated by two ketonic O atoms, two N atoms and two Br atoms, forming a distorted octahedral coordination environment. The two carbonyl groups are trans positioned with C=O bond lengths of 1.256 (5 Å, in agreement with a classical carbonyl bond. The Cu—O bond length is 2.011 (3 Å. The two bromobenzyl rings are approximately parallel to one another, forming a dihedral angle of 70.1 (4° with the coordination plane.

  19. A novel metal-to-metal bonding process through in-situ formation of Ag nanoparticles using Ag2O microparticles

    International Nuclear Information System (INIS)

    Hirose, Akio; Tatsumi, Hiroaki; Takeda, Naoya; Akada, Yusuke; Ogura, Tomo; Ide, Eiichi; Morita, Toshiaki

    2009-01-01

    The metal-to-metal bonding has been successfully achieved via the bonding process using Ag metallo-organic nanoparticles at a bonding temperature of around 300-, which can be alternative to the current microsoldering in electronics assembly using high-temperature solders. However, further reduction of bonding temperature and/or bonding pressure is needed. In the present research, a novel bonding process through in-situ formation of Ag nanoparticles instead of the filler material of the Ag metallo-organic nanoparticles has been developed. The Ag nanoparticles can form by the reduction of Ag 2 O particles. In this study, the Ag 2 O particles were mixed with triethylene glycol as a reducing agent to form a paste for bonding. The Au coated cylindrical specimens were bonded using the paste. The Ag nanoparticles formed at around 130 to 160 through the reduction process of Ag2O particles with triethylene glycol. The Ag nanoparticles were immediately sintered each other due to a great surface energy per volume. A transmission electron microscope observation revealed that the sintered Ag metallurgically bonded to the Au substrate at around 160 and a dense Ag layer formed after further heating. The tensile strength of the joint bonded at 250 under a bonding pressure of 5MPa was around 60MPa

  20. Nickel-Catalyzed C sp2 –C sp3 Cross-Coupling via C–O Bond Activation

    KAUST Repository

    Guo, Lin

    2016-06-13

    A new and efficient nickel-catalyzed alkylation of CAr-O electrophiles with B-alkyl-9-BBNs is described. The transformation is characterized by its functional group tolerance and provides a practical and versatile access to various Csp2-Csp3 bonds through Csp2-O substitution, without the restriction of β-hydride elimination. Moreover, the advantage of the newly developed method was demonstrated in a selective and sequential C-O bond activation process. © 2016 American Chemical Society.

  1. [Effect of niobium nitride on the bonding strength of titanium porcelain by magnetron sputtering].

    Science.gov (United States)

    Wang, Shu-shu; Zhang, La-bao; Guang, Han-bing; Zhou, Shu; Zhang, Fei-min

    2010-05-01

    To investigate the effect of magnetron sputtered niobium nitride (NbN) on the bonding strength of commercially pure cast titanium (Ti) and low-fusing porcelain (Ti/Vita titankeramik system). Sixty Ti specimens were randomly divided into four groups, group T1, T2, T3 and T4. All specimens of group T1 and T2 were first treated with 120 microm blasted Al2O3 particles, and then only specimens of group T2 were treated with magnetron sputtered NbN film. All specimens of group T3 and T4 were first treated with magnetron sputtered NbN film and then only specimens of group T4 were treated with 120 microm blasted Al2O3 particles. The composition of the deposits were analyzed by X-ray diffraction (XRD). A universal testing machine was used to perform the three-point bending test to evaluate the bonding strength of Ti and porcelain. The microstructure of NbN, the interface of Ti-porcelain and the fractured Ti surface were observed with scanning electron microscopy (SEM) and energy depressive spectrum (EDS), and the results were compared. The XRD results showed that the NbN deposits were cubic crystalline phases. The bonding strength of Ti and porcelain in T1 to T4 group were (27.2+/-0.8), (43.1+/-0.6), (31.4+/-1.0) and (44.9+/-0.6) MPa. These results were analyzed by one-way analysis of variance and differences between groups were compared using least significant difference test. Significant inter-group differences were found among all groups (Pporcelain, while samples treated with both Al2O3 and NbN had better bond. EDS of Ti-porcelain interface showed oxidation occurred in T1, T2 and T3, but was well controlled in T4. Magnetron sputtered NbN can prevent Ti from being oxidized, and can improve the bonding strength of Ti/Vita titankeramik system. Al2O3 blast can also improve the bonding strength of Ti/Vita titankeramik system.

  2. Crystal structure of trans-bis(diethanolamine-κ3O,N,O′manganese(II bis(3-aminobenzoate

    Directory of Open Access Journals (Sweden)

    Aziz B. Ibragimov

    2016-04-01

    Full Text Available Reaction of m-aminobenzoic acid (MABA, diethanolamine (DEA and MnCl2·4H2O led to the formation of the title salt, [Mn(C4H11NO22](C7H6NO22. In the complex cation, the Mn2+ ion is located on an inversion centre and is coordinated by two symmetry-related tridentate DEA molecules, leading to the formation of a slightly distorted MnN2O4 octahedron. The MABA− counter-anions are connected to the complex ion by a pair of rather strong O—H...O hydrogen bonds, yielding a 1:2 supramolecular aggregate. Much weaker N—H...O hydrogen bonds connect neighbouring aggregates into a three-dimensional network structure.

  3. Synthesis of mononuclear copper(II) complexes of N3O2 and N4O2 donors containing Schiff base ligands: Theoretical and biological observations

    Science.gov (United States)

    Mancha Madha, K.; Gurumoorthy, P.; Arul Antony, S.; Ramalakshmi, N.

    2017-09-01

    A new series of six mononuclear copper(II) complexes were synthesized from N3O2 and N4O2 donors containing Schiff base ligands, and characterized by various spectral methods. The geometry of the complexes was determined using UV-Vis, EPR and DFT calculations. The complexes of N3O2 donors (1-3) adopted square pyramidal geometry and the remaining complexes of N4O2 donors (4-6) show distorted octahedral geometry around copper(II) nuclei. Redox properties of the complexes show a one-electron irreversible reduction process in the cathodic potential (Epc) region from -0.74 to -0.98 V. The complexes show potent antioxidant activity against DPPH radicals. Molecular docking studies of complexes showed σ-π interaction, hydrogen bonding, electrostatic and van der Waals interactions with VEGFR2 kinase receptor. In vitro cytotoxicity of the complexes was tested against human breast cancer (MDA-MB-231) cell lines and one normal human dermal fibroblasts (NHDF) cell line through MTT assay. The morphological assessment data obtained by Hoechst 33258 and AO/EB staining revealed that the complexes induce apoptosis pathway of cell death.

  4. A Novel Cyanide-Bridged Thulium-Nickel Heterobimetallic Polymeric Complex (H2O)2(DMF)10Tm2[Ni(CN)4]2[Ni(CN)4] including O-H···N Hydrogen Bond

    International Nuclear Information System (INIS)

    Chung, Janghoon; Park, Daeyoung; Song, Mina; Ha, Sungin; Kang, Ansoo; Moon, Sangbong; Ryu, Cheolhwi

    2012-01-01

    The experimental section lists the observed infrared absorption frequencies for the complex. Typically bridging CN ligands have higher stretching frequencies than the terminal CN ligands. Accordingly, cyanide stretching bands (2170, 2156, 2139 cm -1 . at higher frequencies than the stretching band (2127 cm -1 ) of K 2 [Ni(CN) 4 ] are assigned to bridging cyanide ligands. The band at 2128 cm -1 is assigned to terminal cyanide ligands because their location in the cyanide stretching region compares with the absorption observed for the nonbridging cyanide ligands in K 2 [Ni(CN) 4 ]. Array (H 2 O) 2 (DMF) 10 Tm 2 [Ni(CN) 4 ] 2 [Ni(CN) 4 ] and other lanthanide metal-Ni systems display similar CN stretching patterns in their spectra. A broad absorption band at 2950-3550 cm -1 was observed in the spectrum. This supports the presence of O-H···N intermolecular hydrogen bond interactions between the polymers

  5. (4-Chloroacetanilido-κ2N,Obis[2-(pyridin-2-ylphenyl-κ2C1,N]iridium(III

    Directory of Open Access Journals (Sweden)

    Lijun Sun

    2013-02-01

    Full Text Available In the neutral mononuclear iridium(III title compound, [Ir(C8H7ClNO(C11H8N2], the IrIII atom adopts an octahedral geometry, and is coordinated by two 2-phenylpyridyl ligands and one anionic 4-chloroacetanilide ligand. The 2-phenylpyridyl ligands are arranged in a cis-C,C′ and cis-N,N′ fashion. Each 2-phenylpyridyl ligand forms a five-membered ring with the IrIII atom. The 2-phenylpyridyl planes are perpendicular to each other [dihedral angle = 89.9 (1°]. The Ir—C and Ir—N bond lengths are comparable to those reported for related iridium(III 2-phenylpyridyl complexes. The remaining two coordination sites are occupied by the amidate N and O atoms, which form a four-membered ring with the iridium atom (Ir—N—C—O. The amidate plane is nearly perpendicular to both 2-phenylpyridyl ligands [dihedral angles = 87.8 (2 and 88.3 (2°].

  6. Copper(II)-catalyzed electrophilic amination of quinoline N-oxides with O-benzoyl hydroxylamines.

    Science.gov (United States)

    Li, Gang; Jia, Chunqi; Sun, Kai; Lv, Yunhe; Zhao, Feng; Zhou, Kexiao; Wu, Hankui

    2015-03-21

    Copper acetate-catalyzed C-H bond functionalization amination of quinoline N-oxides was achieved using O-benzoyl hydroxylamine as an electrophilic amination reagent, thereby affording the desired products in moderate to excellent yields. Electrophilic amination can also be performed in good yield on a gram scale.

  7. Crystal Structure of Full-length Mycobacterium tuberculosis H37Rv Glycogen Branching Enzyme; Insights of N-Terminal [beta]-Sandwich in Sustrate Specifity and Enzymatic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Kuntal; Kumar, Shiva; Sharma, Shikha; Garg, Saurabh Kumar; Alam, Mohammad Suhail; Xu, H. Eric; Agrawal, Pushpa; Swaminathan, Kunchithapadam (NU Sinapore); (Van Andel); (IMT-India)

    2010-07-13

    The open reading frame Rv1326c of Mycobacterium tuberculosis (Mtb) H37Rv encodes for an {alpha}-1,4-glucan branching enzyme (MtbGlgB, EC 2.4.1.18, Uniprot entry Q10625). This enzyme belongs to glycoside hydrolase (GH) family 13 and catalyzes the branching of a linear glucose chain during glycogenesis by cleaving a 1 {yields} 4 bond and making a new 1 {yields} 6 bond. Here, we show the crystal structure of full-length MtbGlgB (MtbGlgBWT) at 2.33-{angstrom} resolution. MtbGlgBWT contains four domains: N1 {beta}-sandwich, N2 {beta}-sandwich, a central ({beta}/{alpha}){sub 8} domain that houses the catalytic site, and a C-terminal {beta}-sandwich. We have assayed the amylase activity with amylose and starch as substrates and the glycogen branching activity using amylose as a substrate for MtbGlgBWT and the N1 domain-deleted (the first 108 residues deleted) Mtb{Delta}108GlgB protein. The N1 {beta}-sandwich, which is formed by the first 105 amino acids and superimposes well with the N2 {beta}-sandwich, is shown to have an influence in substrate binding in the amylase assay. Also, we have checked and shown that several GH13 family inhibitors are ineffective against MtbGlgBWT and Mtb{Delta}108GlgB. We propose a two-step reaction mechanism, for the amylase activity (1 {yields} 4 bond breakage) and isomerization (1 {yields} 6 bond formation), which occurs in the same catalytic pocket. The structural and functional properties of MtbGlgB and Mtb{Delta}108GlgB are compared with those of the N-terminal 112-amino acid-deleted Escherichia coli GlgB (EC{Delta}112GlgB).

  8. Poly[[μ2-2,2′-diethyl-1,1′-(butane-1,4-diyldiimidazole-κ2N3:N3′](μ2-5-hydroxyisophthalato-κ2O1:O3zinc

    Directory of Open Access Journals (Sweden)

    Ying-Ying Liu

    2011-11-01

    Full Text Available In the title coordination polymer, [Zn(C8H4O5(C14H22N4]n, the ZnII cation is coordinated by an O2N2 donor set in a distorted tetrahedral geometry. The ZnII ions are linked by μ2-OH-bdc (OH-H2bdc = 5-hydroxyisophthalic acid and bbie ligands [bbie = 2,2′-diethyl-1,1′-(butane-1,4-diyldiimidazole], forming a two-dimensional layer parallel to the ab plane. The layers are further connected through intermolecular C—H...O and O—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. In the bbie ligand, the two C atoms in the ethyl group are each disordered over two positions with a site-occupancy ratio of 0.69:0.31.

  9. Redetermination of aqua(dihydrogen ethylenediaminetetraacetato-κ5O,O′,N,N′,O′′nickel(II

    Directory of Open Access Journals (Sweden)

    Ivana Kočanová

    2010-02-01

    Full Text Available The crystal structure of the title compound, [Ni(C10H14N2O8(H2O] or [Ni(H2edta(H2O] (H4edta is ethylenediaminetetraacetic acid, originally determined by Smith & Hoard [J. Am. Chem. Soc. (1959, 81, 556–561] has been redetermined to a significantly higher precision. The NiII atom is coordinated in a distorted octahedral geometry by two N atoms and three O atoms from three carboxylate groups of the H2edta2− ligand and by an O atom of a water molecule. The complex molecules are linked by intermolecular O—H...O hydrogen bonds into layers perpendicular to [100].

  10. A two-dimensional silver(I) coordination polymer constructed from 4-aminophenylarsonate and triphenylphosphane: poly[[(μ₃-4-aminophenylarsonato-κ³N:O:O)(triphenylphosphane-κP)silver(I)] monohydrate].

    Science.gov (United States)

    Xiao, Zu-Ping; Wen, Meng; Wang, Chun-Ya; Huang, Xi-He

    2015-04-01

    The title compound, {[Ag(C6H7AsNO3)(C18H15P)]·H2O}n, has been synthesized from the reaction of 4-aminophenylarsonic acid with silver nitrate, in aqueous ammonia, with the addition of triphenylphosphane (PPh3). The Ag(I) centre is four-coordinated by one amino N atom, one PPh3 P atom and two arsonate O atoms, forming a severely distorted [AgNPO2] tetrahedron. Two Ag(I)-centred tetrahedra are held together to produce a dinuclear [Ag2O2N2P2] unit by sharing an O-O edge. 4-Aminophenylarsonate (Hapa(-)) adopts a μ3-κ(3)N:O:O-tridentate coordination mode connecting two dinuclear units, resulting in a neutral [Ag(Hapa)(PPh3)]n layer lying parallel to the (101̄) plane. The PPh3 ligands are suspended on both sides of the [Ag(Hapa)(PPh3)]n layer, displaying up and down orientations. There is an R2(2)(8) hydrogen-bonded dimer involving two arsonate groups from two Hapa(-) ligands related by a centre of inversion. Additionally, there are hydrogen-bonding interactions involving the solvent water molecules and the arsonate and amine groups of the Hapa(-) ligands, and weak π-π stacking interactions within the [Ag(Hapa)(PPh3)]n layer. These two-dimensional layers are further assembled by weak van der Waals interactions to form the final architecture.

  11. N-(2-Chlorophenyl-2-methylbenzamide

    Directory of Open Access Journals (Sweden)

    B. Thimme Gowda

    2008-08-01

    Full Text Available In the structure of the title compound (N2CP2MBA, C14H12ClNO, the conformations of the N—H and C=O bonds are trans to each other. Furthermore, the conformation of the N—H bond is syn to the ortho-chloro group in the aniline ring and the C=O bond is syn to the ortho-methyl substituent in the benzoyl ring, similar to what is observed in 2-chloro-N-(2-chlorophenylbenzamide and 2-methyl-N-phenylbenzamide. The amide group makes almost the same dihedral angles of 41.2 (14 and 42.2 (13° with the aniline and benzoyl rings, respectively, while the dihedral angle between the benzoyl and aniline rings is only 7.4 (3°. The molecules in N2CP2MBA are packed into chains through N—H...O hydrogen bonds.

  12. The Nature of the Hydrogen Bond Outline of a Comprehensive Hydrogen Bond Theory

    CERN Document Server

    Gilli, Gastone

    2009-01-01

    Hydrogen bond (H-bond) effects are known: it makes sea water liquid, joins cellulose microfibrils in trees, shapes DNA into genes and polypeptide chains into wool, hair, muscles or enzymes. Its true nature is less known and we may still wonder why O-H...O bond energies range from less than 1 to more than 30 kcal/mol without apparent reason. This H-bond puzzle is re-examined here from its very beginning and presented as an inclusive compilation of experimental H-bond energies andgeometries.New concepts emerge from this analysis: new classes of systematically strong H-bonds (CAHBs and RAHBs: cha

  13. O esôfago curto e o refluxo distal são fatores de risco para o refluxo proximal? Short length of the esophagus and distal reflux are risk factors for proximal esophageal reflux?

    Directory of Open Access Journals (Sweden)

    Humberto Oliveira Serra

    2010-12-01

    Full Text Available RACIONAL: Não está claro se pacientes que apresentam refluxo gastroesofágico distal têm maior risco de apresentar também refluxo proximal. O senso comum sugere que um episódio de refluxo poderia chegar mais facilmente à faringe em pacientes que tivessem menor distância a percorrer entre o esfíncter inferior do esôfago e o superior. OBJETIVO: Investigar se o esôfago curto e a presença de refluxo esofágico distal são fatores de risco para refluxo proximal nos pacientes com sintomas respiratórios. MÉTODO: Cento e sete pacientes foram avaliados prospectivamente por meio de entrevista, esofagoscopia, manometria e pHmetria. Utilizaram-se o teste t de Student, o de correlação de Spearman, o do Qui-quadrado e odds-ratio. O nível de significância foi 0,05. RESULTADOS: Os sintomas que motivaram a investigação da doença do refluxo gastroesofágico foram: tosse 43 (40,2%; pigarro 25 (23,4%, globo faríngeo 23 (21,5% e rouquidão 16 (14,9%. No estudo endoscópico 22 apresentaram esofagite e 14 hérnia de hiato. Na avaliação manométrica 11 (10,8% apresentaram hipotonia do esfíncter inferior. A média do comprimento do esôfago foi 24,3 (± 1,9 cm, variando de 20 a 30 cm. Na avaliação pHmétrica 23 (21,5% apresentaram refluxo distal patológico e 12 (11,2% refluxo proximal. CONCLUSÕES: O comprimento do esôfago não esteve associado com a presença de refluxo proximal. Pacientes que apresentaram refluxo gatroesofágico distal, independente do comprimento do esôfago, tiveram risco aumentado de 4,6 vezes para apresentarem refluxo proximal.BACKGROUND: It is not clear whether patients suffering from distal esophageal reflux also present high risk to proximal esophageal reflux. Common sense suggests that reflux would more easily reach the pharynx in patients who have a smaller distance between the lower esophageal sphincter and the upper one and, thus, short esophagus. AIM: To Investigate if short esophageal length and presence of

  14. Supramolecular network through Nsbnd H…O, Osbnd H…O and Csbnd H…O hydrogen bonding interaction and density functional theory studies of 4-methylanilinium-3-carboxy-4-hydroxybenzenesulphonate crystal

    Science.gov (United States)

    Rajkumar, M.; Muthuraja, P.; Dhandapani, M.; Chandramohan, A.

    2018-02-01

    By utilizing the hydrogen bonding strategy, 4-methylanilinium-3-hydroxy-4-corboxy-benzenesulphonate (4MABS), an organic proton transfer molecular salt was synthesized and single crystals of it were successfully grown by slow solvent evaporation solution growth technique at ambient temperature. The 1H and 13C NMR spectra were recorded to establish the molecular structure of the title salt. The single crystal XRD analysis reveals that the title salt crystallizes in monoclinic crystal system with centrosymmetric space group, P21/n. Further, the title salt involves extensive intermolecular Nsbnd H…O, Osbnd H…O and Csbnd H…O as well as intramolecular Osbnd H…O hydrogen bonding interactions to construct supramolecular architecture. All quantum chemical calculations were performed at the level of density functional theory (DFT) with B3LYP functional using 6-311G (d,p) basis atomic set. The photoluminescence spectrum was recorded to explore the emission property of the title crystal. The presence of the various vibrational modes and functional groups in the synthesized salt was confirmed by FT-IR studies. The thermal behaviour of title crystal was established employing TG/DTA analyses. The mechanical properties of the grown crystal were determined by Vicker's microhardness studies. Dielectric measurements were carried out on the grown crystal at a different temperature to evaluate electrical properties.

  15. Extended model of bond charges and its application in calculation of optical properties of crystals with different types of chemical bonds

    International Nuclear Information System (INIS)

    Tsirelson, V.G.; Korolkova, O.V.; Rez, I.S.; Ozerov, R.P.

    1984-01-01

    A method for calculating the optical characteristics of crystals with different types of chemical bonds within the framework of the dielectric theory of chemical bond put forward by Philips and Van Vechten is suggested. The calculating scheme which does not contain adjustable parameters is based on the bond charge model designed by Levine, which is generalized for the case of multiple bonds and modified involving the density functional method data on the spatial distribution of electrons in atoms. The structural elements of the method are: the screened Coulomb potentials and radii of the atomic core, bond lengths and charges, and the distances from the nuclei to the centers of gravity of the latter. The calculated characteristics of the crystals (dielectric permittivity, quadratic and cubic non-linear susceptibilities, electrooptical constants) are in good accordance with experimental findings. An attempt is made to predict the non-linear optical characteristics according to precision X-ray diffraction data on the electron structure of its only representative, lithium formate deuterate LiHCO 2 xD 2 O, whereby a fairly good fit with the experimental data is achieved. (author)

  16. Experimental and theoretical studies on the structural, spectroscopic and hydrogen bonding on 4-nitro-n-(2,4-dinitrophenyl) benzenamine

    Science.gov (United States)

    Subhapriya, G.; Kalyanaraman, S.; Jeyachandran, M.; Ragavendran, V.; Krishnakumar, V.

    2018-04-01

    Synthesized 4-nitro-N-(2,4-dinitrophenyl) benzenamine (NDPBA) molecule was confirmed applying the tool of NMR. Theoretical prediction addressed the NMR chemical shifts and correlated well with the experimental data. The molecule subjected to theoretical DFT at 6-311++G** level unraveled the spectroscopic and structural properties of the NDPBA molecule. Moreover the structural features proved the occurrence of intramolecular Nsbnd H· · O hydrogen bonding in the molecule which was further confirmed with the help of Frontier molecular orbital analysis. Vibrational spectroscopic characterization through FT-IR and Raman experimentally and theoretically gave an account for the vibrational properties. An illustration of the topology of the molecule theoretically helped also in finding the hydrogen bonding energy.

  17. Density functional theory study of the structural and bonding mechanism of molecular oxygen (O2) with C3Si

    Science.gov (United States)

    Parida, Saroj K.; Behera, C.; Sahu, Sridhar

    2018-07-01

    The investigations of pure and heteroatom doped carbon clusters have created great interest because of their enormous prospective applications in various research zones, for example, optoelectronics, semiconductors, material science, energy storage devices, astro-science and so on. In this article, the interaction of molecular oxygen (O2) with C3Si has explored within a density functional theory (DFT). Different possible types of structure for C3SiO2 have collected. Among five different kinds of structure, the structure-1a, 1A1 is more energetically stable. The nature of the bonding of O2 and C3Si, in C3SiO2 has been studied by using Bader's topological analysis of the electron charge density distribution ρ(r) , Laplacian ∇2 ρ(r) and total energy density H(r) at the bond critical points (BCPs) of the structures within the framework of the atoms in molecules theory (AIM). The bonding mechanism of O2 and C3Si in C3SiO2 prompts to the fundamental understanding of the interaction of C3Si with oxygen molecule. It is interesting to note that, two types of bonding mechanism are established in same C3SiO2 system such as (i) shared-kind interactions (ii) closed-shell interactions. From various kinds of structure, Csbnd C bonds in all structures are shown as shared-kind interactions whereas Csbnd Si, Osbnd O bonds are classified as closed-shell type interactions with a certain degree of covalent character.

  18. Poly[(μ3-benzene-1,3,5-tricarboxylato-κ3O1:O3:O5(μ2-2-methylimidazolato-κ2N:N′tris(2-methylimidazole-κNdizinc(II

    Directory of Open Access Journals (Sweden)

    Palanikumar Maniam

    2011-06-01

    Full Text Available Hydrothermal reaction involving zinc nitrate hexahydrate, trisodium benzene-1,3,5-tricarboxylate (Na3BTC and 2-methylimidazole (2-MeImH yielded the title compound, [Zn2(C9H3O6(C4H5N2(C4H6N23]. In this mixed-ligand metal-organic compound, Zn2+ ions are coordinated by N atoms from 2-MeImH molecules and (2-MeIm− ions, as well as by O atoms from (BTC3− ions. This results in two different distorted tetrahedra, viz. ZnN3O and ZnN2O2. These tetrahedra are interconnected via (BTC3− ions and N:N′-bridging (2-MeIm− ions, thus forming a layered structure in the bc plane. Hydrogen bonds between the O atoms of carboxylate ions and NH groups of 2-MeImH ligands link the layers into a three-dimensional structure.

  19. Invariant length scale in relativistic kinematics: lessons from Dirichlet branes

    International Nuclear Information System (INIS)

    Schuller, Frederic P.; Pfeiffer, Hendryk

    2004-01-01

    Dirac-Born-Infeld theory is shown to possess a hidden invariance associated with its maximal electric field strength. The local Lorentz symmetry O(1,n) on a Dirichlet-n-brane is thereby enhanced to an O(1,n)xO(1,n) gauge group, encoding both an invariant velocity and acceleration (or length) scale. The presence of this enlarged gauge group predicts consequences for the kinematics of observers on Dirichlet branes, with admissible accelerations being bounded from above. An important lesson is that the introduction of a fundamental length scale into relativistic kinematics does not enforce a deformation of Lorentz boosts, as one might assume naively. The exhibited structures further show that Moffat's non-symmetric gravitational theory qualifies as a candidate for a consistent Born-Infeld type gravity with regulated solutions

  20. Crystal structure of N′′-benzyl-N′′-[3-(benzyldimethylazaniumylpropyl]-N,N,N′,N′-tetramethylguanidinium bis(tetraphenylborate

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2015-12-01

    Full Text Available In the crystal structure of the title salt, C24H38N42+·2C24H20B−, the C—N bond lengths in the central CN3 unit of the guanidinium ion are 1.3364 (13, 1.3407 (13 and 1.3539 (13 Å, indicating partial double-bond character. The central C atom is bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charge is delocalized in the CN3 plane. The bonds between the N atoms and the terminal methyl groups of the guanidinium moiety and the four C—N bonds to the central N atom of the (benzyldimethylazaniumylpropyl group have single-bond character. In the crystal, C—H...π interactions between the guanidinium H atoms and the phenyl C atoms of the tetraphenylborate ions are present, leading to the formation of a two-dimensional supramolecular pattern parallel to the ac plane.

  1. Tetrel Bonding as a Vehicle for Strong and Selective Anion Binding

    Directory of Open Access Journals (Sweden)

    Steve Scheiner

    2018-05-01

    Full Text Available Tetrel atoms T (T = Si, Ge, Sn, and Pb can engage in very strong noncovalent interactions with nucleophiles, which are commonly referred to as tetrel bonds. The ability of such bonds to bind various anions is assessed with a goal of designing an optimal receptor. The Sn atom seems to form the strongest bonds within the tetrel family. It is most effective in the context of a -SnF3 group and a further enhancement is observed when a positive charge is placed on the receptor. Connection of the -SnF3 group to either an imidazolium or triazolium provides a strong halide receptor, which can be improved if its point of attachment is changed from the C to an N atom of either ring. Aromaticity of the ring offers no advantage nor is a cyclic system superior to a simple alkyl amine of any chain length. Placing a pair of -SnF3 groups on a single molecule to form a bipodal dicationic receptor with two tetrel bonds enhances the binding, but falls short of a simple doubling. These two tetrel groups can be placed on opposite ends of an alkyl diamine chain of any length although SnF3+NH2(CH2nNH2SnF3+ with n between 2 and 4 seems to offer the strongest halide binding. Of the various anions tested, OH− binds most strongly: OH− > F− > Cl− > Br− > I−. The binding energy of the larger NO3− and HCO3− anions is more dependent upon the charge of the receptor. This pattern translates into very strong selectivity of binding one anion over another. The tetrel-bonding receptors bind far more strongly to each anion than an equivalent number of K+ counterions, which leads to equilibrium ratios in favor of the former of many orders of magnitude.

  2. High-κ Al{sub 2}O{sub 3} material in low temperature wafer-level bonding for 3D integration application

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J., E-mail: fanji@hust.edu.cn; Tu, L. C. [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Tan, C. S. [School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-03-15

    This work systematically investigated a high-κ Al{sub 2}O{sub 3} material for low temperature wafer-level bonding for potential applications in 3D microsystems. A clean Si wafer with an Al{sub 2}O{sub 3} layer thickness of 50 nm was applied as our experimental approach. Bonding was initiated in a clean room ambient after surface activation, followed by annealing under inert ambient conditions at 300 °C for 3 h. The investigation consisted of three parts: a mechanical support study using the four-point bending method, hermeticity measurements using the helium bomb test, and thermal conductivity analysis for potential heterogeneous bonding. Compared with samples bonded using a conventional oxide bonding material (SiO{sub 2}), a higher interfacial adhesion energy (∼11.93 J/m{sup 2}) and a lower helium leak rate (∼6.84 × 10{sup −10} atm.cm{sup 3}/sec) were detected for samples bonded using Al{sub 2}O{sub 3}. More importantly, due to the excellent thermal conductivity performance of Al{sub 2}O{sub 3}, this technology can be used in heterogeneous direct bonding, which has potential applications for enhancing the performance of Si photonic integrated devices.

  3. Crystal structure of an unknown solvate of (piperazine-κN{5,10,15,20-tetrakis[4-(benzoyloxyphenyl]porphyrinato-κ4N}zinc

    Directory of Open Access Journals (Sweden)

    Soumaya Nasri

    2016-07-01

    Full Text Available The title compound, [Zn(C72H44N4O8(C4H10N2] or [Zn(TPBP(pipz] (where TPBP and pipz are 5,10,15,20-tetrakis[4-(benzoyloxyphenyl]porphyrinato and piperazine ligands respectively, features a distorted square-pyramidal coordination geometry about the central ZnII atom. This central atom is chelated by the four N atoms of the porphyrinate anion and further coordinated by a nitrogen atom of the piperazine axial ligand, which adopts a chair confirmation. The average Zn—N(pyrrole bond length is 2.078 (7 Å and the Zn— N(pipz bond length is 2.1274 (19 Å. The zinc cation is displaced by 0.4365 (4 Å from the N4C20 mean plane of the porphyrinate anion toward the piperazine axial ligand. This porphyrinate macrocycle exhibits major saddle and moderate ruffling deformations. In the crystal, the supramolecular structure is made by parallel pairs of layers along (100, with an interlayer distance of 4.100 Å while the distance between two pairs of layers is 4.047 Å. A region of electron density was treated with the SQUEEZE [Spek (2015. Acta Cryst. C71, 9–18] procedure in PLATON following unsuccessful attempts to model it as being part of disordered n-hexane solvent and water molecules. The given chemical formula and other crystal data do not take into account these solvent molecules.

  4. The role of uranium-arene bonding in H2O reduction catalysis

    Science.gov (United States)

    Halter, Dominik P.; Heinemann, Frank W.; Maron, Laurent; Meyer, Karsten

    2018-03-01

    The reactivity of uranium compounds towards small molecules typically occurs through stoichiometric rather than catalytic processes. Examples of uranium catalysts reacting with water are particularly scarce, because stable uranyl groups form that preclude the recovery of the uranium compound. Recently, however, an arene-anchored, electron-rich uranium complex has been shown to facilitate the electrocatalytic formation of H2 from H2O. Here, we present the precise role of uranium-arene δ bonding in intermediates of the catalytic cycle, as well as details of the atypical two-electron oxidative addition of H2O to the trivalent uranium catalyst. Both aspects were explored by synthesizing mid- and high-valent uranium-oxo intermediates and by performing comparative studies with a structurally related complex that cannot engage in δ bonding. The redox activity of the arene anchor and a covalent δ-bonding interaction with the uranium ion during H2 formation were supported by density functional theory analysis. Detailed insight into this catalytic system may inspire the design of ligands for new uranium catalysts.

  5. The first N-terminal unprotected (Gly-Aib)n peptide: H-Gly-Aib-Gly-Aib-OtBu.

    Science.gov (United States)

    Gessmann, Renate; Brückner, Hans; Petratos, Kyriacos

    2015-12-01

    Glycine (Gly) is incorporated in roughly half of all known peptaibiotic (nonribosomally biosynthesized antibiotic peptides of fungal origin) sequences and is the residue with the greatest conformational flexibility. The conformational space of Aib (α-aminoisobutyric acid) is severely restricted by the second methyl group attached to the Cα atom. Most of the crystal structures containing Aib are N-terminal protected. Deprotection of the N- or C-terminus of peptides may alter the hydrogen-bonding scheme and/or the structure and may facilitate crystallization. The structure reported here for glycyl-α-aminoisobutyrylglycyl-α-aminoisobutyric acid tert-butyl ester, C16H30N4O5, describes the first N-terminal-unprotected (Gly-Aib)n peptide. The achiral peptide could form an intramolecular hydrogen bond between the C=O group of Gly1 and the N-H group of Aib4. This hydrogen bond is found in all tetrapeptides and N-terminal-protected tripeptides containing Aib, apart from one exception. In the present work, this hydrogen bond is not observed (N...O = 5.88 Å). Instead, every molecule is hydrogen bonded to six other symmetry-related molecules with a total of eight hydrogen bonds per molecule. The backbone conformation starts in the right-handed helical region (and the left-handed helical region for the inverted molecule) and reverses the screw sense in the last two residues.

  6. Crystallochemistry of rhenium compounds with metal-metal bonds

    International Nuclear Information System (INIS)

    Koz'min, P.A.; Surazhskaya, M.D.

    1980-01-01

    A review is presented including a brief description of atomic structure of 59 coordination rhenium compounds with metal-metal bond. The most important bond lengths and valent angles are presented for each compound. The dependence of rhenium-rhenium bond length on its multiplicity is discussed and possible causes of deviations from this dependence (namely, axial ligand presence, steric repulsion of ligands) are considered. On the basis of qualitative comparison of electronegativity of ligands in dimer compounds with quarternary bond of rhenium-rhenium a supposition is made on the influence of formal charge of atomic group and summary electro-negativity of ligands on the possibility of the metal-metal bond formation

  7. Crystal structure of N-(quinolin-6-ylhydroxylamine

    Directory of Open Access Journals (Sweden)

    Anuruddha Rajapakse

    2014-11-01

    Full Text Available The title compound, C9H8N2O, crystallized with four independent molecules in the asymmetric unit. The four molecules are linked via one O—H...N and two N—H...N hydrogen bonds, forming a tetramer-like unit. In the crystal, molecules are further linked by O—H...N and N—H...O hydrogen bonds forming layers parallel to (001. These layers are linked via C—H...O hydrogen bonds and a number of weak C—H...π interactions, forming a three-dimensional structure. The crystal was refined as a non-merohedral twin with a minor twin component of 0.319.

  8. Crystal structures of the dioxane hemisolvates of N-(7-bromomethyl-1,8-naphthyridin-2-ylacetamide and bis[N-(7-dibromomethyl-1,8-naphthyridin-2-ylacetamide

    Directory of Open Access Journals (Sweden)

    Robert Rosin

    2017-10-01

    Full Text Available The syntheses and crystal structures of N-(7-bromomethyl-1,8-naphthyridin-2-ylacetamide dioxane hemisolvate, C11H10BrN3O·0.5C4H8O2, (I, and bis[N-(7-dibromomethyl-1,8-naphthyridin-2-ylacetamide] dioxane hemisolvate, 2C11H9Br2N3O·0.5C4H8O2, (II, are described. The molecules adopt a conformation with the N—H hydrogen pointing towards the lone electron pair of the adjacent naphthyridine N atom. The crystals of (I are stabilized by a three-dimensional supramolecular network comprising N—H...N, C—H...N and C—H...O hydrogen bonds, as well as C—Br...π halogen bonds. The crystals of compound (II are stabilized by a three-dimensional supramolecular network comprising N—H...N, C—H...N and C—H...O hydrogen bonds, as well as C—H...π contacts and C—Br...π halogen bonds. The structure of the substituent attached in the 7-position of the naphthyridine skeleton has a fundamental influence on the pattern of intermolecular noncovalent bonding. While the Br atom of (I participates in weak C—Br...Oguest and C—Br...π contacts, the Br atoms of compound (II are involved in host–host interactions via C—Br...O=C, C—Br...N and C—Br...π bonding.

  9. El vínculo especial de cuidado: construcción de una teoría fundamentada O vínculo especial de cuidado: construção de uma teoria fundamentada The special bond of care: construction of a grounded theory

    Directory of Open Access Journals (Sweden)

    LORENA CHAPARRO DÍAZ

    2010-12-01

    Full Text Available El cuidado de una persona en situación de enfermedad crónica es cada día más frecuente y afecta la cotidianidad de muchas familias, pues les implica modificar el curso de la vida, las relaciones personales y los roles de la familia. En muchos casos, cuando uno de los miembros de la familia asume el papel de cuidador principal, es decir, la responsabilidad de cuidar a su familiar dependiente, con base en esa experiencia tiene la oportunidad de generar un "vínculo especial" de cuidado con la persona cuidada. El vínculo especial de cuidado entre esta díada compuesta por el cuidador y el cuidado es una alianza nueva y diferente llena de significado. Objetivo: comprender el significado del cuidado para la díada cuidador familiar-persona con enfermedad crónica. Método: se construyó una teoría fundamentada teniendo en cuenta los datos de veinte informantes residentes en Bogotá, que componían diez díadas. Resultados: la teoría sustantiva trascender en un 'vínculo especial' de cuidado: el paso de lo evidente a lo intangible, se generó a partir del estudio con tres variables: la limitación y la necesidad de ayuda, el paso del reto o compromiso al logro y la forma de trascender en un "vínculo especial". Discusión: la teoría que surge se analiza a la luz de las teorías de vínculos humanos, el significado de la vida, la autotrascendencia y el desarrollo del concepto de cuidado. Conclusiones: las díadas que viven una experiencia de enfermedad crónica perciben que se mueven a través de un eje que lleva a una situación de menor funcionalidad física que exige respuestas instrumentales de cuidado y, al mismo tiempo, surge un "vínculo especial" a través de espacios de proyección y trascendencia que redimensionan la experiencia, es decir, hay un paso de lo evidente a lo intangible.O cuidado de uma pessoa em situação de doença crônica é cada dia mais freqüente e afeta o dia-a-dia de muitas famílias, pois ele implica modificar o

  10. N-Oxide-N-oxide interactions and Cl...Cl halogen bonds in pentachloropyridine N-oxide: the many-body approach to interactions in the crystal state.

    Science.gov (United States)

    Wzgarda-Raj, Kinga; Rybarczyk-Pirek, Agnieszka J; Wojtulewski, Sławomir; Palusiak, Marcin

    2018-02-01

    Pentachloropyridine N-oxide, C 5 Cl 5 NO, crystallizes in the monoclinic space group P2 1 /c. In the crystal structure, molecules are linked by C-Cl...Cl halogen bonds into infinite ribbons extending along the crystallographic [100] direction. These molecular aggregates are further stabilized by very short intermolecular N-oxide-N-oxide interactions into herringbone motifs. Computations based on quantum chemistry methods allowed for a more detailed description of the N-oxide-N-oxide interactions and Cl...Cl halogen bonds. For this purpose, Hirshfeld surface analysis and the many-body approach to interaction energy were applied.

  11. Nickel-Catalyzed C–O Bond-Cleaving Alkylation of Esters: Direct Replacement of the Ester Moiety by Functionalized Alkyl Chains

    KAUST Repository

    Liu, Xiangqian; Jia, Jiaqi; Rueping, Magnus

    2017-01-01

    Two efficient protocols for the nickel-catalyzed aryl–alkyl cross-coupling reactions using esters as coupling components have been established. The methods enable the selective oxidative addition of nickel to acyl C–O and aryl C–O bonds and allow the aryl–alkyl cross-coupling via decarbonylative bond cleavage or through cleavage of a C–O bond with high efficiency and good functional group compatibility. The protocols allow the streamlined, unconventional utilization of widespread ester groups and their precursors, carboxylic acids and phenols, in synthetic organic chemistry.

  12. Nickel-Catalyzed C–O Bond-Cleaving Alkylation of Esters: Direct Replacement of the Ester Moiety by Functionalized Alkyl Chains

    KAUST Repository

    Liu, Xiangqian

    2017-06-07

    Two efficient protocols for the nickel-catalyzed aryl–alkyl cross-coupling reactions using esters as coupling components have been established. The methods enable the selective oxidative addition of nickel to acyl C–O and aryl C–O bonds and allow the aryl–alkyl cross-coupling via decarbonylative bond cleavage or through cleavage of a C–O bond with high efficiency and good functional group compatibility. The protocols allow the streamlined, unconventional utilization of widespread ester groups and their precursors, carboxylic acids and phenols, in synthetic organic chemistry.

  13. Estimation of strength in different extra Watson-Crick hydrogen bonds in DNA double helices through quantum chemical studies.

    Science.gov (United States)

    Bandyopadhyay, D; Bhattacharyya, D

    2006-10-15

    It was shown earlier, from database analysis, model building studies, and molecular dynamics simulations that formation of cross-strand bifurcated or Extra Watson-Crick hydrogen (EWC) bonds between successive base pairs may lead to extra rigidity to DNA double helices of certain sequences. The strengths of these hydrogen bonds are debatable, however, as they do not have standard linear geometry criterion. We have therefore carried out detailed ab initio quantum chemical studies using RHF/6-31G(2d,2p) and B3LYP/6-31G(2p,2d) basis sets to determine strengths of several bent hydrogen bonds with different donor and acceptors. Interaction energy calculations, corrected for the basis set superposition errors, suggest that N-H...O type bent EWC hydrogen bonds are possible along same strands or across the strands between successive base pairs, leading to significant stability (ca. 4-9 kcal/mol). The N-H...N and C-H...O type interactions, however, are not so stabilizing. Hence, consideration of EWC N-H...O H-bonds can lead to a better understanding of DNA sequence directed structural features. Copyright (c) 2006 Wiley Periodicals, Inc.

  14. The estimation of H-bond and metal ion-ligand interaction energies in the G-Quadruplex ⋯ Mn+ complexes

    Science.gov (United States)

    Mostafavi, Najmeh; Ebrahimi, Ali

    2018-06-01

    In order to characterize various interactions in the G-quadruplex ⋯ Mn+ (G-Q ⋯ Mn+) complexes, the individual H-bond (EHB) and metal ion-ligand interaction (EMO) energies have been estimated using the electron charge densities (ρs) calculated at the X ⋯ H (X = N and O) and Mn+ ⋯ O (Mn+ is an alkaline, alkaline earth and transition metal ion) bond critical points (BCPs) obtained from the atoms in molecules (AIM) analysis. The estimated values of EMO and EHB were evaluated using the structural parameters, results of natural bond orbital analysis (NBO), aromaticity indexes and atomic charges. The EMO value increase with the ratio of ionic charge to radius, e/r, where a linear correlation is observed between EMO and e/r (R = 0.97). Meaningful relationships are also observed between EMO and indexes used for aromaticity estimation. The ENH value is higher than EOH in the complexes; this is in complete agreement with the trend of N⋯Hsbnd N and O⋯Hsbnd N angles, the E (2) value of nN → σ*NH and nO → σ*NH interactions and the difference between the natural charges on the H-bonded atom and the hydrogen atom of guanine (Δq). In general, the O1MO2 angle becomes closer to 109.5° with the increase in EMO and decrease in EHB in the presence of metal ion.

  15. Repeated bonding of fixed retainer increases the risk of enamel fracture.

    Science.gov (United States)

    Chinvipas, Netrporn; Hasegawa, Yuh; Terada, Kazuto

    2014-01-01

    The aim of this study was to investigate the influences of repeated bonding, using 2 different orthodontic adhesive systems, on the shear bond strength (SBS) and the enamel surface morphology. Sixty premolars were divided into 2 groups (n = 30), and either Transbond XT (T group) or Fuji Ortho LC (F group) adhesives were used. SBS was measured 24 h after bonding, using a universal testing machine. Then, the enamel surfaces were investigated and the mode of failure was described using adhesive remnant index (ARI) scores. After each debonding, 10 teeth from each group were examined by scanning electron microscopy to determine the penetration of adhesives, the length of resin tags, and the state of the enamel surface. The other teeth were subjected to two more bonding/debonding procedures. In T group, the second debonding sequences had significantly higher bond strengths than the other sequences. The length of resin tags was greatest in the second debonding sequence, although there was no significant difference. In F group, the SBS increased with further rebonding and the failure mode tended towards cohesive failure. In both groups, the ARI scores increased with rebonding. Enamel loss could have occurred with both adhesives, although the surfaces appeared unchanged to the naked eye. From this study, we suggest that enamel damage caused by repeated bonding is of concern. To prevent bond failure, we should pay attention to the adhesion method used for bondable retainers.

  16. Structural characterisation of GaN and GaN:O thin films

    International Nuclear Information System (INIS)

    Granville, S.; Budde, F.; Koo, A.; Ruck, B.J.; Trodahl, H.J.; Bittar, A.; Metson, J.B.; James, B.J.; Kennedy, V.J.; Markwitz, A.; Prince, K.E.

    2005-01-01

    In its crystalline form, the wide band-gap semiconductor GaN is of exceptional interest in the development of suitable materials for short wavelength optoelectronic devices. One of the barriers to its potential usefulness however is the large concentration of defects present even in MBE-grown material often due to the lattice mismatch of the GaN with common substrate materials. Calculations have suggested that GaN films grown with an amorphous structure retain many of the useful properties of the crystalline material, including the wide band-gap and a low density of states in the gap, and thus may be a suitable alternative to the single crystal GaN for a variety of applications. We have performed structural and compositional measurements on heavily disordered GaN thin films with and without measureable O and H concentrations grown using ion-assisted deposition. X-ray diffraction and x-ray absorption fine structure measurements show that stoichiometric films are composed of nanocrystallites of ∼3-4 nm in size and that GaN films containing O to 10 at % or greater are amorphous. Rutherford backscattering spectroscopy (RBS) was performed and nuclear reaction analysis (NRA) measurements were made to determine the elemental composition of the films and elastic recoil detection (ERD) detected the hydrogen concentrations. Secondary ion mass spectroscopy (SIMS) measurements were used to depth profile the films. X-ray photoelectron spectroscopy (XPS) measurements probed the bonding environment of the Ga in the films. (author). 2 figs., 1 tab

  17. Utilisation of an eta(3)-allyl hydride complex, formed by UV irradiation, as a controlled source of 16-electron (eta(5)-C(5)Me(5))Rh(CH(2)[double bond, length as m-dash]CHMe).

    Science.gov (United States)

    Sexton, Catherine J; López-Serrano, Joaquín; Lledós, Agustí; Duckett, Simon B

    2008-10-21

    Low temperature UV irradiation of solutions of (eta(5)-C(5)Me(5))Rh(CH(2)[double bond, length as m-dash]CHMe)(2) yields (eta(5)-C(5)Me(5))Rh(eta(3)-CH(2)CHCH(2))(H), which provides controlled access to the 16-electron fragment (eta(5)-C(5)Me(5))Rh(CH(2)[double bond, length as m-dash]CHMe).

  18. Enhanced bonding between TiO2-Graphene oxide

    DEFF Research Database (Denmark)

    Naknikham, Usuma; Buffa, Vittorio; Yue, Yuanzheng

    analysis. Besides, the study of Ti-O-C and Ti-C interface bonding was carried out using XPS. The band-gap energy was determined using a UV-VIS spectrophotometer equipped with an integrating sphere. Thus, it was possible for us to determine the reactivity of the new photocatalysts under the visible light...... as photocatalysts, which can efficiently react with organic species under solar light and can enhance the adsorption of water pollutants [3]. Many studies have shown that TiO2-GO heterostructures can quickly mineralize organic dyes in solution under UV-light. However, it is not clear if these materials can provide...... the same performances under sunlight and with complex real water systems. Hence, this research aims to study the photocatalystic property on GO-TiO2 composites with aqueous solutions of selected emerging pollutants under visible light. The samples were synthesized via the in-situ sol-gel nucleation...

  19. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  20. Bis(5,5-diphenylhydantoinato-κN3(ethylenediaminezinc(II

    Directory of Open Access Journals (Sweden)

    Xilan Hu

    2009-11-01

    Full Text Available In the title compound, [Zn(C15H11N2O22(C2H8N2], the ZnII atom is coordinated in a distorted tetrahedral geometry. Intramolecular N—H...O, C—H...O and C—H...N hydrogen bonds occur. In the crystal, molecules are linked by intermolecular N—H...O hydrogen bonds, forming a three-dimensional network.

  1. Influence of carbamide peroxide-based bleaching agents on the bond strength of resin-enamel/dentin interfaces Influência de agentes clareadores à base de peróxido de carbamida na resistência de união entre resina-esmalte/dentina

    Directory of Open Access Journals (Sweden)

    Vanessa Cavalli

    2005-03-01

    Full Text Available In this bond strength study, a bleaching agent containing 10% carbamide peroxide was applied over composite-teeth bonded interfaces of two adhesive systems applied to enamel and dentin. Sixteen human third molars were used for bonding procedures. Single Bond (SB and Clearfil SE Bond (CB were applied to enamel and dentin according to the manufacturers' instructions. A resin composite cube-like structure was incrementally built on the bonded surfaces. The restored teeth were sectioned into 0.7 mm thick slices that were trimmed at enamel or dentin bonded interfaces to an hourglass shape with a cross-sectional area of approximately 0.5 mm². Specimens were assigned to 8 groups (n = 10 according to the following factors under study: dental substrate (enamel and dentin; adhesive system (SB and CB and treatment (10% carbamide peroxide and not bleached/control. The bleaching gel (Opalescence was applied at the bonded interfaces for 6 hours during 14 days and after daily treatment specimens were stored in artificial saliva. Unbleached specimens were stored in artificial saliva for 14 days. Specimens were tested for tension and the data were analyzed by three-way ANOVA and Tukey's test (p Este estudo avaliou a resistência de união de dois sistemas adesivos ao esmalte e à dentina após a aplicação de agente clareador sobre a união compósito-dente. Dezesseis terceiros molares humanos foram usados nos procedimentos restauradores. Single Bond (SB e Clearfil SE Bond (CB foram aplicados no esmalte e na dentina de acordo com as instruções dos fabricantes. Um bloco de compósito foi construído nas superfícies tratadas com os adesivos. Os dentes restaurados foram seccionados em fatias com espessura de 0,7 mm, que receberam constrição na interface de união num formato de ampulheta, com área de secção transversal de ± 0,5 mm². Os espécimes foram distribuídos em 8 grupos (n = 10 de acordo com os fatores em estudo: substrato dental (esmalte e

  2. Enstatite, Mg2Si2O6: A neutron diffraction refinement of the crystal structure and a rigid-body analysis of the thermal vibration

    International Nuclear Information System (INIS)

    Ghose, S.; Schomaker, V.; McMullan, R.K.

    1986-01-01

    Synthetic enstatite, Mg 2 Si 2 O 6 , is orthorhombic, space group Pbca, with eight formula units per cell and lattice parameters a = 18.235(3), b = 8.818(1), c = 5.179(1) A at 23 0 C. A least-squares structure refinement based on 1790 neutron intensity data converged with an agreement factor R(F 2 ) = 0.032, yielding Mg-O and Si-O bond lengths with standard deviations of 0.0007 and 0.0008 A, respectively. The variations observed in the Si-O bond lengths within the silicate tetrahedra A and B are caused by the differences in primary coordination of the oxygen atoms and the proximity of the magnesium ions to the silicon atoms. The latter effect is most pronounced for the bridging bonds of tetrahedron. A. The smallest O-Si-O angle is the result of edge-sharing by the Mg(2) octahedron and the A tetrahedron. An analysis of rigid-body thermal vibrations of the two crystallographically independent [SiO 4 ] tetrahedra indicates considerable librational motion, leading to a thermal correction of apparent Si-O bond lengths as large as +0.002 A at room temperature. (orig.)

  3. Gate length scaling effect on high-electron mobility transistors devices using AlGaN/GaN and AlInN/AlN/GaN heterostructures.

    Science.gov (United States)

    Liao, S Y; Lu, C C; Chang, T; Huang, C F; Cheng, C H; Chang, L B

    2014-08-01

    Compared to AlGaN/GaN HEMT with 0.15 μm T-gate length, the AlInN/AlN/GaN one exhibits much higher current density and transconductance of 1558 mA/mm at Vd = 2 V and 330 mS/mm, respectively. The high extrinsic ft and fmax of 82 GHz and 70 GHz are extracted from AlInN/AlN/GaN HEMT. Besides, we find that the transconductance roll-off is significant in AlGaN/GaN, but largely improved in AlInN/AlN/GaN HEMT, suggesting that the high carrier density and lattice-matched epitaxial heterostructure is important to reach both large RF output power and high operation frequency, especially for an aggressively gate length scaling.

  4. 26 CFR 1.103(n)-4T - Elective carryforward of unused private activity bond limit (temporary).

    Science.gov (United States)

    2010-04-01

    ... bond limit (temporary). 1.103(n)-4T Section 1.103(n)-4T Internal Revenue INTERNAL REVENUE SERVICE... Excluded from Gross Income § 1.103(n)-4T Elective carryforward of unused private activity bond limit... carryforward for any one or more projects described in A-5 of this § 1.103(n)-4T (carryforward projects). Q-2...

  5. Redetermination of clinobarylite, BaBe2Si2O7

    Directory of Open Access Journals (Sweden)

    Adrien J. Di Domizio

    2012-10-01

    Full Text Available Clinobarylite, ideally BaBe2Si2O7 (chemical name barium diberyllium disilicate, is a sorosilicate mineral and dimorphic with barylite. It belongs to a group of compounds characterized by the general formula BaM2+2Si2O7, with M2+ = Be, Mg, Fe, Mn, Zn, Co, or Cu, among which the Be-, Fe-, and Cu-members have been found in nature. The crystal structure of clinobarylite has been re-examined in this study based on single-crystal X-ray diffraction data collected from a natural sample from the type locality (Khibiny Massif, Kola Peninsula, Russia. The structure of clinobarylite can be considered as a framework of BeO4 and SiO4 tetrahedra, with one of the O atoms coordinated to two Be and one Si, one coordinated to two Si, and two O atoms coordinated to one Si and one Be atom. The BeO4 tetrahedra share corners, forming chains parallel to the c axis, which are interlinked by the Si2O7 units oriented parallel to the a axis. The Ba2+ cations (site symmetry m.. are in the framework channels and are coordinated by eleven O atoms in form of an irregular polyhedron. The Si—Obr (bridging O atom, at site symmetry m.. bond length, the Si—Onbr (non-bridging O atoms bond lengths, and the Si—O—Si angle within the Si2O7 unit are in marked contrast to the corresponding values determined in the previous study [Krivovichev et al. (2004. N. Jb. Miner. Mh. pp. 373–384].

  6. Redetermination of clinobaryl-ite, BaBe(2)Si(2)O(7).

    Science.gov (United States)

    Domizio, Adrien J Di; Downs, Robert T; Yang, Hexiong

    2012-10-01

    Clinobaryl-ite, ideally BaBe(2)Si(2)O(7) (chemical name barium diberyllium disilicate), is a sorosilicate mineral and dimorphic with baryl-ite. It belongs to a group of compounds characterized by the general formula BaM(2+) (2)Si(2)O(7), with M(2+) = Be, Mg, Fe, Mn, Zn, Co, or Cu, among which the Be-, Fe-, and Cu-members have been found in nature. The crystal structure of clinobaryl-ite has been re-examined in this study based on single-crystal X-ray diffraction data collected from a natural sample from the type locality (Khibiny Massif, Kola Peninsula, Russia). The structure of clinobaryl-ite can be considered as a framework of BeO(4) and SiO(4) tetra-hedra, with one of the O atoms coordinated to two Be and one Si, one coordinated to two Si, and two O atoms coordinated to one Si and one Be atom. The BeO(4) tetra-hedra share corners, forming chains parallel to the c axis, which are inter-linked by the Si(2)O(7) units oriented parallel to the a axis. The Ba(2+) cations (site symmetry m..) are in the framework channels and are coordinated by eleven O atoms in form of an irregular polyhedron. The Si-O(br) (bridging O atom, at site symmetry m..) bond length, the Si-O(nbr) (non-bridging O atoms) bond lengths, and the Si-O-Si angle within the Si(2)O(7) unit are in marked contrast to the corresponding values determined in the previous study [Krivovichev et al. (2004 ▶). N. Jb. Miner. Mh. pp. 373-384].

  7. Observation of internucleotide NH...N hydrogen bonds in the absence of directly detectable protons

    International Nuclear Information System (INIS)

    Majumdar, Ananya; Kettani, Abdelali; Skripkin, Eugene; Patel, Dinshaw J.

    1999-01-01

    Several structural motifs found in nucleic acids involve N-H ... N hydrogen bonds in which the donor hydrogens are broadened to extinction due to chemical or conformational exchange. In such situations, it is impossible to use the well-established HNN-COSY or soft HNN-COSY experiments, which report the presence of the hydrogen bond directly on the donor proton(s). We present a pulse sequence, H(CN)N(H), for alleviating this problem in hydrogen bonds of the type N d H ... N a -CH, in which the donor N d nitrogen is correlated with the corresponding non-exchangeable C-H proton associated with the acceptor N a nitrogen. In this way, missing N d H ... N a correlations in an HNN-COSY spectrum may be recovered from CH-N d correlations in the H(CN)N(H) spectrum. By correlating a different set of nuclei relative to the HNN-COSY class of experiments, the H(CN)N(H) experiment also serves to remove ambiguities associated with degeneracies in HNN-COSY spectra. The technique is demonstrated on d(GGAGGAG) 4 ,a quadruplex containing a novel A . (G . G . G . G) . A hexad and on d(GGGCAGGT) 4 , containing a G . C . G . C tetrad, in which missing NH 2 ... N7 correlations are retrieved via H8-(N2,N6) correlations in the H(CN)N(H) spectrum

  8. X-ray structure study of boron chelates with N-(pyridyl-2)- and N-(thiazolyl-2)urea derivatives

    International Nuclear Information System (INIS)

    Teslya, I.A.; Starikova, Z.A.; Boldyreva, O.G.; AN SSSR, Moscow. Inst. Organicheskoj Khimii)

    1987-01-01

    Spectral (IR, Raman) and X-ray structural investigations of CdBr 2 xMB (MB-2,4,6,8-tetramethyl-2,4,6,8-tetraazabicyclo(3.3.0)-octadione-3.7 m, mebicar) (λMo, 634 reflections, R=0.045) are performed. Rhombic crystals: a=3.9921(7), b=10.6938(25), c=14.9947(62)A,L=2, sp. gr. F nmm . The structure is polymerically laminated. Mebicar molecules play the role of bidentate-bridge ligands. O atoms of both carbonyl groups bind Cd atoms of the neighbouring complexes in chains directed along y axis. In the direction of x axis such chains are connected by bridge Br atoms in layers parallel to (xy0) plane. the coordination polyhedron of Cd atoms is a distorted octahedron. Bond lengths Cd-Br 2.738, Cd-O 2.37 A Bond lengths Cd-Br 2.738, Cd-O 2.37 A

  9. Crystal structure of {(R-N2-[(benzo[h]quinolin-2-ylmethyl]-N2′-[(benzo[h]quinolin-2-ylmethylidene]-1,1′-binaphthyl-2,2′-diamine-κ4N,N′,N′′,N′′′}(trifluoromethanesulfonato-κOzinc(II} trifluoromethanesulfonate dichloromethane 1.5-solvate

    Directory of Open Access Journals (Sweden)

    Shayna R. Skokan

    2017-07-01

    Full Text Available The zinc(II atom in the title compound, [Zn(C48H31N4(CF3SO3](CF3SO3·1.5CH2Cl2, adopts a distorted five-coordinate square-pyramidal geometry. It is coordinated by one trifluoromethanesulfonate ligand and four N atoms of the N2-[(benzo[h]quinolin-2-ylmethyl]-N2′-[(benzo[h]quinolin-2-ylmethylidene]-1,1′-binaphthyl-2,2′-diamine ligand. The complex is present as a single-stranded P-helimer monohelical structure incorporating π–π and/or σ–π interactions. One of the imine bonds present in the original ligand framework is reduced, leading to variations in bond lengths and torsion angles for each side of the ligand motif. The imine-bond reduction also affects the bond lengths involving the metal atom with the N-donor atoms located on the imine bond. There are two molecules of the complex in the asymmetric unit. One of the molecules exhibits positional disorder within the coordinating trifluoromethanesulfonate ion making the molecules symmetrically non-equivalent.

  10. Synthesis and crystal structure of rare earth complexes with o-nitrobenzoic acid and N, N-dimethylformamide

    Science.gov (United States)

    Zhao, Lifang; Chen, Yashao; Bao, Lin

    2010-03-01

    The rare-earth compound [Ce 0.5Sm 0.5( o-NBA) 3(DMF) 2] 2 (where o-NBA = o-nitrobenzoic acid, DMF = N, N-dimethylformamide) has been synthesized and structurally characterized. The crystal structure of the compound is characterized by Fourier transfer infrared spectroscopy (FT-IR), fluorescent emission spectroscopy (FES) and single-crystal X-ray diffraction. The results show that the compound crystallizes in a triclinic system, space group P-1 with a = 11.8284 (6) Å, b = 12.5082 (7) Å, c = 13.0203 (7) Å, α = 63.9650 (10)°, β = 66.3900 (10)°, γ = 71.7380 (10)°, V = 1563.7 (14) Å 3, Dc = 1.677 g/cm 3, Z = 1, F(0 0 0) = 790. Each Ln (III) atom is bridged by four o-nitro-benzoates and chelated by one o-nitrobenzoate. The Ln (III) atom is eight-coordinated by six oxygen atoms from five o-nitro-benzoates and two oxygen atoms from two DMF molecules. Hydrogen bonds and aromatic π⋯ π stacking interactions assemble the compound into a three-dimensional network. Luminescence measurement shows that the compound emits fluorescence.

  11. Diffusionless bonding of aluminum to Zircaloy-2

    International Nuclear Information System (INIS)

    Watson, R.D.

    1965-04-01

    Aluminum can be bonded to zirconium without difficulty even when a thin layer of oxide is present on the surface of the zirconium . No detectable diffusion takes place during the bonding process. The bond layer can be stretched as much. as 8% without affecting the bond. The bond can be heated for 1000 hours at 260 o C (500 o F), and can be water quenched from 260 o C (500 o F) without any noticeable change in the bond strength. An extrusion technique has been devised for making transition sections of aluminum bonded to zirconium which can then be used to join these metals by conventional welding. Welding can be done close to the bond zone without seriously affecting the integrity of the bond. This method of bonding aluminum to Zircaloy-2 is covered by Canadian patent 702,438 January 26, 1965. (author)

  12. Photoelectron spectroscopy of B4O4-: Dual 3c-4e π hyperbonds and rhombic 4c-4e o-bond in boron oxide clusters

    Science.gov (United States)

    Tian, Wen-Juan; Zhao, Li-Juan; Chen, Qiang; Ou, Ting; Xu, Hong-Guang; Zheng, Wei-Jun; Zhai, Hua-Jin; Li, Si-Dian

    2015-04-01

    Gas-phase anion photoelectron spectroscopy (PES) is combined with global structural searches and electronic structure calculations at the hybrid Becke 3-parameter exchange functional and Lee-Yang-Parr correlation functional (B3LYP) and single-point coupled-cluster with single, double, and perturbative triple excitations (CCSD(T)) levels to probe the structural and electronic properties and chemical bonding of the B4O40/- clusters. The measured PES spectra of B4O4- exhibit a major band with the adiabatic and vertical detachment energies (ADE and VDE) of 2.64 ± 0.10 and 2.81 ± 0.10 eV, respectively, as well as a weak peak with the ADE and VDE of 1.42 ± 0.08 and 1.48 ± 0.08 eV. The former band proves to correspond to the Y-shaped global minimum of Cs B4O4- (2A″), with the calculated ADE/VDE of 2.57/2.84 eV at the CCSD(T) level, whereas the weak band is associated with the second lowest-energy, rhombic isomer of D2h B4O4- (2B2g) with the predicted ADE/VDE of 1.43/1.49 eV. Both anion structures are planar, featuring a B atom or a B2O2 core bonded with terminal BO and/or BO2 groups. The same Y-shaped and rhombic structures are also located for the B4O4 neutral cluster, albeit with a reversed energy order. Bonding analyses reveal dual three-center four-electron (3c-4e) π hyperbonds in the Y-shaped B4O40/- clusters and a four-center four-electron (4c-4e) π bond, that is, the so-called o-bond in the rhombic B4O40/- clusters. This work is the first experimental study on a molecular system with an o-bond.

  13. Photoelectron spectroscopy of B4O4 (-): Dual 3c-4e π hyperbonds and rhombic 4c-4e o-bond in boron oxide clusters.

    Science.gov (United States)

    Tian, Wen-Juan; Zhao, Li-Juan; Chen, Qiang; Ou, Ting; Xu, Hong-Guang; Zheng, Wei-Jun; Zhai, Hua-Jin; Li, Si-Dian

    2015-04-07

    Gas-phase anion photoelectron spectroscopy (PES) is combined with global structural searches and electronic structure calculations at the hybrid Becke 3-parameter exchange functional and Lee-Yang-Parr correlation functional (B3LYP) and single-point coupled-cluster with single, double, and perturbative triple excitations (CCSD(T)) levels to probe the structural and electronic properties and chemical bonding of the B4O4 (0/-) clusters. The measured PES spectra of B4O4 (-) exhibit a major band with the adiabatic and vertical detachment energies (ADE and VDE) of 2.64 ± 0.10 and 2.81 ± 0.10 eV, respectively, as well as a weak peak with the ADE and VDE of 1.42 ± 0.08 and 1.48 ± 0.08 eV. The former band proves to correspond to the Y-shaped global minimum of Cs B4O4 (-) ((2)A″), with the calculated ADE/VDE of 2.57/2.84 eV at the CCSD(T) level, whereas the weak band is associated with the second lowest-energy, rhombic isomer of D2h B4O4 (-) ((2)B2g) with the predicted ADE/VDE of 1.43/1.49 eV. Both anion structures are planar, featuring a B atom or a B2O2 core bonded with terminal BO and/or BO2 groups. The same Y-shaped and rhombic structures are also located for the B4O4 neutral cluster, albeit with a reversed energy order. Bonding analyses reveal dual three-center four-electron (3c-4e) π hyperbonds in the Y-shaped B4O4 (0/-) clusters and a four-center four-electron (4c-4e) π bond, that is, the so-called o-bond in the rhombic B4O4 (0/-) clusters. This work is the first experimental study on a molecular system with an o-bond.

  14. Positively charged phosphorus as a hydrogen bond acceptor

    DEFF Research Database (Denmark)

    Hansen, Anne Schou; Du, Lin; Kjærgaard, Henrik Grum

    2014-01-01

    Phosphorus (P) is an element that is essential to the life of all organisms, and the atmospheric detection of phosphine suggests the existence of a volatile biogeochemical P cycle. Here, we investigate the ability of P to participate in the formation of OH···P hydrogen bonds. Three bimolecular......-stretching frequency red shifts and quantum chemical calculations, we find that P is an acceptor atom similar in strength to O and S and that all three P, O, and S atoms are weaker acceptors than N. The quantum chemical calculations show that both H and P in the OH···P hydrogen bond have partial positive charges......, as expected from their electronegativities. However, the electrostatic potentials show a negative potential area on the electron density surface around P that facilitates formation of hydrogen bonds....

  15. Sealing of cavities with lateral feed-throughs by anodic bonding

    DEFF Research Database (Denmark)

    Fléron, René; Jensen, Flemming

    2003-01-01

    The SESiBon(1)) project under the EU Growth programme has focussed on the investigation and exploitation of various silicon bonding techniques. Both standard silicon to pyrex wafer bonding and the more advanced silicon-to-silicon thin film anodic bonding has been investigated. Here we present...... the results of the work done to enable bonding of structured wafer surfaces, allowing lateral feed-throughs into sealed cavities.Lateral feed throughs are formed by means of RIE in a high-doped poly-silicon film deposited on an oxidized 4" silicon wafer. Next a BPSG (Boron Phosphorus Silicate Glass) layer...... is deposited in a PECVD reaction chamber onto the structured surface. The BPSG is used as an intermediate planarization layer. Planarization is done by annealing the wafer in a N2-O2-H2O ambient for 4 - 8h @ 900 degreesC. After planarization the two wafers are bonded together, sealing the cavities.Our work...

  16. Nitrogen bonding in aluminum oxynitride films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Paul W., E-mail: pwang@bradley.edu [Department of Physics, Bradley University, 1501 W. Bradley Ave., Peoria, IL 61625 (United States); Hsu, Jin-Cherng [Department of Physics, Fu Jen Catholic University, Hsinchuang, Taipei Hsien 24205, Taiwan (China); Lin, Yung-Hsin; Chen, Huang-Lu [Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, Hsinchuang, Taipei Hsien 24205, Taiwan (China)

    2010-04-15

    Assignment of oxidation states of N{sub 1s} in XPS spectra of aluminum oxynitride by curve fitting is difficult. The XPS curve fitting was previously discussed in the paper published in J. Non-Cryst. Solids, 224 (1998) 31, in which O{sub 1s} photoelectrons from GeO{sub 2} glass were used to illustrate how to fit the XPS spectra. Three different ways were pointed out to eliminate the ambiguity caused by curve fitting such as comparing the data to data from standard samples, investigating the continuous surface modifications caused by slowly sputtering the surface, and monitoring the continuous surface modifications due to gradual increases in surface species under heating, cooling, or irradiation. Our recent work in aluminum oxynitride films provides another example of how to fit the XPS spectra of N{sub 1s} by three different oxidation states of N{sup +}, N{sup 2+}, and N{sup 3+}, by comparison of the measured data to data from previously published results, and by the gradual changes of spectra as functions of the oxygen contents in the films. Three oxidation states in different nitrogen bonding in the aluminum oxynitride, AlO{sub 2}N, Al{sub 2}O{sub 5}N{sub 2}, and AlO{sub 3}N, were clearly deduced.

  17. Investigation of non-corrin cobalt(II)-containing sites in protein structures of the Protein Data Bank.

    Science.gov (United States)

    Abriata, Luciano Andres

    2013-04-01

    Protein X-ray structures with non-corrin cobalt(II)-containing sites, either natural or substituting another native ion, were downloaded from the Protein Data Bank and explored to (i) describe which amino acids are involved in their first ligand shells and (ii) analyze cobalt(II)-donor bond lengths in comparison with previously reported target distances, CSD data and EXAFS data. The set of amino acids involved in Co(II) binding is similar to that observed for catalytic Zn(II) sites, i.e. with a large fraction of carboxylate O atoms from aspartate and glutamate and aromatic N atoms from histidine. The computed Co(II)-donor bond lengths were found to depend strongly on structure resolution, an artifact previously detected for other metal-donor distances. Small corrections are suggested for the target bond lengths to the aromatic N atoms of histidines and the O atoms of water and hydroxide. The available target distance for cysteine (Scys) is confirmed; those for backbone O and other donors remain uncertain and should be handled with caution in refinement and modeling protocols. Finally, a relationship between both Co(II)-O bond lengths in bidentate carboxylates is quantified.

  18. Crystal structure, vibrational spectra, optical and DFT studies of bis (3-azaniumylpropyl) azanium pentachloroantimonate (III) chloride monohydrate (C6H20N3)SbCl5·Cl·H2O

    Science.gov (United States)

    Ahmed, Houssem Eddine; Kamoun, Slaheddine

    2017-09-01

    The crystal structure of (C6H20N3)SbCl5·Cl·H2O is built up of [NH3(CH2)3NH2(CH2)3NH3]3 + cations, [SbCl5]2 - anions, free Cl- anions and neutral water molecules connected together by Nsbnd H ⋯ Cl, Nsbnd H ⋯ O and Osbnd H ⋯ Cl hydrogen bonds. The optical band gap determined by diffuse reflection spectroscopy (DRS) is 3.78 eV for a direct allowed transition. Optimized molecular geometry, atomic Mulliken charges, harmonic vibrational frequencies, HOMO-LUMO and related molecular properties of the (C6H20N3)SbCl5·Cl·H2O compound were calculated by Density functional theory (DFT) using B3LYP method with GenECP sets. The calculated structural parameters (bond lengths and angles) are in good agreement with the experimental XRD data. The vibrational unscaled wavenumbers were calculated and scaled by a proper scaling factor of 0.984. Acceptable consistency was observed between calculated and experimental results. The assignments of wavenumbers were made on the basis of potential energy distribution (PED) using Vibrational Energy Distribution Analysis (VEDA) software. The HOMO-LUMO study was extended to calculate various molecular parameters like ionization potential, electron affinity, global hardness, electro-chemical potential, electronegativity and global electrophilicity of the given molecule.

  19. Quantitative assessment of Al-to-N bonding in dilute Al0.33Ga0.67As1-yNy

    International Nuclear Information System (INIS)

    Wagner, J.; Geppert, T.; Koehler, K.; Ganser, P.; Maier, M.

    2003-01-01

    A quantitative assessment of the group III-nitrogen bonding in low N-content Al 0.33 Ga 0.67 As 1-y N y with y≤0.04 has been performed, using vibrational mode Raman spectroscopy for the quantitative analysis of local bond formation in combination with energy dispersive x-ray analysis and secondary ion mass spectrometry for chemical analysis. Clear evidence is obtained for the preferential bonding of nitrogen to Al with one nitrogen atom being coordinated to, at the average, 3.4 Al neighbors. This strong preference for Al-to-N bond formation can be understood in terms of the much larger cohesive energy of the Al-N bond compared to the Ga-N chemical bond. In spite of this phase-separation-like formation of local Al-N complexes, the fundamental band gap and the E 1 /E 1 +Δ 1 band gaps show a continuous low-energy and high-energy shift, respectively, upon the addition of nitrogen as already known from dilute GaAsN

  20. Synthesis of Biotin Linkers with the Activated Triple Bond Donor [p-(N-propynoylaminotoluic Acid] (PATA for Efficient Biotinylation of Peptides and Oligonucleotides

    Directory of Open Access Journals (Sweden)

    Martina Jezowska

    2012-11-01

    Full Text Available Biotin is an important molecule for modern biological studies including, e.g., cellular transport. Its exclusive affinity to fluorescent streptavidin/avidin proteins allows ready and specific detection. As a consequence methods for the attachment of biotin to various biological targets are of high importance, especially when they are very selective and can also proceed in water. One useful method is Hüisgen dipolar [3+2]-cycloaddition, commonly referred to as “click chemistry”. As we reported recently, the activated triple bond donor p-(N-propynoylaminotoluic acid (PATA gives excellent results when used for conjugations at submicromolar concentrations. Thus, we have designed and synthesized two biotin linkers, with different lengths equipped with this activated triple bond donor and we proceeded with biotinylation of oligonucleotides and C-myc peptide both in solution and on solid support with excellent yields of conversion.