WorldWideScience

Sample records for n-acetyl 5-aminosalicylic acid

  1. NEW METABOLITES OF THE DRUG 5-AMINOSALICYLIC ACID .2. N-FORMYL-5-AMINOSALICYLIC ACID

    DEFF Research Database (Denmark)

    Tjornelund, J.; Hansen, S. H.; Cornett, Claus

    1991-01-01

    1. A new metabolite of the drug 5-aminosalicylic acid (5-ASA) has been found in urine from pigs and in plasma of humans. The metabolite has been isolated from pig urine using an XAD-2 column and purified using preparative h.p.l.c. 2. The metabolite has been identified as N-formyl-5-ASA (5-formami...

  2. Synthesis and structural elucidation of glutathione and N-aceyl-cysteine conjugates of 5-aminosalicylic acid

    DEFF Research Database (Denmark)

    Jensen, J.; Cornett, Claus; Olsen, C. E.

    1993-01-01

    The ability of 5-aminosalicylic acid (5-ASA) to be oxidized to a quinone monoimine compound capable of conjugating with nucleophilic compounds such as N-acetyl-cysteine (NAC) and glutathione (GSH) has been investigated in vitro. Three isomeric conjugates of 5-ASA and NAC as well as three isomeric...... conjugates of 5-ASA and GSH were found to be formed. 5-ASA was initially oxidized by PbO2 in a solution of TRIS-HCl buffer pH 9.3 followed by the in situ addition of N-acetyl-cysteine or glutathione to the oxidized 5-ASA at pH 7.5. The resulting conjugates were N-acetylated at the aromatic amino group...... to investigate whether such conjugates are excreted in the urine from persons treated with 5-ASA. The N-acetyl-cysteine conjugates could be detected by fluorescense, which resulted in low detection limits ranging from 0.02 mug to 0.06 mug per ml corresponding to the transformation of about 0.003% of the daily...

  3. Inhibitory Effect of Flavonoids on the Efflux of -Acetyl 5-Aminosalicylic Acid Intracellularly Formed in Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Shin Yoshimura

    2009-01-01

    Full Text Available -acetyl 5-aminosalicylic acid (5-AcASA that was intracellularly formed from 5-aminosalicylic acid (5-ASA at 200 M was discharged 5.3, 7.1, and 8.1-fold higher into the apical site than into the basolateral site during 1, 2, and 4-hour incubations, respectively, in Caco-2 cells grown in Transwells. The addition of flavonols (100 M such as fisetin and quercetin with 5-ASA remarkably decreased the apically directed efflux of 5-AcASA. When 5-ASA (200 M was added to Caco-2 cells grown in tissue culture dishes, the formation of 5-AcASA decreased, and, in addition, the formed 5-AcASA was found to be accumulated within the cells in the presence of such flavonols. Thus, the decrease in 5-AcASA efflux by such flavonols was attributed not only to the inhibition of -acetyl-conjugation of 5-ASA but to the predominant cellular accumulation of 5-AcASA. Various flavonoids also had both of the effects with potencies that depend on their specific structures. The essential structure of flavonoids was an absence of a hydroxyl substitution at the C5 position on the A-ring of flavone structure for the inhibitory effect on the -acetyl-conjugation of 5-ASA, and a presence of hydroxyl substitutions at the C3 or C4 position on the B-ring of flavone structure for the promoting effect on the cellular accumulation of 5-AcASA. Both the decrease in 5-AcASA apical efflux and the increase in 5-AcASA cellular accumulation were also caused by MK571 and indomethacin, inhibitors of MRPs, but not by quinidine, cyclosporin A, P-glycoprotein inhibitors, and mitoxantrone, a BCRP substrate. These results suggest that certain flavonoids suppress the apical efflux of 5-AcASA possibly by inhibiting MRPs pumps located on apical membranes in Caco-2 cells.

  4. Determination of the pK values of 5-aminosalicylic acid and N-acetylaminosalicylic acid and comparison of the pH dependent lipid-water partition coefficients of sulphasalazine and its metabolites.

    Science.gov (United States)

    Allgayer, H; Sonnenbichler, J; Kruis, W; Paumgartner, G

    1985-01-01

    Sulphasalazine (SASP), used in the treatment of inflammatory bowel disease, is split into sulphapyridine (SP) and 5-aminosalicylic acid (5-ASA) in the colon. Lower plasma levels of SASP and 5-ASA as compared to those of SP may be due to different absorption rates from the colon because of different pK values and pH dependent lipid-water partition coefficients. In this study we determined the pK values of 5-ASA and its major metabolite, N-acetyl amino-salicylic acid (AcASA), by 13C-NMR spectroscopy and compared the pH dependent apparent benzene-water partition coefficients (Papp) of SASP, SP and 5-ASA with respect to their different plasma levels. The COOH group of 5-ASA had a pK value of 3.0, the -NH3+ group had 6.0, the -OH group 13.9; the -COOH group of AcASA had 2.7 and the -OH group 12.9; The Papp of SASP (0.042 +/- 0.004) and 5-ASA (0.059 +/- 0.01) were significantly lower than that of SP (0.092 +/- 0.03) (at pH 5.5).

  5. Effect of 5-aminosalicylic acid on myocardial capillary permeability following ischaemia and reperfusion

    DEFF Research Database (Denmark)

    Hansen, P R; Svendsen, Jesper Hastrup; Høst, N B

    1992-01-01

    The aim was to evaluate the effect of 5-aminosalicylic acid on myocardial capillary permeability for small hydrophilic molecules after ischaemia and reperfusion.......The aim was to evaluate the effect of 5-aminosalicylic acid on myocardial capillary permeability for small hydrophilic molecules after ischaemia and reperfusion....

  6. Application of 5-Aminosalicylic Acid Preparations in the Treatment of Inflammatory Bowel Diseases

    Directory of Open Access Journals (Sweden)

    Yu.M. Stepanov

    2016-09-01

    Full Text Available The article is devoted to the comparative characterization of different derivatives of 5-aminosalicylic acid. Researches of the past decades have changed the presentation of the potential use of aminosalicylates in the therapy of various inflammatory bowel diseases. In connection with unknown etiology of Crohn’s disease and ulcerative colitis, there is no causal treatment of these diseases. The essence of treatment is reduced to inhibition of inflammatory activity during exacerbations and a course of preventive treatment. Numerous studies over the past 20 years have shown that the basis of basic treatment for nonspecific chronic inflammatory bowel diseases is 5-aminosalicylic acid drugs, or salicylates. When choosing the dosage form, you should take into account the differences between mesalazine preparations depending on the type of the coat. It is shown that in terms of pharmacokinetics, the most effective mesalazine dosage forms for the treatment of ulcerative colitis and Crohn’s disease with lesions of the colon are enteric coated tablets that provides a pH-dependent gradual release of 5-aminosalicylic acid throughout the entire colon. 5-aminosalicylic acid drugs available today on the pharmaceutical market are able to control the course of ulcerative colitis and Crohn’s disease with lesions of the colon in the majority of patients. The use of 5-aminosalicylic acid preparations is not limited to the treatment of ulcerative colitis and Crohn’s disease. The drug is widely used in other diseases of the bowel, such as diverticular disease of the colon, colitis banal, radiation damages of the colon, as well as to treat common diseases, such as irritable bowel syndrome. The study, which was conducted in the department bowel disease of the State Institution «Institute of Gastroenterology» for 2 years, showed a positive effect of 20-day treatment with Mesacol in uncomplicated diverticular disease. The use of Mesacol at a dose of 1,600 mg

  7. Possible interactions between dietary fibres and 5-aminosalicylic acid [corrected

    DEFF Research Database (Denmark)

    Henriksen, Camilla; Hansen, Steen Honoré; Nordgaard-Lassen, Inge

    2010-01-01

    BACKGROUND: Potentially, a binding of 5-aminosalicylic acid (5-ASA) to dietary fibres could reduce the systemic absorption and increase the intraluminal amount [corrected]. The purposes of the study were to investigate if: (1) dietary fibres can bind 5-ASA in vitro, and (2) consumption of dietary......H. The effect might be clinically relevant in patients with UC treated with 5-ASA....

  8. Amino acid derivatives of 5-ASA as novel prodrugs for intestinal drug delivery.

    Science.gov (United States)

    Clerici, C; Gentili, G; Boschetti, E; Santucci, C; Aburbeh, A G; Natalini, B; Pellicciari, R; Morelli, A

    1994-12-01

    In an attempt to obtain site-specific delivery of 5-ASA in the intestinal tract, we have determined the extent of absorption and metabolism of a number of novel 5-ASA derivatives, namely, (N-L-glutamyl)-amino-2-salicylic acid (1), (N-L-aspartyl)-amino-2-salicylic-acid (2), 5-aminosalicyl-L-proline-L-leucine (3), and 5-(N-L-glutamyl)-aminosalicyl-L-proline-L-leucine (4), which are selectively cleaved by intestinal brush border aminopeptidase A and carboxypeptidases. These novel prodrugs, 5-ASA, and sulfasalazine were administered to adult Fisher rats (N = 30) and to animals that had undergone prior colostomy (N = 30). Urine and feces were collected at timed intervals for 48 hr and the metabolites, 5-ASA, and N-acetyl-5-ASA were measured by high-performance liquid chromatography. The absorption and metabolism of all compounds were essentially identical in colostomized and normal animals. 5-ASA exhibited a rapid proximal intestinal absorption as evidenced by the high cumulative urinary excretion (> 65%) and low fecal excretion. Sulfasalazine, as expected, exhibited a lower urinary recovery (metabolite. The novel glutamate and aspartate derivatives (1 and 2) behaved similarly to sulfasalazine, while administration of the proline-leucine derivative (3) resulted in urinary and fecal recovery values intermediate with respect to those observed with 5-ASA and sulfasalazine. 5-(N-L-Glutamyl)-aminosalicyl-L-proline-L-leucine yielded the highest fecal recovery of 5-ASA and its N-acetyl derivative, indicating a more efficient delivery to the distal bowel. Amino acid derivatives of 5-ASA appear to be potentially useful prodrugs for the site-specific delivery of 5-ASA to different regions of the intestinal tract.

  9. Real-time in vitro dissolution of 5-aminosalicylic acid from single ethyl cellulose coated extrudates studied by UV imaging

    DEFF Research Database (Denmark)

    Gaunø, Mette Høg; Vilhelmsen, Thomas; Larsen, Crilles Casper

    2013-01-01

    The purpose of this study was to investigate the in vitro release of 5-aminosalicylic acid from single extrudates by UV imaging and to explore the technique as a visualization tool for detecting film coating defects on extrudates coated with a thin ethyl cellulose layer. 5-Aminosalicylic acid ext...

  10. Synthesis and evaluation of mutual azo prodrug of 5-aminosalicylic acid linked to 2-phenylbenzoxazole-2-yl-5-acetic acid in ulcerative colitis

    Directory of Open Access Journals (Sweden)

    Jilani JA

    2013-07-01

    Full Text Available Jamal A Jilani,1 Maha Shomaf,2 Karem H Alzoubi3 1Department of Medicinal Chemistry and Pharmacognosy, Jordan University of Science and Technology, Irbid, Jordan; 2Department of Pathology, Jordan University, Amman, Jordan; 3Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan Abstract: In this study, the syntheses of 4-aminophenylbenzoxazol-2-yl-5-acetic acid, (an analogue of a known nonsteroidal anti-inflammatory drug [NSAID] and 5-[4-(benzoxazol-2-yl-5-acetic acidphenylazo]-2-hydroxybenzoic acid (a novel mutual azo prodrug of 5-aminosalicylic acid [5-ASA] are reported. The structures of the synthesized compounds were confirmed using infrared (IR, hydrogen-1 nuclear magnetic resonance (1H NMR, and mass spectrometry (MS spectroscopy. Incubation of the azo compound with rat cecal contents demonstrated the susceptibility of the prepared azo prodrug to bacterial azoreductase enzyme. The azo compound and the 4-aminophenylbenzoxazol-2-yl-5-acetic acid were evaluated for inflammatory bowel diseases, in trinitrobenzenesulfonic acid (TNB-induced colitis in rats. The synthesized diazo compound and the 4-aminophenylbenzoxazol-2-yl-5-acetic acid were found to be as effective as 5-aminosalicylic acid for ulcerative colitis. The results of this work suggest that the 4-aminophenylbenzoxazol-2-yl-5-acetic acid may represent a new lead for treatment of ulcerative colitis. Keywords: benzoxazole acetic acid, azo prodrug, colon drug delivery

  11. Failure of 5-aminosalicylic acid enemas to improve chronic radiation proctitis

    International Nuclear Information System (INIS)

    Baum, C.A.; Biddle, W.L.; Miner, P.B. Jr.

    1989-01-01

    Radiation proctitis is a well-known complication of abdominal and pelvic radiation. Conventional medical and surgical treatment often is disappointing. 5-Aminosalicylic acid (5-ASA) is the active component in sulfasalazine and is effective in the treatment of distal ulcerative colitis. Four patients with radiation proctitis were treated with 4 g 5-ASA by enema nightly for two to six months. Patients were seen monthly, interviewed, and a sigmoidoscopic exam performed. No change was seen in the degree of mucosal inflammation on follow-up sigmoidoscopic exams. Three patients noted no change in their symptoms of bleeding, pain, or tenesmus. One patient noted initial improvement, but this was not sustained. 5-ASA enemas do not appear to be effective in the treatment of radiation proctitis

  12. Molecular Modeling of Adsorption of 5-Aminosalicylic Acid in the Halloysite Nanotube

    Directory of Open Access Journals (Sweden)

    Ana Borrego-Sánchez

    2018-02-01

    Full Text Available Halloysite nanotubes are becoming interesting materials for drug delivery. The knowledge of surface interactions is important for optimizing this application. The aim of this work is to perform a computational study of the interaction between 5-aminosalicylic acid (5-ASA drug and halloysite nanotubes for the development of modified drug delivery systems. The optimization of this nanotube and the adsorption of different conformers of the 5-ASA drug on the internal surface of halloysite in the presence and absence of water were performed using quantum mechanical calculations by using Density Functional Theory (DFT and methods based on atomistic force fields for molecular modeling, respectively.

  13. Severe side effects with the application of Mesalazine (5-aminosalicylic acid) during radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Freund, U.; Siems, H.; Wannenmacher, M.; Schoelmerich, J.; Kluge, F.; Schaefer, H.E.

    1987-10-01

    In a prospective randomized placebo controlled double blind study, the prophylactic effect of Mesalazine (5-aminosalicylic acid, 5-ASA) as suppositories (3x250 mg/day) on radiation induced proctitis during radiotherapy for prostatic carcinoma was studied. The study ended when 16 patients had been included (5-ASA: Eight, placebo: Eight) because of severe side effects in the 5-ASA group. 75% of patients treated with 5-ASA reported symptoms of a severe proctitis while only one patient in the placebo group had similar complaints. The application of Mesalazine as suppositories is not useful in preventing radiation induced proctitis during radiotherapy of prostate carcinoma.

  14. Severe side effects with the application of Mesalazine (5-aminosalicylic acid) during radiotherapy

    International Nuclear Information System (INIS)

    Freund, U.; Siems, H.; Wannenmacher, M.; Schoelmerich, J.; Kluge, F.; Schaefer, H.E.

    1987-01-01

    In a prospective randomized placebo controlled double blind study, the prophylactic effect of Mesalazine (5-aminosalicylic acid, 5-ASA) as suppositories (3x250 mg/day) on radiation induced proctitis during radiotherapy for prostatic carcinoma was studied. The study ended when 16 patients had been included (5-ASA: Eight, placebo: Eight) because of severe side effects in the 5-ASA group. 75% of patients treated with 5-ASA reported symptoms of a severe proctitis while only one patient in the placebo group had similar complaints. The application of Mesalazine as suppositories is not useful in preventing radiation induced proctitis during radiotherapy of prostate carcinoma. (orig.) [de

  15. UV-irradiation potentiates the antimutagenicity of p-aminobenzoic and p-aminosalicylic acids in Salmonella typhimurium

    International Nuclear Information System (INIS)

    Gichner, T.; Baburek, I.; Veleminsky, J.; Kappas, A.

    1991-01-01

    UV-irradiation (254 nm, 10 or 20 J/cm 2 ) of p-aminobenzoic acid (PABA) and p-aminosalicylic acid (NaPAS) potentiated their antimuta-genicity towards N-methyl-N'-nitro-N-nitrosoguanide metagenesis in Salmonella typhimurium. Their inhibitory action towards the formation of mutagen N-methyl-N-mitrosourea from the nitrosation mixture of N-methylurea and nitrite was also increased by UV-irradiation. In contrast, UV-irradiated PABA exhibited no inhibitory effects towards the mutagenicity of sodium azide or 3-azidoglycerol. Neither PABA nor NaPAS not their UV-irradiation products were themselves mutagenic in the Ames assay. 13 refs.; 5 tabs

  16. Epstein-Barr virus is related with 5-aminosalicylic acid, tonsillectomy, and CD19(+) cells in Crohn's disease.

    Science.gov (United States)

    Andreu-Ballester, Juan C; Gil-Borrás, Rafael; García-Ballesteros, Carlos; Catalán-Serra, Ignacio; Amigo, Victoria; Fernández-Fígares, Virgina; Cuéllar, Carmen

    2015-04-21

    To study anti-Epstein-Barr virus (EBV) IgG antibodies in Crohn's disease in relation to treatment, immune cells, and prior tonsillectomy/appendectomy. This study included 36 CD patients and 36 healthy individuals (controls), and evaluated different clinical scenarios (new patient, remission and active disease), previous mucosa-associated lymphoid tissue removal (tonsillectomy and appendectomy) and therapeutic regimens (5-aminosalicylic acid, azathioprine, anti-tumor necrosis factor, antibiotics, and corticosteroids). T and B cells subsets in peripheral blood were analyzed by flow cytometry (markers included: CD45, CD4, CD8, CD3, CD19, CD56, CD2, CD3, TCRαβ and TCRγδ) to relate with the levels of anti-EBV IgG antibodies, determined by enzyme-linked immunosorbent assay. The lowest anti-EBV IgG levels were observed in the group of patients that were not in a specific treatment (95.4 ± 53.9 U/mL vs 131.5 ± 46.2 U/mL, P = 0.038). The patients that were treated with 5-aminosalicylic acid showed the highest anti-EBV IgG values (144.3 U/mL vs 102.6 U/mL, P = 0.045). CD19(+) cells had the largest decrease in the group of CD patients that received treatment (138.6 vs 223.9, P = 0.022). The analysis of anti-EBV IgG with respect to the presence or absence of tonsillectomy showed the highest values in the tonsillectomy group of CD patients (169.2 ± 20.7 U/mL vs 106.1 ± 50.3 U/mL, P = 0.002). However, in the group of healthy controls, no differences were seen between those who had been tonsillectomized and subjects who had not been operated on (134.0 ± 52.5 U/mL vs 127.7 ± 48.1 U/mL, P = 0.523). High anti-EBV IgG levels in CD are associated with 5-aminosalicylic acid treatment, tonsillectomy, and decrease of CD19(+) cells.

  17. Identification of major degradation products of 5-aminosalicylic acid formed in aqueous solutions and in pharmaceuticals

    DEFF Research Database (Denmark)

    Jensen, J.; Cornett, Claus; Olsen, C. E.

    1992-01-01

    of polymeric species by oxidative self-coupling of 5-ASA moieties. These results indicate that the degradation of 5-ASA follows the same mechanism as observed for the autooxidation of 4-aminophenol and 1,4-phenylenediamine. Some of the identified degradation products were found in 5-ASA......The formation of four major degradation products of 5-aminosalicylic acid (5-ASA) in buffered solutions at pH 7.0 was demonstrated by gradient HPLC analysis. The isolation and structural elucidation of the resulting degradation products showed that the degradation of 5-ASA led to the formation...

  18. Production of N-acetyl-D-neuraminic acid using two sequential enzymes overexpressed as double-tagged fusion proteins

    Directory of Open Access Journals (Sweden)

    Cheng Chung-Hsien

    2009-07-01

    Full Text Available Abstract Background Two sequential enzymes in the production of sialic acids, N-acetyl-D-glucosamine 2-epimerase (GlcNAc 2-epimerase and N-acetyl-D-neuraminic acid aldolase (Neu5Ac aldolase, were overexpressed as double-tagged gene fusions. Both were tagged with glutathione S-transferase (GST at the N-terminus, but at the C-terminus, one was tagged with five contiguous aspartate residues (5D, and the other with five contiguous arginine residues (5R. Results Both fusion proteins were overexpressed in Escherichia coli and retained enzymatic activity. The fusions were designed so their surfaces were charged under enzyme reaction conditions, which allowed isolation and immobilization in a single step, through a simple capture with either an anionic or a cationic exchanger (Sepharose Q or Sepharose SP that electrostatically bound the 5D or 5R tag. The introduction of double tags only marginally altered the affinity of the enzymes for their substrates, and the double-tagged proteins were enzymatically active in both soluble and immobilized forms. Combined use of the fusion proteins led to the production of N-acetyl-D-neuraminic acid (Neu5Ac from N-acetyl-D-glucosamine (GlcNAc. Conclusion Double-tagged gene fusions were overexpressed to yield two enzymes that perform sequential steps in sialic acid synthesis. The proteins were easily immobilized via ionic tags onto ionic exchange resins and could thus be purified by direct capture from crude protein extracts. The immobilized, double-tagged proteins were effective for one-pot enzymatic production of sialic acid.

  19. N-Acetyl-9-O-L-lactylneuraminic acid, a new acylneuraminic acid from bovine submandibular gland

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Schauer, R.; Haverkamp, J.; Wember, M.; Kamerling, J.P.

    1976-01-01

    The acylneuraminic acid fraction, obtained on mild acid hydrolysis of glycoproteins from bovine submandibular glands, contains approximately 2 % N-acetyl-9-O-l-lactylneuraminic acid. The compound has been isolated and purified by ion-exchange and cellulose column chromatography. The structure has

  20. Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles.

    Science.gov (United States)

    Mladenovska, K; Raicki, R S; Janevik, E I; Ristoski, T; Pavlova, M J; Kavrakovski, Z; Dodov, M G; Goracinova, K

    2007-09-05

    Chitosan-Ca-alginate microparticles for colon-specific delivery and controlled release of 5-aminosalicylic acid after peroral administration were prepared using spray drying method followed by ionotropic gelation/polyelectrolyte complexation. Physicochemical characterization pointed to the negatively charged particles with spherical morphology having a mean diameter less than 9 microm. Chitosan was localized dominantly in the particle wall, while for alginate, a homogeneous distribution throughout the particles was observed. (1)H NMR, FTIR, X-ray and DSC studies indicated molecularly dispersed drug within the particles with preserved stability during microencapsulation and in simulated in vivo drug release conditions. In vitro drug release studies carried out in simulated in vivo conditions in respect to pH, enzymatic and salt content confirmed the potential of the particles to release the drug in a controlled manner. The diffusional exponents according to the general exponential release equation indicated anomalous (non-Fickian) transport in 5-ASA release controlled by a polymer relaxation, erosion and degradation. Biodistribution studies of [(131)I]-5-ASA loaded chitosan-Ca-alginate microparticles, carried out within 2 days after peroral administration to Wistar male rats in which TNBS colitis was induced, confirmed the dominant localization of 5-ASA in the colon with low systemic bioavailability.

  1. Kinetic characterisation of arylamine N-acetyltransferase from Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Sim Edith

    2007-03-01

    Full Text Available Abstract Background Arylamine N-acetyltransferases (NATs are important drug- and carcinogen-metabolising enzymes that catalyse the transfer of an acetyl group from a donor, such as acetyl coenzyme A, to an aromatic or heterocyclic amine, hydrazine, hydrazide or N-hydroxylamine acceptor substrate. NATs are found in eukaryotes and prokaryotes, and they may also have an endogenous function in addition to drug metabolism. For example, NAT from Mycobacterium tuberculosis has been proposed to have a role in cell wall lipid biosynthesis, and is therefore of interest as a potential drug target. To date there have been no studies investigating the kinetic mechanism of a bacterial NAT enzyme. Results We have determined that NAT from Pseudomonas aeruginosa, which has been described as a model for NAT from M. tuberculosis, follows a Ping Pong Bi Bi kinetic mechanism. We also describe substrate inhibition by 5-aminosalicylic acid, in which the substrate binds both to the free form of the enzyme and the acetyl coenzyme A-enzyme complex in non-productive reaction pathways. The true kinetic parameters for the NAT-catalysed acetylation of 5-aminosalicylic acid with acetyl coenzyme A as the co-factor have been established, validating earlier approximations. Conclusion This is the first reported study investigating the kinetic mechanism of a bacterial NAT enzyme. Additionally, the methods used herein can be applied to investigations of the interactions of NAT enzymes with new chemical entities which are NAT ligands. This is likely to be useful in the design of novel potential anti-tubercular agents.

  2. Radiolysis of N-acetyl amino acids as model compounds for radiation degradation of polypeptides

    International Nuclear Information System (INIS)

    Garrett, R.W.; Hill, D.J.T.; Ho, S.Y.; O'Donnell, J.H.; O'Sullivan, P.W.; Pomery, P.J.

    1982-01-01

    Radiation chemical yields of (i) the volatile radiolysis products and (ii) the trapped free radicals from the γ-radiolysis of the N-acetyl derivatives of glycine, L-alanine, L-valine, L-phenylalanine and L-tyrosine in the polycrystalline state have been determined at room temperature (303 K). Carbon dioxide was found to be the major molecular product for all these compounds with G(CO 2 ) varying from 0.36 for N-acetyl-L-tyrosine to 8 for N-acetyl-L-valine. There was evidence for some scission of the N-Csub(α) bond, indicated by the production of acetamide and the corresponding aliphatic acid, but the deamination reaction was found to be of much lesser importance than the decarboxylation reaction. A protective effect of the aromatic ring in N-acetyl-L-phenylalanine and in N-acetyl-L-tyrosine was indicated by the lower yields of volatile products for these compounds. The yields of trapped free radicals were found to vary with the nature of the amino acid side chain, increasing with chain length and chain branching. The radical yields were decreased by incorporation of an aromatic moiety in the side chain, this effect being greater for the tyrosyl side chain than for the phenyl side chain. The G(R) values showed a good correlation with G(CO 2 ) indicating that a common reaction may be involved in radical production and carbon dioxide formation. (author)

  3. 5-Aminosalicylates reduce the risk of colorectal neoplasia in patients with ulcerative colitis: an updated meta-analysis.

    Directory of Open Access Journals (Sweden)

    Li-Na Zhao

    Full Text Available BACKGROUND: Although the chemopreventive effect of 5-aminosalicylates on patients with ulcerative colitis has been extensively studied, the results remain controversial. This updated review included more recent studies and evaluated the effectiveness of 5-aminosalicylates use on colorectal neoplasia prevention in patients with ulcerative colitis. METHODS: Up to July 2013, we searched Medline, Embase, Web of Science, Cochrane CENTRAL, and SinoMed of China for all relevant observational studies (case-control and cohort about the effect of 5-aminosalicylates on the risk of colorectal neoplasia among patients with ulcerative colitis. The Newcastle-Ottawa Scale was used to assess the quality of studies. Adjusted odds ratios (ORs were extracted from each study. A random-effects model was used to generate pooled ORs and 95% confidence intervals (95%CI. Publication bias and heterogeneity were assessed. RESULTS: Seventeen studies containing 1,508 cases of colorectal neoplasia and a total of 20,193 subjects published from 1994 to 2012 were analyzed. 5-aminosalicylates use was associated with a reduced risk of colorectal neoplasia in patients with ulcerative colitis (OR 0.63; 95%CI 0.48-0.84. Pooled OR of a higher average daily dose of 5-aminosalicylates (sulfasalazine ≥ 2.0 g/d, mesalamine ≥ 1.2 g/d was 0.51 [0.35-0.75]. Pooled OR of 5-aminosalicylates use in patients with extensive ulcerative colitis was 1.00 [0.53-1.89]. CONCLUSION: Our pooled results indicated that 5-aminosalicylates use was associated with a reduced risk of colorectal neoplasia in patients with ulcerative colitis, especially in the cases with a higher average daily dose of 5-aminosalicylates use. However, the chemopreventive benefit of 5-aminosalicylates use in patients with extensive ulcerative colitis was limited.

  4. [A case of acute pancreatitis caused by 5-aminosalicylic acid suppositories in a patient with ulcerative colitis].

    Science.gov (United States)

    Kim, Kook Hyun; Kim, Tae Nyeun; Jang, Byung Ik

    2007-12-01

    Oral 5-aminosalicylic acid (5-ASA) has been known as a first-choice drug for ulcerative colitis. However, hypersensitivity reactions, including pancreatitis, hepatitis, and skin rash, have been reported with 5-ASA. Topical formulations of 5-ASA like suppositories have been rarely reported to induce adverse reactions because of their limited absorption rate. We recently experienced a case of acute pancreatitis caused by 5-ASA suppositories in a patient with ulcerative colitis. A 26-year-old male was admitted with abdominal pain and diagnosed as ulcerative colitis. Acute pancreatitis occurred soon after 24 hours of treatment with oral mesalazine. Drug-induced pancreatitis was suspected and administration of mesalazine was discontinued. Then 5-ASA suppositories were started instead of oral mesalazine. Twenty-four hours after taking 5-ASA suppositories, he experienced severe abdominal pain, fever, and elevation of amylase levels. The suppositories were immediately stopped and symptoms resolved over next 48 hours. Herein, we suggest that, in patients treated with 5-ASA suppositories who complain of severe abdominal pain, drug-induced pancreatitis should be suspected.

  5. Growth advantage of Escherichia coli O104:H4 strains on 5-N-acetyl-9-O-acetyl neuraminic acid as a carbon source is dependent on heterogeneous phage-Borne nanS-p esterases.

    Science.gov (United States)

    Saile, Nadja; Schwarz, Lisa; Eißenberger, Kristina; Klumpp, Jochen; Fricke, Florian W; Schmidt, Herbert

    2018-06-01

    Enterohemorrhagic E. coli (EHEC) are serious bacterial pathogens which are able to cause a hemorrhagic colitis or the life-threatening hemolytic-uremic syndrome (HUS) in humans. EHEC strains can carry different numbers of phage-borne nanS-p alleles that are responsible for acetic acid release from mucin from bovine submaxillary gland and 5-N-acetyl-9-O-acetyl neuraminic acid (Neu5,9Ac 2 ), a carbohydrate present in mucin. Thus, Neu5,9Ac 2 can be transformed to 5-N-acetyl neuraminic acid, an energy source used by E. coli strains. We hypothesize that these NanS-p proteins are involved in competitive growth of EHEC in the gastrointestinal tract of humans and animals. The aim of the current study was to demonstrate and characterize the nanS-p alleles of the 2011 E. coli O104:H4 outbreak strain LB226692 and analyze whether the presence of multiple nanS-p alleles in the LB226692 genome causes a competitive growth advantage over a commensal E. coli strain. We detected and characterized five heterogeneous phage-borne nanS-p alleles in the genome of E. coli O104:H4 outbreak strain LB226692 by in silico analysis of its genome. Furthermore, successive deletion of all nanS-p alleles, subsequent complementation with recombinant NanS-p13-His, and in vitro co-culturing experiments with the commensal E. coli strain AMC 198 were conducted. We could show that nanS-p genes of E. coli O104:H4 are responsible for growth inhibition of strain AMC 198, when Neu5,9Ac 2 was used as sole carbon source in co-culture. The results of this study let us suggest that multiple nanS-p alleles may confer a growth advantage by outcompeting other E. coli strains in Neu5,9Ac 2 rich environments, such as mucus in animal and human gut. Copyright © 2018 Elsevier GmbH. All rights reserved.

  6. Antioxidant effect of vitamin E and 5-aminosalicylic acid on acrylamide induced kidney injury in rats

    Directory of Open Access Journals (Sweden)

    Nisreen A. Rajeh

    2017-02-01

    Full Text Available exposure of acrylamide and to study the protective effect of 5-Aminosalicylic acid (5-ASA and Vitamin E (vit-Eon Acrylamide (ACR induced renal toxicity. Methods: This study was conducted at King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia, between August and November 2015. A total of 49 adult Wistar rats (250 ± 20g aged 60 days were kept in a controlled environment and used in the present study. The rats were divided into 7 groups (control, ACR alone, ACR+5-ASA, ACR+vit-E, ACR+ASA+vit-E, vit-E alone, and ASA alone. After 5 days of ACR oral gavage treatment, the rats were observed for 24 hours then killed. Histopathology for the kidney and lactate dehydrogenase assay were carried out. Results: Acrylamide produced significant pathological changes in the kidney with acute tubular necrosis in the distal tubules that could be reversed by concomitant injection of rat with 5-ASA. Together with vitamin E, 5-ASA, showed maximum renal protection. No statistically significant difference was observed in either body weights or lactate dehydrogenase activity of ACR treated rats. Conclusion: Acrylamide exposure leads to adverse clinical pathologies of renal tubules, which were reversed by a concomitant treatment with 5-ASA and vitamin-E

  7. Antioxidant effect of vitamin E and 5-aminosalicylic acid on acrylamide induced kidney injury in rats

    Science.gov (United States)

    Rajeh, Nisreen A.; Al-Dhaheri, Najlaa M.

    2017-01-01

    Objectives: To explore renal toxicity caused by sub-acute exposure of acrylamide and to study the protective effect of 5-Aminosalicylic acid (5-ASA) and Vitamin E (vit-E)on Acrylamide (ACR) induced renal toxicity. Methods: This study was conducted at King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia, between August and November 2015. A total of 49 adult Wistar rats (250 ± 20g) aged 60 days were kept in a controlled environment and used in the present study. The rats were divided into 7 groups (control, ACR alone, ACR+5-ASA, ACR+vit-E, ACR+ASA+vit-E, vit-E alone, and ASA alone). After 5 days of ACR oral gavage treatment, the rats were observed for 24 hours then killed. Histopathology for the kidney and lactate dehydrogenase assay were carried out. Results: Acrylamide produced significant pathological changes in the kidney with acute tubular necrosis in the distal tubules that could be reversed by concomitant injection of rat with 5-ASA. Together with vitamin E, 5-ASA, showed maximum renal protection. No statistically significant difference was observed in either body weights or lactate dehydrogenase activity of ACR treated rats. Conclusion: Acrylamide exposure leads to adverse clinical pathologies of renal tubules, which were reversed by a concomitant treatment with 5-ASA and vitamin-E PMID:28133684

  8. cyclo-Tetrakis(μ-3-acetyl-4-methyl-1H-pyrazole-5-carboxylato-κ4N2,O3:N1,O5tetrakis[aquacopper(II] tetradecahydrate

    Directory of Open Access Journals (Sweden)

    Sergey Malinkin

    2011-09-01

    Full Text Available The title compound, [Cu4(C7H6N2O34(H2O4]·14H2O, a tetranuclear [2 × 2] grid-type complex with S4 symmetry, contains four CuII atoms which are bridged by four pyrazolecarboxylate ligand anions and are additionally bonded to a water molecule. Each CuII atom is coordinated by two O atoms of the carboxylate and acetyl groups, two pyrazole N atoms of doubly deprotonated 3-acetyl-4-methyl-1H-pyrazole-5-carboxylic acid and one O atom of a water molecule. The geometry at each CuII atom is distorted square-pyramidal, with the two N and two O atoms in the equatorial plane and O atoms in the axial positions. O—H...O hydrogen-bonding interactions additionally stabilize the structure. One of the uncoordinated water molecules shows half-occupancy.

  9. Drug-drug cocrystals of antituberculous 4-aminosalicylic acid: Screening, crystal structures, thermochemical and solubility studies.

    Science.gov (United States)

    Drozd, Ksenia V; Manin, Alex N; Churakov, Andrei V; Perlovich, German L

    2017-03-01

    Experimental multistage cocrystal screening of the antituberculous drug 4-aminosalicylic acid (PASA) has been conducted with a number of coformers (pyrazinamide (PYR), nicotinamide (NAM), isonicotinamide (iNAM), isoniazid (INH), caffeine (CAF) and theophylline (TPH)). The crystal structures of 4-aminosalicylic acid cocrystals with isonicotinamide ([PASA+iNAM] (2:1)) and methanol solvate with caffeine ([PASA+CAF+MeOH] (1:1:1)) have been determined by single X-ray diffraction experiments. For the first time for PASA cocrystals it has been found that the structural unit of the [PASA+iNAM] cocrystal (2:1) is formed by 2 types of heterosynthons: acid-pyridine and acid-amide. The desolvation study of the [PASA+CAF+MeOH] cocrystal solvate (1:1:1) has been conducted. The correlation models linking the melting points of the cocrystals with the melting points of the coformers used in this paper have been developed. The thermochemical and solubility properties for all the obtained cocrystals have been studied. Cocrystallization has been shown to lead not only to PASA solubility improving but also to its higher stability against the chemical decomposition. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Renal impairment in patients with inflammatory bowel disease: association with aminosalicylate therapy?

    NARCIS (Netherlands)

    Elseviers, M. M.; D'Haens, G.; Lerebours, E.; Plane, C.; Stolear, J. C.; Riegler, G.; Capasso, G.; van Outryve, M.; Mishevska-Mukaetova, P.; Djuranovic, S.; Pelckmans, P.; de Broe, M. E.

    2004-01-01

    In recent years, several case reports have been published suggesting an association between the use of 5-aminosalicylic acid (5-ASA) in patients with inflammatory bowel disease (IBD) and the development of chronic tubulo-interstitial nephritis. Apart from lesions associated to 5-ASA treatment,

  11. Acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase. Evidence for a transmembrane acetylation mechanism

    International Nuclear Information System (INIS)

    Bame, K.J.; Rome, L.H.

    1985-01-01

    The lysosomal membrane enzyme acetyl-CoA: alpha-glucosaminide N-acetyltransferase catalyzes the transfer of an acetyl group from acetyl-CoA to terminal alpha-linked glucosamine residues of heparan sulfate. The reaction mechanism was examined using highly purified lysosomal membranes from rat liver. The reaction was followed by measuring the acetylation of a monosaccharide acetyl acceptor, glucosamine. The enzyme reaction was optimal above pH 5.5, and a 2-3-fold stimulation of activity was observed when the membranes were assayed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicated that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. Further evidence to support this mechanism was provided by characterization of the enzyme half-reactions. Membranes incubated with acetyl-CoA and [ 3 H]CoA were found to produce acetyl-[ 3 H]CoA. This exchange was optimal at pH values above 7.0. Treating membranes with [ 3 H] acetyl-CoA resulted in the formation of an acetyl-enzyme intermediate. The acetyl group could then be transferred to glucosamine, forming [ 3 H]N-acetylglucosamine. The transfer of the acetyl group from the enzyme to glucosamine was optimal between pH 4 and 5. The results suggest that acetyl-CoA does not cross the lysosomal membrane. Instead, the enzyme is acetylated on the cytoplasmic side of the lysosome and the acetyl group is then transferred to the inside where it is used to acetylate heparan sulfate

  12. Lack of cross-reactivity between 5-aminosalicylic acid-based drugs: a case report and review of the literature.

    Science.gov (United States)

    Kung, Shiang-Ju; Choudhary, Cuckoo; McGeady, Stephen J; Cohn, John R

    2006-09-01

    5-Aminosalicylic acid (5-ASA)-containing drugs are the mainstay of therapy in inflammatory bowel disease, but adverse reactions to these medications are relatively common. Because there may be a lack of cross-reactivity among the various 5-ASA formulations, treatment with alternative preparations is sometimes possible even after an apparent allergic reaction to a 5-ASA product. To describe a patient with a possible allergy to 2 different 5-ASA drugs who tolerated a third. A 27-year-old man with Crohn disease developed a rash while taking mesalamine (Pentasa and Asacol). Treatment with 5-ASA products was discontinued, and 6-mercaptopurine and prednisone were prescribed. He then experienced multiorgan failure secondary to herpes simplex infection, which required discontinuation of the immunosuppressive therapy. After recovery from the acute infection, he underwent successful graded challenge with balsalazide. The patient continued treatment with balsalazide for 9 months, with good control of his inflammatory bowel disease and no adverse effects. Adverse reactions to 1 or more 5-ASA medications do not necessarily preclude the use of others in the same class. A treatment algorithm for patients with adverse reactions to 5-ASA is outlined based on the case report and review of the literature.

  13. Utilization by the isolated perfused rat liver of N-acetyl-D-(1-/sup 14/C)galactosamine and N-brace/sup 3/H)-acetyl-D-galactosamine for the biosynthesis of glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    MacNicoll, A D; Wusteman, F S; Powell, G M; Curtis, C G [University Coll., Cardiff (UK)

    1978-08-15

    The isolated perfused rat liver system has been used to monitor the utilization of N-(/sup 3/H)acetyl-D-galactosamine and N-acetyl-D-(1-/sup 14/C)galactosamine for the biosynthesis of radiolabeled glycoproteins, which are subsequently secreted into the plasma. Both radiolabels appear in a number of different glycoproteins, predominantly as sialic acid and N-acetylglucosamine. The ratio of labelled sialic acid to labelled N-acetylglucosamine varies for different glycoproteins, but the bulk of N-acetyl-D-galactosamine is incorporated without deacetylation.

  14. Purification and properties of an O-acetyl-transferase from Escherichia coli that can O-acetylate polysialic acid sequences

    International Nuclear Information System (INIS)

    Higa, H.; Varki, A.

    1986-01-01

    Certain strains of bacteria synthesize an outer polysialic acid (K1) capsule. Some strains of K1 + E.coli are also capable of adding O-acetyl-esters to the exocyclic hydroxyl groups of the sialic acid residues. Both the capsule and the O-acetyl modification have been correlated with differences in antigenicity and pathogenicity. The authors have developed an assay for an O-acetyl-transferase in E.coli that transfers O-[ 3 H]acetyl groups from [ 3 H]acetyl-Coenzyme A to colominic acid (fragments of the polysialic acid capsule). Using this assay, the enzyme was solubilized, and purified ∼ 600-fold using a single affinity chromatography step with Procion Red-A Agarose. The enzyme also binds to Coenzyme A Sepharose, and can be eluted with high salt or Coenzyme A. The partially purified enzyme has a pH optimum of 7.0 - 7.5, is unaffected by divalent cations, is inhibited by high salt concentrations, is inhibited by Coenzyme A (50% inhibition at 100 μM), and shows an apparent Km for colominic acid of 3.7 mM (sialic acid concentration). This enzyme could be involved in the O-acetyl +/- form variation seen in some strains of K1 + E.coli

  15. Thermal properties of some small peptides (N-acetyl-amino acid-N′-methylamides) with non-polar side groups

    International Nuclear Information System (INIS)

    Badea, Elena; Della Gatta, Giuseppe; Pałecz, Bartłomiej

    2014-01-01

    Highlights: • T fus and Δ fus H m of methylamides of N-acetyl substituted non-polar amino acids were measured. • T fus and Δ fus H m increased as a function of the molar mass of the alkyl side chains. • DL racemates showed T fus of about 40 °C lower than those of the corresponding pure L enantiomers. • Ideal solubility of solids at T = 298.15 K was estimated based on their T fus and Δ fus S m . - Abstract: Temperatures and molar enthalpies of fusion of a series of uncharged small peptides, namely the methylamides of N-acetyl substituted glycine, α-amino-butyric acid, alanine, valine, norvaline, leucine, isoleucine, norleucine, and proline, were measured by differential scanning calorimetry (d.s.c.), and molar entropies of fusion were derived. Both L- and DL-compunds were taken into account for the chiral molecules. No solid-to-solid transitions were detected from room temperature to fusion except for N-acetyl-N′-methyl alaninamide. Comparisons were made with the values for the N-acetyl amides of the corresponding amino acids previously reported. Both L enantiomers and DL racemates of α-aminobutyric acid, alanine, valine and isoleucine methylamides displayed temperatures of fusion sharply increasing as a function of molar mass, whereas much lower values, in countertendency with their molar mass increase, were found for proline and leucine methylamides. The racemic DL crystals showed temperatures of fusion of about 40 °C lower than those of the corresponding pure L enantiomers, except for proline and leucine derivatives. The enthalpies and entropies of fusion also varied as a function of molar mass following a similar trend with that of temperatures of fusion, except for alanine derivatives which showed lower values than expected. The values of ideal solubility of solids at T = 298.15 K were estimated based on their temperatures and molar entropies of fusion. Results were discussed with reference to the packing patterns based on hydrogen bonding and

  16. Pharmacokinetics in Wistar Rats of 5-[(4-Carboxybutanoyl)Amino]-2-Hydroxybenzoic Acid: A Novel Synthetic Derivative of 5-Aminosalicylic Acid (5-ASA) with Possible Anti-Inflammatory Activity

    Science.gov (United States)

    Correa-Basurto, José; Rosales Hernández, Martha Cecilia; Padilla Martínez, Itzia Irene; Mendieta-Wejebe, Jessica Elena

    2016-01-01

    5-[(4-carboxybutanoyl)amino]-2-hydroxybenzoic acid (C2) is a novel synthetic derivative of 5-aminosalicylic acid (5-ASA), which is currently being evaluated ex vivo as an anti-inflammatory agent and has shown satisfactory results. This study aimed to obtain the pharmacokinetic profiles, tissue distribution and plasma protein binding of C2 in Wistar Rats. Additionally, an HPLC method was developed and validated to quantify C2 in rat plasma. The pharmacokinetic profiles of intragastric, intravenous and intraperitoneal administration routes at singles doses of 100, 50, and 100 mg/kg, respectively, were studied in Wistar rats. The elimination half-life of intravenously administered C2 was approximately 33 min. The maximum plasma level of C2 was reached approximately 24 min after intragastric administration, with a Cmax value of 2.5 g/mL and an AUCtot value of 157 μg min-1/mL; the oral bioavailability was approximately 13%. Following a single intragastric or oral dose (100 mg/kg), C2 was distributed and detected in all examined tissues (including the brain and colon). The results showed that C2 accumulates over time. The plasma protein binding results indicated that the unbound fraction of C2 at concentrations of 1 to 20 μg/mL ranged from 89.8% to 92.5%, meaning that this fraction of C2 is available to cross tissues. Finally, the blood-plasma partitioning (BP ratio) of C2 in rat plasma was 0.71 and 0.6 at concentrations of 5 and 10 μg/mL, respectively, which indicates that C2 is free in the plasmatic phase and not inside blood cells. The results of this study suggest that a fraction of the administered C2 dose is absorbed in the stomach, and the fraction that is not absorbed reaches the small intestine and colon. This distribution constitutes the main advantage of C2 compared with 5-ASA for the treatment of ulcerative colitis (UC) and Crohn's disease (CD). PMID:27454774

  17. Lifespan extension and increased resistance to environmental stressors by N-Acetyl-L-Cysteine in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Seung-Il Oh

    2015-05-01

    Full Text Available OBJECTIVE: This study was performed to determine the effect of N-acetyl-L-cysteine, a modified sulfur-containing amino acid that acts as a strong cellular antioxidant, on the response to environmental stressors and on aging in C. elegans. METHOD: The survival of worms under oxidative stress conditions induced by paraquat was evaluated with and without in vivo N-acetyl-L-cysteine treatment. The effect of N-acetyl-L-cysteine on the response to other environmental stressors, including heat stress and ultraviolet irradiation (UV, was also monitored. To investigate the effect on aging, we examined changes in lifespan, fertility, and expression of age-related biomarkers in C. elegans after N-acetyl-L-cysteine treatment. RESULTS: Dietary N-acetyl-L-cysteine supplementation significantly increased resistance to oxidative stress, heat stress, and UV irradiation in C. elegans. In addition, N-acetyl-L-cysteine supplementation significantly extended both the mean and maximum lifespan of C. elegans. The mean lifespan was extended by up to 30.5% with 5 mM N-acetyl-L-cysteine treatment, and the maximum lifespan was increased by 8 days. N-acetyl-L-cysteine supplementation also increased the total number of progeny produced and extended the gravid period of C. elegans. The green fluorescent protein reporter assay revealed that expression of the stress-responsive genes, sod-3 and hsp-16.2, increased significantly following N-acetyl-L-cysteine treatment. CONCLUSION: N-acetyl-L-cysteine supplementation confers a longevity phenotype in C. elegans, possibly through increased resistance to environmental stressors.

  18. Synthesis, crystal structure and DFT studies of N-(4-acetyl-5,5-dimethyl-4,5-dihydro-1,3,4-thiadiazol-2-yl)acetamide

    Science.gov (United States)

    Gautam, P.; Gautam, D.; Chaudhary, R. P.

    2013-12-01

    The title compound N-(4-acetyl-5,5-dimethyl-4,5-dihydro-1,3,4-thiadiazol-2-yl)acetamide ( III) was obtained from the reaction of 2-(propan-2-ylidene)hydrazinecarbothioamide ( II) with acetic anhydride instead of formation of the desired thiosemcarbazide derivative of Meldrum acid. The structures of II and III were established by elemental analysis, IR, NMR, Mass and X-ray crystallographic studies. II crystallizes in triclinic system, sp. gr. Z = 2; III crystallizes in the monoclinic system, sp. gr. P21/ c, Z = 8. Density functional theory (DFT) calculations have been carried out for III. 1H and 13C NMR of III has been calculated and correlated with experimental results.

  19. Synthesis, crystal structure and DFT studies of N-(4-acetyl-5,5-dimethyl-4,5-dihydro-1,3,4-thiadiazol-2-yl)acetamide

    International Nuclear Information System (INIS)

    Gautam, P.; Gautam, D.; Chaudhary, R. P.

    2013-01-01

    The title compound N-(4-acetyl-5,5-dimethyl-4,5-dihydro-1,3,4-thiadiazol-2-yl)acetamide (III) was obtained from the reaction of 2-(propan-2-ylidene)hydrazinecarbothioamide (II) with acetic anhydride instead of formation of the desired thiosemcarbazide derivative of Meldrum acid. The structures of II and III were established by elemental analysis, IR, NMR, Mass and X-ray crystallographic studies. II crystallizes in triclinic system, sp. gr. P-bar1 Z = 2; III crystallizes in the monoclinic system, sp. gr. P2 1 /c, Z = 8. Density functional theory (DFT) calculations have been carried out for III. 1 H and 13 C NMR of III has been calculated and correlated with experimental results

  20. Picosecond transient absorption spectra of aminosalicylates in confirmation of the triple excitation mechanism

    International Nuclear Information System (INIS)

    Gormin, D.

    1989-01-01

    Using picosecond transient absorption studies, it is shown that the twisted intramolecular charge-transfer state (TICT) and the excited intramolecular proton-transfer state (ESIPT or PT) of specific aminosalicylates both contribute to the long-wavelength fluorescence band, F 2 , observed as an unresolved band to the red of the normal fluorescence band, F 1 . The transient absorption band for 2-hydroxy-4-(dimethylamino)benzoic acid methyl ester (PDASE) is shown to be a composite of the two excited-state absorption modes: S n double-prime(TICT) left-arrow S 1 double-prime (TICT) and S n '(PT)left-arrow S 1 '(PT). This corroborates previous steady-state fluorescence studies of the unresolved F 2 band. The assignments are based on comparison with the excited-state absorption spectra of various substituted aminosalicylates in polar and nonpolar solvents

  1. High specific activity N-Acetyl-3H-α-Aspartyl- L-Glutamic at micro mole scale

    International Nuclear Information System (INIS)

    Suarez, C.

    1984-01-01

    High specific activity N-Acetyl-3 H - α -Aspartyl-I-Glutamic acid at micro mole scale in prepared acetylating L- α -Aspartyl-L-glutamic with 3 H -acetic anhydride in re distilled toluene. The product le purified through cationic and anionic columns. The radiochemical purity as determined by thin-layer chromatography is greater then 99% at the time preparation. (Author) 5 refs

  2. Characterization of the N-Acetyl-5-neuraminic Acid-binding Site of the Extracytoplasmic Solute Receptor (SiaP) of Nontypeable Haemophilus influenzae Strain 2019

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Jason W.; Coussens, Nathan P.; Allen, Simon; Houtman, Jon C.D.; Turner, Keith H.; Zaleski, Anthony; Ramaswamy, S.; Gibson, Bradford W.; Apicella, Michael A. (Iowa); (Buck Inst.)

    2012-11-14

    Nontypeable Haemophilus influenzae is an opportunistic human pathogen causing otitis media in children and chronic bronchitis and pneumonia in patients with chronic obstructive pulmonary disease. The outer membrane of nontypeable H. influenzae is dominated by lipooligosaccharides (LOS), many of which incorporate sialic acid as a terminal nonreducing sugar. Sialic acid has been demonstrated to be an important factor in the survival of the bacteria within the host environment. H. influenzae is incapable of synthesizing sialic acid and is dependent on scavenging free sialic acid from the host environment. To achieve this, H. influenzae utilizes a tripartite ATP-independent periplasmic transporter. In this study, we characterize the binding site of the extracytoplasmic solute receptor (SiaP) from nontypeable H. influenzae strain 2019. A crystal structure of N-acetyl-5-neuraminic acid (Neu5Ac)-bound SiaP was determined to 1.4 {angstrom} resolution. Thermodynamic characterization of Neu5Ac binding shows this interaction is enthalpically driven with a substantial unfavorable contribution from entropy. This is expected because the binding of SiaP to Neu5Ac is mediated by numerous hydrogen bonds and has several buried water molecules. Point mutations targeting specific amino acids were introduced in the putative binding site. Complementation with the mutated siaP constructs resulted either in full, partial, or no complementation, depending on the role of specific residues. Mass spectrometry analysis of the O-deacylated LOS of the R127K point mutation confirmed the observation of reduced incorporation of Neu5Ac into the LOS. The decreased ability of H. influenzae to import sialic acid had negative effects on resistance to complement-mediated killing and viability of biofilms in vitro, confirming the importance of sialic acid transport to the bacterium.

  3. [Effectiveness of new, once-daily 5-aminosalicylic acid in the treatment of ulcerative colitis].

    Science.gov (United States)

    Lakatos, Péter László; Lakatos, László

    2009-03-01

    5-aminosalicylate (5-ASA) agents remain the mainstay treatment in ulcerative colitis (UC). A number of oral 5-ASA agents is commercially available, including azo-bond pro-drugs such as sulfasalazine, olsalazine and balsalazide, and delayed- and controlled-release forms of mesalazine. In addition, the effectiveness of oral therapy relies on good compliance, which may be adversely affected by frequent daily dosing and a large number of tablets. Furthermore, poor adherence has been shown to be an important barrier to successful management of patients with UC. Recently, new, once-daily formulations of mesalazine including the unique multi-matrix delivery system and mesalazine granules were proven to be efficacious in inducing and maintaining remission in mild-to-moderate UC, with a good safety profile comparable to that of other oral mesalazine formulations. In addition, they offer the advantage of low pill burden and may contribute to increased long-term compliance and treatment success in clinical practice and might potentially further contribute to a decline in the risk for UC-associated colon cancers. In this systematic review, the authors summarize the available literature on the short- and medium-term efficacy and safety of the new once-daily mesalazine formulations.

  4. Synthesis, crystal structure and DFT studies of N-(4-acetyl-5,5-dimethyl-4,5-dihydro-1,3,4-thiadiazol-2-yl)acetamide

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, P.; Gautam, D.; Chaudhary, R. P., E-mail: rpchaudhary65@gmail.com [Sant Longowal Institute of Engineering and Technology, Department of Chemistry (India)

    2013-12-15

    The title compound N-(4-acetyl-5,5-dimethyl-4,5-dihydro-1,3,4-thiadiazol-2-yl)acetamide (III) was obtained from the reaction of 2-(propan-2-ylidene)hydrazinecarbothioamide (II) with acetic anhydride instead of formation of the desired thiosemcarbazide derivative of Meldrum acid. The structures of II and III were established by elemental analysis, IR, NMR, Mass and X-ray crystallographic studies. II crystallizes in triclinic system, sp. gr. P-bar1 Z = 2; III crystallizes in the monoclinic system, sp. gr. P2{sub 1}/c, Z = 8. Density functional theory (DFT) calculations have been carried out for III. {sup 1}H and {sup 13}C NMR of III has been calculated and correlated with experimental results.

  5. Amino acid solutions for premature neonates during the first week of life: the role of N-acetyl-L-cysteine and N-acetyl-L-tyrosine

    NARCIS (Netherlands)

    van Goudoever, J. B.; Sulkers, E. J.; Timmerman, M.; Huijmans, J. G.; Langer, K.; Carnielli, V. P.; Sauer, P. J.

    1994-01-01

    Tyrosine and cyst(e)ine are amino acids that are thought to be essential for preterm neonates. These amino acids have low stability (cyst(e)ine) or low solubility (tyrosine) and are therefore usually present only in small amounts in amino acid solutions. Acetylation improves the stability and

  6. Hypochlorite-mediated fragmentation of hyaluronan, chondroitin sulfates, and related N-acetyl glycosamines

    DEFF Research Database (Denmark)

    Rees, Martin D; Hawkins, Clare Louise; Davies, Michael Jonathan

    2003-01-01

    Myeloperoxidase released from activated phagocytes reacts with H(2)O(2) in the presence of chloride ions to give hypochlorous acid. This oxidant has been implicated in the fragmentation of glycosaminoglycans, such as hyaluronan and chondroitin sulfates. In this study it is shown that reaction...... processes. In the case of glycosaminoglycan-derived amidyl radicals, evidence has been obtained in studies with model glycosides that these radicals undergo rapid intramolecular abstraction reactions to give carbon-centered radicals at C-2 on the N-acetyl glycosamine rings (via a 1,2-hydrogen atom shift......) and at C-4 on the neighboring uronic acid residues (via 1,5-hydrogen atom shifts). The C-4 carbon-centered radicals, and analogous species derived from model glycosides, undergo pH-independent beta-scission reactions that result in glycosidic bond cleavage. With N-acetyl glucosamine C-1 alkyl glycosides...

  7. Thermochemical study of 2,5-dimethyl-3-furancarboxylic acid, 4,5-dimethyl-2-furaldehyde, and 3-acetyl-2,5-dimethylfuran

    International Nuclear Information System (INIS)

    Ribeiro da Silva, Manuel A.V.; Amaral, Luisa M.P.F.

    2011-01-01

    The standard (p o = 0.1 MPa) molar enthalpies of formation, in the gaseous state, at T = 298.15 K, for 2,5-dimethyl-3-furancarboxylic acid, 3-acetyl-2,5-dimethylfuran, and 4,5-dimethyl-2-furaldehyde were derived from the values of the standard molar enthalpies of formation, in the condensed phase, and the standard molar enthalpies of phase transition from the condensed to the gaseous state. The values of the standard molar enthalpies of formation of the compounds in the condensed phases were calculated from the measurements of the standard massic energies of combustion obtained by static bomb combustion calorimetry. The enthalpies of vaporization/sublimation were measured by Calvet high temperature microcalorimetry. For 2,5-dimethyl-3-furancarboxylic acid the standard enthalpy of sublimation was also calculated, by the application of the Clausius-Clapeyron equation, to the temperature dependence of the vapor pressures measured by the Knudsen effusion technique. (table)

  8. Controlled Release of 5-Aminosalicylic Acid (5-ASA from New Biodegradable Polyurethanes

    Directory of Open Access Journals (Sweden)

    El-Refaie Kenawy

    2010-03-01

    Full Text Available Segmented polyurethanes containing azo aromatic groups in the main chain were synthesized by reaction of 3,3'-azobis(6-hydroxybenzoic acid (ABHB, 5-[4-(hydroxyphenylazo] salicylic acid (HPAS, and 5-[1-hydroxynaphthylazo] salicylic acid (HNAS with hexamethylenediisocyanate (HDI. All synthesized monomers and polymers were characterized by elemental analysis, FTIR, 1H-NMR spectra, TGA and DSC analysis. All the synthesized azo polymers showed good thermal stability and the onset decomposition temperature of all these polymers was found to be above 195 ºC under nitrogen atmosphere.The release of 5-ASA under physiological conditions (pH = 7.8 and pH = 1.5 was investigated at body temperature (37 ºC. The release rate of 5-ASA increased with increasing pH (i.e., 7.8 > 1.5.

  9. Ion-exchange equilibrium of N-acetyl-D-neuraminic acid on a strong anionic exchanger.

    Science.gov (United States)

    Wu, Jinglan; Ke, Xu; Zhang, Xudong; Zhuang, Wei; Zhou, Jingwei; Ying, Hanjie

    2015-09-15

    N-acetyl-D-neuraminic acid (Neu5Ac) is a high value-added product widely applied in the food industry. A suitable equilibrium model is required for purification of Neu5Ac based on ion-exchange chromatography. Hence, the equilibrium uptake of Neu5Ac on a strong anion exchanger, AD-1 was investigated experimentally and theoretically. The uptake of Neu5Ac by the hydroxyl form of the resin occurred primarily by a stoichiometric exchange of Neu5Ac(-) and OH(-). The experimental data showed that the selectivity coefficient for the exchange of Neu5Ac(-) with OH(-) was a non-constant quantity. Subsequently, the Saunders' model, which took into account the dissociation reactions of Neu5Ac and the condition of electroneutrality, was used to correlate the Neu5Ac sorption isotherms at various solution pHs and Neu5Ac concentrations. The model provided an excellent fit to the binary exchange data for Cl(-)/OH(-) and Neu5Ac(-)/OH(-), and an approximate prediction of equilibrium in the ternary system Cl(-)/Neu5Ac(-)/OH(-). This basic information combined with the general mass transfer model could lay the foundation for the prediction of dynamic behavior of fixed bed separation process afterwards. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. NetAcet: prediction of N-terminal acetylation sites

    DEFF Research Database (Denmark)

    Kiemer, Lars; Bendtsen, Jannick Dyrløv; Blom, Nikolaj

    2005-01-01

    Summary: We present here a neural network based method for prediction of N-terminal acetylation-by far the most abundant post-translational modification in eukaryotes. The method was developed on a yeast dataset for N-acetyltransferase A (NatA) acetylation, which is the type of N-acetylation for ......Summary: We present here a neural network based method for prediction of N-terminal acetylation-by far the most abundant post-translational modification in eukaryotes. The method was developed on a yeast dataset for N-acetyltransferase A (NatA) acetylation, which is the type of N...

  11. Non-enzymatic N-acetylation of Lysine Residues by AcetylCoA Often Occurs via a Proximal S-acetylated Thiol Intermediate Sensitive to Glyoxalase II

    Directory of Open Access Journals (Sweden)

    Andrew M. James

    2017-02-01

    Full Text Available Summary: Acetyl coenzyme A (AcCoA, a key intermediate in mitochondrial metabolism, N-acetylates lysine residues, disrupting and, in some cases, regulating protein function. The mitochondrial lysine deacetylase Sirtuin 3 (Sirt3 reverses this modification with benefits reported in diabetes, obesity, and aging. We show that non-enzymatic lysine N-acetylation by AcCoA is greatly enhanced by initial acetylation of a cysteine residue, followed by SN-transfer of the acetyl moiety to a nearby lysine on mitochondrial proteins and synthetic peptides. The frequent occurrence of an S-acetyl intermediate before lysine N-acetylation suggests that proximity to a thioester is a key determinant of lysine susceptibility to acetylation. The thioesterase glyoxalase II (Glo2 can limit protein S-acetylation, thereby preventing subsequent lysine N-acetylation. This suggests that the hitherto obscure role of Glo2 in mitochondria is to act upstream of Sirt3 in minimizing protein N-acetylation, thus limiting protein dysfunction when AcCoA accumulates. : James et al. show that the non-enzymatic N-acetylation of lysine residues in mitochondrial proteins frequently occurs via a proximal S-acetylated thiol intermediate. Glutathione equilibrates with this intermediate, allowing the thioesterase glyoxalase II to limit protein lysine N-acetylation. These findings expand our understanding of how protein acetylation arises. Keywords: AcetylCoA, lysine acetylation, glyoxalase

  12. Quantification of N-acetyl- and N-glycolylneuraminic acids by a stable isotope dilution assay using high-performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Allevi, Pietro; Femia, Eti Alessandra; Costa, Maria Letizia; Cazzola, Roberta; Anastasia, Mario

    2008-11-28

    The present report describes a method for the quantification of N-acetyl- and N-glycolylneuraminic acids without any derivatization, using their (13)C(3)-isotopologues as internal standards and a C(18) reversed-phase column modified by decylboronic acid which allows for the first time a complete chromatographic separation between the two analytes. The method is based on high-performance liquid chromatographic coupled with electrospray ion-trap mass spectrometry. The limit of quantification of the method is 0.1mg/L (2.0ng on column) for both analytes. The calibration curves are linear for both sialic acids over the range of 0.1-80mg/L (2.0-1600ng on column) with a correlation coefficient greater than 0.997. The proposed method was applied to the quantitative determination of sialic acids released from fetuin as a model of glycoproteins.

  13. Structure of 1,5-Anhydro-D-Fructose: X-ray Analysis of Crystalline Acetylated Dimeric Forms

    DEFF Research Database (Denmark)

    Lundt, Inge; Andersen, Søren Møller; Marcussen, Jan

    1998-01-01

    Acetylation of 1,5-anhydro-D-fructose under acidic conditions gave two crystalline acetylated dimeric forms, which by X-ray analysis were shown to be diastereomeric spiroketals formed between C-2 and C-2´/C-3´. The structures of the compounds differed only at the configuration at C-2. Acetylation...... or benzoylation of 1,5-anhydro-D-fructose in pyridine yielded 3,6-di-O-acetyl-1,5-anhydro-4-deoxy-D-glycero-hex-3-enos-2-ulopyra -nose or crystalline 1,5-anhydro-3,6-di-O-benzoyl-4-deoxy-D-glycero-hex-3-enos-2-ulo-py ranose....

  14. Mechanism of the lysosomal membrane enzyme acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase

    International Nuclear Information System (INIS)

    Bame, K.J.

    1986-01-01

    Acetyl-CoA:α-glucosaminide N-acetyltransferase is a lysosomal membrane enzyme, deficient in the genetic disease Sanfilippo C syndrome. The enzyme catalyzes the transfer of an acetyl group from cytoplasmic acetyl-CoA to terminal α-glucosamine residues of heparan sulfate within the organelle. The reaction mechanism was examined using high purified lysosomal membranes from rat liver and human fibroblasts. The N-acetyltransferase reaction is optimal above pH 5.5 and a 2-3 fold stimulation of activity is observed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicate that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. The binding of acetyl-CoA to the enzyme is measured by exchange label from [ 3 H]CoA to acetyl-CoA, and is optimal at pH's above 7.0. The acetyl-enzyme intermediate is formed by incubating membranes with [ 3 H]acetyl-CoA. The acetyl group can be transferred to glucosamine, forming [ 3 H]N-acetylglucosamine; the transfer is optimal between pH 4 and 5. Lysosomal membranes from Sanfilippo C fibroblasts confirm that these half reactions carried out by the N-acetyltransferase. The enzyme is inactivated by N-bromosuccinimide and diethylpyrocarbonate, indicating that a histidine is involved in the reaction. These results suggest that the histidine residue is at the active site of the enzyme. The properties of the N-acetyltransferase in the membrane, the characterization of the enzyme kinetics, the chemistry of a histidine mediated acetylation and the pH difference across the lysosomal membrane all support a transmembrane acetylation mechanism

  15. Non-enzymatic N-acetylation of Lysine Residues by AcetylCoA Often Occurs via a Proximal S-acetylated Thiol Intermediate Sensitive to Glyoxalase II.

    Science.gov (United States)

    James, Andrew M; Hoogewijs, Kurt; Logan, Angela; Hall, Andrew R; Ding, Shujing; Fearnley, Ian M; Murphy, Michael P

    2017-02-28

    Acetyl coenzyme A (AcCoA), a key intermediate in mitochondrial metabolism, N-acetylates lysine residues, disrupting and, in some cases, regulating protein function. The mitochondrial lysine deacetylase Sirtuin 3 (Sirt3) reverses this modification with benefits reported in diabetes, obesity, and aging. We show that non-enzymatic lysine N-acetylation by AcCoA is greatly enhanced by initial acetylation of a cysteine residue, followed by SN-transfer of the acetyl moiety to a nearby lysine on mitochondrial proteins and synthetic peptides. The frequent occurrence of an S-acetyl intermediate before lysine N-acetylation suggests that proximity to a thioester is a key determinant of lysine susceptibility to acetylation. The thioesterase glyoxalase II (Glo2) can limit protein S-acetylation, thereby preventing subsequent lysine N-acetylation. This suggests that the hitherto obscure role of Glo2 in mitochondria is to act upstream of Sirt3 in minimizing protein N-acetylation, thus limiting protein dysfunction when AcCoA accumulates. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Comparative analysis of pharmacological treatments with N-acetyl-DL-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat.

    Science.gov (United States)

    Tighilet, Brahim; Leonard, Jacques; Bernard-Demanze, Laurence; Lacour, Michel

    2015-12-15

    Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Acetyl coenzyme A synthetase is acetylated on multiple lysine residues by a protein acetyltransferase with a single Gcn5-type N-acetyltransferase (GNAT) domain in Saccharopolyspora erythraea.

    Science.gov (United States)

    You, Di; Yao, Li-Li; Huang, Dan; Escalante-Semerena, Jorge C; Ye, Bang-Ce

    2014-09-01

    Reversible lysine acetylation (RLA) is used by cells of all domains of life to modulate protein function. To date, bacterial acetylation/deacetylation systems have been studied in a few bacteria (e.g., Salmonella enterica, Bacillus subtilis, Escherichia coli, Erwinia amylovora, Mycobacterium tuberculosis, and Geobacillus kaustophilus), but little is known about RLA in antibiotic-producing actinomycetes. Here, we identify the Gcn5-like protein acetyltransferase AcuA of Saccharopolyspora erythraea (SacAcuA, SACE_5148) as the enzyme responsible for the acetylation of the AMP-forming acetyl coenzyme A synthetase (SacAcsA, SACE_2375). Acetylated SacAcsA was deacetylated by a sirtuin-type NAD(+)-dependent consuming deacetylase (SacSrtN, SACE_3798). In vitro acetylation/deacetylation of SacAcsA enzyme was studied by Western blotting, and acetylation of lysine residues Lys(237), Lys(380), Lys(611), and Lys(628) was confirmed by mass spectrometry. In a strain devoid of SacAcuA, none of the above-mentioned Lys residues of SacAcsA was acetylated. To our knowledge, the ability of SacAcuA to acetylate multiple Lys residues is unique among AcuA-type acetyltransferases. Results from site-specific mutagenesis experiments showed that the activity of SacAcsA was controlled by lysine acetylation. Lastly, immunoprecipitation data showed that in vivo acetylation of SacAcsA was influenced by glucose and acetate availability. These results suggested that reversible acetylation may also be a conserved regulatory posttranslational modification strategy in antibiotic-producing actinomycetes. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Time-resolved fluorescence sensing of N-acetyl amino acids, nucleobases, nucleotides and DNA by the luminescent Tb (III) - 8-alkyl-2-oxo-2H-chromene-3-carbaldehyde probe

    Energy Technology Data Exchange (ETDEWEB)

    Azab, Hassan A. [Chemistry Department, Faculty of Science, Suez Canal University, 41522 Ismailia (Egypt); Khairy, Gasser M., E-mail: gasser_chemist@yahoo.com [Chemistry Department, Faculty of Science and Arts, Aljouf University, P.O. Box # 2014, Skaka 41421 (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, 41522 Ismailia (Egypt); Abd El-Ghany, N.; Ahmed, Marwa A. [Chemistry Department, Faculty of Science, Suez Canal University, El-Arish (Egypt)

    2016-08-15

    A time-resolved (gated) luminescence-based method for the detection of some of N-acetyl amino acids, nucleobases, nucleotides, and DNA using terbium- 8-alkyl-2-oxo-2H-chromene-3-carbaldehyde (AOCC) complex in 1:2 metal: ligand ratio in microtiterplate format has been evolved. The linear range for determination of the selected biomolecules is 0.1–1.0 µM. The detection limit was in the range of 0.0371–0.106 µM. The thermodynamic parameters, and binding constants (K) of N-acetyl amino acids, nucleobases, nucleotides with Tb (III) –(AOCC) {sub 2} complex were calculated. Positive and negative values of entropy (ΔS) and enthalpy (ΔH) changes for Tb (III) –(AOCC){sub 2}– N-acetyl amino acids, nucleobases or nucleotides ternary complexes were evaluated. Selectivity of Tb (III) -complex towards different biomolecules has been studied using ratiometric methods of analysis by comparison of biomolecules binding affinities for Tb (III) -complex. Interaction of Tb (III) complex with DNA has been studied.

  19. Time-resolved fluorescence sensing of N-acetyl amino acids, nucleobases, nucleotides and DNA by the luminescent Tb (III) - 8-alkyl-2-oxo-2H-chromene-3-carbaldehyde probe

    International Nuclear Information System (INIS)

    Azab, Hassan A.; Khairy, Gasser M.; Abd El-Ghany, N.; Ahmed, Marwa A.

    2016-01-01

    A time-resolved (gated) luminescence-based method for the detection of some of N-acetyl amino acids, nucleobases, nucleotides, and DNA using terbium- 8-alkyl-2-oxo-2H-chromene-3-carbaldehyde (AOCC) complex in 1:2 metal: ligand ratio in microtiterplate format has been evolved. The linear range for determination of the selected biomolecules is 0.1–1.0 µM. The detection limit was in the range of 0.0371–0.106 µM. The thermodynamic parameters, and binding constants (K) of N-acetyl amino acids, nucleobases, nucleotides with Tb (III) –(AOCC) 2 complex were calculated. Positive and negative values of entropy (ΔS) and enthalpy (ΔH) changes for Tb (III) –(AOCC) 2 – N-acetyl amino acids, nucleobases or nucleotides ternary complexes were evaluated. Selectivity of Tb (III) -complex towards different biomolecules has been studied using ratiometric methods of analysis by comparison of biomolecules binding affinities for Tb (III) -complex. Interaction of Tb (III) complex with DNA has been studied.

  20. 5-Aminosalicylate intolerance causing exacerbation in pediatric ulcerative colitis.

    Science.gov (United States)

    Shimizu, Hirotaka; Arai, Katsuhiro; Tang, Julian; Hosoi, Kenji; Funayama, Rie

    2017-05-01

    5-Aminosalicylate (5-ASA) is widely used as the first-line drug for ulcerative colitis (UC). 5-ASA is mostly a safe and effective drug, but it can bring about exacerbation due to 5-ASA intolerance. 5-ASA intolerance can be confusing and it can mislead physicians into considering unnecessary treatment escalation, including corticosteroid (CS), biologics, or even surgery. In spite of the clinical importance of 5-ASA intolerance, there have been few studies on its incidence, clinical features, and diagnosis. In order to evaluate the incidence, characteristic symptoms, disease course, and laboratory data of children with 5-ASA intolerance, we retrospectively reviewed the medical records of 80 children with UC. Eleven of 80 children (13.8%) with UC were diagnosed with 5-ASA intolerance. The median time between the initiation of 5-ASA and the onset of 5-ASA intolerance was 10 days (range, 4-20 days) in patients not receiving CS. Drug-induced lymphocyte stimulation test (DLST) was performed in 10 patients, and was positive in eight. C-reactive protein (CRP) increased significantly when exacerbation of colitis symptoms occurred. The incidence of 5-ASA intolerance was relatively high. Besides the challenge test, elevation of CRP and positive DLST appeared to support the diagnosis of 5-ASA intolerance. © 2017 Japan Pediatric Society.

  1. Characterisation of a novel homodimeric N-acetyl-β-D-glucosaminidase from Streptococcus gordonii

    International Nuclear Information System (INIS)

    Harty, Derek W.S.; Chen Yingjian; Simpson, Christine L.; Berg, Tracey; Cook, Simon L.; Mayo, John A.; Hunter, Neil; Jacques, Nicholas A.

    2004-01-01

    An N-acetyl-β-D-glucosaminidase (GcnA) from Streptococcus gordonii FSS2 was cloned and sequenced. GcnA had a deduced molecular mass of 72,120 Da. The molecular weight after gel-filtration chromatography was 140,000 Da and by SDS-PAGE was 70,000 Da, indicating that the native protein was a homodimer. The deduced amino acid sequence had significant homology to a glycosyl hydrolase from Streptococcus pneumoniae and the conserved catalytic domain of the Family 20 glycosyl hydrolases. GcnA catalysed the hydrolysis of the synthetic substrates, 4-methylumbelliferyl (4MU)-N-acetyl-β-D-glucosaminide, 4MU-N-acetyl-β-D-galactosaminide, 4-MU-β-D-N,N ' -diacetylchitobioside, and 4-MU-β-D-N,N ' ,N''-chitotrioside as well as the respective chito-oligosaccharides. GcnA was optimally active at pH 6.6 and 42 deg. C. The K m for 4-MU-β-D-N,N ' ,N''-chitotrioside, 45 μM, was the lowest for all the substrates tested. Hg 2+ , Cu 2+ , Fe 2+ , and Zn 2+ completely inhibited while Co 2+ , Mn 2+ , and Ni 2+ partially inhibited activity. S. gordonii FSS2 and a GcnA negative mutant grew equally well on chito-oligosaccharides as substrates. The S. gordonii sequencing projects indicate two further N-acetyl-β-D-glucosaminidase activities

  2. Structural transformations on N-acetylneuraminic acid

    International Nuclear Information System (INIS)

    Schmid, W.

    1986-01-01

    Structural transformations on N-Acetylneuraminic acid are of special interest because of the biological importance of this compound. Although many stereo- and regioselective variations (especially for pyranoid derivatives) have been reported, no detailed studies of the furanoid derivatives from N-Acetylneuramino-1, 4-lactone diethyl dithioacetal have been described hitherto. Therefore a series of derivatives of the Neu5Ac-lactone diethyl dithioacetal has been investigated by n.m.r. spectroscopic techniques. The complete assignment of the 1 H and 13 C resonances was achieved by relaxation time measurements, decoupling experiments and 2-D - shiftcorrelation spectroscopy. The influence of different substituents on the conformational behavior is also discussed. For the Tetra-O-Acetyl-N-acetylneuraminic acid-γ-lactone diethyl dithioacetal the conformation in solution could be determined. The observed data were explained by a zigzag conformation of the backbone as described for the acetylated mannose diethyl dithioacetal. The synthesis of the tetrazole-analogue of N-Acetylneuraminic acid is also described. This compound is of special biological interest because there is a similarity in acidity between the carboxyl-group and the tetrazole-function and the metabolic stability of the tetrazole function is enhanced in comparison with the carboxyl-group. Many of the biological functions of N-Acetylneuraminic acid are connected with the presence of the carboxyl-group. It was therefore interesting to transform this group to the bioisostere tetrazole-function to investigate the influence of the tetrazole-group of this compound on biological activity in the future. During the application of protective groups in the field of Neuraminic acid chemistry a new compound, an ortholactone-derivative of Neu5Ac, was discovered. It's structure is similar to an adamantanecage and the chemistry of such an orthoester function opens new possibilities for structural transformations on N

  3. Non-enzymatic N -acetylation of Lysine Residues by AcetylCoA Often Occurs via a Proximal S -acetylated Thiol Intermediate Sensitive to Glyoxalase II

    OpenAIRE

    James, Andrew M.; Hoogewijs, Kurt; Logan, Angela; Hall, Andrew R.; Ding, Shujing; Fearnley, Ian M.; Murphy, Michael P.

    2017-01-01

    Summary: Acetyl coenzyme A (AcCoA), a key intermediate in mitochondrial metabolism, N-acetylates lysine residues, disrupting and, in some cases, regulating protein function. The mitochondrial lysine deacetylase Sirtuin 3 (Sirt3) reverses this modification with benefits reported in diabetes, obesity, and aging. We show that non-enzymatic lysine N-acetylation by AcCoA is greatly enhanced by initial acetylation of a cysteine residue, followed by SN-transfer of the acetyl moiety to a nearby lysin...

  4. High specific activity N-Acetyl-3{sup H}-{alpha}-Aspartyl- L-Glutamic at micro mole scale; Sintesis de N-Acetil-3{sup H}- {alpha} -Aspartil-Glutamico a escala de Micromoles

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, C

    1984-07-01

    High specific activity N-Acetyl-3{sup H}- {alpha} -Aspartyl-I-Glutamic acid at micro mole scale in prepared acetylating L- {alpha} -Aspartyl-L-glutamic with 3{sup H}-acetic anhydride in re distilled toluene. The product le purified through cationic and anionic columns. The radiochemical purity as determined by thin-layer chromatography is greater then 99% at the time preparation. (Author) 5 refs.

  5. Calix[4]arene-Based Enantioselective Fluorescent Sensors for the Recognition of N-Acetyl-aspartate

    Institute of Scientific and Technical Information of China (English)

    QING Guang-Yan; CHEN Zhi-Hong; WANG Feng; YANG Xi; MENG Ling-Zhi; HE Yong-Bing

    2008-01-01

    Two-armed chiral anion receptors (1 and 2), calix[4]arenes bearing dansyl fluorophore and (1R,2R)- or(1S,2S)-1,2-diphenylethylenediamine binding sites, were prepared and examined for their chiral amino acid anion binding abilities by the fluorescence spectra in dimethylsulfoxide (DMSO). The results of non-linear curve fitting indicate that 1 or 2 forms a 1 : 1 stoichiometry complex with N-acetyl-L-or D-aspartate by multiple hydrogen bonding interactions, exhibiting good enantioselective fluorescent recognition for the enantiomers of N-acetyl-as-partate, [receptor 1: Kass(D)/Kass(L)=6.74; receptor 2: Kass(L)/Kass(D)=6.48]. The clear fluorescent response difference indicates that receptors 1 and 2 could be used as a fluorescent chemosensor for N-Acetyl-aspartate.

  6. Structural studies on 4-O-acetyl-α-N-acetylneuraminyl-(2→3)-lactose, the main oligosaccharide in echidna milk

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Kamerling, J.P.; Dorland, L.; Halbeek, H. van; Messer, M.; Schauer, R.

    1982-01-01

    The main oligosaccharide (50%) in the milk of the Australian echidna (Tachyglossus aculeatus) has been identified unequivocally as 4-O-acetyl-α-N-acetylneur-aminyl-(2→3)-lactose. The 4-O-acetyl substituent of the sialic acid residue was characterised by g.l.c.-m.s. of the isolated (after mild, acid

  7. Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L

    Science.gov (United States)

    Chisnell, J. R.; Bandurski, R. S.

    1988-01-01

    Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-[3H]indole-3-acetic acid or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyl-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.

  8. Indirect flow injection determination of N-acetyl-L-cysteine using cerium(IV) and ferroin

    International Nuclear Information System (INIS)

    Vieira, Heberth Juliano; Fatibello-Filho, Orlando

    2005-01-01

    An indirect flow injection spectrophotometric procedure is proposed for the determination of N-acetyl-L-cysteine in pharmaceutical formulations. In this system, ferroin ([Fe(II)-(fen) 2 ] 2+ ) in excess, with a strong absorption at 500 nm, is oxidized by cerium(IV) yielding cerium(III) and [Fe(III)-(fen) 2 ] 3+ (colorless), thus producing a baseline. When N-acetyl-L-cysteine solution is introduced into the flow injection system, it reacts with cerium(IV) increasing the analytical signal in proportion to the drug concentration. Under optimal experimental conditions, the linearity of the analytical curve for N-acetyl-L-cysteine ranged from 6.5x10 -6 to 1.3x10 -4 mol L -1 . The detection limit was 5.0x10 -6 mol L -1 and recoveries between 98.0 and 106% were obtained. The sampling frequency was 60 determinations per hour and the RSD was smaller than 1.4% for 2.2x10 -5 mol L -1 N-acetyl-L-cysteine. (author)

  9. Simultaneous determination of isoniazid and p-aminosalicylic acid by capillary electrophoresis using chemiluminescence detection.

    Science.gov (United States)

    Zhang, Xinfeng; Xuan, Yuelan; Sun, Aimin; Lv, Yi; Hou, Xiandeng

    2009-01-01

    It was found that isoniazid (ISO) or p-aminosalicylic acid (PAS) could enhance the chemiluminescence (CL) emission from Cu (II)-luminol-hydrogen peroxide system, and the increased chemiluminescence signals were proportional to their concentrations, respectively. Based on this phenomenon, a chemiluminescence method coupled to capillary electrophoresis (CE) was established for simultaneous determination of ISO and PAS. The CE conditions including running buffer and running voltage were investigated in detail. The effects of the pH of H(2)O(2) solution and the concentrations of luminol, H(2)O(2) and Cu (II) on the CL signal were also investigated carefully. Under the optimized conditions, the analysis could be accomplished within 10 min, with the limits of detection of 0.3 microg mL(-1) for ISO and 1.1 microg mL(-1) for PAS, corresponding to 7.2 and 26.4 pg per injection (24 nL), respectively. Finally, the method was validated by determining the two analytes in pharmaceutical preparation and spiked human serum samples. The results of pharmaceutical tablet analysis were in good agreement with the labeled amounts. The recoveries for ISO and PAS in human serum were in the range of 92-104% and 90-113%, respectively. Copyright 2008 John Wiley & Sons, Ltd.

  10. Solvent-free one-pot cyclization and acetylation of chalcones: Synthesis of some 1-acetyl pyrazoles and spectral correlations of 1-(3-(3,4-dimethylphenyl-5-(substituted phenyl-4,5-dihydro-1H-pyrazole-1-yl ethanones

    Directory of Open Access Journals (Sweden)

    G. Thirunarayanan

    2016-11-01

    Full Text Available One-pot synthesis of some 1N-acetyl pyrazoles including 1-(3-(3,4-dimethylphenyl-5-(substituted phenyl-4,5-dihydro-1H-pyrazole-1-yl ethanones has been achieved via solvent-free microwave irradiation using substituted chalcones, hydrazine hydrate and acetic anhydride in the presence of catalytic amount of fly-ash: PTS catalyst. The yield of these 1N-acetyl pyrazole derivatives is more than 75%. The synthesized 1N-acetyl pyrazoline derivatives were characterized by their physical constants and spectral data. The infrared spectral νCN and CO (cm−1 frequencies, NMR chemical shifts (δ, ppm of Ha, Hb, Hc, CH3 protons, CN, CO and CH3 carbons of 1-(3-(3,4-dimethylphenyl-5-(substituted phenyl-4,5-dihydro-1H-pyrazole-1-yl ethanones have been assigned and correlated with Hammett substituent constants and Swain-Lupton’s parameters using single and multi-regression analysis. From the results of statistical analyses, the effect of substituents on the above group frequencies and chemical shifts of the acetylated pyrazoles were discussed.

  11. para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis.

    Science.gov (United States)

    Zheng, Jun; Rubin, Eric J; Bifani, Pablo; Mathys, Vanessa; Lim, Vivian; Au, Melvin; Jang, Jichan; Nam, Jiyoun; Dick, Thomas; Walker, John R; Pethe, Kevin; Camacho, Luis R

    2013-08-09

    para-Aminosalicylic acid (PAS) is one of the antimycobacterial drugs currently used for multidrug-resistant tuberculosis. Although it has been in clinical use for over 60 years, its mechanism(s) of action remains elusive. Here we report that PAS is a prodrug targeting dihydrofolate reductase (DHFR) through an unusual and novel mechanism of action. We provide evidences that PAS is incorporated into the folate pathway by dihydropteroate synthase (DHPS) and dihydrofolate synthase (DHFS) to generate a hydroxyl dihydrofolate antimetabolite, which in turn inhibits DHFR enzymatic activity. Interestingly, PAS is recognized by DHPS as efficiently as its natural substrate para-amino benzoic acid. Chemical inhibition of DHPS or mutation in DHFS prevents the formation of the antimetabolite, thereby conferring resistance to PAS. In addition, we identified a bifunctional enzyme (riboflavin biosynthesis protein (RibD)), a putative functional analog of DHFR in a knock-out strain. This finding is further supported by the identification of PAS-resistant clinical isolates encoding a RibD overexpression mutation displaying cross-resistance to genuine DHFR inhibitors. Our findings reveal that a metabolite of PAS inhibits DHFR in the folate pathway. RibD was shown to act as a functional analog of DHFR, and as for DHFS, both were shown to be associated in PAS resistance in laboratory strains and clinical isolates.

  12. Reactions of the melatonin metabolite N(1)-acetyl-5-methoxykynuramine with carbamoyl phosphate and related compounds.

    Science.gov (United States)

    Kuesel, Jana T; Hardeland, Rüdiger; Pfoertner, Henrike; Aeckerle, Nelia

    2010-01-01

    N-[2-(6-methoxyquinazolin-4-yl)-ethyl] acetamide (MQA) is a compound formed from the melatonin metabolite N(1)-acetyl-5-methoxykynuramine (AMK). We followed MQA production in reaction systems containing various putative reaction partners, in the absence and presence of hydrogen peroxide and/or copper(II). Although MQA may be formally described as a condensation product of either N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) with ammonia, or AMK with formamide, none of these combinations led to substantial quantities of MQA. However, MQA formation was observed in mixtures containing AMK, hydrogen peroxide, hydrogen carbonate and ammonia, or AMK, hydrogen peroxide, copper(II) and potentially carbamoylating agents, such as potassium cyanate or, more efficiently, carbamoyl phosphate. In the presence of hydrogen peroxide, copper(II) and carbamoyl phosphate, MQA was the major product obtained from AMK, but the omission of copper(II) mainly led to another metabolite, 3-acetamidomethyl-6-methoxycinnolinone (AMMC). This was caused by nitric oxide (NO) generated under oxidative conditions from carbamoyl phosphate, as shown by an NO spin trap. MQA formation with carbamoyl phosphate was not due to the possible decomposition product, formamide. The reaction of AMK with carbamoyl phosphate under oxidative conditions, in which inorganic phosphate and water are released and which differs from the typical process of carbamoylation via isocyanate, may be considered as a new physiological route of MQA formation.

  13. N-Acetyl-4-aminophenol (paracetamol), N-acetyl-2-aminophenol and acetanilide in urine samples from the general population, individuals exposed to aniline and paracetamol users.

    Science.gov (United States)

    Dierkes, Georg; Weiss, Tobias; Modick, Hendrik; Käfferlein, Heiko Udo; Brüning, Thomas; Koch, Holger M

    2014-01-01

    Epidemiological studies suggest associations between the use of N-acetyl-4-aminophenol (paracetamol) during pregnancy and increased risks of reproductive disorders in the male offspring. Previously we have reported a ubiquitous urinary excretion of N-acetyl-4-aminophenol in the general population. Possible sources are (1) direct intake of paracetamol through medication, (2) paracetamol residues in the food chain and (3) environmental exposure to aniline or related substances that are metabolized into N-acetyl-4-aminophenol. In order to elucidate the origins of the excretion of N-acetyl-4-aminophenol in urine and to contribute to the understanding of paracetamol and aniline metabolism in humans we developed a rapid, turbulent-flow HPLC-MS/MS method with isotope dilution for the simultaneous quantification of N-acetyl-4-aminophenol and two other aniline related metabolites, N-acetyl-2-aminophenol and acetanilide. We applied this method to three sets of urine samples: (1) individuals with no known exposure to aniline and also no recent paracetamol medication; (2) individuals after occupational exposure to aniline but no paracetamol medication and (3) paracetamol users. We confirmed the omnipresent excretion of N-acetyl-4-aminophenol. Additionally we revealed an omnipresent excretion of N-acetyl-2-aminophenol. In contrast, acetanilide was only found after occupational exposure to aniline, not in the general population or after paracetamol use. The results lead to four preliminary conclusions: (1) other sources than aniline seem to be responsible for the major part of urinary N-acetyl-4-aminophenol in the general population; (2) acetanilide is a metabolite of aniline in man and a valuable biomarker for aniline in occupational settings; (3) aniline baseline levels in the general population measured after chemical hydrolysis do not seem to originate from acetanilide and hence not from a direct exposure to aniline itself and (4) N-acetyl-2-aminophenol does not seem to be

  14. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.372 N-Acetyl-L-methionine. The food additive N-acetyl-L...

  15. Relapsing tubulointerstitial nephritis in an adolescent with inflammatory bowel disease without aminosalicylate exposure.

    LENUS (Irish Health Repository)

    Shahrani Muhammad, H S

    2012-01-31

    A 14-year-old boy presented with ongoing constipation as a manifestation of newly diagnosed Crohn\\'s disease (CD) and a concomitant decline in renal function with biopsy-proven interstitial nephritis. Initiation of steroid therapy and mesalazine was associated with an improvement in symptoms and renal function. We describe a rare case of a 5-aminosalicylic acid (5-ASA)-naive patient who developed interstitial nephritis in association with CD with no evidence of other primary glomerulopathy. A unique feature of the case being a profound systemic inflammatory response at the time of diagnosis and a relapse in nephritis 2 months after cessation of mesalazine in the absence of any macroscopic colitis.

  16. Arsenic Metabolites, Including N-Acetyl-4-hydroxy-m-arsanilic Acid, in Chicken Litter from a Roxarsone-Feeding Study Involving 1600 Chickens.

    Science.gov (United States)

    Yang, Zonglin; Peng, Hanyong; Lu, Xiufen; Liu, Qingqing; Huang, Rongfu; Hu, Bin; Kachanoski, Gary; Zuidhof, Martin J; Le, X Chris

    2016-07-05

    The poultry industry has used organoarsenicals, such as 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, ROX), to prevent disease and to promote growth. Although previous studies have analyzed arsenic species in chicken litter after composting or after application to agricultural lands, it is not clear what arsenic species were excreted by chickens before biotransformation of arsenic species during composting. We describe here the identification and quantitation of arsenic species in chicken litter repeatedly collected on days 14, 24, 28, 30, and 35 of a Roxarsone-feeding study involving 1600 chickens of two strains. High performance liquid chromatography separation with simultaneous detection by both inductively coupled plasma mass spectrometry and electrospray ionization tandem mass spectrometry provided complementary information necessary for the identification and quantitation of arsenic species. A new metabolite, N-acetyl-4-hydroxy-m-arsanilic acid (N-AHAA), was identified, and it accounted for 3-12% of total arsenic. Speciation analyses of litter samples collected from ROX-fed chickens on days 14, 24, 28, 30, and 35 showed the presence of N-AHAA, 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA), inorganic arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)), and ROX. 3-AHPAA accounted for 3-19% of the total arsenic. Inorganic arsenicals (the sum of As(III) and As(V)) comprised 2-6% (mean 3.5%) of total arsenic. Our results on the detection of inorganic arsenicals, methylarsenicals, 3-AHPAA, and N-AHAA in the chicken litter support recent findings that ROX is actually metabolized by the chicken or its gut microbiome. The presence of the toxic metabolites in chicken litter is environmentally relevant as chicken litter is commonly used as fertilizer.

  17. Use of new once-daily 5-aminosalicylic acid preparations in the treatment of ulcerative colitis: Is there anything new under the sun?

    Science.gov (United States)

    Lakatos, Peter Laszlo

    2009-04-21

    5-aminosalicylate (5-ASA) agents remain the mainstay treatment in ulcerative colitis (UC). A number of oral 5-ASA agents are commercially available, including azobond pro-drugs, as well as delayed- and controlled-release forms of mesalazine. However, poor adherence due to frequent daily dosing and a large number of tablets has been shown to be an important barrier to successful management of patients with UC. Recently, new, once-daily formulations of mesalazine, including the unique multi-matrix delivery system and mesalazine granules, were proven to be efficacious in inducing and maintaining remission in mild-to-moderate UC, with a good safety profile comparable to that of other oral mesalazine formulations. In addition, they offer the advantage of a low pill burden and might contribute to increased long-term compliance and treatment success in clinical practice. This editorial summarizes the available literature on the short- and medium-term efficacy and safety of the new once-daily mesalazine formulations.

  18. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiupei, E-mail: xiupeiyang@163.com [Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Nanchong 637000 (China); College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000 (China); Lin, Jia; Liao, Xiulin; Zong, Yingying; Gao, Huanhuan [College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000 (China)

    2015-06-15

    Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination. The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH{sub 3}{sup +} moiety of doxorubicin and the −COO{sup −} moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum.

  19. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method

    International Nuclear Information System (INIS)

    Yang, Xiupei; Lin, Jia; Liao, Xiulin; Zong, Yingying; Gao, Huanhuan

    2015-01-01

    Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination. The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH 3 + moiety of doxorubicin and the −COO − moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum

  20. 5-Aminosalicylic acid (mesalazine) use in Crohn's disease: a survey of the opinions and practice of Australian gastroenterologists.

    Science.gov (United States)

    Gearry, Richard B; Ajlouni, Yousef; Nandurkar, Sanjay; Iser, John H; Gibson, Peter R

    2007-08-01

    The use of 5-aminosalicylate (5-ASA) drugs in Crohn's disease (CD) is controversial, with their continuing apparent widespread use despite high-level evidence indicating marginal benefit at best and international guidelines recommending limited indications. In order to understand how clinicians translate the evidence base into clinical practice, we surveyed a cross-section of Australian gastroenterologists to determine opinions and prescribing patterns of 5-ASA drugs in CD. In all, 42% of 285 gastroenterologists who were sent a questionnaire by e-mail responded. Five (4%) never use 5-ASA drugs in CD. The drugs are most commonly prescribed for patients with colonic (96%) or ileocolonic (92%) disease location, inflammatory disease behavior (80%), and mild disease activity (97%). The majority (64%) use a dose of 1-3 g/day, but only 6% use over 4.5 g/day. Less than one-half use 5-ASA drugs as maintenance following surgical resection, but most use it for inducing remission alone (70%) or in combination with other drugs (90%), and continue its use for maintenance. Side effects are thought to be infrequent (62%) or rare (20%) and few common side effects are believed to be serious. Respondents estimated that over 90% of patients were nonadherent to prescribed 5-ASA regimens at least 50% of the time. While 84% believed that 5-ASA drugs were effective in CD, only 58% believed that they were cost-effective. In Australia 5-ASA drugs are extensively prescribed for CD at relatively low doses without expectation of patient adherence. Current evidence and guidelines has had little apparent impact on clinical practice. The cost implications are considerable.

  1. A kinetic and mechanistic study on the oxidation of l-methionine and N-acetyl l-methionine by cerium(IV) in sulfuric acid medium

    OpenAIRE

    T. Sumathi; P. Shanmugasundaram; G. Chandramohan

    2016-01-01

    The kinetics of oxidation of l-methionine and N-acetyl l-methionine by Ce(IV) in sulfuric acid–sulfate media in the range of 288.1–298.1 K has been investigated. The major oxidation products of methionine and N-acetyl l-methionine have been identified as methionine sulfoxide and N-acetyl methionine sulfoxide. The major oxidation products have been confirmed by qualitative analysis and boiling point. The reaction was first order with respect to l-methionine, N-acetyl l-methionine and Ce(IV). I...

  2. Micronutrients, N-Acetyl Cysteine, Probiotics and Prebiotics, a Review of Effectiveness in Reducing HIV Progression

    Science.gov (United States)

    Hummelen, Ruben; Hemsworth, Jaimie; Reid, Gregor

    2010-01-01

    Low serum concentrations of micronutrients, intestinal abnormalities, and an inflammatory state have been associated with HIV progression. These may be ameliorated by micronutrients, N-acetyl cysteine, probiotics, and prebiotics. This review aims to integrate the evidence from clinical trials of these interventions on the progression of HIV. Vitamin B, C, E, and folic acid have been shown to delay the progression of HIV. Supplementation with selenium, N-acetyl cysteine, probiotics, and prebiotics has considerable potential, but the evidence needs to be further substantiated. Vitamin A, iron, and zinc have been associated with adverse effects and caution is warranted for their use. PMID:22254046

  3. Simultaneous determination of mercapturic acids derived from ethylene oxide (HEMA), propylene oxide (2-HPMA), acrolein (3-HPMA), acrylamide (AAMA) and N,N-dimethylformamide (AMCC) in human urine using liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Schettgen, Thomas; Musiol, Anita; Kraus, Thomas

    2008-09-01

    Mercapturic acids are highly important and specific biomarkers of exposure to carcinogenic substances in occupational and environmental medicine. We have developed and validated a reliable, specific and very sensitive method for the simultaneous determination of five mercapturic acids derived from several high-production chemicals used in industry, namely ethylene oxide, propylene oxide, acrylamide, acrolein and N,N-dimethylformamide. Analytes are enriched and cleaned up from urinary matrix by offline solid-phase extraction. The mercapturic acids are subsequently separated by means of high-performance liquid chromatography on a Luna C8 (2) column and specifically quantified by tandem mass spectrometric detection using isotopically labelled analytes as internal standards. The limits of detection (LODs) for N-acetyl-S-2-carbamoylethylcysteine (AAMA) and N-acetyl-S-2-hydroxyethylcysteine (HEMA) were 2.5 microg/L and 0.5 microg/L urine, while for N-acetyl-S-3-hydroxypropylcysteine (3-HPMA), N-acetyl-S-2-hydroxypropylcysteine (2-HPMA) and N-acetyl-S-(N-methylcarbamoyl)cysteine (AMCC) it was 5 microg/L. These LODs were sufficient to detect the background exposure of the general population. We applied the method on spot urine samples of 28 subjects of the general population with no known occupational exposure to these substances. Median levels for AAMA, HEMA, 3-HPMA, 2-HPMA and AMCC in non-smokers (n = 14) were 52.6, 2.0, 155, 7.1 and 113.6 microg/L, respectively. In smokers (n = 14), median levels for AAMA, HEMA, 3-HPMA, 2-HPMA and AMCC were 243, 5.3, 1681, 41.7 and 822 microg/L, respectively. Due to the simultaneous quantification of these mercapturic acids, our method is well suited for the screening of workers with multiple chemical exposures as well as the determination of the background excretion of the general population.

  4. Comparison of anti-inflammatory activities of an anthocyanin-rich fraction from Portuguese blueberries (Vaccinium corymbosum L.) and 5-aminosalicylic acid in a TNBS-induced colitis rat model.

    Science.gov (United States)

    Pereira, Sónia R; Pereira, Rita; Figueiredo, Isabel; Freitas, Victor; Dinis, Teresa C P; Almeida, Leonor M

    2017-01-01

    Despite the actual therapeutic approaches for inflammatory bowel disease (IBD), efficient and secure alternative options remain a research focus. In this context, anthocyanins seem promising natural anti-inflammatory agents, but their action mechanisms and efficacy as compared with established drugs still require more clarification. The main aim of this study was to compare the anti-inflammatory action of a chemically characterized anthocyanin-rich fraction (ARF), obtained from Portuguese blueberries (Vaccinium corymbosum L.), with that of 5-aminosalicylic acid (5-ASA), a first-line drug in IBD, in a 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis rat model. Such fraction showed a high content and great molecular diversity of anthocyanins, with malvidin-3-galactoside and petunidin-3-arabinoside in the highest concentrations. After daily administration by intragastric infusion for 8 days, ARF, at a molar anthocyanin concentration about 30 times lower than 5-ASA, showed a higher effectiveness in counteracting the intestinal inflammation, as assessed by i) body weight variation and colon damage score, ii) reduction in leukocyte infiltration, iii) increase in antioxidant defenses and iv) by downregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in colon tissue homogenates. The strong inhibition of COX-2 expression seems to be a crucial anti-inflammatory mechanism common to both ARF and 5-ASA, but the additional higher abilities of anthocyanins to downregulate iNOS and to decrease leukocytes infiltration and to increase antioxidant defenses in colon may account for the much higher anti-inflammatory action of anthocyanins. These data may contribute to the development of a promising natural approach in IBD management.

  5. Comparison of anti-inflammatory activities of an anthocyanin-rich fraction from Portuguese blueberries (Vaccinium corymbosum L. and 5-aminosalicylic acid in a TNBS-induced colitis rat model.

    Directory of Open Access Journals (Sweden)

    Sónia R Pereira

    Full Text Available Despite the actual therapeutic approaches for inflammatory bowel disease (IBD, efficient and secure alternative options remain a research focus. In this context, anthocyanins seem promising natural anti-inflammatory agents, but their action mechanisms and efficacy as compared with established drugs still require more clarification. The main aim of this study was to compare the anti-inflammatory action of a chemically characterized anthocyanin-rich fraction (ARF, obtained from Portuguese blueberries (Vaccinium corymbosum L., with that of 5-aminosalicylic acid (5-ASA, a first-line drug in IBD, in a 2,4,6-trinitrobenzenesulfonic acid (TNBS-induced colitis rat model. Such fraction showed a high content and great molecular diversity of anthocyanins, with malvidin-3-galactoside and petunidin-3-arabinoside in the highest concentrations. After daily administration by intragastric infusion for 8 days, ARF, at a molar anthocyanin concentration about 30 times lower than 5-ASA, showed a higher effectiveness in counteracting the intestinal inflammation, as assessed by i body weight variation and colon damage score, ii reduction in leukocyte infiltration, iii increase in antioxidant defenses and iv by downregulation of inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 in colon tissue homogenates. The strong inhibition of COX-2 expression seems to be a crucial anti-inflammatory mechanism common to both ARF and 5-ASA, but the additional higher abilities of anthocyanins to downregulate iNOS and to decrease leukocytes infiltration and to increase antioxidant defenses in colon may account for the much higher anti-inflammatory action of anthocyanins. These data may contribute to the development of a promising natural approach in IBD management.

  6. Development of a Highly Biocompatible Antituberculosis Nanodelivery Formulation Based on Para-Aminosalicylic Acid—Zinc Layered Hydroxide Nanocomposites

    Science.gov (United States)

    Arulselvan, Palanisamy; El Zowalaty, Mohamed Ezzat; Fakurazi, Sharida; Webster, Thomas J.; Geilich, Benjamin; Hussein, Mohd Zobir

    2014-01-01

    Tuberculosis is a lethal epidemic, difficult to control disease, claiming thousands of lives every year. We have developed a nanodelivery formulation based on para-aminosalicylic acid (PAS) and zinc layered hydroxide using zinc nitrate salt as a precursor. The developed formulation has a fourfold higher efficacy of PAS against mycobacterium tuberculosis with a minimum inhibitory concentration (MIC) found to be at 1.40 μg/mL compared to the free drug PAS with a MIC of 5.0 μg/mL. The newly developed formulation was also found active against Gram-positive bacteria, Gram-negative bacteria, and Candida albicans. The formulation was also found to be biocompatible with human normal lung cells MRC-5 and mouse fibroblast cells-3T3. The in vitro release of PAS from the formulation was found to be sustained in a human body simulated phosphate buffer saline (PBS) solution at pH values of 7.4 and 4.8. Most importantly the nanocomposite prepared using zinc nitrate salt was advantageous in terms of yield and free from toxic zinc oxide contamination and had higher biocompatibility compared to one prepared using a zinc oxide precursor. In summary, these promising in vitro results are highly encouraging for the continued investigation of para-aminosalicylic acid and zinc layered hydroxide nanocomposites in vivo and eventual preclinical studies. PMID:25050392

  7. Acinetobacter baumannii K13 and K73 capsular polysaccharides differ only in K-unit side branches of novel non-2-ulosonic acids: di-N-acetylated forms of either acinetaminic acid or 8-epiacinetaminic acid.

    Science.gov (United States)

    Kenyon, Johanna J; Kasimova, Anastasiya A; Notaro, Anna; Arbatsky, Nikolay P; Speciale, Immacolata; Shashkov, Alexander S; De Castro, Cristina; Hall, Ruth M; Knirel, Yuriy A

    2017-11-27

    Structures of capsular polysaccharides of Acinetobacter baumannii isolates carrying KL13 and KL73 gene clusters were established. The closely related KL73 and KL13 gene clusters differ only by one gene in the module responsible for synthesis of the non-2-ulosonic acids. The K13 and K73 polysaccharides differ only in a single side-chain sugar, which is either 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-altro- or -d-glycero-l-altro-non-2-ulosonic acid [di-N-acetylated forms of acinetaminic acid (Aci5Ac7Ac) or 8-epiacinetaminic acid (8eAci5Ac7Ac), respectively]. The KL13 also is closely related to the KL12 gene cluster, which contains a different wzy gene encoding the K unit polymerase. Accordingly, the otherwise near identical K units are linked differently via an α-d-FucpNAc-(1 → 4)-d-Galp linkage in K13 and K73 or an α-d-FucpNAc-(1 → 3)-d-GalpNAc linkage in K12. This finding confirms the predicted substrate of the ItrB3 initiating transferase as d-FucpNAc. Glycosyltransferases predicted to catalyse the linkage of d-Galp or d-GalpNAc to l-FucpNAc in the growing K13 and K73 or K12 units, respectively, differ by only two amino acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Synthesis, crystal and supramolecular structure of rac-N-acetyl-2- thiohydantoin-asparagine

    Directory of Open Access Journals (Sweden)

    Gerzon E. Delgado

    2014-05-01

    Full Text Available The title compound, C7H9N3O3S, also known as rac-N-acetyl-5-propionamide-2-thioxo-imidazolidin-4-one, crystallize in the monoclinic system with space group P21/n (Nº14, Z=4, and unit cell parameters a= 9.338 (7 Å, b= 7.545 (5 Å, c= 13.212 (10 Å, E= 97.10 (2°, V= 932.8 (12 Å3. The acetyl group and the mean plane of the ureido group form an angle of 81.0 (2°. In the supramolecular structure, the molecules are joined by N--H···O hydrogen bonds into cyclic structures with graph-set R2 2(14 and R2 2(16, forming a three-dimensional network.

  9. The role of aminosalicylates in the treatment of ulcerative colitis

    NARCIS (Netherlands)

    van Assche, Gert; Baert, Filip; de Reuck, Marc; de Vos, Martine; de Wit, Olivier; Hoang, Pierre; Louis, Edouard; Mana, Fazia; Pelckmans, Paul; Rutgeerts, Paul; van Gossum, Andre; D'Haens, Geert

    2002-01-01

    Aminosalicylates (5-ASA, sulfasalazine and mesalazine) play a central role in the treatment of ulcerative colitis (UC). For acute treatment of mild to moderate flares and in maintenance treatment, their efficacy has been established. Since ulcerative colitis is limited to the distal colon in two

  10. Novel myelin penta- and hexa-acetyl-galactosyl-ceramides: structural characterization and immunoreactivity in cerebrospinal fluid

    DEFF Research Database (Denmark)

    Podbielska, Maria; Dasgupta, Somsankar; Levery, Steven B

    2010-01-01

    Fast migrating cerebrosides (FMC) are derivatives of galactosylceramide (GalCer). The structures of the most hydrophobic FMC-5, FMC-6, and FMC-7 were determined by electrospray ionization linear ion-trap mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy complementing previous...... NMR spectroscopy and gas chromatography-mass spectrometry to be 3-O-acetyl-sphingosine-GalCer derivatives with galactose O-acetyl modifications. FMC-5 and FMC-6 are 3-O-acetyl-sphingosine-2,3,4,6-tetra-O-acetyl-GalCer with nonhydroxy and hydroxy-N-fatty-acids, while FMC-7 has an additional O...... Mycoplasma fermentans. The cross-reactivity of highly acetylated GalCer with microbial acyl-glycolipid raises the possibility that myelin-O-acetyl-cerebrosides, bacterial infection, and neurological disease are linked....

  11. Pharmacokinetics and N-acetylation metabolism of S-methyl-l-cysteine and trans-S-1-propenyl-l-cysteine in rats and dogs.

    Science.gov (United States)

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji

    2016-11-01

    1. Pharmacokinetics and N-acetylation metabolism of S-methyl-L-cysteine (SMC) and trans-S-1-propenyl-L-cysteine (S1PC) were examined in rats and dogs. SMC and S1PC (2-5 mg/kg) were well absorbed in both species with high bioavailability (88-100%). 2. SMC and S1PC were excreted only to a small extent in the urine of rats and dogs. The small renal clearance values (l/h/kg) indicated the extensive renal reabsorption of SMC and S1PC, which potentially contributed to their long elimination half-lives (>5 h) in dogs. 3. S1PC, but not SMC, underwent N-acetylation extensively in vivo, which can be explained by the relative activities of N-acetylation of S1PC/SMC and deacetylation of their N-acetylated forms, N-acetyl-S1PC/N-acetyl-SMC, in the liver and kidney in vitro. The activities for S1PC N-acetylation were similar to or higher than those for N-acetyl-S1PC deacetylation in liver S9 fractions of rat and dog, whereas liver and kidney S9 fractions of rat and dog had little activity for SMC N-acetylation or considerably higher activities for N-acetyl-SMC deacetylation. 4. Our study demonstrated that the pharmacokinetics of SMC and S1PC in rats and dogs was characterized by high bioavailability and extensive renal reabsorption; however, the extent of undergoing the N-acetylation metabolism was extremely different between SMC and S1PC.

  12. N-[3H]acetyl-labeling, a convenient method for radiolabeling of glycosaminoglycans

    International Nuclear Information System (INIS)

    Hook, M.; Riesenfeld, J.; Lindahl, U.

    1982-01-01

    A method for the introduction of N-[ 3 H]acetyl groups into glycosaminoglycans is described. The procedure is based on [ 3 H]acetylation of N-unsubstituted hexosamine residues by treating the polysaccharides with [ 3 H]acetic anhydride. Preparations of heparin and heparin sulfate were found to contain significant numbers of N-unsubstituted hexosamine residues, as isolates. In contrast, such units could not be detected in chondroitin sulfate, dermatan sulfate, or hyaluronic acid. These polysaccharides were therefore subjected to partial N-deacetylation by reaction with hydrazine in the presence of hydrazine sulfate. After treatment with [ 3 H]acetic anhydride, the specific activities of the resulting labeled polysaccharide preparations ranged between 0.1 X 10 6 and 0.6 X 10 6 cpm 3 H/μg of uronic acid. The 3 H-labeled polysaccharide preparations did not differ significantly from the corresponding unlabeled starting materials with regard to polyanion properties (chromatography on DEAE-cellulose) or polymer chain size (gel chromatography). Further, the radiolabeled polysaccharide derivatives were susceptible to specific enzymatic degradation (chondroitinase ABC and mammalian heparitinase) and retained their ability to interact specifically with certain proteins - for example, [ 3 H]heparin with antithrombin [ 3 H]hyaluronic acid oligosaccharides with chondroitin sulfate proteoglycan. These findings indicate that the labeling procedures did not induce any major structural derangement of the polysaccharide molecules. The method developed should be useful in providing labeled glycosaminoglycans for metabolic and enzymatic experiments as well as for studies on the interacion between glycosaminoglycans and other bilogical macromolecules

  13. N-acetylation and phosphorylation of Sec complex subunits in the ER membrane

    Directory of Open Access Journals (Sweden)

    Soromani Christina

    2012-12-01

    Full Text Available Abstract Background Covalent modifications of proteins provide a mechanism to control protein function. Here, we have investigated modifications of the heptameric Sec complex which is responsible for post-translational protein import into the endoplasmic reticulum (ER. It consists of the Sec61 complex (Sec61p, Sbh1p, Sss1p which on its own mediates cotranslational protein import into the ER and the Sec63 complex (Sec63p, Sec62p, Sec71p, Sec72p. Little is known about the biogenesis and regulation of individual Sec complex subunits. Results We show that Sbh1p when it is part of the Sec61 complex is phosphorylated on T5 which is flanked by proline residues. The phosphorylation site is conserved in mammalian Sec61ß, but only partially in birds, and not in other vertebrates or unicellular eukaryotes, suggesting convergent evolution. Mutation of T5 to A did not affect the ability of mutant Sbh1p to complement the growth defect in a Δsbh1Δsbh2 strain, and did not result in a hypophosphorylated protein which shows that alternate sites can be used by the T5 kinase. A survey of yeast phosphoproteome data shows that Sbh1p can be phosphorylated on multiple sites which are organized in two patches, one at the N-terminus of its cytosolic domain, the other proximal to the transmembrane domain. Surprisingly, although N-acetylation has been shown to interfere with ER targeting, we found that both Sbh1p and Sec62p are cotranslationally N-acetylated by NatA, and N-acetyl-proteome data indicate that Sec61p is modified by the same enzyme. Mutation of the N-acetylation site, however, did not affect Sec62p function in posttranslational protein import into the ER. Disabling NatA resulted in growth retardation, but not in co- or posttranslational translocation defects or instability of Sec62p or Sbh1p. Conclusions We conclude that N-acetylation of transmembrane and tail-anchored proteins does not interfere with their ER-targeting, and that Sbh1p phosphorylation on T5

  14. Aminosalicylates and colorectal cancer in IBD: a not-so bitter pill to swallow.

    Science.gov (United States)

    Ryan, B M; Russel, M G V M; Langholz, E; Stockbrugger, R W

    2003-08-01

    Inflammatory bowel disease (IBD) is associated with an increased risk of developing intestinal cancer at sites of chronic inflammation. Aminosalicylates, including both sulfasalazine and mesalamine, are the most commonly prescribed anti-inflammatory agents prescribed in IBD. On balance, the body of literature to date suggests that aminosalicylates confer some protection against the development of colonic neoplasia in patients with IBD and in a variety of models, including in the noninflamed gut. This latter observation implies that aminosalicylates may be of chemopreventive value in normal as well as IBD individuals. The current review examines and gives an overview of the evidence from a variety of sources, including epidemiological, in vivo and in vitro studies that have investigated the potential anticancer effects of aminosalicylates.

  15. 5,7-Di-N-acetyl-8-epiacinetaminic acid: A new non-2-ulosonic acid found in the K73 capsule produced by an Acinetobacter baumannii isolate from Singapore.

    Science.gov (United States)

    Kenyon, Johanna J; Notaro, Anna; Hsu, Li Yang; De Castro, Cristina; Hall, Ruth M

    2017-09-12

    Nonulosonic acids are found in the surface polysaccharides of many bacterial species and are often implicated in pathogenesis. Here, the structure of a novel 5,7-diacetamido-3,5,7,9-tetradeoxynon-2-ulosonic acid recovered from the capsular polysaccharide of a multiply antibiotic resistant Acinetobacter baumannii isolate was determined. The isolate carries a sugar synthesis module that differs by only a single gene from the module for the synthesis of 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-altro-non-2-ulosonic acid or 5,7-di-N-acetylacinetaminic acid, recently discovered in the capsule of another A. baumannii isolate. The new monosaccharide is the C8-epimer of acinetaminic acid (8eAci; 5,7-diacetamido-3,5,7,9-tetradeoxy-D-glycero-L-altro-non-2-ulosonic acid) and the C7-epimer of legionaminic acid. This monosaccharide had not previously been detected in a biological sample but had been synthesized chemically.

  16. Synthesis of 6-O-(5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosylonic acid)-D-galactose [6-O-(N-acetyl-α-D-neuraminyl)-D-galactose

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Vleugel, D.J.M. van der; Wassenburg, F.R.; Zwikker, J.W.

    1982-01-01

    Condensation of methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-2-chloro-2,3,5-trideoxy-beta-D-glycero-D-galacto-2-nonulopyranosonate with benzyl 2,3,4-tri-O-benzyl-beta-D-galactopyranoside, using silver salicylate as promoter, gave benzyl 2,3,4-tri-O-benzyl-6-O-(methyl

  17. Urinary excretion of N-acetyl-S-allyl-L-cystein upon garlic consumption by human volunteers.

    NARCIS (Netherlands)

    de Rooij, B.M.; Boogaard, P.J.; Rijksen, D.A.; Commandeur, J.N.M.; Vermeulen, N.P.E.

    1996-01-01

    N-Acetyl-S-allyl-L-cysteine (allylmercapturic acid, ALMA) was previously detected in urine from humans consuming garlic. Exposure of rats to allyl halides is also known to lead to excretion of ALMA in urine. ALMA is a potential biomarker for exposure assessment of workers exposed to allyl halides.

  18. N-acetyl Aspartate Levels in Adolescents With Bipolar and/or Cannabis Use Disorders

    Science.gov (United States)

    Bitter, Samantha M.; Weber, Wade A.; Chu, Wen-Jang; Adler, Caleb M.; Eliassen, James C.; Strakowski, Stephen M.; DelBello, Melissa P.

    2014-01-01

    Objective Bipolar and cannabis use disorders commonly co-occur during adolescence, and neurochemical studies may help clarify the pathophysiology underlying this co-occurrence. This study compared metabolite concentrations in the left ventral lateral prefrontal cortex among: adolescents with bipolar disorder (bipolar group; n=14), adolescents with a cannabis use disorder (cannabis use group, n=13), adolescents with cannabis use and bipolar disorders (bipolar and cannabis group, n=25), and healthy adolescents (healthy controls, n=15). We hypothesized that adolescents with bipolar disorder (with or without cannabis use disorder) would have decreased N-acetyl aspartate levels in the ventral lateral prefrontal cortex compared to the other groups, and that the bipolar and cannabis group would have the lowest N-acetyl aspartate levels of all groups. Methods N-acetyl aspartate concentrations in the left ventral lateral prefrontal cortex were obtained using Proton Magnetic Resonance Spectroscopy. Results Adolescents with bipolar disorder showed significantly lower left ventral lateral prefrontal cortex N-acetyl aspartate levels, but post-hoc analyses indicated that this was primarily due to increased N-acetyl aspartate levels in the cannabis group. The cannabis use disorder group had significantly higher N-acetyl aspartate levels compared to the bipolar disorder and the bipolar and cannabis groups (p=0.0002 and p=0.0002, respectively). Pearson correlations revealed a significant positive correlation between amount of cannabis used and N-acetyl aspartate concentrations. Conclusions Adolescents with cannabis use disorder showed higher levels of N-acetyl aspartate concentrations that were significantly positively associated with the amount of cannabis used; however, this finding was not present in adolescents with comorbid bipolar disorder. PMID:24729763

  19. N-acetyl lysyltyrosylcysteine amide inhibits myeloperoxidase, a novel tripeptide inhibitor1[S

    OpenAIRE

    Zhang, Hao; Jing, Xigang; Shi, Yang; Xu, Hao; Du, Jianhai; Guan, Tongju; Weihrauch, Dorothee; Jones, Deron W.; Wang, Weiling; Gourlay, David; Oldham, Keith T.; Hillery, Cheryl A.; Pritchard, Kirkwood A.

    2013-01-01

    Myeloperoxidase (MPO) plays important roles in disease by increasing oxidative and nitrosative stress and oxidizing lipoproteins. Here we report N-acetyl lysyltyrosylcysteine amide (KYC) is an effective inhibitor of MPO activity. We show KYC inhibits MPO-mediated hypochlorous acid (HOCl) formation and nitration/oxidation of LDL. Disulfide is the major product of MPO-mediated KYC oxidation. KYC (⩽4,000 μM) does not induce cytotoxicity in bovine aortic endothelial cells (BAECs). KYC inhibits HO...

  20. Mass Transfer and Chemical Reaction Approach of the Kinetics of the Acetylation of Gadung Flour using Glacial Acetic Acid

    Directory of Open Access Journals (Sweden)

    Andri Cahyo Kumoro

    2015-03-01

    Full Text Available Acetylation is one of the common methods of modifying starch properties by introducing acetil (CH3CO groups to starch molecules at low temperatures. While most acetylation is conducted using starch as anhidroglucose source and acetic anhydride or vinyl acetate as nucleophilic agents, this work employ reactants, namely flour and glacial acetic acid. The purpose of this work are to study the effect of pH reaction and GAA/GF mass ratio on the rate of acetylation reaction and to determine its rate constants. The acetylation of gadung flour with glacial acetic acid in the presence of sodium hydroxide as a homogenous catalyst was studied at ambient temperature with pH ranging from 8-10 and different mass ratio of acetic acid : gadung flour (1:3; 1:4; and 1:5. It was found that increasing pH, lead to increase the degree of substitution, while increasing GAA/GF mass ratio caused such decreases in the degree of substitution, due to the hydrolysis of the acetylated starch. The desired starch acetylation reaction is accompanied by undesirable hydrolysis reaction of the acetylated starch after 40-50 minutes reaction time. Investigation of kinetics of the reaction observed that the value of mass transfer rate constant (Kcs is smaller than the surface reaction rate constant (k. Thus, it can be concluded that rate controlling step is mass transfer.  © 2015 BCREC UNDIP. All rights reservedReceived: 7th August 2014; Revised: 8th September 2014; Accepted: 14th September 2014How to Cite: Kumoro, A.C., Amelia, R. (2015. Mass Transfer and Chemical Reaction Approach of the Kinetics of the Acetylation of Gadung Flour using Glacial Acetic Acid. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 30-37. (doi:10.9767/bcrec.10.1.7181.30-37Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.7181.30-37

  1. Phosphorylation and Acetylation of Acyl-CoA Synthetase- I

    DEFF Research Database (Denmark)

    Frahm, Jennifer L; Li, Lei O; Grevengoed, Trisha J

    2011-01-01

    Long chain acyl-CoA synthetase 1 (ACSL1) contributes 50 to 90% of total ACSL activity in liver, adipose tissue, and heart and appears to direct the use of long chain fatty acids for energy. Although the functional importance of ACSL1 is becoming clear, little is understood about its post...... and acetylated amino acids by mass spectrometry. We then compared these results to the post-translational modifications observed in vivo in liver and brown adipose tissue after mice were fasted or exposed to a cold environment. We identified universal N-terminal acetylation, 15 acetylated lysines, and 25...

  2. A Concise Synthesis and the Antibacterial Activity of 5,6-Dimethoxynaphthalene-2-carboxylic Acid

    OpenAIRE

    GÖKSU, Süleyman; UĞUZ, Metin Tansu

    2014-01-01

    5,6-Dimethoxynaphthalene-2-carboxylic acid was synthesized in 7 steps and with an overall yield of 46%. Bromination of 2-naphthol, and methylation with dimethyl sulfate followed by Friedel-Crafts acylation with AcCl gave 2-acetyl-5-bromo-6-methoxynaphthalene. 2-Acetyl-5-bromo-6-methoxynaphthalene was converted to 5-bromo-6- methoxynaphthalene-2-carboxylic acid by a haloform reaction. The esterification of the acid with methanol, methoxylation with NaOCH3 in the presence of CuI and s...

  3. Medical Management of Ulcerative Colitis with a Specific Focus on 5-Aminosalicylates

    Directory of Open Access Journals (Sweden)

    Hugh James Freeman

    2012-01-01

    Full Text Available Medical management of ulcerative colitis has continued to evolve over more than half of a century. Perhaps, the important advance was the development of sulfasalazine, a drug initially used for the treatment of inflammatory joint disease and only later in the treatment of inflammatory bowel disease. Sulfasalazine was a combination designer drug consisting of sulfapyridine, a sulfa-containing antibacterial agent, and 5-amino-salicylate (5-ASA, an anti-inflammatory agent. Its value appeared to be its ability to target a therapeutic concentration of the 5-ASA component of the medication primarily in the colon, largely avoiding proximal small intestinal absorption. With increasing experience, however, it also became evident that many patients treated with sulfasalazine developed intolerance to the drug and, in some rare instances, serious drug-induced hypersensitivity reactions, largely to the sulfapyridine portion. As a result, a number of alternative forms of delivery of 5-ASA were developed consisting of either a similar sulfasalazine-like prodrug formulation requiring luminal destruction of an azo-bond releasing the 5-ASA or a pH-dependent 5-ASA packaging system that permitted release in the distal intestine, particularly in the colon. As a result, 5-ASA—containing medications continue to provide a valuable management tool for remission induction in mildly to moderately active distal or extensive ulcerative colitis, an additional option for more severely symptomatic disease and value for maintenance therapy with limited potential side effects, even with long-term use.

  4. Medical management of ulcerative colitis with a specific focus on 5-aminosalicylates.

    Science.gov (United States)

    Freeman, Hugh James

    2012-01-01

    Medical management of ulcerative colitis has continued to evolve over more than half of a century. Perhaps, the important advance was the development of sulfasalazine, a drug initially used for the treatment of inflammatory joint disease and only later in the treatment of inflammatory bowel disease. Sulfasalazine was a combination designer drug consisting of sulfapyridine, a sulfa-containing antibacterial agent, and 5-amino-salicylate (5-ASA), an anti-inflammatory agent. Its value appeared to be its ability to target a therapeutic concentration of the 5-ASA component of the medication primarily in the colon, largely avoiding proximal small intestinal absorption. With increasing experience, however, it also became evident that many patients treated with sulfasalazine developed intolerance to the drug and, in some rare instances, serious drug-induced hypersensitivity reactions, largely to the sulfapyridine portion. As a result, a number of alternative forms of delivery of 5-ASA were developed consisting of either a similar sulfasalazine-like prodrug formulation requiring luminal destruction of an azo-bond releasing the 5-ASA or a pH-dependent 5-ASA packaging system that permitted release in the distal intestine, particularly in the colon. As a result, 5-ASA-containing medications continue to provide a valuable management tool for remission induction in mildly to moderately active distal or extensive ulcerative colitis, an additional option for more severely symptomatic disease and value for maintenance therapy with limited potential side effects, even with long-term use.

  5. A kinetic and mechanistic study on the oxidation of l-methionine and N-acetyl l-methionine by cerium(IV in sulfuric acid medium

    Directory of Open Access Journals (Sweden)

    T. Sumathi

    2016-09-01

    Full Text Available The kinetics of oxidation of l-methionine and N-acetyl l-methionine by Ce(IV in sulfuric acid–sulfate media in the range of 288.1–298.1 K has been investigated. The major oxidation products of methionine and N-acetyl l-methionine have been identified as methionine sulfoxide and N-acetyl methionine sulfoxide. The major oxidation products have been confirmed by qualitative analysis and boiling point. The reaction was first order with respect to l-methionine, N-acetyl l-methionine and Ce(IV. Increase in [H+], ionic strength and HSO4- did not affect the reaction rate. Under the experimental conditions, Ce4+ was the effective oxidizing species of cerium. Increase in dielectric constant of the medium decreased the reaction rate. Under nitrogen atmosphere, the reaction system can initiate polymerization of acrylonitrile, indicating the generation of free radicals. Activation parameters associated with the overall reaction have been calculated.

  6. N-acetyl-heparin attenuates acute lung injury caused by acid aspiration mainly by antagonizing histones in mice.

    Science.gov (United States)

    Zhang, Yanlin; Zhao, Zanmei; Guan, Li; Mao, Lijun; Li, Shuqiang; Guan, Xiaoxu; Chen, Ming; Guo, Lixia; Ding, Lihua; Cong, Cuicui; Wen, Tao; Zhao, Jinyuan

    2014-01-01

    Acute lung injury (ALI) is the leading cause of death in intensive care units. Extracellular histones have recently been recognized to be pivotal inflammatory mediators. Heparin and its derivatives can bind histones through electrostatic interaction. The purpose of this study was to investigate 1) the role of extracellular histones in the pathogenesis of ALI caused by acid aspiration and 2) whether N-acetyl-heparin (NAH) provides more protection than heparin against histones at the high dose. ALI was induced in mice via intratracheal instillation of hydrochloric acid (HCl). Lethality rate, blood gas, myeloperoxidase (MPO) activity, lung edema and pathological changes were used to evaluate the degree of ALI. Heparin/NAH was administered intraperitoneally, twice a day, for 3 days or until death. Acid aspiration caused an obvious increase in extracellular histones. A significant correlation existed between the concentration of HCl aspirated and the circulating histones. Heparin/NAH (10 mg/kg) improved the lethality rate, blood gas, MPO activity, lung edema and pathological score. At a dose of 20 mg/kg, NAH still provided protection, however heparin tended to aggravate the injury due to hemorrhagic complications. The specific interaction between heparin and histones was verified by the binding assay. In summary, high levels of extracellular histones can be pathogenic in ALI caused by acid aspiration. By neutralizing extracellular histones, heparin/NAH can offer similar protection at the moderate doses. At the high dose, NAH provides better protection than heparin.

  7. Arylamine N-acetyltransferase 1 in situ N-acetylation on CD3+ peripheral blood mononuclear cells correlate with NATb mRNA and NAT1 haplotype.

    Science.gov (United States)

    Salazar-González, Raúl A; Turiján-Espinoza, Eneida; Hein, David W; Niño-Moreno, Perla C; Romano-Moreno, Silvia; Milán-Segovia, Rosa C; Portales-Pérez, Diana P

    2018-02-01

    Human arylamine N-acetyltransferase 1 (NAT1) is responsible for the activation and elimination of xenobiotic compounds and carcinogens. Genetic polymorphisms in NAT1 modify both drug efficacy and toxicity. Previous studies have suggested a role for NAT1 in the development of several diseases. The aim of the present study was to evaluate NAT1 protein expression and in situ N-acetylation capacity in peripheral blood mononuclear cells (PBMC), as well as their possible associations with the expression of NAT1 transcript and NAT1 genotype. We report NAT1 protein, mRNA levels, and N-acetylation in situ activity for PBMC obtained from healthy donors. NAT1-specific protein expression was higher in CD3+ cells than other major immune cell subtypes (CD19 or CD56 cells). N-acetylation of pABA varied markedly among the PBMC of participants, but correlated very significantly with levels of NAT1 transcripts. NAT1*4 subjects showed significantly (p = 0.017) higher apparent pABA V max of 71.3 ± 3.7 versus the NAT1*14B subjects apparent V max of 58.5 ± 2.5 nmoles Ac-pABA/24 h/million cells. Levels of pABA N-acetylation activity at each concentration of substrate evaluated also significantly correlated with NAT1 mRNA levels for all samples (p N-acetylation in PBMC is higher in T cell than in other immune cell subtypes and that individual variation in N-acetylation capacity is dependent upon NAT1 mRNA and NAT1 haplotype.

  8. Crystal structure of product-bound complex of UDP-N-acetyl-d-mannosamine dehydrogenase from Pyrococcus horikoshii OT3.

    Science.gov (United States)

    Pampa, K J; Lokanath, N K; Girish, T U; Kunishima, N; Rai, V R

    2014-10-24

    UDP-N-acetyl-d-mannosamine dehydrogenase (UDP-d-ManNAcDH) belongs to UDP-glucose/GDP-mannose dehydrogenase family and catalyzes Uridine-diphospho-N-acetyl-d-mannosamine (UDP-d-ManNAc) to Uridine-diphospho-N-acetyl-d-mannosaminuronic acid (UDP-d-ManNAcA) through twofold oxidation of NAD(+). In order to reveal the structural features of the Pyrococcus horikoshii UDP-d-ManNAcADH, we have determined the crystal structure of the product-bound enzyme by X-ray diffraction to resolution of 1.55Å. The protomer folds into three distinct domains; nucleotide binding domain (NBD), substrate binding domain (SBD) and oligomerization domain (OD, involved in the dimerization). The clear electron density of the UDP-d-ManNAcA is observed and the residues binding are identified for the first time. Crystal structures reveal a tight dimeric polymer chains with product-bound in all the structures. The catalytic residues Cys258 and Lys204 are conserved. The Cys258 acts as catalytic nucleophile and Lys204 as acid/base catalyst. The product is directly interacts with residues Arg211, Thr249, Arg244, Gly255, Arg289, Lys319 and Arg398. In addition, the structural parameters responsible for thermostability and oligomerization of the three dimensional structure are analyzed. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Preparation of radioactive acetyl-l-carnitine by an enzymatic exchange reaction

    International Nuclear Information System (INIS)

    Emaus, R.; Bieber, L.L.

    1982-01-01

    A rapid method for the preparation of [1- 14 C]acetyl-L-carnitine is described. The method involves exchange of [1- 14 C]acetic acid into a pool of unlabeled acetyl-L-carnitine using the enzymes acetyl-CoA synthetase and carnitine acetyltransferase. After isotopic equilibrium is attained, radioactive acetylcarnitine is separated from the other reaction components by chromatography on Dowex 1 (C1 - ) anion exchange resin. One of the procedures used to verify the product [1- 14 C]acetyl-L-carnitine can be used to synthesize (3S)-[5- 14 C]citric acid

  10. Green acetylation of solketal and glycerol formal by heterogeneous acid catalysts to form a biodiesel fuel additive.

    Science.gov (United States)

    Dodson, Jennifer R; Leite, Thays d C M; Pontes, Nathália S; Peres Pinto, Bianca; Mota, Claudio J A

    2014-09-01

    A glut of glycerol has formed from the increased production of biodiesel, with the potential to integrate the supply chain by using glycerol additives to improve biodiesel properties. Acetylated acetals show interesting cold flow and viscosity effects. Herein, a solventless heterogeneously catalyzed process for the acetylation of both solketal and glycerol formal to new products is demonstrated. The process is optimized by studying the effect of acetylating reagent (acetic acid and acetic anhydride), reagent molar ratios, and a variety of commercial solid acid catalysts (Amberlyst-15, zeolite Beta, K-10 Montmorillonite, and niobium phosphate) on the conversion and selectivities. High conversions (72-95%) and selectivities (86-99%) to the desired products results from using acetic anhydride as the acetylation reagent and a 1:1 molar ratio with all catalysts. Overall, there is a complex interplay between the solid catalyst, reagent ratio, and acetylating agent on the conversion, selectivities, and byproducts formed. The variations are discussed and explained in terms of reactivity, thermodynamics, and reaction mechanisms. An alternative and efficient approach to the formation of 100% triacetin involves the ring-opening, acid-catalyzed acetylation from solketal or glycerol formal with excesses of acetic anhydride. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Polymorphism in sulfadimidine/4-aminosalicylic acid cocrystals: solid-state characterization and physicochemical properties.

    Science.gov (United States)

    Grossjohann, Christine; Serrano, Dolores R; Paluch, Krzysztof J; O'Connell, Peter; Vella-Zarb, Liana; Manesiotis, Panagiotis; Mccabe, Thomas; Tajber, Lidia; Corrigan, Owen I; Healy, Anne Marie

    2015-04-01

    Polymorphism of crystalline drugs is a common phenomenon. However, the number of reported polymorphic cocrystals is very limited. In this work, the synthesis and solid-state characterization of a polymorphic cocrystal composed of sulfadimidine (SD) and 4-aminosalicylic acid (4-ASA) is reported for the first time. By liquid-assisted milling, the SD:4-ASA 1:1 form I cocrystal, the structure of which has been previously reported, was formed. By spray drying, a new polymorphic form (form II) of the SD:4-ASA 1:1 cocrystal was discovered which could also be obtained by solvent evaporation from ethanol and acetone. Structure determination of the form II cocrystal was calculated using high-resolution X-ray powder diffraction. The solubility of the SD:4-ASA 1:1 cocrystal was dependent on the pH and predicted by a model established for a two amphoteric component cocrystal. The form I cocrystal was found to be thermodynamically more stable in aqueous solution than form II, which showed transformation to form I. Dissolution studies revealed that the dissolution rate of SD from both cocrystals was enhanced when compared with a physical equimolar mixture and pure SD. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:1385-1398, 2015. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Investigation of the biosynthesis of acetyl-CoA and oxaloacetic acid from pyruvic acid and the quantitative evaluation of incorporated 13C-labeled l-alanine in Arthrobacter hyalinus

    International Nuclear Information System (INIS)

    Katsumi Iida

    2014-01-01

    Studies on the contribution to acetyl-CoA and oxaloacetic acid from the pyruvic acid transformation from l-alanine in Arthrobacter hyalinus were conducted by means of feeding experiments with l-[1- 13 C]alanine and l-[3- 13 C]alanine, followed by an analysis of the labeling patterns of coproporphyrinogen III using 13 C NMR spectroscopy. The results demonstrated that l-alanine was transformed via pyruvic acid to both acetyl-CoA and oxaloacetic acid. Additionally, the quantitative analysis indicated that pyruvic acid was transformed to acetyl-CoA and oxaloacetic acid in the ratio of 1:0.8. (author)

  13. Acetylation within the N- and C-Terminal Domains of Src Regulates Distinct Roles of STAT3-Mediated Tumorigenesis.

    Science.gov (United States)

    Huang, Chao; Zhang, Zhe; Chen, Lihan; Lee, Hank W; Ayrapetov, Marina K; Zhao, Ting C; Hao, Yimei; Gao, Jinsong; Yang, Chunzhang; Mehta, Gautam U; Zhuang, Zhengping; Zhang, Xiaoren; Hu, Guohong; Chin, Y Eugene

    2018-06-01

    Posttranslational modifications of mammalian c-Src N-terminal and C-terminal domains regulate distinct functions. Myristoylation of G 2 controls its cell membrane association and phosphorylation of Y419/Y527 controls its activation or inactivation, respectively. We provide evidence that Src-cell membrane association-dissociation and catalytic activation-inactivation are both regulated by acetylation. In EGF-treated cells, CREB binding protein (CBP) acetylates an N-terminal lysine cluster (K5, K7, and K9) of c-Src to promote dissociation from the cell membrane. CBP also acetylates the C-terminal K401, K423, and K427 of c-Src to activate intrinsic kinase activity for STAT3 recruitment and activation. N-terminal domain phosphorylation (Y14, Y45, and Y68) of STAT3 by c-Src activates transcriptionally active dimers of STAT3. Moreover, acetyl-Src translocates into nuclei, where it forms the Src-STAT3 enhanceosome for gene regulation and cancer cell proliferation. Thus, c-Src acetylation in the N-terminal and C-terminal domains play distinct roles in Src activity and regulation. Significance: CBP-mediated acetylation of lysine clusters in both the N-terminal and C-terminal regions of c-Src provides additional levels of control over STAT3 transcriptional activity. Cancer Res; 78(11); 2825-38. ©2018 AACR . ©2018 American Association for Cancer Research.

  14. Effects of L-cysteine and N-acetyl-L-cysteine on 4-hydroxy-2, 5-dimethyl-3(2H)-furanone (furaneol), 5-(hydroxymethyl)furfural, and 5-methylfurfural formation and browning in buffer solutions containing either rhamnose or glucose and arginine.

    Science.gov (United States)

    Haleva-Toledo, E; Naim, M; Zehavi, U; Rouseff, R L

    1999-10-01

    Solutions of L-cysteine (Cys) and N-acetyl-L-cysteine (AcCys), containing glucose or rhamnose, with or without arginine, were buffered to pH 3, 5, and 7 and incubated at 70 degrees C for 48 h. Cys and AcCys inhibited the formation of (hydroxymethyl)furfural (HMF) from glucose and methylfurfural (MF) from rhamnose under acidic conditions. AcCys inhibited the accumulation of 4-hydroxy-2, 5-dimethyl- 3(2H)-furanone (DMHF, Furaneol) from rhamnose, but Cys, under our experimental conditions, enhanced Furaneol accumulation from rhamnose. Cys and AcCys reacted directly with Furaneol but not with HMF or MF. Both Cys and AcCys inhibited nonenzymatic browning at pH 7. At pH 3, however, Cys reacted with both glucose and rhamnose to produce unidentified compounds that increased the visible absorbency.

  15. In-vitro investigations of the speed of pyrrole formation of 2,5-hexanedione and 2,5-heptanedione with N{alpha}-acetyl-L-lysine as a precondition for a comparative assessment of the neurotoxic potentials of the two {gamma}-diketones; In-vitro-Untersuchungen zur Pyrrolbildungsgeschwindigkeit von 2,5-Hexandion und 2,5-Heptandion mit N{alpha}-Acetyl-L-lysin als Voraussetzung fuer eine vergleichende Abschaetzung der neurotoxischen Potentiale beider {gamma}-Diketone

    Energy Technology Data Exchange (ETDEWEB)

    Richter, M.F.

    1997-09-01

    N-hexane and n-heptane are important solvents. Chronic exposure to n-hexane causes polyneuropathies, which are attributed to the metabolite 2,5-hexanedione, a {gamma} diketone. As a basis for a comparative assessment of the neurotoxic potentials of 2,5-hexanedione and 2,5-heptanedione, an in-vitro test was developed and used to investigate the speed of pyrrole formation of the two {gamma} diketones in reacting with the {epsilon} amino group of N{alpha}-acetyl L-lysine. The speed of the formation of pyrrole was always directly proportional to the respective reactant concentration. It consequently is subject to a second-order kinetics. As a further result, the pyrrole formation speed of 2,5-heptanedione was found to be only half that of 2,5-hexanedione. The results lead to the conclusion that 2,5-heptanedione poses a smaller risk of developing peripheral neuropathy than 2,5-hexanedione. (orig./MG) [Deutsch] n-Hexan und n-Heptan sind wichtige Loesungsmittel. Chronische Exposition gegenueber n-Hexan ruft Polyneuropathien hervor, die auf den Metaboliten 2,5-Hexandion, ein {gamma}-Diketon, zurueckgefuehrt werden. Als Grundlage fuer eine vergleichende Abschaetzung der neurotoxischen Potentiale von 2,5-Hexandion und 2,5-Heptandion wurde in der vorliegenden Arbeit ein In-vitro-Test entwickelt, mit dem die Pyrrolbildungsgeschwindigkeiten der beiden {gamma}-Diketone mit der {epsilon}-Aminogruppe von N{alpha}-Acetyl-L-Iysin untersucht wurden. Die Pyrrolbildungsgeschwindigkeit war stets direkt proportional zur jeweiligen Reaktantenkonzentration. Somit unterliegt sie einer Kinetik 2. Ordnung. Weiterhin wurde gezeigt, dass die Pyrrolbildungsgeschwindigkeit fuer 2,5-Heptandion nur etwa halb so gross ist wie fuer 2,5-Hexandion. Aus den Ergebnissen wird gefolgert, dass das von 2,5-Heptandion ausgehende Risiko an peripheren Neuropathien zu erkranken geringer ist, als das von 2,5-Hexandion ausgehende. (orig./MG)

  16. Acetyl salicylic acid and 24-epibrassinolide attenuate decline in photosynthesis, chlorophyll contents and membrane thermo- stability in tomato (lycopersicon esculentum mill.) under heat stress

    International Nuclear Information System (INIS)

    Khan, A.R.; Hui, C.Z.; Ghazanfar, B.

    2015-01-01

    The effect of exogenous application of varying levels of 24-epibrassinolide (0.75, 1.5 and 3 micro M) and acetyl salicylic acid (0.25, 0.75 and 1.25 micro M) for induction of heat tolerance in terms of their effect on photosynthesis, chlorophyll content, membrane integrity and survival in four weeks old tomato (cultivar: Mei Jie Lo) seedlings under high temperature stress (46 degree C/4 h daily) for 21 days was investigated. The daily heat stress treatment had deleterious effects on seedlings but chemical treatments significantly reduced the magnitude of losses to different extents. 24-epibrassinolide (3 micro M) was over all the best treatment to improve survival (86.11%), photosynthesis (39.4%) and chlorophyll contents (26.12%) accompanied with initiation of flower buds and improved vegetative growth. Whereas acetyl salicylic acid (1.25 mM) best improved photosynthetic activity (40.6%) as compared to the untreated heat stressed control seedlings. Moreover, 3 micro M 24-epibrassinolide and 0.75 micro M acetyl salicylic acid reduced cell membrane injury to 8.3 and 6.9% respectively as compared with 22.4% in heat stressed control seedlings. However lower doses of acetyl salicylic acid (0.25 and 0.75 micro M) had slight (5.6 and 12.8%) inhibition effect on the photosynthesis than the heat stressed controls. Overall both acetyl salicylic acid and 24-epibrassinolide up regulated basal heat tolerance in tomato seedlings and studied concentrations demonstrated signature affect upon different parameters. Thus both chemical agents can be potential candidates for further investigations for exogenous application aiming at extension of tomato growth season in summer. (author)

  17. Inhibition of fatty acid synthesis in isolated adipocytes by 5-(tetradecyloxy)-2-furoic acid.

    Science.gov (United States)

    Halvorson, D L; McCune, S A

    1984-11-01

    The compound 5-(tetradecyloxy)-2-furoic acid (TOFA), a hypolipidemic agent, inhibits fatty acid synthesis, lactate and pyruvate accumulation and CO2 release in isolated rat adipocytes. TOFA stimulates the accumulation of citrate. ATP levels are not lowered by TOFA. In comparison with the natural fatty acid, oleate, TOFA exhibited a much greater inhibitory effect on lipogenesis. TOFyl-CoA formation within intact adipocytes was demonstrated. Although not inhibited by TOFA, acetyl-CoA carboxylase is inhibited by TOFyl-CoA. It is proposed that many of the metabolic effects of TOFA in isolated adipocytes can be explained by TOFyl-CoA inhibition of acetyl-CoA carboxylase. TOFA inhibits glycolysis as a secondary event with the primary event of inhibition of fatty acid synthesis causing an accumulation of citrate which is an inhibitor of phosphofructokinase.

  18. A facile preparation of alkyl α-glycosides of the methyl ester of N-acetyl-D-neuraminic acid

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Vleugel, D.J.M. van der; Heeswijk, W.A.R. van

    1982-01-01

    The reaction of methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-2-chloro-2,3,5-trideoxy-β-D-glycero-D-galacto-2-nonulopyranosonate with primary and secondary alcohols in the presence of silver salicylate affords, after O-deacetylation, stereo-specifically the corresponding methyl (alkyl

  19. Urinary N-acetyl-beta -D-glucosaminidase and its isoenzymes A & B in workers exposed to cadmium at cadmium plating

    Directory of Open Access Journals (Sweden)

    Rajan BK

    2007-07-01

    Full Text Available Abstract Objective The present study was carried out to determine the effect of cadmium exposure on Urinary N-acetyl-beta -D-glucosaminidase and its isoenzymes A and B in workers exposed at cadmium plating. Methods 50 subjects using cadmium during cadmium plating formed the study group. An equal number of age-sex matched subjects working in administrative section formed the control group. Urinary cadmium levels were determined by using a flameless atomic absorption spectrophotometer. Urinary N-acetyl-beta -D-glucosaminidase and its isoenzymes A and B were determined by using spectrophotmetric method. Results A significant increase of urinary total N-acetyl-beta -D-glucosaminidase and its isoenzymes A and B profiles were noted in study as compared to controls. The levels of urinary N-acetyl-beta -D-glucosaminidase and its isoenzymes A and B profiles were positively and significantly correlated with cadmium levels in urine. Multiple regression analysis was used to assess the effect of urinary cadmium or life style confounding factors (age, BMI, smoking and alcohol consumption on urinary N-acetyl-beta -D-glucosaminidase and its isoenzymes A and B. The analysis showed that the study subjects who had urine cadmium levels greater than 5 μg/g of creatinine, work duration >15 years, smoking and body mass index variables were significantly associated with urinary total N-acetyl-beta -D-glucosaminidase but not on isoenzymes A&B. Conclusion The results presented in this study shows that the increased levels of urinary N-acetyl-beta -D-glucosaminidase observed in cadmium-exposed workers could be used as biomarkers for suggesting preventive measure.

  20. Production of Nα-acetyl Tα1-HSA through in vitro acetylation by RimJ.

    Science.gov (United States)

    Chen, Jing; Li, Haibin; Wang, Tao; Sun, Shuyang; Liu, Jia; Chen, Jianhua

    2017-11-10

    Thymosin alpha 1 (Tα1) is an important immunomodulating agent with various clinical applications. The natural form of Tα1 is N α -acetylated, which was supposed to be related to in vivo stability of the hormone. In this study, fusion protein Tα1-HSA was constructed and expressed in Pichia pastoris . RimJ, a N α -acetyltransferase from E.coli , was also overexpressed and purified to homogeneity. In vitro acetylation of Tα1-HSA in the presence of RimJ and acetyl coenzyme A resulted in N α -acetyl Tα1-HSA. The N α -acetylation was determined by LC-MS/MS. Kinetic assay indicated that RimJ had a higher affinity to desacetyl Tα1 than to Tα1-HSA. Bioactivity assay revealed fully retained activity of Tα1 when the hormone was connected to the N-terminus of the fusion protein, while the activity was compromised in our previously constructed HSA-Tα1. With fully retained activity and N-terminal acetylation, N α -acetyl Tα1-HSA was expected to be a more promising pharmaceutical agent than Tα1.

  1. Evaluation of gels obtained from acetylation of chitosan in heterogeneous medium

    International Nuclear Information System (INIS)

    Garcia, Rosangela Balaban; Silva, Dayse Luzia Pinheiro da; Costa, Marta

    2008-01-01

    Chitosan was acetylated during 2, 5 and 10 h and physical gels were obtained at different polymer concentrations in N,N-dimethylacetamide containing 5% of LiCl. Acetylation was confirmed by infrared spectroscopy and 13 C NMR, and degrees of acetylation in the range of 0.82-0.91 were determined by NMR. The O-acetylation degree (0.12-0.15) was exclusively determined by a volumetric method. Rheological studies showed that the storage modulus values were smaller for the more acetylated samples and increased with the temperature and the polymer concentration. All the gels presented storage modulus superior to loss modulus, evidencing more elastic than viscous characteristics. The results obtained in this work suggest a gelation process based on a balance between O and N-acetylation and intermolecular bonds. (author)

  2. The synthesis of mono- and diacetyl-9H-fluorenes. Reactivity and selectivity in the Lewis acid catalyzed Friedel-Crafts acetylation of 9H-fluorene

    DEFF Research Database (Denmark)

    Titinchi, Salam J. J.; Kamounah, Fadhil S.; Abbo, Hanna S.

    2008-01-01

    Friedel-Crafts acetylation of 9H-fluorene is an effective route for the preparation of mono- and diacetyl-9H-fluorenes. Using acetylchloride as the reagent and aluminum chloride as the Lewis acid catalyst the effect of the solvent polarity, the temperature, the reaction time and the mode of addit......Friedel-Crafts acetylation of 9H-fluorene is an effective route for the preparation of mono- and diacetyl-9H-fluorenes. Using acetylchloride as the reagent and aluminum chloride as the Lewis acid catalyst the effect of the solvent polarity, the temperature, the reaction time and the mode......,7-diacetyl-9H-fluorene was obtained in 5-11 % yield when carbon disulfide was used as the solvent. Acetylation of 9H-fluorene in dichloroethane and carbon disulfide, using an excess of acetyl chloride and aluminum chloride at reflux temperature, gives 2,7-diacetyl-9H-fluorene exclusively in high yields (> 97...

  3. Antioxidant activities and radical scavenging activities of flavonoids studied by the electrochemical methods and ESR technique based on the novel paramagnetic properties of poly(aniline-co-5-aminosalicylic acid)

    International Nuclear Information System (INIS)

    Yang, Yifei; Mu, Shaolin

    2013-01-01

    Graphical abstract: ESR spectra of the PAASA/RGO/graphite electrodes: (1) in the buffer solution consisting of 0.20 M phosphate and methanol (80: 20, v/v), (2) in the buffer solutions containing 150 μM of (+)-catechin. -- Abstract: Four kinds of flavonoid, viz. flavanone naringenin, Flavone apigenin, flavonol kaempferol, and flavanol (+)-catechin, are used to investigate their antioxidant and radical scavenging activitis in the water-methanol solution of pH 6.3, using the electrochemical methods and electron spin resonance (ESR) technique. Poly(aniline-co-5-aminosalicylic acid) (PAASA) is first used as a radical source that was polymerized on a reduced graphene oxide (RGO)/glassy carbon (GC) disk or on the RGO/graphite fiber electrode. The assessment of the antioxidant activities is performed using both cyclic voltammetry and the open circuit potential measurement. On the basis of results from both electrochemical mathods, the order of the antioxidant actitvities of flavonoids is as follows: (+)-catechin > kaempferol > apigenin > naringenin However, the difference in the antioxidant activities between naringenin and apigenin is very small. On the basis of the ESR signal intensities of PAASA, the order of the radical scavenging activities of flavonoids is in good agreement with that of the above antioxdant activities.Three oxidation peaks on the cyclic voltammograms of (+)-catechin are first detected, which gives us a deep insight into the oxidation mechanism of (+)-catechin

  4. Synergistic complexes of uranyl ion with 1-phenyl-3-methyl-4-acetyl-pyrazolone-5 and some oxo-donors

    International Nuclear Information System (INIS)

    Nagar, M.S.; Ruikar, P.B.; Subramanian, M.S.

    1987-01-01

    Complexes of uranyl ion with 1-phenyl-3-methyl-4-acetyl-pyrazolone-5(PMAP) and various oxo-donors such as aliphatic sulphoxides [R 2 SO, where R = i-C 5 H 11 (DISO), n-C 6 H 13 (DHSO), n-C 7 H 15 (DSSO), n-C 8 H 17 (DOSO), n-C 9 H 19 (DNSO), n-C 10 H 21 (DDSO), n-C 11 H 23 (DUDSO) and n-C 4 H 9 (DBUSO)] tributylphosphate (TBP) and tri-n-octyl phosphine oxide (TOPO) have been synthesised and characterized. Analytical data establish that they have the stoichiometry UO 2 (PMAP) 2 X where X is the oxo-donor. The IR spectra of the sulphoxide complexes in the S - O stretching region indicate that the ligands R 2 SO are O-bonded. The methyl protons of the pyrazole ring and acetyl group in the PMAP ligand are equivalent giving rise to a single sharp peak in the PMR spectra, whereas in the synergistic complexes with the oxo-donors, two deshielded peaks of equal intensity are observed which indicate the non-equivalence of the methyl groups. The peak which is more deshielded has been ascribed to the methyl of the acetyl group. The higher deshielding of these methyl protons arises due to the transfer of electron density to the metal atom on complexation. (author)

  5. Crystal structure of product-bound complex of UDP-N-acetyl-D-mannosamine dehydrogenase from Pyrococcus horikoshii OT3

    Energy Technology Data Exchange (ETDEWEB)

    Pampa, K.J., E-mail: sagarikakj@gmail.com [Department of Studies in Microbiology, University of Mysore, Mysore 570 006 (India); Lokanath, N.K. [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India); Girish, T.U. [Department of General Surgery, JSS Medical College and Hospital, JSS University, Mysore 570 015 (India); Kunishima, N. [Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148 (Japan); Rai, V.R. [Department of Studies in Microbiology, University of Mysore, Mysore 570 006 (India)

    2014-10-24

    Highlights: • Determined the structure of UDP-D-ManNAcADH to a resolution of 1.55 Å. • First complex structure of PhUDP-D-ManNAcADH with UDP-D-ManMAcA. • The monomeric structure consists of three distinct domains. • Cys258 acting as catalytic nucleophilic and Lys204 acts as acid/base catalyst. • Oligomeric state plays an important role for the catalytic function. - Abstract: UDP-N-acetyl-D-mannosamine dehydrogenase (UDP-D-ManNAcDH) belongs to UDP-glucose/GDP-mannose dehydrogenase family and catalyzes Uridine-diphospho-N-acetyl-D-mannosamine (UDP-D-ManNAc) to Uridine-diphospho-N-acetyl-D-mannosaminuronic acid (UDP-D-ManNAcA) through twofold oxidation of NAD{sup +}. In order to reveal the structural features of the Pyrococcus horikoshii UDP-D-ManNAcADH, we have determined the crystal structure of the product-bound enzyme by X-ray diffraction to resolution of 1.55 Å. The protomer folds into three distinct domains; nucleotide binding domain (NBD), substrate binding domain (SBD) and oligomerization domain (OD, involved in the dimerization). The clear electron density of the UDP-D-ManNAcA is observed and the residues binding are identified for the first time. Crystal structures reveal a tight dimeric polymer chains with product-bound in all the structures. The catalytic residues Cys258 and Lys204 are conserved. The Cys258 acts as catalytic nucleophile and Lys204 as acid/base catalyst. The product is directly interacts with residues Arg211, Thr249, Arg244, Gly255, Arg289, Lys319 and Arg398. In addition, the structural parameters responsible for thermostability and oligomerization of the three dimensional structure are analyzed.

  6. Cacao pod husks as a source of low-methoxyl, highly acetylated pectins able to gel in acidic media.

    Science.gov (United States)

    Vriesmann, Lúcia Cristina; de Oliveira Petkowicz, Carmen Lúcia

    2017-08-01

    Cacao pod husks, the main by-product from cocoa production, have been investigated for pectin isolation. In the present study, the rheological properties of two low-methoxyl (LM) pectins isolated from cacao pod husks using different extraction conditions were evaluated. One pectin was obtained from optimized conditions employing aqueous nitric acid as an extractant, and the other one was extracted with boiling water. Pectin gels (0.99% galacturonic acid equivalent, w/w) were prepared at pH 2.5-3.0 in the presence of 60% sucrose (w/w) and subjected to rheological analysis. Dynamic oscillatory experiments at 25°C indicated that better gels were obtained at the lowest pH (2.5). Steady shear measurements revealed a shear-thinning behavior. The apparent viscosities of the samples increased as pH decreased. Gelation with calcium ions was not observed for either of the highly acetylated LM pectins analyzed. The rheological analysis results showed that despite their high acetyl content, LM pectins extracted by different methods from cacao pod husks were able to form gels at low pH under reduced water activity, suggesting a possible application in acidic products. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Amino acid sequences of the ribosomal proteins HL30 and HmaL5 from the archaebacterium Halobacterium marismortui.

    Science.gov (United States)

    Hatakeyama, T; Hatakeyama, T

    1990-07-06

    The complete amino acid sequences of the ribosomal proteins HL30 and HmaL5 from the archaebacterium Halobacterium marismortui were determined. Protein HL30 was found to be acetylated at its N-terminal amino acid and shows homology to the eukaryotic ribosomal proteins YL34 from yeast and RL31 from rat. Protein HmaL5 was homologous to the protein L5 from Escherichia coli and Bacillus stearothermophilus as well as to YL16 from yeast. HmaL5 shows more similarities to its eukaryotic counterpart than to eubacterial ones.

  8. Density functional and ab initio study of the tautomeric forms of 3-acetyl tetronic and 3-acetyl tetramic acids

    International Nuclear Information System (INIS)

    Skylaris, Chris-Kriton; Igglessi-Markopoulou, Olga; Detsi, Anastasia; Markopoulos, John

    2003-01-01

    We propose all the accessible paths of interconversion between the tautomers of 3-acetyl tetronic and 3-acetyl tetramic acids by performing calculations with the density functional B3LYP method and the ab initio MP2 method. Our findings clarify at the atomic level the mechanisms of the equilibria between these tautomers, a topic so far only partially understood on the basis of studies by nuclear magnetic resonance (NMR) spectroscopy. We show that thermal effects via relative Gibbs free energies ΔG must be taken into account in order to reach good quantitative agreement with the available experimental information on the ratios of the most stable tautomers. The calculated 1 H and 13 C chemical shifts are in agreement with the experimental values from NMR spectroscopy

  9. Metabolism of vertebrate amino sugars with N-glycolyl groups: mechanisms underlying gastrointestinal incorporation of the non-human sialic acid xeno-autoantigen N-glycolylneuraminic acid.

    Science.gov (United States)

    Banda, Kalyan; Gregg, Christopher J; Chow, Renee; Varki, Nissi M; Varki, Ajit

    2012-08-17

    Although N-acetyl groups are common in nature, N-glycolyl groups are rare. Mammals express two major sialic acids, N-acetylneuraminic acid and N-glycolylneuraminic acid (Neu5Gc). Although humans cannot produce Neu5Gc, it is detected in the epithelial lining of hollow organs, endothelial lining of the vasculature, fetal tissues, and carcinomas. This unexpected expression is hypothesized to result via metabolic incorporation of Neu5Gc from mammalian foods. This accumulation has relevance for diseases associated with such nutrients, via interaction with Neu5Gc-specific antibodies. Little is known about how ingested sialic acids in general and Neu5Gc in particular are metabolized in the gastrointestinal tract. We studied the gastrointestinal and systemic fate of Neu5Gc-containing glycoproteins (Neu5Gc-glycoproteins) or free Neu5Gc in the Neu5Gc-free Cmah(-/-) mouse model. Ingested free Neu5Gc showed rapid absorption into the circulation and urinary excretion. In contrast, ingestion of Neu5Gc-glycoproteins led to Neu5Gc incorporation into the small intestinal wall, appearance in circulation at a steady-state level for several hours, and metabolic incorporation into multiple peripheral tissue glycoproteins and glycolipids, thus conclusively proving that Neu5Gc can be metabolically incorporated from food. Feeding Neu5Gc-glycoproteins but not free Neu5Gc mimics the human condition, causing tissue incorporation into human-like sites in Cmah(-/-) fetal and adult tissues, as well as developing tumors. Thus, glycoproteins containing glycosidically linked Neu5Gc are the likely dietary source for human tissue accumulation, and not the free monosaccharide. This human-like model can be used to elucidate specific mechanisms of Neu5Gc delivery from the gut to tissues, as well as general mechanisms of metabolism of ingested sialic acids.

  10. Biosynthesis and release of beta-endorphin-, N-acetyl beta-endorphin-, beta-endorphin-(1-27)-, and N-acetyl beta-endorphin-(1-27)-like peptides by rat pituitary neurointermediate lobe: beta-endorphin is not further processed by anterior lobe

    International Nuclear Information System (INIS)

    Liotta, A.S.; Yamaguchi, H.; Krieger, D.T.

    1981-01-01

    Continuous labeling and pulse-chase techniques were employed to study the synthesis and secretion of multiple forms of immunoreactive beta-endorphin by cultured dispersed rat anterior lobe cells and intact neurointermediate pituitary lobe. Intact neurointermediate lobes incorporated radiolabeled amino acids into four to six forms of immunoreactive beta-endorphin. Four of these forms were physicochemically similar to authentic beta-endorphin, N-acetylated beta-endorphin, beta-endorphin-(1-27), and N-acetylated beta-endorphin-(1-27). Pulse-chase studies indicated that a beta-lipotropin-like molecule served as a metabolic intermediate for a beta-endorphin-like molecule. As beta-endorphin-like material accumulated in the cell, some of it was N-acetylated (approximately 18% at 2 hr chase and approximately 65% at 18 hr chase). At later chase times, beta-endorphin-(1-27)- and N-acetylated beta-endorphin-(1-27)-like peptides were the predominant molecular species detected. All endorphin forms were detected in unlabeled tissue maintained in culture or tissue continuously labeled for 72 hr and were released into the medium under basal, stimulatory (10(-8) M norepinephrine), or inhibitory (10(-7) M dopamine) incubation conditions. In all cases, beta-endorphin-(1-27)-like species were the predominant forms (more than 70% of total) present in the cells and released into the medium. In contrast, approximately 90% of radiolabeled immunoreactive beta-endorphin extracted from anterior lobe cells and medium similarly incubated appeared to represent the authentic beta-endorphin molecule. Continuous labeling (72 hr) revealed the beta-lipotropin/beta-endorphin molar ratio to be approximately 4. We conclude that, in anterior lobe, most of the beta-endorphin is not processed further and is released intact, while in neurointermediate lobe, it serves as a biosynthetic intermediate

  11. Efficient 1H-NMR Quantitation and Investigation of N-Acetyl-D-glucosamine (GlcNAc and N,N'-Diacetylchitobiose (GlcNAc2 from Chitin

    Directory of Open Access Journals (Sweden)

    Huey-Lang Yang

    2011-09-01

    Full Text Available A quantitative determination method of N-acetyl-D-glucosamine (GlcNAc and N,N'-diacetylchitobiose (GlcNAc2 is proposed using a proton nuclear magnetic resonance experiment. N-acetyl groups of GlcNAc and (GlcNAc2 are chosen as target signals, and the deconvolution technique is used to determine the concentration of the corresponding compound. Compared to the HPLC method, 1H-NMR spectroscopy is simple and fast. The method can be used for the analysis of chitin hydrolyzed products with real-time analysis, and for quantifying the content of products using internal standards without calibration curves. This method can be used to quickly evaluate chitinase activity. The temperature dependence of 1H-NMR spectra (VT-NMR is studied to monitor the chemical shift variation of acetyl peak. The acetyl groups of products are involved in intramolecular H-bonding with the OH group on anomeric sites. The rotation of the acetyl group is closely related to the intramolecular hydrogen bonding pattern, as suggested by the theoretical data (molecular modeling.

  12. 2-Acetylthiamin pyrophosphate (acetyl-TPP) pH-rate profile for hydrolysis of acetyl-TPP and isolation of acetyl-TPP as a transient species in pyruvate dehydrogenase catalyzed reactions

    International Nuclear Information System (INIS)

    Gruys, K.J.; Datta, A.; Frey, P.A.

    1989-01-01

    Rate constants for the hydrolysis of acetyl-TPP were measured pH values of 2.5 and 7.5 and plotted as log k obs versus pH. The pH-rate profile defined two legs, each with a slope of +1 but separated by a region of decreased slope between pH 4 and pH 6. The rates were insensitive to buffer concentrations. Each leg of the profile reflected specific-base-catalyzed hydrolysis of acetyl-TPP, analogous to the hydrolysis of 2-acetyl-3,4-dimethylthiazolium ion. The separation of the two legs of this profile has been shown to be caused by the ionization of a group exhibiting a pK a of 4.73 within acetyl-TPP that is remote from the acetyl group, the aminopyrimidine ring, which is promoted below pH 4.73. The protonation level of this ring has been shown to control the equilibrium partitioning of acetyl-TPP among its carbinolamine, keto, and hydrate forms. The differential partitioning of these species is a major factor causing the separation between the two legs of the pH-rate profile. The characteristic pH-rate profile and the availability of synthetic acetyl-TPP have facilitated the isolation and identification of [1- 14 C]acetyl-TPP from acid-quenched enymatic reaction mixtures at steady states. [1- 14 C]Acetyl-TPP was identified as a transient species in reactions catalyzed by the PDH complex or the pyruvate dehydrogenase component of the complex (E 1 ). The pH-rate profile for hydrolysis of [1- 14 C]-acetyl-TPP, isolated from enzymatic reactions was found to be indistinguishable from that for authentic acetyl-TPP, which constituted positive identification of the 14 C-labeled enzymic species

  13. N-Acetyl-L-Leucine Accelerates Vestibular Compensation after Unilateral Labyrinthectomy by Action in the Cerebellum and Thalamus

    Science.gov (United States)

    Xiong, Guoming; Potschka, Heidrun; Jahn, Klaus; Bartenstein, Peter; Brandt, Thomas; Dutia, Mayank; Dieterich, Marianne; Strupp, Michael; la Fougère, Christian; Zwergal, Andreas

    2015-01-01

    An acute unilateral vestibular lesion leads to a vestibular tone imbalance with nystagmus, head roll tilt and postural imbalance. These deficits gradually decrease over days to weeks due to central vestibular compensation (VC). This study investigated the effects of i.v. N-acetyl-DL-leucine, N-acetyl-L-leucine and N-acetyl-D-leucine on VC using behavioural testing and serial [18F]-Fluoro-desoxyglucose ([18F]-FDG)-μPET in a rat model of unilateral chemical labyrinthectomy (UL). Vestibular behavioural testing included measurements of nystagmus, head roll tilt and postural imbalance as well as sequential whole-brain [18F]-FDG-μPET was done before and on days 1,3,7 and 15 after UL. A significant reduction of postural imbalance scores was identified on day 7 in the N-acetyl-DL-leucine (p metabolism (rCGM) by means of μPET revealed that only N-acetyl-L-leucine but not N-acetyl-D-leucine caused a significant increase of rCGM in the vestibulocerebellum and a decrease in the posterolateral thalamus and subthalamic region on days 3 and 7. A similar pattern was found when comparing the effect of N-acetyl-L-leucine on rCGM in an UL-group and a sham UL-group without vestibular damage. In conclusion, N-acetyl-L-leucine improves compensation of postural symptoms after UL in a dose-dependent and specific manner, most likely by activating the vestibulocerebellum and deactivating the posterolateral thalamus. PMID:25803613

  14. Quantitative evaluation of the biosynthetic pathways leading to δ-aminolevulinic acid from the Shemin precursor glycine via the C5 pathway in Arthrobacter hyalinus by analysis of 13C-labeled coproporphyrinogen III biosynthesized from [2-13C]glycine, [1-13C]acetate, and [2-13C]acetate using 13C NMR spectroscopy

    International Nuclear Information System (INIS)

    Katsumi Iida

    2013-01-01

    The biosynthetic pathways leading to δ-aminolevulinic acid (ALA) from the Shemin precursor glycine via the C5 pathway in Arthrobacter hyalinus were quantitatively evaluated by means of feeding experiments with [2- 13 C]glycine, sodium [1- 13 C]acetate, and sodium [2- 13 C]acetate, followed by analysis of the labeling patterns of coproporphyrinogen III (Copro'gen III) (biosynthesized from ALA) using 13 C NMR spectroscopy. Two biosynthetic pathways leading to ALA from glycine via the C5 pathway were identified: i.e., transformation of glycine to l-serine catalyzed by glycine hydroxymethyltransferase, and glycine synthase-catalyzed catabolism of glycine to N 5 , N 10 -methylene-tetrahydrofolic acid (THF), which reacts with another molecule of glycine to afford l-serine. l-Serine is transformed to acetyl-CoA via pyruvic acid. Acetyl-CoA enters the tricarboxylic acid cycle, affording 2-oxoglutaric acid, which in turn is transformed to l-glutamic acid. The l-glutamic acid enters the C5 pathway, affording ALA in A. hyalinus. A 13 C NMR spectroscopic comparison of the labeling patterns of Copro'gen III obtained after feeding of [2- 13 C]glycine, sodium [1- 13 C]acetate, and sodium [2- 13 C]acetate showed that [2- 13 C]glycine transformation and [2- 13 C]glycine catabolism in A. hyalinus proceed in the ratio of 52 and 48 %. The reaction of [2- 13 C]glycine and N 5 , N 10 -methylene-THF, that of glycine and N 5 , N 10 -[methylene- 13 C]methylene-THF generated from the [2- 13 C]glycine catabolism, and that of [2- 13 C]glycine and N 5 , N 10 -[methylene- 13 C]methylene-THF transformed the fed [2- 13 C]glycine to [1- 13 C]acetyl-CoA, [2- 13 C]acetyl-CoA, and [1,2- 13 C 2 ]acetyl-CoA in the ratios of 42, 37, and 21 %, respectively. These labeled acetyl-CoAs were then incorporated into ALA. Our results provide a quantitative picture of the pathways of biosynthetic transformation to ALA from glycine in A. hyalinus. (author)

  15. The influence of N-terminal acetylation on micelle-induced conformational changes and aggregation of α-Synuclein.

    Directory of Open Access Journals (Sweden)

    David Ruzafa

    Full Text Available The biological function of α-Synuclein has been related to binding to lipids and membranes but these interactions can also mediate α-Synuclein aggregation, which is associated to Parkinson's disease and other neuropathologies. In brain tissue α-Synuclein is constitutively N-acetylated, a modification that plays an important role in its conformational propensity, lipid and membrane binding, and aggregation propensity. We studied the interactions of the lipid-mimetic SDS with N-acetylated and non-acetylated α-Synuclein, as well as their early-onset Parkinson's disease variants A30P, E46K and A53T. At low SDS/protein ratios α-Synuclein forms oligomeric complexes with SDS micelles with relatively low α-helical structure. These micellar oligomers can efficiently nucleate aggregation of monomeric α-Synuclein, with successive formation of oligomers, protofibrils, curly fibrils and mature amyloid fibrils. N-acetylation reduces considerably the rate of aggregation of WT α-Synuclein. However, in presence of any of the early-onset Parkinson's disease mutations the protective effect of N-acetylation against micelle-induced aggregation becomes impaired. At higher SDS/protein ratios, N-acetylation favors another conformational transition, in which a second type of α-helix-rich, non-aggregating oligomers become stabilized. Once again, the Parkinson's disease mutations disconnect the influence of N-acetylation in promoting this transition. These results suggest a cooperative link between the N-terminus and the region of the mutations that may be important for α-Synuclein function.

  16. ynthesis and Characterization of 1-Aryl-5-hepta-O-acetyl-β-D-maltosyl-2-S-benzyl-2,4-isodithiobiurets

    Directory of Open Access Journals (Sweden)

    R. D. Ghuge

    2012-01-01

    Full Text Available The facile synthesis of 1-aryl-5-hepta-o-acetyl-β-D-maltosyl-2-S-benzyl-2,4-isodithiobiurets (IIIa-g has been achieved by the interaction of 1-hepta-O-acetyl-β–D-maltosyl isothiocyanate (I with various1-aryl-S-benzyl isothiocarbamides (IIa-g. All the newly synthesized N-maltosylated compounds characterized by elemental analysis, IR, NMR and Mass spectral studies.

  17. Protein acetylation sites mediated by Schistosoma mansoni GCN5

    International Nuclear Information System (INIS)

    Moraes Maciel, Renata de; Furtado Madeiro da Costa, Rodrigo; Meirelles Bastosde Oliveira, Francisco; Rumjanek, Franklin David; Fantappie, Marcelo Rosado

    2008-01-01

    The transcriptional co-activator GCN5, a histone acetyltransferase (HAT), is part of large multimeric complexes that are required for chromatin remodeling and transcription activation. As in other eukaryotes, the DNA from the parasite Schistosome mansoni is organized into nucleosomes and the genome encodes components of chromatin-remodeling complexes. Using a series of synthetic peptides we determined that Lys-14 of histone H3 was acetylated by the recombinant SmGCN5-HAT domain. SmGCN5 was also able to acetylate schistosome non-histone proteins, such as the nuclear receptors SmRXR1 and SmNR1, and the co-activator SmNCoA-62. Electron microscopy revealed the presence of SmGCN5 protein in the nuclei of vitelline cells. Within the nucleus, SmGCN5 was found to be located in interchromatin granule clusters (IGCs), which are transcriptionally active structures. The data suggest that SmGCN5 is involved in transcription activation

  18. Metabolism and disposition of a novel antineoplastic JS-38 (Benzamide, N-[4-(2,4-dimethoxyphenyl)-4,5-dihydro-5-oxo-1,2-dithiolo[4,3-b]pyrrol-6-yl]-3,5-bis (trifluoromethyl)-(9Cl)) in rats.

    Science.gov (United States)

    Zhang, Hong; Liu, Quanhai; Fan, Tingting; Fang, Yu; Li, Ying; Wang, Guoping

    2012-03-01

    The metabolism and catabolism of a novel antineoplastic (ID code JS-38),Benzamide, N-[4-(2,4-dimethoxyphenyl)-4,5-dihydro-5-oxo-1,2-dithiolo[4,3-b]pyrrol-6-yl]-3,5-bis (trifluoromethyl)-(9Cl), were investigated in Wistar rats (3 female, 3 male). LC/UV, LC/MS, LC/MS/MS, NMR and acid hydrolysis methods showed that the metabolic process of JS-38 consists of a series of acetylation and glucoronation that form a metabolic product with a unique pharmacologic property of accelerating bone-marrow cell formation, and also showed a novel metabolic pathway of being acetylated and glucuronated in series.

  19. Producción y caracterización de biocatalizadores implicados en la obtención de ácido siálico y compuestos relacionados = Production and characterization of biocatalysts involved in obtaining sialic acid and related compounds.

    OpenAIRE

    García García, María Inmaculada

    2012-01-01

    Palabras claves: Enzymes Biocatalysts N-acetyl neuraminte lyase N-acetyl neuraminate synthase Sialic acid Kinetic parameters CLEAs GRAS microorganism Aldolase Protein Cloning N-acetyl-D-mannosamine Pyruvate Resumen El ácido siálico y sus derivados son un grupo importante de biomoléculas implicadas en muchos fenómenos biológicos. Su síntesis y aplicación es de gran interés en la industria farmacéutica para la obtención de fármacos co...

  20. A proteome-scale study on in vivo protein N(α)-acetylation using an optimized method

    DEFF Research Database (Denmark)

    Zhang, Xumin; Engholm-Keller, Kasper; Højrup, Peter

    2011-01-01

    Protein N-terminal acetylation (N(α)-acetylation) is among the most common modifications in eukaryotes. We previously described a simple method to enrich N(α)-modified peptides using CNBr-activated Sepharose resin. A limitation of this method is that an optimal ratio of sample to resin had to be ...

  1. Acetyl Groups in Typha capensis: Fate of Acetates during Organosolv and Ionosolv Pulping

    Directory of Open Access Journals (Sweden)

    Idi Guga Audu

    2018-06-01

    Full Text Available During biomass fractionation, any native acetylation of lignin and heteropolysaccharide may affect the process and the resulting lignin structure. In this study, Typha capensis (TC and its lignin isolated by milling (MWL, ionosolv (ILL and organosolv (EOL methods were investigated for acetyl group content using FT-Raman, 1H NMR, 2D-NMR, back-titration, and Zemplén transesterification analytical methods. The study revealed that TC is a highly acetylated grass; extractive free TC (TCextr and TC MWL exhibited similar values of acetyl content: 6 wt % and 8 wt % by Zemplén transesterification, respectively, and 11 wt % by back-titration. In contrast, lignin extracted from organosolv and [EMIm][OAc] pulping lost 80% of the original acetyl groups. With a high acetyl content in the natural state, TC could be an interesting raw material in biorefinery in which acetic acid could become an important by-product.

  2. Directing vanillin production from ferulic acid by increased acetyl-CoA consumption in recombinant Escherichia coli.

    Science.gov (United States)

    Lee, Eun-Gyeong; Yoon, Sang-Hwal; Das, Amitabha; Lee, Sook-Hee; Li, Cui; Kim, Jae-Yean; Choi, Myung-Suk; Oh, Deok-Kun; Kim, Seon-Won

    2009-01-01

    The amplification of gltA gene encoding citrate synthase of TCA cycle was required for the efficient conversion of acetyl-CoA, generated during vanillin production from ferulic acid, to CoA, which is essential for vanillin production. Vanillin of 1.98 g/L was produced from the E. coli DH5alpha (pTAHEF-gltA) with gltA amplification in 48 h of culture at 3.0 g/L of ferulic acid, which was about twofold higher than the vanillin production of 0.91 g/L obtained by the E. coli DH5alpha (pTAHEF) without gltA amplification. The icdA gene encoding isocitrate dehydrogenase of TCA cycle was deleted to make the vanillin producing E. coli utilize glyoxylate bypass which enables more efficient conversion of acetyl-CoA to CoA in comparison with TCA cycle. The production of vanillin by the icdA null mutant of E. coli BW25113 harboring pTAHEF was enhanced by 2.6 times. The gltA amplification of the glyoxylate bypass in the icdA null mutant remarkably increased the production rate of vanillin with a little increase in the amount of vanillin production. The real synergistic effect of gltA amplification and icdA deletion was observed with use of XAD-2 resin reducing the toxicity of vanillin produced during culture. Vanillin of 5.14 g/L was produced in 24 h of the culture with molar conversion yield of 86.6%, which is the highest so far in vanillin production from ferulic acid using recombinant E. coli.

  3. 5'Azido-N-1-napthylphthalamic acid, a photolabile analog of N-1-naphthylphthalamic acid

    International Nuclear Information System (INIS)

    Voet, J.G.; Howley, K.S.; Shumsky, J.S.

    1987-01-01

    A photolabile analog of N-1-naphthylphthalamic acid (NPA), 5'-azido-N-1-naphthylphthalamic acid (Az-NPA), has been synthesized and characterized. This potential photoaffinity label for the plasma membrane NPA binding protein competes with [ 3 H]NPA for binding sites on Curcurbita pepo L. (zucchini) hypocotyl cell membranes with K/sub 0.5/ = 2.8 x 10 -7 molar. The K/sub 0.5/ for NPA under these conditions is 2 x 10 -8 molar, indicating that the affinity of Az-NPA for the membranes is only 14-fold lower than NPA. While the binding of Az-NPA to NPA binding sites is reversible in the dark, exposure of the Az-NPA treated membranes to light results in a 30% loss in [ 3 H]NPA binding ability. Pretreatment of the membranes with NPA protects the membranes against photodestruction of [ 3 H]NPA binding sites by Az-NPA supporting the conclusion that Az-NPA destroys these sites by specific covalent attachment

  4. Synaptosomal transport of radiolabel from N-acetyl-aspartyl-(/sup 3/H)glutamate suggests a mechanism of inactivation of an excitatory neuropeptide

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, R D; Ory-Lavollee, L; Thompson, R C; Coyle, J T

    1986-10-01

    This study was undertaken to explore in synaptosomal preparations the disposition of N-acetyl-aspartyl-glutamate (NAAG), an endogenous acidic dipeptide neurotransmitter candidate. Radiolabel from N-acetyl-aspartyl(/sup 3/H)glutamate was taken up rapidly into an osmotically sensitive compartment by rat brain synaptosomal preparations in a sodium-, temperature-, and time-dependent manner. HPLC analysis of the accumulated radiolabel indicated that the bulk of the tritium cochromatographed with glutamic acid and not with NAAG. In contrast, (/sup 14/C)NAAG, labeled on the N-terminal acetate, was not taken up by the synaptosomal preparation. All effective inhibitors of synaptosomal, Na+-dependent (/sup 3/H)glutamate uptake were found to exhibit similar potency in inhibiting uptake of tritium derived from (/sup 3/H)NAAG. However, certain alpha-linked acidic dipeptides, structurally similar to NAAG, as well as the potent convulsant quisqualic acid inhibited synaptosomal transport of (/sup 3/H)NAAG but were ineffective as inhibitors of (/sup 3/H)glutamate transport. Together with a demonstration of disparities between the regional accumulation of radiolabel from (/sup 3/H)NAAG and high-affinity (/sup 3/H)glutamate uptake, these data suggest the presence in brain of a specific peptidase targeting carboxy-terminal glutamate-containing dipeptides that may be coupled to the Na+-dependent glutamate transporter. These findings provide a possible mechanism for NAAG inactivation subsequent to its release from nerve endings.

  5. sup. alpha. N-acetyl derivatives of. beta. -endorphin-(1-31) and -(1-27) regulate the supraspinal antinociceptive activity of different opioids in mice

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, J.; Sanchez-Blazquez, P. (Cajal Institute, Madrid (Spain))

    1991-01-01

    {sup {alpha}}N-acetyl human {beta}-endorphin(1-31) injected icv to mice antagonized the analgesic activity of {beta}-endorphin-(1-31) and morphine whereas the analgesia evoked by DADLE and DAGO was enhanced by this treatment. The modulatory activity of {sup {alpha}}N-acetyl {beta}-endorphin-(1-31) was exhibited at remarkable low doses (fmols) reaching a maximum that persisted even though the dose was increased 100,000 times. The regulatory effect of a single dose of the acetylated neuropeptide lasted for 24h. The activity of {sup {alpha}}N-acetyl human {beta}-endorphin(1-31) was partially retained by the shorter peptide {sup {alpha}}N-acetyl human {beta}-endorphin-(1-27) and to a lesser extent by {beta}-endorphin-(1-27), {beta}-endorphin-(1-31) lacked this regulatory activity on opioid analgesia. Acetylated {beta}-endorphin-(1-31) displayed a biphasic curve when competing with 5 pM ({sup 125}I)-Tyr{sup 27} human {beta}-endorphin-(1-31) specific binding, the first step was abolished with an apparent IC{sub 50} of 0.35 nM, and the rest with an IC{sub 50} of 200 nM. It is suggested that {sup {alpha}}N-acetyl {beta}-endorphin-(1-31) changed the efficiency of the opioid analgesics by acting upon a specific substrate that is functionally coupled to the opioid receptor, presumably the guanine nucleotide binding regulatory proteins G{sub i}/G{sub 0}.

  6. Synthesis of novel 2,5-disubstituted-1,3,4-selenadiazoles from fatty acid hydrazides

    Directory of Open Access Journals (Sweden)

    Himani Varshney

    2018-01-01

    Full Text Available A series of novel unsaturated hydroxy and non-hydroxy fatty acid residue substituted 1,3,4-selenadiazoles were described here. These derivatives were synthesized from the reaction of fatty acid hydrazide 1(a–d with acetyl chloride in the presence of anhydrous sodium carbonate in tetrahydrofuran and water at 0 °C, to form N′-acetyl undec-10-enoic hydrazide 2a, N′-acetyl-(9Z-octadec-9-enoic hydrazide 2b, N′-acetyl-(9Z, 12R-12-hydroxy-9-enoic hydrazide 2c, and N′-acetyl-(9R, 12Z-9-hydroxy-12-enoic hydrazide 2d. Then these hydrazines (dicarbonyl compound on reaction with Woollin’s reagent (WR in toluene led to the corresponding 2-(dec-9′-enyl-5-methyl-1,3,4-selenadiazole 3a, 2-[(8′Z-heptadec-8′-enyl]-5-methyl-1,3,4-selenadiazole 3b, 2-[(8′Z, 11′R-11′-hydroxy-octadec-8′-enyl]-5-methyl-1,3,4-selenadiazole 3c, and 2-[(8′R, 11′Z-8′-hydroxy-octadec-11′-enyl]-5-methyl-1,3,4-selenadiazole 3d, respectively. These synthesized compounds were characterized on the basis of IR, 1H NMR, 13C NMR, mass spectra and elemental analysis results.

  7. N-acetyl-L-tryptophan, a substance-P receptor antagonist attenuates aluminum-induced spatial memory deficit in rats.

    Science.gov (United States)

    Fernandes, Joylee; Mudgal, Jayesh; Rao, Chamallamudi Mallikarjuna; Arora, Devinder; Basu Mallik, Sanchari; Pai, K S R; Nampoothiri, Madhavan

    2018-06-01

    Neuroinflammation plays an important role in the pathophysiology of Alzheimer's disease. Neurokinin substance P is a key mediator which modulates neuroinflammation through neurokinin receptor. Involvement of substance P in Alzheimer's disease is still plausible and various controversies exist in this hypothesis. Preventing the deleterious effects of substance P using N-acetyl-L-tryptophan, a substance P antagonist could be a promising therapeutic strategy. This study was aimed to evaluate the effect of N-acetyl-L-tryptophan on aluminum induced spatial memory alterations in rats. Memory impairment was induced using aluminum chloride (AlCl 3 ) at a dose of 10 mg/kg for 42 d. After induction of dementia, rats were exposed to 30 and 50 mg/kg of N-acetyl-L-tryptophan for 28 d. Spatial memory alterations were measured using Morris water maze. Acetylcholinesterase activity and antioxidant enzyme glutathione level were assessed in hippocampus, frontal cortex and striatum. The higher dose of N-acetyl-L-tryptophan (50 mg/kg) significantly improved the aluminum induced memory alterations. N-acetyl-L-tryptophan exposure resulted in significant increase in acetylcholinesterase activity and glutathione level in hippocampus. The neuroprotective effect of N-acetyl-L-tryptophan could be due to its ability to block substance P mediated neuroinflammation, reduction in oxidative stress and anti-apoptotic properties. To conclude, N-acetyl-L-tryptophan may be considered as a novel neuroprotective therapy in Alzheimer's disease.

  8. Long-time treatment by low-dose N-acetyl-L-cysteine enhances proinflammatory cytokine expressions in LPS-stimulated macrophages.

    Directory of Open Access Journals (Sweden)

    Tomokazu Ohnishi

    Full Text Available N-acetyl-L-cysteine is known to act as a reactive oxygen species scavenger and used in clinical applications. Previous reports have shown that high-dose N-acetyl-L-cysteine treatment inhibits the expression of proinflammatory cytokines in activated macrophages. Here, we have found that long-time N-acetyl-L-cysteine treatment at low-concentration increases phosphorylation of extracellular signal-regulated kinase 1/2 and AKT, which are essential for the induction of proinflammatory cytokines including interleukin 1β and interleukin 6 in lipopolysaccharide-stimulated RAW264.7 cells. Furthermore, long-time N-acetyl-L-cysteine treatment decreases expressions of protein phosphatases, catalytic subunit of protein phosphatase-2A and dual specificity phosphatase 1. On the other hand, we have found that short-time N-acetyl-L-cysteine treatment at low dose increases p53 expression, which inhibits expressions of proinflammatory cytokines. These observations suggest that long-time low-dose N-acetyl-L-cysteine treatment increases expressions of proinflammatory cytokines through enhancement of kinase phosphorylation.

  9. In Salmonella enterica, the Gcn5-Related Acetyltransferase MddA (Formerly YncA) Acetylates Methionine Sulfoximine and Methionine Sulfone, Blocking Their Toxic Effects

    Science.gov (United States)

    Hentchel, Kristy L.

    2014-01-01

    Protein and small-molecule acylation reactions are widespread in nature. Many of the enzymes catalyzing acylation reactions belong to the Gcn5-related N-acetyltransferase (GNAT; PF00583) family, named after the yeast Gcn5 protein. The genome of Salmonella enterica serovar Typhimurium LT2 encodes 26 GNATs, 11 of which have no known physiological role. Here, we provide in vivo and in vitro evidence for the role of the MddA (methionine derivative detoxifier; formerly YncA) GNAT in the detoxification of oxidized forms of methionine, including methionine sulfoximine (MSX) and methionine sulfone (MSO). MSX and MSO inhibited the growth of an S. enterica ΔmddA strain unless glutamine or methionine was present in the medium. We used an in vitro spectrophotometric assay and mass spectrometry to show that MddA acetylated MSX and MSO. An mddA+ strain displayed biphasic growth kinetics in the presence of MSX and glutamine. Deletion of two amino acid transporters (GlnHPQ and MetNIQ) in a ΔmddA strain restored growth in the presence of MSX. Notably, MSO was transported by GlnHPQ but not by MetNIQ. In summary, MddA is the mechanism used by S. enterica to respond to oxidized forms of methionine, which MddA detoxifies by acetyl coenzyme A-dependent acetylation. PMID:25368301

  10. The oxygen-centered radicals scavenging activity of sulfasalazine and its metabolites. A direct protection of the bowel.

    Science.gov (United States)

    Prónai, L; Yukinobu, I; Láng, I; Fehér, J

    1992-01-01

    Oxygen-centered radicals, such as superoxide (O2-) and hydroxyl radicals (.OH) generated by phagocytes have been suggested to be involved in the pathogenesis of chronic inflammations of the bowel, such as Crohn's disease and colitis ulcerosa. Recently, sulfasalazine (SASP) and its metabolites have been reported to exert their effects as a direct scavenger of oxygen-centered radicals in the bowel. To scavenge oxygen-centered radicals in vivo, however, SASP and its metabolites have to react with O2- and/or .OH in vitro very rapidly, furthermore they have to reach an appropriate (possible millimolar) concentration range at the site of inflammation. To test this possibility, we investigated the direct O2- and .OH scavenging activity of SASP and its metabolites using the specific electron paramagnetic resonance/spin trapping method, and we compared the 50% inhibition rates of SASP and its metabolites with their known concentrations in the bowel and in the human plasma. It was found that SASP and its metabolites, such as 5-amino-salicylic acid (5-ASA), and acetyl-5-amino-salicylic acid (AC-5-ASA), but not sulfapyridine (SP) and acetyl-sulfapyridine (Ac-SP) have a direct O2- and .OH scavenging activity in vitro systems. Among the compounds, SASP and 5-ASA can reach a concentration which is appropriate to scavenge oxygen-centered radicals in the bowel but not in the human plasma. It was concluded that the in vivo antiinflammatory effects of SASP and its metabolites are, at least partly, due to the direct oxygen-centered scavenging activity of these drugs.

  11. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases.

    Science.gov (United States)

    Mengel, Alexander; Ageeva, Alexandra; Georgii, Elisabeth; Bernhardt, Jörg; Wu, Keqiang; Durner, Jörg; Lindermayr, Christian

    2017-02-01

    Histone acetylation, which is an important mechanism to regulate gene expression, is controlled by the opposing action of histone acetyltransferases and histone deacetylases (HDACs). In animals, several HDACs are subjected to regulation by nitric oxide (NO); in plants, however, it is unknown whether NO affects histone acetylation. We found that treatment with the physiological NO donor S-nitrosoglutathione (GSNO) increased the abundance of several histone acetylation marks in Arabidopsis (Arabidopsis thaliana), which was strongly diminished in the presence of the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. This increase was likely triggered by NO-dependent inhibition of HDAC activity, since GSNO and S-nitroso-N-acetyl-dl-penicillamine significantly and reversibly reduced total HDAC activity in vitro (in nuclear extracts) and in vivo (in protoplasts). Next, genome-wide H3K9/14ac profiles in Arabidopsis seedlings were generated by chromatin immunoprecipitation sequencing, and changes induced by GSNO, GSNO/2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or trichostatin A (an HDAC inhibitor) were quantified, thereby identifying genes that display putative NO-regulated histone acetylation. Functional classification of these genes revealed that many of them are involved in the plant defense response and the abiotic stress response. Furthermore, salicylic acid, which is the major plant defense hormone against biotrophic pathogens, inhibited HDAC activity and increased histone acetylation by inducing endogenous NO production. These data suggest that NO affects histone acetylation by targeting and inhibiting HDAC complexes, resulting in the hyperacetylation of specific genes. This mechanism might operate in the plant stress response by facilitating the stress-induced transcription of genes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  12. A multi-matrix HILIC-MS/MS method for the quantitation of endogenous small molecule neurological biomarker N-acetyl aspartic acid (NAA).

    Science.gov (United States)

    Sangaraju, Dewakar; Shahidi-Latham, Sheerin K; Burgess, Braydon L; Dean, Brian; Ding, Xiao

    2017-06-05

    A multi-matrix hydrophilic interaction liquid chromatography tandem mass spectrometric method (HILIC-MS/MS) was developed for the quantitation of N-Acetyl Aspartic acid (NAA) using stable isotope labeled internal standard, D3-NAA in various biological matrices such as human plasma, human CSF, mouse plasma, brain and spinal cord. A high throughput 96-well plate format supported liquid extraction (SLE) procedure was developed and used for sample preparation. Mass spectrometric analysis of NAA was performed using selected reaction monitoring transitions in positive electrospray ionization mode. As NAA is endogenously present, a surrogate matrix approach was used for quantitation of NAA and the method was qualified over linear calibration curve range of 0.01-10μg/mL. Intra and inter assay precision indicated by percent relative standard deviation (%RSD) was less than 7.1% for low, medium, medium high and high QCs. The accuracy of the method ranged from 92.6-107.0% of nominal concentration for within-run and between-run for the same QCs. Extraction recovery of NAA and D3-NAA was greater than 76%. Stability of NAA was established in the above biological matrices under bench top (RT, 5h), freeze thaw (-20±10°C, 3 cycles) and moues/human plasma sample collection (Wet ice, RT) conditions. HILIC-MS/MS method was then used to quantify and compare the NAA levels in human plasma and CSF of ALS patients versus control human subjects. NAA CSF levels in control human subjects (73.3±31.0ng/mL,N=10) were found to be slightly higher than ALS patients (46.1±22.6ng/mL, N=10) (P=0.04). No differences were observed in NAA plasma levels in human control subjects (49.7±13.8ng/mL,N=9) as compared to ALS patients (49.6±8.1ng/mL, N=10) (P=0.983). NAA endogenous concentrations in mouse plasma, brain and spinal cord were found to be 243.8±56.8ng/mL (N=6), 1029.8±115.2μg/g tissue weight (N=5) and 487.6±178.4μg/g tissue weight (N=5) respectively. Copyright © 2017 Elsevier B.V. All

  13. Differential patterns of histone acetylation in inflammatory bowel diseases

    Directory of Open Access Journals (Sweden)

    Adcock Ian M

    2011-01-01

    Full Text Available Abstract Post-translational modifications of histones, particularly acetylation, are associated with the regulation of inflammatory gene expression. We used two animal models of inflammation of the bowel and biopsy samples from patients with Crohn's disease (CD to study the expression of acetylated histones (H 3 and 4 in inflamed mucosa. Acetylation of histone H4 was significantly elevated in the inflamed mucosa in the trinitrobenzene sulfonic acid model of colitis particularly on lysine residues (K 8 and 12 in contrast to non-inflamed tissue. In addition, acetylated H4 was localised to inflamed tissue and to Peyer's patches (PP in dextran sulfate sodium (DSS-treated rat models. Within the PP, H3 acetylation was detected in the mantle zone whereas H4 acetylation was seen in both the periphery and the germinal centre. Finally, acetylation of H4 was significantly upregulated in inflamed biopsies and PP from patients with CD. Enhanced acetylation of H4K5 and K16 was seen in the PP. These results demonstrate that histone acetylation is associated with inflammation and may provide a novel therapeutic target for mucosal inflammation.

  14. Protective effects of ebselen (Ebs) and para-aminosalicylic acid (PAS) against manganese (Mn)-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Marreilha dos Santos, A.P., E-mail: apsantos@ff.ul.pt [I-Med.UL, Department of Toxicology and Food Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon (Portugal); Lucas, Rui L.; Andrade, Vanda; Mateus, M. Luísa [I-Med.UL, Department of Toxicology and Food Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon (Portugal); Milatovic, Dejan; Aschner, Michael [Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Batoreu, M. Camila [I-Med.UL, Department of Toxicology and Food Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon (Portugal)

    2012-02-01

    Chronic, excessive exposure to manganese (Mn) may induce neurotoxicity and cause an irreversible brain disease, referred to as manganism. Efficacious therapies for the treatment of Mn are lacking, mandating the development of new interventions. The purpose of the present study was to investigate the efficacy of ebselen (Ebs) and para-aminosalicylic acid (PAS) in attenuating the neurotoxic effects of Mn in an in vivo rat model. Exposure biomarkers, inflammatory and oxidative stress biomarkers, as well as behavioral parameters were evaluated. Co-treatment with Mn plus Ebs or Mn plus PAS caused a significant decrease in blood and brain Mn concentrations (compared to rats treated with Mn alone), concomitant with reduced brain E{sub 2} prostaglandin (PGE{sub 2}) and enhanced brain glutathione (GSH) levels, decreased serum prolactin (PRL) levels, and increased ambulation and rearing activities. Taken together, these results establish that both PAS and Ebs are efficacious in reducing Mn body burden, neuroinflammation, oxidative stress and locomotor activity impairments in a rat model of Mn-induced toxicity. -- Highlights: ► The manuscript is unique in its approach to the neurotoxicity of Mn. ► The manuscript incorporates molecular, cellular and functional (behavioral) analyses. ► Both PAS and Ebs are effective in restoring Mn behavioral function. ► Both PAS and Ebs are effective in reducing Mn-induced oxidative stress. ► Both PAS and Ebs led to a decrease in Mn-induced neuro-inflammation.

  15. Protective effects of ebselen (Ebs) and para-aminosalicylic acid (PAS) against manganese (Mn)-induced neurotoxicity

    International Nuclear Information System (INIS)

    Marreilha dos Santos, A.P.; Lucas, Rui L.; Andrade, Vanda; Mateus, M. Luísa; Milatovic, Dejan; Aschner, Michael; Batoreu, M. Camila

    2012-01-01

    Chronic, excessive exposure to manganese (Mn) may induce neurotoxicity and cause an irreversible brain disease, referred to as manganism. Efficacious therapies for the treatment of Mn are lacking, mandating the development of new interventions. The purpose of the present study was to investigate the efficacy of ebselen (Ebs) and para-aminosalicylic acid (PAS) in attenuating the neurotoxic effects of Mn in an in vivo rat model. Exposure biomarkers, inflammatory and oxidative stress biomarkers, as well as behavioral parameters were evaluated. Co-treatment with Mn plus Ebs or Mn plus PAS caused a significant decrease in blood and brain Mn concentrations (compared to rats treated with Mn alone), concomitant with reduced brain E 2 prostaglandin (PGE 2 ) and enhanced brain glutathione (GSH) levels, decreased serum prolactin (PRL) levels, and increased ambulation and rearing activities. Taken together, these results establish that both PAS and Ebs are efficacious in reducing Mn body burden, neuroinflammation, oxidative stress and locomotor activity impairments in a rat model of Mn-induced toxicity. -- Highlights: ► The manuscript is unique in its approach to the neurotoxicity of Mn. ► The manuscript incorporates molecular, cellular and functional (behavioral) analyses. ► Both PAS and Ebs are effective in restoring Mn behavioral function. ► Both PAS and Ebs are effective in reducing Mn-induced oxidative stress. ► Both PAS and Ebs led to a decrease in Mn-induced neuro-inflammation.

  16. Attenuation of rotenone toxicity in SY5Y cells by taurine and N-acetyl cysteine alone or in combination.

    Science.gov (United States)

    Alkholifi, Faisal K; Albers, David S

    2015-10-05

    There is accumulating evidence that supports the involvement of reactive oxygen species (ROS), mitochondrial dysfunction and inflammation in the pathogenesis of neurodegenerative diseases. Thus, it is plausible that a multi-targeted therapeutic approach may be a more effective strategy to retard or even potentially halt the progression of the disease. Taurine is an organic acid that has a role in the regulation of oxidative stress and promoting mitochondrial normal functions, and N-Acetyl cysteine (NAC) is a well-known anti-oxidant and glutathione precursor. The main purpose of this study was to examine the cytoprotective effects of taurine alone or in combination with NAC against rotenone-induced toxicity in the SH-SY5Y neuroblastoma cell line. Taurine treatment produced a concentration-dependent reduction in rotenone-induced cell death. From this, we tested sub-effective concentrations of taurine in combination with low, sub-effective concentrations of NAC against rotenone toxicity, and found the combined treatment afforded greater cytoprotection than either treatment alone. The combined taurine/NAC treatment also attenuated rotenone-induced reductions in aconitase activity suggesting the cytoprotection afforded by the combined treatment may be associated with anti-oxidative mechanisms. Together, our data suggest that a multi-targeted approach may yield new avenues of research exploring the utility of combining therapeutic agents with different mechanisms of actions at concentrations lower than previously tested and shown to be cytoprotective. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases1[OPEN

    Science.gov (United States)

    Mengel, Alexander; Ageeva, Alexandra; Durner, Jörg

    2017-01-01

    Histone acetylation, which is an important mechanism to regulate gene expression, is controlled by the opposing action of histone acetyltransferases and histone deacetylases (HDACs). In animals, several HDACs are subjected to regulation by nitric oxide (NO); in plants, however, it is unknown whether NO affects histone acetylation. We found that treatment with the physiological NO donor S-nitrosoglutathione (GSNO) increased the abundance of several histone acetylation marks in Arabidopsis (Arabidopsis thaliana), which was strongly diminished in the presence of the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. This increase was likely triggered by NO-dependent inhibition of HDAC activity, since GSNO and S-nitroso-N-acetyl-dl-penicillamine significantly and reversibly reduced total HDAC activity in vitro (in nuclear extracts) and in vivo (in protoplasts). Next, genome-wide H3K9/14ac profiles in Arabidopsis seedlings were generated by chromatin immunoprecipitation sequencing, and changes induced by GSNO, GSNO/2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or trichostatin A (an HDAC inhibitor) were quantified, thereby identifying genes that display putative NO-regulated histone acetylation. Functional classification of these genes revealed that many of them are involved in the plant defense response and the abiotic stress response. Furthermore, salicylic acid, which is the major plant defense hormone against biotrophic pathogens, inhibited HDAC activity and increased histone acetylation by inducing endogenous NO production. These data suggest that NO affects histone acetylation by targeting and inhibiting HDAC complexes, resulting in the hyperacetylation of specific genes. This mechanism might operate in the plant stress response by facilitating the stress-induced transcription of genes. PMID:27980017

  18. Metabolomic Analysis of Blood Plasma after Oral Administration of N-acetyl-d-Glucosamine in Dogs

    Directory of Open Access Journals (Sweden)

    Tomohiro Osaki

    2015-08-01

    Full Text Available N-acetyl-d-glucosamine (GlcNAc is a monosaccharide that polymerizes linearly through (1,4-β-linkages. GlcNAc is the monomeric unit of the polymer chitin. GlcNAc is a basic component of hyaluronic acid and keratin sulfate found on the cell surface. The aim of this study was to examine amino acid metabolism after oral GlcNAc administration in dogs. Results showed that plasma levels of ectoine were significantly higher after oral administration of GlcNAc than prior to administration (p < 0.001. To our knowledge, there have been no reports of increased ectoine concentrations in the plasma. The mechanism by which GlcNAc administration leads to increased ectoine plasma concentration remains unclear; future studies are required to clarify this mechanism.

  19. Mechanistic studies on the conjugation of methyl isocyanate with N-Acetyl-Cysteine in rats

    International Nuclear Information System (INIS)

    Hu, P.; Davis, M.R.; Baillie, T.A.

    1996-01-01

    In order to investigate the utility of selected thiols as scavengers of MIC, we first assessed the chemical stability of SMG, AMCC and SMC by measuring their rates of reaction in vitro with thiorphan. The initial rates of carbamoylation of thiorpan (0.5 mM) by the above conjugates (0.5 mM) in aqeous buffer at pH 7.4 and 37 deg C were 2.51, 0.76 and 8.47 μmol L -1 min -1 , repectively, indicating that the mercapturate AMCC was the most stable of the three MIC conjugates. In light of these results, studies were conducted to examine the effect of pretreatment with N-acetyl-L-cysteine (L-NAC; 500 mg kg -1 , i.p.) on the urinary elimination of AMCC in rats dosed with MIC (15 mg kg -1 , i.p.). In separate experiments, groups of rats were pretreated with either N-acetyl-D-cysteine (D-NAC) or N-trideuteroacetyl-L-cysteine (d 3 -L-NAC) in order to explore the mechanism by which MIC undergoes conjugation to AMCC in vivo. The results indicated that exogenous NAC effectively enhancess the urinary excretion of MIC in the form of AMCC, and that it does so lagerly by direct conjugation with the isocyanate, rather than via biosynthesis to GSH. (author). 9 refs., 5 figs

  20. Structures of the N-acetyltransferase domain of Xylella fastidiosa N-acetyl-L-glutamate synthase/kinase with and without a His tag bound to N-acetyl-L-glutamate.

    Science.gov (United States)

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2015-01-01

    Structures of the catalytic N-acetyltransferase (NAT) domain of the bifunctional N-acetyl-L-glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N-acetyl-L-glutamate (NAG) with and without an N-terminal His tag have been solved and refined at 1.7 and 1.4 Å resolution, respectively. The NAT domain with an N-terminal His tag crystallized in space group P4(1)2(1)2, with unit-cell parameters a=b=51.72, c=242.31 Å. Two subunits form a molecular dimer in the asymmetric unit, which contains ∼41% solvent. The NAT domain without an N-terminal His tag crystallized in space group P21, with unit-cell parameters a=63.48, b=122.34, c=75.88 Å, β=107.6°. Eight subunits, which form four molecular dimers, were identified in the asymmetric unit, which contains ∼38% solvent. The structures with and without the N-terminal His tag provide an opportunity to evaluate how the His tag affects structure and function. Furthermore, multiple subunits in different packing environments allow an assessment of the plasticity of the NAG binding site, which might be relevant to substrate binding and product release. The dimeric structure of the X. fastidiosa N-acetytransferase (xfNAT) domain is very similar to that of human N-acetyltransferase (hNAT), reinforcing the notion that mammalian NAGS is evolutionally derived from bifunctional bacterial NAGS/K.

  1. PCAF/GCN5-Mediated Acetylation of RPA1 Promotes Nucleotide Excision Repair

    Directory of Open Access Journals (Sweden)

    Meimei Zhao

    2017-08-01

    Full Text Available The RPA complex can integrate multiple stress signals into diverse responses by activating distinct DNA repair pathways. However, it remains unclear how RPA1 elects to activate a specific repair pathway during different types of DNA damage. Here, we report that PCAF/GCN5-mediated K163 acetylation of RPA1 is crucial for nucleotide excision repair (NER but is dispensable for other DNA repair pathways. Mechanistically, we demonstrate that the acetylation of RPA1 is critical for the steady accumulation of XPA at damaged DNA sites and preferentially activates the NER pathway. DNA-PK phosphorylates and activates PCAF upon UV damage and consequently promotes the acetylation of RPA1. Moreover, the acetylation of RPA1 is tightly regulated by HDAC6 and SIRT1. Together, our results demonstrate that the K163 acetylation of RPA1 plays a key role in the repair of UV-induced DNA damage and reveal how the specific RPA1 modification modulates the choice of distinct DNA repair pathways.

  2. Changes in nuclear protein acetylation in u. v. -damaged human cells

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, B.; Smerdon, M.J.

    1986-07-01

    We have investigated the levels of nuclear protein acetylation in u.v.-irradiated human fibroblasts. We measured the levels of acetylation in total acid-soluble nuclear proteins and observed two distinct differences between the irradiated and unirradiated (control) cells. Immediately after irradiation, there is a wave of protein hyperacetylation (i.e. a total acetylation level greater than that of unirradiated cells) that lasts for 2-6 h depending on the experimental conditions. This hyperacetylation phase is then followed by a hypoacetylation phase, lasting for many hours, and the total level of acetylation does not return to that of control cells until 24-72 h after u.v. damage. Both the magnitude and duration of each phase is dependent on the dose of u.v. light used. The wave of hyperacetylation is more pronounced at low u.v. doses (i.e. less than 5 J/m2), while the wave of hypoacetylation is more pronounced at higher u.v. doses (greater than or equal to 8 J/m2). Furthermore, the duration of each phase is prolonged when cells are exposed to 2 mM hydroxyurea. Examination of the acetylation levels of the individual nuclear proteins indicated that acetylation of the core histones follows the same pattern observed for the total acid-soluble protein fractions. Furthermore, these were the only major proteins in the total acid-soluble fraction observed to undergo the early, rapid hyperacetylation immediately following u.v. damage. Acetylation of histone H1 was negligible in both damaged and control cells, while three prominent non-histone proteins were acetylated only after long labeling times (greater than 4 h) in each case, gradually becoming hyperacetylated in the u.v.-damaged cells. These results raise the possibility that a causal relationship exists between nuclear protein acetylation and nucleotide excision repair of DNA in human cells.

  3. 5-ASA - colorectal cancer - cell death : an intriguing threesome

    NARCIS (Netherlands)

    Koelink, Pim Johan

    2010-01-01

    Colorectal cancer (CRC) is a complicated disease in which both genetic pre-desposition and environmental factors are important. Patients with inflammatory bowel disease (IBD) have an increased risk of developing CRC, and it is believed that treatment of IBD patients with 5-Aminosalicylic acid

  4. Synthesis and antimicrobial evaluation of new 3-alkyl/aryl-2-[((alpha,alpha-diphenyl-alpha-hydroxy)acetyl)hydrazono]-5-methyl-4-thiazolidinones.

    Science.gov (United States)

    Güzeldemirci, Nuray Ulusoy; Ilhan, Eser; Küçükbasmaci, Omer; Satana, Dilek

    2010-01-01

    New 4-thiazolidinone derivatives of benzilic acid (alpha,alpha-diphenyl-alpha-hydroxyacetic acid) have been synthesized and evaluated for antibacterial and antifungal activities. The reaction of 1- (alpha,alpha-diphenyl-alpha-hydroxy)acetyl-4-alkyl/arylthiosemicarbazides with ethyl 2-bromopropionate gave 3-alkyl/aryl-2-[((alpha,alpha-diphenyl-alpha-hydroxy)acetyl)hydrazono]-5-methyl-4-thiazolidinone derivatives. Their antibacterial and antifungal activities were evaluated against S. aureus ATCC 29213, P. aeruginosa ATCC 27853, E. coli ATCC 25922, C. albicans ATCC 10231, C. parapsilosis ATCC 22019, C. krusei ATCC 6258, T. mentagrophytes var. erinacei NCPF 375, M. gypseum NCPF 580 and T. tonsurans NCPF 245. 3e, 3f, 3g and 3h showed the highest antibacterial activity. Particularly 3a and 3e showed the highest antifungal activities against C. parapsilosis ATCC 22019, T. tonsurans NCPF 245 and M. gypseum NCPF 580.

  5. Oral chemoprevention with acetyl salicylic Acid, vitamin d and calcium reduces the risk of tobacco carcinogen-induced bladder tumors in mice

    DEFF Research Database (Denmark)

    Pommergaard, Hans-Christian; Burcharth, J; Rosenberg, J

    2013-01-01

    , and diet with chemoprevention (acetyl salicylic acid, 1-alpha 25(0H)2-vitamin D3 and calcium). There were significantly fewer tumors (0 (0-0) vs. 0 (0-2), p = .045) and fewer animals with tumors (0/20 vs. 5/20, p = .045) in the chemoprevention group compared with controls. Thus, chemoprevention diet...

  6. N- acetyl-beta-d-glucosaminidase and inflammatory response after cardiopulmonary bypass

    International Nuclear Information System (INIS)

    Iqbal, M.P.; Yousuf, F.A.; Khan, A.H.; Sharif, H.M.

    2008-01-01

    To determine the changes in activity of plasma N-acetyl-beta-D-glucosaminidase, a marker for inflammation as well as renal, pulmonary and cardiac damage and proinflammatory cytokines in patients undergoing coronary artery bypass grafting and find out the relationship between their plasma levels with clinical outcome of patients. N-Acetyl-beta-D-glucosaminidase (NAG) activity and concentrations of tumor necrosis factor-alpha of (TNF alpha), interleukin 6 (IL-6), interleukin 8 (IL8) and granulocyte-macrophage colony stimulating factor (GM-CSF) were monitored in plasma samples of 12 angina patients undergoing coronary artery bypass grafting (CABG), before, immediately after and 5 days post-surgical procedure. Serum glucose concentrations were also monitored in those patients. Patient's clinical condition was monitored during this time period. No significant increase was observed in plasma NAG activity (a marker of inflammation) or in plasma levels of TNF alpha IL-6, IL-8 and GM-CSF immediately after surgery, indicating that cardiopulmonary bypass itself does not produce any significant amount of inflammation immediately after CABG. However, 5 days post surgery, there was a significant increase in plasma NAG activity (p=0.001), TNF alpha (p=0.047) and GM-CSF (p=0.045). There was no relationship between plasma NAG activity and clinical outcome because various parameters of renal, cardiac and pulmonary functions, though slightly affected, remained within the normal limits. Increased levels of NAG and TNF alpha did not affect clinical outcome. However, data suggest that NAG can be a potential marker for inflammation and end organ damage following CABG. An increase in GM-CSF on day 5 following CABG indicates enhanced body's defense mechanism against infection. (author)

  7. Effective Treatment of Manganese-Induced Occupational Parkinsonism With p-Aminosalicylic Acid: A Case of 17-Year Follow-Up Study

    Science.gov (United States)

    Jiang, Yue-Ming; Mo, Xue-An; Du, Feng-Qi; Fu, Xue; Zhu, Xia-Yan; Gao, Hong-Yu; Xie, Jin-Lan; Liao, Feng-Ling; Pira, Enrico; Zheng, Wei

    2014-01-01

    Objective Chronic manganese (Mn) intoxication induces syndromes resembling Parkinson disease. The clinical intervention has largely been unsuccessful. We report a 17-year follow-up study of effective treatment of occupational Mn parkinsonism with sodium para-aminosalicylic acid (PAS). Methods The patient, female and aged 50 at the time of treatment, was exposed to airborne Mn for 21 years (1963–1984). The patient had palpitations, hand tremor, lower limb myalgia, hypermyotonia, and a distinct festinating gait. She received 6 g PAS per day through an intravenous drip infusion for 4 days and rested for 3 days as one therapeutic course. Fifteen such courses were carried out between March and June 1987. Results At the end of PAS treatment, her symptoms were significantly alleviated, and handwriting recovered to normal. Recent follow-up examination at age 67 years (in 2004) showed a general normal presentation in clinical, neurologic, brain magnetic resonance imaging, and handwriting examinations with a minor yet passable gait. Conclusions This case study suggests that PAS appears to be an effective drug for treatment of severe chronic Mn poisoning with a promising prognosis. PMID:16766929

  8. Axonal transport and incorporation of radioactivity after injection of N-[3H]acetyl-D-mannosamine into rat mesencephalon

    International Nuclear Information System (INIS)

    Loopuijt, L.D.

    1980-01-01

    A study has been performed to demonstrate the possibility of incorporation of sialic acid into nerve endings of the rubrospinal tract after antegrade axonal transport. Young adult rats received injections of N-[ 3 H]acetyl-D-mannosamine into the red nucleus and axonal transport of the tritiated compounds along the axons of afferent and efferent connections of the red nucleus was studied and the transported material was analysed. Light microscopic autoradiography and biochemical methods were used. (Auth./C.F.)

  9. Various methods for determination of the degree of N-acetylation of chitin and chitosan: a review.

    Science.gov (United States)

    Kasaai, Mohammad R

    2009-03-11

    Chitin, chitosan, and their derivatives have been identified as versatile biopolymers for a broad range of agriculture and food applications. Up to now, several methods have been developed to determine degree of N-acetylation, DA, for chitin and chitosan. In this article, an effort has been made to review the available literature information on the DA determination. These methods are classified into three categories: (1) spectroscopy (IR, (1)H NMR, (13)C NMR, (15)N NMR, and UV); (2) conventional (various types of titration, conductometry, potentiometry, ninhydrin assay, adsorption of free amino groups of chitosan by pictric acid); (3) destructive (elemental analysis, acid or enzymatic hydrolysis of chitin/chitosan and followed by the DA measurement by colorimetry or high performance liquid chromatography, pyrolysis-gas chromatography, and thermal analysis using differential scanning calorimetry) methods. These methods have been compared for their performances and limitations as well as their advantages and disadvantages. The use of IR and NMR spectroscopy methods provides a number of advantages. They do not need long-term procedures to prepare samples, and they provide information on the chemical structure. (1)H NMR and UV techniques are more sensitive than IR, (13)C NMR, and (15)N NMR spectroscopy. The IR technique is mostly used for a qualitative evaluation and comparison studies. Conventional methods are not applicable for highly acetylated chitin. The results of the latter methods are affected by ionic strength of the solvent, pH, and temperature of solution. In destructive methods, longer times are needed for the measurements compared to spectroscopy and conventional methods, but they are applicable for the entire range of the DA.

  10. Trichoderma reesei CE16 acetyl esterase and its role in enzymatic degradation of acetylated hemicellulose

    DEFF Research Database (Denmark)

    Biely, Peter; Cziszarava, Maria; Agger, Jane W.

    2014-01-01

    Results The combined action of GH10 xylanase and acetylxylan esterases (AcXEs) leads to formation of neutral and acidic xylooligosaccharides with a few resistant acetyl groups mainly at their non-reducing ends. We show here that these acetyl groups serve as targets for TrCE16 AcE. The most promin...

  11. Crystal Structure of TDP-Fucosamine Acetyl Transferase (WECD) from Escherichia Coli, an Enzyme Required for Enterobacterial Common Antigen Synthesis

    International Nuclear Information System (INIS)

    Hung, M.; Rangarajan, E.; Munger, C.; Nadeau, G.; Sulea, T.; Matte, A.

    2006-01-01

    Enterobacterial common antigen (ECA) is a polysaccharide found on the outer membrane of virtually all gram-negative enteric bacteria and consists of three sugars, N-acetyl-D-glucosamine, N-acetyl-D-mannosaminuronic acid, and 4-acetamido-4,6-dideoxy-D-galactose, organized into trisaccharide repeating units having the sequence →(3)-α-D-Fuc4NAc-(1→4)-β-D-ManNAcA-(1→4)-α-D-GlcNAc-(1→). While the precise function of ECA is unknown, it has been linked to the resistance of Shiga-toxin-producing Escherichia coli (STEC) O157:H7 to organic acids and the resistance of Salmonella enterica to bile salts. The final step in the synthesis of 4-acetamido-4,6-dideoxy-D-galactose, the acetyl-coenzyme A (CoA)-dependent acetylation of the 4-amino group, is carried out by TDP-fucosamine acetyltransferase (WecD). We have determined the crystal structure of WecD in apo form at a 1.95-Angstroms resolution and bound to acetyl-CoA at a 1.66-Angstroms resolution. WecD is a dimeric enzyme, with each monomer adopting the GNAT N-acetyltransferase fold, common to a number of enzymes involved in acetylation of histones, aminoglycoside antibiotics, serotonin, and sugars. The crystal structure of WecD, however, represents the first structure of a GNAT family member that acts on nucleotide sugars. Based on this cocrystal structure, we have used flexible docking to generate a WecD-bound model of the acetyl-CoA-TDP-fucosamine tetrahedral intermediate, representing the structure during acetyl transfer. Our structural data show that WecD does not possess a residue that directly functions as a catalytic base, although Tyr208 is well positioned to function as a general acid by protonating the thiolate anion of coenzyme A.

  12. Electrode Potentials of l-Tryptophan, l-Tyrosine, 3-Nitro-l-tyrosine, 2,3-Difluoro-l-tyrosine, and 2,3,5-Trifluoro-l-tyrosine.

    Science.gov (United States)

    Mahmoudi, Leila; Kissner, Reinhard; Nauser, Thomas; Koppenol, Willem H

    2016-05-24

    Electrode potentials for aromatic amino acid radical/amino acid couples were deduced from cyclic voltammograms and pulse radiolysis experiments. The amino acids investigated were l-tryptophan, l-tyrosine, N-acetyl-l-tyrosine methyl ester, N-acetyl-3-nitro-l-tyrosine ethyl ester, N-acetyl-2,3-difluoro-l-tyrosine methyl ester, and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester. Conditional potentials were determined at pH 7.4 for all compounds listed; furthermore, Pourbaix diagrams for l-tryptophan, l-tyrosine, and N-acetyl-3-nitro-l-tyrosine ethyl ester were obtained. Electron transfer accompanied by proton transfer is reversible, as confirmed by detailed analysis of the current waves, and because the slopes of the Pourbaix diagrams obey Nernst's law. E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) at pH 7 are 0.99 ± 0.01 and 0.97 ± 0.01 V, respectively. Pulse radiolysis studies of two dipeptides that contain both amino acids indicate a difference in E°' of approximately 0.06 V. Thus, in small peptides, we recommend values of 1.00 and 0.96 V for E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH), respectively. The electrode potential of N-acetyl-3-nitro-l-tyrosine ethyl ester is higher, while because of mesomeric stabilization of the radical, those of N-acetyl-2,3-difluoro-l-tyrosine methyl ester and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester are lower than that of tyrosine. Given that the electrode potentials at pH 7 of E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) are nearly equal, they would be, in principle, interchangeable. Proton-coupled electron transfer pathways in proteins that use TrpH and TyrOH are thus nearly thermoneutral.

  13. Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays

    International Nuclear Information System (INIS)

    Komoszynski, M.; Bandurski, R.S.

    1986-01-01

    Indole-3-acetyl-myo-inositol galactoside labeled with 3 H in the indole and 14 C in the galactose moieties was applied to kernels of 5 day old germinating seedlings of Zea mays. Indole-3-acetyl-myo-inositol galactoside was not transported into either the shoot or root tissue as the intact molecule but was instead hydrolyzed to yield [ 3 H]indole-3-acetyl-myo-inositol and [ 3 H]indole-3-acetic acid which were then transported to the shoot with little radioactivity going to the root. With certain assumptions concerning the equilibration of applied [ 3 H]indole-3-acetyl-myo-inositol-[U- 14 C]galactose with the endogenous pool, it may be concluded that indole-3-acetyl-myo-inositol galactoside in the endosperm supplies about 2 picomoles per plant per hour of indole-3-acetic acid to the shoot and thus is comparable to indole-3-acetyl-myo-inositol as a source of indoleacetic acid for the shoot. Quantitative estimates of the amount of galactose in the kernels suggest that [ 3 H]indole-3-acetyl-myo-inositol-[ 14 C] galactose is hydrolyzed after the compound leaves the endosperm but before it reaches the shoot. In addition, [ 3 H]indole-3-acetyl-myo-inositol-[ 14 C]galactose supplies appreciable amounts of 14 C to the shoot and both 14 C and 3 H to an uncharacterized insoluble fraction of the endosperm

  14. Synthesis of 2-acetamido-6-O-(5-acetamido-3,5-dideoxy-β-D-glycero-D-galacto-2-nonulo-pyranosylonic acid)-2-deoxy-D-glucose [2-acetamido-6-O-(N-acetyl-β-D-neuraminyl)-2-deoxy-D-glucose

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Vleugel, D.J.M. van der; Zwikker, J.W.; Boeckel, S.A.A. van; Boom, J.H. van

    1982-01-01

    Silver triflate-promoted condensation of methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-2-chloro-2,3,5-trideoxy-β-D-glycero-D-galacto -2-nonulopyranosonate (9) with benzyl-2-acetamido-2-deoxy-3,4-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-α-D-glucopyranoside, followed by removal of the

  15. Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays

    Science.gov (United States)

    Komoszynski, M.; Bandurski, R. S.

    1986-01-01

    Indole-3-acetyl-myo-inositol galactoside labeled with 3H in the indole and 14C in the galactose moieties was applied to kernels of 5 day old germinating seedlings of Zea mays. Indole-3-acetyl-myo-inositol galactoside was not transported into either the shoot or root tissue as the intact molecule but was instead hydrolyzed to yield [3H]indole-3-acetyl-myo-inositol and [3H]indole-3-acetic acid which were then transported to the shoot with little radioactivity going to the root. With certain assumption concerning the equilibration of applied [3H]indole-3-acetyl-myo-inositol-[U-14C]galactose with the endogenous pool, it may be concluded that indole-3-acetyl-myo-inositol galactoside in the endosperm supplies about 2 picomoles per plant per hour of indole-3-acetyl-myo-inositol and 1 picomole per plant per hour of indole-3-acetic acid to the shoot and thus is comparable to indole-3-acetyl-myo-inositol as a source of indole-acetic acid for the shoot. Quantitative estimates of the amount of galactose in the kernels suggest that [3H]indole-3-acetyl-myo-inositol-[14C]galactose is hydrolyzed after the compound leaves the endosperm but before it reaches the shoot. In addition, [3H]indole-3-acetyl-myo-inositol-[14C]galactose supplies appreciable amounts of 14C to the shoot and both 14C and 3H to an uncharacterized insoluble fraction of the endosperm.

  16. Impact of peptidoglycan O-acetylation on autolytic activities of the Enterococcus faecalis N-acetylglucosaminidase AtlA and N-acetylmuramidase AtlB.

    Science.gov (United States)

    Emirian, Aurélie; Fromentin, Sophie; Eckert, Catherine; Chau, Françoise; Dubost, Lionel; Delepierre, Muriel; Gutmann, Laurent; Arthur, Michel; Mesnage, Stéphane

    2009-09-17

    Autolysins are potentially lethal enzymes that partially hydrolyze peptidoglycan for incorporation of new precursors and septum cleavage after cell division. Here, we explored the impact of peptidoglycan O-acetylation on the enzymatic activities of Enterococcus faecalis major autolysins, the N-acetylglucosaminidase AtlA and the N-acetylmuramidase AtlB. We constructed isogenic strains with various O-acetylation levels and used them as substrates to assay E. faecalis autolysin activities. Peptidoglycan O-acetylation had a marginal inhibitory impact on the activities of these enzymes. In contrast, removal of cell wall glycopolymers increased the AtlB activity (37-fold), suggesting that these polymers negatively control the activity of this enzyme.

  17. In vivo labelling of acetyl-aspartyl peptides in mouse brain from intracranially and intracranially and intraperitoneally administered acetyl-L-[U-14C]aspartate

    International Nuclear Information System (INIS)

    Sinichkin, A.; Sterri, S.; Edminson, P.D.; Reichelt, K.L.; Kvamme, E.

    1977-01-01

    Following intracranial and intraperitoneal injection of acetyl-L-[U- 14 C]aspartate into mice about 5% and 0.7% of the radioactivity, respectively, was recovered from the brain after 30 min. On chromatographic separation of the cationic and anionic compounds on a Dowex 50 column, the former fraction contained about 60% of the radioactivity, predominantly as labelled asparate and glutamate. The anionic compounds, containing 20% of the labelled compounds, were fractionated in several chromatographic systems and resolved into a great variety of labelled peptidic compounds of which five acetyl-[U 14 ]aspartyl peptides, containing two to four amino acids, were purified. One of these, acetyl-aspartyl glutamine, has not previously been found in brain. (author)

  18. Biosynthetic elongation of isolated teichuronic acid polymers via glucosyl- and N-acetylmannosaminuronosyltransferases from solubilized cytoplasmic membrane fragments of Micrococcus luteus.

    Science.gov (United States)

    Hildebrandt, K M; Anderson, J S

    1990-01-01

    Cytoplasmic membrane fragments of Micrococcus luteus catalyze in vitro biosynthesis of teichuronic acid from uridine diphosphate D-glucose (UDP-glucose), uridine diphosphate N-acetyl-D-mannosaminuronic acid (UDP-ManNAcA), and uridine diphosphate N-acetyl-D-glucosamine. Membrane fragments solubilized with Thesit (dodecyl alcohol polyoxyethylene ether) can utilize UDP-glucose and UDP-ManNAcA to effect elongation of teichuronic acid isolated from native cell walls. When UDP-glucose is the only substrate supplied, the detergent-solubilized glucosyltransferase incorporates a single glucosyl residue onto each teichuronic acid acceptor. When both UDP-glucose and UDP-ManNAcA are supplied, the glucosyltransferase and the N-acetylmannosaminuronosyltransferase act cooperatively to elongate the teichuronic acid acceptor by multiple additions of the disaccharide repeat unit. As shown by polyacrylamide gel electrophoresis, low-molecular-weight fractions of teichuronic acid are converted to higher-molecular-weight polymers by the addition of as many as 17 disaccharide repeat units. Images PMID:2118507

  19. Cigarette Smoking, N-Acetyltransferase 2 Acetylation Status, and Bladder Cancer Risk

    DEFF Research Database (Denmark)

    Marcus, P.M.; Hayes, R.B.; Vineis, P.

    2000-01-01

    Tobacco use is an established cause of bladder cancer. The ability to detoxify aromatic amines, which are present in tobacco and are potent bladder carcinogens, is compromised in persons with the N-acetyltransferase 2 slow acetylation polymorphism. The relationship of cigarette smoking with bladder...... cancer risk therefore has been hypothesized to be stronger among slow acetylators. The few studies to formally explore such a possibility have produced inconsistent results, however. To assess this potential gene-environment interaction in as many bladder cancer studies as possible and to summarize...... results, we conducted a meta-analysis using data from 16 bladder cancer studies conducted in the general population (n = 1999 cases), Most had been conducted in European countries. Because control subjects were unavailable for a number of these studies, we used a case-series design, which can be used...

  20. Structural studies on 3-acetyl-1,5-diaryl and 3-cyano-1,5-diaryl formazan chelates with cerium(III), thorium(IV) and uranium(VI)

    International Nuclear Information System (INIS)

    Sherif, O.E.; Issa, Y.M.; Hassouna, M.E.M.; Abass, S.M.

    1993-01-01

    Solid complexes of 3-acetyl-1,5-diaryl and 3-cyano-1,5-diaryl formazans were prepared and characterized by elemental analysis, IR, NMR, TGA and DTA analyses. Based on these studies, the suggested general formula for the complexes is M(HL) m (OH - ) n or (NO 3 - or Cl - ) x *(H 2 O) y or (C 2 H 5 OH or DMSO) z , where HL=formazan M=Ce 3+ , Th 4+ , and UO 2 2+ , m=1-2, n=0-3, x=0-3, y=0-4 and z=0-3. The metal ions are expected to have coordination numbers 6-8

  1. N-mercapto acetyl-N'-octyl-O, N″-glycol chitosan as an efficiency oral delivery system of paclitaxel.

    Science.gov (United States)

    Huo, Meirong; Fu, Ying; Liu, Yanhong; Chen, Qinyu; Mu, Yan; Zhou, Jianping; Li, Lingchao; Xu, Wei; Yin, Tingjie

    2018-02-01

    Herein, thioglycolic acid modified N-octyl-O, N'-glycol chitosan (N-mercapto acetyl-N'-octyl-O, N″-glycol chitosan, abbreviated as SH-OGC) was synthesized to improve the oral bioavailability of paclitaxel (PTX). PTX was readily solubilized into the hydrophobic inner core of SH-OGC. Pharmacokinetic studies demonstrated that the bioavailability of PTX was greatly enhanced when delivered by SH-OGC compared to Taxol ® or non-sulfhydrylated OGC micelles. Caco-2 cell experiments confirmed PTX or rhodamine-123-loaded SH-OGC demonstrated effective cellular accumulation via caveola-mediated endocytosis along with the inhibition of P-gp efflux. Furthermore, Caco-2 transport studies demonstrated that the mechanistic basis of SH-OGC efficacy was attributed to P-gp inhibition, enhanced permeability of tight junctions and clathrin-mediated transcytosis across the endothelium. In addition, SH-OGC exhibited increased intestinal retention through thiol-mediated mucoadhesion compared with OGC according to results of mucoadhesion evaluation on freshly excised rat intestine. In summary, SH-OGC micelles may present as a promising delivery vehicle for enhancing the oral bioavailability of P-gp substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Synthesis of mutual azo prodrugs of anti-inflammatory agents and peptides facilitated by α-aminoisobutyric acid.

    Science.gov (United States)

    Kennedy, David A; Vembu, Nagarajan; Fronczek, Frank R; Devocelle, Marc

    2011-12-02

    Reported is the synthesis of azo mutual prodrugs of the nonsteroidal anti-inflammatory agents (NSAIDs) 4-aminophenylacetic acid (4-APAA) or 5-aminosalicylic acid (5-ASA) with peptides, including an antibiotic peptide temporin analogue modified at the amino terminal by an α-aminoisobutyric acid (Aib) residue. These prodrugs are designed for colonic delivery of two agents to treat infection and inflammation by the bacterial pathogen Clostridium difficile . © 2011 American Chemical Society

  3. Neural-network analysis of the vibrational spectra of N-acetyl L-alanyl N '-methyl amide conformational states

    DEFF Research Database (Denmark)

    Bohr, Henrik; Frimand, Kenneth; Jalkanen, Karl J.

    2001-01-01

    Density-functional theory (DFT) calculations utilizing the Becke 3LYP hybrid functional have been carried out for N-acetyl L-alanine N'-methylamide and examined with respect to the effect of water on the structure, the vibrational frequencies, vibrational absorption (VA), vibrational circular dic...

  4. Spectrophotometric study into complexing of vanadium(3) with salicylic acid derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Dolgorev, A V; Serikov, Yu A; Zolotavin, V L

    1977-03-01

    Complexing of vanadium (3) with 5 amino-salicylic acid and amide of salicylhydroxamic acid has been studied. It has been shown that in acidic medium V/sup 3 +/ forms yellow complexes of the composition 1:1 with instability constants 2.2x10/sup -19/, 7.8x10/sup -11/, and 2.2x10/sup -12/, respectively. Complexes of V/sup 3 +/ with derivatives of salicylic acid can be used for determining V(3) content in the presence of V(4).

  5. Scientific Opinion on the safety of synthetic N-acetyl-D-neuraminic acid as a novel food pursuant to Regulation (EC) No 258/97

    DEFF Research Database (Denmark)

    Poulsen, Morten

    2017-01-01

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver a scientific opinion on synthetic N-acetyl-d-neuraminic acid (NANA) as a novel food (NF) submitted pursuant to Regulation (EC) No 258/97. The information...... on the composition, the specifications, the batch-to-batch variability, stability and production process of the NF is sufficient and does not raise concerns about the safety of the NF. The NF is intended to be marketed as an ingredient in formulae and foods for infants and young children as well as an ingredient...... in a variety of foods and in food supplements for the general population. NANA is naturally present in human milk, in a bound and free form. The Margin of Exposure, which was based on the no-observed-adverse effect level (NOAEL) of 493 mg/kg body weight (bw) per day from a subchronic study and the anticipated...

  6. Asymmetric distribution of glucose and indole-3-acetyl-myo-inositol in geostimulated Zea mays seedlings

    Science.gov (United States)

    Momonoki, Y. S.; Bandurski, R. S. (Principal Investigator)

    1988-01-01

    Indole-3-acetyl-myo-inositol occurs in both the kernel and vegetative shoot of germinating Zea mays seedlings. The effect of a gravitational stimulus on the transport of [3H]-5-indole-3-acetyl-myo-inositol and [U-14C]-D-glucose from the kernel to the seedling shoot was studied. Both labeled glucose and labeled indole-3-acetyl-myo-inositol become asymmetrically distributed in the mesocotyl cortex of the shoot with more radioactivity occurring in the bottom half of a horizontally placed seedling. Asymmetric distribution of [3H]indole-3-acetic acid, derived from the applied [3H]indole-3-acetyl-myo-inositol, occurred more rapidly than distribution of total 3H-radioactivity. These findings demonstrate that the gravitational stimulus can induce an asymmetric distribution of substances being transported from kernel to shoot. They also indicate that, in addition to the transport asymmetry, gravity affects the steady state amount of indole-3-acetic acid derived from indole-3-acetyl-myo-inositol.

  7. Identification and quantification of N alpha-acetylated Y. pestis fusion protein F1-V expressed in Escherichia coli using LCMS E.

    Science.gov (United States)

    Bariola, Pauline A; Russell, Brett A; Monahan, Steven J; Stroop, Steven D

    2007-05-31

    N-terminal acetylation in E coli is a rare event catalyzed by three known N-acetyl-transferases (NATs), each having a specific ribosomal protein substrate. Multiple, gram-scale lots of recombinant F1-V, a fusion protein constructed from Y. Pestis antigens, were expressed and purified from a single stably transformed E. coli cell bank. A variant form of F1-V with mass increased by 42-43 Da was detected in all purified lots by electrospray orthogonal acceleration time-of-flight mass spectrometry (MS). Peptide mapping LCMS localized the increased mass to an N-terminal Lys-C peptide, residues 1-24, and defined it as +42.0308+/-0.0231 Da using a LockSpray exact mass feature and a leucine enkaphalin mass standard. Sequencing of the variant 1-24 peptide by LCMS and high-energy collision induced dissociation (LCMS(E)) further localized the modification to the amino terminal tri-peptide ADL and identified the modification as N(alpha)-acetylation. The average content of N(alpha)-acetylated F1-V in five lots was 24.7+/-2.6% indicating that a stable acetylation activity for F1-V was established in the E. coli expression system. Alignment of the F1-V N-terminal sequence with those of other known N(alpha)-acetylated ectopic proteins expressed in E. coli reveals a substrate motif analogous to the eukaryote NatA' acetylation pathway and distinct from endogenous E. coli NAT substrates.

  8. Biting deterrence and insecticidal activity of hydrazide-hydrazones and their corresponding 3-acetyl-2,5-disubstituted-2,3-dihydro-1,3,4-oxadiazoles against Aedes aegypti.

    Science.gov (United States)

    Tabanca, Nurhayat; Ali, Abbas; Bernier, Ulrich R; Khan, Ikhlas A; Kocyigit-Kaymakcioglu, Bedia; Oruç-Emre, Emine E; Unsalan, Seda; Rollas, Sevim

    2013-06-01

    Taking into account the improvement in insecticidal activity by the inclusion of fluorine in the hydrazone moiety, the authors synthesized new 4-fluorobenzoic acid hydrazides and 3-acetyl-2,5-disubstituted-2,3-dihydro-1,3,4-oxadiazoles, substituting a phenyl group or a heteroaryl ring carrying one or two atoms of F, Cl and Br, and investigated their biting deterrent and larvicidal activities against Aedes aegypti for the first time. The compound 3-acetyl-5-(4-fluorophenyl)-2-[4-(dimethylamino)phenyl]-2,3-dihydro-1,3,4-oxadiazole (17) produced the highest biting deterrent activity (BDI = 1.025) against Ae. Aegypti, followed by 4-fluorobenzoic acid [(phenyl)methylene] hydrazide (1). These activity results were similar to those of N,N-diethyl-meta-toluamide (DEET), which showed a proportion not biting of 0.8-0.92. When compounds 1 and 17 were tested on cloth worn on human volunteers, compound 1 was not repellent for some volunteers until present in excess of 500 nmol cm(-2) , while compound 17 was not repellent at the highest concentration tested (1685 nmol cm(-2) ). In the larvicidal screening bioassays, only compounds 10, 11, 12 and 17 showed 100% mortality at the highest screening dose of 100 ppm against Ae. aegypti larvae. Compounds 11 and 12 with LD50 values of 24.1 and 30.9 ppm showed significantly higher mortality than 10 (80.3 ppm) and 17 (58.7 ppm) at 24-h post-treatment. The insecticidal and biting deterrent activities were correlated with the presence of a halogen atom on the phenyl or heteroaryl substituent of the hydrazone moiety. © 2012 Society of Chemical Industry.

  9. Synthesis, evaluation, and mechanism of N,N,N-trimethyl-D-glucosamine-(1→4)-chitooligosaccharides as selective inhibitors of glycosyl hydrolase family 20 β-N-acetyl-D-hexosaminidases.

    Science.gov (United States)

    Yang, You; Liu, Tian; Yang, Yongliang; Wu, Qingyue; Yang, Qing; Yu, Biao

    2011-02-11

    GH20 β-N-acetyl-D-hexosaminidases are enzymes involved in many vital processes. Inhibitors that specifically target GH20 enzymes in pests are of agricultural and economic importance. Structural comparison has revealed that the bacterial chitindegrading β-N-acetyl-D-hexosaminidases each have an extra +1 subsite in the active site; this structural difference could be exploited for the development of selective inhibitors. N,N,Ntrimethyl-D-glucosamine (TMG)-chitotriomycin, which contains three GlcNAc residues, is a natural selective inhibitor against bacterial and insect β-N-acetyl-D-hexosaminidases. However, our structural alignment analysis indicated that the two GlcNAc residues at the reducing end might be unnecessary. To prove this hypothesis, we designed and synthesized a series of TMG-chitotriomycin analogues containing one to four GlcNAc units. Inhibitory kinetics and molecular docking showed that TMG-(GlcNAc)(2), is as active as TMG-chitotriomycin [TMG-(GlcNAc)(3)]. The selective inhibition mechanism of TMG-chitotriomycin was also explained. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Composition of amino acid using carbon monoxide. Amide carbonylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Izawa, Kunisuke (Ajinomoto Co., Inc., Tokyo (Japan))

    1989-02-01

    Amide carbonylation reaction is a method to compose N-acyl-{alpha}-amino acid from aldehyde, carboxylic acid amide, and carbon monoxide in a phase and with high yield. Unlike the conventional Strecker reaction, this method does not use HCN which is in question on public pollution and does not require hydrolysis. This amide carbonylation reaction was discovered by Wakamatsu and others of Ajinomoto Co.,Ltd. Present application examples of this method are the composition of N-acetyl amino acid from the aldehyde class, the composition of N-Acyl amino acid from olefin, the composition of N-acyl or acetyl amino acid from the raw material of alcohol and the halide class, the composition of N-acyl or acetyl amino acid via the isomerization of epoxide and allyl alcohol, the composition of amino dicarboxylic acid, applying deoxidation of ring acid anhydride, the composition of N-acyl amino acid from the raw material of the amine class, the stereoselective composition of -substitution ring-{alpha}-amino acid, and the composition of amino aldehyde. 24 refs., 2 figs., 2 tabs.

  11. Efficient acetylation of primary amines and amino acids in ...

    Indian Academy of Sciences (India)

    This effort represents the first efficient use of this most reactive but cheap acetylating agent to acetylate amines in excellent yields in aqueous medium. This is a potentially useful green chemical transformation where reaction takes place in environment-friendly brine solution leading to easy work-up and isolation of the ...

  12. Novel rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: importance for phytoremediation.

    Science.gov (United States)

    Tan, Dun-Xian; Manchester, Lucien C; Di Mascio, Paolo; Martinez, Glaucia R; Prado, Fernanda M; Reiter, Russel J

    2007-06-01

    N1-acetyl-N2-formyl-5-methoxykynuramine (AMFK) is a major metabolite of melatonin in mammals. To investigate whether AFMK exists in plants, an aquatic plant, water hyacinth, was used. To achieve this, LC/MS/MS with a deuterated standard was employed. AFMK was identified in any plant for the first time. Both it and its precursor, melatonin, were rhythmic with peaks during the late light phase. These novel rhythms indicate that these molecules do not serve as the chemical signal of darkness as in animals but may relate to processes of photosynthesis or photoprotection. These possibilities are supported by higher production of melatonin and AFMK in plants grown in sunlight (10,000-15,000 microW/cm2) compared to those grown under artificial light (400-450 microW/cm2). Melatonin and AFMK, as potent free radical scavengers, may assist plants in coping with harsh environmental insults, including soil and water pollutants. High levels of melatonin and AFMK in water hyacinth may explain why this plant more easily tolerates environmental pollutants, including toxic chemicals and heavy metals and is successfully used in phytoremediation. These novel findings could lead to improvements in the phytoremediative capacity of plants by either stimulating endogenous melatonin synthesis or by adding melatonin to water/soil in which they are grown.

  13. Protective Roles of N-acetyl Cysteine and/or Taurine against Sumatriptan-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Javad Khalili Fard

    2016-12-01

    Full Text Available Purpose: Triptans are the drug category mostly prescribed for abortive treatment of migraine. Most recent cases of liver toxicity induced by triptans have been described, but the mechanisms of liver toxicity of these medications have not been clear. Methods: In the present study, we obtained LC50 using dose-response curve and investigated cell viability, free radical generation, lipid peroxide production, mitochondrial injury, lysosomal membrane damage and the cellular glutathione level as toxicity markers as well as the beneficial effects of taurine and/or N-acetyl cysteine in the sumatriptan-treated rat parenchymal hepatocytes using accelerated method of cytotoxicity mechanism screening. Results: It was revealed that liver toxicity induced by sumatriptan in in freshly isolated parenchymal hepatocytes is dose-dependent. Sumatriptan caused significant free radical generation followed by lipid peroxide formation, mitochondrial injury as well as lysosomal damage. Moreover, sumatriptan reduced cellular glutathione content. Taurine and N-acetyl cysteine were able to protect hepatocytes against sumatriptan-induced harmful effects. Conclusion: It is concluded that sumatriptan causes oxidative stress in hepatocytes and the decreased hepatocytes glutathione has a key role in the sumatriptan-induced harmful effects. Also, N-acetyl cysteine and/or taurine could be used as treatments in sumatriptan-induced side effects.

  14. Annotating Enzymes of Uncertain Function: The Deacylation of d-Amino Acids by Members of the Amidohydrolase Superfamily

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.; Fedorov, A; Xu, C; Brown, S; Fedorov, E; Babbitt, P; Almo, S; Raushel, F

    2009-01-01

    The catalytic activities of three members of the amidohydrolase superfamily were discovered using amino acid substrate libraries. Bb3285 from Bordetella bronchiseptica, Gox1177 from Gluconobacter oxidans, and Sco4986 from Streptomyces coelicolor are currently annotated as d-aminoacylases or N-acetyl-d-glutamate deacetylases. These three enzymes are 22-34% identical to one another in amino acid sequence. Substrate libraries containing nearly all combinations of N-formyl-d-Xaa, N-acetyl-d-Xaa, N-succinyl-d-Xaa, and l-Xaa-d-Xaa were used to establish the substrate profiles for these enzymes. It was demonstrated that Bb3285 is restricted to the hydrolysis of N-acyl-substituted derivatives of d-glutamate. The best substrates for this enzyme are N-formyl-d-glutamate (k{sub cat}/K{sub m} = 5.8 x 10{sup 6} M{sup -1} s{sup -1}), N-acetyl-d-glutamate (k{sub cat}/K{sub m} = 5.2 x 10{sup 6} M{sup -1} s{sup -1}), and l-methionine-d-glutamate (k{sub cat}/K{sub m} = 3.4 x 10{sup 5} M{sup -1} s{sup -1}). Gox1177 and Sco4986 preferentially hydrolyze N-acyl-substituted derivatives of hydrophobic d-amino acids. The best substrates for Gox1177 are N-acetyl-d-leucine (k{sub cat}/K{sub m} = 3.2 x 104 M{sup -1} s-1), N-acetyl-d-tryptophan (kcat/Km = 4.1 x 104 M-1 s-1), and l-tyrosine-d-leucine (kcat/Km = 1.5 x 104 M-1 s-1). A fourth protein, Bb2785 from B. bronchiseptica, did not have d-aminoacylase activity. The best substrates for Sco4986 are N-acetyl-d-phenylalanine and N-acetyl-d-tryptophan. The three-dimensional structures of Bb3285 in the presence of the product acetate or a potent mimic of the tetrahedral intermediate were determined by X-ray diffraction methods. The side chain of the d-glutamate moiety of the inhibitor is ion-paired to Arg-295, while the {alpha}-carboxylate is ion-paired with Lys-250 and Arg-376. These results have revealed the chemical and structural determinants for substrate specificity in this protein. Bioinformatic analyses of an additional {approx}250

  15. Meat consumption, N-acetyl transferase 1 and 2 polymorphism and risk of breast cancer, in Danish postmenopausal women

    DEFF Research Database (Denmark)

    Egeberg, Rikke; Olsen, Anja; Autrup, Herman

    2008-01-01

    The aim of this study was to investigate whether polymorphisms in N-acetyl transferase 1 and 2 modify the association between meat consumption and risk of breast cancer. A nested case-control study was conducted among 24697 postmenopausal women included in the 'Diet, Cancer and Health' cohort study...... (1993-2000). Three hundred and seventy-eight breast cancer cases were identified and matched to 378 controls. The incidence rate ratio (95% confidence interval) for breast cancer was 1.09 (1.02-1.17) for total meat, 1.15 (1.01-1.31) for red meat and 1.23 (1.04-1.45) for processed meat per 25 g daily...... total meat intake and red meat intake and breast cancer risk were confined to intermediate/fast N-acetyl transferase 2 acetylators (P-interaction=0.03 and 0.04). Our findings support an association between meat consumption and breast cancer risk and that N-acetyl transferase 2 polymorphism has...

  16. Fatty acid biosynthesis VII. Substrate control of chain-length of products synthesised by rat liver fatty acid synthetase

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Carey, E.M.; Dils, R.

    1970-01-01

    - 1. Gas-liquid and paper chromatography have been used to determine the chain-lengths of fatty acids synthesised by purified rat liver fatty acid synthetase from [1-14C]acetyl-CoA, [1,3-14C2]malonyl-CoA and from [1-14C]acetyl-CoA plus partially purified rat liver acetyl-CoA carboxylase. - 2....... A wide range (C4:0–C18:0) of fatty acids was synthesised and the proportions were modified by substrate concentrations in the same manner as for purified rabbit mammary gland fatty acid synthetase. - 3. The relative amount of radioactivity incorporated from added acetyl-CoA and malonyl-CoA depended...... of long-chain fatty acids was synthesised from carboxylated acetyl-CoA than from added malonyl-CoA. - 5. It is suggested that acetyl-CoA carboxylase may carboxylate acetate bound to fatty acid synthetase....

  17. Histones of Chlamydomonas reinhardtii. Synthesis, acetylation, and methylation

    International Nuclear Information System (INIS)

    Waterborg, J.H.; Robertson, A.J.; Tatar, D.L.; Borza, C.M.; Davie, J.R.

    1995-01-01

    Histones of the green alga Chlamydomonas reinhardtii were prepared by a new method and fractionated by reversed-phase high-performance liquid chromatography. Acid-urea-Triton gel analysis and tritiated acetate labeling demonstrated high levels of steady-state acetylation for the single histone H3 protein, in contrast to low levels on histones H4 and H2B. Twenty percent of histone H3 is subject to dynamic acetylation with, on average, three acetylated lysine residues per protein molecule. Histone synthesis in light-dark-synchronized cultures was biphasic with pattern differences between two histone H1 variants, between two H2A variants, and between H2B and ubiquitinated H2B. Automated protein sequence analysis of histone H3 demonstrated a site-specific pattern of steady-state acetylation between 7 and 17% at five of the six amino-terminal lysines and of monomethylation between 5 and 81% at five of the eight amino-terminal lysines in a pattern that may limit dynamic acetylation. An algal histone H3 sequence was confirmed by protein sequencing with a since threonine as residue 28 instead of the serine(28)-alanine(29) sequence, present in all other known plant and animal H3 histones

  18. The small delta antigen of hepatitis delta virus is an acetylated protein and acetylation of lysine 72 may influence its cellular localization and viral RNA synthesis

    International Nuclear Information System (INIS)

    Mu, J.-J.; Tsay, Y.-G.; Juan, L.-J.; Fu, T.-F.; Huang, W.-H.; Chen, D.-S.; Chen, P.-J.

    2004-01-01

    Hepatitis delta virus (HDV) is a single-stranded RNA virus that encodes two viral nucleocapsid proteins named small and large form hepatitis delta antigen (S-HDAg and L-HDAg). The S-HDAg is essential for viral RNA replication while the L-HDAg is required for viral assembly. In this study, we demonstrated that HDAg are acetylated proteins. Metabolic labeling with [ 3 H]acetate revealed that both forms of HDAg could be acetylated in vivo. The histone acetyltransferase (HAT) domain of cellular acetyltransferase p300 could acetylate the full-length and the N-terminal 88 amino acids of S-HDAg in vitro. By mass spectrometric analysis of the modified protein, Lys-72 of S-HDAg was identified as one of the acetylation sites. Substitution of Lys-72 to Arg caused the mutant S-HDAg to redistribute from the nucleus to the cytoplasm. The mutant reduced viral RNA accumulation and resulted in the earlier appearance of L-HDAg. These results demonstrated that HDAg is an acetylated protein and mutation of HDAg at Lys-72 modulates HDAg subcellular localization and may participate in viral RNA nucleocytoplasmic shuttling and replication

  19. N,N-dichloro-4-methylbenzenesulphonimide as a novel and efficient catalyst for acetylation of alcohols under mild conditions

    Directory of Open Access Journals (Sweden)

    Khazaei Ardeshir

    2006-01-01

    Full Text Available Structurally diverse alcohols were acetylated in a clean and efficient reaction with acetic anhydride based on the use of a catalytic amount of N,N-dichloro-4-methylbenzenesulphonimide in dichloromethane. All reactions were performed at room temperature in good to excellent yields.

  20. Development of colonic 5-ASA beads

    OpenAIRE

    Iruín Nazabal, Ana; Fernández Arévalo, María Mercedes; Álvarez Fuentes, Josefa; Holgado Villafuerte, María Ángeles

    2005-01-01

    Introduction Recent studies prove that the number of patients with inflammatory bowel disease is increasing all over the world due to contamination, industrialization and changes in the style of live. Some studies have shown that 5-aminosalicylic acid (5-ASA), an anti-inflammatory agent, must be the election treatment for these pathologies. In recent years, the production of microparticles systems seems to be equally promising to develop dosage forms in order to reduce the dosage frequency (1...

  1. The extracellular release of Schistosoma mansoni HMGB1 nuclear protein is mediated by acetylation

    International Nuclear Information System (INIS)

    Coutinho Carneiro, Vitor; Moraes Maciel, Renata de; Caetano de Abreu da Silva, Isabel; Furtado Madeira da Costa, Rodrigo; Neto Paiva, Claudia; Torres Bozza, Marcelo; Rosado Fantappie, Marcelo

    2009-01-01

    Schistosoma mansoni HMGB1 (SmHMGB1) was revealed to be a substrate for the parasite histone acetyltransferases SmGCN5 and SmCBP1. We found that full-length SmHMGB1, as well as its HMG-box B (but not HMG-box A) were acetylated in vitro by SmGCN5 and SmCBP1. However, SmCBP1 was able to acetylate both substrates more efficiently than SmGCN5. Interestingly, the removal of the C-terminal acidic tail of SmHMGB1 (SmHMGB1ΔC) resulted in increased acetylation of the protein. We showed by mammalian cell transfection assays that SmHMGB1 and SmHMGB1ΔC were transported from the nucleus to the cytoplasm after sodium butyrate (NaB) treatment. Importantly, after NaB treatment, SmHMGB1 was also present outside the cell. Together, our data suggest that acetylation of SmHMGB1 plays a role in cellular trafficking, culminating with its secretion to the extracellular milieu. The possible role of SmHMGB1 acetylation in the pathogenesis of schistosomiasis is discussed.

  2. The extracellular release of Schistosoma mansoni HMGB1 nuclear protein is mediated by acetylation

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho Carneiro, Vitor; Moraes Maciel, Renata de; Caetano de Abreu da Silva, Isabel; Furtado Madeira da Costa, Rodrigo [Instituto de Bioquimica Medica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil); Neto Paiva, Claudia; Torres Bozza, Marcelo [Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil); Rosado Fantappie, Marcelo, E-mail: fantappie@bioqmed.ufrj.br [Instituto de Bioquimica Medica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil)

    2009-12-25

    Schistosoma mansoni HMGB1 (SmHMGB1) was revealed to be a substrate for the parasite histone acetyltransferases SmGCN5 and SmCBP1. We found that full-length SmHMGB1, as well as its HMG-box B (but not HMG-box A) were acetylated in vitro by SmGCN5 and SmCBP1. However, SmCBP1 was able to acetylate both substrates more efficiently than SmGCN5. Interestingly, the removal of the C-terminal acidic tail of SmHMGB1 (SmHMGB1{Delta}C) resulted in increased acetylation of the protein. We showed by mammalian cell transfection assays that SmHMGB1 and SmHMGB1{Delta}C were transported from the nucleus to the cytoplasm after sodium butyrate (NaB) treatment. Importantly, after NaB treatment, SmHMGB1 was also present outside the cell. Together, our data suggest that acetylation of SmHMGB1 plays a role in cellular trafficking, culminating with its secretion to the extracellular milieu. The possible role of SmHMGB1 acetylation in the pathogenesis of schistosomiasis is discussed.

  3. Synthesis and Determination of Acid Dissociation Constants in Dimethyl Sulfoxide–Water Hydroorganic Solvent of 5,5-Diphenylpyrrolidine N-Aroylthiourea Derivatives

    Directory of Open Access Journals (Sweden)

    Yahya Nural

    2017-08-01

    Full Text Available Novel 5,5-diphenylpyrrolidineN-aroylthioureas, containing 4-methylbenzoyl, 2-chlorobenzoyl,2,4-dichlorobenzoyl, and2-naphthoyl, were synthesized and their structural analysis was performed using 1H nuclear magnetic resonance (NMR, 13C NMR, Fourier transform infrared spectroscopy, mass spectrometry (MS, and high-resolution MS (HRMS techniques. The acid dissociation constants of the 5,5-diphenylpyrrolidineN-aroylthiourea derivative compounds were determined using Hyperquad computer program for data obtained using potentiometric titration method in 25% (v/v dimethyl sulfoxide–water hydroorganic solvent in the presence of 0.1 mol×L-1 ionic strength of NaCl and in the acidic medium at 25±0.1°C, using sodium hydroxide base as a titrant. Two acid dissociation constants were obtained for 3a, 3b, and 3d, and it was suggested that they were related to N-H and enol groups. Furthermore, three acid dissociation constants obtained for 3a indicated that they were related to N-H, enthiol, and enol groups, and four acid dissociation constants obtained for 3c suggested that they were related to N-H, enthiol, enol, and carboxyl groups.

  4. Acetylated Hyaluronic Acid: Enhanced Bioavailability and Biological Studies

    Directory of Open Access Journals (Sweden)

    Carmela Saturnino

    2014-01-01

    Full Text Available Hyaluronic acid (HA, a macropolysaccharidic component of the extracellular matrix, is common to most species and it is found in many sites of the human body, including skin and soft tissue. Not only does HA play a variety of roles in physiologic and in pathologic events, but it also has been extensively employed in cosmetic and skin-care products as drug delivery agent or for several biomedical applications. The most important limitations of HA are due to its short half-life and quick degradation in vivo and its consequently poor bioavailability. In the aim to overcome these difficulties, HA is generally subjected to several chemical changes. In this paper we obtained an acetylated form of HA with increased bioavailability with respect to the HA free form. Furthermore, an improved radical scavenging and anti-inflammatory activity has been evidenced, respectively, on ABTS radical cation and murine monocyte/macrophage cell lines (J774.A1.

  5. A GC-ECD method for estimation of free and bound amino acids, gamma-aminobutyric acid, salicylic acid, and acetyl salicylic acid from Solanum lycopersicum (L.).

    Science.gov (United States)

    Meher, Hari Charan; Gajbhiye, Vijay T; Singh, Ghanendra

    2011-01-01

    A gas chromatograph with electron capture detection method for estimation of selected metabolites--amino acids (free and bound), gamma-aminobutyric acid (GABA), salicylic acid (SA), and acetyl salicylic acid (ASA) from tomato--is reported. The method is based on nitrophenylation of the metabolites by 1-fluoro-2, 4-dinitrobenzene under aqueous alkaline conditions to form dinitophenyl derivatives. The derivatives were stable under the operating conditions of GC. Analysis of bound amino acids comprised perchloric acid precipitation of protein, alkylation (carboxymethylation) with iodoacetic acid, vapor-phase hydrolysis, and derivatization with 1-fluoro-2,4-dinitrobenzene in that order. The metabolites were resolved in 35 min, using a temperature-programmed run. The method is rapid, sensitive, and precise. It easily measured the typical amino acids (aspartate, asparagine, glutamate, glutamine, alanine, leucine, lysine, and phenylalanine) used for identification and quantification of a protein, resolved amino acids of the same mass (leucine and isoleucine), satisfactorily measured sulfur amino acid (methionine, cystine, and cysteine), and quantified GABA, SA, and ASA, as well. The developed method was validated for specificity, linearity, and precision. It has been applied and recommended for estimation of 25 metabolites from Solanum lycopersicum (L.).

  6. Correlation of Global N-Acetyl Aspartate With Cognitive Impairment in Multiple Sclerosis

    DEFF Research Database (Denmark)

    Kahr Mathiesen, Henrik; Jonsson, Agnete; Tscherning, Thomas

    2006-01-01

    BACKGROUND: Whole-brain N-acetyl aspartate (NAA), a measure of neuronal function, can be assessed by multislice echo-planar spectroscopic imaging. OBJECTIVE: To test the hypothesis that the global brain NAA/creatine (Cr) ratio is a better predictor of cognitive dysfunction in multiple sclerosis...

  7. Beta-endorphin and alpha-n-acetyl beta-endorphin; synthesis, conformation and binding parameter

    Energy Technology Data Exchange (ETDEWEB)

    Lovegren, E.S.

    1986-01-01

    Beta-endorphin (EP) is a 31-residue opioid peptide found in many tissues, including the pituitary, brain and reproductive tract. Alpha-amino-acetyl beta-endorphin (AcEP) was characterized spectroscopically by proton nuclear magnetic resonance (NMR) and circular dichroism in deuterated water and trifluoroethanol (TFE). Both EP and AcEP bind to neuroblastoma N2a cells. This binding was not mediated through opiate receptors, and both peptides seemed to bind at common sites. Ovarian immunoreactive-EP levels were determined for immature and mature rates. These levels were found to be responsive to exogenous gonadotropin treatment in immature animals. A large percentage of the immunoreactive-EP is present in follicular fluid, and most of the endorphin-like peptides were acetylated, as measured by radioimmunoassay. Chromatogaphic analysis suggested at least three EP-like species: EP, a carboxy-terminally cleaved and an amino-terminally acetylated EP.

  8. Preferential hydrophobic interactions are responsible for a preference of D-amino acids in the aminoacylation of 5'-AMP with hydrophobic amino acids

    Science.gov (United States)

    Lacey, J. C. Jr; Wickramasinghe, N. S.; Sabatini, R. S.

    1992-01-01

    We have studied the chemistry of aminoacyl AMP to model reactions at the 3' terminus of aminoacyl tRNA for the purpose of understanding the origin of protein synthesis. The present studies relate to the D, L preference in the esterification of 5'-AMP. All N-acetyl amino acids we studied showed faster reaction of the D-isomer, with a generally decreasing preference for D-isomer as the hydrophobicity of the amino acid decreased. The beta-branched amino acids, Ile and Val, showed an extreme preference for D-isomer. Ac-Leu, the gamma-branched amino acid, showed a slightly low D/L ratio relative to its hydrophobicity. The molecular basis for these preferences for D-isomer is understandable in the light of our previous studies and seems to be due to preferential hydrophobic interaction of the D-isomer with adenine. The preference for hydrophobic D-amino acids can be decreased by addition of an organic solvent to the reaction medium. Conversely, peptidylation with Ac-PhePhe shows a preference for the LL isomer over the DD isomer.

  9. Computational Study of Environmental Effects on Torsional Free Energy Surface of N-Acetyl-N'-methyl-L-alanylamide Dipeptide

    Science.gov (United States)

    Carlotto, Silvia; Zerbetto, Mirco

    2014-01-01

    We propose an articulated computational experiment in which both quantum mechanics (QM) and molecular mechanics (MM) methods are employed to investigate environment effects on the free energy surface for the backbone dihedral angles rotation of the small dipeptide N-Acetyl-N'-methyl-L-alanylamide. This computation exercise is appropriate for an…

  10. Synthesis and antiproliferative activity of diethyl 5- acetyl-4-methyl- 6 ...

    African Journals Online (AJOL)

    Diethyl 5-acetyl-4-methyl-6-(2-fluorophenylimino)-6H-thiopyran-2,3-dicarboxylate (3TM) was synthesized and the antiproliferative activity of 3TM is reported here. Compound 3TM inhibits the growth of human colon cancer HCT-15 with an IC50 value of 4.5 μM and breast cancer MCF-7 with an IC50 value of 7 μM in a ...

  11. Effects of N-acetyl cysteine on lipid levels and on leukocyte and ...

    African Journals Online (AJOL)

    Introduction: Many of studies have shown that increased lipid levels play a significant role in the pathogenesis of atherosclerosis after splenectomy. We investigated the effects of N-acetyl cysteine (NAC) on lipid parameters and leukocyte and platelet (PLT) levels following splenectomy. Materials and Methods: 32 Sprague.

  12. A randomised, double blind, placebo-controlled trial of a fixed dose of N-acetyl cysteine in children with autistic disorder.

    Science.gov (United States)

    Dean, Olivia M; Gray, Kylie M; Villagonzalo, Kristi-Ann; Dodd, Seetal; Mohebbi, Mohammadreza; Vick, Tanya; Tonge, Bruce J; Berk, Michael

    2017-03-01

    Oxidative stress, inflammation and heavy metals have been implicated in the aetiology of autistic disorder. N-acetyl cysteine has been shown to modulate these pathways, providing a rationale to trial N-acetyl cysteine for autistic disorder. There are now two published pilot studies suggesting efficacy, particularly in symptoms of irritability. This study aimed to explore if N-acetyl cysteine is a useful treatment for autistic disorder. This was a placebo-controlled, randomised clinical trial of 500 mg/day oral N-acetyl cysteine over 6 months, in addition to treatment as usual, in children with a Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision diagnosis of autistic disorder. The study was conducted in Victoria, Australia. The primary outcome measures were the Social Responsiveness Scale, Children's Communication Checklist-Second Edition and the Repetitive Behavior Scale-Revised. Additionally, demographic data, the parent-completed Vineland Adaptive Behavior Scales, Social Communication Questionnaire and clinician-administered Autism Diagnostic Observation Schedule were completed. A total of 102 children were randomised into the study, and 98 (79 male, 19 female; age range: 3.1-9.9 years) attended the baseline appointment with their parent/guardian, forming the Intention to Treat sample. There were no differences between N-acetyl cysteine and placebo-treated groups on any of the outcome measures for either primary or secondary endpoints. There was no significant difference in the number and severity of adverse events between groups. This study failed to demonstrate any benefit of adjunctive N-acetyl cysteine in treating autistic disorder. While this may reflect a true null result, methodological issues particularly the lower dose utilised in this study may be confounders.

  13. Copper(II) Binding Sites in N-Terminally Acetylated α-Synuclein: A Theoretical Rationalization.

    Science.gov (United States)

    Ramis, Rafael; Ortega-Castro, Joaquín; Vilanova, Bartolomé; Adrover, Miquel; Frau, Juan

    2017-08-03

    The interactions between N-terminally acetylated α-synuclein and Cu(II) at several binding sites have been studied with DFT calculations, specifically with the M06 hybrid functional and the ωB97X-D DFT-D functional. In previous experimental studies, Cu(II) was shown to bind several α-synuclein residues, including Met1-Asp2 and His50, forming square planar coordination complexes. Also, it was determined that a low-affinity binding site exists in the C-terminal domain, centered on Asp121. However, in the N-terminally acetylated protein, present in vivo, the Met1 site is blocked. In this work, we simplify the representation of the protein by modeling each experimentally found binding site as a complex between an N-terminally acetylated α-synuclein dipeptide (or several independent residues) and a Cu(II) cation, and compare the results with a number of additional, structurally analogous sites not experimentally found. This way of representing the binding sites, although extremely simple, allows us to reproduce experimental results and to provide a theoretical rationale to explain the preference of Cu(II) for certain sites, as well as explicit geometrical structures for the complexes formed. These results are important to understand the interactions between α-synuclein and Cu(II), one of the factors inducing structural changes in the protein and leading to aggregated forms of it which may play a role in neurodegeneration.

  14. N,O6-partially acetylated chitosan nanoparticles hydrophobically-modified for controlled release of steroids and vitamin E

    DEFF Research Database (Denmark)

    Quinones, Javier Perez; Gothelf, Kurt Vesterager; Kjems, Jørgen

    2013-01-01

    Diosgenin, two synthetic analogs of brassinosteroids, testosterone and dl-α-tocopherol were covalently linked to synthetic water-soluble N,O6-partially acetylated chitosan, for their controlled release. Drug linking was confirmed by FTIR spectroscopy and proton NMR. Conjugates were also character......Diosgenin, two synthetic analogs of brassinosteroids, testosterone and dl-α-tocopherol were covalently linked to synthetic water-soluble N,O6-partially acetylated chitosan, for their controlled release. Drug linking was confirmed by FTIR spectroscopy and proton NMR. Conjugates were also...

  15. Metabolic labeling of sialic acids in tissue culture cell lines: methods to identify substituted and modified radioactive neuraminic acids

    International Nuclear Information System (INIS)

    Diaz, S.; Varki, A.

    1985-01-01

    The parent sialic acid N-acetylneuraminic acid can be modified or substituted in various ways, giving rise to a family of more than 25 compounds. The definitive identification of these compounds has previously required isolation of nanomole amounts for mass spectrometry or NMR. We have explored the possibility of using the known metabolic precursors of the sialic acids, particularly N-acetyl-[6-3H]mannosamine, to label and identify various forms of sialic acids in tissue culture cells. Firstly, we defined several variables that affect the labeling of sialic acids with N-acetyl-[6-3H]mannosamine. Secondly, we have devised a simple screening method to identify cell lines that synthesize substituted or modified sialic acids. We next demonstrate that it is possible to definitively identify the natures of the various labeled sialic acids without the use of mass spectrometry, even though they are present only in tracer amounts. The methods used include paper chromatography, analytical de-O-acetylation, periodate release of the 9-3H as [3H]formaldehyde (which is subsequently converted to a specific 3H-labeled chromophore), acylneuraminate pyruvate lyase treatment with identification of [3H]acylmannosamines, gas-liquid chromatography with radioactive detection, and two new high-pressure liquid chromatography methods utilizing the amine-adsorption:ion suppression and ion-pair principles. The use of an internal N-acetyl-[4-14C]neuraminic acid standard in each of these methods assures precision and accuracy. The combined use of these methods now allows the identification of radioactive tracer amounts of the various types of sialic acids in well-defined populations of tissue culture cells; it may also allow the identification of hitherto unknown forms of sialic acids

  16. Sodium p-Aminosalicylic Acid Reverses Sub-Chronic Manganese-Induced Impairments of Spatial Learning and Memory Abilities in Rats, but Fails to Restore γ-Aminobutyric Acid Levels

    Science.gov (United States)

    Li, Shao-Jun; Ou, Chao-Yan; He, Sheng-Nan; Huang, Xiao-Wei; Luo, Hai-Lan; Meng, Hao-Yang; Lu, Guo-Dong; Jiang, Yue-Ming; Vieira Peres, Tanara; Luo, Yi-Ni; Deng, Xiang-Fa

    2017-01-01

    Excessive manganese (Mn) exposure is not only a health risk for occupational workers, but also for the general population. Sodium para-aminosalicylic acid (PAS-Na) has been successfully used in the treatment of manganism, but the involved molecular mechanisms have yet to be determined. The present study aimed to investigate the effects of PAS-Na on sub-chronic Mn exposure-induced impairments of spatial learning and memory, and determine the possible involvements of γ-aminobutyric acid (GABA) metabolism in vivo. Sprague-Dawley male rats received daily intraperitoneal injections MnCl2 (as 6.55 mg/kg Mn body weight, five days per week for 12 weeks), followed by daily subcutaneous injections of 100, 200, or 300 mg/kg PAS-Na for an additional six weeks. Mn exposure significantly impaired spatial learning and memory ability, as noted in the Morris water maze test, and the following PAS-Na treatment successfully restored these adverse effects to levels indistinguishable from controls. Unexpectedly, PAS-Na failed to recover the Mn-induced decrease in the overall GABA levels, although PAS-Na treatment reversed Mn-induced alterations in the enzyme activities directly responsible for the synthesis and degradation of GABA (glutamate decarboxylase and GABA-transaminase, respectively). Moreover, Mn exposure caused an increase of GABA transporter 1 (GAT-1) and decrease of GABA A receptor (GABAA) in transcriptional levels, which could be reverted by the highest dose of 300 mg/kg PAS-Na treatment. In conclusion, the GABA metabolism was interrupted by sub-chronic Mn exposure. However, the PAS-Na treatment mediated protection from sub-chronic Mn exposure-induced neurotoxicity, which may not be dependent on the GABA metabolism. PMID:28394286

  17. Effect of [L-Carnitine] on acetyl-L-carnitine production by heart mitochondria

    International Nuclear Information System (INIS)

    Bieber, L.L.; Lilly, K.; Lysiak, W.

    1986-01-01

    The authors recently reported a large efflux of acetyl-L-carnitine from rat heart mitochondria during state 3 respiration with pyruvate as substrate both in the presence and absence of malate. In this series of experiments, the effect of the concentration of L-carnitine on the efflux of acetyl-L-carnitine and on the production of 14 CO 2 from 2- 14 C-pyruvate was determined. Maximum acetylcarnitine production (approximately 25 n moles/min/mg protein) was obtained at 3-5 mM L-carnitine in the absence of added malate. 14 CO 2 production decreased as the concentration of L-carnitine increased; it plateaued at 3-5 mM L-carnitine. These data indicate carnitine can stimulate flux of pyruvate through pyruvate dehydrogenase and can reduce flux of acetyl CoA through the Krebs cycle by acting as an acceptor of the acetyl moieties of acetyl CoA generated by pyruvate dehydrogenase

  18. Preventive effects of fructose and N-acetyl-L-cysteine against cytotoxicity induced by the psychoactive compounds N-methyl-5-(2-aminopropyl)benzofuran and 3,4-methylenedioxy-N-methamphetamine in isolated rat hepatocytes.

    Science.gov (United States)

    Nakagawa, Yoshio; Suzuki, Toshinari; Inomata, Akiko

    2018-02-01

    Psychoactive compounds, N-methyl-5-(2-aminopropyl)benzofuran (5-MAPB) and 3,4-methylenedioxy-N-methamphetamine (MDMA), are known to be hepatotoxic in humans and/or experimental animals. As previous studies suggested that these compounds elicited cytotoxicity via mitochondrial dysfunction and/or oxidative stress in rat hepatocytes, the protective effects of fructose and N-acetyl-l-cysteine (NAC) on 5-MAPB- and MDMA-induced toxicity were studied in rat hepatocytes. These drugs caused not only concentration-dependent (0-4 mm) and time-dependent (0-3 hours) cell death accompanied by the depletion of cellular levels of adenosine triphosphate (ATP) and glutathione (reduced form; GSH) but also an increase in the oxidized form of GSH. The toxic effects of 5-MAPB were greater than those of MDMA. Pretreatment of hepatocytes with either fructose at a concentration of 10 mm or NAC at a concentration of 2.5 mm prevented 5-MAPB-/MDMA-induced cytotoxicity. In addition, the exposure of hepatocytes to 5-MAPB/MDMA caused the loss of mitochondrial membrane potential, although the preventive effect of fructose was weaker than that of NAC. These results suggest that: (1) 5-MAPB-/MDMA-induced cytotoxicity is linked to mitochondrial failure and depletion of cellular GSH; (2) insufficient cellular ATP levels derived from mitochondrial dysfunction were ameliorated, at least in part, by the addition of fructose; and (3) GSH loss via oxidative stress was prevented by NAC. Taken collectively, these results indicate that the onset of toxic effects caused by 5-MAPB/MDMA may be partially attributable to cellular energy stress as well as oxidative stress. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Characterization and properties of acetylated nanocrystalline cellulose (aNC) reinforced polylactic acid (PLA) polymer

    Science.gov (United States)

    Kasa, Siti Norbaya; Omar, Mohd Firdaus; Ismail, Ismarul Nizam

    2017-12-01

    Nanocrystalline cellulose (NCC) was synthesized from banana stem through strong acid hydrolysis with measured length of approximately 287.0 ± 56.4 nm and diameter of 26.6 ± 4.8 nm. Modification of NCC was carried by acetylation reaction in order to increase the compatibility during reinforcement with polylactic acid (PLA) polymer. The reinforcing effect towards morphology, crystallinity, mechanical and thermal properties of bio-nanocomposites was investigated. Scanning Electron Microscope (SEM) micrograph reveals the uniform dispersion achieved at 1 %, 3 % and 5% aNC loading while agglomeration was found at 7 % aNC loading. Disappearance of crystallinity peak at 2θ = 22.7⁰ for low aNC loading during elemental analysis using X-Ray Diffraction (XRD) indicates the proper dispersion of aNC in PLA polymer. From the tensile test, 1 % aNC loading gives the highest mechanical properties of bio-nanocomposite film with 82.71 %, 118.7 % and 24.18 % increment in tensile strength, tensile modulus and elongation at break. However, 7 % aNC loading gives the highest increment in TGA of aNC-PLA nanocomposites which is from 310 °C to 320 °C.

  20. N-Acetyl-Cysteine as Effective and Safe Chelating Agent in Metal-on-Metal Hip-Implanted Patients: Two Cases

    Directory of Open Access Journals (Sweden)

    Andrea Giampreti

    2016-01-01

    Full Text Available Systemic toxicity associated with cobalt (Co and chromium (Cr containing metal hip alloy may result in neuropathy, cardiomyopathy, and hypothyroidism. However clinical management concerning chelating therapy is still debated in literature. Here are described two metal-on-metal hip-implanted patients in which N-acetyl-cysteine decreased elevated blood metal levels. A 67-year-old male who underwent Co/Cr hip implant in September 2009 referred to our Poison Control Centre for persisting elevated Co/Cr blood levels (from March 2012 to November 2014. After receiving oral high-dose N-acetyl-cysteine, Co/Cr blood concentrations dropped by 86% and 87% of the prechelation levels, respectively, and persisted at these latter concentrations during the following 6 months of follow-up. An 81-year-old female who underwent Co/Cr hip implant in January 2007 referred to our Centre for detection of high Co and Cr blood levels in June 2012. No hip revision was indicated. After a therapy with oral high-dose N-acetyl-cysteine Co/Cr blood concentrations decreased of 45% and 24% of the prechelation levels. Chelating agents reported in hip-implanted patients (EDTA, DMPS, and BAL are described in few cases. N-acetyl-cysteine may provide chelating sites for metals and in our cases reduced Co and Cr blood levels and resulted well tolerable.

  1. Purification, properties, and N-terminal amino acid sequence of homogeneous Escherichia coli 2-amino-3-ketobutyrate CoA ligase, a pyridoxal phosphate-dependent enzyme.

    Science.gov (United States)

    Mukherjee, J J; Dekker, E E

    1987-10-25

    Starting with 100 g (wet weight) of a mutant of Escherichia coli K-12 forced to grow on L-threonine as sole carbon source, we developed a 6-step procedure that provides 30-40 mg of homogeneous 2-amino-3-ketobutyrate CoA ligase (also called aminoacetone synthetase or synthase). This ligase, which catalyzes the cleavage/condensation reaction between 2-amino-3-ketobutyrate (the presumed product of the L-threonine dehydrogenase-catalyzed reaction) and glycine + acetyl-CoA, has an apparent molecular weight approximately equal to 85,000 and consists of two identical (or nearly identical) subunits with Mr = 42,000. Computer analysis of amino acid composition data, which gives the best fit nearest integer ratio for each residue, indicates a total of 387 amino acids/subunit with a calculated Mr = 42,093. Stepwise Edman degradation provided the N-terminal sequence of the first 21 amino acids. It is a pyridoxal phosphate-dependent enzyme since (a) several carbonyl reagents caused greater than 90% loss of activity, (b) dialysis against buffer containing hydroxylamine resulted in 89% loss of activity coincident with an 86% decrease in absorptivity at 428 nm, (c) incubation of the apoenzyme with 20 microM pyridoxal phosphate showed a parallel recovery (greater than 90%) of activity and 428-nm absorptivity, and (d) reduction of the holoenzyme with NaBH4 resulted in complete inactivation, disappearance of a new absorption maximum at 333 nm. Strict specificity for glycine is shown but acetyl-CoA (100%), n-propionyl-CoA (127%), or n-butyryl-CoA (16%) is utilized in the condensation reaction. Apparent Km values for acetyl-CoA, n-propionyl-CoA, and glycine are 59 microM, 80 microM, and 12 mM, respectively; the pH optimum = 7.5. Added divalent metal ions or sulfhydryl compounds inhibited catalysis of the condensation reaction.

  2. Early Treatment With Zofenopril and Ramipril in Combination With Acetyl Salicylic Acid in Patients With Left Ventricular Systolic Dysfunction After Acute Myocardial Infarction: Results of a 5-Year Follow-up of Patients of the SMILE-4 Study.

    Science.gov (United States)

    Borghi, Claudio; Omboni, Stefano; Novo, Salvatore; Vinereanu, Dragos; Ambrosio, Giuseppe; Ambrosioni, Ettore

    2017-05-01

    The SMILE-4 study showed that in patients with left ventricular dysfunction (LVD) after acute myocardial infarction, early treatment with zofenopril plus acetyl salicylic acid is associated with an improved 1-year survival, free from death or hospitalization for cardiovascular (CV) causes, as compared to ramipril plus acetyl salicylic acid. We now report CV outcomes during a 5-year follow-up of the patients of the SMILE-4 study. Three hundred eighty-six of the 518 patients completing the study (51.2%) could be tracked after the study end and 265 could be included in the analysis. During the 5.5 (±2.1) years of follow-up, the primary endpoint occurred in 27.8% of patients originally randomized and treated with zofenopril and in 43.8% of patients treated with ramipril [odds ratio (OR) and 95% confidence interval, 0.65 (0.43-0.98), P = 0.041]. Such a result was achieved through a significantly larger reduction in CV hospitalization under zofenopril [OR: 0.61 (0.37-0.99), P = 0.047], whereas reduction in mortality rate with zofenopril did not achieve statistical significance versus ramipril [OR: 0.75 (0.36-1.59), P = 0.459]. These results were in line with those achieved during the initial 1-year follow-up. Benefits of early treatment of patients with LVD after acute myocardial infarction with zofenopril are sustained over many years as compared to ramipril.

  3. Isolation of Acetyl Aleuritolic Acid from Pimeleodendron Griffithianum (Euphorbiaceae)

    International Nuclear Information System (INIS)

    Rosmawati Abdul Aziz; Norizan Ahmat; Rosmawati Abdul Aziz; Norizan Ahmat

    2016-01-01

    Pimeleodendron griffithianum, locally known as Perah ikan is available in Thailand, Peninsular Malaysia and Sumatra. The plant can be found in wet forest, secondary forest, pole forest, semi-swamps, and along logging roads or on hill slopes. In Malaysia, the stem of P. griffithianum being used as commercial timber. So far, no chemical constituents have been reported from P. griffithianum. In this study, a phytochemical study was conducted on the stem bark of P. griffithianum. The stem bark was obtained from Sungai Siput, Perak. The cleaned, chopped and dried stem-bark was extracted using acetone for several times. The separation of the components was carried out using vacuum liquid chromatography (VLC) followed by recrystallization method. The structure of the pure compound was elucidated by spectroscopic methods including nuclear magnetic resonance (NMR), ultraviolate - visible (UV-Vis) and comparison with literature. One compound (1) was isolated and identified as acetyl aleuritolic acid. This compound was reported for the first time from this plant. (author)

  4. Immobilized enzymes to convert N-sulfo, N-acetyl heparosan to a critical intermediate in the production of bioengineered heparin.

    Science.gov (United States)

    Xiong, Jian; Bhaskar, Ujjwal; Li, Guoyun; Fu, Li; Li, Lingyun; Zhang, Fuming; Dordick, Jonathan S; Linhardt, Robert J

    2013-09-10

    Heparin is a critically important anticoagulant drug that is prepared from pig intestine. In 2007-2008, there was a crisis in the heparin market when the raw material was adulterated with the toxic polysaccharide, oversulfated chondroitin sulfate, which was associated with 100 deaths in the U.S. alone. As the result of this crisis, our laboratory and others have been actively pursuing alternative sources for this critical drug, including synthetic heparins and bioengineered heparin. In assessing the bioengineering processing costs it has become clear that the use of both enzyme-catalyzed cofactor recycling and enzyme immobilization will be needed for commercialization. In the current study, we examine the use of immobilization of C₅-epimerase and 2-O-sulfotransferase involved in the first enzymatic step in the bioengineered heparin process, as well as arylsulfotransferase-IV involved in cofactor recycling in all three enzymatic steps. We report the successful immobilization of all three enzymes and their use in converting N-sulfo, N-acetyl heparosan into N-sulfo, N-acetyl 2-O-sulfo heparin. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Purification of neuraminidase from Influenza virus subtype H5N1

    Directory of Open Access Journals (Sweden)

    Simson Tariga

    2009-03-01

    Full Text Available Influenza-virus neuraminidase plays vital role in the survival of the organisms. Vaccination of animals with this glycoprotein confers immune responses so that enable it to protect the animals from incoming infection. Supplementation of conventional vaccines with this glycoprotein increases the protection and longevity of the vaccine. Purified neuraminidase can also be used to develop serological tests for differentiation of serologically positive animals due to infection or to vaccination. In this study purification of neuraminidase from influenza virus subtype H5N1 was described. Triton x-100 and Octyl β-D-glucopyranoside were used to extract and diluted the glycoprotein membrane. The enzymatic activity of the neuraminidase was assayed using a fluorochrome substrate, 4-methylumbelliferyl-a-D-N-acetyl neuraminic acid, which was found to be simple, sensitive and suitable for the purification purpose. The neuraminidase was absorbed selectively on an oxamic-acid agarose column. The purity of neuraminidase eluted from this affinity column was high. A higher purity of the neuraminidase was obtained by further separation with gel filtration on Superdex-200. The purified neuraminidase was enzymatically active and did not contain any detectable haemagglutinin, either by haemagglutination assay or by monospecific antibodies raised against H5N1 hemagglutinin. The purified neuraminidase was recognized strongly by antibodies raised against an internal but only weakly by that against C-terminal regions of the neuraminidase protein of H5N1-influenza virus. The purified neuraminidase was in tetrameric forms but dissociated into monomeric form on reducing condition, or mostly dimeric form on non-reducing SDS-PAGE.

  6. Evaluation of gels obtained from acetylation of chitosan in heterogeneous medium; Avaliacao de geis obtidos a partir da acetilacao da quitosana em meio heterogeneo

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Rosangela Balaban; Silva, Dayse Luzia Pinheiro da; Costa, Marta [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Quimica]. E-mail: balaban@digi.com.br; Raffin, Fernanda Nervo [Universidade Federal do Rio Grande do Norte (UFRGN), Natal, RN (Brazil). Centro de Ciencias da Saude. Dept. de Quimica, Tecnologia Farmaceutica e de Alimentos; Ruiz, Naira Machado da Silva [Centro de Pesquisa Leopoldo A. Miguez de Mello (CENPES), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Chitosan was acetylated during 2, 5 and 10 h and physical gels were obtained at different polymer concentrations in N,N-dimethylacetamide containing 5% of LiCl. Acetylation was confirmed by infrared spectroscopy and {sup 13}C NMR, and degrees of acetylation in the range of 0.82-0.91 were determined by NMR. The O-acetylation degree (0.12-0.15) was exclusively determined by a volumetric method. Rheological studies showed that the storage modulus values were smaller for the more acetylated samples and increased with the temperature and the polymer concentration. All the gels presented storage modulus superior to loss modulus, evidencing more elastic than viscous characteristics. The results obtained in this work suggest a gelation process based on a balance between O and N-acetylation and intermolecular bonds. (author)

  7. Double-blind, placebo-controlled evaluation of 5-ASA suppositories in active distal proctitis and measurement of extent of spread using /sup 99m/Tc-labeled 5-ASA suppositories

    International Nuclear Information System (INIS)

    Williams, C.N.; Haber, G.; Aquino, J.A.

    1987-01-01

    Patients with active distal proctitis received either 5-aminosalicylic (5-ASA) acid or identical placebo suppositories, 500 mg t.i.d. for 6 weeks. Activity at 3 and 6 wks was assessed using a Disease Activity Index (DAI), derived from four categories: number of daily evacuations more than usual, evacuations containing blood, sigmoidoscopy appearance, and physician's overall assessment. Each category was graded 0-3. There was thus 0-12 points scored ranging from complete remission to severe disease. A minimum score of 3 from two categories was necessary for study entry. Of 27 patients randomized, 14 received active medication and 13 placebo. Of the 14 patients, with initial mean DAI 7.1 +/- 1.8, 11 were in complete remission at 6 wks (78.6%). Whereas, there was no significant change in the placebo group, with initial mean DAI 7.1 +/- 1.8. An additional 6 patients with inflammatory bowel disease and 6 healthy volunteers were given /sup 99m/Tc-labelled 5-aminosalicylic acid suppositories. The extent of spread was limited to the rectum, and the suppositories were retained for 3 hours. There was no absorbed radioactivity. 5-ASA suppositories are safe, well-tolerated, and effective treatment for active distal proctitis

  8. Double-blind, placebo-controlled evaluation of 5-ASA suppositories in active distal proctitis and measurement of extent of spread using /sup 99m/Tc-labeled 5-ASA suppositories

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.N.; Haber, G.; Aquino, J.A.

    1987-12-01

    Patients with active distal proctitis received either 5-aminosalicylic (5-ASA) acid or identical placebo suppositories, 500 mg t.i.d. for 6 weeks. Activity at 3 and 6 wks was assessed using a Disease Activity Index (DAI), derived from four categories: number of daily evacuations more than usual, evacuations containing blood, sigmoidoscopy appearance, and physician's overall assessment. Each category was graded 0-3. There was thus 0-12 points scored ranging from complete remission to severe disease. A minimum score of 3 from two categories was necessary for study entry. Of 27 patients randomized, 14 received active medication and 13 placebo. Of the 14 patients, with initial mean DAI 7.1 +/- 1.8, 11 were in complete remission at 6 wks (78.6%). Whereas, there was no significant change in the placebo group, with initial mean DAI 7.1 +/- 1.8. An additional 6 patients with inflammatory bowel disease and 6 healthy volunteers were given /sup 99m/Tc-labelled 5-aminosalicylic acid suppositories. The extent of spread was limited to the rectum, and the suppositories were retained for 3 hours. There was no absorbed radioactivity. 5-ASA suppositories are safe, well-tolerated, and effective treatment for active distal proctitis.

  9. Iodate oxidation of N-Acetyl L-Cysteine: Application in drug determination and characterization of its oxidation and degradation product by mass spectrometry

    International Nuclear Information System (INIS)

    Siddiqui, Masom Raza; Wabaiduri, Saikh Mohammas; Alothman, Zied A; Rahman, Habibur; Alam, Sarfarah; Ali, Sajid

    2014-01-01

    A kinetic spectrophotometric method based on the initial rate measurement has been developed for the determination of N-acetyl L-cysteine. The developed method is based on the oxidation of N-acetyl L-cysteine with iodate. The reaction product was studied and characterized using the mass spectrometry and the structure of the product was proposed. From the mass spectrometric studies it was concluded that the oxidation of the drug resulted in the formation of a disulfide. The developed method was validated as per the guidelines of international conference on harmonization. The developed initial rate method was found to be linear in the concentration range of 1.25 - 30μg ml-1. The detection and quantitation limits were found to be 0.018 and 0.056 μG ml -1 . In the current study, the degradation product of N-acetyl L cysteine was also prepared and identified using mass spectrometry. Keywords: N- acetyl cysteine, Initial rate method, Spectrophotometry, mass spectrometry

  10. Acid Stability of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, Rebecca M.; Zaraket, Hassan; Reddivari, Muralidhar; Heath, Richard J.; White, Stephen W.; Russell, Charles J. (Tennessee-HSC); (SJCH)

    2012-12-10

    Highly pathogenic avian influenza viruses of the H5N1 subtype continue to threaten agriculture and human health. Here, we use biochemistry and x-ray crystallography to reveal how amino-acid variations in the hemagglutinin (HA) protein contribute to the pathogenicity of H5N1 influenza virus in chickens. HA proteins from highly pathogenic (HP) A/chicken/Hong Kong/YU562/2001 and moderately pathogenic (MP) A/goose/Hong Kong/437-10/1999 isolates of H5N1 were found to be expressed and cleaved in similar amounts, and both proteins had similar receptor-binding properties. However, amino-acid variations at positions 104 and 115 in the vestigial esterase sub-domain of the HA1 receptor-binding domain (RBD) were found to modulate the pH of HA activation such that the HP and MP HA proteins are activated for membrane fusion at pH 5.7 and 5.3, respectively. In general, an increase in H5N1 pathogenicity in chickens was found to correlate with an increase in the pH of HA activation for mutant and chimeric HA proteins in the observed range of pH 5.2 to 6.0. We determined a crystal structure of the MP HA protein at 2.50 {angstrom} resolution and two structures of HP HA at 2.95 and 3.10 {angstrom} resolution. Residues 104 and 115 that modulate the acid stability of the HA protein are situated at the N- and C-termini of the 110-helix in the vestigial esterase sub-domain, which interacts with the B loop of the HA2 stalk domain. Interactions between the 110-helix and the stalk domain appear to be important in regulating HA protein acid stability, which in turn modulates influenza virus replication and pathogenesis. Overall, an optimal activation pH of the HA protein is found to be necessary for high pathogenicity by H5N1 influenza virus in avian species.

  11. Ecdysteroid-stimulated synthesis and secretion of an N-acetyl-D-glucosamine-rich glycopeptide in a lepidopteran cell line derived from imaginal discs.

    Science.gov (United States)

    Porcheron, P; Morinière, M; Coudouel, N; Oberlander, H

    1991-01-01

    Hormone-regulated processing of N-acetyl-D-glucosamine was studied in an insect cell line derived from imaginal wing discs of the Indian meal moth, Plodia interpunctella (Hübner). The cell line, IAL-PID2, responded to treatment with 20-hydroxyecdysone with increased incorporation of GlcNAc into glycoproteins. Cycloheximide and tunicamycin counteracted the action of the hormone. In particular, treatment with 20-hydroxyecdysone resulted in the secretion of a 5,000 dalton N-acetyl-D-glucosamine-rich glycopeptide by the IAL-PID2 cells. Accumulation of this peptide was prevented by the use of teflubenzuron, a potent chitin synthesis inhibitor. A glycopeptide of similar molecular weight was observed in imaginal discs of P. interpunctella treated with 20-hydroxyecdysone in vitro, under conditions that induce chitin synthesis. Although the function of the 5,000 dalton glycopeptide is not known, we believe that the PID2 cell line is a promising model for molecular analysis of ecdysteroid-regulated processing of aminosugars by epidermal cells during insect development.

  12. Enhanced daidzin production from jasmonic and acetyl salicylic acid elicited hairy root cultures of Psoralea corylifolia L. (Fabaceae).

    Science.gov (United States)

    Zaheer, Mohd; Reddy, Vudem Dashavantha; Giri, Charu Chandra

    2016-07-01

    Daidzin (7-O-glucoside of daidzein) has several pharmacological benefits in herbal remedy, as antioxidant and shown antidipsotropic activity. Hairy root culture of Psoralea corylifolia L. was developed for biomass and enhanced daidzin production using signalling compounds such as jasmonic acid (JA) and acetyl salicylic acid (ASA). Best response of 2.8-fold daidzin (5.09% DW) with 1 μM JA treatment after second week and 7.3-fold (3.43% DW) with 10 μM JA elicitation after 10th week was obtained from hairy roots compared to untreated control. ASA at 10 μM promoted 1.7-fold increase in daidzin (1.49% DW) content after seventh week compared to control (0.83% DW). Addition of 25 μM ASA resulted in 1.44% DW daidzin (1.5-fold increase) with 0.91% DW in control after fifth week and 1.44% DW daidzin (2.3-fold increase) after eighth week when compared to untreated control (0.62% DW). Reduced biomass with increased daidzin content was facilitated by elicited hairy root cultures.

  13. Topical effects of N-acetyl-L-hydroxyproline on ceramide synthesis and alleviation of pruritus

    Directory of Open Access Journals (Sweden)

    Hashizume E

    2013-02-01

    forearm. Pruritus intensity declined in the AHYP-treated forearms between 0 and 4 weeks (P < 0.05, but there was no change in the control-treated forearms.Conclusion: AHYP increased ceramide synthesis by upregulating SPTLC1 in a three-dimensional cultured skin model, and it prevented TEWL increase and alleviated pruritus in human subjects with slight atopic dermatitis.Keywords: skin barrier, ceramide, pruritus, N-acetyl-l-hydroxyproline, amino acids

  14. Relationship of executive functioning deficits to N-acetyl aspartate (NAA) and gamma-aminobutyric acid (GABA) in youth with bipolar disorder.

    Science.gov (United States)

    Huber, Rebekah S; Kondo, Douglas G; Shi, Xian-Feng; Prescot, Andrew P; Clark, Elaine; Renshaw, Perry F; Yurgelun-Todd, Deborah A

    2018-01-01

    Although cognitive deficits in bipolar disorder (BD) have been repeatedly observed, our understanding of these impairments at a mechanistic level remains limited. Few studies that investigated cognitive impairments in bipolar illness have examined the association with brain biochemistry. This pilot study utilized proton magnetic resonance spectroscopy ( 1 H-MRS) to evaluate the relationship between neurocognitive performance and brain metabolites in youth with BD. Thirty participants, twenty depressed BD participants and ten healthy comparison participants, ages 13-21, completed mood and executive function measures. 1 H-MRS data were also acquired from the anterior cingulate cortex (ACC) using two-dimensional (2D) J-resolved 1 H-MRS sequence. Proton metabolites including N-acetyl aspartate (NAA) and gamma-aminobutyric acid (GABA) were quantified for both groups. Participants with BD performed significantly lower on executive functioning measures than comparison participants. There were significant positive correlations between Wisconsin Card Sorting Test (WCST) performance and NAA (p NAA and GABA levels increased. Small sample size and lack of control for medications. These findings build on previous observations of biochemical alterations associated with BD and indicate that executive functioning deficits in bipolar youth are correlated with NAA and GABA. These results suggest that cognitive deficits occur early in the course of illness and may reflect risk factors associated with altered neurochemistry. Further investigation of the relationship between brain metabolites and cognition in BD may lead to important information for developing novel, targeted interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Main metabolites of 1-(2-chloroethyl)-3-[1'-(5'-p-nitrobenzoyl-2',3'-isopropylidene)-alpha, beta-D-ribofuranosyl]-1-nitrosourea and 1-(2-chloroethyl)-3-(2',3', 4'-tri-O-acetyl-alpha, beta-D-ribopyranosyl)-1-nitrosourea in rats

    International Nuclear Information System (INIS)

    Madelmont, J.C.; Moreau, M.F.; Godeneche, D.; Duprat, J.; Plagne, R.; Meyniel, G.

    1982-01-01

    The metabolism of two glycosylnitrosoureas, 1-(2-chloroethyl)-3-[1'-(5'-p-nitrobenzoyl-2',3'-isopropylidene)-alpha, beta-D-ribofuranosyl]-1-nitrosourea (RFCNU) and 1-(2-chloroethyl)-3-(2',3',4'-tri-O-acetyl-alpha, beta-D-ribopyranosyl)-1-nitrosourea (RPCNU), has been investigated in the rat. With the label on the carboxyl moiety of RFCNU, we have shown that hydrolysis of the 4-nitrobenzoyl ester occurred to a large extent in vivo; 4-nitrobenzoic acid and its glucuronide were the major urinary metabolites. Two other minor metabolites and their glucuronides were identified as 4-aminobenzoic acid and 4-acetamidobenzoic acid. With the label on the chloroethyl moieties of RFCNU and RPCNU, we have shown that chloroethanol was a major degradation product of this alkylating part of the molecule. The concentration of chloroethanol in plasma vs. time has been determined. In urine, four metabolites derived from alkylated glutathione, namely thiodiacetic acid and its sulfoxide, N-acetylcarboxymethylcysteine, and N-acetylhydroxyethylcysteine, have been identified

  16. Changes in nuclear protein acetylation in u.v.-damaged human cells

    International Nuclear Information System (INIS)

    Ramanathan, B.; Smerdon, M.J.

    1986-01-01

    The levels of nuclear protein acetylation in u.v.-irradiated human fibroblasts have been investigated. Initially, we measured the levels of acetylation in total acid-soluble nuclear proteins and observed two distinct differences between the irradiated and unirradiated (control) cells. Immediately after irradiation, there is a 'wave' of protein hyperacetylation that lasts for 2-6 h, followed by a hypoacetylation phase, lasting for many hours, and the total level of acetylation does not return to that of control cells until 24-72 h after u.v. damage. Both the magnitude and duration of each phase is dependent on the dose of u.v. light used. The wave of hyperacetylation is more pronounced at low u.v. doses, while the wave of hypoacetylation is more pronounced at higher u.v. doses. Furthermore, the duration of each phase is prolonged when cells are exposed to 2 mM hydroxyurea, an agent which retards the rate of excision repair at u.v.-damaged sites. Examinations of the acetylation levels of the individual nuclear proteins indicated that acetylation of the core histones follows the same pattern observed for the total acid-soluble protein fractions. Furthermore, these were the only major proteins in the total acid-soluble fraction observed to undergo the early, rapid hyperacetylation immediately following u.v. damage. These results raise the possibility that a causal relationship exists between nuclear protein acetylation and nucleotide excision repair of DNA in human cells. (author)

  17. Compatibility of nitrilotriacetic acid and 3-acetyl-4-hydroxy-6-methyl-2-pyrone in the coordination sphere of lanthanon ions

    International Nuclear Information System (INIS)

    Kadian, R.K.; Garg, B.S.; Singh, R.P.

    1982-01-01

    A study of the competetion of 3-acetyl-4-hydroxy-6-methyl-2-pyrone (dehydracetic acid, DHA) and nitrilotriacetic acid (NTA) in the coordination sphere of lanthanon ions has been carried out by calculating reproportionation constant which relates the stability of the mixed ligand complex to those of the parent complexes formed by the same ligands. It has been found that NTA and DHA are incompatible ligands and mixed ligand complexes formed are less stable than either of the parent complexes. The fact is also supported by the observed change in free energy occuring during mixed ligand complex formation. All these studies have been carried out at 30.0 +- 0.5 0 and μ-0.01 (NaClO 4 ) in 50 percent v/v aqueous dioxane medium. (author)

  18. Lipids Reprogram Metabolism to Become a Major Carbon Source for Histone Acetylation

    DEFF Research Database (Denmark)

    McDonnell, Eoin; Crown, Scott B; Fox, Douglas B

    2016-01-01

    Cells integrate nutrient sensing and metabolism to coordinate proper cellular responses to a particular nutrient source. For example, glucose drives a gene expression program characterized by activating genes involved in its metabolism, in part by increasing glucose-derived histone acetylation....... Here, we find that lipid-derived acetyl-CoA is a major source of carbon for histone acetylation. Using (13)C-carbon tracing combined with acetyl-proteomics, we show that up to 90% of acetylation on certain histone lysines can be derived from fatty acid carbon, even in the presence of excess glucose...

  19. Mapping sugar beet pectin acetylation pattern.

    Science.gov (United States)

    Ralet, Marie-Christine; Cabrera, Juan Carlos; Bonnin, Estelle; Quéméner, Bernard; Hellìn, Pilar; Thibault, Jean-François

    2005-08-01

    Homogalacturonan-derived partly methylated and/or acetylated oligogalacturonates were recovered after enzymatic hydrolysis (endo-polygalacturonase+pectin methyl esterase+side-chain degrading enzymes) of sugar beet pectin followed by anion-exchange and size exclusion chromatography. Around 90% of the GalA and 75% of the acetyl groups present in the initial sugar beet pectin were recovered as homogalacturonan-derived oligogalacturonates, the remaining GalA and acetyl belonging to rhamnogalacturonic regions. Around 50% of the acetyl groups present in sugar beet homogalacturonans were recovered as partly methylated and/or acetylated oligogalacturonates of degree of polymerisation 5 whose structures were determined by electrospray ionization ion trap mass spectrometry (ESI-IT-MSn). 2-O-acetyl- and 3-O-acetyl-GalA were detected in roughly similar amounts but 2,3-di-O-acetylation was absent. Methyl-esterified GalA residues occurred mainly upstream 2-O-acetyl GalA. Oligogalacturonates containing GalA residues that are at once methyl- and acetyl-esterified were recovered in very limited amounts. A tentative mapping of the distribution of acetyl and methyl esters within sugar beet homogalacturonans is proposed. Unsubstituted GalA residues are likely to be present in limited amounts (approximately 10% of total GalA residues), due to the fact that methyl and acetyl groups are assumed to be most often not carried by the same residues.

  20. Efficient synthesis of zinc-containing mesoporous silicas by microwave irradiation method and their high activities in acetylation of 1,2-dimethoxybenzene with acetic anhydride

    Directory of Open Access Journals (Sweden)

    K. Bachari

    2016-09-01

    Full Text Available A series of acid zinc-containing mesoporous materials have been synthesized by microwave irradiation method with different Si/Zn ratios (Si/Zn = 100, 65, 15 and characterized by several spectroscopic techniques such as: N2 physical adsorption, ICP, XRD, TEM, FT-IR and a temperature-programmed-desorption (TPD of pyridine. The liquid phase of acetylation of 1,2-dimethoxybenzene with acetic anhydride has been investigated over this series of catalysts. In fact, the catalyst Zn-JLU-15 (15 showed bigger performance in the acid-catalyzed acetylation of 1,2-dimethoxybenzene employing acetic anhydride as an acylating agent. Furthermore, the kinetics of the acetylation of 1,2-dimethoxybenzene over these catalysts have also been investigated.

  1. A click chemistry approach to glycomimetics: Michael addition of 2,3,4,6-tetra-O-acetyl-1-thio-beta-D-glucopyranose to 4-deoxy-1,2-O-isopropylidene-L-glycero-pent-4-enopyranos-3-ulose--a convenient route to novel 4-deoxy-(1-->5)-5-C-thiodisaccharides.

    Science.gov (United States)

    Witczak, Zbigniew J; Lorchak, David; Nguyen, Nguyen

    2007-09-03

    The base catalyzed conjugate Michael addition of the 1-thiosugar, 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranose, 1, to a new highly reactive enone 4-deoxy-1,2-O-isopropylidene-L-glycero-pent-4-enopyranos-3-ulose, 2, proceeds steroselectively with formation of adduct 3 in 94% yield. Convenient stereoselective reduction of the C-3 keto function of 3 with L-Selectride followed by in situ acetylation produces thiodisaccharide 4 in good 82% yield. Cleavage of the 1,2-O-isopropylidene protecting group with p-toluenesulfonic acid in methanol, followed by de-O-acetylation, produced an inseparable anomeric mixture of methyl 4-deoxy-5-C-(beta-D-glucopyranosyl)-thio-alpha/beta-L-ribo-pyranoside 5 in 72% overall yield. This approach constitutes a new general two-step click chemistry route to the previously unknown class of 4-deoxy-(1-->5)-5-C-thiodisaccharides as stable and biologically important glycomimetics.

  2. Synthesis of n.c.a. PET-radiotracers with carbon-11

    International Nuclear Information System (INIS)

    Schirbel, A.

    1998-11-01

    Carbon-11 offers the unique possibility of authentic labelling of molecules as radioindicators for non invasive and quantitative determination of physiological functions via positron emission tomography (PET). Therefore, the goal of this thesis was to synthesize of different n.c.a. 11 C-labelled pharmaceuticals for in vivo distribution studies with PET. For the determination of the pharmacokinetics of [1- 11 C]acetate in porcine myocardium during prolonged ischemia, n.c.a. [1- 11 C]acetate was synthesized via carboxylation of methylmagnesium bromide with in target produced n.c.a. [ 11 C]CO 2 with a radiochemical yield (RCY) of 68 ± 7%. The fast (18 min) and reliable radiosynthesis allowed for repeated tracer administration at short intervals ( R c) in humans, [1- 11 C]acetylsalicylic acid, acetyl-[carboxy- 11 C]salicylic acid and [carboxy- 11 C]salicylic acid were prepared. N.c.a. [1- 11 C]acetylsalicylic acid was synthesized via the reaction of [1- 11 C]acetylchloride with salicylic acid salts. The use of the silver salt proved to be superior to the sodium salt and resulted in radiochemical yields of 32 ± 5%. Base-line (clean) separation of the labelled product was achieved using radio-HPLC. With regard to the preparation of n.c.a. [carboxy- 11 C]salicylic acid, several protected and unprotected phenol derivates were metallated and subsequently carboxylated using n.c.a. [ 11 C]CO 2 . Best results (87 ± 3% RCY) could be achieved with 2-(methoxymethoxy)-phenylmagnesium iodide as a precursor and subsequent quantitative cleavage of the MOM-group. Acetylation of n.c.a. [carboxy- 11 C]salicylic acid to acetyl-[carboxy- 11 C]salicylic acid was performed using acetylchloride in CH 2 Cl 2 with a radiochemical yield of 65 ± 4%. (orig.)

  3. Crystal structure of tabtoxin resistance protein complexed with acetyl coenzyme A reveals the mechanism for beta-lactam acetylation.

    Science.gov (United States)

    He, Hongzhen; Ding, Yi; Bartlam, Mark; Sun, Fei; Le, Yi; Qin, Xincheng; Tang, Hong; Zhang, Rongguang; Joachimiak, Andrzej; Liu, Jinyuan; Zhao, Nanming; Rao, Zihe

    2003-01-31

    Tabtoxin resistance protein (TTR) is an enzyme that renders tabtoxin-producing pathogens, such as Pseudomonas syringae, tolerant to their own phytotoxins. Here, we report the crystal structure of TTR complexed with its natural cofactor, acetyl coenzyme A (AcCoA), to 1.55A resolution. The binary complex forms a characteristic "V" shape for substrate binding and contains the four motifs conserved in the GCN5-related N-acetyltransferase (GNAT) superfamily, which also includes the histone acetyltransferases (HATs). A single-step mechanism is proposed to explain the function of three conserved residues, Glu92, Asp130 and Tyr141, in catalyzing the acetyl group transfer to its substrate. We also report that TTR possesses HAT activity and suggest an evolutionary relationship between TTR and other GNAT members.

  4. Synthesis and Biological Activity of Novel Amino Acid-(N'-Benzoyl Hydrazide and Amino Acid-(N'-Nicotinoyl Hydrazide Derivatives

    Directory of Open Access Journals (Sweden)

    Sherine N. Khattab

    2005-09-01

    Full Text Available The coupling reaction of benzoic acid and nicotinic acid hydrazides with N- protected L-amino acids including valine, leucine, phenylalanine, glutamic acid and tyrosine is reported. The target compounds, N-Boc-amino acid-(N`-benzoyl- and N- Boc-amino acid-(N`-nicotinoyl hydrazides 5a-5e and 6a-6e were prepared in very high yields and purity using N-[(dimethylamino-1H-1,2,3-triazolo[4,5-b]pyridin-1-yl- methylene]-N-methyl-methanaminium hexafluorophosphate N-oxide (HATU as coupling reagent. The antimicrobial activity of the Cu and Cd complexes of the designed compounds was tested. The products were deprotected affording the corresponding amino acid-(N`-benzoyl hydrazide hydrochloride salts (7a-7e and amino acid-(N`- nicotinoyl hydrazide hydrochloride salts (8a-8e. These compounds and their Cu and Cd complexes were also tested for their antimicrobial activity. Several compounds showed comparable activity to that of ampicillin against S. aureus and E. coli.

  5. Glomus etunicatum root inoculation and foliar application of acetyl salicylic acid induced nacl tolerance by regulation of nacl and lenhx1 gene expression and improved photosynthetic performance in tomato seedlings

    International Nuclear Information System (INIS)

    Ghazanfar, B.; Chihui, C.; Liu, H.; Ahmad, I.; Khan, A.R.

    2016-01-01

    Salinity stress hampers plant growth and cause significant yield losses thus induction of salinity stress tolerance in crop plants is one of major goals of agriculture research. Arbuscular mycorhizae fungi Glomus etunicatum and acetyl salicylic acid were tested for induction of NaCl stress tolerance in tomato seedlings, cultivar No. 4. The seedlings were inoculated with Glomus etunicatum and exogenously sprayed with acetyl salicylic acid (0.30 mM) followed by salinity stress (150 mM). It was observed that both Glomus etunicatum and acetyl salicylic acid (singly or in combination) were significantly effective to minimize the injurious effects of salinity by improving root morphological parameters (length, diameter, surface area, volume and number of tips, nodes, bifurcations and connections), photosynthetic parameters (net photosynthesis Pn, stomatal conductance Gs) and chlorophyll contents compared to sole salinity treatment. The bio-inoculant Glomus etunicatum and chemical ameliorator acetyl salicylic acid also notably improved vegetative (fresh and dry weights) and reproductive growth (percent seedlings with flower buds and opened flowers, number of flower buds and opened flowers per seedling) of the plants as compared to the sole salinity treatment. The studied salt responsive genes (LeNHX1 and NaCl) were also regulated to different extents in seedling roots and leaves which was consistent with enhanced salinity stress tolerance. From these observations it is suggested that the individual or synergetic use of the AMF (Glomus etunicatum) and acetyl salicylic acid can be useful for tomato cultivation in the marginally salinity effected soils and warrants further investigations. (author)

  6. Characterization and mode of action of two acetyl xylan esterases from Chrysosporium lucknowense C1 active towards acetylated xylans

    NARCIS (Netherlands)

    Pouvreau, L.A.M.; Jonathan, M.C.; Kabel, M.A.; Hinz, S.W.A.; Gruppen, H.; Schols, H.A.

    2011-01-01

    Two novel acetyl xylan esterases, Axe2 and Axe3, from Chrysosporium lucknowense (C1), belonging to the carbohydrate esterase families 5 and 1, respectively, were purified and biochemically characterized. Axe2 and Axe3 are able to hydrolyze acetyl groups both from simple acetylated

  7. N-acetyl lysyltyrosylcysteine amide inhibits myeloperoxidase, a novel tripeptide inhibitor.

    Science.gov (United States)

    Zhang, Hao; Jing, Xigang; Shi, Yang; Xu, Hao; Du, Jianhai; Guan, Tongju; Weihrauch, Dorothee; Jones, Deron W; Wang, Weiling; Gourlay, David; Oldham, Keith T; Hillery, Cheryl A; Pritchard, Kirkwood A

    2013-11-01

    Myeloperoxidase (MPO) plays important roles in disease by increasing oxidative and nitrosative stress and oxidizing lipoproteins. Here we report N-acetyl lysyltyrosylcysteine amide (KYC) is an effective inhibitor of MPO activity. We show KYC inhibits MPO-mediated hypochlorous acid (HOCl) formation and nitration/oxidation of LDL. Disulfide is the major product of MPO-mediated KYC oxidation. KYC (≤4,000 μM) does not induce cytotoxicity in bovine aortic endothelial cells (BAECs). KYC inhibits HOCl generation by phorbol myristate acetate (PMA)-stimulated neutrophils and human promyelocytic leukemia (HL-60) cells but not superoxide generation by PMA-stimulated HL-60 cells. KYC inhibits MPO-mediated HOCl formation in BAEC culture and protects BAECs from MPO-induced injury. KYC inhibits MPO-mediated lipid peroxidation of LDL whereas tyrosine (Tyr) and tryptophan (Trp) enhance oxidation. KYC is unique as its isomers do not inhibit MPO activity, or are much less effective. Ultraviolet-visible spectral studies indicate KYC binds to the active site of MPO and reacts with compounds I and II. Docking studies show the Tyr of KYC rests just above the heme of MPO. Interestingly, KYC increases MPO-dependent H₂O₂ consumption. These data indicate KYC is a novel and specific inhibitor of MPO activity that is nontoxic to endothelial cell cultures. Accordingly, KYC may be useful for treating MPO-mediated vascular disease.

  8. Multi-step rearrangement mechanism for acetyl cedrene to the hydrocarbon follower

    DEFF Research Database (Denmark)

    Paknikar, Shashikumar Keshav; Kamounah, Fadhil S.; Hansen, Poul Erik

    2017-01-01

    Conversion of acetyl cedrene (2) to its follower (3) using acetic anhydride and polyphosphoric acid involves a multi-step cationic molecular rearrangement, which is consistent with deuteriation and 1-13C labeling studies of acetyl cedrene. The key step involves cyclopropylcarbinyl cation-cyclopro...

  9. Separation and determination of acetyl-glutamine enantiomers by HPLC–MS and its application in pharmacokinetic study

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Zhang

    2017-10-01

    Full Text Available A high-performance liquid chromatography coupled with mass spectrometry (HPLC–MS method was established for the separation and determination of acetyl-glutamine enantiomers (acetyl-L-glutamine and acetyl-D-glutamine simultaneously. Baseline separation was achieved on Chiralpak AD-H column (250 mm × 4.6 mm, 5 µm. n-Hexane (containing 0.1% acetic acid and ethanol (75:25, v/v were used as mobile phase at a flow rate of 0.6 mL/min. The detection was operated in the negative ion mode with an ESI source. [M-H]− m/z 187.0540 for enantiomers and [M-H]− m/z 179.0240 for aspirin (IS were selected as detecting ions. The linear range of the calibration curve for each enantiomer was 0.05–40 µg/mL. The precision of this method at concentrations of 0.5–20 µg/mL was within 7.23%, and the accuracy was 99.81%–107.81%. The precision at LOQ (0.05 µg/mL was between 16.28% and 17.56%, which was poor than that at QC levels. The average extraction recovery was higher than 85% for both enantiomers at QC levels. The pharmacokinetics of enantiomers was found to be stereoselective. There was not chiral inversion in vivo or in vitro between enantiomers.

  10. Acetylation of woody lignocellulose: significance and regulation

    Directory of Open Access Journals (Sweden)

    Prashant Mohan-Anupama Pawar

    2013-05-01

    Full Text Available Non-cellulosic cell wall polysaccharides constitute approximately one quarter of usable biomass for human exploitation. In contrast to cellulose, these components are usually substituted by O-acetyl groups, which affect their properties and interactions with other polymers, thus affecting their solubility and extractability. However, details of these interactions are still largely obscure. Moreover, polysaccharide hydrolysis to constituent monosaccharides, is hampered by the presence of O-acetyl groups, necessitating either enzymatic (esterase or chemical de-acetylation, increasing the costs and chemical consumption. Reduction of polysaccharide acetyl content in planta is a way to modify lignocellulose towards improved saccharification. In this review we: 1 summarize literature on lignocellulose acetylation in different tree species, 2 present data and current hypotheses concerning the role of O-acetylation in determining woody lignocellulose properties, 3 describe plant proteins involved in lignocellulose O-acetylation, 4 give examples of microbial enzymes capable to de-acetylate lignocellulose, and 5 discuss prospects for exploiting these enzymes in planta to modify xylan acetylation.

  11. Serum Fatty Acids Are Correlated with Inflammatory Cytokines in Ulcerative Colitis.

    Directory of Open Access Journals (Sweden)

    Dawn M Wiese

    Full Text Available Ulcerative colitis (UC is associated with increased dietary intake of fat and n-6 polyunsaturated fatty acids (PUFA. Modification of fat metabolism may alter inflammation and disease severity. Our aim was to assess differences in dietary and serum fatty acid levels between control and UC subjects and associations with disease activity and inflammatory cytokines.Dietary histories, serum, and colonic tissue samples were prospectively collected from 137 UC subjects and 38 controls. Both histologic injury and the Mayo Disease Activity Index were assessed. Serum and tissue cytokines were measured by Luminex assay. Serum fatty acids were obtained by gas chromatography.UC subjects had increased total fat and oleic acid (OA intake, but decreased arachidonic acid (AA intake vs controls. In serum, there was less percent saturated fatty acid (SFA and AA, with higher monounsaturated fatty acids (MUFA, linoleic acid, OA, eicosapentaenoic acid (EPA, and docosapentaenoic acid (DPA in UC. Tissue cytokine levels were directly correlated with SFA and inversely correlated with PUFA, EPA, and DPA in UC subjects, but not controls. 5-aminosalicylic acid therapy blunted these associations.In summary, we found differences in serum fatty acids in UC subjects that correlated with pro-inflammatory tissue cytokines. We propose that fatty acids may affect cytokine production and thus be immunomodulatory in UC.

  12. Serum Fatty Acids Are Correlated with Inflammatory Cytokines in Ulcerative Colitis.

    Science.gov (United States)

    Wiese, Dawn M; Horst, Sara N; Brown, Caroline T; Allaman, Margaret M; Hodges, Mallary E; Slaughter, James C; Druce, Jennifer P; Beaulieu, Dawn B; Schwartz, David A; Wilson, Keith T; Coburn, Lori A

    2016-01-01

    Ulcerative colitis (UC) is associated with increased dietary intake of fat and n-6 polyunsaturated fatty acids (PUFA). Modification of fat metabolism may alter inflammation and disease severity. Our aim was to assess differences in dietary and serum fatty acid levels between control and UC subjects and associations with disease activity and inflammatory cytokines. Dietary histories, serum, and colonic tissue samples were prospectively collected from 137 UC subjects and 38 controls. Both histologic injury and the Mayo Disease Activity Index were assessed. Serum and tissue cytokines were measured by Luminex assay. Serum fatty acids were obtained by gas chromatography. UC subjects had increased total fat and oleic acid (OA) intake, but decreased arachidonic acid (AA) intake vs controls. In serum, there was less percent saturated fatty acid (SFA) and AA, with higher monounsaturated fatty acids (MUFA), linoleic acid, OA, eicosapentaenoic acid (EPA), and docosapentaenoic acid (DPA) in UC. Tissue cytokine levels were directly correlated with SFA and inversely correlated with PUFA, EPA, and DPA in UC subjects, but not controls. 5-aminosalicylic acid therapy blunted these associations. In summary, we found differences in serum fatty acids in UC subjects that correlated with pro-inflammatory tissue cytokines. We propose that fatty acids may affect cytokine production and thus be immunomodulatory in UC.

  13. Micronutrients, N-Acetyl Cysteine, Probiotics and Prebiotics, A Review of Effectiveness in Reducing HIV Progression

    NARCIS (Netherlands)

    R.B.S. Hummelen (Ruben); J. Hemsworth (Jaimie); G.K. Reid (Gregor)

    2010-01-01

    textabstractLow serum concentrations of micronutrients, intestinal abnormalities, and an inflammatory state have been associated with HIV progression. These may be ameliorated by micronutrients, N-acetyl cysteine, probiotics, and prebiotics. This review aims to integrate the evidence from clinical

  14. Micronutrients, N-acetyl cysteine, probiotics and prebiotics, a review of effectiveness in reducing HIV progression

    NARCIS (Netherlands)

    R.B.S. Hummelen (Ruben); J. Hemsworth (Jaimie); G. Reid (Gregor)

    2010-01-01

    textabstractLow serum concentrations of micronutrients, intestinal abnormalities, and an inflammatory state have been associated with HIV progression. These may be ameliorated by micronutrients, N-acetyl cysteine, probiotics, and prebiotics. This review aims to integrate the evidence from clinical

  15. Amino Acid Substitutions Associated with Avian H5N6 Influenza A Virus Adaptation to Mice

    Directory of Open Access Journals (Sweden)

    Chunmao Zhang

    2017-09-01

    Full Text Available At least 15 cases of human beings infected with H5N6 have been reported since 2014, of which at least nine were fatal. The highly pathogenic avian H5N6 influenza virus may pose a serious threat to both public health and the poultry industry. However, the molecular features promoting the adaptation of avian H5N6 influenza viruses to mammalian hosts is not well understood. Here, we sequentially passaged an avian H5N6 influenza A virus (A/Northern Shoveler/Ningxia/488-53/2015 10 times in mice to identify the adaptive amino acid substitutions that confer enhanced virulence to H5N6 in mammals. The 1st and 10th passages of the mouse-adapted H5N6 viruses were named P1 and P10, respectively. P1 and P10 displayed higher pathogenicity in mice than their parent strain. P10 showed significantly higher replication capability in vivo and could be detected in the brains of mice, whereas P1 displayed higher replication efficiency in their lungs but was not detectable in the brain. Similar to its parent strain, P10 remained no transmissible between guinea pigs. Using genome sequencing and alignment, multiple amino acid substitutions, including PB2 E627K, PB2 T23I, PA T97I, and HA R239H, were found in the adaptation of H5N6 to mice. In summary, we identified amino acid changes that are associated with H5N6 adaptation to mice.

  16. Acetylation of Mammalian ADA3 Is Required for Its Functional Roles in Histone Acetylation and Cell Proliferation.

    Science.gov (United States)

    Mohibi, Shakur; Srivastava, Shashank; Bele, Aditya; Mirza, Sameer; Band, Hamid; Band, Vimla

    2016-10-01

    Alteration/deficiency in activation 3 (ADA3) is an essential component of specific histone acetyltransferase (HAT) complexes. We have previously shown that ADA3 is required for establishing global histone acetylation patterns and for normal cell cycle progression (S. Mohibi et al., J Biol Chem 287:29442-29456, 2012, http://dx.doi.org/10.1074/jbc.M112.378901). Here, we report that these functional roles of ADA3 require its acetylation. We show that ADA3 acetylation, which is dynamically regulated in a cell cycle-dependent manner, reflects a balance of coordinated actions of its associated HATs, GCN5, PCAF, and p300, and a new partner that we define, the deacetylase SIRT1. We use mass spectrometry and site-directed mutagenesis to identify major sites of ADA3 acetylated by GCN5 and p300. Acetylation-defective mutants are capable of interacting with HATs and other components of HAT complexes but are deficient in their ability to restore ADA3-dependent global or locus-specific histone acetylation marks and cell proliferation in Ada3-deleted murine embryonic fibroblasts (MEFs). Given the key importance of ADA3-containing HAT complexes in the regulation of various biological processes, including the cell cycle, our study presents a novel mechanism to regulate the function of these complexes through dynamic ADA3 acetylation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Maize root lectins mediate the interaction with Herbaspirillum seropedicae via N-acetyl glucosamine residues of lipopolysaccharides.

    Directory of Open Access Journals (Sweden)

    Eduardo Balsanelli

    Full Text Available Herbaspirillum seropedicae is a plant growth-promoting diazotrophic betaproteobacterium which associates with important crops, such as maize, wheat, rice and sugar-cane. We have previously reported that intact lipopolysaccharide (LPS is required for H. seropedicae attachment and endophytic colonization of maize roots. In this study, we present evidence that the LPS biosynthesis gene waaL (codes for the O-antigen ligase is induced during rhizosphere colonization by H. seropedicae. Furthermore a waaL mutant strain lacking the O-antigen portion of the LPS is severely impaired in colonization. Since N-acetyl glucosamine inhibits H. seropedicae attachment to maize roots, lectin-like proteins from maize roots (MRLs were isolated and mass spectrometry (MS analysis showed that MRL-1 and MRL-2 correspond to maize proteins with a jacalin-like lectin domain, while MRL-3 contains a B-chain lectin domain. These proteins showed agglutination activity against wild type H. seropedicae, but failed to agglutinate the waaL mutant strain. The agglutination reaction was severely diminished in the presence of N-acetyl glucosamine. Moreover addition of the MRL proteins as competitors in H. seropedicae attachment assays decreased 80-fold the adhesion of the wild type to maize roots. The results suggest that N-acetyl glucosamine residues of the LPS O-antigen bind to maize root lectins, an essential step for efficient bacterial attachment and colonization.

  18. Maize root lectins mediate the interaction with Herbaspirillum seropedicae via N-acetyl glucosamine residues of lipopolysaccharides.

    Science.gov (United States)

    Balsanelli, Eduardo; Tuleski, Thalita Regina; de Baura, Valter Antonio; Yates, Marshall Geoffrey; Chubatsu, Leda Satie; Pedrosa, Fabio de Oliveira; de Souza, Emanuel Maltempi; Monteiro, Rose Adele

    2013-01-01

    Herbaspirillum seropedicae is a plant growth-promoting diazotrophic betaproteobacterium which associates with important crops, such as maize, wheat, rice and sugar-cane. We have previously reported that intact lipopolysaccharide (LPS) is required for H. seropedicae attachment and endophytic colonization of maize roots. In this study, we present evidence that the LPS biosynthesis gene waaL (codes for the O-antigen ligase) is induced during rhizosphere colonization by H. seropedicae. Furthermore a waaL mutant strain lacking the O-antigen portion of the LPS is severely impaired in colonization. Since N-acetyl glucosamine inhibits H. seropedicae attachment to maize roots, lectin-like proteins from maize roots (MRLs) were isolated and mass spectrometry (MS) analysis showed that MRL-1 and MRL-2 correspond to maize proteins with a jacalin-like lectin domain, while MRL-3 contains a B-chain lectin domain. These proteins showed agglutination activity against wild type H. seropedicae, but failed to agglutinate the waaL mutant strain. The agglutination reaction was severely diminished in the presence of N-acetyl glucosamine. Moreover addition of the MRL proteins as competitors in H. seropedicae attachment assays decreased 80-fold the adhesion of the wild type to maize roots. The results suggest that N-acetyl glucosamine residues of the LPS O-antigen bind to maize root lectins, an essential step for efficient bacterial attachment and colonization.

  19. Crystal structure of tabtoxin resistance protein complexed with acetyl coenzyme A reveals the mechanism for {beta}-lactam acetylation.

    Energy Technology Data Exchange (ETDEWEB)

    He, H.; Ding, Y.; Bartlam, M.; Sun, F.; Le, Y.; Qin, X.; Tang, H.; Zhang, R.; Joachimiak, A.; Liu, J.; Zhao, N.; Rao, Z.; Biosciences Division; Tsinghua Univ.; Chinese Academy of Science

    2003-01-31

    Tabtoxin resistance protein (TTR) is an enzyme that renders tabtoxin-producing pathogens, such as Pseudomonas syringae, tolerant to their own phytotoxins. Here, we report the crystal structure of TTR complexed with its natural cofactor, acetyl coenzyme A (AcCoA), to 1.55 {angstrom} resolution. The binary complex forms a characteristic 'V' shape for substrate binding and contains the four motifs conserved in the GCN5-related N-acetyltransferase (GNAT) superfamily, which also includes the histone acetyltransferases (HATs). A single-step mechanism is proposed to explain the function of three conserved residues, Glu92, Asp130 and Tyr141, in catalyzing the acetyl group transfer to its substrate. We also report that TTR possesses HAT activity and suggest an evolutionary relationship between TTR and other GNAT members.

  20. Internalization and desensitization of the human glucose-dependent-insulinotropic receptor is affected by N-terminal acetylation of the agonist.

    Science.gov (United States)

    Ismail, Sadek; Dubois-Vedrenne, Ingrid; Laval, Marie; Tikhonova, Irina G; D'Angelo, Romina; Sanchez, Claire; Clerc, Pascal; Gherardi, Marie-Julie; Gigoux, Véronique; Magnan, Remi; Fourmy, Daniel

    2015-10-15

    How incretins regulate presence of their receptors at the cell surface and their activity is of paramount importance for the development of therapeutic strategies targeting these receptors. We have studied internalization of the human Glucose-Insulinotropic Polypeptide receptor (GIPR). GIP stimulated rapid robust internalization of the GIPR, the major part being directed to lysosomes. GIPR internalization involved mainly clathrin-coated pits, AP-2 and dynamin. However, neither GIPR C-terminal region nor β-arrestin1/2 was required. Finally, N-acetyl-GIP recognized as a dipeptidyl-IV resistant analogue, fully stimulated cAMP production with a ∼15-fold lower potency than GIP and weakly stimulated GIPR internalization and desensitization of cAMP response. Furthermore, docking N-acetyl-GIP in the binding site of modeled GIPR showed slighter interactions with residues of helices 6 and 7 of GIPR compared to GIP. Therefore, incomplete or partial activity of N-acetyl-GIP on signaling involved in GIPR desensitization and internalization contributes to the enhanced incretin activity of this peptide. Copyright © 2015. Published by Elsevier Ireland Ltd.

  1. Structure determination by 1H NMR spectroscopy of (sulfated) sialylated N-linked carbohydrate chains released from porcine thyroglobulin by peptide-N4-(N-acetyl-β-glucosaminyl)asparagine amidase-F

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Waard, P. de; Koorevaar, A.; Kamerling, J.P.

    1991-01-01

    The N-linked carbohydrate chains of porcine thyroglobulin were released by peptide-N4-(N-acetyl-β-glucosaminyl)asparagine amidase-F (PNGase- F). The resulting oligosaccharides were fractionated by a combination of fast protein liquid chromatography and high performance liquid chromatography and

  2. Structural annotation of Beta-1,4-N-acetyl galactosaminyltransferase 1 (B4GALNT1) causing Hereditary Spastic Paraplegia 26.

    Science.gov (United States)

    Dad, Rubina; Malik, Uzma; Javed, Aneela; Minassian, Berge A; Hassan, Muhammad Jawad

    2017-08-30

    Beta-1,4-N-acetyl galactosaminyltransferase 1, B4GALNT1, is a GM2/GD2 synthase, involved in the expression of glycosphingolipids (GSLs) containing sialic acid. Mutations in the gene B4GALNT1 cause Hereditary Spastic Paraplegia 26 (HSP26). In present study we have made attempt to predict the potential structural of the human B4GALNT1 protein. The results illustrated that the amino acid sequences of B4GALNT1 are not 100% conserved among selected twenty species. One signal peptide and one transmembrane domain predicted in human wild type B4GALNT1 protein with aliphatic index of 92.76 and theoretical (iso-electric point) pI of 8.93. It was a kind of unstable protein with Grand average of hydropathicity (GRAVY) of -0.127. Various post-translational modifications were also predicted to exist in B4GALNT1 and predicted to interact with different proteins including ST8SIA5, SLC33A1, GLB1 and others. In the final round, reported missense mutations have shown the further decrease in stability of the protein. This in-silico analysis of B4GALNT1 protein will provide the basis for the further studies on structural variations and biological pathways involving B4GALNT1 in the HSP26. Copyright © 2017. Published by Elsevier B.V.

  3. The effect of N-acetyl-L-cysteine on the viscosity of ileal neobladder mucus.

    NARCIS (Netherlands)

    Schrier, B.P.; Lichtendonk, W.J.; Witjes, J.A.

    2002-01-01

    N-acetyl-L-cysteine (NAC) proved to be an effective mucolytic in pulmonary secretions. Our goal was to investigate the in vitro effect of NAC on viscosity of ileal neobladder mucus. The urine of a patient with an ileal neobladder was collected during the first 7 days postoperatively and stored in a

  4. Cortical N-acetyl aspartate is a predictor of long-term clinical disability in multiple sclerosis

    DEFF Research Database (Denmark)

    Wu, Xingchen; Hanson, Lars G.; Skimminge, Arnold Jesper Møller

    2014-01-01

    Objective: To evaluate the prognostic value of the cortical N-acetyl aspartate to creatine ratio (NAA/Cr) in early relapsing-remitting multiple sclerosis (RRMS). Methods: Sixteen patients with newly diagnosed RRMS were studied by serial MRI and MR spectroscopic imaging (MRSI) once every 6 months ...

  5. Effects of oral administration of N-acetyl-L-cysteine: a multi-biomarker study in smokers

    NARCIS (Netherlands)

    van Schooten, Frederik Jan; Besaratinia, Ahmad; Besarati Nia, Ahmad; de Flora, Silvio; D'Agostini, Francesco; Izzotti, Alberto; Camoirano, Anna; Balm, Alfons J. M.; Dallinga, Jan Willem; Bast, Aalt; Haenen, Guido R. M. M.; van't Veer, Laura; Baas, Paul; Sakai, Harumasa; van Zandwijk, Nico

    2002-01-01

    N-Acetyl-L-cysteine (NAC) has been shown to exert cancer-protective mechanisms and effects in experimental models. We report here the results of a randomized, double-blind, placebo-controlled, Phase II chemoprevention trial with NAC in healthy smoking volunteers. The subjects were supplemented daily

  6. Efficient acetylation of primary amines and amino acids in ...

    Indian Academy of Sciences (India)

    bDepartment of Clinical and Experimental Pharmacology, School of Tropical Medicine ... As a result ... methods of acetylation of amines are known using ace- ... vents we report here, environmentally benign, eco- ... It was filtered under suction,.

  7. The Effect of N-acetyl-cysteine on Memory Retrieval and the Number of Intact Neurons of Hippocampal CA1 Area in Streptozotocin-induced Alzheimeric Male Rats

    Directory of Open Access Journals (Sweden)

    Niloufar Darbandi

    2018-01-01

    Full Text Available Abstract Background: Alzheimer is a neurodegenerative disease wich caused memory impairment, reduced cognitive functions, intellectual ability and behavior changes. In this study, the effect of N-acetyl-cysteine (NAC as a strong antioxidant on memory deficiency and number of CA1 pyramidal neurons in Streptozotocine (STZ - induced Alzheimeric rats were studied. Materials and Methods: 32 Male Wistar rats were divided into four groups: sham group, streptozotocin group, treated group with streptozotocin plus N-acetyl-cysteine, and treated group with N-acetyl-cysteine alone. Intracerebroventricular (ICV administration of STZ was done in the first and the third day of surgery and i.p injection of N-acetyl-cysteine was done in the fourth of surgery. After the memory test, the animals were killed and their brains were fixed and density of intact neurons in the CA1 area of the hippocampus was investigated. Statistical analysis was performed with software SPSS, ANOVA and Prisme software. The level of statistical significance was set at p 0.05. Conclusion: N-acetyl-cysteine improved memory retrieval and hippocampal CA1 area intact neurons in streptozotocin-induced Alzheimeric male rats.

  8. Processing of mutant N-acetyl-alpha-glucosaminidase in mucopolysaccharidosis type IIIB fibroblasts cultured at low temperature

    NARCIS (Netherlands)

    Meijer, O. L. M.; te Brinke, H.; Ofman, R.; IJlst, L.; Wijburg, F. A.; van Vlies, N.

    2017-01-01

    Background: The autosomal recessive, neurodegenerative disorder mucopolysaccharidosis type IIIB (MPSIIIB) is caused by a deficiency of the lysosomal enzyme N-acetyl-alpha-glucosaminidase (NAGLU), resulting in accumulation of heparan sulfate. The disease spectrum comprises a severe, rapidly

  9. 5-ASA Suppositories in Hemorrhoidal Disease

    Directory of Open Access Journals (Sweden)

    P Gionchetti

    1992-01-01

    Full Text Available Forty patients with active hemorrhoidal disease were entered into this double-blind trial, 20 of whom were randomized to treatment with 5-aminosalicylic acid (5-ASA (500 mg suppositories. Clinical and sigmoidoscopic assessment was carried out before the start of the trial and after two weeks of treatment. At the end of the study, 5-ASA suppositories showed results superior to those of placebo for all parameters evaluated (P<0.01. There were no adverse events reported related to the use of suppositories. 5-ASA suppositories are a valid therapeutic approach for hemorrhoidal disease as it reduces the intensity of all symptoms and significantly decreases congestion of the hemorrhoidal plexus.

  10. The effect of N-acetylated DL-penicillamin and DL-homocysteine thiolactone on the mercury distribution in adult rats, rat foetuses and macaca monkeys after exposure to methyl mercuric chloride

    International Nuclear Information System (INIS)

    Aaseth, J.; Wannag, A.; Norseth, T.; Institute of Occupational Health, Oslo, Norway)

    1976-01-01

    The distribution and excretion of mercury was studied in pregnant rats, given a single intravenous dose of 2 μmol/kg of CH 3 203 HgCl on the 13th day of pregnancy. Oral treatment for one week with N-acetyl-DL-penicillamine (4 mmol/kg per day) increased the mercury excretion in faces (from 45 to 120 nmol) and urine (from 9 to 160 nmol). Such treatment mobilized mercury from all the organs tested and the foetal and maternal brain levels of mercury were decreased to 1/5 and 1/3 of the controls, respectively. A four-day period of treatment with N-acetyl-DL-penicillamine started three days after the injection of methyl mercury reduced the foetal and maternal brain levels to 1/2 and 2/3 of the controls, respectively. The rapid removal of metal deposits following treatment with N-acetyl-DL-penicillamine is attributed to a free penetration of the complexing thiol into the tissue cells in question. No signs of toxicity were detected in monkeys given an effective daily dose of the agent (4 mmol/kg) for 6 days. In contrast N-acetyl-DL-homocysteine thiolactone was found to be toxic in the monkeys. In addition, the latter agent was ineffective in increasing the mercury elimination from the brains of monkeys, rats and rat foetuses. (author)

  11. Synthesis, purification and characterization of [3,5 - T] p-aminobenzoic acid

    International Nuclear Information System (INIS)

    Corol-Cucu, Delia-Irina; Chiper, Diana; Mihaila, V.; Negoita, N.

    2000-01-01

    This paper refers to the synthesis, purification and characterization of [3,5-T] p-aminobenzoic acid (PAB,H' vitamine). The p-aminobenzoic acid is used in the treatment of rheumatic arthritis and dermatological affections. The advantage of tritium labelling of p-aminobenzoic acid is that some biomedical important aspects of collagen's behaviour are made clear. The PAB stimulate the grow of intestinal bacteria so necessary to synthesis of some vitamins (bio tine, pantothenic acid). Tritium is the only radioactive isotope of hydrogen. Several steps have to be carried out in the synthesis of the final product as well as to study its biological behavior. For the labelling of PAB one prefers the substitution of bromine from PAB-3,5-Br with tritium because of simplicity of reaction and the easy synthesis of halogen compound. The first step in synthesis is the protection of NH 2 group through acetylation of PAB. After that PAB is bromated into the 3 and 5 position with elementary bromine. The raw compound is purified and recrystallized and characterized through thin layer chromatography.The tritium labelling is performed through substitution of bromine from bromate derivative, using Pd/C (10% Pd) as catalyst and low basic conditions for the neutralization of HBr resulting from reaction. After the separation of PAB-3,5-T through filtration, the catalyst remains on the filter paper and the labelled compound goes in aqueous solution. PAB-3,5-T is purified through thin layer chromatography with the solvent system n-BuOH:NH 4 OH(25%):H 2 O:EtOH (8:1:2:2,5, v/v) with silica gel GF 254 as support. The determination of activity is carried out with LSC (Liquid Scintillation Counter). A 98% purity was determined through TLC in the same conditions while determination of activity distribution was performed with a 2π Berthold scanner with gas running and without window. The chemical concentration has been measured through UV spectrophotometry and by comparing extinction with

  12. Effects of arachidonic acid and 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine on prolactin secretion from anterior pituitary cells

    International Nuclear Information System (INIS)

    Camoratto, A.M.

    1988-01-01

    The role of two lipids, arachidonic acid and 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, as modulators or prolactin secretion has been examined. Stimulators of phospholipase A 2 activity, melittin and mastoparan, were found to increase prolactin release. Melittin also caused release of previously incorporated 3 H-arachidonic acid and this effect was associated with loss of radiolabel from the phospholipid fraction. Exogenous arachidonic acid also stimulated prolactin secretion. Conversely, inhibitors of phospholipase A 2 activity, dibromoacetophenone and U10029A, decreased basal and stimulated prolactin release. Prolactin release could also be lowered by ETYA, BW755C and NDGA, inhibitors of arachidonic acid metabolism. In the second series of experiments the effects of the biologically active phospholipid 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor, PAF) on prolactin release were examined. PAF is an ether-linked phospholipid known to stimulate granule release in a variety of cell types including both inflammatory and noninflammatory cells. PAF increased release of prolactin from dispersed rat anterior pituitary cells; stimulation was not due to cell lysis. PAF-induced prolactin release could be blocked by the dopaminergic agonists apomorphine and bromocriptine as well as by two PAF receptor antagonists, SRI 63-072 and L-652-731

  13. [A novel gene (Aa-accA ) encoding acetyl-CoA carboxyltransferase alpha-subunit of Alkalimonas amylolytica N10 enhances salt and alkali tolerance of Escherichia coli and tobacco BY-2 cells].

    Science.gov (United States)

    Xian, Mingjie; Zhai, Lei; Zhong, Naiqin; Ma, Yiwei; Xue, Yanfen; Ma, Yanhe

    2013-08-04

    Acetyl-CoA carboxylase (ACC) catalyzes the first step of fatty acid synthesis. In most bacteria, ACC is composed of four subunits encoded by accA, accB, accC, and accD. Of them, accA encodes acetyl-CoA carboxyltransferase alpha-subunit. Our prior work on proteomics of Alkalimonas amylolytica N10 showed that the expression of the Aa-accA has a remarkable response to salt and alkali stress. This research aimed to find out the Aa-accA gene contributing to salt and alkali tolerance. The Aa-accA was amplified by PCR from A. amylolytica N10 and expressed in E. coli K12 host. The effects of Aa-accA expression on the growth of transgenic strains were examined under different NaCl concentration and pH conditions. Transgenic tobacco BY-2 cells harboring Aa-accA were also generated via Agrobacterium-mediated transformation. The viability of BY-2 cells was determined with FDA staining method after salt and alkali shock. The Aa-accA gene product has 318 amino acids and is homologous to the carboxyl transferase domain of acyl-CoA carboxylases. It showed 76% identity with AccA (acetyl-CoA carboxylase carboxyltransferase subunit alpha) from E. coli. Compared to the wild-type strains, transgenic E. coli K12 strain containing Aa-accA showed remarkable growth superiority when grown in increased NaCl concentrations and pH levels. The final cell density of the transgenic strains was 2.6 and 3.5 times higher than that of the control type when they were cultivated in LB medium containing 6% (W/V) NaCl and at pH 9, respectively. Complementary expression of Aa-accA in an accA-depletion E. coli can recover the tolerance of K12 delta accA to salt and alkali stresses to some extent. Similar to the transgenic E. coli, transgenic tobacco BY-2 cells showed higher percentages of viability compared to the wild BY-2 cells under the salt or alkali stress condition. We found that Aa-accA from A. amylolytica N10 overexpression enhances the tolerance of both transgenic E. coli and tobacco BY-2 cells to

  14. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions

    DEFF Research Database (Denmark)

    Weinert, Brian T; Moustafa, Tarek; Iesmantavicius, Vytautas

    2015-01-01

    or suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue...... of fasted mice, we found that SIRT3-targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3-dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation...... functions as a protein repair factor that removes acetylation lesions from lysine residues....

  15. The recognition unit of FIBCD1 organizes into a noncovalently linked tetrameric structure and uses a hydrophobic funnel (S1) for acetyl group recognition

    DEFF Research Database (Denmark)

    Thomsen, Theresa; Moeller, Jesper B; Schlosser, Anders

    2010-01-01

    We have recently identified FIBCD1 (Fibrinogen C domain containing 1) as a type II transmembrane endocytic receptor located primarily in the intestinal brush border. The ectodomain of FIBCD1 comprises a coiled coil, a polycationic region, and a C-terminal FReD (fibrinogen-related domain) that ass......We have recently identified FIBCD1 (Fibrinogen C domain containing 1) as a type II transmembrane endocytic receptor located primarily in the intestinal brush border. The ectodomain of FIBCD1 comprises a coiled coil, a polycationic region, and a C-terminal FReD (fibrinogen-related domain......) that assembles into disulfide-linked homotetramers. The FIBCD1-FReD binds Ca(2+) dependently to acetylated structures like chitin, N-acetylated carbohydrates, and amino acids. FReDs are present in diverse innate immune pattern recognition proteins including the ficolins and horseshoe crab TL5A. Here, we use...... combined with site-directed mutagenesis to define the binding site involved in the interaction of FIBCD1 with acetylated structures. We show that mutations of central residues (A432V and H415G) in the hydrophobic funnel (S1) abolish the binding of FIBCD1 to acetylated bovine serum albumin and chitin...

  16. Docosahexaenoic acid and n-6 docosapentaenoic acid supplementation alter rat skeletal muscle fatty acid composition

    Directory of Open Access Journals (Sweden)

    Lim Sun-Young

    2007-04-01

    Full Text Available Abstract Background Docosahexaenoic acid (22:6n-3, DHA and n-6 docosapentaenoic acid (22:5n-6, DPAn-6 are highly unsaturated fatty acids (HUFA, ≥ 20 carbons, ≥ 3 double bonds that differ by a single carbon-carbon double bond at the Δ19 position. Membrane 22:6n-3 may support skeletal muscle function through optimal ion pump activity of sarcoplasmic reticulum and electron transport in the mitochondria. Typically n-3 fatty acid deficient feeding trials utilize linoleic acid (18:2n-6, LA as a comparison group, possibly introducing a lower level of HUFA in addition to n-3 fatty acid deficiency. The use of 22:5n-6 as a dietary control is ideal for determining specific requirements for 22:6n-3 in various physiological processes. The incorporation of dietary 22:5n-6 into rat skeletal muscles has not been demonstrated previously. A one generation, artificial rearing model was utilized to supply 22:6n-3 and/or 22:5n-6 to rats from d2 after birth to adulthood. An n-3 fatty acid deficient, artificial milk with 18:2n-6 was supplemented with 22:6n-3 and/or 22:5n-6 resulting in four artificially reared (AR dietary groups; AR-LA, AR-DHA, AR-DPAn-6, AR-DHA+DPAn-6. A dam reared group (DAM was included as an additional control. Animals were sacrificed at 15 wks and soleus, white gastrocnemius and red gastrocnemius muscles were collected for fatty acid analyses. Results In all muscles of the DAM group, the concentration of 22:5n-6 was significantly lower than 22:6n-3 concentrations. While 22:5n-6 was elevated in the AR-LA group and the AR-DPAn-6 group, 20:4n-6 tended to be higher in the AR-LA muscles and not in the AR-DPAn-6 muscles. The AR-DHA+DPAn-6 had a slight, but non-significant increase in 22:5n-6 content. In the red gastrocnemius of the AR-DPAn-6 group, 22:5n-6 levels (8.1 ± 2.8 wt. % did not reciprocally replace the 22:6n-3 levels observed in AR-DHA reared rats (12.2 ± 2.3 wt. % suggesting a specific preference/requirement for 22:6n-3 in red

  17. Simultaneous determination of polyamines, N-acetylated polyamines and the polyamine analogues BE-3-3-3 and BE-4-4-4-4 by capillary gas chromatography with nitrogen-phosphorus detection

    NARCIS (Netherlands)

    Dorhout, B; Kingma, AW; deHoog, E; Muskiet, FAJ

    1997-01-01

    We describe a method for the profiling of polyamines, N-acetylated polyamines and the polyamine analogues N-1,N-11 bis(ethyl)norspermine (BE-3-3-3) and 1,19-bis(ethylamino)-5,10,15-triazanonadecane (BE-4-4-4-4) in L1210 murine leukaemia cells by capillary gas chromatography with nitrogen-phosphorus

  18. N-acetyl transferase 2/environmental factors and their association as a modulating risk factor for sporadic colon and rectal cancer.

    Science.gov (United States)

    Procopciuc, Lucia M; Osian, Gelu; Iancu, Mihaela

    2017-09-01

    The aim of this study was to evaluate the association between environmental factors and colon or rectal cancer after adjusting for N-acetyl transferase 2 (NAT2) phenotypes. Ninety-six patients with sporadic colon cancer, 54 with sporadic rectal cancer and 162 control subjects were genotyped for NAT2-T341C, G590A, G857A, A845C, and C481T using sequencing and PCR-RFLP analysis. The risk for colon cancer was increased in carriers of the homozygous negative genotypes for NAT2*5C-T341C, NAT2*6B-G590A, NAT2*7B-G857A, NAT2*18-A845C, and NAT2*5A-C481T. The risk for rectal cancer was increased in carriers of the homozygous negative genotypes for NAT2*5C-T341C, NAT2*7B-G857A, and NAT2*5A-C481T. High fried red meat intake associated with NAT2-T341C, G590A, G857A, A845C, and C481T rapid acetylator allele determines a risk of 2.39 (P=.002), 2.39 (P=.002), 2.37 (P=.002), 2.28 (P=.004), and 2.51 (P=.001), respectively, for colon cancer, whereas in the case of rectal cancer, the risk increased to 7.55 (Pcolon cancer, whereas the risk for rectal cancer is 9.72 (Pcolon cancer. Fried red meat, alcohol, and smoking increase the risk of sporadic CRC, especially of colon cancer, in the case of rapid acetylators for the NAT2 variants. © 2016 Wiley Periodicals, Inc.

  19. A bioinformatics-based overview of protein Lys-Ne-acetylation

    Science.gov (United States)

    Among posttranslational modifications, there are some conceptual similarities between Lys-N'-acetylation and Ser/Thr/Tyr O-phosphorylation. Herein we present a bioinformatics-based overview of reversible protein Lys-acetylation, including some comparisons with reversible protein phosphorylation. T...

  20. Molecular Cloning and Characterization of Two Genes for the Biotin Carboxylase and Carboxyltransferase Subunits of Acetyl Coenzyme A Carboxylase in Myxococcus xanthus

    OpenAIRE

    Kimura, Yoshio; Miyake, Rina; Tokumasu, Yushi; Sato, Masayuki

    2000-01-01

    We have cloned a DNA fragment from a genomic library of Myxococcus xanthus using an oligonucleotide probe representing conserved regions of biotin carboxylase subunits of acetyl coenzyme A (acetyl-CoA) carboxylases. The fragment contained two open reading frames (ORF1 and ORF2), designated the accB and accA genes, capable of encoding a 538-amino-acid protein of 58.1 kDa and a 573-amino-acid protein of 61.5 kDa, respectively. The protein (AccA) encoded by the accA gene was strikingly similar t...

  1. Structure and reactivity of the N-acetyl-cysteine radical cation and anion: does radical migration occur?

    NARCIS (Netherlands)

    Osburn, S.; Berden, G.; Oomens, J.; O'Hair, R.A.J.; Ryzhov, V.

    2011-01-01

    The structure and reactivity of the N-acetyl-cysteine radical cation and anion were studied using ion-molecule reactions, infrared multi-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. The radical cation was generated by first nitrosylating the thiol of

  2. Structure and Reactivity of the N-Acetyl-Cysteine Radical Cation and Anion: Does Radical Migration Occur?

    NARCIS (Netherlands)

    Osburn, S.; G. Berden,; Oomens, J.; O' Hair, R. A. J.; Ryzhov, V.

    2011-01-01

    The structure and reactivity of the N-acetyl-cysteine radical cation and anion were studied using ion-molecule reactions, infrared multi-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. The radical cation was generated by first nitrosylating the thiol of

  3. Arabidopsis NATA1 Acetylates Putrescine and Decreases Defense-Related Hydrogen Peroxide Accumulation1[OPEN

    Science.gov (United States)

    Preuss, Aileen S.

    2016-01-01

    Biosynthesis of the polyamines putrescine, spermidine, and spermine is induced in response to pathogen infection of plants. Putrescine, which is produced from Arg, serves as a metabolic precursor for longer polyamines, including spermidine and spermine. Polyamine acetylation, which has important regulatory functions in mammalian cells, has been observed in several plant species. Here we show that Arabidopsis (Arabidopsis thaliana) N-ACETYLTRANSFERASE ACTIVITY1 (NATA1) catalyzes acetylation of putrescine to N-acetylputrescine and thereby competes with spermidine synthase for a common substrate. NATA1 expression is strongly induced by the plant defense signaling molecule jasmonic acid and coronatine, an effector molecule produced by DC3000, a Pseudomonas syringae strain that initiates a virulent infection in Arabidopsis ecotype Columbia-0. DC3000 growth is reduced in nata1 mutant Arabidopsis, suggesting a role for NATA1-mediated putrescine acetylation in suppressing antimicrobial defenses. During infection by P. syringae and other plant pathogens, polyamine oxidases use spermidine and spermine as substrates for the production of defense-related H2O2. Compared to wild-type Columbia-0 Arabidopsis, the response of nata1mutants to P. syringae infection includes reduced accumulation of acetylputrescine, greater abundance of nonacetylated polyamines, elevated H2O2 production by polyamine oxidases, and higher expression of genes related to pathogen defense. Together, these results are consistent with a model whereby P. syringae growth is improved in a targeted manner through coronatine-induced putrescine acetylation by NATA1. PMID:27208290

  4. 5'-azido-N-1-naphthylphthalamic acid, a photolabile analog of the auxin transport inhibitor, N-1-naphthylphthalamic acid: synthesis and binding properties

    International Nuclear Information System (INIS)

    Voet, J.G.; Howley, K.; Shumsky, J.S.

    1987-01-01

    The polar transport of the plant growth regulator, auxin (indole-3-acetic acid, IAAH), is thought to involve the participation of several proteins in the plasma membrane, including a specific, saturable, voltage independent H + /IAA - efflux carrier located preferentially at the basal end of each cell. Auxin transport is specifically inhibited by the herbicide, N-1-naphthylphthalamic acid (NPA), which binds specifically to a protein in the plasma membrane, thought to be either the IAA - efflux carrier or an allosteric effector protein. They have synthesized and characterized a photolabile analog of NPA, 5'-azido-N-1-naphthylphthalamic acid (Az-NPA). This potential photoaffinity label for the NPA binding protein competes with 3 H-NPA for binding sites on Curcurbita pepo L. (zucchini) stem cell membranes with K/sub j/ = 1.5 x 10 -7 M. The K/sub i/ for NPA under these conditions is 2 x 10 -8 M, indicating that the affinity of Az-NPA for the membranes is only 7.5 fold lower than NPA. While the binding of 4.6 x 10 -6 M Az-NPA to NPA binding sites is reversible in the dark, exposure to light results in a 30% loss in 3 H-NPA binding ability. Pretreatment with 10 -4 M NPA protects the membranes against photodestruction of 3 H-NPA binding sites by Az-NPA, supporting the conclusion that Az-NPA destroys these sites by specific covalent attachment

  5. Synthesis of O-[11C]acetyl CoA, O-[11C]acetyl-L-carnitine, and L-[11C]carnitine labelled in specific positions, applied in PET studies on rhesus monkey

    International Nuclear Information System (INIS)

    Jacobson, Gunilla B.; Watanabe, Yasuyoshi; Valind, Sven; Kuratsune, Hirohiko; Laangstroem, Bengt

    1997-01-01

    The syntheses of L-carnitine, O-acetyl CoA, and O-acetyl-L-carnitine labelled with 11 C at the 1- or 2-position of the acetyl group or the N-methyl position of carnitine, using the enzymes acetyl CoA synthetase and carnitine acetyltransferase, are described. With a total synthesis time of 45 min, O-[1- 11 C]acetyl CoA and O-[2- 11 C]acetyl CoA was obtained in 60-70% decay-corrected radiochemical yield, and O-[1- 11 C]acetyl-L-carnitine and O-[2- 11 C]acetyl-L-carnitine in 70-80% yield, based on [1- 11 C]acetate or [2- 11 C]acetate, respectively. By an N-methylation reaction with [ 11 C]methyl iodide, L-[methyl- 11 C]carnitine was obtained within 30 min, and O-acetyl-L-[methyl- 11 C]carnitine within 40 min, giving a decay-corrected radiochemical yield of 60% and 40-50%, respectively, based on [ 11 C]methyl iodide. Initial data of the kinetics of the different 11 C-labelled L-carnitine and acetyl-L-carnitines in renal cortex of anaesthetized monkey (Macaca mulatta) are presented

  6. N Acetyl Cysteine, A novel Remedy for Poly Cystic Ovarian Syndrome

    Directory of Open Access Journals (Sweden)

    Nasibeh Amirzargar

    2009-01-01

    Full Text Available Background: Poly cystic ovarian syndrome (PCOS is the most prevalent endocrinopathy among womenand the most common underlying diagnosis for anovulatory infertility. The role of insulin-resistance(IR and hyperinsulinemia in pathophysiology and clinical manifestations of the syndrome depicts theimportance of evaluation of the efficacy of insulin reducing medications. N acetyl cysteine (NAC inhibitsoxidative stress and prevents hyperglycemia induced insulin resistance. This study aims at evaluating theeffects of NAC on manifestations of the disease as well as improvement of fertility status.Materials and Methods: Through a prospective double-blind clinical trial, 46 patients were randomlydivided into one intervention and one control group. The two groups were treated for six weeks aftersimilarity was allocated. All clinical and biochemical indicators were recorded in the early follicularphase both before and after treatment.Results: From each group, 18 patients were ultimately evaluated. In the first group, ovulation rateincreased as compared to the control group. A significant decrease in weight, body mass index (BMI,and waist/hip ratio was also observed. Fast blood sugar (FBS, serum insulin, total cholesterol, lowdensity lipoprotein (LDL levels, and HOMA-IR index also dropped while high density lipoproteinHDL levels elevated significantly. No significant change was reported in luteinizing hormone (LH,FSH, PRL, LH/FSH levels and glucose/insulin ratio. The control group remained unchanged.Conclusion: N- Acetyl Cysteine improves lipid profile, hormonal levels, ovulation status, and longtermhealth of women with PCOS. Considering its limited adverse effects, it can be regarded as asubstitute for insulin reducing medications in treatment of these patients.

  7. Stereoselective synthesis of diazaspiro[5.5]undecane derivatives via base promoted [5+1] double Michael addition of N,N-dimethylbarbituric acid to diaryliedene acetones

    Directory of Open Access Journals (Sweden)

    Mohammad Shahidul Islam

    2017-01-01

    Full Text Available The nitrogen containing spiro-heterocycle is one of the privileged synthetic motif that constitutes various naturally occurring molecules and displays a broad range of pharmaceutical and biological activities. A new methodology was developed for the synthesis of 2,4-diazaspiro[5.5]undecane-1,3,5,9-tetraones spiro-heterocyclic derivatives via cascade cyclization of [5+1] double Michael addition reaction of N,N-dimethylbarbituric acid with the derivatives of diaryldivinylketones in the presence of diethylamine at ambient temperature. The developed protocol is highly capable of furnishing diazaspiro[5.5]undecane derivatives 3a–m in excellent yields (up to 98%, from easily accessible symmetric and non-symmetric divinylketones 2a–m, containing aryl and heteroaryl substituents. The diazaspiro-heterocyclic structure was mainly elucidated by NMR and X-ray crystallographic techniques. The single-crystal X-ray studies revealed that, the cyclohexanone unit of spirocycles often prefers a chair conformation rather than twisted conformation. The intermolecular hydrogen bonding and CArH⋯π, π–π stacking interactions driving forces are mainly responsible for the crystal packing.

  8. Autoradiographic study of nuclear protein acetylation during Locust spermiogenesis

    International Nuclear Information System (INIS)

    Bouvier, D.; Chevaillier, P.

    1975-01-01

    Autoradiographic studies, at the light and electron microscope level, demonstrate that spermatid nuclei of the Locust Locusta migratoria incorporate 3 H-acetate, especially during the first stages of spermiogenesis. The highest level of acetate incorporation is observed during stage II of spermiogenesis. During this stage and the following, the spermatid nucleus undergoes a number of structural and chemical modifications: chromatin decondenses and somatic histones are progressively replaced by newly synthesized arginine-rich proteins. Therefore, the higher degree of acetylation of nuclear components coincides with chromatin decondensation and precedes the protein transition occurring in later stages. Cytochemical and autoradiographic tests have been realized so as to localize 3 H-acetate in the nuclear components. Trichloracetic acid was used at various concentrations: the action of hydrochloric acid, pronase and DNase was also tested. The results support the idea that proteins, and among them histones, are the only nuclear components to be acetylated during spermiogenesis. Thus, histone acetylation seems to play an important role in modulating histone-DNA interactions and allowing histone replacement [fr

  9. Synthesis of polyrotaxanes from acetyl-β-cyclodextrin

    Science.gov (United States)

    Ristić, I. S.; Nikolić, L.; Nikolić, V.; Ilić, D.; Budinski-Simendić, J.

    2011-12-01

    Polyrotaxanes are intermediary products in the synthesis of topological gels. They are created by inclusion complex formation of hydrophobic linear macromolecules with cyclodextrins or their derivatives. Then, pairs of cyclodextrin molecules with covalently linkage were practically forming the nodes of the semi-flexible polymer network. Such gels are called topological gels and they can absorb huge quantities of water due to the net flexibility allowing the poly(ethylene oxide) chains to slide through the cyclodextrin cavities, without being pulled out altogether. For polyrotaxane formation poly(ethylene oxide) was used like linear macromolecules. There are hydroxyl groups at poly(ethylene oxide) chains, whereby the linking of the voluminous molecules should be made. To avoid the reaction of cyclodextrin OH groups with stoppers, they should be protected by, e.g., acetylation. In this work, the acetylation of the OH groups of β-cyclodextrin was performed by acetic acid anhydride with iodine as the catalyst. The acetylation reaction was assessed by the FTIR and HPLC method. By the HPLC analysis was found that the acetylation was completed in 20 minutes. Inserting of poly(ethylene oxide) with 4000 g/mol molecule mass into acetyl-β-cyclodextrin with 2:1 poly(ethylene oxide) monomer unit to acetyl-β-cyclodextrin ratio was also monitored by FTIR, and it was found that the process was completed in 12 h at the temperature of 10°C. If the process is performed at temperatures above 10°C, or for periods longer than 12 hours, the process of uncontrolled hydrolysis of acetate groups was initiated.

  10. Sample preparation techniques for the determination of natural 15N/14N variations in amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS).

    Science.gov (United States)

    Hofmann, D; Gehre, M; Jung, K

    2003-09-01

    In order to identify natural nitrogen isotope variations of biologically important amino acids four derivatization reactions (t-butylmethylsilylation, esterification with subsequent trifluoroacetylation, acetylation and pivaloylation) were tested with standard mixtures of 17 proteinogenic amino acids and plant (moss) samples using GC-C-IRMS. The possible fractionation of the nitrogen isotopes, caused for instance by the formation of multiple reaction products, was investigated. For biological samples, the esterification of the amino acids with subsequent trifluoroacetylation is recommended for nitrogen isotope ratio analysis. A sample preparation technique is described for the isotope ratio mass spectrometric analysis of amino acids from the non-protein (NPN) fraction of terrestrial moss. 14N/15N ratios from moss (Scleropodium spec.) samples from different anthropogenically polluted areas were studied with respect to ecotoxicologal bioindication.

  11. Interaction of (n-3) and (n-6) fatty acids in desaturation and chain elongation of essential fatty acids in cultured glioma cells

    International Nuclear Information System (INIS)

    Cook, H.W.; Spence, M.W.

    1987-01-01

    Recent research in various biological systems has revived interest in interactions between the (n-6) and (n-3) essential fatty acids. We have utilized cultured glioma cells to show that linolenic acid, 18:3(n-3), is rapidly desaturated and chain elongated; 20:5(n-3) is the major product and accumulates almost exclusively in phospholipids. We examined effects of various (n-6), (n-3), (n-9) and (n-7) fatty acids at 40 microM concentration on desaturation and chain elongation processes using [1- 14 C]18:3(n-3) as substrate. In general, monoenoic fatty acids were without effect. The (n-6) fatty acids (18:2, 18:3, 20:3, 20:4 and 22:4) had little effect on total product formed. There was a shift of labeled product to triacylglycerol, and in phospholipids, slightly enhanced conversion of 20:5 to 22:5 was evident. In contrast, 22:6(n-3) was inhibitory, whereas 20:3(n-3) and 20:5(n-3) had much less effect. At concentrations less than 75 microM, all acids were inhibitory. Most products were esterified to phosphatidylcholine, but phosphatidylethanolamine also contained a major portion of 20:5 and 22:5. We provide a condensed overview of how the (n-6) and (n-3) fatty acids interact to modify relative rates of desaturation and chain elongation, depending on the essential fatty acid precursor. Thus, the balance between these dietary acids can markedly influence enzymes providing crucial membrane components and substrates for biologically active oxygenated derivatives

  12. Acetyl-Phosphate Is a Critical Determinant of Lysine Acetylation in E. coli

    DEFF Research Database (Denmark)

    Weinert, Brian T; Iesmantavicius, Vytautas; Wagner, Sebastian A

    2013-01-01

    Lysine acetylation is a frequently occurring posttranslational modification in bacteria; however, little is known about its origin and regulation. Using the model bacterium Escherichia coli (E. coli), we found that most acetylation occurred at a low level and accumulated in growth-arrested cells...... acetylate lysine residues in vitro and that AcP levels are correlated with acetylation levels in vivo, suggesting that AcP may acetylate proteins nonenzymatically in cells. These results uncover a critical role for AcP in bacterial acetylation and indicate that most acetylation in E. coli occurs at a low...

  13. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production.

    Science.gov (United States)

    Ma, Wenlong; Liu, Yanfeng; Shin, Hyun-Dong; Li, Jianghua; Chen, Jian; Du, Guocheng; Liu, Long

    2018-02-01

    Bacillus subtilis is widely used as cell factories for the production of important industrial biochemicals. Although many studies have demonstrated the effects of organic acidic byproducts, such as acetate, on microbial fermentation, little is known about the effects of blocking the neutral byproduct overflow, such as acetoin, on bioproduction. In this study, we focused on the influences of modulating overflow metabolism on the production of N-acetyl-d-glucosamine (GlcNAc) in engineered B. subtilis. We found that acetoin overflow competes with GlcNAc production, and blocking acetoin overflow increased GlcNAc titer and yield by 1.38- and 1.39-fold, reaching 48.9 g/L and 0.32 g GlcNAc/g glucose, respectively. Further blocking acetate overflow inhibited cell growth and GlcNAc production may be induced by inhibiting glucose uptake. Taken together, our results show that blocking acetoin overflow is a promising strategy for enhancing GlcNAc production. The strategies developed in this work may be useful for engineering strains of B. subtilis for producing other important biochemicals. Copyright © 2017. Published by Elsevier Ltd.

  14. New structures and composition of cell wall teichoic acids from Nocardiopsis synnemataformans, Nocardiopsis halotolerans, Nocardiopsis composta and Nocardiopsis metallicus: a chemotaxonomic value.

    Science.gov (United States)

    Tul'skaya, Elena M; Shashkov, Alexander S; Streshinskaya, Galina M; Potekhina, Natalia V; Evtushenko, Ludmila I

    2014-12-01

    The structures of the cell wall teichoic acids (TA) from some species of the genus Nocardiopsis were established by chemical and NMR spectroscopic methods. The cell walls of Nocardiopsis synnemataformans VKM Ac-2518(T) and Nocardiopsis halotolerans VKM Ac-2519(T) both contain two TA with unique structures-poly(polyol phosphate-glycosylpolyol phosphate)-belonging to the type IV TA. In both organisms, the minor TA have identical structures: poly(glycerol phosphate-N-acetyl-β-galactosaminylglycerol phosphate) with the phosphodiester bond between C-3 of glycerol and C-4 of the amino sugar. This structure is found for the first time. The major TA of N. halotolerans has a hitherto unknown structure: poly(glycerol phosphate-N-acetyl-β-galactosaminylglycerol phosphate), the N-acetyl-β-galactosamine being acetalated with pyruvic acid at positions 4 and 6. The major TA of N. synnemataformans is a poly(glycerol phosphate-N-acetyl-β-galactosaminylglycerol phosphate) with the phosphodiester bond between C-3 of glycerol and C-3 of the amino sugar. The cell walls of Nocardiopsis composta VKM Ac-2520 and N. composta VKM Ac-2521(T) contain only one TA, namely 1,3-poly(glycerol phosphate) partially substituted with N-acetyl-α-glucosamine. The cell wall of Nocardiopsis metallicus VKM Ac-2522(T) contains two TA. The major TA is 1,5-poly(ribitol phosphate), each ribitol unit carrying a pyruvate ketal group at positions 2 and 4. The structure of the minor TA is the same as that of N. composta. The results presented correlate well with the phylogenetic grouping of strains and confirm the species and strain specific features of cell wall TA in members of the genus Nocardiopsis.

  15. Avaliação de géis obtidos a partir da acetilação da quitosana em meio heterogêneo Evaluation of gels obtained from acetylation of chitosan in heterogeneous medium

    Directory of Open Access Journals (Sweden)

    Rosangela Balaban Garcia

    2008-01-01

    Full Text Available Chitosan was acetylated during 2, 5 and 10h and physical gels were obtained at different polymer concentrations in N,N-dimethylacetamide containing 5% of LiCl. Acetylation was confirmed by infrared spectroscopy and 13C NMR, and degrees of acetylation in the range of 0.82-0.91 were determined by NMR. The O-acetylation degree (0.12-0.15 was exclusively determined by a volumetric method. Rheological studies showed that the storage modulus values were smaller for the more acetylated samples and increased with the temperature and the polymer concentration. All the gels presented storage modulus superior to loss modulus, evidencing more elastic than viscous characteristics. The results obtained in this work suggest a gelation process based on a balance between O and N-acetylation and intermolecular bonds.

  16. N-acetyl-L-cysteine prevents stress-induced desmin aggregation in cellular models of desminopathy.

    Directory of Open Access Journals (Sweden)

    Bertrand-David Segard

    Full Text Available Mutations within the human desmin gene are responsible for a subcategory of myofibrillar myopathies called desminopathies. However, a single inherited mutation can produce different phenotypes within a family, suggesting that environmental factors influence disease states. Although several mouse models have been used to investigate organ-specific desminopathies, a more general mechanistic perspective is required to advance our knowledge toward patient treatment. To improve our understanding of disease pathology, we have developed cellular models to observe desmin behaviour in early stages of disease pathology, e.g., upon formation of cytoplasmic desmin aggregates, within an isogenic background. We cloned the wildtype and three mutant desmin cDNAs using a Tet-On Advanced® expression system in C2C12 cells. Mutations were selected based on positioning within desmin and capacity to form aggregates in transient experiments, as follows: DesS46Y (head domain; low aggregation, DesD399Y (central rod domain; high aggregation, and DesS460I (tail domain; moderate aggregation. Introduction of these proteins into a C2C12 background permitted us to compare between desmin variants as well as to determine the role of external stress on aggregation. Three different types of stress, likely encountered during muscle activity, were introduced to the cell models-thermal (heat shock, redox-associated (H2O2 and cadmium chloride, and mechanical (stretching stresses-after which aggregation was measured. Cells containing variant DesD399Y were more sensitive to stress, leading to marked cytoplasmic perinuclear aggregations. We then evaluated the capacity of biochemical compounds to prevent this aggregation, applying dexamethasone (an inducer of heat shock proteins, fisetin or N-acetyl-L-cysteine (antioxidants before stress induction. Interestingly, N-acetyl-L-cysteine pre-treatment prevented DesD399Y aggregation during most stress. N-acetyl-L-cysteine has recently been

  17. Identification and characterization of AckA-dependent protein acetylation in Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Deborah M B Post

    Full Text Available Neisseria gonorrhoeae, the causative agent of gonorrhea, has a number of factors known to contribute to pathogenesis; however, a full understanding of these processes and their regulation has proven to be elusive. Post-translational modifications (PTMs of bacterial proteins are now recognized as one mechanism of protein regulation. In the present study, Western blot analyses, with an anti-acetyl-lysine antibody, indicated that a large number of gonococcal proteins are post-translationally modified. Previous work has shown that Nε-lysine acetylation can occur non-enzymatically with acetyl-phosphate (AcP as the acetyl donor. In the current study, an acetate kinase mutant (1291ackA, which accumulates AcP, was generated in N. gonorrhoeae. Broth cultures of N. gonorrhoeae 1291wt and 1291ackA were grown, proteins extracted and digested, and peptides containing acetylated-lysines (K-acetyl were affinity-enriched from both strains. Mass spectrometric analyses of these samples identified a total of 2686 unique acetylation sites. Label-free relative quantitation of the K-acetyl peptides derived from the ackA and wild-type (wt strains demonstrated that 109 acetylation sites had an ackA/wt ratio>2 and p-values <0.05 in at least 2/3 of the biological replicates and were designated as "AckA-dependent". Regulated K-acetyl sites were found in ribosomal proteins, central metabolism proteins, iron acquisition and regulation proteins, pilus assembly and regulation proteins, and a two-component response regulator. Since AckA is part of a metabolic pathway, comparative growth studies of the ackA mutant and wt strains were performed. The mutant showed a growth defect under aerobic conditions, an inability to grow anaerobically, and a defect in biofilm maturation. In conclusion, the current study identified AckA-dependent acetylation sites in N. gonorrhoeae and determined that these sites are found in a diverse group of proteins. This work lays the foundation for

  18. Altering histone acetylation status in donor cells with suberoylanilide hydroxamic acid does not affect dog cloning efficiency.

    Science.gov (United States)

    Kim, Min Jung; Oh, Hyun Ju; Kim, Geon A; Suh, Han Na; Jo, Young Kwang; Choi, Yoo Bin; Kim, Dong Hoon; Han, Ho Jae; Lee, Byeong Chun

    2015-10-15

    Although dog cloning technology has been applied to conservation of endangered canids, propagation of elite dogs, and production of transgenic dogs, the efficiency of cloning is still very low. To help overcome this problem, we evaluated the effect of treating donor cells with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on dog cloning efficiency. Relative messenger RNA expressions of the bax1/bcl2 ratio and Dnmt1 in fibroblasts treated with different concentrations (0, 1, 10, 50 μM) of SAHA and durations (0, 20, 44 hours) were compared. Treatment with 1 μM for 20 hours showed significantly lower bax1/bcl2 and Dnmt1 transcript abundance. Acetylation of H3K9 was significantly increased after SAHA treatment, but H4K5, H4K8 and H4K16 were not changed. After SCNT using control or donor cells treated with SAHA, a total of 76 and 64 cloned embryos were transferred to seven and five recipients, respectively. Three fetuses were diagnosed in both control and SAHA-treated groups by ultrasonography 29 days after the embryo transfer, but there was no significant difference in the pregnancy rate (4.2% vs. 4.3%). In conclusion, although SAHA treatment as used in this study significantly decreased bax1/bcl2 and Dnmt1 transcripts of donor nuclei, as well as increased H3 acetylation, it was not enough to increase in vivo developmental competence of cloned dog embryos. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Acetylation-mediated suppression of transcription-independent memory: bidirectional modulation of memory by acetylation.

    Directory of Open Access Journals (Sweden)

    Katja Merschbaecher

    Full Text Available Learning induced changes in protein acetylation, mediated by histone acetyl transferases (HATs, and the antagonistic histone deacetylases (HDACs play a critical role in memory formation. The status of histone acetylation affects the interaction between the transcription-complex and DNA and thus regulates transcription-dependent processes required for long-term memory (LTM. While the majority of studies report on the role of elevated acetylation in memory facilitation, we address the impact of both, increased and decreased acetylation on formation of appetitive olfactory memory in honeybees. We show that learning-induced changes in the acetylation of histone H3 at aminoacid-positions H3K9 and H3K18 exhibit distinct and different dynamics depending on the training strength. A strong training that induces LTM leads to an immediate increase in acetylation at H3K18 that stays elevated for hours. A weak training, not sufficient to trigger LTM, causes an initial increase in acetylation at H3K18, followed by a strong reduction in acetylation at H3K18 below the control group level. Acetylation at position H3K9 is not affected by associative conditioning, indicating specific learning-induced actions on the acetylation machinery. Elevating acetylation levels by blocking HDACs after conditioning leads to an improved memory. While memory after strong training is enhanced for at least 2 days, the enhancement after weak training is restricted to 1 day. Reducing acetylation levels by blocking HAT activity after strong training leads to a suppression of transcription-dependent LTM. The memory suppression is also observed in case of weak training, which does not require transcription processes. Thus, our findings demonstrate that acetylation-mediated processes act as bidirectional regulators of memory formation that facilitate or suppress memory independent of its transcription-requirement.

  20. Synthesis and characterization of [3H]-5'azido-N-1-naphthylphthlamic acid, a photolabile N-1-naphthylphthalamic acid analog

    International Nuclear Information System (INIS)

    Voet, J.G.; Dodge, B.; Harris, K.; Jacobs, M.; Larkin, L.; Bader, S.; Schnitzler, G.; Sutherland, J.

    1990-01-01

    The NPA (N-1-naphthylphthalamic acid) receptor is an important protein involved in the regulation of transport of indole-3-acetic acid (IAA). In our attempt to isolate and characterize this protein we have previously synthesized and characterized a photolabile analog of NPA, 5'-azido-NPA (Az-NPA) and shown it to be a competitor of NPA for binding sites on the NPA receptor as well as an inhibitor of auxin transport. We have now synthesized and characterized [ 3 H]-Az-NPA. The precursor, 2,3,4,5-Br-5'-amino-NPA was dehydrohalogenated with tritium gas by Research Products International. The amino group was converted to an azido group and the product purified by HPLC. [ 3 H]-Az-NPA was found to be photolabile and to co-chromatograph with our synthetic unlabeled Az-NPA. Furthermore, the tritiated material was found to bind to zucchini hypocotyl cell membranes in a manner competitive with NPA as well as unlabeled Az-NPA. Photolysis of zucchini phase-partitioned plasma membranes in the presence of [ 3 H]-Az-NPA resulted in covalent association of tritium with the membranes. Much of this covalent association could be prevented by prior treatment of the membranes with excess NPA

  1. The human receptor for urokinase plasminogen activator. NH2-terminal amino acid sequence and glycosylation variants

    DEFF Research Database (Denmark)

    Behrendt, N; Rønne, E; Ploug, M

    1990-01-01

    -PA. The purified protein shows a single 55-60 kDa band after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining. It is a heavily glycosylated protein, the deglycosylated polypeptide chain comprising only 35 kDa. The glycosylated protein contains N-acetyl-D-glucosamine and sialic acid......, but no N-acetyl-D-galactosamine. Glycosylation is responsible for substantial heterogeneity in the receptor on phorbol ester-stimulated U937 cells, and also for molecular weight variations among various cell lines. The amino acid composition and the NH2-terminal amino acid sequence are reported...

  2. N-acetyl lysyltyrosylcysteine amide inhibits myeloperoxidase, a novel tripeptide inhibitor1[S

    Science.gov (United States)

    Zhang, Hao; Jing, Xigang; Shi, Yang; Xu, Hao; Du, Jianhai; Guan, Tongju; Weihrauch, Dorothee; Jones, Deron W.; Wang, Weiling; Gourlay, David; Oldham, Keith T.; Hillery, Cheryl A.; Pritchard, Kirkwood A.

    2013-01-01

    Myeloperoxidase (MPO) plays important roles in disease by increasing oxidative and nitrosative stress and oxidizing lipoproteins. Here we report N-acetyl lysyltyrosylcysteine amide (KYC) is an effective inhibitor of MPO activity. We show KYC inhibits MPO-mediated hypochlorous acid (HOCl) formation and nitration/oxidation of LDL. Disulfide is the major product of MPO-mediated KYC oxidation. KYC (⩽4,000 μM) does not induce cytotoxicity in bovine aortic endothelial cells (BAECs). KYC inhibits HOCl generation by phorbol myristate acetate (PMA)-stimulated neutrophils and human promyelocytic leukemia (HL-60) cells but not superoxide generation by PMA-stimulated HL-60 cells. KYC inhibits MPO-mediated HOCl formation in BAEC culture and protects BAECs from MPO-induced injury. KYC inhibits MPO-mediated lipid peroxidation of LDL whereas tyrosine (Tyr) and tryptophan (Trp) enhance oxidation. KYC is unique as its isomers do not inhibit MPO activity, or are much less effective. Ultraviolet-visible spectral studies indicate KYC binds to the active site of MPO and reacts with compounds I and II. Docking studies show the Tyr of KYC rests just above the heme of MPO. Interestingly, KYC increases MPO-dependent H2O2 consumption. These data indicate KYC is a novel and specific inhibitor of MPO activity that is nontoxic to endothelial cell cultures. Accordingly, KYC may be useful for treating MPO-mediated vascular disease. PMID:23883583

  3. N-Acetyl-S-(n-Propyl)-L-Cysteine in Urine from Workers Exposed to 1-Bromopropane in Foam Cushion Spray Adhesives

    Science.gov (United States)

    Hanley, Kevin W.; Petersen, Martin R.; Cheever, Kenneth L.; Luo, Lian

    2009-01-01

    1-Bromopropane (1-BP) has been marketed as an alternative for ozone depleting and other solvents; it is used in aerosol products, adhesives, metal, precision, and electronics cleaning solvents. Mechanisms of toxicity of 1-BP are not fully understood, but it may be a neurological and reproductive toxicant. Sparse exposure information prompted this study using 1-BP air sampling and urinary metabolites. Mercapturic acid conjugates are excreted in urine from 1-BP metabolism involving debromination. Research objectives were to evaluate the utility of urinary N-acetyl-S-(n-propyl)-L-cysteine (AcPrCys) for assessing exposure to 1-BP and compare it to urinary bromide [Br(−)] previously reported for these workers. Forty-eight-hour urine specimens were obtained from 30 workers at two factories where 1-BP spray adhesives were used to construct polyurethane foam seat cushions. Urine specimens were also obtained from 21 unexposed control subjects. All the workers' urine was collected into composite samples representing three time intervals: at work, after work but before bedtime, and upon awakening. Time-weighted average (TWA) geometric mean breathing zone concentrations were 92.4 and 10.5 p.p.m. for spraying and non-spraying jobs, respectively. Urinary AcPrCys showed the same trend as TWA exposures to 1-BP: higher levels were observed for sprayers. Associations of AcPrCys concentrations, adjusted for creatinine, with 1-BP TWA exposure were statistically significant for both sprayers (P < 0.05) and non-sprayers (P < 0.01). Spearman correlation coefficients for AcPrCys and Br(−) analyses determined from the same urine specimens were highly correlated (P < 0.0001). This study confirms that urinary AcPrCys is an important 1-BP metabolite and an effective biomarker for highly exposed foam cushion workers. PMID:19706636

  4. A step-by-step approach to study the influence of N-acetylation on the adjuvanticity of N,N,N-trimethyl chitosan (TMC) in an intranasal nanoparticulate influenza virus vaccine.

    Science.gov (United States)

    Verheul, Rolf J; Hagenaars, Niels; van Es, Thomas; van Gaal, Ethlinn V B; de Jong, Pascal H J L F; Bruijns, Sven; Mastrobattista, Enrico; Slütter, Bram; Que, Ivo; Heldens, Jacco G M; van den Bosch, Han; Glansbeek, Harrie L; Hennink, Wim E; Jiskoot, Wim

    2012-03-12

    Recently we reported that reacetylation of N,N,N-trimethyl chitosan (TMC) reduced the adjuvant effect of TMC in mice after intranasal (i.n.) administration of whole inactivated influenza virus (WIV) vaccine. The aim of the present study was to elucidate the mechanism of this lack of adjuvanticity. Reacetylated TMC (TMC-RA, degree of acetylation 54%) was compared with TMC (degree of acetylation 17%) at six potentially critical steps in the induction of an immune response after i.n. administration in mice. TMC-RA was degraded in a nasal wash to a slightly larger extent than TMC. The local i.n. distribution and nasal clearance of WIV were similar for both TMC types. Fluorescently labeled WIV was taken up more efficiently by Calu-3 cells when formulated with TMC-RA compared to TMC and both TMCs significantly reduced transport of WIV over a Calu-3 monolayer. Murine bone-marrow derived dendritic cell activation was similar for plain WIV, and WIV formulated with TMC-RA or TMC. The inferior adjuvant effect in mice of TMC-RA over that of TMC might be caused by a slightly lower stability of TMC-RA-WIV in the nasal cavity, rather than by any of the other factors studied in this paper. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. UDP-N-acetyl-α-D-glucosamine as acceptor substrate of β-1,4-galactosyltransferase : Enzymatic synthesis of UDP-N-acetyllactosamine

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Elling, L.; Zervosen, A.; Gutiérrez Gallego, R.; Nieder, V.; Malissard, M.; Berger, E.G.; Kamerling, J.P.

    1999-01-01

    The capacity of UDP-N-acetyl-α-D-glucosamine (UDP-GlcNAc) as an in vitro acceptor substrate for β-1,4-galactosyltransferase (β4GalT1, EC 2.4.1.38) from human and bovine milk and for recombinant human β4GalT1, expressed in Saccharomyces cerevisiae, was evaluated. It turned out that each of the

  6. A Ribbon-like Structure in the Ejective Organelle of the Green Microalga Pyramimonas parkeae (Prasinophyceae) Consists of Core Histones and Polymers Containing N-acetyl-glucosamine.

    Science.gov (United States)

    Yamagishi, Takahiro; Kurihara, Akira; Kawai, Hiroshi

    2015-11-01

    The green microalga, Pyramimonas parkeae (Prasinophyceae) has an ejective organelle containing a coiled ribbon structure resembling the ejectisome in Cryptophyta. This structure is discharged from the cell by a stimulus and extends to form a tube-like structure, but the molecular components of the structure have not been identified. Tricine-SDS-PAGE analysis indicated that the ribbon-like structure of P. parkeae contains some proteins and low molecular acidic polymers. Edman degradation, LC/MS/MS analyses and immunological studies demonstrated that their proteins are core histones (H3, H2A, H2B and H4). In addition, monosaccharide composition analysis of the ribbon-like structures and degradation by lysozyme strongly indicated that the ribbon-like structure consist of β (1-4) linked polymers containing N-acetyl-glucosamine. Purified polymers and recombinant histones formed glob-like or filamentous structures. Therefore we conclude that the ribbon-like structure of P. parkeae mainly consists of a complex of core histones (H3, H2A, H2B and H4) and polymers containing N-acetyl-glucosamine, and suggest to name the ejective organelle in P. parkeae the "histrosome" to distinguish it from the ejectisome in Cryptophyta. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Reduced hippocampal N-acetyl-aspartate (NAA) as a biomarker for overweight.

    Science.gov (United States)

    Coplan, Jeremy D; Fathy, Hassan M; Abdallah, Chadi G; Ragab, Sherif A; Kral, John G; Mao, Xiangling; Shungu, Dikoma C; Mathew, Sanjay J

    2014-01-01

    We previously demonstrated an inverse relationship between both dentate gyrus neurogenesis - a form of neuroplasticity - and expression of the antiapoptotic gene marker, BCL-2 and adult macaque body weight. We therefore explored whether a similar inverse correlation existed in humans between body mass index (BMI) and hippocampal N-acetyl-aspartate (NAA), a marker of neuronal integrity and putatively, neuroplasticity. We also studied the relationship of a potentially neurotoxic process, worry, to hippocampal NAA in patients with generalized anxiety disorder (GAD) and control subjects (CS). We combined two previously studied cohorts of GAD and control subjects. Using proton magnetic resonance spectroscopy imaging ((1)H MRSI) in medication-free patients with GAD (n = 29) and a matched healthy control group (n = 22), we determined hippocampal concentrations of (1) NAA (2) choline containing compounds (CHO), and (3) Creatine + phosphocreatine (CR). Data were combined from 1.5 T and 3 T scans by converting values from each cohort to z-scores. Overweight and GAD diagnosis were used as categorical variables while the Penn State Worry Questionnaire (PSWQ) and Anxiety Sensitivity Index (ASI) were used as dependent variables. Overweight subjects (BMI ≥ 25) exhibited lower NAA levels in the hippocampus than normal-weight subjects (BMI NAA and BMI. High scores on the PSWQ predicted low hippocampal NAA and CR. Both BMI and worry were independent inverse predictors of hippocampal NAA. Overweight was associated with reduced NAA concentrations in the hippocampus with a strong effect size. Future mechanistic studies are warranted.

  8. Reduced hippocampal N-acetyl-aspartate (NAA) as a biomarker for overweight☆

    Science.gov (United States)

    Coplan, Jeremy D.; Fathy, Hassan M.; Abdallah, Chadi G.; Ragab, Sherif A.; Kral, John G.; Mao, Xiangling; Shungu, Dikoma C.; Mathew, Sanjay J.

    2014-01-01

    Objective We previously demonstrated an inverse relationship between both dentate gyrus neurogenesis – a form of neuroplasticity – and expression of the antiapoptotic gene marker, BCL-2 and adult macaque body weight. We therefore explored whether a similar inverse correlation existed in humans between body mass index (BMI) and hippocampal N-acetyl-aspartate (NAA), a marker of neuronal integrity and putatively, neuroplasticity. We also studied the relationship of a potentially neurotoxic process, worry, to hippocampal NAA in patients with generalized anxiety disorder (GAD) and control subjects (CS). Methods We combined two previously studied cohorts of GAD and control subjects. Using proton magnetic resonance spectroscopy imaging (1H MRSI) in medication-free patients with GAD (n = 29) and a matched healthy control group (n = 22), we determined hippocampal concentrations of (1) NAA (2) choline containing compounds (CHO), and (3) Creatine + phosphocreatine (CR). Data were combined from 1.5 T and 3 T scans by converting values from each cohort to z-scores. Overweight and GAD diagnosis were used as categorical variables while the Penn State Worry Questionnaire (PSWQ) and Anxiety Sensitivity Index (ASI) were used as dependent variables. Results Overweight subjects (BMI ≥ 25) exhibited lower NAA levels in the hippocampus than normal-weight subjects (BMI NAA and BMI. High scores on the PSWQ predicted low hippocampal NAA and CR. Both BMI and worry were independent inverse predictors of hippocampal NAA. Conclusion Overweight was associated with reduced NAA concentrations in the hippocampus with a strong effect size. Future mechanistic studies are warranted. PMID:24501701

  9. Synthesis of O-[{sup 11}C]acetyl CoA, O-[{sup 11}C]acetyl-L-carnitine, and L-[{sup 11}C]carnitine labelled in specific positions, applied in PET studies on rhesus monkey

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Gunilla B.; Watanabe, Yasuyoshi; Valind, Sven; Kuratsune, Hirohiko; Laangstroem, Bengt

    1997-07-01

    The syntheses of L-carnitine, O-acetyl CoA, and O-acetyl-L-carnitine labelled with {sup 11}C at the 1- or 2-position of the acetyl group or the N-methyl position of carnitine, using the enzymes acetyl CoA synthetase and carnitine acetyltransferase, are described. With a total synthesis time of 45 min, O-[1-{sup 11}C]acetyl CoA and O-[2-{sup 11}C]acetyl CoA was obtained in 60-70% decay-corrected radiochemical yield, and O-[1-{sup 11}C]acetyl-L-carnitine and O-[2-{sup 11}C]acetyl-L-carnitine in 70-80% yield, based on [1-{sup 11}C]acetate or [2-{sup 11}C]acetate, respectively. By an N-methylation reaction with [{sup 11}C]methyl iodide, L-[methyl-{sup 11}C]carnitine was obtained within 30 min, and O-acetyl-L-[methyl-{sup 11}C]carnitine within 40 min, giving a decay-corrected radiochemical yield of 60% and 40-50%, respectively, based on [{sup 11}C]methyl iodide. Initial data of the kinetics of the different {sup 11}C-labelled L-carnitine and acetyl-L-carnitines in renal cortex of anaesthetized monkey (Macaca mulatta) are presented.

  10. Melatonin and N-acetyl-serotonin cross the red blood cell membrane and evoke calcium mobilization in malarial parasites

    Directory of Open Access Journals (Sweden)

    Hotta C.T.

    2003-01-01

    Full Text Available The duration of the intraerythrocytic cycle of Plasmodium is a key factor in the pathogenicity of this parasite. The simultaneous attack of the host red blood cells by the parasites depends on the synchronicity of their development. Unraveling the signals at the basis of this synchronicity represents a challenging biological question and may be very important to develop alternative strategies for therapeutic approaches. Recently, we reported that the synchrony of Plasmodium is modulated by melatonin, a host hormone that is synthesized only during the dark phases. Here we report that N-acetyl-serotonin, a melatonin precursor, also releases Ca2+ from isolated P. chabaudi parasites at micro- and nanomolar concentrations and that the release is blocked by 250 mM luzindole, an antagonist of melatonin receptors, and 20 mM U73122, a phospholipase C inhibitor. On the basis of confocal microscopy, we also report the ability of 0.1 µM melatonin and 0.1 µM N-acetyl-serotonin to cross the red blood cell membrane and to mobilize intracellular calcium in parasites previously loaded with the fluorescent calcium indicator Fluo-3 AM. The present data represent a step forward into the understanding of the signal transduction process in the host-parasite relationship by supporting the idea that the host hormone melatonin and N-acetyl-serotonin generate IP3 and therefore mobilize intracellular Ca2+ in Plasmodium inside red blood cells.

  11. Studies investigating the excretion of acetyl urea in the milk of dairy cows receiving oral doses of 14C acetyl urea

    International Nuclear Information System (INIS)

    Bergner, H.; Kijora, C.; Goersch, R.

    1976-01-01

    2 experimental cows were fed acetyl urea several weeks before the trial was started. The first cow received a daily amount of 200 g and the second cow 855 g. On the first day of experiment both cows were given 5 mCi of 14 C acetyl urea intraruminally. Up to 6 hrs after the beginning of the experiment acetyl urea in blood plasma was shown to contain a higher proportion of 14 C activity than urea. 0.21 g urea and 0.18 g acetyl urea were contained in 1 kg of milk from cow No 1 while 1 kg of milk from cow No 2 contained 0.18 g urea and 0.12 g acetyl urea. The feeding of acetyl urea to dairy cows is not recommended on the basis of the fact that any further contamination of human nutrition with foreign substances should be possibly avoided. (author)

  12. Pharmacokinetics and metabolic rates of acetyl salicylic acid and its metabolites in an Otomi ethnic group of Mexico.

    Science.gov (United States)

    Lares-Asseff, Ismael; Juárez-Olguín, Hugo; Flores-Pérez, Janett; Guillé-Pérez, Adrian; Vargas, Arturo

    2004-05-01

    The objective of this study was to determine pharmacokinetic differences of acetyl salicylic acid (ASA) and its metabolites: gentisic acid (GA), salicylic acid (SA) and salicyluric acid (SUA) between Otomies and Mesticians healthy subjects. Design. Ten Otomies and 10 Mesticians were included. After a single dose of aspirin given orally (15 mg/kg), blood and urine samples were collected at different times. Results. Pharmacokinetic parameters of salicylates showed significant differences, except distribution volume of SA, and elimination half-life of SUA. Metabolic rates of ASA showed significant differences for all rates between both groups. On the other hand, percentages of dose excreted were more reduced for SA and SUA for the Otomies than for the Mesticians. Conclusion. Results reflect differences in the hydrolysis way i.e. from ASA to SA and aromatic hydroxylation i.e. from SA to GA, which were slower in Otomies subjects, showing a possible pharmacokinetic differences about the capabilities of ASA biotransformation as a consequence of ethnic differences.

  13. Diaphragm Muscle Weakness Following Acute Sustained Hypoxic Stress in the Mouse Is Prevented by Pretreatment with N-Acetyl Cysteine

    Directory of Open Access Journals (Sweden)

    Andrew J. O’Leary

    2018-01-01

    Full Text Available Oxygen deficit (hypoxia is a major feature of cardiorespiratory diseases characterized by diaphragm dysfunction, yet the putative role of hypoxic stress as a driver of diaphragm dysfunction is understudied. We explored the cellular and functional consequences of sustained hypoxic stress in a mouse model. Adult male mice were exposed to 8 hours of normoxia, or hypoxia (FiO2 = 0.10 with or without antioxidant pretreatment (N-acetyl cysteine, 200 mg/kg i.p.. Ventilation and metabolism were measured. Diaphragm muscle contractile function, myofibre size and distribution, gene expression, protein signalling cascades, and oxidative stress (TBARS were determined. Hypoxia caused pronounced diaphragm muscle weakness, unrelated to increased respiratory muscle work. Hypoxia increased diaphragm HIF-1α protein content and activated MAPK, mTOR, Akt, and FoxO3a signalling pathways, largely favouring protein synthesis. Hypoxia increased diaphragm lipid peroxidation, indicative of oxidative stress. FoxO3 and MuRF-1 gene expression were increased. Diaphragm 20S proteasome activity and muscle fibre size and distribution were unaffected by acute hypoxia. Pretreatment with N-acetyl cysteine substantially enhanced cell survival signalling, prevented hypoxia-induced diaphragm oxidative stress, and prevented hypoxia-induced diaphragm dysfunction. Hypoxia is a potent driver of diaphragm weakness, causing myofibre dysfunction without attendant atrophy. N-acetyl cysteine protects the hypoxic diaphragm and may have application as a potential adjunctive therapy.

  14. Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation.

    Directory of Open Access Journals (Sweden)

    Misty L Kuhn

    Full Text Available The emerging view of Nε-lysine acetylation in eukaryotes is of a relatively abundant post-translational modification (PTM that has a major impact on the function, structure, stability and/or location of thousands of proteins involved in diverse cellular processes. This PTM is typically considered to arise by the donation of the acetyl group from acetyl-coenzyme A (acCoA to the ε-amino group of a lysine residue that is reversibly catalyzed by lysine acetyltransferases and deacetylases. Here, we provide genetic, mass spectrometric, biochemical and structural evidence that Nε-lysine acetylation is an equally abundant and important PTM in bacteria. Applying a recently developed, label-free and global mass spectrometric approach to an isogenic set of mutants, we detected acetylation of thousands of lysine residues on hundreds of Escherichia coli proteins that participate in diverse and often essential cellular processes, including translation, transcription and central metabolism. Many of these acetylations were regulated in an acetyl phosphate (acP-dependent manner, providing compelling evidence for a recently reported mechanism of bacterial Nε-lysine acetylation. These mass spectrometric data, coupled with observations made by crystallography, biochemistry, and additional mass spectrometry showed that this acP-dependent acetylation is both non-enzymatic and specific, with specificity determined by the accessibility, reactivity and three-dimensional microenvironment of the target lysine. Crystallographic evidence shows acP can bind to proteins in active sites and cofactor binding sites, but also potentially anywhere molecules with a phosphate moiety could bind. Finally, we provide evidence that acP-dependent acetylation can impact the function of critical enzymes, including glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase, and RNA polymerase.

  15. SENIEUR status of the originating cell donor negates certain 'anti-immunosenescence' effects of ebselen and N-acetyl cysteine in human T cell clone cultures.

    Science.gov (United States)

    Marthandan, Shiva; Freeburn, Robin; Steinbrecht, Susanne; Pawelec, Graham; Barnett, Yvonne

    2014-01-01

    Damage to T cells of the immune system by reactive oxygen species may result in altered cell function or cell death and thereby potentially impact upon the efficacy of a subsequent immune response. Here, we assess the impact of the antioxidants Ebselen and N-acetyl cysteine on a range of biological markers in human T cells derived from a SENIEUR status donor. In addition, the impact of these antioxidants on different MAP kinase pathways in T cells from donors of different ages was also examined. T cell clones were derived from healthy 26, 45 and SENIEUR status 80 year old people and the impact of titrated concentrations of Ebselen or N-acetyl cysteine on their proliferation and in vitro lifespan, GSH:GSSG ratio as well as levels of oxidative DNA damage and on MAP kinase signaling pathways was examined. In this investigation neither Ebselen nor N-acetyl cysteine supplementation had any impact on the biological endpoints examined in the T cells derived from the SENIEUR status 80 year old donor. This is in contrast to the anti-immunosenescent effects of these antioxidants on T cells from donors of 26 or 45 years of age. The analysis of MAP kinases showed that pro-apoptotic pathways become activated in T cells with increasing in vitro age and that Ebselen or N-acetyl cysteine could decrease activation (phosphorylation) in T cells from 26 or 45 year old donors, but not from the SENIEUR status 80 year old donor. The results of this investigation demonstrate that the biological phenotype of SENIEUR status derived human T cells negates the anti-immunosenescence effects of Ebselen and also N-acetyl cysteine. The results highlight the importance of pre-antioxidant intervention evaluation to determine risk-benefit.

  16. A Preliminary Study: N-acetyl-L-cysteine Improves Semen Quality following Varicocelectomy

    Directory of Open Access Journals (Sweden)

    Foroogh Barekat

    2016-05-01

    Full Text Available Background: Surgery is considered the primary treatment for male infertility from clinical varicocele. One of the main events associated with varicocele is excessive production of reactive oxygen species (ROS. N-acetyl-L-cysteine (NAC, an antioxidant that scavenges free radicals, is considered a supplement to alleviate glutathione (GSH depletion during oxidative stress. Despite beneficial effects of NAC in other pathological events, there is no report on the effect of NAC in individuals with varicocele. Therefore, the aim of this study is to evaluate the outcome of NAC on semen quality, protamine content, DNA damage, oxidative stress and fertility following varicocelectomy. Materials and Methods: This prospective clinical trial included 35 infertile men with varicocele randomly divided into control (n=20 and NAC (n=15 groups. We assessed semen parameters, protamine content [chromomycin A3 (CMA3], DNA integrity [terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL] and oxidative stress [2', 7'-dichlorodihydrofluorescein-diacetate (DCFH-DA] before and three months after varicocelectomy. Results: Percentage of abnormal semen parameters, protamine deficiency, DNA fragmentation and oxidative stress were significantly decreased in both groups compared to before surgery. We calculated the percentage of improvement in these parameters compared to before surgery for each group, then compared the results between the groups. Only percentage of protamine deficiency and DNA fragmentation significantly differed between the NAC and control groups. Conclusion: The results of this study, for the first time, revealed that NAC improved chromatin integrity and pregnancy rate when administered as adjunct therapy post-varicocelectomy (Registeration Number: IRCT201508177223N5.

  17. Investigation on interaction of Achatinin, a 9-O-acetyl sialic acid-binding lectin, with lipopolysaccharide in the innate immunity of Achatina fulica snails.

    Science.gov (United States)

    Biswas, C; Sinha, D; Mandal, C

    2000-01-01

    Achatinin, a 9-O-acetyl sialic acid (9-O-AcSA) binding lectin, has been demonstrated to be synthesized in amoebocytes of Achatina fulica snails. This lectin was affinity-purified from Achatina amoebocytes lysate (AAL); it appeared as a single band on native polyacrylamide gel electrophoresis (PAGE) and showed 16 identical subunits of M.W. 15 kDa on sodium dodecyl sulphate (SDS)-PAGE. It was found to be homologous with an earlier reported lectin, Achatinin-H, derived from hemolymph of A. fulica snails (Sen, G., Mandal, C., 1995. The specificity of the binding site of Achatinin-H, a sialic-acid binding lectin from Achantia fulica. Carbohydr. Res., 268, 115-125). Homology between both lectins was confirmed by their similar electrophoretic mobilities, carbohydrate specificity and cross reactivity on immunodiffusion. Achatinin showed in vitro calcium dependent binding to two 9-O-acetylated sialoglyoconjugates (9-O-AcSG) on lipopolysaccharide (LPS) (Escherichia coli 055: B5) of M.W. 40 kDa and 27.5 kDa, which was abolished following de-O-acetylation. Based on the previously defined narrow sugar specificity of Achatinin towards 9-O-AcSAalpha2-->6GalNAc [Sen, G., Mandal, C., 1995. The specificity of the binding site of Achatinin-H, a sialic-acid binding lectin from Achatina fulica. Carbohydr. Res., 268, 115-125], we conclude that LPS contains this lectinogenic epitope at the terminal sugar moiety. The Achatinin-mediated hemagglutination inhibition of rabbit erythrocytes by LPS further confirmed it. The lectin exhibited bacteriostatic effect on Gram-negative bacteria E. coli, DH5alpha and C600. AAL was earlier reported to undergo coagulation in presence of pg level of LPS (Biswas, C., Mandal, C., 1999. The role of amoebocytes in the endotoxin-mediated coagulation in the innate immunity of Achatina fulica snail, Scand. J. Immunol. 49, 131-138). We now demonstrate that Achatinin participates in LPS-mediated coagulation of AAL as indicated by enhanced release of Achatinin from

  18. Identification of a Histidine Metal Ligand in the argE-Encoded N-Acetyl-L-Ornithine Deacetylase from Escherichia coli.

    Science.gov (United States)

    McGregor, Wade C; Gillner, Danuta M; Swierczek, Sabina I; Liu, Dali; Holz, Richard C

    2013-01-01

    The H355A, H355K, H80A, and H80K mutant enzymes of the argE-encoded N-acetyl-L-ornithine deacetylase (ArgE) from Escherichia coli were prepared, however, only the H355A enzyme was found to be soluble. Kinetic analysis of the Co(II)-loaded H355A exhibited activity levels that were 380-fold less than Co(II)-loaded WT ArgE. Electronic absorption spectra of Co(II)-loaded H355A-ArgE indicate that the bound Co(II) ion resides in a distorted, five-coordinate environment and Isothermal Titration Calorimetry (ITC) data for Zn(II) binding to the H355A enzyme provided a dissociation constant (K d) of 39 μM. A three-dimensional homology model of ArgE was generated using the X-ray crystal structure of the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae confirming the assignment of H355 as well as H80 as active site ligands.

  19. Regioselective 1-N-Alkylation and Rearrangement of Adenosine Derivatives.

    Science.gov (United States)

    Oslovsky, Vladimir E; Drenichev, Mikhail S; Mikhailov, Sergey N

    2015-01-01

    Several methods for the preparation of some N(6)-substituted adenosines based on selective 1-N-alkylation with subsequent Dimroth rearrangement were developed. The proposed methods seem to be effective for the preparation of natural N(6)-isopentenyl- and N(6)-benzyladenosines, which are known to possess pronounced biological activities. Direct 1-N-alkylation of 2',3',5'-tri-O-acetyladenosine and 3',5'-di-O-acetyl-2'-deoxyadenosine with alkyl halides in N,N-dimethylformamide (DMF) in the presence of BaCO3 and KI gave 1-N-substituted derivatives with quantitative yields, whereas 1-N-alkylation of adenosine was accompanied by significant O-alkylation. Moreover, the reaction of trimethylsilyl derivatives of N(6)-acetyl-2',3',5'-tri-O-acetyladenosine and N(6)-acetyl-3',5'-di-O-acetyl-2'-deoxyadenosine with alkyl halides leads to the formation of the stable 1-N-substituted adenosines. Dimroth rearrangement of 1-N-substituted adenosines in aqueous ammonia yields pure N(6)-substituted adenosines.

  20. CPLA 1.0: an integrated database of protein lysine acetylation.

    Science.gov (United States)

    Liu, Zexian; Cao, Jun; Gao, Xinjiao; Zhou, Yanhong; Wen, Longping; Yang, Xiangjiao; Yao, Xuebiao; Ren, Jian; Xue, Yu

    2011-01-01

    As a reversible post-translational modification (PTM) discovered decades ago, protein lysine acetylation was known for its regulation of transcription through the modification of histones. Recent studies discovered that lysine acetylation targets broad substrates and especially plays an essential role in cellular metabolic regulation. Although acetylation is comparable with other major PTMs such as phosphorylation, an integrated resource still remains to be developed. In this work, we presented the compendium of protein lysine acetylation (CPLA) database for lysine acetylated substrates with their sites. From the scientific literature, we manually collected 7151 experimentally identified acetylation sites in 3311 targets. We statistically studied the regulatory roles of lysine acetylation by analyzing the Gene Ontology (GO) and InterPro annotations. Combined with protein-protein interaction information, we systematically discovered a potential human lysine acetylation network (HLAN) among histone acetyltransferases (HATs), substrates and histone deacetylases (HDACs). In particular, there are 1862 triplet relationships of HAT-substrate-HDAC retrieved from the HLAN, at least 13 of which were previously experimentally verified. The online services of CPLA database was implemented in PHP + MySQL + JavaScript, while the local packages were developed in JAVA 1.5 (J2SE 5.0). The CPLA database is freely available for all users at: http://cpla.biocuckoo.org.

  1. SYNTHESIS OF FLAVANONE-6-CARBOXYLIC ACID DERIVATIVES FROM SALICYLIC ACID DERIVATIVE

    Directory of Open Access Journals (Sweden)

    Muhammad Idham Darussalam Mardjan

    2012-02-01

    Full Text Available Synthesis of flavanone-6-carboxylic acid derivatives had been conducted via the route of chalcone. The synthesis was carried out from salicylic acid derivative, i.e. 4-hydroxybenzoic acid, via esterification, Fries rearrangement, Claisen-Schmidt condensation and 1,4-nucleophilic addition reactions. Structure elucidation of products was performed using FT-IR, 1H-NMR, GC-MS and UV-Vis spectrometers. Reaction of 4-hydroxybenzoic acid with methanol catalyzed with sulfuric acid produced methyl 4-hydroxybenzoate in 87% yield. The acid-catalyzed-acetylation of the product using acetic anhydride gave methyl 4-acetoxybenzoate in 75% yield. Furthermore, solvent-free Fries rearrangement of methyl 4-acetoxybenzoate in the presence of AlCl3 produced 3-acetyl-4-hydroxybenzoic acid as the acetophenone derivatives in 67% yield. Then, Claisen-Schmidt condensation of the acetophenone and benzaldehyde derivatives of p-anisaldehyde and veratraldehyde in basic condition gave 2'-hydroxychalcone-5'-carboxylic acid derivatives  in 81 and 71 % yield, respectively. Finally, the ring closure reaction of the chalcone yielded the corresponding flavanone-6-carboxylic acids in 67 and 59% yield, respectively.

  2. Acetylation of spermidine and methylglyoxal bis(guanylhydrazone) in baby-hamster kidney cells (BHK-21/C13).

    Science.gov (United States)

    Wallace, H M; Nuttall, M E; Robinson, F C

    1988-01-01

    Treatment of BHK-21/C13 cells with methylglyoxal bis(guanylhydrazone) (MGBG) induced the cytosolic form of spermidine N1-acetyltransferase. It stabilized the enzyme against proteolytic degradation, but the drug did not affect the enzyme activity in vitro. MGBG was itself acetylated by BHK-21/C13 cells, but at only one-tenth the rate at which spermidine was acetylated. Acetylation occurred almost exclusively in the nuclear fraction. The product was identified as N-acetyl-MGBG by h.p.l.c., by using [3H]acetyl-CoA and [14C]MGBG as co-substrates. The results suggest that the acetylation of MGBG by BHK-21/C13 cells occurs by a different acetyltransferase enzyme from that which acetylates spermidine. PMID:3421945

  3. Evidence for lysine acetylation in the coat protein of a polerovirus.

    Science.gov (United States)

    Cilia, Michelle; Johnson, Richard; Sweeney, Michelle; DeBlasio, Stacy L; Bruce, James E; MacCoss, Michael J; Gray, Stewart M

    2014-10-01

    Virions of the RPV strain of Cereal yellow dwarf virus-RPV were purified from infected oat tissue and analysed by MS. Two conserved residues, K147 and K181, in the virus coat protein, were confidently identified to contain epsilon-N-acetyl groups. While no functional data are available for K147, K181 lies within an interfacial region critical for virion assembly and stability. The signature immonium ion at m/z 126.0919 demonstrated the presence of N-acetyllysine, and the sequence fragment ions enabled an unambiguous assignment of the epsilon-N-acetyl modification on K181. We hypothesize that selection favours acetylation of K181 in a fraction of coat protein monomers to stabilize the capsid by promoting intermonomer salt bridge formation.

  4. Quantification of the neurotransmitters melatonin and N-acetyl-serotonin in human serum by supercritical fluid chromatography coupled with tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wolrab, Denise; Frühauf, Peter; Gerner, Christopher, E-mail: christopher.gerner@univie.ac.at

    2016-09-21

    The aim of this study was developing a supercritical fluid chromatography tandem mass spectrometry (SFC-MS/MS) method and an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method, for the analysis of N-acetyl-serotonin (NAS) and melatonin (Mel) in human serum, and to compare the performance of these methods. Deuterated isotopologues of the neurotransmitters were synthesized and evaluated for suitability as internal standards in sample preparation. Liquid-liquid extraction was selected as sample preparation procedure. With chloroform, the best extraction solvent tested, an extraction yield of 48 ± 2% for N-acetyl-serotonin and 101 ± 10% for melatonin was achieved. SFC separation was accomplished within 3 min on a BEH stationary phase, employing isocratic elution with 90% carbon dioxide and 0.1% formic acid as well as 0.05% ammonium formate in methanol. For the 4 min UHPLC gradient separation with 0.1% formic acid in water and methanol, respectively, a Kinetex XB-C18 was used as stationary phase. Both chromatographic techniques were optimized regarding mobile phase composition, additives to the mobile phase and column temperature. Multiple reaction monitoring (MRM) analysis was used for quantification of the metabolites. Both methods were validated regarding retention time stability, LOD, LOQ, repeatability and reproducibility of quantification, process efficiency, extraction recovery and matrix effects. LOD and LOQ were 0.017 and 0.05 pg μL{sup −1} for NAS and 0.006 and 0.018 pg μL{sup −1} for Mel in SFC-MS/MS compared to 0.028 and 0.1 pg μL{sup −1} for NAS and 0.006 and 0.017 pg μL{sup −1} for Mel in UHPLC-MS/MS. - Highlights: • Use of supercritical fluid chromatography (SFC) hyphenated with MS/MS. • Separation of biological relevant polar metabolites with SFC. • Critical comparison of validation parameters obtained with UHPLC.

  5. E2F family members are differentially regulated by reversible acetylation

    DEFF Research Database (Denmark)

    Marzio, G; Wagener, C; Gutierrez, M I

    2000-01-01

    of the other E2F family members. Here we report that E2F-1, -2, and -3, but not E2F-4, -5, and -6, associate with and are acetylated by p300 and cAMP-response element-binding protein acetyltransferases. Acetylation occurs at three conserved lysine residues located at the N-terminal boundary of their DNA......The six members of the E2F family of transcription factors play a key role in the control of cell cycle progression by regulating the expression of genes involved in DNA replication and cell proliferation. E2F-1, -2, and -3 belong to a structural and functional subfamily distinct from those...

  6. Insulin-induced inhibition of gluconeogenesis genes, including glutamic pyruvic transaminase 2, is associated with reduced histone acetylation in a human liver cell line.

    Science.gov (United States)

    Honma, Kazue; Kamikubo, Michiko; Mochizuki, Kazuki; Goda, Toshinao

    2017-06-01

    Hepatic glutamic pyruvic transaminase (GPT; also known as alanine aminotransferase) is a gluconeogenesis enzyme that catalyzes conversions between alanine and pyruvic acid. It is also used as a blood biomarker for hepatic damage. In this study, we investigated whether insulin regulates GPT expression, as it does for other gluconeogenesis genes, and if this involves the epigenetic modification of histone acetylation. Human liver-derived HepG2 cells were cultured with 0.5-100nM insulin for 8h, and the mRNA expression of GPT, glutamic-oxaloacetic transaminase (GOT), γ-glutamyltransferase (GGT), PCK1, G6PC and FBP1 was measured. We also investigated the extent of histone acetylation around these genes. Insulin suppressed the mRNA expression of gluconeogenesis genes (GPT2, GOT1, GOT2, GGT1, GGT2, G6PC, and PCK1) in HepG2 cells in a dose-dependent manner. mRNA levels of GPT2, but not GPT1, were decreased by insulin. Histone acetylation was also reduced around GPT2, G6PC, and PCK1 in response to insulin. The expression of GPT2 and other gluconeogenesis genes such as G6PC and PCK1 was suppressed by insulin, in association with decreases in histone H3 and H4 acetylation surrounding these genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Studies investigating the excretion of acetyl urea in the milk of dairy cows receiving oral doses of /sup 14/C acetyl urea

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, H; Kijora, C; Goersch, R [Humboldt-Universitaet, Berlin (German Democratic Republic). Sektion Tierproduktion und Veterinaermedizin

    1976-01-01

    2 experimental cows were fed acetyl urea several weeks before the trial was started. The first cow received a daily amount of 200 g and the second cow 855 g. On the first day of experiment both cows were given 5 mCi of /sup 14/C acetyl urea intraruminally. Up to 6 hrs after the beginning of the experiment acetyl urea in blood plasma was shown to contain a higher proportion of /sup 14/C activity than urea. 0.21 g urea and 0.18 g acetyl urea were contained in 1 kg of milk from cow No 1 while 1 kg of milk from cow No 2 contained 0.18 g urea and 0.12 g acetyl urea. The feeding of acetyl urea to dairy cows is not recommended on the basis of the fact that any further contamination of human nutrition with foreign substances should be possibly avoided.

  8. 5,5-Dihydroxybarbituric acid 1,4-dioxane hemisolvate

    Directory of Open Access Journals (Sweden)

    Thomas Gelbrich

    2010-05-01

    Full Text Available The asymmetric unit of the title compound,, C4H4N2O5·0.5C4H8O2, contains one molecule of 5,5-dihydroxybarbituric acid with a nearly planar barbiturate ring and half a molecule of 1,4-dioxane. The geometry of the centrosymmetric dioxane molecule is close to an ideal chair conformation. The crystal structure exhibits a complex three-dimensional hydrogen-bonded network. Barbiturate molecules are connected to one another via N—H...O=C, O—H...O=C and N—H...O(hydroxy interactions, while the barbituric acid molecule is linked to dioxane by an O—H...O contact.

  9. Benzoylated Uronic Acid Building Blocks and Synthesis of N-Uronate Conjugates of Lamotrigine

    Directory of Open Access Journals (Sweden)

    Bård Helge Hoff

    2012-01-01

    Full Text Available A chemoenzymatic approach towards benzoylated uronic acid building blocks has been investigated starting with benzoylated hexapyranosides using regioselective C-6 enzymatic hydrolysis as the key step. Two of the building blocks were reacted with the antiepileptic drug lamotrigine. Glucuronidation of lamotrigine using methyl (2,3,4-tri-O-benzoyl-α-D-glycopyranosyl bromideuronate proceeded to give the N2-conjugate. However, lamotrigine-N2-glucuronide was most efficiently synthesised from methyl (2,3,4-tri-O-acetyl-α-D-glucopyranosyl bromideuronate. Employing nitromethane as solvent with CdCO3 as a base lamotrigine-N2 glucuronide was prepared in a high yield (41%. Also methyl (2,3-di-O-benzoyl-4-deoxy-4-fluoro-α-D-glucosyl bromideuronate underwent N-glucuronidation, but the product was unstable, eliminating hydrogen fluoride to give the corresponding enoate conjugate.

  10. Molecular Structure of WlbB, a Bacterial N-Acetyltransferase Involved in the Biosynthesis of 2,3-Diacetamido-2,3-dideoxy-d-mannuronic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Thoden, James B.; Holden, Hazel M. (UW)

    2010-09-08

    The pathogenic bacteria Pseudomonas aeruginosa and Bordetella pertussis contain in their outer membranes the rare sugar 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid. Five enzymes are required for the biosynthesis of this sugar starting from UDP-N-acetylglucosamine. One of these, referred to as WlbB, is an N-acetyltransferase that converts UDP-2-acetamido-3-amino-2,3-dideoxy-D-glucuronic acid (UDP-GlcNAc3NA) to UDP-2,3-diacetamido-2,3-dideoxy-D-glucuronic acid (UDP-GlcNAc3NAcA). Here we report the three-dimensional structure of WlbB from Bordetella petrii. For this analysis, two ternary structures were determined to 1.43 {angstrom} resolution: one in which the protein was complexed with acetyl-CoA and UDP and the second in which the protein contained bound CoA and UDP-GlcNAc3NA. WlbB adopts a trimeric quaternary structure and belongs to the L{beta}H superfamily of N-acyltransferases. Each subunit contains 27 {beta}-strands, 23 of which form the canonical left-handed {beta}-helix. There are only two hydrogen bonds that occur between the protein and the GlcNAc3NA moiety, one between O{sup {delta}1} of Asn 84 and the sugar C-3{prime} amino group and the second between the backbone amide group of Arg 94 and the sugar C-5{prime} carboxylate. The sugar C-3{prime} amino group is ideally positioned in the active site to attack the si face of acetyl-CoA. Given that there are no protein side chains that can function as general bases within the GlcNAc3NA binding pocket, a reaction mechanism is proposed for WlbB whereby the sulfur of CoA ultimately functions as the proton acceptor required for catalysis.

  11. N-acetyl cysteine in ovulation induction of PCOS women underwent intrauterine insemination: An RCT

    Directory of Open Access Journals (Sweden)

    Tahereh Behrouzi Lak

    2017-08-01

    Full Text Available Background: N-acetyl cysteine (NAC was proposed as an adjuvant to clomiphene citratefor ovulation induction in patients with polycystic ovary syndrome (PCOS without clomiphene citrate resistance. Objective: To evaluate the effect of NAC on pregnancy rate in PCOS patients who were candidates for intrauterine insemination. Materials and Methods: In this randomized clinical trial 97 PCOS women aged 18-38 years were enrolled in two groups, randomly. For the case group (n=49, NAC (1.2 gr+ clomiphene citrate (100 mg + letrozole (5mg were prescribed Daily from the third day of menstruation cycle for five days. The control group (n=48 had the same drug regimen without NAC. In order to follicular development, GONALF was injected on days of 7-11 menstrual cycles in all participants. When the follicle size was 18mm or more, HCG (10000 IU was injected intramuscular and the intrauterine insemination was performed after 34-36 hr. Results: There were not significant differences between study groups regarding mean endometrial thickness (p=0.14, mean number of mature follicles (p=0.20 and the pregnancy rate (p=0.09. Conclusion: NAC is ineffective in inducing or augmenting ovulation in PCOS patients who were candidates for intrauterine insemination and cannot be recommended as an adjuvant to CC in such patients.

  12. Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid.

    Science.gov (United States)

    Fivian-Hughes, Amanda S; Houghton, Joanna; Davis, Elaine O

    2012-02-01

    Thymidylate synthase (TS) enzymes catalyse the biosynthesis of deoxythymidine monophosphate (dTMP or thymidylate), and so are important for DNA replication and repair. Two different types of TS proteins have been described (ThyA and ThyX), which have different enzymic mechanisms and unrelated structures. Mycobacteria are unusual as they encode both thyA and thyX, and the biological significance of this is not yet understood. Mycobacterium tuberculosis ThyX is thought to be essential and a potential drug target. We therefore analysed M. tuberculosis thyA and thyX expression levels, their essentiality and roles in pathogenesis. We show that both thyA and thyX are expressed in vitro, and that this expression significantly increased within murine macrophages. Under all conditions tested, thyA expression exceeded that of thyX. Mutational studies show that M. tuberculosis thyX is essential, confirming that the enzyme is a plausible drug target. The requirement for M. tuberculosis thyX in the presence of thyA implies that the essential function of ThyX is something other than dTM synthesis [corrected].We successfully deleted thyA from the M. tuberculosis genome, and this deletion conferred an in vitro growth defect that was not observed in vivo. Presumably ThyX performs TS activity within M. tuberculosis ΔthyA at a sufficient rate in vivo for normal growth, but the rate in vitro is less than optimal. We also demonstrate that thyA deletion confers M. tuberculosis p-aminosalicylic acid resistance, and show by complementation studies that ThyA T202A and V261G appear to be functional and non-functional, respectively.

  13. A proteome-scale study on in vivo protein Nα-acetylation using an optimized method

    DEFF Research Database (Denmark)

    Zhang, Xumin; Ye, Juanying; Engholm-Keller, Kasper

    2011-01-01

    Protein N-terminal acetylation (N(α) -acetylation) is among the most common modifications in eukaryotes. We previously described a simple method to enrich N(α) -modified peptides using CNBr-activated Sepharose resin. A limitation of this method is that an optimal ratio of sample to resin had to b...

  14. Supramolecular architecture in a co-crystal of the N(7—H tautomeric form of N6-benzoyladenine with adipic acid (1/0.5

    Directory of Open Access Journals (Sweden)

    Robert Swinton Darious

    2016-06-01

    Full Text Available The asymmetric unit of the title co-crystal, C12H9N5O·0.5C6H10O4, consists of one molecule of N6-benzoyladenine (BA and one half-molecule of adipic acid (AA, the other half being generated by inversion symmetry. The dihedral angle between the adenine and phenyl ring planes is 26.71 (7°. The N6-benzoyladenine molecule crystallizes in the N(7—H tautomeric form with three non-protonated N atoms. This tautomeric form is stabilized by intramolecular N—H...O hydrogen bonding between the carbonyl (C=O group and the N(7—H hydrogen atom on the Hoogsteen face of the purine ring, forming an S(7 ring motif. The two carboxyl groups of adipic acid interact with the Watson–Crick face of the BA molecules through O—H...N and N—H...O hydrogen bonds, generating an R22(8 ring motif. The latter units are linked by N—H...N hydrogen bonds, forming layers parallel to (10-5. A weak C—H...O hydrogen bond is also present, linking adipic acid molecules in neighbouring layers, enclosing R22(10 ring motifs and forming a three-dimensional structure. C=O...π and C—H...π interactions are also present in the structure.

  15. Separation and purification of hyaluronic acid by glucuronic acid imprinted microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Akdamar, H.Acelya; Sarioezlue, Nalan Yilmaz [Department of Biology, Anadolu University, Eskisehir (Turkey); Ozcan, Ayca Atilir; Ersoez, Arzu [Department of Chemistry, Anadolu University, Eskisehir (Turkey); Denizli, Adil [Department of Chemistry, Hacettepe University, Ankara (Turkey); Say, Ridvan, E-mail: rsay@anadolu.edu.tr [Department of Chemistry, Anadolu University, Eskisehir (Turkey); BIBAM (Plant, Drug and Scientific Researches Center), Anadolu University, Eskisehir (Turkey)

    2009-05-05

    The purification of hyaluronic acid (HA) is relatively significant to use in biomedical applications. The structure of HA is formed by the repetitive units of glucuronic acid and N-acetyl glucosamine. In this study, glucuronic acid-imprinted microbeads have been supplied for the purification of HA from cell culture (Streptococcus equi). Histidine-functional monomer, methacryloylamidohistidine (MAH) was chosen as the metal-complexing monomer. The glucuronic acid-imprinted poly(ethyleneglycoldimethacrylate-MAH-Copper(II)) [p(EDMA-MAH-Cu{sup 2+})] microbeads have been synthesized by typical suspension polymerization procedure. The template glucuronic acid has been removed by employing 5 M methanolic KOH solution. p(EDMA-MAH-Cu{sup 2+}) microbeads have been characterized by elemental analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) images and swelling studies. Moreover, HA adsorption experiments have been performed in a batch experimental set-up. Purification of HA from cell culture supernatant has been also investigated by determining the hyaluronidase activity using purified HA as substrate. The glucuronic acid imprinted p(EDMA-MAH-Cu{sup 2+}) particles can be used many times with no significant loss in adsorption capacities. Also, the selectivity of prepared molecular imprinted polymers (MIP) has been examined. Results have showed that MIP particles are 19 times more selective for glucuronic acid than N-acetylglucose amine.

  16. Supra-molecular architecture in a co-crystal of the N(7)-H tautomeric form of N (6)-benzoyl-adenine with adipic acid (1/0.5).

    Science.gov (United States)

    Swinton Darious, Robert; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-06-01

    The asymmetric unit of the title co-crystal, C12H9N5O·0.5C6H10O4, consists of one mol-ecule of N (6)-benzoyl-adenine (BA) and one half-mol-ecule of adipic acid (AA), the other half being generated by inversion symmetry. The dihedral angle between the adenine and phenyl ring planes is 26.71 (7)°. The N (6)-benzoyl-adenine mol-ecule crystallizes in the N(7)-H tautomeric form with three non-protonated N atoms. This tautomeric form is stabilized by intra-molecular N-H⋯O hydrogen bonding between the carbonyl (C=O) group and the N(7)-H hydrogen atom on the Hoogsteen face of the purine ring, forming an S(7) ring motif. The two carboxyl groups of adipic acid inter-act with the Watson-Crick face of the BA mol-ecules through O-H⋯N and N-H⋯O hydrogen bonds, generating an R 2 (2)(8) ring motif. The latter units are linked by N-H⋯N hydrogen bonds, forming layers parallel to (10-5). A weak C-H⋯O hydrogen bond is also present, linking adipic acid mol-ecules in neighbouring layers, enclosing R (2) 2(10) ring motifs and forming a three-dimensional structure. C=O⋯π and C-H⋯π inter-actions are also present in the structure.

  17. Acetyl-CoA Carboxylase-α Inhibitor TOFA Induces Human Cancer Cell Apoptosis

    Science.gov (United States)

    Wang, Chun; Xu, Canxin; Sun, Mingwei; Luo, Dixian; Liao, Duan-fang; Cao, Deliang

    2009-01-01

    Acetyl-CoA carboxylase-α (ACCA) is a rate-limiting enzyme in long chain fatty acid synthesis, playing a critical role in cellular energy storage and lipid synthesis. ACCA is upregulated in multiple types of human cancers and small interfering RNA-mediated ACCA silencing in human breast and prostate cancer cells results in oxidative stress and apoptosis. This study reports for the first time that TOFA (5-tetradecyloxy-2-furoic acid), an allosteric inhibitor of ACCA, is cytotoxic to lung cancer cells NCI-H460 and colon carcinoma cells HCT-8 and HCT-15, with an IC50 at approximately 5.0, 5.0, and 4.5 μg/ml, respectively. TOFA at 1.0–20.0 μg/ml effectively blocked fatty acid synthesis and induced cell death in a dose-dependent manner. The cell death was characterized with PARP cleavage, DNA fragmentation, and annexin-V staining, all of which are the features of the apoptosis. Supplementing simultaneously the cells with palmitic acids (100 μM), the end-products of the fatty acid synthesis pathway, prevented the apoptosis induced by TOFA. Taken together, these data suggest that TOFA is a potent cytotoxic agent to lung and colon cancer cells, inducing apoptosis through disturbing their fatty acid synthesis. PMID:19450551

  18. Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis.

    Science.gov (United States)

    Wang, Chun; Xu, Canxin; Sun, Mingwei; Luo, Dixian; Liao, Duan-Fang; Cao, Deliang

    2009-07-31

    Acetyl-CoA carboxylase-alpha (ACCA) is a rate-limiting enzyme in long chain fatty acid synthesis, playing a critical role in cellular energy storage and lipid synthesis. ACCA is upregulated in multiple types of human cancers and small interfering RNA-mediated ACCA silencing in human breast and prostate cancer cells results in oxidative stress and apoptosis. This study reports for the first time that TOFA (5-tetradecyloxy-2-furoic acid), an allosteric inhibitor of ACCA, is cytotoxic to lung cancer cells NCI-H460 and colon carcinoma cells HCT-8 and HCT-15, with an IC(50) at approximately 5.0, 5.0, and 4.5 microg/ml, respectively. TOFA at 1.0-20.0 microg/ml effectively blocked fatty acid synthesis and induced cell death in a dose-dependent manner. The cell death was characterized with PARP cleavage, DNA fragmentation, and annexin-V staining, all of which are the features of the apoptosis. Supplementing simultaneously the cells with palmitic acids (100 microM), the end-products of the fatty acid synthesis pathway, prevented the apoptosis induced by TOFA. Taken together, these data suggest that TOFA is a potent cytotoxic agent to lung and colon cancer cells, inducing apoptosis through disturbing their fatty acid synthesis.

  19. Reaction of Nα-acetyl-L-histidine with diazomethane: A model esterification reaction of carboxylic groups in the presence of imidazole rings

    Directory of Open Access Journals (Sweden)

    Zamora, R.

    1996-10-01

    Full Text Available The reaction of Nα-acetyl-L-histidine with diazomethane was studied in order to analyze the esterification reaction of a carboxylic group in the presence of an imidazole ring. The reaction produced the expected Nα-acetyl-L-histidine methyl ester (1 as a major product. However, important amounts of [S]-acetyl-1-methylimidazole-4-alanine methyl ester (2 and [S]-acetyl-1-methylimidazole-5-alanine methyl ester (3 were also produced. These compounds, which could be detected by capillary electrophoresis (HPCE and thin layer chromatography, were fractionated by column chromatography and identified by gas chromatography coupled with mass spectrometry (GC-MS, and 1H and 13C nuclear magnetic resonance spectroscopy. Structures for compounds 1-3 were confirmed by HPCE after acid hydrolysis. These results indicated that the use of diazomethane produces the methyl derivative of the heterocyclic ring in addition to the methyl ester. This reaction should be considered when preparing derivatives for GC-MS analysis.

    La reacción de la Nα-acetil-L-histidina con diazometano fue estudiada con objeto de conocer el comportamiento de la reacción de esterificación de un grupo carboxílico en presencia de un anillo de imidazol. La reacción produjo el esperado éster metílico de la Nα-acetil-L-histidina (1 como producto mayoritario. Sin embargo, también se observó la formación de cantidades importantes de los esteres metílicos de la [S]-acetil-1-metilimidazol- 4-alanina (2 y la [S]-acetil-1-metilimidazol-5-alanina (3. Estos compuestos que pudieron ser detectados por electroforesis capilar y cromatografía en capa fina, fueron separados por cromatografía en columna e identificados por cromatografía de gases acoplada a espectrometría de masas, y por espectroscopia de resonancia magnética nuclear de 1H y 13C. Las estructuras de los compuestos

  20. Fatty Acid Biosynthesis IX

    DEFF Research Database (Denmark)

    Carey, E. M.; Hansen, Heinz Johs. Max; Dils, R.

    1972-01-01

    # 1. I. [I-14C]Acetate was covalently bound to rabbit mammary gland fatty acid synthetase by enzymic transacylation from [I-14C]acetyl-CoA. Per mole of enzyme 2 moles of acetate were bound to thiol groups and up to I mole of acetate was bound to non-thiol groups. # 2. 2. The acetyl-fatty acid...... synthetase complex was isolated free from acetyl-CoA. It was rapidly hydrolysed at 30°C, but hydrolysis was greatly diminished at o°C and triacetic lactone synthesis occurred. In the presence of malonyl-CoA and NADPH, all the acetate bound to fatty acid synthetase was incorporated into long-chain fatty acids....... Hydrolysis of bound acetate and incorporation of bound acetate into fatty acids were inhibited to the same extent by guanidine hydrochloride. # 3. 3. Acetate was also covalently bound to fatty acid synthetase by chemical acetylation with [I-14C]acetic anhydride in the absence of CoASH. A total of 60 moles...

  1. Isoniazid acetylating phenotype in patients with paracoccidioidomycosis and its relationship with serum sulfadoxin levels, glucose-6-phosphate dehydrogenase and glutathione reductase activities

    Directory of Open Access Journals (Sweden)

    Benedito Barraviera

    1991-06-01

    Full Text Available The authors evaluated the isoniazid acetylating phenotype and measured hematocrit, hemoglobin, glucose-6-phosphate dehydrogenase and glutathione reductase activities plus serum sulfadoxin levels in 39 patients with paracoccidioidomycosis (33 males and 6 females aged 17 to 58 years. Twenty one (53.84% of the patients presented a slow acetylatingphenotype and 18(46.16% a fast acetylating phenotype. Glucose-6-phosphate- dehydrogenase (G6PD acti vity was decreased in 5(23.80% slow acetylators and in 4(22.22% fast acetylators. Glutathione reductase activity was decreased in 14 (66.66% slow acetylators and in 12 (66.66% fast acetylators. Serum levels of free and total sulfadoxin Were higher in slow acetylator (p Os autores avaliaram o fenótipo acetilador da isoniazida, hematócrito, hemoglobina, atividade da glicose-6- fosfato desidrogenase, glutationa redutase e os níveis séricos de sulfadoxina de 39 doentes com paracoccidíoidomicose, senão 33 do sexo masculino e 6 do feminino, com idades compreendidas entre 17 e 58 anos. Vinte e um (53,84% doentes apresentaram fenótipo acetilador lento e 18 (46,16% rápido. A atividade da glicose-6-fosfato desidrogenase (G6PD esteve diminuída em 5 (23,80% acetiladores lentos e 4 (22,22% rápidos. A atividade da glutationa redutase esteve diminuída em 14 (66,66% acetiladores lentos e 12 (66,66% rápidos. Os níveis séricos de sulfadoxina livre e total foram maiores nos acetiladores lentos (p < 0,02. A análise dos resultados permite concluir que os níveis séricos de sulfadoxina relaciona-se com o fenótipo acetilador. Além disso, os níveis estiveram sempre acima de 50 µg/ml, níveis estes considerados terapêuticos. Por outro lado, a deficiência de glutationa redutase pode estar relacionada com a má absorção intestinal de nutrientes, entre eles riboflavina, vitamina precursora de FAD.

  2. Direct acetylation of sunflower oil in the presence of boron trioxide ...

    African Journals Online (AJOL)

    Lubrication properties of sunflower oil have been modified by epoxidation in the first step and acetylation of the obtained epoxide in the second step. Epoxidation has been followed in dichloromethane solution in the presence of hydrogen peroxide and acetic acid as oxidizing agent and sulfuric acid as catalyst. The reaction ...

  3. Synthesis of n. c. a. PET-radiotracers with carbon-11. Zur Synthese traegerarme PET-Radiotracer mit Kohlenstoff-11

    Energy Technology Data Exchange (ETDEWEB)

    Schirbel, A.

    1998-11-01

    Carbon-11 offers the unique possibility of authentic labelling of molecules as radioindicators for non invasive and quantitative determination of physiological functions via positron emission tomography (PET). Therefore, the goal of this thesis was to synthesize of different n.c.a. [sup 11]C-labelled pharmaceuticals for in vivo distribution studies with PET. For the determination of the pharmacokinetics of [1-[sup 11]C]acetate in porcine myocardium during prolonged ischemia, n.c.a. [1-[sup 11]C]acetate was synthesized via carboxylation of methylmagnesium bromide with in target produced n.c.a. [[sup 11]C]CO[sub 2] with a radiochemical yield (RCY) of 68 [+-] 7%. The fast (18 min) and reliable radiosynthesis allowed for repeated tracer administration at short intervals (<20 min). In order to study the pharmacokinetics and metabolism of acetylsalicylic acid (Aspirin[sup R]c) in humans, [1-[sup 11]C]acetylsalicylic acid, acetyl-[carboxy-[sup 11]C]salicylic acid and [carboxy-[sup 11]C]salicylic acid were prepared. N.c.a. [1-[sup 11]C]acetylsalicylic acid was synthesized via the reaction of [1-[sup 11]C]acetylchloride with salicylic acid salts. The use of the silver salt proved to be superior to the sodium salt and resulted in radiochemical yields of 32 [+-] 5%. Base-line (clean) separation of the labelled product was achieved using radio-HPLC. With regard to the preparation of n.c.a. [carboxy-[sup 11]C]salicylic acid, several protected and unprotected phenol derivates were metallated and subsequently carboxylated using n.c.a. [[sup 11]C]CO[sub 2]. Best results (87 [+-] 3% RCY) could be achieved with 2-(methoxymethoxy)-phenylmagnesium iodide as a precursor and subsequent quantitative cleavage of the MOM-group. Acetylation of n.c.a. [carboxy-[sup 11]C]salicylic acid to acetyl-[carboxy-[sup 11]C]salicylic acid was performed using acetylchloride in CH[sub 2]Cl[sub 2] with a radiochemical yield of 65 [+-] 4%. (orig.)

  4. N-acetylated metabolites in urine: proton nuclear magnetic resonance spectroscopic study on patients with inborn errors of metabolism.

    NARCIS (Netherlands)

    Engelke, U.F.H.; Liebrand-van Sambeek, M.L.F.; Jong, J.G.N. de; Leroy, J.G.; Morava, E.; Smeitink, J.A.M.; Wevers, R.A.

    2004-01-01

    BACKGROUND: There is no comprehensive analytical technique to analyze N-acetylated metabolites in urine. Many of these compounds are involved in inborn errors of metabolism. In the present study, we examined the potential of proton nuclear magnetic resonance ((1)H-NMR) spectroscopy as a tool to

  5. Interactions of acetylated histones with DNA as revealed by UV laser induced histone-DNA crosslinking

    International Nuclear Information System (INIS)

    Stefanovsky, V.Yu.; Dimitrov, S.I.; Angelov, D.; Pashev, I.G.

    1989-01-01

    The interaction of acetylated histones with DNA in chromatin has been studied by UV laser-induced crosslinking histones to DNA. After irradiation of the nuclei, the covalently linked protein-DNA complexes were isolated and the presence of histones in them demonstrated immunochemically. When chromatin from irradiated nuclei was treated with clostripain, which selectively cleaved the N-terminal tails of core histones, no one of them was found covalently linked to DNA, thus showing that crosslinking proceeded solely via the N-terminal regions. However, the crosslinking ability of the laser was preserved both upon physiological acetylation of histones, known to be restricted to the N-terminal tails, and with chemically acetylated chromatin. This finding is direct evidence that the postsynthetic histone acetylation does not release the N-terminal tails from interaction with DNA

  6. Influence of oilseed supplement ranging in n-6/n-3 ratio on fatty acid composition and Δ5-, Δ6-desaturase protein expression in steer muscles.

    Science.gov (United States)

    Turner, T D; Mitchell, A; Duynisveld, J; Pickova, J; Doran, O; McNiven, M A

    2012-12-01

    This study investigated effects of roasted or extruded oilseed supplementation ranging in n-6/n-3 ratios from 0.3 to 5.0 on the fatty acid composition and expression of delta-5 desaturase (Δ5d) and Δ6-desaturase (Δ6d) protein in commercial steer cheek (m. masseter) and diaphragm (pars costalis diaphragmatis) muscles. In general, the n-6/n-3 ratio of the diet had a subsequent effect on the muscle n-6/n-3 ratio (P muscle 18:2n-6 and 18:3n-3 content relating to proportion of dietary soya bean and linseed (P muscle the Δ5d protein expression had a stronger association with the desaturase products rather than the precursors. The relationship between Δ5d protein expression and the muscle LC n-6/n-3 ratio was negative in both muscles (P muscle 18:2n-6 and 18:3n-3 deposition, whereas the Δ5d and Δ6d protein expression had some influence on the polar lipid LC-PUFA profile. Results reaffirm that processed oilseeds can be used to increase the proportion of fatty acids potentially beneficial for human health, by influencing the formation of LC-PUFA and reducing the n-6/n-3 ratio.

  7. Fatty acid biosynthesis. VIII. The fate of malonyl-CoA in fatty acid biosynthesis by purified enzymes from lactating-rabbit mammary gland

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Carey, E.M.; Dils, R.

    1971-01-01

    - 1. We have investigated the formation and utilization of malonyl-CoA in fatty acid synthesis catalysed by preparations of partially purified acetyl-CoA carboxylase and purified fatty acid synthetase from lactating-rabbit mammary gland. - 2. Carboxylation of [1-14C]acetyl-CoA was linked to fatty...... acid synthesis by the presence of fatty acid synthetase and NADPH. The rate of fatty acid formation was equal to that of acetyl-CoA carboxylation, without the accumulation of free malonyl-CoA to a concentration required to obtain the same rate of fatty acid synthesis from added [1,3-14C2]malonyl......-CoA. - 3. The preparations of acetyl-CoA carboxylase and fatty acid synthetase were each able to decarboxylate [1,3-14C2]malonyl-CoA. - 4. Both enzyme preparations acted as competitive inhibitors of 14CO2 fixation into acetyl-CoA catalysed by acetyl-CoA carboxylase in the absence of NADPH...

  8. Biosynthesis of N-glycolyneuraminic acid. The primary site of hydroxylation of N-acetylneuraminic acid is the cytosolic sugar nucleotide pool

    Energy Technology Data Exchange (ETDEWEB)

    Muchmore, E.A.; Milewski, M.; Varki, A.; Diaz, S. (San Diego Veterans Administration Medical Center, CA (USA))

    1989-12-05

    N-Glycolylneuraminic acid (Neu5Gc) is an oncofetal antigen in humans and is developmentally regulated in rodents. We have explored the biology of N-acetylneuraminic acid hydroxylase, the enzyme responsible for conversion of the parent sialic acid, N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. We show that the major sialic acid in all compartments of murine myeloma cell lines is Neu5Gc. Pulse-chase analysis in these cells with the sialic acid precursor (6-3H)N-acetylmannosamine demonstrates that most of the newly synthesized Neu5Gc appears initially in the cytosolic low-molecular weight pool bound to CMP. The percentage of Neu5Gc on membrane-bound sialic acids closely parallels that in the CMP-bound pool at various times of chase, whereas that in the free sialic acid pool is very low initially, and rises only later during the chase. This implies that conversion from Neu5Ac to Neu5Gc occurs primarily while Neu5Ac is in its sugar nucleotide form. In support of this, the hydroxylase enzyme from a variety of tissues and cells converted CMP-Neu5Ac to CMP-Neu5Gc, but showed no activity towards free or alpha-glycosidically bound Neu5Ac. Furthermore, the majority of the enzyme activity is found in the cytosol. Studies with isolated intact Golgi vesicles indicate that CMP-Neu5Gc can be transported and utilized for transfer of Neu5Gc to glycoconjugates. The general properties of the enzyme have also been investigated. The Km for CMP-Neu5Ac is in the range of 0.6-2.5 microM. No activity can be detected against the beta-methylglycoside of Neu5Ac. On the other hand, inhibition studies suggest that the enzyme recognizes both the 5'-phosphate group and the pyrimidine base of the substrate. Taken together, the data allow us to propose pathways for the biosynthesis and reutilization of Neu5Gc.

  9. Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation.

    Directory of Open Access Journals (Sweden)

    Todd J Cohen

    Full Text Available Tau proteins are abnormally aggregated in a range of neurodegenerative tauopathies including Alzheimer's disease (AD. Recently, tau has emerged as an extensively post-translationally modified protein, among which lysine acetylation is critical for normal tau function and its pathological aggregation. Here, we demonstrate that tau isoforms have different propensities to undergo lysine acetylation, with auto-acetylation occurring more prominently within the lysine-rich microtubule-binding repeats. Unexpectedly, we identified a unique intrinsic property of tau in which auto-acetylation induces proteolytic tau cleavage, thereby generating distinct N- and C-terminal tau fragments. Supporting a catalytic reaction-based mechanism, mapping and mutagenesis studies showed that tau cysteines, which are required for acetyl group transfer, are also essential for auto-proteolytic tau processing. Further mass spectrometry analysis identified the C-terminal 2nd and 4th microtubule binding repeats as potential sites of auto-cleavage. The identification of acetylation-mediated auto-proteolysis provides a new biochemical mechanism for tau self-regulation and warrants further investigation into whether auto-catalytic functions of tau are implicated in AD and other tauopathies.

  10. Hydrogen/deuterium exchange of cross-linkable alpha-amino acid derivatives in deuterated triflic acid

    OpenAIRE

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Masuda, Katsuyoshi; Sakihama, Yasuko; Hashidoko, Yasuyuki; Hatanaka, Yasumaru; Hashimoto, Makoto

    2014-01-01

    In this paper we report here a hydrogen/deuterium exchange (H/D exchange) of cross-linkable alpha-amino acid derivatives with deuterated trifluoromethanesulfonic acid (TfOD). H/D exchange with TfOD was easily applied to o-catechol containing phenylalanine (DOPA) within an hour. A partial H/D exchange was observed for trifluoromethyldiazirinyl (TFMD) phenylalanine derivatives. N-Acetyl-protected natural aromatic alpha-amino acids (Tyr and Trp) were more effective in H/D exchange than unprotect...

  11. Flavonoids with acetylated branched glycans and bioactivity of Tipuana tipu (Benth.) Kuntze leaf extract.

    Science.gov (United States)

    Afifi, Manal S; Elgindi, Omaima D; Bakr, Reham O

    2014-01-01

    The new acetylated kaempferol tetraglycoside, kaempferol-3-O-[2″(4-acetylrhamnopyranosyl)-3″-galactopyranosyl] robinobioside (1), was isolated from the aqueous methanolic leaf extract of Tipuana tipu Benth. The known kaempferol 3-[2″-(4-acetyl-rhamnosyl)] robinobioside (2), kaempferol 3-O-2″-rhamnopyranosylrutinoside (3), rutin (4), kaempferol 3-O-rutinoside (5), kaempferol 3-O-glucopyranoside (6), kaempferol 3-O-galactopyranoside (7), quarcetin 3-O-glucopyranoside (8), kaempferol (9) and quercetin (10) together with the chlorogenic acid (11) were also isolated and characterised. Structures were established on the basis of chemical and spectroscopic analysis including (1)H NMR, (13)C NMR, 2D NMR and ESI-MS. The methanol extract exhibited moderate antioxidant activity, IC50 28.96 μg/mL, compared with ascorbic acid (1.83 μg/mL) and tertiary-butylhydroquinone (1.92 μg/mL). The methanol and chloroform extracts exhibited potent cytotoxic activity; the former was found to be active against larynx and liver cell lines, while the latter being active against intestine and liver cell lines.

  12. Heterologous Expression and Characterization of an N-Acetyl-beta-D-hexosaminidase from Lactococcus lactis ssp. lactis IL1403

    Czech Academy of Sciences Publication Activity Database

    Nguyen, A. H.; Nguyen, T.-H.; Křen, Vladimír; Eijsink, V. G. H.; Haltrich, D.; Peterbauer, C.

    2012-01-01

    Roč. 60, č. 12 (2012), s. 3275-3281 ISSN 0021-8561 R&D Projects: GA ČR(CZ) GAP207/11/0629 Keywords : N-acetyl-beta-D-hexosaminidase * Lactococcus lactis ssp lactis IL1403 * pNP-GlcNAc Subject RIV: CE - Biochemistry Impact factor: 2.906, year: 2012

  13. 5-Aminosalicylic acid dependency in Crohn's disease: A Danish Crohn Colitis Database study

    DEFF Research Database (Denmark)

    Duricova, D.; Pedersen, N.; Elkjaer, M.

    2010-01-01

    outcome definitions were used Immediate outcome (30 days after 5-ASA start) defined as complete/partial response (total regression/improvement of symptoms) and no response (no regression of symptoms with a need of corticosteroids, immunomodulator or surgery) Long term outcome defined as prolonged response...

  14. Acetylation/deacetylation reactions of T-2, acetyl T-2, HT-2, and acetyl HT-2 toxins in bovine rumen fluid in vitro

    International Nuclear Information System (INIS)

    Munger, C.E.; Ivie, G.W.; Christopher, R.J.; Hammock, B.D.; Phillips, T.D.

    1987-01-01

    A tritiated preparation of the trichothecene mycotoxin, T-2 toxin, underwent both acetylation and deacetylation reactions when incubated with bovine rumen fluid in vitro. Products from incubations of T-2 in rumen fluid included acetyl T-2, HT-2, and acetyl HT-2. Direct studies with tritiated samples of each of these metabolites confirmed their relatively facile interconversion in the rumen. Studies with [ 3 H]HT-2 under conditions of inhibited esterase activity (added diisopropyl fluorophosphate) showed that acetylation is preferred at C-3 vs. C-4. Studies with [ 3 H]acetyl T-2 indicated that deacetylation similarly occurs with greater rapidity at C-3. There were no indications that ester hydrolysis of these trichothecenes occurred at C-8 or C-15 or that they were subjected to epoxide reduction reactions. These data suggest that acetylation of T-2 and other trichothecenes in the rumen in situ may ultimately result in the absorption of more lipophilic metabolites whose toxicological and residual properties are at present unknown

  15. Prediction of Nepsilon-acetylation on internal lysines implemented in Bayesian Discriminant Method.

    Science.gov (United States)

    Li, Ao; Xue, Yu; Jin, Changjiang; Wang, Minghui; Yao, Xuebiao

    2006-12-01

    Protein acetylation is an important and reversible post-translational modification (PTM), and it governs a variety of cellular dynamics and plasticity. Experimental identification of acetylation sites is labor-intensive and often limited by the availability of reagents such as acetyl-specific antibodies and optimization of enzymatic reactions. Computational analyses may facilitate the identification of potential acetylation sites and provide insights into further experimentation. In this manuscript, we present a novel protein acetylation prediction program named PAIL, prediction of acetylation on internal lysines, implemented in a BDM (Bayesian Discriminant Method) algorithm. The accuracies of PAIL are 85.13%, 87.97%, and 89.21% at low, medium, and high thresholds, respectively. Both Jack-Knife validation and n-fold cross-validation have been performed to show that PAIL is accurate and robust. Taken together, we propose that PAIL is a novel predictor for identification of protein acetylation sites and may serve as an important tool to study the function of protein acetylation. PAIL has been implemented in PHP and is freely available on a web server at: http://bioinformatics.lcd-ustc.org/pail.

  16. Prediction of Nε-acetylation on internal lysines implemented in Bayesian Discriminant Method

    Science.gov (United States)

    Li, Ao; Xue, Yu; Jin, Changjiang; Wang, Minghui; Yao, Xuebiao

    2007-01-01

    Protein acetylation is an important and reversible post-translational modification (PTM), and it governs a variety of cellular dynamics and plasticity. Experimental identification of acetylation sites is labor-intensive and often limited by the availability reagents such as acetyl-specific antibodies and optimization of enzymatic reactions. Computational analyses may facilitate the identification of potential acetylation sites and provide insights into further experimentation. In this manuscript, we present a novel protein acetylation prediction program named PAIL, prediction of acetylation on internal lysines, implemented in a BDM (Bayesian Discriminant Method) algorithm. The accuracies of PAIL are 85.13%, 87.97% and 89.21% at low, medium and high thresholds, respectively. Both Jack-Knife validation and n-fold cross validation have been performed to show that PAIL is accurate and robust. Taken together, we propose that PAIL is a novel predictor for identification of protein acetylation sites and may serve as an important tool to study the function of protein acetylation. PAIL has been implemented in PHP and is freely available on a web server at: http://bioinformatics.lcd-ustc.org/pail. PMID:17045240

  17. Development of an ELISA for pantothenic acid (vitamin B5) for application in the nutrition and biological fields.

    Science.gov (United States)

    Gonthier, A; Boullanger, P; Fayol, V; Hartmann, D J

    1998-01-01

    Immunological assays appear to be the only alternative to the microbiological method for analysis of pantothenic acid in foods and blood. In order to evaluate the influence of the linker on the immunogenicity of the hapten, we have tried to raise antisera against pantothenic acid in rabbits using different conjugates. The hapten was coupled to a carrier protein (BSA or thyroglobulin) using adipoyl dichloride (adipoyl conjugate) or bromoacetyl bromide (acetyl conjugate). Only the acetyl conjugate has induced the production of a specific antibody. With this antibody, an assay on microplate using the ELISA inhibition technique was developed to measure pantothenic acid. The use of pantothenic acid coupled to thyroglobulin with adipoyl dichloride as the capture antigen has improved the sensitivity of the ELISA. This assay was applied to food products and blood.

  18. N-acetyl-aspartate (NAA) as a correlate of pharmacological treatment in psychiatric disorders: a systematic review.

    Science.gov (United States)

    Paslakis, Georgios; Träber, Frank; Roberz, Jens; Block, Wolfgang; Jessen, Frank

    2014-10-01

    The amino-acid N-acetyl-aspartate (NAA) is located in neurons and the concentration of NAA correlates with neuronal mitochondrial function. The signal of NAA, as measured with proton magnetic resonance spectroscopy (1H-MRS), is considered to reflect both, neuronal density and integrity of neuronal mitochondria. A reduction of the NAA concentrations has been found in several psychiatric disorders. Newer studies report reversal of decreased NAA concentration with treatment. The objective of this review is to summarize the literature on NAA changes in association with psychopharmacological treatment in psychiatric disorders (affective disorders, obsessive-compulsive disorder, schizophrenia and dementia). The majority of studies identified increased NAA concentrations in response to treatment, while a smaller number of studies did not find this effect. The NAA increase seems to be neither specific for a certain disorder nor for a specific intervention. This suggests that the reduction of NAA may represent an altered functional (metabolic) state of neurons common to different psychiatric disorders and the increase after treatment to indicate functional restoration as one general effect of interventions. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  19. New Spectrophotometric Methods for the Determination of p ...

    African Journals Online (AJOL)

    derivatizing reagents for the determination of p-aminosalicylic acid (PAS) in tablets. The derivatization was carried ... liquid chromatography (HPLC) [7,8], nuclear magnetic resonance ..... aminosalicylic acid and m-aminophenol by derivative.

  20. Chromatin decondensed by acetylation shows an elevated radiation response

    International Nuclear Information System (INIS)

    Nackerdien, Z.; Michie, J.; Boehm, L.

    1989-01-01

    V-79 Chinese hamster lung fibroblasts exposed to 5 mM n-sodium butyrate were irradiated with 60Co gamma rays and cell survival was determined by the cell colony assay. In a separate set of experiments the acetylated chromatin obtained from these cells was irradiated and the change of molecular weight of the DNA was evaluated by alkaline sucrose density centrifugation. At a survival level of 10(-2) to 10(-4) cells exposed to butyrate were found to be 1.3-1.4 times more radiosensitive than control cells. Exposure of isolated chromatin to 100 Gy of 60Co gamma irradiation generated 0.9 +/- 0.03 single-strand breaks (ssb) per 10 Gy per 10(8) Da and 2.0 +/- 0.3 ssb/10 Gy/10(8) Da for control and acetylated chromatin, respectively. The elevated radiation sensitivity of chromatin relaxed by acetylation is in good agreement with previous results on chromatin expanded by histone H1 depletion. Packing and accessibility of DNA in chromatin appear to be major factors which influence the radiation sensitivity. The intrinsic radiation sensitivity of chromatin in various packing states is discussed in light of the variation of radiation sensitivity of whole cells in the cell cycle which incorporates repair

  1. Peripheral effects of FAAH deficiency on fuel and energy homeostasis: role of dysregulated lysine acetylation.

    Directory of Open Access Journals (Sweden)

    Bhavapriya Vaitheesvaran

    Full Text Available FAAH (fatty acid amide hydrolase, primarily expressed in the liver, hydrolyzes the endocannabinoids fatty acid ethanolamides (FAA. Human FAAH gene mutations are associated with increased body weight and obesity. In our present study, using targeted metabolite and lipid profiling, and new global acetylome profiling methodologies, we examined the role of the liver on fuel and energy homeostasis in whole body FAAH(-/- mice.FAAH(-/- mice exhibit altered energy homeostasis demonstrated by decreased oxygen consumption (Indirect calorimetry. FAAH(-/- mice are hyperinsulinemic and have adipose, skeletal and hepatic insulin resistance as indicated by stable isotope phenotyping (SIPHEN. Fed state skeletal muscle and liver triglyceride levels was increased 2-3 fold, while glycogen was decreased 42% and 57% respectively. Hepatic cholesterol synthesis was decreased 22% in FAAH(-/- mice. Dysregulated hepatic FAAH(-/- lysine acetylation was consistent with their metabolite profiling. Fasted to fed increases in hepatic FAAH(-/- acetyl-CoA (85%, p<0.01 corresponded to similar increases in citrate levels (45%. Altered FAAH(-/- mitochondrial malate dehydrogenase (MDH2 acetylation, which can affect the malate aspartate shuttle, was consistent with our observation of a 25% decrease in fed malate and aspartate levels. Decreased fasted but not fed dihydroxyacetone-P and glycerol-3-P levels in FAAH(-/- mice was consistent with a compensating contribution from decreased acetylation of fed FAAH(-/- aldolase B. Fed FAAH(-/- alcohol dehydrogenase (ADH acetylation was also decreased.Whole body FAAH deletion contributes to a pre-diabetic phenotype by mechanisms resulting in impairment of hepatic glucose and lipid metabolism. FAAH(-/- mice had altered hepatic lysine acetylation, the pattern sharing similarities with acetylation changes reported with chronic alcohol treatment. Dysregulated hepatic lysine acetylation seen with impaired FAA hydrolysis could support the liver

  2. A Novel Strategy Towards the Asymmetric Synthesis of Orthogonally Funtionalised 2-N-Benzyl-N-α-methylbenzylamino- 5-carboxymethyl-cyclopentane-1-carboxylic acid.

    Directory of Open Access Journals (Sweden)

    Julio G. Urones

    2004-04-01

    Full Text Available The asymmetric synthesis of the orthogonally funtionalised compounds tert-butyl 2-N-benzyl-N-α-methylbenzylamino-5-methoxycarbonylmethylcyclopentane- 1-carboxylate and methyl 2-N-benzyl-N-α-methylbenzylamino-5–carboxymethylcyclo- pentane-1-carboxylate by a domino reaction of tert-butyl methyl (E,E-octa-2,6- diendioate with lithium N-α-methylbenzyl-N-benzylamide initiated by a Michael addition, subsequent 5-exo-trig intramolecular cyclisation and posterior selective hydrolysis with trifluoroacetic acid is reported.

  3. Expression of Two N1 Clones with Single Amino Acid Dissimilarity of Avian Influenza H5N1 Virus

    Directory of Open Access Journals (Sweden)

    RISZA HARTAWAN

    2012-12-01

    Full Text Available Two clones of N1 gene derived from isolate A/Dk/Tangerang/Bbalitvet-ACIAR-TE11/2007 (H5N1 exhibit single mismatch of amino acid sequence at position 242 that is threonine and methionine for the clone #3 and #5, respectively. In order to evaluate the effect of the amino acid substitution, these clones were inserted into two different expression vectors that are pEGFP-C1 and pcDNA-3.3 TOPO® TA cloning. Subsequently, the respective recombinant clones were transfected into eukaryotic cells, including CEF, RK13 and VERO using Lipofectamine ‘plus’ reagent. As a result, the clone #3 retaining atypical sequence showed lower expression level rather than the clone #15 in both vectors and all type of cells. The 3D conformational modelling revealed that the mutation occurs in the inner part of glycoprotein embedded within envelope or matrix. Therefore, the missense mutation seems has no effect on the antigenic properties of neuraminidase but this substitution by any means causes lethal mutagenesis in the individual gene expression by reducing level of protein transcript.

  4. Beneficial metabolic effects of 2',3',5'-tri-acetyl-N6- (3-hydroxylaniline adenosine in the liver and plasma of hyperlipidemic hamsters.

    Directory of Open Access Journals (Sweden)

    Yang Sun

    Full Text Available BACKGROUND: Pharmaceutical research of hyperlipidemia has been commonly pursued using traditional approaches. However, unbiased metabonomics attempts to explore the metabolic signature of hyperlipidemia in a high-throughput manner to understand pathophysiology of the disease process. METHODOLOGY/PRINCIPAL FINDINGS: As a new way, we performed (1H NMR-based metabonomics to evaluate the beneficial effects of 2',3',5'-tri-acetyl-N(6- (3-hydroxylaniline adenosine (WS070117 on plasma and liver from hyperlipidemic Syrian golden hamsters. Both plasma and liver profiles provided a clearer distinction between the control and hyperlipidemic hamsters. Compared to control animals, hyperlipidemic hamsters showed a higher content of lipids (triglyceride and cholesterol, lactate and alanine together with a lower content of choline-containing compounds (e.g., phosphocholine, phosphatidylcholine, and glycerophosphocholine and betaine. As a result, metabonomics-based findings such as the PCA and OPLS-DA plotting of metabolic state and analysis of potential biomarkers in plasma and liver correlated well to the assessment of biochemical assays, Oil Red O staining and in vivo ultrasonographic imaging suggesting that WS070117 was able to regulate lipid content and displayed more beneficial effects on plasma and liver than simvastatin. CONCLUSIONS/SIGNIFICANCE: This work demonstrates the promise of applying (1H NMR metabonomics to evaluate the beneficial effects of WS070117 which may be a good drug candidate for hyperlipidemia.

  5. Kinetics of Acid Hydrolysis of Water-Soluble Spruce O-Acetyl Galactoglucomannans

    NARCIS (Netherlands)

    Xu, C.; Pranovich, A.; Vahasalo, L.; Hemming, J.; Holmbom, B.; Schols, H.A.; Willfor, S.

    2008-01-01

    Water-soluble O-acetyl galactoglucomannan (GGM) is a softwood-derived polysaccharide, which can be extracted on an industrial scale from wood or mechanical pulping waters and now is available in kilogram scale for research and development of value-added products. To develop applications of GGM,

  6. Aspirin-Mediated Acetylation Protects Against Multiple Neurodegenerative Pathologies by Impeding Protein Aggregation.

    Science.gov (United States)

    Ayyadevara, Srinivas; Balasubramaniam, Meenakshisundaram; Kakraba, Samuel; Alla, Ramani; Mehta, Jawahar L; Shmookler Reis, Robert J

    2017-12-10

    Many progressive neurological disorders, including Alzheimer's disease (AD), Huntington's disease, and Parkinson's disease (PD), are characterized by accumulation of insoluble protein aggregates. In prospective trials, the cyclooxygenase inhibitor aspirin (acetylsalicylic acid) reduced the risk of AD and PD, as well as cardiovascular events and many late-onset cancers. Considering the role played by protein hyperphosphorylation in aggregation and neurodegenerative diseases, and aspirin's known ability to donate acetyl groups, we asked whether aspirin might reduce both phosphorylation and aggregation by acetylating protein targets. Aspirin was substantially more effective than salicylate in reducing or delaying aggregation in human neuroblastoma cells grown in vitro, and in Caenorhabditis elegans models of human neurodegenerative diseases in vivo. Aspirin acetylates many proteins, while reducing phosphorylation, suggesting that acetylation may oppose phosphorylation. Surprisingly, acetylated proteins were largely excluded from compact aggregates. Molecular-dynamic simulations indicate that acetylation of amyloid peptide energetically disfavors its association into dimers and octamers, and oligomers that do form are less compact and stable than those comprising unacetylated peptides. Hyperphosphorylation predisposes certain proteins to aggregate (e.g., tau, α-synuclein, and transactive response DNA-binding protein 43 [TDP-43]), and it is a critical pathogenic marker in both cardiovascular and neurodegenerative diseases. We present novel evidence that acetylated proteins are underrepresented in protein aggregates, and that aggregation varies inversely with acetylation propensity after diverse genetic and pharmacologic interventions. These results are consistent with the hypothesis that aspirin inhibits protein aggregation and the ensuing toxicity of aggregates through its acetyl-donating activity. This mechanism may contribute to the neuro-protective, cardio

  7. Acetylated rice starches films with different levels of amylose: Mechanical, water vapor barrier, thermal, and biodegradability properties.

    Science.gov (United States)

    Colussi, Rosana; Pinto, Vânia Zanella; El Halal, Shanise Lisie Mello; Biduski, Bárbara; Prietto, Luciana; Castilhos, Danilo Dufech; Zavareze, Elessandra da Rosa; Dias, Alvaro Renato Guerra

    2017-04-15

    Biodegradable films from native or acetylated starches with different amylose levels were prepared. The films were characterized according to the mechanical, water vapor barrier, thermal, and biodegradability properties. The films from acetylated high amylose starches had higher moisture content and water solubility than the native high amylose starch film. However, the acetylation did not affect acid solubility of the films, regardless of the amylose content. Films made from high and medium amylose rice starches were obtained; however low amylose rice starches, whether native or acetylated, did not form films with desirable characteristics. The acetylation decreased the tensile strength and increased the elongation of the films. The acetylated starch-based films had a lower decomposition temperature and higher thermal stability than native starch films. Acetylated starches films exhibited more rapid degradation as compared with the native starches films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Acetylation/deacetylation reactions of T-2, acetyl T-2, HT-2, and acetyl HT-2 toxins in bovine rumen fluid in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Munger, C.E.; Ivie, G.W.; Christopher, R.J.; Hammock, B.D.; Phillips, T.D.

    A tritiated preparation of the trichothecene mycotoxin, T-2 toxin, underwent both acetylation and deacetylation reactions when incubated with bovine rumen fluid in vitro. Products from incubations of T-2 in rumen fluid included acetyl T-2, HT-2, and acetyl HT-2. Direct studies with tritiated samples of each of these metabolites confirmed their relatively facile interconversion in the rumen. Studies with (/sup 3/H)HT-2 under conditions of inhibited esterase activity (added diisopropyl fluorophosphate) showed that acetylation is preferred at C-3 vs. C-4. Studies with (/sup 3/H)acetyl T-2 indicated that deacetylation similarly occurs with greater rapidity at C-3. There were no indications that ester hydrolysis of these trichothecenes occurred at C-8 or C-15 or that they were subjected to epoxide reduction reactions. These data suggest that acetylation of T-2 and other trichothecenes in the rumen in situ may ultimately result in the absorption of more lipophilic metabolites whose toxicological and residual properties are at present unknown.

  9. Biosynthesis of N-glycolyneuraminic acid. The primary site of hydroxylation of N-acetylneuraminic acid is the cytosolic sugar nucleotide pool.

    Science.gov (United States)

    Muchmore, E A; Milewski, M; Varki, A; Diaz, S

    1989-12-05

    N-Glycolylneuraminic acid (Neu5Gc) is an oncofetal antigen in humans and is developmentally regulated in rodents. We have explored the biology of N-acetylneuraminic acid hydroxylase, the enzyme responsible for conversion of the parent sialic acid, N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. We show that the major sialic acid in all compartments of murine myeloma cell lines is Neu5Gc. Pulse-chase analysis in these cells with the sialic acid precursor [6-3H]N-acetylmannosamine demonstrates that most of the newly synthesized Neu5Gc appears initially in the cytosolic low-molecular weight pool bound to CMP. The percentage of Neu5Gc on membrane-bound sialic acids closely parallels that in the CMP-bound pool at various times of chase, whereas that in the free sialic acid pool is very low initially, and rises only later during the chase. This implies that conversion from Neu5Ac to Neu5Gc occurs primarily while Neu5Ac is in its sugar nucleotide form. In support of this, the hydroxylase enzyme from a variety of tissues and cells converted CMP-Neu5Ac to CMP-Neu5Gc, but showed no activity towards free or alpha-glycosidically bound Neu5Ac. Furthermore, the majority of the enzyme activity is found in the cytosol. Studies with isolated intact Golgi vesicles indicate that CMP-Neu5Gc can be transported and utilized for transfer of Neu5Gc to glycoconjugates. The general properties of the enzyme have also been investigated. The Km for CMP-Neu5Ac is in the range of 0.6-2.5 microM. No activity can be detected against the beta-methylglycoside of Neu5Ac. On the other hand, inhibition studies suggest that the enzyme recognizes both the 5'-phosphate group and the pyrimidine base of the substrate. Taken together, the data allow us to propose pathways for the biosynthesis and reutilization of Neu5Gc, with initial conversion from Neu5Ac occurring primarily at the level of the sugar nucleotide. Subsequent release and reutilization of Neu5Gc could then account for the higher steady-state level

  10. Inactivation kinetics of formaldehyde on N-acetyl-β-D-glucosaminidase from Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Zhang, Wei-Ni; Bai, Ding-Ping; Lin, Xin-Yu; Chen, Qing-Xi; Huang, Xiao-Hong; Huang, Yi-Fan

    2014-04-01

    Formaldehyde is a widely used sanitizer in aquaculture in China, while the appropriate concentration is not available to be used effectively and without damage to tilapia much less to its reproductive function. N-acetyl-β-D-glucosaminidase (EC 3.2.1.52, NAGase), hydrolyzing the oligomers of N-acetyl-β-D-glucosamine into monomer, is proved to be correlated with reproduction of male animals. In this paper, NAGase from spermary of tilapia was chosen as the material to study the effects of formaldehyde on its activity in order to further investigate the effects of formaldehyde use on tilapia reproduction. The results showed the relationship between the residual enzyme activity and the concentration of formaldehyde was concentration dependent, and the IC50 value was estimated to be 3.2 ± 0.1 %. Appropriate concentration of formaldehyde leaded to competitive reversible inhibition on tilapia NAGase. Moreover, formaldehyde could reduce the thermal and pH stability of the enzyme. The inactivation kinetics of formaldehyde on the enzyme was studied using the kinetic method of substrate reaction. The inactivation model was setup, and the rate constants were determined. The results showed that the inactivation of formaldehyde on tilapia NAGase was a slow, reversible reaction with partially residual activity. The results will give some basis to determine the concentration of formaldehyde used in tilapia culture.

  11. Metabolism of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine in the human neutrophil

    International Nuclear Information System (INIS)

    Triggiani, M.; D'Souza, D.M.; Chilton, F.H.

    1991-01-01

    The biosynthesis of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine (1-acyl-2-acetyl-GPC) together with that of 1-alkyl-2-acetyl-GPC (platelet-activating factor) has been demonstrated in a variety of inflammatory cells and tissues. It has been hypothesized that the relative proportion of these phospholipids produced upon cell activation may be influenced by their rates of catabolism. We studied the catabolism of 1-acyl-2-acetyl-GPC in resting and activated human neutrophils and compared it to that of 1-alkyl-2-acetyl-GPC. Neutrophils rapidly catabolize both 1-alkyl-2-acetyl-GPC and 1-acyl-2-acetyl-GPC; however, the rate of catabolism of 1-acyl-2-acetyl-GPC is approximately 2-fold higher than that of 1-alkyl-2-acetyl-GPC. In addition, most of 1-acyl-2-acetyl-GPC is catabolized through a pathway different from that of 1-alkyl-2-acetyl-GPC. The main step in the catabolism of 1-acyl-2-acetyl-GPC is the removal of the long chain at the sn-1 position; the long chain residue is subsequently incorporated either into triglycerides or into phosphatidylcholine. The 1-lyso-2-acetyl-GPC formed in this reaction is then further degraded to glycerophosphocholine, choline, or phosphocholine. 1-Acyl-2-acetyl-GPC is also catabolized, to a lesser extent, through deacetylation at the sn-2 position and reacylation with a long chain fatty acid. Stimulation of neutrophils by A23187 results in a higher rate of catabolism of 1-acyl-2-acetyl-GPC by increasing both the removal of the long chain at the sn-1 position and the deacetylation-reacylation at the sn-2 position. In a broken cell preparation, the cytosolic fraction of the neutrophil was shown to contain an enzyme activity which cleaved the sn-1 position of 1-acyl-2-acetyl-GPC and 1-acyl-2-lyso-GPC but not of 1,2-diacyl-GPC

  12. N-Acetyl-L-Cysteine Affords Protection against Lead-Induced Cytotoxicity and Oxidative Stress in Human Liver Carcinoma (HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2007-06-01

    Full Text Available Although lead exposure has declined in recent years as a result of change to lead-free gasoline, several epidemiological have pointed out that it represents a medical and public health emergency, especially in young children consuming high amounts of lead-contaminated flake paints. A previous study in our laboratory indicated that lead exposure induces cytotoxicity in human liver carcinoma cells. In the present study, we evaluated the role of oxidative stress in lead-induced toxicity, and the protective effect of the anti-oxidant n-acetyl-l-cysteine (NAC. We hypothesized that oxidative stress plays a role in lead-induced cytotoxicity, and that NAC affords protection against this adverse effect. To test this hypothesis, we performed the MTT [3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide] assay and the trypan blue exclusion test for cell viability. We also performed the thiobarbituric acid test for lipid peroxidation. Data obtained from the MTT assay indicated that NAC significantly increased the viability of HepG2 cells in a dosedependent manner upon 48 hours of exposure. Similar trend was obtained with the trypan blue exclusion test. Data generated from the thiobarbituric acid test showed a significant (p ≤ 0.05 increase of MDA levels in lead nitrate-treated HepG2 cells compared to control cells. Interestingly, the addition of NAC to lead nitrate-treated HepG2 cells significantly decreased cellular content of reactive oxygen species (ROS, as evidenced by the decrease in lipid peroxidation byproducts. Overall, findings from this study suggest that NAC inhibits lead nitrate-induced cytotoxicity and oxidative stress in HepG2 cells. Hence, NAC may be used as a salvage therapy for lead-induced toxicity in exposed persons.

  13. PP32 and SET/TAF-Iβ proteins regulate the acetylation of newly synthesized histone H4.

    Science.gov (United States)

    Saavedra, Francisco; Rivera, Carlos; Rivas, Elizabeth; Merino, Paola; Garrido, Daniel; Hernández, Sergio; Forné, Ignasi; Vassias, Isabelle; Gurard-Levin, Zachary A; Alfaro, Iván E; Imhof, Axel; Almouzni, Geneviève; Loyola, Alejandra

    2017-11-16

    Newly synthesized histones H3 and H4 undergo a cascade of maturation steps to achieve proper folding and to establish post-translational modifications prior to chromatin deposition. Acetylation of H4 on lysines 5 and 12 by the HAT1 acetyltransferase is observed late in the histone maturation cascade. A key question is to understand how to establish and regulate the distinct timing of sequential modifications and their biological significance. Here, we perform proteomic analysis of the newly synthesized histone H4 complex at the earliest time point in the cascade. In addition to known binding partners Hsp90 and Hsp70, we also identify for the first time two subunits of the histone acetyltransferase inhibitor complex (INHAT): PP32 and SET/TAF-Iβ. We show that both proteins function to prevent HAT1-mediated H4 acetylation in vitro. When PP32 and SET/TAF-Iβ protein levels are down-regulated in vivo, we detect hyperacetylation on lysines 5 and 12 and other H4 lysine residues. Notably, aberrantly acetylated H4 is less stable and this reduces the interaction with Hsp90. As a consequence, PP32 and SET/TAF-Iβ depleted cells show an S-phase arrest. Our data demonstrate a novel function of PP32 and SET/TAF-Iβ and provide new insight into the mechanisms regulating acetylation of newly synthesized histone H4. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Quantitation of alpha-linolenic acid elongation to eicosapentaenoic and docosahexaenoic acid as affected by the ratio of n6/n3 fatty acids

    Directory of Open Access Journals (Sweden)

    Somoza Veronika

    2009-02-01

    Full Text Available Abstract Background Conversion of linoleic acid (LA and alpha-linolenic acid (ALA to their higher chain homologues in humans depends on the ratio of ingested n6 and n3 fatty acids. Design and methods In order to determine the most effective ratio with regard to the conversion of ALA to eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, human hepatoma cells were incubated with varying ratios of [13C] labeled linoleic acid ([13C]LA- and alpha-linolenic acid ([13C]ALA-methylesters. Regulative cellular signal transduction pathways involved were studied by determinations of transcript levels of the genes encoding delta-5 desaturase (D5D and delta-6 desaturase (D6D, peroxisome proliferator-activated receptor alpha (PPARα and sterol regulatory element binding protein 1c (SREBP-1c. Mitogen-activated protein kinase kinase 1 (MEK1 and mitogen-activated protein kinase kinase kinase 1 (MEKK1 were also examined. Results Maximum conversion was observed in cells incubated with the mixture of [13C]LA/[13C]ALA at a ratio of 1:1, where 0.7% and 17% of the recovered [13C]ALA was converted to DHA and EPA, respectively. Furthermore, differential regulation of enzymes involved in the conversion at the transcript level, dependent on the ratio of administered n6 to n3 fatty acids in human hepatocytes was demonstrated. Conclusion Formation of EPA and DHA was highest at an administered LA/ALA ratio of 1:1, although gene expression of PPARα, SREBP-1c and D5D involved in ALA elongation were higher in the presence of ALA solely. Also, our findings suggest that a diet-induced enhancement of the cell membrane content of highly unsaturated fatty acids is only possible up to a certain level.

  15. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue

    Science.gov (United States)

    Hall, P. J.; Bandurski, R. S.

    1986-01-01

    [3H]Indole-3-acetyl-myo-inositol was hydrolyzed by buffered extracts of acetone powders prepared from 4 day shoots of dark grown Zea mays L. seedlings. The hydrolytic activity was proportional to the amount of extract added and was linear for up to 6 hours at 37 degrees C. Boiled or alcohol denatured extracts were inactive. Analysis of reaction mixtures by high performance liquid chromatography demonstrated that not all isomers of indole-3-acetyl-myo-inositol were hydrolyzed at the same rate. Buffered extracts of acetone powders were prepared from coleoptiles and mesocotyls. The rates of hydrolysis observed with coleoptile extracts were greater than those observed with mesocotyl extracts. Active extracts also catalyzed the hydrolysis of esterase substrates such as alpha-naphthyl acetate and the methyl esters of indoleacetic acid and naphthyleneacetic acid. Attempts to purify the indole-3-acetyl-myo-inositol hydrolyzing activity by chromatographic procedures resulted in only slight purification with large losses of activity. Chromatography over hydroxylapatite allowed separation of two enzymically active fractions, one of which catalyzed the hydrolysis of both indole-3-acetyl-myo-inositol and esterase substrates. With the other enzymic hydrolysis of esterase substrates was readily demonstrated, but no hydrolysis of indole-3-acetyl-myo-inositol was ever detected.

  16. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue

    International Nuclear Information System (INIS)

    Hall, P.J.; Bandurski, R.S.

    1986-01-01

    [ 3 H]Indole-3-acetyl-myo-inositol was hydrolyzed by buffered extracts of acetone powders prepared from 4 day shoots of dark grown Zea mays L. seedlings. The hydrolytic activity was proportional to the amount of extract added and was linear for up to 6 hours at 37 0 C. Boiled or alcohol denatured extracts were inactive. Analysis of reaction mixtures by high performance liquid chromatography demonstrated that not all isomers of indole-3-acetyl-myo-inositol were hydrolyzed at the same rate. Buffered extracts of acetone powders were prepared from coleoptiles and mesocotyls. The rates of hydrolysis observed with coleoptile extracts were greater than those observed with mesocotyl extracts. Active extracts also catalyzed the hydrolysis of esterase substrates such as α-naphthyl acetate and the methyl esters of indoleacetic acid and naphthyleneacetic acid. Attempts to purify the indole-3-acetyl-myo-inositol hydrolyzing activity by chromatographic procedures resulted in only slight purification with large losses of activity. Chromatography over hydroxylapatite allowed separation of two enzymically active fractions, one of which catalyzed the hydrolysis of both indole-3-acetyl-myo-inositol and esterase substrates. With the other fraction enzymic hydrolysis of esterase substrates was readily demonstrated, but no hydrolysis of indole-3-acetyl-myo-inositol was ever detected

  17. Structure, morphology and functionality of acetylated and oxidised barley starches.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Pinto, Vânia Zanella; Bartz, Josiane; Radunz, Marjana; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-02-01

    Acetylation and oxidation are chemical modifications which alter the properties of starch. The degree of modification of acetylated and oxidized starches is dependent on the catalyst and active chlorine concentrations, respectively. The objective of this study was to evaluate the effect of acetylation and oxidation on the structural, morphological, physical-chemical, thermal and pasting properties of barley starch. Barley starches were acetylated at different catalyst levels (11%, 17%, and 23% of NaOH solution) and oxidized at different sodium hypochlorite concentrations (1.0%, 1.5%, and 2.0% of active chlorine). Fourier-transformed infrared spectroscopy (FTIR), X-ray diffractograms, thermal, morphological, and pasting properties, swelling power and solubility of starches were evaluated. The degree of substitution (DS) of the acetylated starches increased with the rise in catalyst concentration. The percentage of carbonyl (CO) and carboxyl (COOH) groups in oxidized starches also increased with the rise of active chlorine level. The presence of hydrophobic acetyl groups, carbonyl and carboxyl groups caused a partial disorganization and depolymerization of starch granules. The structural, morphological and functional changes in acetylated and oxidized starches varied according to reaction conditions. Acetylation makes barley starch more hydrophobic by the insertion of acetyl groups. Also the oxidation promotes low retrogradation and viscosity. All these characteristics are important for biodegradable film production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Synthesis of specifically 2H-labeled reserpines, 3,4,5-trimethoxybenzoic acids, and syringic acid

    International Nuclear Information System (INIS)

    Roth, R.W.; Fischer, D.L.; Pachta, J.M.; Althaus, J.F.

    1982-01-01

    3,4,5-Trimethoxy- 2 H 9 -, 4-methoxy-3,5-dimethoxy- 2 H 6 , and 4-hydroxyl-3,5-dimethoxy- 2 H 6 -benzoic acids were prepared from n-propyl 3,4,5-trihydroxybenzoate (n-propyl gallate) by means of appropriate alkylation-hydrolysis sequences employing iodomethane- 2 H 3 or dimethyl- 2 H 6 -sulfate as the deuterium source. 4-Methoxy- 2 H 3 -3,5-dimethoxybenzoic acid was similarly prepared from ethyl 4-hydroxy-3,5-dimethoxybenzoate. The labeled trimethoxybenzoic acids were converted to the corresponding 2 H-labeled reserpines by condensation of the acid chlorides with methyl reserpate in pyridine according to the classical procedure. The labeled reserpine analog methyl 18-0-(4-hydroxy-3,5-dimethoxy- 2 H 6 )benzoyl reserpate was likewise prepared from 4-hydroxy-3,5-dimethoxy- 2 H 6 -benzoic acid via the intermediate methyl 18-0-(4-ethoxycarbonyloxy-3,5-dimethoxy- 2 H 6 -benzoyl)reserpate (syrosingopine- 2 H 6 ). The isotopic purity of each compound exceeded 99 atom percent 2 H. (author)

  19. Alba from Thermoplasma volcanium belongs to α-NAT's: An insight into the structural aspects of Tv Alba and its acetylation by Tv Ard1.

    Science.gov (United States)

    Ma, Chao; Pathak, Chinar; Lee, Sang Jae; Lee, Ki-Young; Jang, Sun-Bok; Nam, Minjoo; Im, Hookang; Yoon, Hye-Jin; Lee, Bong-Jin

    2016-01-15

    The Alba superfamily proteins have been regarded as a conserved group of proteins in archaea and eukarya, which have shown to be important in nucleic acid binding, chromatic organization and gene regulation. These proteins often belong to the N-acetyltransferase (NAT) category (N(α)-acetyltransferases or N(ε)-acetyltransferases) and undergo post-translational modifications. Here, we report the crystal structure of Alba from Thermoplasma volcanium (Tv Alba) at 2.4 Å resolution. The acetylation of Tv Alba was monitored and the N-terminal of Tv Alba has been shown to interact with acetyl coenzyme A (Ac-CoA). The chemical shift perturbation experiments of Tv Alba were performed in the presence of Ac-CoA and/or Tv Ard1, another T. volcanium protein that treats Tv Alba as a substrate. To examine the DNA binding capabilities of Tv Alba alone and in the presence of Ac-CoA and/or Tv Ard1, EMSA experiments were carried out. It is shown that although Tv Alba binds to Ac-CoA, the acetylation of Tv Alba is not related with its binding to dsDNA, and the involvement of the N-terminus in Ac-CoA binding demonstrates that Tv Alba belongs to the N(α)-acetyltransferase family. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Serum n-3 Tetracosapentaenoic Acid and Tetracosahexaenoic Acid Increase Following Higher Dietary α-Linolenic Acid but not Docosahexaenoic Acid.

    Science.gov (United States)

    Metherel, Adam H; Domenichiello, Anthony F; Kitson, Alex P; Lin, Yu-Hong; Bazinet, Richard P

    2017-02-01

    n-3 Tetracosapentaenoic acid (24:5n-3, TPAn-3) and tetracosahexaenoic acid (24:6n-3, THA) are believed to be important intermediates to docosahexaenoic acid (DHA, 22:6n-3) synthesis. The purpose of this study is to report for the first time serum concentrations of TPAn-3 and THA and their response to changing dietary α-linolenic acid (18:3n-3, ALA) and DHA. The responses will then be used in an attempt to predict the location of these fatty acids in relation to DHA in the biosynthetic pathway. Male Long Evans rats (n = 6 per group) were fed either a low (0.1% of total fatty acids), medium (3%) or high (10%) ALA diet with no added DHA, or a low (0%), medium (0.2%) or high (2%) DHA diet with a background of 2% ALA for 8 weeks post-weaning. Serum n-3 and n-6 polyunsaturated fatty acid (PUFA) concentrations (nmol/mL ± SEM) were determined by gas chromatography-mass spectrometry. Serum THA increases from low (0.3 ± 0.1) to medium (5.8 ± 0.7) but not from medium to high (4.6 ± 0.9) dietary ALA, while serum TPAn-3 increases with increasing dietary ALA from 0.09 ± 0.04 to 0.70 ± 0.09 to 1.23 ± 0.14 nmol/mL. Following DHA feeding, neither TPAn-3 or THA change across all dietary DHA intake levels. Serum TPAn-3 demonstrates a similar response to dietary DHA. In conclusion, this is the first study to demonstrate that increases in dietary ALA but not DHA increase serum TPAn-3 and THA in rats, suggesting that both fatty acids are precursors to DHA in the biosynthetic pathway.

  1. Evaluation of the effect of the acetic anhydride concentration, temperature and time in the acetylation reaction for chemical modification of Calophyllum brasiliense and Enterolobium cyclocarpum

    International Nuclear Information System (INIS)

    Blanco Arias, Ernesto

    2013-01-01

    A treatment is performed to increase the life of wood in Costa Rica. The effect of acetic anhydride concentration, temperature and time have been studied in the reaction of acetylation for the chemical modification of tropical species Calophyllum brasiliense (Cedar Maria) and Enterolobium cyclocarpum (Guanacaste). Species have been characterized for quantifying the amount of OH groups available for the acetylation reaction. An important aspect is that the temperature conditions, the ratio of acetic anhydride with has dry wood mass and initial acetic acid concentration were assessed using a factorial design and have determined the conditions with which has obtained greater weight gain in the acetylation reaction. Furthermore, the acetylation reaction was conducted for times of 2 hours, 4,5 hours and 7 hours. The ATR infrared spectroscopy was used to verify the replacement of the OH group by acetyl groups and the increase in the different reaction time. The characteristics obtained from the OH groups have been 13,23 mmol and 13,85 mmol of OH per gram of wood of the Guanacaste species and Cedar Maria respectively. The temperature has been 90 degrees Celsius, one relationship acetic anhydride/dry wood 1,75 mL/g without the initial presence of acetic acid in the reaction medium. Also, percentages of profit of weight (WPG) have been obtained; maximums of 12,20% and 12,44% for Guanacaste for Cedar Maria in reaction time of 7 hours, 4,5 hours respectively. A decrease in the band has performed in the 3300 cm -1 characteristic of the OH group and the presence of bands at 1700 cm -1 characteristic of C=O. One of the main conclusions is that the acetylated wood has been an increase in resistance to biological degradation by white rot fungus Trametes versicolor of about 87% efficiency for both species [es

  2. Aspirin increases mitochondrial fatty acid oxidation

    International Nuclear Information System (INIS)

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.; Bharathi, Sivakama S.; Zhang, Yuxun; Stolz, Donna B.; Goetzman, Eric S.

    2017-01-01

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. - Highlights: • Aspirin increases mitochondrial—but inhibits peroxisomal—fatty acid oxidation. • Aspirin acetylates mitochondrial proteins including fatty acid oxidation enzymes. • SIRT3 does not influence the effect of aspirin on fatty acid oxidation. • Increased fatty acid oxidation is likely due to altered mitochondrial morphology and respiration.

  3. Toxicity of fatty acid 18:5n3 from Gymnodinium cf. mikimotoi: II. Intracellular pH and K+ uptake in isolated trout hepatocytes.

    Science.gov (United States)

    Fossat, B; Porthé-Nibelle, J; Sola, F; Masoni, A; Gentien, P; Bodennec, G

    1999-01-01

    Effects of octadecapentaenoic acid 18:5n3 and other related polyunsaturated fatty acids present in gymnodinium cf. mikimotoi were tested in isolated trout hepatocytes. These exotoxins decreased intracellular pH followed by a slow recovery to initial value and alkalinization of acidic compartments, suggesting an inhibition of vacuolar H(+)-ATPases. Moreover, addition of 18:5n3 to the extracellular medium induced a decrease of K+ uptake into hepatocytes as a result of Na,K-ATPase inhibition. However, high concentrations (10(-5)-10(-3) M) are necessary to induce these effects.

  4. Vibrational Spectroscopy and Gas-Phase Thermochemistry of the Model Dipeptide N-Acetyl Glycine Methyl Amide

    Science.gov (United States)

    Leavitt, Christopher; Raston, Paul; Moody, Grant; Shirley, Caitlyne; Douberly, Gary

    2014-06-01

    The structure-function relationship in proteins is widely recognized, motivating numerous investigations of isolated neutral and ionic polypeptides that generally employ conformation specific, multidimensional UV and IR spectroscopies. This data taken in conjunction with computed harmonic frequencies has provided a snapshot of the underlying molecular physics at play in many polypeptides, but few experiments have been able to probe the energetics of these systems. In this study, we use vibrational spectroscopy to measure the gas-phase enthalpy change for isomerization between two conformations of the dipeptide N-acetyl glycine methyl amide (NAGMA). A two-stage oven source is implemented producing a gas-phase equilibrium distribution of NAGMA molecules that is flash frozen upon pickup by He nanodroplets. Using polarization spectroscopy, the IR spectrum is assigned to a mixture of two conformers having intramolecular hydrogen bonds made up of either five- or seven-membered rings, C5 and C7, respectively. The interconversion enthalpy, obtained from the van't Hoff relation, is 4.52{±}0.12 kJ/mol for isomerization from the C7 to the C5-conformer. This experimental measurement is compared to computations employing a broad range of theoretical methods.

  5. N-Acetyl-l-Cysteine Affects Growth, Extracellular Polysaccharide Production, and Bacterial Biofilm Formation on Solid Surfaces

    OpenAIRE

    Olofsson, Ann-Cathrin; Hermansson, Malte; Elwing, Hans

    2003-01-01

    N-Acetyl-l-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Usi...

  6. The concentration of N-acetyl aspartate, creatine + phosphocreatine, and choline in different parts of the brain in adulthood and senium

    DEFF Research Database (Denmark)

    Christiansen, P; Toft, P; Larsson, H B

    1993-01-01

    The fully relaxed water signal was used as an internal standard in a STEAM experiment to calculate the concentrations of the metabolites: N-acetyl aspartate (NAA), creatine + phosphocreatine (Cr + PCr), and choline (Cho) containing compounds in four different parts of the brain in two age groups...

  7. Fatty acid synthesis by spinach chloroplasts, 2. The path from PGA to fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Mitsuhiro; Nakamura, Yasunori [Tokyo Univ. (Japan). Coll. of General Education

    1975-02-01

    By incorporation of /sup 3/H/sub 2/O into the fatty acid chain in the presence of unlabelled precursor, we showed that fatty acids are synthesized from PGA, PEP and pyruvate by intact spinach chloroplasts in the light. /sup 13/C-tracer experiments confirmed that 1-C of pyruvate is decarboxylated and 2-C is incorporated into fatty acids by the chloroplasts. The patterns of fatty acids synthesized from PGA and pyruvate were the same as that from acetate. The highest rate of fatty acid synthesis was reached at the physiological concentration of PGA (3 mM) and pyruvate (1 mM). These results indicate the operation of the following path in the chloroplasts in light: PGA..-->..PEP..-->..pyruvate..-->..acetylCoA..-->..fatty acids. Since citrate and OAA were much less active and malate and glyoxylate were inert as precursors for fatty acid synthesis, PEP or pyruvate carboxylation, citrate lyase reaction and malate synthetase reaction are not involved in the formation of acetylCoA and fatty acids. Since pyruvate was much more effective as a substrate for fatty acid synthesis than lactate, acetaldehyde or acetate, direct decarboxylation path is considered to be the primary path from pyruvate to acetylCoA. The insignificant effect of chloroplast-washing on fatty acid synthesis from PGA and pyruvate indicates that the glycolytic path from PGA to pyruvate is associated with the chloroplasts. Since pyruvate was more effectively incorporated into fatty acids than acetylCoA, it is unlikely that pyruvate decarboxylation to acetylCoA is due to mitochondria contaminating the chloroplast preparation. On the basis of measurements of /sup 3/H/sub 2/O incorporation in the light and dark, the activity of fatty acid synthesis in spincah leaves appears to be shared by the activities in chloroplasts (87%) and other organelles (13%).

  8. Dissociation and homoconjugation equilibria of some acids and bases in N,N-dimethylformamide.

    Science.gov (United States)

    Roletto, E; Vanni, A

    1977-01-01

    The following monoprotic acids have been studied in N,N-dimethylformamide (DMF): p-toluenesulphonic acid; 2,6-dichlorobenzoic acid; 2,5-dichlorophenol; the anilinium ion; the N-methyl-anilinium ion. The first dissociation step of malonic and succinic acids has also been studied. Dissociation and homoconjugation constants have been determined potentiometrically, at 25 degrees , in buffer solutions containing either the acid and its tetraethylammonium salt or the base and its picrate. Homoconjugation equilibria between unchanged acid and univalent conjugate base have been found not only for benzoic acid and phenol derivatives, but also between undissociated diprotic carboxylic acids and the corresponding monoanions, which are strongly intramolecularly hydrogen-bonded. Results are discussed with reference to previously published values.

  9. Targeted amino-terminal acetylation of recombinant proteins in E. coli.

    Directory of Open Access Journals (Sweden)

    Matthew Johnson

    2010-12-01

    Full Text Available One major limitation in the expression of eukaryotic proteins in bacteria is an inability to post-translationally modify the expressed protein. Amino-terminal acetylation is one such modification that can be essential for protein function. By co-expressing the fission yeast NatB complex with the target protein in E.coli, we report a simple and widely applicable method for the expression and purification of functional N-terminally acetylated eukaryotic proteins.

  10. Fatty Acid Biosynthesis Pathways in Methylomicrobium buryatense 5G(B1).

    Science.gov (United States)

    Demidenko, Aleksandr; Akberdin, Ilya R; Allemann, Marco; Allen, Eric E; Kalyuzhnaya, Marina G

    2016-01-01

    Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1) . Most of the genes homologous to typical Type II fatty acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of fatty acid transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for fatty acid biosynthesis regulation, farE , was identified and studied. Its deletion resulted in drastic changes to the fatty acid profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE -knockout mutants and farE -overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. The gene expression and fatty acid profiles of the different farE -strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph.

  11. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis

    DEFF Research Database (Denmark)

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha

    2013-01-01

    The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double....... The quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco) mannan, and xyloglucan as well as overall cell wall acetylation is affected differently...... in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell...

  12. Study on mechanism for oxidation of N,N-dimethylhydroxylamine by nitrous acid

    International Nuclear Information System (INIS)

    Li Gaoliang; He Hui

    2011-01-01

    The oxidation of N,N-dimethylhydroxylamine (DMHAN) by nitrous acid is investigated in perchloric acid and nitric acid medium, respectively. The effects of H + , DMHAN, ionic strength and temperature on the reaction are studied. The rate equation in perchloric acid medium has been determined to be -d[HNO 2 ]/dt = k[DMHAN][HNO 2 ], where k = 12.8 ± 1.0 (mol/L) -1 min -1 when the temperature is 18.5 deg C and the ionic strength is 0.73 mol/L with an activation energy about 41.5 kJ mol -1 . The reaction becomes complicated when it is performed in nitric acid medium. When the molarity of HNO 3 is higher than 1.0 mol/L, nitrous acid will be produced via the reaction between nitric acid and DMHAN. The reaction products are analyzed and the reaction mechanism is discussed in this paper. (author)

  13. Isolation and characterization of a thermolysin peptide containing acetyllysine from enzymatically acetylated f2al histone

    International Nuclear Information System (INIS)

    Horiuchi, Kentaro; Fujimoto, Daisaburo

    1973-01-01

    Previous studies (vol. 72, 433, '72) in this laboratory showed that histone acetylase in the cytosol of calf thymus introduced acetyl groups primarily into the epsilon-amino groups of lysine residues in a histone fraction, f2al. In an attempt to examine the site of acetylation in f2al by the enzyme, 14 C-acetylated f2al was isolated and digested by thermolysin. A radioactive peptide, which accounted for 50 - 60% of the total radioactivity, was obtained from the thermolysin digest and identified as the fragment containing amino acid residues 10-21. It appears, therefore, that the major sites of acetylation by the enzyme are the lysine 12 or 16 or both, which are known to be acetylated in vivo. It was also shown that the peptide was not deacetylated by histone deacetylase, in contrast with the whole f2al molecule. (author)

  14. Ruthenium (3) coordination compounds with ethylenediamine-N,N,N',N'-tetramethylphosphonic acid

    International Nuclear Information System (INIS)

    Ezerskaya, N.A.; Buj Kuang Ki; Shubochkin, L.K.

    1987-01-01

    In the process of interaction of K 2 Ru(H 2 O)Cl 5 with ethylenediamine-N,N,N',N'-tetramethylphosphonic acid (H 8 EDTP) Ru 3 mono-, bi- and trinuclear complexonates are synthesized. On the basis of IR and X-ray electron spectroscopy and potentiometry suppositions are made on the way of ligand (EDTP, Cl - , H 2 O) coordination. Ru 3 complexonates are characterized using spectrophotometry, polarography, conductometry. Thermal decomposition of the complexonates is studied

  15. In-source formation of N-acetyl-p-benzoquinone imine (NAPQI), the putatively toxic acetaminophen (paracetamol) metabolite, after derivatization with pentafluorobenzyl bromide and GC-ECNICI-MS analysis.

    Science.gov (United States)

    Tsikas, Dimitrios; Trettin, Arne; Zörner, Alexander A; Gutzki, Frank-Mathias

    2011-05-15

    Pentafluorobenzyl (PFB) bromide (PFB-Br) is a versatile derivatization reagent for numerous classes of compounds. Under electron-capture negative-ion chemical ionization (ECNICI) conditions PFB derivatives of acidic compounds readily and abundantly ionize to produce intense anions due to [M-PFB](-). In the present article we investigated the PFB-Br derivatization of unlabelled acetaminophen (N-acetyl-p-aminophenol, NAPAP-d(0); paracetamol; MW 151) and tetradeuterated acetaminophen (NAPAP-d(4); MW 155) in anhydrous acetonitrile and their GC-ECNICI-MS behavior using methane as the buffer gas. In addition to the expected anions [M-PFB](-) at m/z 150 from NAPAP-d(0) and m/z 154 from NAPAP-d(4), we observed highly reproducibly almost equally intense anions at m/z 149 and m/z 153, respectively. Selected ion monitoring of these ions is suitable for specific and sensitive quantification of acetaminophen in human plasma and urine. Detailed investigations suggest in-source formation of N-acetyl-p-benzoquinone imine (NAPQI; MW 149), the putatively toxic acetaminophen metabolite, from the PFB ether derivative of NAPAP. GC-ECNICI-MS of non-derivatized NAPAP did not produce NAPQI. The peak area ratio of m/z 149 to m/z 150 and of m/z 153 to m/z 154 decreased with increasing ion-source temperature in the range 100-250°C. Most likely, NAPQI formed in the ion-source captures secondary electrons to become negatively charged (i.e., [NAPQI](-)) and thus detectable. Formation of NAPQI was not observed under electron ionization (EI) conditions, i.e., by GC-EI-MS, from derivatized and non-derivatized NAPAP. NAPQI was not detectable in flow injection analysis LC-MS of native NAPAP in positive electrospray ionization (ESI) mode, whereas in negative ESI mode low extent NAPQI formation was observed (<5%). Our results suggest that oxidation of drug derivatives in the ion-sources of mass spectrometers may form intermediates that are produced from activated drugs in enzyme-catalyzed reactions

  16. Histone acetylation regulates the time of replication origin firing.

    Science.gov (United States)

    Vogelauer, Maria; Rubbi, Liudmilla; Lucas, Isabelle; Brewer, Bonita J; Grunstein, Michael

    2002-11-01

    The temporal firing of replication origins throughout S phase in yeast depends on unknown determinants within the adjacent chromosomal environment. We demonstrate here that the state of histone acetylation of surrounding chromatin is an important regulator of temporal firing. Deletion of RPD3 histone deacetylase causes earlier origin firing and concurrent binding of the replication factor Cdc45p to origins. In addition, increased acetylation of histones in the vicinity of the late origin ARS1412 by recruitment of the histone acetyltransferase Gcn5p causes ARS1412 alone to fire earlier. These data indicate that histone acetylation is a direct determinant of the timing of origin firing.

  17. Acetyl-CoA carboxylase-a as a novel target for cancer therapy.

    Science.gov (United States)

    Wang, Chun; Rajput, Sandeep; Watabe, Kounosuke; Liao, Duan-Fang; Cao, Deliang

    2010-01-01

    Acetyl-CoA carboxylases (ACC) are rate-limiting enzymes in de novo fatty acid synthesis, catalyzing ATP-dependent carboxylation of acetyl-CoA to form malonyl-CoA. Malonyl-CoA is a critical bi-functional molecule, i.e., a substrate of fatty acid synthase (FAS) for acyl chain elongation (fatty acid synthesis) and an inhibitor of carnitine palmitoyltransferase I (CPT-I) for fatty acid beta-oxidation. Two ACC isoforms have been identified in mammals, i.e. ACC-alpha (ACCA, also termed ACC1) and ACC-beta (ACCB, also designated ACC2). ACC has long been used as a target for the management of metabolic diseases, such as obesity and metabolic syndrome, and various inhibitors have been developed in clinical trials. Recently, ACCA up-regulation has been recognized in multiple human cancers, promoting lipogenesis to meet the need of cancer cells for rapid growth and proliferation. Therefore, ACCA might be effective as a potent target for cancer intervention, and the inhibitors developed for the treatment of metabolic diseases would be potential therapeutic agents for cancer therapy. This review summarizes our recent findings and updates the current understanding of the ACCA with focus on cancer research.

  18. Central N-acetyl aspartylglutamate deficit: a possible pathogenesis of schizophrenia.

    Science.gov (United States)

    Tsai, Shih-Jen

    2005-09-01

    The "glutamate hypothesis" of schizophrenia has emerged from the finding that phencyclidine (PCP) induces psychotic-like behaviors in rodents, possibly by blocking the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor, thereby causing increased glutamate release. N-acetyl aspartylglutamate (NAAG), an endogenous peptide abundant in mammalian nervous systems, is localized in certain brain cells, including cortical and hippocampal pyramidal neurons. NAAG is synthesized from N-acetylaspartate (NAA) and glutamate, and NAA availability may limit the rate of NAAG synthesis. Although NAAG is known to have some neurotransmitter-like functions, NAA does not. NAAG is a highly selective agonist of the type 3 metabotropic glutamate receptor (mGluR3, a presynaptic autoreceptor) and can inhibit glutamate release. In addition, at low levels, NAAG is an NMDA receptor antagonist, and blocking of NMDA receptors may increase glutamate release. Taken together, low central NAAG levels may antagonize the effect of glutamate at NMDA receptors and decrease its agonistic effect on presynaptic mGluR3; both activities could increase glutamate release, similar to the increase demonstrated in the PCP model of schizophrenia. In this report, it is suggested that the central NAAG deficit, possibly through decreased synthesis or increased degradation of NAAG, may play a role in the pathogenesis of schizophrenia. Evidence is presented and discussed from magnetic resonance, postmortem, animal model, schizophrenia treatment, and genetic studies. The central NAAG deficit model of schizophrenia could explain the disease process, from the perspectives of both neurodevelopment and neurodegeneration, and may point to potential treatments for schizophrenia.

  19. Structure Elucidation of New Acetylated Saponins, Lessoniosides A, B, C, D, and E, and Non-Acetylated Saponins, Lessoniosides F and G, from the Viscera of the Sea Cucumber Holothuria lessoni

    Science.gov (United States)

    Bahrami, Yadollah; Franco, Christopher M. M.

    2015-01-01

    Sea cucumbers produce numerous compounds with a wide range of chemical structural diversity. Among these, saponins are the most diverse and include sulfated, non-sulfated, acetylated and methylated congeners with different aglycone and sugar moieties. In this study, MALDI and ESI tandem mass spectrometry, in the positive ion mode, were used to elucidate the structure of new saponins extracted from the viscera of H. lessoni. Fragmentation of the aglycone provided structural information on the presence of the acetyl group. The presence of the O-acetyl group was confirmed by observing the mass transition of 60 u corresponding to the loss of a molecule of acetic acid. Ion fingerprints from the glycosidic cleavage provided information on the mass of the aglycone (core), and the sequence and type of monosaccharides that constitute the sugar moiety. The tandem mass spectra of the saponin precursor ions [M + Na]+ provided a wealth of detailed structural information on the glycosidic bond cleavages. As a result, and in conjunction with existing literature, we characterized the structure of five new acetylated saponins, Lessoniosides A–E, along with two non-acetylated saponins Lessoniosides F and G at m/z 1477.7, which are promising candidates for future drug development. The presented strategy allows a rapid, reliable and complete analysis of native saponins. PMID:25603350

  20. Measuring urinary N-acetyl-S-(4-hydroxy-2-methyl-2-buten-1-yl)-L-cysteine (IPMA3) as a potential biomarker of isoprene exposure.

    Science.gov (United States)

    Alwis, K Udeni; Bailey, T Liz; Patel, Dhrusti; Wang, Liqun; Blount, Benjamin C

    2016-10-19

    Isoprene, the 2-methyl analog of 1,3-butadiene, is identified as a possible human carcinogen by the International Agency for Research on Cancer (IARC). Isoprene is ubiquitous in the environment with numerous natural and anthropogenic sources. Tobacco smoke is the main exogenous source of isoprene exposure in indoor environments. Among smoke constituents, isoprene is thought to contribute significantly to cancer risk; however, no selective urinary biomarkers of isoprene exposure have been identified for humans. In this manuscript, we measured the minor isoprene metabolite IPMA1 (mixture of N-acetyl-S-(1-[hydroxymethyl]-2-methyl-2-propen-1-yl)-L-cysteine and N-acetyl-S-(2-hydroxy-3-methyl-3-buten-1-yl)-L-cysteine), and we identified IPMA3 (N-acetyl-S-(4-hydroxy-2-methyl-2-buten-1-yl)-L-cysteine) as a major isoprene metabolite and novel isoprene exposure biomarker for humans. Urinary isoprene metabolites were measured using ultra high performance liquid chromatography coupled with electrospray ionization triple quad tandem mass spectrometry (UPLC/ESI-MSMS). The detection rates of IPMA1 and IPMA3 are <20% and 82%, respectively. The selectivity and abundance of IPMA3 make it a useful urinary biomarker of isoprene exposure. The limit of detection of IPMA3 in urine was 0.5 ng mL -1 . IPMA3 was stable under different storage temperatures and following ten freeze-thaw cycles. The average recovery of urine spiked with IPMA3 at three different levels was 99%. IPMA3 was measured in urine samples received from 75 anonymous subjects; the median (25th percentile, 75th percentile) IPMA3 level in smokers was 36.2 (18.2, 56.8) ng mL -1 and non-smokers 2.31 (2.31, 4.38) ng mL -1 . Application of this method to large population studies will help to characterize isoprene exposure and assess potential health impact. Published by Elsevier B.V.

  1. Effect of cassava-starch coatings with ascorbic acidic and N-acetylcysteine on the quality of harton plantain (Musa paradisiaca

    Directory of Open Access Journals (Sweden)

    Carlos Julio Márquez Cardozo

    2015-06-01

    Full Text Available The effect of coatings was evaluated on the quality ofharton plantain fruits (Musa paradisiaca in the postharvest stage.Solutions for three treatments were prepared from 50 g L-1 cassavastarch (Manihot esculenta with 30 g L-1 glycerol as the plasticizerand 6 g L-1 polyethylene glycol-600®; for anti-browning agents, 6g L-1 ascorbic acid (AA and 8 g L-1 N-Acetyl-Cysteine (NAC wereadded. The fruits were coated by immersion, stored at 18 ± 4°Cand 85% RH. Physicochemical properties were determined at 32days postharvest. The applied coatings decreased the physiologicalweight loss (%WL and resulted in a higher pulp firmness (PF; nosignificant difference was seen with a confidence level of 95% inthe concentration of total soluble solids (TSS, acidity or maturityindex. The skin color was measured by the CIE L*a*b* method, withan average L value of 70 for the fruits coated with the 6 g L-1 AAand 8 g L-1 NAC mixture, while the control fruits had a value of 57.Also, lower a* coordinate values and browning indices were foundfor the epidermis of the coated fruits. The enzymatic activity of thepolyphenol oxidase decreased with the number of postharvest daysfor all of the treatments, being lower for the fruits with the mixtureof anti-browning agents by 27%, as compared to the control. It wasconcluded that the coating mixture containing the anti-browningagents ascorbic acid, 6 g L-1, and N-acetyl-cysteine, 8 g L-1, showeda better effect as an alternative for storing fruits and prolongingthe shelf-life of harton plantain.

  2. Ruthenium (3) coordination compounds with ethylenediamine-N,N,N',N'-tetramethylphosphonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Ezerskaya, N A; Ki, Buj Kuang; Shubochkin, L K

    1987-12-01

    In the process of interaction of K/sub 2/Ru(H/sub 2/O)Cl/sub 5/ with ethylenediamine-N,N,N',N'-tetramethylphosphonic acid (H/sub 8/EDTP) Ru/sup 3/ mono-, bi- and trinuclear complexonates are synthesized. On the basis of IR and X-ray electron spectroscopy and potentiometry suppositions are made on the way of ligand (EDTP, Cl/sup -/, H/sub 2/O) coordination. Ru/sup 3/ complexonates are characterized using spectrophotometry, polarography, conductometry. Thermal decomposition of the complexonates is studied.

  3. 5-Acetamido-3,5-dideoxy-L-glycero-L-manno-non-2-ulosonic acid-containing O-polysaccharide from marine bacterium Pseudomonas glareae KMM 9500T.

    Science.gov (United States)

    Kokoulin, Maxim S; Kalinovsky, Anatoly I; Romanenko, Lyudmila A; Mikhailov, Valery V

    2018-05-22

    The O-polysaccharide was isolated from the lipopolysaccharide of a marine bacterium Pseudomonas glareae KMM 9500 T and studied by chemical methods along with 1D and 2D 1 H and 13 C NMR spectroscopy including 1 H, 1 H-TOCSY, 1 H, 1 H-COSY, 1 H, 1 H-ROESY, 1 H, 13 C-HSQC and 1 H, 13 C-HMBC experiments. The O-polysaccharide was found to consist of linear tetrasaccharide repeating units constituted by D-glucuronic acid (D-GlcA), L-rhamnose (L-Rha), D-glucose (D-Glc) and 5-acetamido-7,9-O-[(S)-1-carboxyethylidene]-3,5-dideoxy-L-glycero-L-manno-non-2-ulosonic acid (Sug7,9(S-Pyr)), partially O-acetylated at position 8 (∼70%): →4)-α-D-GlcpA-(1→3)-β-L-Rhap-(1→4)-β-D-Glcp-(1→4)-β-Sugp8Ac(∼70%)7,9(S-Pyr)-(2→. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Antiproliferative effects of TSA, PXD‑101 and MS‑275 in A2780 and MCF7 cells: Acetylated histone H4 and acetylated tubulin as markers for HDACi potency and selectivity.

    Science.gov (United States)

    Androutsopoulos, Vasilis P; Spandidos, Demetrios A

    2017-12-01

    Inhibition of histone deacetylase enzymes (HDACs) has been well documented as an attractive target for the development of chemotherapeutic drugs. The present study investigated the effects of two prototype hydroxamic acid HDAC inhibitors, namely Trichostatin A (TSA) and Belinostat (PXD‑101) and the benzamide Entinostat (MS‑275) in A2780 ovarian carcinoma and MCF7 breast adenocarcinoma cells. The three HDACi inhibited the proliferation of A2780 and MCF7 cells at comparable levels, below the µM range. Enzyme inhibition assays in a cell‑free system showed that TSA was the most potent inhibitor of total HDAC enzyme activity followed by PXD‑101 and MS‑275. Incubation of A2780 and MCF7 cells with the hydroxamates TSA and PXD‑101 for 24 h resulted in a dramatic increase of acetylated tubulin induction (up to 30‑fold for TSA). In contrast to acetylated tubulin, western blot analysis and flow cytometry indicated that the induction of acetylated histone H4 was considerably smaller. The benzamide MS‑275 exhibited nearly a 2‑fold induction of acetylated histone H4 and an even smaller induction of acetylated tubulin in A2780 and MCF7 cells. Taken together, these data suggest that although the three HDACi were equipotent in inhibiting proliferation of MCF7 and A2780 cells, only the benzamide MS‑275 did not induce acetylated tubulin expression, a marker of class IIb HDACs.

  5. Acetyl Fentanyl Toxicity: Two Case Reports.

    Science.gov (United States)

    Fort, Chelsea; Curtis, Byron; Nichols, Clay; Niblo, Cheryl

    2016-11-01

    Acetyl fentanyl is an illicit fentanyl analog recently appearing in forensic casework. A quantitative method was created for measuring acetyl fentanyl in various biological matrices acquired post-mortem due to recent positive screening results in casework. Initial detection by immunoassay and standard gas chromatography mass spectrometry (GC/MS) methods have been previously reported for acetyl fentanyl and are examined further here. A Selective Ion Monitoring (SIM) method was created using a GC/MS for quantitation. In two separate cases, acetyl fentanyl was found to be in similar concentrations to those previously reported and ruled to be the cause of death. Acetyl fentanyl concentrations were determined in blood samples, liver, brain, vitreous humor, and urine. Individual 1 had acetyl fentanyl concentrations as follows: heart blood-285 ng/mL, femoral blood-192 ng/mL, liver-1,100 ng/g, brain-620 ng/g, and urine-3,420 ng/mL. Individual 2 had acetyl fentanyl concentrations as follows: heart blood-210 ng/mL, femoral blood-255 ng/mL, urine-2,720 ng/mL and vitreous humor-140 ng/mL. Experimental conditions for screening and quantitation are provided, using immunoassay and GC/MS methods. Due to the recent emergence of acetyl fentanyl, more data will need to be generated to fully differentiate recreational and fatal concentrations of acetyl fentanyl to assist toxicologists accurately understanding its physiological impact. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. The effect of CTB on P53 protein acetylation and consequence apoptosis on MCF-7 and MRC-5 cell lines

    Directory of Open Access Journals (Sweden)

    Mehdi Nikbakht Dastjerdi

    2013-01-01

    Conclusion: CTB could induce acetylation of P53 protein through increasing expression of P300 and consequently induce the significant cell death in MCF-7 but it could be well tolerated in MRC-5. Therefore, CTB could be used as an anti-cancer agent.

  7. Inhibitors of Fatty Acid Synthase for Prostate Cancer

    Science.gov (United States)

    2012-05-01

    compounds. For example, numerous classes of acetyl- cholinesterase inhibitors have been developed, m any with fe mtomolar binding affinities (7). This...AD_________________ Award Number: W81XWH-09-1-0204 TITLE: Inhibitors of Fatty Acid Synthase for...CONTRACT NUMBER Inhibitors of Fatty Acid Synthase for Prostate Cancer 5b. GRANT NUMBER W81XWH-09-1-0204 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  8. Relationship of Melatonin and Salicylic Acid in Biotic/Abiotic Plant Stress Responses

    OpenAIRE

    Josefa Hernández-Ruiz; Marino B. Arnao

    2018-01-01

    Melatonin (N-acetyl-5-methoxytryptamine) was discovered in plants in 1995, while salicylic acid was the name given to the active ingredient of willow in 1838. From a physiological point of view, these two molecules present in plants have never been compared, even though they have a great number of similarities, as we shall see in this work. Both molecules have biosynthesis pathways that share a common precursor and both play a relevant role in the physiology of plants, especially in aspects r...

  9. Sequential Dy(OTf)3 -Catalyzed Solvent-Free Per-O-Acetylation and Regioselective Anomeric De-O-Acetylation of Carbohydrates.

    Science.gov (United States)

    Yan, Yi-Ling; Guo, Jiun-Rung; Liang, Chien-Fu

    2017-09-19

    Dysprosium(III) trifluoromethanesulfonate-catalyzed per-O-acetylation and regioselective anomeric de-O-acetylation of carbohydrates can be tuned by adjusting the reaction medium. In this study, the per-O-acetylation of unprotected sugars by using a near-stoichiometric amount of acetic anhydride under solvent-free conditions resulted in the exclusive formation of acetylated saccharides as anomeric mixtures, whereas anomeric de-O-acetylation in methanol resulted in a moderate-to-excellent yield. Reactions with various unprotected monosaccharides or disaccharides followed by a semi-one-pot sequential conversion into the corresponding acetylated glycosyl hemiacetal also resulted in high yields. Furthermore, the obtained hemiacetals could be successfully transformed into trichloroimidates after Dy(OTf) 3 -catalyzed glycosylation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Preliminary study for acetylation of cassava bagasse starch and microfibrillated cellulose of bamboo

    Directory of Open Access Journals (Sweden)

    Silviana Silviana

    2018-01-01

    Full Text Available Bio composite matrixes have been developed from several biomaterials, such as starch. One of potential resources is starch isolated from cassava bagasse still consisting 30-50% of starch. Reinforcement material may be inserted into bio composite to tough and reduce the drawback of the starch-based bio composite or bio plastic. Microfibrillated cellulose of bamboo (MFC can be used as toughening filler for composite matrix. However, surface modification of material could be employed to alter its properties, such as acetylation of starch-based bio composite and microfibrillated cellulose. The acetylation was executed by using glacial acetic acid (GAA catalyzed with sodium hydroxide. This paper investigates optimum condition of acetylation for bagasse starch (BS and bamboo MFC in different weight ratio of GAA to BS or MFC (1:1, 2:1, 3:1, 1:2, 1:3, temperature range of 30°C to 70°C, and pH range of 7 to 11. Data were resulted from degree of susbtitution for each running. The optimum condition of acetylation of BS was obtained at temperature of 50°C (for BS and 30°C (for MFC, pH of 9, and 2:1 ratio. This acetylation was confirmed by fourier transform infrared spectroscopy and scanning electron microscope.

  11. N-acetyl Cysteine Reduced Oxidative Damages in Guinea Pigs Exposed to Cigarette Smoke and / or Gamma Radiation

    International Nuclear Information System (INIS)

    Ibrahim, N.K.; Abd-EL Aziz, N.; El-Deghidy, E.A.

    2010-01-01

    The objective of this study was to evaluate the role of n-acetyl cysteine (NAC) supplementation on oxidative cigarette smoke induced-oxidative damage in irradiated guinea pigs. N-acetyl cysteine was injected (i.p) to guinea pigs at a dose of 150 mg/kg b. w/day pre-exposure to cigarette smoke for one hour daily for 30 successive days. Animals were submitted to fractionate whole body gamma radiation (2 Gy installment every two weeks up to 4 Gy total dose started on the 2nd week of the experiment). Animals were sacrificed during the first hours from the last treatment of cigarette smoke. The results obtained showed significant increase in malondialdehyde (MDA) content associated with decreased superoxide dismutase (SOD) activity and glutathione (GSH) concentration in cardiac and pulmonary tissues as compared with their equivalent in control animals. The activities of lactate dehydrogenase (LDH), creatine phosphokinase (CPK), aspartate transaminase (AST), concentration of nitric oxide (NO), total cholesterol, Triacylglycerol, LDL-cholesterol were significant increased in plasma associated with significant decreased HDL-cholesterol. The administration of NAC has significantly attenuated the cigarette smoke and/or irradiation-induced changes in all the studied parameters. It could be concluded that NAC reduced cigarette smoke and radiation hazards via neutralized their capability to generate excessive reactive oxygen species (ROS) and free radicals in the biological systems

  12. Extraction and spectrophotometric determination of vanadium(V) with N-hydroxy-N-m-tolyl-N'-(2-methyl-5-chloro)-phenyl-p-toluamidine hydrochloride in presence of salicylic, anthranilic and phthalic acids

    Energy Technology Data Exchange (ETDEWEB)

    Patel, K S; Deb, K K; Mishra, R [Ravishankar Univ., Raipur (India). Dept. of Chemistry

    1981-02-01

    The present work deals with the solvent extraction and simultaneous spectrophotometric determination of microgram quantities of vanadium(V) as mixed ligand complex with N-hydroxy-N-m-tolyl-N'-(2-methyl-5-chloro)-phenyl-p-toluamidine hydrochloride (HTMCPTH) and six carboxylic acids viz. salicylic, acetylsalicylic (aspirin), sulfosalicylic, anthranilic, N-phenyl-anthranilic and phthalic. The method presented here is simple, rapid, sensitive and reasonably selective.

  13. Extraction and spectrophotometric determination of vanadium(V) with N-hydroxy-N-m-tolyl-N'-(2-methyl-5-chloro)-phenyl-p-toluamidine hydrochloride in presence of salicylic, anthranilic and phthalic acids

    International Nuclear Information System (INIS)

    Patel, K.S.; Deb, K.K.; Mishra, R.

    1981-01-01

    The present work deals with the solvent extraction and simultaneous spectrophotometric determination of microgram quantities of vanadium(V) as mixed ligand complex with N-hydroxy-N-m-tolyl-N'-(2-methyl-5-chloro)-phenyl-p-toluamidine hydrochloride (HTMCPTH) and six carboxylic acids viz. salicylic, acetylsalicylic (aspirin), sulfosalicylic, anthranilic, N-phenyl-anthranilic and phthalic. The method presented here is simple, rapid, sensitive and reasonably selective. (author)

  14. Accumulation of Peptidoglycan O-Acetylation Leads to Altered Cell Wall Biochemistry and Negatively Impacts Pathogenesis Factors of Campylobacter jejuni.

    Science.gov (United States)

    Ha, Reuben; Frirdich, Emilisa; Sychantha, David; Biboy, Jacob; Taveirne, Michael E; Johnson, Jeremiah G; DiRita, Victor J; Vollmer, Waldemar; Clarke, Anthony J; Gaynor, Erin C

    2016-10-21

    Campylobacter jejuni is a leading cause of bacterial gastroenteritis in the developed world. Despite its prevalence, its mechanisms of pathogenesis are poorly understood. Peptidoglycan (PG) is important for helical shape, colonization, and host-pathogen interactions in C. jejuni Therefore, changes in PG greatly impact the physiology of this organism. O-acetylation of peptidoglycan (OAP) is a bacterial phenomenon proposed to be important for proper cell growth, characterized by acetylation of the C6 hydroxyl group of N-acetylmuramic acid in the PG glycan backbone. The OAP gene cluster consists of a PG O-acetyltransferase A (patA) for translocation of acetate into the periplasm, a PG O-acetyltransferase B (patB) for O-acetylation, and an O-acetylpeptidoglycan esterase (ape1) for de-O-acetylation. In this study, reduced OAP in ΔpatA and ΔpatB had minimal impact on C. jejuni growth and fitness under the conditions tested. However, accumulation of OAP in Δape1 resulted in marked differences in PG biochemistry, including O-acetylation, anhydromuropeptide levels, and changes not expected to result directly from Ape1 activity. This suggests that OAP may be a form of substrate level regulation in PG biosynthesis. Ape1 acetylesterase activity was confirmed in vitro using p-nitrophenyl acetate and O-acetylated PG as substrates. In addition, Δape1 exhibited defects in pathogenesis-associated phenotypes, including cell shape, motility, biofilm formation, cell surface hydrophobicity, and sodium deoxycholate sensitivity. Δape1 was also impaired for chick colonization and adhesion, invasion, intracellular survival, and induction of IL-8 production in INT407 cells in vitro The importance of Ape1 in C. jejuni biology makes it a good candidate as an antimicrobial target. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Mercapturic acids as biomarkers of exposure to electrophilic chemicals: applications to environmental and industrial chemicals.

    NARCIS (Netherlands)

    de Rooij, B.M.; Commandeur, J.N.M.; Vermeulen, N.P.E.

    1998-01-01

    The use of mercapturic acids (N-acetyl-L-cysteine S-conjugates, MAs) in the biological monitoring of human exposure to environmental and industrial chemicals is receiving more and more attention. Mercapturic acids (MAs) are formed from glutathione (GSH) S-conjugates via the MA-pathway. Although this

  16. N-acetyl-meta-aminophenol, the alleged nontoxic isomer of acetaminophen, is toxic in both rat and human precision-cut liver slices

    NARCIS (Netherlands)

    Hadi, Mackenzie; Herpers, Bram; Dragovic, Sanja; van Swelm, Rachel P. L.; Russel, Frans G. M.; Commandeur, Jan N. M.; van de Water, Bob; Groothuis, Genoveva

    N-acetyl-meta-aminophenol (AMAP) is generally considered as a non-toxic regioisomer of the well-known hepatotoxicant acetaminophen (APAP). However, so far AMAP has only been shown to be non-toxic in mice and hamsters. To investigate whether AMAP could also be used as non-toxic analog of APAP in

  17. A Study of Acid-Base Equilibria in Acetonitrile Systems of 2-Halo(Cl,Br,I-4-nitropicoline(3,5,6 N-oxides

    Directory of Open Access Journals (Sweden)

    Lech Chmurzynski

    1999-03-01

    Full Text Available An attempt has been made to determine potentiometrically (1 acid dissociation constants of cations obtained by protonation of nine trisubstituted pyridine N-oxides, namely 2-halo(Cl, Br and I-4-nitropicoline N-oxides with the methyl group at positions 3, 5, and 6, as well as (2 the cationic homoconjugation constants of these cationic acids with conjugated N-oxides in acetonitrile. On the basis of the substitution effect, variations of the acid dissociation constants of the trisubstituted pyridine N-oxide cations are discussed. The determined pKa values of the protonated 2-halo-4-nitropicoline N-oxides are compared with the previously determined equilibrium constants of the cationic acids conjugated with the mono- and disubstituted pyridine N-oxides in acetonitrile. Further, based on the pKa values of the protonated 2-halo-4-nitropicoline N-oxides in acetonitrile, supplemented with correlations between pKa’s of the protonated mono- and disubstituted pyridine N-oxides in acetonitrile and water, the pKa's of the acids conjugated with the trisubstituted N-oxides studied in aqueous solutions have been estimated. Moreover, it has been concluded that the cationic homoconjugation constants cannot be determined by potentiometric titration in acetonitrile solutions of the 2-halo-4-nitropicoline N-oxide systems.

  18. Water-Soluble N-Acetyl-L-cysteine-Capped CdTe Quantum Dots Application for Hg(II Detection

    Directory of Open Access Journals (Sweden)

    Tianming Yang

    2013-01-01

    Full Text Available A simple, rapid, and specific method for Hg(II detection has been proposed based on the fluorescence change of N-acetyl-L-cysteine-capped CdTe quantum dots (QDs. The presence of Hg(II ions could quench the fluorescence of QDs at 565 nm and meanwhile produce new peak in 700–860 nm wavelength range. The linear response range is 20–430 nM with the detection limit at 8.0 nM Hg(II. It was found that the position of the new peak was irrelevant to the size of QDs. Furthermore, the mechanism of the quenching of QDs fluorescence by Hg(II and the appearance of new peak in near-infrared area were also discussed and deduced through ultraviolet absorption spectrum, fluorescence spectrum, and X-ray photoelectron spectrum.

  19. Determination of the barrier height for acetyl radical dissociation from acetyl chloride photodissociation at 235 nm using velocity map imaging.

    Science.gov (United States)

    Tang, Xiaonan; Ratliff, Britni J; FitzPatrick, Benjamin L; Butler, Laurie J

    2008-12-18

    This work uses velocity map imaging to determine the barrier height for acetyl radical, CH3CO, dissociation to CH3 + CO. Photodissociation of acetyl chloride at 235 nm generates acetyl radicals with an internal energy distribution spanning this barrier. We determine the velocity and internal energy distribution of all nascent acetyl radicals, stable and unstable, by measuring the velocities of the Cl(2P3/2) and Cl(2P1/2) cofragments. These Cl cofragments are detected with 2 + 1 resonance-enhanced multiphoton ionization (REMPI) in a spin-orbit branching ratio Cl(2P3/2):Cl(2P1/2) of 3.3 +/- 0.2. Using 157 nm photoionization, we then detect the recoil velocities of the energetically stable acetyl radicals. The radicals and momentum matched Cl atoms evidence parallel angular distributions. Comparison of the total recoil translational energy distribution P(E(T)) for all radicals to that obtained from the detection of stable radicals yields an onset for dissociation at a translational energy of 25.0 +/- 0.4 kcal/mol. From this onset we can calculate the barrier height for CH3CO --> CH3 + CO, but this relies on prior determinations of the C-Cl bond energy of acetyl chloride. Using an experimental bond dissociation energy of 83.4 +/- 0.2 kcal/mol yields a dissociation barrier of 14.2 +/- 0.5 kcal/mol. Our data evidence that a portion of the acetyl radicals formed with total internal energy above the barrier are stable due to the partitioning of energy into rotation during the C-Cl bond fission of the precursor. Thus, the internal energy onset for dissociation is not as sharp as was assumed in prior determinations of the barrier. The experimentally determined onset is compared with that predicted from electronic structure calculations at the G3//B3LYP and CCSD(T) levels of theory.

  20. Temporal Regulation of the Bacillus subtilis Acetylome and Evidence for a Role of MreB Acetylation in Cell Wall Growth.

    Science.gov (United States)

    Carabetta, Valerie J; Greco, Todd M; Tanner, Andrew W; Cristea, Ileana M; Dubnau, David

    2016-05-01

    N ε -Lysine acetylation has been recognized as a ubiquitous regulatory posttranslational modification that influences a variety of important biological processes in eukaryotic cells. Recently, it has been realized that acetylation is also prevalent in bacteria. Bacteria contain hundreds of acetylated proteins, with functions affecting diverse cellular pathways. Still, little is known about the regulation or biological relevance of nearly all of these modifications. Here we characterize the cellular growth-associated regulation of the Bacillus subtilis acetylome. Using acetylation enrichment and quantitative mass spectrometry, we investigate the logarithmic and stationary growth phases, identifying over 2,300 unique acetylation sites on proteins that function in essential cellular pathways. We determine an acetylation motif, EK(ac)(D/Y/E), which resembles the eukaryotic mitochondrial acetylation signature, and a distinct stationary-phase-enriched motif. By comparing the changes in acetylation with protein abundances, we discover a subset of critical acetylation events that are temporally regulated during cell growth. We functionally characterize the stationary-phase-enriched acetylation on the essential shape-determining protein MreB. Using bioinformatics, mutational analysis, and fluorescence microscopy, we define a potential role for the temporal acetylation of MreB in restricting cell wall growth and cell diameter. The past decade highlighted N ε -lysine acetylation as a prevalent posttranslational modification in bacteria. However, knowledge regarding the physiological importance and temporal regulation of acetylation has remained limited. To uncover potential regulatory roles for acetylation, we analyzed how acetylation patterns and abundances change between growth phases in B. subtilis . To demonstrate that the identification of cell growth-dependent modifications can point to critical regulatory acetylation events, we further characterized MreB, the cell

  1. Purification and characterization of sheep platelet cyclo-oxygenase. Acetylation by aspirin prevents haemin binding to the enzyme.

    Science.gov (United States)

    Boopathy, R; Balasubramanian, A S

    1986-01-01

    Arachidonate cyclo-oxygenase (prostaglandin synthetase; prostaglandin endoperoxide synthetase; EC 1.14.99.1) was purified from sheep platelets. The purification procedure involved hydrophobic column chromatography using either Ibuprofen-Sepharose, phenyl-Sepharose or arachidic acid-Sepharose as the first step followed by metal-chelate Sepharose and haemin-Sepharose affinity chromatography. The purified enzyme (Mr approximately 65,000) was homogeneous as observed by SDS/polyacrylamide-gel electrophoresis and silver staining. The enzyme was a glycoprotein with mannose as the neutral sugar. Haemin or haemoglobin was essential for activity. The purified enzyme could bind haemin exhibiting a characteristic absorption maximum at 410 nm. The enzyme after metal-chelate column chromatography could undergo acetylation by [acetyl-3H]aspirin. The labelled acetylated enzyme could not bind to haemin-Sepharose, presumably due to acetylation of a serine residue involved in the binding to haemin. The acetylated enzyme also failed to show its characteristic absorption maximum at 410 nm when allowed to bind haemin. Images Fig. 1. Fig. 4. PMID:3101664

  2. Structure Elucidation of New Acetylated Saponins, Lessoniosides A, B, C, D, and E, and Non-Acetylated Saponins, Lessoniosides F and G, from the Viscera of the Sea Cucumber Holothuria lessoni

    Directory of Open Access Journals (Sweden)

    Yadollah Bahrami

    2015-01-01

    Full Text Available Sea cucumbers produce numerous compounds with a wide range of chemical structural diversity. Among these, saponins are the most diverse and include sulfated, non-sulfated, acetylated and methylated congeners with different aglycone and sugar moieties. In this study, MALDI and ESI tandem mass spectrometry, in the positive ion mode, were used to elucidate the structure of new saponins extracted from the viscera of H. lessoni. Fragmentation of the aglycone provided structural information on the presence of the acetyl group. The presence of the O-acetyl group was confirmed by observing the mass transition of 60 u corresponding to the loss of a molecule of acetic acid. Ion fingerprints from the glycosidic cleavage provided information on the mass of the aglycone (core, and the sequence and type of monosaccharides that constitute the sugar moiety. The tandem mass spectra of the saponin precursor ions [M + Na]+ provided a wealth of detailed structural information on the glycosidic bond cleavages. As a result, and in conjunction with existing literature, we characterized the structure of five new acetylated saponins, Lessoniosides A–E, along with two non-acetylated saponins Lessoniosides F and G at m/z 1477.7, which are promising candidates for future drug development. The presented strategy allows a rapid, reliable and complete analysis of native saponins.

  3. Purification, crystallization and preliminary X-ray diffraction studies of a putative UDP-N-acetyl-d-mannosamine dehydrogenase from Pyrococcus horikoshii OT3

    Energy Technology Data Exchange (ETDEWEB)

    Lokanath, Neratur K.; Pampa, Kudigana J.; Kamiya, Toshimi; Kunishima, Naoki, E-mail: kunisima@spring8.or.jp [Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2007-05-01

    A putative UDP-N-acetyl-d-mannosamine dehydrogenase from P. horikoshii OT3 has been crystallized in space group P2{sub 1}, with unit-cell parameters a = 80.28, b = 69.24, c = 83.10 Å, β = 114.4°. X-ray diffraction data have been collected to 1.80 Å resolution. A putative UDP-N-acetyl-d-mannosamine dehydrogenase from Pyrococcus horikoshii OT3, an essential enzyme for polysaccharide biosynthesis, has been overexpressed in Escherichia coli and purified. Crystals were obtained using the oil-microbatch method at 291 K. A native data set extending to 1.8 Å resolution has been collected and processed in space group P2{sub 1}. Assuming the presence of a dimer in the asymmetric unit, the V{sub M} value is calculated to be 2.3 Å{sup 3} Da{sup −1}, which is consistent with the result of a dynamic light-scattering experiment that shows a dimeric state of the protein in solution.

  4. Effects of N-acetyl cysteine on oxidative stress and TNF-α gene expression in diclofenac-induced hepatotoxicity in rats.

    Science.gov (United States)

    Nouri, Ali; Heidarian, Esfandiar; Nikoukar, Morteza

    2017-10-01

    The consumption of non-steroidal anti-inflammatory drug, such as diclofenac, can lead to hepatotoxicity. In the present study, protective effect of N-acetyl cysteine (NAC) on diclofenac-induced hepatotoxicity was investigated. Thirty-two male rats were divided into four groups. Group 1 (control group) was treated with normal saline (1 ml/kg, i.p.) for 4 d. Group 2 (test without treatment) received diclofenac only (50 mg/kg, i.p.) for 4 d. Groups 3 and 4 received diclofenac (50 mg/kg, i.p.) plus NAC (150 mg/kg, p.o) and silymarin (100 mg/kg, p.o) for 4 d, respectively. At the end of experiment, serum glutamate pyruvate transaminase (GPT), glutamate oxaloacetate transaminase (GOT), alkaline phosphatase (ALP), lipid profile, uric acid, protein carbonyl content, MDA, liver TNF-α, ferric-reducing antioxidant power, liver catalase, superoxide dismutase, vitamin C, and histopathological examination were done. In group 2, diclofenac caused a significant increase (p diclofenac-induced hepatotoxicity in rats due to not only reduces liver inflammatory cells, TNF-α, serum MDA, and PC but also through increases liver vitamin C, catalase, and superoxide dismutase activities.

  5. Experimental study on the thermochemistry of 2,5-dimethylthiophene and its acetyl derivative

    International Nuclear Information System (INIS)

    Ribeiro da Silva, Manuel A.V.; Santos, Ana Filipa L.O.M.

    2008-01-01

    This paper reports the values of the standard (p 0 = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, Δ f H m 0 (g), at T = 298.15 K, of 2,5-dimethylthiophene and 3-acetyl-2,5-dimethylthiophene as (50.6 ± 1.9) kJ . mol -1 and -(123.2 ± 2.7) kJ . mol -1 , respectively. These values were derived from experimental thermodynamic parameters, namely, the standard molar enthalpies of formation, in the liquid phase, Δ f H m 0 (l), at T = 298.15 K, obtained from the standard molar enthalpies of combustion, Δ c H m 0 , measured by rotating bomb combustion calorimetry, and from the standard molar enthalpies of vaporization, Δ l g H m 0 , at T = 298.15 K, measured by high temperature Calvet microcalorimetry. The results are interpreted in terms of enthalpic increments, molecular structure and compared with structurally similar compounds

  6. Crystal structures of 2-(N,N-dimethylaminoalkyl)ferroceneboronic acids and their diol derivatives. The quest for a B-N intramolecular bond in the solid state

    DEFF Research Database (Denmark)

    Norrild, Jens Chr.; Søtofte, Inger

    2001-01-01

    The crystal structures of (S,S)-2-(N,N-dimethyl-1-aminoethyl)ferroceneboronic acid (2), (S,S)-1-(N,N-dimethyl-1-aminoethyl)-2-(4,4,5,5-tetraphenyl-1,3,2-dioxaborolan-2-yl)ferrocene (3), rac-2-(N,N-dimethylaminomethyl)-ferroceneboronic acid (rac-4), (S)-[(1S,2S,3R,5S)-pinane-1,2-diyl] 2-(N...

  7. Effect of Enriched Feed by n-3 fatty acids and 2% of n-6 fatty acid on Danio rerio Reproduction

    Directory of Open Access Journals (Sweden)

    N.B.P Utomo

    2007-07-01

    Full Text Available This experiment was conducted to determine the optimum n-3 fatty acid level in the diet containing 2 % of n-6 fatty acid on the reproductive performance of zebra fish (Danio rerio. There experimental diets containing 0.0; 1.0; 1.5 % n-3 fatty acid with 2.0 % n-6 fatty acid was fed to the fish, three times daily, at satiation, for two months. In order to evaluate the gonadal development of the broodstock, two gonads og fish was used for histologis preparation in every 7 days. At the end of the second month, reproductive performance was evaluated through parameters of gonad somato indeks, fecundity, fertilization rate, hatching rate, yolk egg absorbtion rate, survival rate of 3 days old larvae. Sample of fish also was taken for proximate composition as the end of this experiment. Results shows that at the fifth weeks of this experiment, gonad of fish fed on 1.0 % of n-3 fatty acid and 2.0 % n-6 fatty acid already produce eggs with the some size, while others. Still produce small size of eggs. It was found also that the whole body of fish fed an diet with 1.0% n-3 fatty acid contain the highest protein level compare to two other diets. Based on the evaluation of reproduction performance parameters, it was concluded that the optimum dietary level of n-3 fatty acid with 2.0 % n-6 fatty acid for Danio rerio was 0.81 - 0.90 %. Keywords: essential fatty, acids, reproduction, zebra fish, Danio rerio   ABSTRAK Penelitian ini bertujuan untuk menentukan kadar asam lemak n-3 optimum dalam pakan yang mempunyai kadar asam lemak n-6 tetap. Tiga macam pakan dengan kadar asam lemak n-3 berbeda yaitu 0.0; 1.0; dan 2.0 % diberikan pada ikan dengan bobot rata-rata 0.12 g. Pakan diberikan secara at satiation, 4 kali sehari selama 60 hari. Setiap 7 hari sekali diambil sampel ikan untuk pembentukan preparat histologi gonad dengan tujuan untuk mengevaluasi perkembangan gonad. Pada akhir penelitian, induk dipijahkan dan dievaluasi performan reproduksi berdasarkan

  8. Rewiring AMPK and Mitochondrial Retrograde Signaling for Metabolic Control of Aging and Histone Acetylation in Respiratory-Defective Cells

    Directory of Open Access Journals (Sweden)

    R. Magnus N. Friis

    2014-04-01

    Full Text Available Abnormal respiratory metabolism plays a role in numerous human disorders. We find that regulation of overall histone acetylation is perturbed in respiratory-incompetent (ρ0 yeast. Because histone acetylation is highly sensitive to acetyl-coenzyme A (acetyl-CoA availability, we sought interventions that suppress this ρ0 phenotype through reprogramming metabolism. Nutritional intervention studies led to the discovery that genetic coactivation of the mitochondrion-to-nucleus retrograde (RTG response and the AMPK (Snf1 pathway prevents abnormal histone deacetylation in ρ0 cells. Metabolic profiling of signaling mutants uncovered links between chromatin-dependent phenotypes of ρ0 cells and metabolism of ATP, acetyl-CoA, glutathione, branched-chain amino acids, and the storage carbohydrate trehalose. Importantly, RTG/AMPK activation reprograms energy metabolism to increase the supply of acetyl-CoA to lysine acetyltransferases and extend the chronological lifespan of ρ0 cells. Our results strengthen the framework for rational design of nutrient supplementation schemes and drug-discovery initiatives aimed at mimicking the therapeutic benefits of dietary interventions.

  9. Fatty acid synthesis by spinach chloroplasts, 2

    International Nuclear Information System (INIS)

    Yamada, Mitsuhiro; Nakamura, Yasunori

    1975-01-01

    By incorporation of 3 H 2 O into the fatty acid chain in the presence of unlabelled precursor, we showed that fatty acids are synthesized from PGA, PEP and pyruvate by intact spinach chloroplasts in the light. 13 C-tracer experiments confirmed that 1-C of pyruvate is decarboxylated and 2-C is incorporated into fatty acids by the chloroplasts. The patterns of fatty acids synthesized from PGA and pyruvate were the same as that from acetate. The highest rate of fatty acid synthesis was reached at the physiological concentration of PGA (3 mM) and pyruvate (1 mM). These results indicate the operation of the following path in the chloroplasts in light: PGA→PEP→pyruvate→acetylCoA→fatty acids. Since citrate and OAA were much less active and malate and glyoxylate were inert as precursors for fatty acid synthesis, PEP or pyruvate carboxylation, citrate lyase reaction and malate synthetase reaction are not involved in the formation of acetylCoA and fatty acids. Since pyruvate was much more effective as a substrate for fatty acid synthesis than lactate, acetaldehyde or acetate, direct decarboxylation path is considered to be the primary path from pyruvate to acetylCoA. The insignificant effect of chloroplast-washing on fatty acid synthesis from PGA and pyruvate indicates that the glycolytic path from PGA to pyruvate is associated with the chloroplasts. Since pyruvate was more effectively incorporated into fatty acids than acetylCoA, it is unlikely that pyruvate decarboxylation to acetylCoA is due to mitochondria contaminating the chloroplast preparation. On the basis of measurements of 3 H 2 O incorporation in the light and dark, the activity of fatty acid synthesis in spincah leaves appears to be shared by the activities in chloroplasts (87%) and other organelles (13%). (author)

  10. N-3 Polyunsaturated Fatty Acids Decrease the Protein Expression of Soluble Epoxide Hydrolase via Oxidative Stress-Induced P38 Kinase in Rat Endothelial Cells.

    Science.gov (United States)

    Okada, Takashi; Morino, Katsutaro; Nakagawa, Fumiyuki; Tawa, Masashi; Kondo, Keiko; Sekine, Osamu; Imamura, Takeshi; Okamura, Tomio; Ugi, Satoshi; Maegawa, Hiroshi

    2017-06-24

    N -3 polyunsaturated fatty acids (PUFAs) improve endothelial function. The arachidonic acid-derived metabolites (epoxyeicosatrienoic acids (EETs)) are part of the endothelial hyperpolarization factor and are vasodilators independent of nitric oxide. However, little is known regarding the regulation of EET concentration by docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in blood vessels. Sprague-Dawley rats were fed either a control or fish oil diet for 3 weeks. Compared with the control, the fish oil diet improved acetylcholine-induced vasodilation and reduced the protein expression of soluble epoxide hydrolase (sEH), a key EET metabolic enzyme, in aortic strips. Both DHA and EPA suppressed sEH protein expression in rat aorta endothelial cells (RAECs). Furthermore, the concentration of 4-hydroxy hexenal (4-HHE), a lipid peroxidation product of n -3 PUFAs, increased in n -3 PUFA-treated RAECs. In addition, 4-HHE treatment suppressed sEH expression in RAECs, suggesting that 4-HHE (derived from n -3 PUFAs) is involved in this phenomenon. The suppression of sEH was attenuated by the p38 kinase inhibitor (SB203580) and by treatment with the antioxidant N-acetyl-L-cysteine. In conclusion, sEH expression decreased after n -3 PUFAs treatment, potentially through oxidative stress and p38 kinase. Mild oxidative stress induced by n -3 PUFAs may contribute to their cardio-protective effect.

  11. Role of acetyl-phosphate in activation of the Rrp2-RpoN-RpoS pathway in Borrelia burgdorferi.

    Directory of Open Access Journals (Sweden)

    Haijun Xu

    2010-09-01

    Full Text Available Borrelia burgdorferi, the Lyme disease spirochete, dramatically alters its transcriptome and proteome as it cycles between the arthropod vector and mammalian host. During this enzootic cycle, a novel regulatory network, the Rrp2-RpoN-RpoS pathway (also known as the σ(54-σ(S sigma factor cascade, plays a central role in modulating the differential expression of more than 10% of all B. burgdorferi genes, including the major virulence genes ospA and ospC. However, the mechanism(s by which the upstream activator and response regulator Rrp2 is activated remains unclear. Here, we show that none of the histidine kinases present in the B. burgdorferi genome are required for the activation of Rrp2. Instead, we present biochemical and genetic evidence that supports the hypothesis that activation of the Rrp2-RpoN-RpoS pathway occurs via the small, high-energy, phosphoryl-donor acetyl phosphate (acetyl∼P, the intermediate of the Ack-Pta (acetate kinase-phosphate acetyltransferase pathway that converts acetate to acetyl-CoA. Supplementation of the growth medium with acetate induced activation of the Rrp2-RpoN-RpoS pathway in a dose-dependent manner. Conversely, the overexpression of Pta virtually abolished acetate-induced activation of this pathway, suggesting that acetate works through acetyl∼P. Overexpression of Pta also greatly inhibited temperature and cell density-induced activation of RpoS and OspC, suggesting that these environmental cues affect the Rrp2-RpoN-RpoS pathway by influencing acetyl∼P. Finally, overexpression of Pta partially reduced infectivity of B. burgdorferi in mice. Taken together, these findings suggest that acetyl∼P is one of the key activating molecule for the activation of the Rrp2-RpoN-RpoS pathway and support the emerging concept that acetyl∼P can serve as a global signal in bacterial pathogenesis.

  12. Enzymatic production of N-acetyl-d-glucosamine from crayfish shell wastes pretreated via high pressure homogenization.

    Science.gov (United States)

    Wei, Guoguang; Zhang, Alei; Chen, Kequan; Ouyang, Pingkai

    2017-09-01

    This study presents an efficient pretreatment of crayfish shell using high pressure homogenization that enables N-acetyl-d-glucosamine (GlcNAc) production by chitinase. Firstly, the chitinase from Serratia proteamaculans NJ303 was screened for its ability to degrade crayfish shell and produce GlcNAc as the sole product. Secondly, high pressure homogenization, which caused the crayfish shell to adopt a fluffy netted structure that was characterized by Scanning electron microscope (SEM), Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD), was evaluated as the best pretreatment method. In addition, the optimal conditions of high pressure homogenization of crayfish shell were determined to be five cycles at a pressure of 400bar, which achieved a yield of 3.9g/L of GlcNAc from 25g/L of crayfish shell in a batch enzymatic reaction over 1.5h. The results showed high pressure homogenization might be an efficient method for direct utilization of crayfish shell for enzymatic production of GlcNAc. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Protective Effects of N-Acetyl-L-cystein on 3,4-Methylene Dioxymethamphetamie-Induced Neurotoxicity in Cerebellum of Male Rats

    Directory of Open Access Journals (Sweden)

    Sara Soleimani Asl

    2011-10-01

    Full Text Available Introduction: 3-4, methylenedioxymethamphetamine (MDMA causes apoptosis in nervous system and several studies suggest that oxidative stress contributes to MDMA-induced neurotoxicity. The aim of this study is to examine the effects of N-acetyl-L-Cystein (NAC as an antioxidant on MDMA-induced apoptosis. Methods: 21 Sprague dawley male rats (200-250mg were treated with MDMA (2×0,5mg/kg or MDMA plus NAC (100mg/kg IP for 7 day. After last administration of MDMA, rats were killed, cerebellum was removed and Bax and Bcl-2 expression was assessed by western blotting method. Results: The results of this study showed that MDMA causes up-regulation of Bax and down-regulation of Bcl-2 and NAC administration attenuated MDMA-induced apoptosis. Discussion: The present study suggests that NAC treatment may improve MDMA-induced neurotoxicity.

  14. Crystal structures of three anhydrous salts of the Lewis base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU with the ring-substituted benzoic acid analogues 4-aminobenzoic acid, 3,5-dinitrobenzoic acid and 3,5-dinitrosalicylic acid

    Directory of Open Access Journals (Sweden)

    Graham Smith

    2016-03-01

    Full Text Available The anhydrous salts of the Lewis base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU with 4-aminobenzoic acid [1-aza-8-azoniabicyclo[5.4.0]undec-7-ene 4-aminobenzoate, C9H17N2+·C7H6NO2− (I], 3,5-dinitrobenzoic acid [1-aza-8-azoniabicyclo[5.4.0]undec-7-ene 3,5-dinitrobenzoate, C9H17N2+·C7H3N2O6−, (II] and 3,5-dinitrosalicylic acid (DNSA [1-aza-8-azoniabicyclo[5.4.0]undec-7-ene 2-hydroxy-3,5-dinitrobenzoate, C9H17N2+·C7H3N2O7−, (III] have been determined and their hydrogen-bonded structures are described. In both (II and (III, the DBU cations have a common disorder in three of the C atoms of the six-membered ring moieties [site-occupancy factors (SOF = 0.735 (3/0.265 (3 and 0.686 (4/0.314 (4, respectively], while in (III, there is additional rotational disorder in the DNSA anion, giving two sites (SOF = 0.72/0.28, values fixed for the phenol group. In the crystals of (I and (III, the cation–anion pairs are linked through a primary N—H...Ocarboxyl hydrogen bond [2.665 (2 and 2.869 (3 Å, respectively]. In (II, the ion pairs are linked through an asymmetric three-centre R12(4, N—H...O,O′ chelate association. In (I, structure extension is through amine N—H...Ocarboxyl hydrogen bonds between the PABA anions, giving a three-dimensional structure. The crystal structures of (II and (III are very similar, the cation–anion pairs being associated only through weak C—H...O hydrogen bonds, giving in both overall two-dimensional layered structures lying parallel to (001. No π–π ring associations are present in any of the structures.

  15. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Weinert, Brian Tate; Iesmantavicius, Vytautas; Moustafa, Tarek

    2014-01-01

    Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation...

  16. Bromine catalyzed conversion of S-tert-butyl groups into versatile and, for self-assembly processes accessible, acetyl-protected thiols.

    Science.gov (United States)

    Blaszczyk, Alfred; Elbing, Mark; Mayor, Marcel

    2004-10-07

    The facile and efficient conversion of a tert-butyl protecting group to an acetyl protecting group for thiols by catalytic amounts of bromine in acetyl chloride and the presence of acetic acid has been developed. The fairly mild reaction conditions are of particular interest for new protecting group strategies for sulfur functionalised target structures. Copyright 2004 The Royal Society of Chemistry

  17. Mucus reduction promotes acetyl salicylic acid-induced small intestinal mucosal injury in rats.

    Science.gov (United States)

    Suyama, Yosuke; Handa, Osamu; Naito, Yuji; Takayama, Shun; Mukai, Rieko; Ushiroda, Chihiro; Majima, Atsushi; Yasuda-Onozawa, Yuriko; Higashimura, Yasuki; Fukui, Akifumi; Dohi, Osamu; Okayama, Tetsuya; Yoshida, Naohisa; Katada, Kazuhiro; Kamada, Kazuhiro; Uchiyama, Kazuhiko; Ishikawa, Takeshi; Takagi, Tomohisa; Konishi, Hideyuki; Itoh, Yoshito

    2018-03-25

    Acetyl salicylic acid (ASA) is a useful drug for the secondary prevention of cerebro-cardiovascular diseases, but it has adverse effects on the small intestinal mucosa. The pathogenesis and prophylaxis of ASA-induced small intestinal injury remain unclear. In this study, we focused on the intestinal mucus, as the gastrointestinal tract is covered by mucus, which exhibits protective effects against various gastrointestinal diseases. ASA was injected into the duodenum of rats, and small intestinal mucosal injury was evaluated using Evans blue dye. To investigate the importance of mucus, Polysorbate 80 (P80), an emulsifier, was used before ASA injection. In addition, rebamipide, a mucus secretion inducer in the small intestine, was used to suppress mucus reduction in the small intestine of P80-administered rats. The addition of P80 reduced the mucus and exacerbated the ASA-induced small intestinal mucosal injury. Rebamipide significantly suppressed P80-reduced small intestinal mucus and P80-increased intestinal mucosal lesions in ASA-injected rats, demonstrating that mucus is important for the protection against ASA-induced small intestinal mucosal injury. These results provide new insight into the mechanism of ASA-induced small intestinal mucosal injury. Mucus secretion-increasing therapy might be useful in preventing ASA-induced small intestinal mucosal injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Reaction of N-(Per-O-acetyl-β-D-glucopyranosyl-Nʼ-(4ʼ,6ʼ-diarylpyrimidine-2ʼ-ylthioureas with Ethyl Bromoacetate

    Directory of Open Access Journals (Sweden)

    Nguyen Dinh Thanh

    2011-01-01

    Full Text Available Some new 2-iminothiazolidin-4-ones having pyrimidine ring have been synthesized by reaction of substituted N-(per-O-acetyl-β-D-glucopyranosyl-Nʼ-(4ʼ,6ʼ-diarylpyrimidine-2ʼ-ylthioureas with ethyl bromoacetate. The structure of isomeric products has been confirmed by spectroscopic methods, such as IR, 1H and 13C NMR.

  19. Specific acid catalyzed deuteration of the acetyl groups of 2,4-diacetyldeuterohemin-OMe

    International Nuclear Information System (INIS)

    Oster, O.; Neireiter, G.W.; Gurd, F.R.N.

    1975-01-01

    The methyl group of the acetyl groups in 2,4-diacetyldeuterohemin-OMe has been selectively deuterated. After removal of the iron, D 6 -2,4-diacetyl-deuteroporphyrin-OMe can be reduced to the corresponding hematoporphyrin and subsequent dehydration gives deuterated vinylic groups for protoporphyrin IX-OMe. (orig.) [de

  20. Analytical applications of N-phenyl-n-butyro hydroxamic and N-p-tolyl-n-butyro hydroxamic acids towards chromium (VI), copper (II), iron (III) and uranium (VI)

    International Nuclear Information System (INIS)

    Elkhadir, A. Y. F.

    2001-05-01

    Two aliphatic hydroxamic acids were prepared; N-phenyl-n-butyro hydroxamic acid and N-p-tolyl-n-butyro hydroxamic acid, by the reaction of β-phenylhydroxylamine and p-tolyl hydroxylamine with n-butyryl chloride. The acids were identified by: their melting points, characteristic reactions with acidic solutions of vanadium (V) and iron (III), infrared spectroscopy, nitrogen content and molecular weight determination. The extractability of these acids towards Cr (VI), Cu (II), Fe (III) and U (VI) were investigated at different pH values and molar acid concentrations. N-phenyl-n- butyro hydroxamic acid has a maximum extraction (98.80%) for Cr (VI) at 4 M H 2 SO 4 , (83.25%) for Cu (II) at pH 6, (99.17%) for Fe (III) at pH 5 and (99.76%) at 4 M HNO 3 for U (VI) respectively. N-p-tolyl-n-butyro hydroxamic acid has a maximum extraction (98.40%) for Cr (VI)at 4 M H 2 SO 4 , (81.30%) for Cu (II) at pH 6, (92.80%) for Fe (III) at pH 5 and (99.64%) for U (VI) at 4 M HNO 3 , respectively. The ratios of the metal to ligands were determined by job method (continuous variation method) and were found to be 1:2 for Cr (VI) and U (VI). (Author)

  1. Analytical applications of N-phenyl-n-butyro hydroxamic and N-p-tolyl-n-butyro hydroxamic acids towards chromium (VI), copper (II), iron (III) and uranium (VI)

    Energy Technology Data Exchange (ETDEWEB)

    Elkhadir, A Y. F. [Department of Chemistry, Faculty of Science, University of Khartoum, Khartoum (Sudan)

    2001-05-01

    Two aliphatic hydroxamic acids were prepared; N-phenyl-n-butyro hydroxamic acid and N-p-tolyl-n-butyro hydroxamic acid, by the reaction of {beta}-phenylhydroxylamine and p-tolyl hydroxylamine with n-butyryl chloride. The acids were identified by: their melting points, characteristic reactions with acidic solutions of vanadium (V) and iron (III), infrared spectroscopy, nitrogen content and molecular weight determination. The extractability of these acids towards Cr (VI), Cu (II), Fe (III) and U (VI) were investigated at different pH values and molar acid concentrations. N-phenyl-n- butyro hydroxamic acid has a maximum extraction (98.80%) for Cr (VI) at 4 M H{sub 2}SO{sub 4}, (83.25%) for Cu (II) at pH 6, (99.17%) for Fe (III) at pH 5 and (99.76%) at 4 M HNO{sub 3} for U (VI) respectively. N-p-tolyl-n-butyro hydroxamic acid has a maximum extraction (98.40%) for Cr (VI)at 4 M H{sub 2} SO{sub 4}, (81.30%) for Cu (II) at pH 6, (92.80%) for Fe (III) at pH 5 and (99.64%) for U (VI) at 4 M HNO{sub 3}, respectively. The ratios of the metal to ligands were determined by job method (continuous variation method) and were found to be 1:2 for Cr (VI) and U (VI). (Author)

  2. Regulation of ribonucleic acid synthesis by polyamines. Reversal by spermine of inhibition by methylglyoxal bis(guanylhydrazone) of ribonucleic acid synthesis and histone acetylation in rabbit heart.

    Science.gov (United States)

    Caldarera, C M; Casti, A; Guarnier, C; Moruzzi, G

    1975-10-01

    The relationship between polyamines and RNA synthesis was studied by considering the action of spermine on histone acetylation in perfused heart. In addition, the effect of methylglyoxal bis(guanylhydrazone), inhibitor of putrescine-activated S-adenosylmethionine decarboxylase activity, on RNA and polyamine specific radioactivity and on acetylation of histone fractions was also investigated in perfused heart. Different concentrations of spermine and/or methylglyoxas bis(guanylhydrazone) were injected into the heart, 15 min after beginning the perfusion. The results demonstrate that spermine stimulates the specific radioactivity of RNA of subcellular fractions. Acetylation of the arginine-rich histone fractions, involved in the regulation of RNA transcription, is enhanced by spermine. The perfusion with methylglyoxal bis(guanylhydrazone) causes a decrease in the specific radioactivity of polyamines and RNA, and in acetylation of histone fractions. However, spermine is able to reverse the methylglyoxal bis(guanylhydrazone) inhibition when injected simultaneously. From these results we may assume a possible role for spermine in the regulation of RNA transcription.

  3. PSG gene expression is up-regulated by lysine acetylation involving histone and nonhistone proteins.

    Directory of Open Access Journals (Sweden)

    Soledad A Camolotto

    Full Text Available BACKGROUND: Lysine acetylation is an important post-translational modification that plays a central role in eukaryotic transcriptional activation by modifying chromatin and transcription-related factors. Human pregnancy-specific glycoproteins (PSG are the major secreted placental proteins expressed by the syncytiotrophoblast at the end of pregnancy and represent early markers of cytotrophoblast differentiation. Low PSG levels are associated with complicated pregnancies, thus highlighting the importance of studying the mechanisms that control their expression. Despite several transcription factors having been implicated as key regulators of PSG gene family expression; the role of protein acetylation has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Here, we explored the role of acetylation on PSG gene expression in the human placental-derived JEG-3 cell line. Pharmacological inhibition of histone deacetylases (HDACs up-regulated PSG protein and mRNA expression levels, and augmented the amount of acetylated histone H3 associated with PSG 5'regulatory regions. Moreover, PSG5 promoter activation mediated by Sp1 and KLF6, via the core promoter element motif (CPE, -147/-140, was markedly enhanced in the presence of the HDAC inhibitor trichostatin A (TSA. This effect correlated with an increase in Sp1 acetylation and KLF6 nuclear localization as revealed by immunoprecipitation and subcellular fractionation assays. The co-activators PCAF, p300, and CBP enhanced Sp1-dependent PSG5 promoter activation through their histone acetylase (HAT function. Instead, p300 and CBP acetyltransferase domain was dispensable for sustaining co-activation of PSG5 promoter by KLF6. CONCLUSIONS/SIGNIFICANCE: Results are consistent with a regulatory role of lysine acetylation on PSG expression through a relaxed chromatin state and an increase in the transcriptional activity of Sp1 and KLF6 following an augmented Sp1 acetylation and KLF6 nuclear localization.

  4. Dehydroisomerization of n-butane over Pt-ZSMMMm5(I): effect of the metal loading and acid site concentration

    NARCIS (Netherlands)

    Pirngruber, G.D.; Seshan, Kulathuiyer; Lercher, J.A.

    1999-01-01

    The dehydroisomerization of n-butane to isobutene over Pt–ZSM5 catalysts with a high Si/Al ratio was studied. The catalytic activity increases with increasing metal loading. Butenes formed via dehydrogenation over the metallic particles are converted to isobutene over the Brønsted acid sites. The

  5. n-3 polyunsaturated fatty acids suppress phosphatidylinositol 4,5-bisphosphate-dependent actin remodelling during CD4+ T-cell activation.

    Science.gov (United States)

    Hou, Tim Y; Monk, Jennifer M; Fan, Yang-Yi; Barhoumi, Rola; Chen, Yong Q; Rivera, Gonzalo M; McMurray, David N; Chapkin, Robert S

    2012-04-01

    n-3 PUFA (polyunsaturated fatty acids), i.e. DHA (docosahexaenoic acid), found in fish oil, exhibit anti-inflammatory properties; however, the molecular mechanisms remain unclear. Since PtdIns(4,5)P2 resides in raft domains and DHA can alter the size of rafts, we hypothesized that PtdIns(4,5)P2 and downstream actin remodelling are perturbed by the incorporation of n-3 PUFA into membranes, resulting in suppressed T-cell activation. CD4+ T-cells isolated from Fat-1 transgenic mice (membranes enriched in n-3 PUFA) exhibited a 50% decrease in PtdIns(4,5)P2. Upon activation by plate-bound anti-CD3/anti-CD28 or PMA/ionomycin, Fat-1 CD4+ T-cells failed to metabolize PtdIns(4,5)P2. Furthermore, actin remodelling failed to initiate in Fat-1 CD4+ T-cells upon stimulation; however, the defect was reversed by incubation with exogenous PtdIns(4,5)P2. When Fat-1 CD4+ T-cells were stimulated with anti-CD3/anti-CD28-coated beads, WASP (Wiskott-Aldrich syndrome protein) failed to translocate to the immunological synapse. The suppressive phenotype, consisting of defects in PtdIns(4,5)P2 metabolism and actin remodelling, were recapitulated in CD4+ T-cells isolated from mice fed on a 4% DHA triacylglycerol-enriched diet. Collectively, these data demonstrate that n-3 PUFA, such as DHA, alter PtdIns(4,5)P2 in CD4+ T-cells, thereby suppressing the recruitment of WASP to the immunological synapse, and impairing actin remodelling in CD4+ T-cells.

  6. Methodological Approach for Modeling of Multienzyme in-pot Processes

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia; Roman Martinez, Alicia; Sin, Gürkan

    2011-01-01

    This paper presents a methodological approach for modeling multi-enzyme in-pot processes. The methodology is exemplified stepwise through the bi-enzymatic production of N-acetyl-D-neuraminic acid (Neu5Ac) from N-acetyl-D-glucosamine (GlcNAc). In this case study, sensitivity analysis is also used ...

  7. Acetylation and characterization of banana (Musa paradisiaca) starch.

    Science.gov (United States)

    Bello-Pérez, L A; Contreras-Ramos, S M; Jìmenez-Aparicio, A; Paredes-López, O

    2000-01-01

    Banana native starch was acetylated and some of its functional properties were evaluated and compared to corn starch. In general, acetylated banana starch presented higher values in ash, protein and fat than corn acetylated starch. The modified starches had minor tendency to retrogradation assessed as % transmittance of starch pastes. At high temperature acetylated starches presented a water retention capacity similar to their native counterpart. The acetylation considerably increased the solubility of starches, and a similar behavior was found for swelling power. When freeze-thaw stability was studied, acetyl banana starch drained approximately 60% of water in the first and second cycles, but in the third and fourth cycles the percentage of separated water was low. However, acetyl corn starch showed lower freeze-thaw stability than the untreated sample. The modification increased the viscosity of banana starch pastes.

  8. Volumetric, acoustic and viscometric behaviour of dipotassium hydrogen phosphate and disodium hydrogen phosphate in aqueous solution of N-acetyl glycine at different temperatures

    International Nuclear Information System (INIS)

    Kumar, Harsh; Singla, Meenu; Mittal, Heena

    2016-01-01

    Highlights: • Densities, speeds of sound, viscosities of phosphate salts in aqueous N-acetyl glycine. • Large values of partial molar volume for dipotassium hydrogen phosphate. • Partial molar volume of transfer are positive for phosphate salts. • Positive B-coefficient values indicate ion–solvent interactions. - Abstract: Densities, speeds of sound and viscosities of dipotassium hydrogen phosphate (DPHP) and disodium hydrogen phosphate (DSHP) in aqueous solutions of N-acetyl glycine (AcGly) are reported at different temperatures. Densities and speeds of sound have been used to calculate apparent molar volume, apparent molar isentropic compression, partial molar volume, partial molar isentropic compression, partial molar volume of transfer, partial molar isentropic compression of transfer and partial molar expansivity. Pair and triplet interaction coefficients have also been calculated. Experimental viscosities have been used to determine B-coefficients. Further pair and triplet interaction coefficients have also been calculated. The results are discussed in terms of solute–solvent interactions.

  9. Acetyl salicylic acid–ZnAl layered double hydroxide functional nanohybrid for skin care application

    CSIR Research Space (South Africa)

    Mosangi, Damodar

    2016-10-01

    Full Text Available In this study, a pharmaceutically active ingredient, acetyl salicylic acid (ASA), was intercalated into ZnAl layered double hydroxide (LDH). The LDH–ASA nanohybrid material was characterized by XRD, FTIR, SEM, ICP-MS, TEM and TGA. Successful...

  10. Nephrotoxicity of mercapturic acids of three structurally related 2,2-difluoroethylenes in the rat. Indications for different bioactivation mechanisms.

    NARCIS (Netherlands)

    Commandeur, J.N.M.; Brakenhoff, J.P.G.; de Kanter, F.J.J.; Vermeulen, N.P.E.

    1988-01-01

    The biotransformation and the hepato- and nephrotoxicity of the mercapturic acids (N-acetyl-1-cysteine S-conjugates) of three structurally related 2,2-difluoroethylenes were investigated in vivo in the rat. All mercapturic acids appeared to cause nephrotoxicity, without any measureable effect on the

  11. N-methyl-D-aspartic acid receptor agonists

    DEFF Research Database (Denmark)

    Madsen, U; Frydenvang, Karla Andrea; Ebert, B

    1996-01-01

    (R,S)-2-Amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid [(R,S)-AMAA, 4] is a potent and selective agonist at the N-methyl-D-aspartic acid (NMDA) subtype of excitatory amino acid receptors. Using the Ugi "four-component condensation" method, the two diastereomers (2R)- and (2S)-2-[3-(benzyloxy......) showed peak affinity for [3H]AMPA receptor sites (IC50 = 72 +/- 13 microM) and was shown to be a more potent inhibitor of [3H]CPP binding (IC50 = 3.7 +/- 1.5 microM) than (S)-AMAA (9) (IC50 = 61 +/- 6.4 microM). Neither enantiomer of AMAA affected [3H]kainic acid receptor binding significantly...

  12. p53 Acetylation: Regulation and Consequences

    International Nuclear Information System (INIS)

    Reed, Sara M.; Quelle, Dawn E.

    2014-01-01

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer

  13. p53 Acetylation: Regulation and Consequences

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Sara M. [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Quelle, Dawn E., E-mail: dawn-quelle@uiowa.edu [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Department of Pathology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States)

    2014-12-23

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.

  14. Immunoregulatory and anti-inflammatory effects of n-3 polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    P.C. Calder

    1998-04-01

    Full Text Available 1. Fish oils are rich in the long-chain n-3 polyunsaturated fatty acids (PUFAs, eicosapentaenoic (20:5n-3 and docosahexaenoic (22:6n-3 acids. Linseed oil and green plant tissues are rich in the precursor fatty acid, a-linolenic acid (18:3n-3. Most vegetable oils are rich in the n-6 PUFA linoleic acid (18:2n-6, the precursor of arachidonic acid (20:4n-6. 2. Arachidonic acid-derived eicosanoids such as prostaglandin E2 are pro-inflammatory and regulate the functions of cells of the immune system. Consumption of fish oils leads to replacement of arachidonic acid in cell membranes by eicosapentaenoic acid. This changes the amount and alters the balance of eicosanoids produced. 3. Consumption of fish oils diminishes lymphocyte proliferation, T-cell-mediated cytotoxicity, natural killer cell activity, macrophage-mediated cytotoxicity, monocyte and neutrophil chemotaxis, major histocompatibility class II expression and antigen presentation, production of pro-inflammatory cytokines (interleukins 1 and 6, tumour necrosis factor and adhesion molecule expression. 4. Feeding laboratory animals fish oil reduces acute and chronic inflammatory responses, improves survival to endotoxin and in models of autoimmunity and prolongs the survival of grafted organs. 5. Feeding fish oil reduces cell-mediated immune responses. 6. Fish oil supplementation may be clinically useful in acute and chronic inflammatory conditions and following transplantation. 7. n-3 PUFAs may exert their effects by modulating signal transduction and/or gene expression within inflammatory and immune cells.

  15. Acid-Labile Acyclic Cucurbit[n]uril Molecular Containers for Controlled Release.

    Science.gov (United States)

    Mao, Dake; Liang, Yajun; Liu, Yamin; Zhou, Xianhao; Ma, Jiaqi; Jiang, Biao; Liu, Jia; Ma, Da

    2017-10-02

    Stimuli-responsive molecular containers are of great importance for controlled drug delivery and other biomedical applications. A new type of acid labile acyclic cucurbit[n]uril (CB[n]) molecular containers is presented that can degrade and release the encapsulated cargo at accelerated rates under mildly acidic conditions (pH 5.5-6.5). These containers retain the excellent recognition properties of CB[n]-type hosts. A cell culture study demonstrated that the cellular uptake of cargos could be fine-tuned by complexation with different containers. The release and cell uptake of cargo dye was promoted by acidic pH. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Crystal structure of 1-methoxy-5-methyl-N-phenyl-1,2,3-triazole-4-carboxamide

    Directory of Open Access Journals (Sweden)

    Inna S. Khazhieva

    2015-10-01

    Full Text Available The title compound, C11H12N4O2,was prepared via the transformation of sodium 4-acetyl-1-phenyl-1H-[1.2.3]triazolate under the action of methoxyamine hydrochloride. The dihedral angle between the triazole and phenyl rings is 25.12 (16° and the C atom of the methoxy group deviates from the triazole plane by 0.894 (4Å. The conformation of the CONHR-group is consolodated by an intramolecular N—H...N hydrogen bond to an N-atom of the triazole ring, which closes an S(5 ring. In the crystal, weak N—H...N hydrogen bonds link the molecules into C(6 [010] chains.

  17. Host-guest chemistry of dendrimer-drug complexes. 6. Fully acetylated dendrimers as biocompatible drug vehicles using dexamethasone 21-phosphate as a model drug.

    Science.gov (United States)

    Yang, Kun; Weng, Liang; Cheng, Yiyun; Zhang, Hongfeng; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen

    2011-03-17

    Fully acetylated poly(amidoamine) (PAMAM) dendrimer was proposed as a biocompatible drug vehicle using dexamethasone 21-phosphate (Dp21) as a model drug. NMR techniques including (1)H NMR and 2D NOE NMR were used to characterize the host-guest chemistry of acetylated dendrimer/Dp21 and cationic dendrimer/Dp21 complexes. The pH-dependent micellization, complexation, and inclusion behaviors of Dp21 were observed in the presence of acetylated and cationic PAMAM dendrimers. Acetylated dendrimer only encapsulates Dp21 at acidic conditions, while cationic dendrimer can host Dp21 at both acidic and neutral conditions. The orientation of Dp21 molecules in the dendrimer cavities depends on the quaternization degree of tertiary amine groups of dendrimer and the protonation ratio of phosphate group of Dp21. A distinctive pH-dependent release behavior of Dp21 from the acetylated and nonacetylated dendritic matrix was observed: Dp21 exhibits a much slower release rate from acetylated dendrimer at lower pH conditions and a much faster release rate from nonacetylated dendrimer with decreasing pH values. Cytotoxicity studies further confirmed the biocompatibility of acetylated dendrimers, which are much safer in the delivery of therapeutics for the treatment of various diseases than nonacetylated dendrimers. The dendrimer-drug binding and release mechanisms provide a new insight for the design and optimization of biocompatible dendrimer-based drug delivery systems. © 2011 American Chemical Society

  18. Protective Effects of N-Acetyl-L-cystein on 3,4-Methylene Dioxymethamphetamie-Induced Neurotoxicity in Cerebellum of Male Rats

    Directory of Open Access Journals (Sweden)

    Sara Soleimani Asl

    2011-10-01

    Full Text Available Objective(s: 3-4, methylenedioxymethamphetamine (MDMA causes apoptosis in nervous system and several studies suggest that oxidative stress contributes to MDMA-induced neurotoxicity. The aim of this study is to examine the effects of N-acetyl-L-Cystein (NAC as an antioxidant on MDMA-induced apoptosis. Materials and Methods: 21 Sprague dawley male rats (200-250mg were treated with MDMA (2×0,5mg/kg or MDMA plus NAC (100mg/kg IP for 7 day. After last administration of MDMA, rats were killed, cerebellum was removed and Bax and Bcl-2 expression was assessed by western blotting method. Results: The results of this study showed that MDMA causes up-regulation of Bax and down-regulation of Bcl-2 and NAC administration attenuated MDMA-induced apoptosis. Conclusion: The present study suggests that NAC treatment may improve MDMA-induced neurotoxicity.

  19. The dynamic organization of fungal acetyl-CoA carboxylase

    Science.gov (United States)

    Hunkeler, Moritz; Stuttfeld, Edward; Hagmann, Anna; Imseng, Stefan; Maier, Timm

    2016-04-01

    Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control.

  20. Experimental thermochemical study of 3-acetyl-2-methyl-5-phenylthiophene

    International Nuclear Information System (INIS)

    Ribeiro da Silva, Manuel A.V.; Santos, Ana Filipa L.O.M.

    2010-01-01

    The standard (p 0 =0.1MPa) massic energy of combustion, in oxygen, of the crystalline 3-acetyl-2-methyl-5-phenylthiophene was measured, at T = 298.15 K, by rotating-bomb combustion calorimetry, from which the standard molar enthalpy of formation, in the condensed phase, was calculated as Δ f H m 0 (cr)=-(104.3±3.1)kJ.mol -1 . The corresponding standard molar enthalpy of sublimation, at T = 298.15 K, Δ cr g H m 0 =(108.9±0.4)kJ.mol -1 , was derived by the Clausius-Clapeyron equation, from the temperature dependence of the vapour pressures of this compound, measured by the Knudsen effusion mass-loss technique. From the results presented above, the standard molar enthalpy of formation, in the gaseous phase, at T = 298.15 K, was derived, Δ f H m 0 (g)=(4.6±3.1)kJ.mol -1 . This value, in conjunction with the literature values of the experimental enthalpies of formation of thiophene, 2-methylthiophene, and 3-acetylthiophene, was used to predict the enthalpic increment due to the introduction of a phenyl group in the position 2- of the thiophene ring. The calculated increment was compared with the corresponding ones in benzene and pyridine derivatives.

  1. N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects

    Science.gov (United States)

    Varland, Sylvia; Osberg, Camilla; Arnesen, Thomas

    2015-01-01

    The vast majority of eukaryotic proteins are N-terminally modified by one or more processing enzymes. Enzymes acting on the very first amino acid of a polypeptide include different peptidases, transferases, and ligases. Methionine aminopeptidases excise the initiator methionine leaving the nascent polypeptide with a newly exposed amino acid that may be further modified. N-terminal acetyl-, methyl-, myristoyl-, and palmitoyltransferases may attach an acetyl, methyl, myristoyl, or palmitoyl group, respectively, to the α-amino group of the target protein N-terminus. With the action of ubiquitin ligases, one or several ubiquitin molecules are transferred, and hence, constitute the N-terminal modification. Modifications at protein N-termini represent an important contribution to proteomic diversity and complexity, and are essential for protein regulation and cellular signaling. Consequently, dysregulation of the N-terminal modifying enzymes is implicated in human diseases. We here review the different protein N-terminal modifications occurring co- or post-translationally with emphasis on the responsible enzymes and their substrate specificities. PMID:25914051

  2. Structure of a Novel N-acetyl-L-citrulline Deacetylase from Xanthomonas campestris

    Energy Technology Data Exchange (ETDEWEB)

    Shi,D.; Yu, X.; Roth, L.; Tuchman, M.; Allewell, N.

    2007-01-01

    The structure of a novel acetylcitrulline deacetylase from the plant pathogen Xanthomonas campestris has been solved by multiple-wavelength anomalous dispersion (MAD) using crystals grown from selenomethionine-substituted protein and refined at 1.75 {angstrom} resolution. The asymmetric unit of the crystal contains one monomer consisting of two domains, a catalytic domain and a dimerization domain. The catalytic domain is able to bind a single Co(II) ion at the active site with no change in confirmation. the dimerization domain forms an interface between two monomers related by a crystallographic two-fold symmetry axis. The interface is maintained by hydrophobic interactions between helices and hydrogen bonding between two {beta} strands that form a continuous {beta} sheet across the dimer interface. Because the dimers are also related by two-fold crystallographic axes, they pack together across the crystal via the dimerization domain, suggesting that higher order oligomers may form in solution. The polypeptide fold of the monomer is similar to the fold of Pseudomonas sp. carboxypeptidase G2 and Neisseria meningitidis succinyl diaminopimelate desuccinylase. Structural comparison among these enzymes allowed modeling of substrate binding and suggests a possible catalytic mechanism, in which Glu130 functions as a bifunctional general acid-base catalyst and the metal ion polarizes the carbonyl of the acetyl group.

  3. Site-specific quantification of lysine acetylation in the N-terminal tail of histone H4 using a double-labelling, targeted UHPLC MS/MS approach

    NARCIS (Netherlands)

    D'Urzo, Annalisa; Boichenko, Alexander P.; van den Bosch, Thea; Hermans, Jos; Dekker, Frank; Andrisano, Vincenza; Bischoff, Rainer

    We developed a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the site-specific quantification of lysine acetylation in the N-terminal region of histone H4 by combining chemical derivatization at the protein and peptide levels with digestion using chymotrypsin and

  4. High-resolution bioactivity profiling combined with HPLC-HRMS-SPE-NMR: α-Glucosidase inhibitors and acetylated ellagic acid rhamnosides from Myrcia palustris DC. (Myrtaceae).

    Science.gov (United States)

    Wubshet, Sileshi G; Moresco, Henrique H; Tahtah, Yousof; Brighente, Inês M C; Staerk, Dan

    2015-08-01

    Type 2 diabetes (T2D) is an endocrine metabolic disease with a worldwide prevalence of more than 8%, and an expected increase close to 50% in the next 15-20years. T2D is associated with severe and life-threatening complications like retinopathy, neuropathy, nephropathy, and cardiovascular diseases, and therefore improved drug leads or functional foods containing α-glucosidase inhibitors are needed for management of blood glucose. In this study, leaves of Myrcia palustris were investigated by high-resolution α-glucosidase inhibition profiling combined with HPLC-HRMS-SPE-NMR. This led to identification of casuarinin, myricetin 3-O-β-d-(6″-galloyl)galactopyranoside, kaempferol 3-O-β-d-galactopyranoside, myricetin, and quercetin as α-glucosidase inhibitors. In addition, four acetylated ellagic acid rhamnosides, i.e., 4-O-(2″,4″-O-diacetyl-α-l-rhamnopyranosyl)ellagic acid, 4-O-(2″,3″-O-diacetyl-α-l-rhamnopyranosyl)ellagic acid, 4-O-(3″,4″-O-diacetyl-α-l-rhamnopyranosyl)ellagic acid, and 4-O-(2″,3″,4″-O-triacetyl-α-l-rhamnopyranosyl)ellagic acid were identified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Structural Characterization of Amadori Rearrangement Product of Glucosylated Nα-Acetyl-Lysine by Nuclear Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Chuanjiang Li

    2014-01-01

    Full Text Available Maillard reaction is a nonenzymatic reaction between reducing sugars and free amino acid moieties, which is known as one of the most important modifications in food science. It is essential to characterize the structure of Amadori rearrangement products (ARPs formed in the early stage of Maillard reaction. In the present study, the Nα-acetyl-lysine-glucose model had been successfully set up to produce ARP, Nα-acetyl-lysine-glucose. After HPLC purification, ARP had been identified by ESI-MS with intense [M+H]+ ion at 351 m/z and the purity of ARP was confirmed to be over 90% by the relative intensity of [M+H]+ ion. Further structural characterization of the ARP was accomplished by using nuclear magnetic resonance (NMR spectroscopy, including 1D 1H NMR and 13C NMR, the distortionless enhancement by polarization transfer (DEPT-135 and 2D 1H-1H and 13C-1H correlation spectroscopy (COSY and 2D nuclear overhauser enhancement spectroscopy (NOESY. The complexity of 1D 1H NMR and 13C NMR was observed due to the presence of isomers in glucose moiety of ARP. However, DEPT-135 and 2D NMR techniques provided more structural information to assign the 1H and 13C resonances of ARP. 2D NOESY had successfully confirmed the glycosylated site between 10-N in Nα-acetyl-lysine and 7′-C in glucose.

  6. Effect of Drying Pretreatment on the Acetylation of Nanofibrillated Cellulose

    Directory of Open Access Journals (Sweden)

    Vesna Zepič

    2015-10-01

    Full Text Available The aim of this study was to evaluate the effect of different morphologies of solvent-exchanged (NFCSE, spray-dried (NFCSD, and freeze-dried (NFCFD nano-fibrillated cellulose on the susceptibility to surface modification with the acetic anhydride/pyridine system. The degree of substitution (DS, morphology, degree of crystallinity (Icr, hydrophobicity, and thermal stability of acetylated products were examined. Acetylated NFCSD and NFCFD had higher DS than acetylated NFCSE, suggesting that drying pre-treatment increased the susceptibility of NFC for acetylation. The morphology of acetylated NFCFD and NFCSD with higher DS was different from unmodified samples, while that of NFCSE was not affected by acetylation. Microspheres of acetylated NFCSD started to dissolve when the highest DS was reached. As opposed to unmodified NFCFD, the nanofibrillar units of acetylated NFCFD became individualised at lower DS. Acetylated samples had lower Icr than the unmodified samples. A significant increase in the contact angle was observed at higher DS of acetylated NFC samples. Acetylation markedly elevated the thermal stability of the acetylated NFC samples.

  7. N-Myc and GCN5 regulate significantly overlapping transcriptional programs in neural stem cells.

    Directory of Open Access Journals (Sweden)

    Verónica Martínez-Cerdeño

    Full Text Available Here we examine the functions of the Myc cofactor and histone acetyltransferase, GCN5/KAT2A, in neural stem and precursor cells (NSC using a conditional knockout approach driven by nestin-cre. Mice with GCN5-deficient NSC exhibit a 25% reduction in brain mass with a microcephaly phenotype similar to that observed in nestin-cre driven knockouts of c- or N-myc. In addition, the loss of GCN5 inhibits precursor cell proliferation and reduces their populations in vivo, as does loss of N-myc. Gene expression analysis indicates that about one-sixth of genes whose expression is affected by loss of GCN5 are also affected in the same manner by loss of N-myc. These findings strongly support the notion that GCN5 protein is a key N-Myc transcriptional cofactor in NSC, but are also consistent with recruitment of GCN5 by other transcription factors and the use by N-Myc of other histone acetyltransferases. Putative N-Myc/GCN5 coregulated transcriptional pathways include cell metabolism, cell cycle, chromatin, and neuron projection morphogenesis genes. GCN5 is also required for maintenance of histone acetylation both at its putative specific target genes and at Myc targets. Thus, we have defined an important role for GCN5 in NSC and provided evidence that GCN5 is an important Myc transcriptional cofactor in vivo.

  8. Oncogenic N-Ras Stimulates SRF-Mediated Transactivation via H3 Acetylation at Lysine 9

    Directory of Open Access Journals (Sweden)

    Sun-Ju Yi

    2018-01-01

    Full Text Available Signal transduction pathways regulate the gene expression by altering chromatin dynamics in response to mitogens. Ras proteins are key regulators linking extracellular stimuli to a diverse range of biological responses associated with gene regulation. In mammals, the three ras genes encode four Ras protein isoforms: H-Ras, K-Ras4A, K-Ras4B, and N-Ras. Although emerging evidence suggests that Ras isoforms differentially regulate gene expressions and are functionally nonredundant, the mechanisms underlying Ras specificity and Ras signaling effects on gene expression remain unclear. Here, we show that oncogenic N-Ras acts as the most potent regulator of SRF-, NF-κB-, and AP-1-dependent transcription. N-Ras-RGL2 axis is a distinct signaling pathway for SRF target gene expression such as Egr1 and JunB, as RGL2 Ras binding domain (RBD significantly impaired oncogenic N-Ras-induced SRE activation. By monitoring the effect of Ras isoforms upon the change of global histone modifications in oncogenic Ras-overexpressed cells, we discovered that oncogenic N-Ras elevates H3K9ac/H3K23ac levels globally in the chromatin context. Importantly, chromatin immunoprecipitation (ChIP assays revealed that H3K9ac is significantly enriched at the promoter and coding regions of Egr1 and JunB. Collectively, our findings define an undocumented role of N-Ras in modulating of H3 acetylation and in gene regulation.

  9. Biobleaching chemistry of laccase-mediator systems on high-lignin-content kraft pulps

    International Nuclear Information System (INIS)

    Chakar, F.S.; Ragauskas, A.J.

    2004-01-01

    A high-lignin-content softwood kraft pulp was reacted with laccase in the presence of 1-hydroxybenzotriazole (HBT), N-acetyl-N-phenylhydroxylamine (NHA), and violuric acid (VA). The biodelignification response with violuric acid was superior to both 1-hydroxybenzotriazole and N-acetyl-N-phenylhydroxylamine. NMR analysis of residual lignins isolated before and after the biobleaching treatments revealed that the latter material was highly oxidized and that the magnitude of structural changes was most pronounced with the laccase - violuric acid biobleaching system. An increase in the content of carboxylic acid groups and a decrease in methoxyl groups were noted with all three laccase-mediator systems. The oxidation biobleaching pathway is directed primarily towards noncondensed C5 phenolic lignin functional structures for all three laccase-mediated systems. The laccase - violuric acid system was also reactive towards C5-condensed phenolic lignin structures. (author)

  10. Catalytic-site mapping of pyruvate formate lyase. Hypophosphite reaction on the acetyl-enzyme intermediate affords carbon-phosphorus bond synthesis (1-hydroxyethylphosphonate).

    Science.gov (United States)

    Plaga, W; Frank, R; Knappe, J

    1988-12-15

    Pyruvate formate-lyase of Escherichia coli cells, a homodimeric protein of 2 x 85 kDa, is distinguished by the property of containing a stable organic free radical (g = 2.0037) in its resting state. The enzyme (E-SH) achieves pyruvate conversion to acetyl-CoA via two distinct half-reactions (E-SH + pyruvate in equilibrium E-S-acetyl + formate; E-S-acetyl + CoA in equilibrium E-SH + acetyl-CoA), the first of which has been proposed to involve reversible homolytic carbon-carbon bond cleavage [J. Knappe et al. (1984) Proc. Natl Acad. Sci. USA 81, 1332-1335]. Present studies identified Cys-419 as the covalent-catalytic cysteinyl residue via CNBr fragmentation of E-S-[14C]acetyl and radio-sequencing of the isolated peptide CB-Ac (amino acid residues 406-423). Reaction of the formate analogue hypophosphite with E-S-acetyl was investigated and found to produce 1-hydroxyethylphosphonate with a thioester linkage to the adjacent Cys-418. The structure was determined from the chymotryptic peptide CH-P (amino acid residues 415-425), using 31P-NMR spectroscopy (delta = 44 ppm) and by chemical characterisation through degradation into 1-hydroxyethylphosphonate with phosphodiesterase or bromine. This novel P-C-bond synthesis involves the enzyme-based free radical and is proposed to resemble the physiological C-C-bond synthesis (pyruvate production) from formate and E-S-acetyl. These findings are interpreted as proof of a radical mechanism for the action of pyruvate formate-lyase. The central Cys-418/Cys-419 pair of the active site shows a distinctive thiolate property even in the inactive (nonradical) form of the enzyme, as determined using an iodoacetate probe.

  11. Studies on adsorption and corrosion inhibitive properties of quinoline derivatives on N80 steel in 15% hydrochloric acid

    Directory of Open Access Journals (Sweden)

    K.R. Ansari

    2016-12-01

    Full Text Available This paper deals with the N80 steel corrosion protection study in 15% HCl which was carried by three quinoline derivatives namely 3-acetyl-1-(4-methylbenzylideneamino quinolin-2-one (AQ-1, 3-acetyl-1-(4 hydroxy benzylideneamino quinolin-2-one (AQ-2, 3-acetyl-1-(3-nitrobenzylideneamino quinolin-2(1H-one (AQ-3 using gravimetric, electrochemical, and quantum chemical studies. Tafel polarization showed that AQs are mixed type inhibitors but dominantly affect cathodic reaction more. The observed results reveal that AQ-1 is the best inhibitor. All the three inhibitors were found to obey the Langmuir adsorption isotherm. Scanning electron microscopy (SEM micrographs supports the protection of the N80 steel by AQs. Quantum chemical study reveals that the inhibitors have a tendency to get protonated and this protonated form has greater tendency to get adsorbed onto the N80 steel surface.

  12. Mass energy-absorption coefficients and average atomic energy-absorption cross-sections for amino acids in the energy range 0.122-1.330 MeV

    Energy Technology Data Exchange (ETDEWEB)

    More, Chaitali V., E-mail: chaitalimore89@gmail.com; Lokhande, Rajkumar M.; Pawar, Pravina P., E-mail: pravinapawar4@gmail.com [Department of physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (India)

    2016-05-06

    Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σ{sub a,en}) and average atomic energy-absorption cross sections (μ{sub en}/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.

  13. Rigid Dipeptide Mimics: Synthesis of Enantiopure 5- and 7-Benzyl and 5,7-Dibenzyl Indolizidinone Amino Acids via Enolization and Alkylation of delta-Oxo alpha,omega-Di-[N-(9-(9-phenylfluorenyl))amino]azelate Esters.

    Science.gov (United States)

    Polyak, Felix; Lubell, William D.

    1998-08-21

    Azabicyclo[X.Y.0]alkane amino acids are tools for constructing mimics of peptide structure and templates for generating combinatorial libraries for drug discovery. Our methodology for synthesizing these conformationally rigid dipeptides has been elaborated such that alkyl groups can be appended onto the heterocycle to generate mimics of peptide backbone and side-chain structure. Inexpensive glutamic acid was employed as chiral educt in a Claisen condensation/ketone alkylation/reductive amination/lactam cyclization sequence that furnished alkyl-branched azabicyclo[4.3.0]alkane amino acid. Enantiopure 5-benzyl-, 7-benzyl-, and 5,7-dibenzylindolizidinone amino acids 2-4 were stereoselectively synthesized via efficient reaction sequences featuring the alkylation of di-tert-butyl alpha,omega-di-[N-(PhF)amino]azelate delta-ketone 5. A variety of alkyl halides were readily added to the enolate of ketone 5 to provide mono- and dialkylated ketones 6 and 7. Hydride additions to 6 and 7, methanesulfonations, and intramolecular S(N)2 displacements by the PhF amine gave 5-alkylprolines that were converted by lactam cyclizations into 7- and 5-benzyl-, as well as 5,7-dibenzyl-2-oxo-3-N-(BOC)amino-1-azabicyclo[4.3.0]nonane-9-carboxylate methyl esters 10, 11, and 14. Epimerization of the alkyl-branched stereocenter via an iminium-enaminium equilibrium proved effective for controlling diastereoselectivity in reductive aminations with 6 and 7 in order to furnish 5-alkylprolines that were similarly converted to 7- benzyl- and 5,7-dibenzylindolizidinone N-(BOC)amino esters 10 and 14. Ester hydrolysis with hydroxide ion and potassium trimethylsilanolate then gave enantiopure indolizidinone amino acids 2-4. Epimerization at C-9 of benzylindolizidinone amino esters was also used to provide alternative diastereomers of 10, 11, and 14. This practical methodology for introducing side-chain groups onto the heterocycle with regioselective and diastereoselective control is designed to enhance

  14. Characterisation of neuroprotective efficacy of modified poly-arginine-9 (R9) peptides using a neuronal glutamic acid excitotoxicity model.

    Science.gov (United States)

    Edwards, Adam B; Anderton, Ryan S; Knuckey, Neville W; Meloni, Bruno P

    2017-02-01

    In a recent study, we highlighted the importance of cationic charge and arginine residues for the neuroprotective properties of poly-arginine and arginine-rich peptides. In this study, using cortical neuronal cultures and an in vitro glutamic acid excitotoxicity model, we examined the neuroprotective efficacy of different modifications to the poly-arginine-9 peptide (R9). We compared an unmodified R9 peptide with R9 peptides containing the following modifications: (i) C-terminal amidation (R9-NH2); (ii) N-terminal acetylation (Ac-R9); (iii) C-terminal amidation with N-terminal acetylation (Ac-R9-NH2); and (iv) C-terminal amidation with D-amino acids (R9D-NH2). The three C-terminal amidated peptides (R9-NH2, Ac-R9-NH2, and R9D-NH2) displayed neuroprotective effects greater than the unmodified R9 peptide, while the N-terminal acetylated peptide (Ac-R9) had reduced efficacy. Using the R9-NH2 peptide, neuroprotection could be induced with a 10 min peptide pre-treatment, 1-6 h before glutamic acid insult, or when added to neuronal cultures up to 45 min post-insult. In addition, all peptides were capable of reducing glutamic acid-mediated neuronal intracellular calcium influx, in a manner that reflected their neuroprotective efficacy. This study further highlights the neuroprotective properties of poly-arginine peptides and provides insight into peptide modifications that affect efficacy.

  15. Biosynthesis of heparin. Effects of n-butyrate on cultured mast cells

    International Nuclear Information System (INIS)

    Jacobsson, K.G.; Riesenfeld, J.; Lindahl, U.

    1985-01-01

    Murine mastocytoma cells were incubated in vitro with inorganic [ 35 S]sulfate, in the absence or presence of 2.5 mM n-butyrate, and labeled heparin was isolated. The polysaccharide produced in the presence of butyrate showed a lower charge density on anion exchange chromatography than did the control material and a 3-fold increased proportion of components with high affinity for antithrombin. Structural analysis of heparin labeled with [ 3 H] glucosamine in the presence of butyrate showed that approximately 35% of the glucosamine units were N-acetylated, as compared to approximately 10% in the control material; the nonacetylated glucosamine residues were N-sulfated. The presence of butyrate thus leads to an inhibition of the N-deacetylation/N-sulfation process in heparin biosynthesis, along with an augmented formation of molecules with high affinity for antithrombin. Preincubation of the mastocytoma cells with butyrate was required for manifestation of either effect; when the preincubation period was reduced from 24 to 10 h the effects of butyrate were no longer observed. A polysaccharide formed on incubating mastocytoma microsomal fraction with UDP-[ 3 H]glucuronic acid, UDP-N-acetylglucosamine, and 3'-phosphoadenylylsulfate in the presence of 5 mM butyrate showed the same N-acetyl/N-sulfate ratio as did the corresponding control polysaccharide, produced in the absence of butyrate. These findings suggest that the effect of butyrate on heparin biosynthesis depends on the integrity of the cell

  16. Nitric Acid Poisoning: Case Report

    International Nuclear Information System (INIS)

    Quintero Giraldo, Maria Paulina; Quiceno Calderon, William de Jesus; Melo Arango Catalina

    2011-01-01

    Nitric acid (HNO 3 ) is a corrosive fluid that, when in contact with reducing agents, generates nitrogen oxides that are responsible for inhalation poisoning. We present two cases of poisoning from nitric acid gas inhalation resulting from occupational exposure. Imaging findings were similar in both cases, consistent with adult respiratory distress syndrome (ARDS): bilaterally diffuse alveolar opacities on the chest X-ray and a cobblestone pattern on computed tomography (CT).one of the patients died while the other evolved satisfactorily after treatment with n-acetyl cysteine and mechanical ventilation. The diagnosis of nitric acid poisoning was made on the basis of the history of exposure and the way in which the radiological findings evolved.

  17. Toxoplasma gondii acetyl-CoA synthetase is involved in fatty acid elongation (of long fatty acid chains) during tachyzoite life stages.

    Science.gov (United States)

    Dubois, David; Fernandes, Stella; Amiar, Souad; Dass, Sheena; Katris, Nicholas J; Botté, Cyrille Y; Yamaryo-Botté, Yoshiki

    2018-06-01

    Apicomplexan parasites are pathogens responsible for major human diseases such as toxoplasmosis caused by Toxoplasma gondii and malaria caused by Plasmodium spp. Throughout their intracellular division cycle, the parasites require vast and specific amounts of lipids to divide and survive. This demand for lipids relies on a fine balance between de novo synthesized lipids and scavenged lipids from the host. Acetyl-CoA is a major and central precursor for many metabolic pathways, especially for lipid biosynthesis. T. gondii possesses a single cytosolic acetyl-CoA synthetase ( Tg ACS). Its role in the parasite lipid synthesis is unclear. Here, we generated an inducible Tg ACS KO parasite line and confirmed the cytosolic localization of the protein. We conducted 13 C-stable isotope labeling combined with mass spectrometry-based lipidomic analyses to unravel its putative role in the parasite lipid synthesis pathway. We show that its disruption has a minor effect on the global FA composition due to the metabolic changes induced to compensate for its loss. However, we could demonstrate that Tg ACS is involved in providing acetyl-CoA for the essential fatty elongation pathway to generate FAs used for membrane biogenesis. This work provides novel metabolic insight to decipher the complex lipid synthesis in T. gondii . Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc.

  18. n – 3 polyunsaturated fatty acids suppress phosphatidylinositol 4,5-bisphosphate-dependent actin remodelling during CD4+ T-cell activation

    Science.gov (United States)

    Hou, Tim Y.; Monk, Jennifer M.; Fan, Yang-Yi; Barhoumi, Rola; Chen, Yong Q.; Rivera, Gonzalo M.; McMURRAY, David N.; Chapkin, Robert S.

    2013-01-01

    n – 3 PUFA (polyunsaturated fatty acids), i.e. DHA (docosahexaenoic acid), found in fish oil, exhibit anti-inflammatory properties; however, the molecular mechanisms remain unclear. Since PtdIns(4,5)P2 resides in raft domains and DHA can alter the size of rafts, we hypothesized that PtdIns(4,5)P2 and downstream actin remodelling are perturbed by the incorporation of n – 3 PUFA into membranes, resulting in suppressed T-cell activation. CD4+ T-cells isolated from Fat-1 transgenic mice (membranes enriched in n – 3 PUFA) exhibited a 50% decrease in PtdIns(4,5)P2. Upon activation by plate-bound anti-CD3/anti-CD28 or PMA/ionomycin, Fat-1 CD4+ T-cells failed to metabolize PtdIns(4,5)P2. Furthermore, actin remodelling failed to initiate in Fat-1 CD4+ T-cells upon stimulation; however, the defect was reversed by incubation with exogenous PtdIns(4,5)P2. When Fat-1 CD4+ T-cells were stimulated with anti-CD3/anti-CD28-coated beads, WASP (Wiskott–Aldrich syndrome protein) failed to translocate to the immunological synapse. The suppressive phenotype, consisting of defects in PtdIns(4,5)P2 metabolism and actin remodelling, were recapitulated in CD4+ T-cells isolated from mice fed on a 4% DHA triacylglycerol-enriched diet. Collectively, these data demonstrate that n – 3 PUFA, such as DHA, alter PtdIns(4,5)P2 in CD4+ T-cells, thereby suppressing the recruitment of WASP to the immunological synapse, and impairing actin remodelling in CD4+ T-cells. PMID:22250985

  19. El ácido siálico N-acetilado es inmunogénico e induce anticuerpos protectores contra Neisseria meningitidis

    Directory of Open Access Journals (Sweden)

    Gregory R. Moe

    2009-08-01

    Full Text Available Recently, we showed that monoclonal antibodies (mAbs that are reactive with derivatives of polysialic acid containing de-N-acetylated neuraminic acid (Neu residues are protective against N. meningitidis group B strains (Moe et al. 2005, Infect Immun 73:2123; Flitter et al., in preparation. In addition, we found that fully de-N-acetylated PSA (i.e. poly alpha 2,8 Neu conjugated to tetanus toxoid (DeNAc elicits IgM and IgG antibodies of all subclasses in mice that bind to group B strains, activate human complement deposition, are protective in an infant rat model of meningococcal bacteremia and are bactericidal against group C strains (Moe et al, in press. We show here that anti-DeNAc mAbs, DA1 and DA2 (both IgM, are reactive with polysaccharides containing Neu, bind to group B, C, W135 and Y but not X strains grown in chemically defined media (CDM. However, when the group X strain is grown in CDM supplemented with human plasma, DA2 binds. Also both mAbs mediate bactericidal activity against B, C, W135, and X strains with human complement. The esults suggests that N. meningitidis express and/or acquire zwitterionic de-N-acetyl sialic acid antigens that can be the target of protective antibodies.

  20. The Regulation of Insulin-Stimulated Cardiac Glucose Transport via Protein Acetylation

    Directory of Open Access Journals (Sweden)

    Edith Renguet

    2018-06-01

    Full Text Available Cellular catabolism is the cell capacity to generate energy from various substrates to sustain its function. To optimize this energy production, cells are able to switch between various metabolic pathways in accordance to substrate availability via a modulation of several regulatory enzymes. This metabolic flexibility is essential for the healthy heart, an organ requiring large quantities of ATP to sustain its contractile function. In type 2 diabetes, excess of non-glucidic nutrients such as fatty acids, branched-chain amino-acids, or ketones bodies, induces cardiac metabolic inflexibility. It is characterized by a preferential use of these alternative substrates to the detriment of glucose, this participating in cardiomyocytes dysfunction and development of diabetic cardiomyopathy. Identification of the molecular mechanisms leading to this metabolic inflexibility have been scrutinized during last decades. In 1963, Randle demonstrated that accumulation of some metabolites from fatty acid metabolism are able to allosterically inhibit regulatory steps of glucose metabolism leading to a preferential use of fatty acids by the heart. Nevertheless, this model does not fully recapitulate observations made in diabetic patients, calling for a more complex model. A new piece of the puzzle emerges from recent evidences gathered from different laboratories showing that metabolism of the non-glucidic substrates induces an increase in acetylation levels of proteins which is concomitant to the perturbation of glucose transport. The purpose of the present review is to gather, in a synthetic model, the different evidences that demonstrate the role of acetylation in the inhibition of the insulin-stimulated glucose uptake in cardiac muscle.

  1. Functional Characterization of ATM Kinase Using Acetylation-Specific Antibodies.

    Science.gov (United States)

    Sun, Yingli; Du, Fengxia

    2017-01-01

    The activation of ATM is critical in the DNA double strand breaks repair pathway. Acetylation of ATM by Tip60 histone acetyltransferase (HAT) plays a key role in the activation of ATM kinase activity in response to DNA damage. ATM forms a stable complex with Tip60 through the FATC domain of ATM. Tip60 acetylates lysine3016 of ATM, and this acetylation induces the activation of ATM. Several techniques are included in the study of ATM acetylation by Tip60, such as in vitro kinase assay, systematic mutagenesis, western blots. Here, we describe how to study the acetylation of ATM using acetylation-specific antibodies.

  2. Combined HILIC-ELSD/ESI-MS(n) enables the separation, identification and quantification of sugar beet pectin derived oligomers.

    Science.gov (United States)

    Remoroza, C; Cord-Landwehr, S; Leijdekkers, A G M; Moerschbacher, B M; Schols, H A; Gruppen, H

    2012-09-01

    The combined action of endo-polygalacturonase (endo-PGII), pectin lyase (PL), pectin methyl esterase (fungal PME) and RG-I degrading enzymes enabled the extended degradation of methylesterified and acetylated sugar beet pectins (SBPs). The released oligomers were separated, identified and quantified using hydrophilic interaction liquid chromatography (HILIC) with online electrospray ionization ion trap mass spectrometry (ESI-IT-MS(n)) and evaporative light scattering detection (ELSD). By MS(n), the structures of galacturonic acid (GalA) oligomers having an acetyl group in the O-2 and/or O-3 positions eluting from the HILIC column were elucidated. The presence of methylesterified and/or acetylated galacturonic acid units within an oligomer reduced the interaction with the HILIC column significantly compared to the unsubstituted GalA oligomers. The HILIC column enables a good separation of most oligomers present in the digest. The use of ELSD to quantify oligogalacturonides was validated using pure GalA standards and the signal was found to be independent of the chemical structure of the oligomer being detected. The combination of chromatographic and enzymatic strategies enables to distinguish SBPs having different methylesters and acetyl group distribution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Adsorption kinetics, isotherm, and thermodynamics studies of acetyl-11-keto-β-boswellic acids (AKBA) from Boswellia serrata extract using macroporous resin.

    Science.gov (United States)

    Niphadkar, Sonali S; Rathod, Virendra K

    2017-09-14

    An acetyl-11-keto-β-boswellic acid (AKBA) is potent anti-inflammatory agent found in Boswellia serrata oleogum resin. Adsorption characteristics of AKBA from B. serrata were studied using macroporous adsorbent resin to understand separation and adsorption mechanism of targeted molecules. Different macroporous resins were screened for adsorption and desorption of AKBA and Indion 830 was screened as it showed higher adsorption capacity. The kinetic equations were studied and results showed that the adsorption of AKBA on Indion 830 was well fitted to the pseudo first-order kinetic model. The influence of two parameters such as temperature (298, 303, and 308 K) and pH (5-8) on the adsorption process was also studied. The experimental data was further investigated using Langmuir, Freundlich, and Temkin isotherm models. It was observed that Langmuir isotherm model was found to be the best fit for AKBA adsorption by Indion 830 and highest adsorption capacity (50.34 mg/g) was obtained at temperature of 303 K. The values of thermodynamic parameters such as the change of Gibbs free energy (ΔG*), entropy (ΔS*), and enthalpy (ΔH*), indicated that the process of adsorption was spontaneous, favourable, and exothermic.

  4. Acylation and metabolism of (n-6) fatty acids in hepatocytes

    International Nuclear Information System (INIS)

    Voss, A.C.; Sprecher, H.

    1986-01-01

    Isolated hepatocytes (5 x 10 6 in 2ml) from chow fed rats were incubated from 20 to 60 min. with increasing concentrations of [1- 14 C] labeled 18:2 (n-6), 18:3 (n-6) or 20:3 (n-6) to define optimum conditions for measuring acylation and metabolism to other (n-6) acids with subsequent incorporation into lipids. The triglycerides (TG) and phospholipids (PL) contained 157 and 80 nmols of 18:2 (n-6) and 6.0 and 6.1 nmols of other (n-6) acids, respectively, when cells were incubated with 0.3mM [1- 14 C] 18:2 (n-6) for 40 min. When cells were incubated with 0.3mM [1- 14 C] 18:2 (n-6) plus 0.15 to 0.45mM 18:3 (n-6) or 20:3 (n-6), the metabolism of 18:2 (n-6) to other (n-6) acids was inhibited but not totally abolished. These results may suggest that (n-6) acid made from linoleate do not totally equilibrate with exogenous 18:3 (n-6) or 20:3

  5. N-(2,5-Dimethylphenylsuccinamic acid monohydrate

    Directory of Open Access Journals (Sweden)

    B. S. Saraswathi

    2011-08-01

    Full Text Available In the title compound, C12H15NO3·H2O, the conformation of the N—H bond in the amide segment is syn to the ortho-methyl group and anti to the meta-methyl group in the benzene ring. Further, the conformations of the amide O and the carbonyl O atom of the acid segment are anti to the adjacent methylene H atoms. The C=O and O—H bonds of the acid group are syn to one another. The structure shows an interesting hydrogen-bonding pattern with the water molecule forming hydrogen bonds with three different molecules of the compound. In the crystal, molecules are packed into infinite chains through intermolecular O—H...O and N—H...O hydrogen bonds.

  6. Discovery and characterization of Ku acetylation in Mycobacterium smegmatis.

    Science.gov (United States)

    Zhou, Ying; Chen, Tao; Zhou, Lin; Fleming, Joy; Deng, Jiaoyu; Wang, Xude; Wang, Liwei; Wang, Yingying; Zhang, Xiaoli; Wei, Wenjing; Bi, Lijun

    2015-03-01

    Lysine acetylation is an important post-translational modification and is known to regulate many eukaryotic cellular processes. Little, however, is known about acetylated proteins in prokaryotes. Here, using immunoblotting, mass spectrometry and mutagenesis studies, we investigate the acetylation dynamics of the DNA repair protein Ku and its relationship with the deacetylase protein Sir2 and the non-homologous end joining (NHEJ) pathway in Mycobacterium smegmatis. We report that acetylation of Ku increases with growth, while NHEJ activity decreases, providing support for the hypothesis that acetylation of Ku may be involved in the DNA damage response in bacteria. Ku has multiple lysine sites. Our results indicate that K29 is an important acetylation site and that deficiency of Sir2 or mutation of K29 affects the quantity of Ku and its acetylation dynamics. Our findings expand knowledge of acetylation targets in prokaryotes and indicate a new direction for further research on bacterial DNA repair mechanisms. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Effects of Biotin Supplementation in the Diet on Adipose Tissue cGMP Concentrations, AMPK Activation, Lipolysis, and Serum-Free Fatty Acid Levels.

    Science.gov (United States)

    Boone-Villa, Daniel; Aguilera-Méndez, Asdrubal; Miranda-Cervantes, Adriana; Fernandez-Mejia, Cristina

    2015-10-01

    Several studies have shown that pharmacological concentrations of biotin decrease hyperlipidemia. The molecular mechanisms by which pharmacological concentrations of biotin modify lipid metabolism are largely unknown. Adipose tissue plays a central role in lipid homeostasis. In the present study, we analyzed the effects of biotin supplementation in adipose tissue on signaling pathways and critical proteins that regulate lipid metabolism, as well as on lipolysis. In addition, we assessed serum fatty acid concentrations. Male BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet (control: 1.76 mg biotin/kg; supplemented: 97.7 mg biotin/kg diet) over 8 weeks postweaning. Compared with the control group, biotin-supplemented mice showed an increase in the levels of adipose guanosine 3',5'-cyclic monophosphate (cGMP) (control: 30.3±3.27 pmol/g wet tissue; supplemented: 49.5±3.44 pmol/g wet tissue) and of phosphorylated forms of adenosine 5'-monophosphate-activated protein kinase (AMPK; 65.2%±1.06%), acetyl-coenzyme A (CoA), carboxylase-1 (196%±68%), and acetyl-CoA carboxylase-2 (78.1%±18%). Serum fatty acid concentrations were decreased (control: 1.12±0.04 mM; supplemented: 0.91±0.03 mM), and no change in lipolysis was found (control: 0.29±0.05 μmol/mL; supplemented: 0.33±0.08 μmol/mL). In conclusion, 8 weeks of dietary biotin supplementation increased adipose tissue cGMP content and protein expression of the active form of AMPK and of the inactive forms of acetyl-CoA carboxylase-1 and acetyl-CoA carboxylase-2. Serum fatty acid levels fell, and no change in lipolysis was observed. These findings provide insight into the effects of biotin supplementation on adipose tissue and support its use in the treatment of dyslipidemia.

  8. Histone Acetylation in Fungal Pathogens of Plants

    Directory of Open Access Journals (Sweden)

    Junhyun Jeon

    2014-03-01

    Full Text Available Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed.

  9. Expression of mung bean pectin acetyl esterase in potato tubers: effect on acetylation of cell wall polymers and tuber mechanical properties.

    Science.gov (United States)

    Orfila, Caroline; Dal Degan, Florence; Jørgensen, Bodil; Scheller, Henrik Vibe; Ray, Peter M; Ulvskov, Peter

    2012-07-01

    A mung bean (Vigna radiata) pectin acetyl esterase (CAA67728) was heterologously expressed in tubers of potato (Solanum tuberosum) under the control of the granule-bound starch synthase promoter or the patatin promoter in order to probe the significance of O-acetylation on cell wall and tissue properties. The recombinant tubers showed no apparent macroscopic phenotype. The enzyme was recovered from transgenic tubers using a high ionic strength buffer and the extract was active against a range of pectic substrates. Partial in vivo de-acetylation of cell wall polysaccharides occurred in the transformants, as shown by a 39% decrease in the degree of acetylation (DA) of tuber cell wall material (CWM). Treatment of CWM using a combination of endo-polygalacturonase and pectin methyl esterase extracted more pectin polymers from the transformed tissue compared to wild type. The largest effect of the pectin acetyl esterase (68% decrease in DA) was seen in the residue from this extraction, suggesting that the enzyme is preferentially active on acetylated pectin that is tightly bound to the cell wall. The effects of acetylation on tuber mechanical properties were investigated by tests of failure under compression and by determination of viscoelastic relaxation spectra. These tests suggested that de-acetylation resulted in a stiffer tuber tissue and a stronger cell wall matrix, as a result of changes to a rapidly relaxing viscoelastic component. These results are discussed in relation to the role of pectin acetylation in primary cell walls and its implications for industrial uses of potato fibres.

  10. Chromium downregulates the expression of Acetyl CoA Carboxylase 1 gene in lipogenic tissues of domestic goats: a potential strategy for meat quality improvement.

    Science.gov (United States)

    Najafpanah, Mohammad Javad; Sadeghi, Mostafa; Zali, Abolfazl; Moradi-Shahrebabak, Hossein; Mousapour, Hojatollah

    2014-06-15

    Acetyl CoA Carboxylase 1 (ACC1) is a biotin-dependent enzyme that catalyzes the carboxylation of Acetyl CoA to form Malonyl CoA, the key intermediate metabolite in fatty acid synthesis. In this study, the mRNA expression of the ACC1 gene was evaluated in four different tissues (liver, visceral fat, subcutaneous fat, and longissimus muscle) of the domestic goat (Capra hircus) kids feeding on four different levels of trivalent chromium (0, 0.5, 1, and 1.5mg/day) as food supplementation. RT-qPCR technique was used for expression analyses and heat shock protein 90 gene (HSP-90) was considered as reference gene for data normalization. Our results revealed that 1.5mg/day chromium significantly reduced the expression of the ACC1 gene in liver, visceral fat, and subcutaneous fat tissues, but not in longissimus muscles (Pmeat quality in domestic animals. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Cadmium-induced oxidative damage and protective effects of N-acetyl-L-cysteine against cadmium toxicity in Solanum nigrum L

    International Nuclear Information System (INIS)

    Deng Xiaopeng; Xia Yan; Hu Wei; Zhang Hongxiao; Shen Zhenguo

    2010-01-01

    The effects of cadmium (Cd) on the accumulation of hydrogen peroxide (H 2 O 2 ) and antioxidant enzyme activities in roots of Solanum nigrum L. and the role of N-acetyl-L-cysteine (NAC) as a cysteine (Cys) donor against Cd toxicity were investigated. Cd at 50 and 200 μM significantly increased the contents of thiobarbituric acid-reactive substances (TBARS), the production of H 2 O 2 and superoxide anion (O 2 · - ), and the activities of catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione peroxidase (GSH-Px), glutathione reductase, and superoxide dismutase. Experiments with diphenylene iodonium as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and NaN 3 as an inhibitor of peroxidase showed that the major source of Cd-induced reactive oxygen species in the roots may include plasma membrane-bound NADPH oxidase and peroxidase. In addition, the effects of NAC on plant growth, antioxidant enzyme activity, and non-protein thiol content were analyzed. Under Cd stress, the addition of 500 μM NAC decreased the contents of TBARS and production of H 2 O 2 and O 2 · - , but increased levels of Cys and reduced glutathione (GSH), phytochelatins, and activity of GSH-Px in roots. These results suggest that NAC could protect plants from oxidative stress damage, and this protection seems to be performed via increased GSH biosynthesis. Furthermore, NAC treatment also increased the contents of protein thiols in S. nigrum roots. By using size-exclusion chromatography, we found involvement of NAC in the Cd tolerance mechanism through increased biosynthesis of Cd-binding proteins.

  12. Accumulation of fatty acids in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoAcarboxylase, temperature, and co-immobilization with Azospirillum brasilense [corrected].

    Science.gov (United States)

    Leyva, Luis A; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  13. Accumulation fatty acids of in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense

    Science.gov (United States)

    Leyva, Luis A.; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E.

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  14. Evaluation of the Effects of S-Allyl-L-cysteine, S-Methyl-L-cysteine, trans-S-1-Propenyl-L-cysteine, and Their N-Acetylated and S-Oxidized Metabolites on Human CYP Activities.

    Science.gov (United States)

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji

    2016-01-01

    Three major organosulfur compounds of aged garlic extract, S-allyl-L-cysteine (SAC), S-methyl-L-cysteine (SMC), and trans-S-1-propenyl-L-cysteine (S1PC), were examined for their effects on the activities of five major isoforms of human CYP enzymes: CYP1A2, 2C9, 2C19, 2D6, and 3A4. The metabolite formation from probe substrates for the CYP isoforms was examined in human liver microsomes in the presence of organosulfur compounds at 0.01-1 mM by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Allicin, a major component of garlic, inhibited CYP1A2 and CYP3A4 activity by 21-45% at 0.03 mM. In contrast, a CYP2C9-catalyzed reaction was enhanced by up to 1.9 times in the presence of allicin at 0.003-0.3 mM. SAC, SMC, and S1PC had no effect on the activities of the five isoforms, except that S1PC inhibited CYP3A4-catalyzed midazolam 1'-hydroxylation by 31% at 1 mM. The N-acetylated metabolites of the three compounds inhibited the activities of several isoforms to a varying degree at 1 mM. N-Acetyl-S-allyl-L-cysteine and N-acetyl-S-methyl-L-cysteine inhibited the reactions catalyzed by CYP2D6 and CYP1A2, by 19 and 26%, respectively, whereas trans-N-acetyl-S-1-propenyl-L-cysteine showed weak to moderate inhibition (19-49%) of CYP1A2, 2C19, 2D6, and 3A4 activities. On the other hand, both the N-acetylated and S-oxidized metabolites of SAC, SMC, and S1PC had little effect on the reactions catalyzed by the five isoforms. These results indicated that SAC, SMC, and S1PC have little potential to cause drug-drug interaction due to CYP inhibition or activation in vivo, as judged by their minimal effects (IC 50 >1 mM) on the activities of five major isoforms of human CYP in vitro.

  15. A pulse radiolysis study of salicylic acid and 5-sulpho-salicylic acid in aqueous solutions

    International Nuclear Information System (INIS)

    Kishore, Kamal; Mukherjee, T.

    2006-01-01

    Reactions of H, OH, e aq - and some one-electron oxidants have been studied with salicylic acid and 5-sulpho-salicylic acid in aqueous solutions. Rate constants for the reaction of e aq - with these compounds were of the order of 10 9 dm 3 mol -1 s -1 and this reaction led to the formation of reducing radicals which could transfer electron to methyl viologen. Other one-electron reductants were not able to reduce these compounds. OH radicals reacted with these compounds by addition pathway with very high rate constants (>10 10 dm 3 mol -1 s -1 ) while O - radical anions could oxidize these molecules to give phenoxyl type of radicals. Amongst the one-electron oxidants, only N 3 radicals and SO 4 - radicals could oxidize salicylic acid while 5-sulpho-salicylic acid could be oxidized only by SO 4 - radicals indicating that while one-electron reduction potential for semi-oxidized SA may be o1 for N 3 ? radical), it is more than 1.33V vs. NHE for semi-oxidized SSA species

  16. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: A mass spectrometric and isotope labeling study

    International Nuclear Information System (INIS)

    Svensson, Jan; Bergman, Ann-Charlotte; Adamson, Ulf; Blombäck, Margareta; Wallén, Håkan; Jörneskog, Gun

    2012-01-01

    Highlights: ► Fibrinogen was incubated in vitro with glucose or aspirin. ► Acetylations and glycations were found at twelve lysine sites by mass spectrometry. ► The labeling by aspirin and glucose occurred dose-dependently. ► No competition between glucose and aspirin for binding to fibrinogen was found. -- Abstract: Aspirin may exert part of its antithrombotic effects through platelet-independent mechanisms. Diabetes is a condition in which the beneficial effects of aspirin are less prominent or absent – a phenomenon called “aspirin resistance”. We investigated whether acetylation and glycation occur at specific sites in fibrinogen and if competition between glucose and aspirin in binding to fibrinogen occurs. Our hypothesis was that such competition might be one explanation to “aspirin resistance” in diabetes. After incubation of fibrinogen in vitro with aspirin (0.8 mM, 24 h) or glucose (100 mM, 5–10 days), we found 12 modified sites with mass spectrometric techniques. Acetylations in the α-chain: αK191, αK208, αK224, αK429, αK457, αK539, αK562, in the β-chain: βK233, and in the γ-chain: γK170 and γK273. Glycations were found at βK133 and γK75, alternatively γK85. Notably, the lysine 539 is a site involved in FXIII-mediated cross-linking of fibrin. With isotope labeling in vitro, using [ 14 C-acetyl]salicylic acid and [ 14 C]glucose, a labeling of 0.013–0.084 and 0.12–0.5 mol of acetylated and glycated adduct/mol fibrinogen, respectively, was found for clinically (12.9–100 μM aspirin) and physiologically (2–8 mM glucose) relevant plasma concentrations. No competition between acetylation and glycation could be demonstrated. Thus, fibrinogen is acetylated at several lysine residues, some of which are involved in the cross-linking of fibrinogen. This may mechanistically explain why aspirin facilitates fibrin degradation. We find no support for the idea that glycation of fibrin(ogen) interferes with acetylation of

  17. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: A mass spectrometric and isotope labeling study

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Jan, E-mail: jan.svensson@ki.se [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden); Bergman, Ann-Charlotte [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Adamson, Ulf [Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden); Blombaeck, Margareta [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Wallen, Hakan; Joerneskog, Gun [Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Fibrinogen was incubated in vitro with glucose or aspirin. Black-Right-Pointing-Pointer Acetylations and glycations were found at twelve lysine sites by mass spectrometry. Black-Right-Pointing-Pointer The labeling by aspirin and glucose occurred dose-dependently. Black-Right-Pointing-Pointer No competition between glucose and aspirin for binding to fibrinogen was found. -- Abstract: Aspirin may exert part of its antithrombotic effects through platelet-independent mechanisms. Diabetes is a condition in which the beneficial effects of aspirin are less prominent or absent - a phenomenon called 'aspirin resistance'. We investigated whether acetylation and glycation occur at specific sites in fibrinogen and if competition between glucose and aspirin in binding to fibrinogen occurs. Our hypothesis was that such competition might be one explanation to 'aspirin resistance' in diabetes. After incubation of fibrinogen in vitro with aspirin (0.8 mM, 24 h) or glucose (100 mM, 5-10 days), we found 12 modified sites with mass spectrometric techniques. Acetylations in the {alpha}-chain: {alpha}K191, {alpha}K208, {alpha}K224, {alpha}K429, {alpha}K457, {alpha}K539, {alpha}K562, in the {beta}-chain: {beta}K233, and in the {gamma}-chain: {gamma}K170 and {gamma}K273. Glycations were found at {beta}K133 and {gamma}K75, alternatively {gamma}K85. Notably, the lysine 539 is a site involved in FXIII-mediated cross-linking of fibrin. With isotope labeling in vitro, using [{sup 14}C-acetyl]salicylic acid and [{sup 14}C]glucose, a labeling of 0.013-0.084 and 0.12-0.5 mol of acetylated and glycated adduct/mol fibrinogen, respectively, was found for clinically (12.9-100 {mu}M aspirin) and physiologically (2-8 mM glucose) relevant plasma concentrations. No competition between acetylation and glycation could be demonstrated. Thus, fibrinogen is acetylated at several lysine residues, some of which are involved in the cross-linking of

  18. Postmortem Tissue Distribution of Acetyl Fentanyl, Fentanyl and their Respective Nor-Metabolites Analyzed by Ultrahigh Performance Liquid Chromatography with Tandem Mass Spectrometry

    Science.gov (United States)

    Poklis, Justin; Poklis, Alphonse; Wolf, Carl; Mainland, Mary; Hair, Laura; Devers, Kelly; Chrostowski, Leszek; Arbefeville, Elise; Merves, Michele; Pearson, Julia

    2015-01-01

    In the last two years, an epidemic of fatal narcotic overdose cases has occurred in the Tampa area of Florida. Fourteen of these deaths involved fentanyl and/or the new designer drug, acetyl fentanyl. Victim demographics, case histories, toxicology findings and causes and manners of death, as well as, disposition of fentanyl derivatives and their nor-metabolites in postmortem heart blood, peripheral blood, bile, brain, liver, urine and vitreous humor are presented. In the cases involving only acetyl fentanyl (without fentanyl, n=4), the average peripheral blood acetyl fentanyl concentration was 0.467 mg/L (range 0.31 to .60 mg/L) and average acetyl norfentanyl concentration was 0.053 mg/L (range 0.002 to 0.086 mg/L). In the cases involving fentanyl (without acetyl fentanyl, n=7), the average peripheral blood fentanyl concentration was 0.012 mg/L (range 0.004 to 0.027 mg/L) and average norfentanyl blood concentration was 0.001 mg/L (range 0.0002 to 0.003 mg/L). In the cases involving both acetyl fentanyl and fentanyl (n=3), the average peripheral blood acetyl fentanyl concentration was 0.008 mg/L (range 0.006 to 0.012 mg/L), the average peripheral blood acetyl norfentanyl concentration was 0.001 mg/L (range 0.001 to 0.002 mg/L), the average peripheral blood fentanyl concentration was 0.018 mg/L (range 0.015 to 0.021 mg/L) and the average peripheral blood norfentanyl concentration was 0.002 mg/L (range 0.001 mg/L to 0.003 mg/L). Based on the toxicology results, it is evident that when fentanyl and/or acetyl fentanyl were present, they contributed to the cause of death. A novel ultrahigh performance liquid chromatography (UPLC) tandem mass spectrometry (MS/MS) method to identify and quantify acetyl fentanyl, acetyl norfentanyl, fentanyl and norfentanyl in postmortem fluids and tissues is also presented. PMID:26583960

  19. The respective N-hydroxypyrazole analogues of the classical glutamate receptor ligands ibotenic acid and (RS)-2-amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid

    DEFF Research Database (Denmark)

    Clausen, Rasmus P; Hansen, Kasper B; Calí, Patrizia

    2004-01-01

    We have determined the pharmacological activity of N-hydroxypyrazole analogues (3a and 4a) of the classical glutamate receptor ligands ibotenic acid and (RS)-2-amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid (AMAA), as well as substituted derivatives of these two compounds. The pharmacological...... partial agonism to antagonism with increasing substituent size, substitution abolishes affinity for mglu1 and mglu4 receptors. Ligand- and receptor-based modelling approaches assist in explaining these pharmacological trends among the metabotropic receptors and suggest a mechanism of partial agonism...

  20. Comparative acute nephrotoxicity of salicylic acid, 2,3-dihydroxybenzoic acid, and 2,5-dihydroxybenzoic acid in young and middle aged Fischer 344 rats.

    Science.gov (United States)

    McMahon, T F; Stefanski, S A; Wilson, R E; Blair, P C; Clark, A M; Birnbaum, L S

    1991-03-11

    Experimental evidence suggests that the oxidative metabolites 2,3- and 2,5-dihydroxybenzoic acid (DIOH) may be responsible for the nephrotoxicity of salicylic acid (SAL). In the present study, enzymuria in conjunction with glucose (GLU) and protein (PRO) excretion were used as endpoints to compare the relative nephrotoxicity of SAL with 2,3- and 2,5-DIOH. In addition, the effect of age on enzymuria and GLU and PRO excretion following treatment with SAL or 2,3- and 2,5-DIOH was investigated because the elderly are at greater risk for SAL-induced nephrotoxicity. Three and 12-month male Fischer 344 rats were administered either no treatment, vehicle, SAL, 2,3-DIOH, or 2,5-DIOH at 500 mg/kg p.o. in 5 ml/kg corn oil/DMSO (5:1). Effects of these treatments on functional integrity of renal tissue was assessed from 0--72 h after dosing by measurement of urinary creatinine, GLU, and PRO, as well as excretion of proximal and distal tubular renal enzymes. Enzymes measured as indicators of proximal tubular damage were N-acetyl-beta-glucosaminidase (NAG), gamma glutamyltransferase (GGT), alanine aminotransferase (ALT), and alkaline phosphatase (AP), while urinary lactate dehydrogenase (LD) and aspartate aminotransferase (AST) were measured as indicators of distal tubular damage. In comparison to 3-month vehicle-treated rats, 2,3- and 2,5-DIOH caused a significant increase between 0-8 h in excretion of urinary GLU and activities of AST, NAG, and LD, with peak effects occurring between 4-8 h. Toxic effects of either metabolite were not evident beyond 24 h, and toxicity of 2,5-DIOH was significantly greater in comparison to 2,3-DIOH. SAL treatment resulted in similar effects on enzymuria as well as GLU and PRO excretion, but peak effects did not occur until 16-24 h, and often persisted until 72 h after dosing. Maximal enzymuria in response to SAL treatment was significantly greater in 12- vs. 3-month rats for AST, NAG, and LD. In response to 2,3-DIOH treatment, the maximal