WorldWideScience

Sample records for myelinated nerve fibres

  1. The effect of DDT and dieldrin on myelinated nerve fibres

    NARCIS (Netherlands)

    Bercken, J. van den

    1972-01-01

    The effects of the chlorinated hydrocarbon insecticides, DDT and dieldrin, on myelinated nerve fibres of the clawed toad, Xenopus laevis, were studied by recording compound action nerve fibres, and membrane potentials of single nodes of Ranvier. The effect of DDT (5 × 10−4 M) was found to be exclusi

  2. The effect of DDT and dieldrin on myelinated nerve fibres

    NARCIS (Netherlands)

    Bercken, J. van den

    The effects of the chlorinated hydrocarbon insecticides, DDT and dieldrin, on myelinated nerve fibres of the clawed toad, Xenopus laevis, were studied by recording compound action nerve fibres, and membrane potentials of single nodes of Ranvier. The effect of DDT (5 × 10−4 M) was found to be

  3. Excitation block in a nerve fibre model owing to potassium-dependent changes in myelin resistance

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Maksimov, G. V.; Mosekilde, Erik;

    2011-01-01

    The myelinated nerve fibre is formed by an axon and Schwann cells or oligodendrocytes that sheath the axon by winding around it in tight myelin layers. Repetitive stimulation of a fibre is known to result in accumulation of extracellular potassium ions, especially between the axon and the myelin......-spiking states. Intermittent conduction blocks are accompanied by oscillations of extracellular potassium. The mechanism of conductance block based on myelin restructuring complements the already known and modelled block via hyperpolarization mediated by the axonal sodium pump and potassium depolarization....

  4. Regeneration of unmyelinated and myelinated sensory nerve fibres studied by a retrograde tracer method

    DEFF Research Database (Denmark)

    Lozeron, Pierre; Krarup, Christian; Schmalbruch, Henning

    2004-01-01

    Regeneration of myelinated and unmyelinated sensory nerve fibres after a crush lesion of the rat sciatic nerve was investigated by means of retrograde labelling. The advantage of this method is that the degree of regeneration is estimated on the basis of sensory somata rather than the number...

  5. Refined distribution of myelinated trigeminal proprioceptive nerve fibres in Mueller's muscle as the mechanoreceptors to induce involuntary reflexive contraction of the levator and frontalis muscles.

    Science.gov (United States)

    Yuzuriha, Shunsuke; Matsuo, Kiyoshi; Hirasawa, Chihiro; Moriizumi, Tetsuji

    2009-11-01

    Stretching of mechanoreceptors in Mueller's muscle induces reflexive contraction of not only the levator muscle but also the frontalis muscle as two different eyelid-opening muscles. Previously, we reported that fine neural myelinated structures, acting as mechanoreceptors, were found in the proximal Mueller's muscle. Since there is a risk of misunderstanding that the middle and distal Mueller's muscle does not contain mechanoreceptors and can be invalidated or resected, the accurate distribution of myelinated trigeminal proprioceptive nerve fibres as mechanoreceptors in Mueller's muscle was refined horizontally in this study. We explored 10 whole Mueller's muscles between the levator muscle and the tarsus of the upper eyelids obtained from five Japanese cadavers. The specimens were serially sliced along the horizontal plane and stained with HE, S-100 protein to determine the presence of Schwann cells, and smooth muscle actin antibody to determine the presence of Mueller's smooth muscle fibres. Although all myelinated nerve fibres in the intermuscular connective tissues among the sympathetically innervated Mueller's multi-unit smooth muscle fibres may not correspond to the proprioceptive nerve fibres, the nerve bundles consisting of multiple myelinated nerve fibres were well distributed in the proximal Mueller's muscle, and single myelinated nerve fibres were well distributed in the middle and distal Mueller's muscle. We believe that the mechanoreceptors in Mueller's muscle consist of myelinated proprioceptive nerve fibres with nerve endings possibly attached to collagen fibres in the intermuscular connective tissues present among Mueller's smooth muscle fibres. As the myelinated nerve fibres innervate the middle and distal Mueller's muscle to a greater extent than those in the proximal Mueller's muscle, the former may be more important as mechanoreceptors than the latter and should not be invalidated or excised during surgery for treatment of blepharoptosis to

  6. Regeneration of unmyelinated and myelinated sensory nerve fibres studied by a retrograde tracer method

    DEFF Research Database (Denmark)

    Lozeron, Pierre; Krarup, Christian; Schmalbruch, Henning

    2004-01-01

    to large neurons after crush and regeneration than in controls, indicating that regeneration of small neurons was less complete than that of large ones. This contrasted with the fact that unmyelinated axons in the regenerated sural nerve after 74 days were only slightly reduced....... of axons. Axonal counts do not reflect the number of regenerated neurons because of axonal branching and because myelinated axons form unmyelinated sprouts. Two days to 10 weeks after crushing, the distal sural or peroneal nerves were cut and exposed to fluoro-dextran. Large and small dorsal root ganglion...... cells that had been labelled, i.e., that had regenerated axons towards or beyond the injection site, were counted in serial sections. Large and small neurons with presumably myelinated and unmyelinated axons, respectively, were classified by immunostaining for neurofilaments. The axonal growth rate...

  7. Ephaptic coupling of myelinated nerve fibers

    DEFF Research Database (Denmark)

    Binczak, S.; Eilbeck, J. C.; Scott, Alwyn C.

    2001-01-01

    Numerical predictions of a simple myelinated nerve fiber model are compared with theoretical results in the continuum and discrete limits, clarifying the nature of the conduction process on an isolated nerve axon. Since myelinated nerve fibers are often arranged in bundles, this model is used...... to study ephaptic (nonsynaptic) interactions between impulses on parallel fibers, which may play a functional role in neural processing. (C) 2001 Published by Elsevier Science B.V....

  8. A note on the mechanism of resistance to anoxia and ischaemia in pathophysiological mammalian myelinated nerve.

    OpenAIRE

    Ritchie, J. M.

    1985-01-01

    Computer simulation of the action potential in myelinated nerve fibres show that the metabolic cost of conduction of an impulse is less than normal in a slightly depolarised fibre. This would account, at least in part, for the greater resistance to ischaemia and anoxia of nerves from diabetics and other pathophysiological conditions.

  9. Transverse Magnetic Waves in Myelinated Nerves

    Science.gov (United States)

    2007-11-02

    IN MYELINATED NERVES M. Mª Villapecellín-Cid1, L. Mª Roa2, and J. Reina-Tosina1 1Área de Teoría de la Señal y Comunicaciones , E.S. de Ingeniería...y Comunicaciones , E.S. de Ingeniería, University of Seville, Seville, Spain Performing Organization Report Number Sponsoring/Monitoring Agency Name(s

  10. Subtle changes in myelination due to childhood experiences: label-free microscopy to infer nerve fibers morphology and myelination in brain (Conference Presentation)

    Science.gov (United States)

    Gasecka, Alicja; Tanti, Arnaud; Lutz, Pierre-Eric; Mechawar, Naguib; Cote, Daniel C.

    2017-02-01

    Adverse childhood experiences have lasting detrimental effects on mental health and are strongly associated with impaired cognition and increased risk of developing psychopathologies. Preclinical and neuroimaging studies have suggested that traumatic events during brain development can affect cerebral myelination particularly in areas and tracts implicated in mood and emotion. Although current neuroimaging techniques are quite powerful, they lack the resolution to infer myelin integrity at the cellular level. Recently demonstrated coherent Raman microscopy has accomplished cellular level imaging of myelin sheaths in the nervous system. However, a quantitative morphometric analysis of nerve fibers still remains a challenge. In particular, in brain, where fibres exhibit small diameters and varying local orientation. In this work, we developed an automated myelin identification and analysis method that is capable of providing a complete picture of axonal myelination and morphology in brain samples. This method performs three main procedures 1) detects molecular anisotropy of membrane phospholipids based on polarization resolved coherent Raman microscopy, 2) identifies regions of different molecular organization, 3) calculates morphometric features of myelinated axons (e.g. myelin thickness, g-ratio). We applied this method to monitor white matter areas from suicides adults that suffered from early live adversity and depression compared to depressed suicides adults and psychiatrically healthy controls. We demonstrate that our method allows for the rapid acquisition and automated analysis of neuronal networks morphology and myelination. This is especially useful for clinical and comparative studies, and may greatly enhance the understanding of processes underlying the neurobiological and psychopathological consequences of child abuse.

  11. Regenerating mammalian nerve fibres: changes in action potential waveform and firing characteristics following blockage of potassium conductance.

    Science.gov (United States)

    Kocsis, J D; Waxman, S G; Hildebrand, C; Ruiz, J A

    1982-12-22

    Extracellular application of potassium channel blocking agents is known to increase the amplitude and duration of the compound action potential in non-myelinated and demyelinated axons, but not in mature mammalian myelinated fibres. In the present study we used intra-axonal and whole nerve recording techniques to study the effects of the potassium channel blocking agent 4-aminopyridine (4-AP) on regenerating rat nerve fibres. Our results indicate that early regenerating (premyelinated) axons show considerable broadening of the action potential after 4-AP application and late regenerating (myelinated) axons give rise to burst activity following a single stimulus after 4-AP application. 4-AP did not affect spike waveform or firing properties of normal mature sciatic nerve fibres. These results demonstrate the importance of potassium conductance in stabilizing firing properties of myelinated regenerating axons.

  12. Cholecalciferol (vitamin D₃ improves myelination and recovery after nerve injury.

    Directory of Open Access Journals (Sweden)

    Jean-Francois Chabas

    Full Text Available Previously, we demonstrated i that ergocalciferol (vitamin D2 increases axon diameter and potentiates nerve regeneration in a rat model of transected peripheral nerve and ii that cholecalciferol (vitamin D3 improves breathing and hyper-reflexia in a rat model of paraplegia. However, before bringing this molecule to the clinic, it was of prime importance i to assess which form - ergocalciferol versus cholecalciferol - and which dose were the most efficient and ii to identify the molecular pathways activated by this pleiotropic molecule. The rat left peroneal nerve was cut out on a length of 10 mm and autografted in an inverted position. Animals were treated with either cholecalciferol or ergocalciferol, at the dose of 100 or 500 IU/kg/day, or excipient (Vehicle, and compared to unlesioned rats (Control. Functional recovery of hindlimb was measured weekly, during 12 weeks, using the peroneal functional index. Ventilatory, motor and sensitive responses of the regenerated axons were recorded and histological analysis was performed. In parallel, to identify the genes regulated by vitamin D in dorsal root ganglia and/or Schwann cells, we performed an in vitro transcriptome study. We observed that cholecalciferol is more efficient than ergocalciferol and, when delivered at a high dose (500 IU/kg/day, cholecalciferol induces a significant locomotor and electrophysiological recovery. We also demonstrated that cholecalciferol increases i the number of preserved or newly formed axons in the proximal end, ii the mean axon diameter in the distal end, and iii neurite myelination in both distal and proximal ends. Finally, we found a modified expression of several genes involved in axogenesis and myelination, after 24 hours of vitamin supplementation. Our study is the first to demonstrate that vitamin D acts on myelination via the activation of several myelin-associated genes. It paves the way for future randomised controlled clinical trials for peripheral

  13. Cholecalciferol (vitamin D₃) improves myelination and recovery after nerve injury.

    Science.gov (United States)

    Chabas, Jean-Francois; Stephan, Delphine; Marqueste, Tanguy; Garcia, Stephane; Lavaut, Marie-Noelle; Nguyen, Catherine; Legre, Regis; Khrestchatisky, Michel; Decherchi, Patrick; Feron, Francois

    2013-01-01

    Previously, we demonstrated i) that ergocalciferol (vitamin D2) increases axon diameter and potentiates nerve regeneration in a rat model of transected peripheral nerve and ii) that cholecalciferol (vitamin D3) improves breathing and hyper-reflexia in a rat model of paraplegia. However, before bringing this molecule to the clinic, it was of prime importance i) to assess which form - ergocalciferol versus cholecalciferol - and which dose were the most efficient and ii) to identify the molecular pathways activated by this pleiotropic molecule. The rat left peroneal nerve was cut out on a length of 10 mm and autografted in an inverted position. Animals were treated with either cholecalciferol or ergocalciferol, at the dose of 100 or 500 IU/kg/day, or excipient (Vehicle), and compared to unlesioned rats (Control). Functional recovery of hindlimb was measured weekly, during 12 weeks, using the peroneal functional index. Ventilatory, motor and sensitive responses of the regenerated axons were recorded and histological analysis was performed. In parallel, to identify the genes regulated by vitamin D in dorsal root ganglia and/or Schwann cells, we performed an in vitro transcriptome study. We observed that cholecalciferol is more efficient than ergocalciferol and, when delivered at a high dose (500 IU/kg/day), cholecalciferol induces a significant locomotor and electrophysiological recovery. We also demonstrated that cholecalciferol increases i) the number of preserved or newly formed axons in the proximal end, ii) the mean axon diameter in the distal end, and iii) neurite myelination in both distal and proximal ends. Finally, we found a modified expression of several genes involved in axogenesis and myelination, after 24 hours of vitamin supplementation. Our study is the first to demonstrate that vitamin D acts on myelination via the activation of several myelin-associated genes. It paves the way for future randomised controlled clinical trials for peripheral nerve or

  14. Electrophysiological abnormalities associated with extensive myelinated retinal nerve fibers

    Directory of Open Access Journals (Sweden)

    Su Ann Tay

    2012-01-01

    Full Text Available An observational case report of electrophysiological abnormalities in a patient with anisomyopic amblyopia as a result of unilateral extensive myelinated retinal nerve fibers (MNFs is illustrated. The electrophysiological readings revealed an abnormal pattern electroretinogram (PERG but normal full-field electroretinogram readings in the affected eye. The visual-evoked potential was also undetectable in that eye. Our findings suggest that extensive MNFs can be associated with electrophysiological abnormalities, in particular the PERG, which can aid in diagnosing the cause of impaired vision when associated with amblyopia.

  15. Calculation of the conduction velocity of short nerve fibres

    NARCIS (Netherlands)

    van der Vliet, G.H.; Holsheimer, J.

    1980-01-01

    The conduction velocity v of a nerve fibre is calculated from the time delay Δ of a propagating action potential between two recording sites along the fibre. However, the conventional method of determining Δ cannot be applied to short nerve fibres. Therefore several linear signal analysis methods

  16. Catecholamine-containing nerve fibres in the human abdominal vagus.

    Science.gov (United States)

    Lundberg, J; Ahlman, H; Dahlström, A; Kewenter, J

    1976-03-01

    The vagal nerve of man has been investigated for the presence of adrenergic nerve fibres using the histochemical fluorescence method of Hillarp and Falck. Following 30-60 min of nerve ligation during surgical operations, the right anterior main trunk (subdiafragmatic level) from one patient, and the anterior nerve of Latarget of 5 patients were found to contain unmyelinated nerve fibres with accumulations of green fluorescent material representing a catecholamine. The observations indicate the presence of adrenergic nerve fibres running caudally in the human vagal nerve, in accordance with similar findings in other mammals, e.g. cats and dogs.

  17. Effects of local nerve cooling on conduction in vagal fibres shed light upon respiratory reflexes in the rabbit

    NARCIS (Netherlands)

    W.R. Patberg (Wiebe); A. Nijmeijer (Arie); J.K. Schut (Jan); A. Versprille (Adrian); J.P. Zock; W.G. Zijlstra

    1992-01-01

    textabstractIn ten vagus nerves the effect of local cooling on the compound action potential was studied in the temperature range of 34 to 0 °C in spontaneously breathing, anaesthetized rabbits. The mean temperature at which the myelinated (A) fibres were completely blocked, was 10.2±2.4 °C (mean ±

  18. Statistical physics approach to quantifying differences in myelinated nerve fibers

    Science.gov (United States)

    Comin, César H.; Santos, João R.; Corradini, Dario; Morrison, Will; Curme, Chester; Rosene, Douglas L.; Gabrielli, Andrea; da F. Costa, Luciano; Stanley, H. Eugene

    2014-03-01

    We present a new method to quantify differences in myelinated nerve fibers. These differences range from morphologic characteristics of individual fibers to differences in macroscopic properties of collections of fibers. Our method uses statistical physics tools to improve on traditional measures, such as fiber size and packing density. As a case study, we analyze cross-sectional electron micrographs from the fornix of young and old rhesus monkeys using a semi-automatic detection algorithm to identify and characterize myelinated axons. We then apply a feature selection approach to identify the features that best distinguish between the young and old age groups, achieving a maximum accuracy of 94% when assigning samples to their age groups. This analysis shows that the best discrimination is obtained using the combination of two features: the fraction of occupied axon area and the effective local density. The latter is a modified calculation of axon density, which reflects how closely axons are packed. Our feature analysis approach can be applied to characterize differences that result from biological processes such as aging, damage from trauma or disease or developmental differences, as well as differences between anatomical regions such as the fornix and the cingulum bundle or corpus callosum.

  19. The effects of normal aging on myelinated nerve fibers in monkey central nervous system

    Directory of Open Access Journals (Sweden)

    Alan Peters

    2009-07-01

    Full Text Available The effects of aging on myelinated nerve fibers of the central nervous system are complex. Many myelinated nerve fibers in white matter degenerate and are lost, leading to some disconnections between various parts of the central nervous system. Other myelinated nerve fibers are affected differently, because only their sheaths degenerate, leaving the axons intact. Such axons are remyelinated by a series of internodes that are much shorter than the original ones and are composed of thinner sheaths. Thus the myelin-forming cells of the central nervous system, the oligodendrocytes, remain active during aging. Indeed, not only do these neuroglial cell remyelinate axons, with age they also continue to add lamellae to the myelin sheaths of intact nerve fibers, so that sheaths become thicker. It is presumed that the degeneration of myelin sheaths is due to the degeneration of the parent oligodendrocyte, and that the production of increased numbers of internodes as a consequence of remyelination requires additional oligodendrocytes. Whether there is a turnover of oligodendrocytes during life has not been studied in primates, but it has been established that over the life span of the monkey, there is a substantial increase in the numbers of oligodendrocytes. While the loss of some myelinated nerve fibers leads to some disconnections, the degeneration of other myelin sheaths and the subsequent remyelination of axons by shorter internodes slow down the rate conduction along nerve fibers. These changes affect the integrity and timing in neuronal circuits, and there is evidence that they contribute to cognitive decline.

  20. Purinergic signaling mediated by P2X7 receptors controls myelination in sciatic nerves.

    Science.gov (United States)

    Faroni, A; Smith, R J P; Procacci, P; Castelnovo, L F; Puccianti, E; Reid, A J; Magnaghi, V; Verkhratsky, A

    2014-10-01

    Adenosine-5'-triphosphate, the physiological ligand of P2X receptors, is an important factor in peripheral nerve development. P2X7 receptor is expressed in Schwann cells (SCs), but the specific effects of P2X7 purinergic signaling on peripheral nerve development, myelination, and function are largely unknown. In this study, sciatic nerves from P2X7 knockout mice were analyzed for altered expression of myelin-associated proteins and for alterations in nerve morphology. Immunohistochemical analyses revealed that, in the wild-type peripheral nerves, the P2X7 receptor was localized mainly in myelinating SCs, with only a few immunopositive nonmyelinating SCs. Complete absence of P2X7 receptor protein was confirmed in the sciatic nerves of the knockout mice by Western blot and immunohistochemistry. Western blot analysis revealed that expression levels of the myelin proteins protein zero and myelin-associated glycoprotein are reduced in P2X7 knockout nerves. In accordance with the molecular results, transmission electron microscopy analyses revealed that P2X7 knockout nerves possess significantly more unmyelinated axons, contained in a higher number of Remak bundles. The myelinating/nonmyelinating SC ratio was also decreased in knockout mice, and we found a significantly increased number of irregular fibers compared with control nerves. Nevertheless, the myelin thickness in the knockout was unaltered, suggesting a stronger role for P2X7 in determining SC maturation than in myelin formation. In conclusion, we present morphological and molecular evidence of the importance of P2X7 signaling in peripheral nerve maturation and in determining SC commitment to a myelinating phenotype.

  1. Dynamic Modulation of Myelination in Response to Visual Stimuli Alters Optic Nerve Conduction Velocity

    Science.gov (United States)

    Etxeberria, Ainhoa; Hokanson, Kenton C.; Dao, Dang Q.; Mayoral, Sonia R.; Mei, Feng; Redmond, Stephanie A.; Ullian, Erik M.

    2016-01-01

    Myelin controls the time required for an action potential to travel from the neuronal soma to the axon terminal, defining the temporal manner in which information is processed within the CNS. The presence of myelin, the internodal length, and the thickness of the myelin sheath are powerful structural factors that control the velocity and fidelity of action potential transmission. Emerging evidence indicates that myelination is sensitive to environmental experience and neuronal activity. Activity-dependent modulation of myelination can dynamically alter action potential conduction properties but direct functional in vivo evidence and characterization of the underlying myelin changes is lacking. We demonstrate that in mice long-term monocular deprivation increases oligodendrogenesis in the retinogeniculate pathway but shortens myelin internode lengths without affecting other structural properties of myelinated fibers. We also demonstrate that genetically attenuating synaptic glutamate neurotransmission from retinal ganglion cells phenocopies the changes observed after monocular deprivation, suggesting that glutamate may constitute a signal for myelin length regulation. Importantly, we demonstrate that visual deprivation and shortened internodes are associated with a significant reduction in nerve conduction velocity in the optic nerve. Our results reveal the importance of sensory input in the building of myelinated fibers and suggest that this activity-dependent alteration of myelination is important for modifying the conductive properties of brain circuits in response to environmental experience. SIGNIFICANCE STATEMENT Oligodendrocyte precursor cells differentiate into mature oligodendrocytes and are capable of ensheathing axons with myelin without molecular cues from neurons. However, this default myelination process can be modulated by changes in neuronal activity. Here, we show, for the first time, that experience-dependent activity modifies the length of myelin

  2. Retinal detachment in a patient with extensive myelinated retinal nerve fibers.

    Science.gov (United States)

    Chen, Muh-Shy; Ho, Tzyy-Chang; Chang, Ching-Chung; Hou, Ping-Kang

    2007-01-01

    We report extensive myelinated retinal nerve fibers in a 42-year-old patient with retinal detachment. Fundus examination revealed a horseshoe-shaped tear near the temporal edge. Pars plana vitrectomy was performed and firm vitreo-retinal adhesion was noticed in the area of extensive myelinated retinal nerve fibers. Following vitrectomy with silicone oil tamponade, the retina was reattached successfully. In conclusion, retinal detachment may develop in patients with extensive myelinated retinal nerve fibers. Vitrectomy may be performed to treat this condition.

  3. Effects of electrode geometry and combination on nerve fibre selectivity in spinal cord stimulation.

    Science.gov (United States)

    Holsheimer, J; Struijk, J J; Tas, N R

    1995-09-01

    The differential effects of the geometry of a rostrocaudal array of electrode contacts on dorsal column fibre and dorsal root fibre activation in spinal cord stimulation are analysed theoretically. 3-D models of the mid-cervical and mid-thoracic vertebral areas are used for the computation of stimulation induced field potentials, whereas a cable model of myelinated nerve fibre is used for the calculation of the excitation thresholds of large dorsal column and dorsal root fibres. The size and spacing of 2-D rectangular electrode contacts are varied while mono-, bi- and tripolar stimulation are applied. The model predicts that the highest preferential stimulation of dorsal root fibres is obtained in monopolar stimulation with a large cathode, whereas dorsal column fibre preference is highest in tripolar stimulation with small contacts and small contact spacings. Fibre type preference is most sensitive to variations of rostrocaudal contact size and least sensitive to variations of lateral contact size. Dorsal root fibre preference is increased and sensitivity to lead geometry is reduced as the distance from contacts to spinal cord is increased.

  4. Support of Nerve Conduction by Respiring Myelin Sheath: Role of Connexons.

    Science.gov (United States)

    Ravera, Silvia; Bartolucci, Martina; Adriano, Enrico; Garbati, Patrizia; Ferrando, Sara; Ramoino, Paola; Calzia, Daniela; Morelli, Alessandro; Balestrino, Maurizio; Panfoli, Isabella

    2016-05-01

    Recently, we have demonstrated that myelin conducts an extramitochondrial oxidative phosphorylation, hypothesizing a novel supportive role for myelin in favor of the axon. We have also hypothesized that the ATP produced in myelin could be transferred thought gap junctions. In this work, by biochemical, immunohistochemical, and electrophysiological techniques, the existence of a connection among myelin to the axon was evaluated, to understand how ATP could be transferred from sheath to the axoplasm. Data confirm a functional expression of oxidative phosphorylation in isolated myelin. Moreover, WB and immunohistochemistry on optic nerve slices show that connexins 32 and 43 are present in myelin and colocalize with myelin basic protein. Interestingly, addition of carbenoxolone or oleamide, two gap junction blockers, causes a decrease in oxidative metabolism in purified myelin, but not in mitochondria. Similar effects were observed on conduction speed in hippocampal Schaffer collateral, in the presence of oleamide. Confocal analysis of optic nerve slices showed that lucifer yellow (that only passes through aqueous pores) signal was found in both the sheath layers and the axoplasma. In the presence of oleamide, but not with oleic acid, signal significantly decreased in the sheath and was lost inside the axon. This suggests the existence of a link among myelin and axons. These results, while supporting the idea that ATP aerobically synthesized in myelin sheath could be transferred to the axoplasm through gap junctions, shed new light on the function of the sheath.

  5. Fibre function and perception during cutaneous nerve block.

    Science.gov (United States)

    Mackenzie, R A; Burke, D; Skuse, N F; Lethlean, A K

    1975-09-01

    In awake human subjects, neural responses in radial nerves to electrical stimulation were recorded with intrafascicular tungsten microelectrodes. Changes in the activity of individual fibre groups during blocking procedures were recorded and correlated with simultaneous alterations in the perception of standardized stimuli. Light touch sensibility in hairy skin appeared to depend on the integrity of A-beta-gamma fibres, cold and pinprick on A-delta fibres, and warmth and dull pain on C fibres.

  6. Association of extensive myelinated nerve fibers and high degree myopia: Case report

    Directory of Open Access Journals (Sweden)

    Elvan Yalcın

    2013-01-01

    Full Text Available Unilateral extensive myelination of the peripapillary nerve fibers may be associated with anisometropic myopia, strabismus, and reduced vision. Myelination of optic nerve fibers terminate at lamina cribrosa. Yet in some patients, myelination progresses into the peripapillary retinal nerve fibers and may affect the visual acuity. In this report, we described 4 patients. All patients presented extensive peripapillary myelinated nerve fibers associated with myopic anisometropia. After routine ophthalmic and orthoptic examinations, all patients underwent treatment for amblyopia through correction with spectacles, contact lenses, and the occlusion of the good eye. Corrected visual acuity improved in 1 patient, but 3 patients had no increase in visual acuity despite treatment with full cycloplegic refraction and appropriate patching. Probably because of structural abnormalies of the macula, visual results are often disappointing with appropriate correction of the refractive error and occlusion.

  7. GEMSP exerts a myelin-protecting role in the rat optic nerve.

    Science.gov (United States)

    Mangas, Arturo; Vecino, Elena; David Rodríguez, F; Geffard, Michel; Coveñas, Rafael

    2013-11-01

    Chronic experimental autoimmune encephalomyelitis (EAE) was induced in rats to evaluate the potential protective effect of GEMSP, a mixture made up of fatty acids (FA), vitamins, and amino acids or their derivatives, linked to Poly-L-Lysine, on the myelin sheath of the optic nerve. To evaluate the effects of GEMSP on the optic nerve, animals were divided into three experimental groups: (1) EAE rats treated with GEMSP; (2) EAE rats treated with 0.9% NaCl; and (3) control, non-EAE rats. Using electron microscopy, we investigated the possibility that this new drug candidate has a myelin-protective role. A marginally significant reduction in the thickness of the myelin around optic nerve medium-size axons (diameter between 0.8-1.3 μm) was found in EAE rats. Treatment of EAE rats with GEMSP ameliorated myelin damage. Significantly increased myelin thickness was found when animals in groups 2 and 3 were compared. However, the number of myelinated axons studied was not altered in groups 1 or 2 when compared to controls. Our results suggest that in a model of demyelination, GEMSP protects and enhances the formation of the myelin sheath of the optic nerve and therefore could be a potential drug candidate to reduce optic nerve pathogenesis in multiple sclerosis (MS).

  8. Direct determination of the lamellar structure of peripheral nerve myelin at low resolution (17 A).

    Science.gov (United States)

    McIntosh, T J; Worthington, C R

    1974-05-01

    New X-ray diffraction data from normal nerve and nerve swollen in glycerol solutions have been recorded. Direct methods of structure analysis have been used in the interpretation of the X-ray data, and the phases of the first five orders of diffraction of peripheral nerve myelin have been uniquely determined. The direct methods include deconvolution of the autocorrelation function, sampling theorem reconstructions, and Fourier synthesis comparisons. Electron density profiles of normal and swollen nerve myelin at a resolution of 17 A together with an electron density scale in electrons per cubic angstrom are presented.

  9. Microanatomy and histological features of central myelin in the root exit zone of facial nerve.

    Science.gov (United States)

    Yee, Gi-Taek; Yoo, Chan-Jong; Han, Seong-Rok; Choi, Chan-Young

    2014-05-01

    The aim of this study was to evaluate the microanatomy and histological features of the central myelin in the root exit zone of facial nerve. Forty facial nerves with brain stem were obtained from 20 formalin fixed cadavers. Among them 17 facial nerves were ruined during preparation and 23 root entry zone (REZ) of facial nerves could be examined. The length of medial REZ, from detach point of facial nerve at the brain stem to transitional area, and the thickness of glial membrane of central myelin was measured. We cut brain stem along the facial nerve and made a tissue block of facial nerve REZ. Each tissue block was embedded with paraffin and serially sectioned. Slices were stained with hematoxylin and eosin (H&E), periodic acid-Schiff, and glial fibrillary acid protein. Microscopy was used to measure the extent of central myelin and thickness of outer glial membrane of central myelin. Thickness of glial membrane was examined at two different points, the thickest area of proximal and distal REZ. Special stain with PAS and GFAP could be differentiated the central and peripheral myelin of facial nerve. The length of medial REZ was mean 2.6 mm (1.6-3.5 mm). The glial limiting membrane of brain stem is continued to the end of central myelin. We called it glial sheath of REZ. The thickness of glial sheath was mean 66.5 µm (40-110 µm) at proximal REZ and 7.4 µm (5-10 µm) at distal REZ. Medial REZ of facial nerve is mean 2.6 mm in length and covered by glial sheath continued from glial limiting membrane of brain stem. Glial sheath of central myelin tends to become thin toward transitional zone.

  10. Early myelin breakdown following sural nerve crush: a freeze-fracture study

    Directory of Open Access Journals (Sweden)

    A.M.B. Martinez

    2000-12-01

    Full Text Available In this study we describe the early changes of the myelin sheath following surgical nerve crush. We used the freeze-fracture technique to better evaluate myelin alterations during an early stage of Wallerian degeneration. Rat sural nerves were experimentally crushed and animals were sacrificed by transcardiac perfusion 30 h after surgery. Segments of the nerves were processed for routine transmission electron microscopy and freeze-fracture techniques. Our results show that 30 h after the lesion there was asynchrony in the pattern of Wallerian degeneration, with different nerve fibers exhibiting variable degrees of axon disruption. This was observed by both techniques. Careful examination of several replicas revealed early changes in myelin membranes represented by vacuolization and splitting of consecutive lamellae, rearrangement of intramembranous particles and disappearance of paranodal transverse bands associated or not with retraction of paranodal myelin terminal loops from the axolemma. These alterations are compatible with a direct injury to the myelin sheath following nerve crush. The results are discussed in terms of a similar mechanism underlying both axon and myelin breakdown.

  11. Early myelin breakdown following sural nerve crush: a freeze-fracture study.

    Science.gov (United States)

    Martinez, A M; Canavarro, S

    2000-12-01

    In this study we describe the early changes of the myelin sheath following surgical nerve crush. We used the freeze-fracture technique to better evaluate myelin alterations during an early stage of Wallerian degeneration. Rat sural nerves were experimentally crushed and animals were sacrificed by transcardiac perfusion 30 h after surgery. Segments of the nerves were processed for routine transmission electron microscopy and freeze-fracture techniques. Our results show that 30 h after the lesion there was asynchrony in the pattern of Wallerian degeneration, with different nerve fibers exhibiting variable degrees of axon disruption. This was observed by both techniques. Careful examination of several replicas revealed early changes in myelin membranes represented by vacuolization and splitting of consecutive lamellae, rearrangement of intramembranous particles and disappearance of paranodal transverse bands associated or not with retraction of paranodal myelin terminal loops from the axolemma. These alterations are compatible with a direct injury to the myelin sheath following nerve crush. The results are discussed in terms of a similar mechanism underlying both axon and myelin breakdown.

  12. Astrocytes phagocytose focal dystrophies from shortening myelin segments in the optic nerve of Xenopus laevis at metamorphosis.

    Science.gov (United States)

    Mills, Elizabeth A; Davis, Chung-ha O; Bushong, Eric A; Boassa, Daniela; Kim, Keun-Young; Ellisman, Mark H; Marsh-Armstrong, Nicholas

    2015-08-18

    Oligodendrocytes can adapt to increases in axon diameter through the addition of membrane wraps to myelin segments. Here, we report that myelin segments can also decrease their length in response to optic nerve (ON) shortening during Xenopus laevis metamorphic remodeling. EM-based analyses revealed that myelin segment shortening is accomplished by focal myelin-axon detachments and protrusions from otherwise intact myelin segments. Astrocyte processes remove these focal myelin dystrophies using known phagocytic machinery, including the opsonin milk fat globule-EGF factor 8 (Mfge8) and the downstream effector ras-related C3 botulinum toxin substrate 1 (Rac1). By the end of metamorphic nerve shortening, one-quarter of all myelin in the ON is enwrapped or internalized by astrocytes. As opposed to the removal of degenerating myelin by macrophages, which is usually associated with axonal pathologies, astrocytes selectively remove large amounts of myelin without damaging axons during this developmental remodeling event.

  13. Aberrant nerve fibres within the central nervous system.

    Science.gov (United States)

    Moffie, D

    1992-01-01

    Three cases of aberrant nerve fibres in the spinal cord and medulla oblongata are described. The literature on these fibres is discussed and their possible role in regeneration. Different views on the possibility of regeneration or functional recovery of the central nervous system are mentioned in the light of recent publications, which are more optimistic than before.

  14. Comparison of the fastest regenerating motor and sensory myelinated axons in the same peripheral nerve

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Sørensen, Jesper; Krarup, Christian

    2006-01-01

    Functional outcome after peripheral nerve regeneration is often poor, particularly involving nerve injuries far from their targets. Comparison of sensory and motor axon regeneration before target reinnervation is not possible in the clinical setting, and previous experimental studies addressing...... the question of differences in growth rates of different nerve fibre populations led to conflicting results. We developed an animal model to compare growth and maturation of the fastest growing sensory and motor fibres within the same mixed nerve after Wallerian degeneration. Regeneration of cat tibial nerve...... after crush (n = 13) and section (n = 7) was monitored for up to 140 days, using implanted cuff electrodes placed around the sciatic and tibial nerves and wire electrodes at plantar muscles. To distinguish between sensory and motor fibres, recordings were carried out from L6-S2 spinal roots using cuff...

  15. Malnutrition and myelin structure: an X-ray scattering study of rat sciatic and optic nerves

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, V.; Vargas, R.; Marquez, G.; Vonasek, E.; Mateu, L. [Dept. de Biologia Estructural, Caracas (Venezuela); Luzzati, V. [Centre de Genetique Moleculaire, CNRS, Gif-sur-Yvette (France); Borges, J. [Servicio de Neurologia, Universidad Central de Venezuela, Caracas (Venezuela)

    2000-07-01

    Taking advantage of the fast and accurate X-ray scattering techniques recently developed in our laboratory, we tackled the study of the structural alterations induced in myelin by malnutrition. Our work was performed on sciatic and optic nerves dissected from rats fed with either a normal or a low-protein caloric diet, as a function of age (from birth to 60 days). By way of electrophysiological controls we also measured (on the sciatic nerves) the height and velocity of the compound action potential. Malnutrition was found to decrease the amount of myelin and to impair the packing order of the membranes in the sheaths. (orig.)

  16. Late changes in human sural nerves in Minamata disease and in nerves of rats with experimental organic mercury poisoning.

    Science.gov (United States)

    Miyakawa, T; Murayama, E; Sumiyoshi, S; Deshimaru, M; Fujimoto, T

    1976-06-15

    The sural nerves of 2 human cases with Minamata disease and poisoned rats were examined histopathologically. Both showed similar findings: the myelinated nerve fibres were decreased in number, but small myelinated nerve fibres were increased: The latter were irregular in shape and their Schwann cells showed regressive changes, with high electron density of the cytoplasms and many glycogen granules. Onion bulb formation was not found. According to fibre diameter histograms, the ratio of small myelinated nerve fibres of 2-5 mum showed a high percentage. A large number of the small myelinated nerve fibres were presumed to be regenerated nerve fibres. These findings are different from other peripheral neuropathies and may be characteristics of the late changes of the sural nerve induced by organic mercury compound.

  17. Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury.

    Science.gov (United States)

    Kızılay, Zahir; Erken, Haydar Ali; Çetin, Nesibe Kahraman; Aktaş, Serdar; Abas, Burçin İrem; Yılmaz, Ali

    2016-10-01

    The aim of this study was to investigate the effects of boric acid in experimental acute sciatic nerve injury. Twenty-eight adult male rats were randomly divided into four equal groups (n = 7): control (C), boric acid (BA), sciatic nerve injury (I), and sciatic nerve injury + boric acid treatment (BAI). Sciatic nerve injury was generated using a Yasargil aneurysm clip in the groups I and BAI. Boric acid was given four times at 100 mg/kg to rats in the groups BA and BAI after injury (by gavage at 0, 24, 48 and 72 hours) but no injury was made in the group BA. In vivo electrophysiological tests were performed at the end of the day 4 and sciatic nerve tissue samples were taken for histopathological examination. The amplitude of compound action potential, the nerve conduction velocity and the number of axons were significantly lower and the myelin structure was found to be broken in group I compared with those in groups C and BA. However, the amplitude of the compound action potential, the nerve conduction velocity and the number of axons were significantly greater in group BAI than in group I. Moreover, myelin injury was significantly milder and the intensity of nuclear factor kappa B immunostaining was significantly weaker in group BAI than in group I. The results of this study show that administration of boric acid at 100 mg/kg after sciatic nerve injury in rats markedly reduces myelin and axonal injury and improves the electrophysiological function of injured sciatic nerve possibly through alleviating oxidative stress reactions.

  18. Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury

    Institute of Scientific and Technical Information of China (English)

    Zahir Kzlay; Haydar Ali Erken; Nesibe Kahraman etin; Serdar Akta; Burin rem Abas; Ali Ylmaz

    2016-01-01

    hTe aim of this study was to investigate the effects of boric acid in experimental acute sciatic nerve injury. Twenty-eight adult male rats were randomly divided into four equal groups (n = 7): control (C), boric acid (BA), sciatic nerve injury (I) , and sciatic nerve injury + boric acid treatment (BAI). Sciatic nerve injury was generated using a Yasargil aneurysm clip in the groups I and BAI. Boric acid was given four times at 100 mg/kg to rats in the groups BA and BAI atfer injury (by gavage at 0, 24, 48 and 72 hours) but no injury was made in the group BA.In vivo electrophysiological tests were performed at the end of the day 4 and sciatic nerve tissue samples were taken for histopathological examination. The amplitude of compound action potential, the nerve conduction velocity and the number of axons were signiifcantly lower and the myelin structure was found to be broken in group I compared with those in groups C and BA. However, the amplitude of the compound action potential, the nerve conduction velocity and the number of axons were signiifcantly greater in group BAI than in group I. Moreover, myelin injury was signiifcantly milder and the intensity of nuclear factor kappa B immunostaining was signiifcantly weaker in group BAI than in group I. hTe results of this study show that administration of boric acid at 100 mg/kg atfer sciatic nerve injury in rats markedly reduces myelin and axonal injury and improves the electrophysiological function of injured sciatic nerve possibly through alleviating oxidative stress reactions.

  19. Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury

    Science.gov (United States)

    Kızılay, Zahir; Erken, Haydar Ali; Çetin, Nesibe Kahraman; Aktaş, Serdar; Abas, Burçin İrem; Yılmaz, Ali

    2016-01-01

    The aim of this study was to investigate the effects of boric acid in experimental acute sciatic nerve injury. Twenty-eight adult male rats were randomly divided into four equal groups (n = 7): control (C), boric acid (BA), sciatic nerve injury (I), and sciatic nerve injury + boric acid treatment (BAI). Sciatic nerve injury was generated using a Yasargil aneurysm clip in the groups I and BAI. Boric acid was given four times at 100 mg/kg to rats in the groups BA and BAI after injury (by gavage at 0, 24, 48 and 72 hours) but no injury was made in the group BA. In vivo electrophysiological tests were performed at the end of the day 4 and sciatic nerve tissue samples were taken for histopathological examination. The amplitude of compound action potential, the nerve conduction velocity and the number of axons were significantly lower and the myelin structure was found to be broken in group I compared with those in groups C and BA. However, the amplitude of the compound action potential, the nerve conduction velocity and the number of axons were significantly greater in group BAI than in group I. Moreover, myelin injury was significantly milder and the intensity of nuclear factor kappa B immunostaining was significantly weaker in group BAI than in group I. The results of this study show that administration of boric acid at 100 mg/kg after sciatic nerve injury in rats markedly reduces myelin and axonal injury and improves the electrophysiological function of injured sciatic nerve possibly through alleviating oxidative stress reactions. PMID:27904499

  20. Vitamin D3 potentiates myelination and recovery after facial nerve injury.

    Science.gov (United States)

    Montava, Marion; Garcia, Stéphane; Mancini, Julien; Jammes, Yves; Courageot, Joël; Lavieille, Jean-Pierre; Feron, François

    2015-10-01

    Roles of vitamin D on the immune and nervous systems are increasingly recognized. Two previous studies demonstrated that ergocalciferol (vitamin D2) or cholecalciferol (vitamin D3) induced functional recovery and increased myelination in a rat model of peroneal nerve transection. The current report assessed whether cholecalciferol was efficient in repairing transected rabbit facial nerves. Animals were randomized into two groups of rabbits with an unilateral facial nerve surgery: the vitamin D group included animals receiving a weekly oral bolus of vitamin D3 (200 IU/kg/day), from day 1 post-surgery; the control group included animals receiving a weekly oral bolus of vehicle (triglycerides). Contralateral unsectioned facial nerves from all experimental animals were used as controls for the histological study. The facial functional index was measured every week while the inner diameter of myelin sheath and the G ratio were quantified at the end of the 3 month experiment. The current report indicates that cholecalciferol significantly increases functional recovery and myelination, after 12 weeks of treatment. To the best of our knowledge, this is the first study investigating the therapeutic benefit of vitamin D supplementation in an animal model of facial paralysis. It paves further the way for clinical trials based on the administration of this steroid in individuals with injured facial nerves.

  1. Sox2 expression in Schwann cells inhibits myelination in vivo and induces influx of macrophages to the nerve.

    Science.gov (United States)

    Roberts, Sheridan L; Dun, Xin-Peng; Doddrell, Robin D S; Mindos, Thomas; Drake, Louisa K; Onaitis, Mark W; Florio, Francesca; Quattrini, Angelo; Lloyd, Alison C; D'Antonio, Maurizio; Parkinson, David B

    2017-09-01

    Correct myelination is crucial for the function of the peripheral nervous system. Both positive and negative regulators within the axon and Schwann cell function to ensure the correct onset and progression of myelination during both development and following peripheral nerve injury and repair. The Sox2 transcription factor is well known for its roles in the development and maintenance of progenitor and stem cell populations, but has also been proposed in vitro as a negative regulator of myelination in Schwann cells. We wished to test fully whether Sox2 regulates myelination in vivo and show here that, in mice, sustained Sox2 expression in vivo blocks myelination in the peripheral nerves and maintains Schwann cells in a proliferative non-differentiated state, which is also associated with increased inflammation within the nerve. The plasticity of Schwann cells allows them to re-myelinate regenerated axons following injury and we show that re-myelination is also blocked by Sox2 expression in Schwann cells. These findings identify Sox2 as a physiological regulator of Schwann cell myelination in vivo and its potential to play a role in disorders of myelination in the peripheral nervous system. © 2017. Published by The Company of Biologists Ltd.

  2. Molecular architecture of myelinated nerve fibers: leaky paranodal junctions and paranodal dysmyelination.

    Science.gov (United States)

    Rosenbluth, Jack; Mierzwa, Amanda; Shroff, Seema

    2013-12-01

    Myelinated nerve fibers have evolved to optimize signal propagation. Each myelin segment is attached to the axon by the unique paranodal axoglial junction (PNJ), a highly complex structure that serves to define axonal ion channel domains and to direct nodal action currents through adjacent nodes. Surprisingly, this junction does not entirely seal the paranodal myelin sheath to the axon and thus does not entirely isolate the perinodal space from the internodal periaxonal space. Rather the paranode is penetrated by extracellular pathways between the myelin sheath and the axolemma for movement of molecules and the flow of current to and from the internodal axon. This review summarizes past and current studies demonstrating these pathways and considers what functional roles they subserve. In addition, modern genetic engineering methods permit modification of individual PNJ constituents, which provides an opportunity to define their specific functions. One component in particular, the transverse bands, plays a key role in maintaining the structure and function of the PNJ. Loss of transverse bands results not in frank demyelination but rather in subtle dysmyelination, which causes significant functional impairment. The consequences of such subtle defects in the PNJ are considered along with the relevance of these studies to human diseases of myelin.

  3. Regeneration of peripheral nerve fibres following Haloxon-induced degeneration

    Directory of Open Access Journals (Sweden)

    Maria Veronica de Souza

    1996-12-01

    Full Text Available Delayed neurotoxicity has been associated with organophosphorus poisoning for years. In order to study such condition in sheep, 11 animals were given either one or two high doses of Haloxon. Exposed sheep were observed daily and between 16 and 25 days after administration neurological signs as incoordination and ataxia were detected in six of them. Biopsies of tibial and laryngeal nerves were performed as soon as neurotoxicity was diagnosed, and after death fragments of selected nerves were collected together with CNS tissues for light and electron microscopy and teased fiber studies. Laryngeal, tibial and sciatic nerves showed the most pronouced changes, consisting chiefly of wallerian degeneration that was seen either as a single fiber or as a complete fascicle feature. Exams performed after death clearly showed regenerating fascicles with axonal sprouts growing within a Schwann cell old basal lamina, and some thinly myelinated axonal sprouts.

  4. Corneal Cross-Linking for the Treatment of Keratoconus in a Patient with Ipsilateral Myelinated Retinal Nerve Fiber Layer

    Directory of Open Access Journals (Sweden)

    M. Leozappa

    2011-03-01

    Full Text Available Keratoconus associated with myelinated retinal nerve fibers is not frequent and the relationship between the two pathologies is difficult to explain, therefore studies and further investigation are required. The etiology of each condition may suggest the role of genetic factors. Follow-up is important to evaluate the progression of keratoconus and myelination. Here we describe the unusual coexistence of keratoconus and ipsilateral myelinated retinal nerve fiber layer and, for the first time, the corneal cross-linking treatment in this condition.

  5. Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals

    Science.gov (United States)

    Pelot, N. A.; Behrend, C. E.; Grill, W. M.

    2017-08-01

    Objective. There is growing interest in electrical neuromodulation of peripheral nerves, particularly autonomic nerves, to treat various diseases. Electrical signals in the kilohertz frequency (KHF) range can produce different responses, including conduction block. For example, EnteroMedics’ vBloc® therapy for obesity delivers 5 kHz stimulation to block the abdominal vagus nerves, but the mechanisms of action are unclear. Approach. We developed a two-part computational model, coupling a 3D finite element model of a cuff electrode around the human abdominal vagus nerve with biophysically-realistic electrical circuit equivalent (cable) model axons (1, 2, and 5.7 µm in diameter). We developed an automated algorithm to classify conduction responses as subthreshold (transmission), KHF-evoked activity (excitation), or block. We quantified neural responses across kilohertz frequencies (5-20 kHz), amplitudes (1-8 mA), and electrode designs. Main results. We found heterogeneous conduction responses across the modeled nerve trunk, both for a given parameter set and across parameter sets, although most suprathreshold responses were excitation, rather than block. The firing patterns were irregular near transmission and block boundaries, but otherwise regular, and mean firing rates varied with electrode-fibre distance. Further, we identified excitation responses at amplitudes above block threshold, termed ‘re-excitation’, arising from action potentials initiated at virtual cathodes. Excitation and block thresholds decreased with smaller electrode-fibre distances, larger fibre diameters, and lower kilohertz frequencies. A point source model predicted a larger fraction of blocked fibres and greater change of threshold with distance as compared to the realistic cuff and nerve model. Significance. Our findings of widespread asynchronous KHF-evoked activity suggest that conduction block in the abdominal vagus nerves is unlikely with current clinical parameters. Our

  6. Induction of paranodal myelin detachment and sodium channel loss in vivo by Campylobacter jejuni DNA-binding protein from starved cells (C-Dps) in myelinated nerve fibers.

    Science.gov (United States)

    Piao, Hua; Minohara, Motozumi; Kawamura, Nobutoshi; Li, Wei; Mizunoe, Yoshimitsu; Umehara, Fujio; Goto, Yoshinobu; Kusunoki, Susumu; Matsushita, Takuya; Ikenaka, Kazuhiro; Maejima, Takashi; Nabekura, Jun-ichi; Yamasaki, Ryo; Kira, Jun-ichi

    2010-01-15

    In an axonal variant of Guillain-Barré syndrome (GBS) associated with Campylobacter jejuni (C. jejuni) enteritis, the mechanism underlying axonal damage is obscure. We purified and characterized a DNA-binding protein from starved cells derived from C. jejuni (C-Dps). This C-Dps protein has significant homology with Helicobacter pylori neutrophil-activating protein (HP-NAP), which is chemotactic for human neutrophils through binding to sulfatide. Because sulfatide is essential for paranodal junction formation and for the maintenance of ion channels on myelinated axons, we examined the in vivo effects of C-Dps. First, we found that C-Dps specifically binds to sulfatide by ELISA and immunostaining of thin-layer chromatograms loaded with various glycolipids. Double immunostaining of peripheral nerves exposed to C-Dps with anti-sulfatide antibody and anti-C-Dps antibody revealed co-localization of them. When C-Dps was injected into rat sciatic nerves, it densely bound to the outermost parts of the myelin sheath and nodes of Ranvier. Injection of C-Dps rapidly induced paranodal myelin detachment and axonal degeneration; this was not seen following injection of PBS or heat-denatured C-Dps. Electron microscopically, C-Dps-injected nerves showed vesiculation of the myelin sheath at the nodes of Ranvier. Nerve conduction studies disclosed a significant reduction in compound muscle action potential amplitudes in C-Dps-injected nerves compared with pre-injection values, but not in PBS-, heat-denatured C-Dps-, or BSA-injected nerves. However, C-Dps did not directly affect Na(+) currents in dissociated hippocampal neurons. Finally, when C-Dps was intrathecally infused into rats, it was deposited in a scattered pattern in the cauda equina, especially in the outer part of the myelin sheath and the nodal region. In C-Dps-infused rats, but not in BSA-infused ones, a decrease in the number of sodium channels, vesiculation of the myelin sheath, axonal degeneration and infiltration of

  7. Developmental impairment of compound action potential in the optic nerve of myelin mutant taiep rats.

    Science.gov (United States)

    Roncagliolo, Manuel; Schlageter, Carol; León, Claudia; Couve, Eduardo; Bonansco, Christian; Eguibar, José R

    2006-01-05

    The taiep rat is a myelin mutant with an initial hypomyelination, followed by a progressive demyelination of the CNS. The neurological correlates start with tremor, followed by ataxia, immobility episodes, epilepsy and paralysis. The optic nerve, an easily-isolable central tract fully myelinated by oligodendrocytes, is a suitable preparation to evaluate the developmental impairment of central myelin. We examined the ontogenic development of optic nerve compound action potentials (CAP) throughout the first 6 months of life of control and taiep rats. Control optic nerves (ON) develop CAPs characterized by three waves. Along the first month, the CAPs of taiep rats showed a delayed maturation, with lower amplitudes and longer latencies than controls; at P30, the conduction velocity has only a third of the normal value. Later, as demyelination proceeds, the conduction velocity of taiep ONs begins to decrease and CAPs undergo a gradual temporal dispersion. CAPs of control and taiep showed differences in their pharmacological sensitivity to TEA and 4-AP, two voltage dependent K+ channel-blockers. As compared with TEA, 4-AP induced a significant increase of the amplitudes and a remarkable broadening of CAPs. After P20, unlike controls, the greater sensitivity to 4-AP exhibited by taiep ONs correlates with the detachment and retraction of paranodal loops suggesting that potassium conductances could regulate the excitability as demyelination of CNS axons progresses. It is concluded that the taiep rat, a long-lived mutant, provides a useful model to study the consequences of partial demyelination and the mechanisms by which glial cells regulate the molecular organization and excitability of axonal membranes during development and disease.

  8. Myocilin is involved in NgR1/Lingo-1-mediated oligodendrocyte differentiation and myelination of the optic nerve.

    Science.gov (United States)

    Kwon, Heung Sun; Nakaya, Naoki; Abu-Asab, Mones; Kim, Hong Sug; Tomarev, Stanislav I

    2014-04-16

    Myocilin is a secreted glycoprotein that belongs to a family of olfactomedin domain-containing proteins. Although myocilin is detected in several ocular and nonocular tissues, the only reported human pathology related to mutations in the MYOCILIN gene is primary open-angle glaucoma. Functions of myocilin are poorly understood. Here we demonstrate that myocilin is a mediator of oligodendrocyte differentiation and is involved in the myelination of the optic nerve in mice. Myocilin is expressed and secreted by optic nerve astrocytes. Differentiation of optic nerve oligodendrocytes is delayed in Myocilin-null mice. Optic nerves of Myocilin-null mice contain reduced levels of several myelin-associated proteins including myelin basic protein, myelin proteolipid protein, and 2'3'-cyclic nucleotide 3'-phosphodiesterase compared with those of wild-type littermates. This leads to reduced myelin sheath thickness of optic nerve axons in Myocilin-null mice compared with wild-type littermates, and this difference is more pronounced at early postnatal stages compared with adult mice. Myocilin also affects differentiation of oligodendrocyte precursors in vitro. Its addition to primary cultures of differentiating oligodendrocyte precursors increases levels of tested markers of oligodendrocyte differentiation and stimulates elongation of oligodendrocyte processes. Myocilin stimulation of oligodendrocyte differentiation occurs through the NgR1/Lingo-1 receptor complex. Myocilin physically interacts with Lingo-1 and may be considered as a Lingo-1 ligand. Myocilin-induced elongation of oligodendrocyte processes may be mediated by activation of FYN and suppression of RhoA GTPase.

  9. Nitrogen substituent polarity influences dithiocarbamate-mediated lipid oxidation, nerve copper accumulation, and myelin injury.

    Science.gov (United States)

    Valentine, Holly L; Viquez, Olga M; Amarnath, Kalyani; Amarnath, Venkataraman; Zyskowski, Justin; Kassa, Endalkachew N; Valentine, William M

    2009-01-01

    Dithiocarbamates have a wide spectrum of applications in industry, agriculture, and medicine, with new applications being investigated. Past studies have suggested that the neurotoxicity of some dithiocarbamates may result from copper accumulation, protein oxidative damage, and lipid oxidation. The polarity of a dithiocarbamate's nitrogen substituents influences the lipophilicity of the copper complexes that it generates and thus potentially determines its ability to promote copper accumulation within nerve and induce myelin injury. In the current study, a series of dithiocarbamate-copper complexes differing in their lipophilicity were evaluated for their relative abilities to promote lipid peroxidation determined by malondialdehyde levels generated in an ethyl arachidonate oil-in-water emulsion. In a second component of this study, rats were exposed to either N,N-diethyldithiocarbamate or sarcosine dithiocarbamate; both generated dithiocarbamate-copper complexes that were lipid- and water-soluble, respectively. Following the exposures, brain, tibial nerve, spinal cord, and liver tissue copper levels were measured by inductively coupled mass spectroscopy to assess the relative abilities of these two dithiocarbamates to promote copper accumulation. Peripheral nerve injury was evaluated using grip strengths, nerve conduction velocities, and morphologic changes at the light microscope level. Additionally, the protein expression levels of glutathione transferase alpha and heme-oxygenase-1 in nerve were determined, and the quantity of protein carbonyls was measured to assess levels of oxidative stress and injury. The data provided evidence that dithiocarbamate-copper complexes are redox active and that the ability of dithiocarbamate complexes to promote lipid peroxidation is correlated to the lipophilicity of the complex. Consistent with neurotoxicity requiring the formation of a lipid-soluble copper complex, significant increases in copper accumulation, oxidative

  10. Ultrastructure of free-ending nerve fibres in oesophageal epithelium.

    Science.gov (United States)

    Robles-Chillida, E M; Rodrigo, J; Mayo, I; Arnedo, A; Gómez, A

    1981-01-01

    For the first time, at the ultrastructural level, the existence of free-ending, intraepithelial nerve fibres has been demonstrated in the oesophagus wall of adult cats and monkeys. Their form, the way they penetrate the epithelium, their location within the epithelium and their relationships with neighbouring cells have been established. A sensory function is suggested for this type of ending. Images Figs. 1-4 Figs. 5-6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Figs. 14-15 Figs. 16-17 PMID:7333951

  11. Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering.

    Science.gov (United States)

    Wu, Yaobin; Wang, Ling; Guo, Baolin; Shao, Yongpin; Ma, Peter X

    2016-05-01

    Myelination of Schwann cells (SCs) is critical for the success of peripheral nerve regeneration, and biomaterials that can promote SCs' neurotrophin secretion as scaffolds are beneficial for nerve repair. Here we present a biomaterials-approach, specifically, a highly tunable conductive biodegradable flexible polyurethane by polycondensation of poly(glycerol sebacate) and aniline pentamer, to significantly enhance SCs' myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. SCs are cultured on these conductive polymer films, and the biocompatibility of these films and their ability to enhance myelin gene expressions and sustained neurotrophin secretion are successfully demonstrated. The mechanism of SCs' neurotrophin secretion on conductive films is demonstrated by investigating the relationship between intracellular Ca(2+) level and SCs' myelination. Furthermore, the neurite growth and elongation of PC12 cells are induced by adding the neurotrophin medium suspension produced from SCs-laden conductive films. These data suggest that these conductive degradable polyurethanes that enhance SCs' myelin gene expressions and sustained neurotrophin secretion perform great potential for nerve regeneration applications.

  12. Non-Invasive Study of Nerve Fibres using Laser Interference Microscopy

    DEFF Research Database (Denmark)

    Brazhe, A. R.; Brazhe, N. A.; Rodionova, N. N.;

    2008-01-01

    information non-invasively about the internal structure of different regions of a nerve fibre. We also analyse the temporal variations in the internal optical properties in order to detect the rhythmic activity in the nerve fibre at different time scales and to shed light on the underlying biological...

  13. Effect of nerve growth factor on changes of myelin basic protein and functional repair of peripheral nerve following sciatic nerve injury in rats

    Institute of Scientific and Technical Information of China (English)

    邵阳; 马海涵; 伍亚民; 陈恒胜; 曾琳; 李民; 龙在云; 李应玉; 杨恒文

    2002-01-01

    To investigate the therapeutic effect of nerve growth factor ( NGF ) on changes of myelin basic protein (MBP) and functional repair of sensory and motor nerve following sciatic nerve injury. Methods: The sciatic nerves of rats were injured by sectioning with shaver, and divided into 3 groups: NGF group ( Group A ), group of normal saline solution ( Group B), untreated group (Group C). The time point of observation was at the 4th week after operation. Sensory evoked potential (SEP) and motor evoked potential (MEP) were detected by Model WD-4000 nerve potential working diagnosis system. Immunohistochemical analysis was used for identification of MBP. Results: The latency of SEP in the Group A at the 4th week after operation was shorter than that in the Group B ( P < 0.05). The MEP was elicited in 76 % of the Group A and was higher than that in the Group B. Results of immunohistochemistry showed that there were less MBP-positive cells in the Group A than in the Group B in one and four weeks respectively. Conclusions: NGF can improve the conductive function of injured peripheral nerve and facilitate regeneration of nerve.

  14. Exposure to As, Cd and Pb-mixture impairs myelin and axon development in rat brain, optic nerve and retina.

    Science.gov (United States)

    Rai, Nagendra Kumar; Ashok, Anushruti; Rai, Asit; Tripathi, Sachin; Nagar, Geet Kumar; Mitra, Kalyan; Bandyopadhyay, Sanghamitra

    2013-12-01

    Arsenic (As), lead (Pb) and cadmium (Cd) are the major metal contaminants of ground water in India. We have reported the toxic effect of their mixture (metal mixture, MM), at human relevant doses, on developing rat astrocytes. Astrocyte damage has been shown to be associated with myelin disintegration in CNS. We, therefore, hypothesized that the MM would perturb myelinating white matter in cerebral cortex, optic nerve (O.N.) and retina. We observed modulation in the levels of myelin and axon proteins, such as myelin basic protein (MBP), proteolipid protein, 2'-, 3'-cyclic-nucleotide-3'-phosphodiesterase, myelin-associated glycoprotein and neurofilament (NF) in the brain of developing rats. Dose and time-dependent synergistic toxic effect was noted. The MBP- and NF-immunolabeling, as well as luxol-fast blue (LFB) staining demonstrated a reduction in the area of intact myelin-fiber, and an increase in vacuolated axons, especially in the corpus-callosum. Transmission electron microscopy (TEM) of O.N. revealed a reduction in myelin thickness and axon-density. The immunolabeling with MBP, NF, and LFB staining in O.N. supported the TEM data. The hematoxylin and eosin staining of retina displayed a decrease in the thickness of nerve-fiber, plexiform-layer, and retinal ganglion cell (RGC) count. Investigating the mechanism revealed a loss in glutamine synthetase activity in the cerebral cortex and O.N., and a fall in the brain derived neurotrophic factor in retina. An enhanced apoptosis in MBP, NF and Brn3b-containing cells justified the diminution in myelinating axons in CNS. Our findings for the first time indicate white matter damage by MM, which may have significance in neurodevelopmental-pediatrics, neurotoxicology and retinal-cell biology.

  15. Assessment of vascularization and myelination following peripheral nerve repair using angiographic and polarization sensitive optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Nam, Ahhyun S.; Chico-Calero, Isabel; Easow, Jeena M.; Villiger, Martin; Welt, Jonathan; Winograd, Jonathan M.; Randolph, Mark A.; Redmond, Robert W.; Vakoc, Benjamin J.

    2017-02-01

    A severe traumatic injury to a peripheral nerve often requires surgical graft repair. However, functional recovery after these surgical repairs is often unsatisfactory. To improve interventional procedures, it is important to understand the regeneration of the nerve grafts. The rodent sciatic nerve is commonly used to investigate these parameters. However, the ability to longitudinally assess the reinnervation of injured nerves are limited, and to our knowledge, no methods currently exist to investigate the timing of the revascularization in functional recovery. In this work, we describe the development and use of angiographic and polarization-sensitive (PS) optical coherence tomography (OCT) to visualize the vascularization, demyelination and remyelination of peripheral nerve healing after crush and transection injuries, and across a variety of graft repair methods. A microscope was customized to provide 3.6 cm fields of view along the nerve axis with a capability to track the nerve height to maintain the nerve within the focal plane. Motion artifact rejection was implemented in the angiography algorithm to reduce degradation by bulk respiratory motion in the hindlimb site. Vectorial birefringence imaging methods were developed to significantly enhance the accuracy of myelination measurements and to discriminate birefringent contributions from the myelin and epineurium. These results demonstrate that the OCT platform has the potential to reveal new insights in preclinical studies and may ultimately provide a means for clinical intra-surgical assessment of peripheral nerve function.

  16. Shock wave application to rat skin induces degeneration and reinnervation of sensory nerve fibres.

    Science.gov (United States)

    Ohtori, S; Inoue, G; Mannoji, C; Saisu, T; Takahashi, K; Mitsuhashi, S; Wada, Y; Takahashi, K; Yamagata, M; Moriya, H

    2001-11-23

    There have been several reports on the use of extracorporeal shock waves in the treatment of pseudarthrosis, calcifying tendinitis, and tendinopathies of the elbow. However, the pathomechanism of pain relief has not been clarified. To investigate the analgesic properties of shock wave application, we analyzed whether it produces morphologic changes in cutaneous nerve fibres. In normal rat skin, the epidermis is heavily innervated by nerve fibres immunoreactive for protein gene product (PGP) 9.5 and by some fibres immunoreactive for calcitonin gene-related peptide (CGRP). There was nearly complete degeneration of epidermal nerve fibres in the shock wave-treated skin, as indicated by the loss of immunoreactivity for PGP 9.5 or CGRP. Reinnervation of the epidermis occurred 2 weeks after treatment. These data show that relief of pain after shock wave application to the skin results from rapid degeneration of the intracutaneous nerve fibres.

  17. Variation in nerve autograft length increases fibre misdirection and decreases pruning effectiveness: an experimental study in the rat median nerve.

    Science.gov (United States)

    Bertelli, J A; Taleb, M; Mira, J C; Ghizoni, M F

    2005-09-01

    In the clinical set, autologus nerve grafts are the current option for reconstruction of nerve tissue losses. The length of the nerve graft has been suggested to affect outcomes. Experiments were performed in the rat in order to test this assumption and to detect a possible mechanism to explain differences in recovery. The rat median nerve was repaired by ulnar nerve grafts of different lengths. Rats were evaluated for 12 months by behavioural assessment and histological studies, including ATPase myofibrillary histochemistry and retrograde neuronal labelling. It was demonstrated that graft length interferes in behavioural functional recovery that here correlates to muscle weight recovery. Short nerve grafts recovered faster and better. Reinnervation was not specific either at the trunk level or in the muscle itself. The normal mosaic pattern of Type I muscle fibres was never restored and their number remained largely augmented. An increment in the number of motor fibres was observed after the nerve grafting in a predominantly sensory branch in all groups. This increment was more pronounced in the long graft group. In the postoperative period, about a 20% reduction in the number of misdirected motor fibres occurred in the short nerve graft group only. Variation in the length of nerve grafts interferes in behavioural recovery and increases motor fibres misdirection. Early recovery onset was related to a better outcome, which occurs in the short graft group.

  18. Corneal Confocal Microscopy: A Non-Invasive Surrogate Marker of Small Nerve Fibre Damage and Repair in Patients with Small Fibre Neuropathy

    Directory of Open Access Journals (Sweden)

    M Tavakoli

    2005-10-01

    Full Text Available Aim: ‘Painful neuropathy’ is presumed to be secondary to small fibre damage from a variety of causes. Methods to detect, characterize and quantify small fibre damage are time consuming and highly variable (QST’s, or invasive (skin or nerve biopsy. We have recently shown that corneal nerve damage assessed using corneal confocal microscopy is an accurate surrogate marker for somatic nerve damage in patients with diabetic neuropathy. We have now assessed corneal nerve morphology in patients with painful neuropathy who had been labelled as having ‘small fibre neuropathy’. Methods: 30 patients aged 60 + 13 with ‘small fibre neuropathy’ and 12 age-matched control subjects underwent assessment of the Neuropathy Deficit Score in the lower limb (NDS, Neuropathy Symptom Profile (NSP, Electrophysiology, QST for thermal perception and corneal confocal microscopy (CCM. CCM quantified corneal nerve morphology: nerve fibre density (NFD, nerve branch density (NBD, nerve fibre length (NFL, nerve fibre tortuosity (NFT. Results: According to the results obtained for “neuropathy severity assessment” including NDS, NSP, electrophysiology and QST data , a significance reduction in corneal nerve NFD (P< 0.0001, NBD (P< 0.0001, NFL (P< 0.0001 and no statistical significant changes in tortuosity was shown. Discussion: Corneal confocal microscopy offers a rapid, non-invasive, and reiterative technique to accurately detect, and quantify nerve damage in patients with ‘small fibre neuropathy’.

  19. Exposure to As, Cd and Pb-mixture impairs myelin and axon development in rat brain, optic nerve and retina

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Nagendra Kumar; Ashok, Anushruti [Academy of Scientific and Innovative Research (India); Developmental Toxicology, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR) (India); Rai, Asit; Tripathi, Sachin [Developmental Toxicology, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR) (India); Nagar, Geet Kumar [Endocrinology, CSIR-Central Drug Research Institute (CSIR-CDRI) (India); Mitra, Kalyan [Electron Microscopy Unit, CSIR-CDRI, Lucknow 226001 (India); Bandyopadhyay, Sanghamitra, E-mail: sanghmitra@iitr.res.in [Academy of Scientific and Innovative Research (India); Developmental Toxicology, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR) (India)

    2013-12-01

    Arsenic (As), lead (Pb) and cadmium (Cd) are the major metal contaminants of ground water in India. We have reported the toxic effect of their mixture (metal mixture, MM), at human relevant doses, on developing rat astrocytes. Astrocyte damage has been shown to be associated with myelin disintegration in CNS. We, therefore, hypothesized that the MM would perturb myelinating white matter in cerebral cortex, optic nerve (O.N.) and retina. We observed modulation in the levels of myelin and axon proteins, such as myelin basic protein (MBP), proteolipid protein, 2′-, 3′-cyclic-nucleotide-3′-phosphodiesterase, myelin-associated glycoprotein and neurofilament (NF) in the brain of developing rats. Dose and time-dependent synergistic toxic effect was noted. The MBP- and NF-immunolabeling, as well as luxol-fast blue (LFB) staining demonstrated a reduction in the area of intact myelin-fiber, and an increase in vacuolated axons, especially in the corpus-callosum. Transmission electron microscopy (TEM) of O.N. revealed a reduction in myelin thickness and axon-density. The immunolabeling with MBP, NF, and LFB staining in O.N. supported the TEM data. The hematoxylin and eosin staining of retina displayed a decrease in the thickness of nerve-fiber, plexiform-layer, and retinal ganglion cell (RGC) count. Investigating the mechanism revealed a loss in glutamine synthetase activity in the cerebral cortex and O.N., and a fall in the brain derived neurotrophic factor in retina. An enhanced apoptosis in MBP, NF and Brn3b-containing cells justified the diminution in myelinating axons in CNS. Our findings for the first time indicate white matter damage by MM, which may have significance in neurodevelopmental-pediatrics, neurotoxicology and retinal-cell biology. - Highlights: • As, Cd and Pb-mixture, at human relevant dose, demyelinate developing rat CNS. • The attenuation in myelin and axon is synergistic. • The optic nerve and brain demonstrate reduced glutamine synthetase.

  20. The composition of trigeminal nerve branches in normal adult chickens and after debeaking at different ages.

    Science.gov (United States)

    Dubbeldam, J L; De Bakker, M A; Bout, R G

    1995-06-01

    The long term effects of amputation of the tip of the beak were studied in adult hens that were debeaked on the day of hatching, at the age of 8 d and at 6 wk, by EM analysis of fibre spectra of the medial branch of the ophthalmic nerve and of the intramandibular nerve. Three categories of fibre were distinguished for further analysis, i.e. unmyelinated axons, small myelinated fibres and large myelinated fibres. In normal birds the ophthalmic nerve contains relatively more large fibres than the intramandibular nerve. Amputation consistently results in a reduction of the number of large fibres and a substantial increase in the number of small myelinated fibres. The proportion of unmyelinated axons is rather variable, but is not affected by beak trimming. Age at debeaking has no effect. The observations are inconclusive concerning the possibility of heightened nociception.

  1. Characteristics of patients with sensory neuropathy diagnosed with abnormal small nerve fibres on skin biopsy

    OpenAIRE

    De Sousa, E A; Hays, A P; Chin, R L; Sander, H W; Brannagan, T H

    2006-01-01

    Clinical, laboratory and electrodiagnostic (EDX) characteristics of 62 patients with sensory neuropathy with abnormal skin biopsies were reviewed. Reduced epidermal nerve fibre density (ENFD) was seen in 71% and morphological changes with normal ENFD were seen in 29% of the patients. Patients with small fibre sensory neuropathy may have associated large fibre loss undetected by routine EDX. Identified associations included abnormal glucose metabolism, Lyme vaccination, monoclonal gammopathy, ...

  2. Relationship between myelin sheath diameter and internodal length in axons of the anterior medullary velum of the adult rat.

    Science.gov (United States)

    Ibrahim, M; Butt, A M; Berry, M

    1995-11-01

    Relations between myelin sheath diameters and internodal lengths were measured in whole mounts of osmium stained intact anterior medullary velum (AMV) from glutaraldehyde perfused adult rats. The AMV is a sheet of CNS tissue which roofs the IVth ventricle and contains fascicles of myelinated fibres which arise mainly from the nucleus of the IVth cranial nerve. These fibers displayed a broad range of myelin sheath external diameters and internodal lengths, from 4 microns. Our results indicated that small and large calibre fibres may have different myelin sheath diameter-internodal length interrelations.

  3. Identifying motor and sensory myelinated axons in rabbit peripheral nerves by histochemical staining for carbonic anhydrase and cholinesterase activities

    Science.gov (United States)

    Riley, Danny A.; Sanger, James R.; Matloub, Hani S.; Yousif, N. John; Bain, James L. W.

    1988-01-01

    Carbonic anhydrase (CA) and cholinesterase (CE) histochemical staining of rabbit spinal nerve roots and dorsal root ganglia demonstrated that among the reactive myeliated axons, with minor exceptions, sensory axons were CA positive and CE negative whereas motor axons were CA negative and CE positive. The high specificity was achieved by adjusting reaction conditions to stain subpopulations of myelinated axons selectively while leaving 50 percent or so unstained. Fixation with glutaraldehyde appeared necessary for achieving selectivity. Following sciatic nerve transection, the reciprocal staining pattern persisted in damaged axons and their regenerating processes which formed neuromas within the proximal nerve stump. Within the neuromas, CA-stained sensory processes were elaborated earlier and in greater numbers than CE-stained regenerating motor processes. The present results indicate that histochemical axon typing can be exploited to reveal heterogeneous responses of motor and sensory axons to injury.

  4. Optic nerve head and fibre layer imaging for diagnosing glaucoma

    Science.gov (United States)

    Michelessi, Manuele; Lucenteforte, Ersilia; Oddone, Francesco; Brazzelli, Miriam; Parravano, Mariacristina; Franchi, Sara; Ng, Sueko M; Virgili, Gianni

    2016-01-01

    Background The diagnosis of glaucoma is traditionally based on the finding of optic nerve head (ONH) damage assessed subjectively by ophthalmoscopy or photography or by corresponding damage to the visual field assessed by automated perimetry, or both. Diagnostic assessments are usually required when ophthalmologists or primary eye care professionals find elevated intraocular pressure (IOP) or a suspect appearance of the ONH. Imaging tests such as confocal scanning laser ophthalmoscopy (HRT), optical coherence tomography (OCT) and scanning laser polarimetry (SLP, as used by the GDx instrument), provide an objective measure of the structural changes of retinal nerve fibre layer (RNFL) thickness and ONH parameters occurring in glaucoma. Objectives To determine the diagnostic accuracy of HRT, OCT and GDx for diagnosing manifest glaucoma by detecting ONH and RNFL damage. Search methods We searched several databases for this review. The most recent searches were on 19 February 2015. Selection criteria We included prospective and retrospective cohort studies and case-control studies that evaluated the accuracy of OCT, HRT or the GDx for diagnosing glaucoma. We excluded population-based screening studies, since we planned to consider studies on self-referred people or participants in whom a risk factor for glaucoma had already been identified in primary care, such as elevated IOP or a family history of glaucoma. We only considered recent commercial versions of the tests: spectral domain OCT, HRT III and GDx VCC or ECC. Data collection and analysis We adopted standard Cochrane methods. We fitted a hierarchical summary ROC (HSROC) model using the METADAS macro in SAS software. After studies were selected, we decided to use 2 × 2 data at 0.95 specificity or closer in meta-analyses, since this was the most commonly-reported level. Main results We included 106 studies in this review, which analysed 16,260 eyes (8353 cases, 7907 controls) in total. Forty studies (5574

  5. [Changes in neuropeptide Y and substance P immunoreactive nerve fibres and immunocompetent cells in hepatitis].

    Science.gov (United States)

    Fehér, Erzsébet

    2015-11-22

    Neuropeptide Y and substance P were thought to play a role in the function of immune cells and in amplification or elimination of the inflammatory processes. In hepatitis the number of both neuropeptide Y and substance P immunoreactive nerve fibres are increased, where the increase of neoropeptide Y is significant. A large number of lymphocytes and mast cells are also stained for neuropeptide Y and substance P. Very close associations (less than 1 µm) were observed between neuropeptide Y immunoreactive nerve fibres and immune cells stained also with neuropeptide Y. Some immune cells were also found to be immunoreactive for tumor necrosis factor-α and NF-κB. Some of the SP IR immunocells were also stained for TNF-α and nuclear factor kappaB. Based on these data it is hypothesized that neuropeptid Y and substance P released from nerve fibres and immune cells play a role in inflammation and elimination of inflammation in hepatitis.

  6. On modelling of physical effects accompanying the propagation of action potentials in nerve fibres

    CERN Document Server

    Engelbrecht, Jüri; Tamm, Kert; Laasmaa, Martin; Vendelin, Marko

    2016-01-01

    The recent theoretical and experimental studies have revealed many details of signal propagation in nervous systems. In this paper an attempt is made to unify various mathematical models which describe the signal propagation in nerve fibres. The analysis of existing single models permits to select the leading physiological effects. As a result, a more general mathematical model is described based on the coupling of action potentials with mechanical waves in a nerve fibre. The crucial issue is how to model coupling effects which are strongly linked to the ion currents through biomembranes.

  7. Production and in vitro evaluation of macroporous, cell-encapsulating alginate fibres for nerve repair.

    Science.gov (United States)

    Lin, Sharon Chien-Yu; Wang, Yiwei; Wertheim, David F; Coombes, Allan G A

    2017-04-01

    The prospects for successful peripheral nerve repair using fibre guides are considered to be enhanced by the use of a scaffold material, which promotes attachment and proliferation of glial cells and axonal regeneration. Macroporous alginate fibres were produced by extraction of gelatin particle porogens from wet spun fibres produced using a suspension of gelatin particles in 1.5% w/v alginate solution. Gelatin loading of the starting suspension of 40.0, 57.0, and 62.5% w/w resulted in gelatin loading of the dried alginate fibres of 16, 21, and 24% w/w respectively. Between 45 and 60% of the gelatin content of hydrated fibres was released in 1h in distilled water at 37°C, leading to rapid formation of a macroporous structure. Confocal laser scanning microscopy (CLSM) and image processing provided qualitative and quantitative analysis of mean equivalent macropore diameter (48-69μm), pore size distribution, estimates of maximum porosity (14.6%) and pore connectivity. CLSM also revealed that gelatin residues lined the macropore cavities and infiltrated into the body of the alginate scaffolds, thus, providing cell adhesion molecules, which are potentially advantageous for promoting growth of glial cells and axonal extension. Macroporous alginate fibres encapsulating nerve cells [primary rat dorsal root ganglia (DRGs)] were produced by wet spinning alginate solution containing dispersed gelatin particles and DRGs. Marked outgrowth was evident over a distance of 150μm at day 11 in cell culture, indicating that pores and channels created within the alginate hydrogel were providing a favourable environment for neurite development. These findings indicate that macroporous alginate fibres encapsulating nerve cells may provide the basis of a useful strategy for nerve repair. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Modelled temperature-dependent excitability behaviour of a generalised human peripheral sensory nerve fibre

    CSIR Research Space (South Africa)

    Smit, Jacoba E

    2009-09-01

    Full Text Available The objective of this study was to determine if a recently developed human Ranvier node model, which is based on a modified version of the Hodgkin-Huxley model, could predict the excitability behaviour in human peripheral sensory nerve fibres...

  9. Retinal prosthesis that incorporates the organization of the nerve fibre layer.

    Science.gov (United States)

    FitzGibbon, Thomas

    2017-01-30

    Recent efforts to restore partial vision in blind patients have made significant progress. Currently, prosthetic design concentrates on stimulating as many foveal retinal ganglion cells as possible but is hampered by stimulation of the nerve fibre layer. This results in a nonvisuotopic arrangement of phosphenes (stimulation percepts). This article suggests that by extending the stimulation area well beyond the fovea and stimulating the nerve fibre layer, axons from any remaining ganglion cells in more peripheral regions of the retina (low acuity) can be used to generate a visuotopic map. Stimulation of the fibre layer will generate a large number of stimulation percepts; however, it is unlikely that these will have sufficient topographic order to be immediately useful to the patient. Thus, it will be necessary to recreate an ordered visuotopic map by using appropriate computer algorithms and interactions between the patient and the clinician.

  10. Sympathetic fibre sprouting in the skin contributes to pain-related behaviour in spared nerve injury and cuff models of neuropathic pain.

    Science.gov (United States)

    Nascimento, Francisney P; Magnussen, Claire; Yousefpour, Noosha; Ribeiro-da-Silva, Alfredo

    2015-09-17

    Cuff and spared nerve injury (SNI) in the sciatic territory are widely used to model neuropathic pain. Because nociceptive information is first detected in skin, it is important to understand how alterations in peripheral innervation contribute to pain in each model. Over 16 weeks in male rats, changes in sensory and autonomic innervation of the skin were described after cuff and SNI using immunohistochemistry to label myelinated (neurofilament 200 positive-NF200+) and peptidergic (calcitonin gene-related peptide positive-CGRP+) primary afferents and sympathetic fibres (dopamine β-hydroxylase positive-DBH+) Cuff and SNI caused an early loss and later reinnervation of NF200 and CGRP fibres in the plantar hind paw skin. In both models, DBH+ fibres sprouted into the upper dermis of the plantar skin 4 and 6 weeks after injury. Despite these similarities, behavioural pain measures were significantly different in each model. Sympathectomy using guanethidine significantly alleviated mechanical allodynia 6 weeks after cuff, when peak sympathetic sprouting was observed, having no effect at 2 weeks, when fibres were absent. In SNI animals, mechanical allodynia in the lateral paw was significantly improved by guanethidine at 2 and 6 weeks, and the development of cold hyperalgesia, which roughly paralleled the appearance of ectopic sympathetic fibres, was alleviated by guanethidine at 6 weeks. Sympathetic fibres did not sprout into the dorsal root ganglia at 2 or 6 weeks, indicating their unimportance to pain behaviour in these two models. Alterations in sympathetic innervation in the skin represents an important mechanism that contributes to pain in cuff and SNI models of neuropathic pain.

  11. A model of the mammalian optic nerve fibre based on experimental data.

    Science.gov (United States)

    Oozeer, M; Veraart, C; Legat, V; Delbeke, J

    2006-08-01

    Several experimental data about membrane dynamics and pharmacological sensitivities of optic nerve axons have been published. The present work summarizes these data and computer simulations have been used to develop a model of the mammalian optic nerve fibre. The ionic currents description were derived from existing membrane models and particularly from a model of the somatic retinal ganglion cell (RGC) impulse generation. However, original equations had to be modified to match experimental data, which suggests that in RGCs, axonal and somatic ion channel expression are different. The new model is consistent with recent experimental results about optic nerve axonal excitability.

  12. Comparison of visual evoked potentials and retinal nerve fibre layer thickness in Alzheimer‘s disease

    Directory of Open Access Journals (Sweden)

    Robert eKromer

    2013-12-01

    Full Text Available IntroductionAlzheimer‘s disease is a long term progressive neurodegenerative disease and might affect the retinal nerve fibre layer thickness of the eye. There is increasing evidence that visual evoked potentials, which are an objective way to indicate visual field loss, might be affected by the disease as well.Material and Methods22 patients (mean age: 75.9 ± 6.1 years; 14 women with mild-to-moderate Alzheimer‘s disease and 22 sex-matched healthy patients were examined. We compared the use of visual evoked potentials and retinal nerve fibre layer thickness using latest high-resolution spectral domain optical coherence tomography with eye-tracking capabilities for optimised peripapillary scan centring for the first time in Alzheimer‘s disease patients.ResultsThe mean MMSE score was 22.59 ± 5.47 in the Alzheimer‘s disease group, and did not significantly correlate with the visual evoked potentials latencies. We found no significant difference between the visual evoked potentials latencies of the Alzheimer‘s disease patients and those of the control patients. No peripapillary sector of the retina had a retinal nerve fibre layer thickness significantly correlated with the visual evoked potentials latencies.DiscussionWe demonstrated that pattern visual evoked potentials did not show any significant correlation despite subtle loss in retinal nerve fibre layer thickness. It remains open whether additional flash visual evoked potentials combined with retinal nerve fibre layer thickness analysis may be useful in diagnosing Alzheimer‘s disease, particularly for mild-to-moderate stages of the disease.

  13. Nerve fibre studies in skin biopsies in peripheral neuropathies. I. Immunohistochemical analysis of neuropeptides in diabetes mellitus

    DEFF Research Database (Denmark)

    Lindberger, M; Schröder, H D; Schultzberg, M

    1989-01-01

    Standardised skin biopsies followed by immunohistochemical examination for the presence of terminal nerve fibres reacting for neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) were evaluated. Healthy subjects regularly displayed free nerve endings of both fibre types...... in the dermis layers. Five type I diabetes patients without clinical or neurophysiological evidence of polyneuropathy also had reduced density of both fibre types, being significant for CGRP fibres when compared with controls. Skin biopsy with immunohistochemical staining for neuropeptides may represent...... a sensitive tool in evaluation of patients with peripheral neuropathies....

  14. Diagnostic utility of corneal confocal microscopy and intra-epidermal nerve fibre density in diabetic neuropathy.

    Science.gov (United States)

    Alam, Uazman; Jeziorska, Maria; Petropoulos, Ioannis N; Asghar, Omar; Fadavi, Hassan; Ponirakis, Georgios; Marshall, Andrew; Tavakoli, Mitra; Boulton, Andrew J M; Efron, Nathan; Malik, Rayaz A

    2017-01-01

    Corneal confocal microscopy (CCM) is a rapid, non-invasive, reproducible technique that quantifies small nerve fibres. We have compared the diagnostic capability of CCM against a range of established measures of nerve damage in patients with diabetic neuropathy. In this cross sectional study, thirty subjects with Type 1 diabetes without neuropathy (T1DM), thirty one T1DM subjects with neuropathy (DSPN) and twenty seven non-diabetic healthy control subjects underwent detailed assessment of neuropathic symptoms and neurologic deficits, quantitative sensory testing (QST), electrophysiology, skin biopsy and corneal confocal microscopy (CCM). Subjects with DSPN were older (C vs T1DM vs DSPN: 41.0±14.9 vs 38.8±12.5 vs 53.3±11.9, P = 0.0002), had a longer duration of diabetes (P<0.0001), lower eGFR (P = 0.006) and higher albumin-creatinine ratio (P = 0.03) with no significant difference for HbA1c, BMI, lipids and blood pressure. Patients with DSPN were representative of subjects with diabetic neuropathy with clinical signs and symptoms of neuropathy and greater neuropathy deficits quantified by QST, electrophysiology, intra-epidermal nerve fibre density and CCM. Corneal nerve fibre density (CNFD) (Spearman's Rho = 0.60 P<0.0001) and IENFD (Spearman's Rho = 0.56 P<0.0001) were comparable when correlated with peroneal nerve conduction velocity. For the diagnosis of diabetic neuropathy the sensitivity for CNFD was 0.77 and specificity was 0.79 with an area under the ROC curve of 0.81. IENFD had a diagnostic sensitivity of 0.61, specificity of 0.80 and area under the ROC curve of 0.73. CCM is a valid accurate non-invasive method to identify small nerve fibre pathology and is able to diagnose DPN.

  15. Postnatal development of protein gene product 9.5 and calcitonin gene-related peptide immunoreactive nerve fibres in rat temporomandibular joint disc.

    Science.gov (United States)

    Ueki, N; Tanaka, E; Watanabe, M; Wakida, K; Takahashi, O; Uchida, T; Tanne, K

    2003-02-01

    Protein gene product 9.5 (PGP 9.5), an immunohistochemical marker of whole nerve fibres, and calcitonin gene-related peptide (CGRP), a marker of thin nerve fibres, were used to elucidate the postnatal development of nerve fibres in rat temporomandibular joint (TMJ) disc. At birth, PGP 9.5-immunoreactive nerve fibres exhibited running towards the central area of the disc, invading by approximately 95 m from the disc attachment. The nerve fibres existing inside the disc became longer during postnatal development. The number of nerve fibres in the disc increased in a progressive manner up to 40 days after birth. CGRP-immunoreactive nerve fibres also presented changes essentially similar to those of PGP 9.5-immunoreactive nerve fibres. However, the proportion of CGRP-immunoreactive nerve fibres to PGP 9.5-immunoreactive ones was approximately 80%, and remained constant up to 40 days after birth. In conclusion, the distribution and the number of nerve fibres are variable during postnatal development, although the ratio of thin nerve fibres remains invariable. It is emphasized that these changes of innervation in the TMJ are associated with the development of masticatory function.

  16. Distribution, chemical coding and origin of nitric oxide synthase-containing nerve fibres in the guinea pig nasal mucosa.

    Science.gov (United States)

    Kondo, T; Inokuchi, T; Ohta, K; Annoh, H; Chang, J

    2000-04-12

    The distribution, chemical coding and origin of nitric oxide synthase (NOS)-containing nerve fibres in the respiratory mucosa of the nasal septum of the guinea pig were examined using nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry and immunohistochemistry. A rich supply of NADPH-d-positive nerve fibres was observed around blood vessels and in nasal glands where nerve fibres frequently penetrated into the epithelia of acini and intralobular ducts. NADPH-d reactivity was also found in the nerve fibres located under or within the respiratory epithelium. Combined immunofluorescence and histochemical staining of the same preparation demonstrated virtually complete overlapping of NOS immunoreactivity and NADPH-d reactivity in nerve fibres, indicating that NADPH-d can be used as a marker for NOS-containing neurons. Double-labelling using antibodies to vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), and calcitonin gene-related peptide (CGRP) revealed that NADPH-d-positive nerve fibres frequently contained VIP or NPY, but not CGRP. Pterygopalatine ganglionectomy significantly reduced the number of NADPH-d-positive nerve fibres innervating the respiratory epithelium as well as blood vessels and nasal glands. Neither superior cervical ganglionectomy nor sensory denervation by capsaicin treatment affected the distribution of NADPH-d-positive fibres. These results indicate that NOS-containing nerve fibres innervating the respiratory epithelium as well as blood vessels and nasal glands in the guinea pig originate mainly from the pterygopalatine ganglion, and suggest that NO may play a significant role as a neurotransmitter and/or neuromodulator in the control of the respiratory epithelium as well as vasculature and nasal glands.

  17. Fibre-selective recording from the peripheral nerves of frogs using a multi-electrode cuff

    Science.gov (United States)

    Schuettler, Martin; Donaldson, Nick; Seetohul, Vipin; Taylor, John

    2013-06-01

    Objective. We investigate the ability of the method of velocity selective recording (VSR) to determine the fibre types that contribute to a compound action potential (CAP) propagating along a peripheral nerve. Real-time identification of the active fibre types by determining the direction of action potential propagation (afferent or efferent) and velocity might allow future neural prostheses to make better use of biological sensor signals and provide a new and simple tool for use in fundamental neuroscience. Approach. Fibre activity was recorded from explanted Xenopus Laevis frog sciatic nerve using a single multi-electrode cuff that records whole nerve activity with 11 equidistant ring-shaped electrodes. The recorded signals were amplified, delayed against each other with variable delay times, added and band-pass filtered. Finally, the resulting amplitudes were measured. Main Result. Our experiments showed that electrically evoked frog CAP was dominated by two fibre populations, propagating at around 20 and 40 m/s, respectively. The velocity selectivity, i.e. the ability of the system to discriminate between individual populations was increased by applying band-pass filtering. The method extracted an entire velocity spectrum from a 10 ms CAP recording sample in real time. Significance. Unlike the techniques introduced in the 1970s and subsequently, VSR requires only a single nerve cuff and does not require averaging to provide velocity spectral information. This makes it potentially suitable for the generation of highly-selective real-time control-signals for future neural prostheses. In our study, electrically evoked CAPs were analysed and it remains to be proven whether the method can reliably classify physiological nerve traffic. The work presented here was carried out at the laboratories of the Implanted Devices Group, Department of Medical Physics and Bioengineering, University College London, UK.

  18. The occurrence of IgM and complement factors along myelin sheaths of peripheral nerves An immunohistochemical study of the Guillain-Barre syndrome : Preliminary communication

    NARCIS (Netherlands)

    Luijten, J.A.F.M.; Baart de la Faille-Kuyper, E.H.

    In nerve biopsies from 4 of 6 patients with the Guillain-Barré syndrome (GBS), IgM and complement factors were found, probably localized along myelin sheaths. The possible significance of this phenomenon has been discussed. No such findings were obtained in control subjects.

  19. The occurrence of IgM and complement factors along myelin sheaths of peripheral nerves An immunohistochemical study of the Guillain-Barre syndrome : Preliminary communication

    NARCIS (Netherlands)

    Luijten, J.A.F.M.; Baart de la Faille-Kuyper, E.H.

    1972-01-01

    In nerve biopsies from 4 of 6 patients with the Guillain-Barré syndrome (GBS), IgM and complement factors were found, probably localized along myelin sheaths. The possible significance of this phenomenon has been discussed. No such findings were obtained in control subjects.

  20. The occurrence of IgM and complement factors along myelin sheaths of peripheral nerves An immunohistochemical study of the Guillain-Barre syndrome : Preliminary communication

    NARCIS (Netherlands)

    Luijten, J.A.F.M.; Baart de la Faille-Kuyper, E.H.

    1972-01-01

    In nerve biopsies from 4 of 6 patients with the Guillain-Barré syndrome (GBS), IgM and complement factors were found, probably localized along myelin sheaths. The possible significance of this phenomenon has been discussed. No such findings were obtained in control subjects.

  1. Cholesterol and myelin biogenesis.

    Science.gov (United States)

    Saher, Gesine; Simons, Mikael

    2010-01-01

    Myelin consists of several layers of tightly compacted membranes wrapped around axons in the nervous system. The main function of myelin is to provide electrical insulation around the axon to ensure the rapid propagation of nerve conduction. As the myelinating glia terminally differentiates, they begin to produce myelin membranes on a remarkable scale. This membrane is unique in its composition being highly enriched in lipids, in particular galactosylceramide and cholesterol. In this review we will summarize the role of cholesterol in myelin biogenesis in the central and peripheral nervous system.

  2. Interspecies variation in axon-myelin relationships.

    Science.gov (United States)

    Fraher, J P; O'Sullivan, A W

    2000-01-01

    The primary objective of this paper was to determine the extent and nature of interspecies differences in axon calibre and myelin sheath thickness and in the various relationships between these. Morphometric analysis of the axon perimeter-myelin sheath thickness relationship was performed on an equivalent nerve fibre population in a mammal, the rat, a bird, the chicken, an amphibian, the frog, a bony fish, the trout, and a cartilaginous fish, the dogfish. The abducent nerve was studied. It is especially suitable for this purpose because its fibres are closely similar in type and in peripheral distribution across the species studied. The relationship differed substantially between species. Differences were present in its setting, as described by the positions of the scatterplots, in the g ratio and in the regression and correlation data relating the parameters. Both parameters were markedly larger in the fish species than in all of the others. In addition, in rat, chicken, frog and trout, where large and small fibre classes could be differentiated clearly, the setting of the relationship between the two parameters was different for the two classes. In the main, variation in each of the parameters was greater between than within species. The larger fibres in the fish species were closely similar in axon perimeter and sheath thickness despite their long evolutionary separation. From this study and from others in the series, it may be concluded that there is no fixed or constant relationship between axon calibre and the thickness of the surrounding myelin sheath. Each nerve tends to have its own particular relationship and this differs between species.

  3. Prospective study on retinal nerve fibre layer changes after an acute episode of phacomorphic angle closure

    OpenAIRE

    Lee, Jacky W. Y.; Lai, Jimmy S. M.; Doris W F Yick; Yuen, Can Y. F.

    2012-01-01

    To investigate the retinal nerve fibre layer (RNFL) changes after an acute attack of phacomorphic angle closure. This prospective study involved ten cases of phacomorphic angle closure that underwent cataract extraction and intraocular lens insertion after intraocular pressure lowering. Apart from visual acuity and intraocular pressure (IOP), RNFL thickness and vertical cup disc ratio (VCDR) were measured by optical coherence tomography (OCT) at 3–9 months post attack. Humphrey visual field a...

  4. Direct determination of the lamellar structure of peripheral nerve myelin at moderate resolution (7A).

    Science.gov (United States)

    Worthington, C R; McIntosh, T J

    1974-10-01

    Low-angle X-ray diffraction patterns have been recorded from normal nerve and nerve swollen in glycerol solutions. The new X-ray data have a resolution of 7 A. Direct methods of structure analysis which include deconvolution of the auto-correlation function and sampling theorem reconstructions have been used in the interpretation of the X-ray data. Phases have been assigned to the first 12 orders of diffraction from normal nerve. Fourier syntheses at a resolution of 7 A are described and an absolute electron density scale is derived. A possible molecular interpretation of the electron density profile is given.

  5. Normal nerve-fibres in the distal segment of nerves completely separated from the proximal stump for more than six months

    Directory of Open Access Journals (Sweden)

    Eros Abrantes Erhart

    1962-12-01

    Full Text Available Our experimental and histopathological findings of normal nerve-fibres in the distal and intermediate segments of nerves completely separated from the proximal stump for more than six months differs from those of previous observers, and the application of our observations in surgical reconstruction of about one hundred human nerves, chiefly from the upper limb, has resulted in appreciably great degrees of success in most cases.

  6. Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas

    Science.gov (United States)

    Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.

    1998-01-01

    Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

  7. Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas

    Science.gov (United States)

    Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.

    1998-01-01

    Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

  8. Comparative study of the retinal nerve fibre layer thickness performed with optical coherence tomography and GDx scanning laser polarimetry in patients with primary open-angle glaucoma.

    Science.gov (United States)

    Wasyluk, Jaromir T; Jankowska-Lech, Irmina; Terelak-Borys, Barbara; Grabska-Liberek, Iwona

    2012-03-01

    We compared the parameters of retinal nerve fibre layer in patients with advanced glaucoma with the use of different OCT (Optical Coherence Tomograph) devices in relation to analogical measurements performed with GDx VCC (Nerve Fiber Analyzer with Variable Corneal Compensation) scanning laser polarimetry. Study subjects had advanced primary open-angle glaucoma, previously treated conservatively, diagnosed and confirmed by additional examinations (visual field, ophthalmoscopy of optic nerve, gonioscopy), A total of 10 patients were enrolled (9 women and 1 man), aged 18-70 years of age. Nineteen eyes with advanced glaucomatous neuropathy were examined. 1) Performing a threshold perimetry Octopus, G2 strategy and ophthalmoscopy of optic nerve to confirm the presence of advanced primary open-angle glaucoma; 2) performing a GDx VCC scanning laser polarimetry of retinal nerve fibre layer; 3) measuring the retinal nerve fibre layer thickness with 3 different optical coherence tomographs. The parameters of the retinal nerve fibre layer thickness are highly correlated between the GDx and OCT Stratus and 3D OCT-1000 devices in mean retinal nerve fibre layer thickness, retinal nerve fibre layer thickness in the upper sector, and correlation of NFI (GDx) with mean retinal nerve fibre layer thickness in OCT examinations. Absolute values of the retinal nerve fibre layer thickness (measured in µm) differ significantly between GDx and all OCT devices. Examination with OCT devices is a sensitive diagnostic method of glaucoma, with good correlation with the results of GDx scanning laser polarimetry of the patients.

  9. Development of nerve fibres in the temporomandibular joint of the human fetus.

    Science.gov (United States)

    Ramieri, G; Bonardi, G; Morani, V; Panzica, G C; Del Tetto, F; Arisio, R; Preti, G

    1996-07-01

    The development of nerve fibres in the temporomandibular joint (TMJ) in relation to the development of bone, muscle and fibre components was investigated in human fetuses ranging from 9 weeks of gestation to birth. Immunohistochemistry for the glia-associated protein S-100 and for the neuro-specific marker protein gene product 9.5 (PGP 9.5) were used; specimens were compared to specimens of adult TMJ capsule and disc. At 9-10 weeks, a small number of neural elements are already present in the connective tissue around the joint and in the mesenchyme between the two articular blastemas from which the disc will differentiate. By 19 weeks many nerve fibres are clearly visible. Immunohistochemical results suggest diffuse disc innervation extending along the entire disc but not in the thin central area. More complex structures, i.e. encapsulated corpuscles, were also seen. The fetal disc appears highly innervated compared to adult tissue; already at this developmental stage morphology and distribution of nerves and corpuscles in the joint capsule are comparable to those in the adult joint. It may be concluded that the innervation of the TMJ is detectable from the end of the second month and that it develops fully between the third and the fifth month of gestation. Nerve endings in the disc are most numerous at 20 weeks, after which a progressive reduction, possibly secondary to the growth of articular tissues, is observed throughout the last trimester of fetal life and into adult life. The innervation of the lateral pterygoid muscle, on the contrary, is much less than that seen in adult muscles, even at full-term.

  10. Nanofibrous nerve conduit-enhanced peripheral nerve regeneration.

    Science.gov (United States)

    Jiang, Xu; Mi, Ruifa; Hoke, Ahmet; Chew, Sing Yian

    2014-05-01

    Fibre structures represent a potential class of materials for the formation of synthetic nerve conduits due to their biomimicking architecture. Although the advantages of fibres in enhancing nerve regeneration have been demonstrated, in vivo evaluation of fibre size effect on nerve regeneration remains limited. In this study, we analyzed the effects of fibre diameter of electrospun conduits on peripheral nerve regeneration across a 15-mm critical defect gap in a rat sciatic nerve injury model. By using an electrospinning technique, fibrous conduits comprised of aligned electrospun poly (ε-caprolactone) (PCL) microfibers (981 ± 83 nm, Microfiber) or nanofibers (251 ± 32 nm, Nanofiber) were obtained. At three months post implantation, axons regenerated across the defect gap in all animals that received fibrous conduits. In contrast, complete nerve regeneration was not observed in the control group that received empty, non-porous PCL film conduits (Film). Nanofiber conduits resulted in significantly higher total number of myelinated axons and thicker myelin sheaths compared to Microfiber and Film conduits. Retrograde labeling revealed a significant increase in number of regenerated dorsal root ganglion sensory neurons in the presence of Nanofiber conduits (1.93 ± 0.71 × 10(3) vs. 0.98 ± 0.30 × 10(3) in Microfiber, p regeneration. These results could provide useful insights for future nerve guide designs.

  11. Parallel changes in structural and functional measures of optic nerve myelination after optic neuritis.

    Directory of Open Access Journals (Sweden)

    Anneke van der Walt

    Full Text Available Visual evoked potential (VEP latency prolongation and optic nerve lesion length after acute optic neuritis (ON corresponds to the degree of demyelination, while subsequent recovery of latency may represent optic nerve remyelination. We aimed to investigate the relationship between multifocal VEP (mfVEP latency and optic nerve lesion length after acute ON.Thirty acute ON patients were studied at 1, 3, 6 and 12 months using mfVEP and at 1 and 12 months with optic nerve MRI. LogMAR and low contrast visual acuity were documented. By one month, the mfVEP amplitude had recovered sufficiently for latency to be measured in 23 (76.7% patients with seven patients having no recordable mfVEP in more than 66% of segments in at least one test. Only data from these 23 patients was analysed further.Both latency and lesion length showed significant recovery during the follow-up period. Lesion length and mfVEP latency were highly correlated at 1 (r = 0.94, p = <0.0001 and 12 months (r = 0.75, p < 0.001. Both measures demonstrated a similar trend of recovery. Speed of latency recovery was faster in the early follow-up period while lesion length shortening remained relatively constant. At 1 month, latency delay was worse by 1.76 ms for additional 1mm of lesion length while at 12 months, 1mm of lesion length accounted for 1.94 ms of latency delay.A strong association between two putative measures of demyelination in early and chronic ON was found. Parallel recovery of both measures could reflect optic nerve remyelination.

  12. Parallel changes in structural and functional measures of optic nerve myelination after optic neuritis.

    Science.gov (United States)

    van der Walt, Anneke; Kolbe, Scott; Mitchell, Peter; Wang, Yejun; Butzkueven, Helmut; Egan, Gary; Yiannikas, Con; Graham, Stuart; Kilpatrick, Trevor; Klistorner, Alexander

    2015-01-01

    Visual evoked potential (VEP) latency prolongation and optic nerve lesion length after acute optic neuritis (ON) corresponds to the degree of demyelination, while subsequent recovery of latency may represent optic nerve remyelination. We aimed to investigate the relationship between multifocal VEP (mfVEP) latency and optic nerve lesion length after acute ON. Thirty acute ON patients were studied at 1, 3, 6 and 12 months using mfVEP and at 1 and 12 months with optic nerve MRI. LogMAR and low contrast visual acuity were documented. By one month, the mfVEP amplitude had recovered sufficiently for latency to be measured in 23 (76.7%) patients with seven patients having no recordable mfVEP in more than 66% of segments in at least one test. Only data from these 23 patients was analysed further. Both latency and lesion length showed significant recovery during the follow-up period. Lesion length and mfVEP latency were highly correlated at 1 (r = 0.94, p = <0.0001) and 12 months (r = 0.75, p < 0.001). Both measures demonstrated a similar trend of recovery. Speed of latency recovery was faster in the early follow-up period while lesion length shortening remained relatively constant. At 1 month, latency delay was worse by 1.76 ms for additional 1mm of lesion length while at 12 months, 1mm of lesion length accounted for 1.94 ms of latency delay. A strong association between two putative measures of demyelination in early and chronic ON was found. Parallel recovery of both measures could reflect optic nerve remyelination.

  13. Preinguinal Splitting and Reunion of Femoral Nerve Entrapping the Fleshy Fibres of Iliacus Muscle - A Case Report.

    Science.gov (United States)

    Ashwini, L S; Somayaji, S Nagabhooshana; Rao, Mohandas; Marpalli, Sapna

    2017-04-01

    Division of nerves close to their origin and muscular entrapments by nerves in the limbs is not very common. Femoral nerve is the largest branch of the lumbar plexus and arises from dorsal divisions of ventral rami of L2 to L4 spinal nerves. During routine cadaveric dissection for first year medical students at Melaka Manipal Medical College (Manipal Campus), Karnataka, India, we observed a variation in the division and course of left femoral nerve in about 65-year-old male cadaver. The femoral nerve was split into two divisions above the inguinal ligament after its origin from the lumbar plexus. The lower division of the nerve passed deep to the iliopsoas muscle fibres and the upper division ran superficial to iliacus muscle deep to fascia iliaca. Both the divisions joined just above the inguinal ligament to form the trunk of the femoral nerve. Further course and distribution of the nerve was normal. The reports have shown that compression neuropathies of femoral nerve in the limbs are caused by neoplastic masses, vascular abnormalities and also by different anomalous muscles. Such neuropathies may also result from indirect compression of femoral nerve between the fibres of psoas major muscle and lateral pelvic wall. The potential clinical importance of above mentioned variations in the division of femoral nerve would emphasize the surgeons to diagnose the neuromuscular entrapments and consequent alterations of sensation in the anterior and medial aspects of the thigh.

  14. Peptide mimetic of the S100A4 protein modulates peripheral nerve regeneration and attenuates the progression of neuropathy in myelin protein P0 null mice

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Pinchenko, Volodymyr; Dmytriyeva, Oksana

    2013-01-01

    We recently found that S100A4, a member of the multifunctional S100 protein family, protects neurons in the injured brain and identified two sequence motifs in S100A4 mediating its neurotrophic effect. Synthetic peptides encompassing these motifs stimulated neuritogenesis and survival in vitro...... and survival of myelinated axons. H3 accelerated electrophysiological, behavioral and morphological recovery after sciatic nerve crush while transiently delaying regeneration after sciatic nerve transection and repair. On the basis of the finding that both S100A4 and H3 increased neurite branching in vitro......, these effects were attributed to the modulatory effect of H3 on initial axonal sprouting. In contrast to the modest effect of H3 on the time course of regeneration, H3 had a long-term neuroprotective effect in the myelin protein P0 null mice, a model of dysmyelinating neuropathy (Charcot-Marie-Tooth type 1...

  15. Adult skin-derived precursor Schwann cells exhibit superior myelination and regeneration supportive properties compared to chronically denervated nerve-derived Schwann cells.

    Science.gov (United States)

    Kumar, Ranjan; Sinha, Sarthak; Hagner, Andrew; Stykel, Morgan; Raharjo, Eko; Singh, Karun K; Midha, Rajiv; Biernaskie, Jeff

    2016-04-01

    Functional outcomes following delayed peripheral nerve repair are poor. Schwann cells (SCs) play key roles in supporting axonal regeneration and remyelination following nerve injury, thus understanding the impact of chronic denervation on SC function is critical toward developing therapies to enhance regeneration. To improve our understanding of SC function following acute versus chronic-denervation, we performed functional assays of SCs from adult rodent sciatic nerve with acute- (Day 5 post) or chronic-denervation (Day 56 post), versus embryonic nerves. We also compared Schwann cells derived from adult skin-derived precursors (aSKP-SCs) as an accessible, autologous alternative to supplement the distal (denervated) nerve. We found that acutely-injured SCs and aSKP-SCs exhibited superior proliferative capacity, promotion of neurite outgrowth and myelination of axons, both in vitro and following transplant into a sciatic nerve crush injury model, while chronically-denervated SCs were severely impaired. Acute injury caused re-activation of transcription factors associated with an immature and pro-myelinating SC state (Oct-6, cJun, Sox2, AP2α, cadherin-19), but was diminished with prolonged denervation in vivo and could not be rescued following expansion in vitro suggesting that this is a permanent deficiency. Interestingly, aSKP-SCs closely resembled acutely injured and embryonic SCs, exhibiting elevated expression of these same transcription factors. In summary, prolonged denervation resulted in SC deficiency in several functional parameters that may contribute to impaired regeneration. In contrast, aSKP-SCs closely resemble the regenerative attributes ascribed to acutely-denervated or embryonic SCs emphasizing their potential as an accessible and autologous source of glia cells to enhance nerve regeneration, particularly following delays to surgical repair. Copyright © 2016. Published by Elsevier Inc.

  16. Nerve fibre and sensory end organ density in the epidermis and papillary dermis of the human hand.

    Science.gov (United States)

    Kelly, E J; Terenghi, G; Hazari, A; Wiberg, M

    2005-09-01

    Quantification of sensory recovery after peripheral nerve surgery is difficult and no accurate techniques are available at present. Quantification of reinnervated skin has been used experimentally, and in some clinical studies, but the lack of knowledge about the normal sensory distribution has been a problem. The purpose of this study was, therefore, to map the density of sensory end organs, nerve fibres and free nerve endings in the glabrous skin of the human hand. Skin biopsies were taken from patients undergoing acute and elective hand surgery. Nerve fibres were stained in the epidermis and papillary dermis and quantified in five sites on the palm of the hand, using protein gene product 9.5 immunoreactivity-a panneuronal marker. The finger tip skin was found to have more than twice the nerve fibre density in the papillary dermis than the skin of the palm, and the number of Meissner corpuscles in the finger tip was also higher than in the palm. We found a reduction in innervation density with increasing age in the dermis, however, that was not the case for the epidermis. The innervation of the epidermis showed high interindividual variability and unlike the papillary dermis did not display any pattern of distribution in the hand.

  17. Promoting Myelination in an In Vitro Mouse Model of the Peripheral Nerve System: The Effect of Wine Ingredients

    Science.gov (United States)

    Stettner, Mark; Wolffram, Kathleen; Mausberg, Anne K.; Albrecht, Philipp; Derksen, Angelika; Methner, Axel; Dehmel, Thomas; Hartung, Hans-Peter; Dietrich, Helmut; Kieseier, Bernd C.

    2013-01-01

    Protective properties of moderate wine consumption against cancers, cardiovascular, metabolic and degenerative diseases have been reported in various clinical studies. Here, we analysed the effect of red wine (RW) and white wine (WW) on myelination using an in vitro embryonic co-culture mouse model. The total amount of myelin was found to be significantly increased after RW and WW treatment, while only RW significantly increased the number of internodes. Both types of wine increased rat Schwann cell- (rSC) expression of the NAD+-dependent deacetylase sirtuin-two-homolog 2 (Sirt2), a protein known to be involved in myelination. Detailed chemical analysis of RW revealed a broad spectrum of anthocyanins, piceids, and phenolics, including resveratrol (RSV). In our assay system RSV in low concentrations induced myelination. Furthermore RSV raised intracellular glutathione concentrations in rSCs and in co-cultures and therefore augmented antioxidant capacity. We conclude that wine promotes myelination in a rodent in vitro model by controlling intracellular metabolism and SC plasticity. During this process, RSV exhibits protective properties; however, the fostering effect on myelinaton during exposure to wine appears to be a complex interaction of various compounds. PMID:23762469

  18. [Small fibre neuropathy: knowledge is power].

    NARCIS (Netherlands)

    Hoeijmakers, J.G.; Bakkers, M.; Blom, E.W.; Drenth, J.P.H.; Merkies, I.S.; Faber, C.G.

    2012-01-01

    Small fibre neuropathy is a neuropathy of the small non-myelinated C-fibres and myelinated Adelta-fibres. Clinically, an isolated small fibre neuropathy is distinguished by sensory and autonomic symptoms, with practically no abnormalities on neurological examination other than possible distorted pai

  19. Do sensory calcitonin gene-related peptide nerve fibres in the rat pelvic plexus supply autonomic neurons projecting to the uterus and cervix?

    Science.gov (United States)

    Houdeau, E; Barranger, E; Rossano, B

    2002-10-25

    Sensory nerve fibres containing calcitonin gene-related peptide (CGRP) innervate neurons of the paracervical ganglion (PCG) in the female rat pelvic plexus. We have combined retrograde tracing with immunocytochemistry to investigate whether CGRP-immunoreactive (-IR) fibres supply neurons targeting the genital tract. Of the total neurons projecting to either the uterine horns or the cervix, 38 and 41% received CGRP-IR innervation, respectively. All these neurons displayed choline acetyltransferase-IR, thus are cholinergic. They were found throughout the PCG and other pelvic plexus ganglia, namely accessory ganglia (AG) and hypogastric plexus (HP). Pelvic nerve section showed that afferent fibres in these nerves provided most of the CGRP-IR fibres supplying uterine- or cervical-related neurons in the PCG/AG, none in HP. It is suggested that such sensory-motor network may provide a local pathway for reflex control of genital tract activity, acting through cholinergic nerve projections.

  20. Prospective Study on Retinal Nerve Fibre Layer Thickness Changes in Isolated Unilateral Retrobulbar Optic Neuritis

    Directory of Open Access Journals (Sweden)

    Gordon S. K. Yau

    2013-01-01

    Full Text Available Purpose. To investigate the retinal nerve fibre layer (RNFL thickness after unilateral acute optic neuritis using optical coherence tomography (OCT. Patients and Methods. This prospective cohort study recruited consecutive patients with a first episode of isolated, unilateral acute optic neuritis. RNFL thickness and visual acuity (VA of the attack and normal fellow eye were measured at presentation and 3 months in both the treatment and nontreatment groups. Results. 11 subjects received systemic steroids and 9 were treated conservatively. The baseline RNFL thickness was similar in the attack and fellow eye (P≥0.4. At 3 months, the attack eye had a thinner temporal (P=0.02 and average (P=0.05 RNFL compared to the fellow eye. At 3 months, the attack eye had significant RNFL thinning in the 4 quadrants and average thickness (P≤0.0002 compared to baseline. The RNFL thickness between the treatment and nontreatment groups was similar at baseline and 3 months (P≥0.1. Treatment offered better VA at 3 months (0.1 ± 0.2 versus 0.3 ± 0.2 LogMAR, P=0.04. Conclusion. Generalized RNFL thinning occurred at 3 months after a first episode of acute optic neuritis most significantly in the temporal quadrant and average thickness. Visual improvement with treatment was independent of RNFL thickness.

  1. Quality Enhancement and Nerve Fibre Layer Artefacts Removal in Retina Fundus Images by Off Axis Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Giancardo, Luca [ORNL; Meriaudeau, Fabrice [ORNL; Karnowski, Thomas Paul [ORNL; Li, Yaquin [University of Tennessee, Knoxville (UTK); Tobin Jr, Kenneth William [ORNL; Chaum, Edward [University of Tennessee, Knoxville (UTK)

    2011-01-01

    Retinal fundus images acquired with non-mydriatic digital fundus cameras are a versatile tool for the diagnosis of various retinal diseases. Because of the ease of use of newer camera models and their relative low cost, these cameras are employed worldwide by retina specialists to diagnose diabetic retinopathy and other degenerative diseases. Even with relative ease of use, the images produced by these systems sometimes suffer from reflectance artefacts mainly due to the nerve fibre layer (NFL) or other camera lens related reflections. We propose a technique that employs multiple fundus images acquired from the same patient to obtain a single higher quality image without these reflectance artefacts. The removal of bright artefacts, and particularly of NFL reflectance, can have great benefits for the reduction of false positives in the detection of retinal lesions such as exudate, drusens and cotton wool spots by automatic systems or manual inspection. If enough redundant information is provided by the multiple images, this technique also compensates for a suboptimal illumination. The fundus images are acquired in straightforward but unorthodox manner, i.e. the stare point of the patient is changed between each shot but the camera is kept fixed. Between each shot, the apparent shape and position of all the retinal structures that do not exhibit isotropic reflectance (e.g. bright artefacts) change. This physical effect is exploited by our algorithm in order to extract the pixels belonging to the inner layers of the retina, hence obtaining a single artefacts-free image.

  2. Why cotton wool spots should not be regarded as retinal nerve fibre layer infarcts

    Science.gov (United States)

    McLeod, D

    2005-01-01

    Cotton wool spots (CWSs) comprise localised accumulations of axoplasmic debris within adjacent bundles of unmyelinated ganglion cell axons. Their formation is widely held to reflect focal ischaemia from terminal arteriolar occlusion, but credible evidence supporting this view is lacking. CWSs are here purported to be nothing more than sentinels of retinal nerve fibre layer pathology, hence their recommended redesignation “cotton wool sentinels.” After branch arteriolar occlusion, CWSs evolve as boundary sentinels of infarction, their uniform width suggesting a glial constraint to axonal expansion. In pre-proliferative diabetic retinopathy, CWSs form a C-shaped chain nasal to the disc and around the macula where they constitute sentinels of ischaemia affecting the entire retinal mid-periphery. The polymorphous CWSs evolving during acute panretinal hypoperfusion represent sentinels of an ischaemic penumbra. Those surrounding the disc in Purtscher’s traumatic angiopathy are sentinels of neuronal damage from transient venous hyperdistension that overwhelms the protection afforded by peripapillary axonal decompartmentalisation. PMID:15665358

  3. Retinal nerve fibre layer loss in hereditary spastic paraplegias is restricted to complex phenotypes

    Directory of Open Access Journals (Sweden)

    Wiethoff Sarah

    2012-11-01

    Full Text Available Abstract Background Reduction of retinal nerve fibre layer (RNFL thickness was shown as part of the neurodegenerative process in a range of different neurodegenerative pathologies including Alzheimer′s disease (AD, idiopathic Parkinson’s disease (PD, spinocerebellar ataxia (SCA and multiple system atrophy (MSA. To further clarify the specificity of RNFL thinning as a potential marker of neurodegenerative diseases we investigated RNFL thickness in Hereditary Spastic Paraplegia (HSP, an axonal, length-dependent neurodegenerative pathology of the upper motor neurons. Methods Spectral domain optical coherence tomography (OCT was performed in 28 HSP patients (clinically: pure HSP = 22, complicated HSP = 6; genetic subtypes: SPG4 = 13, SPG5 = 1, SPG7 = 3, genetically unclassified: 11 to quantify peripapillary RNFL thickness. Standardized examination assessed duration of disease, dependency on assistive walking aids and severity of symptoms quantified with Spastic Paraplegia Rating Scale (SPRS. Results HSP patients demonstrated no significant thinning of global RNFL (pglobal = 0.61. Subgroup analysis revealed significant reduction in temporal and temporal inferior sectors for patients with complex (p Conclusion Clinically pure HSP patients feature no significant reduction in RNFL, whereas complex phenotypes display an abnormal thinning of temporal and temporal inferior RNFL. Our data indicate that RNFL thinning does not occur unspecifically in all neurodegenerative diseases but is in HSP restricted to subtypes with multisystemic degeneration.

  4. Myelin regeneration: a recapitulation of development?

    Science.gov (United States)

    Fancy, Stephen P J; Chan, Jonah R; Baranzini, Sergio E; Franklin, Robin J M; Rowitch, David H

    2011-01-01

    The developmental process of myelination and the adult regenerative process of remyelination share the common objective of investing nerve axons with myelin sheaths. A central question in myelin biology is the extent to which the mechanisms of these two processes are conserved, a concept encapsulated in the recapitulation hypothesis of remyelination. This question also has relevance for translating myelin biology into a better understanding of and eventual treatments for human myelin disorders. Here we review the current evidence for the recapitulation hypothesis and discuss recent findings in the development and regeneration of myelin in the context of human neurological disease.

  5. Optic nerve atrophy and retinal nerve fibre layer thinning following optic neuritis: evidence that axonal loss is a substrate of MRI-detected atrophy.

    Science.gov (United States)

    Trip, S Anand; Schlottmann, Patricio G; Jones, Stephen J; Li, Wai-Yung; Garway-Heath, David F; Thompson, Alan J; Plant, Gordon T; Miller, David H

    2006-05-15

    Magnetic resonance imaging (MRI) measures of brain atrophy are often considered to be a marker of axonal loss in multiple sclerosis (MS) but evidence is limited. Optic neuritis is a common manifestation of MS and results in optic nerve atrophy. Retinal nerve fibre layer (RNFL) imaging is a non-invasive way of detecting axonal loss following optic neuritis. We hypothesise that if the optic nerve atrophy that develops following optic neuritis is contributed to by axonal loss, it will correlate with thinning of the RNFL. Twenty-five patients were studied at least 1 year after a single unilateral attack of optic neuritis without recurrence, with a selection bias towards incomplete recovery. They had MR quantification of optic nerve cross-sectional area and optic nerve lesion length, as well as optical coherence tomography (OCT) measurement of mean RNFL thickness and macular volume, quantitative visual testing, and visual evoked potentials (VEPs). Fifteen controls were also studied. Significant optic nerve atrophy (mean decrease 30% versus controls), RNFL thinning (mean decrease 33% versus controls), and macular volume loss occurred in patients' affected eyes when compared with patients' unaffected eyes and healthy controls. The optic nerve atrophy was correlated with the RNFL thinning, macular volume loss, visual acuity, visual field mean deviation, and whole field VEP amplitude but not latency. These findings suggest that axonal loss contributes to optic nerve atrophy following a single attack of optic neuritis. By inference, axonal loss due to other post-inflammatory brain lesions is likely to contribute to the global MRI measure of brain atrophy in multiple sclerosis.

  6. Trigeminal small-fibre dysfunction in patients with diabetes mellitus

    DEFF Research Database (Denmark)

    Agostino, R.; Cruccu, G.; Iannetti, G. D.

    2000-01-01

    Objective: To investigate trigeminal small-fibre function in patients with diabetes mellitus. Methods: In 52 diabetic patients we studied the trigeminal laser evoked potentials after stimulation of the skin bordering the lower lip. In the 21 patients with the severest peripheral nerve damage we...... also studied the electrically evoked corneal reflex, Both responses are mediated by small myelinated afferents. Results: Laser evoked potentials had a longer mean latency and lower amplitude in diabetic patients than in normal subjects (P

  7. Does the epidermal nerve fibre density measured by skin biopsy in patients with peripheral neuropathies correlate with neuropathic pain?

    Science.gov (United States)

    Truini, A; Biasiotta, A; Di Stefano, G; Leone, C; La Cesa, S; Galosi, E; Piroso, S; Pepe, A; Giordano, C; Cruccu, G

    2014-04-01

    The different neuropathic pain types (e.g., ongoing burning pain and allodynia) are frequent and disabling complaints in patients with peripheral neuropathies. Although the reference standard technique for diagnosing painful small-fibre neuropathies is nerve fibre density assessment by skin biopsy, the relationship between the epidermal nerve fibre (ENF) density and neuropathic pain is still unclear. In a clinical and skin biopsy study designed to investigate whether changes in ENF density are directly related to pain, we enrolled 139 consecutive patients with distal symmetric peripheral neuropathy. All patients underwent clinical examination. The Neuropathic Pain Symptom Inventory was used to distinguish the different neuropathic pain types. A skin biopsy was conducted, and ENFs were immunostained with the antiprotein gene product 9.5, and their linear density was quantified with bright-field microscopy. No difference was found in ENF density between patients with and without neuropathic pain, nor between patients with and without ongoing burning pain. Conversely, ENF density was higher in patients with provoked pains (including mechanical dynamic allodynia) than in those without. The variable association between ENF density and symptoms of neuropathic pain supports the idea that neuropathic pain symptoms arise through distinct underlying mechanisms. The lack of relationship between ongoing burning pain and ENF density suggests that this type of pain reflects factors other than loss of nociceptive afferents. The association between ENF density and provoked pain (including mechanical dynamic allodynia) suggests that this type of pain might be mediated by spared and sensitised nociceptive afferents.

  8. Cholesterol: a novel regulatory role in myelin formation.

    Science.gov (United States)

    Saher, Gesine; Quintes, Susanne; Nave, Klaus-Armin

    2011-02-01

    Myelin consists of tightly compacted membranes that form an insulating sheath around axons. The function of myelin for rapid saltatory nerve conduction is dependent on its unique composition, highly enriched in glycosphingolipids and cholesterol. Cholesterol emerged as the only integral myelin component that is essential and rate limiting for the development of CNS and PNS myelin. Experiments with conditional mouse mutants that lack cholesterol biosynthesis in oligodendrocytes revealed that only minimal changes of the CNS myelin lipid composition are tolerated. In Schwann cells of the PNS, protein trafficking and myelin compaction depend on cholesterol. In this review, the authors summarize the role of cholesterol in myelin biogenesis and myelin disease.

  9. Retinal nerve fibre layer thinning is associated with drug resistance in epilepsy

    Science.gov (United States)

    Balestrini, Simona; Clayton, Lisa M S; Bartmann, Ana P; Chinthapalli, Krishna; Novy, Jan; Coppola, Antonietta; Wandschneider, Britta; Stern, William M; Acheson, James; Bell, Gail S; Sander, Josemir W; Sisodiya, Sanjay M

    2016-01-01

    Objective Retinal nerve fibre layer (RNFL) thickness is related to the axonal anterior visual pathway and is considered a marker of overall white matter ‘integrity’. We hypothesised that RNFL changes would occur in people with epilepsy, independently of vigabatrin exposure, and be related to clinical characteristics of epilepsy. Methods Three hundred people with epilepsy attending specialist clinics and 90 healthy controls were included in this cross-sectional cohort study. RNFL imaging was performed using spectral-domain optical coherence tomography (OCT). Drug resistance was defined as failure of adequate trials of two antiepileptic drugs to achieve sustained seizure freedom. Results The average RNFL thickness and the thickness of each of the 90° quadrants were significantly thinner in people with epilepsy than healthy controls (p<0.001, t test). In a multivariate logistic regression model, drug resistance was the only significant predictor of abnormal RNFL thinning (OR=2.09, 95% CI 1.09 to 4.01, p=0.03). Duration of epilepsy (coefficient −0.16, p=0.004) and presence of intellectual disability (coefficient −4.0, p=0.044) also showed a significant relationship with RNFL thinning in a multivariate linear regression model. Conclusions Our results suggest that people with epilepsy with no previous exposure to vigabatrin have a significantly thinner RNFL than healthy participants. Drug resistance emerged as a significant independent predictor of RNFL borderline attenuation or abnormal thinning in a logistic regression model. As this is easily assessed by OCT, RNFL thickness might be used to better understand the mechanisms underlying drug resistance, and possibly severity. Longitudinal studies are needed to confirm our findings. PMID:25886782

  10. Análise quantitativa das fibras mielínicas dos nervos laríngeos em humanos de acordo com a idade Quantitative analysis of myelinic fibers in human laryngeal nerves according to age

    Directory of Open Access Journals (Sweden)

    Romualdo Suzano Louzeiro Tiago

    2008-02-01

    Full Text Available INTRODUÇÃO E OBJETIVO: Realizar análise morfométrica das fibras mielínicas dos nervos laríngeos com a finalidade de verificar modificações quantitativas decorrentes do processo de envelhecimento. FORMA DE ESTUDO: Clínico e experimental. Material e Método: Foi coletado fragmento de 1cm dos nervos laríngeos superiores e nervos laríngeos recorrentes de 12 cadáveres do sexo masculino. A amostra foi dividida em dois grupos: idade inferior a 60 anos (Adulto e idade igual ou superior a 60 anos (Idoso. O material foi avaliado em microscópio de luz acoplado a sistema analisador de imagem. RESULTADOS: O número total de fibras mielínicas do nervo laríngeo superior foi semelhante nos dois grupos etários, mas com tendência para o maior número de fibras de 1µm no grupo adulto (p=0,0744. O grupo adulto apresentou maior número total de fibras mielínicas no nervo laríngeo recorrente (p=0,0006, e esta diferença ocorreu nas fibras com diâmetros de 1-3µm (pINTRODUCTION AND AIM: To carry out a morphometric analysis of myelinic fibers in laryngeal nerves aiming to identify quantitative changes as a result of aging. Study design: Clinical and experimental. MATERIAL AND METHOD: A 1cm fragment was collected from the superior laryngeal nerves and recurrent laryngeal nerves taken from twelve male cadavers. The sample was divided into two groups: those aged below 60 years (Adult and those aged 60 years or more (Elderly. The material was evaluated under light microscopy coupled with an image analysis system. RESULTS: The total number of myelinic fibers from the superior laryngeal nerve was similar in both age groups; there was, however, a trend for a higher number of 1μm fibers in the adult group (p=0.0744. The adult group had a higher total number of myelinic fibers in the recurrent laryngeal nerve (p=0.0006, and this difference was seen in fibers with diameters betwee 1-3μm (p<0.007. The adult group had a higher total number of myelinic fibers

  11. Relationship between the Retinal Nerve Fibre Layer (RNFL parameters and Visual field loss in established glaucoma patients in South Indian population

    Directory of Open Access Journals (Sweden)

    Elangovan Suma, Puri K Sanjeev

    2013-10-01

    Full Text Available Purpose: Optical coherence tomography (OCT and Scanning LASER polarimetry (GDX-VCC are newer techniques to analyse retinal nerve fibre loss in glaucoma. This study aims to evaluate the relationship between the Retinal Nerve Fibre Layer(RNFL parameters measured using Stratus-OCT and GDx-VCC and visual field loss by Octopus interzeag perimetry in established glaucoma patients in South Indian Population. Materials and methods: Prospectively planned cross sectional study of 67 eyes of 34 established glaucoma patients on medical management. The mean age of patients was 46.911 years (SD+13.531. A complete ophthalmic examination, automated perimetry with octopus interzeag 1-2-3 perimeter, retinal nerve fibre analysis with GDx VCC and Stratus OCT was done. The differences between the mean RNFL parameters in the presence or absence of field defects were evaluated. Results: The data analysed were mean deviation, loss variance, OCT total average nerve fibre thickness, GDX VCC- TSNIT average and Nerve fibre indicator (NFI.The data were split into two subgroups on the basis of presence or absence of visual field defect and analysed. The difference between the mean value of NFI between the subgroups was highly significant with a p value < 0.01.The OCT parameter Total average nerve fiber layer thickness differed significantly between the two subgroups (p value <0.05. The mean GDx TSNIT average did not differ significantly between the two subgroups. Conclusion: The total average nerve fibre thickness by OCT correlated better with visual field loss than the GDX TSNIT average .Among the GDx parameters, the NFI was found to be a better indicator of visual field damage than the average thickness.

  12. A polylactic acid non-woven nerve conduit for facial nerve regeneration in rats.

    Science.gov (United States)

    Matsumine, Hajime; Sasaki, Ryo; Yamato, Masayuki; Okano, Teruo; Sakurai, Hiroyuki

    2014-06-01

    This study developed a biodegradable nerve conduit with PLA non-woven fabric and evaluated its nerve regeneration-promoting effect. The buccal branch of the facial nerve of 8 week-old Lewis rats was exposed, and a 7 mm nerve defect was created. A nerve conduit made of either PLA non-woven fabric (mean fibre diameter 460 nm), or silicone tube filled with type I collagen gel, or an autologous nerve, was implanted into the nerve defect, and their nerve regenerative abilities were evaluated 13 weeks after the surgery. The number of myelinated neural fibres in the middle portion of the regenerated nerve was the highest for PLA tubes (mean ± SD, 5051 ± 2335), followed by autologous nerves (4233 ± 590) and silicone tubes (1604 ± 148). Axon diameter was significantly greater in the PLA tube group (5.17 ± 1.69 µm) than in the silicone tube group (4.25 ± 1.60 µm) and no significant difference was found between the PLA tube and autograft (5.53 ± 1.93 µm) groups. Myelin thickness was greatest for the autograft group (0.65 ± 0.24 µm), followed by the PLA tube (0.54 ± 0.18 µm) and silicone tube (0.38 ± 0.12 µm) groups, showing significant differences among the three groups. The PLA non-woven fabric tube, composed of randomly-connected PLA fibres, is porous and has a number of advantages, such as sufficient strength to maintain luminal structure. The tube has demonstrated a comparable ability to induce peripheral nerve regeneration following autologous nerve transplantation.

  13. Alteration in sensory nerve function following electrical shock.

    Science.gov (United States)

    Abramov, G S; Bier, M; Capelli-Schellpfeffer, M; Lee, R C

    1996-12-01

    A study of the effects of electrical shock on peripheral nerve fibres is presented. Strength and duration of the applied shocks were similar to those encountered in a typical industrial electrical accident. The purpose of this study is: (i) to identify the electrophysiological and morphological change in nerve fibres after the application of electrical current shocks; (ii) to examine the ability of the peripheral nerve fibres to spontaneously regain function and; (iii) to demonstrate the usefulness of the sensory refractory spectrum as an additional technique in assessing the damage. Three groups of animals received twelve 4-ms electric field pulses of approximately 37 V/cm (n = 5), 75 V/cm (n = 9) and 150 V/cm (n = 6), respectively. Group 4 was a control group and received a direct application of 2 per cent lidocaine over the sciatic nerve for 30 min. Thermal effects of the shocks were negligible. The sensory refractory spectrum shows that electrical shock damage was mainly to the large, fast myelinated fibres and that higher field strengths do more damage. Also in a histological examination it was found that the more heavily shocked myelinated fibres had sustained more damage.

  14. EFFECTS OF LOCAL NERVE COOLING ON CONDUCTION IN VAGAL FIBERS SHED LIGHT UPON RESPIRATORY REFLEXES IN THE RABBIT

    NARCIS (Netherlands)

    PATBERG, WR; NIJMEIJER, A; VERSPRILLE, A; ZOCK, JP; ZIJLSTRA, WG; Schut, J.K.

    1992-01-01

    In ten vagus nerves the effect of local cooling on the compound action potential was studied in the temperature range of 34 to 0-degrees-C in spontaneously breathing, anaesthetized rabbits. The mean temperature at which the myelinated (A) fibres were completely blocked, was 10.2 +/- 2.4-degrees-C (m

  15. Effects of transcutaneous electrical nerve stimulation on the H-reflex of muscles of different fibre type composition.

    Science.gov (United States)

    Goulet, C G; Arsenault, A B; Bourbonnais, D; Levin, M F

    1997-09-01

    Differential effects of repetitive stimulation of low threshold afferents on both the recruitment threshold and motoneuronal excitability of type I and type II motor units have been demonstrated. The present study was aimed at further investigating the differential effects of 30 minutes of transcutaneous electrical nerve stimulation (TENS) on the H-reflex amplitude (Hmax/2) of the Soleus (SO), gastrocnemius lateralis (GL) and medialis (GM) muscles. Eleven healthy subjects were tested in order to evaluate the effects of TENS on either the common peroneal (CPN), saphenous or sural nerve. The experimental session consisted of three consecutive 45 min periods. Within each of these periods, H-reflexes were recorded before, during and after the TENS was applied. It was hypothesized that repetitive low threshold afferent stimulation would either have inhibitory or facilitatory effects on the H-reflex amplitude of the SO or gastrocnemii muscles respectively. Non-parametric Friedman ANOVAs revealed a significant tendency (p sural nerve, as well as that of the GM during repetitive stimulation of the saphenous nerve. Although the present study failed to reveal any differential effects of TENS on the H-reflex amplitude of muscle on different fibre type content, the significant decrease in H-reflex observed on the triceps surae muscles during TENS applied over the CPN might have promising clinical outcomes for hyperreflexive subjects.

  16. Development of a voltage-dependent current noise algorithm for conductance-based stochastic modelling of auditory nerve fibres.

    Science.gov (United States)

    Badenhorst, Werner; Hanekom, Tania; Hanekom, Johan J

    2016-12-01

    This study presents the development of an alternative noise current term and novel voltage-dependent current noise algorithm for conductance-based stochastic auditory nerve fibre (ANF) models. ANFs are known to have significant variance in threshold stimulus which affects temporal characteristics such as latency. This variance is primarily caused by the stochastic behaviour or microscopic fluctuations of the node of Ranvier's voltage-dependent sodium channels of which the intensity is a function of membrane voltage. Though easy to implement and low in computational cost, existing current noise models have two deficiencies: it is independent of membrane voltage, and it is unable to inherently determine the noise intensity required to produce in vivo measured discharge probability functions. The proposed algorithm overcomes these deficiencies while maintaining its low computational cost and ease of implementation compared to other conductance and Markovian-based stochastic models. The algorithm is applied to a Hodgkin-Huxley-based compartmental cat ANF model and validated via comparison of the threshold probability and latency distributions to measured cat ANF data. Simulation results show the algorithm's adherence to in vivo stochastic fibre characteristics such as an exponential relationship between the membrane noise and transmembrane voltage, a negative linear relationship between the log of the relative spread of the discharge probability and the log of the fibre diameter and a decrease in latency with an increase in stimulus intensity.

  17. Variation in optical coherence tomography signal quality as an indicator of retinal nerve fibre layer segmentation error.

    Science.gov (United States)

    Folio, Lindsey S; Wollstein, Gadi; Ishikawa, Hiroshi; Bilonick, Richard A; Ling, Yun; Kagemann, Larry; Noecker, Robert J; Fujimoto, James G; Schuman, Joel S

    2012-04-01

    Commercial optical coherence tomography (OCT) systems use global signal quality indices to quantify scan quality. Signal quality can vary throughout a scan, contributing to local retinal nerve fibre layer segmentation errors (SegE). The purpose of this study was to develop an automated method, using local scan quality, to predict SegE. Good-quality (global signal strength (SS) ≥ 6; manufacturer specification) peripapillary circular OCT scans (fast retinal nerve fibre layer scan protocol; Stratus OCT; Carl Zeiss Meditec, Dublin, California, USA) were obtained from 6 healthy, 19 glaucoma-suspect and 43 glaucoma subjects. Scans were grouped based on SegE. Quality index (QI) values were computed for each A-scan using software of our own design. Logistic mixed-effects regression modelling was applied to evaluate SS, global mean and SD of QI, and the probability of SegE. The difference between local mean QI in SegE regions and No-SegE regions was -5.06 (95% CI -6.38 to 3.734) (psignal quality parameter, the variation of signal quality between A-scans provides significant information about the quality of an OCT scan and can be used as a predictor of segmentation error.

  18. Decreased retinal nerve fibre layer thickness detected by optical coherence tomography in patients with ethambutol‐induced optic neuropathy

    Science.gov (United States)

    Chai, Samantha J; Foroozan, Rod

    2007-01-01

    Background It is difficult to assess the degree of optic nerve damage in patients with ethambutol‐induced optic neuropathy, especially just after the onset of visual loss, when the optic disc typically looks normal. Aim To evaluate changes in retinal nerve fibre layer thickness (RNFLT) using optical coherence tomography (OCT) in patients with optic neuropathy within 3 months of cessation of ethambutol treatment. Design A retrospective observational case series from a single neuro‐ophthalmology practice. Methods 8 patients with a history of ethambutol‐induced optic neuropathy were examined within 3 months after stopping ethambutol treatment. All patients underwent a neuro‐ophthalmologic examination, including visual acuity, colour vision, visual fields and funduscopy. OCT was performed on both eyes of each patient using the retinal nerve fibre layer analysis protocol. Results The interval between cessation of ethambutol treatment and the initial visit ranged from 1 week to 3 months. All patients had visual deficits characteristic of ethambutol‐induced optic neuropathy at their initial visit, and the follow‐up examination was performed within 12 months. Compared with the initial RNFLT, there was a statistically significant decrease in the mean RNFLT of the temporal, superior and nasal quadrants (p = 0.009, 0.019 and 0.025, respectively), with the greatest decrease in the temporal quadrant (mean decrease 26.5 μm). Conclusions A decrease in RNFLT is observed in all quadrants in patients with ethambutol‐induced optic neuropathy who have recently discontinued the medication. This decrease is most pronounced in the temporal quadrant of the optic disc. PMID:17215265

  19. Developmental changes in the fibre population of the optic nerve follow an avian/mammalian-like pattern in the turtle Mauremys leprosa.

    Science.gov (United States)

    Hidalgo-Sánchez, Matías; Francisco-Morcillo, Javier; Navascués, Julio; Martín-Partido, Gervasio

    2006-10-03

    The changes in the axon and growth cone numbers in the optic nerve of the freshwater turtle Mauremys leprosa were studied by electron microscopy from the embryonic day 14 (E14) to E80, when the animals normally hatch, and from the first postnatal day (P0) to adulthood (5 years on). At E16, the first axons appeared in the optic nerve and were added slowly until E21. From E21, the fibre number increased rapidly, peaking at E34 (570,000 fibres). Thereafter, the axon number decreased sharply, and from E47 declined steadily until reaching the mature number (about 330,000). These observations indicated that during development of the retina there was an overproduction and later elimination of retinal ganglion cells. Growth cones were first observed in the optic nerve at as early as E16. Their number increased rapidly until E21 and continued to be high through E23 and E26. After E26, the number declined steeply and by E40 the optic nerve was devoid of growth cones. These results indicated that differentiation of the retinal ganglion cells occurred during the first half of the embryonic life. To examine the correlation between the loss of the fibres from the optic nerve and loss of the parent retinal ganglion cells, retinal sections were processed with the TUNEL technique. Apoptotic nuclei were detected in the ganglion cell layer throughout the period of loss of the optic fibres. Our results showed that the time course of the numbers of the fibres in the developing turtle optic nerve was similar to those found in birds and mammals.

  20. Influence of surgical and chemical orchidectomy on weight and distribution of AChE-nerve fibres in thymuses of adult rats

    Directory of Open Access Journals (Sweden)

    F. Dorko

    2011-07-01

    Full Text Available The thymus is a crossroad between the immune and neuroendocrine systems. As such, it is innervated by acetylcholinesterase (AChE-positive fibres of the vagus, the recurrent laryngeal and the phrenic nerves. It is well know, that the innervations density of the thymus increases with age. In our study, adult rats were orchidectomized (surgically and chemically by the application of a luteinizing hormone-releasing hormone. The density of AChE-positive nerve fibres in thymuses, as well as the weight of thymuses was examined. The authors found that both surgical and chemical orchidectomy result in macroscopic and microscopic regeneration of the atrophied thymuses. In regenerated rat’s thymuses after orchidectomy the density of AChE-positive nerve fibres was markedly higher in comparison with the control animals. The distribution, as well as the density of AChE-positive nerve fibres in regenerated thymuses after orchidectomy evokes the images of its innervations like in young animals before age-related involution. The authors also found a markedly higher weight of thymuses of orchidectomized rats in comparison with the control groups. In recent study the authors proved that after 8 weeks surgical orchidectomy leads to the regeneration of thymic AChE-positive innervation and chemical orchidectomy by administration of luteinizing hormone-releasing hormone after 4 weeks of adult rats.

  1. Regional difference in the distribution of vasoactive intestinal polypeptide-immunoreactive nerve fibres along the uterus and between myometrial muscle layers in the rat.

    Science.gov (United States)

    Houdeau, E; Prudhomme, M J; Rousseau, J P

    1998-07-01

    To investigate a possible regional variation of the vasoactive intestinal polypeptide innervation in the uterus of the cyclic rat, the distribution of vasoactive intestinal polypeptide-containing nerve fibres from the cervix to the oviduct end of the uterine horns was studied using immunohistochemistry. Immunoreactive nerve fibres were most concentrated in the cervix, where they formed a dense plexus in association with the musculature and surrounding blood vessels. In the uterus, a clear regional distribution of the vasoactive intestinal polypeptide innervation was observed. Numerous vascular and non-vascular immunoreactive nerve fibres were present in the lower part of the uterine horns, whereas they were sparse in the median region and absent at the oviduct end. Moreover, non-vascular peptide innervation was mostly concentrated in the circular layer of the myometrium and also occurred in the endometrium. Only a very few immunoreactive nerve fibres were present in the longitudinal muscle layer. No change in the peptide innervation pattern was observed during the different stages of the sexual cycle. The marked regional distribution of the peptide innervation in the rat uterus suggests that the regulatory effects of the peptide occur mainly in the lower part of the organ and principally affect the circular muscle layer in the myometrium.

  2. The Groningen Longitudinal Glaucoma Study. I. Baseline sensitivity and specificity of the frequency doubling perimeter and the GDx nerve fibre analyser

    NARCIS (Netherlands)

    Heeg, GP; Blanksma, LJ; Hardus, PLLJ; Jansonius, NM

    2005-01-01

    Purpose: To describe the baseline data of a large cohort of patients included for follow-up with perimetry using the frequency doubling technique (FDT) and with quantification of the retinal nerve fibre layer as assessed by GDx, and to calculate the sensitivity and specificity of both devices from t

  3. The Groningen Longitudinal Glaucoma Study. II. A prospective comparison of frequency doubling perimetry, the GDx nerve fibre analyser and standard automated perimetry in glaucoma suspect patients

    NARCIS (Netherlands)

    Jansonius, Nomdo M.; Heeg, Govert P.

    We aimed to determine prospectively the incidence of abnormal test results on frequency doubling perimetry (FDT), the nerve fibre analyser (GDx) and standard automated perimetry (SAP) in a cohort of glaucoma suspect patients with normal findings for all these tests at baseline. Seventy glaucoma

  4. Increased capsaicin receptor TRPV1 in skin nerve fibres and related vanilloid receptors TRPV3 and TRPV4 in keratinocytes in human breast pain

    Directory of Open Access Journals (Sweden)

    Facer Paul

    2005-03-01

    Full Text Available Abstract Background Breast pain and tenderness affects 70% of women at some time. These symptoms have been attributed to stretching of the nerves with increase in breast size, but tissue mechanisms are poorly understood. Methods Eighteen patients (n = 12 breast reduction and n = 6 breast reconstruction were recruited and assessed for breast pain by clinical questionnaire. Breast skin biopsies from each patient were examined using immunohistological methods with specific antibodies to the capsaicin receptor TRPV1, related vanilloid thermoreceptors TRPV3 and TRPV4, and nerve growth factor (NGF. Results TRPV1-positive intra-epidermal nerve fibres were significantly increased in patients with breast pain and tenderness (TRPV1 fibres / mm epidermis, median [range] – no pain group, n = 8, 0.69 [0–1.27]; pain group, n = 10, 2.15 [0.77–4.38]; p = 0.0009. Nerve Growth Factor, which up-regulates TRPV1 and induces nerve sprouting, was present basal keratinocytes: some breast pain specimens also showed NGF staining in supra-basal keratinocytes. TRPV4-immunoreactive fibres were present in sub-epidermis but not significantly changed in painful breast tissue. Both TRPV3 and TRPV4 were significantly increased in keratinocytes in breast pain tissues; TRPV3, median [range] – no pain group, n = 6, 0.75 [0–2]; pain group, n = 11, 2 123, p = 0.008; TRPV4, median [range] – no pain group, n = 6, [0–1]; pain group, n = 11, 1 [0.5–2], p = 0.014. Conclusion Increased TRPV1 intra-epidermal nerve fibres could represent collateral sprouts, or re-innervation following nerve stretch and damage by polymodal nociceptors. Selective TRPV1-blockers may provide new therapy in breast pain. The role of TRPV3 and TRPV4 changes in keratinocytes deserve further study.

  5. Molecular mimicry between Mycobacterium leprae proteins (50S ribosomal protein L2 and Lysyl-tRNA synthetase) and myelin basic protein: a possible mechanism of nerve damage in leprosy.

    Science.gov (United States)

    Singh, Itu; Yadav, Asha Ram; Mohanty, Keshar Kunja; Katoch, Kiran; Sharma, Prashant; Mishra, Bishal; Bisht, Deepa; Gupta, U D; Sengupta, Utpal

    2015-04-01

    Autoantibodies against various components of host are known to occur in leprosy. Nerve damage is the primary cause of disability associated with leprosy. The aim of this study was to detect the level of autoantibodies and lympho-proliferative response against myelin basic protein (MBP) in leprosy patients (LPs) and their correlation with clinical phenotypes of LPs. Further, probable role of molecular mimicry in nerve damage of LPs was investigated. We observed significantly high level of anti-MBP antibodies in LPs across the spectrum and a positive significant correlation between the level of anti-MBP antibodies and the number of nerves involved in LPs. We report here that 4 B cell epitopes of myelin A1 and Mycobacterium leprae proteins, 50S ribosomal L2 and lysyl tRNA synthetase are cross-reactive. Further, M. leprae sonicated antigen hyperimmunization was responsible for induction of autoantibody response in mice which could be adoptively transferred to naive mice. For the first time our findings suggest the role of molecular mimicry in nerve damage in leprosy.

  6. Evaluation of the retinal nerve fibre layer and ganglion cell complex thickness in pituitary macroadenomas without optic chiasmal compression

    Science.gov (United States)

    Cennamo, G; Auriemma, R S; Cardone, D; Grasso, L F S; Velotti, N; Simeoli, C; Di Somma, C; Pivonello, R; Colao, A; de Crecchio, G

    2015-01-01

    Purpose The aim of this prospective study was to measure the thickness of the circumpapillary retinal nerve fibre layer (cpRNFL) and the ganglion cell complex (GCC) using spectral domain optical coherence tomography (SD-OCT) in a cohort of consecutive de novo patients with pituitary macroadenomas without chiasmal compression. Patients and methods Twenty-two consecutive patients with pituitary macroadenoma without chiasmal compression (16 men, 6 women, aged 45.2±14.6 years, 43 eyes) entered the study between September 2011 and June 2013. Among them, 31.8% harboured a growth hormone-secreting pituitary adenoma, 27.3% a prolactin-secreting pituitary adenoma, 27.3% a corticotrophin-secreting pituitary adenoma, and 13.6% a non-secreting pituitary tumour. Eighteen subjects (nine females, nine males, mean age 36.47±6.37 years; 33 eyes) without pituitary adenoma, with normal ophthalmic examination, served as controls. In both patients and controls, cpRNFL and GCC thicknesses were measured by SD-OCT. Results Patients were significantly older (P=0.02) than controls. Best corrected visual acuity, intraocular pressure, colour fundus photography, and automatic perimetry test were within the normal range in patients and controls. Conversely, cpRNFL (P=0.009) and GCC (P<0.0001) were significantly thinner in patients than in controls. The average GCC (r=0.306, P=0.046) significantly correlated with the presence of arterial hypertension. OCT parameters did not differ significantly between patients with a tumour volume above the median and those with a tumour volume below the median. Conclusion Pituitary macroadenomas, even in the absence of chiasmal compression, may induce GCC and retinal nerve fibre layer thinning. SD-OCT may have a role in the early diagnosis and management of patients with pituitary tumours. PMID:25853400

  7. Human intraretinal myelination: Axon diameters and axon/myelin thickness ratios

    Directory of Open Access Journals (Sweden)

    Thomas FitzGibbon

    2013-01-01

    Full Text Available Purpose: Human intraretinal myelination of ganglion cell axons occurs in about 1% of the population. We examined myelin thickness and axon diameter in human retinal specimens containing myelinated retinal ganglion cell axons. Materials and Methods: Two eyes containing myelinated patches were prepared for electron microscopy. Two areas were examined in one retina and five in the second retina. Measurements were compared to normal retinal and optic nerve samples and the rabbit retina, which normally contains myelinated axons. Measurements were made using a graphics tablet. Results: Mean axon diameter of myelinated axons at all locations were significantly larger than unmyelinated axons (P ≤ 0.01. Myelinated axons within the patches were significantly larger than axons within the optic nerve (P < 0.01. The relationship between axon diameter/fiber diameter (the G-ratio seen in the retinal sites differed from that in the nerve. G-ratios were higher and myelin thickness was positively correlated to axon diameter (P < 0.01 in the retina but negatively correlated to axon diameter in the nerve (P < 0.001. Conclusion: Intraretinally myelinated axons are larger than non-myelinated axons from the same population and suggests that glial cells can induce diameter changes in retinal axons that are not normally myelinated. This effect is more dramatic on intraretinal axons compared with the normal transition zone as axons enter the optic nerve and these changes are abnormal. Whether intraretinal myelin alters axonal conduction velocity or blocks axonal conduction remains to be clarified and these issues may have different clinical outcomes.

  8. Neurotoxocarosis alters myelin protein gene transcription and expression.

    Science.gov (United States)

    Heuer, Lea; Beyerbach, Martin; Lühder, Fred; Beineke, Andreas; Strube, Christina

    2015-06-01

    Neurotoxocarosis is an infection of the central nervous system caused by migrating larvae of the common dog and cat roundworms (Toxocara canis and Toxocara cati), which are zoonotic agents. As these parasites are prevalent worldwide and neuropathological and molecular investigations on neurotoxocarosis are scare, this study aims to characterise nerve fibre demyelination associated with neurotoxocarosis on a molecular level. Transcription of eight myelin-associated genes (Cnp, Mag, Mbp, Mog, Mrf-1, Nogo-A, Plp1, Olig2) was determined in the mouse model during six time points of the chronic phase of infection using qRT-PCR. Expression of selected proteins was analysed by Western blotting or immunohistochemistry. Additionally, demyelination and neuronal damage were investigated histologically. Significant differences (p ≤ 0.05) between transcription rates of T. canis-infected and uninfected control mice were detected for all analysed genes while T. cati affected five of eight investigated genes. Interestingly, 2', 3 ´-cyclic nucleotide 3'-phosphodiesterase (Cnp) and myelin oligodendrocyte glycoprotein (Mog) were upregulated in both T. canis- and T. cati-infected mice preceding demyelination. Later, CNPase expression was additionally enhanced. As expected, myelin basic protein (Mbp) was downregulated in cerebra and cerebella of T. canis-infected mice when severe demyelination was present 120 days post infectionem (dpi). The transcriptional pattern observed in the present study appears to reflect direct traumatic and hypoxic effects of larval migration as well as secondary processes including host immune reactions, demyelination and attempts to remyelinate damaged areas.

  9. 大鼠坐骨神经髓鞘相关蛋白随年龄的变化%Change of myelin-associated protein expressions in rat sciatic nerves with age

    Institute of Scientific and Technical Information of China (English)

    张琦; 王彩萍; 蒋蔚; 蒋茂荣; 丁妹; 丁斐

    2013-01-01

    目的:研究大鼠坐骨神经髓鞘相关蛋白随年龄的变化及与髓鞘板层数之间的相互关系.方法:SD大鼠分别于饲养1周、1月、3月、9月、15月和21月后取坐骨神经,利用透射电镜观察计数髓鞘板层;采用免疫印迹检测髓鞘相关蛋白—髓鞘碱性蛋白(MBP)、髓鞘相关糖蛋白(MAG)和P0蛋白(P0)的表达变化,并分析与板层数之间的相关性;采用荧光免疫组织化学显色观察MBP的表达变化.结果:透射电镜观察显示,大鼠坐骨神经髓鞘板层数从1周到15月逐渐增加,直到21月无显著变化.免疫印迹显示,MBP的表达随年龄增长而增加,21月时达到高峰,与髓鞘板层数呈正性直线相关;MAG在出生后1周表达最高,而P0在1月时达峰值,后皆随年龄增加而下降,MAG与髓鞘板层数呈负性直线相关,而P0与髓鞘板层数之间呈非直线相关.荧光免疫组织化学显色显示,随着年龄增长,MBP在大鼠坐骨神经的髓鞘表达的荧光强度逐渐增强.结论:大鼠坐骨神经髓鞘相关蛋白随年龄改变呈现不同的表达模式,并与髓鞘板层数之间存在一定相关性.%Objective:To investigate the changes of myelin-associated proteins in myelin of rat sciatic nerves with age,as well as the relationships between the protein expressions and morphology changes.Methods:Sparague-Dawley (SD) rats were randomly divided into 6 distinct age groups:1-week,1-,3-,9-,15-and 21-month age groups.The number of myelin sheath lamellae of the sciatic nerve was counted with electron micrographs.Western blotting was performed to examine the changes of protein expression levels of myelin-associated proteins in rat sciatic nerves,such as myelin basic protein (MBP),myelinassociated glycoprotein (MAG) and myelin protein zero (P0).And fluorescent immunohistochemistry was performed to observe the change of MBP in the sciatic nerve.The relationships between myelin sheath lamellae and the expression of myelin

  10. Schwann cell myelination requires Dynein function

    Directory of Open Access Journals (Sweden)

    Langworthy Melissa M

    2012-11-01

    Full Text Available Abstract Background Interaction of Schwann cells with axons triggers signal transduction that drives expression of Pou3f1 and Egr2 transcription factors, which in turn promote myelination. Signal transduction appears to be mediated, at least in part, by cyclic adenosine monophosphate (cAMP because elevation of cAMP levels can stimulate myelination in the absence of axon contact. The mechanisms by which the myelinating signal is conveyed remain unclear. Results By analyzing mutations that disrupt myelination in zebrafish, we learned that Dynein cytoplasmic 1 heavy chain 1 (Dync1h1, which functions as a motor for intracellular molecular trafficking, is required for peripheral myelination. In dync1h1 mutants, Schwann cell progenitors migrated to peripheral nerves but then failed to express Pou3f1 and Egr2 or make myelin membrane. Genetic mosaic experiments revealed that robust Myelin Basic Protein expression required Dync1h1 function within both Schwann cells and axons. Finally, treatment of dync1h1 mutants with a drug to elevate cAMP levels stimulated myelin gene expression. Conclusion Dync1h1 is required for retrograde transport in axons and mutations of Dync1h1 have been implicated in axon disease. Our data now provide evidence that Dync1h1 is also required for efficient myelination of peripheral axons by Schwann cells, perhaps by facilitating signal transduction necessary for myelination.

  11. Galectin-4, a novel neuronal regulator of myelination

    NARCIS (Netherlands)

    Stancic, Mirjana; Slijepcevic, Davor; Nomden, Anita; Vos, Michel J.; De Jonge, Jenny C.; Sikkema, Arend H.; Gabius, Hans-J.; Hoekstra, Dick; Baron, Wia

    2012-01-01

    Myelination of axons by oligodendrocytes (OLGs) is essential for proper saltatory nerve conduction, i.e., rapid transmission of nerve impulses. Among others, extracellular matrix (ECM) molecules, neuronal signaling, and axonal adhesion regulate the biogenesis and maintenance of myelin membranes, dri

  12. Corneal Confocal Microscopy Detects Small Fibre Neuropathy in Patients with Upper Gastrointestinal Cancer and Nerve Regeneration in Chemotherapy Induced Peripheral Neuropathy.

    Directory of Open Access Journals (Sweden)

    Maryam Ferdousi

    Full Text Available There are multiple neurological complications of cancer and its treatment. This study assessed the utility of the novel non-invasive ophthalmic technique of corneal confocal microscopy in identifying neuropathy in patients with upper gastrointestinal cancer before and after platinum based chemotherapy. In this study, 21 subjects with upper gastrointestinal (oesophageal or gastric cancer and 21 healthy control subjects underwent assessment of neuropathy using the neuropathy disability score, quantitative sensory testing for vibration perception threshold, warm and cold sensation thresholds, cold and heat induced pain thresholds, nerve conduction studies and corneal confocal microscopy. Patients with gastro-oesophageal cancer had higher heat induced pain (P = 0.04 and warm sensation (P = 0.03 thresholds with a significantly reduced sural sensory (P<0.01 and peroneal motor (P<0.01 nerve conduction velocity, corneal nerve fibre density (CNFD, nerve branch density (CNBD and nerve fibre length (CNFL (P<0.0001. Furthermore, CNFD correlated significantly with the time from presentation with symptoms to commencing chemotherapy (r = -0.54, P = 0.02, and CNFL (r = -0.8, P<0.0001 and CNBD (r = 0.63, P = 0.003 were related to the severity of lymph node involvement. After the 3rd cycle of chemotherapy, there was no change in any measure of neuropathy, except for a significant increase in CNFL (P = 0.003. Corneal confocal microscopy detects a small fibre neuropathy in this cohort of patients with upper gastrointestinal cancer, which was related to disease severity. Furthermore, the increase in CNFL after the chemotherapy may indicate nerve regeneration.

  13. 面神经修复中再生室内髓鞘碱性蛋白的作用初探%Preliminary study of the facial nerve regeneration in the chamber: the influence of myelin basic protein

    Institute of Scientific and Technical Information of China (English)

    骆文龙; 林代诚; 李永懋

    2001-01-01

    Objective To study the role of exogenous myelin basic protein(MBP) in neural repairment. Methods Adult New Zealand rabbits were employed in vivo preparation. A 12 μL nerve growth chamber was created by suturing the proximal and distal stumps of a transected facial never (FN) trunk into a tube. The regenerated nerves within the chambers were dissected and fixed for histological studies with light microscope at 4,6 and 8 weeks respectively following the surgery. Results Morphological analysis of nerves showed no difference between the MBP and control group in the size of the regeneration FN within the chambers, diameters of myelinated axons, thickness of myelin sheath and number of myelin axons grew into the distal end of chamber at 4 weeks. At 6 and 8 weeks after operation, the MBP group showed a more mature-appearance regenerative nerve comparing to control group. Especially, the enhancement of maturation in the regeneration axons was very noticeable at 6 weeks. Conclusion The study showed that pharmacological administration of exogenous MBP within a chamber at the time of entubational nerve repair enhances regeneration of myelinated axons across the sectioned ends of FN.%目的探讨外源性髓鞘碱性蛋白(myelin basic protein, MBP)在家兔面神经再生室修复中的作用。方法将33只家兔横断的面神经干近、远端缝于硅胶管壁上,形成约12 μL大小的神经再生室。一侧为实验组,将MBP注入再生室内;对侧为对照组不注任何物质。分别在术后4、6、8周处死动物, 切取标本,在光镜下行组织形态学观察。结果形态学分析表明术后4周2组再生室内再生面神经的有髓轴突直径、髓鞘厚度及长入再生室远端有髓轴突数差异无显著性 (P>0.05),随着时间的延长(术后6、8周),MBP组较对照组再生面神经显得更为成熟,6周时再生轴突成熟程度差异更明显。结论 MBP有促进家兔面神经再生修复的作用,但

  14. Retinal nerve fibre layer thinning in patients with clinically isolated optic neuritis and early treatment with interferon-beta.

    Directory of Open Access Journals (Sweden)

    Kurt-Wolfram Sühs

    Full Text Available BACKGROUND: Optic neuritis is associated with neurodegeneration leading to chronic impairment of visual functions. OBJECTIVE: This study investigated whether early treatment with interferon beta (IFN-β slows retinal nerve fibre layer (RNFL thinning in clinically isolated optic neuritis. METHODS: Twenty patients with optic neuritis and visual acuity decreased to ≤0.5 (decimal system were included into this prospective, open-label, parallel group 4-month observation. After methylprednisolone pulse therapy, 10 patients received IFN-β from week 2 onwards. This group was compared to 10 patients free of any disease modifying treatment (DMT. The parameter of interest was change in RNFL thickness assessed at baseline and at weeks 4, 8, and 16. Changes in visual acuity, visual field, and visual evoked potentials (VEPs served as additional outcome parameters. RESULTS: RNFL thinning did not differ between the groups with a mean reduction of 9.80±2.80 µm in IFN-β-treated patients (±SD vs. 12.44±5.79 µm in patients who did not receive DMT (baseline non-affected eye minus affected eye at week 16; p = 0.67, t-test, 95% confidence interval: -15.77 to 10.48. Parameters of visual function did not show any differences between the groups either. CONCLUSIONS: In isolated optic neuritis, early IFN-β treatment did not influence RNFL thinning nor had it any effect on recovery of visual functions.

  15. Retinal nerve fibre layer thickness measured by Spectralis spectral-domain optical coherence tomography: The Beijing Eye Study.

    Science.gov (United States)

    Zhao, Liang; Wang, Yaxing; Chen, Chang X; Xu, Liang; Jonas, Jost B

    2014-02-01

    The aim of this study was to measure retinal nerve fibre layer thickness (RNFLT) and its associated factors in a population-based setting. The population-based Beijing Eye Study 2011 included 3468 individuals. The study participants underwent spectral-domain optical coherence tomography (Spectralis(®) ; Spectralis OCT)-assisted measurement of the RNFLT. For this study, exclusion criteria were glaucoma, pseudoexfoliation, best-corrected visual acuity of >0.5 logMAR, macular diseases, previous ocular surgery and known neurological diseases. The only inclusion criterion was an age of 50+ years. The inclusion criteria were fulfilled by 2548 participants. Mean RNFLT was 102 ± 11 μm. RNFLT was significantly (p region (p = 0.003), larger optic disc size (p measured by Spectralis(®) OCT; 102 ± 11 μm) was associated with younger age, female gender, urban region of habitation, larger optic disc, larger rim, hyperopic refractive error, larger parapapillary beta zone and thicker subfoveal choroidal thickness. Independent of age and refractive error, the RNFL was thickest temporal inferiorly and thinnest temporally and nasally. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  16. Use of the novel contact heat evoked potential stimulator (CHEPS for the assessment of small fibre neuropathy: correlations with skin flare responses and intra-epidermal nerve fibre counts

    Directory of Open Access Journals (Sweden)

    Chizh Boris A

    2007-08-01

    Full Text Available Abstract Background The Contact Heat Evoked Potential Stimulator (CHEPS rapidly stimulates cutaneous small nerve fibres, and resulting evoked potentials can be recorded from the scalp. We have studied patients with symptoms of sensory neuropathy and controls using CHEPS, and validated the findings using other objective measures of small nerve fibres i.e. the histamine-induced skin flare response and intra-epidermal fibres (IEF, and also quantitative sensory testing (QST, a subjective measure. Methods In patients with symptoms of sensory neuropathy (n = 41 and healthy controls (n = 9 we performed clinical examination, QST (monofilament, vibration and thermal perception thresholds, nerve conduction studies, histamine-induced skin flares and CHEPS. Skin punch biopsies were immunostained using standard ABC immunoperoxidase for the nerve marker PGP 9.5 or the heat and capsaicin receptor TRPV1. Immunoreactive IEF were counted per length of tissue section and epidermal thickness recorded. Results Amplitudes of Aδ evoked potentials (μV following face, arm or leg stimulation were reduced in patients (e.g. for the leg: mean ± SEM – controls 11.7 ± 1.95, patients 3.63 ± 0.85, p = 0.0032. Patients showed reduced leg skin flare responses, which correlated with Aδ amplitudes (rs = 0.40, p = 0.010. In patient leg skin biopsies, PGP 9.5- and TRPV1-immunoreactive IEF were reduced and correlated with Aδ amplitudes (PGP 9.5, rs = 0.51, p = 0.0006; TRPV1, rs = 0.48, p = 0.0012. Conclusion CHEPS appears a sensitive measure, with abnormalities observed in some symptomatic patients who did not have significant IEF loss and/or QST abnormalities. Some of the latter patients may have early small fibre dysfunction or ion channelopathy. CHEPS provides a clinically practical, non-invasive and objective measure, and can be a useful additional tool for the assessment of sensory small fibre neuropathy. Although further evaluation is required, the technique shows

  17. Retinal nerve fibre layer thickness of black and Indian myopic students at the University of KwaZulu-Natal

    Directory of Open Access Journals (Sweden)

    Chanel Murugan

    2015-03-01

    Full Text Available Aim: To compare retinal nerve fibre layer (RNFL thickness in black and Indian myopic students at the University of KwaZulu-Natal.Method: Eighty (40 black and 40 Indian participants of both genders and aged between 19 and 24 years (mean and standard deviation: 21 ± 1.7 years were included in the study. Refractive errors were assessed with the Nidek AR-310A auto-refractor and via subjective refraction. RNFL thicknesses were then measured using the iVue-100 optical coherence tomography device. Axial lengths were measured with the Nidek US-500 A-scan ultrasound device. Data were analysed by descriptive statistics, t-tests, Pearson’s correlation coefficients and regression analysis.Results: The mean myopic spherical equivalent was significantly more negative amongst the Indian (-2.42 D ± 2.22 D than amongst the black (-1.48 D ± 1.13 D (p = 0.02 participants.The mean axial length was greater amongst the black (23.35 mm ± 0.74 mm than amongst the Indian (23.18 mm ± 0.87 mm participants but the difference was not significant. In the total sample (n = 80, the average global RNFL thickness ranged from 87 μm to 123 μm (105 μm ±9 μm. Mean global RNFL thickness was slightly greater amongst black (108 μm ± 7 μm than amongst Indian (102 μm ± 9 μm (p = 0.00 participants. Mean global RNFL thickness was similar for male (106 μm ± 7 μm and female (105 μm ± 10 μm (p = 0.79 participants.A positive and significant association between myopic spherical equivalent and global RNFL thickness was found for the total sample (r = 0.36, p = 0.00 and for Indians (r = 0.33, p = 0.04but not for the black (r = 0.25, p = 0.13 participants. There was a negative and significant correlation between axial length and global RNFL thickness amongst the Indian participants (r = -0.34, p = 0.03 but not amongst the total sample (r = -0.12, p = 0.30 or the black (r = 0.06, p = 0.73 participants.Conclusion: The findings suggest that racial differences in RNFL thickness

  18. Correlation of optic neuritis and retinal nerve fibre thickness using optical coherence tomography in a cohort of multiple sclerosis patients

    Directory of Open Access Journals (Sweden)

    Izanne Roos

    2016-03-01

    Full Text Available Background: Optical coherence tomography (OCT is a fast, non-invasive imaging technology that produces 3D, high-resolution images of the retina. Direct visualisation of the retina allows a unique opportunity to study the effects of multiple sclerosis (MS-associated neurodegeneration on retinal ganglion cells as well as effects of retrobulbar demyelination on axonal and retinal architecture through measurement of retinal nerve fibre layer (RNFL thickness and total macular volume (TMV. These findings are clinically important as axonal loss is irreversible and correlates with disability.Aim: To determine the role and usefulness of OCT in a local cohort of MS patients.Setting: Neurology Clinic, Inkosi Albert Luthuli Central Hospital, KwaZulu-Natal, South Africa.Methods: Nineteen patients with MS currently being treated with interferon β-1b underwent OCT examination of both eyes. RNFL thickness and macular volume were measured and correlated with clinical disease characteristics, history of optic neuritis and level of disability.Results: Mean RNFL thickness was 77.3 μm with no significant difference in mean RNFL in eyes with a history of optic neuritis (ON and those without (p = 0.4. Eyes with a history of ON did, however, have significantly thinner RNFL compared with the contralateral eye (p = 0.04. Despite a strong correlation between TMV and RNFL (p = 0.001, a subset of patients with normal RNFL had TMV that was less than 1% of what was expected. There was no correlation between RNFL and disability scores.Conclusion: OCT enables a direct axonal ‘optical biopsy’, for monitoring disease progression and treatment response in MS. RNFL thinning occurs independently of a history of optic neuritis and may represent a chronic optic neuropathy in patients with MS.Keywords: Multiple sclerosis; optical coherence tomography

  19. Correlation of retinal nerve fibre layer and macular thickness with serum uric acid among type 2 diabetes mellitus.

    Science.gov (United States)

    Vinuthinee-Naidu, Munisamy-Naidu; Zunaina, Embong; Azreen-Redzal, Anuar; Nyi-Nyi, Naing

    2017-06-14

    Uric acid is a final breakdown product of purine catabolism in humans. It's a potent antioxidant and can also act as a pro-oxidant that induces oxidative stress on the vascular endothelial cells, thus mediating progression of diabetic related diseases. Various epidemiological and experimental evidence suggest that uric acid has a role in the etiology of type 2 diabetes mellitus. We conducted a cross-sectional study to evaluate the correlation of retinal nerve fibre layer (RNFL) and macular thickness with serum uric acid in type 2 diabetic patients. A cross-sectional study was conducted in the Eye Clinic, Hospital Universiti Sains Malaysia, Kelantan between the period of August 2013 till July 2015 involving type 2 diabetes mellitus patients with no diabetic retinopathy and with non-proliferative diabetic retinopathy (NPDR). An evaluation for RNFL and macular thickness was measured using Spectralis Heidelberg optical coherence tomography. Six ml of venous blood was taken for the measurement of serum uric acid and glycosylated haemoglobin (HbA1C). A total of 180 diabetic patients were recruited (90 patients with no diabetic retinopathy and 90 patients with NPDR) into the study. The mean level of serum uric acid for both the groups was within normal range and there was no significance difference between the two groups. Based on gender, both male and female gender showed significantly higher level of mean serum uric acid in no diabetic retinopathy group (p = 0.004 respectively). The mean serum uric acid was significantly higher in patient with HbA1C uric acid in both the groups. Serum uric acid showed a poor correlation with RNFL and macular thickness among type 2 diabetic patients.

  20. Myelin architecture: zippering membranes tightly together.

    Science.gov (United States)

    Bakhti, Mostafa; Aggarwal, Shweta; Simons, Mikael

    2014-04-01

    Rapid nerve conduction requires the coating of axons by a tightly packed multilayered myelin membrane. In the central nervous system, myelin is formed from cellular processes that extend from oligodendrocytes and wrap in a spiral fashion around an axon, resulting in the close apposition of adjacent myelin membrane bilayers. In this review, we discuss the physical principles underlying the zippering of the plasma membrane of oligodendrocytes at the cytoplasmic and extracellular leaflet. We propose that the interaction of the myelin basic protein with the cytoplasmic leaflet of the myelin bilayer triggers its polymerization into a fibrous network that drives membrane zippering and protein extrusion. In contrast, the adhesion of the extracellular surfaces of myelin requires the down-regulation of repulsive components of the glycocalyx, in order to uncover weak and unspecific attractive forces that bring the extracellular surfaces into close contact. Unveiling the mechanisms of myelin membrane assembly at the cytoplasmic and extracelluar sites may help to understand how the myelin bilayers are disrupted and destabilized in the different demyelinating diseases.

  1. Prolonged myelination in human neocortical evolution.

    Science.gov (United States)

    Miller, Daniel J; Duka, Tetyana; Stimpson, Cheryl D; Schapiro, Steven J; Baze, Wallace B; McArthur, Mark J; Fobbs, Archibald J; Sousa, André M M; Sestan, Nenad; Wildman, Derek E; Lipovich, Leonard; Kuzawa, Christopher W; Hof, Patrick R; Sherwood, Chet C

    2012-10-09

    Nerve myelination facilitates saltatory action potential conduction and exhibits spatiotemporal variation during development associated with the acquisition of behavioral and cognitive maturity. Although human cognitive development is unique, it is not known whether the ontogenetic progression of myelination in the human neocortex is evolutionarily exceptional. In this study, we quantified myelinated axon fiber length density and the expression of myelin-related proteins throughout postnatal life in the somatosensory (areas 3b/3a/1/2), motor (area 4), frontopolar (prefrontal area 10), and visual (areas 17/18) neocortex of chimpanzees (N = 20) and humans (N = 33). Our examination revealed that neocortical myelination is developmentally protracted in humans compared with chimpanzees. In chimpanzees, the density of myelinated axons increased steadily until adult-like levels were achieved at approximately the time of sexual maturity. In contrast, humans displayed slower myelination during childhood, characterized by a delayed period of maturation that extended beyond late adolescence. This comparative research contributes evidence crucial to understanding the evolution of human cognition and behavior, which arises from the unfolding of nervous system development within the context of an enriched cultural environment. Perturbations of normal developmental processes and the decreased expression of myelin-related molecules have been related to psychiatric disorders such as schizophrenia. Thus, these species differences suggest that the human-specific shift in the timing of cortical maturation during adolescence may have implications for vulnerability to certain psychiatric disorders.

  2. A role of peripheral myelin protein 2 in lipid homeostasis of myelinating Schwann cells.

    Science.gov (United States)

    Zenker, Jennifer; Stettner, Mark; Ruskamo, Salla; Domènech-Estévez, Enric; Baloui, Hasna; Médard, Jean-Jacques; Verheijen, Mark H G; Brouwers, Jos F; Kursula, Petri; Kieseier, Bernd C; Chrast, Roman

    2014-09-01

    Peripheral myelin protein 2 (Pmp2, P2 or Fabp8), a member of the fatty acid binding protein family, was originally described together with myelin basic protein (Mbp or P1) and myelin protein zero (Mpz or P0) as one of the most abundant myelin proteins in the peripheral nervous system (PNS). Although Pmp2 is predominantly expressed in myelinated Schwann cells, its role in glia is currently unknown. To study its function in PNS biology, we have generated a complete Pmp2 knockout mouse (Pmp2(-/-) ). Comprehensive characterization of Pmp2(-/-) mice revealed a temporary reduction in their motor nerve conduction velocity (MNCV). While this change was not accompanied by any defects in general myelin structure, we detected transitory alterations in the myelin lipid profile of Pmp2(-/-) mice. It was previously proposed that Pmp2 and Mbp have comparable functions in the PNS suggesting that the presence of Mbp can partially mask the Pmp2(-/-) phenotype. Indeed, we found that Mbp lacking Shi(-/-) mice, similar to Pmp2(-/-) animals, have preserved myelin structure and reduced MNCV, but this phenotype was not aggravated in Pmp2(-/-) /Shi(-/-) mutants indicating that Pmp2 and Mbp do not substitute each other's functions in the PNS. These data, together with our observation that Pmp2 binds and transports fatty acids to membranes, uncover a role for Pmp2 in lipid homeostasis of myelinating Schwann cells.

  3. Correlation in retinal nerve fibre layer thickness in uveitis and healthy eyes using scanning laser polarimetry and optical coherence tomography.

    Science.gov (United States)

    Bellocq, David; Maucort-Boulch, Delphine; Kodjikian, Laurent; Denis, Philippe

    2016-06-17

    To evaluate the correlation of retinal nerve fibre layer (RNFL) thickness measured using spectral domain optical coherence tomography (SD-OCT) and scanning laser polarimetry (SLP) in uveitic eyes compared with healthy eyes. A descriptive, observational, prospective, consecutive, cross-sectional, controlled, monocentre case series was conducted from May to October 2015. Clinical characteristics, best-corrected visual acuity, intraocular pressure, RNFL thickness measurement with SD-OCT and SLP using GDx variable corneal compensation (GDx VCC) were performed for each patient. An evaluation of anterior chamber inflammation with laser flare-cell meter was also carried out. Correlations between SD-OCT and GDx VCC RNFL measurement were evaluated by linear regression analysis. Fifty-four patients were included and divided into two groups: 50 healthy eyes in 29 patients and 42 uveitic eyes in 25 patients. The mean RNFL thickness was 98.08(±8.42) and 113.21(±20.53) μm in the healthy group and the uveitic group, respectively, when measured with SD-OCT (p<0.001); and 56.43(±5.24) and 58.77(±6.67) μm, respectively, when measured with GDx VCC (p=0.078). There was a strong correlation between total average RNFL thickness measured using SD-OCT and GDX (r=0.48, p<0.001) in healthy eyes but there was no correlation in the uveitic eyes (r=0.2, p=0.19). RNFL thickness was significantly greater when measured using SD-OCT in active uveitis as compared with GDx. There was no correlation between the RNFL thickness measurements obtained using the two techniques in uveitic eyes. The discrepancies between the results suggest that for these patients both techniques should be used in conjunction to obtain an accurate measurement of RNFL. IRB 00008855 Société Française d'Ophtalmologie IRB#1. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Self-Segregation of Myelin Membrane Lipids in Model Membranes

    NARCIS (Netherlands)

    Yurlova, Larisa; Kahya, Nicoletta; Aggarwal, Shweta; Kaiser, Hermann-Josef; Chiantia, Salvatore; Bakhti, Mostafa; Pewzner-Jung, Yael; Ben-David, Oshrit; Futerman, Anthony H.; Bruegger, Britta; Simons, Mikael

    2011-01-01

    Rapid conduction of nerve impulses requires coating of axons by myelin sheaths, which are multilamellar, lipid-rich membranes produced by oligodendrocytes in the central nervous system. To act as an insulator, myelin has to form a stable and firm membrane structure. In this study, we have analyzed t

  5. On the Myelin-Axon Interaction : Structural Studies of Myelin-Associated Glycoprotein, Olfactomedin-1 and the Nogo Receptor

    NARCIS (Netherlands)

    Pronker, M.F.

    2017-01-01

    In most parts of the body, nerves regenerate after injury. However, in the brain and spinal cord regeneration is very limited. One of the causes for this lack of regeneration is the presence of myelin proteins that inhibit outgrowth of neuronal projections. Three myelin-associated inhibitors of

  6. Intrinsic innervation of the stomach of the fetal pig: an immunohistochemical study of VIP-immunoreactive nerve fibres and cell bodies.

    Science.gov (United States)

    van Ginneken, C; Weyns, A; van Meir, F; Ooms, L; Verhofstad, A

    1996-12-01

    Using an immunohistochemical technique, the presence and distribution of vasoactive intestinal polypeptide (VIP) was investigated in cryostat sections, both tangential and transverse, of the fetal pig's stomach. In all fetuses and in all gastric segments investigated, VIP-like immunoreactive (IR) nerve-cell bodies were seen in all intramural ganglia, and VIP-IR nerve fibres were found in all layers of the gastric wall except the tunica serosa. Consequently, VIP-IR nerve fibres were found to form a periglandular network, to accompany arterioles, to interconnect the intramural ganglia, to encircle both VIP-IR-negative and -positive neurons, and were found in all muscle layers. Despite the fact that VIP-IR seems to be restricted to the intramural nervous elements, some non-specific-reacting VIP-IR glandular cells were noticed in the basal parts of the fundic, antral and pyloric gastric glands. The distribution pattern of VIP in the fetal pig resembles that of the adult pig. This suggests a possible functional role for VIP during fetal life and/or puts forward the suggestion that the stomach of a fetal pig from the second half of the gestation period is prepared, from then on, for postnatal function. High similarities with regard to the general distribution pattern of VIP in the stomach have also been noted between the fetal pig and humans, proving once more that the fetal pig can serve as a good animal model in several research areas. Finally, the morphological data provided here may, combined with the physiological significance of VIP, contribute to a better insight into the physiopathology of economically important gastro-intestinal disorders in the pig, such as gastric ulceration.

  7. Mesenchymal stem cells modified with nerve growth factor improve recovery of the inferior alveolar nerve after mandibular distraction osteogenesis in rabbits.

    Science.gov (United States)

    Wang, L; Zhao, Y; Cao, J; Yang, X; Lei, D

    2015-03-01

    Distraction osteogenesis is widely used in the treatment of bony deformities and defects. However, injury to the inferior alveolar nerve is a concern. Our aim was to investigate the feasibility of using lentiviral-mediated human nerve growth factor beta (hNGFβ) of the inferior alveolar nerve in mandibular distraction osteogenesis in rabbits. To achieve this, mesenchymal stem cells (MSC) from the bone marrow of rabbit mandibles were isolated and genetically engineered using recombinant lentiviral vector containing hNGFβ. Twenty New Zealand white rabbits underwent mandibular distraction osteogenesis, and 5 million MSC transduced with hNGFβ-vector or control vector were transplanted around the nerve in the gap where the bone had been fractured during the operation (n=10 in each group). After gradual distraction, samples of the nerve were harvested for histological and histomorphometric analysis. We found that the genetically engineered MSC transduced by the lentiviral vector were able to secrete hNGFβ at physiologically relevant concentrations as measured by ELISA. Histological examination of the nerve showed more regenerating nerve fibres and less myelin debris in the group in which hNGFβ-modified MSC had been implanted than in the control group. Histomorphometric analysis of the nerve showed increased density of myelinated fibres in the group in which hNGFβ-modified MSC had been implanted than in the control group. The data suggest that implantation of hNGFβ-modified MSC can accelerate the morphological recovery of the inferior alveolar nerve during mandibular distraction osteogenesis in rabbits. The use of lentiviral-mediated gene treatment to deliver hNGFβ through MSC may be a promising way of minimising injury to the nerve.

  8. PITUITARY ADENOMA- VISUAL FIELDS, RETINAL NERVE FIBRE LAYER AND GANGLION CELL-INNER PLEXIFORM LAYER THICKNESS ANALYSIS- A CORRELATIONAL STUDY

    Directory of Open Access Journals (Sweden)

    Jyoti Shetty

    2017-07-01

    Full Text Available BACKGROUND Pituitary adenoma is a benign and most common tumour of the pituitary gland. It is also the most common parachiasmal tumour and accounts for approximately 10-15% of primary intracranial neoplasms. It has an annual incidence rate of 0.8–8 per 1,00,000 population. Pituitary adenomas are classified as functional and non-functional based on their hormonal activity. Functional adenomas are usually detected earlier due to clinical manifestations produced by excess of hormones. The aim of the study is to analyse visual acuity, visual fields, RNFL thickness and GCIPL thickness on optical coherence tomography (OCT and to find a correlation between these parameters and tumour volume in patients diagnosed with pituitary adenoma. MATERIALS AND METHODS 48 patients diagnosed with pituitary adenoma confirmed by MRI scan underwent complete ophthalmic evaluation (visual acuity, slit-lamp examination, fundus evaluation, perimetry using 30-2 SITA FAST strategy, (Humphrey Field Analyzer; Carl-Zeiss Meditec, Dublin, CA, and OCT of disc (for retinal nerve fibre layer- RNFL thickness and macula (for ganglion cell-inner plexiform layer (GCIPL thickness using Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA at Bangalore West Lions Super Speciality Eye Hospital, between June 2014 to June 2016. Various parameters like Mean Deviation (MD, Pattern Standard Deviation (PSD and RNFL and GCIPL thickness on OCT were analysed and correlated with each other. RESULTS Mean tumour volume in patients was 12.26 ± 15.8 cm3 . Most of the patients had visual acuity 6/18 or better. Bitemporal hemianopia was seen in only 5 (12.2% patients. Superotemporal quadrantanopia, arcuate defects, tubular fields and homonymous hemianopia were the other field defects seen. Total and pattern deviation plot of visual fields correlated well with tumour volume and visual acuity. On visual field analysis, the MD (-8.18 ± 8.65 dB was depressed compared to the control group (-2.0 ± 1.8 dB, and

  9. Towards ultra-high resolution fibre tract mapping of the human brain - registration of polarised light images and reorientation of fibre vectors

    Directory of Open Access Journals (Sweden)

    Christoph Palm

    2010-04-01

    Full Text Available Polarised Light Imaging (PLI utilises the birefringence of the myelin sheaths in order to visualise the orientation of nerve fibres in microtome sections of adult human post-mortem brains at ultra-high spatial resolution. The preparation of post-mortem brains for PLI involves fixation, freezing and cutting into 100-micrometer thick sections. Hence, geometrical distortions of histological sections are inevitable and have to be removed for 3D reconstruction and subsequent fibre tracking. We here present a processing pipeline for 3D reconstruction of these sections using PLI derived multimodal images of post-mortem brains. Blockface images of the brains were obtained during cutting; they serve as reference data for alignment and elimination of distortion artefacts. In addition to the spatial image transformation, fibre orientation vectors were reoriented using the transformation fields, which consider both affine and subsequent non-linear registration. The application of this registration and reorientation approach results in a smooth fibre vector field, which reflects brain morphology. PLI combined with 3D reconstruction and fibre tracking is a powerful tool for human brain mapping. It can also serve as an independent method for evaluating in vivo fibre tractography.

  10. Structural and dynamical properties of reconstituted myelin sheaths in the presence of myelin proteins MBP and P2 studied by neutron scattering.

    Science.gov (United States)

    Knoll, Wiebke; Peters, Judith; Kursula, Petri; Gerelli, Yuri; Ollivier, Jacques; Demé, Bruno; Telling, Mark; Kemner, Ewout; Natali, Francesca

    2014-01-21

    The myelin sheath is a tightly packed, multilayered membrane structure wrapped around selected nerve axons in the central and the peripheral nervous system. Because of its electrical insulation of the axons, which allows fast, saltatory nerve impulse conduction, myelin is crucial for the proper functioning of the vertebrate nervous system. A subset of myelin-specific proteins is well-defined, but their influence on membrane dynamics, i.e. myelin stability, has not yet been explored in detail. We investigated the structure and the dynamics of reconstituted myelin membranes on a pico- to nanosecond timescale, influenced by myelin basic protein (MBP) and myelin protein 2 (P2), using neutron diffraction and quasi-elastic neutron scattering. A model for the scattering function describing molecular lipid motions is suggested. Although dynamical properties are not affected significantly by MBP and P2 proteins, they act in a highly synergistic manner influencing the membrane structure.

  11. The Changes in Rats with Sciatic Nerve Crush Injury Supplemented with Evening Primrose Oil: Behavioural, Morphologic, and Morphometric Analysis

    Directory of Open Access Journals (Sweden)

    Danial Ramli

    2017-01-01

    Full Text Available Nerve crush injuries are commonly used models for axonotmesis to examine peripheral nerve regeneration. As evening primrose oil (EPO is rich in omega-6 essential fatty acid component and gamma-linolenic acid, studies have shown the potential role of EPO in myelination. Seventy-two healthy adult Sprague-Dawley rats were classified into three groups: normal group, control group, and experimental group. The result indicates that there was significant difference in toe-spreading reflex between the normal and the control groups (1.9±0.031, p<0.05 and the normal and the EPO groups (0.4±0.031, p<0.05 and significant difference between EPO and the control groups (1.5±0.031, p<0.05. Regeneration of axons and myelin in nerve fibre in the EPO-treated group developed better and faster than in the control group. In the control group, the shape of the axon was irregular with a thinner myelin sheath. In the experimental group, the shape of the axons, the thickness of the myelin sheath, and the diameter of the axons were almost the same as in the normal group. In conclusion, EPO supplementation may be beneficial as a therapeutic option for disturbances of nerve interaction.

  12. How strong is the relationship between glaucoma, the retinal nerve fibre layer, and neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis?

    Science.gov (United States)

    Jones-Odeh, E; Hammond, C J

    2015-10-01

    Glaucoma is a neurodegenerative disorder with established relationships with ocular structures such as the retinal nerve fibre layer (RNFL) and the ganglion cell layer (GCL). Ocular imaging techniques such as optical coherence tomography (OCT) allow for quantitative measurement of these structures. OCT has been used in the monitoring of glaucoma, as well as investigating other neurodegenerative conditions such as Alzheimer's disease (AD) and multiple sclerosis (MS). In this review, we highlight the association between these disorders and ocular structures (RNFL and GCL), examining their usefulness as biomarkers of neurodegeneration. The average RNFL thickness loss in patients with AD is 11 μm, and 7 μm in MS patients. Most of the studies investigating these changes are cross-sectional. Further longitudinal studies are required to assess sensitivity and specificity of these potential ocular biomarkers to neurodegenerative disease progression.

  13. Optimal myelin elongation relies on YAP activation by axonal growth and inhibition by Crb3/Hippo pathway

    Science.gov (United States)

    Fernando, Ruani N.; Cotter, Laurent; Perrin-Tricaud, Claire; Berthelot, Jade; Bartolami, Sylvain; Pereira, Jorge A.; Gonzalez, Sergio; Suter, Ueli; Tricaud, Nicolas

    2016-01-01

    Fast nerve conduction relies on successive myelin segments that electrically isolate axons. Segment geometry—diameter and length—is critical for the optimization of nerve conduction and the molecular mechanisms allowing this optimized geometry are partially known. We show here that peripheral myelin elongation is dynamically regulated by stimulation of YAP (Yes-associated protein) transcription cofactor activity during axonal elongation and limited by inhibition of YAP activity via the Hippo pathway. YAP promotes myelin and non-myelin genes transcription while the polarity protein Crb3, localized at the tips of the myelin sheath, activates the Hippo pathway to temper YAP activity, therefore allowing for optimal myelin growth. Dystrophic Dy2j/2j mice mimicking human peripheral neuropathy with reduced internodal lengths have decreased nuclear YAP which, when corrected, leads to longer internodes. These data show a novel mechanism controlling myelin growth and nerve conduction, and provide a molecular ground for disease with short myelin segments. PMID:27435623

  14. Vasopressin content in the cerebrospinal fluid and fluid perfusing cerebral ventricles in rats after the afferent vagus nerve fibres stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Orlowska-Majdak, M.; Traczyk, W.Z. [Akademia Medyczna, Lodz (Poland). Katedra Fizjologii

    1996-12-31

    Experiments were carried out on male rats in urethane anaesthesia. Cerebroventricular system was perfused with McIlwain-Rodniht`s solution from lateral ventricles to cerebellomedullary cistern. Both vagus nerves were cut and the central ends of the nerves were electrically stimulated during the collection of the third 30-min portion of perfusing fluid. Vasopressin (AVP) was determined by radioimmunoassay in samples of the cerebrospinal fluid (CSF) (the first portion) and in five successive samples of the perfusing fluid. AVP concentration in the CSF was several times greater than in the fluid perfusing cerebral ventricles. Alternate electrical stimulation of both vagus nerves did not change considerably the release of AVP into the fluid perfusing the cerebral ventricles in rat, although a certain upward tendency could be observed. It seems that only AVP raised in circulating blood and not in CSF, after vagus nerves stimulation may act on the central nervous structures. (author). 37 refs, 3 figs, 1 tab.

  15. Small fibre function in patients with meralgia paresthetica.

    Science.gov (United States)

    Schestatsky, Pedro; Lladó-Carbó, Estela; Casanova-Molla, Jordi; Alvarez-Blanco, Silvio; Valls-Solé, Josep

    2008-10-15

    Patients with meralgia paresthetica (MP) usually experience not only paraesthesias and decreased tactile sensation, but also painful dysesthesias in the distribution of the lateral femoral cutaneous nerve (LFCN). We aimed at assessing whether there is any functional impairment of small fibres of the LFCN in patients with MP. We carried out a clinical, psychophysical and neurophysiological study in 14 patients with MP and 14 healthy control subjects. We assessed pain in the last 2months, thermal thresholds and small fibres conduction by using a visual analogue scale (VAS-pain), quantitative sensory testing (QST) and contact heat-evoked potentials (CHEPs), respectively. Data were grouped for control subjects, non-affected side and affected side of patients with MP. Patients marked a VAS-pain of 4.3+/-1.5. In the affected side, thresholds for warm and heat pain sensations were elevated and the amplitude of CHEPs was reduced in comparison to the non-affected side and controls (Bonferroni's test; p0.05 for all correlations). Besides the involvement of large myelinated fibres, partial loss of function in small fibres may also account for the painful symptoms of patients with MP, especially in those with longer disease duration.

  16. Insulin influenced expression of myelin proteins in diabetic peripheral neuropathy.

    Science.gov (United States)

    Rachana, Kuruvanthe S; Manu, Mallahalli S; Advirao, Gopal M

    2016-08-26

    Diabetic peripheral neuropathy (DPN) is one of the downstream complications of diabetes. This complication is caused by the deficiency of insulin action and subsequent hyperglycemia, but the details of their pathogenesis remain unclear. Hence, it is of critical importance to understand how such hormonal variation affects the expression of myelin proteins such as myelin basic protein (MBP) and myelin associated glycoprotein (MAG) in the peripheral nerve. An earlier report from our lab has demonstrated the expression of insulin receptors (IR) in Schwann cells (SCs) of sciatic nerve. To assess the neurotrophic role of insulin in diabetic neuropathy, we studied the expression of these myelin proteins under control, DPN and insulin treated DPN subjects at developmental stages. Further, the expression of these myelin proteins was correlated with the expression of insulin receptor. Expression of myelin proteins was significantly reduced in the diabetic model compared to normal, and upregulated in insulin treated diabetic rats. Similarly, an in vitro study was also carried out in SCs grown at high glucose and insulin treated conditions. The expression pattern of myelin proteins in SCs was comparable to that of in vivo samples. In addition, quantitative study of myelin genes by real time PCR has also showed the significant expression pattern change in the insulin treated and non-treated DPN subjects. Taken together, these results corroborate the critical importance of insulin as a neurotrophic factor in demyelinized neurons in diabetic neuropathy.

  17. Influence of atypical retardation pattern on the peripapillary retinal nerve fibre distribution assessed by scanning laser polarimetry and optical coherence tomography.

    Science.gov (United States)

    Schrems, W A; Laemmer, R; Hoesl, L M; Horn, F K; Mardin, C Y; Kruse, F E; Tornow, R P

    2011-10-01

    To investigate the influence of atypical retardation pattern (ARP) on the distribution of peripapillary retinal nerve fibre layer (RNFL) thickness measured with scanning laser polarimetry in healthy individuals and to compare these results with RNFL thickness from spectral domain optical coherence tomography (OCT) in the same subjects. 120 healthy subjects were investigated in this study. All volunteers received detailed ophthalmological examination, GDx variable corneal compensation (VCC) and Spectralis-OCT. The subjects were divided into four subgroups according to their typical scan score (TSS): very typical with TSS=100, typical with 99 ≥ TSS ≥ 91, less typical with 90 ≥ TSS ≥ 81 and atypical with TSS ≤ 80. Deviations from very typical normal values were calculated for 32 sectors for each group. There was a systematic variation of the RNFL thickness deviation around the optic nerve head in the atypical group for the GDxVCC results. The highest percentage deviation of about 96% appeared temporal with decreasing deviation towards the superior and inferior sectors, and nasal sectors exhibited a deviation of 30%. Percentage deviations from very typical RNFL values decreased with increasing TSS. No systematic variation could be found if the RNFL thickness deviation between different TSS-groups was compared with the OCT results. The ARP has a major impact on the peripapillary RNFL distribution assessed by GDx VCC; thus, the TSS should be included in the standard printout.

  18. Differential expression of the L- and S-isoforms of myelin associated glycoprotein (MAG) in oligodendrocyte unit phenotypes in the adult rat anterior medullary velum.

    Science.gov (United States)

    Butt, A M; Ibrahim, M; Gregson, N; Berry, M

    1998-04-01

    We have previously demonstrated differences in the expression of carbonic anhydrase II (CAII) in oligodendrocyte units myelinating small and large diameter fibres in the anterior medullary velum (AMV) of the adult rat (each unit comprises the cell body, processes and myelin sheaths). Others have indicated that myelin composition may also vary with respect to myelin basic protein (MBP) and proteolipid protein (PLP), and the small (S)- and large (L)-isoforms of myelin associated glycoprotein (MAG). In this study, we have determined the expression of myelin proteins in oligodendrocyte unit phenotypes I-IV, which myelinate fibres ranging in diameter from 0.3-12 microns diameter in the AMV, by using double immunolabelling for Rip, which labels entire units, and MBP, PLP, myelin oligodendrocyte glycoprotein (MOG), L-MAG and S-MAG. We show differences in the expression of L- and S-MAG in units which myelinate different diameter fibres: (1) type I/II units myelinating small diameter fibres had a L-MAG+/S-MAG-/CAII+ phenotype; (2) type II/III units myelinating different diameter fibres had a L-MAG+/S-MAG+/CAII+ phenotype; (3) type III/IV units myelinated large diameter fibres had a L-MAG+/S-MAG+/CAII- phenotype. All units, irrespective of fibre diameter, expressed Rip, MBP, PLP and MOG. The results indicate that type I-IV units may be variants of a single oligodendrocyte population and that phenotypic differences are determined by the diameter of fibres within the unit. The possible significance of metabolic and biochemical differences between oligodendrocytes myelinating small and large diameter axons are discussed with reference to the pathology of demyelination.

  19. Simulation of Myelinated Nerve Conduction Block Induced by Electrical Stimulus of Monopolar and Bipolar Electrodes%不同电极电刺激对有髓神经传导阻断影响的仿真研究

    Institute of Scientific and Technical Information of China (English)

    孙晨; 张旭; 任朝晖; 董谦; 崔南

    2011-01-01

    目的 比较双电极双向脉冲刺激和单电极双向脉冲刺激在神经纤维传导阻断中的阻断阈值以及对神经纤维的损伤,并通过该研究为电刺激促进脊髓损伤后下尿路功能重建的动物实验选择最优的刺激模式.方法 以有限长单根有髓神经为研究对象,以两栖动物的有髓神经纤维FrankenhaeuserHuxley(F-H)模型为仿真研究基础.结果 比较了单、双电极在双向对称方波以及双向间歇方波作用下的阻断阈值以及单双电极在同样的刺激条件下(包括刺激波形、频率以及电流强度)产生的离子电流强度大小.结论 双电极的阻断阈值大于单电极的阻断阈值.在相同的刺激条件下,双电极双向脉冲刺激对神经的损伤程度小于单电极双向脉冲刺激.%To compare the thresholds and the degrees of axonal injury caused by the impulse stimulations of monopolar and bipolar electrodes in simulation study of nerve conduction block. This study aimed to find an optimal stimulus pattern for the animal experiment of restoring the normal function of lower urinary tract after spinal cord injury through electrical stimulation. We used the myelinated nerve fiber with limited length as the research object, and the Frankenhaeuser-Huxley ( F - H) model for mammal' s marrow nerve fiber as the basic system. We simulated the symmetry biphasic pulses and intermittent biphasic pulses to compare the block threshold and ionic current intensity generated by monopolar and bipolar electrodes. The simulating results indicated that the conduction block threshold induced by bipolar electrode is higher than that of monopolar electrode, and monopolar electrode caused greater damage to the axon when the other situations were same.

  20. The foetal pig pineal gland is richly innervated by nerve fibres containing catecholamine-synthesizing enzymes, neuropeptide Y (NPY) and C-terminal flanking peptide of NPY, but it does not secrete melatonin.

    Science.gov (United States)

    Bulc, Michał; Lewczuk, Bogdan; Prusik, Magdalena; Całka, Jarosław

    2013-05-01

    Innervation of the mammalian pineal gland during prenatal development is poorly recognized. Therefore, immunofluorescence studies of the pineals of 70- and 90-day-old foetuses of the domestic pig were performed using antibodies against tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DβH), neuropeptide Y (NPY) and C-terminal flanking peptide of NPY (CPON). The investigated glands were supplied by numerous nerve fibres containing TH and DβH. The density of these fibres was higher in the distal and middle parts of the gland than in the proximal one. NPY and CPON were identified in the majority of DβH-positive fibres as well as in a small population of DβH-negative fibres localized mainly in the proximal part of the pineal. The immunoreactive fibres were more numerous in 90-day-old foetuses than in 70-day-old ones. The effect of norepinephrine on melatonin secretion by the foetal pineals in the short-term organ culture was studied to determine the role of DβH-positive fibres during prenatal life. For the same purpose melatonin was measured in the blood in the umbilical cords and in the jugular vein of the mother. The pineals of both groups of foetuses did not secrete melatonin in the organ culture, independently of the presence or absence of norepinephrine in the medium. Melatonin concentrations in the blood in the umbilical cords of foetuses from the same litter and in the jugular vein of their mother were similar. The presence of adrenergic nerve fibres in the pig pineal during gestation does not seem to be associated with the control of melatonin secretion.

  1. A laminin-2-derived peptide promotes early-stage peripheral nerve regeneration in a dual-component artificial nerve graft.

    Science.gov (United States)

    Seo, S Y; Min, S-K; Bae, H K; Roh, D; Kang, H K; Roh, S; Lee, S; Chun, G-S; Chung, D-J; Min, B-M

    2013-10-01

    The DLTIDDSYWYRI motif (Ln2-P3) of human laminin-2 has been reported to promote PC12 cell attachment through syndecan-1; however, the in vivo effects of Ln2-P3 have not been studied. In Schwann cells differentiated from skin-derived precursors, the peptide was effective in promoting cell attachment and spreading in vitro. To examine the effects of Ln2-P3 in peripheral nerve regeneration in vivo, we developed a dual-component poly(p-dioxanone) (PPD)/poly(lactic-co-glycolic acid) (PLGA) artificial nerve graft. The novel graft was coated with scrambled peptide or Ln2-P3 and used to bridge a 10 mm defect in rat sciatic nerves. The dual-component nerve grafts provided tensile strength comparable to that of a real rat nerve trunk. The Ln2-P3-treated grafts promoted early-stage peripheral nerve regeneration by enhancing the nerve regeneration rate and significantly increased the myelinated fibre density compared with scrambled peptide-treated controls. These findings indicate that Ln2-P3, combined with tissue-engineering scaffolds, has potential biomedical applications in peripheral nerve injury repair. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Structural insight into the function of myelin basic protein as a ligand for integrin αMβ2

    DEFF Research Database (Denmark)

    Stapulionis, Romualdas; Oliveira, Cristiano; Gjelstrup, Mikkel Carstensen

    2008-01-01

    Multiple sclerosis (MS) is an inflammatory disease where phagocytic cells infiltrate the nerve tissue and act as terminal agents in destruction of the myelin sheath. However, the mechanism that triggers the ability of these cells to recognize myelin remains obscure. We show that myelin basic...

  3. Transcriptional Expression of Myelin Basic Protein in Oligodendrocytes Depends on Functional Syntaxin 4 : a Potential Correlation with Autocrine Signaling

    NARCIS (Netherlands)

    Bijlard, Marjolein; Klunder, Lammert; de Jonge, Jenny C.; Nomden, Anita; Tyagi, Sanjay; de Vries, Hans; Hoekstra, Dick; Baron, Wia

    2015-01-01

    Myelination of axons by oligodendrocytes is essential for saltatory nerve conduction. To form myelin membranes, a coordinated synthesis and subsequent polarized transport of myelin components are necessary. Here, we show that as part of the mechanism to establish membrane polarity, oligodendrocytes

  4. Myelin membrane assembly is driven by a phase transition of myelin basic proteins into a cohesive protein meshwork.

    Directory of Open Access Journals (Sweden)

    Shweta Aggarwal

    Full Text Available Rapid conduction of nerve impulses requires coating of axons by myelin. To function as an electrical insulator, myelin is generated as a tightly packed, lipid-rich multilayered membrane sheath. Knowledge about the mechanisms that govern myelin membrane biogenesis is required to understand myelin disassembly as it occurs in diseases such as multiple sclerosis. Here, we show that myelin basic protein drives myelin biogenesis using weak forces arising from its inherent capacity to phase separate. The association of myelin basic protein molecules to the inner leaflet of the membrane bilayer induces a phase transition into a cohesive mesh-like protein network. The formation of this protein network shares features with amyloid fibril formation. The process is driven by phenylalanine-mediated hydrophobic and amyloid-like interactions that provide the molecular basis for protein extrusion and myelin membrane zippering. These findings uncover a physicochemical mechanism of how a cytosolic protein regulates the morphology of a complex membrane architecture. These results provide a key mechanism in myelin membrane biogenesis with implications for disabling demyelinating diseases of the central nervous system.

  5. Myelin membrane assembly is driven by a phase transition of myelin basic proteins into a cohesive protein meshwork.

    Science.gov (United States)

    Aggarwal, Shweta; Snaidero, Nicolas; Pähler, Gesa; Frey, Steffen; Sánchez, Paula; Zweckstetter, Markus; Janshoff, Andreas; Schneider, Anja; Weil, Marie-Theres; Schaap, Iwan A T; Görlich, Dirk; Simons, Mikael

    2013-01-01

    Rapid conduction of nerve impulses requires coating of axons by myelin. To function as an electrical insulator, myelin is generated as a tightly packed, lipid-rich multilayered membrane sheath. Knowledge about the mechanisms that govern myelin membrane biogenesis is required to understand myelin disassembly as it occurs in diseases such as multiple sclerosis. Here, we show that myelin basic protein drives myelin biogenesis using weak forces arising from its inherent capacity to phase separate. The association of myelin basic protein molecules to the inner leaflet of the membrane bilayer induces a phase transition into a cohesive mesh-like protein network. The formation of this protein network shares features with amyloid fibril formation. The process is driven by phenylalanine-mediated hydrophobic and amyloid-like interactions that provide the molecular basis for protein extrusion and myelin membrane zippering. These findings uncover a physicochemical mechanism of how a cytosolic protein regulates the morphology of a complex membrane architecture. These results provide a key mechanism in myelin membrane biogenesis with implications for disabling demyelinating diseases of the central nervous system.

  6. Gap junction disorders of myelinating cells.

    Science.gov (United States)

    Kleopa, Kleopas A; Orthmann-Murphy, Jennifer; Sargiannidou, Irene

    2010-01-01

    Gap junctions (GJs) are channels that allow the diffusion of ions and small molecules across apposed cell membranes. In peripheral nerves, Schwann cells express the GJ proteins connexin32 (Cx32) and Cx29, which have distinct localizations. Cx32 forms GJs through non-compact myelin areas, whereas Cx29 forms hemichannels in the innermost layers of myelin apposing axonal Shaker-type K+ channels. In the CNS, rodent oligodendrocytes express Cx47, Cx32 and Cx29. Cx47 is expressed by all types of oligodendrocytes both in the white and grey matter and forms GJs on cell bodies and proximal processes, as well as most of the intercellular channels with astrocytes. Cx32 is expressed mostly by white matter oligodendrocytes and is localized in the myelin sheath of large diameter fibers. Cx29, and its human ortholog Cx31.3, appear to be restricted to oligodendrocytes that myelinate small caliber fibers, likely forming hemichannels. The importance of intercellular and intracellular GJs in myelinating cells are demonstrated by human disorders resulting from mutations affecting GJ proteins. The X-linked Charcot Marie Tooth disease (CMT1X) is caused by hundreds of mutations affecting Cx32. Patients with CMT1X present mainly with a progressive peripheral neuropathy, which may be accompanied by CNS myelin dysfunction. Mutations in Cx47 may cause a devastating leukodystrophy called Pelizaeus-Merzbacher-like disease or a milder spastic paraplegia. In addition, CNS demyelination may be caused by defects in genes expressing astrocytic GJ proteins, which are essential for oligodendrocytes. Findings from in vitro and in vivo models of these disorders developed over the last decade indicate that most mutations cause loss of function and an inability of the mutant connexins to form functional GJs. Here we review the clinical, genetic, and neurobiological aspects of GJ disorders affecting the PNS and CNS myelinating cells.

  7. Nogo-A and myelin-associated glycoprotein differently regulate oligodendrocyte maturation and myelin formation.

    Science.gov (United States)

    Pernet, Vincent; Joly, Sandrine; Christ, Franziska; Dimou, Leda; Schwab, Martin E

    2008-07-16

    Nogo-A is one of the most potent oligodendrocyte-derived inhibitors for axonal regrowth in the injured adult CNS. However, the physiological function of Nogo-A in development and in healthy oligodendrocytes is still unknown. In the present study, we investigated the role of Nogo-A for myelin formation in the developing optic nerve. By quantitative real-time PCR, we found that the expression of Nogo-A increased faster in differentiating oligodendrocytes than that of the major myelin proteins MBP (myelin basic protein), PLP (proteolipid protein)/DM20, and CNP (2',3'-cyclic nucleotide 3'-phosphodiesterase). The analysis of optic nerves and cerebella of mice deficient for Nogo-A (Nogo-A(-/-)) revealed a marked delay of oligodendrocyte differentiation, myelin sheath formation, and axonal caliber growth within the first postnatal month. The combined deletion of Nogo-A and MAG caused a more severe transient hypomyelination. In contrast to MAG(-/-) mice, Nogo-A(-/-) mutants did not present abnormalities in the structure of myelin sheaths and Ranvier nodes. The common binding protein for Nogo-A and MAG, NgR1, was exclusively upregulated in MAG(-/-) animals, whereas the level of Lingo-1, a coreceptor, remained unchanged. Together, our results demonstrate that Nogo-A and MAG are differently involved in oligodendrocyte maturation in vivo, and suggest that Nogo-A may influence also remyelination in pathological conditions such as multiple sclerosis.

  8. Structural Transition in Myelin Membrane as Initiator of Multiple Sclerosis.

    Science.gov (United States)

    Shaharabani, Rona; Ram-On, Maor; Avinery, Ram; Aharoni, Rina; Arnon, Ruth; Talmon, Yeshayahu; Beck, Roy

    2016-09-21

    In demyelinating diseases such as multiple sclerosis, disrupted myelin structures impair the functional role of the sheath as an insulating layer for proper nerve conduction. Though the etiology and recovery pathways remain unclear, in vivo studies show alterations in the lipid and the adhesive protein (myelin basic protein, MBP) composition. We find that in vitro cytoplasmic myelin membranes with modified lipid composition and low MBP concentration, as in demyelinating disease, show structural instabilities and pathological phase transition from a lamellar to inverted hexagonal, which involve enhanced local curvature. Similar curvatures are also found in vivo in diseased myelin sheaths. In addition, MBP dimers form a correlated mesh-like network within the inner membrane space, only in the vicinity of native lipid composition. These findings delineate the distinct functional roles of dominant constituents in cytoplasmic myelin sheaths, and shed new light on mechanisms disrupting lipid-protein complexes in the diseased state.

  9. Molecular evolution of myelin basic protein, an abundant structural myelin component.

    Science.gov (United States)

    Nawaz, Schanila; Schweitzer, Jörn; Jahn, Olaf; Werner, Hauke B

    2013-08-01

    Rapid nerve conduction in jawed vertebrates is facilitated by the myelination of axons, which evolved in ancient cartilaginous fish. We aim to understand the coevolution of myelin and the major myelin proteins. We found that myelin basic protein (MBP) derived from living cartilaginous fish (sharks and rays) associated with the plasma membrane of glial cells similar to the phosphatidylinositol (4,5)-bisphosphate (PIP₂)-binding marker PH-PLCδ1, and that ionomycin-induced PIP₂-hydrolysis led to its cellular redistribution. We identified two paralogous mbp genes in multiple teleost species, consistent with a genome duplication at the root of the teleost clade. Zebrafish mbpb is organized in a complex transcription unit together with the unrelated gene-of-the-oligodendrocyte-lineage (golli) while mbpa does not encode GOLLI. Moreover, the embryonic expression of mbpa and mbpb differed, indicating functional specialization after duplication. However, both mbpa and mbpb-mRNAs were detected in mature oligodendrocytes and Schwann cells, MBPa and MBPb were mass spectrometrically identified in zebrafish myelin, both associated with the plasma membrane via PIP₂, and the ratio of nonsynonymous to synonymous nucleotide-substitution rates (Ka/Ks) was low. Together, this indicates selective pressure to conserve many aspects of the cellular expression and function of MBP across vertebrate species. We propose that the PIP₂-binding function of MBP is evolutionarily old and that its emergence in ancient gnathostomata provided glial cells with the competence to myelinate.

  10. Myelin, myelin-related disorders, and psychosis.

    Science.gov (United States)

    Mighdoll, Michelle I; Tao, Ran; Kleinman, Joel E; Hyde, Thomas M

    2015-01-01

    The neuropathological basis of schizophrenia and related psychoses remains elusive despite intensive scientific investigation. Symptoms of psychosis have been reported in a number of conditions where normal myelin development is interrupted. The nature, location, and timing of white matter pathology seem to be key factors in the development of psychosis, especially during the critical adolescent period of association area myelination. Numerous lines of evidence implicate myelin and oligodendrocyte function as critical processes that could affect neuronal connectivity, which has been implicated as a central abnormality in schizophrenia. Phenocopies of schizophrenia with a known pathological basis involving demyelination or dysmyelination may offer insights into the biology of schizophrenia itself. This article reviews the pathological changes in white matter of patients with schizophrenia, as well as demyelinating diseases associated with psychosis. In an attempt to understand the potential role of dysmyelination in schizophrenia, we outline the evidence from a number of both clinically-based and post-mortem studies that provide evidence that OMR genes are genetically associated with increased risk for schizophrenia. To further understand the implication of white matter dysfunction and dysmyelination in schizophrenia, we examine diffusion tensor imaging (DTI), which has shown volumetric and microstructural white matter differences in patients with schizophrenia. While classical clinical-neuropathological correlations have established that disruption in myelination can produce a high fidelity phenocopy of psychosis similar to schizophrenia, the role of dysmyelination in schizophrenia remains controversial.

  11. The phylogeny of invertebrates and the evolution of myelin.

    Science.gov (United States)

    Roots, Betty I

    2008-05-01

    Current concepts of invertebrate phylogeny are reviewed. Annelida and Arthropoda, previously regarded as closely related, are now placed in separate clades. Myelin, a sheath of multiple layers of membranes around nerve axons, is found in members of the Annelida, Arthropoda and Chordata. The structure, composition and function of the sheaths in Annelida and Arthropoda are examined and evidence for the separate evolutionary origins of myelin in the three clades is presented. That myelin has arisen independently at least three times, namely in Annelids, Arthropodas and Chordates, provides a remarkable example of convergent evolution.

  12. YAP/TAZ initiate and maintain Schwann cell myelination

    Science.gov (United States)

    Grove, Matthew; Kim, Hyukmin; Santerre, Maryline; Krupka, Alexander J; Han, Seung Baek; Zhai, Jinbin; Cho, Jennifer Y; Park, Raehee; Harris, Michele; Kim, Seonhee; Sawaya, Bassel E; Kang, Shin H; Barbe, Mary F; Cho, Seo-Hee; Lemay, Michel A; Son, Young-Jin

    2017-01-01

    Nuclear exclusion of the transcriptional regulators and potent oncoproteins, YAP/TAZ, is considered necessary for adult tissue homeostasis. Here we show that nuclear YAP/TAZ are essential regulators of peripheral nerve development and myelin maintenance. To proliferate, developing Schwann cells (SCs) require YAP/TAZ to enter S-phase and, without them, fail to generate sufficient SCs for timely axon sorting. To differentiate, SCs require YAP/TAZ to upregulate Krox20 and, without them, completely fail to myelinate, resulting in severe peripheral neuropathy. Remarkably, in adulthood, nuclear YAP/TAZ are selectively expressed by myelinating SCs, and conditional ablation results in severe peripheral demyelination and mouse death. YAP/TAZ regulate both developmental and adult myelination by driving TEAD1 to activate Krox20. Therefore, YAP/TAZ are crucial for SCs to myelinate developing nerve and to maintain myelinated nerve in adulthood. Our study also provides a new insight into the role of nuclear YAP/TAZ in homeostatic maintenance of an adult tissue. DOI: http://dx.doi.org/10.7554/eLife.20982.001 PMID:28124973

  13. YAP/TAZ initiate and maintain Schwann cell myelination.

    Science.gov (United States)

    Grove, Matthew; Kim, Hyukmin; Santerre, Maryline; Krupka, Alexander J; Han, Seung Baek; Zhai, Jinbin; Cho, Jennifer Y; Park, Raehee; Harris, Michele; Kim, Seonhee; Sawaya, Bassel E; Kang, Shin H; Barbe, Mary F; Cho, Seo-Hee; Lemay, Michel A; Son, Young-Jin

    2017-01-26

    Nuclear exclusion of the transcriptional regulators and potent oncoproteins, YAP/TAZ, is considered necessary for adult tissue homeostasis. Here we show that nuclear YAP/TAZ are essential regulators of peripheral nerve development and myelin maintenance. To proliferate, developing Schwann cells (SCs) require YAP/TAZ to enter S-phase and, without them, fail to generate sufficient SCs for timely axon sorting. To differentiate, SCs require YAP/TAZ to upregulate Krox20 and, without them, completely fail to myelinate, resulting in severe peripheral neuropathy. Remarkably, in adulthood, nuclear YAP/TAZ are selectively expressed by myelinating SCs, and conditional ablation results in severe peripheral demyelination and mouse death. YAP/TAZ regulate both developmental and adult myelination by driving TEAD1 to activate Krox20. Therefore, YAP/TAZ are crucial for SCs to myelinate developing nerve and to maintain myelinated nerve in adulthood. Our study also provides a new insight into the role of nuclear YAP/TAZ in homeostatic maintenance of an adult tissue.

  14. Human myelin proteome and comparative analysis with mouse myelin

    OpenAIRE

    Ishii, Akihiro; Dutta, Ranjan; Wark, Greg M.; Hwang, Sun-Il; Han, David K.; Trapp, Bruce D.; Pfeiffer, Steven E.; Bansal, Rashmi

    2009-01-01

    Myelin, formed by oligodendrocytes (OLs) in the CNS, is critical for axonal functions, and its damage leads to debilitating neurological disorders such as multiple sclerosis. Understanding the molecular mechanisms of myelination and the pathogenesis of human myelin disease has been limited partly by the relative lack of identification and functional characterization of the repertoire of human myelin proteins. Here, we present a large-scale analysis of the myelin proteome, using the shotgun ap...

  15. Comparison of event-based analysis of glaucoma progression assessed subjectively on visual fields and retinal nerve fibre layer attenuation measured by optical coherence tomography.

    Science.gov (United States)

    Kaushik, Sushmita; Mulkutkar, Samyak; Pandav, Surinder Singh; Verma, Neelam; Gupta, Amod

    2015-02-01

    The purpose is to study the ability of an event-based analysis of retinal nerve fibre layer (RNFL) attenuation measured by Stratus(®) optical coherence tomography (OCT) and to detect progression across the spectrum of glaucoma. Adult glaucoma suspects, ocular hypertensives and glaucoma patients who had undergone baseline RNFL thickness measurement on Stratus OCT and reliable automated visual field examination by Humphrey's visual field analyser prior to March 2007 and had 5-year follow-up data were recruited. Progression on OCT was defined by two criteria: decrease in average RNFL thickness from baseline by at least 10 and 20 µ. Visual field progression was defined by the modified Hodapp-Parrish-Anderson criteria. Absolute and percentage change in RNFL thickness from baseline was compared in progressors and non-progressors on visual fields. Concordance between structural and functional progression was analysed. 318 eyes of 162 patients were analysed. 35 eyes (11 %) progressed by visual fields, 8 (2.5 %) progressed using the 20 µ loss criterion, while 30 eyes (9.4 %) progressed using the 10 µ loss criterion. In glaucoma suspects, mean absolute RNFL attenuation was 8.6 µ (12.1 % of baseline) in those who progressed to glaucoma by visual fields. OCT was more useful to detect progression in early glaucoma, but performed poorly in advanced glaucoma. The 10 µ criterion appears to be closer to visual field progression. However, the ability to detect progression varies considerably between functional and structural tools depending upon the severity of the disease.

  16. Unmyelinated nerve fiber degeneration in chronic inflammatory demyelinating polyneuropathy

    NARCIS (Netherlands)

    Bosboom, WMJ; Van den Berg, LH; Dieks, HJG; Plante, E; Veldman, H; Franssen, H; Wokke, JHJ

    2000-01-01

    To determine whether unmyelinated nerve fibers escape degeneration as one might expect in an immune response exclusively directed at myelin, we performed a morphometric examination of unmyelinated axons and myelinated nerve fibers in sural nerve biopsy specimens of 14 patients with a chronic inflamm

  17. Arrest of Myelination and Reduced Axon Growth when Schwann Cells Lack mTOR

    OpenAIRE

    Sherman, Diane L; Krols, Michiel; Wu, Lai-Man N; Grove, Matthew; Nave, Klaus-Armin; Gangloff, Yann-Gaël; Brophy, Peter J.

    2012-01-01

    In developing peripheral nerves differentiating Schwann cells sort individual axons from bundles and ensheath them to generate multiple layers of myelin. In recent years there has been an increasing understanding of the extracellular and intracellular factors that initiate and stimulate Schwann cell myelination together with a growing appreciation of some of the signalling pathways involved. However, our knowledge of how Schwann cell growth is regulated during myelination is still incomplete....

  18. Arrest of myelination and reduced axon growth when Schwann cells lack mTOR.

    Science.gov (United States)

    Sherman, Diane L; Krols, Michiel; Wu, Lai-Man N; Grove, Matthew; Nave, Klaus-Armin; Gangloff, Yann-Gaël; Brophy, Peter J

    2012-02-01

    In developing peripheral nerves, differentiating Schwann cells sort individual axons from bundles and ensheath them to generate multiple layers of myelin. In recent years, there has been an increased understanding of the extracellular and intracellular factors that initiate and stimulate Schwann cell myelination, together with a growing appreciation of some of the signaling pathways involved. However, our knowledge of how Schwann cell growth is regulated during myelination is still incomplete. The mammalian target of rapamycin (mTOR) is a core kinase in two major complexes, mTORC1 and mTORC2, that regulate cell growth and differentiation in a variety of mammalian cells. Here we show that elimination of mTOR from murine Schwann cells prevented neither radial sorting nor the initiation of myelination. However, normal postnatal growth of myelinating Schwann cells, both radially and longitudinally, was highly retarded. The myelin sheath in the mutant was much thinner than normal; nevertheless, sheath thickness relative to axon diameter (g-ratio) remained constant in both wild-type and mutant nerves from P14 to P90. Although axon diameters were normal in the mutant at the initiation of myelination, further growth as myelination proceeded was retarded, and this was associated with reduced phosphorylation of neurofilaments. Consistent with thinner axonal diameters and internodal lengths, conduction velocities in mutant quadriceps nerves were also reduced. These data establish a critical role for mTOR signaling in both the longitudinal and radial growth of the myelinating Schwann cell.

  19. Macrophage presence is essential for the regeneration of ascending afferent fibres following a conditioning sciatic nerve lesion in adult rats

    Directory of Open Access Journals (Sweden)

    Smith Malcolm

    2011-01-01

    Full Text Available Abstract Background Injury to the peripheral branch of dorsal root ganglia (DRG neurons prior to injury to the central nervous system (CNS DRG branch results in the regeneration of the central branch. The exact mechanism mediating this regenerative trigger is not fully understood. It has been proposed that following peripheral injury, the intraganglionic inflammatory response by macrophage cells plays an important role in the pre-conditioning of injured CNS neurons to regenerate. In this study, we investigated whether the presence of macrophage cells is crucial for this type of regeneration to occur. We used a clodronate liposome technique to selectively and temporarily deplete these cells during the conditioning phase of DRG neurons. Results Retrograde and anterograde tracing results indicated that in macrophage-depleted animals, the regenerative trigger characteristic of pre-conditioned DRG neurons was abolished as compared to injury matched-control animals. In addition, depletion of macrophage cells led to: (i a reduction in macrophage infiltration into the CNS compartment even after cellular repopulation, (ii astrocyte up-regulation at rostral regions and down-regulation in brain derived neurotrophic factor (BDNF concentration in the serum. Conclusion Activation of macrophage cells in response to the peripheral nerve injury is essential for the enhanced regeneration of ascending sensory neurons.

  20. KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction.

    Science.gov (United States)

    Rash, John E; Vanderpool, Kimberly G; Yasumura, Thomas; Hickman, Jordan; Beatty, Jonathan T; Nagy, James I

    2016-04-01

    Saltatory conduction in mammalian myelinated axons was thought to be well understood before recent discoveries revealed unexpected subcellular distributions and molecular identities of the K(+)-conductance pathways that provide for rapid axonal repolarization. In this study, we visualize, identify, localize, quantify, and ultrastructurally characterize axonal KV1.1/KV1.2 channels in sciatic nerves of rodents. With the use of light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling electron microscopy, KV1.1/KV1.2 channels are localized to three anatomically and compositionally distinct domains in the internodal axolemmas of large myelinated axons, where they form densely packed "rosettes" of 9-nm intramembrane particles. These axolemmal KV1.1/KV1.2 rosettes are precisely aligned with and ultrastructurally coupled to connexin29 (Cx29) channels, also in matching rosettes, in the surrounding juxtaparanodal myelin collars and along the inner mesaxon. As >98% of transmembrane proteins large enough to represent ion channels in these specialized domains, ∼500,000 KV1.1/KV1.2 channels define the paired juxtaparanodal regions as exclusive membrane domains for the voltage-gated K(+)conductance that underlies rapid axonal repolarization in mammals. The 1:1 molecular linkage of KV1 channels to Cx29 channels in the apposed juxtaparanodal collars, plus their linkage to an additional 250,000-400,000 Cx29 channels along each inner mesaxon in every large-diameter myelinated axon examined, supports previously proposed K(+)conductance directly from juxtaparanodal axoplasm into juxtaparanodal myeloplasm in mammalian axons. With neither Cx29 protein nor myelin rosettes detectable in frog myelinated axons, these data showing axon-to-myelin linkage by abundant KV1/Cx29 channels in rodent axons support renewed consideration of an electrically active role for myelin in increasing both saltatory conduction velocity and maximum propagation frequency in

  1. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons

    Science.gov (United States)

    Kirkpatrick, L. L.; Witt, A. S.; Payne, H. R.; Shine, H. D.; Brady, S. T.

    2001-01-01

    Altered axon-Schwann cell interactions in PNS myelin-deficient Trembler mice result in changed axonal transport rates, neurofilament and microtubule-associated protein phosphorylation, neurofilament density, and microtubule stability. To determine whether PNS and CNS myelination have equivalent effects on axons, neurofilaments, and microtubules in CNS, myelin-deficient shiverer axons were examined. The genetic defect in shiverer is a deletion in the myelin basic protein (MBP) gene, an essential component of CNS myelin. As a result, shiverer mice have little or no compact CNS myelin. Slow axonal transport rates in shiverer CNS axons were significantly increased, in contrast to the slowing in demyelinated PNS nerves. Even more striking were substantial changes in the composition and properties of microtubules in shiverer CNS axons. The density of axonal microtubules is increased, reflecting increased expression of tubulin in shiverer, and the stability of microtubules is drastically reduced in shiverer axons. Shiverer transgenic mice with two copies of a wild-type myelin basic protein transgene have an intermediate level of compact myelin, making it possible to determine whether the actual level of compact myelin is an important regulator of axonal microtubules. Both increased microtubule density and reduced microtubule stability were still observed in transgenic mouse nerves, indicating that signals beyond synaptogenesis and the mere presence of compact myelin are required for normal regulation of the axonal microtubule cytoskeleton.

  2. Inherited and acquired disorders of myelin: The underlying myelin pathology.

    Science.gov (United States)

    Duncan, Ian D; Radcliff, Abigail B

    2016-09-01

    Remyelination is a major therapeutic goal in human myelin disorders, serving to restore function to demyelinated axons and providing neuroprotection. The target disorders that might be amenable to the promotion of this repair process are diverse and increasing in number. They range primarily from those of genetic, inflammatory to toxic origin. In order to apply remyelinating strategies to these disorders, it is essential to know whether the myelin damage results from a primary attack on myelin or the oligodendrocyte or both, and whether indeed these lead to myelin breakdown and demyelination. In some disorders, myelin sheath abnormalities are prominent but demyelination does not occur. This review explores the range of human and animal disorders where myelin pathology exists and focusses on defining the myelin changes in each and their cause, to help define whether they are targets for myelin repair therapy.

  3. Epineurial Window Is More Efficient in Attracting Axons than Simple Coaptation in a Sutureless (Cyanoacrylate-Bound) Model of End-to-Side Nerve Repair in the Rat Upper Limb: Functional and Morphometric Evidences and Review of the Literature.

    Science.gov (United States)

    Papalia, Igor; Magaudda, Ludovico; Righi, Maria; Ronchi, Giulia; Viano, Nicoletta; Geuna, Stefano; Colonna, Michele Rosario

    2016-01-01

    End-to-side nerve coaptation brings regenerating axons from the donor to the recipient nerve. Several techniques have been used to perform coaptation: microsurgical sutures with and without opening a window into the epi(peri)neurial connective tissue; among these, window techniques have been proven more effective in inducing axonal regeneration. The authors developed a sutureless model of end-to-side coaptation in the rat upper limb. In 19 adult Wistar rats, the median and the ulnar nerves of the left arm were approached from the axillary region, the median nerve transected and the proximal stump sutured to the pectoral muscle to prevent regeneration. Animals were then randomly divided in two experimental groups (7 animals each, 5 animals acting as control): Group 1: the distal stump of the transected median nerve was fixed to the ulnar nerve by applying cyanoacrylate solution; Group 2: a small epineurial window was opened into the epineurium of the ulnar nerve, caring to avoid damage to the nerve fibres; the distal stump of the transected median nerve was then fixed to the ulnar nerve by applying cyanoacrylate solution. The grasping test for functional evaluation was repeated every 10-11 weeks starting from week-15, up to the sacrifice (week 36). At week 36, the animals were sacrificed and the regenerated nerves harvested and processed for morphological investigations (high-resolution light microscopy as well as stereological and morphometrical analysis). This study shows that a) cyanoacrylate in end-to-side coaptation produces scarless axon regeneration without toxic effects; b) axonal regeneration and myelination occur even without opening an epineurial window, but c) the window is related to a larger number of regenerating fibres, especially myelinated and mature, and better functional outcomes.

  4. Epineurial Window Is More Efficient in Attracting Axons than Simple Coaptation in a Sutureless (Cyanoacrylate-Bound Model of End-to-Side Nerve Repair in the Rat Upper Limb: Functional and Morphometric Evidences and Review of the Literature.

    Directory of Open Access Journals (Sweden)

    Igor Papalia

    Full Text Available End-to-side nerve coaptation brings regenerating axons from the donor to the recipient nerve. Several techniques have been used to perform coaptation: microsurgical sutures with and without opening a window into the epi(perineurial connective tissue; among these, window techniques have been proven more effective in inducing axonal regeneration. The authors developed a sutureless model of end-to-side coaptation in the rat upper limb. In 19 adult Wistar rats, the median and the ulnar nerves of the left arm were approached from the axillary region, the median nerve transected and the proximal stump sutured to the pectoral muscle to prevent regeneration. Animals were then randomly divided in two experimental groups (7 animals each, 5 animals acting as control: Group 1: the distal stump of the transected median nerve was fixed to the ulnar nerve by applying cyanoacrylate solution; Group 2: a small epineurial window was opened into the epineurium of the ulnar nerve, caring to avoid damage to the nerve fibres; the distal stump of the transected median nerve was then fixed to the ulnar nerve by applying cyanoacrylate solution. The grasping test for functional evaluation was repeated every 10-11 weeks starting from week-15, up to the sacrifice (week 36. At week 36, the animals were sacrificed and the regenerated nerves harvested and processed for morphological investigations (high-resolution light microscopy as well as stereological and morphometrical analysis. This study shows that a cyanoacrylate in end-to-side coaptation produces scarless axon regeneration without toxic effects; b axonal regeneration and myelination occur even without opening an epineurial window, but c the window is related to a larger number of regenerating fibres, especially myelinated and mature, and better functional outcomes.

  5. Quantitative Microscopic Analysis of Myelinated Nerve Fibers

    NARCIS (Netherlands)

    Prodanov, D.P.; Feierabend, Hans K.P.; Marani, Enrico; Flynn, Cian E.; Callaghan, Brandon R.

    2010-01-01

    Neuroanatomy is the study of the anatomical organization of the brain. Reciprocal communication between the brain and the cardiovascular system is important in sustaining neurobehavioral states that allow organisms to cope with their environment. Furthermore, in vertebrate animals, the routes that

  6. Quantitative Microscopic Analysis of Myelinated Nerve Fibers

    NARCIS (Netherlands)

    Prodanov, D.P.; Feierabend, Hans K.P.; Marani, Enrico; Costa, A.; Villalba, E.

    2010-01-01

    Horizons in Neuroscience Research presents original research results on the leading edge of neuroscience research. Each article has been carefully selected in an attempt to present substantial research results across a broad spectrum

  7. The retinal nerve fibre layer thickness in glaucomatous hydrophthalmic eyes assessed by scanning laser polarimetry with variable corneal compensation in comparison with age-matched healthy children.

    Science.gov (United States)

    Hložánek, Martin; Ošmera, Jakub; Ležatková, Pavlína; Sedláčková, Petra; Filouš, Aleš

    2012-12-01

    To compare the thickness of the retinal nerve fibre layer (RNFL) in hydrophthalmic glaucomatous eyes in children with age-matched healthy controls using scanning laser polarimetry with variable corneal compensation (GDxVCC). Twenty hydrophthalmic eyes of 20 patients with the mean age of 10.64 ± 3.02 years being treated for congenital or infantile glaucoma were included in the analysis. Evaluation of RNFL thickness measured by GDxVCC in standard Temporal-Superior-Nasal-Inferior-Temporal (TSNIT) parameters was performed. The results were compared to TSNIT values of an age-matched control group of 120 healthy children published recently as referential values. The correlation between horizontal corneal diameter and RNFL thickness in hydrophthalmic eyes was also investigated. The mean ± SD values in TSNIT Average, Superior Average, Inferior Average and TSNIT SD in hydrophthalmic eyes were 52.3 ± 11.4, 59.7 ± 17.1, 62.0 ± 15.6 and 20.0 ± 7.8 μm, respectively. All these values were significantly lower compared to referential TSNIT parameters of age-matched healthy eyes (p = 0.021, p = 0.001, p = 0.003 and p = 0.018, respectively). A substantial number of hydrophthalmic eyes laid below the level of 5% probability of normality in respective TSNIT parameters: 30% of the eyes in TSNIT average, 50% of the eyes in superior average, 30% of the eyes in inferior average and 45% of the eyes in TSNIT SD. No significant correlation between enlarged corneal diameter and RNFL thickness was found. The mean values of all standard TSNIT parameters assessed using GDxVCC in hydrophthalmic glaucomatous eyes in children were significantly lower in comparison with referential values of healthy age-matched children. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.

  8. Axon-myelin sheath relations of oligodendrocyte unit phenotypes in the adult rat anterior medullary velum.

    Science.gov (United States)

    Butt, A M; Ibrahim, M; Berry, M

    1998-04-01

    Axon-oligodendrocyte relations of Rip-immunolabelled and dye-injected oligodendrocyte units are characterised in the adult rat anterior medullary velum (AMV). Each oligodendrocyte unit comprised the oligodendrocyte cell body, processes and the internodal myelin segments they support. Oligodendrocyte units corresponded to classically described type I/II or type III/IV unit phenotypes which respectively myelinated discrete populations of small and large diameter axons, delineated by a myelinated fire diameter of 2-4 microns (diameter of the axon plus its myelin sheath). Within units, mean fibre diameter was directly related to mean internodal length and inversely related to the number of myelin sheaths in the unit. The relationship between fibre diameter and internodal length was retained in units which myelinated axons of different diameters, indicating that axon diameter was an important determinant of the longitudinal dimensions of myelin sheaths. We also show that type III/IV units maintained a far greater volume of myelin than type I/II units. It was concluded that type I/II and III/IV oligodendrocytes represent two functionally and morphologically distinct phenotypes whose distribution densities were determined by the diameter and spatial dispersion of axons.

  9. Neutron scattering from myelin revisited: bilayer asymmetry and water-exchange kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Denninger, Andrew R. [Boston College, Chestnut Hill, MA 02467 (United States); Demé, Bruno; Cristiglio, Viviana [Institut Laue–Langevin (ILL), CS 20156, F-38042 Grenoble CEDEX 9 (France); LeDuc, Géraldine [European Synchrotron Radiation Facility (ESRF), CS 40220, F-38043 Grenoble CEDEX 9 (France); Feller, W. Bruce [NOVA Scientific Inc., Sturbridge, MA 01566 (United States); Kirschner, Daniel A., E-mail: kirschnd@bc.edu [Boston College, Chestnut Hill, MA 02467 (United States)

    2014-12-01

    The structure of internodal myelin in the rodent central and peripheral nervous systems has been determined using neutron diffraction. The kinetics of water exchange in these tissues is also described. Rapid nerve conduction in the central and peripheral nervous systems (CNS and PNS, respectively) of higher vertebrates is brought about by the ensheathment of axons with myelin, a lipid-rich, multilamellar assembly of membranes. The ability of myelin to electrically insulate depends on the regular stacking of these plasma membranes and on the presence of a number of specialized membrane-protein assemblies in the sheath, including the radial component, Schmidt–Lanterman incisures and the axo–glial junctions of the paranodal loops. The disruption of this fine-structure is the basis for many demyelinating neuropathies in the CNS and PNS. Understanding the processes that govern myelin biogenesis, maintenance and destabilization requires knowledge of myelin structure; however, the tight packing of internodal myelin and the complexity of its junctional specializations make myelin a challenging target for comprehensive structural analysis. This paper describes an examination of myelin from the CNS and PNS using neutron diffraction. This investigation revealed the dimensions of the bilayers and aqueous spaces of myelin, asymmetry between the cytoplasmic and extracellular leaflets of the membrane, and the distribution of water and exchangeable hydrogen in internodal multilamellar myelin. It also uncovered differences between CNS and PNS myelin in their water-exchange kinetics.

  10. Effects of normal aging on myelin sheath ultrastructures in the somatic sensorimotor system of rats.

    Science.gov (United States)

    Xie, Fang; Liang, Ping; Fu, Han; Zhang, Jiu-Cong; Chen, Jun

    2014-07-01

    Previous studies have presented qualitative and quantitative data regarding the morphological changes that occur peripherally in myelin sheaths and nerve fibers of rats during their lifespan. However, studies on ultrastructural features of myelinated fibers (MFs) in the central nervous system (CNS) remain limited. In the present study, morphological analyses of the somatic sensorimotor MFs in rats at time‑points between postnatal day 14 and postnatal month (PNM) 26 were conducted using electron microscopy. Significant alterations in the myelin sheath were observed in the sensorimotor system of aging and aged rats, which became aggravated with age. The ultrastructural pattern of myelin lamellae also exhibited age dependence. The transformation of the myelin intraperiod line from complete to incomplete fusion occurred after PNM 5, leading to an expansion of periodicity in myelin lamellae. These pathological changes in the myelin structure occurred very early and showed a significant correlation with age, indicating that myelin was the part of the CNS with the highest susceptibility to the influence of aging, and may be the main target of aging effects. In addition to the myelin breakdown, continued myelin production and remyelination were observed in the aging sensorimotor system, suggesting the presence of endogenous mechanisms of myelin repair.

  11. Raman spectroscopic detection of peripheral nerves towards nerve-sparing surgery

    Science.gov (United States)

    Minamikawa, Takeo; Harada, Yoshinori; Takamatsu, Tetsuro

    2017-02-01

    The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery, namely nerve-sparing surgery, is now promising technique to avoid functional deficits of the limbs and organs following surgery as an aspect of the improvement of quality of life of patients. Detection of peripheral nerves including myelinated and unmyelinated nerves is required for the nerve-sparing surgery; however, conventional nerve identification scheme is sometimes difficult to identify peripheral nerves due to similarity of shape and color to non-nerve tissues or its limited application to only motor peripheral nerves. To overcome these issues, we proposed a label-free detection technique of peripheral nerves by means of Raman spectroscopy. We found several fingerprints of peripheral myelinated and unmyelinated nerves by employing a modified principal component analysis of typical spectra including myelinated nerve, unmyelinated nerve, and adjacent tissues. We finally realized the sensitivity of 94.2% and the selectivity of 92.0% for peripheral nerves including myelinated and unmyelinated nerves against adjacent tissues. Although further development of an intraoperative Raman spectroscopy system is required for clinical use, our proposed approach will serve as a unique and powerful tool for peripheral nerve detection for nerve-sparing surgery in the future.

  12. What is myelin?

    Science.gov (United States)

    Hartline, Daniel K

    2008-05-01

    The evolution of a character is better appreciated if examples of convergent emergence of the same character are available for comparison. Three instances are known among invertebrates of the evolution of axonal sheaths possessing the functional properties and many of the structural properties of vertebrate myelin. Comparison of these invertebrate myelins raises the question of what structural features must a sheath possess in order to produce the two principal functional characteristics of impulse speed enhancement and energy savings. This essay reviews the features recognized by early workers as pertaining to myelin in vertebrate and invertebrate alike: osmiophilia, negative birefringence and saltatory conduction. It then examines common features revealed by the advent of electron microscopy: multiplicity of lipid membranes, condensation of those membranes, specialized marginal seals, and nodes. Next it examines the robustness of these features as essential components of a speed-enhancing sheath. Features that are not entirely essential for speed enhancement include membrane compaction, spiral wrapping of layers, glial cell involvement, non-active axonal membrane, and even nodes and perinodal sealing. This permissiveness is discussed in relation to the possible evolutionary origin of myelin.

  13. Damage and repair of the peripheral myelin sheath and node of Ranvier after treatment with trypsin.

    Science.gov (United States)

    Yu, R C; Bunge, R P

    1975-01-01

    Cultures of whole fetal rat sensory ganglia which had matured and myelinated in culture were treated for 1-3 h with a pulse of 0.2% trypsin. The tissue was observed during the period of treatment and during subsequent weeks using both light and electron microscopy. Within minutes after trypsin addition the matrix of the culture was altered and the nerve fascicles loosened. Progressive changes included the retraction of Schwann cell processes from the nodal region the detachment of the myelin-related paranodal Schwann cell loops from the axon, and lengthening of the nodal region as the axon was bared. The retraction of myelin from nodal stabilized several hours after trypsin withdrawal. Breakdown of the altered myelin segments was rare. There were no discernable changes in neurons or their processes after this exposure to trypsin. The partial repair which occured over a period of several weeks included the reattachment of paranodal Schwann cell loops to the axolemma and the insertion of new myelin segments where a substantial length of axolemma had been bared. The significance of these observations to the characterization of the Schwann cell-axolemmal junctions on myelinated nerve fibers is discussed. The dramatic degree of myelin change that can occur without concomitant myelin breakdown is particularly noted, as is the observation that these altered myelin segments are, in part, repaired.

  14. Re-innervation patterns by peptidergic Substance-P, non-peptidergic P2X3, and myelinated NF-200 nerve fibers in epidermis and dermis of rats with neuropathic pain

    NARCIS (Netherlands)

    Duraku, Liron S.; Hossaini, Mehdi; Schuettenhelm, Barthold N.; Holstege, Joan C.; Baas, Martijn; Ruigrok, Tom J. H.; Walbeehm, Erik T.

    2013-01-01

    Nerve endings in the epidermis, termed nociceptors, conduct information on noxious stimuli to the central nervous system. The precise role of epidermal nerve fibers in neuropathic pain is however still controversial. Here, we have investigated the re-innervation patterns of epidermal and dermal nerv

  15. Loss of Ab-nerve endings associated with the Merkel cell-neurite complex in the lesional oral mucosa epithelium of lichen planus and hyperkeratosis

    Institute of Scientific and Technical Information of China (English)

    Daniela Caldero n Carrio n; Yu ksel Korkmaz; Britta Cho; Marion Kopp; Wilhelm Bloch; Klaus Addicks; Wilhelm Niedermeier

    2016-01-01

    The Merkel cell-neurite complex initiates the perception of touch and mediates Ab slowly adapting type I responses. Lichen planus is a chronic inflammatory autoimmune disease with T-cell-mediated inflammation, whereas hyperkeratosis is characterized with or without epithelial dysplasia in the oral mucosa. To determine the effects of lichen planus and hyperkeratosis on the Merkel cell-neurite complex, healthy oral mucosal epithelium and lesional oral mucosal epithelium of lichen planus and hyperkeratosis patients were stained by immunohistochemistry (the avidin-biotin-peroxidase complex and double immunofluorescence methods) using pan cytokeratin, 20 (K20, a Merkel cell marker), and neurofilament 200 (NF200, a myelinated Ab- and Ad-nerve fibre marker) antibodies. NF200-immunoreactive (ir) nerve fibres in healthy tissues and in the lesional oralmucosa epitheliumof lichen planus and hyperkeratosis were counted and statistically analysed. In the healthy oral mucosa, K20-positive Merkel cells with and without close association to the intraepithelial NF200-ir nerve fibres were detected. In the lesional oral mucosa of lichen planus and hyperkeratosis patients, extremely rare NF200-ir nerve fibres were detected only in the lamina propria. Compared with healthy tissues, lichen planus and hyperkeratosis tissues had significantly decreased numbers of NF200-ir nerve fibres in the oral mucosal epithelium. Lichen planus and hyperkeratosis were associated with the absence of Ab-nerve endings in the oral mucosal epithelium. Thus, we conclude that mechanosensation mediated by the Merkel cell-neurite complex in the oral mucosal epithelium is impaired in lichen planus and hyperkeratosis.

  16. Loss of Aβ-nerve endings associated with the Merkel cell-neurite complex in the lesional oral mucosa epithelium of lichen planus and hyperkeratosis.

    Science.gov (United States)

    Carrión, Daniela Calderón; Korkmaz, Yüksel; Cho, Britta; Kopp, Marion; Bloch, Wilhelm; Addicks, Klaus; Niedermeier, Wilhelm

    2016-03-30

    The Merkel cell-neurite complex initiates the perception of touch and mediates Aβ slowly adapting type I responses. Lichen planus is a chronic inflammatory autoimmune disease with T-cell-mediated inflammation, whereas hyperkeratosis is characterized with or without epithelial dysplasia in the oral mucosa. To determine the effects of lichen planus and hyperkeratosis on the Merkel cell-neurite complex, healthy oral mucosal epithelium and lesional oral mucosal epithelium of lichen planus and hyperkeratosis patients were stained by immunohistochemistry (the avidin-biotin-peroxidase complex and double immunofluorescence methods) using pan cytokeratin, cytokeratin 20 (K20, a Merkel cell marker), and neurofilament 200 (NF200, a myelinated Aβ- and Aδ-nerve fibre marker) antibodies. NF200-immunoreactive (ir) nerve fibres in healthy tissues and in the lesional oral mucosa epithelium of lichen planus and hyperkeratosis were counted and statistically analysed. In the healthy oral mucosa, K20-positive Merkel cells with and without close association to the intraepithelial NF200-ir nerve fibres were detected. In the lesional oral mucosa of lichen planus and hyperkeratosis patients, extremely rare NF200-ir nerve fibres were detected only in the lamina propria. Compared with healthy tissues, lichen planus and hyperkeratosis tissues had significantly decreased numbers of NF200-ir nerve fibres in the oral mucosal epithelium. Lichen planus and hyperkeratosis were associated with the absence of Aβ-nerve endings in the oral mucosal epithelium. Thus, we conclude that mechanosensation mediated by the Merkel cell-neurite complex in the oral mucosal epithelium is impaired in lichen planus and hyperkeratosis.

  17. Assessing White Matter Microstructure in Brain Regions with Different Myelin Architecture Using MRI

    Science.gov (United States)

    Schultz, Thomas; Balla, Dávid Z.; Klose, Uwe; Hauser, Till-Karsten; Nägele, Thomas; Bieri, Oliver; Prasloski, Thomas; MacKay, Alex L.; Krägeloh-Mann, Ingeborg; Scheffler, Klaus

    2016-01-01

    Objective We investigate how known differences in myelin architecture between regions along the cortico-spinal tract and frontal white matter (WM) in 19 healthy adolescents are reflected in several quantitative MRI parameters that have been proposed to non-invasively probe WM microstructure. In a clinically feasible scan time, both conventional imaging sequences as well as microstructural MRI parameters were assessed in order to quantitatively characterise WM regions that are known to differ in the thickness of their myelin sheaths, and in the presence of crossing or parallel fibre organisation. Results We found that diffusion imaging, MR spectroscopy (MRS), myelin water fraction (MWF), Magnetization Transfer Imaging, and Quantitative Susceptibility Mapping were myelin-sensitive in different ways, giving complementary information for characterising WM microstructure with different underlying fibre architecture. From the diffusion parameters, neurite density (NODDI) was found to be more sensitive than fractional anisotropy (FA), underlining the limitation of FA in WM crossing fibre regions. In terms of sensitivity to different myelin content, we found that MWF, the mean diffusivity and chemical-shift imaging based MRS yielded the best discrimination between areas. Conclusion Multimodal assessment of WM microstructure was possible within clinically feasible scan times using a broad combination of quantitative microstructural MRI sequences. By assessing new microstructural WM parameters we were able to provide normative data and discuss their interpretation in regions with different myelin architecture, as well as their possible application as biomarker for WM disorders. PMID:27898701

  18. Comparison of rabbit facial nerve regeneration in nerve growth factor-containing silicone tubes to that in autologous neural grafts.

    Science.gov (United States)

    Spector, J G; Lee, P; Derby, A; Roufa, D G

    1995-11-01

    Previous reports suggest that nerve growth factor (NGF) enhanced nerve regeneration in rabbit facial nerves. We compared rabbit facial nerve regeneration in 10-mm silicone tubes prefilled with NGF or cytochrome C (Cyt C), bridging an 8-mm nerve gap, to regeneration of 8-mm autologous nerve grafts. Three weeks following implantation, NGF-treated regenerates exhibited a more mature fascicular organization and more extensive neovascularization than Cyt C-treated controls. Morphometric analysis at the middle of the tube of 3- and 5-week regenerates revealed no significant difference in the mean number of myelinated or unmyelinated axons between NGF- and Cyt C-treated implants. However, when the numbers of myelinated fibers in 5-week regenerates were compared to those in their respective preoperative controls, NGF-treated regenerates had recovered a significantly greater percentage of myelinated axons than Cyt C-treated implants (46% versus 18%, respectively). The number of regenerating myelinated axons in the autologous nerve grafts at 5 weeks was significantly greater than the number of myelinated axons in the silicone tubes. However, in the nerve grafts the majority of the axons were found in the extrafascicular connective tissue (66%). The majority of these myelinated fibers did not find their way into the distal nerve stump. Thus, although the number of regenerating myelinated axons within the nerve grafts is greater than that of axons within silicone tube implants, functional recovery of autologous nerve graft repairs may not be superior to that of intubational repairs.

  19. Transcriptional upregulation of myelin components in spontaneous myelin basic protein-deficient mice.

    Science.gov (United States)

    Staats, Kim A; Pombal, Diana; Schönefeldt, Susann; Van Helleputte, Lawrence; Maurin, Hervé; Dresselaers, Tom; Govaerts, Kristof; Himmelreich, Uwe; Van Leuven, Fred; Van Den Bosch, Ludo; Dooley, James; Humblet-Baron, Stephanie; Liston, Adrian

    2015-05-01

    Myelin is essential for efficient signal transduction in the nervous system comprising of multiple proteins. The intricacies of the regulation of the formation of myelin, and its components, are not fully understood. Here, we describe the characterization of a novel myelin basic protein (Mbp) mutant mouse, mbp(jive), which spontaneously occurred in our mouse colony. These mice displayed the onset of a shaking gait before 3 weeks of age and seizure onset before 2 months of age. Due to a progressive increase of seizure intensity, mbp(jive) mice experienced premature lethality at around 3 months of age. Mbp mRNA transcript or protein was undetectable and, accordingly, genetic analysis demonstrated a homozygous loss of exons 3 to 6 of Mbp. Peripheral nerve conductance was mostly unimpaired. Additionally, we observed grave structural changes in white matter predominant structures were detected by T1, T2 and diffusion weighted magnetic resonance imaging. We additionally observed that Mbp-deficiency results in an upregulation of Qkl, Mag and Cnp, suggestive of a regulatory feedback mechanism whereby compensatory increases in Qkl have downstream effects on Mag and Cnp. Further research will clarify the role and specifications of this myelin feedback loop, as well as determine its potential role in therapeutic strategies for demyelinating disorders.

  20. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    Science.gov (United States)

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  1. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    Science.gov (United States)

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  2. Glycans of myelin proteins.

    Science.gov (United States)

    Sedzik, Jan; Jastrzebski, Jan Pawel; Grandis, Marina

    2015-01-01

    Human P0 is the main myelin glycoprotein of the peripheral nervous system. It can bind six different glycans, all linked to Asn(93) , the unique glycosylation site. Other myelin glycoproteins, also with a single glycosylation site (PMP22 at Asn(36) , MOG at Asn(31) ), bind only one glycan. The MAG has 10 glycosylation sites; the glycoprotein OMgp has 11 glycosylation sites. Aside from P0, no comprehensive data are available on other myelin glycoproteins. Here we review and analyze all published data on the physicochemical structure of the glycans linked to P0, PMP22, MOG, and MAG. Most data concern bovine P0, whose glycan moieties have an MW ranging from 1,294.56 Da (GP3) to 2,279.94 Da (GP5). The pI of glycosylated P0 protein varies from pH 9.32 to 9.46. The most charged glycan is MS2 containing three sulfate groups and one glucuronic acid; whereas the least charged one is the BA2 residue. All glycans contain one fucose and one galactose. The most mannose rich are the glycans MS2 and GP4, each of them has four mannoses; OPPE1 contains five N-acetylglucosamines and one sulfated glucuronic acid; GP4 contains one sialic acid. Furthermore, human P0 variants causing both gain and loss of glycosylation have been described and cause peripheral neuropathies with variable clinical severity. In particular, the substitution T(95) →M is a very common in Europe and is associated with a late-onset axonal neuropathy. Although peripheral myelin is made up largely of glycoproteins, mutations altering glycosylation have been described only in P0. This attractive avenue of research requires further study.

  3. Depth-sensing nano-indentation on a myelinated axon at various stages

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wei-Chin; Liao, Jiunn-Der [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Lin, Chou-Ching K [Department of Neurology, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Ju, Ming-Shaung, E-mail: jdliao@mail.ncku.edu.tw [Department of Mechanical Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2011-07-08

    A nano-mechanical characterization of a multi-layered myelin sheath structure, which enfolds an axon and plays a critical role in the transmission of nerve impulses, is conducted. Schwann cells co-cultured in vitro with PC12 cells for various co-culture times are differentiated to form a myelinated axon, which is then observed using a transmission electron microscope. Three major myelination stages, with distinct structural characteristics and thicknesses around the axon, can be produced by varying the co-culture time. A dynamic contact module and continuous depth-sensing nano-indentation are used on the myelinated structure to obtain the load-on-sample versus measured displacement curve of a multi-layered myelin sheath, which is used to determine the work required for the nano-indentation tip to penetrate the myelin sheath. By analyzing the harmonic contact stiffness versus the measured displacement profile, the results can be used to estimate the three stages of the multi-layered structure on a myelinated axon. The method can also be used to evaluate the development stages of myelination or demyelination during nerve regeneration.

  4. Relationship between genetic expression of BDNF and NRG-1 and myelinated nerve fiber density and cross-sectional area in thoracic sympathetic trunk of palmar hyperhidrosis%手汗症患者胸交感神经干脑源性神经营养因子和神经调节因子-1基因表达与有髓神经纤维密度及横截面积的关系

    Institute of Scientific and Technical Information of China (English)

    罗荣刚; 涂远荣; 李旭; 林敏; 陈剑锋; 邱明链

    2009-01-01

    Objective To investigate the gene expression of brain-derived neurotrophic factor ( BD-NF) and neuregulin-1 (NRG-1) in thoracic sympathetic trunk and their relation to myelinated nerve fiber density and single myelinated nerve fibers cross-sectional area in palmar hyperhidrosis. Methods Fast red-fast green myelin sheath staining was used to show myelinated nerve fibers. Using the micro-image analysis system,30 cases of myelinated nerve fiber density and single myelinated nerve fibers cross-sectional area were observed in T3 thoracic sympathetic trunk of patients with palmar hyperhidrosis. BDNF and NRG-1 gene expression was also analyzed by RT-PCR. Eight cases of non-palmar hyperhidrosis patients served as controls. Results In 33 thoracic sympathetic trunk of patients with palmar hyperhidrosis, myelinated nerve fiber density and single myelinated nerve fibers cross-sectional area were significantly increased as compared with controls (t = 7. 023,P < 0.05 ; t = 7.462, P < 0.05 respectively). The expression of BDNF and NRG-1 in 33 thoracic sympathetic trunk of patients with palmar hyperhidrosis was 1. 176 00 ± 0.028 70,1. 216 10± 0.075 39 respectively, and that in control group was 1. 037 50 ± 0.053 79,1. 042 70 ± 0.043 57 respectively. The former was significantly higher than the latter ( t = 9.940,P < 0.05 ; t = 6. 195. P < 0.05 respectively). Conclusion BDNF and NRG-I gene over expression increased myelinated nerve fiber density and single myelinated nerve fibers cross-sectional area of thoracic sympathetic trunk in patients with palmar hyperhidro-sis. Thus transmission speed and ability of excitatory of thoracic sympathetic nerve were also increased, which may play a role in the pathogenesis of palmar hyperhidrosis.%目的 观察手汗症患者胸交感神经干脑源性神经营养因子(BDNF)和神经调节因子-1(NRG-1)基因表达及对有髓神经纤维密度和单个纤维横截面积的影响,探讨与手汗症发病机制的关系.方法 采用核

  5. Hydroalcoholic extract of red propolis promotes functional recovery and axon repair after sciatic nerve injury in rats.

    Science.gov (United States)

    Barbosa, Roberta Almeida; Nunes, Tássia Luiza Gonçalves Magalhães; Nunes, Tâmara Luiza Gonçalves Magalhães; da Paixão, Ailma Oliveira; Belo Neto, Reinaldo; Moura, Sidnei; Albuquerque Junior, Ricardo Luiz Cavalcanti; Cândido, Edna Aragão Farias; Padilha, Francine Ferreira; Quintans-Júnior, Lucindo José; Gomes, Margarete Zanardo; Cardoso, Juliana Cordeiro

    2016-01-01

    Peripheral axon injury and degeneration are often mediated by oxidative stress and inflammation. The hydroalcoholic extract of the red propolis (HERP) has attracted great attention because of its antioxidant and anti-inflammatory activities. The objective of this work is to study the effect of HERP on nerve repair and functional recovery after sciatic nerve injury (SNI) in rats. The chemical markers in HERP were identified using high-resolution mass spectroscopy. After axonotmesis of sciatic nerve, ibuprofen (IBP) and HERP treatments were orally administered for 28 d. Behavioural tests were performed weekly after SNI. The myelinated axon number was counted using morphometric analysis. The compounds found in HERP were pinocembrin, formononetin, vestitol, and biochanin A. The animals that underwent SNI showed a significant decrease in motor function based on the Basso, Beattie and Bresnahan scale and sciatic functional index compared with sham animals until 7 d after the surgery (p < 0.05). After 14 and 21 d, the SNI groups treated with either HERP or IBP showed significant improvement (p < 0.01), and the SNI group treated with HERP 10 mg/kg showed accelerated motor recovery compared with the other groups (p < 0.01). SNI caused also a reduction in the myelinated axon counts, and treatment with HERP 10 mg/kg induced a significant increase in the number of myelinated fibres compared with all other groups. HERP promoted regenerative responses and accelerated functional recovery after sciatic nerve crush. Thus, it can be considered to be a new strategy or complementary therapy for treating nerve injuries.

  6. Psychophysical Investigations into the Role of Low-Threshold C Fibres in Non-Painful Affective Processing and Pain Modulation.

    Directory of Open Access Journals (Sweden)

    Sumaiya Shaikh

    Full Text Available We recently showed that C low-threshold mechanoreceptors (CLTMRs contribute to touch-evoked pain (allodynia during experimental muscle pain. Conversely, in absence of ongoing pain, the activation of CLTMRs has been shown to correlate with a diffuse sensation of pleasant touch. In this study, we evaluated (1 the primary afferent fibre types contributing to positive (pleasant and negative (unpleasant affective touch and (2 the effects of tactile stimuli on tonic muscle pain by varying affective attributes and frequency parameters. Psychophysical observations were made in 10 healthy participants. Two types of test stimuli were applied: stroking stimulus using velvet or sandpaper at speeds of 0.1, 1.0 and 10.0 cm/s; focal vibrotactile stimulus at low (20 Hz or high (200 Hz frequency. These stimuli were applied in the normal condition (i.e. no experimental pain and following the induction of muscle pain by infusing hypertonic saline (5% into the tibialis anterior muscle. These observations were repeated following the conduction block of myelinated fibres by compression of sciatic nerve. In absence of muscle pain, all participants reliably linked velvet-stroking to pleasantness and sandpaper-stroking to unpleasantness (no pain. Likewise, low-frequency vibration was linked to pleasantness and high-frequency vibration to unpleasantness. During muscle pain, the application of previously pleasant stimuli resulted in overall pain relief, whereas the application of previously unpleasant stimuli resulted in overall pain intensification. These effects were significant, reproducible and persisted following the blockade of myelinated fibres. Taken together, these findings suggest the role of low-threshold C fibres in affective and pain processing. Furthermore, these observations suggest that temporal coding need not be limited to discriminative aspects of tactile processing, but may contribute to affective attributes, which in turn predispose individual

  7. Small nerve fibres, small hands and small feet: a new syndrome of pain, dysautonomia and acromesomelia in a kindred with a novel NaV1.7 mutation.

    Science.gov (United States)

    Hoeijmakers, Janneke G J; Han, Chongyang; Merkies, Ingemar S J; Macala, Lawrence J; Lauria, Giuseppe; Gerrits, Monique M; Dib-Hajj, Sulayman D; Faber, Catharina G; Waxman, Stephen G

    2012-02-01

    The Na(V)1.7 sodium channel is preferentially expressed within dorsal root ganglion and sympathetic ganglion neurons and their small-diameter peripheral axons. Gain-of-function variants of Na(V)1.7 have recently been described in patients with painful small fibre neuropathy and no other apparent cause. Here, we describe a novel syndrome of pain, dysautonomia, small hands and small feet in a kindred carrying a novel Na(V)1.7 mutation. A 35-year-old male presented with erythema and burning pain in the hands since early childhood, later disseminating to the feet, cheeks and ears. He also experienced progressive muscle cramps, profound sweating, bowel disturbances (diarrhoea or constipation), episodic dry eyes and mouth, hot flashes, and erectile dysfunction. Neurological examination was normal. Physical examination was remarkable in revealing small hands and feet (acromesomelia). Blood examination and nerve conduction studies were unremarkable. Intra-epidermal nerve fibre density was significantly reduced compared to age- and sex-matched normative values. The patient's brother and father reported similar complaints including distal extremity redness and pain, and demonstrated comparable distal limb under-development. Quantitative sensory testing revealed impaired warmth sensation in the proband, father and brother. Genetic analysis revealed a novel missense mutation in the SCN9A gene encoding sodium channel Na(V)1.7 (G856D; c.2567G > A) in all three affected subjects, but not in unaffected family members. Functional analysis demonstrated that the mutation hyperpolarizes (-9.3 mV) channel activation, depolarizes (+6.2 mV) steady-state fast-inactivation, slows deactivation and enhances persistent current and the response to slow ramp stimuli by 10- to 11-fold compared with wild-type Na(V)1.7 channels. Current-clamp analysis of dorsal root ganglion neurons transfected with G856D mutant channels demonstrated depolarized resting potential, reduced current threshold

  8. Lipid membrane association of myelin proteins and peptide segments studied by oriented and synchrotron radiation circular dichroism spectroscopy.

    Science.gov (United States)

    Muruganandam, Gopinath; Bürck, Jochen; Ulrich, Anne S; Kursula, Inari; Kursula, Petri

    2013-12-01

    Myelin-specific proteins are either integral or peripheral membrane proteins that, in complex with lipids, constitute a multilayered proteolipid membrane system, the myelin sheath. The myelin sheath surrounds the axons of nerves and enables rapid conduction of axonal impulses. Myelin proteins interact intimately with the lipid bilayer and play crucial roles in the assembly, function, and stability of the myelin sheath. Although myelin proteins have been investigated for decades, their structural properties upon membrane surface binding are still largely unknown. In this study, we have used simplified model systems consisting of synthetic peptides and membrane mimics, such as detergent micelles and/or lipid vesicles, to probe the conformation of peptides using synchrotron radiation circular dichroism spectroscopy (SRCD). Additionally, oriented circular dichroism spectroscopy (OCD) was employed to examine the orientation of myelin peptides in macroscopically aligned lipid bilayers. Various representative peptides from the myelin basic protein (MBP), P0, myelin/oligodencrocyte glycoprotein, and connexin32 (cx32) were studied. A helical peptide from the central immunodominant epitope of MBP showed a highly tilted orientation with respect to the membrane surface, whereas the N-terminal cytoplasmic segment of cx32 folded into a helical structure that was only slightly tilted. The folding of full-length myelin basic protein was, furthermore, studied in a bicelle environment. Our results provide information on the conformation and membrane alignment of important membrane-binding peptides in a membrane-mimicking environment, giving novel insights into the mechanisms of membrane binding and stacking by myelin proteins.

  9. Schwann cell myelination requires integration of laminin activities.

    Science.gov (United States)

    McKee, Karen K; Yang, Dong-Hua; Patel, Rajesh; Chen, Zu-Lin; Strickland, Sidney; Takagi, Junichi; Sekiguchi, Kiyotoshi; Yurchenco, Peter D

    2012-10-01

    Laminins promote early stages of peripheral nerve myelination by assembling basement membranes (BMs) on Schwann cell surfaces, leading to activation of β1 integrins and other receptors. The BM composition, structural bonds and ligands needed to mediate this process, however, are not well understood. Mice hypomorphic for laminin γ1-subunit expression that assembled endoneurial BMs with reduced component density exhibited an axonal sorting defect with amyelination but normal Schwann cell proliferation, the latter unlike the null. To identify the basis for this, and to dissect participating laminin interactions, LAMC1 gene-inactivated dorsal root ganglia were treated with recombinant laminin-211 and -111 lacking different architecture-forming and receptor-binding activities, to induce myelination. Myelin-wrapping of axons by Schwann cells was found to require higher laminin concentrations than either proliferation or axonal ensheathment. Laminins that were unable to polymerize through deletions that removed critical N-terminal (LN) domains, or that lacked cell-adhesive globular (LG) domains, caused reduced BMs and almost no myelination. Laminins engineered to bind weakly to α6β1 and/or α7β1 integrins through their LG domains, even though they could effectively assemble BMs, decreased myelination. Proliferation depended upon both integrin binding to LG domains and polymerization. Collectively these findings reveal that laminins integrate scaffold-forming and cell-adhesion activities to assemble an endoneurial BM, with myelination and proliferation requiring additional α6β1/α7β1-laminin LG domain interactions, and that a high BM ligand/structural density is needed for efficient myelination.

  10. Nerve growth factor and injured peripheral nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Endong Shi; Bingchen Wang; Qingshan Sun

    2008-01-01

    Nerve growth factor (NGF) exhibits many biological activities, such as supply of nutrients, neuroprotection, and the generation and rehabilitation of injured nerves. The neuroprotective and neurotrophic qualities of NGF are generally recognized. NGF may enhance axonal regeneration and myelination of peripheral nerves, as well as cooperatively promote functional recovery of injured nerves and limbs. The clinical efficacy of NGF and its therapeutic potentials are reviewed here. This paper also reviews the latest NGF research developments for repairing injured peripheral nerve, thereby providing scientific evidence for the appropriate clinical application of NGF.

  11. Re-innervation patterns by peptidergic Substance-P, non-peptidergic P2X3, and myelinated NF-200 nerve fibers in epidermis and dermis of rats with neuropathic pain.

    Science.gov (United States)

    Duraku, Liron S; Hossaini, Mehdi; Schüttenhelm, Barthold N; Holstege, Joan C; Baas, Martijn; Ruigrok, Tom J H; Walbeehm, Erik T

    2013-03-01

    Nerve endings in the epidermis, termed nociceptors, conduct information on noxious stimuli to the central nervous system. The precise role of epidermal nerve fibers in neuropathic pain is however still controversial. Here, we have investigated the re-innervation patterns of epidermal and dermal nerve fibers in a rat neuropathic pain model. After applying the spared nerve injury (SNI) model, we determined the mechanical and thermal withdrawal thresholds in the uninjured lateral (sural) and medial (saphenous) areas of the affected hind paw and investigated the innervations patterns of Substance P (SubP), Neurofilament-200 (NF-200) and P2X3-immunoreactive (IR) nerve fibers in the epidermis and dermis. We found a significant loss in the density of peptidergic (Sub P and NF-200) and non-peptidergic (P2X3) nerve fibers in the center area of the foot sole at 2 weeks postoperatively (PO). The densities of Sub P-IR fibers in the epidermis and upper dermis, and the density of P2X3-IR fibers in the upper dermis were significantly increased at 10 weeks PO as compared to 2 weeks PO, but were still significantly lower than the densities in controls. However, the density of NF-200-IR fibers in the center area reached control levels at 10 weeks PO. No changes were found in the densities of any of the fibers in the medial and lateral parts of the foot sole. The present results suggest that after peripheral nerve injury, specific nerve fibers have different re-innervation patterns in the epidermis and dermis and that they might be involved in the development of neuropathic pain.

  12. Neutron scattering studies on protein dynamics using the human myelin peripheral membrane protein P2

    Directory of Open Access Journals (Sweden)

    Laulumaa Saara

    2015-01-01

    Full Text Available Myelin is a multilayered proteolipid membrane structure surrounding selected axons in the vertebrate nervous system, which allows the rapid saltatory conduction of nerve impulses. Deficits in myelin formation and maintenance may lead to chronic neurological disease. P2 is an abundant myelin protein from peripheral nerves, binding between two apposing lipid bilayers. We studied the dynamics of the human myelin protein P2 and its mutated P38G variant in hydrated powders using elastic incoherent neutron scattering. The local harmonic vibrations at low temperatures were very similar for both samples, but the mutant protein had increased flexibility and softness close to physiological temperatures. The results indicate that a drastic mutation of proline to glycine at a functional site can affect protein dynamics, and in the case of P2, they may explain functional differences between the two proteins.

  13. Neutron scattering studies on protein dynamics using the human myelin peripheral membrane protein P2

    Science.gov (United States)

    Laulumaa, Saara; Kursula, Petri; Natali, Francesca

    2015-01-01

    Myelin is a multilayered proteolipid membrane structure surrounding selected axons in the vertebrate nervous system, which allows the rapid saltatory conduction of nerve impulses. Deficits in myelin formation and maintenance may lead to chronic neurological disease. P2 is an abundant myelin protein from peripheral nerves, binding between two apposing lipid bilayers. We studied the dynamics of the human myelin protein P2 and its mutated P38G variant in hydrated powders using elastic incoherent neutron scattering. The local harmonic vibrations at low temperatures were very similar for both samples, but the mutant protein had increased flexibility and softness close to physiological temperatures. The results indicate that a drastic mutation of proline to glycine at a functional site can affect protein dynamics, and in the case of P2, they may explain functional differences between the two proteins.

  14. Dicer in Schwann cells is required for myelination and axonal integrity

    DEFF Research Database (Denmark)

    Pereira, Jorge A.; Baumann, Reto; Norrmén, Camilla

    2010-01-01

    Dicer is responsible for the generation of mature micro-RNAs (miRNAs) and loading them into RNA-induced silencing complex (RISC). RISC functions as a probe that targets mRNAs leading to translational suppression and mRNA degradation. Schwann cells (SCs) in the peripheral nervous system undergo...... and fail to start forming myelin. At the molecular level, the promyelinating transcription factor Krox20 and several myelin proteins [including myelin associated glycoprotein (MAG) and PMP22] were strongly reduced in mutant sciatic nerves. In contrast, the myelination inhibitors SOX2, Notch1, and Hes1 were......, we also found signs of axonal degeneration in Dicer mutant mice. Thus, our data indicate that miRNAs critically regulate Schwann cell gene expression that is required for myelination and to maintain axons via axon-glia interactions....

  15. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair

    Science.gov (United States)

    Domingues, Helena S.; Portugal, Camila C.; Socodato, Renato; Relvas, João B.

    2016-01-01

    Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair. PMID:27551677

  16. Influence of myelin proteins on the structure and dynamics of a model membrane with emphasis on the low temperature regime

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, W. [University Joseph Fourier, UFR PhiTEM, Grenoble (France); Institut Laue–Langevin, Grenoble (France); Peters, J. [University Joseph Fourier, UFR PhiTEM, Grenoble (France); Institut Laue–Langevin, Grenoble (France); Institut de Biologie Structurale, Grenoble (France); Kursula, P. [University of Oulu, Oulu (Finland); CSSB–HZI, DESY, Hamburg (Germany); Gerelli, Y. [Institut Laue–Langevin, Grenoble (France); Natali, F., E-mail: natali@ill.fr [Institut Laue–Langevin, Grenoble (France); CNR–IOM–OGG, c/o Institut Laue–Langevin, Grenoble (France)

    2014-11-28

    Myelin is an insulating, multi-lamellar membrane structure wrapped around selected nerve axons. Increasing the speed of nerve impulses, it is crucial for the proper functioning of the vertebrate nervous system. Human neurodegenerative diseases, such as multiple sclerosis, are linked to damage to the myelin sheath through demyelination. Myelin exhibits a well defined subset of myelin-specific proteins, whose influence on membrane dynamics, i.e., myelin flexibility and stability, has not yet been explored in detail. In a first paper [W. Knoll, J. Peters, P. Kursula, Y. Gerelli, J. Ollivier, B. Demé, M. Telling, E. Kemner, and F. Natali, Soft Matter 10, 519 (2014)] we were able to spotlight, through neutron scattering experiments, the role of peripheral nervous system myelin proteins on membrane stability at room temperature. In particular, the myelin basic protein and peripheral myelin protein 2 were found to synergistically influence the membrane structure while keeping almost unchanged the membrane mobility. Further insight is provided by this work, in which we particularly address the investigation of the membrane flexibility in the low temperature regime. We evidence a different behavior suggesting that the proton dynamics is reduced by the addition of the myelin basic protein accompanied by negligible membrane structural changes. Moreover, we address the importance of correct sample preparation and characterization for the success of the experiment and for the reliability of the obtained results.

  17. Influence of myelin proteins on the structure and dynamics of a model membrane with emphasis on the low temperature regime

    Science.gov (United States)

    Knoll, W.; Peters, J.; Kursula, P.; Gerelli, Y.; Natali, F.

    2014-11-01

    Myelin is an insulating, multi-lamellar membrane structure wrapped around selected nerve axons. Increasing the speed of nerve impulses, it is crucial for the proper functioning of the vertebrate nervous system. Human neurodegenerative diseases, such as multiple sclerosis, are linked to damage to the myelin sheath through demyelination. Myelin exhibits a well defined subset of myelin-specific proteins, whose influence on membrane dynamics, i.e., myelin flexibility and stability, has not yet been explored in detail. In a first paper [W. Knoll, J. Peters, P. Kursula, Y. Gerelli, J. Ollivier, B. Demé, M. Telling, E. Kemner, and F. Natali, Soft Matter 10, 519 (2014)] we were able to spotlight, through neutron scattering experiments, the role of peripheral nervous system myelin proteins on membrane stability at room temperature. In particular, the myelin basic protein and peripheral myelin protein 2 were found to synergistically influence the membrane structure while keeping almost unchanged the membrane mobility. Further insight is provided by this work, in which we particularly address the investigation of the membrane flexibility in the low temperature regime. We evidence a different behavior suggesting that the proton dynamics is reduced by the addition of the myelin basic protein accompanied by negligible membrane structural changes. Moreover, we address the importance of correct sample preparation and characterization for the success of the experiment and for the reliability of the obtained results.

  18. Myelin vacuolation, optic neuropathy and retinal degeneration after closantel overdosage in sheep and in a goat.

    Science.gov (United States)

    van der Lugt, J J; Venter, I

    2007-01-01

    Toxicity of closantel, a halogenated salicylanilide anthelmintic, is described in 11 sheep and a goat, humanely killed 4-70 days after accidental overdosage. Status spongiosis of the cerebrum and cerebellum was present, its severity decreasing with time after treatment. Ultrastructurally, vacuoles in the cerebral white matter were seen to be intramyelinic due to splitting of myelin lamellae at the intraperiod lines, indicating myelin oedema. In the optic nerves, Wallerian degeneration and eventual fibrosis and atrophy of the nerves followed myelin vacuolation. Lesions in the optic nerves were particularly advanced in the intracanalicular portion, indicating a compressive neuropathy within the optic canal. Acute retinal lesions consisted of papilloedema, necrosis of the outer retinal layers (especially the photoreceptor layer), and retinal separation in tapetal and non-tapetal areas. In more chronic cases, the outer nuclear layer was diffusely attenuated and generally reduced to a single row of cells.

  19. Electromagnetic induction between axons and their schwann cell myelin-protein sheaths.

    Science.gov (United States)

    Goodman, G; Bercovich, D

    2013-12-01

    Two concepts have long dominated vertebrate nerve electrophysiology: (a) Schwann cell-formed myelin sheaths separated by minute non-myelinated nodal gaps and spiraling around axons of peripheral motor nerves reduce current leakage during propagation of trains of axon action potentials; (b) "jumping" by action potentials between successive nodes greatly increases signal conduction velocity. Long-held and more recent assumptions and issues underlying those concepts have been obscured by research emphasis on axon-sheath biochemical symbiosis and nerve regeneration. We hypothesize: mutual electromagnetic induction in the axon-glial sheath association, is fundamental in signal conduction in peripheral and central myelinated axons, explains the g-ratio and is relevant to animal navigation.

  20. Genetic dissection of myelinated axons in zebrafish

    OpenAIRE

    2009-01-01

    In the vertebrate nervous system, the myelin sheath allows for rapid and efficient conduction of action potentials along axons. Despite the essential function of myelin, many questions remain unanswered about the mechanisms that govern the development of myelinated axons. The fundamental properties of myelin are widely shared among vertebrates, and the zebrafish has emerged as a powerful system to study myelination in vivo. This review will highlight recent advances from genetic screens in ze...

  1. Combination of acellular nerve graft and schwann cells-like cells for rat sciatic nerve regeneration.

    Science.gov (United States)

    Gao, Songtao; Zheng, Yan; Cai, Qiqing; Deng, Zhansheng; Yao, Weitao; Wang, Jiaqiang; Wang, Xin; Zhang, Peng

    2014-01-01

    To investigate the effect of tissue engineering nerve on repair of rat sciatic nerve defect. Forty-five rats with defective sciatic nerve were randomly divided into three groups. Rats in group A were repaired by acellular nerve grafts only. Rats in group B were repaired by tissue engineering nerve. In group C, rats were repaired by autogenous nerve grafts. After six and twelve weeks, sciatic nerve functional index (SFI), neural electrophysiology (NEP), histological and transmission electron microscope observation, recovery ratio of wet weight of gastrocnemius muscle, regenerated myelinated nerve fibers number, nerve fiber diameter, and thickness of the myelin sheath were measured to assess the effect. After six and twelve weeks, the recovery ratio of SFI and wet weight of gastrocnemius muscle, NEP, and the result of regenerated myelinated nerve fibers in groups B and C were superior to that of group A (P 0.05). The tissue engineering nerve composed of acellular allogenic nerve scaffold and Schwann cells-like cells can effectively repair the nerve defect in rats and its effect was similar to that of the autogenous nerve grafts.

  2. A novel electrical model of nerve and muscle using Pspice

    CERN Document Server

    Peasgood, W; Lam, C K; Armstrong, A G; Wood, W

    2003-01-01

    In this work, a model is developed to simulate the biological processes involved in nerve fibre transmission and subsequent muscle contraction. The model has been based on approximating biological structure and function to electrical circuits and as such was implemented on an electronics simulation software package called Pspice. Models of nerve, the nerve-muscle interface and muscle fibre have been implemented. The time dependent ionic properties of the nerve and muscle membranes have been simulated using the Hodgkin-Huxley equations and for the muscle fibre, the implementation of the Huxley sliding filament theory for muscular contraction. The results show that nerve may be considered as a fractal transmission line and that the amplitude of the nerve membrane depolarization is dependent on the dimensions of the fibre. Additionally, simulation of the nerve-muscle interface allows the fractal nerve model to be connected to the muscle fibre model and it is shown that a two sarcomere molecular simulation can pr...

  3. Chitosan conduits combined with nerve growth factor microspheres repair facial nerve defects

    Institute of Scientific and Technical Information of China (English)

    Huawei Liu; Weisheng Wen; Min Hu; Wenting Bi; Lijie Chen; Sanxia Liu; Peng Chen; Xinying Tan

    2013-01-01

    Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in rabbits. In addition, chitosan conduits combined with nerve growth factor or normal saline, as wel as autologous nerve, were used as controls. At 90 days post-surgery, the muscular atrophy on the right upper lip was more evident in the nerve growth factor and normal sa-line groups than in the nerve growth factor-microspheres and autologous nerve groups. Electro-physiological analysis revealed that the nerve conduction velocity and amplitude were significantly higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. Moreover, histological observation il ustrated that the di-ameter, number, alignment and myelin sheath thickness of myelinated nerves derived from rabbits were higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. These findings indicate that chitosan nerve conduits com-bined with microspheres for sustained release of nerve growth factor can significantly improve facial nerve defect repair in rabbits.

  4. MRI shows thickening and altered diffusion in the median and ulnar nerves in multifocal motor neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Haakma, Wieke [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Aarhus University, Department of Forensic Medicine and Comparative Medicine Lab, Aarhus (Denmark); Jongbloed, Bas A.; Goedee, H.S.; Berg, Leonard H. van den; Pol, W.L. van der [University Medical Center Utrecht, Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, Utrecht (Netherlands); Froeling, Martijn; Bos, Clemens; Hendrikse, Jeroen [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Leemans, Alexander [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands)

    2017-05-15

    To study disease mechanisms in multifocal motor neuropathy (MMN) with magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) of the median and ulnar nerves. We enrolled ten MMN patients, ten patients with amyotrophic lateral sclerosis (ALS) and ten healthy controls (HCs). Patients underwent MRI (in a prone position) and nerve conduction studies. DTI and fat-suppressed T2-weighted scans of the forearms were performed on a 3.0T MRI scanner. Fibre tractography of the median and ulnar nerves was performed to extract diffusion parameters: fractional anisotropy (FA), mean (MD), axial (AD) and radial (RD) diffusivity. Cross-sectional areas (CSA) were measured on T2-weighted scans. Forty-five out of 60 arms were included in the analysis. AD was significantly lower in MMN patients (2.20 ± 0.12 x 10{sup -3} mm{sup 2}/s) compared to ALS patients (2.31 ± 0.17 x 10{sup -3} mm{sup 2}/s; p < 0.05) and HCs (2.31± 0.17 x 10{sup -3} mm{sup 2}/s; p < 0.05). Segmental analysis showed significant restriction of AD, RD and MD (p < 0.005) in the proximal third of the nerves. CSA was significantly larger in MMN patients compared to ALS patients and HCs (p < 0.01). Thickening of nerves is compatible with changes in the myelin sheath structure, whereas lowered AD values suggest axonal dysfunction. These findings suggest that myelin and axons are diffusely involved in MMN pathogenesis. (orig.)

  5. Cholesterol in myelin biogenesis and hypomyelinating disorders.

    Science.gov (United States)

    Saher, Gesine; Stumpf, Sina Kristin

    2015-08-01

    The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids.

  6. Sex differences in morphometric aspects of the peripheral nerves and related diseases

    Science.gov (United States)

    Moriyama, Hiroshi; Hayashi, Shogo; Inoue, Yuriko; Itoh, Masahiro; Otsuka, Naruhito

    2016-01-01

    BACKGROUND: The elucidation of the relationship between the morphology of the peripheral nerves and the diseases would be valuable in developing new medical treatments on the assumption that characteristics of the peripheral nerves in females are different from those in males. METHODS: We used 13 kinds of the peripheral nerve. The materials were obtained from 10 Japanese female and male cadavers. We performed a morphometric analysis of nerve fibers. We estimated the total number of myelinated axons, and calculated the average transverse area and average circularity ratio of myelinated axons in the peripheral nerves. RESULTS: There was no statistically significant difference in the total number, average transverse area, or average circularity ratio of myelinated axons between the female and male specimens except for the total number of myelinated axons in the vestibular nerve and the average circularity ratio of myelinated axons in the vagus nerve. CONCLUSIONS: The lower number of myelinated axons in the female vestibular nerve may be one of the reasons why vestibular disorders have a female preponderance. Moreover, the higher average circularity ratio of myelinated axons in the male vagus nerve may be one reason why vagus nerve activity to modulate pain has a male preponderance. PMID:27589511

  7. Epitope diversity of N-glycans from bovine peripheral myelin glycoprotein P0 revealed by mass spectrometry and nano probe magic angle spinning 1H NMR spectroscopy

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Gutiérrez Gallego, R.; Jiménez Blanco, J.L.; Thijssen-van Zuylen, C.W.E.M.; Gotfredsen, C.H.; Voshol, H.; Duus, J.Ø.; Schachner, M.

    2001-01-01

    The carbohydrate structures present on the glycoproteins in the central and peripheral nerve systems are essential in many cell adhesion processes. The P0 glycoprotein, expressed by myelinating Schwann cells, plays an important role during the formation and maintenance of myelin, and it is the most

  8. Neurophysiological approach to disorders of peripheral nerve

    DEFF Research Database (Denmark)

    Crone, Clarissa; Krarup, Christian

    2013-01-01

    Disorders of the peripheral nerve system (PNS) are heterogeneous and may involve motor fibers, sensory fibers, small myelinated and unmyelinated fibers and autonomic nerve fibers, with variable anatomical distribution (single nerves, several different nerves, symmetrical affection of all nerves...... methods including nerve conduction studies and electromyography used in the study of patients suspected of having a neuropathy and the significance of the findings are discussed in detail and more novel and experimental methods are mentioned. Diagnostic considerations are based on a flow chart classifying...

  9. Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy

    Science.gov (United States)

    Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Claude Boccara, A.; Bourdieu, Laurent

    2011-11-01

    Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.

  10. Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy.

    Science.gov (United States)

    Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Boccara, A Claude; Bourdieu, Laurent

    2011-11-01

    Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.

  11. Mechanisms regulating the development of oligodendrocytes and central nervous system myelin.

    Science.gov (United States)

    Mitew, S; Hay, C M; Peckham, H; Xiao, J; Koenning, M; Emery, B

    2014-09-12

    Oligodendrocytes and the myelin they produce are a remarkable vertebrate specialization that enables rapid and efficient nerve conduction within the central nervous system. The generation of myelin during development involves a finely-tuned pathway of oligodendrocyte precursor specification, proliferation and migration followed by differentiation and the subsequent myelination of appropriate axons. In this review we summarize the molecular mechanisms known to regulate each of these processes, including the extracellular ligands that promote or inhibit development of the oligodendrocyte lineage, the intracellular pathways they signal through and the key transcription factors that mediate their effects. Many of these regulatory mechanisms have recurring roles in regulating several transitions during oligodendrocyte development, highlighting their importance. It is also highly likely that many of these developmental mechanisms will also be involved in myelin repair in human neurological disease.

  12. Nerve conduction and electromyography studies.

    Science.gov (United States)

    Kane, N M; Oware, A

    2012-07-01

    Nerve conduction studies (NCS) and electromyography (EMG), often shortened to 'EMGs', are a useful adjunct to clinical examination of the peripheral nervous system and striated skeletal muscle. NCS provide an efficient and rapid method of quantifying nerve conduction velocity (CV) and the amplitude of both sensory nerve action potentials (SNAPs) and compound motor action potentials (cMAPs). The CV reflects speed of propagation of action potentials, by saltatory conduction, along large myelinated axons in a peripheral nerve. The amplitude of SNAPs is in part determined by the number of axons in a sensory nerve, whilst amplitude of cMAPs reflects integrated function of the motor axons, neuromuscular junction and striated muscle. Repetitive nerve stimulation (RNS) can identify defects of neuromuscular junction (NMJ) transmission, pre- or post-synaptic. Needle EMG examination can detect myopathic changes in muscle and signs of denervation. Combinations of these procedures can establish if motor and/or sensory nerve cell bodies or peripheral nerves are damaged (e.g. motor neuronopathy, sensory ganglionopathy or neuropathy), and also indicate if the primary target is the axon or the myelin sheath (i.e. axonal or demyelinating neuropathies). The distribution of nerve damage can be determined as either generalised, multifocal (mononeuropathy multiplex) or focal. The latter often due to compression at the common entrapment sites (such as the carpal tunnel, Guyon's canal, cubital tunnel, radial groove, fibular head and tarsal tunnel, to name but a few of the reported hundred or so 'entrapment neuropathies').

  13. A role of peripheral myelin protein 2 in lipid homeostasis of myelinating Schwann cells.

    NARCIS (Netherlands)

    Zenker, Jennifer; ruskamo, salla; domenech-estevez, Enric; medard, jean-jacques; Verheijen, M.H.; Brouwers, Jos; Kursula, Petri; kieseier, bernd; Chrast, Roman

    2014-01-01

    Peripheral myelin protein 2 (Pmp2, P2 or Fabp8), a member of the fatty acid binding protein family, was originally described together with myelin basic protein (Mbp or P1) and myelin protein zero (Mpz or P0) as one of the most abundant myelin proteins in the peripheral nervous system (PNS). Although

  14. Histological observation on acellular nerve grafts co-cultured with Schwann cells for repairing defects of the sciatic nerve

    Institute of Scientific and Technical Information of China (English)

    Xiaohong Sun; Jiangyi Tian; Xiaojie Tong; Xu Zhang; Zheng He

    2006-01-01

    BACKGROUND: Animal experiments and clinical studies about tissue engineering method applied to repair nerve injury mainly focus on seeking ideal artificial nerve grafts, nerve conduit and seed cells. Autologous nerve, allogeneic nerve and xenogeneic nerve are used to bridge nerve defects, it is one of the methods to promote the repair of nerve injury by culturing and growing Schwann cells, which can secrete various neurotrophic factor activities, in the grafts.OBJECTIVE: To observe the effect of acellular nerve grafts co-cultured with Schwann cells in repairing defects of sciatic nerve.DESIGN: An observational comparative study.SETTING: Tissue Engineering Laboratory of China Medical University.MATERIALS: The experiment was carried out in the Tissue Engineering Laboratory of China Medical University between April 2004 and April 2005. Forty neonatal Sprague-Dawley rats of 5-8 days (either males or females) and 24 male Wistar rats of 180-220 g were provided by the experimental animal center of China Medical University.METHODS: ① Culture of Schwann cells: The bilateral sciatic nerves and branchial plexus were isolated from the 40 neonatal SD rats. The sciatic nerves were enzymatically digested with collagenase and dispase, isolatd, purified and cultured with the method of speed-difference adhersion, and identified with the SABC immunohistochemical method. ② Model establishment: In vitro Schwann cells were microinjected into 10-mm long acellular nerve grafts repairing a surgically created gap in the rat sciatic nerve.According to the different grafted methods, the animals were randomly divided into three groups: autografts (n=8), acellular nerve grafts (n=8), or acellular nerve grafts with Schwann cells (n=8). ③ The regenerated nerve fiber number and average diameter of myeline sheath after culture were statistically anlayzed.MAIN OUTCOME MEASURES: ① The regenerated nerve ultrastructure, total number and density of myelinated nerve fibers, and the thickness of

  15. Neurotrophic Modulation of Myelinated Cutaneous Innervation and Mechanical Sensory Loss in Diabetic Mice

    Science.gov (United States)

    Christianson, Julie A.; Ryals, Janelle M.; Johnson, Megan S.; Dobrowsky, Rick T.; Wright, Douglas E.

    2007-01-01

    Human diabetic patients often lose touch and vibratory sensations, but to date, most studies on diabetes-induced sensory nerve degeneration have focused on epidermal C-fibers. Here, we explored the effects of diabetes on cutaneous myelinated fibers in relation to the behavioral responses to tactile stimuli from diabetic mice. Weekly behavioral testing began prior to STZ administration and continued until 8 weeks, at which time myelinated fiber innervation was examined in the footpad by immunohistochemistry using antiserum to NF-H and MBP. Diabetic mice developed reduced behavioral responses to non-noxious (monofilaments) and noxious (pin prick) stimuli. In addition, diabetic mice displayed a 50% reduction in NF-H-positive myelinated innervation of the dermal footpad compared to non-diabetic mice. To test whether two neurotrophins NGF and/or NT-3 known to support myelinated cutaneous fibers could influence myelinated innervation, diabetic mice were treated intrathecally for two weeks with NGF, NT-3, NGF and NT-3. Neurotrophin-treated mice were then compared to diabetic mice treated with insulin for two weeks. NGF and insulin treatment both increased paw withdrawal to mechanical stimulation in diabetic mice, whereas NT-3 or a combination of NGF and NT-3 failed to alter paw withdrawal responses. Surprisingly, all treatments significantly increased myelinated innervation compared to control-treated diabetic mice, demonstrating that myelinated cutaneous fibers damaged by hyperglycemia respond to intrathecal administration of neurotrophins. Moreover, NT-3 treatment increased epidermal Merkel cell numbers associated with nerve fibers, consistent with increased numbers of NT-3-responsive slowly adapting A-fibers. These studies suggest that myelinated fiber loss may contribute as significantly as unmyelinated epidermal loss in diabetic neuropathy, and the contradiction between neurotrophin-induced increases in dermal innervation and behavior emphasize the need for multiple

  16. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination.

    Directory of Open Access Journals (Sweden)

    Samantha F Kornfeld

    Full Text Available Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as

  17. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair

    Institute of Scientific and Technical Information of China (English)

    Yanru Zhang; Hui Zhang; Kaka Katiella; Wenhua Huang

    2014-01-01

    A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune re-jection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regenera-tion. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group > chemically extracted acellular nerve graft + ciliary neurotrophic factor group > chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anasto-mosis, but superior to chemically extracted acellular allogeneic nerve bridging alone.

  18. An experimental study of nerve bypass graft

    Institute of Scientific and Technical Information of China (English)

    XU Jie; LI Xue-shi

    2008-01-01

    Objective: To study the use of a nerve "bypass" graft as a possible alternative to neurolysis or segmental resection with interposition grafting in the treatment of neuroma-in-continuity. Methods: A sciatic nerve crush injury model was established in the Sprague-Dawley rat by compression with a straight hemostatic forceps. Epineurial windows were created proximal and distal to the injury site. An 8-mm segment of radial nerve was harvested and coaptated to the sciatic nerve at the epineurial window sites proximal and distal to the compressed segment (bypass group). A sciatic nerve crush injury without bypass served as a control. Nerve conduction studies were performed over an 8-week period. Sciatic nerves were then harvested and studied under transmission electron microscopy. Myelinated axon counts were obtained. Results: Nerve conduction velocity was significantly faster in the bypass group than in the control group at 8 weeks (63.57 m/s±5.83 m/s vs. 54.88 m/s±4.79m/s, P<0.01). Myelinated axon counts in distal segments were found more in the experimental sciatic nerve than in the control sciatic nerve. Significant axonal growth was noted in the bypass nerve segment itself. Conclusion: Nerve bypass may serve to augment peripheral axonal growth while avoiding further loss of the native nerve.

  19. The histomorphological study of the lateral femoral cutaneous nerve, the medial calcaneal nerve and the lateral calcaneal nerve:observation of sectional morphous and measurement of nerve fibre number%股外侧皮神经和跟内、外侧神经的截面形态观察与神经纤维计数

    Institute of Scientific and Technical Information of China (English)

    唐举玉; 李康华; 吴梅英; 罗令; 宋达疆

    2009-01-01

    Objective To provide guidance for reconstructing the sensation of the anterolateral thigh flap (ALTF) used to repair extensive soft tissue defects in heel. Methods Choose 7 adult male corpses, take the nerval samples respectively from the lateral femoral cutaneous nerve (LFCN) 5cm below the anterior superior iliac spine (ASIS) and the initial segment of the medial caleaneal nerve (MCN) and the lateral calcaneal nerve (LCN), fixed, dewatered gradiendy, embedded, located, and made them into semithin sections, dyed with toluidine blue. The pictures were taken by a medicine figure imaging analysis system named MOTICMED 6.0, observe the nerves's sectional morphous, the quantity and distribution of their nerve fiber bundles, count the quantity of nerve fibers and determine the density of them. Use Photoshop 7.0 version precinct software for measuring and calculating the area of the nerve fiber bundles and the Photoshop grid function was used to measure the density of the nerve fibers. Results In our cross-section study, the median number of nerve bunches in LFCN, MCN and LCN1, was 4, 3 and 4, respectively. The median number of nerve fibers' area was 114.8 um2, 126.92 um2 and 102.76um2, respectively. The median number of nerve fibers' density was 11.43/um2, 6.47/um2 and 10.08/um2, respectively. The median number of nerve fibers was 987, 862 and 570, respectively. Conclusion The MCN and the LCN1 are ideal cutaneous nerves to suture with LFCN in the ALTF used to repair widespread soft tissue defects in heel because they have similar histomorphological characteristics with the LFCN.%目的 为临床开展股前外侧皮瓣移植修复足跟软组织缺损感觉重建提供指导. 方法 选择7具成年男性标本,分别于股外侧皮神经髂前上棘下5 cm、跟内侧神经和跟外侧神经第一支主干起始段切取神经样本.经固定、梯度脱水、包埋、修块定位和半薄切片后,以甲苯胺蓝染色.以MOTICMED6.0数码医学图像分析系统摄

  20. The cell biology of CNS myelination.

    Science.gov (United States)

    Hughes, Ethan G; Appel, Bruce

    2016-08-01

    Myelination of axons in the central nervous system results from the remarkable ability of oligodendrocytes to wrap multiple axons with highly specialized membrane. Because myelin membrane grows as it ensheaths axons, cytoskeletal rearrangements that enable ensheathment must be coordinated with myelin production. Because the myelin sheaths of a single oligodendrocyte can differ in thickness and length, mechanisms that coordinate axon ensheathment with myelin growth likely operate within individual oligodendrocyte processes. Recent studies have revealed new information about how assembly and disassembly of actin filaments helps drive the leading edge of nascent myelin membrane around and along axons. Concurrently, other investigations have begun to uncover evidence of communication between axons and oligodendrocytes that can regulate myelin formation.

  1. Uncompacted Myelin Lamellae and Nodal Ion Channel Disruption in POEMS Syndrome.

    Science.gov (United States)

    Hashimoto, Rina; Koike, Haruki; Takahashi, Mie; Ohyama, Ken; Kawagashira, Yuichi; Iijima, Masahiro; Sobue, Gen

    2015-12-01

    To elucidate the significance of uncompacted myelin lamellae (UML) and ion channel disruption at the nodes of Ranvier in the polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes (POEMS) syndrome, we evaluated sural nerve biopsy specimens from 33 patients with POEMS syndrome and from 7 control patients. Uncompacted myelin lamellae distribution was assessed by electron microscopy and immunofluorescence microscopy. In the POEMS patient biopsies, UML were seen more frequently in small versus large myelinated fibers. Paranodes and Schmidt-Lanterman incisures, where normal physiologic UM is located, were frequently associated with UM. Widening of the nodes of Ranvier (i.e. segmental demyelination) was not associated with UML. There was axonal hollowing with neurofilament condensation at Schmidt-Lanterman incisures with abnormal UML, suggesting axonal damage at those sites in the POEMS patient biopsies. Myelin sheath irregularity was conspicuous in large myelinated fibers and was associated with abnormally widened bizarrely shaped Schmidt-Lanterman incisures. Indirect immunofluorescent studies revealed abnormalities of sodium (pan sodium) and potassium (KCNQ2) channels, even at nonwidened nodes of Ranvier. Thus, UML was not apparently associated with segmental demyelination but seemed to be associated with axonal damage. These observations suggest that nodal ion channel disruption may be associated with functional deficits in POEMS syndrome patient nerves.

  2. Running Exercise Reduces Myelinated Fiber Loss in the Dentate Gyrus of the Hippocampus in APP/PS1 Transgenic Mice.

    Science.gov (United States)

    Chao, Fenglei; Zhang, Lei; Luo, Yanmin; Xiao, Qian; Lv, Fulin; He, Qi; Zhou, Chunni; Zhang, Yi; Jiang, Lin; Jiang, Rong; Gu, Hengwei; Tang, Yong

    2015-01-01

    To investigate the effect of running exercise on myelinated fibers in the dentate gyrus (DG) of the hippocampus during Alzheimer's disease (AD), 6-month-old male APP/PS1 transgenic mice were randomly assigned to control or running groups. The running group mice were subjected to a running protocol for four months. The behaviors of the mice from both group mice were then assessed using the Morris water maze, and the total volume of the DG and the related quantitative parameters with characteristics of the myelinated nerve fiber and the myelin sheath in the DG were investigated using unbiased stereological techniques and electron microscopy. Learning and spatial memory performances were both significantly increased in the running group compared with the control group. There was no significant difference in the gratio of the myelinated axons between the two groups. However, the DG volume, the myelinated fiber length and volume in the DG, and the myelin sheath volume and thickness in the DG were all significantly increased in the running group mice compared with the control group mice. These results indicated that running exercise was able to prevent DG atrophy and delay the progression of the myelinated fiber loss and the demyelination of the myelin sheaths in the DG in an AD mouse model, which may underlie the running-induced improvement in learning and spatial memory. Taken together, these results demonstrated that running exercise could delay the progression of AD.

  3. The role of myelin in Theiler's virus persistence in the central nervous system.

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Roussarie

    2007-02-01

    Full Text Available Theiler's virus, a picornavirus, persists for life in the central nervous system of mouse and causes a demyelinating disease that is a model for multiple sclerosis. The virus infects neurons first but persists in white matter glial cells, mainly oligodendrocytes and macrophages. The mechanism, by which the virus traffics from neurons to glial cells, and the respective roles of oligodendrocytes and macrophages in persistence are poorly understood. We took advantage of our previous finding that the shiverer mouse, a mutant with a deletion in the myelin basic protein gene (Mbp, is resistant to persistent infection to examine the role of myelin in persistence. Using immune chimeras, we show that resistance is not mediated by immune responses or by an efficient recruitment of inflammatory cells into the central nervous system. With both in vivo and in vitro experiments, we show that the mutation does not impair the permissiveness of neurons, oligodendrocytes, and macrophages to the virus. We demonstrate that viral antigens are present in cytoplasmic channels of myelin during persistent infection of wild-type mice. Using the optic nerve as a model, we show that the virus traffics from the axons of retinal ganglion cells to the cytoplasmic channels of myelin, and that this traffic is impaired by the shiverer mutation. These results uncover an unsuspected axon to myelin traffic of Theiler's virus and the essential role played by the infection of myelin/oligodendrocyte in persistence.

  4. Myelin organization in the nodal, paranodal, and juxtaparanodal regions revealed by scanning x-ray microdiffraction.

    Directory of Open Access Journals (Sweden)

    Hideyo Inouye

    Full Text Available X-ray diffraction has provided extensive information about the arrangement of lipids and proteins in multilamellar myelin. This information has been limited to the abundant inter-nodal regions of the sheath because these regions dominate the scattering when x-ray beams of 100 µm diameter or more are used. Here, we used a 1 µm beam, raster-scanned across a single nerve fiber, to obtain detailed information about the molecular architecture in the nodal, paranodal, and juxtaparanodal regions. Orientation of the lamellar membrane stacks and membrane periodicity varied spatially. In the juxtaparanode-internode, 198-202 Å-period membrane arrays oriented normal to the nerve fiber axis predominated, whereas in the paranode-node, 205-208 Å-period arrays oriented along the fiber direction predominated. In parts of the sheath distal to the node, multiple sets of lamellar reflections were observed at angles to one another, suggesting that the myelin multilayers are deformed at the Schmidt-Lanterman incisures. The calculated electron density of myelin in the different regions exhibited membrane bilayer profiles with varied electron densities at the polar head groups, likely due to different amounts of major myelin proteins (P0 glycoprotein and myelin basic protein. Scattering from the center of the nerve fibers, where the x-rays are incident en face (perpendicular to the membrane planes, provided information about the lateral distribution of protein. By underscoring the heterogeneity of membrane packing, microdiffraction analysis suggests a powerful new strategy for understanding the underlying molecular foundation of a broad spectrum of myelinopathies dependent on local specializations of myelin structure in both the PNS and CNS.

  5. Myelin organization in the nodal, paranodal, and juxtaparanodal regions revealed by scanning x-ray microdiffraction.

    Science.gov (United States)

    Inouye, Hideyo; Liu, Jiliang; Makowski, Lee; Palmisano, Marilena; Burghammer, Manfred; Riekel, Christian; Kirschner, Daniel A

    2014-01-01

    X-ray diffraction has provided extensive information about the arrangement of lipids and proteins in multilamellar myelin. This information has been limited to the abundant inter-nodal regions of the sheath because these regions dominate the scattering when x-ray beams of 100 µm diameter or more are used. Here, we used a 1 µm beam, raster-scanned across a single nerve fiber, to obtain detailed information about the molecular architecture in the nodal, paranodal, and juxtaparanodal regions. Orientation of the lamellar membrane stacks and membrane periodicity varied spatially. In the juxtaparanode-internode, 198-202 Å-period membrane arrays oriented normal to the nerve fiber axis predominated, whereas in the paranode-node, 205-208 Å-period arrays oriented along the fiber direction predominated. In parts of the sheath distal to the node, multiple sets of lamellar reflections were observed at angles to one another, suggesting that the myelin multilayers are deformed at the Schmidt-Lanterman incisures. The calculated electron density of myelin in the different regions exhibited membrane bilayer profiles with varied electron densities at the polar head groups, likely due to different amounts of major myelin proteins (P0 glycoprotein and myelin basic protein). Scattering from the center of the nerve fibers, where the x-rays are incident en face (perpendicular) to the membrane planes, provided information about the lateral distribution of protein. By underscoring the heterogeneity of membrane packing, microdiffraction analysis suggests a powerful new strategy for understanding the underlying molecular foundation of a broad spectrum of myelinopathies dependent on local specializations of myelin structure in both the PNS and CNS.

  6. Study of Myelin Basic Protein Associated with Pediatric Systematic Epilepsy

    Institute of Scientific and Technical Information of China (English)

    Yang Sida; He Xin; Yang Yiyu; Zhu Huihua; He Dansha; Deng Weiyi

    2000-01-01

    Objective: To investigate the quantitative myelin basic protein (MBP) in cerebrospinal fluid (CSF) and serum in pediatric systematic epilepsy (SEP), study the relation between SEP and MBP, and the possibility predicating'the injury of myelin and blood-brain barrier (BBB) from pediatric SEP. Background: While tactors induced destroy of cerebral and Myelin, MBP was released out into CSF to increase its concentration. On the other hand, the BBB was involved to make serum MBP increased. The related studies had confirmed these viewpoints above. The test for quantitative MBP was recognized as the specific biochemical index, which diagnose if there is or not organic injury of cerebral and myelin. There was few reports about the studies of quantitative MBP in CSF and serum of EP, not mention to those published in domestic pediatric academia. Methods: 47 cases were studied during one month after the SEP attack, whose MBP in serum were quantitatively and 31 inside in CSF were also tested by easy MBP-ELISA method; the quantitative MBP in serum of 30 control cases and 10 in CSF were tested, too. Results: MBP values in CSF and serum of SEP pediatric patients were 2.95±0.61 ng/ml and 3.17±0.53 ng/ml; whereas 1.41 ±0.19 ng/ml and 1.30±0.04 ng/ml in control group. Both mean valves of MBP in CSF and serum in study group were significantly higher than control group (either P< 0.01). Discussion: In general, electrophysiological evidences supported the issue that epileptic episode was originated from abnormal electrical activities of nervous cells. Pathological studies revealed degeneration and necrosis of nerve existed in temporal epileptic focus, where there was morphological change of myelin. This study showed MBP values in CSF and serum of SEEP, during one month after attack, increased significantly; suggested there was changed component of MBP, while SEP could not be controled. Those above indicated the destroy of myelin, increasing of BBB permeability that induced its

  7. Morphometric evaluation of changes with time in optic disc structure and thickness of retinal nerve fibre layer in chronic ocular hypertensive monkeys.

    Science.gov (United States)

    Shimazawa, Masamitsu; Tomita, Goji; Taniguchi, Takazumi; Sasaoka, Masaaki; Hara, Hideaki; Kitazawa, Yoshiaki; Araie, Makoto

    2006-03-01

    We examined the time course of changes in optic disc structure by means of a scanning laser ophthalmoscope (Heidelberg Retina Tomograph, HRT) in ocular hypertensive (experimental glaucoma) monkeys, and clarified the relationships between the histological RNFL thickness and HRT parameters. Further, the time course of changes in retinal nerve fiber layer (RNFL) thickness in individual eyes was measured using a scanning laser polarimeter with fixed corneal polarization compensator (GDx FCC). In the present study, two separate experiments were carried out. A chronic intraocular pressure (IOP) elevation was induced by laser trabeculoplasty in the left eye in 11 cynomolgus monkeys. In Experiment 1, the HRT and GDx parameters were measured 12 weeks after the laser treatment in 10 eyes in five monkeys. In Experiment 2, the time course of changes in the HRT and GDx parameters was examined before and 1, 3, 4, 5, 6, 8, 10, 12, 14, and 16 weeks after the laser treatment in 12 eyes in six monkeys. The retardation values (thickness parameters) obtained from the GDx were used to derive thickness and ratio parameters in the superior, inferior, nasal and temporal quadrants. Ratio parameters were expressed as a ratio of superior and inferior quadrant to nasal quadrant. After the last measurements, each eye was enucleated, and retinal cross sections were prepared for histological analysis. In the left (hypertensive) eyes, IOP was persistently elevated throughout the observation periods in both Experiments 1 and 2. In the HRT measurements in Experiment 1, seven out of eight global topographic parameters (exception, disc area) were statistically different between the hypertensive and control eyes 12 weeks after the laser treatment. In Experiment 2, the HRT parameters changed in a time-dependent manner, but each of them almost plateaued at about 4 weeks after the laser treatment. Significant correlations were seen between the histological mean RNFL thickness at 1.5 disc diameters from

  8. EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans

    Science.gov (United States)

    Koprivica, Vuk; Cho, Kin-Sang; Park, Jong Bae; Yiu, Glenn; Atwal, Jasvinder; Gore, Bryan; Kim, Jieun A.; Lin, Estelle; Tessier-Lavigne, Marc; Chen, Dong Feng; He, Zhigang

    2005-10-01

    Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.

  9. Myelination and node of Ranvier formation on sensory neurons in a defined in vitro system.

    Science.gov (United States)

    Rumsey, John W; McAleer, Christopher; Das, Mainak; Bhalkikar, Abhijeet; Wilson, Kerry; Stancescu, Maria; Lambert, Stephen; Hickman, James J

    2013-09-01

    One of the most important developmental modifications of the nervous system is Schwann cell myelination of axons. Schwann cells ensheath axons to create myelin segments to provide protection to the axon as well as increase the conduction of action potentials. In vitro neuronal systems provide a unique modality to study a variety of factors influencing myelination as well as diseases associated with myelin sheath degradation. This work details the development of a patterned in vitro myelinating dorsal root ganglion culture. This defined system utilized a serum-free medium in combination with a patterned substrate, utilizing the cytophobic and cytophilic molecules (poly)ethylene glycol (PEG) and N-1[3 (trimethoxysilyl) propyl] diethylenetriamine (DETA), respectively. Directional outgrowth of the neurites and subsequent myelination was controlled by surface modifications, and conformity to the pattern was measured over the duration of the experiments. The myelinated segments and nodal proteins were visualized and quantified using confocal microscopy. This tissue-engineered system provides a highly controlled, reproducible model for studying Schwann cell interactions with sensory neurons, as well as the myelination process, and its effect on neuronal plasticity and peripheral nerve regeneration. It is also compatible for use in bio-hybrid constructs to reproduce the stretch reflex arc on a chip because the media combination used is the same that we have used previously for motoneurons, muscle, and for neuromuscular junction (NMJ) formation. This work could have application for the study of demyelinating diseases such as diabetes induced peripheral neuropathy and could rapidly translate to a role in the discovery of drugs promoting enhanced peripheral nervous system (PNS) remyelination.

  10. MYRF is a membrane-associated transcription factor that autoproteolytically cleaves to directly activate myelin genes.

    Directory of Open Access Journals (Sweden)

    Helena Bujalka

    Full Text Available The myelination of axons is a crucial step during vertebrate central nervous system (CNS development, allowing for rapid and energy efficient saltatory conduction of nerve impulses. Accordingly, the differentiation of oligodendrocytes, the myelinating cells of the CNS, and their expression of myelin genes are under tight transcriptional control. We previously identified a putative transcription factor, Myelin Regulatory Factor (Myrf, as being vital for CNS myelination. Myrf is required for the generation of CNS myelination during development and also for its maintenance in the adult. It has been controversial, however, whether Myrf directly regulates transcription, with reports of a transmembrane domain and lack of nuclear localization. Here we show that Myrf is a membrane-associated transcription factor that undergoes an activating proteolytic cleavage to separate its transmembrane domain-containing C-terminal region from a nuclear-targeted N-terminal region. Unexpectedly, this cleavage event occurs via a protein domain related to the autoproteolytic intramolecular chaperone domain of the bacteriophage tail spike proteins, the first time this domain has been found to play a role in eukaryotic proteins. Using ChIP-Seq we show that the N-terminal cleavage product directly binds the enhancer regions of oligodendrocyte-specific and myelin genes. This binding occurs via a defined DNA-binding consensus sequence and strongly promotes the expression of target genes. These findings identify Myrf as a novel example of a membrane-associated transcription factor and provide a direct molecular mechanism for its regulation of oligodendrocyte differentiation and CNS myelination.

  11. Progesterone and peripheral nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Fei Fan; Haichao Li; Yuwei Wang; Yanglin Zheng; Lianjun Jia; Zhihui Wang

    2006-01-01

    OBJECTIVE: To explore the effect of progesterone on peripheral nerve regeneration.DATA SOURCES: An online search of Medline and OVID databases was under taken to identify articles about progesterone and peripheral nerve regeneration published in English between January 1990 and June 2004 by using the keywords of "peripheral nerve, injury, progesterone, regeneration".STUDY SELECTION: The data were primarily screened, those correlated with progesterone and peripheral nerve regeneration were involved, and their original articles were further searched, the repetitive studies or reviews were excluded.DATA EXTRACTION: Totally 59 articles about progesterone and peripheral nerve regeneration were collected, and 26 of them were involved, the other 33 excluded ones were the repetitive studies or reviews.DATA SYNTHESIS: Recent researches found that certain amount of progesterone could be synthetized in peripheral nervous system, and the expression of progesterone receptor could be found in sensory neurons and Schwann cells. After combined with the receptor, endogenous and exogenous progesterone can accelerate the formation of peripheral nerve myelin sheath, also promote the axonal regeneration.CONCLUSION: Progesterone plays a role in protecting neurons, increasing the sensitivity of nerve tissue to nerve growth factor, and accelerating regeneration of nerve in peripheral nerve regeneration, which provides theoretical references for the treatment of demyelinated disease and nerve injury, as well as the prevention of neuroma, especially that the in vivo level of progesterone should be considered for the elderly people accompanied by neuropathy and patients with congenital luteal phase defect, which is of positive significance in guiding the treatment.

  12. Histopathological examination of nerve samples from pure neural leprosy patients: obtaining maximum information to improve diagnostic efficiency

    Directory of Open Access Journals (Sweden)

    Sérgio Luiz Gomes Antunes

    2012-03-01

    Full Text Available Nerve biopsy examination is an important auxiliary procedure for diagnosing pure neural leprosy (PNL. When acid-fast bacilli (AFB are not detected in the nerve sample, the value of other nonspecific histological alterations should be considered along with pertinent clinical, electroneuromyographical and laboratory data (the detection of Mycobacterium leprae DNA with polymerase chain reaction and the detection of serum anti-phenolic glycolipid 1 antibodies to support a possible or probable PNL diagnosis. Three hundred forty nerve samples [144 from PNL patients and 196 from patients with non-leprosy peripheral neuropathies (NLN] were examined. Both AFB-negative and AFB-positive PNL samples had more frequent histopathological alterations (epithelioid granulomas, mononuclear infiltrates, fibrosis, perineurial and subperineurial oedema and decreased numbers of myelinated fibres than the NLN group. Multivariate analysis revealed that independently, mononuclear infiltrate and perineurial fibrosis were more common in the PNL group and were able to correctly classify AFB-negative PNL samples. These results indicate that even in the absence of AFB, these histopathological nerve alterations may justify a PNL diagnosis when observed in conjunction with pertinent clinical, epidemiological and laboratory data.

  13. Histopathological examination of nerve samples from pure neural leprosy patients: obtaining maximum information to improve diagnostic efficiency.

    Science.gov (United States)

    Antunes, Sérgio Luiz Gomes; Chimelli, Leila; Jardim, Márcia Rodrigues; Vital, Robson Teixeira; Nery, José Augusto da Costa; Corte-Real, Suzana; Hacker, Mariana Andréa Vilas Boas; Sarno, Euzenir Nunes

    2012-03-01

    Nerve biopsy examination is an important auxiliary procedure for diagnosing pure neural leprosy (PNL). When acid-fast bacilli (AFB) are not detected in the nerve sample, the value of other nonspecific histological alterations should be considered along with pertinent clinical, electroneuromyographical and laboratory data (the detection of Mycobacterium leprae DNA with polymerase chain reaction and the detection of serum anti-phenolic glycolipid 1 antibodies) to support a possible or probable PNL diagnosis. Three hundred forty nerve samples [144 from PNL patients and 196 from patients with non-leprosy peripheral neuropathies (NLN)] were examined. Both AFB-negative and AFB-positive PNL samples had more frequent histopathological alterations (epithelioid granulomas, mononuclear infiltrates, fibrosis, perineurial and subperineurial oedema and decreased numbers of myelinated fibres) than the NLN group. Multivariate analysis revealed that independently, mononuclear infiltrate and perineurial fibrosis were more common in the PNL group and were able to correctly classify AFB-negative PNL samples. These results indicate that even in the absence of AFB, these histopathological nerve alterations may justify a PNL diagnosis when observed in conjunction with pertinent clinical, epidemiological and laboratory data.

  14. The morphological and functional effects of exercise in the aquatic environment, performed before and/or after sciatic nerve compression in Wistar rats.

    Science.gov (United States)

    Kakihata, Camila Mayumi Martin; Malanotte, Jéssica Aline; Karvat, Jhenifer; Brancalhão, Rose Meire Costa; de Fátima Chasko Ribeiro, Lucinéia; Bertolini, Gladson Ricardo Flor

    2016-10-01

    The aim of this study was to evaluate the effects of exercise in the aquatic environment, performed before and/or after sciatic nerve compression in Wistar rats on morphological and functional parameters. Twenty-five Wistar rats were divided into the following groups: control (C), lesion (L), trained+lesion (TL), lesion+exercise (LE), and training+lesion+exercise (TLE), who underwent right sciatic nerve compression on day 21 of the experiment. The TL and TLE groups were submitted to a jumping exercise in a water environment for 20 days prior to injury and the LE and TLE groups after injury. The functional analysis was carried out using the sciatic functional index (SFI). On the last day of the experiment, the right sciatic nerves were collected, processed and analysed according to morphology and morphometry. The C group showed higher SFI in relation to the other groups. In the morphometric analysis, in comparison to C, all groups showed a decrease in the diameter of the injured nerve fibre, the myelin sheath and an increase in the percentage of connective tissue. There was a decrease in axon diameter in L, TL, and LE groups and a decrease in the density of nerve fibres in the TL and LE groups. The exercise did not affect functional recovery. However, the exercise prior to the injury improved morphology of the nervous tissue, and when performed pre- and postinjury, there was also an improvement in nerve regeneration, but this was not the case with exercise performed after the injury demonstrating worse results.

  15. The morphological and functional effects of exercise in the aquatic environment, performed before and/or after sciatic nerve compression in Wistar rats

    Science.gov (United States)

    Kakihata, Camila Mayumi Martin; Malanotte, Jéssica Aline; Karvat, Jhenifer; Brancalhão, Rose Meire Costa; de Fátima Chasko Ribeiro, Lucinéia; Bertolini, Gladson Ricardo Flor

    2016-01-01

    The aim of this study was to evaluate the effects of exercise in the aquatic environment, performed before and/or after sciatic nerve compression in Wistar rats on morphological and functional parameters. Twenty-five Wistar rats were divided into the following groups: control (C), lesion (L), trained+lesion (TL), lesion+exercise (LE), and training+lesion+exercise (TLE), who underwent right sciatic nerve compression on day 21 of the experiment. The TL and TLE groups were submitted to a jumping exercise in a water environment for 20 days prior to injury and the LE and TLE groups after injury. The functional analysis was carried out using the sciatic functional index (SFI). On the last day of the experiment, the right sciatic nerves were collected, processed and analysed according to morphology and morphometry. The C group showed higher SFI in relation to the other groups. In the morphometric analysis, in comparison to C, all groups showed a decrease in the diameter of the injured nerve fibre, the myelin sheath and an increase in the percentage of connective tissue. There was a decrease in axon diameter in L, TL, and LE groups and a decrease in the density of nerve fibres in the TL and LE groups. The exercise did not affect functional recovery. However, the exercise prior to the injury improved morphology of the nervous tissue, and when performed pre- and postinjury, there was also an improvement in nerve regeneration, but this was not the case with exercise performed after the injury demonstrating worse results. PMID:27807516

  16. MRI assessment of myelination: an age standardization

    Energy Technology Data Exchange (ETDEWEB)

    Staudt, M. (Kinderklinik Dritter Orden, Passau (Germany)); Schropp, C. (Kinderklinik Dritter Orden, Passau (Germany)); Staudt, F. (Kinderklinik Dritter Orden, Passau (Germany)); Obletter, N. (Radiologische Praxis, Klinikum Ingolstadt (Germany)); Bise, K. (Neuropathologisches Inst., Muenchen Univ. (Germany)); Breit, A. (MR Tomographie, Klinikum Passau (Germany)); Weinmann, H.M. (Kinderklinik Schwabing, Muenchen (Germany))

    1994-04-01

    777 cerebral MRI examinations of children aged 3 days to 14 years were staged for myelination to establish an age standardization. Staging was performed using a system proposed in a previous paper, separately ranking 10 different regions of the brain. Interpretation of the results led to the identification of foue clinical diagnoses that are frequently associated with delays in myelination: West syndrome, cerebral palsy, developmental retardation, and congenital anomalies. In addition, it was found that assessment of myelination in children with head injuries was not practical as alterations in MRI signal can simulate earlier stages of myelination. Age limits were therefore calculated from the case material after excluding all children with these conditions. When simplifications of the definition of the stages are applied, these age limits for the various stages of myelination of each of the 10 regions of the brain make the staging system applicable for routine assessment of myelination. (orig.)

  17. Crystal structure of the extracellular domain of human myelin protein zero

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhigang; Wang, Yong; Yedidi, Ravikiran S.; Brunzelle, Joseph S.; Kovari, Iulia A.; Sohi, Jasloveleen; Kamholz, John; Kovari, Ladislau C. (WSU-MED); (NWU)

    2012-03-27

    Charcot-Marie-Tooth disease (CMT), a hereditary motor and sensory neuropathy, is the most common genetic neuropathy with an incidence of 1 in 2600. Several forms of CMT have been identified arising from different genomic abnormalities such as CMT1 including CMT1A, CMT1B, and CMTX. CMT1 with associated peripheral nervous system (PNS) demyelination, the most frequent diagnosis, demonstrates slowed nerve conduction velocities and segmental demyelination upon nerve biopsy. One of its subtypes, CMT1A, presents a 1.5-Mb duplication in the p11-p12 region of the human chromosome 17 which encodes peripheral myelin protein 22 (PMP22). CMT1B, a less common form, arises from the mutations in the myelin protein zero (MPZ) gene on chromosome 1, region q22-q23, which encodes the major structural component of the peripheral myelin. A rare type of CMT1 has been found recently and is caused by point mutations in early growth response gene 2 (EGR2), encoding a zinc finger transcription factor in Schwann cells. In addition, CMTX, an X-linked form of CMT, arises from a mutation in the connexin-32 gene. Myelin protein zero, associated with CMT1B, is a transmembrane protein of 219 amino acid residues. Human MPZ consists of three domains: 125 residues constitute the glycosylated immunoglobulin-like extracellular domain; 27 residues span the membrane; and 67 residues comprise the highly basic intracellular domain. MPZ makes up approximately 50% of the protein content of myelin, and is expressed predominantly in Schwann cells, the myelinating cell of the PNS. Myelin protein zero, a homophilic adhesion molecule, is a member of the immunoglobulin super-family and is essential for normal myelin structure and function. In addition, MPZ knockout mice displayed abnormal myelin that severely affects the myelination pathway, and overexpression of MPZ causes congenital hypomyelination of peripheral nerves. Myelin protein zero mutations account for {approx}5% of patients with CMT. To date, over 125

  18. Morphometry of Axons in Optic Nerves of Siamese's Twins

    Institute of Scientific and Technical Information of China (English)

    Xinzu Gu; Zhenping Zhang; Qi Lin; Jiongji Liang; Wenyu Lu; Xiulan Ye; A A Sadun

    2002-01-01

    Purpose: To observe the development of optic nerve, we examined four optic nerves from Siameses Twins by absolute counts of axons.Methods: Mean axon diameter, mean axon density, totally axonal population and optic nerve area were noted for each optic nerve. The mean axon diameter and the mean axon density were compared between paraxial (inner sectors)and cortical (outer sectors)areas of the nerves.Results: More myelinated axons were seen in the inner sectors as compared to the outer sectors(average 11 axons/1 000 μm2 in inner sectors and 34 axons/l 000 μm2 in outer sectors( P=0. 036) . The myelinated fibers were also smaller(63 microns) in the outer sectors as compared to the inner sectors(72 microns) ( P = 0. 001 ). The average cross sectors area for the four 40 week stage optical nerves of Siamese Twins was 3.32 × 103 as compared to 1 million axons for 32-week-old normals.Conclusion: Our finding of fewer axonal number and small myelinated fibers in the Siamese Twins suggests hypoplasia. Myelination was more abnormal in the paraxial optic nerve than that in the peripheral sectors, suggesting anomalous development of optic nerve peripherally and delayed developnent centrally. Axonal density is higher in inner sectors than that in outer sectors, suggesting delayed development of the outer nerve sector.

  19. Loss of Myelin Basic Protein Function Triggers Myelin Breakdown in Models of Demyelinating Diseases

    Directory of Open Access Journals (Sweden)

    Marie-Theres Weil

    2016-07-01

    Full Text Available Breakdown of myelin sheaths is a pathological hallmark of several autoimmune diseases of the nervous system. We employed autoantibody-mediated animal models of demyelinating diseases, including a rat model of neuromyelitis optica (NMO, to target myelin and found that myelin lamellae are broken down into vesicular structures at the innermost region of the myelin sheath. We demonstrated that myelin basic proteins (MBP, which form a polymer in between the myelin membrane layers, are targeted in these models. Elevation of intracellular Ca2+ levels resulted in MBP network disassembly and myelin vesiculation. We propose that the aberrant phase transition of MBP molecules from their cohesive to soluble and non-adhesive state is a mechanism triggering myelin breakdown in NMO and possibly in other demyelinating diseases.

  20. Loss of Myelin Basic Protein Function Triggers Myelin Breakdown in Models of Demyelinating Diseases.

    Science.gov (United States)

    Weil, Marie-Theres; Möbius, Wiebke; Winkler, Anne; Ruhwedel, Torben; Wrzos, Claudia; Romanelli, Elisa; Bennett, Jeffrey L; Enz, Lukas; Goebels, Norbert; Nave, Klaus-Armin; Kerschensteiner, Martin; Schaeren-Wiemers, Nicole; Stadelmann, Christine; Simons, Mikael

    2016-07-12

    Breakdown of myelin sheaths is a pathological hallmark of several autoimmune diseases of the nervous system. We employed autoantibody-mediated animal models of demyelinating diseases, including a rat model of neuromyelitis optica (NMO), to target myelin and found that myelin lamellae are broken down into vesicular structures at the innermost region of the myelin sheath. We demonstrated that myelin basic proteins (MBP), which form a polymer in between the myelin membrane layers, are targeted in these models. Elevation of intracellular Ca(2+) levels resulted in MBP network disassembly and myelin vesiculation. We propose that the aberrant phase transition of MBP molecules from their cohesive to soluble and non-adhesive state is a mechanism triggering myelin breakdown in NMO and possibly in other demyelinating diseases.

  1. Expression of myelin basic protein in rat optic nerve with experimental allergic encephalomyelitis%实验性变态反应性脑脊髓炎大鼠视神经内髓鞘碱性蛋白表达的变化

    Institute of Scientific and Technical Information of China (English)

    曹小鹏; 高晓唯; 曹芃; 雷英; 刘李平

    2012-01-01

    的延长,MBP/β-actin值在免疫组大鼠视神经组织中的表达逐渐减少,免疫后12d,M BP/β-actin值小于正常对照组,差异有统计学意义( t=4.639,P<0.05),免疫后18 d MBP/β-actin值最低,与正常对照组比较差异有统计学意义(t=8.427,P<0.01).结论 EAE大鼠视神经组织存在MBP的降解,提示视神经炎是一种视神经的原发性脱髓鞘病变.%Background Optic neuritis is closely associated with multiple sclerosis (MS).Its pathogenesis is uncompletely clear,and less basic researches are carried out at home and abroad. Objective This study was to reveal the expression of myelin basic protein (MBP) in the optic nerve of rat with experimental allergic encephalomyelitis (EAE) and to provide a theoretical evidence for the research of the relationship of optic neuritis with MS. Methods Fifty clean Wistar rats were randomized into the control group and immune 8,12,18 and 25 days groups.Myelencephalon was collected from 5 guinea pigs to prepare the homogenate and mixed with the isovolumetric complete Freud' s adjuvant (CFA).The 0.5 ml mixed antigen emulsifier was subcutancously injected into the 4 maps together with Bordetella pertussis 0.2 ml under the cutancous of dorsalis pedis at 0 and 48 hours to induce the EAE.Behavior of the rats was evaluated to score the neurological function.The optical nerve sections were prepared 8,12,18 and 25 days after immunology for the histopathological examination,and immunochemistry and Western blot were used to detect the expression of MBP in optic nerve.The use of the animals complied with the Regulation for the Administration of Affairs Concerning Experimental Animals by State Science and Technology Commission. Results The disorder of motor nerve was seen 12 days following the immune,and the clinical neural functional scores were significantly higher 12 day and peaked on 18 days myelination and then gradually reduced.The histopathological examination showed that the irregular alignment

  2. The acquisition of myelin: An evolutionary perspective.

    Science.gov (United States)

    Zalc, B

    2016-06-15

    It has been postulated that the emergence of vertebrates was made possible by the acquisition of neural crest cells, which then led to the development of evolutionarily advantageous complex head structures (Gans and Northcutt, 1983). In this regard the contribution of one important neural crest derivative-the peripheral myelin sheath-to the success of the vertebrates has to be pointed out. Without this structure, the vertebrates, as we know them, simply could not exist. After briefly reviewing the major functions of the myelin sheath we will ask and provide tentative answers to the following three questions: when during evolution has myelin first appeared? Where has myelin initially appeared: in the CNS or in the PNS? Was it necessary to acquire a new cell type to form a myelin sheath? Careful examination of fossils lead us to conclude that myelin was acquired 425 MY ago by placoderms, the earliest hinge-jaw fishes. I argue that the acquisition of myelin during evolution has been a necessary prerequisite to permit gigantism of gnathostome species, including the sauropods. I propose that this acquisition occurred simultaneously in the PNS and CNS and that myelin forming cells are the descendants of ensheathing glia, already present in invertebrates, that have adapted their potential to synthesize large amount of membrane in response to axonal requirements. This article is part of a Special Issue entitled SI: Myelin Evolution.

  3. Systematic approaches to central nervous system myelin.

    Science.gov (United States)

    de Monasterio-Schrader, Patricia; Jahn, Olaf; Tenzer, Stefan; Wichert, Sven P; Patzig, Julia; Werner, Hauke B

    2012-09-01

    Rapid signal propagation along vertebrate axons is facilitated by their insulation with myelin, a plasma membrane specialization of glial cells. The recent application of 'omics' approaches to the myelinating cells of the central nervous system, oligodendrocytes, revealed their mRNA signatures, enhanced our understanding of how myelination is regulated, and established that the protein composition of myelin is much more complex than previously thought. This review provides a meta-analysis of the > 1,200 proteins thus far identified by mass spectrometry in biochemically purified central nervous system myelin. Contaminating proteins are surprisingly infrequent according to bioinformatic prediction of subcellular localization and comparison with the transcriptional profile of oligodendrocytes. The integration of datasets also allowed the subcategorization of the myelin proteome into functional groups comprising genes that are coregulated during oligodendroglial differentiation. An unexpectedly large number of myelin-related genes cause-when mutated in humans-hereditary diseases affecting the physiology of the white matter. Systematic approaches to oligodendrocytes and myelin thus provide valuable resources for the molecular dissection of developmental myelination, glia-axonal interactions, leukodystrophies, and demyelinating diseases.

  4. Myelin water weighted diffusion tensor imaging.

    Science.gov (United States)

    Avram, Alexandru V; Guidon, Arnaud; Song, Allen W

    2010-10-15

    In this study we describe our development and implementation of a magnetization transfer (MT) prepared stimulated-echo diffusion tensor imaging (DTI) technique that can be made sensitive to the microanatomy of myelin tissue. The short echo time (TE) enabled by the stimulated-echo acquisition preserves significant signal from the short T(2) component (myelin water), and the MT preparation further provides differentiating sensitization to this signal. It was found that this combined strategy could provide sufficient sensitivity in our first attempt to image myelin microstructure. Compared to the diffusion tensor derived from the conventional DTI technique, the myelin water weighted (MWW) tensor has the same principal diffusion direction but exhibits a significant increase in fractional anisotropy (FA), which is mainly due to a decrease in radial diffusivity. These findings are consistent with the microstructural organization of the myelin sheaths that wrap around the axons in the white matter and therefore hinder radial diffusion. Given that many white matter diseases (e.g. multiple sclerosis) begin with a degradation of myelin microanatomy but not a loss of myelin content (e.g. loosening of the myelin sheaths), our newly implemented MWW DTI has the potential to lead to improved assessment of myelin pathology and early detection of demyelination.

  5. Regeneration of the vagus nerve after highly selective vagotomy, an autoradiographic study in the ferret stomach .

    OpenAIRE

    Al Muhtaseb, M. H. [محمد هاشم المحتسب; Abu-Khalaf, M.

    1995-01-01

    This study investigates the regeneration of the vagal nerve fibres after highly selective vagotomy in the ferret stomach by using the autoradiographic technique. Autoradiographic examination of the body of the stomach in the acute experimental animals has failed to show any labelled nerve fibres after highly selective vagotomy while the pylorus has shown many labelled nerve fibres . These observations indicate that the highly selective vagotomy has been performed properly and adequately. ...

  6. PAD patterns of physiologically identified afferent fibres from the medial gastrocnemius muscle.

    Science.gov (United States)

    Jiménez, I; Rudomin, P; Solodkin, M

    1988-01-01

    Intracellular recordings were made in the barbiturate-anesthetized cat from single afferent fibres left in continuity with the medial gastrocnemius muscle to document the transmembrane potential changes produced in functionally identified fibres by stimulation of sensory nerves and of the contralateral red nucleus (RN). Fifty five fibres from muscle spindles had conduction velocities above 70 m/s and were considered as from group Ia. Stimulation of group I afferent fibres of the posterior biceps and semitendinosus nerve (PBSt) produced primary afferent depolarization (PAD) in 30 (54%) Ia fibres. Stimulation of the sural (SU) nerve produced no transmembrane potential changes in 39 (71%) group Ia fibres and dorsal root reflex-like activity (DRRs) in 16 (29%) fibres. In 17 out of 28 group Ia fibres (60.7%) SU conditioning inhibited the PAD generated by stimulation of the PBSt nerve. Facilitation of the PBSt-induced PAD by SU conditioning was not seen. Repetitive stimulation of the RN had mixed effects: it produced PAD in 1 out of 8 fibres and inhibited the PAD induced by PBSt stimulation in 2 other fibres. Nine fibres connected to muscle spindles had conduction velocities below 70 m/s and were considered to be group II afferents. No PAD was produced in these fibres by SU stimulation but DRRs were generated in 5 of them. In 23 out of 31 fibres identified as from tendon organs group I PBSt volleys produced PAD. However, stimulation of the SU nerve produced PAD only in 3 out of 34 fibres, no transmembrane potential changes in 30 fibres and DRRs in 1 fibre. The effects of SU conditioning on the PAD produced by PBSt stimulation were tested in 19 Ib fibres and were inhibitory in 12 of them. In 9 of these fibres SU alone produced no transmembrane potential changes. Repetitive stimulation of the RN produced PAD in 3 out of 9 Ib fibres. SU conditioning inhibited the RN-induced PAD. The present findings support the existence of an alternative inhibitory pathway from cutaneous

  7. Microprocessor complex subunit DiGeorge syndrome critical region gene 8 (Dgcr8) is required for schwann cell myelination and myelin maintenance.

    Science.gov (United States)

    Lin, Hsin-Pin; Oksuz, Idil; Hurley, Edward; Wrabetz, Lawrence; Awatramani, Rajeshwar

    2015-10-02

    We investigated the role of a key component of the Microprocessor complex, DGCR8, in the regulation of myelin formation and maintenance. We found that conditionally ablating Dgcr8 in Schwann cells (SCs) during development results in an arrest of SC differentiation. Dgcr8 conditional knock-out (cKO) SCs fail to form 1:1 relationships with axons or, having achieved this, fail to form myelin sheaths. The expression of genes normally found in immature SCs, such as sex-determining region Y-box 2 (Sox2), is increased in Dgcr8 cKO SCs, whereas the expression of myelin-related genes, including the master regulatory transcription factor early growth response 2 (Egr2), is decreased. Additionally, expression of a novel gene expression program involving sonic hedgehog (Shh), activated de novo in injured nerves, is elevated in Dgcr8 cKOs but not in Egr2 null mice, a model of SC differentiation arrest, suggesting that the injury-related gene expression program in Dgcr8 cKOs cannot be attributed to differentiation arrest. Inducible ablation of Dgcr8 in adult SCs results in gene expression changes similar to those found in cKOs, including an increase in the expression of Sox2 and Shh. Analyses of these nerves mainly reveal normal myelin thickness and axon size distribution but some dedifferentiated SCs and increased macrophage infiltration. Together our data suggest that Dgcr8 is responsible for modulation of gene expression programs underlying myelin formation and maintenance as well as suppression of an injury-related gene expression program.

  8. Optogenetic stimulation of myelination (Conference Presentation)

    Science.gov (United States)

    Yang, In Hong; Lee, Hae Ung; Thakor, Nitish V.

    2016-03-01

    Myelination is governed by axon-glia interaction which is modulated by neural activity. Currently, the effects of subcellular activation of neurons which induce neural activity upon myelination are not well understood. To identify if subcellular neuronal stimulation can enhance myelination, we developed a novel system for focal stimulation of neural activity with optogenetic in a compartmentalized microfluidic platform. In our systems, stimulation for neurons in restricted subcellular parts, such as cell bodies and axons promoted oligodendrocyte differentiation and the myelination of axons the just as much as whole cell activation of neurons did. The number of premature O4 positive oligodendrocytes was reduced and the numbers of mature and myelin basic protein-positive oligodendrocytes was increased both by subcellular optogenetic stimulation.

  9. Evaluation of the Acquisition of the Aerobic Metabolic Capacity by Myelin, during its Development.

    Science.gov (United States)

    Ravera, Silvia; Bartolucci, Martina; Garbati, Patrizia; Ferrando, Sara; Calzia, Daniela; Ramoino, Paola; Balestrino, Maurizio; Morelli, Alessandro; Panfoli, Isabella

    2016-12-01

    Our previous reports indicate that the electron transfer chain and FoF1-ATP synthase are functionally expressed in myelin sheath, performing an extra-mitochondrial oxidative phosphorylation (OXPHOS), which would provide energy to the nerve axon. This supports the idea that myelin plays a trophic role for the axon. Although the four ETC complexes and ATP synthase are considered exquisite mitochondrial proteins, they are found ectopically expressed in several membranous structures. This study was designed to understand when and how the mitochondrial OXPHOS machinery is embedded in myelin, following myelinogenesis in the rat, which starts at birth and continues until the first month of age. Rats were sacrificed at different time points (from day 5 to 90 post birth). Western blot, immunofluorescence microscopy, luminometric, and oximetric analyses show that the isolated myelin starts to show OXPHOS components around the 11th day after birth and increases proportionally to the rat age, becoming similar to those of adult rat around the 30-third day. Interestingly, WB data show the same temporal relationship between myelinogenesis and appearance of proteins involved in mitochondrial fusion and cellular trafficking. It may be speculated that the OXPHOS complexes may be transferred to the endoplasmic reticulum membrane (known to interact with mitochondria) and from there through the Golgi apparatus to the forming myelin membrane.

  10. The application of fuzzy-based methods to central nerve fiber imaging

    DEFF Research Database (Denmark)

    Axer, Hubertus; Jantzen, Jan; Keyserlingk, Diedrich Graf v.

    2003-01-01

    in magnetic resonance images based on the differences in myelin content in various thalamic subnuclei; (2) polarized light for classifying the 3D orientation of the nerve fibers at each point; and (3) confocal laser scanning microscopy (CLSM) for calculating semiquantitative variables for myelin content...

  11. Visualizing peripheral nerve regeneration by whole mount staining.

    Directory of Open Access Journals (Sweden)

    Xin-peng Dun

    Full Text Available Peripheral nerve trauma triggers a well characterised sequence of events both proximal and distal to the site of injury. Axons distal to the injury degenerate, Schwann cells convert to a repair supportive phenotype and macrophages enter the nerve to clear myelin and axonal debris. Following these events, axons must regrow through the distal part of the nerve, re-innervate and finally are re-myelinated by Schwann cells. For nerve crush injuries (axonotmesis, in which the integrity of the nerve is maintained, repair may be relatively effective whereas for nerve transection (neurotmesis repair will likely be very poor as few axons may be able to cross between the two parts of the severed nerve, across the newly generated nerve bridge, to enter the distal stump and regenerate. Analysing axon growth and the cell-cell interactions that occur following both nerve crush and cut injuries has largely been carried out by staining sections of nerve tissue, but this has the obvious disadvantage that it is not possible to follow the paths of regenerating axons in three dimensions within the nerve trunk or nerve bridge. To try and solve this problem, we describe the development and use of a novel whole mount staining protocol that allows the analysis of axonal regeneration, Schwann cell-axon interaction and re-vascularisation of the repairing nerve following nerve cut and crush injuries.

  12. Visualizing Peripheral Nerve Regeneration by Whole Mount Staining

    Science.gov (United States)

    Dun, Xin-peng; Parkinson, David B.

    2015-01-01

    Peripheral nerve trauma triggers a well characterised sequence of events both proximal and distal to the site of injury. Axons distal to the injury degenerate, Schwann cells convert to a repair supportive phenotype and macrophages enter the nerve to clear myelin and axonal debris. Following these events, axons must regrow through the distal part of the nerve, re-innervate and finally are re-myelinated by Schwann cells. For nerve crush injuries (axonotmesis), in which the integrity of the nerve is maintained, repair may be relatively effective whereas for nerve transection (neurotmesis) repair will likely be very poor as few axons may be able to cross between the two parts of the severed nerve, across the newly generated nerve bridge, to enter the distal stump and regenerate. Analysing axon growth and the cell-cell interactions that occur following both nerve crush and cut injuries has largely been carried out by staining sections of nerve tissue, but this has the obvious disadvantage that it is not possible to follow the paths of regenerating axons in three dimensions within the nerve trunk or nerve bridge. To try and solve this problem, we describe the development and use of a novel whole mount staining protocol that allows the analysis of axonal regeneration, Schwann cell-axon interaction and re-vascularisation of the repairing nerve following nerve cut and crush injuries. PMID:25738874

  13. The formation of lipid droplets favors intracellular Mycobacterium leprae survival in SW-10, non-myelinating Schwann cells

    Science.gov (United States)

    Jin, Song-Hyo; An, Sung-Kwan

    2017-01-01

    Leprosy is a chronic infectious disease that is caused by the obligate intracellular pathogen Mycobacterium leprae (M.leprae), which is the leading cause of all non-traumatic peripheral neuropathies worldwide. Although both myelinating and non-myelinating Schwann cells are infected by M.leprae in patients with lepromatous leprosy, M.leprae preferentially invades the non-myelinating Schwann cells. However, the effect of M.leprae infection on non-myelinating Schwann cells has not been elucidated. Lipid droplets (LDs) are found in M.leprae-infected Schwann cells in the nerve biopsies of lepromatous leprosy patients. M.leprae-induced LD formation favors intracellular M.leprae survival in primary Schwann cells and in a myelinating Schwann cell line referred to as ST88-14. In the current study, we initially characterized SW-10 cells and investigated the effects of LDs on M.leprae-infected SW-10 cells, which are non-myelinating Schwann cells. SW-10 cells express S100, a marker for cells from the neural crest, and NGFR p75, a marker for immature or non-myelinating Schwann cells. SW-10 cells, however, do not express myelin basic protein (MBP), a marker for myelinating Schwann cells, and myelin protein zero (MPZ), a marker for precursor, immature, or myelinating Schwann cells, all of which suggests that SW-10 cells are non-myelinating Schwann cells. In addition, SW-10 cells have phagocytic activity and can be infected with M. leprae. Infection with M. leprae induces the formation of LDs. Furthermore, inhibiting the formation of M. leprae-induced LD enhances the maturation of phagosomes containing live M.leprae and decreases the ATP content in the M. leprae found in SW-10 cells. These facts suggest that LD formation by M. leprae favors intracellular M. leprae survival in SW-10 cells, which leads to the logical conclusion that M.leprae-infected SW-10 cells can be a new model for investigating the interaction of M.leprae with non-myelinating Schwann cells. PMID:28636650

  14. Rat-derived processed nerve allografts support more axon regeneration in rat than human-derived processed nerve xenografts.

    Science.gov (United States)

    Wood, Matthew D; Kemp, Stephen W P; Liu, Edward H; Szynkaruk, Mark; Gordon, Tessa; Borschel, Gregory H

    2014-04-01

    Processed nerve allografts are increasingly used as "off the shelf" nerve replacements for surgically bridging nerve gaps. Benchmarking the regenerative capacity of a commercially available human-derived nerve or xenograft in a rat nerve injury model would provide a convenient platform for future studies seeking to modify the processed nerve graft. Human and rat processed nerve grafts were used to bridge a 14 mm defect in a Sprague-Dawley rat sciatic nerve. Reversed autografts served as a positive control group. Twelve weeks following surgery, the distal nerve stumps were retrograde labeled and harvested for histology and histomorphometry. The cross-sectional areas of the human- and rat-derived processed nerve grafts were similar. Neuron counts and myelinated axon counts following use of the human-derived processed xenografts were decreased compared with those obtained from both the rat-derived processed nerve allografts and the autografts; the rat-derived processed nerve allografts were statistically equivalent to autografts. Measures of nerve fiber diameter and myelination revealed inferior axon regeneration maturity in both processed nerve grafts compared with autografts. Processed xenografts showed significantly reduced regeneration compared with autografts or processed allografts indicating that cross-species immunological reactions are important considerations in this rat model. Copyright © 2013 Wiley Periodicals, Inc.

  15. Morphology of Donor and Recipient Nerves Utilised in Nerve Transfers to Restore Upper Limb Function in Cervical Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Aurora Messina

    2016-09-01

    Full Text Available Loss of hand function after cervical spinal cord injury (SCI impacts heavily on independence. Multiple nerve transfer surgery has been applied successfully after cervical SCI to restore critical arm and hand functions, and the outcome depends on nerve integrity. Nerve integrity is assessed indirectly using muscle strength testing and intramuscular electromyography, but these measures cannot show the manifestation that SCI has on the peripheral nerves. We directly assessed the morphology of nerves biopsied at the time of surgery, from three patients within 18 months post injury. Our objective was to document their morphologic features. Donor nerves included teres minor, posterior axillary, brachialis, extensor carpi radialis brevis and supinator. Recipient nerves included triceps, posterior interosseus (PIN and anterior interosseus nerves (AIN. They were fixed in glutaraldehyde, processed and embedded in Araldite Epon for light microscopy. Eighty percent of nerves showed abnormalities. Most common were myelin thickening and folding, demyelination, inflammation and a reduction of large myelinated axon density. Others were a thickened perineurium, oedematous endoneurium and Renaut bodies. Significantly, very thinly myelinated axons and groups of unmyelinated axons were observed indicating regenerative efforts. Abnormalities exist in both donor and recipient nerves and they differ in appearance and aetiology. The abnormalities observed may be preventable or reversible.

  16. Label-free photoacoustic microscopy of peripheral nerves

    Science.gov (United States)

    Matthews, Thomas Paul; Zhang, Chi; Yao, Da-Kang; Maslov, Konstantin; Wang, Lihong V.

    2014-01-01

    Peripheral neuropathy is a common neurological problem that affects millions of people worldwide. Diagnosis and treatment of this condition are often hindered by the difficulties in making objective, noninvasive measurements of nerve fibers. Photoacoustic microscopy (PAM) has the ability to obtain high resolution, specific images of peripheral nerves without exogenous contrast. We demonstrated the first proof-of-concept imaging of peripheral nerves using PAM. As validated by both standard histology and photoacoustic spectroscopy, the origin of photoacoustic signals is myelin, the primary source of lipids in the nerves. An extracted sciatic nerve sandwiched between two layers of chicken tissue was imaged by PAM to mimic the in vivo case. Ordered fibrous structures inside the nerve, caused by the bundles of myelin-coated axons, could be observed clearly. With further technical improvements, PAM can potentially be applied to monitor and diagnose peripheral neuropathies.

  17. Immunohistochemical, ultrastructural and functional analysis of axonal regeneration through peripheral nerve grafts containing Schwann cells expressing BDNF, CNTF or NT3.

    Directory of Open Access Journals (Sweden)

    Maria João Godinho

    Full Text Available We used morphological, immunohistochemical and functional assessments to determine the impact of genetically-modified peripheral nerve (PN grafts on axonal regeneration after injury. Grafts were assembled from acellular nerve sheaths repopulated ex vivo with Schwann cells (SCs modified to express brain-derived neurotrophic factor (BDNF, a secretable form of ciliary neurotrophic factor (CNTF, or neurotrophin-3 (NT3. Grafts were used to repair unilateral 1 cm defects in rat peroneal nerves and 10 weeks later outcomes were compared to normal nerves and various controls: autografts, acellular grafts and grafts with unmodified SCs. The number of regenerated βIII-Tubulin positive axons was similar in all grafts with the exception of CNTF, which contained the fewest immunostained axons. There were significantly lower fiber counts in acellular, untransduced SC and NT3 groups using a PanNF antibody, suggesting a paucity of large caliber axons. In addition, NT3 grafts contained the greatest number of sensory fibres, identified with either IB4 or CGRP markers. Examination of semi- and ultra-thin sections revealed heterogeneous graft morphologies, particularly in BDNF and NT3 grafts in which the fascicular organization was pronounced. Unmyelinated axons were loosely organized in numerous Remak bundles in NT3 grafts, while the BDNF graft group displayed the lowest ratio of umyelinated to myelinated axons. Gait analysis revealed that stance width was increased in rats with CNTF and NT3 grafts, and step length involving the injured left hindlimb was significantly greater in NT3 grafted rats, suggesting enhanced sensory sensitivity in these animals. In summary, the selective expression of BDNF, CNTF or NT3 by genetically modified SCs had differential effects on PN graft morphology, the number and type of regenerating axons, myelination, and locomotor function.

  18. LINGO-1 negatively regulates myelination by oligodendrocytes.

    Science.gov (United States)

    Mi, Sha; Miller, Robert H; Lee, Xinhua; Scott, Martin L; Shulag-Morskaya, Svetlane; Shao, Zhaohui; Chang, Jufang; Thill, Greg; Levesque, Melissa; Zhang, Mingdi; Hession, Cathy; Sah, Dinah; Trapp, Bruce; He, Zhigang; Jung, Vincent; McCoy, John M; Pepinsky, R Blake

    2005-06-01

    The control of myelination by oligodendrocytes in the CNS is poorly understood. Here we show that LINGO-1 is an important negative regulator of this critical process. LINGO-1 is expressed in oligodendrocytes. Attenuation of its function by dominant-negative LINGO-1, LINGO-1 RNA-mediated interference (RNAi) or soluble human LINGO-1 (LINGO-1-Fc) leads to differentiation and increased myelination competence. Attenuation of LINGO-1 results in downregulation of RhoA activity, which has been implicated in oligodendrocyte differentiation. Conversely, overexpression of LINGO-1 leads to activation of RhoA and inhibition of oligodendrocyte differentiation and myelination. Treatment of oligodendrocyte and neuron cocultures with LINGO-1-Fc resulted in highly developed myelinated axons that have internodes and well-defined nodes of Ranvier. The contribution of LINGO-1 to myelination was verified in vivo through the analysis of LINGO-1 knockout mice. The ability to recapitulate CNS myelination in vitro using LINGO-1 antagonists and the in vivo effects seen in the LINGO-1 knockout indicate that LINGO-1 signaling may be critical for CNS myelination.

  19. L-carnitine alleviates sciatic nerve crush injury in rats:functional and electron microscopy assessments

    Institute of Scientific and Technical Information of China (English)

    Ümmü Zeynep Avsar; Umit Avsar; Ali Aydin; Muhammed Yayla; Berna Ozturkkaragoz; Harun Un; Murat Saritemur; Tolga Mercantepe

    2014-01-01

    Several studies have demonstrated that L-carnitine exhibits neuroprotective effects on injured sciatic nerve of rats with diabetes mellitus. It is hypothesized that L-carnitine exhibits neuro-protective effects on injured sciatic nerve of rats. Rat sciatic nerve was crush injured by a forceps and exhibited degenerative changes. After intragastric administration of 50 and 100 mg/kg L-carnitine for 30 days, axon area, myelin sheath area, axon diameter, myelin sheath diameter, and numerical density of the myelinated axons of injured sciatic nerve were similar to normal, and the function of injured sciatic nerve also improved signiifcantly. These ifndings suggest that L-carnitine exhibits neuroprotective effects on sciatic nerve crush injury in rats.

  20. Myelin protein zero gene mutated in Charcot-Marie-Tooth type 1B patients

    Energy Technology Data Exchange (ETDEWEB)

    Su, Ying; Li, Lanying; Lepercq, J.; Lebo, R.V. (Univ. of California, San Francisco, CA (United States)); Brooks, D.G.; Ravetch, J.V. (Sloan-Kettering Institute, New York, NY (United States)); Trofatter, J.A. (Massachusetts General Hospital, Boston, MA (United States))

    1993-11-15

    The autosomal dominant of Charcot-Marie-Tooth disease (CMT), whose gene is type 1B (CMT1B), has slow nerve conduction with demyelinated Schwann cells. In this study the abundant peripheral myelin protein zero (MPZ) gene, MPZ, was mapped 130 kb centromeric to the Fc receptor immunoglobulin gene cluster in band 1q22, and a major MPZ point mutation was found to cosegregate with CMT1B in one large CMT1B family. The MPZ point mutation in 18 of 18 related CMT1B pedigree 1 patients converts a positively charged lysine in codon 96 to a negatively charged glutamate. The same MPZ locus cosegregates with the CMT1B disease gene in a second CMT1B family [total multipoint logarithm of odds (lod) = 11.4 at [theta] = 0.00] with a splice junction mutation. Both mutations occur in MPZ protein regions otherwise conserved identically in human, rat, and cow since these species diverged 100 million years ago. MPZ protein, expressed exclusively in myelinated peripheral nerve Schwann cells, constitutes >50% of myelin protein. These mutations are anticipated to disrupt homophilic MPZ binding and result in CMT1B peripheral nerve demyelination.

  1. Automatic morphometry of nerve histological sections.

    Science.gov (United States)

    Romero, E; Cuisenaire, O; Denef, J F; Delbeke, J; Macq, B; Veraart, C

    2000-04-15

    A method for the automatic segmentation, recognition and measurement of neuronal myelinated fibers in nerve histological sections is presented. In this method, the fiber parameters i.e. perimeter, area, position of the fiber and myelin sheath thickness are automatically computed. Obliquity of the sections may be taken into account. First, the image is thresholded to provide a coarse classification between myelin and non-myelin pixels. Next, the resulting binary image is further simplified using connected morphological operators. By applying semantic rules to the zonal graph axon candidates are identified. Those are either isolated or still connected. Then, separation of connected fibers is performed by evaluating myelin sheath thickness around each candidate area with an Euclidean distance transformation. Finally, properties of each detected fiber are computed and false positives are removed. The accuracy of the method is assessed by evaluating missed detection, false positive ratio and comparing the results to the manual procedure with sampling. In the evaluated nerve surface, a 0.9% of false positives was found, along with 6.36% of missed detections. The resulting histograms show strong correlation with those obtained by manual measure. The noise introduced by this method is significantly lower than the intrinsic sampling variability. This automatic method constitutes an original tool for morphometrical analysis.

  2. Regeneration of Optic Nerve

    Directory of Open Access Journals (Sweden)

    Kwok-Fai So

    2011-05-01

    Full Text Available The optic nerve is part of the central nervous system (CNS and has a structure similar to other CNS tracts. The axons that form the optic nerve originate in the ganglion cell layer of the retina and extend through the optic tract. As a tissue, the optic nerve has the same organization as the white matter of the brain in regard to its glia. There are three types of glial cells: Oligodendrocytes, astrocytes, and microglia. Little structural and functional regeneration of the CNS takes place spontaneously following injury in adult mammals. In contrast, the ability of the mammalian peripheral nervous system (PNS to regenerate axons after injury is well documented. A number of factors are involved in the lack of CNS regeneration, including: (i the response of neuronal cell bodies against the damage; (ii myelin-mediated inhibition by oligodendrocytes; (iii glial scarring, by astrocytes; (iv macrophage infiltration; and (v insufficient trophic factor support. The fundamental difference in the regenerative capacity between CNS and PNS neuronal cell bodies has been the subject of intensive research. In the CNS the target normally conveys a retrograde trophic signal to the cell body. CNS neurons die because of trophic deprivation. Damage to the optic nerve disconnects the neuronal cell body from its target-derived trophic peptides, leading to the death of retinal ganglion cells. Furthermore, the axontomized neurons become less responsive to the peptide trophic signals they do receive. On the other hand, adult PNS neurons are intrinsically responsive to neurotrophic factors and do not lose trophic responsiveness after axotomy. In this talk different strategies to promote optic-nerve regeneration in adult mammals are reviewed. Much work is still needed to resolve many issues. This is a very important area of neuroregeneration and neuroprotection, as currently there is no cure after traumatic optic nerve injury or retinal disease such as glaucoma, which

  3. Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α on phagocytes

    Directory of Open Access Journals (Sweden)

    Reichert Fanny

    2011-03-01

    Full Text Available Abstract Background Traumatic injury to axons produces breakdown of axons and myelin at the site of the lesion and then further distal to this where Wallerian degeneration develops. The rapid removal of degenerated myelin by phagocytosis is advantageous for repair since molecules in myelin impede regeneration of severed axons. Thus, revealing mechanisms that regulate myelin phagocytosis by macrophages and microglia is important. We hypothesize that myelin regulates its own phagocytosis by simultaneous activation and down-regulation of microglial and macrophage responses. Activation follows myelin binding to receptors that mediate its phagocytosis (e.g. complement receptor-3, which has been previously studied. Down-regulation, which we test here, follows binding of myelin CD47 to the immune inhibitory receptor SIRPα (signal regulatory protein-α on macrophages and microglia. Methods CD47 and SIRPα expression was studied by confocal immunofluorescence microscopy, and myelin phagocytosis by ELISA. Results We first document that myelin, oligodendrocytes and Schwann cells express CD47 without SIRPα and further confirm that microglia and macrophages express both CD47 and SIRPα. Thus, CD47 on myelin can bind to and subsequently activate SIRPα on phagocytes, a prerequisite for CD47/SIRPα-dependent down-regulation of CD47+/+ myelin phagocytosis by itself. We then demonstrate that phagocytosis of CD47+/+ myelin is augmented when binding between myelin CD47 and SIRPα on phagocytes is blocked by mAbs against CD47 and SIRPα, indicating that down-regulation of phagocytosis indeed depends on CD47-SIRPα binding. Further, phagocytosis in serum-free medium of CD47+/+ myelin is augmented after knocking down SIRPα levels (SIRPα-KD in phagocytes by lentiviral infection with SIRPα-shRNA, whereas phagocytosis of myelin that lacks CD47 (CD47-/- is not. Thus, myelin CD47 produces SIRPα-dependent down-regulation of CD47+/+ myelin phagocytosis in phagocytes

  4. In vitro myelin formation using embryonic stem cells

    Science.gov (United States)

    Kerman, Bilal E.; Kim, Hyung Joon; Padmanabhan, Krishnan; Mei, Arianna; Georges, Shereen; Joens, Matthew S.; Fitzpatrick, James A. J.; Jappelli, Roberto; Chandross, Karen J.; August, Paul; Gage, Fred H.

    2015-01-01

    Myelination in the central nervous system is the process by which oligodendrocytes form myelin sheaths around the axons of neurons. Myelination enables neurons to transmit information more quickly and more efficiently and allows for more complex brain functions; yet, remarkably, the underlying mechanism by which myelination occurs is still not fully understood. A reliable in vitro assay is essential to dissect oligodendrocyte and myelin biology. Hence, we developed a protocol to generate myelinating oligodendrocytes from mouse embryonic stem cells and established a myelin formation assay with embryonic stem cell-derived neurons in microfluidic devices. Myelin formation was quantified using a custom semi-automated method that is suitable for larger scale analysis. Finally, early myelination was followed in real time over several days and the results have led us to propose a new model for myelin formation. PMID:26015546

  5. Tacrolimus reduces scar formation and promotes sciatic nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Jun Que; Quan Cao; Tao Sui; Shihao Du; Ailiang Zhang; Dechao Kong; Xiaojian Cao

    2012-01-01

    A sciatic nerve transection and repair model was established in Sprague-Dawley rats by transecting the tendon of obturator internus muscle in the greater sciatic foramen and suturing with nylon sutures. The models were treated with tacrolimus gavage (4 mg/kg per day) for 0, 2, 4 and 6 weeks. Specimens were harvested at 6 weeks of intragastric administration. Masson staining revealed that the collagen fiber content and scar area in the nerve anastomosis of the sciatic nerve injury rats were significantly reduced after tacrolimus administration. Hematoxylin-eosin staining showed that tacrolimus significantly increased myelinated nerve fiber density, average axon diameter and myelin sheath thickness. Intragastric administration of tacrolimus also led to a significant increase in the recovery rate of gastrocnemius muscle wet weight and the sciatic functional index after sciatic nerve injury. The above indices were most significantly improved at 6 weeks after of tacrolimus gavage. The myelinated nerve fiber density in the nerve anastomosis and the sciatic nerve functions had a significant negative correlation with the scar area, as detected by Spearman’s rank correlation analysis. These findings indicate that tacrolimus can promote peripheral nerve regeneration and accelerate the recovery of neurological function through the reduction of scar formation.

  6. Axon-glia interaction and membrane traffic in myelin formation

    OpenAIRE

    2014-01-01

    In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialized glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarization followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is...

  7. Signals to promote myelin formation and repair.

    Science.gov (United States)

    Taveggia, Carla; Feltri, Maria Laura; Wrabetz, Lawrence

    2010-05-01

    The myelin sheath wraps large axons in both the CNS and the PNS, and is a key determinant of efficient axonal function and health. Myelin is targeted in a series of diseases, notably multiple sclerosis (MS). In MS, demyelination is associated with progressive axonal damage, which determines the level of patient disability. The few treatments that are available for combating myelin damage in MS and related disorders, which largely comprise anti-inflammatory drugs, only show limited efficacy in subsets of patients. More-effective treatment of myelin disorders will probably be accomplished by early intervention with combinatorial therapies that target inflammation and other processes-for example, signaling pathways that promote remyelination. Indeed, evidence suggests that such pathways might be impaired in pathology and, hence, contribute to the failure of remyelination in such diseases. In this article, we review the molecular basis of signaling pathways that regulate myelination in the CNS and PNS, with a focus on signals that affect differentiation of myelinating glia. We also discuss factors such as extracellular molecules that act as modulators of these pathways. Finally, we consider the few preclinical and clinical trials of agents that augment this signaling.

  8. Structural and molecular myelination deficits occur prior to neuronal loss in the YAC128 and BACHD models of Huntington disease.

    Science.gov (United States)

    Teo, Roy Tang Yi; Hong, Xin; Yu-Taeger, Libo; Huang, Yihui; Tan, Liang Juin; Xie, Yuanyun; To, Xuan Vinh; Guo, Ling; Rajendran, Reshmi; Novati, Arianna; Calaminus, Carsten; Riess, Olaf; Hayden, Michael R; Nguyen, Huu P; Chuang, Kai-Hsiang; Pouladi, Mahmoud A

    2016-07-01

    White matter (WM) atrophy is a significant feature of Huntington disease (HD), although its aetiology and early pathological manifestations remain poorly defined. In this study, we aimed to characterize WM-related features in the transgenic YAC128 and BACHD models of HD. Using diffusion tensor magnetic resonance imaging (DT-MRI), we demonstrate that microstructural WM abnormalities occur from an early age in YAC128 mice. Similarly, electron microscopy analysis of myelinated fibres of the corpus callosum indicated that myelin sheaths are thinner in YAC128 mice as early as 1.5 months of age, well before any neuronal loss can be detected. Transcript levels of myelin-related genes in striatal and cortical tissues were significantly lower in YAC128 mice from 2 weeks of age, and these findings were replicated in differentiated primary oligodendrocytes from YAC128 mice, suggesting a possible mechanistic explanation for the observed structural deficits. Concordant with these observations, we demonstrate reduced expression of myelin-related genes at 3 months of age and WM microstructural abnormalities using DT-MRI at 12 months of age in the BACHD rats. These findings indicate that WM deficits in HD are an early phenotype associated with cell-intrinsic effects of mutant huntingtin on myelin-related transcripts in oligodendrocytes, and raise the possibility that WM abnormalities may be an early contributing factor to the pathogenesis of HD. © The Author 2016. Published by Oxford University Press.

  9. Quantifying visual pathway axonal and myelin loss in multiple sclerosis and neuromyelitis optica.

    Science.gov (United States)

    Manogaran, Praveena; Vavasour, Irene M; Lange, Alex P; Zhao, Yinshan; McMullen, Katrina; Rauscher, Alexander; Carruthers, Robert; Li, David K B; Traboulsee, Anthony L; Kolind, Shannon H

    2016-01-01

    The optic nerve is frequently injured in multiple sclerosis and neuromyelitis optica, resulting in visual dysfunction, which may be reflected by measures distant from the site of injury. To determine how retinal nerve fiber layer as a measure of axonal health, and macular volume as a measure of neuronal health are related to changes in myelin water fraction in the optic radiations of multiple sclerosis and neuromyelitis optica participants with and without optic neuritis and compared to healthy controls. 12 healthy controls, 42 multiple sclerosis (16 with optic neuritis), and 10 neuromyelitis optica participants (8 with optic neuritis) were included in this study. Optical coherence tomography assessment involved measurements of the segmented macular layers (total macular, ganglion cell layer, inner plexiform layer, and inner nuclear layer volume) and paripapillary retinal nerve fiber layer thickness. The MRI protocol included a 32-echo T2-relaxation GRASE sequence. Average myelin water fraction values were calculated within the optic radiations as a measure of myelin density. Multiple sclerosis and neuromyelitis optica eyes with optic neuritis history had lower retinal nerve fiber layer thickness, total macular, ganglion cell and inner plexiform layer volumes compared to eyes without optic neuritis history and controls. Inner nuclear layer volume increased in multiple sclerosis with optic neuritis history (mean = 0.99 mm(3), SD = 0.06) compared to those without (mean = 0.97 mm(3), SD = 0.06; p = 0.003). Mean myelin water fraction in the optic radiations was significantly lower in demyelinating diseases (neuromyelitis optica: mean = 0.098, SD = 0.01, multiple sclerosis with optic neuritis history: mean = 0.096, SD = 0.01, multiple sclerosis without optic neuritis history: mean = 0.098, SD = 0.02; F3,55 = 3.35, p = 0.03) compared to controls. Positive correlations between MRI and optical coherence tomography measures were also apparent

  10. Immunodominant fragments of myelin basic protein initiate T cell-dependent pain

    Directory of Open Access Journals (Sweden)

    Liu Huaqing

    2012-06-01

    Full Text Available Abstract Background The myelin sheath provides electrical insulation of mechanosensory Aβ-afferent fibers. Myelin-degrading matrix metalloproteinases (MMPs damage the myelin sheath. The resulting electrical instability of Aβ-fibers is believed to activate the nociceptive circuitry in Aβ-fibers and initiate pain from innocuous tactile stimulation (mechanical allodynia. The precise molecular mechanisms, responsible for the development of this neuropathic pain state after nerve injury (for example, chronic constriction injury, CCI, are not well understood. Methods and results Using mass spectrometry of the whole sciatic nerve proteome followed by bioinformatics analyses, we determined that the pathways, which are classified as the Infectious Disease and T-helper cell signaling, are readily activated in the nerves post-CCI. Inhibition of MMP-9/MMP-2 suppressed CCI-induced mechanical allodynia and concomitant TNF-α and IL-17A expression in nerves. MMP-9 proteolysis of myelin basic protein (MBP generated the MBP84-104 and MBP68-86 digest peptides, which are prominent immunogenic epitopes. In agreement, the endogenous MBP69-86 epitope co-localized with MHCII and MMP-9 in Schwann cells and along the nodes of Ranvier. Administration of either the MBP84-104 or MBP68-86 peptides into the naïve nerve rapidly produced robust mechanical allodynia with a concomitant increase in T cells and MHCII-reactive cell populations at the injection site. As shown by the genome-wide expression profiling, a single intraneural MBP84-104 injection stimulated the inflammatory, immune cell trafficking, and antigen presentation pathways in the injected naïve nerves and the associated spinal cords. Both MBP84-104-induced mechanical allodynia and characteristic pathway activation were remarkably less prominent in the T cell-deficient athymic nude rats. Conclusions These data implicate MBP as a novel mediator of pain. Furthermore, the action of MMPs expressed within 1

  11. Pre-differentiation of mesenchymal stromal cells in combination with a microstructured nerve guide supports peripheral nerve regeneration in the rat sciatic nerve model.

    Science.gov (United States)

    Boecker, Arne Hendrik; van Neerven, Sabien Geraldine Antonia; Scheffel, Juliane; Tank, Julian; Altinova, Haktan; Seidensticker, Katrin; Deumens, Ronald; Tolba, Rene; Weis, Joachim; Brook, Gary Anthony; Pallua, Norbert; Bozkurt, Ahmet

    2016-02-01

    Many bioartificial nerve guides have been investigated pre-clinically for their nerve regeneration-supporting function, often in comparison to autologous nerve transplantation, which is still regarded as the current clinical gold standard. Enrichment of these scaffolds with cells intended to support axonal regeneration has been explored as a strategy to boost axonal regeneration across these nerve guides Ansselin et al. (1998). In the present study, 20 mm rat sciatic nerve defects were implanted with a cell-seeded microstructured collagen nerve guide (Perimaix) or an autologous nerve graft. Under the influence of seeded, pre-differentiated mesenchymal stromal cells, axons regenerated well into the Perimaix nerve guide. Myelination-related parameters, like myelin sheath thickness, benefitted from an additional seeding with pre-differentiated mesenchymal stromal cells. Furthermore, both the number of retrogradely labelled sensory neurons and the axon density within the implant were elevated in the cell-seeded scaffold group with pre-differentiated mesenchymal stromal cells. However, a pre-differentiation had no influence on functional recovery. An additional cell seeding of the Perimaix nerve guide with mesenchymal stromal cells led to an extent of functional recovery, independent of the differentiation status, similar to autologous nerve transplantation. These findings encourage further investigations on pre-differentiated mesenchymal stromal cells as a cellular support for peripheral nerve regeneration. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Fibre-Optic Gyroscope

    Directory of Open Access Journals (Sweden)

    V. N. Saxena

    1983-04-01

    Full Text Available Comparative study of mechanical, ring-laser and fibre-optic gyroscopes has been made. The single mode fibre-optic gyroscope having a large number of turns of the optical fibre in the spool, replacing He-Ne gas laser by a GaAs laser diode, there by reducing the noise level, and using fully integrated fibre-optics, works out to be the best in the final analysis, for safe navigation and homing of the guided missiles.

  13. Platelet-rich plasma-induced bone marrow mesenchymal stem cells versus autologous nerve grafting for sciatic nerve repair

    Institute of Scientific and Technical Information of China (English)

    Changsuo Xia; Yajuan Li; Wen Cao; Zhaohua Yu

    2010-01-01

    Autologous nerve grafting is the gold standard of peripheral nerve repair.We previously showed that autologous platelet-rich plasma(PRP)contains high concentrations of growth factors and can induce in vitro cultured bone marrow mesenchymal stem cells(BMSCs)to differentiate into Schwann cells.Here we used PRP-induced BMSCs combined with chemically extracted acellular nerves to repair sciatic nerve defects and compared the effect with autologous nerve grafting.The BMSCs and chemically extracted acellular nerve promoted target muscle wet weight restoration,motor nerve conduction velocity,and axonal and myelin sheath regeneration,with similar effectiveness to autologous nerve grafting.This finding suggests that PRP induced BMSCs can be used to repair peripheral nerve defects.

  14. Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy.

    Science.gov (United States)

    Turcotte, Raphaël; Rutledge, Danette J; Bélanger, Erik; Dill, Dorothy; Macklin, Wendy B; Côté, Daniel C

    2016-08-19

    Myelin plays an essential role in the nervous system and its disruption in diseases such as multiple sclerosis may lead to neuronal death, thus causing irreversible functional impairments. Understanding myelin biology is therefore of fundamental and clinical importance, but no tools currently exist to describe the fine spatial organization of myelin sheaths in vivo. Here we demonstrate intravital quantification of the myelin molecular structure using a microscopy method based on polarization-resolved coherent Raman scattering. Developmental myelination was imaged noninvasively in live zebrafish. Longitudinal imaging of individual axons revealed changes in myelin organization beyond the diffraction limit. Applied to promyelination drug screening, the method uniquely enabled the identification of focal myelin regions with differential architectures. These observations indicate that the study of myelin biology and the identification of therapeutic compounds will largely benefit from a method to quantify the myelin molecular organization in vivo.

  15. Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy

    Science.gov (United States)

    Turcotte, Raphaël; Rutledge, Danette J.; Bélanger, Erik; Dill, Dorothy; Macklin, Wendy B.; Côté, Daniel C.

    2016-08-01

    Myelin plays an essential role in the nervous system and its disruption in diseases such as multiple sclerosis may lead to neuronal death, thus causing irreversible functional impairments. Understanding myelin biology is therefore of fundamental and clinical importance, but no tools currently exist to describe the fine spatial organization of myelin sheaths in vivo. Here we demonstrate intravital quantification of the myelin molecular structure using a microscopy method based on polarization-resolved coherent Raman scattering. Developmental myelination was imaged noninvasively in live zebrafish. Longitudinal imaging of individual axons revealed changes in myelin organization beyond the diffraction limit. Applied to promyelination drug screening, the method uniquely enabled the identification of focal myelin regions with differential architectures. These observations indicate that the study of myelin biology and the identification of therapeutic compounds will largely benefit from a method to quantify the myelin molecular organization in vivo.

  16. Gap junction communication in myelinating glia.

    Science.gov (United States)

    Nualart-Marti, Anna; Solsona, Carles; Fields, R Douglas

    2013-01-01

    Gap junction communication is crucial for myelination and axonal survival in both the peripheral nervous system (PNS) and central nervous system (CNS). This review examines the different types of gap junctions in myelinating glia of the PNS and CNS (Schwann cells and oligodendrocytes respectively), including their functions and involvement in neurological disorders. Gap junctions mediate intercellular communication among Schwann cells in the PNS, and among oligodendrocytes and between oligodendrocytes and astrocytes in the CNS. Reflexive gap junctions mediating transfer between different regions of the same cell promote communication between cellular compartments of myelinating glia that are separated by layers of compact myelin. Gap junctions in myelinating glia regulate physiological processes such as cell growth, proliferation, calcium signaling, and participate in extracellular signaling via release of neurotransmitters from hemijunctions. In the CNS, gap junctions form a glial network between oligodendrocytes and astrocytes. This transcellular communication is hypothesized to maintain homeostasis by facilitating restoration of membrane potential after axonal activity via electrical coupling and the re-distribution of potassium ions released from axons. The generation of transgenic mice for different subsets of connexins has revealed the contribution of different connexins in gap junction formation and illuminated new subcellular mechanisms underlying demyelination and cognitive defects. Alterations in metabolic coupling have been reported in animal models of X-linked Charcot-Marie-Tooth disease (CMTX) and Pelizaeus-Merzbarcher-like disease (PMLD), which are caused by mutations in the genes encoding for connexin 32 and connexin 47 respectively. Future research identifying the expression and regulation of gap junctions in myelinating glia is likely to provide a better understanding of myelinating glia in nervous system function, plasticity, and disease. This

  17. Nanofibrous nerve conduits for repair of 30-mm-long sciatic nerve defects*

    Institute of Scientific and Technical Information of China (English)

    Esmaeil Biazar; Saeed Heidari Keshel; Majid Pouya; Hadi Rad; Melody Omrani Nava; Mohammad Azarbakhsh; Shirin Hooshmand

    2013-01-01

    It has been confirmed that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit can promote peripheral nerve regeneration in rats. However, its efficiency in repair of over 30-mm-long sciatic nerve defects needs to be assessed. In this study, we used a nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit to bridge a 30-mm-long gap in the rat sciatic nerve. At 4 months after nerve conduit implantation, regenerated nerves were macroscopi-cal y observed and histological y assessed. In the nanofibrous graft, the rat sciatic nerve trunk had been reconstructed by restoration of nerve continuity and formation of myelinated nerve fiber. There were Schwann cel s and glial cel s in the regenerated nerves. Masson’s trichrome staining showed that there were no pathological changes in the size and structure of gastrocnemius muscle cel s on the operated side of rats. These findings suggest that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit is suitable for repair of long-segment sciatic nerve defects.

  18. Unmyelinated visceral afferents exhibit frequency dependent action potential broadening while myelinated visceral afferents do not.

    Science.gov (United States)

    Li, Bai-Yan; Feng, Bin; Tsu, Hwa Y; Schild, John H

    2007-06-21

    Sensory information arising from visceral organ systems is encoded into action potential trains that propagate along afferent fibers to target nuclei in the central nervous system. These information streams range from tight patterns of action potentials that are well synchronized with the sensory transduction event to irregular, patternless discharge with no clear correlation to the sensory input. In general terms these afferent pathways can be divided into unmyelinated and myelinated fiber types. Our laboratory has a long standing interest in the functional differences between these two types of afferents in terms of the preprocessing of sensory information into action potential trains (synchrony, frequency, duration, etc.), the reflexogenic consequences of this sensory input to the central nervous system and the ionic channels that give rise to the electrophysiological properties of these unique cell types. The aim of this study was to determine whether there were any functional differences in the somatic action potential characteristics of unmyelinated and myelinated vagal afferents in response to different rates of sensory nerve stimulation. Our results showed that activity and frequency-dependent widening of the somatic action potential was quite prominent in unmyelinated but not myelinated vagal afferents. Spike broadening often leads to increased influx of Ca(2+) ions that has been associated with a diverse range of modulatory mechanisms both at the cell body and central synaptic terminations (e.g. increased neurotransmitter release.) We conclude that our observations are indicative of fundamentally different mechanisms for neural integration of sensory information arising from unmyelinated and myelinated vagal afferents.

  19. NGF regulates the expression of axonal LINGO-1 to inhibit oligodendrocyte differentiation and myelination.

    Science.gov (United States)

    Lee, Xinhua; Yang, Zhongshu; Shao, Zhaohui; Rosenberg, Sheila S; Levesque, Melissa; Pepinsky, R Blake; Qiu, Mengsheng; Miller, Robert H; Chan, Jonah R; Mi, Sha

    2007-01-03

    Neurons and glia share a mutual dependence in establishing a functional relationship, and none is more evident than the process by which axons control myelination. Here, we identify LRR and Ig domain-containing, Nogo receptor-interacting protein (LINGO-1) as a potent axonal inhibitor of oligodendrocyte differentiation and myelination that is regulated by nerve growth factor and its cognate receptor TrkA in a dose-dependent manner. Whereas LINGO-1 expressed by oligodendrocyte progenitor cells was previously identified as an inhibitor of differentiation, we demonstrate that axonal expression of LINGO-1 inhibits differentiation with equal potency. Disruption of LINGO-1 on either cell type is sufficient to overcome the inhibitory action and promote differentiation and myelination, independent of axon diameter. Furthermore, these results were recapitulated in transgenic mice overexpressing the full length LINGO-1 under the neuronal promoter synapsin. Myelination was greatly inhibited in the presence of enforced axonal LINGO-1. The implications of these results relate specifically to the development of potential therapeutics targeting extrinsic growth factors that may regulate the axonal expression of modulators of oligodendrocyte development.

  20. Dynamic regulation of Schwann cell enhancers after peripheral nerve injury.

    Science.gov (United States)

    Hung, Holly A; Sun, Guannan; Keles, Sunduz; Svaren, John

    2015-03-13

    Myelination of the peripheral nervous system is required for axonal function and long term stability. After peripheral nerve injury, Schwann cells transition from axon myelination to a demyelinated state that supports neuronal survival and ultimately remyelination of axons. Reprogramming of gene expression patterns during development and injury responses is shaped by the actions of distal regulatory elements that integrate the actions of multiple transcription factors. We used ChIP-seq to measure changes in histone H3K27 acetylation, a mark of active enhancers, to identify enhancers in myelinating rat peripheral nerve and their dynamics after demyelinating nerve injury. Analysis of injury-induced enhancers identified enriched motifs for c-Jun, a transcription factor required for Schwann cells to support nerve regeneration. We identify a c-Jun-bound enhancer in the gene for Runx2, a transcription factor induced after nerve injury, and we show that Runx2 is required for activation of other induced genes. In contrast, enhancers that lose H3K27ac after nerve injury are enriched for binding sites of the Sox10 and early growth response 2 (Egr2/Krox20) transcription factors, which are critical determinants of Schwann cell differentiation. Egr2 expression is lost after nerve injury, and many Egr2-binding sites lose H3K27ac after nerve injury. However, the majority of Egr2-bound enhancers retain H3K27ac, indicating that other transcription factors maintain active enhancer status after nerve injury. The global epigenomic changes in H3K27ac deposition pinpoint dynamic changes in enhancers that mediate the effects of transcription factors that control Schwann cell myelination and peripheral nervous system responses to nerve injury.

  1. Nerve biopsy

    Science.gov (United States)

    Biopsy - nerve ... A nerve biopsy is most often done on a nerve in the ankle, forearm, or along a rib. The health care ... feel a prick and a mild sting. The biopsy site may be sore for a few days ...

  2. Microstructured polymer optical fibres

    CERN Document Server

    Large, Maryanne; Barton, Geoff; van Eijkelenborg, Martijn A

    2008-01-01

    Microstructured Polymer Optical Fibres describes the optical properties of microstructured fibres, how they are made and modelled, and outlines some potential applications. These applications include areas where polymer fibres are already used, such as high-data rate transmission for Fibre-to-the Home or within cars, as well as completely new areas such as the photonic bandgap transmission of ""difficult"" wavelengths. Emphasising a conceptual understanding of the underlying physics, Microstructured Polymer Optical Fibres is clearly written, and includes numerous illustrations. It provides an

  3. Fibre illumination system

    DEFF Research Database (Denmark)

    2012-01-01

    Source: EP2426402A The invention relates to a fibre illumination module and system for the collection and delivery of daylight for illumination purposes. The fibre illumination module comprises a plurality of collector elements, each collector element comprising an input fibre having a first end......-directional arrangement. The fibre illumination system comprises a fibre illumination module of the above-mentioned type. By the invention, daylight may be exploited for the illumination of remote interior spaces of buildings in order to save energy, and improve the well-being of users in both housing and working...

  4. Interaction between the C-terminal region of human myelin basic protein and calmodulin: analysis of complex formation and solution structure.

    Science.gov (United States)

    Majava, Viivi; Petoukhov, Maxim V; Hayashi, Nobuhiro; Pirilä, Päivi; Svergun, Dmitri I; Kursula, Petri

    2008-02-19

    The myelin sheath is a multilamellar membrane structure wrapped around the axon, enabling the saltatory conduction of nerve impulses in vertebrates. Myelin basic protein, one of the most abundant myelin-specific proteins, is an intrinsically disordered protein that has been shown to bind calmodulin. In this study, we focus on a 19-mer synthetic peptide from the predicted calmodulin-binding segment near the C-terminus of human myelin basic protein. The interaction of native human myelin basic protein with calmodulin was confirmed by affinity chromatography. The binding of the myelin basic protein peptide to calmodulin was tested with isothermal titration calorimetry (ITC) in different temperatures, and Kd was observed to be in the low muM range, as previously observed for full-length myelin basic protein. Surface plasmon resonance showed that the peptide bound to calmodulin, and binding was accompanied by a conformational change; furthermore, gel filtration chromatography indicated a decrease in the hydrodynamic radius of calmodulin in the presence of the peptide. NMR spectroscopy was used to map the binding area to reside mainly within the hydrophobic pocket of the C-terminal lobe of calmodulin. The solution structure obtained by small-angle X-ray scattering indicates binding of the myelin basic protein peptide into the interlobal groove of calmodulin, while calmodulin remains in an extended conformation. Taken together, our results give a detailed structural insight into the interaction of calmodulin with a C-terminal segment of a major myelin protein, the myelin basic protein. The used 19-mer peptide interacts mainly with the C-terminal lobe of calmodulin, and a conformational change accompanies binding, suggesting a novel mode of calmodulin-target protein interaction. Calmodulin does not collapse and wrap around the peptide tightly; instead, it remains in an extended conformation in the solution structure. The observed affinity can be physiologically relevant

  5. Interaction between the C-terminal region of human myelin basic protein and calmodulin: analysis of complex formation and solution structure

    Directory of Open Access Journals (Sweden)

    Hayashi Nobuhiro

    2008-02-01

    Full Text Available Abstract Background The myelin sheath is a multilamellar membrane structure wrapped around the axon, enabling the saltatory conduction of nerve impulses in vertebrates. Myelin basic protein, one of the most abundant myelin-specific proteins, is an intrinsically disordered protein that has been shown to bind calmodulin. In this study, we focus on a 19-mer synthetic peptide from the predicted calmodulin-binding segment near the C-terminus of human myelin basic protein. Results The interaction of native human myelin basic protein with calmodulin was confirmed by affinity chromatography. The binding of the myelin basic protein peptide to calmodulin was tested with isothermal titration calorimetry (ITC in different temperatures, and Kd was observed to be in the low μM range, as previously observed for full-length myelin basic protein. Surface plasmon resonance showed that the peptide bound to calmodulin, and binding was accompanied by a conformational change; furthermore, gel filtration chromatography indicated a decrease in the hydrodynamic radius of calmodulin in the presence of the peptide. NMR spectroscopy was used to map the binding area to reside mainly within the hydrophobic pocket of the C-terminal lobe of calmodulin. The solution structure obtained by small-angle X-ray scattering indicates binding of the myelin basic protein peptide into the interlobal groove of calmodulin, while calmodulin remains in an extended conformation. Conclusion Taken together, our results give a detailed structural insight into the interaction of calmodulin with a C-terminal segment of a major myelin protein, the myelin basic protein. The used 19-mer peptide interacts mainly with the C-terminal lobe of calmodulin, and a conformational change accompanies binding, suggesting a novel mode of calmodulin-target protein interaction. Calmodulin does not collapse and wrap around the peptide tightly; instead, it remains in an extended conformation in the solution structure

  6. Side-To-Side Nerve Bridges Support Donor Axon Regeneration Into Chronically Denervated Nerves and Are Associated With Characteristic Changes in Schwann Cell Phenotype.

    Science.gov (United States)

    Hendry, J Michael; Alvarez-Veronesi, M Cecilia; Snyder-Warwick, Alison; Gordon, Tessa; Borschel, Gregory H

    2015-11-01

    Chronic denervation resulting from long nerve regeneration times and distances contributes greatly to suboptimal outcomes following nerve injuries. Recent studies showed that multiple nerve grafts inserted between an intact donor nerve and a denervated distal recipient nerve stump (termed "side-to-side nerve bridges") enhanced regeneration after delayed nerve repair. To examine the cellular aspects of axon growth across these bridges to explore the "protective" mechanism of donor axons on chronically denervated Schwann cells. In Sprague Dawley rats, 3 side-to-side nerve bridges were placed over a 10-mm distance between an intact donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) distal nerve stump. Green fluorescent protein-expressing TIB axons grew across the bridges and were counted in cross section after 4 weeks. Immunofluorescent axons and Schwann cells were imaged over a 4-month period. Denervated Schwann cells dedifferentiated to a proliferative, nonmyelinating phenotype within the bridges and the recipient denervated CP nerve stump. As donor TIB axons grew across the 3 side-to-side nerve bridges and into the denervated CP nerve, the Schwann cells redifferentiated to the myelinating phenotype. Bridge placement led to an increased mass of hind limb anterior compartment muscles after 4 months of denervation compared with muscles whose CP nerve was not "protected" by bridges. This study describes patterns of donor axon regeneration and myelination in the denervated recipient nerve stump and supports a mechanism where these donor axons sustain a proregenerative state to prevent deterioration in the face of chronic denervation.

  7. Biodegradable magnesium wire promotes regeneration of compressed sciatic nerves.

    Science.gov (United States)

    Li, Bo-Han; Yang, Ke; Wang, Xiao

    2016-12-01

    Magnesium (Mg) wire has been shown to be biodegradable and have anti-inflammatory properties. It can induce Schwann cells to secrete nerve growth factor and promote the regeneration of nerve axons after central nervous system injury. We hypothesized that biodegradable Mg wire may enhance compressed peripheral nerve regeneration. A rat acute sciatic nerve compression model was made, and AZ31 Mg wire (3 mm diameter; 8 mm length) bridged at both ends of the nerve. Our results demonstrate that sciatic functional index, nerve growth factor, p75 neurotrophin receptor, and tyrosine receptor kinase A mRNA expression are increased by Mg wire in Mg model. The numbers of cross section nerve fibers and regenerating axons were also increased. Sciatic nerve function was improved and the myelinated axon number was increased in injured sciatic nerve following Mg treatment. Immunofluorescence histopathology showed that there were increased vigorous axonal regeneration and myelin sheath coverage in injured sciatic nerve after Mg treatment. Our findings confirm that biodegradable Mg wire can promote the regeneration of acute compressed sciatic nerves.

  8. Human habenula segmentation using myelin content.

    Science.gov (United States)

    Kim, Joo-won; Naidich, Thomas P; Ely, Benjamin A; Yacoub, Essa; De Martino, Federico; Fowkes, Mary E; Goodman, Wayne K; Xu, Junqian

    2016-04-15

    The habenula consists of a pair of small epithalamic nuclei located adjacent to the dorsomedial thalamus. Despite increasing interest in imaging the habenula due to its critical role in mediating subcortical reward circuitry, in vivo neuroimaging research targeting the human habenula has been limited by its small size and low anatomical contrast. In this work, we have developed an objective semi-automated habenula segmentation scheme consisting of histogram-based thresholding, region growing, geometric constraints, and partial volume estimation steps. This segmentation scheme was designed around in vivo 3 T myelin-sensitive images, generated by taking the ratio of high-resolution T1w over T2w images. Due to the high myelin content of the habenula, the contrast-to-noise ratio with the thalamus in the in vivo 3T myelin-sensitive images was significantly higher than the T1w or T2w images alone. In addition, in vivo 7 T myelin-sensitive images (T1w over T2*w ratio images) and ex vivo proton density-weighted images, along with histological evidence from the literature, strongly corroborated the in vivo 3 T habenula myelin contrast used in the proposed segmentation scheme. The proposed segmentation scheme represents a step toward a scalable approach for objective segmentation of the habenula suitable for both morphological evaluation and habenula seed region selection in functional and diffusion MRI applications.

  9. Targeting human oligodendrocyte progenitors for myelin repair.

    Science.gov (United States)

    Dietz, Karen C; Polanco, Jessie J; Pol, Suyog U; Sim, Fraser J

    2016-09-01

    Oligodendrocyte development has been studied for several decades, and has served as a model system for both neurodevelopmental and stem/progenitor cell biology. Until recently, the vast majority of studies have been conducted in lower species, especially those focused on rodent development and remyelination. In humans, the process of myelination requires the generation of vastly more myelinating glia, occurring over a period of years rather than weeks. Furthermore, as evidenced by the presence of chronic demyelination in a variety of human neurologic diseases, it appears likely that the mechanisms that regulate development and become dysfunctional in disease may be, in key ways, divergent across species. Improvements in isolation techniques, applied to primary human neural and oligodendrocyte progenitors from both fetal and adult brain, as well as advancements in the derivation of defined progenitors from human pluripotent stem cells, have begun to reveal the extent of both species-conserved signaling pathways and potential key differences at cellular and molecular levels. In this article, we will review the commonalities and differences in myelin development between rodents and man, describing the approaches used to study human oligodendrocyte differentiation and myelination, as well as heterogeneity within targetable progenitor pools, and discuss the advances made in determining which conserved pathways may be both modeled in rodents and translate into viable therapeutic strategies to promote myelin repair.

  10. TACE (ADAM17) inhibits Schwann cell myelination.

    Science.gov (United States)

    La Marca, Rosa; Cerri, Federica; Horiuchi, Keisuke; Bachi, Angela; Feltri, M Laura; Wrabetz, Lawrence; Blobel, Carl P; Quattrini, Angelo; Salzer, James L; Taveggia, Carla

    2011-06-12

    Tumor necrosis factor-α-converting enzyme (TACE; also known as ADAM17) is a proteolytic sheddase that is responsible for the cleavage of several membrane-bound molecules. We report that TACE cleaves neuregulin-1 (NRG1) type III in the epidermal growth factor domain, probably inactivating it (as assessed by deficient activation of the phosphatidylinositol-3-OH kinase pathway), and thereby negatively regulating peripheral nervous system (PNS) myelination. Lentivirus-mediated knockdown of TACE in vitro in dorsal root ganglia neurons accelerates the onset of myelination and results in hypermyelination. In agreement, motor neurons of conditional knockout mice lacking TACE specifically in these cells are significantly hypermyelinated, and small-caliber fibers are aberrantly myelinated. Further, reduced TACE activity rescues hypomyelination in NRG1 type III haploinsufficient mice in vivo. We also show that the inhibitory effect of TACE is neuron-autonomous, as Schwann cells lacking TACE elaborate myelin of normal thickness. Thus, TACE is a modulator of NRG1 type III activity and is a negative regulator of myelination in the PNS.

  11. The influence of electrospun fibre size on Schwann cell behaviour and axonal outgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Gnavi, S., E-mail: sara.gnavi@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Fornasari, B.E., E-mail: benedettaelena.fornasari@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Tonda-Turo, C., E-mail: chiara.tondaturo@polito.it [Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10100 (Italy); Ciardelli, G., E-mail: gianluca.ciardelli@polito.it [Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10100 (Italy); CNR-IPCF UOS, Pisa 56124 (Italy); Zanetti, M., E-mail: marco.zanetti@unito.it [Nanostructured Interfaces and Surfaces, Department of Chemistry, University of Torino, Torino 10100 (Italy); Geuna, S., E-mail: stefano.geuna@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Perroteau, I., E-mail: isabelle.perroteau@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy)

    2015-03-01

    Fibrous substrates functioning as temporary extracellular matrices can be prepared easily by electrospinning, yielding fibrous matrices suitable as internal fillers for nerve guidance channels. In this study, gelatin micro- or nano-fibres were prepared by electrospinning by tuning the gelatin concentration and solution flow rate. The effect of gelatin fibre diameter on cell adhesion and proliferation was tested in vitro using explant cultures of Schwann cells (SC) and dorsal root ganglia (DRG). Cell adhesion was assessed by quantifying the cell spreading area, actin cytoskeleton organization and focal adhesion complex formation. Nano-fibres promoted cell spreading and actin cytoskeleton organization, increasing cellular adhesion and the proliferation rate. However, both migration rate and motility, quantified by transwell and time lapse assays respectively, were greater in cells cultured on micro-fibres. Finally, there was more DRG axon outgrowth on micro-fibres. These data suggest that the topography of electrospun gelatin fibres can be adjusted to modulate SC and axon organization and that both nano- and micro-fibres are promising fillers for the design of devices for peripheral nerve repair. - Highlights: • Electrospinning used to produce gelatin nano- and micro-fibre matrices. • Nano-fibre matrices promote Schwann cell organization and increase proliferation rate. • Micro-fibre matrices promote Schwann cell migration. • Micro-fibre matrices promote axonal outgrowth.

  12. Perk Ablation Ameliorates Myelination in S63del-Charcot–Marie–Tooth 1B Neuropathy

    Directory of Open Access Journals (Sweden)

    Nicolò Musner

    2016-04-01

    Full Text Available In peripheral nerves, P0 glycoprotein accounts for more than 20% of myelin protein content. P0 is synthesized by Schwann cells, processed in the endoplasmic reticulum (ER and enters the secretory pathway. However, the mutant P0 with S63 deleted (P0S63del accumulates in the ER lumen and induces a demyelinating neuropathy in Charcot–Marie–Tooth disease type 1B (CMT1B–S63del mice. Accumulation of P0S63del in the ER triggers a persistent unfolded protein response. Protein kinase RNA-like endoplasmic reticulum kinase (PERK is an ER stress sensor that phosphorylates eukaryotic initiation factor 2 alpha (eIF2alpha in order to attenuate protein synthesis. We have shown that increasing phosphophorylated-eIF2alpha (P-eIF2alpha is a potent therapeutic strategy, improving myelination and motor function in S63del mice. Here, we explore the converse experiment: Perk haploinsufficiency reduces P-eIF2alpha in S63del nerves as expected, but surprisingly, ameliorates, rather than worsens S63del neuropathy. Motor performance and myelin abnormalities improved in S63del//Perk+/− compared with S63del mice. These data suggest that mechanisms other than protein translation might be involved in CMT1B/S63del neuropathy. In addition, Perk deficiency in other cells may contribute to demyelination in a non–Schwann-cell autonomous manner.

  13. Perk Ablation Ameliorates Myelination in S63del-Charcot-Marie-Tooth 1B Neuropathy.

    Science.gov (United States)

    Musner, Nicolò; Sidoli, Mariapaola; Zambroni, Desireè; Del Carro, Ubaldo; Ungaro, Daniela; D'Antonio, Maurizio; Feltri, Maria L; Wrabetz, Lawrence

    2016-01-01

    In peripheral nerves, P0 glycoprotein accounts for more than 20% of myelin protein content. P0 is synthesized by Schwann cells, processed in the endoplasmic reticulum (ER) and enters the secretory pathway. However, the mutant P0 with S63 deleted (P0S63del) accumulates in the ER lumen and induces a demyelinating neuropathy in Charcot-Marie-Tooth disease type 1B (CMT1B)-S63del mice. Accumulation of P0S63del in the ER triggers a persistent unfolded protein response. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) is an ER stress sensor that phosphorylates eukaryotic initiation factor 2 alpha (eIF2alpha) in order to attenuate protein synthesis. We have shown that increasing phosphophorylated-eIF2alpha (P-eIF2alpha) is a potent therapeutic strategy, improving myelination and motor function in S63del mice. Here, we explore the converse experiment:Perkhaploinsufficiency reduces P-eIF2alpha in S63del nerves as expected, but surprisingly, ameliorates, rather than worsens S63del neuropathy. Motor performance and myelin abnormalities improved in S63del//Perk+/- compared with S63del mice. These data suggest that mechanisms other than protein translation might be involved in CMT1B/S63del neuropathy. In addition,Perkdeficiency in other cells may contribute to demyelination in a non-Schwann-cell autonomous manner.

  14. NKCC1 Activation Is Required for Myelinated Sensory Neurons Regeneration through JNK-Dependent Pathway.

    Science.gov (United States)

    Mòdol, Laura; Santos, Daniel; Cobianchi, Stefano; González-Pérez, Francisco; López-Alvarez, Víctor; Navarro, Xavier

    2015-05-13

    After peripheral nerve injury, axons are able to regenerate, although specific sensory reinnervation and functional recovery are usually worse for large myelinated than for small sensory axons. The mechanisms that mediate the regeneration of different sensory neuron subpopulations are poorly known. The Na(+)-K(+)-Cl(-) cotransporter 1 (NKCC1) is particularly relevant in setting the intracellular chloride concentration. After axotomy, increased NKCC1 phosphorylation has been reported to be important for neurite outgrowth of sensory neurons; however, the mechanisms underlying its effects are still unknown. In the present study we used in vitro and in vivo models to assess the differential effects of blocking NKCC1 activity on the regeneration of different types of dorsal root ganglia (DRGs) neurons after sciatic nerve injury in the rat. We observed that blocking NKCC1 activity by bumetanide administration induces a selective effect on neurite outgrowth and regeneration of myelinated fibers without affecting unmyelinated DRG neurons. To further study the mechanism underlying NKCC1 effects, we also assessed the changes in mitogen-activated protein kinase (MAPK) signaling under NKCC1 modulation. The inhibition of NKCC1 activity in vitro and in vivo modified pJNK1/2/3 expression in DRG neurons. Together, our study identifies a mechanism selectively contributing to myelinated axon regeneration, and point out the role of Cl(-) modulation in DRG neuron regeneration and in the activation of MAPKs, particularly those belonging to the JNK family. Copyright © 2015 the authors 0270-6474/15/357414-14$15.00/0.

  15. Myelinated Afferents Are Involved in Pathology of the Spontaneous Electrical Activity and Mechanical Hyperalgesia of Myofascial Trigger Spots in Rats

    Directory of Open Access Journals (Sweden)

    Fei Meng

    2015-01-01

    Full Text Available Myofascial trigger points (MTrPs are common causes for chronic pain. Myelinated afferents were considered to be related with muscular pain, and our clinical researches indicated they might participate in the pathology of MTrPs. Here, we applied myofascial trigger spots (MTrSs, equal to MTrPs in human of rats to further investigate role of myelinated afferents. Modified pyridine-silver staining revealed more nerve endings at MTrSs than non-MTrSs (P0.05. 30 min after the injection, MPTs at MTrSs were significantly lower than those of non-MTrSs (P<0.01. Therefore, we concluded that proliferated myelinated afferents existed at MTrSs, which were closely related to pathology of SEA and mechanical hyperalgesia of MTrSs.

  16. Schwann cells-axon interaction in myelination.

    Science.gov (United States)

    Taveggia, Carla

    2016-08-01

    The remarkable interaction between glial cells and axons is crucial for nervous system development and homeostasis. Alterations in this continuous communication can cause severe pathologies that can compromise the integrity of the nervous system. The most dramatic consequence of this interaction is the generation of the myelin sheath, made by myelinating glial cells: Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system. In this review I will focus on signals coming from axons in the first part and then on those from Schwann cells that promote the formation and the maintenance of peripheral myelin. I will discuss their inter-relationship together with seminal and important advances recently made.

  17. Gamma knife irradiation of injured sciatic nerve induces histological and behavioral improvement in the rat neuropathic pain model.

    Directory of Open Access Journals (Sweden)

    Yuki Yagasaki

    Full Text Available We examined the effects of gamma knife (GK irradiation on injured nerves using a rat partial sciatic nerve ligation (PSL model. GK irradiation was performed at one week after ligation and nerve preparations were made three weeks after ligation. GK irradiation is known to induce immune responses such as glial cell activation in the central nervous system. Thus, we determined the effects of GK irradiation on macrophages using immunoblot and histochemical analyses. Expression of Iba-1 protein, a macrophage marker, was further increased in GK-treated injured nerves as compared with non-irradiated injured nerves. Immunohistochemical study of Iba-1 in GK-irradiated injured sciatic nerves demonstrated Iba-1 positive macrophage accumulation to be enhanced in areas distal to the ligation point. In the same area, myelin debris was also more efficiently removed by GK-irradiation. Myelin debris clearance by macrophages is thought to contribute to a permissive environment for axon growth. In the immunoblot study, GK irradiation significantly increased expressions of βIII-tubulin protein and myelin protein zero, which are markers of axon regeneration and re-myelination, respectively. Toluidine blue staining revealed the re-myelinated fiber diameter to be larger at proximal sites and that the re-myelinated fiber number was increased at distal sites in GK-irradiated injured nerves as compared with non-irradiated injured nerves. These results suggest that GK irradiation of injured nerves facilitates regeneration and re-myelination. In a behavior study, early alleviation of allodynia was observed with GK irradiation in PSL rats. When GK-induced alleviation of allodynia was initially detected, the expression of glial cell line-derived neurotrophic factor (GDNF, a potent analgesic factor, was significantly increased by GK irradiation. These results suggested that GK irradiation alleviates allodynia via increased GDNF. This study provides novel evidence that GK

  18. Myelin-based inhibitors of oligodendrocyte myelination: clues from axonal growth and regeneration

    Institute of Scientific and Technical Information of China (English)

    Feng Mei; S.Y.Christin Chong; Jonah R.Chan

    2013-01-01

    The differentiation of and myelination by oligodendrocytes (OLs) are exquisitely regulated by a series of intrinsic and extrinsic mechanisms.As each OL can make differing numbers of myelin segments with variable lengths along similar axon tracts,myelination can be viewed as a graded process shaped by inhibitory/inductive cues during development.Myelination by OLs is a prime example of an adaptive process determined by the microenvironment and architecture of the central nervous system (CNS).In this review,we discuss how myelin formation by OLs may be controlled by the heterogeneous microenvironment of the CNS.Then we address recent findings demonstrating that neighboring OLs may compete for available axon space,and highlight our current understanding of myelin-based inhibitors of axonal regeneration that are potentially responsible for the reciprocal dialogue between OLs and determine the numbers and lengths of myelin internodes.Understanding the mechanisms that control the spatiotemporal regulation of myelinogenic potential during development may provide valuable insight into therapeutic strategies for promoting remyelination in an inhibitory microenvironment.

  19. Myelin-based inhibitors of oligodendrocyte myelination: clues from axonal growth and regeneration.

    Science.gov (United States)

    Mei, Feng; Christin Chong, S Y; Chan, Jonah R

    2013-04-01

    The differentiation of and myelination by oligodendrocytes (OLs) are exquisitely regulated by a series of intrinsic and extrinsic mechanisms. As each OL can make differing numbers of myelin segments with variable lengths along similar axon tracts, myelination can be viewed as a graded process shaped by inhibitory/inductive cues during development. Myelination by OLs is a prime example of an adaptive process determined by the microenvironment and architecture of the central nervous system (CNS). in this review, we discuss how myelin formation by OLs may be controlled by the heterogeneous microenvironment of the CNS. Then we address recent findings demonstrating that neighboring OLs may compete for available axon space, and highlight our current understanding of myelin-based inhibitors of axonal regeneration that are potentially responsible for the reciprocal dialogue between OLs and determine the numbers and lengths of myelin internodes. Understanding the mechanisms that control the spatiotemporal regulation of myelinogenic potential during development may provide valuable insight into therapeutic strategies for promoting remyelination in an inhibitory microenvironment.

  20. Histological assessment in peripheral nerve tissue engineering

    Institute of Scientific and Technical Information of China (English)

    Vctor Carriel; Ingrid Garzn; Miguel Alaminos; Maria Cornelissen

    2014-01-01

    The histological analysis of peripheral nerve regeneration is one of the most used methods to demonstrate the success of the regeneration through nerve conduits. Nowadays, it is possible to evaluate different parameters of nerve regeneration by using histological, histochemical, immunohistochemical and ultrastructural techniques. The histochemical methods are very sensible and are useful tools to evaluate the extracellular matrix remodeling and the myelin sheath, but they are poorly speciifc. In contrast, the immunohistochemical methods are highly speciifc and are frequently used for the identiifcation of the regenerated axons, Schwann cells and proteins associated to nerve regeneration or neural linage. The ultrastructural techniques offer the possibility to perform a high resolution morphological and quantitative analysis of the nerve regeneration. However, the use of a single histological method may not be enough to assess the degree of regeneration, and the combination of different histological techniques could be necessary.

  1. A simple model of radial nerve injury in the rhesus monkey to evaluate peripheral nerve repair

    Institute of Scientific and Technical Information of China (English)

    Dong Wang; Qingtang Zhu; Xijun Huang; Guo Fu; Liqiang Gu; Xiaolin Liu; Honggang Wang; Jun Hu; Jianhua Yi; Xiaofeng Niu

    2014-01-01

    Current research on bone marrow stem cell transplantation and autologous or xenogenic nerve transplantation for peripheral nerve regeneration has mainly focused on the repair of peripher-al nerve defects in rodents. In this study, we established a standardized experimental model of radial nerve defects in primates and evaluated the effect of repair on peripheral nerve injury. We repaired 2.5-cm lesions in the radial nerve of rhesus monkeys by transplantation of autografts, acellular allografts, or acellular allografts seeded with autologous bone marrow stem cells. Five months after surgery, regenerated nerve tissue was assessed for function, electrophysiology, and histomorphometry. Postoperative functional recovery was evaluated by the wrist-extension test. Compared with the simple autografts, the acellular allografts and allografts seeded with bone marrow stem cells facilitated remarkable recovery of the wrist-extension functions in the rhesus monkeys. This functional improvement was coupled with radial nerve distal axon growth, a higher percentage of neuron survival, increased nerve fiber density and diameter, increased myelin sheath thickness, and increased nerve conduction velocities and peak amplitudes of compound motor action potentials. Furthermore, the quality of nerve regeneration in the bone marrow stem cells-laden allografts group was comparable to that achieved with autografts. The wrist-extension test is a simple behavioral method for objective quantification of peripheral nerve regeneration.

  2. Morphology of nerve fiber regeneration along a biodegradable poly (DLLA-epsilon-CL) nerve guide filled with fresh skeletal muscle.

    Science.gov (United States)

    Varejão, Artur S P; Cabrita, António M; Meek, Marcel F; Fornaro, Michele; Geuna, Stefano; Giacobini-Robecchi, Maria G

    2003-01-01

    Previous morphological and morphometrical studies showed that fresh-skeletal-muscle-enriched vein segments are good conduits for leading peripheral nerve regeneration. In the present study, we investigated the morphological features of peripheral nerve fibers regenerated along a 10-mm-long biodegradable poly (DLLA-epsilon-CL) nerve guide enriched with fresh skeletal muscle, comparing them to nerve fiber regeneration along 10-mm-long phosphate-buffered saline (PBS)-enriched poly (DLLA-epsilon-CL) tubes. Repaired nerves were analyzed at weeks 6 and 24 postoperatively. Structural and ultrastructural observation showed that good nerve fiber regeneration occurred in both PBS-enriched and fresh-skeletal-muscle-enriched nerve guides, and histomorphometrical analysis of regenerated myelinated fibers revealed no statistically significant differences between the two experimental groups at week 24 after surgery. The employment of fresh-muscle-enriched conduits for the repair of nerve defects is critically discussed in the light of these results.

  3. [Structural anatomy of cranial nerves (V, VII, VIII, IX, X)].

    Science.gov (United States)

    Guclu, B; Meyronet, D; Simon, E; Streichenberger, N; Sindou, M; Mertens, P

    2009-04-01

    This study reports a review of the literature on the structural anatomy of the Vth, VIIth, VIIIth, IXth, and Xth cranial nerves, known to harbor dysfunction syndromes in humans. Because these dysfunctions are hypothesized to be caused by neurovascular conflicts at the root entry/exit zone and the transitional zone between central and peripheral myelinization, this investigation focused on the study and description of this junction. All the cranial nerves, except the optic and olfactory nerves, which are considered to be more a direct expansion of the central nervous system, have a transitional zone between central myelin (coming from oligodendrocytes) and peripheral myelin (produced by Schwann cells). The human studies reported in the literature argue in favor of a dome-shaped transitional zone directed to the periphery. It seems that this junctional region is situated more peripherally in sensory nerves than in motor nerves. The transitional zone is situated very peripherally for the cochlear and vestibular nerves, and on the contrary very close to its exit from the brain stem for the facial nerve.

  4. 两种激光并超短波治疗周围性面神经麻痹的疗效%Effect of two kinds of laser combined with ultrashort wave on peripheral facial nerve paralysis

    Institute of Scientific and Technical Information of China (English)

    甘青

    2002-01-01

    Background: Peripheral facial nerve paralysis referred to injury of peripheral nerve trunk and its branches due to direct or indirect force.Physiotherapy could decrease ischemia.Swelling of nerve tissue and degeneration of myelin sheath and axon.Helium neon laser.Semiconductor laser and ultrashort wave were adopted in this group of peripheral nerve paralysis, effect was obvious.

  5. Myelin proteomics : molecular anatomy of an insulating sheath

    OpenAIRE

    2009-01-01

    Fast-transmitting vertebrate axons are electrically insulated with multiple layers of nonconductive plasma membrane of glial cell origin, termed myelin. The myelin membrane is dominated by lipids, and its protein composition has historically been viewed to be of very low complexity. In this review, we discuss an updated reference compendium of 342 proteins associated with central nervous system myelin that represents a valuable resource for analyzing myelin biogenesis and white matter homeost...

  6. PUNICA GRANATUM ATTENUATES SCIATIC NERVE LIGATION INDUCED-NEUROPATHIC PAIN

    Directory of Open Access Journals (Sweden)

    Ramica Sharma et al.

    2012-02-01

    Full Text Available The study has been designed to investigate the effect of aqueous extract of rind of Punica granatum in sciatic nerve ligation induced-neuropathic pain in rats. Surgical procedure was performed with sciatic nerve ligation to develop neuropathic pain in rats. The development of neuropathic pain was assessed by employing behaviour parameters such as hyperalgesia and allodynia. Further, the functionality of sciatic nerve was assessed using the histopathological study of myelinated and unmyelinated fibers in sciatic nerve. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS, catalase, glutathione and tissue TBARS and Superoxide dismutase (SOD. Rats exposed to sciatic nerve ligation produced marked increase in oxidative stress, which was assessed in terms of TBARS and SOD along with decrease in the level of catalase and glutathione. Moreover, it develops neuropathic pain by impairing the normal functions of myelinated and unmyelinated fibers in sciatic nerve. Treatment with aqueous extract of Punica granatum extract (100mg/kg, p.o markedly prevented sciatic nerve ligation-induced neuropathy and oxidative stress by increasing the pain threshold, by improving the functionality of sciatic nerve, by decreasing serum and tissue TBARS and tissue SOD, by increasing levels of serum glutathione and catalase. It may be concluded that Punica granatum extract reduced the oxidative stress via inhibiting p38MAPK and alleviates neuropathic symptoms and consequently improved the functionality of sciatic nerve and prevents sciatic nerve ligation–induced neuropathic pain.

  7. The myelinated fiber loss in the corpus callosum of mouse model of schizophrenia induced by MK-801.

    Science.gov (United States)

    Xiu, Yun; Kong, Xiang-ru; Zhang, Lei; Qiu, Xuan; Gao, Yuan; Huang, Chun-xia; Chao, Feng-lei; Wang, San-rong; Tang, Yong

    2015-04-01

    Previous magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) investigations have shown that the white matter volume and fractional anisotropy (FA) were decreased in schizophrenia (SZ), which indicated impaired white matter integrity in SZ. However, the mechanism underlying these abnormalities has been less studied. The current study was designed to investigate the possible reasons for white matter abnormalities in the mouse model of SZ induced by NMDA receptor antagonist using the unbiased stereological methods and transmission electron microscope technique. We found that the mice treated with MK-801 demonstrated a series of schizophrenia-like behaviors including hyperlocomotor activity and more anxiety. The myelinated fibers in the corpus callosum (CC) of the mice treated with MK-801 were impaired with splitting lamellae of myelin sheaths and segmental demyelination. The CC volume and the total length of the myelinated fibers in the CC of the mice treated with MK-801 were significantly decreased by 9.4% and 16.8% when compared to those of the mice treated with saline. We further found that the loss of the myelinated fibers length was mainly due to the marked loss of the myelinated nerve fibers with the diameter of 0.4-0.5 μm. These results indicated that the splitting myelin sheaths, demyelination and the loss of myelinated fibers with small diameter might provide one of the structural bases for impaired white matter integrity of CC in the mouse model of SZ. These results might also provide a baseline for further studies searching for the treatment of SZ through targeting white matter.

  8. Role of tumor necrosis factor-alpha in zebrafish retinal neurogenesis and myelination

    Science.gov (United States)

    Lei, Xu-Dan; Sun, Yan; Cai, Shi-Jiao; Fang, Yang-Wu; Cui, Jian-Lin; Li, Yu-Hao

    2016-01-01

    AIM To investigate the role of tumor necrosis factor-alpha (TNF-α) in zebrafish retinal development and myelination. METHODS Morpholino oligonucleotides (MO), which are complementary to the translation start site of the wild-type embryonic zebrafish TNF-α mRNA sequence, were synthesized and injected into one- to four-cell embryos. The translation blocking specificity was verified by Western blotting using an anti-TNF-α antibody, whole-mount in situ hybridization using a hepatocyte-specific mRNA probe ceruloplasmin (cp), and co-injection of TNF-α MO and TNF-α mRNA. An atonal homolog 7 (atoh7) mRNA probe was used to detect neurogenesis onset. The retinal neurodifferentiation was analyzed by immunohistochemistry using antibodies Zn12, Zpr1, and Zpr3 to label ganglion cells, cones, and rods, respectively. Myelin basic protein (mbp) was used as a marker to track and observe the myelination using whole-mount in situ hybridization. RESULTS Targeted knockdown of TNF-α resulted in specific suppression of TNF-α expression and a severely underdeveloped liver. The co-injection of TNF-α MO and mRNA rescued the liver development. Retinal neurogenesis in TNF-α morphants was initiated on time. The retina was fully laminated, while ganglion cells, cones, and rods were well differentiated at 72 hours post-fertilization (hpf). mbp was expressed in Schwann cells in the lateral line nerves and cranial nerves from 3 days post-fertilization (dpf) as well as in oligodendrocytes linearly along the hindbrain bundles and the spinal cord from 4 dpf, which closely resembled its endogenous profile. CONCLUSION TNF-α is not an essential regulator for retinal neurogenesis and optic myelination. PMID:27366683

  9. Comparison of Morphometric Aspects of Light and Electron Microscopy of the Hypoglossal Nerve between Young and Aged Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Mohsen Pourghasem

    2012-01-01

    Full Text Available Objective: Age-related changes occur in many different systems of the body. Many elderlypeople show dysphagia and dysphonia. This research was conducted to evaluatequantitatively the morphometrical changes of the hypoglossal nerve resulting from theaging process in young and aged rats.Materials and Methods: Through an experimental study ten male wistar rats (4 months: 5rats, 24 months: 5 rats were selected randomly from a colony of wistars in the UWC. Aftera fixation process and preparation of samples of the cervical portion of the hypoglossalnerve of these rats, light and electron microscopic imaging were performed. These imageswere evaluated according to the numbers and size of myelinated nerve fibers, nucleoli ofSchwann cells, myelin sheath thickness, axon diameter, and g ratio. All data were analyzedby Mann-Whitney, a non-parametric statistical test.Results: In light microscope, numbers of myelinated nerve fibers, the mean entire nerveperimeters, the mean entire nerve areas and the mean entire nerve diameters in youngand aged rats’ were not significantly different between the two groups.In electron microscope, numbers of myelinated axons, numbers of Schwann cell nucleoliand the mean g ratios of myelinated axon to Schwann cell in young and aged rats werenot significantly different. The myelinated fiber diameters, the myelin sheath thicknesses,myelinated axon diameters and the mean g ratio of axon diameter to myelinated fiberdiameter in young and aged fibers were significantly differentConclusion: The mean g ratio of myelinated nerve fibers of peripheral nerves stabilizes atthe level of 0.6 after maturation and persists without major change during adulthood. Thisratio of axon diameter to fiber diameter (0.6 is optimum for normal conduction velocity ofneural impulses. Our study indicated that the g ratio of myelinated nerve fiber of the hypoglossalnerve decreased prominently in aged rats and can be a cause of impairment innerve function in

  10. An unusual cause of trochlear nerve palsy and brainstem compression

    Directory of Open Access Journals (Sweden)

    Jasmit Singh

    2016-01-01

    Full Text Available Schwannoma originates from the Schwann cells at the Obersteiner-Redlich zone, which marks the junction of central and peripheral myelin of the cranial nerves. Most frequently affected are the vestibular, trigeminal, and facial nerves followed by the lower cranial nerves. Trochlear schwannoma in the absence of neurofibromatosis is a rare entity. The purpose of this report is to serve as a reminder to consider trochlear nerve schwannoma in the list of differential diagnosis of such tumors as the outcome is far better than the intraaxial tumor in that location.

  11. Fibres For Sensors

    Science.gov (United States)

    Payne, D. N.

    1984-11-01

    Sensors which rely on the external modulation of the properties of an optical fibre (intrinsic sensors) are receiving much attention since they can be made extremely sensitive, and can be used for distributed measurements. Distributed sensing provides some particularly exciting prospects for acoustic, magnetic and electric field monitoring. To date, however, the great majority of experimental and commercial fibre sensors employ telecommunications-grade fibres, largely as a result of their ready availability. Not only does this policy frequently lead to a design compromise, but in some cases makes the performance marginal or untenable as a result of excessive environmental sensitivity. Despite this, little attention has been given to the design of special sensor fibres with enhanced (or depressed) sensitivity to specific measurands. The position is somewhat better with respect to fibres designed to eliminate sensor polarisation problems (e.g. polar isation-maintaining fibres), but even here further work is required to provide the performance demanded.

  12. Relevance of anti-myelin antibodies in Multiple Sclerosis

    NARCIS (Netherlands)

    Breij, E.C.W.

    2005-01-01

    Antibodies directed against myelin antigens have been described in multiple sclerosis (MS). Although anti-myelin antibodies have been implicated in central nervous system (CNS) demyelination, it is unclear to what extent anti-myelin antibodies contribute to MS pathogenesis. In this dissertation,

  13. Polarity development in oligodendrocytes : Sorting and trafficking of myelin components

    NARCIS (Netherlands)

    Maier, Olaf; Hoekstra, Dick; Baron, Wia

    2008-01-01

    In vertebrates, myelination is required for the saltatory signal conductance along the axon. At the onset of myelination, the myelinating cells, i.e., oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system, are heavily engaged in the biogenesis of membranes

  14. Synergistic effects of ultrashort wave and bone marrow stromal cells on nerve regeneration with acellular nerve allografts.

    Science.gov (United States)

    Pang, Chao-Jian; Tong, Lei; Ji, Li-Li; Wang, Zhen-Yu; Zhang, Xu; Gao, Hai; Jia, Hua; Zhang, Li-Xin; Tong, Xiao-Jie

    2013-10-01

    Acellular nerve allografts (ANA) possess bioactivity and neurite promoting factors in nerve tissue engineering. Previously we reported that low dose ultrashort wave (USW) radiation could enhance the rate and quality of peripheral nerve regeneration with ANA repairing sciatic nerve defects. Meanwhile, ANA implanted with bone marrow stromal cells (BMSCs) exhibited a similar result. Thus, it is interesting to know whether it might yield a synergistic effect when USW radiation is combined with BMSCs-laden ANA. Here we investigated the effectiveness of ANA seeded with BMSCs, combined with USW therapy on repairing peripheral nerve injuries. Adult male Wistar rats were randomly divided into four groups: Dulbecco's modified Eagle's medium (DMEM) control group, BMSCs-laden group, ultrashort wave (USW) group and BMSC + USW group. The regenerated nerves were assayed morphologically and functionally, and growth-promoting factors in the regenerated tissues following USW administration or BMSCs integration were also detected. The results indicated that the combination therapy caused much better beneficial effects evidenced by increased myelinated nerve fiber number, myelin sheath thickness, axon diameter, sciatic function index, nerve conduction velocity, and restoration rate of tibialis anterior wet weight. Moreover, the mRNA levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) in the spinal cord and muscles were elevated significantly. In conclusion, we found a synergistic effect of USW radiation and BMSCs treatment on peripheral nerve regeneration, which may help establish novel strategies for repairing peripheral nerve defects. Copyright © 2013 Wiley Periodicals, Inc.

  15. Peripheral nerves injury of electrophysiology and pathology in MS

    Institute of Scientific and Technical Information of China (English)

    Li runjin; Qian zhimin; Chen ping

    2000-01-01

    OBJECTIVE We report the EMG and pathological features of sural nerve biopsy of 12 patients with MS. The pathological of thesel 1 patients demonstrated demyelination injury of peripheral nerves.METHODS Twelve cases abnomaly are screened with EMG from60 cases MS. Sural nerve biopsy were analyzed by HE AND loyez, and electron microscopy. RESULTS EMG showed slow of MCV in 9 patients and SCV in 7 patients. Myelinated fibers was the presence in 8 sural nerve biopsy patients and most striking demyelinating fibers, regeneration of myelinated fibers. CONCLUSION Ms is characterized by demyelinating disorder limited to the CNS.There are,howeve ,the results of this study sugee that combine with PNS demyelinating injury in MS may be more frequent than is generally assumed.

  16. Complement activation by isolated myelin: activation of the classical pathway in the absence of myelin-specific antibodies.

    OpenAIRE

    Vanguri, P; Koski, C L; Silverman, B.; Shin, M L

    1982-01-01

    Many pathological conditions of the central nervous system involve damage to and removal of myelin membrane. Very little is known about initiation of this membrane damage and the mechanisms of disposal of the damaged tissue. We are interested in the interaction between complement (the components of complement are designated C1, C2, C3, etc.) and myelin membranes and the possible role of complement in amplifying myelin damage and in the disposal of damaged myelin in vivo, because activation of...

  17. Mineral fibres and cancer.

    Science.gov (United States)

    McDonald, J C

    1984-04-01

    A synthesis is presented of the salient findings to date from laboratory and epidemiological research, on the health effects of asbestos and other natural and man-made mineral fibres. Experimental evidence suggests that all mineral fibres are capable of causing fibrosis and malignancy, with chrysotile at least as pathogenic as other fibres. However, penetration, retention and phagocytosis are affected by size and shape and reactivity and durability by physico-chemical properties. Thus it is not surprising that in man the results of exposure vary considerably with fibre type and industrial process. A considerable body of evidence suggests that chrysotile has seldom, if ever, caused peritoneal mesothelioma and that the great majority of pleural mesotheliomas are also attributable to crocidolite or amosite. Without more reliable information on intensity and duration of exposure by fibre type, the epidemiological evidence on this point cannot be wholly conclusive. There are stronger grounds from a limited number of cohort studies for believing that in relation to estimated exposure, the risk of lung cancer has been much higher in textile plants than in fibre production or in the manufacture of friction products, with asbestos-cement plants somewhere in between. The data on man-made fibre production remains equivocal. It is concluded that attempts to regulate asbestos without regard for fibre type, although perhaps adequate for lung cancer and fibrosis, may do little to reduce the risk of mesothelioma. The search for safe fibre substitutes for asbestos will remain difficult until the parameters of pathogenicity are better understood.

  18. Fibre illumination system

    DEFF Research Database (Denmark)

    2012-01-01

    Source: EP2426402A The invention relates to a fibre illumination module and system for the collection and delivery of daylight for illumination purposes. The fibre illumination module comprises a plurality of collector elements, each collector element comprising an input fibre having a first end...... the proximal end of the collection optics into the first end of the input fibre, each collector element having a principal axis for the collection of light defining an optical axis of the collector element. The optical axes of the collector elements are arranged in a radially outward pointing multi...

  19. Genetic factors for nerve susceptibility to injuries-lessons from PMP22 deifciency

    Institute of Scientific and Technical Information of China (English)

    Jun Li

    2014-01-01

    Genetic factors may be learnt from families with gene mutations that render nerve-injury sus-ceptibility even to ordinary physical activities. A typical example is hereditary neuropathy with liability to pressure palsies (HNPP). HNPP is caused by a heterozygous deletion of PMP22 gene. PMP22 deficiency disrupts myelin junctions (such as tight junction and adherens junctions), leading to abnormally increased myelin permeability that explains the nerve susceptibility to injury. This ifnding should motivate investigators to identify additional genetic factors contribut-ing to nerve vulnerability of injury.

  20. Rabbit facial nerve regeneration in NGF-containing silastic tubes.

    Science.gov (United States)

    Spector, J G; Lee, P; Derby, A; Frierdich, G E; Neises, G; Roufa, D G

    1993-05-01

    Previous reports suggest that exogenous nerve growth factor (NGF) enhanced nerve regeneration in rabbit facial nerves. Rabbit facial nerve regeneration in 10-mm Silastic tubes prefilled with NGF was compared to cytochrome C (Cyt. C), bridging an 8-mm nerve gap. Three weeks following implantation, NGF-treated regenerates exhibited a more mature fascicular organization and more extensive neovascularization than cytochrome-C-treated controls. Morphometric analysis at the midtube of 3- and 5-week regenerates revealed no significant difference in the mean number of myelinated or unmyelinated axons between NGF- and cytochrome-C-treated implants. However, when the number of myelinated fibers in 5-week regenerates were compared to their respective preoperative controls, NGF-treated regenerates had recovered a significantly greater percentage of myelinated axons than cytochrome-C--treated implants (46% vs. 18%, respectively). In addition, NGF-containing chambers reinnervated a higher percentage of myelinated axons in the distal transected neural stumps (49% vs. 34%). Behavioral and electrophysiologic studies demonstrated spontaneous and induced activities in the target muscles when approximately one third of the myelinated axons were recovered in the midchamber (1280 axons). Horseradish peroxidase (HRP) studies demonstrated retrograde axonal transport to the midchamber and proximal transected neural stump. PC12 bioassay demonstrated persistent NGF activity in the intrachamber fluids at 3 (5:1 dilution) and 5 (2:1 dilution) weeks of entubation. Electrophysiologic tests demonstrated a slow conduction velocity of a propagated electrical impulse (43.5 m/s-1 vs. 67 m/s-1) and shallow wide compound action potential. In wider defects (15-mm chambers) and longer entubation periods (7 weeks), no regeneration or NGF activity was seen. Therefore, exogenous NGF provides an early but limited neurotrophic effect on the regeneration of the rabbit buccal division of the facial nerve and a

  1. SALIENT FEATURES OF BAMBOO FIBRE

    Institute of Scientific and Technical Information of China (English)

    Subrata; Das

    2007-01-01

    Bamboo fibre is a regenerated cellulosic fibre produced from bamboo.Starchy pulp is produced from bamboo stems and leaves through a process of alkaline hydrolysis and multi- phase bleaching.Further chemical processes produce bamboo fibre.

  2. SALIENT FEATURES OF BAMBOO FIBRE

    Institute of Scientific and Technical Information of China (English)

    Subrata Das

    2007-01-01

    @@ Bamboo fibre is a regenerated cellulosic fibre produced from bamboo. Starchy pulp is produced from bamboo stems and leaves through a process of alkaline hydrolysis and multiphase bleaching. Further chemical processes produce bamboo fibre.

  3. SWI/SNF enzymes promote SOX10- mediated activation of myelin gene expression.

    Directory of Open Access Journals (Sweden)

    Himangi G Marathe

    Full Text Available SOX10 is a Sry-related high mobility (HMG-box transcriptional regulator that promotes differentiation of neural crest precursors into Schwann cells, oligodendrocytes, and melanocytes. Myelin, formed by Schwann cells in the peripheral nervous system, is essential for propagation of nerve impulses. SWI/SNF complexes are ATP dependent chromatin remodeling enzymes that are critical for cellular differentiation. It was recently demonstrated that the BRG1 subunit of SWI/SNF complexes activates SOX10 expression and also interacts with SOX10 to activate expression of OCT6 and KROX20, two transcriptional regulators of Schwann cell differentiation. To determine the requirement for SWI/SNF enzymes in the regulation of genes that encode components of myelin, which are downstream of these transcriptional regulators, we introduced SOX10 into fibroblasts that inducibly express dominant negative versions of the SWI/SNF ATPases, BRM or BRG1. Dominant negative BRM and BRG1 have mutations in the ATP binding site and inhibit gene activation events that require SWI/SNF function. Ectopic expression of SOX10 in cells derived from NIH 3T3 fibroblasts led to the activation of the endogenous Schwann cell specific gene, myelin protein zero (MPZ and the gene that encodes myelin basic protein (MBP. Thus, SOX10 reprogrammed these cells into myelin gene expressing cells. Ectopic expression of KROX20 was not sufficient for activation of these myelin genes. However, KROX20 together with SOX10 synergistically activated MPZ and MBP expression. Dominant negative BRM and BRG1 abrogated SOX10 mediated activation of MPZ and MBP and synergistic activation of these genes by SOX10 and KROX20. SOX10 was required to recruit BRG1 to the MPZ locus. Similarly, in immortalized Schwann cells, BRG1 recruitment to SOX10 binding sites at the MPZ locus was dependent on SOX10 and expression of dominant negative BRG1 inhibited expression of MPZ and MBP in these cells. Thus, SWI/SNF enzymes cooperate

  4. SWI/SNF enzymes promote SOX10- mediated activation of myelin gene expression.

    Science.gov (United States)

    Marathe, Himangi G; Mehta, Gaurav; Zhang, Xiaolu; Datar, Ila; Mehrotra, Aanchal; Yeung, Kam C; de la Serna, Ivana L

    2013-01-01

    SOX10 is a Sry-related high mobility (HMG)-box transcriptional regulator that promotes differentiation of neural crest precursors into Schwann cells, oligodendrocytes, and melanocytes. Myelin, formed by Schwann cells in the peripheral nervous system, is essential for propagation of nerve impulses. SWI/SNF complexes are ATP dependent chromatin remodeling enzymes that are critical for cellular differentiation. It was recently demonstrated that the BRG1 subunit of SWI/SNF complexes activates SOX10 expression and also interacts with SOX10 to activate expression of OCT6 and KROX20, two transcriptional regulators of Schwann cell differentiation. To determine the requirement for SWI/SNF enzymes in the regulation of genes that encode components of myelin, which are downstream of these transcriptional regulators, we introduced SOX10 into fibroblasts that inducibly express dominant negative versions of the SWI/SNF ATPases, BRM or BRG1. Dominant negative BRM and BRG1 have mutations in the ATP binding site and inhibit gene activation events that require SWI/SNF function. Ectopic expression of SOX10 in cells derived from NIH 3T3 fibroblasts led to the activation of the endogenous Schwann cell specific gene, myelin protein zero (MPZ) and the gene that encodes myelin basic protein (MBP). Thus, SOX10 reprogrammed these cells into myelin gene expressing cells. Ectopic expression of KROX20 was not sufficient for activation of these myelin genes. However, KROX20 together with SOX10 synergistically activated MPZ and MBP expression. Dominant negative BRM and BRG1 abrogated SOX10 mediated activation of MPZ and MBP and synergistic activation of these genes by SOX10 and KROX20. SOX10 was required to recruit BRG1 to the MPZ locus. Similarly, in immortalized Schwann cells, BRG1 recruitment to SOX10 binding sites at the MPZ locus was dependent on SOX10 and expression of dominant negative BRG1 inhibited expression of MPZ and MBP in these cells. Thus, SWI/SNF enzymes cooperate with SOX10 to

  5. The myelin mutants as models to study myelin repair in the leukodystrophies.

    Science.gov (United States)

    Duncan, Ian D; Kondo, Yoichi; Zhang, Su-Chun

    2011-10-01

    The leukodystrophies are rare and serious genetic disorders of the central nervous system that primarily affect children who frequently die early in life or have significantly delayed motor and mental milestones that result in long-term disability. Although with some of these disorders, early intervention with bone marrow or cord blood transplantation has been proven useful, it has not yet been determined that such therapies promote myelin repair of the central nervous system. Research on experimental therapies aimed at myelin repair is aided by the ability to test cell replacement strategies in genetic models in which the mutations and neuropathology match the human disorder. Thus, models exist of Pelizaeus-Merzbacher disease and the lysosomal storage disorder, Krabbe disease, which reflect the clinical and pathological course of the human disorders. Collectively, animals with mutations in myelin genes are called the myelin mutants, and they include rodent models such as the shiverer mouse that have been extensively used to study myelination by exogenous cell transplantation. These studies have encompassed many permutations of the age of the recipient, type of transplanted cell, site of engraftment, and so forth, and they offer hope that the scaling up of myelin produced by transplanted cells will have clinical significance in treating patients. Here we review these models and discuss their relative importance and use in such translational approaches. We discuss how grafts are identified and functional outcomes are measured. Finally, we briefly discuss the cells that have been successfully transplanted, which may be used in future clinical trials.

  6. MRI-based myelin water imaging: A technical review.

    Science.gov (United States)

    Alonso-Ortiz, Eva; Levesque, Ives R; Pike, G Bruce

    2015-01-01

    Multiexponential T2 relaxation time measurement in the central nervous system shows a component that originates from water trapped between the lipid bilayers of myelin. This myelin water component is of significant interest as it provides a myelin-specific MRI signal of value in assessing myelin changes in cerebral white matter in vivo. In this article, the various acquisition and analysis strategies proposed to date for myelin water imaging are reviewed and research conducted into their validity and clinical applicability is presented. Comparisons between the imaging methods are made with a discussion regarding potential difficulties and model limitations.

  7. Strategies for myelin regeneration:lessons learned from development

    Institute of Scientific and Technical Information of China (English)

    Abhay Bhatt; Lir-Wan Fan; Yi Pang

    2014-01-01

    Myelin regeneration is indispensably important for patients suffering from several central nervous system (CNS) disorders such as multiple sclerosis (MS) and spinal cord injury (SCI), because it is not only essential for restoring neurophysiology, but also protects denuded axons for secondary degeneration. Understanding the cellular and molecular mechanisms underlying re-myelination is critical for the development of remyelination-speciifc therapeutic approaches. As remyelination shares certain common mechanisms with developmental myelination, knowledge from study of developmental myelination contributes greatly to emerging myelin regeneration therapies, best evidenced as the recently developed human anti-Nogo receptor interacting pro-tein-1 (LINGO-1) monoclonal antibodies to treat MS patients in clinical trials.

  8. Spreading depression transiently disrupts myelin via interferon-gamma signaling.

    Science.gov (United States)

    Pusic, Aya D; Mitchell, Heidi M; Kunkler, Phillip E; Klauer, Neal; Kraig, Richard P

    2015-02-01

    Multiple sclerosis and migraine with aura are clinically correlated and both show imaging changes suggestive of myelin disruption. Furthermore, cortical myelin loss in the cuprizone animal model of multiple sclerosis enhances susceptibility to spreading depression, the likely underlying cause of migraine with aura. Since multiple sclerosis pathology involves inflammatory T cell lymphocyte production of interferon-gamma and a resulting increase in oxidative stress, we tested the hypothesis that spreading depression disrupts myelin through similar signaling pathways. Rat hippocampal slice cultures were initially used to explore myelin loss in spreading depression, since they contain T cells, and allow for controlled tissue microenvironment. These experiments were then translated to the in vivo condition in neocortex. Spreading depression in slice cultures induced significant loss of myelin integrity and myelin basic protein one day later, with gradual recovery by seven days. Myelin basic protein loss was abrogated by T cell depletion, neutralization of interferon-gamma, and pharmacological inhibition of neutral sphingomyelinase-2. Conversely, one day after exposure to interferon-gamma, significant reductions in spreading depression threshold, increases in oxidative stress, and reduced levels of glutathione, an endogenous neutral sphingomyelinase-2 inhibitor, emerged. Similarly, spreading depression triggered significant T cell accumulation, sphingomyelinase activation, increased oxidative stress, and reduction of gray and white matter myelin in vivo. Myelin disruption is involved in spreading depression, thereby providing pathophysiological links between multiple sclerosis and migraine with aura. Myelin disruption may promote spreading depression by enhancing aberrant excitability. Thus, preservation of myelin integrity may provide novel therapeutic targets for migraine with aura.

  9. Fibre reinforced polymer nanocomposites

    NARCIS (Netherlands)

    Vlasveld, D.P.N.

    2005-01-01

    In this thesis the results are described of the research on a combination of two types of composites: thermoplastic nanocomposites and continuous fibre composites. In this three-phase composite the main reinforcing phase are continuous glass or carbon fibres, and the matrix consists of a polyamide 6

  10. POLARISATION PRESERVING OPTICAL FIBRE

    DEFF Research Database (Denmark)

    2000-01-01

    . This cladding structure provides polarisation preserving properties to the optical fibre. Optical fibres using this technology may have claddings with elements placed non-periodically as well as in a two-dimensional periodic lattice - such as cladding providing Photonic Band Gap (PBG) effects....

  11. Chalcogenide Fibre Displacement Sensor

    Science.gov (United States)

    2001-06-01

    Fibre optic technology offers the possibility for developing of a variety of physical sensors for a wide range of physical parameters. The main...integrating sphere. The use of chalcogenide rather quartz fibre optic highly increases the Sensitivity of the sensor. Experimental set-up, transmission characteristics and technical parameters are presented.

  12. Congenital neuromuscular disease with type I fibre hypotrophy, ophthalmoplegia and myofibril degeneration.

    Science.gov (United States)

    Sugie, H; Hanson, R; Rasmussen, G; Verity, M A

    1982-06-01

    We report a 7-year-old boy with progressive, early onset somatic and cranial muscle weakness associated with external ophthalmoplegia, facial weakness, type I fibre hypotrophy and myofibril degeneration. We separate this condition from congenital fibre type disproportion because of the facial weakness, ophthalmoplegia, central nucleation, and lysis in type I fibres. The case, which is similar to that described by Bender and Bender (1977), nosologically should be classified between the centronuclear myopathies and congenital fibre type disproportion, and most likely represents a congenital or neonatal disturbance of trophic interaction between nerve and muscle.

  13. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...... readers with a general interest in photonic crystals, as well as for scientists who are entering the field and desire a broad overview as well as a solid starting point for further specialized stuides. Teh book, therefore, covers bothe general aspects such as the link from classical optics to photonic...

  14. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...... readers with a general interest in photonic crystals, as well as for scientists who are entering the field and desire a broad overview as well as a solid starting point for further specialized stuides. Teh book, therefore, covers bothe general aspects such as the link from classical optics to photonic...

  15. On defining dietary fibre.

    Science.gov (United States)

    DeVries, Jonathan W

    2003-02-01

    Establishing a definition for dietary fibre has historically been a balance between nutrition knowledge and analytical method capabilities. While the most widely accepted physiologically-based definitions have generally been accurate in defining the dietary fibre in foods, scientists and regulators have tended, in practice, to rely on analytical procedures as the definitional basis in fact. As a result, incongruities between theory and practice have resulted in confusion regarding the components that make up dietary fibre. In November 1998 the president of the American Association of Cereal Chemists (AACC) appointed an expert scientific review committee and charged it with the task of reviewing and, if necessary, updating the definition of dietary fibre. The committee was further charged with assessing the state of analytical methodology and making recommendations relevant to the updated definition. After due deliberation, an updated definition of dietary fibre was delivered to the AACC Board of Directors for consideration and adoption (Anon, 2000; Jones 2000b). The updated definition includes the same food components as the historical working definition used for approximately 30 years (a very important point, considering that the majority of the research of the past 30 years delineating the positive health effects of dietary fibre is based on that working definition). However, the updated definition more clearly delineates the make-up of dietary fibre and its physiological functionality. As a result, relatively few changes will be necessary in analytical methodology. Current methodologies, in particular AACC-approved method of analysis 32-05 (Grami, 2000), Association of Official Analytical Chemists' official method of analysis 985.29 (Horwitz, 2000a) or AACC 32-07 (Grami, 2000) Association of Official Analytical Chemists 991.43 (Horwitz, 2000a) will continue to be sufficient and used for most foods. A small number of additional methods will be necessary to

  16. Effect of mutated defensin NP-1 on sciatic nerve regeneration after transection--A pivot study.

    Science.gov (United States)

    Xu, Chungui; Bai, Lili; Chen, Yuhong; Fan, Chengming; Hu, Zanmin; Xu, Hailin; Jiang, Baoguo

    2016-03-23

    Defensins are small cationic peptides that constitute the first line of defense against pathogens and are involved in immune regulation. In this study, their role in peripheral nerve regeneration was investigated. Rat sciatic nerves were transected and the two nerve stumps were bridged by a chitin conduit with a gap of 5mm between the stumps. The animals were injected intramuscularly with mutated rabbit neutrophil peptide 1 (defensin mNP-1), the positive control nerve growth factor (NGF) or the negative control saline, for 7 consecutive days after repair. After 6 weeks, the sciatic functional index (SFI), MNCV (motor nerve conductive velocity) and morphological parameters including myelinated fiber amounts, fiber diameter, axon diameter, myelin thickness and G-ratio were measured. Compared to the SFI of saline group, the NGF and mNP-1 groups had an increase of 18.3% and 18.8%, respectively. The numbers of myelinated fibers in the distal nerve of NGF and mNP-1 groups were 1.45- and 1.32-fold higher than in the saline group. The MNCVs of NGF and mNP-1 groups were 7.3 and 4.4 times of that of saline group. Fiber diameter, axon diameter, myelin thickness and G-ratio in the NGF and mNP-1 groups were also significantly higher than those of saline group. Our results demonstrate that, like NGF, the defensin mNP-1 can promote regeneration after a peripheral nerve cut.

  17. The neuroma-like structure of the long-time severed and isolated nerve stumps

    Directory of Open Access Journals (Sweden)

    Eros Abrantes Erhart

    1965-06-01

    Full Text Available The long-time severed and isolated intermediate and distal nerve segments, maintained undisturbed in their connective tissue bed, completely separated from each other and from the proximal stump, are repopulated by nerve-fibres which origin is still unknown. The extremities of such nerve segments present complex nervous nodules capped by fibrous tissue, neuroma-like structures.

  18. Tractography of lumbar nerve roots: initial results

    Energy Technology Data Exchange (ETDEWEB)

    Balbi, Vincent; Budzik, Jean-Francois; Thuc, Vianney le; Cotten, Anne [Hopital Roger Salengro, Service de Radiologie et d' Imagerie musculo-squelettique, Lille Cedex (France); Duhamel, Alain [Universite de Lille 2, UDSL, Lille (France); Bera-Louville, Anne [Service de Rhumatologie, Hopital Roger Salengro, Lille (France)

    2011-06-15

    The aims of this preliminary study were to demonstrate the feasibility of in vivo diffusion tensor imaging (DTI) and fibre tracking (FT) of the lumbar nerve roots, and to assess potential differences in the DTI parameters of the lumbar nerves between healthy volunteers and patients suffering from disc herniation. Nineteen patients with unilateral sciatica related to posterolateral or foraminal disc herniation and 19 healthy volunteers were enrolled in this study. DTI with tractography of the L5 or S1 nerves was performed. Mean fractional anisotropy (FA) and mean diffusivity (MD) values were calculated from tractography images. FA and MD values could be obtained from DTI-FT images in all controls and patients. The mean FA value of the compressed lumbar nerve roots was significantly lower than the FA of the contralateral nerve roots (p=0.0001) and of the nerve roots of volunteers (p=0.0001). MD was significantly higher in compressed nerve roots than in the contralateral nerve root (p=0.0002) and in the nerve roots of volunteers (p=0.04). DTI with tractography of the lumbar nerves is possible. Significant changes in diffusion parameters were found in the compressed lumbar nerves. (orig.)

  19. SOX10 transactivates S100B to suppress Schwann cell proliferation and to promote myelination.

    Directory of Open Access Journals (Sweden)

    Sayaka Fujiwara

    Full Text Available Schwann cells are an important cell source for regenerative therapy for neural disorders. We investigated the role of the transcription factor sex determining region Y (SRY-box 10 (SOX10 in the proliferation and myelination of Schwann cells. SOX10 is predominantly expressed in rat sciatic nerve-derived Schwann cells and is induced shortly after birth. Among transcription factors known to be important for the differentiation of Schwann cells, SOX10 potently transactivates the S100B promoter. In cultures of Schwann cells, overexpressing SOX10 dramatically induces S100B expression, while knocking down SOX10 with shRNA suppresses S100B expression. Here, we identify three core response elements of SOX10 in the S100B promoter and intron 1 with a putative SOX motif. Knockdown of either SOX10 or S100B enhances the proliferation of Schwann cells. In addition, using dissociated cultures of dorsal root ganglia, we demonstrate that suppressing S100B with shRNA impairs myelination of Schwann cells. These results suggest that the SOX10-S100B signaling axis critically regulates Schwann cell proliferation and myelination, and therefore is a putative therapeutic target for neuronal disorders.

  20. Resetting translational homeostasis restores myelination in Charcot-Marie-Tooth disease type 1B mice.

    Science.gov (United States)

    D'Antonio, Maurizio; Musner, Nicolò; Scapin, Cristina; Ungaro, Daniela; Del Carro, Ubaldo; Ron, David; Feltri, M Laura; Wrabetz, Lawrence

    2013-04-01

    P0 glycoprotein is an abundant product of terminal differentiation in myelinating Schwann cells. The mutant P0S63del causes Charcot-Marie-Tooth 1B neuropathy in humans, and a very similar demyelinating neuropathy in transgenic mice. P0S63del is retained in the endoplasmic reticulum of Schwann cells, where it promotes unfolded protein stress and elicits an unfolded protein response (UPR) associated with translational attenuation. Ablation of Chop, a UPR mediator, from S63del mice completely rescues their motor deficit and reduces active demyelination by half. Here, we show that Gadd34 is a detrimental effector of CHOP that reactivates translation too aggressively in myelinating Schwann cells. Genetic or pharmacological limitation of Gadd34 function moderates translational reactivation, improves myelination in S63del nerves, and reduces accumulation of P0S63del in the ER. Resetting translational homeostasis may provide a therapeutic strategy in tissues impaired by misfolded proteins that are synthesized during terminal differentiation.

  1. The responses of frog muscle spindles and fast and slow muscle fibres to a variety of mechanical inputs.

    Science.gov (United States)

    Brown, M C

    1971-10-01

    1. The tension in the iliofibularis muscle of frogs was recorded while the muscle was stretched or released. At the same time recordings were made from single spindle afferents in dorsal root filaments. Either large or small motor nerve fibres were stimulated in split ventral root filaments.2. While small motor nerve fibres were stimulated the discharge from muscle spindle afferents was greatly increased by stretching, and greatly reduced by shortening the muscle. This sensitivity to movement was shown even if the movements were small, so that a stretch of 0.2% of the muscle length was sufficient to cause a pronounced increase in the afferent discharge.3. In contrast, during stimulation of the large motor nerve fibres the spindle was much less sensitive to movements with the result that even stretches or releases of the muscle by 1 mm did not cause very large changes in the discharge frequency.4. The tension in slow extrafusal muscle fibres in many ways mirrored the spindle discharge during the stimulation of small motor nerve fibres, for the tension was greatly increased by stretching, even through small distances, and greatly reduced by releasing the muscle. The tension in fast extrafusal muscle fibres was much less changed by such movements, and thus was rather like the spindle discharge during stimulation of large motor nerve fibres.5. As the extrafusal muscle fibres do not directly pull on and excite the spindle afferents, the simplest explanation for the similarities between the muscle tension and the spindle discharge is that the mechanical properties of the intrafusal muscle fibres innervated by the large motor nerve fibres are like those of fast extrafusal muscle fibres, and that the mechanical properties of the small intrafusal fibres are similar to those of slow extrafusal muscle fibres.6. It is shown that the cross-bridge sliding filament mechanism of muscle contraction provides a ready explanation for the differences found between fast and slow muscles

  2. Signaling mechanisms regulating myelination in the central nervous system

    Institute of Scientific and Technical Information of China (English)

    Jared T.Ahrendsen; Wendy Macklin

    2013-01-01

    The precise and coordinated production of myelin is essential for proper development and function of the nervous system.Diseases that disrupt myelin,including multiple sclerosis,cause significant functional disability.Current treatment aims to reduce the inflammatory component of the disease,thereby preventing damage resulting from demyelination.However,therapies are not yet available to improve natural repair processes after damage has already occurred.A thorough understanding of the signaling mechanisms that regulate myelin generation will improve our ability to enhance repair.In this review,we summarize the positive and negative regulators of myelination,focusing primarily on central nervous system myelination.Axon-derived signals,extracellular signals from both diffusible factors and the extracellular matrix,and intracellular signaling pathways within myelinating oligodendrocytes are discussed.Much is known about the positive regulators that drive myelination,while less is known about the negative regulators that shift active myelination to myelin maintenance at the appropriate time.Therefore,we also provide new data on potential negative regulators of CNS myelination.

  3. Myelin proteomics: molecular anatomy of an insulating sheath.

    Science.gov (United States)

    Jahn, Olaf; Tenzer, Stefan; Werner, Hauke B

    2009-08-01

    Fast-transmitting vertebrate axons are electrically insulated with multiple layers of nonconductive plasma membrane of glial cell origin, termed myelin. The myelin membrane is dominated by lipids, and its protein composition has historically been viewed to be of very low complexity. In this review, we discuss an updated reference compendium of 342 proteins associated with central nervous system myelin that represents a valuable resource for analyzing myelin biogenesis and white matter homeostasis. Cataloging the myelin proteome has been made possible by technical advances in the separation and mass spectrometric detection of proteins, also referred to as proteomics. This led to the identification of a large number of novel myelin-associated proteins, many of which represent low abundant components involved in catalytic activities, the cytoskeleton, vesicular trafficking, or cell adhesion. By mass spectrometry-based quantification, proteolipid protein and myelin basic protein constitute 17% and 8% of total myelin protein, respectively, suggesting that their abundance was previously overestimated. As the biochemical profile of myelin-associated proteins is highly reproducible, differential proteome analyses can be applied to material isolated from patients or animal models of myelin-related diseases such as multiple sclerosis and leukodystrophies.

  4. Axon-glia interaction and membrane traffic in myelin formation.

    Science.gov (United States)

    White, Robin; Krämer-Albers, Eva-Maria

    2014-01-06

    In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialized glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarization followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasizing the central role of the Src-family kinase Fyn during central nervous system (CNS) myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of proteolipid protein (PLP) transport by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.

  5. Axon-glia interaction and membrane traffic in myelin formation

    Directory of Open Access Journals (Sweden)

    Robin eWhite

    2014-01-01

    Full Text Available In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialised glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarisation followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasising the central role of the Src-family kinase Fyn during CNS myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of PLP (proteolipid protein transport by SNARE proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.

  6. Moiré Fibre Bragg Grating Written on Strained Fibres

    Institute of Scientific and Technical Information of China (English)

    孙磊; 冯新焕; 刘艳格; 张伟刚; 袁树忠; 开桂云; 董孝义

    2004-01-01

    Moiré fibre Bragg gratings are made in a single mode fibre and a polarization-maintaining fibre respectively, using an excimer KrF laser and a phase mask. Two gratings are written at the same location of the optical fibre. The wavelength spacing can be finely tuned from 0 to 1.86nm by straining the optical fibre during UV illumination.

  7. Degeneration and regeneration of motor and sensory nerves: a stereological study of crush lesions in rat facial and mental nerves.

    Science.gov (United States)

    Barghash, Z; Larsen, J O; Al-Bishri, A; Kahnberg, K-E

    2013-12-01

    The aim of this study was to evaluate the degeneration and regeneration of a sensory nerve and a motor nerve at the histological level after a crush injury. Twenty-five female Wistar rats had their mental nerve and the buccal branch of their facial nerve compressed unilaterally against a glass rod for 30s. Specimens of the compressed nerves and the corresponding control nerves were dissected at 3, 7, and 19 days after surgery. Nerve cross-sections were stained with osmium tetroxide and toluidine blue and analysed using two-dimensional stereology. We found differences between the two nerves both in the normal anatomy and in the regenerative pattern. The mental nerve had a larger cross-sectional area including all tissue components. The mental nerve had a larger volume fraction of myelinated axons and a correspondingly smaller volume fraction of endoneurium. No differences were observed in the degenerative pattern; however, at day 19 the buccal branch had regenerated to the normal number of axons, whereas the mental nerve had only regained 50% of the normal number of axons. We conclude that the regenerative process is faster and/or more complete in the facial nerve (motor function) than it is in the mental nerve (somatosensory function).

  8. Nerve Regenerative Effects of GABA-B Ligands in a Model of Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Valerio Magnaghi

    2014-01-01

    Full Text Available Neuropathic pain arises as a direct consequence of a lesion or disease affecting the peripheral somatosensory system. It may be associated with allodynia and increased pain sensitivity. Few studies correlated neuropathic pain with nerve morphology and myelin proteins expression. Our aim was to test if neuropathic pain is related to nerve degeneration, speculating whether the modulation of peripheral GABA-B receptors may promote nerve regeneration and decrease neuropathic pain. We used the partial sciatic ligation- (PSL- induced neuropathic model. The biochemical, morphological, and behavioural outcomes of sciatic nerve were analysed following GABA-B ligands treatments. Simultaneous 7-days coadministration of baclofen (10 mg/kg and CGP56433 (3 mg/kg alters tactile hypersensitivity. Concomitantly, specific changes of peripheral nerve morphology, nerve structure, and myelin proteins (P0 and PMP22 expression were observed. Nerve macrophage recruitment decreased and step coordination was improved. The PSL-induced changes in nociception correlate with altered nerve morphology and myelin protein expression. Peripheral synergic effects, via GABA-B receptor activation, promote nerve regeneration and likely ameliorate neuropathic pain.

  9. Myelin sheaths and autoimmune response induced by myelin proteins and alphaviruses. I. Physicochemical background.

    Science.gov (United States)

    Sedzik, Jan

    2008-01-01

    Myelin proteins of the central and peripheral nervous system range from very hydrophilic to extremely hydrophobic proteins. Their biological function and involvement in various clinically defined neurological diseases are well documented. In this review the myelin proteins will be compared with proteins of alphaviruses with emphasis on Semliki Forest Virus (strain pSP6-SFV4), to elucidate better the multiple function and the potential role in several neurological diseases. The main purpose of this review is to assist neuroscientists, neurochemists, neurologists, and other interested scientists in developing a better understanding on the information relating to myelin proteins referred in autoimmune diseases. Therefore, this review is focused on simple physiochemical background of proteins and structural aspect, which may be involved in autoimmunity. It is very unusual that few different a.a. sequences (epitops) induce indeed the same autoimmune reaction.

  10. Myelin-associated glycoprotein and its axonal receptors.

    Science.gov (United States)

    Schnaar, Ronald L; Lopez, Pablo H H

    2009-11-15

    Myelin-associated glycoprotein (MAG) is expressed on the innermost myelin membrane wrap, directly apposed to the axon surface. Although it is not required for myelination, MAG enhances long-term axon-myelin stability, helps to structure nodes of Ranvier, and regulates the axon cytoskeleton. In addition to its role in axon-myelin stabilization, MAG inhibits axon regeneration after injury; MAG and a discrete set of other molecules on residual myelin membranes at injury sites actively signal axons to halt elongation. Both the stabilizing and the axon outgrowth inhibitory effects of MAG are mediated by complementary MAG receptors on the axon surface. Two MAG receptor families have been described, sialoglycans (specifically gangliosides GD1a and GT1b) and Nogo receptors (NgRs). Controversies remain about which receptor(s) mediates which of MAG's biological effects. Here we review the findings and challenges in associating MAG's biological effects with specific receptors.

  11. Receptors for myelin inhibitors: Structures and therapeutic opportunities.

    Science.gov (United States)

    Cao, Zixuan; Gao, Ying; Deng, Kangwen; Williams, Gareth; Doherty, Patrick; Walsh, Frank S

    2010-01-01

    Many studies have indicated that the inability of adult mammalian central nervous system (CNS) to regenerate after injury is partly due to the existence of growth-inhibitory molecules associated with CNS myelin. Studies over the years have led to the identification of multiple myelin-associated inhibitors, among which Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte-myelin glycoprotein (Omgp) represent potentially major contributors to CNS axon regeneration failure. Here we review in vitro and in vivo investigations into these inhibitory ligands and their functional mechanisms, focusing particularly on the neuronal receptors that mediate the inhibitory signals from these myelin molecules. A better understanding of the receptors for myelin-associated inhibitors could provide opportunities to decipher the mechanism of restriction in CNS regeneration, and lead to the development of potential therapeutic targets in neurodegenerative diseases and neurological injury. We will discuss the structures of the receptors and therapeutic opportunities that might arise based on this information.

  12. Social Experience-Dependent Myelination: An Implication for Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Michihiro Toritsuka

    2015-01-01

    Full Text Available Myelination is one of the strategies to promote the conduction velocity of axons in order to adjust to evolving environment in vertebrates. It has been shown that myelin formation depends on genetic programing and experience, including multiple factors, intracellular and extracellular molecules, and neuronal activities. Recently, accumulating studies have shown that myelination in the central nervous system changes more dynamically in response to neuronal activities and experience than expected. Among experiences, social experience-dependent myelination draws attention as one of the critical pathobiologies of psychiatric disorders. In this review, we summarize the mechanisms of neuronal activity-dependent and social experience-dependent myelination and discuss the contribution of social experience-dependent myelination to the pathology of psychiatric disorders.

  13. CNS myelin wrapping is driven by actin disassembly.

    Science.gov (United States)

    Zuchero, J Bradley; Fu, Meng-Meng; Sloan, Steven A; Ibrahim, Adiljan; Olson, Andrew; Zaremba, Anita; Dugas, Jason C; Wienbar, Sophia; Caprariello, Andrew V; Kantor, Christopher; Leonoudakis, Dmitri; Leonoudakus, Dmitri; Lariosa-Willingham, Karen; Kronenberg, Golo; Gertz, Karen; Soderling, Scott H; Miller, Robert H; Barres, Ben A

    2015-07-27

    Myelin is essential in vertebrates for the rapid propagation of action potentials, but the molecular mechanisms driving its formation remain largely unknown. Here we show that the initial stage of process extension and axon ensheathment by oligodendrocytes requires dynamic actin filament assembly by the Arp2/3 complex. Unexpectedly, subsequent myelin wrapping coincides with the upregulation of actin disassembly proteins and rapid disassembly of the oligodendrocyte actin cytoskeleton and does not require Arp2/3. Inducing loss of actin filaments drives oligodendrocyte membrane spreading and myelin wrapping in vivo, and the actin disassembly factor gelsolin is required for normal wrapping. We show that myelin basic protein, a protein essential for CNS myelin wrapping whose role has been unclear, is required for actin disassembly, and its loss phenocopies loss of actin disassembly proteins. Together, these findings provide insight into the molecular mechanism of myelin wrapping and identify it as an actin-independent form of mammalian cell motility.

  14. Histochemical discrimination of fibers in regenerating rat infraorbital nerve

    Science.gov (United States)

    Wilke, R. A.; Riley, D. A.; Sanger, J. R.

    1992-01-01

    In rat dorsal root ganglia, histochemical staining of carbonic anhydrase (CA) and cholinesterase (CE) yields a reciprocal pattern of activity: Sensory processes are CA positive and CE negative, whereas motor processes are CA negative and CE positive. In rat infraorbital nerve (a sensory peripheral nerve), we saw extensive CA staining of nearly 100% of the myelinated axons. Although CE reactivity in myelinated axons was extremely rare, we did observe CE staining of unmyelinated autonomic fibers. Four weeks after transection of infraorbital nerves, CA-stained longitudinal sections of the proximal stump demonstrated 3 distinct morphological zones. A fraction of the viable axons retained CA activity to within 2 mm of the distal extent of the stump, and the stain is capable of resolving growth sprouts being regenerated from these fibers. Staining of unmyelinated autonomic fibers in serial sections shows that CE activity was not retained as far distally as is the CA sensory staining.

  15. Fibre illumination system

    DEFF Research Database (Denmark)

    2012-01-01

    the proximal end of the collection optics into the first end of the input fibre, each collector element having a principal axis for the collection of light defining an optical axis of the collector element. The optical axes of the collector elements are arranged in a radially outward pointing multi......Source: EP2426402A The invention relates to a fibre illumination module and system for the collection and delivery of daylight for illumination purposes. The fibre illumination module comprises a plurality of collector elements, each collector element comprising an input fibre having a first end...... and a second end, and a collection optics, the collection optics being configured to receive light incident on a distal end of the collection optics, to transfer at least partially the incident light to a proximal end of the collection optics, and to couple at least partially the transferred light from...

  16. Increased axonal regeneration through a biodegradable amnionic tube nerve conduit: effect of local delivery and incorporation of nerve growth factor/hyaluronic acid media.

    Science.gov (United States)

    Mohammad, J A; Warnke, P H; Pan, Y C; Shenaq, S

    2000-01-01

    The authors emphasize the possible pharmacological enhancement of axonal regeneration using a specific growth factor/ extracellular media incorporated in a biodegradable nonneural nerve conduit material. They investigated the early effects on nerve regeneration of continuous local delivery of nerve growth factor (NGF) and the local incorporation of hyaluronic acid (HA) inside a newly manufactured nerve conduit material from fresh human amnionic membrane. Human amnionic membrane contains important biochemical factors that play a major neurotrophic role in the nerve regeneration process. The process of manufacturing a nerve conduit from fresh human amnionic membrane is described. This nerve conduit system was used in rabbits to bridge a 25-mm nerve gap over 3 months. NGF was released locally, over 28 days, at the distal end of the tube via a system of slow release, and HA was incorporated inside the lumen of the tube at the time of surgery. NGF/HA treatment promoted axonal regeneration across the amnionic tube nerve conduit (8,962 +/- 383 myelinated axons) 45% better than the nontreated amnionic tube group (6,180 +/- 353 myelinated axons). The authors demonstrate that NGF/HA media enhances additional axonal regeneration in the amnionic tube nerve conduit. This result is secondary to the effect of the amnion promoting biochemical factors, in combination with the NGF/HA effect on facilitating early events in the nerve regeneration process.

  17. Stimulation of adult oligodendrogenesis by myelin-specific T cells

    DEFF Research Database (Denmark)

    Hvilsted Nielsen, Helle; Toft-Hansen, Henrik; Lambertsen, Kate Lykke

    2011-01-01

    investigated the effect of myelin-specific T cells on oligodendrocyte formation at sites of axonal damage in the mouse hippocampal dentate gyrus. Infiltrating T cells specific for myelin proteolipid protein stimulated proliferation of chondroitin sulfate NG2-expressing oligodendrocyte precursor cells early...... of calretinergic associational/commissural fibers within the dentate gyrus. These results have implications for the perception of MS pathogenesis because they show that infiltrating myelin-specific T cells can stimulate oligodendrogenesis in the adult central nervous system....

  18. Relevance of anti-myelin antibodies in Multiple Sclerosis

    OpenAIRE

    2005-01-01

    Antibodies directed against myelin antigens have been described in multiple sclerosis (MS). Although anti-myelin antibodies have been implicated in central nervous system (CNS) demyelination, it is unclear to what extent anti-myelin antibodies contribute to MS pathogenesis. In this dissertation, the role of antibodies in MS and in the animal model experimental allergic encephalomyelitis (EAE) is addressed in eight chapters: Chapter 1: A review on antibodies, complement and Fc receptors in MS ...

  19. A unified cell biological perspective on axon-myelin injury

    OpenAIRE

    Simons, Mikael; Misgeld, Thomas; Kerschensteiner, Martin

    2014-01-01

    Demyelination and axon loss are pathological hallmarks of the neuroinflammatory disorder multiple sclerosis (MS). Although we have an increasingly detailed understanding of how immune cells can damage axons and myelin individually, we lack a unified view of how the axon–myelin unit as a whole is affected by immune-mediated attack. In this review, we propose that as a result of the tight cell biological interconnection of axons and myelin, damage to either can spread, which might convert a loc...

  20. Spinal cord response to laser treatment of injured peripheral nerve

    Energy Technology Data Exchange (ETDEWEB)

    Rochkind, S.; Vogler, I.; Barr-Nea, L. (Ichilov Hospital, Tel-Aviv Medical Center (Israel))

    1990-01-01

    The authors describe the changes occurring in the spinal cord of rats subjected to crush injury of the sciatic nerve followed by low-power laser irradiation of the injured nerve. Such laser treatment of the crushed peripheral nerve has been found to mitigate the degenerative changes in the corresponding neurons of the spinal cord and induce proliferation of neuroglia both in astrocytes and oligodendrocytes. This suggests a higher metabolism in neurons and a better ability for myelin production under the influence of laser treatment.

  1. The aqueous layers within the myelin sheath modulate the membrane properties of simulated hereditary demyelinating neuropathies.

    Science.gov (United States)

    Stephanova, D I; Krustev, S M; Daskalova, M

    2011-03-01

    To expand our studies on the mechanisms underlying the clinical decline of the nerve excitability properties in patients with hereditary demyelinating neuropathies, the contribution of myelin sheath aqueous layers on multiple membrane properties of simulated fiber demyelinations is investigated. Three progressively greater degrees of internodal systematic demyelinations (two mild and one severe termed as ISD1, ISD2 and ISD3, respectively) without/with aqueous layers are simulated using our previous multi-layered model of human motor nerve fiber. The calculated multiple membrane excitability properties are as follows: potentials (intracellular action, electrotonic), strength-duration time constants, rheobasic currents and recovery cycles. They reflect the propagating, accommodative and adaptive processes in the fibers. The results show that all membrane properties, except for the strength-duration time constants and refractoriness, worsen when the myelin lamellae and their corresponding aqueous layers are uniformly reduced along the fiber length. The effect of the aqueous layers is significantly higher on the accommodative and adaptive processes than on the propagating processes in the fibers. Our multi-layered model better approximated some of the functional deficits documented for axons of patients with Charcot-Marie-Tooth disease type 1A. The study provides new and important information on the mechanisms underlying the pathophysiology of hereditary demyelinating neuropathies.

  2. Perturbation of myelin basic protein (Mbp) splice variant expression in developing rat cerebellum following perinatal exposure to methylmercury.

    Science.gov (United States)

    Padhi, Bhaja K; Pelletier, Guillaume

    2012-09-18

    Myelin sheaths surrounding axons are essential for saltatory conduction of nerve impulse in the central nervous system. A major protein constituent of myelin sheaths is produced by the myelin basic protein (Mbp) gene, whose expression in oligodendrocytes is conserved across vertebrates. In rat, five Mbp splice variants resulting from alternative splicing of exons 2, 5 and/or 6 are characterized. We developed a PCR-based strategy to quantify individual Mbp splice variants and characterized a sixth Mbp splice variant lacking only exon 5. This newly identified splice variant is predominantly expressed in developing rat brain and has orthologs in mouse and human. Many neurotoxic chemicals can perturb myelination and Mbp gene expression. Regulation of Mbp gene expression at the post-transcriptional level was assessed following perinatal exposure to neurotoxic methylmercury (2 mg/kg b.w./day). Similar reductions in total and individual Mbp splice variant mRNA levels suggest that methylmercury-induced perturbation in Mbp gene expression occurred as a consequence of decreased oligodendrocyte cell population in absence of a significant impact on its post-transcriptional regulation.

  3. Structural properties of proteins specific to the myelin sheath.

    Science.gov (United States)

    Kursula, P

    2008-02-01

    The myelin sheath is an insulating membrane layer surrounding myelinated axons in vertebrates, which is formed when the plasma membrane of an oligodendrocyte or a Schwann cell wraps itself around the axon. A large fraction of the total protein in this membrane layer is comprised of only a small number of individual proteins, which have certain intriguing structural properties. The myelin proteins are implicated in a number of neurological diseases, including, for example, autoimmune diseases and peripheral neuropathies. In this review, the structural properties of a number of myelin-specific proteins are described.

  4. Structural Configuration of Myelin Figures Using Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Lobat Tayebi

    2012-01-01

    Full Text Available Using epifluorescence microscopy, the configuration of myelin figures that are formed upon hydration of lipid stack was studied qualitatively. Little knowledge is currently available for conditions that determine the diameter of myelin figures and their degree of multilamellarity. Examining more than 300 samples, we realized that there are distinct populations of myelin figures protruding from discrete regions of lipid stack. Each population contains myelin figures with similar diameters. This indicates a direct relationship between local characteristics of parent lipid stack and the diameter of myelin figures. Evidenced by fluorescent images, we classified all the observed myelin figures into three major groups of (1 solid tubes, (2 thin tethers, and (3 hollow tubes. Solid tubes are the most common structure of myelin figures which appeared as dense shiny cylinders. Thin tethers, with long hair-shaped structure, were observed protruding from part of lipid plaque which is likely to be under tension. Hollow tubes were protruded from the parts that are unpinned from the substrate and possibly under low or no tension. The abrupt change in the configuration of myelin figures from solid tubes to hollow ones was described in a reproducible experiment where the pinned region of the parent stack became unpinned. Our observations can indicate a relation between the membrane tension of the source material and the diameter of the myelin figures.

  5. Chemoattractive capacity of different lengths of nerve fragments bridging regeneration chambers for the repair of sciatic nerve defects

    Institute of Scientific and Technical Information of China (English)

    Jiren Zhang; Yubo Wang; Jincheng Zhang

    2012-01-01

    A preliminary study by our research group showed that 6-mm-long regeneration chamber bridging is equivalent to autologous nerve transplantation for the repair of 12-mm nerve defects.In this study,we compared the efficacy of different lengths (6,8,10 mm) of nerve fragments bridging 6-mm regeneration chambers for the repair of 12-mm-long nerve defects.At 16 weeks after the regeneration chamber was implanted,the number,diameter and myelin sheath thickness of the regenerated nerve fibers,as well as the conduction velocity of the sciatic nerve and gastrocnemius muscle wet weight ratio,were similar to that observed with autologous nerve transplantation.Our results demonstrate that 6-,8-and 10-mm-long nerve fragments bridging 6-mm regeneration chambers effectively repair 12-mm-long nerve defects.Because the chemoattractive capacity is not affected by the length of the nerve fragment,we suggest adopting 6-mm-long nerve fragments for the repair of peripheral nerve defects.

  6. Polydendrocytes in development and myelin repair

    Institute of Scientific and Technical Information of China (English)

    Hao Zuo; Akiko Nishiyama

    2013-01-01

    Polydendrocytes (NG2 cells) are a distinct type of glia that populate the developing and adult central nervous systems (CNS).In the adult CNS,they retain mitotic activity and represent the largest proliferating cell population.Genetic and epigenetic mechanisms regulate the fate of polydendrocytes,which give rise to both oligodendrocytes and astrocytes.In addition,polydendrocytes actively differentiate into myelin-forming oligodendrocytes in response to demyelination.This review summarizes the current knowledge regarding polydendrocyte development,which provides an important basis for understanding the mechanisms that lead to the remyelination of demyelinated lesions.

  7. GLP-1 signals via ERK in peripheral nerve and prevents nerve dysfunction in diabetic mice

    DEFF Research Database (Denmark)

    Jolivalt, CG; Fineman, M; Deacon, Carolyn F.

    2011-01-01

    not affect blood sugar, insulin levels or paw thermal response latencies in either control or diabetic mice. However, the reductions of motor nerve conduction velocity and paw intraepidermal fibre density seen in diabetic mice were attenuated by exenatide treatment. Conclusions: These data show...

  8. Myelin-specific proteins: a structurally diverse group of membrane-interacting molecules.

    Science.gov (United States)

    Han, Huijong; Myllykoski, Matti; Ruskamo, Salla; Wang, Chaozhan; Kursula, Petri

    2013-01-01

    The myelin sheath is a multilayered membrane in the nervous system, which has unique biochemical properties. Myelin carries a set of specific high-abundance proteins, the structure and function of which are still poorly understood. The proteins of the myelin sheath are involved in a number of neurological diseases, including autoimmune diseases and inherited neuropathies. In this review, we briefly discuss the structural properties and functions of selected myelin-specific proteins (P0, myelin oligodendrocyte glycoprotein, myelin-associated glycoprotein, myelin basic protein, myelin-associated oligodendrocytic basic protein, P2, proteolipid protein, peripheral myelin protein of 22 kDa, 2',3'-cyclic nucleotide 3'-phosphodiesterase, and periaxin); such properties include, for example, interactions with lipid bilayers and the presence of large intrinsically disordered regions in some myelin proteins. A detailed understanding of myelin protein structure and function at the molecular level will be required to fully grasp their physiological roles in the myelin sheath.

  9. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect.

    Science.gov (United States)

    Luo, Lihua; Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan; Wang, Xiong; Huselstein, Celine; Chen, Yun

    2015-02-20

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide

  10. Effect of Surface Pore Structure of Nerve Guide Conduit on Peripheral Nerve Regeneration

    Science.gov (United States)

    Oh, Se Heang; Kim, Jin Rae; Kwon, Gu Birm; Namgung, Uk; Song, Kyu Sang

    2013-01-01

    Polycaprolactone (PCL)/Pluronic F127 nerve guide conduits (NGCs) with different surface pore structures (nano-porous inner surface vs. micro-porous inner surface) but similar physical and chemical properties were fabricated by rolling the opposite side of asymmetrically porous PCL/F127 membranes. The effect of the pore structure on peripheral nerve regeneration through the NGCs was investigated using a sciatic nerve defect model of rats. The nerve fibers and tissues were shown to have regenerated along the longitudinal direction through the NGC with a nano-porous inner surface (Nanopore NGC), while they grew toward the porous wall of the NGC with a micro-porous inner surface (Micropore NGC) and, thus, their growth was restricted when compared with the Nanopore NGC, as investigated by immunohistochemical evaluations (by fluorescence microscopy with anti-neurofilament staining and Hoechst staining for growth pattern of nerve fibers), histological evaluations (by light microscopy with Meyer's modified trichrome staining and Toluidine blue staining and transmission electron microscopy for the regeneration of axon and myelin sheath), and FluoroGold retrograde tracing (for reconnection between proximal and distal stumps). The effect of nerve growth factor (NGF) immobilized on the pore surfaces of the NGCs on nerve regeneration was not so significant when compared with NGCs not containing immobilized NGF. The NGC system with different surface pore structures but the same chemical/physical properties seems to be a good tool that is used for elucidating the surface pore effect of NGCs on nerve regeneration. PMID:22871377

  11. A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration.

    Science.gov (United States)

    Mottaghitalab, Fatemeh; Farokhi, Mehdi; Zaminy, Arash; Kokabi, Mehrdad; Soleimani, Masoud; Mirahmadi, Fereshteh; Shokrgozar, Mohammad Ali; Sadeghizadeh, Majid

    2013-01-01

    As a contribution to the functionality of nerve guide conduits (NGCs) in nerve tissue engineering, here we report a conduit processing technique through introduction and evaluation of topographical, physical and chemical cues. Porous structure of NGCs based on freeze-dried silk/single walled carbon nanotubes (SF/SWNTs) has shown a uniform chemical and physical structure with suitable electrical conductivity. Moreover, fibronectin (FN) containing nanofibers within the structure of SF/SWNT conduits produced through electrospinning process have shown aligned fashion with appropriate porosity and diameter. Moreover, fibronectin remained its bioactivity and influenced the adhesion and growth of U373 cell lines. The conduits were then implanted to 10 mm left sciatic nerve defects in rats. The histological assessment has shown that nerve regeneration has taken places in proximal region of implanted nerve after 5 weeks following surgery. Furthermore, nerve conduction velocities (NCV) and more myelinated axons were observed in SF/SWNT and SF/SWNT/FN groups after 5 weeks post implantation, indicating a functional recovery for the injured nerves. With immunohistochemistry, the higher S-100 expression of Schwann cells in SF/SWNT/FN conduits in comparison to other groups was confirmed. In conclusion, an oriented conduit of biocompatible SF/SWNT/FN has been fabricated with acceptable structure that is particularly applicable in nerve grafts.

  12. A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration.

    Directory of Open Access Journals (Sweden)

    Fatemeh Mottaghitalab

    Full Text Available As a contribution to the functionality of nerve guide conduits (NGCs in nerve tissue engineering, here we report a conduit processing technique through introduction and evaluation of topographical, physical and chemical cues. Porous structure of NGCs based on freeze-dried silk/single walled carbon nanotubes (SF/SWNTs has shown a uniform chemical and physical structure with suitable electrical conductivity. Moreover, fibronectin (FN containing nanofibers within the structure of SF/SWNT conduits produced through electrospinning process have shown aligned fashion with appropriate porosity and diameter. Moreover, fibronectin remained its bioactivity and influenced the adhesion and growth of U373 cell lines. The conduits were then implanted to 10 mm left sciatic nerve defects in rats. The histological assessment has shown that nerve regeneration has taken places in proximal region of implanted nerve after 5 weeks following surgery. Furthermore, nerve conduction velocities (NCV and more myelinated axons were observed in SF/SWNT and SF/SWNT/FN groups after 5 weeks post implantation, indicating a functional recovery for the injured nerves. With immunohistochemistry, the higher S-100 expression of Schwann cells in SF/SWNT/FN conduits in comparison to other groups was confirmed. In conclusion, an oriented conduit of biocompatible SF/SWNT/FN has been fabricated with acceptable structure that is particularly applicable in nerve grafts.

  13. Effect of surface pore structure of nerve guide conduit on peripheral nerve regeneration.

    Science.gov (United States)

    Oh, Se Heang; Kim, Jin Rae; Kwon, Gu Birm; Namgung, Uk; Song, Kyu Sang; Lee, Jin Ho

    2013-03-01

    Polycaprolactone (PCL)/Pluronic F127 nerve guide conduits (NGCs) with different surface pore structures (nano-porous inner surface vs. micro-porous inner surface) but similar physical and chemical properties were fabricated by rolling the opposite side of asymmetrically porous PCL/F127 membranes. The effect of the pore structure on peripheral nerve regeneration through the NGCs was investigated using a sciatic nerve defect model of rats. The nerve fibers and tissues were shown to have regenerated along the longitudinal direction through the NGC with a nano-porous inner surface (Nanopore NGC), while they grew toward the porous wall of the NGC with a micro-porous inner surface (Micropore NGC) and, thus, their growth was restricted when compared with the Nanopore NGC, as investigated by immunohistochemical evaluations (by fluorescence microscopy with anti-neurofilament staining and Hoechst staining for growth pattern of nerve fibers), histological evaluations (by light microscopy with Meyer's modified trichrome staining and Toluidine blue staining and transmission electron microscopy for the regeneration of axon and myelin sheath), and FluoroGold retrograde tracing (for reconnection between proximal and distal stumps). The effect of nerve growth factor (NGF) immobilized on the pore surfaces of the NGCs on nerve regeneration was not so significant when compared with NGCs not containing immobilized NGF. The NGC system with different surface pore structures but the same chemical/physical properties seems to be a good tool that is used for elucidating the surface pore effect of NGCs on nerve regeneration.

  14. Accelerated myelination along fiber tracts in patients with hemimegalencephaly.

    Science.gov (United States)

    Kamiya, Kouhei; Sato, Noriko; Saito, Yuko; Nakata, Yasuhiro; Ito, Kimiteru; Shigemoto, Yoko; Ota, Miho; Sasaki, Masayuki; Ohtomo, Kuni

    2014-07-01

    In infants with hemimegalencephaly, asymmetrical white-matter intensities suggestive of advanced myelination are observed as well as aberrant midsagittal fibers (AMFs) specific to hemimegalencephaly. Also noted are otherwise unreported abnormally enlarged periventricular fibers (APVFs) running anteroposteriorly along the caudate nucleus. This study investigated the degree of myelination and presence of aberrant fibers in hemimegalencephaly through a retrospective review of MRI scans in relation to histopathological findings. MRI scans of 24 infants with hemimegalencephaly (13 boys and 11 girls, 1-9 months old) were evaluated, focusing on the presence and signal intensities of AMFs and APVFs. White-matter signal intensities on T1- and T2-weighted imaging of the cerebral hemisphere were also evaluated and compared with the timetable for normal myelination. Surgical specimens were pathologically examined with Klüver-Barrera staining in four patients. AMFs and APVFs were observed in 18 and nine patients, respectively, while 22 patients had accelerated myelination of the megalencephalic hemisphere that tended to extend along fiber pathways including AMFs and APVFs. In six cases, accelerated myelination even extended into the contralateral hemisphere via the corpus callosum or AMFs. Histopathological analysis identified hypermyelination with disarrayed myelinated fibers corresponding to MRI findings. Accelerated myelination is frequently observed in patients with hemimegalencephaly and tends to extend along fiber pathways, including aberrant or abnormal fibers, as seen in 75% of hemimegalencephaly patients. Accelerated myelination may reflect propagation pathways of abnormal brain activity in such patients. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Oligodendroglial membrane dynamics in relation to myelin biogenesis

    NARCIS (Netherlands)

    Ozgen, Hande; Baron, Wia; Hoekstra, Dick; Kahya, Nicoletta

    2016-01-01

    In the central nervous system, oligodendrocytes synthesize a specialized membrane, the myelin membrane, which enwraps the axons in a multilamellar fashion to provide fast action potential conduction and to ensure axonal integrity. When compared to other membranes, the composition of myelin membranes

  16. 17β-Estradiol Promotes Schwann Cell Proliferation and Differentiation, Accelerating Early Remyelination in a Mouse Peripheral Nerve Injury Model

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2016-01-01

    Full Text Available Estrogen induces oligodendrocyte remyelination in response to demyelination in the central nervous system. Our objective was to determine the effects of 17β-estradiol (E2 on Schwann cell function and peripheral nerve remyelination after injury. Adult male C57BL/6J mice were used to prepare the sciatic nerve transection injury model and were randomly categorized into control and E2 groups. To study myelination in vitro, dorsal root ganglion (DRG explant culture was prepared using 13.5-day-old mouse embryos. Primary Schwann cells were isolated from the sciatic nerves of 1- to 3-day-old Sprague–Dawley rats. Immunostaining for myelin basic protein (MBP expression and toluidine blue staining for myelin sheaths demonstrated that E2 treatment accelerates early remyelination in the “nerve bridge” region between the proximal and distal stumps of the transection injury site in the mouse sciatic nerve. The 5-bromo-2′-deoxyuridine incorporation assay revealed that E2 promotes Schwann cell proliferation in the bridge region and in the primary culture, which is blocked using AKT inhibitor MK2206. The in vitro myelination in the DRG explant culture determined showed that the MBP expression in the E2-treated group is higher than that in the control group. These results show that E2 promotes Schwann cell proliferation and myelination depending on AKT activation.

  17. Na(v)1.8 channelopathy in mutant mice deficient for myelin protein zero is detrimental to motor axons

    DEFF Research Database (Denmark)

    Alvarez Herrero, Susana; Pinchenko, Volodymyr; Klein, Dennis

    2011-01-01

    by pharmacologic block using the subtype-selective Na(V)1.8 blocker A-803467 and chronically in Na(V)1.8 knock-outs. We found that in the context of dysmyelination, abnormal potassium ion currents and membrane depolarization, the ectopic Na(V)1.8 channels further impair the motor axon excitability in protein zero...... and progressive dysmyelinating neuropathy from birth with compromised myelin compaction, hypomyelination and distal axonal degeneration. A previous study using immunofluorescence showed that motor nerves deficient of myelin protein zero upregulate the Na(V)1.8 voltage gated sodium channel isoform, which...... is normally present only in restricted populations of sensory axons. The aim of this study was to investigate the function of motor axons in protein zero-deficient mice with particular emphasis on ectopic Na(V)1.8 voltage gated sodium channel. We combined 'threshold tracking' excitability studies...

  18. Production and crystallization of a panel of structure-based mutants of the human myelin peripheral membrane protein P2.

    Science.gov (United States)

    Lehtimäki, Mari; Laulumaa, Saara; Ruskamo, Salla; Kursula, Petri

    2012-11-01

    The myelin sheath is a multilayered membrane that surrounds and insulates axons in the nervous system. One of the proteins specific to the peripheral nerve myelin is P2, a protein that is able to stack lipid bilayers. With the goal of obtaining detailed information on the structure-function relationship of P2, 14 structure-based mutated variants of human P2 were generated and produced. The mutants were designed to potentially affect the binding of lipid bilayers by P2. All mutated variants were also crystallized and preliminary crystallographic data are presented. The structural data from the mutants will be combined with diverse functional assays in order to elucidate the fine details of P2 function at the molecular level.

  19. Inherited demyelinating neuropathies with micromutations of peripheral myelin protein 22 gene.

    Science.gov (United States)

    Taioli, Federica; Cabrini, Ilaria; Cavallaro, Tiziana; Acler, Michele; Fabrizi, Gian Maria

    2011-02-01

    The peripheral myelin protein 22 gene (PMP22) encodes an intrinsic membrane protein of compact myelin. Duplication or deletion of PMP22 causes the most common autosomal dominant neuropathies, Charcot-Marie-Tooth disease type 1A or hereditary neuropathy with liability to pressure palsies. Charcot-Marie-Tooth disease type 1A is a hypertrophic de-remyelinating neuropathy manifesting with peroneal muscular atrophy and uniform, marked, slowing of nerve conduction velocities. Hereditary neuropathy with liability to pressure palsies is a recurrent focal neuropathy with sausage-like myelin thickening (tomacula) and non-uniform nerve conduction velocity changes. Missense or nonsense mutations also cause more severe Charcot-Marie-Tooth disease type 1A forms of infancy or hereditary neuropathy with liability to pressure palsies, but they are presumably very rare. We performed a mutational scanning of PMP22 in 229 index patients (46 familial, 183 isolated) referred for suspected inherited neuropathy. The series included 125 cases with hereditary neuropathy with liability to pressure palsies (mean age 42.5 years), 47 cases with Charcot-Marie-Tooth disease type 1A (motor nerve conduction velocities at median nerve below 38 m/s) (mean age 40.7 years) and 57 cases with Charcot-Marie-Tooth with unknown nerve conduction velocities (mean age 43 years). Preliminary molecular studies ruled out PMP22 duplication or deletion or mutations in a comprehensive panel of Charcot-Marie-Tooth genes. Mutational scanning of PMP22 was done by denaturing high performance liquid chromatography and automated nucleotide sequencing. To investigate the molecular basis of phenotype-to-genotype correlations, we performed a transcriptional analysis of PMP22 using reverse-transcriptase polymerase chain reaction and quantitative real-time polymerase chain reaction in two phenotypically divergent nerve biopsies. Ten patients harboured eight micromutations of PMP22 including four novel changes. In six familial

  20. Ion channel noise can explain firing correlation in auditory nerves.

    Science.gov (United States)

    Moezzi, Bahar; Iannella, Nicolangelo; McDonnell, Mark D

    2016-10-01

    Neural spike trains are commonly characterized as a Poisson point process. However, the Poisson assumption is a poor model for spiking in auditory nerve fibres because it is known that interspike intervals display positive correlation over long time scales and negative correlation over shorter time scales. We have therefore developed a biophysical model based on the well-known Meddis model of the peripheral auditory system, to produce simulated auditory nerve fibre spiking statistics that more closely match the firing correlations observed in empirical data. We achieve this by introducing biophysically realistic ion channel noise to an inner hair cell membrane potential model that includes fractal fast potassium channels and deterministic slow potassium channels. We succeed in producing simulated spike train statistics that match empirically observed firing correlations. Our model thus replicates macro-scale stochastic spiking statistics in the auditory nerve fibres due to modeling stochasticity at the micro-scale of potassium channels.

  1. Multibeam Fibre Laser Cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    The appearance of the high power high brilliance fibre laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating cutting laser, the CO2-laser. However, quality problems in fibre-laser...... cutting have until now limited its application in metal cutting. In this paper the first results of proof-of-principle studies applying a new approach (patent pending) for laser cutting with high brightness short wavelength lasers will be presented. In the approach, multi beam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from 2 single mode fibre lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W of single...

  2. Poly(lactic-co-glycolic acid) conduit for repair of injured sciatic nerve A mechanical analysis*

    Institute of Scientific and Technical Information of China (English)

    Tao Yu; Changfu Zhao; Peng Li; Guangyao Liu; Min Luo

    2013-01-01

    Tensile stress and tensile strain directly affect the quality of nerve regeneration after bridging nerve defects by poly(lactic-co-glycolic acid) conduit transplantation and autogenous nerve grafting for sciatic nerve injury. This study col ected the sciatic nerve from the gluteus maximus muscle from fresh human cadaver, and established 10-mm-long sciatic nerve injury models by removing the ischium, fol owing which poly(lactic-co-glycolic acid) conduits or autogenous nerve grafts were transplanted. Scanning electron microscopy revealed that the axon and myelin sheath were torn, and the vessels of basilar membrane were obstructed in the poly(lactic-co-glycolic acid) con-duit-repaired sciatic nerve fol owing tensile testing. There were no significant differences in tensile tests with autogenous nerve graft-repaired sciatic nerve. Fol owing poly(lactic-co-glycolic acid) conduit transplantation for sciatic nerve repair, tensile test results suggest that maximum tensile load, maximum stress, elastic limit load and elastic limit stress increased compared with autogen-ous nerve grafts, but elastic limit strain and maximum strain decreased. Moreover, the tendencies of stress-strain curves of sciatic nerves were similar after transplantation of poly(lactic-co-glycolic acid) conduits or autogenous nerve grafts. Results showed that after transplantation in vitro for sciatic nerve injury, poly(lactic-co-glycolic acid) conduits exhibited good intensity, elasticity and plasticity, indicating that poly(lactic-co-glycolic acid) conduits are suitable for sciatic nerve injury repair.

  3. Poly(lactic-co-glycolic acid) conduit for repair of injured sciatic nerve: A mechanical analysis.

    Science.gov (United States)

    Yu, Tao; Zhao, Changfu; Li, Peng; Liu, Guangyao; Luo, Min

    2013-07-25

    Tensile stress and tensile strain directly affect the quality of nerve regeneration after bridging nerve defects by poly(lactic-co-glycolic acid) conduit transplantation and autogenous nerve grafting for sciatic nerve injury. This study collected the sciatic nerve from the gluteus maximus muscle from fresh human cadaver, and established 10-mm-long sciatic nerve injury models by removing the ischium, following which poly(lactic-co-glycolic acid) conduits or autogenous nerve grafts were transplanted. Scanning electron microscopy revealed that the axon and myelin sheath were torn, and the vessels of basilar membrane were obstructed in the poly(lactic-co-glycolic acid) conduit-repaired sciatic nerve following tensile testing. There were no significant differences in tensile tests with autogenous nerve graft-repaired sciatic nerve. Following poly(lactic-co-glycolic acid) conduit transplantation for sciatic nerve repair, tensile test results suggest that maximum tensile load, maximum stress, elastic limit load and elastic limit stress increased compared with autogenous nerve grafts, but elastic limit strain and maximum strain decreased. Moreover, the tendencies of stress-strain curves of sciatic nerves were similar after transplantation of poly(lactic-co-glycolic acid) conduits or autogenous nerve grafts. Results showed that after transplantation in vitro for sciatic nerve injury, poly(lactic-co-glycolic acid) conduits exhibited good intensity, elasticity and plasticity, indicating that poly(lactic-co-glycolic acid) conduits are suitable for sciatic nerve injury repair.

  4. Relationships between cobalamin, epidermal growth factor, and normal prions in the myelin maintenance of central nervous system.

    Science.gov (United States)

    Scalabrino, Giuseppe; Veber, Daniela; Tredici, Giovanni

    2014-10-01

    Cobalamin (Cbl), epidermal growth factor (EGF), and prions (PrPs) are key molecules for myelin maintenance in the central and peripheral nervous systems. Cbl and EGF increase normal prion (PrP(C)) synthesis and PrP(C) levels in rat spinal cord (SC) and elsewhere. Cbl deficiency increases PrP(C) levels in rat SC and cerebrospinal fluid (CSF), and decreases PrP(C)-mRNA levels in rat SC. The administration of anti-octapeptide repeat PrP(C) region antibodies (Abs) to Cbl-deficient (Cbl-D) rats prevents SC myelin lesions and a local increase in tumor necrosis factor (TNF)-α levels, whereas anti-TNF-α Abs prevent SC myelin lesions and the increase in SC and CSF PrP(C) levels. As it is known that both Cbl and EGF regulate SC PrP(C) synthesis independently, and that Cbl regulates SC EGF synthesis, EGF may play both Cbl-independent and Cbl-dependent roles. When Cbl-D rats undergo Cbl replacement therapy, SC PrP(C) levels are similar to those observed in Cbl-D rats. In rat frontal cortex (which is marginally affected by Cbl deficiency in histological terms), Cbl deficiency decreases PrP(C) levels and the increase induced by Cbl replacement leads to their normalization. Increased nerve PrP(C) levels are detected in the myelin lesions of the peripheral neuropathy of Cbl-D rats, and CSF PrP(C) levels are also increased in Cbl-D patients (but not in patients with Cbl-unrelated neurological diseases). Various common steps in the downstream signaling pathway of Cbl, EGF, and PrP(C) underlines the close relationship between the three molecules in keeping myelin normal.

  5. Impact of morphometry, myelinization and synaptic current strength on spike conduction in human and cat spiral ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Frank Rattay

    Full Text Available BACKGROUND: Our knowledge about the neural code in the auditory nerve is based to a large extent on experiments on cats. Several anatomical differences between auditory neurons in human and cat are expected to lead to functional differences in speed and safety of spike conduction. METHODOLOGY/PRINCIPAL FINDINGS: Confocal microscopy was used to systematically evaluate peripheral and central process diameters, commonness of myelination and morphology of spiral ganglion neurons (SGNs along the cochlea of three human and three cats. Based on these morphometric data, model analysis reveales that spike conduction in SGNs is characterized by four phases: a postsynaptic delay, constant velocity in the peripheral process, a presomatic delay and constant velocity in the central process. The majority of SGNs are type I, connecting the inner hair cells with the brainstem. In contrast to those of humans, type I neurons of the cat are entirely myelinated. Biophysical model evaluation showed delayed and weak spikes in the human soma region as a consequence of a lack of myelin. The simulated spike conduction times are in accordance with normal interwave latencies from auditory brainstem response recordings from man and cat. Simulated 400 pA postsynaptic currents from inner hair cell ribbon synapses were 15 times above threshold. They enforced quick and synchronous spiking. Both of these properties were not present in type II cells as they receive fewer and much weaker (∼26 pA synaptic stimuli. CONCLUSIONS/SIGNIFICANCE: Wasting synaptic energy boosts spike initiation, which guarantees the rapid transmission of temporal fine structure of auditory signals. However, a lack of myelin in the soma regions of human type I neurons causes a large delay in spike conduction in comparison with cat neurons. The absent myelin, in combination with a longer peripheral process, causes quantitative differences of temporal parameters in the electrically stimulated human cochlea

  6. Optical fibre line failure detecting

    OpenAIRE

    Xie, Feng

    2013-01-01

    With the development of modern communications, in order to meet the needs of social development and technological progress the optical fibre communications has become the main communication medium for its high reliability and security. Fibre-optic cable is the channel for signal transmission. It is an important component in the entire fibre-optic network. Once the fibre-optic cable fault happened, the entire communication system would be impacted seriously. When fault occurs, it is important ...

  7. Effects of nerve growth factor delivery via a gel to inferior alveolar nerve in mandibular distraction osteogenesis.

    Science.gov (United States)

    Wang, Lei; Cao, Jian; Lei, De-lin; Cheng, Xiao-bing; Yang, Yao-wu; Hou, Rui; Zhao, Ying-hua; Cui, Fu-zhai

    2009-11-01

    Inferior alveolar nerve (IAN) injury is a concern in mandible distraction osteogenesis (DO). We have previously demonstrated that repeated local injections of human nerve growth factor beta (NGF-beta) have significantly enhanced the histologic recovery of the IAN in a rabbit model of DO. This study was to further test the effect of a single injection of human NGF-beta delivered via a collagen/nanohydroxyapatite/kappa-carrageenan gel to the recovery of the IAN in DO. Rabbits underwent mandibular DO at a rate of 0.75 mm/12 h for 6 days. At the end of the distraction period, injections were performed near the IAN percutaneously as follows: group 1, human NGF-beta in the gel; group 2, human NGF-beta in saline; group 3, the gel alone; and group 4, saline alone. At 14 days after the end of distraction, IAN histologic findings and histomorphometric parameters were evaluated. Histologically, there were less myelin debris and more abundant regenerating nerve fibers in group 1 than the other groups. Both the myelinated fiber density and the myelinated axon area in group 1 were significantly higher than groups 3 and 4 (P NGF-beta in the gel leads to a better acceleration of the IAN injury recovery over the saline delivery. It provides a possible way to enhance the recovery of nerve injuries in craniofacial DO clinically.

  8. The major myelin-resident protein PLP is transported to myelin membranes via a transcytotic mechanism : involvement of sulfatide

    NARCIS (Netherlands)

    Baron, Wia; Ozgen, Hande; Klunder, Bert; de Jonge, Jenny C; Nomden, Anita; Plat, Annechien; Trifilieff, Elisabeth; de Vries, Hans; Hoekstra, Dick

    2015-01-01

    Myelin membranes are sheet-like extensions of oligodendrocytes that can be considered as membrane domains distinct from the cell's plasma membrane. Consistent with the polarized nature of oligodendrocytes we demonstrate that transcytotic transport of the major myelin-resident protein, PLP, is a key

  9. Fibre Optics in Undersea Applications

    Directory of Open Access Journals (Sweden)

    A. K. Talwar

    1984-01-01

    Full Text Available Role of optical fibres for underwater communication cables and hydrophones is discussed. The fibre optics cables provide an excellent solution to the historical bandwidth-diameter problems of conventional coaxial cables.Fibre optic hydrophones are found to have many more advantages apart from high sensitivity and large dynamic range, over the classical sound sensors used in underwater work.

  10. Single-mode optical fibres

    CERN Document Server

    Cancellieri, G

    1991-01-01

    This book describes signal propagation in single-mode optical fibres for telecommunication applications. Such description is based on the analysis of field propagation, considering waveguide properties and also some of the particular characteristics of the material fibre. The book covers such recent advances as, coherent transmissions; optical amplification; MIR fibres; polarization maintaining; polarization diversity and photon counting.

  11. Orientational Distribution of Fibres in Sheared Fibre Suspensions

    Institute of Scientific and Technical Information of China (English)

    KU Xiao-Ke; LIN Jian-Zhong

    2007-01-01

    Motion of fibres in sheared fibre suspensions is simulated numerically by using the lattice Boltzmann method. The orientational distributions of the fibres are presented for different Reynolds numbers, Stokes numbers, shear rate and fibre aspect ratio. Some computational results are compared with the experimental data of pipe Bow, and the qualitative agreement is achieved. The results show that the orientational distributions are greatly affected by the Reynolds numbers, while relatively insensitive to the fibre aspect ratio. The Stokes number and shear rate have obvious influence on the orientation distribution.

  12. Schwann cell mitochondria as key regulators in the development and maintenance of peripheral nerve axons.

    Science.gov (United States)

    Ino, Daisuke; Iino, Masamitsu

    2017-03-01

    Formation of myelin sheaths by Schwann cells (SCs) enables rapid and efficient transmission of action potentials in peripheral axons, and disruption of myelination results in disorders that involve decreased sensory and motor functions. Given that construction of SC myelin requires high levels of lipid and protein synthesis, mitochondria, which are pivotal in cellular metabolism, may be potential regulators of the formation and maintenance of SC myelin. Supporting this notion, abnormal mitochondria are found in SCs of neuropathic peripheral nerves in both human patients and the relevant animal models. However, evidence for the importance of SC mitochondria in myelination has been limited, until recently. Several studies have recently used genetic approaches that allow SC-specific ablation of mitochondrial metabolic activity in living animals to show the critical roles of SC mitochondria in the development and maintenance of peripheral nerve axons. Here, we review current knowledge about the involvement of SC mitochondria in the formation and dysfunction of myelinated axons in the peripheral nervous system.

  13. 联邦止咳露依赖并发周围神经损害的研究%Study of peripheral nerve injury attributed to anticol cough syrup abuse

    Institute of Scientific and Technical Information of China (English)

    季秋虹; 吴二兵; 高志伟

    2015-01-01

    目的:探讨联邦止咳露依赖并发周围神经损害的临床表现及治疗。方法:通过患者的临床表现、肌电图、肌肉活检、腓肠神经活检结果展开临床诊断及机制分析。结果:患者长期饮用联邦止咳露致药物依赖。肌电图提示周围神经神经原性损害。肌肉活检显示肌纤维损害及少量的单核和淋巴细胞浸润。电镜下肌小节结构模糊,线粒体空泡样变。神经活检部分有髓神经纤维肿胀,板层结构松散,成剥离的洋葱皮样结构,轴索被破坏。免疫荧光染色显示轴索破坏、髓鞘变薄。结论:联邦止咳露依赖可伴发周围神经损害,在戒瘾同时予B族维生素治疗后症状缓解。%Objective: To explore the clinical manifestations and treatment of peripheral nerve injury attributed to anticol cough syrup abuse. Methods: Clinical manifestations, as well as laboratory examinations, including electromyography, muscle biopsy and sural nerve biopsy were analyzed, whereby clinical diagnosis and the underlying mechanism were assessed. Results: The patients showed the drug dependence caused by long time anticol cough syrup abuse. Electromyography indicated the obvious features of peripheral neurogenic injury. Muscle biopsy revealed that the damage of muscle fibers and scattered lymphocytes and monocytes infiltration, ultrastructural changes included the cloudy structure of sarcomere and the vacuolar degeneration of mitochondria. Nerve biopsy indicated the swollen myelinated fibre loose lamellar structure and damaged axon in sural nerve. Immunofluorescent staining further confirmed the destroyed axon and thinning myelin. Conclusion: Anticol cough syrup abuse may cause peripheral nerve injury. In addition to drug treatment, the symptoms could be alleviated by Vitamin B administration.

  14. Does the addition of a nerve wrap to a motor nerve repair affect motor outcomes?

    Science.gov (United States)

    Lee, Joo-Yup; Parisi, Thomas J; Friedrich, Patricia F; Bishop, Allen T; Shin, Alexander Y

    2014-10-01

    The purpose of this study was to evaluate the effect of wrapping bioabsorbable nerve conduit around primary suture repair on motor nerve regeneration in a rat model. Forty rats were randomly divided into two experimental groups according to the type of repair of the rat sciatic nerve: group I had primary suture repair; group II had primary suture repair and bioabsorbable collagen nerve conduit (NeuraGen® 1.5 mm, Integra LifeSciences Corp., Plainsboro, NJ) wrapped around the repair. At 12 weeks, no significant differences in the percentage of recovery between the two groups were observed with respect to compound muscle action potentials, isometric muscle force, and muscle weight (P = 0.816, P = 0.698, P = 0.861, respectively). Histomorphometric analysis as compared to the non-operative sites was also not significantly different between the two groups in terms of number of myelinated axons, myelinated fiber area, and nerve fiber density (P = 0.368, P = 0.968, P = 0.071, respectively). Perineural scar tissue formation was greater in primary suture repair group (0.36 ± 0.15) than in primary repair plus conduit wrapping group (0.17 ± 0.08). This difference was statistically significant (P decrease perineural scar tissue formation. Although the scar-decreasing effect of bioabsorbable nerve wrap does not translate into better motor nerve recovery in this study, it might have an effect on the functional outcome in humans where scar formation is much more evident than in rats.

  15. GABA and its B-receptor are present at the node of Ranvier in a small population of sensory fibers, implicating a role in myelination

    DEFF Research Database (Denmark)

    Corell, Mikael; Wicher, Grzegorz; Radomska, Katarzyna J

    2015-01-01

    of the GABAB receptor, GABA, and glutamic acid decarboxylase GAD65/67 in both development and injury in fetal dissociated dorsal root ganglia (DRG) cell cultures and in the rat sciatic nerve. We found that GABA, GAD65/67, and the GABAB receptor were expressed in premyelinating and nonmyelinating Schwann cells...... throughout development and after injury. A small population of myelinated sensory fibers displayed all of these molecules at the node of Ranvier, indicating a role in axon-glia communication. Functional studies using GABAB receptor agonists and antagonists were performed in fetal DRG primary cultures...... to study the function of this receptor during development. The results show that GABA, via its B receptor, is involved in the myelination process but not in Schwann cell proliferation. The data from adult nerves suggest additional roles in axon-glia communication after injury....

  16. Gene expression profiling studies in regenerating nerves in a mouse model for CMT1X: uninjured Cx32-knockout peripheral nerves display expression profile of injured wild type nerves.

    Science.gov (United States)

    Freidin, Mona; Asche-Godin, Samantha; Abrams, Charles K

    2015-01-01

    X-linked Charcot-Marie-Tooth disease (CMT1X) is an inherited peripheral neuropathy caused by mutations in GJB1, the human gene for Connexin32 (Cx32). This present study uses Ilumina Ref8-v2 BeadArray to examine the expression profiles of injured and uninjured sciatic nerves at 5, 7, and 14 days post-crush injury (dpi) from Wild Type (WT) and Cx32-knockout (Cx32KO) mice to identify the genes and signaling pathways that are dysregulated in the absence of Schwann cell Cx32. Given the assumption that loss of Schwann cell Cx32 disrupts the regeneration and maintenance of myelinated nerve leading to a demyelinating neuropathy in CMT1X, we initially hypothesized that nerve crush injury would result in significant increases in differential gene expression in Cx32KO mice relative to WT nerves. However, microarray analysis revealed a striking collapse in the number of differentially expressed genes at 5 and 7 dpi in Cx32KO nerves relative to WT, while uninjured and 14 dpi time points showed large numbers of differentially regulated genes. Further comparisons within each genotype showed limited changes in Cx32KO gene expression following crush injury when compared to uninjured Cx32KO nerves. By contrast, WT nerves exhibited robust changes in gene expression at 5 and 7 dpi with no significant differences in gene expression by 14dpi relative to uninjured WT nerve samples. Taken together, these data suggest that the gene expression profile in uninjured Cx32KO sciatic nerve strongly resembles that of a WT nerve following injury and that loss of Schwann cell Cx32 leads to a basal state of gene expression similar to that of an injured WT nerve. These findings support a role for Cx32 in non-myelinating and regenerating populations of Schwann cells in normal axonal maintenance in re-myelination, and regeneration of peripheral nerve following injury. Disruption of Schwann cell-axonal communication in CMT1X may cause dysregulation of signaling pathways that are essential for the

  17. Targeted Overexpression of a Golli-Myelin Basic Protein Isoform to Oligodendrocytes Results in Aberrant Oligodendrocyte Maturation and Myelination

    Directory of Open Access Journals (Sweden)

    Erin C Jacobs

    2009-08-01

    Full Text Available Recently, several in vitro studies have shown that the golli-myelin basic proteins regulate Ca2+ homoeostasis in OPCs (oligodendrocyte precursor cells and immature OLs (oligodendrocytes, and that a number of the functions of these cells are affected by cellular levels of the golli proteins. To determine the influence of golli in vivo on OL development and myelination, a transgenic mouse was generated in which the golli isoform J37 was overexpressed specifically within OLs and OPCs. The mouse, called JOE (J37-overexpressing, is severely hypomyelinated between birth and postnatal day 50. During this time, it exhibits severe intention tremors that gradually abate at later ages. After postnatal day 50, ultrastructural studies and Northern and Western blot analyses indicate that myelin accumulates in the brain, but never reaches normal levels. Several factors appear to underlie the extensive hypomyelination. In vitro and in vivo experiments indicate that golli overexpression causes a significant delay in OL maturation, with accumulation of significantly greater numbers of pre-myelinating OLs that fail to myelinate axons during the normal myelinating period. Immunohistochemical studies with cell death and myelin markers indicate that JOE OLs undergo a heightened and extended period of cell death and are unable to effectively myelinate until 2 months after birth. The results indicate that increased levels of golli in OPC/OLs delays myelination, causing significant cell death of OLs particularly in white matter tracts. The results provide in vivo evidence for a significant role of the golli proteins in the regulation of maturation of OLs and normal myelination.

  18. Ultrastructural changes in the optic nerve and capillary vessels during early stages of optic nerve injury

    Institute of Scientific and Technical Information of China (English)

    Xuehong Ju; Xiuyun Li; Xiaoshuang Li; Hongtao Tang; Hongguo Liu

    2008-01-01

    BACKGROUND: Capillaries are the only blood supply for optic nerves, which makes the system more vulnerable to impaired blood circulation. OBJECTIVE: To observe the ultrastructural changes in the optic nerves and capillaries in rabbits following intracanalicular segment injury to the optic nerve. DESIGN, TIME AND SETTING: Comparative, observational, pathological morphology was performed at the Department of Anatomy, Weifang Medical College from September to November 2007. MATERIALS: Models of intracanalicular segment injury to the optic nerve were induced in the right eye of thirty healthy, adult rabbits by a flee-falling metal cylinder. The H-7500 transmission electron microscope was provided by Hitachi, Japan. METHODS: All rabbits were randomly assigned into experimental (n = 25) and control (n = 5) groups. Optic nerve specimens were obtained from the experimental group at 0.5, 6, 12, 48, and 96 hours, respectively, following injury. Uitrastructural changes to the optic nerves and their capillaries were observed by electron microscopy. Optic nerve injury was not established in the control group, but optic nerve specimens were collected similarly to the experimental group. MAIN OUTCOME MEASURES: Ultrastructural changes in the injured optic nerves and their capillaries. RESULTS: Thirty rabbits were included in the final analysis. In the control group, cross-sections of the optic nerves exhibited varied thicknesses with regularly arranged fibers. The axons appeared to be smooth with condensed myelin sheaths and oval mitochondria. The microtubules and mierofilaments were clearly seen. The lumens of the capillaries were regular with densely arranged endothelial cells and visible mitochondria. In the experimental group, 30 minutes after injury to the optic nerves, swollen axons, sparse myelin sheath, disordered microtubules and microfilaments, swollen mitochondria, and a decreased number of pinocytosis vesicles and microfilaments in endothelial cells of the capillaries

  19. Repair of peripheral nerve defects with chemically extracted acellular nerve allografts loaded with neurotrophic factors-transfected bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Yan-ru Zhang; Ka Ka; Ge-chen Zhang; Hui Zhang; Yan Shang; Guo-qiang Zhao; Wen-hua Huang

    2015-01-01

    Chemically extracted acellular nerve allografts loaded with brain-derived neurotrophic fac-tor-transfected or ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells have been shown to repair sciatic nerve injury better than chemically extracted acellular nerve allografts alone, or chemically extracted acellular nerve allografts loaded with bone marrow mesenchymal stem cells. We hypothesized that these allografts compounded with both brain-derived neurotrophic factor- and ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells may demonstrate even better effects in the repair of peripheral nerve injury. We cultured bone marrow mesenchymal stem cells expressing brain-derived neuro-trophic factor and/or ciliary neurotrophic factor and used them to treat sciatic nerve injury in rats. We observed an increase in sciatic functional index, triceps wet weight recovery rate, myelin thickness, number of myelinated nerve ifbers, amplitude of motor-evoked potentials and nerve conduction velocity, and a shortened latency of motor-evoked potentials when al-lografts loaded with both neurotrophic factors were used, compared with allografts loaded with just one factor. Thus, the combination of both brain-derived neurotrophic factor and cili-ary neurotrophic factor-transfected bone marrow mesenchymal stem cells can greatly improve nerve injury.

  20. Electrical stimulation accelerates nerve regeneration and functional recovery in delayed peripheral nerve injury in rats.

    Science.gov (United States)

    Huang, Jinghui; Zhang, Yongguang; Lu, Lei; Hu, Xueyu; Luo, Zhuojing

    2013-12-01

    The present study aims to investigate the potential of brief electrical stimulation (ES; 3 V, 20 Hz, 20 min) in improving functional recovery in delayed nerve injury repair (DNIR). The sciatic nerve of Sprague Dawley rats was transected, and the repair of nerve injury was delayed for different time durations (2, 4, 12 and 24 weeks). Brief depolarizing ES was applied to the proximal nerve stump when the transected nerve stumps were bridged with a hollow nerve conduit (5 mm in length) after delayed periods. We found that the diameter and number of regenerated axons, the thickness of myelin sheath, as well as the number of Fluoro-Gold retrograde-labeled motoneurons and sensory neurons were significantly increased by ES, suggesting that brief ES to proximal nerve stumps is capable of promoting nerve regeneration in DNIR with different delayed durations, with the longest duration of 24 weeks. In addition, the amplitude of compound muscle action potential (gastrocnemius muscle) and nerve conduction velocity were also enhanced, and gastrocnemius muscle atrophy was partially reversed by brief ES, indicating that brief ES to proximal nerve stump was able to improve functional recovery in DNIR. Furthermore, brief ES was capable of increasing brain-derived neurotrophic factor (BDNF) expression in the spinal cord in DNIR, suggesting that BDNF-mediated neurotrophin signaling might be one of the contributing factors to the beneficial effect of brief ES on DNIR. In conclusion, the present findings indicate the potential of using brief ES as a useful method to improve functional recovery for delayed repair of peripheral nerve lesions. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Effect of Delayed Peripheral Nerve Repair on Nerve Regeneration, Schwann Cell Function and Target Muscle Recovery

    Science.gov (United States)

    Jonsson, Samuel; Wiberg, Rebecca; McGrath, Aleksandra M.; Novikov, Lev N.; Wiberg, Mikael; Novikova, Liudmila N.; Kingham, Paul J.

    2013-01-01

    Despite advances in surgical techniques for peripheral nerve repair, functional restitution remains incomplete. The timing of surgery is one factor influencing the extent of recovery but it is not yet clearly defined how long a delay may be tolerated before repair becomes futile. In this study, rats underwent sciatic nerve transection before immediate (0) or 1, 3, or 6 months delayed repair with a nerve graft. Regeneration of spinal motoneurons, 13 weeks after nerve repair, was assessed using retrograde labeling. Nerve tissue was also collected from the proximal and distal stumps and from the nerve graft, together with the medial gastrocnemius (MG) muscles. A dramatic decline in the number of regenerating motoneurons and myelinated axons in the distal nerve stump was observed in the 3- and 6-months delayed groups. After 3 months delay, the axonal number in the proximal stump increased 2–3 folds, accompanied by a smaller axonal area. RT-PCR of distal nerve segments revealed a decline in Schwann cells (SC) markers, most notably in the 3 and 6 month delayed repair samples. There was also a progressive increase in fibrosis and proteoglycan scar markers in the distal nerve with increased delayed repair time. The yield of SC isolated from the distal nerve segments progressively fell with increased delay in repair time but cultured SC from all groups proliferated at similar rates. MG muscle at 3- and 6-months delay repair showed a significant decline in weight (61% and 27% compared with contra-lateral side). Muscle fiber atrophy and changes to neuromuscular junctions were observed with increased delayed repair time suggestive of progressively impaired reinnervation. This study demonstrates that one of the main limiting factors for nerve regeneration after delayed repair is the distal stump. The critical time point after which the outcome of regeneration becomes too poor appears to be 3-months. PMID:23409189

  2. Glass Fibre Reinforced Polymers

    NARCIS (Netherlands)

    Nikolaou, N.; Karagianni, L.; Sarakiniatti, M.V.

    2014-01-01

    This "designers' manual" is made during the TIDO-course AR0533 Innovation & Sustainability. Fibre reinforced polymers (FRPs) have been used in many applications over the years, from new construction to retrofitting. They are lightweight, no-corrosive, exhibit high specific strength and specific

  3. Glass Fibre Reinforced Polymers

    NARCIS (Netherlands)

    Nikolaou, N.; Karagianni, L.; Sarakiniatti, M.V.

    2014-01-01

    This "designers' manual" is made during the TIDO-course AR0533 Innovation & Sustainability. Fibre reinforced polymers (FRPs) have been used in many applications over the years, from new construction to retrofitting. They are lightweight, no-corrosive, exhibit high specific strength and specific sti

  4. Ultrastructural analysis of guided nerve regeneration using progesterone- and pregnenolone-loaded chitosan prostheses.

    Science.gov (United States)

    Chávez-Delgado, M E; Gomez-Pinedo, U; Feria-Velasco, A; Huerta-Viera, M; Castañeda, S Castro; Toral, F A López-Dellamary; Parducz, A; Anda, S Luquín-De; Mora-Galindo, J; García-Estrada, J

    2005-07-01

    Recently, numerous guide chambers for the treatment of injured nerves made up of different biomaterials have been designed, capable of hosting living cells or carrying neurotrophic or neuroactive substances to be directly released to the injured tissue. In this study, chitosan prostheses containing neurosteroids (progesterone and pregnenolone) were used for bridging a 10-mm gap in the rabbit facial nerve. Gas chromatography was used to quantify neurosteroid content in the prostheses prior to and after subcutaneous implantation at different periods of up to 60 days. The regeneration of the nerve fibers were evaluated at 15 and 45 days after axotomy by means of ultrastructural morphometric analysis. Different nerve fibers regenerative patterns were seen depending the groups studied and the analyzed stages. At 15 days after axotomy, the newly regenerating tissue revealed Schwann cells holding nonmyelinated nerve fiber bundles in an incipient and organized regenerative pattern. At 45 days, the regenerating tissue showed myelinated nerve fibers of different sizes, shapes, and myelin sheath thickness. Although the regeneration of the nerve fibers under neurosteroid treatment showed statistically significant differences in comparison with vehicle regenerated tissue, progesterone-loaded chitosan prostheses produced the best guided nerve regeneration response. These findings indicate that chitosan prostheses allowed regeneration of nerve fibers in their lumen, and when containing neurosteroids produced a faster guided nerve regeneration acting as a long-lasting release delivery vehicle.

  5. Sleeve bridging of the rhesus monkey ulnar nerve with muscular branches of the pronator teres:multiple ampliifcation of axonal regeneration

    Institute of Scientific and Technical Information of China (English)

    Yu-hui Kou; Pei-xun Zhang; Yan-hua Wang; Bo Chen; Na Han; Feng Xue; Hong-bo Zhang; Xiao-feng Yin; Bao-guo Jiang

    2015-01-01

    Multiple-bud regeneration,i.e., multiple amplification, has been shown to exist in peripheral nerve regeneration. Multiple buds grow towards the distal nerve stump during proximal nerve ifber regeneration. Our previous studies have veriifed the limit and validity of multiple ampli-ifcation of peripheral nerve regeneration using small gap sleeve bridging of small donor nerves to repair large receptor nerves in rodents. The present study sought to observe multiple ampli-ifcation of myelinated nerve ifber regeneration in the primate peripheral nerve. Rhesus monkey models of distal ulnar nerve defects were established and repaired using muscular branches of the right forearm pronator teres. Proximal muscular branches of the pronator teres were su-tured into the distal ulnar nerve using the small gap sleeve bridging method. At 6 months after suture, two-ifnger lfexion and mild wrist lfexion were restored in the ulnar-sided injured limbs of rhesus monkey. Neurophysiological examination showed that motor nerve conduction veloc-ity reached 22.63 ± 6.34 m/s on the affected side of rhesus monkey. Osmium tetroxide staining demonstrated that the number of myelinated nerve fibers was 1,657 ± 652 in the branches of pronator teres of donor, and 2,661 ± 843 in the repaired ulnar nerve. The rate of multiple ampliifcation of regenerating myelinated nerve ifbers was 1.61. These data showed that when muscular branches of the pronator teres were used to repair ulnar nerve in primates, effective regeneration was observed in regenerating nerve ifbers, and functions of the injured ulnar nerve were restored to a certain extent. Moreover, multiple ampliifcation was subsequently detected in ulnar nerve axons.

  6. Regulation of prefrontal cortex myelination by the microbiota.

    Science.gov (United States)

    Hoban, A E; Stilling, R M; Ryan, F J; Shanahan, F; Dinan, T G; Claesson, M J; Clarke, G; Cryan, J F

    2016-04-05

    The prefrontal cortex (PFC) is a key region implicated in a range of neuropsychiatric disorders such as depression, schizophrenia and autism. In parallel, the role of the gut microbiota in contributing to these disorders is emerging. Germ-free (GF) animals, microbiota-deficient throughout life, have been instrumental in elucidating the role of the microbiota in many aspects of physiology, especially the role of the microbiota in anxiety-related behaviours, impaired social cognition and stress responsivity. Here we aim to further elucidate the mechanisms of the microbial influence by investigating changes in the homeostatic regulation of neuronal transcription of GF mice within the PFC using a genome-wide transcriptome profiling approach. Our results reveal a marked, concerted upregulation of genes linked to myelination and myelin plasticity. This coincided with upregulation of neural activity-induced pathways, potentially driving myelin plasticity. Subsequent investigation at the ultrastructural level demonstrated the presence of hypermyelinated axons within the PFC of GF mice. Notably, these changes in myelin and activity-related gene expression could be reversed by colonization with a conventional microbiota following weaning. In summary, we believe we demonstrate for the first time that the microbiome is necessary for appropriate and dynamic regulation of myelin-related genes with clear implications for cortical myelination at an ultrastructural level. The microbiota is therefore a potential therapeutic target for psychiatric disorders involving dynamic myelination in the PFC.

  7. Tyrosine hydroxylase positive nerves and mast cells in the porcine gallbladder

    Directory of Open Access Journals (Sweden)

    I. Stefanov

    2017-03-01

    Full Text Available The aim of this study was to detect the localisation of tyrosine hydroxylase (TH positive nerve fibres (THN and distribution of tyrosine hydroxylase positive mast cells (THMC in the wall of porcine gallbladder. THN were observed as single fibres, nerve fibres forming perivascular plexuses and nerve fibres grouped within the nerve fascicles. In the gallbladder`s fundus, body and neck, the TH+ fibres formed mucosal, muscular and serosal nonganglionated nerve plexuses. Toluidine blue (TB staining was used to confirm that the TH positive cells were mast cells. The number of THMC in the propria of gallbladder`s fundus, body and neck was significantly higher than in the muscular and serosal layers in both genders. The number of mast cells in the musculature was higher than in the serosa. The density and location of the THMC were similar to the TB positive (with gamma meta-chromasia mast cells in both males and females, and statistically significant difference was not established. In conclusion, original data concerning the existence and localisation of catecholaminergic nerves and THMC distribution in the porcine gallbladder’s wall are presented. The results could con-tribute to the body of knowledge of functional communication between autonomic nerves and mast cells in the gallbladder.

  8. Evolution of the CNS myelin gene regulatory program.

    Science.gov (United States)

    Li, Huiliang; Richardson, William D

    2016-06-15

    Myelin is a specialized subcellular structure that evolved uniquely in vertebrates. A myelinated axon conducts action potentials many times faster than an unmyelinated axon of the same diameter; for the same conduction speed, the unmyelinated axon would need a much larger diameter and volume than its myelinated counterpart. Hence myelin speeds information transfer and saves space, allowing the evolution of a powerful yet portable brain. Myelination in the central nervous system (CNS) is controlled by a gene regulatory program that features a number of master transcriptional regulators including Olig1, Olig2 and Myrf. Olig family genes evolved from a single ancestral gene in non-chordates. Olig2, which executes multiple functions with regard to oligodendrocyte identity and development in vertebrates, might have evolved functional versatility through post-translational modification, especially phosphorylation, as illustrated by its evolutionarily conserved serine/threonine phospho-acceptor sites and its accumulation of serine residues during more recent stages of vertebrate evolution. Olig1, derived from a duplicated copy of Olig2 in early bony fish, is involved in oligodendrocyte development and is critical to remyelination in bony vertebrates, but is lost in birds. The origin of Myrf orthologs might be the result of DNA integration between an invading phage or bacterium and an early protist, producing a fusion protein capable of self-cleavage and DNA binding. Myrf seems to have adopted new functions in early vertebrates - initiation of the CNS myelination program as well as the maintenance of mature oligodendrocyte identity and myelin structure - by developing new ways to interact with DNA motifs specific to myelin genes. This article is part of a Special Issue entitled SI: Myelin Evolution.

  9. Modelling of photonic crystal fibres

    DEFF Research Database (Denmark)

    Knudsen, Erik

    2003-01-01

    In the presenta ph.d. work a theoretical study of aspects of modelling photonic crystal fibres was carried out. Photonic crystal fibres form a class of optical waveguides where guidance is no longer provided by a difference in refractive index between core and cladding. Instead, guidance...... is provided by an arrangement of air-holes running along the length of the fibre. Depending on the geometry of the fibre, the guiding mechanism may be either arising from the formation of a photonic bandgap in the cladding structure (photonic bandgap fibre), or by an effect resembling total internal...... modes in contiguous fibre segments curved at different radii. Overall microbend loss is expressed as a statistical mean of mismatch losses. Extending a well proven, established formula for macrobending losses in stop index fibres, we provide an estimate of macrobend losses in an air-guiding photonic...

  10. Raman spectroscopy of non-penetrating peripheral nerve damage in swine: a tool for spectral pathology of nerves

    Science.gov (United States)

    Cilwa, Katherine E.; Slaughter, Tiffani; Elster, Eric A.; Forsberg, Jonathan A.; Crane, Nicole J.

    2015-03-01

    Over 30% of combat injuries involve peripheral nerve injury compared to only 3% in civilian trauma. In fact, nerve dysfunction is the second leading cause of long-term disability in injured service members and is present in 37% of upper limb injuries with disability. Identification and assessment of non-penetrating nerve injury in trauma patients could improve outcome and aid in therapeutic monitoring. We report the use of Raman spectroscopy as a noninvasive, non-destructive method for detection of nerve degeneration in intact nerves due to non-penetrating trauma. Nerve trauma was induced via compression and ischemia/reperfusion injury using a combat relevant swine tourniquet model (>3 hours ischemia). Control animals did not undergo compression/ischemia. Seven days post-operatively, sciatic and femoral nerves were harvested and fixed in formalin. Raman spectra of intact, peripheral nerves were collected using a fiber-optic probe with 3 mm diameter spot size and 785 nm excitation. Data was preprocessed, including fluorescence background subtraction, and Raman spectroscopic metrics were determined using custom peak fitting MATLAB scripts. The abilities of bivariate and multivariate analysis methods to predict tissue state based on Raman spectroscopic metrics are compared. Injured nerves exhibited changes in Raman metrics indicative of 45% decreased myelin content and structural damage (pdetect nerve degeneration associated with non-penetrating injury, relevant to neurapraxic and axonotmetic injuries; future experiments will further explore the clinical utility of Raman spectroscopy to recognize neural injury.

  11. 药物中毒性周围神经病变肌电图分析%EMG analysis of peripheral nerve lesion resulting from drug toxicity

    Institute of Scientific and Technical Information of China (English)

    张昆林; 马莎; 毛小川

    2003-01-01

    @@ INTRODUCTION Peripheral nerve lesion resulting from drug toxicity is caused by drugs which interrupt some enzymes in process of nervous metabolism and lead to loss of myelin sheath or axis- cylinder degeneration. Some drugs used in clinic can lead to peripheral nerve lesion. Patients showed symptoms such as numbness, asthenia.

  12. Anosmin-1 over-expression regulates oligodendrocyte precursor cell proliferation, migration and myelin sheath thickness.

    Science.gov (United States)

    Murcia-Belmonte, Verónica; Esteban, Pedro F; Martínez-Hernández, José; Gruart, Agnès; Luján, Rafael; Delgado-García, José María; de Castro, Fernando

    2016-04-01

    During development of the central nervous system, anosmin-1 (A1) works as a chemotropic cue contributing to axonal outgrowth and collateralization, as well as modulating the migration of different cell types, fibroblast growth factor receptor 1 (FGFR1) being the main receptor involved in all these events. To further understand the role of A1 during development, we have analysed the over-expression of human A1 in a transgenic mouse line. Compared with control mice during development and in early adulthood, A1 over-expressing transgenic mice showed an enhanced oligodendrocyte precursor cell (OPC) proliferation and a higher number of OPCs in the subventricular zone and in the corpus callosum (CC). The migratory capacity of OPCs from the transgenic mice is increased in vitro due to a higher basal activation of ERK1/2 mediated through FGFR1 and they also produced more myelin basic protein (MBP). In vivo, the over-expression of A1 resulted in an elevated number of mature oligodendrocytes with higher levels of MBP mRNA and protein, as well as increased levels of activation of the ERK1/2 proteins, while electron microscopy revealed thicker myelin sheaths around the axons of the CC in adulthood. Also in the mature CC, the nodes of Ranvier were significantly longer and the conduction velocity of the nerve impulse in vivo was significantly increased in the CC of A1 over-expressing transgenic mice. Altogether, these data confirmed the involvement of A1 in oligodendrogliogenesis and its relevance for myelination.

  13. A unified cell biological perspective on axon-myelin injury.

    Science.gov (United States)

    Simons, Mikael; Misgeld, Thomas; Kerschensteiner, Martin

    2014-08-04

    Demyelination and axon loss are pathological hallmarks of the neuroinflammatory disorder multiple sclerosis (MS). Although we have an increasingly detailed understanding of how immune cells can damage axons and myelin individually, we lack a unified view of how the axon-myelin unit as a whole is affected by immune-mediated attack. In this review, we propose that as a result of the tight cell biological interconnection of axons and myelin, damage to either can spread, which might convert a local inflammatory disease process early in MS into the global progressive disorder seen during later stages. This mode of spreading could also apply to other neurological disorders.

  14. Effect of acrylamide on the degeneration and regeneration of rat myelinated fiber after sciatic nerve crush injury%丙烯酰胺对小鼠坐骨神经捻挫损伤后有髓纤维变性和再生的影响

    Institute of Scientific and Technical Information of China (English)

    赫秋月; 韩漫夫; 饶明俐

    2005-01-01

    .OBJECTIVE: To observe the effect of acrylamide on the degeneration and regeneration of sciatic nerve medullated fibers following crush injury of C57BL/Ola (Ola) rat and C57BL/6J (6J) rat.DESIGN: Randomized controlled experiment.SETTING: Department of Neurology,Second People's hospital of Shenzhen; Department of Neurology of First hospital of Jilin University MATERIALS: This experiment was carried out in the neurological department in the University of Occupational and Environmental, Japan from January to June 1996. Twelve adult Ola rats and 6J rats were adopted and evenly randomly divided into experimental group and comparison group.METHODS: Rats were subjected to general anaesthesia, and then the proximal section of sciatic nerve was exposed and frustrated with hemostatic forceps for 10 s before suture. Rats in the experimental group were given intraperitoneal injection of acrylamide in a total dosage of 350 mg, which replaced by the same volume of physiological saline in comparison group.At 14 days after sciatic nerve torsion injury, all rats were anaesthetized again and the distal section of sciatic nerve was obtained and cut into slices, meanwhile the cross sectional area, the density and size frequency distribution of medullated fibers, as well as the number of medullated fibers in each nerve were determined.MAIN OUTCOME MEASURES: The density and size frequency distribution of sciatic nerve medullated fibers, as well as the number, the maximum diameter and the mean diameter of medullated fibers in two group of 0la rats and 6J rats.RESULTS: Totally 12 Ola rats and 6J rats entered the result analysis.① No Ola rat displayed Wallerian degeneration; But medullated fiber degeneration and following neonatal small diameter medullated fibers could be observed in 6J rats. ②In the experimental group, the total density of sciatic nerve medullated fibers in 6J rats was lower than that of Ola rat (P < 0.05) ;with the total number of medullated fibers in 6J rats also less than that

  15. Axonal plasticity elicits long-term changes in oligodendroglia and myelinated fibers

    DEFF Research Database (Denmark)

    Drøjdahl, Nina; Nielsen, Helle Hvilsted; Gardi, Jonathan E

    2010-01-01

    Axons are linked to induction of myelination during development and to the maintenance of myelin and myelinated tracts in the adult CNS. Currently, it is unknown whether and how axonal plasticity in adult CNS impacts the myelinating cells and their precursors. In this article, we report that newly...

  16. Hypertension-induced peripheral neuropathy and the combined effects of hypertension and diabetes on nerve structure and function in rats.

    Science.gov (United States)

    Gregory, Joshua A; Jolivalt, Corinne G; Goor, Jared; Mizisin, Andrew P; Calcutt, Nigel A

    2012-10-01

    Diabetic neuropathy includes damage to neurons, Schwann cells and blood vessels. Rodent models of diabetes do not adequately replicate all pathological features of diabetic neuropathy, particularly Schwann cell damage. We, therefore, tested the hypothesis that combining hypertension, a risk factor for neuropathy in diabetic patients, with insulin-deficient diabetes produces a more pertinent model of peripheral neuropathy. Behavioral, physiological and structural indices of neuropathy were measured for up to 6 months in spontaneously hypertensive and age-matched normotensive rats with or without concurrent streptozotocin-induced diabetes. Hypertensive rats developed nerve ischemia, thermal hyperalgesia, nerve conduction slowing and axonal atrophy. Thinly myelinated fibers with supernumerary Schwann cells indicative of cycles of demyelination and remyelination were also identified along with reduced nerve levels of myelin basic protein. Similar disorders were noted in streptozotocin-diabetic rats, except that thinly myelinated fibers were not observed and expression of myelin basic protein was normal. Superimposing diabetes on hypertension compounded disorders of nerve blood flow, conduction slowing and axonal atrophy and increased the incidence of thinly myelinated fibers. Rats with combined insulinopenia, hyperglycemia and hypertension provide a model for diabetic neuropathy that offers an opportunity to study mechanisms of Schwann cell pathology and suggests that hypertension may contribute to the etiology of diabetic neuropathy.

  17. SncRNA715 Inhibits Schwann Cell Myelin Basic Protein Synthesis.

    Science.gov (United States)

    Müller, Christina; Hochhaus, Nina M; Fontana, Xavier; Luhmann, Heiko J; White, Robin

    2015-01-01

    Myelin basic proteins (MBP) are major constituents of the myelin sheath in the central nervous system (CNS) and the peripheral nervous system (PNS). In the CNS Mbp translation occurs locally at the axon-glial contact site in a neuronal activity-dependent manner. Recently we identified the small non-coding RNA 715 (sncRNA715) as a key inhibitor of Mbp translation during transport in oligodendrocytes. Mbp mRNA localization in Schwann cells has been observed, but has not been investigated in much detail. Here we could confirm translational repression of Mbp mRNA in Schwann cells. We show that sncRNA715 is expressed and its levels correlate inversely with MBP in cultured Schwann cells and in the sciatic nerve in vivo. Furthermore we could reduce MBP protein levels in cultured Schwann cells by increasing the levels of the inhibitory sncRNA715. Our findings suggest similarities in sncRNA715-mediated translational repression of Mbp mRNA in oligodendrocytes and Schwann cells.

  18. Exclusive expression of the Rab11 effector SH3TC2 in Schwann cells links integrin-α6 and myelin maintenance to Charcot-Marie-Tooth disease type 4C.

    Science.gov (United States)

    Vijay, Sauparnika; Chiu, Meagan; Dacks, Joel B; Roberts, Rhys C

    2016-07-01

    Charcot-Marie-Tooth disease type 4C (CMT4C) is one of the commonest autosomal recessive inherited peripheral neuropathies and is associated with mutations in the Rab11 effector, SH3TC2. Disruption of the SH3TC2-Rab11 interaction is the molecular abnormality underlying this disease. However, why SH3TC2 mutations cause an isolated demyelinating neuropathy remains unanswered. Here we show that SH3TC2 is an exclusive Schwann cell protein expressed late in myelination and is downregulated following denervation suggesting a functional role in myelin sheath maintenance. We support our data with an evolutionary cell biological analysis showing that the SH3TC2 gene, and its paralogue SH3TC1, are derived from an ancestral homologue, the duplication of which occurred in the common ancestor of jawed vertebrates, coincident with the appearance of Schwann cells and peripheral axon myelination. Furthermore, we report that SH3TC2 associates with integrin-α6, suggesting that aberrant Rab11-dependent endocytic trafficking of this critical laminin receptor in myelinated Schwann cells is connected to the demyelination seen in affected nerves. Our study therefore highlights the inherent evolutionary link between SH3TC2 and peripheral nerve myelination, pointing also towards a molecular mechanism underlying the specific demyelinating neuropathy that characterizes CMT4C.

  19. Significance of the technique of simultaneous demonstration of neurons and nerve fibres in central nervous system of rat in the research on its nature determination, semi-quantitation and localization%同时显示大鼠中枢神经系统神经元和神经纤维技术对其定性、半定量、定位研究的意义

    Institute of Scientific and Technical Information of China (English)

    李喆; 陈德英

    2004-01-01

    背景:在神经损伤与修复的研究工作中,常常会涉及损伤后以及修复过程中神经元和神经纤维的定性、定位和半定量的问题.目前神经生物学常规实验技术还很难解决这样的问题.目的:探索一种简便易行并能同时显示大鼠中枢神经系统(central nervous system,CNS)神经元和神经纤维的全程连续切片的块染方法.设计:非随机非对照的实验研究.地点和材料:第三军医大学组胚教研室(组织学常规技术实验室),实验动物中心.动物:健康成年Wistar无菌级大鼠2只(第三军医大学实验动物中心提供),体质量200~300 g,雌雄不拘.干预:取大鼠嗅脑至脊髓骶段的完整CNS组织,将CNS按顺序以冠状切面切成厚2 em的块待切,氨乙醇固定组织吸干后直接入30 g/L硝酸银水溶液,于22℃恒温箱中浸银染色1周.常规脱水、透明、石蜡包埋,全程连续切片的制作.一个大鼠的CNS全程标本可做成3套相近的连续切片.主要观察指标:神经元及突起和神经纤维的形态结构.结果:大鼠全程CNS连续切片各断面上神经元呈深棕黄色,核膜及核仁呈黑色;神经纤维呈黑色;背景淡黄色.结论:运用灌流冲洗后固定、Cajal氏镀银块染、连续石蜡切片的方法,可制作同时显示CNS神经元和神经纤维的全程连续切片.将此技术方法运用到神经损伤与修复的实验研究中,对于神经元和神经纤维的定性、半定量和定位的研究都具有较高的实用价值.%BACKGROUND: In the research of the neural injury and rehabilitation, the problems as nature determination, localization and semi-quantitation of nerve fibres and neurons after injury and during rehabilitation were often involved. However, recent routine laboratory techniques in neurobiology had difficulties in solving such problems.OBJECTIVE: To explore an easy and practical way of mass staining in,which was able to demonstrate the serial sectioning process in neurons

  20. Non-Linear Fibres for Widely Tunable Femtosecond Fibre Lasers

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard

    This Ph.D. thesis investigates how intramodal and intermodal nonlinear processes in few-moded fibres can be used to generate light sources at wavelengths outside the spectral gain-bands of rare-earth-doped opticalfibres. The design of two specialty few-moded fibres for use in a widely tunable...... femtosecond fibre laser is presented. The two fibres are used to facilitate the shifting of a soliton in a cascade configuration from the ytterbium gain-band and to a wavelength of 1280 nm. The temporal pulse duration is on a femtosecond scale with a pulse energy of 5 nJ. The experimentally observed soliton...... self-frequency shift and thereby the outcome of the experimental demonstration of the widely tunable femtosecond fibre laser is shown to depend highly on the chirped of the input pulse into the first few-moded fibre in the cascade setup. Furthermore, an alternative splicing process, with a combination...

  1. Myelin restoration: progress and prospects for human cell replacement therapies.

    Science.gov (United States)

    Potter, Gregory B; Rowitch, David H; Petryniak, Magdalena A

    2011-06-01

    Oligodendrocytes are the primary source of myelin in the adult central nervous system (CNS), and their dysfunction or loss underlies several diseases of both children and adults. Dysmyelinating and demyelinating diseases are thus attractive targets for cell-based strategies since replacement of a single presumably homogeneous cell type has the potential to restore functional levels of myelin. To understand the obstacles that cell-replacement therapy might face, we review oligodendrocyte biology and emphasize aspects of oligodendrocyte development that will need to be recapitulated by exogenously transplanted cells, including migration from the site of transplantation, axon recognition, terminal differentiation, axon wrapping, and myelin production and maintenance. We summarize studies in which different types of myelin-forming cells have been transplanted into the CNS and highlight the continuing challenges regarding the use of cell-based therapies for human white matter disorders.

  2. Myelin lesions associated with lysosomal and peroxisomal disorders.

    Science.gov (United States)

    Faust, Phyllis L; Kaye, Edward M; Powers, James M

    2010-09-01

    Abnormalities of myelin are common in lysosomal and peroxisomal disorders. Most display a primary loss of myelin in which the myelin sheath and/or oligodendrocytes are selectively targeted by diverse pathogenetic processes. The most severe and, hence, clinically relevant are heritable diseases predominantly of infants and children, the leukodystrophies: metachromatic, globoid cell (Krabbe disease) and adreno-leukodystrophy. Our still limited understanding of these diseases has derived from multiple sources: originally, neurological-neuropathologic-neurochemical correlative studies of the natural disease in humans or other mammals, which has been enhanced by more sophisticated and contemporary techniques of cell and molecular biology. Transgenic mouse models seem to be the most promising methodology, allowing the examination of the cellular role of lysosomes and peroxisomes for formation and maintenance of both myelin and axons, and providing initial platforms to evaluate therapies. Treatment options are woefully inadequate and in their nascent stages, but still inspire some hope for the future.

  3. Hemimegalencephaly: signal changes suggesting abnormal myelination on MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yagishita, A. [Dept. of Neuroradiology, Tokyo Metropolitan Neurological Hospital (Japan); Arai, N. [Dept. of Clinical Neuropathology, Tokyo Metropolitan Inst. for Neuroscience, Tokyo (Japan); Tamagawa, K. [Dept. of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo (Japan); Oda, M. [Dept. of Neuropathology, Tokyo Metropolitan Neurological Hospital, Tokyo (Japan)

    1998-11-01

    We reviewed the MRI of 17 patients with hemimegalencephaly to investigate abnormal myelination in this condition. On images of seven patients aged 18 months or less, the white matter on the affected side suggested advanced myelination for the age. On T1-weighted images of three patients aged 1 month, the anterior limb of the internal capsule in the affected hemisphere was myelinated, and T1 shortening was not clearly seen in the pre- and postcentral gyri. The cortical grey matter and subcortical white matter was isointense in two patients. Images of two patients aged 4 to 5 months and of five patients aged 8-18 months showed myelination that extended more peripherally in the white matter of the affected hemisphere. (orig.) With 3 figs., 1 tab., 8 refs.

  4. MAG, myelin and overcoming growth inhibition in the CNS

    National Research Council Canada - National Science Library

    McKerracher, Lisa; Rosen, Kenneth M

    2015-01-01

    While neurons in the central nervous system (CNS) have the capacity to regenerate their axons after injury, they fail to do so, in part because regeneration is limited by growth inhibitory proteins present in CNS myelin...

  5. Interspike interval analysis in a patient with peripheral nerve hyperexcitability and potassium channel antibodies.

    NARCIS (Netherlands)

    Kleine, B.U.; Stegeman, D.F.; Drost, G.; Zwarts, M.J.

    2008-01-01

    Neuromyotonia or Isaacs' syndrome is a rare peripheral nerve hyperexcitability disorder caused by antibodies against potassium channels of myelinated axons. We present the high-density surface electromyographic (EMG) recordings of a patient with fasciculations and cramps due to neuromyotonia. To cha

  6. Discrepancies in quantitative assessment of normal and regenerated peripheral nerve fibers between light and electron microscopy.

    Science.gov (United States)

    Ronchi, Giulia; Jager, Sara Buskbjerg; Vaegter, Christian Bjerggaard; Raimondo, Stefania; Giacobini-Robecchi, Maria Giuseppina; Geuna, Stefano

    2014-09-01

    Quantitative estimation of myelinated nerve fiber number, together with fiber size parameters, is one of the most important tools for nerve regeneration research. In this study we used a design-based stereological method to evaluate the regenerative process in two experimental paradigms: crush injury and autograft repair. Samples were embedded in resin and morphometric counting and measurements were performed using both light and electron microscopes. Results show a significant difference in myelinated fiber number estimation between light and electron microscopes, especially after autograft repair; light microscope significantly underestimates the number of fibers because of the large number of very small axons that can be detected only in electron microscope. The analysis of the size parameters also shows a higher number of small fibers in electron microscopic analysis, especially in regenerated nerves. This comparative study shows that the integration of data obtained in light microscope with those obtained in electron microscope is necessary in revealing very small myelinated fibers that cannot be detected otherwise. Moreover, the difference in the estimation of total number of myelinated fibers between light and electron microscopes must be considered in data analysis to ensure accurate interpretation of the results. © 2014 Peripheral Nerve Society.

  7. The good, the bad and the ugly. Macrophages/microglia with a focus on myelin repair.

    Science.gov (United States)

    Doring, Axinia; Yong, Voon Wee

    2011-06-01

    A feature of most neurological disorders is demyelination, whereby myelin is lost from axons partly through stripping by macrophages/microglia. Spontaneous remyelination by oligodendrocytes that mature from oligodendrocyte precursor cells occurs following demyelination, even in the chronic inflammatory disorder of the central nervous system, multiple sclerosis. If remyelination does not occur or is prevented, then one consequence besides the loss of saltatory nerve conduction is the degeneration of axons. Thus, promoting remyelination is a desired result. In this article, we review the data that despite a reputation as "bad" factors for CNS wellbeing, including the promotion of neuroinflammation and demyelination, some aspects of macrophages/microglia activity are indeed "good", and can engender repair from the "ugly" phenomenon of demyelination. We discuss factors that help promote the benefits of macrophages/microglia activity for remyelination.

  8. Stretch-induced nerve injury: a proposed technique for the study of nerve regeneration and evaluation of the influence of gabapentin on this model

    Directory of Open Access Journals (Sweden)

    J.A. Machado

    2013-11-01

    Full Text Available The rat models currently employed for studies of nerve regeneration present distinct disadvantages. We propose a new technique of stretch-induced nerve injury, used here to evaluate the influence of gabapentin (GBP on nerve regeneration. Male Wistar rats (300 g; n=36 underwent surgery and exposure of the median nerve in the right forelimbs, either with or without nerve injury. The technique was performed using distal and proximal clamps separated by a distance of 2 cm and a sliding distance of 3 mm. The nerve was compressed and stretched for 5 s until the bands of Fontana disappeared. The animals were evaluated in relation to functional, biochemical and histological parameters. Stretching of the median nerve led to complete loss of motor function up to 12 days after the lesion (P<0.001, compared to non-injured nerves, as assessed in the grasping test. Grasping force in the nerve-injured animals did not return to control values up to 30 days after surgery (P<0.05. Nerve injury also caused an increase in the time of sensory recovery, as well as in the electrical and mechanical stimulation tests. Treatment of the animals with GBP promoted an improvement in the morphometric analysis of median nerve cross-sections compared with the operated vehicle group, as observed in the area of myelinated fibers or connective tissue (P<0.001, in the density of myelinated fibers/mm2 (P<0.05 and in the degeneration fragments (P<0.01. Stretch-induced nerve injury seems to be a simple and relevant model for evaluating nerve regeneration.

  9. Sox10 Expression in Goldfish Retina and Optic Nerve Head in Controls and after the Application of Two Different Lesion Paradigms

    Science.gov (United States)

    Parrilla, Marta; León-Lobera, Fernando; Lillo, Concepción; Arévalo, Rosario; Aijón, José; Lara, Juan Manuel; Velasco, Almudena

    2016-01-01

    The mammalian central nervous system (CNS) is unable to regenerate. In contrast, the CNS of fish, including the visual system, is able to regenerate after damage. Moreover, the fish visual system grows continuously throughout the life of the animal, and it is therefore an excellent model to analyze processes of myelination and re-myelination after an injury. Here we analyze Sox10+ oligodendrocytes in the goldfish retina and optic nerve in controls and after two kinds of injuries: cryolesion of the peripheral growing zone and crushing of the optic nerve. We also analyze changes in a major component of myelin, myelin basic protein (MBP), as a marker for myelinated axons. Our results show that Sox10+ oligodendrocytes are located in the retinal nerve fiber layer and along the whole length of the optic nerve. MBP was found to occupy a similar location, although its loose appearance in the retina differed from the highly organized MBP+ axon bundles in the optic nerve. After optic nerve crushing, the number of Sox10+ cells decreased in the crushed area and in the optic nerve head. Consistent with this, myelination was highly reduced in both areas. In contrast, after cryolesion we did not find changes in the Sox10+ population, although we did detect some MBP- degenerating areas. We show that these modifications in Sox10+ oligodendrocytes are consistent with their role in oligodendrocyte identity, maintenance and survival, and we propose the optic nerve head as an excellent area for research aimed at better understanding of de- and remyelination processes. PMID:27149509

  10. Sox10 Expression in Goldfish Retina and Optic Nerve Head in Controls and after the Application of Two Different Lesion Paradigms.

    Directory of Open Access Journals (Sweden)

    Marta Parrilla

    Full Text Available The mammalian central nervous system (CNS is unable to regenerate. In contrast, the CNS of fish, including the visual system, is able to regenerate after damage. Moreover, the fish visual system grows continuously throughout the life of the animal, and it is therefore an excellent model to analyze processes of myelination and re-myelination after an injury. Here we analyze Sox10+ oligodendrocytes in the goldfish retina and optic nerve in controls and after two kinds of injuries: cryolesion of the peripheral growing zone and crushing of the optic nerve. We also analyze changes in a major component of myelin, myelin basic protein (MBP, as a marker for myelinated axons. Our results show that Sox10+ oligodendrocytes are located in the retinal nerve fiber layer and along the whole length of the optic nerve. MBP was found to occupy a similar location, although its loose appearance in the retina differed from the highly organized MBP+ axon bundles in the optic nerve. After optic nerve crushing, the number of Sox10+ cells decreased in the crushed area and in the optic nerve head. Consistent with this, myelination was highly reduced in both areas. In contrast, after cryolesion we did not find changes in the Sox10+ population, although we did detect some MBP- degenerating areas. We show that these modifications in Sox10+ oligodendrocytes are consistent with their role in oligodendrocyte identity, maintenance and survival, and we propose the optic nerve head as an excellent area for research aimed at better understanding of de- and remyelination processes.

  11. Fibre composite in driveline

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, W.

    1989-03-01

    Apart from the geometric degrees of freedom of classical material, fibre composites as material for cardan shafts offer two further free parameters to the design engineer: The fiberment winding angle and the ratio of carbon and glass fibres. This results in a large scope of characteristics in terms of flexibility and torsion. In many cases it is therefore possible to use a one-piece shaft instead of a two-piece shaft, and a specific harmonization of the vibration characteristics of the driveline can be realized. In comparison with shafts made out of steel, mass is reduced by 40-50%, the moment of inertia of the mass by 35-40%. The Composite shaft fulfils the requirements of the performance specifications typical of the components concerned both in terms of engineering and efficiency.

  12. The multiple roles of myelin protein genes during the development of the oligodendrocyte

    OpenAIRE

    2010-01-01

    It has become clear that the products of several of the earliest identified myelin protein genes perform functions that extend beyond the myelin sheath. Interestingly, these myelin proteins, which comprise proteolipid protein, 2′,3′-cyclic nucleotide 3′-phosphodiesterase and the classic and golli MBPs (myelin basic proteins), play important roles during different stages of oligodendroglial development. These non-myelin-related functions are varied and include roles in the...

  13. Low-Level Laser Irradiation Improves Functional Recovery and Nerve Regeneration in Sciatic Nerve Crush Rat Injury Model

    Science.gov (United States)

    Wang, Chau-Zen; Chen, Yi-Jen; Wang, Yan-Hsiung; Yeh, Ming-Long; Huang, Mao-Hsiung; Ho, Mei-Ling; Liang, Jen-I; Chen, Chia-Hsin

    2014-01-01

    The development of noninvasive approaches to facilitate the regeneration of post-traumatic nerve injury is important for clinical rehabilitation. In this study, we investigated the effective dose of noninvasive 808-nm low-level laser therapy (LLLT) on sciatic nerve crush rat injury model. Thirty-six male Sprague Dawley rats were divided into 6 experimental groups: a normal group with or without 808-nm LLLT at 8 J/cm2 and a sciatic nerve crush injury group with or without 808-nm LLLT at 3, 8 or 15 J/cm2. Rats were given consecutive transcutaneous LLLT at the crush site and sacrificed 20 days after the crush injury. Functional assessments of nerve regeneration were analyzed using the sciatic functional index (SFI) and hindlimb range of motion (ROM). Nerve regeneration was investigated by measuring the myelin sheath thickness of the sciatic nerve using transmission electron microscopy (TEM) and by analyzing the expression of growth-associated protein 43 (GAP43) in sciatic nerve using western blot and immunofluorescence staining. We found that sciatic-injured rats that were irradiated with LLLT at both 3 and 8 J/cm2 had significantly improved SFI but that a significant improvement of ROM was only found in rats with LLLT at 8 J/cm2. Furthermore, the myelin sheath thickness and GAP43 expression levels were significantly enhanced in sciatic nerve-crushed rats receiving 808-nm LLLT at 3 and 8 J/cm2. Taken together, these results suggest that 808-nm LLLT at a low energy density (3 J/cm2 and 8 J/cm2) is capable of enhancing sciatic nerve regeneration following a crush injury. PMID:25119457

  14. Muscle differentiation after sciatic nerve transection and reinnervation in adult rats

    NARCIS (Netherlands)

    Ijkema-Paassen, J; Meek, MF; Gramsbergen, A

    Reinnervation after peripheral nerve transections generally leads to poor functional recovery. In order to study whether changes in muscles might be a contributing factor in this phenomenon we studied muscle morphology and fibre type distributions after sciatic nerve transection in the rat hind

  15. An inside-out vein graft iflled with platelet-rich plasma for repair of a short sciatic nerve defect in rats

    Institute of Scientific and Technical Information of China (English)

    Ji Yeong Kim; Woo Joo Jeon; Dong Hwee Kim; Im Joo Rhyu; Young Hwan Kim; Inchan Youn; Jong Woong Park

    2014-01-01

    Platelet-rich plasma containing various growth factors can promote nerve regeneration. An in-side-out vein graft can substitute nerve autograft to repair short nerve defects. It is hypothesized that an inside-out vein graft iflled with platelet-rich plasma shows better effects in the repair of short sciatic nerve defects. In this study, an inside-out vein autograft iflled with platelet-rich plasma was used to bridge a 10 mm-long sciatic nerve defect in rats. The sciatic nerve function of rats with an inside-out vein autograft iflled with platelet-rich plasma was better improved than that of rats with a simple inside-out vein autograft. At 6 and 8 weeks, the sciatic nerve function of rats with an inside-out vein autograft filled with platelet-rich plasma was better than that of rats undergoing nerve autografting. Compared with the sciatic nerve repaired with a simple inside-out vein autograft, the number of myelinated axons was higher, axon diameter and myelin sheath were greater in the sciatic nerve repaired with an inside-out vein autograft iflled with platelet-rich plasma and they were similar to those in the sciatic nerve repaired with nerve autograft. These findings suggest that an inside-out vein graft filled with platelet-rich plasma can substitute nerve autograft to repair short sciatic nerve defects.

  16. Morphological changes in nerve cells during normal aging.

    Science.gov (United States)

    Pannese, Ennio

    2011-06-01

    During normal aging, widespread loss of nerve cells does not occur. Neuronal loss is limited to restricted regions of the nervous system and is slight (probably no more than 10%). The commonest age-related structural changes undergone by nerve cells are as follows: dendrites decrease in number and length and many dendritic spines are lost; axons decrease in number and their myelin sheaths may become less compact and undergo segmental demyelination followed by remyelination; and significant loss of synapses occurs. These changes probably make a significant contribution to the behavioral impairment and cognitive decline that often accompany normal aging.

  17. Optical Fibre Bundle

    CERN Multimedia

    These are sample fibre optic cables which are used for networking. Optical fibers are widely used in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data rates) than wire cables. Fibers are used instead of metal wires because signals travel along them with less loss and are also immune to electromagnetic interference. This is useful for somewhere like CERN where magnets with their highly powerful magnetic fields could pose a problem.

  18. Myelin water fraction in human cervical spinal cord in vivo.

    Science.gov (United States)

    Wu, Yijing; Alexander, Andrew L; Fleming, John O; Duncan, Ian D; Field, Aaron S

    2006-01-01

    The noninvasive discrimination of myelin disease from axonal loss and other pathologic confounds remains an unsolved problem in multiple sclerosis but may be possible through magnetic resonance quantitation of the intramyelinic water compartment. Technical challenges have limited the study of this approach in the spinal cord, a common site of involvement in multiple sclerosis. This technical note reports the test-retest reproducibility of a short T2-based estimate of myelin content in human spinal cord in vivo.

  19. Challenges for Nerve Repair Using Chitosan-Siloxane Hybrid Porous Scaffolds

    Directory of Open Access Journals (Sweden)

    Yuki Shirosaki

    2014-01-01

    Full Text Available The treatment of peripheral nerve injuries remains one of the greatest challenges of neurosurgery, as functional recover is rarely satisfactory in these patients. Recently, biodegradable nerve guides have shown great potential for enhancing nerve regeneration. A major advantage of these nerve guides is that no foreign material remains after the device has fulfilled its task, which spares a second surgical intervention. Recently, we studied peripheral nerve regeneration using chitosan-γ-glycidoxypropyltrimethoxysilane (chitosan-GPTMS porous hybrid membranes. In our studies, these porous membranes significantly improved nerve fiber regeneration and functional recovery in rat models of axonotmetic and neurotmetic sciatic nerve injuries. In particular, the number of regenerated myelinated nerve fibers and myelin thickness were significantly higher in rat treated with chitosan porous hybrid membranes, whether or not they were used in combination with mesenchymal stem cells isolated from the Wharton’s jelly of the umbilical cord. In this review, we describe our findings on the use of chitosan-GPTMS hybrids for nerve regeneration.

  20. Innervation of the Human Cavum Conchae and Auditory Canal: Anatomical Basis for Transcutaneous Auricular Nerve Stimulation

    Science.gov (United States)

    Bermejo, P.; López, M.; Larraya, I.; Chamorro, J.; Cobo, J. L.; Ordóñez, S.

    2017-01-01

    The innocuous transcutaneous stimulation of nerves supplying the outer ear has been demonstrated to be as effective as the invasive direct stimulation of the vagus nerve for the treatment of some neurological and nonneurological disturbances. Thus, the precise knowledge of external ear innervation is of maximal interest for the design of transcutaneous auricular nerve stimulation devices. We analyzed eleven outer ears, and the innervation was assessed by Masson's trichrome staining, immunohistochemistry, or immunofluorescence (neurofilaments, S100 protein, and myelin-basic protein). In both the cavum conchae and the auditory canal, nerve profiles were identified between the cartilage and the skin and out of the cartilage. The density of nerves and of myelinated nerve fibers was higher out of the cartilage and in the auditory canal with respect to the cavum conchae. Moreover, the nerves were more numerous in the superior and posterior-inferior than in the anterior-inferior segments of the auditory canal. The present study established a precise nerve map of the human cavum conchae and the cartilaginous segment of the auditory canal demonstrating regional differences in the pattern of innervation of the human outer ear. These results may provide additional neuroanatomical basis for the accurate design of auricular transcutaneous nerve stimulation devices.

  1. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lihua [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Center of Molecular Medicine, School of Medicine, Hubei University of Arts and Sciences, Xiangyang 441053 (China); Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Wang, Xiong; Huselstein, Celine [Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS – Université de Lorraine, Biopôle, 54500 Vandoeuvre-lès-Nancy (France); Chen, Yun, E-mail: yunchen@whu.edu.cn [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-02-20

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide

  2. Fibre-optical microendoscopy.

    Science.gov (United States)

    Gu, M; Bao, H; Kang, H

    2014-04-01

    Microendoscopy has been an essential tool in exploring micro/nano mechanisms in vivo due to high-quality imaging performance, compact size and flexible movement. The investigations into optical fibres, micro-scanners and miniature lens have boosted efficiencies of remote light delivery to sample site and signal collection. Given the light interaction with materials in the fluorescence imaging regime, this paper reviews two classes of compact microendoscopy based on a single fibre: linear optical microendoscopy and nonlinear optical microendoscopy. Due to the fact that fluorescence occurs only in the focal volume, nonlinear optical microendoscopy can provide stronger optical sectioning ability than linear optical microendoscopy, and is a good candidate for deep tissue imaging. Moreover, one-photon excited fluorescence microendoscopy as the linear optical microendoscopy suffers from severe photobleaching owing to the linear dependence of photobleaching rate on excitation laser power. On the contrary, nonlinear optical microendoscopy, including two-photon excited fluorescence microendoscopy and second harmonic generation microendoscopy, has the capability to minimize or avoid the photobleaching effect at a high excitation power and generate high image contrast. The combination of various nonlinear signals gained by the nonlinear optical microendoscopy provides a comprehensive insight into biophenomena in internal organs. Fibre-optical microendoscopy overcomes physical limitations of traditional microscopy and opens up a new path to achieve early cancer diagnosis and microsurgery in a minimally invasive and localized manner.

  3. FK506-loaded chitosan conduit promotes the regeneration of injured sciatic nerves in the rat through the upregulation of brain-derived neurotrophic factor and TrkB.

    Science.gov (United States)

    Zhao, Jia; Zheng, Xifu; Fu, Chongyang; Qu, Wei; Wei, Guoqiang; Zhang, Weiguo

    2014-09-15

    FK506 has been shown to exert neurotrophic and neuroprotective effects, but its long-term application for nerve regeneration is limited. This study evaluated the potential application of a novel FK506-loaded chitosan conduit for peripheral nerve repair, and explored the underlying mechanism. A sciatic nerve injury model was created in male Wistar rats, which were then randomly divided into three treatment groups (n=40, each): chitosan-only, chitosan+FK506 injection, and FK506-loaded chitosan. We found significant recovery of normal morphology of sciatic nerves and higher density of myelinated nerve fibers in rats treated with FK506-loaded chitosan. Similarly, the total number of myelinated nerve fibers, myelin sheath thickness, and axon diameters were significantly higher in this group compared with the others, and the compound muscle action potentials and motor nerve conduction velocity values of sciatic nerves were significantly higher. BDNF and TrkB levels in motor neurons were highest in rats treated with FK506-loaded chitosan. In conclusion, FK506-loaded chitosan promoted peripheral nerve repair and regeneration in a rat model of sciatic nerve injury. These effects are correlated with increased BDNF and TrkB expression in motor neurons.

  4. Myelin Recovery in Multiple Sclerosis: The Challenge of Remyelination

    Directory of Open Access Journals (Sweden)

    Edward L. Hogan

    2013-08-01

    Full Text Available Multiple sclerosis (MS is the most common demyelinating and an autoimmune disease of the central nervous system characterized by immune-mediated myelin and axonal damage, and chronic axonal loss attributable to the absence of myelin sheaths. T cell subsets (Th1, Th2, Th17, CD8+, NKT, CD4+CD25+ T regulatory cells and B cells are involved in this disorder, thus new MS therapies seek damage prevention by resetting multiple components of the immune system. The currently approved therapies are immunoregulatory and reduce the number and rate of lesion formation but are only partially effective. This review summarizes current understanding of the processes at issue: myelination, demyelination and remyelination—with emphasis upon myelin composition/ architecture and oligodendrocyte maturation and differentiation. The translational options target oligodendrocyte protection and myelin repair in animal models and assess their relevance in human. Remyelination may be enhanced by signals that promote myelin formation and repair. The crucial question of why remyelination fails is approached is several ways by examining the role in remyelination of available MS medications and avenues being actively pursued to promote remyelination including: (i cytokine-based immune-intervention (targeting calpain inhibition, (ii antigen-based immunomodulation (targeting glycolipid-reactive iNKT cells and sphingoid mediated inflammation and (ii