WorldWideScience

Sample records for musyc deep medium-band

  1. THE MULTIWAVELENGTH SURVEY BY YALE-CHILE (MUSYC): DEEP MEDIUM-BAND OPTICAL IMAGING AND HIGH-QUALITY 32-BAND PHOTOMETRIC REDSHIFTS IN THE ECDF-S

    International Nuclear Information System (INIS)

    Cardamone, Carolin N.; Van Dokkum, Pieter G.; Urry, C. Megan; Brammer, Gabriel; Taniguchi, Yoshi; Gawiser, Eric; Bond, Nicholas; Taylor, Edward; Damen, Maaike; Treister, Ezequiel; Cobb, Bethany E.; Schawinski, Kevin; Lira, Paulina; Murayama, Takashi; Saito, Tomoki; Sumikawa, Kentaro

    2010-01-01

    We present deep optical 18-medium-band photometry from the Subaru telescope over the ∼30' x 30' Extended Chandra Deep Field-South, as part of the Multiwavelength Survey by Yale-Chile (MUSYC). This field has a wealth of ground- and space-based ancillary data, and contains the GOODS-South field and the Hubble Ultra Deep Field. We combine the Subaru imaging with existing UBVRIzJHK and Spitzer IRAC images to create a uniform catalog. Detecting sources in the MUSYC 'BVR' image we find ∼40,000 galaxies with R AB 3.5. For 0.1 < z < 1.2, we find a 1σ scatter in Δz/(1 + z) of 0.007, similar to results obtained with a similar filter set in the COSMOS field. As a demonstration of the data quality, we show that the red sequence and blue cloud can be cleanly identified in rest-frame color-magnitude diagrams at 0.1 < z < 1.2. We find that ∼20% of the red sequence galaxies show evidence of dust emission at longer rest-frame wavelengths. The reduced images, photometric catalog, and photometric redshifts are provided through the public MUSYC Web site.

  2. A PUBLIC, K-SELECTED, OPTICAL-TO-NEAR-INFRARED CATALOG OF THE EXTENDED CHANDRA DEEP FIELD SOUTH (ECDFS) FROM THE MULTIWAVELENGTH SURVEY BY YALE-CHILE (MUSYC)

    International Nuclear Information System (INIS)

    Taylor, Edward N.; Franx, Marijn; Quadri, Ryan F.; Damen, Maaike; Hildebrandt, Hendrik; Van Dokkum, Pieter G.; Herrera, David; Gawiser, Eric; Bell, Eric F.; Barrientos, L. Felipe; Blanc, Guillermo A.; Castander, Francisco J.; Gonzalez-Perez, Violeta; Hall, Patrick B.; Kriek, Mariska; Labbe, Ivo; Lira, Paulina; Maza, Jose; Rudnick, Gregory; Treister, Ezequiel

    2009-01-01

    We present a new, K-selected, optical-to-near infrared photometric catalog of the Extended Chandra Deep Field South (ECDFS), making it publicly available to the astronomical community. 22 Imaging and spectroscopy data and catalogs are freely available through the MUSYC Public Data Release webpage: http://www.astro.yale.edu/MUSYC/. The data set is founded on publicly available imaging, supplemented by original z'JK imaging data collected as part of the MUltiwavelength Survey by Yale-Chile (MUSYC). The final photometric catalog consists of photometry derived from UU 38 BVRIz'JK imaging covering the full 1/2 x 1/2 square circ of the ECDFS, plus H-band photometry for approximately 80% of the field. The 5σ flux limit for point sources is K (AB) tot = 22.0. This is also the nominal completeness and reliability limit of the catalog: the empirical completeness for 21.75 85%. We have verified the quality of the catalog through both internal consistency checks, and comparisons to other existing and publicly available catalogs. As well as the photometric catalog, we also present catalogs of photometric redshifts and rest-frame photometry derived from the 10-band photometry. We have collected robust spectroscopic redshift determinations from published sources for 1966 galaxies in the catalog. Based on these sources, we have achieved a (1σ) photometric redshift accuracy of Δz/(1 + z) = 0.036, with an outlier fraction of 7.8%. Most of these outliers are X-ray sources. Finally, we describe and release a utility for interpolating rest-frame photometry from observed spectral energy distributions, dubbed InterRest. 23 InterRest is available via http://www.strw.leidenuniv.nl/~ent/InterRest. Documentation and a complete walkthrough can be found at the same address.

  3. The evolution of the rest-frame J- and H-band luminosity function of galaxies to z=3.5

    OpenAIRE

    Stefanon, Mauro; Marchesini, Danilo

    2011-01-01

    We present the rest-frame J- and H-band luminosity function (LF) of field galaxies, based on a deep multi-wavelength composite sample from the MUSYC, FIRES and FIREWORKS survey public catalogues, covering a total area of 450 arcmin^2. The availability of flux measurements in the Spitzer IRAC 3.6, 4.5, 5.8, and 8 um channels allows us to compute absolute magnitudes in the rest-frame J and H bands up to z=3.5 minimizing the dependence on the stellar evolution models. We compute the LF in the fo...

  4. Clusters, groups, and filaments in the Chandra deep field-south up to redshift 1

    International Nuclear Information System (INIS)

    Dehghan, S.; Johnston-Hollitt, M.

    2014-01-01

    We present a comprehensive structure detection analysis of the 0.3 deg 2 area of the MUSYC-ACES field, which covers the Chandra Deep Field-South (CDFS). Using a density-based clustering algorithm on the MUSYC and ACES photometric and spectroscopic catalogs, we find 62 overdense regions up to redshifts of 1, including clusters, groups, and filaments. We also present the detection of a relatively small void of ∼10 Mpc 2 at z ∼ 0.53. All structures are confirmed using the DBSCAN method, including the detection of nine structures previously reported in the literature. We present a catalog of all structures present, including their central position, mean redshift, velocity dispersions, and classification based on their morphological and spectroscopic distributions. In particular, we find 13 galaxy clusters and 6 large groups/small clusters. Comparison of these massive structures with published XMM-Newton imaging (where available) shows that 80% of these structures are associated with diffuse, soft-band (0.4-1 keV) X-ray emission, including 90% of all objects classified as clusters. The presence of soft-band X-ray emission in these massive structures (M 200 ≥ 4.9 × 10 13 M ☉ ) provides a strong independent confirmation of our methodology and classification scheme. In the closest two clusters identified (z < 0.13) high-quality optical imaging from the Deep2c field of the Garching-Bonn Deep Survey reveals the cD galaxies and demonstrates that they sit at the center of the detected X-ray emission. Nearly 60% of the clusters, groups, and filaments are detected in the known enhanced density regions of the CDFS at z ≅ 0.13, 0.52, 0.68, and 0.73. Additionally, all of the clusters, bar the most distant, are found in these overdense redshift regions. Many of the clusters and groups exhibit signs of ongoing formation seen in their velocity distributions, position within the detected cosmic web, and in one case through the presence of tidally disrupted central galaxies

  5. Clusters, groups, and filaments in the Chandra deep field-south up to redshift 1

    Energy Technology Data Exchange (ETDEWEB)

    Dehghan, S.; Johnston-Hollitt, M., E-mail: siamak.dehghan@vuw.ac.nz [School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand)

    2014-03-01

    We present a comprehensive structure detection analysis of the 0.3 deg{sup 2} area of the MUSYC-ACES field, which covers the Chandra Deep Field-South (CDFS). Using a density-based clustering algorithm on the MUSYC and ACES photometric and spectroscopic catalogs, we find 62 overdense regions up to redshifts of 1, including clusters, groups, and filaments. We also present the detection of a relatively small void of ∼10 Mpc{sup 2} at z ∼ 0.53. All structures are confirmed using the DBSCAN method, including the detection of nine structures previously reported in the literature. We present a catalog of all structures present, including their central position, mean redshift, velocity dispersions, and classification based on their morphological and spectroscopic distributions. In particular, we find 13 galaxy clusters and 6 large groups/small clusters. Comparison of these massive structures with published XMM-Newton imaging (where available) shows that 80% of these structures are associated with diffuse, soft-band (0.4-1 keV) X-ray emission, including 90% of all objects classified as clusters. The presence of soft-band X-ray emission in these massive structures (M {sub 200} ≥ 4.9 × 10{sup 13} M {sub ☉}) provides a strong independent confirmation of our methodology and classification scheme. In the closest two clusters identified (z < 0.13) high-quality optical imaging from the Deep2c field of the Garching-Bonn Deep Survey reveals the cD galaxies and demonstrates that they sit at the center of the detected X-ray emission. Nearly 60% of the clusters, groups, and filaments are detected in the known enhanced density regions of the CDFS at z ≅ 0.13, 0.52, 0.68, and 0.73. Additionally, all of the clusters, bar the most distant, are found in these overdense redshift regions. Many of the clusters and groups exhibit signs of ongoing formation seen in their velocity distributions, position within the detected cosmic web, and in one case through the presence of tidally

  6. Deep space propagation experiments at Ka-band

    Science.gov (United States)

    Butman, Stanley A.

    1990-01-01

    Propagation experiments as essential components of the general plan to develop an operational deep space telecommunications and navigation capability at Ka-band (32 to 35 GHz) by the end of the 20th century are discussed. Significant benefits of Ka-band over the current deep space standard X-band (8.4 GHz) are an improvement of 4 to 10 dB in telemetry capacity and a similar increase in radio navigation accuracy. Propagation experiments are planned on the Mars Observer Mission in 1992 in preparation for the Cassini Mission to Saturn in 1996, which will use Ka-band in the search for gravity waves as well as to enhance telemetry and navigation at Saturn in 2002. Subsequent uses of Ka-band are planned for the Solar Probe Mission and the Mars Program.

  7. SELECTION OF BURST-LIKE TRANSIENTS AND STOCHASTIC VARIABLES USING MULTI-BAND IMAGE DIFFERENCING IN THE PAN-STARRS1 MEDIUM-DEEP SURVEY

    International Nuclear Information System (INIS)

    Kumar, S.; Gezari, S.; Heinis, S.; Chornock, R.; Berger, E.; Soderberg, A.; Stubbs, C. W.; Kirshner, R. P.; Rest, A.; Huber, M. E.; Narayan, G.; Marion, G. H.; Burgett, W. S.; Foley, R. J.; Scolnic, D.; Riess, A. G.; Lawrence, A.; Smartt, S. J.; Smith, K.; Wood-Vasey, W. M.

    2015-01-01

    We present a novel method for the light-curve characterization of Pan-STARRS1 Medium Deep Survey (PS1 MDS) extragalactic sources into stochastic variables (SVs) and burst-like (BL) transients, using multi-band image-differencing time-series data. We select detections in difference images associated with galaxy hosts using a star/galaxy catalog extracted from the deep PS1 MDS stacked images, and adopt a maximum a posteriori formulation to model their difference-flux time-series in four Pan-STARRS1 photometric bands g P1 , r P1 , i P1 , and z P1 . We use three deterministic light-curve models to fit BL transients; a Gaussian, a Gamma distribution, and an analytic supernova (SN) model, and one stochastic light-curve model, the Ornstein-Uhlenbeck process, in order to fit variability that is characteristic of active galactic nuclei (AGNs). We assess the quality of fit of the models band-wise and source-wise, using their estimated leave-out-one cross-validation likelihoods and corrected Akaike information criteria. We then apply a K-means clustering algorithm on these statistics, to determine the source classification in each band. The final source classification is derived as a combination of the individual filter classifications, resulting in two measures of classification quality, from the averages across the photometric filters of (1) the classifications determined from the closest K-means cluster centers, and (2) the square distances from the clustering centers in the K-means clustering spaces. For a verification set of AGNs and SNe, we show that SV and BL occupy distinct regions in the plane constituted by these measures. We use our clustering method to characterize 4361 extragalactic image difference detected sources, in the first 2.5 yr of the PS1 MDS, into 1529 BL, and 2262 SV, with a purity of 95.00% for AGNs, and 90.97% for SN based on our verification sets. We combine our light-curve classifications with their nuclear or off-nuclear host galaxy offsets, to

  8. Deep-Space Ka-Band Flight Experience

    Science.gov (United States)

    Morabito, D. D.

    2017-11-01

    Lower frequency bands have become more congested in allocated bandwidth as there is increased competition between flight projects and other entities. Going to higher frequency bands offers significantly more bandwidth, allowing for the use of much higher data rates. However, Ka-band is more susceptible to weather effects than lower frequency bands currently used for most standard downlink telemetry operations. Future or prospective flight projects considering deep-space Ka-band (32-GHz) telemetry data links have expressed an interest in understanding past flight experience with received Ka-band downlink performance. Especially important to these flight projects is gaining a better understanding of weather effects from the experience of current or past missions that operated Ka-band radio systems. We will discuss the historical flight experience of several Ka-band missions starting from Mars Observer in 1993 up to present-day deep-space missions such as Kepler. The study of historical Ka-band flight experience allows one to recommend margin policy for future missions. Of particular interest, we will review previously reported-on flight experience with the Cassini spacecraft Ka-band radio system that has been used for radio science investigations as well as engineering studies from 2004 to 2015, when Cassini was in orbit around the planet Saturn. In this article, we will focus primarily on the Kepler spacecraft Ka-band link, which has been used for operational telemetry downlink from an Earth trailing orbit where the spacecraft resides. We analyzed the received Ka-band signal level data in order to characterize link performance over a wide range of weather conditions and as a function of elevation angle. Based on this analysis of Kepler and Cassini flight data, we found that a 4-dB margin with respect to adverse conditions ensures that we achieve at least a 95 percent data return.

  9. SELECTION OF BURST-LIKE TRANSIENTS AND STOCHASTIC VARIABLES USING MULTI-BAND IMAGE DIFFERENCING IN THE PAN-STARRS1 MEDIUM-DEEP SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.; Gezari, S.; Heinis, S. [Department of Astronomy, University of Maryland, Stadium Drive, College Park, MD 21224 (United States); Chornock, R.; Berger, E.; Soderberg, A.; Stubbs, C. W.; Kirshner, R. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Rest, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Huber, M. E.; Narayan, G.; Marion, G. H.; Burgett, W. S. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Foley, R. J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Scolnic, D.; Riess, A. G. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Lawrence, A. [Institute for Astronomy, University of Edinburgh Scottish Universities Physics Alliance, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Smartt, S. J.; Smith, K. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Wood-Vasey, W. M. [Pittsburgh Particle Physics, Astrophysics, and Cosmology Center, Department of Physics and Astronomy, University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); and others

    2015-03-20

    We present a novel method for the light-curve characterization of Pan-STARRS1 Medium Deep Survey (PS1 MDS) extragalactic sources into stochastic variables (SVs) and burst-like (BL) transients, using multi-band image-differencing time-series data. We select detections in difference images associated with galaxy hosts using a star/galaxy catalog extracted from the deep PS1 MDS stacked images, and adopt a maximum a posteriori formulation to model their difference-flux time-series in four Pan-STARRS1 photometric bands g {sub P1}, r {sub P1}, i {sub P1}, and z {sub P1}. We use three deterministic light-curve models to fit BL transients; a Gaussian, a Gamma distribution, and an analytic supernova (SN) model, and one stochastic light-curve model, the Ornstein-Uhlenbeck process, in order to fit variability that is characteristic of active galactic nuclei (AGNs). We assess the quality of fit of the models band-wise and source-wise, using their estimated leave-out-one cross-validation likelihoods and corrected Akaike information criteria. We then apply a K-means clustering algorithm on these statistics, to determine the source classification in each band. The final source classification is derived as a combination of the individual filter classifications, resulting in two measures of classification quality, from the averages across the photometric filters of (1) the classifications determined from the closest K-means cluster centers, and (2) the square distances from the clustering centers in the K-means clustering spaces. For a verification set of AGNs and SNe, we show that SV and BL occupy distinct regions in the plane constituted by these measures. We use our clustering method to characterize 4361 extragalactic image difference detected sources, in the first 2.5 yr of the PS1 MDS, into 1529 BL, and 2262 SV, with a purity of 95.00% for AGNs, and 90.97% for SN based on our verification sets. We combine our light-curve classifications with their nuclear or off-nuclear host

  10. Application of Low cost Spirulina growth medium using Deep sea water

    Science.gov (United States)

    Lim, Dae-hack; Kim, Bong-ju; Lee, Sung-jae; Choi, Nag-chul; Park, Cheon-young

    2017-04-01

    Deep-sea water has a relatively constant temperature, abundant nutrients such as calcium, magnesium, nitrates, and phosphates, etc., and stable water quality, even though there might be some variations of their compositions according to collection places. Thus, deep-sea water would be a good substrate for algal growth and biomass production since it contains various nutrients, including a fluorescent red pigment, and β-carotene, etc. The aim of this study was to investigate the economics of a culture condition through comparative analysis to Spirulina platensis growth characteristic under various medium conditions for cost-effective production of Spirulina sp.. Growth experiments were performed with S. platensis under various culture medium conditions (deep sea water + SP medium). Growth tests for culture medium demonstrated that the deep sea water to SP medium ratio of 50:50(W/W) was effective in S. platensis with the maximum biomass (1.35g/L) and minimum medium making cost per production mass (133.28 KRW/g). Parameter estimation of bio-kinetics (maximum growth rate and yield) for low cost medium results showed that the maximum growth rate and yield of N, P, K were obtained under deep sea water to SP medium ratio of 50:50(W/W) of 0.057 1/day and 0.151, 0.076, 0.123, respectively. Acknowledgment : "This research was a part of the project titled 'Development of microalgae culture technique for cosmetic materials based on ocean deep sea water(20160297)', funded by the Ministry of Oceans and Fisheries, Korea."

  11. Deep Keck u-Band Imaging of the Hubble Ultra Deep Field: A Catalog of z ~ 3 Lyman Break Galaxies

    Science.gov (United States)

    Rafelski, Marc; Wolfe, Arthur M.; Cooke, Jeff; Chen, Hsiao-Wen; Armandroff, Taft E.; Wirth, Gregory D.

    2009-10-01

    We present a sample of 407 z ~ 3 Lyman break galaxies (LBGs) to a limiting isophotal u-band magnitude of 27.6 mag in the Hubble Ultra Deep Field. The LBGs are selected using a combination of photometric redshifts and the u-band drop-out technique enabled by the introduction of an extremely deep u-band image obtained with the Keck I telescope and the blue channel of the Low Resolution Imaging Spectrometer. The Keck u-band image, totaling 9 hr of integration time, has a 1σ depth of 30.7 mag arcsec-2, making it one of the most sensitive u-band images ever obtained. The u-band image also substantially improves the accuracy of photometric redshift measurements of ~50% of the z ~ 3 LBGs, significantly reducing the traditional degeneracy of colors between z ~ 3 and z ~ 0.2 galaxies. This sample provides the most sensitive, high-resolution multi-filter imaging of reliably identified z ~ 3 LBGs for morphological studies of galaxy formation and evolution and the star formation efficiency of gas at high redshift.

  12. A Ka-Band Celestial Reference Frame with Applications to Deep Space Navigation

    Science.gov (United States)

    Jacobs, Christopher S.; Clark, J. Eric; Garcia-Miro, Cristina; Horiuchi, Shinji; Sotuela, Ioana

    2011-01-01

    The Ka-band radio spectrum is now being used for a wide variety of applications. This paper highlights the use of Ka-band as a frequency for precise deep space navigation based on a set of reference beacons provided by extragalactic quasars which emit broadband noise at Ka-band. This quasar-based celestial reference frame is constructed using X/Ka-band (8.4/32 GHz) from fifty-five 24-hour sessions with the Deep Space Network antennas in California, Australia, and Spain. We report on observations which have detected 464 sources covering the full 24 hours of Right Ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the international standard S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of approximately 200 micro-arcsec in alpha cos(delta) and approximately 300 micro-arcsec in delta. There is evidence for systematic errors at the 100 micro-arcsec level. Known errors include limited SNR, lack of instrumental phase calibration, tropospheric refraction mis-modeling, and limited southern geometry. The motivation for extending the celestial reference frame to frequencies above 8 GHz is to access more compact source morphology for improved frame stability and to support spacecraft navigation for Ka-band based NASA missions.

  13. DEEP KECK u-BAND IMAGING OF THE HUBBLE ULTRA DEEP FIELD: A CATALOG OF z ∼ 3 LYMAN BREAK GALAXIES

    International Nuclear Information System (INIS)

    Rafelski, Marc; Wolfe, Arthur M.; Cooke, Jeff; Chen, H.-W.; Armandroff, Taft E.; Wirth, Gregory D.

    2009-01-01

    We present a sample of 407 z ∼ 3 Lyman break galaxies (LBGs) to a limiting isophotal u-band magnitude of 27.6 mag in the Hubble Ultra Deep Field. The LBGs are selected using a combination of photometric redshifts and the u-band drop-out technique enabled by the introduction of an extremely deep u-band image obtained with the Keck I telescope and the blue channel of the Low Resolution Imaging Spectrometer. The Keck u-band image, totaling 9 hr of integration time, has a 1σ depth of 30.7 mag arcsec -2 , making it one of the most sensitive u-band images ever obtained. The u-band image also substantially improves the accuracy of photometric redshift measurements of ∼50% of the z ∼ 3 LBGs, significantly reducing the traditional degeneracy of colors between z ∼ 3 and z ∼ 0.2 galaxies. This sample provides the most sensitive, high-resolution multi-filter imaging of reliably identified z ∼ 3 LBGs for morphological studies of galaxy formation and evolution and the star formation efficiency of gas at high redshift.

  14. THE SIMPLE SURVEY: OBSERVATIONS, REDUCTION, AND CATALOG

    International Nuclear Information System (INIS)

    Damen, M.; Franx, M.; Taylor, E. N.; Labbe, I.; Van Dokkum, P. G.; Muzzin, A.; Brandt, W. N.; Dickinson, M.; Gawiser, E.; Illingworth, G. D.; Kriek, M.; Marchesini, D.; Papovich, C.; Rix, H.-W.

    2011-01-01

    We present the Spitzer IRAC/MUSYC Public Legacy Survey in the Extended CDF-South (SIMPLE), which consists of deep IRAC observations covering the ∼1600 arcmin 2 area surrounding GOODS-S. The limiting magnitudes of the SIMPLE IRAC mosaics typically are 23.8, 23.6, 21.9, and 21.7, at 3.6 μm, 4.5 μm, 5.8 μm, and 8.0 μm, respectively (5σ total point source magnitudes in AB). The SIMPLE IRAC images are combined with the 10' x 15' GOODS IRAC mosaics in the center. We give detailed descriptions of the observations, data reduction, and properties of the final images, as well as the detection and photometry methods used to build a catalog. Using published optical and near-infrared data from the Multiwavelength Survey by Yale-Chile (MUSYC), we construct an IRAC-selected catalog, containing photometry in UBVRIz'JHK, [3.6 μm], [4.5 μm], [5.8 μm], and [8.0 μm]. The catalog contains 43,782 sources with S/N >5 at 3.6 μm, 19,993 of which have 13-band photometry. We compare this catalog to the publicly available MUSYC and FIREWORKS catalogs and discuss the differences. Using a high signal-to-noise sub-sample of 3391 sources with ([3.6] + [4.5])/2 * >10 11 M sun ) are passively evolving, in agreement with earlier results from surveys covering less area.

  15. The infrared medium-deep survey. II. How to trigger radio AGNs? Hints from their environments

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Im, Myungshin; Kim, Jae-Woo; Lee, Seong-Kook; Jeon, Yiseul; Choi, Changsu; Hong, Jueun; Hyun, Minhee; Jun, Hyunsung David; Kim, Dohyeong; Kim, Yongjung; Kim, Ji Hoon; Kim, Duho; Park, Won-Kee; Taak, Yoon Chan; Yoon, Yongmin [CEOU—Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Chapman, Scott [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia (Canada); Pak, Soojong [School of Space Research, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Edge, Alastair, E-mail: mkarouzos@astro.snu.ac.kr [Department of Physics, University of Durham, South Road, Durham, DH1 3LE (United Kingdom)

    2014-12-10

    Activity at the centers of galaxies, during which the central supermassive black hole is accreting material, is nowadays accepted to be rather ubiquitous and most probably a phase of every galaxy's evolution. It has been suggested that galactic mergers and interactions may be the culprits behind the triggering of nuclear activity. We use near-infrared data from the new Infrared Medium-Deep Survey and the Deep eXtragalactic Survey of the VIMOS-SA22 field and radio data at 1.4 GHz from the FIRST survey and a deep Very Large Array survey to study the environments of radio active galactic nuclei (AGNs) over an area of ∼25 deg{sup 2} and down to a radio flux limit of 0.1 mJy and a J-band magnitude of 23 mag AB. Radio AGNs are predominantly found in environments similar to those of control galaxies at similar redshift, J-band magnitude, and (M{sub u} – M{sub r} ) rest-frame color. However, a subpopulation of radio AGNs is found in environments up to 100 times denser than their control sources. We thus preclude merging as the dominant triggering mechanism of radio AGNs. By fitting the broadband spectral energy distribution of radio AGNs in the least and most dense environments, we find that those in the least dense environments show higher radio-loudness, higher star formation efficiencies, and higher accretion rates, typical of the so-called high-excitation radio AGNs. These differences tend to disappear at z > 1. We interpret our results in terms of a different triggering mechanism for these sources that is driven by mass loss through winds of young stars created during the observed ongoing star formation.

  16. Probing the diffuse interstellar medium with diffuse interstellar bands

    Science.gov (United States)

    Theodorus van Loon, Jacco; Bailey, Mandy; Farhang, Amin; Javadi, Atefeh; Khosroshahi, Habib

    2015-08-01

    For a century already, a large number of absorption bands have been known at optical wavelengths, called the diffuse interstellar bands (DIBs). While their carriers remain unidentified, the relative strengths of these bands in various environments make them interesting new probes of the diffuse interstellar medium (ISM). We present the results from two large, dedicated campaigns to map the ISM using DIBs measured in the high signal-to-noise spectra of hundreds of early-type stars: [1] in and around the Local Bubble using ESO's New Technology Telescope and the Isaac Newton Telescope, and [2] across both Magellanic Clouds using the Very Large Telescope and the Anglo-Australian Telescope. We discuss the implications for the structure and dynamics of the ISM, as well as the constraints these maps place on the nature of the carriers of the DIBs. Partial results have appeared in the recent literature (van Loon et al. 2013; Farhang et al. 2015a,b; Bailey, PhD thesis 2014) with the remainder being prepared for publication now.

  17. Stop Band Gap in Periodic Layers of Confined Atomic Vapor/Dielectric Medium

    International Nuclear Information System (INIS)

    Li Yuan-Yuan; Li Li; Lu Yi-Xin; Zhang Yan-Peng; Xu Ke-Wei

    2013-01-01

    A stop band gap is predicted in periodic layers of a confined atomic vapor/dielectric medium. Reflection and transmission profile of the layers over the band gap can be dramatically modified by the confined atoms and the number of layer periods. These gap and line features can be ascribed to the enhanced contribution of slow atoms induced by atom-wall collision, transient behavior of atom-light interaction and Fabry—Pérot effects in a thermal confined atomic system

  18. AlxGa1--xN/GaN band offsets determined by deep-level emission

    International Nuclear Information System (INIS)

    Hang, D. R.; Chen, C. H.; Chen, Y. F.; Jiang, H. X.; Lin, J. Y.

    2001-01-01

    We present studies of the compositional dependence of the optical properties of Al x Ga 1-x N(0 x Ga 1-x N. As aluminum concentration increases, the color of the band changes from yellow (2.2 eV) to blue (2.6 eV). The shift was less than that of the band gap. Together with previously published studies, it implies that the deep acceptor level is pinned to a common reference level to both materials, thus the deep level responsible for the yellow emission is used as a common reference level to determine the band alignment in Al x Ga 1-x N/GaN heterojunctions. Combining with the near-band-edge modulation spectra, the estimated ratio of conduction-to-valence band discontinuity is 65:35. Our results are close to the values obtained from PL measurements on Al 0.14 Ga 0.86 N/GaN quantum wells and those calculated by linear muffin-tin orbital method and linearized augmented plane wave method. copyright 2001 American Institute of Physics

  19. Analysis of photonic band-gap structures in stratified medium

    DEFF Research Database (Denmark)

    Tong, Ming-Sze; Yinchao, Chen; Lu, Yilong

    2005-01-01

    in electromagnetic and microwave applications once the Maxwell's equations are appropriately modeled. Originality/value - The method validates its values and properties through extensive studies on regular and defective 1D PBG structures in stratified medium, and it can be further extended to solving more......Purpose - To demonstrate the flexibility and advantages of a non-uniform pseudo-spectral time domain (nu-PSTD) method through studies of the wave propagation characteristics on photonic band-gap (PBG) structures in stratified medium Design/methodology/approach - A nu-PSTD method is proposed...... in solving the Maxwell's equations numerically. It expands the temporal derivatives using the finite differences, while it adopts the Fourier transform (FT) properties to expand the spatial derivatives in Maxwell's equations. In addition, the method makes use of the chain-rule property in calculus together...

  20. A medium energy neutron deep penetration experiment

    International Nuclear Information System (INIS)

    Amian, W.; Cloth, P.; Druecke, V.; Filges, D.; Paul, N.; Schaal, H.

    1986-11-01

    A deep penetration experiment conducted at the Los Alamos WNR facility's Spallation Neutron Target is compared with calculations using intra-nuclear-cascade and S N -transport codes installed at KFA-IRE. In the experiment medium energy reactions induced by neutrons between 15 MeV and about 150 MeV inside a quasi infinite slab of iron have been measured using copper foil monitors. Details of the experimental procedure and the theoretical methods are described. A comparison of absolute reaction rates for both experimentally and theoretically derived reactions is given. The present knowledge of the corresponding monitor reaction cross sections is discussed. (orig.)

  1. Lyman Break Galaxies in the Hubble Ultra Deep Field through Deep U-Band Imaging

    Science.gov (United States)

    Rafelski, Marc; Wolfe, A. M.; Cooke, J.; Chen, H. W.; Armandroff, T. E.; Wirth, G. D.

    2009-12-01

    We introduce an extremely deep U-band image taken of the Hubble Ultra Deep Field (HUDF), with a one sigma depth of 30.7 mag arcsec-2 and a detection limiting magnitude of 28 mag arcsec-2. The observations were carried out on the Keck I telescope using the LRIS-B detector. The U-band image substantially improves the accuracy of photometric redshift measurements of faint galaxies in the HUDF at z=[2.5,3.5]. The U-band for these galaxies is attenuated by lyman limit absorption, allowing for more reliable selections of candidate Lyman Break Galaxies (LBGs) than from photometric redshifts without U-band. We present a reliable sample of 300 LBGs at z=[2.5,3.5] in the HUDF. Accurate redshifts of faint galaxies at z=[2.5,3.5] are needed to obtain empirical constraints on the star formation efficiency of neutral gas at high redshift. Wolfe & Chen (2006) showed that the star formation rate (SFR) density in damped Ly-alpha absorption systems (DLAs) at z=[2.5,3.5] is significantly lower than predicted by the Kennicutt-Schmidt law for nearby galaxies. One caveat to this result that we wish to test is whether LBGs are embedded in DLAs. If in-situ star formation is occurring in DLAs, we would see it as extended low surface brightness emission around LBGs. We shall use the more accurate photometric redshifts to create a sample of LBGs around which we will look for extended emission in the more sensitive and higher resolution HUDF images. The absence of extended emission would put limits on the SFR density of DLAs associated with LBGs at high redshift. On the other hand, detection of faint emission on scales large compared to the bright LBG cores would indicate the presence of in situ star formation in those DLAs. Such gas would presumably fuel the higher star formation rates present in the LBG cores.

  2. Prospects of using medium-wave band for radio communication with rescue mobile teams of EMERCOM of Russia

    Science.gov (United States)

    Bazhukov, I. F.; Dulkejt, I. V.; Zavyalov, S. A.; Lvova, Yu V.; Lyashuk, A. N.; Puzyrev, P. I.; Rekunov, S. G.; Chaschin, E. A.; Sharapov, S. V.

    2018-01-01

    The results of tests in-situ of the prototype of medium-wave mobile radio station «Noema-SV» in Western Siberia, Omsk region and Vorkuta Arctic Integrated Emergency and Rescue Center of EMERCOM of Russia are presented. Radio paths tests in-situ in the Far North show the possibility of radio communication with rescue mobile teams of EMERCOM of Russia in the medium-wave band within distances of several tens of kilometers of rugged topography. The radio range on a flat terrain increases to several hundreds of kilometers. Shortened medium-wave band antennas developed at OmSTU and employed by rescue mobile teams of EMERCOM of Russia were used in.

  3. DEEP U BAND AND R IMAGING OF GOODS-SOUTH: OBSERVATIONS, DATA REDUCTION AND FIRST RESULTS ,

    International Nuclear Information System (INIS)

    Nonino, M.; Cristiani, S.; Vanzella, E.; Dickinson, M.; Reddy, N.; Rosati, P.; Grazian, A.; Giavalisco, M.; Kuntschner, H.; Fosbury, R. A. E.; Daddi, E.; Cesarsky, C.

    2009-01-01

    We present deep imaging in the U band covering an area of 630 arcmin 2 centered on the southern field of the Great Observatories Origins Deep Survey (GOODS). The data were obtained with the VIMOS instrument at the European Southern Observatory (ESO) Very Large Telescope. The final images reach a magnitude limit U lim ∼ 29.8 (AB, 1σ, in a 1'' radius aperture), and have good image quality, with full width at half-maximum ∼0.''8. They are significantly deeper than previous U-band images available for the GOODS fields, and better match the sensitivity of other multiwavelength GOODS photometry. The deeper U-band data yield significantly improved photometric redshifts, especially in key redshift ranges such as 2 lim ∼ 29 (AB, 1σ, 1'' radius aperture), and image quality ∼0.''75. We discuss the strategies for the observations and data reduction, and present the first results from the analysis of the co-added images.

  4. Use of the 37-38 GHz and 40-40.5 GHz Ka-bands for Deep Space Communications

    Science.gov (United States)

    Morabito, David; Hastrup, Rolf

    2004-01-01

    This paper covers a wide variety of issues associated with the implementation and use of these frequency bands for deep space communications. Performance issues, such as ground station pointing stability, ground antenna gain, antenna pattern, and propagation effects such as due to atmospheric, charged-particle and space loss at 37 GHz, will be addressed in comparison to the 32 GHz Ka-band deep space allocation. Issues with the use of and competition for this spectrum also will be covered. The state of the hardware developed (or proposed) for operating in this frequency band will be covered from the standpoint of the prospects for achieving higher data rates that could be accommodated in the available bandwidth. Hardware areas to be explored include modulators, digital-to-analog converters, filters, power amplifiers, receivers, and antennas. The potential users of the frequency band will be explored as well as their anticipated methods to achieve the potential high data rates and the implications of the competition for bandwidth.

  5. VIIRS Reflective Solar Band Radiometric and Stability Evaluation Using Deep Convective Clouds

    Science.gov (United States)

    Chang, Tiejun; Xiong, Xiaoxiong; Mu, Qiaozhen

    2016-01-01

    This work takes advantage of the stable distribution of deep convective cloud (DCC) reflectance measurements to assess the calibration stability and detector difference in Visible Infrared Imaging Radiometer Suite (VIIRS) reflective bands. VIIRS Sensor Data Records (SDRs) from February 2012 to June 2015 are utilized to analyze the long-term trending, detector difference, and half angle mirror (HAM) side difference. VIIRS has two thermal emissive bands with coverage crossing 11 microns for DCC pixel identification. The comparison of the results of these two processing bands is one of the indicators of analysis reliability. The long-term stability analysis shows downward trends (up to approximately 0.4 per year) for the visible and near-infrared bands and upward trends (up to 0.5per year) for the short- and mid-wave infrared bands. The detector difference for each band is calculated as the difference relative to the average reflectance overall detectors. Except for the slightly greater than 1 difference in the two bands at 1610 nm, the detector difference is less than1 for other solar reflective bands. The detector differences show increasing trends for some short-wave bands with center wavelengths from 400 to 600 nm and remain unchanged for the bands with longer center wavelengths. The HAM side difference is insignificant and stable. Those short-wave bands from 400 to 600 nm also have relatively larger HAM side difference, up to 0.25.Comparing the striped images from SDR and the smooth images after the correction validates the analyses of detector difference and HAM side difference. These analyses are very helpful for VIIRS calibration improvement and thus enhance product quality

  6. FIRST RESULTS FROM Pan-STARRS1: FAINT, HIGH PROPER MOTION WHITE DWARFS IN THE MEDIUM-DEEP FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Tonry, J. L.; Flewelling, H. A.; Deacon, N. R.; Burgett, W. S.; Chambers, K. C.; Kaiser, N.; Kudritzki, R.-P.; Hodapp, K. W.; Magnier, E. A.; Morgan, J. S.; Wainscoat, R. J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Stubbs, C. W.; Kilic, M.; Chornock, R.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Price, P. A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2012-01-20

    The Pan-STARRS1 survey has obtained multi-epoch imaging in five bands (Pan-STARRS1 g{sub P1}, r{sub P1}, i{sub P1}, z{sub P1}, and y{sub P1}) on 12 'Medium-Deep fields', each of which spans a 3.{sup 0}3 circle. For the period between 2009 April and 2011 April these fields were observed 50-200 times. Using a reduced proper motion diagram, we have extracted a list of 47 white dwarf (WD) candidates whose Pan-STARRS1 astrometry indicates a non-zero proper motion at the 6{sigma} level, with a typical 1{sigma} proper motion uncertainty of 10 mas yr{sup -1}. We also used astrometry from the Sloan Digital Sky Survey (when available) and USNO-B to assess our proper motion fits. None of the WD candidates exhibits evidence of statistically significant parallaxes, with a typical 1{sigma} uncertainty of 8 mas. Twelve of these candidates are known WDs, including the high proper motion (1.''7 yr{sup -1}) WD LHS 291. We confirm seven more objects as WDs through optical spectroscopy. Based on the Pan-STARRS1 colors, ten of the stars are likely to be cool WDs with 4170 K Medium-Deep Field Survey and the 3{pi} survey, Pan-STARRS1 should find many more high proper motion WDs that are part of the old thick disk and halo.

  7. Tunable dual-band subwavelength imaging with a wire medium slab loaded with nanostructured graphene metasurfaces

    Directory of Open Access Journals (Sweden)

    Ali Forouzmand

    2015-07-01

    Full Text Available In this paper, we demonstrate that a wire medium slab loaded with graphene-nanopatch metasurfaces (GNMs enables the enhancement of evanescent waves for the subwavelength imaging at terahertz (THz frequencies. The analysis is based on the nonlocal homogenization model for wire medium with the additional boundary condition at the connection of wires to graphene. The physical mechanism behind this lens can be described as the surface plasmons excitement at the lower and upper GNMs which are coupled by an array of metallic wires. The dual nature (capacitive/inductive of the GNM is utilized in order to design a dual-band lens in which the unique controllable properties of graphene and the structural parameters of wire medium (WM slab provide more degrees of freedom in controlling two operating frequency bands. The lens can support the subwavelength imaging simultaneously at two tunable distinct frequencies with the resolution better than λ/6 even if the distance between GNMs is a significant fraction of wavelength (>λ/5.5. The major future challenges in the fabrication of the lens have been demonstrated and a promising approach for the practical configuration of the lens has been proposed.

  8. Analysis of the processes defining radionuclide migration from deep geological repositories in porous medium

    International Nuclear Information System (INIS)

    Brazauskaite, A.; Poskas, P.

    2004-01-01

    Due to the danger of exposure arising from long-lived radionuclides to humans and environment, spent nuclear fuel (SNF) and high level waste (HLW) are not allowed to be disposed of in near surface repositories. There exists an international consensus that such high level and long-lived radioactive wastes are best disposed of in geological repositories using a system of engineered and natural barriers. At present, the geological repository of SNF and HLW has not been realized yet in any country but there is a lot of experience in the assessment of radionuclide migration from deep repositories, investigations of different processes related to the safety of a disposal system. The aim of this study was to analyze the processes related to the radionuclide migration from deep geological repositories in porous medium such as SNF matrix dissolution, release mechanism of radionuclides from SNF matrix, radionuclide solubility, sorption, diffusive, advective transport of radionuclides from the canister and through the engineered and natural barriers. It has been indicated that SNF matrix dissolution, radionuclide solubility and sorption are sensitive to ambient conditions prevailing in the repository. The approaches that could be used for modeling the radionuclide migration from deep repositories in porous medium are also presented. (author)

  9. Deep-subwavelength Decoupling for MIMO Antennas in Mobile Handsets with Singular Medium.

    Science.gov (United States)

    Xu, Su; Zhang, Ming; Wen, Huailin; Wang, Jun

    2017-09-22

    Decreasing the mutual coupling between Multi-input Multi-output (MIMO) antenna elements in a mobile handset and achieving a high data rate is a challenging topic as the 5 th -generation (5G) communication age is coming. Conventional decoupling components for MIMO antennas have to be re-designed when the geometries or frequencies of antennas have any adjustment. In this paper, we report a novel metamaterial-based decoupling strategy for MIMO antennas in mobile handsets with wide applicability. The decoupling component is made of subwavelength metal/air layers, which can be treated as singular medium over a broad frequency band. The flexible applicable property of the decoupling strategy is verified with different antennas over different frequency bands with the same metamaterial decoupling element. Finally, 1/100-wavelength 10-dB isolation is demonstrated for a 24-element MIMO antenna in mobile handsets over the frequency band from 4.55 to 4.75 GHz.

  10. A Unifying Perspective on Oxygen Vacancies in Wide Band Gap Oxides.

    Science.gov (United States)

    Linderälv, Christopher; Lindman, Anders; Erhart, Paul

    2018-01-04

    Wide band gap oxides are versatile materials with numerous applications in research and technology. Many properties of these materials are intimately related to defects, with the most important defect being the oxygen vacancy. Here, using electronic structure calculations, we show that the charge transition level (CTL) and eigenstates associated with oxygen vacancies, which to a large extent determine their electronic properties, are confined to a rather narrow energy range, even while band gap and the electronic structure of the conduction band vary substantially. Vacancies are classified according to their character (deep versus shallow), which shows that the alignment of electronic eigenenergies and CTL can be understood in terms of the transition between cavity-like localized levels in the large band gap limit and strong coupling between conduction band and vacancy states for small to medium band gaps. We consider both conventional and hybrid functionals and demonstrate that the former yields results in very good agreement with the latter provided that band edge alignment is taken into account.

  11. THE TAIWAN ECDFS NEAR-INFRARED SURVEY: ULTRA-DEEP J AND K{sub S} IMAGING IN THE EXTENDED CHANDRA DEEP FIELD-SOUTH

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Bau-Ching; Wang, Wei-Hao; Hsieh, Chih-Chiang; Lin, Lihwai; Lim, Jeremy; Ho, Paul T. P. [Institute of Astrophysics and Astronomy, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Yan Haojing [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

    2012-12-15

    We present ultra-deep J and K{sub S} imaging observations covering a 30' Multiplication-Sign 30' area of the Extended Chandra Deep Field-South (ECDFS) carried out by our Taiwan ECDFS Near-Infrared Survey (TENIS). The median 5{sigma} limiting magnitudes for all detected objects in the ECDFS reach 24.5 and 23.9 mag (AB) for J and K{sub S} , respectively. In the inner 400 arcmin{sup 2} region where the sensitivity is more uniform, objects as faint as 25.6 and 25.0 mag are detected at 5{sigma}. Thus, this is by far the deepest J and K{sub S} data sets available for the ECDFS. To combine TENIS with the Spitzer IRAC data for obtaining better spectral energy distributions of high-redshift objects, we developed a novel deconvolution technique (IRACLEAN) to accurately estimate the IRAC fluxes. IRACLEAN can minimize the effect of blending in the IRAC images caused by the large point-spread functions and reduce the confusion noise. We applied IRACLEAN to the images from the Spitzer IRAC/MUSYC Public Legacy in the ECDFS survey (SIMPLE) and generated a J+K{sub S} -selected multi-wavelength catalog including the photometry of both the TENIS near-infrared and the SIMPLE IRAC data. We publicly release the data products derived from this work, including the J and K{sub S} images and the J+K{sub S} -selected multi-wavelength catalog.

  12. Medium Deep High Temperature Heat Storage

    Science.gov (United States)

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo

    2015-04-01

    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  13. WFIRST: Science from Deep Field Surveys

    Science.gov (United States)

    Koekemoer, Anton; Foley, Ryan; WFIRST Deep Field Working Group

    2018-01-01

    WFIRST will enable deep field imaging across much larger areas than those previously obtained with Hubble, opening up completely new areas of parameter space for extragalactic deep fields including cosmology, supernova and galaxy evolution science. The instantaneous field of view of the Wide Field Instrument (WFI) is about 0.3 square degrees, which would for example yield an Ultra Deep Field (UDF) reaching similar depths at visible and near-infrared wavelengths to that obtained with Hubble, over an area about 100-200 times larger, for a comparable investment in time. Moreover, wider fields on scales of 10-20 square degrees could achieve depths comparable to large HST surveys at medium depths such as GOODS and CANDELS, and would enable multi-epoch supernova science that could be matched in area to LSST Deep Drilling fields or other large survey areas. Such fields may benefit from being placed on locations in the sky that have ancillary multi-band imaging or spectroscopy from other facilities, from the ground or in space. The WFIRST Deep Fields Working Group has been examining the science considerations for various types of deep fields that may be obtained with WFIRST, and present here a summary of the various properties of different locations in the sky that may be considered for future deep fields with WFIRST.

  14. Deep reversible storage. Design options for the storage in deep geological formation - High-medium activity, long living wastes 2009 milestone

    International Nuclear Information System (INIS)

    2010-09-01

    This report aims at presenting a synthesis of currently studied solutions for the different components of the project of deep geological radioactive waste storage centre. For each of these elements, the report indicates the main operational objectives to be taken into account in relationship with safety functions or with reversibility. It identifies the currently proposed design options, presents the technical solutions (with sometime several possibilities), indicates industrial references (in the nuclear sector, in underground works) and comments results of technological tests performed by the ANDRA. After a description of functionalities and of the overall organisation of storage components, the different following elements and aspects are addressed: surface installations, underground architecture, parcel transfer between the surface and storage cells, storage container for medium-activity long-life (MAVL) waste, storage cell for medium-activity long-life waste, handling of MAVL parcels in storage cells, storage container for high-activity (HA) waste, storage cell for HA waste, handling of HA parcels in storage cells, and works for site closing

  15. THE STRUCTURE AND STELLAR CONTENT OF THE OUTER DISKS OF GALAXIES: A NEW VIEW FROM THE Pan-STARRS1 MEDIUM DEEP SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zheng; Thilker, David A.; Heckman, Timothy M. [Department of Physics and Astronomy, Johns Hopkins University, 3701 San Martin Drive, Baltimore, MD 21218 (United States); Meurer, Gerhardt R. [International Center for Radio Astronomy Research, The University of Western Australia, M468, 35 StirlingHighway, Crawley, WA 6009 (Australia); Burgett, W. S.; Huber, M. E.; Kaiser, N.; Magnier, E. A.; Tonry, J. L.; Wainscoat, R. J.; Waters, C. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Chambers, K. C.; Metcalfe, N. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Price, P. A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2015-02-20

    We present the results of an analysis of Pan-STARRS1 Medium Deep Survey multi-band (grizy) images of a sample of 698 low-redshift disk galaxies that span broad ranges in stellar mass, star-formation rate, and bulge/disk ratio. We use population synthesis spectral energy distribution fitting techniques to explore the radial distribution of the light, color, surface mass density, mass/light ratio, and age of the stellar populations. We characterize the structure and stellar content of the galaxy disks out to radii of about twice Petrosian r {sub 90}, beyond which the halo light becomes significant. We measure normalized radial profiles for sub-samples of galaxies in three bins each of stellar mass and concentration. We also fit radial profiles to each galaxy. The majority of galaxies have down-bending radial surface brightness profiles in the bluer bands with a break radius at roughly r {sub 90}. However, they typically show single unbroken exponentials in the reddest bands and in the stellar surface mass density. We find that the mass/light ratio and stellar age radial profiles have a characteristic 'U' shape. There is a good correlation between the amplitude of the down-bend in the surface brightness profile and the rate of the increase in the M/L ratio in the outer disk. As we move from late- to early-type galaxies, the amplitude of the down-bend and the radial gradient in M/L both decrease. Our results imply a combination of stellar radial migration and suppression of recent star formation can account for the stellar populations of the outer disk.

  16. Successful non-surgical deep uterine transfer of porcine morulae after 24 hour culture in a chemically defined medium.

    Directory of Open Access Journals (Sweden)

    Emilio A Martinez

    Full Text Available Excellent fertility and prolificacy have been reported after non-surgical deep uterine transfers of fresh in vivo-derived porcine embryos. Unfortunately, when this technology is used with vitrified embryos, the reproductive performance of recipients is low. For this reason and because the embryos must be stored until they are transferred to the recipient farms, we evaluated the potential application of non-surgical deep uterine transfers with in vivo-derived morulae cultured for 24 h in liquid stage. In Experiment 1, two temperatures (25 °C and 37 °C and two media (one fully defined and one semi-defined were assessed. Morulae cultured in culture medium supplemented with bovine serum albumin and fetal calf serum at 38.5 °C in 5% CO2 in air were used as controls. Irrespective of medium, the embryo viability after 24 h of culture was negatively affected (P<0.05 at 25 °C but not at 37 °C compared with the controls. Embryo development was delayed in all experimental groups compared with the control group (P<0.001. Most of the embryos (95.7% cultured at 37 °C achieved the full or expanded blastocyst stage, and unlike the controls, none of them hatched at the end of culture. In Experiment 2, 785 morulae were cultured in the defined medium at 37 °C for 24 h, and the resulting blastocysts were transferred to the recipients (n = 24. Uncultured embryos collected at the blastocyst stage (n = 750 were directly transferred to the recipients and used as controls (n = 25. No differences in farrowing rates (91.7% and 92.0% or litter sizes (9.0 ± 0.6 and 9.4 ± 0.8 were observed between the groups. This study demonstrated, for the first time, that high reproductive performance can be achieved after non-surgical deep uterine transfers with short-term cultured morulae in a defined medium, which opens new possibilities for the sanitary, safe national and international trade of porcine embryos and the commercial use of embryo transfer in pigs.

  17. Diffusion of radionuclide chains through an adsorbing medium

    International Nuclear Information System (INIS)

    Burkholder, H.C.; DeFigh-Price, C.

    1977-01-01

    The diffusion of radionuclide chains from an underground nuclear waste disposal site through the surrounding geologic medium to the surface is investigated for impulse and band releases. Numerical calculation of the analytical solutions shows that differences in adsorption characteristics among chain members and radioactive decay during transit reduce radionuclide discharges to the biosphere. Results suggest that molecular diffusion is unlikely to be an important transfer mechanism from geologic isolation, and that disposal of radionuclides in deep geologic formations and in the seabed under conditions of very low or nonexistent water flow is likely to be very effective in preventing radioactivity releases to the biosphere

  18. S-band low noise amplifier and 40 kW high power amplifier subsystems of Japanese Deep Space Earth Station

    Science.gov (United States)

    Honma, K.; Handa, K.; Akinaga, W.; Doi, M.; Matsuzaki, O.

    This paper describes the design and the performance of the S-band low noise amplifier and the S-band high power amplifier that have been developed for the Usuda Deep Space Station of the Institute of Space and Astronautical Science (ISAS), Japan. The S-band low noise amplifier consists of a helium gas-cooled parametric amplifier followed by three-stage FET amplifiers and has a noise temperature of 8 K. The high power amplifier is composed of two 28 kW klystrons, capable of transmitting 40 kW continuously when two klystrons are combined. Both subsystems are operating quite satisfactorily in the tracking of Sakigake and Suisei, the Japanese interplanetary probes for Halley's comet exploration, launched by ISAS in 1985.

  19. Geothermal probes for the development of medium-deep geothermal heating; Erdwaermesonden zur Erschliessung der mitteltiefen Geothermie

    Energy Technology Data Exchange (ETDEWEB)

    Stuckmann, Uwe [REHAU AG + Co, Erlangen (Germany)

    2012-07-01

    Compared to the near-surface geothermal energy, in the medium-deep geothermal between between 400 and 1,000 meters higher temperature levels may opened up. Thus the efficiency of geothermal power plants can be increased. The possibly higher installation costs are significantly higher yield compared to the yields and withdrawal benefits. At higher thermal gradient of the underground it even is possible to dispense entirely on the heat pump and to heat directly.

  20. Deep absorption band in Cu(In,Ga)Se{sub 2} thin films and solar cells observed by transparent piezoelectric photothermal spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shirakata, Sho; Atarashi, Akiko [Faculty of Engineering, Ehime University, Matsuyama 790-8577 (Japan); Yagi, Masakazu [Kagawa National College of Technology, Mitoyo-shi 769-1192 (Japan)

    2015-06-15

    The photo-acoustic spectroscopy (PAS) using a transparent piezoelectric photo-thermal (Tr-PPT) method was carried out on Cu(In,Ga)Se{sub 2} (CIGS) thin films (both CIGS/Mo/SLG and CdS/CIGS/Mo/SLG) and solar cells (ZnO/CdS/CIGS/Mo/SLG). Using the Tr-PPT method, the high background absorption in the below gap region observed in both a microphone and a conventional transducer PAS spectra was strongly reduced. This high background absorption came from the CIGS/Mo interface. This result proves that the Tr-PPT PAS is the surface sensitive method. In the below-band region, a bell-shape deep absorption band has been observed at 0.76 eV, in which a full-width at the half-maximum value was 70-120 meV. This deep absorption band was observed for both CdS/CIGS/Mo/SLG and ZnO/CdS/CIGS/Mo/SLG structures. The peak energy of the absorption band was independent of the alloy composition for 0.25≤Ga/III≤0.58. Intensity of the PA signal was negatively correlated to the Na concentration at the CIGS film surface. The origin of the 0.76 eV peak is discussed with relation to native defects such as a Cu-vacancy-related defect (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. An Improved X-Band Maser System for Deep Space Network Applications

    Science.gov (United States)

    Britcliffe, M.; Hanson, T.; Fernandez, J.

    2000-01-01

    An 8450-MHz (X-band) maser system utilizing a commercial Gifford--McMahon (GM) closed-cycle cryocooler (CCR) was designed, fabricated, and demonstrated. The CCR system was used to cool a maser operating at 8450 MHz. The prototype GM CCR system meets or exceeds all Deep Space Network requirements for maser performance. The two-stage GM CCR operates at 4.2 K; for comparison, the DSN's current three-stage cryocooler, which uses a Joule--Thompson cooling stage in addition to GM cooling, operates at 4.5 K. The new CCR withstands heat loads of 1.5 W at 4.2 K as compared to 1 W at 4.5 K for the existing DSN cryocooler used for cooling masers. The measured noise temperature, T_e, of the maser used for these tests is defined at the ambient connection to the antenna feed system. The T_e measured 5.0 K at a CCR temperature of 4.5 K, about 1.5 K higher than the noise temperature of a typical DSN Block II-A X-band traveling-wave maser (TWM). Reducing the temperature of the CCR significantly lowers the maser noise temperature and increases maser gain and bandwidth. The new GM CCR gives future maser systems significant operational advantages, including reduced maintenance time and logistics requirements. The results of a demonstration of this new system are presented. Advantages of using a GM-cooled maser and the effects of the reduced CCR temperature on maser performance are discussed.

  2. Cloud Height Retrieval with Oxygen A and B Bands for the Deep Space Climate Observatory (DSCOVR) Mission

    Science.gov (United States)

    Yang, Yuekui; Marshak, Alexander; Mao, Jianping; Lyapustin, Alexei; Herman, Jay

    2012-01-01

    Planned to fly in 2014, the Deep Space Climate Observatory (DSCOVR) would see the whole sunlit half of the Earth from the L 1 Lagrangian point and would provide simultaneous data on cloud and aerosol properties with its Earth Polychromatic Imaging Camera (EPIC). EPIC images the Earth on a 2Kx2K CCD array, which gives a horizontal resolution of about 10 km at nadir. A filter-wheel provides consecutive images in 10 spectral channels ranging from the UV to the near-IR, including the oxygen A and B bands. This paper presents a study of retrieving cloud height with EPIC's oxygen A and B bands. As the first step, we analyzed the effect of cloud optical and geometrical properties, sun-view geometry, and surface type on the cloud height determination. Second, we developed two cloud height retrieval algorithms that are based on the Mixed Lambertian-Equivalent Reflectivity (MLER) concept: one utilizes the absolute radiances at the Oxygen A and B bands and the other uses the radiance ratios between the absorption and reference channels of the two bands. Third, we applied the algorithms to the simulated EPIC data and to the data from SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY) observations. Results show that oxygen A and B bands complement each other: A band is better suited for retrievals over ocean, while B band is better over vegetated land due to a much darker surface. Improvements to the MLER model, including corrections to surface contribution and photon path inside clouds, will also be discussed.

  3. A SYSTEMATIC SEARCH FOR PERIODICALLY VARYING QUASARS IN PAN-STARRS1: AN EXTENDED BASELINE TEST IN MEDIUM DEEP SURVEY FIELD MD09

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T.; Gezari, S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Burgett, W. [GMTO Corp, 465 N. Halstead St, Suite 250, Pasadena, CA 91107 (United States); Chambers, K.; Hodapp, K.; Huber, M.; Kudritzki, R.-P.; Magnier, E.; Tonry, J.; Wainscoat, R.; Waters, C. [Institute for Astronomy, University of Hawaii at Manoa, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Draper, P.; Metcalfe, N., E-mail: tingting@astro.umd.edu [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom)

    2016-12-10

    We present a systematic search for periodically varying quasars and supermassive black hole binary (SMBHB) candidates in the Pan-STARRS1 (PS1) Medium Deep Survey’s MD09 field. From a color-selected sample of 670 quasars extracted from a multi-band deep-stack catalog of point sources, we locally select variable quasars and look for coherent periods with the Lomb–Scargle periodogram. Three candidates from our sample demonstrate strong variability for more than ∼3 cycles, and their PS1 light curves are well fitted to sinusoidal functions. We test the persistence of the candidates’ apparent periodic variations detected during the 4.2 years of the PS1 survey with archival photometric data from the SDSS Stripe 82 survey or new monitoring with the Large Monolithic Imager at the Discovery Channel Telescope. None of the three periodic candidates (including PSO J334.2028+1.4075) remain persistent over the extended baseline of 7–14 years, corresponding to a detection rate of <1 in 670 quasars in a search area of ≈5 deg{sup 2}. Even though SMBHBs should be a common product of the hierarchal growth of galaxies, and periodic variability in SMBHBs has been theoretically predicted, a systematic search for such signatures in a large optical survey is strongly limited by its temporal baseline and the “red noise” associated with normal quasar variability. We show that follow-up long-term monitoring (≳5 cycles) is crucial to our search for these systems.

  4. Exciter For X-Band Transmitter And Receiver

    Science.gov (United States)

    Johns, Carl E.

    1989-01-01

    Report describes developmental X-band exciter for X-band uplink subsystem of Deep Space Network. X-band transmitter-exciting signal expected to have fractional frequency stability of 5.2 X 10 to negative 15th power during 1,000-second integration period. Generates coherent test signals for S- and X-band Block III translator of Deep Space Network, Doppler-reference signal for associated Doppler-extractor system, first-local-oscillator signal for associated receiver, and reference signal for associated ranging subsystem. Tests of prototype exciter show controlling and monitoring and internal phase-correcting loops perform according to applicable design criteria. Measurements of stability of frequency and of single-sideband noise spectral density of transmitter-exciting signal made subsequently.

  5. The role of deep acceptor centers in the oxidation of acceptor-doped wide-band-gap perovskites ABO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Putilov, L.P., E-mail: lev.putilov@gmail.com; Tsidilkovski, V.I.

    2017-03-15

    The impact of deep acceptor centers on defect thermodynamics and oxidation of wide-band-gap acceptor-doped perovskites without mixed-valence cations is studied. These deep centers are formed by the acceptor-bound small hole polarons whose stabilization energy can be high enough (significantly higher than the hole-acceptor Coulomb interaction energy). It is shown that the oxidation enthalpy ΔH{sub ox} of oxide is determined by the energy ε{sub A} of acceptor-bound states along with the formation energy E{sub V} of oxygen vacancies. The oxidation reaction is demonstrated to be either endothermic or exothermic, and the regions of ε{sub A} and E{sub V} values corresponding to the positive or negative ΔH{sub ox} are determined. The contribution of acceptor-bound holes to the defect thermodynamics strongly depends on the acceptor states depth ε{sub A}: it becomes negligible at ε{sub A} less than a certain value (at which the acceptor levels are still deep). With increasing ε{sub A}, the concentration of acceptor-bound small hole polarons can reach the values comparable to the dopant content. The results are illustrated with the acceptor-doped BaZrO{sub 3} as an example. It is shown that the experimental data on the bulk hole conductivity of barium zirconate can be described both in the band transport model and in the model of hopping small polarons localized on oxygen ions away from the acceptor centers. Depending on the ε{sub A} magnitude, the oxidation reaction can be either endothermic or exothermic for both mobility mechanisms.

  6. Seismic anisotropy from compositional banding in granulites from the deep magmatic arc of Fiordland, New Zealand

    Science.gov (United States)

    Cyprych, Daria; Piazolo, Sandra; Almqvist, Bjarne S. G.

    2017-11-01

    We present calculated seismic velocities and anisotropies of mafic granulites and eclogites from the Cretaceous deep lower crust (∼40-65 km) of Fiordland, New Zealand. Both rock types show a distinct foliation defined by cm-scale compositional banding. Seismic properties are estimated using the Asymptotic Expansion Homogenisation - Finite Element (AEH-FE) method that, unlike the commonly used Voigt-Reuss-Hill homogenisation, incorporates the phase boundary network into calculations. The predicted mean P- and S-wave velocities are consistent with previously published data for similar lithologies from other locations (e.g., Kohistan Arc), although we find higher than expected anisotropies (AVP ∼ 5.0-8.0%, AVS ∼ 3.0-6.5%) and substantial S-wave splitting along foliation planes in granulites. This seismic signature of granulites results from a density and elasticity contrast between cm-scale pyroxene ± garnet stringers and plagioclase matrix rather than from crystallographic orientations alone. Banded eclogites do not show elevated anisotropies as the contrast in density and elastic constants of garnet and pyroxene is too small. The origin of compositional banding in Fiordland granulites is primarily magmatic and structures described here are expected to be typical for the base of present day magmatic arcs. Hence, we identify a new potential source of anisotropy within this geotectonic setting.

  7. Deep narrow band imagery of the diffuse ISM in M33

    Science.gov (United States)

    Hester, J. Jeff; Kulkarni, Shrinivas R.

    1990-01-01

    Very deep narrow band images were obtained for several fields in the local group spiral galaxy M33 using a wide field reimaging Charge Coupled Device (CCD) camera on the 1.5 m telescope at Palomar Observatory. The reimaging system uses a 306 mm collimator and a 58 mm camera lens to put a 16 minute by 16 minute field onto a Texas Instruments 800 x 800 pixel CCD at a resolution of 1.2 arcseconds pixel (-1). The overall system is f/1.65. Images were obtained in the light of H alpha (S II) lambda lambda 6717, 6731, (O III) lambda 5007, and line-free continuum bands 100A wide, centered at 6450A and 5100A. Assuming a distance of 600 kpc to M33 (Humphreys 1980, Ap. J., 241, 587), this corresponds to a linear scale of 3.5 pc pixel (-1), and a field size of 2.8 kpc x 2.8 kpc. Researchers discuss the H alpha imagery of a field centered approx. equal to 8 minutes NE of the nucleus, including the supergiant HII region complex NGC 604. Two 2000 second H alpha images and two 300 second red continuum images were obtained of two slightly offset fields. The fields were offset to allow for discrimination between real emission and possible artifacts in the images. All images were resampled to align them with one of the H alpha frames. The continuum images were normalized to the line images using the results of aperture photometry on a grid of stars in the field, then the rescaled continuum data were directly subtracted from the line data.

  8. Designed Er(3+)-singly doped NaYF4 with double excitation bands for simultaneous deep macroscopic and microscopic upconverting bioimaging.

    Science.gov (United States)

    Wen, Xuanyuan; Wang, Baoju; Wu, Ruitao; Li, Nana; He, Sailing; Zhan, Qiuqiang

    2016-06-01

    Simultaneous deep macroscopic imaging and microscopic imaging is in urgent demand, but is challenging to achieve experimentally due to the lack of proper fluorescent probes. Herein, we have designed and successfully synthesized simplex Er(3+)-doped upconversion nanoparticles (UCNPs) with double excitation bands for simultaneous deep macroscopic and microscopic imaging. The material structure and the excitation wavelength of Er(3+)-singly doped UCNPs were further optimized to enhance the upconversion emission efficiency. After optimization, we found that NaYF4:30%Er(3+)@NaYF4:2%Er(3+) could simultaneously achieve efficient two-photon excitation (2PE) macroscopic tissue imaging and three-photon excitation (3PE) deep microscopic when excited by 808 nm continuous wave (CW) and 1480 nm CW lasers, respectively. In vitro cell imaging and in vivo imaging have also been implemented to demonstrate the feasibility and potential of the proposed simplex Er(3+)-doped UCNPs as bioprobe.

  9. The DSS-14 C-band exciter

    Science.gov (United States)

    Rowan, D. R.

    1989-01-01

    The development and implementation of a C-band exciter for use with the Block IV Receiver-Exciter Subsystem at Deep Space Station 14 (DSS-14) has been completed. The exciter supplements the standard capabilities of the Block IV system by providing a drive signal for the C-band transmitter while generating coherent translation frequencies for C-band (5-GHz) to S-band (2.2- to 2.3-GHz) Doppler extraction, C-band to L-band (1.6-GHz) zero delay measurements, and a level calibrated L-band test signal. Exciter functions are described, and a general explanation and description of the C-band uplink controller is presented.

  10. Measurement of the nucleon structure function in the deep inelastic neutrino-iron scattering with a wide-band neutrino beam

    International Nuclear Information System (INIS)

    Flottmann, T.

    1982-01-01

    In this thesis the nucleon structure function xF 3 is determined from the inclusive measurement of the deep inelastic neutrino nucleon charged current interaction. The data were taken in the CERN wide band neutrino beam using the detector of the CERN-Dortmund-Heidelberg-Saclay collaboration. This detector serves at the same time as target, as hadron energy calorimeter and as muon spectrometer. One major aspect of this work was to study the possibility of using high statistics wide band beam data for structure function analysis. The systematic errors specific to this kind of beam are investigated. To obtain the differential cross sections about 100000 neutrino and 75000 antineutrino events in the energy range 20-200 GeV are analysed. The differential cross sections are normalized to the total cross sections, as measured in the narrow band beam by the same collaboration. The calculated structure function xF 3 shows significant deviations from scaling. These scaling violations are compared quantitatively with the predictions of quantum chromodynamics. (orig.) [de

  11. Increased thalamic gamma band activity correlates with symptom relief following deep brain stimulation in humans with Tourette's syndrome.

    Directory of Open Access Journals (Sweden)

    Nicholas Maling

    Full Text Available Tourette syndrome (TS is an idiopathic, childhood-onset neuropsychiatric disorder, which is marked by persistent multiple motor and phonic tics. The disorder is highly disruptive and in some cases completely debilitating. For those with severe, treatment-refractory TS, deep brain stimulation (DBS has emerged as a possible option, although its mechanism of action is not fully understood. We performed a longitudinal study of the effects of DBS on TS symptomatology while concomitantly examining neurophysiological dynamics. We present the first report of the clinical correlation between the presence of gamma band activity and decreased tic severity. Local field potential recordings from five subjects implanted in the centromedian nucleus (CM of the thalamus revealed a temporal correlation between the power of gamma band activity and the clinical metrics of symptomatology as measured by the Yale Global Tic Severity Scale and the Modified Rush Tic Rating Scale. Additional studies utilizing short-term stimulation also produced increases in gamma power. Our results suggest that modulation of gamma band activity in both long-term and short-term DBS of the CM is a key factor in mitigating the pathophysiology associated with TS.

  12. Anomalous electromagnetically induced transparency in photonic-band-gap materials

    International Nuclear Information System (INIS)

    Singh, Mahi R.

    2004-01-01

    The phenomenon of electromagnetically induced transparency has been studied when a four-level atom is located in a photonic band gap material. Quantum interference is introduced by driving the two upper levels of the atom with a strong pump laser field. The top level and one of the ground levels are coupled by a weak probe laser field and absorption takes place between these two states. The susceptibility due to the absorption for this transition has been calculated by using the master equation method in linear response theory. Numerical simulations are performed for the real and imaginary parts of the susceptibility for a photonic band gap material whose gap-midgap ratio is 21%. It is found that when resonance frequencies lie within the band, the medium becomes transparent under the action of the strong pump laser field. More interesting results are found when one of the resonance frequencies lies at the band edge and within the band gap. When the resonance frequency lies at the band edge, the medium becomes nontransparent even under a strong pump laser field. On the other hand, when the resonance frequency lies within the band gap, the medium becomes transparent even under a weak pump laser field. In summary, we found that the medium can be transformed from the transparent state to the nontransparent state just by changing the location of the resonance frequency. We call these two effects anomalous electromagnetically induced transparency

  13. Deep-UV high resolution cavity ring-down spectroscopy of the Schumann-Runge bands in O-16(2) and O-18(2) at wavelengths 197-203 nm

    NARCIS (Netherlands)

    Hannemann, S.; van Duijn, E.J.; Ubachs, W.M.G.

    2005-01-01

    With the use of a novel titanium:sapphire laser source delivering, upon fourth harmonic generation, narrowband and tunable radiation in the deep-UV, spectroscopic studies were performed on weak Schumann-Runge bands of oxygen. Improved values for rotational and fine structure molecular parameters for

  14. A new miniaturized negative-index meta-atom for tri-band applications

    Directory of Open Access Journals (Sweden)

    Hossain Mohammad Jakir

    2017-07-01

    Full Text Available In this paper, a miniature negative index meta-atom was designed; simulated, fabricated and measured based on parallel incidence of electromagnetic wave that can maintain a tri-band applications in microwave spectra. Compare to the other multi-band conventional metamaterial, the proposed meta-atom structure allows miniaturization factor and follows better effective medium ratio (EMR. Finite-integration technique (FIT based computer simulation technology (CST electromagnetic simulator was adopted to examine the design of the meta-atom. It exhibits tri-band response in conjunction with backward wave property over a certain frequency band in the microwave regime. Furthermore, the effective medium ratio is considerably improved compared to previously reported metamaterial. Moreover, few parametric analyses were done with the meta-atom. The size, scattering parameters and effective medium parameters of the proposed negative index miniaturized meta-atom is appropriate for tri-band applications.

  15. Deep spallation of medium mass isotopes by protons

    International Nuclear Information System (INIS)

    Kolsky, K.L.; Karol, P.J.

    1993-01-01

    Spallation systematics have been extended into the deep spallation mass region. Production cross sections of scandium radioisotopes from 0.8 GeV protons on 89 Y, 92,96,100 Mo, and 130 Te targets were measured and the cross sections were used to generate isobaric yield curves at A p =47. In the latter target, this corresponds to a mass loss of >80 nucleons. At ∼10 MeV/nucleon and for products outside the multifragmentation region, this is an extreme manifestation of the spallation process. The results prove to fit smooth extrapolations from trends developed in earlier work on less deep spallation. The influence of target composition is still evident even from 130 Te, in contrast to expectations, based on evaporation considerations, that this so-called memory effect would wash out

  16. Application of slip-band visualization technique to tensile analysis of laser-welded aluminum alloy

    Science.gov (United States)

    Muchiar, -; Yoshida, Sanichiro J.; Widiastuti, Rini; Kusnowo, A.; Takahashi, Kunimitsu; Sato, Shunichi

    1997-03-01

    Recently we have developed a new optical interferometric technique capable of visualizing slip band occurring in a deforming solid-state object. In this work we applied this technique to a tensile analysis of laser-welded aluminum plate samples, and successfully revealed stress concentration that shows strong relationships with the tensile strength and the fracture mechanism. We believe that this method is a new, convenient way to analyze the deformation characteristics of welded objects and evaluate the quality of welding. The analysis has been made for several types of aluminum alloys under various welding conditions, and has shown the following general results. When the penetration is deep, a slip band starts appearing at the fusion zone in an early stage of the elastic region of the strain-stress curve and stays there till the sample fractures at that point. When the penetration is shallow, a slip band appears only after the yield point and moves vigorously over the whole surface of the sample till a late stage of plastic deformation when the slip band stays at the fusion zone where the sample eventually fractures. When the penetration depth is medium, some intermediate situation of the above two extreme cases is observed.

  17. Deep-Sea Corals: A New Oceanic Archive

    National Research Council Canada - National Science Library

    Adkins, Jess

    1998-01-01

    Deep-sea corals are an extraordinary new archive of deep ocean behavior. The species Desmophyllum cristagalli is a solitary coral composed of uranium rich, density banded aragonite that I have calibrated for several paleoclimate tracers...

  18. Development of Seasonal BRDF Models to Extend the Use of Deep Convective Clouds as Invariant Targets for Satellite SWIR-Band Calibration

    Directory of Open Access Journals (Sweden)

    Rajendra Bhatt

    2017-10-01

    Full Text Available Tropical deep convective clouds (DCC are an excellent invariant target for vicarious calibration of satellite visible (VIS and near-infrared (NIR solar bands. The DCC technique (DCCT is a statistical approach that collectively analyzes all identified DCC pixels on a monthly basis. The DCC reflectance in VIS and NIR spectrums is mainly a function of cloud optical depth, and provides a stable monthly statistical mode. However, for absorption shortwave infrared (SWIR bands, the monthly DCC response is found to exhibit large seasonal cycles that make the implementation of the DCCT more challenging at these wavelengths. The seasonality assumption was tested using the SNPP-VIIRS SWIR bands, with up to 50% of the monthly DCC response temporal variation removed through deseasonalization. In this article, a monthly DCC bidirectional reflectance distribution function (BRDF approach is proposed, which is found to be comparable to or can outperform the effects of deseasonalization alone. To demonstrate that the SNPP-VIIRS DCC BRDF can be applied to other JPSS VIIRS imagers in the same 13:30 sun-synchronous orbit, the VIIRS DCC BRDF was applied to Aqua-MODIS. The Aqua-MODIS SWIR band DCC reflectance natural variability is reduced by up to 45% after applying the VIIRS-based monthly DCC BRDFs.

  19. A Multi-Band Analytical Algorithm for Deriving Absorption and Backscattering Coefficients from Remote-Sensing Reflectance of Optically Deep Waters

    Science.gov (United States)

    Lee, Zhong-Ping; Carder, Kendall L.

    2001-01-01

    A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.

  20. Supermassive Black Hole Binary Candidates from the Pan-STARRS1 Medium Deep Survey

    Science.gov (United States)

    Liu, Tingting; Gezari, Suvi

    2018-01-01

    Supermassive black hole binaries (SMBHBs) should be a common product of the hierarchal growth of galaxies and gravitational wave sources at nano-Hz frequencies. We have performed a systematic search in the Pan-STARRS1 Medium Deep Survey for periodically varying quasars, which are predicted manifestations of SMBHBs, and identified 26 candidates that are periodically varying on the timescale of ~300-1000 days over the 4-year baseline of MDS. We continue to monitor them with the Discovery Channel Telescope and the LCO network telescopes and thus are able to extend the baseline to 3-8 cycles and break false positive signals due to stochastic, normal quasar variability. From our imaging campaign, five candidates show persistent periodic variability and remain strong SMBHB candidates for follow-up observations. We calculate the cumulative number rate of SMBHBs and compare with previous work. We also compare the gravitational wave strain amplitudes of the candidates with the capability of pulsar timing arrays and discuss the future capabilities to detect periodic quasar and SMBHB candidates with the Large Synoptic Survey Telescope.

  1. Deep levels in silicon–oxygen superlattices

    International Nuclear Information System (INIS)

    Simoen, E; Jayachandran, S; Delabie, A; Caymax, M; Heyns, M

    2016-01-01

    This work reports on the deep levels observed in Pt/Al 2 O 3 /p-type Si metal-oxide-semiconductor capacitors containing a silicon–oxygen superlattice (SL) by deep-level transient spectroscopy. It is shown that the presence of the SL gives rise to a broad band of hole traps occurring around the silicon mid gap, which is absent in reference samples with a silicon epitaxial layer. In addition, the density of states of the deep layers roughly scales with the number of SL periods for the as-deposited samples. Annealing in a forming gas atmosphere reduces the maximum concentration significantly, while the peak energy position shifts from close-to mid-gap towards the valence band edge. Based on the flat-band voltage shift of the Capacitance–Voltage characteristics it is inferred that positive charge is introduced by the oxygen atomic layers in the SL, indicating the donor nature of the underlying hole traps. In some cases, a minor peak associated with P b dangling bond centers at the Si/SiO 2 interface has been observed as well. (paper)

  2. Deep R-band counts of z ≈ 3 Lyman-break galaxy candidates with the LBT

    Science.gov (United States)

    Boutsia, K.; Grazian, A.; Giallongo, E.; Castellano, M.; Pentericci, L.; Fontana, A.; Fiore, F.; Gallozzi, S.; Cusano, F.; Paris, D.; Speziali, R.; Testa, V.

    2014-03-01

    Aims: We present a deep multiwavelength imaging survey (UGR) in 3 different fields, Q0933, Q1623, and COSMOS, for a total area of ~1500 arcmin2. The data were obtained with the Large Binocular Camera on the Large Binocular Telescope. Methods: To select our Lyman-break galaxy (LBG) candidates, we adopted the well established and widely used color-selection criterion (U - G vs. G - R). One of the main advantages of our survey is that it has a wider dynamic color range for U-dropout selection than in previous studies. This allows us to fully exploit the depth of our R-band images, obtaining a robust sample with few interlopers. In addition, for 2 of our fields we have spectroscopic redshift information that is needed to better estimate the completeness of our sample and interloper fraction. Results: Our limiting magnitudes reach 27.0(AB) in the R band (5σ) and 28.6(AB) in the U band (1σ). This dataset was used to derive LBG candidates at z ≈ 3. We obtained a catalog with a total of 12 264 sources down to the 50% completeness magnitude limit in the R band for each field. We find a surface density of ~3 LBG candidates arcmin-2 down to R = 25.5, where completeness is ≥95% for all 3 fields. This number is higher than the original studies, but consistent with more recent samples. Observations were carried out using the Large Binocular Telescope at Mt. Graham, AZ. The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University; and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.Full Tables A.1-A.3 are only available at the CDS via anonymous ftp to http

  3. Band Gap Optimization Design of Photonic Crystals Material

    Science.gov (United States)

    Yu, Y.; Yu, B.; Gao, X.

    2017-12-01

    The photonic crystal has a fundamental characteristic - photonic band gap, which can prevent light to spread in the crystals. This paper studies the width variation of band gaps of two-dimension square lattice photonic crystals by changing the geometrical shape of the unit cells’ inner medium column. Using the finite element method, we conduct numerical experiments on MATLAB 2012a and COMSOL 3.5. By shortening the radius in vertical axis and rotating the medium column, we design a new unit cell, with a 0.3*3.85e-7 vertical radius and a 15 degree deviation to the horizontal axis. The new cell has a gap 1.51 percent wider than the circle medium structure in TE gap and creates a 0.0124 wide TM gap. Besides, the experiment shows the first TM gap is partially overlapped by the second TE gap in gap pictures. This is helpful to format the absolute photonic band gaps and provides favorable theoretical basis for designing photonic communication material.

  4. Theoretical aspects of photonic band gap in 1D nano structure of LN: MgLN periodic layer

    International Nuclear Information System (INIS)

    Sisodia, Namita

    2015-01-01

    By using the transfer matrix method, we have analyzed the photonic band gap properties in a periodic layer of LN:MgLN medium. The Width of alternate layers of LN and MgLN is in the range of hundred nanometers. The birefringent and ferroelectric properties of the medium (i.e ordinary, extraordinary refractive indices and electric dipole moment) is given due considerations in the formulation of photonic band gap. Effect of electronic transition dipole moment of the medium on photonic band gap is also taken into account. We find that photonic band gap can be modified by the variation in the ratio of the width of two medium. We explain our findings by obtaining numerical values and the effect on the photonic band gap due to variation in the ratio of alternate medium is shown graphically

  5. Determination of Primary Spectral Bands for Remote Sensing of Aquatic Environments

    Directory of Open Access Journals (Sweden)

    MingXia He

    2007-12-01

    Full Text Available About 30 years ago, NASA launched the first ocean-color observing satellite:the Coastal Zone Color Scanner. CZCS had 5 bands in the visible-infrared domain with anobjective to detect changes of phytoplankton (measured by concentration of chlorophyll inthe oceans. Twenty years later, for the same objective but with advanced technology, theSea-viewing Wide Field-of-view Sensor (SeaWiFS, 7 bands, the Moderate-ResolutionImaging Spectrometer (MODIS, 8 bands, and the Medium Resolution ImagingSpectrometer (MERIS, 12 bands were launched. The selection of the number of bands andtheir positions was based on experimental and theoretical results achieved before thedesign of these satellite sensors. Recently, Lee and Carder (2002 demonstrated that foradequate derivation of major properties (phytoplankton biomass, colored dissolved organicmatter, suspended sediments, and bottom properties in both oceanic and coastalenvironments from observation of water color, it is better for a sensor to have ~15 bands inthe 400 – 800 nm range. In that study, however, it did not provide detailed analysesregarding the spectral locations of the 15 bands. Here, from nearly 400 hyperspectral (~ 3-nm resolution measurements of remote-sensing reflectance (a measure of water colortaken in both coastal and oceanic waters covering both optically deep and optically shallowwaters, first- and second-order derivatives were calculated after interpolating themeasurements to 1-nm resolution. From these derivatives, the frequency of zero values foreach wavelength was accounted for, and the distribution spectrum of such frequencies wasobtained. Furthermore, the wavelengths that have the highest appearance of zeros wereidentified. Because these spectral locations indicate extrema (a local maximum orminimum of the reflectance spectrum or inflections of the spectral curvature, placing the bands of a sensor at these wavelengths maximizes the potential of capturing (and then restoring

  6. Systematic study of β-band and correlation with g- band using power law and soft rotor formula

    International Nuclear Information System (INIS)

    Katoch, Vikas; Kaushik, Reetu; Sharma, S.; Gupta, J.B.

    2014-01-01

    The nuclear structure of even Z even N medium mass transitional nuclei consist of ground state band, K π =0 1 β-band, K π =2 1 γ- band and other higher bands. As we move away from closed shell, energy levels are low lying from spherical to deformed nuclei and energy deviated from ideal rotor behavior. The energy of these transitional nuclei in ground band can also be studied using Bohr Mottelson energy expression, Soft Rotor Formula (SRF), Power Law (PL) etc. Recently, Gupta et al. (2013) modified SRF for non zero band head K π =2 1 γ-band and reproduced the level energies. Here same formula applied for K π =0 1 β-band and the level energies are reproduced and compared with experimental energies. The power law is also used for recalculation of level energies and for useful comparison

  7. Influence of a deep-level-defect band formed in a heavily Mg-doped GaN contact layer on the Ni/Au contact to p-GaN

    International Nuclear Information System (INIS)

    Li Xiao-Jing; Zhao De-Gang; Jiang De-Sheng; Chen Ping; Zhu Jian-Jun; Liu Zong-Shun; Yang Jing; He Xiao-Guang; Yang Hui; Zhang Li-Qun; Zhang Shu-Ming; Le Ling-Cong; Liu Jian-Ping

    2015-01-01

    The influence of a deep-level-defect (DLD) band formed in a heavily Mg-doped GaN contact layer on the performance of Ni/Au contact to p-GaN is investigated. The thin heavily Mg-doped GaN (p ++ -GaN) contact layer with DLD band can effectively improve the performance of Ni/Au ohmic contact to p-GaN. The temperature-dependent I–V measurement shows that the variable-range hopping (VRH) transportation through the DLD band plays a dominant role in the ohmic contact. The thickness and Mg/Ga flow ratio of p ++ -GaN contact layer have a significant effect on ohmic contact by controlling the Mg impurity doping and the formation of a proper DLD band. When the thickness of the p ++ -GaN contact layer is 25 nm thick and the Mg/Ga flow rate ratio is 10.29%, an ohmic contact with low specific contact resistivity of 6.97× 10 −4 Ω·cm 2 is achieved. (paper)

  8. The carrier transport mechanism and band offset at the interface of ZnO/n-Si(111) heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yapeng, E-mail: liyp1984@126.com [School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723001 (China); Li, Yingfeng [School of Electrical Engineering, Shaanxi University of Technology, Hanzhong 723001 (China); Wang, Jianyuan [School of Nature and Applied Science, Northwestern Polytechnical University, Xi' an 710072 (China); He, Zhirong; Zhang, Yonghong; Yu, Qi; Hou, Juncai [School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723001 (China)

    2017-05-15

    Highlights: • The carrier transport deviated from ideal thermionic emission model. • One deep level present at the interface of ZnO/n-Si(111) heterojunction. • The band offsets of ZnO/n-Si(111) heterojunction are a type-II band alignment. - Abstract: The ZnO films were deposited on the surface of n-Si(111) substrate by pulsed laser deposition for fabrication of ZnO/n-Si(111) heterojunction. The carrier transport mechanism, deep level defects and band offsets at the interface of ZnO/n-Si(111) heterojunction were investigated by current- voltage measurement, deep level transient spectroscopy, X-ray photoelectron spectroscopy, respectively. The results showed that the barrier height and ideality factor values varied in the different linear voltage range by using the thermionic emission model, which was due to the deep level participated in carrier transport. Meanwhile, it was found that one deep level appeared at the interface of ZnO/n-Si(111) heterojunction with densities of the deep level about 8.5 × 10{sup 16} cm{sup −3} and activation energies about 224 m eV, which originated from O{sup 2−} vacancies of ZnO films. In addition, the valence band offset of the ZnO/n-Si(111) heterojunction can be calculated to be −2.4 ± 0.15 eV. The conduction band offset is deduced to be −3.5 ± 0.15 eV from the valence band offset value, indicating that the band offsets of ZnO/n-Si(111) heterojunction is a type-II band alignment.

  9. Investigation of electrically active defects in InGaAs quantum wire intermediate-band solar cells using deep-level transient spectroscopy (DLTS) technique

    OpenAIRE

    Al Saqri, Noor alhuda; Felix, Jorlandio F.; Aziz, Mohsin; Kunets, Vasyl P.; Jameel, Dler Adil; Taylor, David; Henini, M.; Abd El-sadek, Mahmmoud S.; Furrow, Colin; Ware, Morgan E.; Benamara, Mourad; Mortazavi, Mansour; Salamo, Gregory

    2016-01-01

    InGaAs quantum wire (QWr) intermediate-band solar cell based nanostructures grown by molecular beam epitaxy are studied. The electrical and interface properties of these solar cell devices, as determined by current–voltage (I–V) and capacitance–voltage (C-V) techniques, were found to change with temperature over a wide range of 20–340 K. The electron and hole traps present in these devices have been investigated using deep-level transient spectroscopy (DLTS). The DLTS results showed that the ...

  10. A search for planetary eclipses of white dwarfs in the Pan-STARRS1 medium-deep fields

    Energy Technology Data Exchange (ETDEWEB)

    Fulton, B. J.; Tonry, J. L.; Flewelling, H.; Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Huber, M. E.; Kaiser, N.; Wainscoat, R. J.; Waters, C. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2014-12-01

    We present a search for eclipses of ∼1700 white dwarfs (WDs) in the Pan-STARRS1 medium-deep fields. Candidate eclipse events are selected by identifying low outliers in over 4.3 million light curve measurements. We find no short-duration eclipses consistent with being caused by a planetary size companion. This large data set enables us to place strong constraints on the close-in planet occurrence rates around WDs for planets as small as 2 R {sub ⊕}. Our results indicate that gas giant planets orbiting just outside the Roche limit are rare, occurring around less than 0.5% of WDs. Habitable-zone super-Earths and hot super-Earths are less abundant than similar classes of planets around main-sequence stars. These constraints provide important insight into the ultimate fate of the large population of exoplanets orbiting main-sequence stars.

  11. Band-gap narrowing of TiO2 films induced by N-doping

    International Nuclear Information System (INIS)

    Nakano, Y.; Morikawa, T.; Ohwaki, T.; Taga, Y.

    2006-01-01

    N-doped TiO 2 films were deposited on n + -GaN/Al 2 O 3 substrates by reactive magnetron sputtering and subsequently crystallized by annealing at 550 o C in flowing N 2 gas. The N-doping concentration was ∼8.8%, as determined from X-ray photoelectron spectroscopy measurements. Deep-level optical spectroscopy measurements revealed two characteristic deep levels located at 1.18 and 2.48 eV below the conduction band. The 1.18 eV level is probably attributable to the O vacancy state and can be active as an efficient generation-recombination center. Additionally, the 2.48 eV band is newly introduced by the N-doping and contributes to band-gap narrowing by mixing with the O 2p valence band

  12. THE EVOLUTION OF THE FAR-UV LUMINOSITY FUNCTION AND STAR FORMATION RATE DENSITY OF THE CHANDRA DEEP FIELD SOUTH FROM z = 0.2 TO 1.2 WITH SWIFT/UVOT

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Lea M. Z.; Gronwall, Caryl; Wolf, Christopher; Siegel, Michael H.; Hagen, Alex [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Hoversten, Erik A. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 120 E. Cameron Avenue, Chapel Hill, NC 27599 (United States); Page, Mathew, E-mail: lmz5057@psu.edu [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom)

    2015-08-01

    We use deep Swift UV/Optical Telescope (UVOT) near-ultraviolet (1600–4000 Å) imaging of the Chandra Deep Field South to measure the rest-frame far-UV (FUV; 1500 Å) luminosity function (LF) in four redshift bins between z = 0.2 and 1.2. Our sample includes 730 galaxies with u < 24.1 mag. We use two methods to construct and fit the LFs: the traditional V{sub max} method with bootstrap errors, and a maximum likelihood estimator. We observe luminosity evolution such that M* fades by ∼2 mag from z ∼ 1 to z ∼ 0.3, implying that star formation activity was substantially higher at z ∼ 1 than today. We integrate our LFs to determine the FUV luminosity densities and star formation rate densities (SFRDs) from z = 0.2 to 1.2. We find evolution consistent with an increase proportional to (1 + z){sup 1.9} out to z ∼ 1. Our luminosity densities and star formation rates are consistent with those found in the literature but are, on average, a factor of ∼2 higher than previous FUV measurements. In addition, we combine our UVOT data with the MUSYC survey to model the galaxies’ ultraviolet-to-infrared spectral energy distributions and estimate the rest-frame FUV attenuation. We find that accounting for the attenuation increases the SFRDs by ∼1 dex across all four redshift bins.

  13. Microscopic description of the three major bands in transitional nuclei

    International Nuclear Information System (INIS)

    Pineda S, R.L.

    1986-01-01

    The author has extended the Coherent Phonon Model to the description of the three major bands in medium heavy transitional nuclei. The model assumes an axially symmetric deformed ground intrinsic state for the description of the low lying yrast levels of the ground band, while the excited bands are generated by intrinsic excitations of the ground band. Good angular momentum states are generated by the Peierls-Yoccoz angular momentum projection method

  14. Iris Transponder-Communications and Navigation for Deep Space

    Science.gov (United States)

    Duncan, Courtney B.; Smith, Amy E.; Aguirre, Fernando H.

    2014-01-01

    The Jet Propulsion Laboratory has developed the Iris CubeSat compatible deep space transponder for INSPIRE, the first CubeSat to deep space. Iris is 0.4 U, 0.4 kg, consumes 12.8 W, and interoperates with NASA's Deep Space Network (DSN) on X-Band frequencies (7.2 GHz uplink, 8.4 GHz downlink) for command, telemetry, and navigation. This talk discusses the Iris for INSPIRE, it's features and requirements; future developments and improvements underway; deep space and proximity operations applications for Iris; high rate earth orbit variants; and ground requirements, such as are implemented in the DSN, for deep space operations.

  15. Deep donor-acceptor pair recombination in bulk GaP studied by ODMR and DLTS techniques

    International Nuclear Information System (INIS)

    Awadelkarim, O.O.; Godlewski, M.; Monemar, B.

    1989-01-01

    Deep level transient spectroscopy (DLTS) and optically detected magnetic resonance (ODMR) are applied to study deep defect levels with photoluminescence bands observed in the near infrared region in S- and Te-doped bulk GaP crystals grown by the liquid encapsulated Czochralski method. The ODMR data suggest that the emission bands with maxima observed at 8000-8200 A (∼ 1.5 eV), common to both materials, and at 7750 A (1.6 eV), present only in GaP:Te, are due to donor-acceptor pair recombinations. The latter band, reported here for the first time, is tentatively associated with deep states observed by DLTS. (author) 19 refs., 5 figs

  16. The effects of buoyancy on shear-induced melt bands in a compacting porous medium

    Science.gov (United States)

    Butler, S. L.

    2009-03-01

    It has recently been shown [Holtzman, B., Groebner, N., Zimmerman, M., Ginsberg, S., Kohlstedt, D., 2003. Stress-driven melt segregation in partially molten rocks. Geochem. Geophys. Geosyst. 4, Art. No. 8607; Holtzman, B.K., Kohlstedt, D.L., 2007. Stress-driven melt segregation and strain partitioning in partially molten rocks: effects of stress and strain. J. Petrol. 48, 2379-2406] that when partially molten rock is subjected to simple shear, bands of high and low porosity are formed at a particular angle to the direction of instantaneous maximum extension. These have been modeled numerically and it has been speculated that high porosity bands may form an interconnected network with a bulk, effective permeability that is enhanced in a direction parallel to the bands. As a result, the bands may act to focus mantle melt towards the axis of mid-ocean ridges [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679]. In this contribution, we examine the combined effects of buoyancy and matrix shear on a deforming porous layer. The linear theory of Spiegelman [Spiegelman, M., 1993. Flow in deformable porous media. Part 1. Simple analysis. J. Fluid Mech. 247, 17-38; Spiegelman, M., 2003. Linear analysis of melt band formation by simple shear. Geochem. Geophys. Geosyst. 4, doi:10.1029/2002GC000499, Article 8615] and Katz et al. [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679] is generalized to include both the effects of buoyancy and matrix shear on a deformable porous layer with strain-rate dependent rheology. The predictions of linear theory are compared with the early time evolution of our 2D numerical model and they are found to be in excellent agreement. For conditions similar to the upper mantle, buoyancy forces can be similar to or much greater than matrix shear-induced forces. The

  17. The Hubble Space Telescope Medium Deep Survey Cluster Sample: Methodology and Data

    Science.gov (United States)

    Ostrander, E. J.; Nichol, R. C.; Ratnatunga, K. U.; Griffiths, R. E.

    1998-12-01

    We present a new, objectively selected, sample of galaxy overdensities detected in the Hubble Space Telescope Medium Deep Survey (MDS). These clusters/groups were found using an automated procedure that involved searching for statistically significant galaxy overdensities. The contrast of the clusters against the field galaxy population is increased when morphological data are used to search around bulge-dominated galaxies. In total, we present 92 overdensities above a probability threshold of 99.5%. We show, via extensive Monte Carlo simulations, that at least 60% of these overdensities are likely to be real clusters and groups and not random line-of-sight superpositions of galaxies. For each overdensity in the MDS cluster sample, we provide a richness and the average of the bulge-to-total ratio of galaxies within each system. This MDS cluster sample potentially contains some of the most distant clusters/groups ever detected, with about 25% of the overdensities having estimated redshifts z > ~0.9. We have made this sample publicly available to facilitate spectroscopic confirmation of these clusters and help more detailed studies of cluster and galaxy evolution. We also report the serendipitous discovery of a new cluster close on the sky to the rich optical cluster Cl l0016+16 at z = 0.546. This new overdensity, HST 001831+16208, may be coincident with both an X-ray source and a radio source. HST 001831+16208 is the third cluster/group discovered near to Cl 0016+16 and appears to strengthen the claims of Connolly et al. of superclustering at high redshift.

  18. Academic Training: Deep Space Telescopes

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 20, 21, 22, 23, 24 February from 11:00 to 12:00 - Council Chamber on 20, 21, 23, 24 February, TH Auditorium, bldg 4 - 3-006, on 22 February Deep Space Telescopes G. BIGNAMI / CNRS, Toulouse, F & Univ. di Pavia, I The short series of seminars will address results and aims of current and future space astrophysics as the cultural framework for the development of deep space telescopes. It will then present such new tools, as they are currently available to, or imagined by, the scientific community, in the context of the science plans of ESA and of all major world space agencies. Ground-based astronomy, in the 400 years since Galileo's telescope, has given us a profound phenomenological comprehension of our Universe, but has traditionally been limited to the narrow band(s) to which our terrestrial atmosphere is transparent. Celestial objects, however, do not care about our limitations, and distribute most of the information about their physics thro...

  19. Deep-level optical spectroscopy investigation of N-doped TiO2 films

    International Nuclear Information System (INIS)

    Nakano, Yoshitaka; Morikawa, Takeshi; Ohwaki, Takeshi; Taga, Yasunori

    2005-01-01

    N-doped TiO 2 films were deposited on n + -GaN/Al 2 O 3 substrates by reactive magnetron sputtering and subsequently crystallized by annealing at 550 deg. C in flowing N 2 gas. The N-doping concentration was ∼8.8%, as determined from x-ray photoelectron spectroscopy measurements. Deep-level optical spectroscopy measurements revealed two characteristic deep levels located at ∼1.18 and ∼2.48 eV below the conduction band. The 1.18 eV level is probably attributable to the O vacancy state and can be active as an efficient generation-recombination center. Additionally, the 2.48 eV band is newly introduced by the N doping and contributes to band-gap narrowing by mixing with the O 2p valence band

  20. Lunar Noise-Temperature Increase Measurements at S-Band, X-Band, and Ka-Band Using a 34-Meter-Diameter Beam-Waveguide Antenna

    Science.gov (United States)

    Morabito, D. D.

    2006-08-01

    The Moon radiates energy at infrared and microwave wavelengths, in addition to reflecting sunlight at optical wavelengths. As a result, an antenna pointed at or near the Moon will cause an increase in receiver noise temperature that needs to be accounted for in telemetry, radio science, or ranging link budgets. The Deep Space Network may be required to use its antennas in future lunar robotic or human missions, and thus it is important to understand the nature of this temperature increase as a function of observing frequency, lunar phase, and angular offset of the antenna beam from the center of the lunar disk. This article quantifies such a set of measurements acquired at DSS 13, a 34-m-diameter research and development beam-waveguide antenna located at Goldstone, California, at three different telecommunication frequencies, S-band (2.3 GHz), X-band (8.4 GHz), and Ka-band (32 GHz), over a wide range of lunar phase, for both disk-centered and limb-centered positions of the antenna beam.

  1. Complications of medium depth and deep chemical peels

    Directory of Open Access Journals (Sweden)

    Nanma Nikalji

    2012-01-01

    Full Text Available Superficial and medium depth peels are dynamic tools when used as part of office procedures for treatment of acne, pigmentation disorders, and photo-aging. Results and complications are generally related to the depth of wounding, with deeper peels providing more marked results and higher incidence of complications. Complications are also more likely with darker skin types, certain peeling agents, and sun exposure. They can range from minor irritations, uneven pigmentation to permanent scarring. In very rare cases, complications can be life-threatening.

  2. PROPERTIES OF DIFFUSE INTERSTELLAR BANDS AT DIFFERENT PHYSICAL CONDITIONS OF THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Kos, J.; Zwitter, T.

    2013-01-01

    Diffuse interstellar bands (DIBs) can trace different conditions of the interstellar medium (ISM) along the sightline toward the observed stars. A small survey was made in optical wavelengths, producing high-resolution and high signal-to-noise spectra. We present measurements of 19 DIBs' properties in 50 sightlines toward hot stars, distributed at a variety of galactic coordinates and interstellar reddening. Equivalent widths were obtained by fitting asymmetric Gaussian and variable continua to DIBs. Conditions of the ISM were calculated from eight atomic and molecular interstellar lines. Two distinctly different types of DIBs were identified by carefully comparing correlation coefficients between DIBs and reddening and by different behavior in UV-shielded (ζ) and nonshielded (σ) sightlines. A ratio of DIBs at 5780 Å and 5797 Å proved to be reliable enough to distinguish between two different sightline types. Based on the linear relations between DIB equivalent width and reddening for σ and ζ sightlines, we divide DIBs into type I (where both linear relations are similar) and type II (where they are significantly different). The linear relation for ζ type sightlines always shows a higher slope and larger x-intercept parameter than the relation for σ sightlines. Scatter around the linear relation is reduced after the separation, but it does not vanish completely. This means that UV shielding is the dominant factor of the DIB equivalent width versus reddening relation shape for ζ sightlines, but in σ sightlines other physical parameters play a major role. No similar dependency on gas density, electron density, or turbulence was observed. A catalog of all observed interstellar lines is made public

  3. Detection of Time Lags between Quasar Continuum Emission Bands Based On Pan-STARRS Light Curves

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yan-Fei [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Green, Paul J.; Pancoast, Anna; MacLeod, Chelsea L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Morganson, Eric; Shen, Yue [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Anderson, Scott F.; Ruan, John J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Brandt, W. N.; Grier, C. J. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Rix, H.-W. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Protopapas, Pavlos [Institute for Applied Computational Science, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Scott, Caroline [Astrophysics, Imperial College London, Blackett Laboratory, London SW7 2AZ (United Kingdom); Burgett, W. S.; Hodapp, K. W.; Huber, M. E.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu HI 96822 (United States); and others

    2017-02-20

    We study the time lags between the continuum emission of quasars at different wavelengths, based on more than four years of multi-band ( g , r , i , z ) light curves in the Pan-STARRS Medium Deep Fields. As photons from different bands emerge from different radial ranges in the accretion disk, the lags constrain the sizes of the accretion disks. We select 240 quasars with redshifts of z ≈ 1 or z ≈ 0.3 that are relatively emission-line free. The light curves are sampled from day to month timescales, which makes it possible to detect lags on the scale of the light crossing time of the accretion disks. With the code JAVELIN , we detect typical lags of several days in the rest frame between the g band and the riz bands. The detected lags are ∼2–3 times larger than the light crossing time estimated from the standard thin disk model, consistent with the recently measured lag in NGC 5548 and microlensing measurements of quasars. The lags in our sample are found to increase with increasing luminosity. Furthermore, the increase in lags going from g − r to g − i and then to g − z is slower than predicted in the thin disk model, particularly for high-luminosity quasars. The radial temperature profile in the disk must be different from what is assumed. We also find evidence that the lags decrease with increasing line ratios between ultraviolet Fe ii lines and Mg ii, which may point to changes in the accretion disk structure at higher metallicity.

  4. Infrared radiation parameterizations for the minor CO2 bands and for several CFC bands in the window region

    Science.gov (United States)

    Kratz, David P.; Chou, Ming-Dah; Yan, Michael M.-H.

    1993-01-01

    Fast and accurate parameterizations have been developed for the transmission functions of the CO2 9.4- and 10.4-micron bands, as well as the CFC-11, CFC-12, and CFC-22 bands located in the 8-12-micron region. The parameterizations are based on line-by-line calculations of transmission functions for the CO2 bands and on high spectral resolution laboratory measurements of the absorption coefficients for the CFC bands. Also developed are the parameterizations for the H2O transmission functions for the corresponding spectral bands. Compared to the high-resolution calculations, fluxes at the tropopause computed with the parameterizations are accurate to within 10 percent when overlapping of gas absorptions within a band is taken into account. For individual gas absorption, the accuracy is of order 0-2 percent. The climatic effects of these trace gases have been studied using a zonally averaged multilayer energy balance model, which includes seasonal cycles and a simplified deep ocean. With the trace gas abundances taken to follow the Intergovernmental Panel on Climate Change Low Emissions 'B' scenario, the transient response of the surface temperature is simulated for the period 1900-2060.

  5. Comparison and fit of the two and six band k.p models for the band edge structure of Pbsub(1-x)Snsub(x)Te

    International Nuclear Information System (INIS)

    Weissman, Y.

    1975-10-01

    The band edge structure of Pbsub(1-x)Snsub(x)Te is derived in detail using a two band ellipsoidal model and compared with a more rigorous calculation based on six bands. A quantitative comparison is made for two values of the energy gap, corresponding to the cases where x=0 and x=0.17. It was found that, for the occupied states in nondegenerate materials, both models are practically equivalent. Discrepancies may occur only in high degeneracies or deep inversion layers. The agreement between both models was significantly improved by introducing an effective energy gap in the two band model. It is suggested that the use of the effective energy gap may improve the agreement between the two band model and experiment whenever the details of the band edge structure enter the interpretation of the experimental results. (author)

  6. The dynamics of a shear band

    Science.gov (United States)

    Giarola, Diana; Capuani, Domenico; Bigoni, Davide

    2018-03-01

    A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which keeps into account the singularity at the shear band tips and permits the analysis of an incident wave impinging a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band.

  7. Band structures in near spherical 138Ce

    Science.gov (United States)

    Bhattacharjee, T.; Chanda, S.; Bhattacharyya, S.; Basu, S. K.; Bhowmik, R. K.; Das, J. J.; Pramanik, U. Datta; Ghugre, S. S.; Madhavan, N.; Mukherjee, A.; Mukherjee, G.; Muralithar, S.; Singh, R. P.

    2009-06-01

    The high spin states of N=80138Ce have been populated in the fusion evaporation reaction 130Te( 12C, 4n) 138Ce at E=65 MeV. The γ transitions belonging to various band structures were detected and characterized using an array of five Clover Germanium detectors. The level scheme has been established up to a maximum spin and excitation energy of 23 ℏ and 9511.3 keV, respectively, by including 53 new transitions. The negative parity ΔI=1 band, developed on the 6536.3 keV 15 level, has been conjectured to be a magnetic rotation band following a semiclassical analysis and comparing the systematics of similar bands in the neighboring nuclei. The said band is proposed to have a four quasiparticle configuration of [πgh]⊗[. Other band structures are interpreted in terms of multi-quasiparticle configurations, based on Total Routhian Surface (TRS) calculations. For the low and medium spin states, a shell model calculation using a realistic two body interaction has been performed using the code OXBASH.

  8. Microwave irradiation-assisted deposition of Ga2O3 on III-nitrides for deep-UV opto-electronics

    Science.gov (United States)

    Jaiswal, Piyush; Ul Muazzam, Usman; Pratiyush, Anamika Singh; Mohan, Nagaboopathy; Raghavan, Srinivasan; Muralidharan, R.; Shivashankar, S. A.; Nath, Digbijoy N.

    2018-01-01

    We report on the deposition of Ga2O3 on III-nitride epi-layers using the microwave irradiation technique. We also report on the demonstration of a Ga2O3 device: a visible-blind, deep-UV detector, with a GaN-based heterostructure as the substrate. The film deposited in the solution medium, at <200 °C, using a metalorganic precursor, was nanocrystalline. XRD confirms that the as-deposited film, when annealed at high temperature, turns to polycrystalline β-Ga2O3. SEM shows the as-deposited film to be uniform, with a surface roughness of 4-5 nm, as revealed by AFM. Interdigitated metal-semiconductor-metal devices with Ni/Au contact exhibited a peak spectral response at 230 nm and a good visible rejection ratio. This demonstration of a deep-UV detector on the β-Ga2O3/III-nitride stack is expected to open up possibilities of functional and physical integration of β-Ga2O3 and GaN material families towards enabling next-generation high-performance devices by exciting band and heterostructure engineering.

  9. THE HOST GALAXY PROPERTIES OF VARIABILITY SELECTED AGN IN THE PAN-STARRS1 MEDIUM DEEP SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Heinis, S.; Gezari, S.; Kumar, S. [Department of Astronomy, University of Maryland, College Park, MD (United States); Burgett, W. S.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Wainscoat, R. J.; Waters, C. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2016-07-20

    We study the properties of 975 active galactic nuclei (AGNs) selected by variability in the Pan-STARRS1 Medium deep Survey. Using complementary multi-wavelength data from the ultraviolet to the far-infrared, we use spectral energy distribution fitting to determine the AGN and host properties at z < 1 and compare to a well-matched control sample. We confirm the trend previously observed: that the variability amplitude decreases with AGN luminosity, but we also observe that the slope of this relation steepens with wavelength, resulting in a “redder when brighter” trend at low luminosities. Our results show that AGNs are hosted by more massive hosts than control sample galaxies, while the rest frame dust-corrected NUV r color distribution of AGN hosts is similar to control galaxies. We find a positive correlation between the AGN luminosity and star formation rate (SFR), independent of redshift. AGN hosts populate the entire range of SFRs within and outside of the Main Sequence of star-forming galaxies. Comparing the distribution of AGN hosts and control galaxies, we show that AGN hosts are less likely to be hosted by quiescent galaxies and more likely to be hosted by Main Sequence or starburst galaxies.

  10. Deep Ly alpha imaging of two z=2.04 GRB host galaxy fields

    DEFF Research Database (Denmark)

    Fynbo, J.P.U.; Møller, Per; Thomsen, Bente

    2002-01-01

    We report on the results of deep narrow-band Lyalpha and broad-band U and I imaging of the fields of two Gamma-Ray bursts at redshift z = 2.04 (GRB 000301C and GRB 000926). We find that the host galaxy of GRB 000926 is an extended (more than 2 arcsec), strong Lyalpha emitter with a rest-frame equ......We report on the results of deep narrow-band Lyalpha and broad-band U and I imaging of the fields of two Gamma-Ray bursts at redshift z = 2.04 (GRB 000301C and GRB 000926). We find that the host galaxy of GRB 000926 is an extended (more than 2 arcsec), strong Lyalpha emitter with a rest...... - I colour than the eastern component, suggesting the presence of at least some dust. We do not detect the host galaxy of GRB 000301C in neither Lyalpha emission nor in U and I broad-band images. The strongest limit comes from combining the narrow and U-band imaging where we infer a limit of U...

  11. DATA QUALITY EVALUATION AND APPLICATION POTENTIAL ANALYSIS OF TIANGONG-2 WIDE-BAND IMAGING SPECTROMETER

    Directory of Open Access Journals (Sweden)

    B. Qin

    2018-04-01

    Full Text Available Tiangong-2 is the first space laboratory in China, which launched in September 15, 2016. Wide-band Imaging Spectrometer is a medium resolution multispectral imager on Tiangong-2. In this paper, the authors introduced the indexes and parameters of Wideband Imaging Spectrometer, and made an objective evaluation about the data quality of Wide-band Imaging Spectrometer in radiation quality, image sharpness and information content, and compared the data quality evaluation results with that of Landsat-8. Although the data quality of Wide-band Imager Spectrometer has a certain disparity with Landsat-8 OLI data in terms of signal to noise ratio, clarity and entropy. Compared with OLI, Wide-band Imager Spectrometer has more bands, narrower bandwidth and wider swath, which make it a useful remote sensing data source in classification and identification of large and medium scale ground objects. In the future, Wide-band Imaging Spectrometer data will be widely applied in land cover classification, ecological environment assessment, marine and coastal zone monitoring, crop identification and classification, and other related areas.

  12. Data Quality Evaluation and Application Potential Analysis of TIANGONG-2 Wide-Band Imaging Spectrometer

    Science.gov (United States)

    Qin, B.; Li, L.; Li, S.

    2018-04-01

    Tiangong-2 is the first space laboratory in China, which launched in September 15, 2016. Wide-band Imaging Spectrometer is a medium resolution multispectral imager on Tiangong-2. In this paper, the authors introduced the indexes and parameters of Wideband Imaging Spectrometer, and made an objective evaluation about the data quality of Wide-band Imaging Spectrometer in radiation quality, image sharpness and information content, and compared the data quality evaluation results with that of Landsat-8. Although the data quality of Wide-band Imager Spectrometer has a certain disparity with Landsat-8 OLI data in terms of signal to noise ratio, clarity and entropy. Compared with OLI, Wide-band Imager Spectrometer has more bands, narrower bandwidth and wider swath, which make it a useful remote sensing data source in classification and identification of large and medium scale ground objects. In the future, Wide-band Imaging Spectrometer data will be widely applied in land cover classification, ecological environment assessment, marine and coastal zone monitoring, crop identification and classification, and other related areas.

  13. Red photoluminescence and band edge shift from ZnO thin films

    International Nuclear Information System (INIS)

    Marotti, Ricardo E.; Badan, Juan A.; Quagliata, Eduardo; Dalchiele, Enrique A.

    2007-01-01

    The red photoluminescence (PL) band (peaked between 610 and 640 nm) from electrochemically deposited ZnO thin films is studied. The absorption coefficient is obtained from diffuse reflectance measurements. The absorption band edge depends on deposition conditions. The PL peak follows the shift of the band edge. A similar correlation appears when cooling down to 20 K. This suggests that PL is due to a transition from an intrinsic shallow state to an intrinsic deep state. Comparing against ZnO samples showing green PL, the shallow nature of the state is confirmed

  14. A method of retrieving cloud top height and cloud geometrical thickness with oxygen A and B bands for the Deep Space Climate Observatory (DSCOVR) mission: Radiative transfer simulations

    International Nuclear Information System (INIS)

    Yang, Yuekui; Marshak, Alexander; Mao, Jianping; Lyapustin, Alexei; Herman, Jay

    2013-01-01

    The Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR) was designed to measure the atmosphere and surface properties over the whole sunlit half of the Earth from the L1 Lagrangian point. It has 10 spectral channels ranging from the UV to the near-IR, including two pairs of oxygen (O 2 ) A-band (779.5 and 764 nm) and B-band (680 and 687.75 nm) reference and absorption channels selected for the cloud height measurements. This paper presents the radiative transfer analysis pertinent to retrieving cloud top height and cloud geometrical thickness with EPIC A- and B-band observations. Due to photon cloud penetration, retrievals from either O 2 A- or B-band channels alone gives the corresponding cloud centroid height, which is lower than the cloud top. However, we show both the sum and the difference between the retrieved cloud centroid heights in the A and B bands are functions of cloud top height and cloud geometrical thickness. Based on this fact, the paper develops a new method to retrieve cloud top height and cloud geometrical thickness simultaneously for fully cloudy scenes over ocean surface. First, cloud centroid heights are calculated for both A and B bands using the ratios between the reflectances of the absorbing and reference channels; then the cloud top height and the cloud geometrical thickness are retrieved from the two dimensional look up tables that relate the sum and the difference between the retrieved centroid heights for A and B bands to the cloud top height and the cloud geometrical thickness. This method is applicable for clouds thicker than an optical depth of 5. -- Highlights: ► EPIC onboard DSCOVR is equipped with O 2 A and B band channels. ► Photon cloud penetration depths of A and B bands contain information of cloud thickness. ► A method is developed to retrieve cloud top height and cloud geometrical thickness with EPIC O 2 A- and B-band

  15. Stripped Elliptical Galaxies as Probes of ICM Physics. III. Deep Chandra Observations of NGC 4552: Measuring the Viscosity of the Intracluster Medium

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, R. P.; Roediger, E.; Machacek, M.; Forman, W. R.; Nulsen, P. E. J.; Jones, C.; Randall, S.; Su, Y. [Harvard/Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Churazov, E. [MPI für Astrophysik, Karl-Schwarzschild-Str. 1, Garching D-85741 (Germany); Sheardown, A., E-mail: rkraft@cfa.harvard.edu [E. A. Milne Center for Astrophysics, Department of Physics and Mathematics, University of Hull, Hull, HU6 7RX (United Kingdom)

    2017-10-10

    We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89), which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin “horns” attached to the northern edge of the gas core. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffuse emission of the tail out to a large distance (10× the radius of the remnant core) from the galaxy center. In our two previous papers, we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of intracluster medium (ICM) viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high- β plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales.

  16. The geochemistry of banded iron formations in the sukumaland ...

    African Journals Online (AJOL)

    The geochemistry of banded iron formations in the sukumaland greenstone belt of Geita, northern Tanzania: evidence for mixing of hydrothermal and clastic ... the hydrothermal deposits have been contaminated, by up to 20% by weight, with detrital material having a composition similar to modern deep-sea pelagic clays.

  17. ALMACAL I: FIRST DUAL-BAND NUMBER COUNTS FROM A DEEP AND WIDE ALMA SUBMILLIMETER SURVEY, FREE FROM COSMIC VARIANCE

    Energy Technology Data Exchange (ETDEWEB)

    Oteo, I.; Ivison, R. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ UK (United Kingdom); Zwaan, M. A.; Biggs, A. D. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Smail, I., E-mail: ivanoteogomez@gmail.com [Centre for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE UK (United Kingdom)

    2016-05-01

    We have exploited ALMA calibration observations to carry out a novel, wide, and deep submillimeter (submm) survey, almacal. These calibration data comprise a large number of observations of calibrator fields in a variety of frequency bands and array configurations. By gathering together data acquired during multiple visits to many ALMA calibrators, it is possible to reach noise levels which allow the detection of faint, dusty, star-forming galaxies (DSFGs) over a significant area. In this paper, we outline our survey strategy and report the first results. We have analyzed data for 69 calibrators, reaching depths of ∼25 μ Jy beam{sup −1} at sub-arcsec resolution. Adopting a conservative approach based on ≥5 σ detections, we have found 8 and 11 DSFGs in ALMA bands 6 and 7, respectively, with flux densities S {sub 1.2} m {sub m} ≥ 0.2 mJy. The faintest galaxies would have been missed by even the deepest Herschel surveys. Our cumulative number counts have been determined independently at 870 μ m and 1.2 mm from a sparse sampling of the astronomical sky, and are thus relatively free of cosmic variance. The counts are lower than reported previously by a factor of at least 2×. Future analyses will yield large, secure samples of DSFGs with redshifts determined via the detection of submm spectral lines. Uniquely, our strategy then allows for morphological studies of very faint DSFGs—representative of more normal star-forming galaxies than conventional submm galaxies—in fields where self-calibration is feasible, yielding milliarcsecond spatial resolution.

  18. Deep learning architecture for iris recognition based on optimal Gabor filters and deep belief network

    Science.gov (United States)

    He, Fei; Han, Ye; Wang, Han; Ji, Jinchao; Liu, Yuanning; Ma, Zhiqiang

    2017-03-01

    Gabor filters are widely utilized to detect iris texture information in several state-of-the-art iris recognition systems. However, the proper Gabor kernels and the generative pattern of iris Gabor features need to be predetermined in application. The traditional empirical Gabor filters and shallow iris encoding ways are incapable of dealing with such complex variations in iris imaging including illumination, aging, deformation, and device variations. Thereby, an adaptive Gabor filter selection strategy and deep learning architecture are presented. We first employ particle swarm optimization approach and its binary version to define a set of data-driven Gabor kernels for fitting the most informative filtering bands, and then capture complex pattern from the optimal Gabor filtered coefficients by a trained deep belief network. A succession of comparative experiments validate that our optimal Gabor filters may produce more distinctive Gabor coefficients and our iris deep representations be more robust and stable than traditional iris Gabor codes. Furthermore, the depth and scales of the deep learning architecture are also discussed.

  19. Ultrawide band gap amorphous oxide semiconductor, Ga–Zn–O

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junghwan, E-mail: JH.KIM@lucid.msl.titech.ac.jp [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Miyokawa, Norihiko; Sekiya, Takumi; Ide, Keisuke [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Toda, Yoshitake [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama (Japan)

    2016-09-01

    We fabricated amorphous oxide semiconductor films, a-(Ga{sub 1–x}Zn{sub x})O{sub y}, at room temperature on glass, which have widely tunable band gaps (E{sub g}) ranging from 3.47–4.12 eV. The highest electron Hall mobility ~ 7 cm{sup 2} V{sup −1} s{sup −1} was obtained for E{sub g} = ~ 3.8 eV. Ultraviolet photoemission spectroscopy revealed that the increase in E{sub g} with increasing the Ga content comes mostly from the deepening of the valence band maximum level while the conduction band minimum level remains almost unchanged. These characteristics are explained by their electronic structures. As these films can be fabricated at room temperature on plastic, this achievement extends the applications of flexible electronics to opto-electronic integrated circuits associated with deep ultraviolet region. - Highlights: • Incorporation of H/H{sub 2}O stabilizes the amorphous phase. • Ultrawide band gap (~ 3.8 eV) amorphous oxide semiconductor was fabricated. • The increase in band gap comes mostly from the deepening of the valence band maximum level. • Donor level is more likely aligned to the valence band maximum level.

  20. Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation.

    Science.gov (United States)

    Chirayath, V A; Callewaert, V; Fairchild, A J; Chrysler, M D; Gladen, R W; Mcdonald, A D; Imam, S K; Shastry, K; Koymen, A R; Saniz, R; Barbiellini, B; Rajeshwar, K; Partoens, B; Weiss, A H

    2017-07-13

    Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition.

  1. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    International Nuclear Information System (INIS)

    Kozyukhin, S.; Golovchak, R.; Kovalskiy, A.; Shpotyuk, O.; Jain, H.

    2011-01-01

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As x Se 100−x , As x S 100−x , Ge x Se 100−x and Ge x S 100−x chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  2. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    Energy Technology Data Exchange (ETDEWEB)

    Kozyukhin, S., E-mail: sergkoz@igic.ras.ru [Russian Academy of Science, Institute of General and Inorganic Chemistry (Russian Federation); Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Kovalskiy, A. [Lehigh University, Department of Materials Science and Engineering (United States); Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Jain, H. [Lehigh University, Department of Materials Science and Engineering (United States)

    2011-04-15

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As{sub x}Se{sub 100-x}, As{sub x}S{sub 100-x}, Ge{sub x}Se{sub 100-x} and Ge{sub x}S{sub 100-x} chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  3. Pore Fluid Evolution Influenced by Volcanic Activities and Related Diagenetic Processes in a Rift Basin: Evidence from the Paleogene Medium-Deep Reservoirs of Huanghekou Sag, Bohai Bay Basin, China

    Directory of Open Access Journals (Sweden)

    Zhongheng Sun

    2017-01-01

    Full Text Available Volcanic activities exert a significant influence on pore fluid property and related diagenetic processes that substantially controlled reservoirs quality. Analysis of Paleogene medium-deep sandstones on the Huanghekou Sag provides insight into relating the diagenetic processes to pore fluid property evolution influenced by volcanic activities. Three distinct types of pore fluids were identified on the basis of an integrated and systematic analysis including core and thin section observation, XRD, SEM, CL, and trace element. Alkaline aqueous medium environment occurred in E2s1+2 where volcanic activities have insignificant influence on pore fluids, evidenced by typical alkaline diagenetic events such as K-feldspar albitization, quartz dissolution, feldspar dissolution, and carbonate cementation. During the deposition of E3d3, influx of terrestrial freshwater and alteration of ferromagnesian-rich pore water result in the formation of mixing aqueous medium environment through volcanic eruption dormancy causing zeolite dissolution, clay mineral transformation, and K-feldspar albitization. Ferromagnesian-rich aqueous medium environment developed resulting from the intensive hydrolysis of the unstable ferromagnesian minerals formed due to intense volcanic activities during E3d1+2 and corresponding predominant diagenetic processes were characterized by the precipitation and dissolution of low-silica zeolites. Therefore, the differential properties of pore fluids caused various diagenetic processes controlling reservoir quality.

  4. Radon in geological medium

    Energy Technology Data Exchange (ETDEWEB)

    Hricko, J [GEOCOMPLEX, a.s., Bratislava (Slovakia)

    1996-12-31

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a{sub v} has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km{sup 2}. The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a{sub v} > 50 kBq/m{sup 3}). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs.

  5. Radon in geological medium

    International Nuclear Information System (INIS)

    Hricko, J.

    1995-01-01

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a v has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km 2 . The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a v > 50 kBq/m 3 ). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs

  6. Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit

    Directory of Open Access Journals (Sweden)

    Peng Xi

    2018-05-01

    Full Text Available Objective: Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. Method: We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from the time, and the impact of local skin tissue morphology. Result: Rabbits deep II degree burn model successful modeling; on day 12, 18, high, medium and low doses of nano-silver hydrogel coating film significantly reduced skin irritation of rabbits infected with the integral value (P < 0.01, P < 0.05; high, medium and low doses of nano-silver hydrogel coating film group significantly decreased skin irritation, infection integral value (P < 0.01, P < 0.05; high, medium and low doses of nano-silver hydrogel coating film significantly reduced film rabbits’ scalded skin crusting time (P < 0.01, significantly shortened the rabbit skin burns from the scab time (P < 0.01, and significantly improved the treatment of skin diseases in rabbits scald model change (P < 0.01, P < 0.05. Conclusion: The nano-silver hydrogel coating film on the deep partial thickness burns has a significant therapeutic effect; external use has a significant role in wound healing. Keywords: Nano-silver hydrogel coating film, Deep degree burns, Topical, Rabbits

  7. Period-dependent source rupture behavior of the 2011 Tohoku earthquake estimated by multi period-band Bayesian waveform inversion

    Science.gov (United States)

    Kubo, H.; Asano, K.; Iwata, T.; Aoi, S.

    2014-12-01

    Previous studies for the period-dependent source characteristics of the 2011 Tohoku earthquake (e.g., Koper et al., 2011; Lay et al., 2012) were based on the short and long period source models using different method. Kubo et al. (2013) obtained source models of the 2011 Tohoku earthquake using multi period-bands waveform data by a common inversion method and discussed its period-dependent source characteristics. In this study, to achieve more in detail spatiotemporal source rupture behavior of this event, we introduce a new fault surface model having finer sub-fault size and estimate the source models in multi period-bands using a Bayesian inversion method combined with a multi-time-window method. Three components of velocity waveforms at 25 stations of K-NET, KiK-net, and F-net of NIED are used in this analysis. The target period band is 10-100 s. We divide this period band into three period bands (10-25 s, 25-50 s, and 50-100 s) and estimate a kinematic source model in each period band using a Bayesian inversion method with MCMC sampling (e.g., Fukuda & Johnson, 2008; Minson et al., 2013, 2014). The parameterization of spatiotemporal slip distribution follows the multi-time-window method (Hartzell & Heaton, 1983). The Green's functions are calculated by the 3D FDM (GMS; Aoi & Fujiwara, 1999) using a 3D velocity structure model (JIVSM; Koketsu et al., 2012). The assumed fault surface model is based on the Pacific plate boundary of JIVSM and is divided into 384 subfaults of about 16 * 16 km^2. The estimated source models in multi period-bands show the following source image: (1) First deep rupture off Miyagi at 0-60 s toward down-dip mostly radiating relatively short period (10-25 s) seismic waves. (2) Shallow rupture off Miyagi at 45-90 s toward up-dip with long duration radiating long period (50-100 s) seismic wave. (3) Second deep rupture off Miyagi at 60-105 s toward down-dip radiating longer period seismic waves then that of the first deep rupture. (4) Deep

  8. Medium usage model for the design of dynamic spectrum management in ISM bands

    NARCIS (Netherlands)

    Witvliet, B.A.; Bentum, M.J.; Schiphorst, R.; Slump, C.H.

    2012-01-01

    This paper presents a new approach for dynamic spectrum management for heterogeneous wireless devices. Local congestion degrades the reliability of wireless applications in the License Exempt bands. This leads to the research questions: (1) how to realize equal spectrum sharing between dissimilar

  9. Evolution of the large Deep Space Network antennas

    Science.gov (United States)

    Imbriale, William A.

    1991-12-01

    The evolution of the largest antenna of the US NASA Deep Space Network (DSN) is described. The design, performance analysis, and measurement techniques, beginning with its initial 64-m operation at S-band (2295 MHz) in 1966 and continuing through the present ka-band (32-GHz) operation at 70 m, is described. Although their diameters and mountings differ, these parabolic antennas all employ a Cassegrainian feed system, and each antenna dish surface is constructed of precision-shaped perforated-aluminum panels that are secured to an open steel framework

  10. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    International Nuclear Information System (INIS)

    Kunj, Saurabh; Sreenivas, K.

    2016-01-01

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O_2) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  11. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    Science.gov (United States)

    Kunj, Saurabh; Sreenivas, K.

    2016-05-01

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O2) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  12. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Kunj, Saurabh; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi 110007 INDIA (India)

    2016-05-06

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O{sub 2}) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  13. Theory of deep level trap effects on generation-recombination noise in HgCdTe photoconductors

    International Nuclear Information System (INIS)

    Iverson, A.E.; Smith, D.L.

    1985-01-01

    We present a theory of the effect of deep level centers on the generation-recombination (g-r) noise and responsivity of an intrinsic photoconductor. The deep level centers can influence the g-r noise and responsivity in three main ways: (i) they can shorten the bulk carrier lifetime by Shockley--Read--Hall recombination; (ii) for some values of the capture cross sections, deep level densities, and temperature, the deep levels can trap a significant fraction of the photogenerated minority carriers. This trapping reduces the effective minority carrier mobility and diffusivity and thus reduces the effect of carrier sweep out on both g-r noise and responsivity; (iii) the deep level centers add a new thermal noise source, which results from fluctuations between bound and free carriers. The strength of this new noise source decreases with decreasing temperature at a slower rate than band-to-band thermal g-r noise. Calculations have been performed for a X = 0.21, n-type Hg/sub 1-x/Cd/sub x/Te photoconductor using the parameters of a commonly occurring deep level center in this material. We find that for typical operating conditions photoconductive detector performance begins to degrade as the deep level density begins to exceed 10 16 cm -3

  14. Neural network based satellite tracking for deep space applications

    Science.gov (United States)

    Amoozegar, F.; Ruggier, C.

    2003-01-01

    The objective of this paper is to provide a survey of neural network trends as applied to the tracking of spacecrafts in deep space at Ka-band under various weather conditions and examine the trade-off between tracing accuracy and communication link performance.

  15. Deep space telescopes

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    The short series of seminars will address results and aims of current and future space astrophysics as the cultural framework for the development of deep space telescopes. It will then present such new tools, as they are currently available to, or imagined by, the scientific community, in the context of the science plans of ESA and of all major world space agencies. Ground-based astronomy, in the 400 years since Galileo’s telescope, has given us a profound phenomenological comprehension of our Universe, but has traditionally been limited to the narrow band(s) to which our terrestrial atmosphere is transparent. Celestial objects, however, do not care about our limitations, and distribute most of the information about their physics throughout the complete electromagnetic spectrum. Such information is there for the taking, from millimiter wavelengths to gamma rays. Forty years astronomy from space, covering now most of the e.m. spectrum, have thus given us a better understanding of our physical Universe then t...

  16. An L Band Spectrum of the Coldest Brown Dwarf

    Science.gov (United States)

    Morley, Caroline V.; Skemer, Andrew J.; Allers, Katelyn N.; Marley, Mark. S.; Faherty, Jacqueline K.; Visscher, Channon; Beiler, Samuel A.; Miles, Brittany E.; Lupu, Roxana; Freedman, Richard S.; Fortney, Jonathan J.; Geballe, Thomas R.; Bjoraker, Gordon L.

    2018-05-01

    The coldest brown dwarf, WISE 0855, is the closest known planetary-mass, free-floating object and has a temperature nearly as cold as the solar system gas giants. Like Jupiter, it is predicted to have an atmosphere rich in methane, water, and ammonia, with clouds of volatile ices. WISE 0855 is faint at near-infrared wavelengths and emits almost all its energy in the mid-infrared. Skemer et al. presented a spectrum of WISE 0855 from 4.5–5.1 μm (M band), revealing water vapor features. Here, we present a spectrum of WISE 0855 in the L band, from 3.4–4.14 μm. We present a set of atmosphere models that include a range of compositions (metallicities and C/O ratios) and water ice clouds. Methane absorption is clearly present in the spectrum. The mid-infrared color can be better matched with a methane abundance that is depleted relative to solar abundance. We find that there is evidence for water ice clouds in the M band spectrum, and we find a lack of phosphine spectral features in both the L and M band spectra. We suggest that a deep continuum opacity source may be obscuring the near-infrared flux, possibly a deep phosphorous-bearing cloud, ammonium dihyrogen phosphate. Observations of WISE 0855 provide critical constraints for cold planetary atmospheres, bridging the temperature range between the long-studied solar system planets and accessible exoplanets. The James Webb Space Telescope will soon revolutionize our understanding of cold brown dwarfs with high-precision spectroscopy across the infrared, allowing us to study their compositions and cloud properties, and to infer their atmospheric dynamics and formation processes.

  17. XMM-Newton 13H deep field - I. X-ray sources

    Science.gov (United States)

    Loaring, N. S.; Dwelly, T.; Page, M. J.; Mason, K.; McHardy, I.; Gunn, K.; Moss, D.; Seymour, N.; Newsam, A. M.; Takata, T.; Sekguchi, K.; Sasseen, T.; Cordova, F.

    2005-10-01

    We present the results of a deep X-ray survey conducted with XMM-Newton, centred on the UK ROSAT13H deep field area. This region covers 0.18 deg2, and is the first of the two areas covered with XMM-Newton as part of an extensive multiwavelength survey designed to study the nature and evolution of the faint X-ray source population. We have produced detailed Monte Carlo simulations to obtain a quantitative characterization of the source detection procedure and to assess the reliability of the resultant sourcelist. We use the simulations to establish a likelihood threshold, above which we expect less than seven (3 per cent) of our sources to be spurious. We present the final catalogue of 225 sources. Within the central 9 arcmin, 68 per cent of source positions are accurate to 2 arcsec, making optical follow-up relatively straightforward. We construct the N(>S) relation in four energy bands: 0.2-0.5, 0.5-2, 2-5 and 5-10 keV. In all but our highest energy band we find that the source counts can be represented by a double power law with a bright-end slope consistent with the Euclidean case and a break around 10-14yergcm-2s-1. Below this flux, the counts exhibit a flattening. Our source counts reach densities of 700, 1300, 900 and 300 deg-2 at fluxes of 4.1 × 10-16,4.5 × 10-16,1.1 × 10-15 and 5.3 × 10-15ergcm-2s-1 in the 0.2-0.5, 0.5-2, 2-5 and 5-10 keV energy bands, respectively. We have compared our source counts with those in the two Chandra deep fields and Lockman hole, and found our source counts to be amongst the highest of these fields in all energy bands. We resolve >51 per cent (>50 per cent) of the X-ray background emission in the 1-2 keV (2-5 keV) energy bands.

  18. [Research of electroencephalography representational emotion recognition based on deep belief networks].

    Science.gov (United States)

    Yang, Hao; Zhang, Junran; Jiang, Xiaomei; Liu, Fei

    2018-04-01

    In recent years, with the rapid development of machine learning techniques,the deep learning algorithm has been widely used in one-dimensional physiological signal processing. In this paper we used electroencephalography (EEG) signals based on deep belief network (DBN) model in open source frameworks of deep learning to identify emotional state (positive, negative and neutrals), then the results of DBN were compared with support vector machine (SVM). The EEG signals were collected from the subjects who were under different emotional stimuli, and DBN and SVM were adopted to identify the EEG signals with changes of different characteristics and different frequency bands. We found that the average accuracy of differential entropy (DE) feature by DBN is 89.12%±6.54%, which has a better performance than previous research based on the same data set. At the same time, the classification effects of DBN are better than the results from traditional SVM (the average classification accuracy of 84.2%±9.24%) and its accuracy and stability have a better trend. In three experiments with different time points, single subject can achieve the consistent results of classification by using DBN (the mean standard deviation is1.44%), and the experimental results show that the system has steady performance and good repeatability. According to our research, the characteristic of DE has a better classification result than other characteristics. Furthermore, the Beta band and the Gamma band in the emotional recognition model have higher classification accuracy. To sum up, the performances of classifiers have a promotion by using the deep learning algorithm, which has a reference for establishing a more accurate system of emotional recognition. Meanwhile, we can trace through the results of recognition to find out the brain regions and frequency band that are related to the emotions, which can help us to understand the emotional mechanism better. This study has a high academic value and

  19. Spin-parity assignments and extension of the 02+ band in 158Er

    International Nuclear Information System (INIS)

    Dinoko, T. S.; Orce, J. N.; Sharpey-Schafer, J. F.; Wiedeking, M.; Bark, R. A.; Bvumbi, S. P.; Jones, P.; Khaleel, E. A. M. A.; Lawrie, E. A.; Lawrie, J. J.; Majola, S. N. T.; Masiteng, P. L.; Mohammed, H.; Ntshangase, S. S.; Papka, P.; Shirinda, O.; Stankiewicz, M.; Zhou, E. N.

    2013-01-01

    Low and medium spin collective structures in 158 Er have been studied using the 150 Sm( 12 C,4nγγ) fusion-evaporation reaction at a beam energy of E lab = 65 MeV. A band built on the 0 2 + excitation has been established and extended to J π = 18 + from the analysis of γ-γ coincidence relationships, intensity arguments and DCO ratios. The 0 2 + band in 158 Er presents a similar trend to the 0 2 + bands in the lighter N = 90 isotones but lies about 125 keV higher. This systematic trend supports a similar configuration for the 0 2 + bands in the N = 90 isotones. (authors)

  20. Point-Defect Nature of the Ultraviolet Absorption Band in AlN

    Science.gov (United States)

    Alden, D.; Harris, J. S.; Bryan, Z.; Baker, J. N.; Reddy, P.; Mita, S.; Callsen, G.; Hoffmann, A.; Irving, D. L.; Collazo, R.; Sitar, Z.

    2018-05-01

    We present an approach where point defects and defect complexes are identified using power-dependent photoluminescence excitation spectroscopy, impurity data from SIMS, and density-functional-theory (DFT)-based calculations accounting for the total charge balance in the crystal. Employing the capabilities of such an experimental computational approach, in this work, the ultraviolet-C absorption band at 4.7 eV, as well as the 2.7- and 3.9-eV luminescence bands in AlN single crystals grown via physical vapor transport (PVT) are studied in detail. Photoluminescence excitation spectroscopy measurements demonstrate the relationship between the defect luminescent bands centered at 3.9 and 2.7 eV to the commonly observed absorption band centered at 4.7 eV. Accordingly, the thermodynamic transition energy for the absorption band at 4.7 eV and the luminescence band at 3.9 eV is estimated at 4.2 eV, in agreement with the thermodynamic transition energy for the CN- point defect. Finally, the 2.7-eV PL band is the result of a donor-acceptor pair transition between the VN and CN point defects since nitrogen vacancies are predicted to be present in the crystal in concentrations similar to carbon-employing charge-balance-constrained DFT calculations. Power-dependent photoluminescence measurements reveal the presence of the deep donor state with a thermodynamic transition energy of 5.0 eV, which we hypothesize to be nitrogen vacancies in agreement with predictions based on theory. The charge state, concentration, and type of impurities in the crystal are calculated considering a fixed amount of impurities and using a DFT-based defect solver, which considers their respective formation energies and the total charge balance in the crystal. The presented results show that nitrogen vacancies are the most likely candidate for the deep donor state involved in the donor-acceptor pair transition with peak emission at 2.7 eV for the conditions relevant to PVT growth.

  1. The Potential for a Ka-band (32 GHz) Worldwide VLBI Network

    Science.gov (United States)

    Jacobs, C. S.; Bach, U.; Colomer, F.; Garcia-Miro, C.; Gomez-Gonzalez, J.; Gulyaev, S.; Horiuchi, S.; Ichikawa, R.; Kraus, A.; Kronschnabl, G.; hide

    2012-01-01

    Ka-band (32 GHz, 9mm) Very Long Baseline Interferometric (VLBI) networking has now begun and has tremendous potential for expansion over the next few years. Ka-band VLBI astrometry from NASA's Deep Space Network has already developed a catalog of 470 observable sources with highly accurate positions. Now, several antennas worldwide are planning or are considering adding Ka-band VLBI capability. Thus, there is now an opportunity to create a worldwide Ka-band network with potential for high resolution imaging and astrometry. With baselines approaching a Giga-lambda, a Ka-band network would be able to probe source structure at the nano-radian (200 as) level ( 100X better than Hubble) and thus gain insight into the astrophysics of the most compact regions of emission in active galactic nuclei. We discuss the advantages of Ka-band, show the known sources and candidates, simulate projected baseline (uv) coverage, and discuss potential radio frequency feeds. The combination of these elements demonstrates the feasibility of a worldwide Ka network within the next few years!

  2. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease.

    Science.gov (United States)

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter

    2016-05-01

    Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus-cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the

  3. Response Surface Optimization of Rotenone Using Natural Alcohol-Based Deep Eutectic Solvent as Additive in the Extraction Medium Cocktail

    Directory of Open Access Journals (Sweden)

    Zetty Shafiqa Othman

    2017-01-01

    Full Text Available Rotenone is a biopesticide with an amazing effect on aquatic life and insect pests. In Asia, it can be isolated from Derris species roots (Derris elliptica and Derris malaccensis. The previous study revealed the comparable efficiency of alcohol-based deep eutectic solvent (DES in extracting a high yield of rotenone (isoflavonoid to binary ionic liquid solvent system ([BMIM]OTf and organic solvent (acetone. Therefore, this study intends to analyze the optimum parameters (solvent ratio, extraction time, and agitation rate in extracting the highest yield of rotenone extract at a much lower cost and in a more environmental friendly method by using response surface methodology (RSM based on central composite rotatable design (CCRD. By using RSM, linear polynomial equations were obtained for predicting the concentration and yield of rotenone extracted. The verification experiment confirmed the validity of both of the predicted models. The results revealed that the optimum conditions for solvent ratio, extraction time, and agitation rate were 2 : 8 (DES : acetonitrile, 19.34 hours, and 199.32 rpm, respectively. At the optimum condition of the rotenone extraction process using DES binary solvent system, this resulted in a 3.5-fold increase in a rotenone concentration of 0.49 ± 0.07 mg/ml and yield of 0.35 ± 0.06 (%, w/w as compared to the control extract (acetonitrile only. In fact, the rotenone concentration and yield were significantly influenced by binary solvent ratio and extraction time (P<0.05 but not by means of agitation rate. For that reason, the optimal extraction condition using alcohol-based deep eutectic solvent (DES as a green additive in the extraction medium cocktail has increased the potential of enhancing the rotenone concentration and yield extracted.

  4. An Application of Multi-band Forced Photometry to One Square Degree of SERVS: Accurate Photometric Redshifts and Implications for Future Science

    Energy Technology Data Exchange (ETDEWEB)

    Nyland, Kristina; Lacy, Mark [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Sajina, Anna [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Pforr, Janine [ESA/ESTEC SCI-S, Keplerlaan 1, 2201 AZ, Noordwijk (Netherlands); Farrah, Duncan [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Wilson, Gillian [Department of Physics and Astronomy, University of California-Riverside, 900 University Avenue, Riverside, CA, 92521 (United States); Surace, Jason [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States); Häußler, Boris [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago (Chile); Vaccari, Mattia [Department of Physics and Astronomy, University of the Western Cape, Robert Sobukwe Road, 7535 Bellville, Cape Town (South Africa); Jarvis, Matt, E-mail: knyland@nrao.edu [Department of Physics, Oxford Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)

    2017-05-01

    We apply The Tractor image modeling code to improve upon existing multi-band photometry for the Spitzer Extragalactic Representative Volume Survey (SERVS). SERVS consists of post-cryogenic Spitzer observations at 3.6 and 4.5 μ m over five well-studied deep fields spanning 18 deg{sup 2}. In concert with data from ground-based near-infrared (NIR) and optical surveys, SERVS aims to provide a census of the properties of massive galaxies out to z  ≈ 5. To accomplish this, we are using The Tractor to perform “forced photometry.” This technique employs prior measurements of source positions and surface brightness profiles from a high-resolution fiducial band from the VISTA Deep Extragalactic Observations survey to model and fit the fluxes at lower-resolution bands. We discuss our implementation of The Tractor over a square-degree test region within the XMM Large Scale Structure field with deep imaging in 12 NIR/optical bands. Our new multi-band source catalogs offer a number of advantages over traditional position-matched catalogs, including (1) consistent source cross-identification between bands, (2) de-blending of sources that are clearly resolved in the fiducial band but blended in the lower resolution SERVS data, (3) a higher source detection fraction in each band, (4) a larger number of candidate galaxies in the redshift range 5 <  z  < 6, and (5) a statistically significant improvement in the photometric redshift accuracy as evidenced by the significant decrease in the fraction of outliers compared to spectroscopic redshifts. Thus, forced photometry using The Tractor offers a means of improving the accuracy of multi-band extragalactic surveys designed for galaxy evolution studies. We will extend our application of this technique to the full SERVS footprint in the future.

  5. Uptake and distribution of organo-iodine in deep-sea corals.

    Science.gov (United States)

    Prouty, Nancy G; Roark, E Brendan; Mohon, Leslye M; Chang, Ching-Chih

    2018-07-01

    Understanding iodine concentration, transport, and bioavailability is essential in evaluating iodine's impact to the environment and its effectiveness as an environmental biogeotracer. While iodine and its radionuclides have proven to be important tracers in geologic and biologic studies, little is known about transport of this element to the deep sea and subsequent uptake in deep-sea coral habitats. Results presented here on deep-sea black coral iodine speciation and iodine isotope variability provides key information on iodine behavior in natural and anthropogenic environments, and its geochemical pathway in the Gulf of Mexico. Organo-iodine is the dominant iodine species in the black corals, demonstrating that binding of iodine to organic matter plays an important role in the transport and transfer of iodine to the deep-sea corals. The identification of growth bands captured in high-resolution scanning electron images (SEM) with synchronous peaks in iodine variability suggest that riverine delivery of terrestrial-derived organo-iodine is the most plausible explanation to account for annual periodicity in the deep-sea coral geochemistry. Whereas previous studies have suggested the presence of annual growth rings in deep-sea corals, this present study provides a mechanism to explain the formation of annual growth bands. Furthermore, deep-sea coral ages based on iodine peak counts agree well with those ages derived from radiocarbon ( 14 C) measurements. These results hold promise for developing chronologies independent of 14 C dating, which is an essential component in constraining reservoir ages and using radiocarbon as a tracer of ocean circulation. Furthermore, the presence of enriched 129 I/ 127 I ratios during the most recent period of skeleton growth is linked to nuclear weapons testing during the 1960s. The sensitivity of the coral skeleton to record changes in surface water 129 I composition provides further evidence that iodine composition and isotope

  6. Uptake and distribution of organo-iodine in deep-sea corals

    Science.gov (United States)

    Prouty, Nancy G.; Roark, E. Brendan; Mohon, Leslye M.; Chang, Ching-Chih

    2018-01-01

    Understanding iodine concentration, transport, and bioavailability is essential in evaluating iodine's impact to the environment and its effectiveness as an environmental biogeotracer. While iodine and its radionuclides have proven to be important tracers in geologic and biologic studies, little is known about transport of this element to the deep sea and subsequent uptake in deep-sea coral habitats. Results presented here on deep-sea black coral iodine speciation and iodine isotope variability provides key information on iodine behavior in natural and anthropogenic environments, and its geochemical pathway in the Gulf of Mexico. Organo-iodine is the dominant iodine species in the black corals, demonstrating that binding of iodine to organic matter plays an important role in the transport and transfer of iodine to the deep-sea corals. The identification of growth bands captured in high-resolution scanning electron images (SEM) with synchronous peaks in iodine variability suggest that riverine delivery of terrestrial-derived organo-iodine is the most plausible explanation to account for annual periodicity in the deep-sea coral geochemistry. Whereas previous studies have suggested the presence of annual growth rings in deep-sea corals, this present study provides a mechanism to explain the formation of annual growth bands. Furthermore, deep-sea coral ages based on iodine peak counts agree well with those ages derived from radiocarbon (14C) measurements. These results hold promise for developing chronologies independent of 14C dating, which is an essential component in constraining reservoir ages and using radiocarbon as a tracer of ocean circulation. Furthermore, the presence of enriched 129I/127I ratios during the most recent period of skeleton growth is linked to nuclear weapons testing during the 1960s. The sensitivity of the coral skeleton to record changes in surface water 129I composition provides further evidence that iodine composition and isotope

  7. Influence of energy band alignment in mixed crystalline TiO2 nanotube arrays: good for photocatalysis, bad for electron transfer

    Science.gov (United States)

    Mohammadpour, Raheleh

    2017-12-01

    Despite the wide application ranges of TiO2, the precise explanation of the charge transport dynamic through a mixed crystal phase of this semiconductor has remained elusive. Here, in this research, mixed-phase TiO2 nanotube arrays (TNTAs) consisting of anatase and 0-15% rutile phases has been formed through various annealing processes and employed as a photoelectrode of a photovoltaic cell. Wide ranges of optoelectronic experiments have been employed to explore the band alignment position, as well as the depth and density of trap states in TNTAs. Short circuit potential, as well as open circuit potential measurements specified that the band alignment of more than 0.2 eV exists between the anatase and rutile phase Fermi levels, with a higher electron affinity for anatase; this can result in a potential barrier in crystallite interfaces and the deterioration of electron mobility through mixed phase structures. Moreover, a higher density of shallow localized trap states below the conduction band with more depth (133 meV in anatase to 247 meV in 15% rutile phase) and also deep oxygen vacancy traps have been explored upon introducing the rutile phase. Based on our results, employing TiO2 nanotubes as just the electron transport medium in mixed crystalline phases can deteriorate the charge transport mechanism, however, in photocatalytic applications when both electrons and holes are present, a robust charge separation in crystalline anatase/rutile interphases will result in better performances.

  8. Charge deep-level transient spectroscopy study of high-energy-electron-beam-irradiated hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Klaver, A.; Nádaždy, V.; Zeman, M.; Swaaiij, R.A.C.M.M.

    2006-01-01

    We present a study of changes in the defect density of states in hydrogenated amorphous silicon (a-Si:H) due to high-energy electron irradiation using charged deep-level transient spectroscopy. It was found that defect states near the conduction band were removed, while in other band gap regions the

  9. Edge-Induced Shear Banding in Entangled Polymeric Fluids.

    Science.gov (United States)

    Hemingway, Ewan J; Fielding, Suzanne M

    2018-03-30

    Despite decades of research, the question of whether solutions and melts of highly entangled polymers exhibit shear banding as their steady state response to a steadily imposed shear flow remains controversial. From a theoretical viewpoint, an important unanswered question is whether the underlying constitutive curve of shear stress σ as a function of shear rate γ[over ˙] (for states of homogeneous shear) is monotonic, or has a region of negative slope, dσ/dγ[over ˙]<0, which would trigger banding. Attempts to settle the question experimentally via velocimetry of the flow field inside the fluid are often confounded by an instability of the free surface where the sample meets the outside air, known as "edge fracture." Here we show by numerical simulation that in fact even only very modest edge disturbances-which are the precursor of full edge fracture but might well, in themselves, go unnoticed experimentally-can cause strong secondary flows in the form of shear bands that invade deep into the fluid bulk. Crucially, this is true even when the underlying constitutive curve is monotonically increasing, precluding true bulk shear banding in the absence of edge effects.

  10. The calculation of deep levels in semiconductors by using a recursion method for super-cells

    International Nuclear Information System (INIS)

    Wong Yongliang.

    1987-01-01

    The paper presents the theory of deep levels in semiconductors, the super-cell approach to the theory of deep level impurities, the calculation of band structure by using the tight-binding method and the recursion method used to study the defects in the presence of lattice relaxation and extended defect complexes. 47 refs

  11. Geochemistry of marine and lacustrine bands in the Upper Carboniferous of the Netherlands

    NARCIS (Netherlands)

    Kombrink, H.; Os, B.J.H. van; Zwan, C.J. van der; Wong, Th.E.

    2008-01-01

    Geochemical studies on Upper Carboniferous marine bands showed that marked enrichment in redox-sensitive trace elements (uranium (U), vanadium (V), molybdenum (Mo)) mostly occur if they contain Goniatites. Goniatites indicate deposition in relatively distal and deep marine environments. In contrast,

  12. Hole geometry effect on stop-band characteristics of photonic crystal in Ti-diffused LiNbO_3 waveguide

    International Nuclear Information System (INIS)

    Zhao, Quan-Zhou; Zhang, Zi-Bo; Xu, Jia-Qi; Wong, Wing-Han; Yu, Dao-Yin; Pun, Edwin Yue-Bun

    2017-01-01

    Effects of finite hole depth and non-cylindrical hole shape on stop-band characteristics of photonic crystal formed by air-hole square lattice in Ti-diffused LiNbO_3 strip waveguide were studied theoretically. The study shows that hole depth determines the contrast of stop-band, and the hole radius and conical angle determine the bandgap and location. Cylindrical holes must be sufficiently deep so as to overlap most of waveguide mode and hence obtain a stop-band with high contrast, sharp edge and broad bandgap. Non-cylindrical holes seriously affect the stop-band features. Conical holes cause low contrast and narrow bandgap, and the stop-band shifts with the conical angle. For the cylindrical-conical hybrid holes, the cylindrical portion determines the desired features. Given the difficulty in fabricating high aspect-ratio cylindrical holes, we propose to fabricate the holes at the bottom of a shallow trench, which is introduced into waveguide surface prior to the hole milling. - Highlights: • Cylindrical hole must be deep enough and a shallow waveguide is required. • Increasing hole radius causes blueshift, broadening and edge sharpening of band. • Non-cylindrical hole seriously affects gap, location and contrast of stop-band. • For cylindrical-conical hybrid hole, cylindrical part determines desired features. • A scheme of milling holes at bottom of a trench on waveguide surface is proposed.

  13. Band alignment of B0.14Al0.86N/Al0.7Ga0.3N heterojunction

    KAUST Repository

    Sun, Haiding; Park, Young Jae; Li, Kuang-Hui; Torres Castanedo, C. G.; Alowayed, Abdulmohsen; Detchprohm, Theeradetch; Dupuis, Russell D.; Li, Xiaohang

    2017-01-01

    Owing to large bandgaps of BAlN and AlGaN alloys, their heterojunctions have the potential to be used in deep ultraviolet and power electronic device applications. However, the band alignment of such junctions has not been identified. In this work, we investigated the band-offset parameters of a BAlN/AlGaN heterojunction grown by metalorganic vapor phase epitaxy. These specific compositions were chosen to ensure a sufficiently large band offset for deep ultraviolet and power electronic applications. High resolution transmission electron microscopy confirmed the high structural quality of the heterojunction with an abrupt interface and uniform element distribution. We employed high resolution X-ray photoemission spectroscopy to measure the core level binding energies of B 1s and Ga 2p with respect to the valence band maximum of BAlN and AlGaN layers, respectively. Then, we measured the energy separation between the B 1s and Ga 2p core levels at the interface of the heterojunction. The valence band offset was determined to be 0.40 ± 0.05 eV. As a consequence, we identified a staggered-gap (type-II) heterojunction with the conduction band offset of 1.10 ± 0.05 eV. The determination of the band alignment of the BAlN/AlGaN heterojunction facilitates the design of optical and electronic devices based on such junctions.

  14. Band alignment of B0.14Al0.86N/Al0.7Ga0.3N heterojunction

    KAUST Repository

    Sun, Haiding

    2017-09-21

    Owing to large bandgaps of BAlN and AlGaN alloys, their heterojunctions have the potential to be used in deep ultraviolet and power electronic device applications. However, the band alignment of such junctions has not been identified. In this work, we investigated the band-offset parameters of a BAlN/AlGaN heterojunction grown by metalorganic vapor phase epitaxy. These specific compositions were chosen to ensure a sufficiently large band offset for deep ultraviolet and power electronic applications. High resolution transmission electron microscopy confirmed the high structural quality of the heterojunction with an abrupt interface and uniform element distribution. We employed high resolution X-ray photoemission spectroscopy to measure the core level binding energies of B 1s and Ga 2p with respect to the valence band maximum of BAlN and AlGaN layers, respectively. Then, we measured the energy separation between the B 1s and Ga 2p core levels at the interface of the heterojunction. The valence band offset was determined to be 0.40 ± 0.05 eV. As a consequence, we identified a staggered-gap (type-II) heterojunction with the conduction band offset of 1.10 ± 0.05 eV. The determination of the band alignment of the BAlN/AlGaN heterojunction facilitates the design of optical and electronic devices based on such junctions.

  15. Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit.

    Science.gov (United States)

    Xi, Peng; Li, Yan; Ge, Xiaojin; Liu, Dandan; Miao, Mingsan

    2018-05-01

    Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from the time, and the impact of local skin tissue morphology. Rabbits deep II degree burn model successful modeling; on day 12, 18, high, medium and low doses of nano-silver hydrogel coating film significantly reduced skin irritation of rabbits infected with the integral value ( P  film group significantly decreased skin irritation, infection integral value ( P  film significantly reduced film rabbits' scalded skin crusting time ( P  film on the deep partial thickness burns has a significant therapeutic effect; external use has a significant role in wound healing.

  16. Omnidirectional narrow optical filters for circularly polarized light in a nanocomposite structurally chiral medium.

    Science.gov (United States)

    Avendaño, Carlos G; Palomares, Laura O

    2018-04-20

    We consider the propagation of electromagnetic waves throughout a nanocomposite structurally chiral medium consisting of metallic nanoballs randomly dispersed in a structurally chiral material whose dielectric properties can be represented by a resonant effective uniaxial tensor. It is found that an omnidirectional narrow pass band and two omnidirectional narrow band gaps are created in the blue optical spectrum for right and left circularly polarized light, as well as narrow reflection bands for right circularly polarized light that can be controlled by varying the light incidence angle and the filling fraction of metallic inclusions.

  17. Tunable band gaps in bio-inspired periodic composites with nacre-like microstructure

    Science.gov (United States)

    Chen, Yanyu; Wang, Lifeng

    2014-08-01

    Periodic composite materials have many promising applications due to their unique ability to control the propagation of waves. Here, we report the existence and frequency tunability of complete elastic wave band gaps in bio-inspired periodic composites with nacre-like, brick-and-mortar microstructure. Numerical results show that complete band gaps in these periodic composites derive from local resonances or Bragg scattering, depending on the lattice angle and the volume fraction of each phase in the composites. The investigation of elastic wave propagation in finite periodic composites validates the simulated complete band gaps and further reveals the mechanisms leading to complete band gaps. Moreover, our results indicate that the topological arrangement of the mineral platelets and changes of material properties can be utilized to tune the evolution of complete band gaps. Our finding provides new opportunities to design mechanically robust periodic composite materials for wave absorption under hostile environments, such as for deep water applications.

  18. Luminescence and deep-level transient spectroscopy of grown dislocation-rich Si layers

    Directory of Open Access Journals (Sweden)

    I. I. Kurkina

    2012-09-01

    Full Text Available The charge deep-level transient spectroscopy (Q-DLTS is applied to the study of the dislocation-rich Si layers grown on a surface composed of dense arrays of Ge islands prepared on the oxidized Si surface. This provides revealing three deep-level bands located at EV + 0.31 eV, EC – 0.35 eV and EC – 0.43 eV using the stripe-shaped p-i-n diodes fabricated on the basis of these layers. The most interesting observation is the local state recharging process which proceeds with low activation energy (∼50 meV or without activation. The recharging may occur by carrier tunneling within deep-level bands owing to the high dislocation density ∼ 1011 - 1012 cm-2. This result is in favor of the suggestion on the presence of carrier transport between the deep states, which was previously derived from the excitation dependence of photoluminescence (PL intensity. Electroluminescence (EL spectra measured from the stripe edge of the same diodes contain two peaks centered near 1.32 and 1.55 μm. Comparison with PL spectra indicates that the EL peaks are generated from arsenic-contaminated and pure areas of the layers, respectively.

  19. Growth temperature dependence of Si doping efficiency and compensating deep level defect incorporation in Al0.7Ga0.3N

    International Nuclear Information System (INIS)

    Armstrong, Andrew M.; Moseley, Michael W.; Allerman, Andrew A.; Crawford, Mary H.; Wierer, Jonathan J.

    2015-01-01

    The growth temperature dependence of Si doping efficiency and deep level defect formation was investigated for n-type Al 0.7 Ga 0.3 N. It was observed that dopant compensation was greatly reduced with reduced growth temperature. Deep level optical spectroscopy and lighted capacitance-voltage were used to understand the role of acceptor-like deep level defects on doping efficiency. Deep level defects were observed at 2.34 eV, 3.56 eV, and 4.74 eV below the conduction band minimum. The latter two deep levels were identified as the major compensators because the reduction in their concentrations at reduced growth temperature correlated closely with the concomitant increase in free electron concentration. Possible mechanisms for the strong growth temperature dependence of deep level formation are considered, including thermodynamically driven compensating defect formation that can arise for a semiconductor with very large band gap energy, such as Al 0.7 Ga 0.3 N

  20. Preliminary discussion on deep-sourced uranium metallogenesis and deep prospecting

    International Nuclear Information System (INIS)

    Huang Shijie

    2006-01-01

    Prospecting for hydrothermal type uranium deposits should be aimed at medium-to large-sized deposits, and be guided by mantle-sourced, superimposed, deep-sourced metallogenic theory and the establishment of a multifactor, composite, deep-sourced metallogenic model. The author suggests that hydrothermal uranium deposits may be classified into three genetic types, i.e. hydrothermal circulation concentration, postmagmatic hydrothermal and mantle fluid concentration. These types of uranium deposits are characterized by their own metallogenic features and are concentrated in the same mineralization-concentrated area forming a metallogenic series. Large-sized uranium ore fields and rich-large uranium deposits are usually closely associated with mantle-sourced metallogenesis and the formation of such uranium ore fields and deposits is characterized by specific and unique regional geologic environments. Recognition criteria of mantle-sourced metallogenesis are preliminarily proposed in the paper. It is pointed out that prospecting in the future should follow the metallogenic model proper for the specific genetic type, and the establishment of operable prospecting model to realize the model-guided prospecting. (authors)

  1. Optical bistability induced by quantum coherence in a negative index atomic medium

    International Nuclear Information System (INIS)

    Zhang Hong-Jun; Sun Hui; Li Jin-Ping; Yin Bao-Yin; Guo Hong-Ju

    2013-01-01

    Bistability behaviors in an optical ring cavity filled with a dense V-type four-level atomic medium are theoretically investigated. It is found that the optical bistability can appear in the negative refraction frequency band, while both the bistability and multi-stability can occur in the positive refraction frequency bands. Therefore, optical bistability can be realized from conventional material to negative index material due to quantum coherence in our scheme. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  2. Synovial Cyst: A Culprit for Recalcitrant Iliotibial Band Syndrome: A Case Report

    Directory of Open Access Journals (Sweden)

    Yeoh CSN

    2015-11-01

    Full Text Available We present the case of a 56-year old gentleman who presented with recalcitrant iliotibial band (ITB friction syndrome which did not improve with various modalities of conservative treatment. Magnetic Resonance Imaging (MRI of the affected knee did not show pathology typical of ITB friction syndrome. However, open exploration revealed a synovial cyst deep to the iliotibial band, abutting against the anterolateral capsule. The presence of distinctive clinical signs on physical examination should alert clinicians to consider knee synovial cyst as a differential diagnosis when dealing with recalcitrant ITB syndrome.

  3. Localized deep levels in AlxGa1−xN epitaxial films with various Al compositions

    International Nuclear Information System (INIS)

    Shi Li-Yang; Shen Bo; Wang Ping; Yan Jian-Chang; Wang Jun-Xi

    2014-01-01

    By using high-temperature deep-level transient spectroscopy (HT-DLTS) and other electrical measurement techniques, localized deep levels in n-type Al x Ga 1−x N epitaxial films with various Al compositions (x = 0, 0.14, 0.24, 0.33, and 0.43) have been investigated. It is found that there are three distinct deep levels in Al x Ga 1−x N films, whose level position with respect to the conduction band increases as Al composition increases. The dominant defect level with the activation energy deeper than 1.0 eV below the conduction band closely follows the Fermi level stabilization energy, indicating that its origin may be related to the defect complex, including the anti-site defects and divacancies in Al x Ga 1−x N films. (condensed matter: structural, mechanical, and thermal properties)

  4. Hole geometry effect on stop-band characteristics of photonic crystal in Ti-diffused LiNbO{sub 3} waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Quan-Zhou [Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072 (China); School of Physics and Electronic Engineering, University of Shanxi Datong, Datong 037009 (China); Zhang, Zi-Bo [University of Toulouse 3, Faculty of Engineering, 118 Route de Narbonne, F-31062 Toulouse (France); Xu, Jia-Qi [Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072 (China); Wong, Wing-Han, E-mail: eewhwong@cityu.edu.hk [Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072 (China); Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China); Yu, Dao-Yin [Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072 (China); Pun, Edwin Yue-Bun [Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China); and others

    2017-01-15

    Effects of finite hole depth and non-cylindrical hole shape on stop-band characteristics of photonic crystal formed by air-hole square lattice in Ti-diffused LiNbO{sub 3} strip waveguide were studied theoretically. The study shows that hole depth determines the contrast of stop-band, and the hole radius and conical angle determine the bandgap and location. Cylindrical holes must be sufficiently deep so as to overlap most of waveguide mode and hence obtain a stop-band with high contrast, sharp edge and broad bandgap. Non-cylindrical holes seriously affect the stop-band features. Conical holes cause low contrast and narrow bandgap, and the stop-band shifts with the conical angle. For the cylindrical-conical hybrid holes, the cylindrical portion determines the desired features. Given the difficulty in fabricating high aspect-ratio cylindrical holes, we propose to fabricate the holes at the bottom of a shallow trench, which is introduced into waveguide surface prior to the hole milling. - Highlights: • Cylindrical hole must be deep enough and a shallow waveguide is required. • Increasing hole radius causes blueshift, broadening and edge sharpening of band. • Non-cylindrical hole seriously affects gap, location and contrast of stop-band. • For cylindrical-conical hybrid hole, cylindrical part determines desired features. • A scheme of milling holes at bottom of a trench on waveguide surface is proposed.

  5. Utility of vaginal and rectal contrast medium in MRI for the detection of deep pelvic endometriosis

    International Nuclear Information System (INIS)

    Chassang, M.; Novellas, S.; Bloch-Marcotte, C.; Chevallier, P.; Delotte, J.; Bongain, A.; Toullalan, O.

    2010-01-01

    To study the sensitivity of MRI performed utilising vaginal and rectal opacification with ultrasound gel in the detection of deep pelvic endometriosis. This was a prospective monocentric study. All patients evaluated by the gynaecologist for pelvic pain, endometriosis or infertility were included. Axial and sagittal T2-weighted images were performed both with and without vaginal and rectal opacification with ultrasound gel. Three radiologists, all blinded, interpreted the images with a minimum of 15 days between the two readings. MRI performance with and without vaginal and rectal opacification was evaluated by calculating sensitivity, specificity and both positive and negative predictive values. Seventy-eight patients were included. Among these, 31 patients had deep pelvic endometriosis of which 24 were confirmed by laparoscopy. Seventy-six locations of deep pelvic endometriosis were discovered on MRI. For the three reviewers there was a significant improvement in sensitivity between pre- and post-contrast MRI (p < 0.0002). Opacification of the vagina and rectum significantly improved the sensitivity of MRI for the detection of deep pelvic endometriosis by expanding the vagina and rectum, thus allowing better delineation of the pelvic organs. This was especially apparent for lesions localised to the vagina and rectovaginal septum. (orig.)

  6. Utility of vaginal and rectal contrast medium in MRI for the detection of deep pelvic endometriosis

    Energy Technology Data Exchange (ETDEWEB)

    Chassang, M.; Novellas, S.; Bloch-Marcotte, C.; Chevallier, P. [Hopital Archet 2, Service d' Imagerie Diagnostique et Interventionnelle, Centre Hospitalier Regional et Universitaire de Nice, 151 route de Saint Antoine de Ginestiere, B.P. 3079, Nice Cedex 3 (France); Delotte, J.; Bongain, A. [Hopital Archet 2, Service de Gynecologie-Obstetrique, Centre Hospitalier Regional et Universitaire de Nice, 151 route de Saint Antoine de Ginestiere, B.P. 3079, Nice Cedex 3 (France); Toullalan, O. [Hopital de Cannes, Service de Gynecologie, 15 avenue des Broussailles, B.P. 264, Cannes Cedex (France)

    2010-04-15

    To study the sensitivity of MRI performed utilising vaginal and rectal opacification with ultrasound gel in the detection of deep pelvic endometriosis. This was a prospective monocentric study. All patients evaluated by the gynaecologist for pelvic pain, endometriosis or infertility were included. Axial and sagittal T2-weighted images were performed both with and without vaginal and rectal opacification with ultrasound gel. Three radiologists, all blinded, interpreted the images with a minimum of 15 days between the two readings. MRI performance with and without vaginal and rectal opacification was evaluated by calculating sensitivity, specificity and both positive and negative predictive values. Seventy-eight patients were included. Among these, 31 patients had deep pelvic endometriosis of which 24 were confirmed by laparoscopy. Seventy-six locations of deep pelvic endometriosis were discovered on MRI. For the three reviewers there was a significant improvement in sensitivity between pre- and post-contrast MRI (p < 0.0002). Opacification of the vagina and rectum significantly improved the sensitivity of MRI for the detection of deep pelvic endometriosis by expanding the vagina and rectum, thus allowing better delineation of the pelvic organs. This was especially apparent for lesions localised to the vagina and rectovaginal septum. (orig.)

  7. SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS

    International Nuclear Information System (INIS)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Huang, J.-S.; Hernquist, L.; Hora, J. L.; Arendt, R.; Barmby, P.; Barro, G.; Faber, S.; Guhathakurta, P.; Bell, E. F.; Bouwens, R.; Cattaneo, A.; Croton, D.; Davé, R.; Dunlop, J. S.; Egami, E.; Finlator, K.; Grogin, N. A.

    2013-01-01

    The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg 2 to a depth of 26 AB mag (3σ) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 μm. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six-month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 ± 1.0 and 4.4 ± 0.8 nW m –2 sr –1 at 3.6 and 4.5 μm to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.

  8. DCMDN: Deep Convolutional Mixture Density Network

    Science.gov (United States)

    D'Isanto, Antonio; Polsterer, Kai Lars

    2017-09-01

    Deep Convolutional Mixture Density Network (DCMDN) estimates probabilistic photometric redshift directly from multi-band imaging data by combining a version of a deep convolutional network with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) are applied as performance criteria. DCMDN is able to predict redshift PDFs independently from the type of source, e.g. galaxies, quasars or stars and renders pre-classification of objects and feature extraction unnecessary; the method is extremely general and allows the solving of any kind of probabilistic regression problems based on imaging data, such as estimating metallicity or star formation rate in galaxies.

  9. Stimulation of the bilateral anterior nuclei of the thalamus in the treatment of refractory epilepsy: two cases of subcortical band heterotopia.

    Science.gov (United States)

    Franco, Ana; Pimentel, José; Campos, Alexandre Rainha; Morgado, Carlos; Pinelo, Sara; Ferreira, António Gonçalves; Bentes, Carla

    2016-12-01

    Subcortical band heterotopia is a neuronal migration disorder that may cause refractory epilepsy. In these patients, resective surgery has yielded inadequate results. Deep brain stimulation of the anterior nuclei of the thalamus has been used for the treatment of refractory epilepsy with good results. We describe the first two patients with subcortical band heterotopia who were submitted to deep brain stimulation of the anterior nuclei of the thalamus, with evaluation of seizure outcome after 12 and 18 months of follow-up. At these times, both showed a >50% decrease in seizure frequency and an increase in seizure freedom. Both patients had a depressive syndrome after surgery that responded fully to anti-depressive medication in one patient and partly in the other. In both, deep brain stimulation of the anterior nuclei of the thalamus was associated with good seizure outcome. This procedure can therefore be considered in the treatment of patients with subcortical band heterotopia and refractory epilepsy. Depression may be a transient adverse event of the surgery or stimulation, however, its aetiology is probably multifactorial.

  10. Impact of deep levels on the electrical conductivity and luminescence of gallium nitride codoped with carbon and silicon

    International Nuclear Information System (INIS)

    Armstrong, A.; Arehart, A.R.; Green, D.; Mishra, U.K.; Speck, J.S.; Ringel, S.A.

    2005-01-01

    The impact of C incorporation on the deep level spectrum of n-type and semi-insulating GaN:C:Si films grown by rf plasma-assisted molecular-beam epitaxy (MBE) was investigated by the combination of deep level transient spectroscopy, steady-state photocapacitance, and transient deep level optical spectroscopy. The deep level spectra of the GaN:C:Si samples exhibited several band-gap states. A monotonic relation between systematic doping with C and quantitative trap concentration revealed C-related deep levels. A deep acceptor at E c -2.05 eV and a deep donor at E c -0.11 eV are newly reported states, and the latter is the first directly observed deep level attributed to the C Ga defect. A configuration-coordinate model involving localized lattice distortion revealed strong evidence that C-related deep levels at E c -3.0 eV and E ν +0.9 eV are likely identical and associated with the yellow luminescence in C-doped GaN films. Of the deep levels whose trap concentration increase with C doping, the band-gap states at E c -3.0 and 3.28 eV had the largest concentration, implying that free-carrier compensation by these deep levels is responsible for the semi-insulating behavior of GaN:C:Si films grown by MBE. The differing manner by which C incorporation in GaN may impact electrical conductivity in films grown by MBE and metal-organic chemical-vapor deposition is discussed

  11. Hydroxynaphthyridine-derived group III metal chelates: wide band gap and deep blue analogues of green Alq3 (tris(8-hydroxyquinolate)aluminum) and their versatile applications for organic light-emitting diodes.

    Science.gov (United States)

    Liao, Szu-Hung; Shiu, Jin-Ruei; Liu, Shun-Wei; Yeh, Shi-Jay; Chen, Yu-Hung; Chen, Chin-Ti; Chow, Tahsin J; Wu, Chih-I

    2009-01-21

    A series of group III metal chelates have been synthesized and characterized for the versatile application of organic light-emitting diodes (OLEDs). These metal chelates are based on 4-hydroxy-1,5-naphthyridine derivates as chelating ligands, and they are the blue version analogues of well-known green fluorophore Alq(3) (tris(8-hydroxyquinolinato)aluminum). These chelating ligands and their metal chelates were easily prepared with an improved synthetic method, and they were facially purified by a sublimation process, which enables the materials to be readily available in bulk quantity and facilitates their usage in OLEDs. Unlike most currently known blue analogues of Alq(3) or other deep blue materials, metal chelates of 4-hydroxy-1,5-naphthyridine exhibit very deep blue fluorescence, wide band gap energy, high charge carrier mobility, and superior thermal stability. Using a vacuum-thermal-deposition process in the fabrication of OLEDs, we have successfully demonstrated that the application of these unusual hydroxynaphthyridine metal chelates can be very versatile and effective. First, we have solved or alleviated the problem of exciplex formation that took place between the hole-transporting layer and hydroxynaphthyridine metal chelates, of which OLED application has been prohibited to date. Second, these deep blue materials can play various roles in OLED application. They can be a highly efficient nondopant deep blue emitter: maximum external quantum efficiency eta(ext) of 4.2%; Commision Internationale de L'Eclairage x, y coordinates, CIE(x,y) = 0.15, 0.07. Compared with Alq(3), Bebq(2) (beryllium bis(benzoquinolin-10-olate)), or TPBI (2,2',2''-(1,3,5-phenylene)tris(1-phenyl-1H-benzimidazole), they are a good electron-transporting material: low HOMO energy level of 6.4-6.5 eV and not so high LUMO energy level of 3.0-3.3 eV. They can be ambipolar and possess a high electron mobility of 10(-4) cm(2)/V s at an electric field of 6.4 x 10(5) V/cm. They are a

  12. Dynamic strain aging of twinning-induced plasticity (TWIP) steel in tensile testing and deep drawing

    International Nuclear Information System (INIS)

    Kim, J.G.; Hong, S.; Anjabin, N.; Park, B.H.; Kim, S.K.; Chin, K.-G.; Lee, S.; Kim, H.S.

    2015-01-01

    The dynamic strain aging (DSA) of metallic materials due to solute atom diffusion to mobile dislocations induce deformation instability with load fluctuations and deformation localizations, hence reducing their sheet formability. In this paper, DSA behaviors of twinning induced plasticity (TWIP) steel with and without Al during tensile testing and deep drawing are investigated in terms of strain localization and the Portevin-Le Chatelier (PLC) band. A theoretical DSA model with internal variables of dislocation density and twin volume fraction is presented for an estimation of strain localization and strain hardening behavior of TWIP steels. The simulation results of the load history and PLC bands during tensile testing and deep drawing are in good agreement with the experimental values. A serration behavior is observed in high-Mn TWIP steels and its tensile residual stress is higher than that in the Al-added TWIP steels, which results in a deformation crack or delayed fracture of deep drawn specimens

  13. The interaction of the halo around the butterfly planetary nebula NGC 650-1 with the interstellar medium

    Science.gov (United States)

    Ramos-Larios, G.; Guerrero, M. A.; Nigoche-Netro, A.; Olguín, L.; Gómez-Muñoz, M. A.; Sabin, L.; Vázquez, R.; Akras, S.; Ramírez Vélez, J. C.; Chávez, M.

    2018-03-01

    With its bright and wide equatorial waist seen almost edge-on (`the butterfly body') and the faint and broad bipolar extensions (`the butterfly wings'), NGC 650-1 is the archetypical example of bipolar planetary nebula (PN) with butterfly morphology. We present here deep high-resolution broad- and narrow-band optical images that expose the rich and intricate fine structure of this bipolar PN, with small-scale bubble-like features and collimated outflows. A SHAPE spatio-kinematic model indicates that NGC 650-1 has a broad central torus with an inclination angle of 75° with respect to the line of sight, whereas that of the bipolar lobes, which are clearly seen in the position-velocity maps, is 85°. Large field of view deep images show, for first time, an arc-like diffuse envelope in low- and high-excitation emission lines located up to 180 arcsec towards the east-south-east of the central star, well outside the main nebula. This morphological component is confirmed by Spitzer MIPS and WISE infrared imaging, as well as by long-slit low- and high-dispersion optical spectroscopic observations. Hubble Space Telescope images of NGC 650-1 obtained at two different epochs ˜14 yr apart reveal the proper motion of the central star along this direction. We propose that this motion of the star through the interstellar medium compresses the remnant material of a slow asymptotic giant branch wind, producing this bow-shock-like feature.

  14. Infiltration of surface mined land reclaimed by deep tillage treatments

    International Nuclear Information System (INIS)

    Chong, S.K.; Cowsert, P.

    1994-01-01

    Surface mining of coal leads to the drastic disturbance of soils. Compaction of replaced subsoil and topsoil resulting from hauling, grading, and leveling procedures produces a poor rooting medium for crop growth. Soil compaction results in high bulk density, low macroporosity, poor water infiltration capacity, and reduced elongation of plant roots. In the United States, Public Law 95-87 mandates that the rooting medium of mined soils have specific textural characteristics and be graded and shaped to a topography similar to premining conditions. Also, crop productivity levels equivalent to those prior to mining must be achieved, especially for prime farmland. Alleviation of compaction has been the major focus of reclamation, and recently new techniques to augment the rooting zone with deep-ripping and loosening equipment have come to the forefront. Several surface mine operators in the Illinois coal basin are using deep tillage equipment that is capable of loosening soils to greater depths than is possible with conventional farm tillage equipment. Information on the beneficial effects of these loosening procedures on soil hydrological properties, such as infiltration, runoff potential, erosion, and water retention, is extremely important for future mined land management. However, such information is lacking. In view of the current yield demonstration regulation for prime farmland and other unmined soils, it is important that as much information as possible be obtained concerning the effect of deep tillage on soil hydrologic properties. The objectives of this study are: (1) to compare infiltration rates and related soil physical properties of mined soils reclaimed by various deep tillage treatments and (2) to study the temporal variability of infiltration and related physical properties of the reclaimed mined soil after deep tillage treatment

  15. Self-localization of excitons in a periodically modulated molecular medium

    International Nuclear Information System (INIS)

    Zabolotskii, A. A.

    2006-01-01

    Electromagnetic field propagation is analyzed in a one-dimensional Bragg grating consisting of periodically arranged linear molecules making up a resonant medium. Dye J-aggregates and conjugated polymers are considered as examples of the medium. Both adiabatic and nonadiabatic dynamics of the acoustic waves generated by electromagnetic field in the system are examined. The effects of exciton-phonon and exciton-phonon-photon interactions on the band structure and formation of self-localized excitations are examined on various time scales. A new mechanism for controlling bandgap parameters in a bistable regime is described. Some effects of electromagnetic-field nonuniformity on generation of phonons in molecules and exciton self-localization are investigated

  16. SCUSS u- BAND EMISSION AS A STAR-FORMATION-RATE INDICATOR

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhimin; Zhou, Xu; Wu, Hong; Fan, Zhou; Jiang, Zhao-Ji; Ma, Jun; Nie, Jun-Dan; Wang, Jia-Li; Wu, Zhen-Yu; Zhang, Tian-Meng; Zou, Hu [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Fan, Xiao-Hui; Lesser, Michael [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Jing, Yi-Peng [Center for Astronomy and Astrophysics, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Cheng; Shen, Shi-Yin [Shanghai Astronomical Observatory, Chinese Academy of Science, 80 Nandan Road, Shanghai 200030 (China); Jiang, Lin-Hua, E-mail: zmzhou@bao.ac.cn [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

    2017-01-20

    We present and analyze the possibility of using optical u- band luminosities to estimate star-formation rates (SFRs) of galaxies based on the data from the South Galactic Cap u band Sky Survey (SCUSS), which provides a deep u -band photometric survey covering about 5000 deg{sup 2} of the South Galactic Cap. Based on two samples of normal star-forming galaxies selected by the BPT diagram, we explore the correlations between u -band, H α , and IR luminosities by combing SCUSS data with the Sloan Digital Sky Survey and Wide-field Infrared Survey Explorer ( WISE ). The attenuation-corrected u -band luminosities are tightly correlated with the Balmer decrement-corrected H α luminosities with an rms scatter of ∼0.17 dex. The IR-corrected u luminosities are derived based on the correlations between the attenuation of u- band luminosities and WISE 12 (or 22) μ m luminosities, and then calibrated with the Balmer-corrected H α luminosities. The systematic residuals of these calibrations are tested against the physical properties over the ranges covered by our sample objects. We find that the best-fitting nonlinear relations are better than the linear ones and recommended to be applied in the measurement of SFRs. The systematic deviations mainly come from the pollution of old stellar population and the effect of dust extinction; therefore, a more detailed analysis is needed in future work.

  17. Deep Space Network Radiometric Remote Sensing Program

    Science.gov (United States)

    Walter, Steven J.

    1994-01-01

    Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid, and precipitation, emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band because communication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of water vapor-induced propagation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity wave experiments, and radio science missions. During 1993, WVRs provided data for propagation model development, supported planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily

  18. Characterization of majority and minority carrier deep levels in p-type GaN:Mg grown by molecular beam epitaxy using deep level optical spectroscopy

    International Nuclear Information System (INIS)

    Armstrong, A.; Caudill, J.; Ringel, S. A.; Corrion, A.; Poblenz, C.; Mishra, U. K.; Speck, J. S.

    2008-01-01

    Deep level defects in p-type GaN:Mg grown by molecular beam epitaxy were characterized using steady-state photocapacitance and deep level optical spectroscopy (DLOS). Low frequency capacitance measurements were used to alleviate dispersion effects stemming from the deep Mg acceptor. Use of DLOS enabled a quantitative survey of both deep acceptor and deep donor levels, the latter being particularly important due to the limited understanding of minority carrier states for p-type GaN. Simultaneous electron and hole photoemissions resulted in a convoluted deep level spectrum that was decoupled by emphasizing either majority or minority carrier optical emission through control of the thermal filling time conditions. In this manner, DLOS was able to resolve and quantify the properties of deep levels residing near both the conduction and valence bandedges in the same sample. Bandgap states through hole photoemission were observed at E v +3.05 eV, E v +3.22 eV and E v +3.26 eV. Additionally, DLOS revealed levels at E c -3.24 eV and E c -2.97 eV through electron emission to the conduction band with the former attributed to the Mg acceptor itself. The detected deep donor concentration is less than 2% of activated [Mg] and demonstrates the excellent quality of the film

  19. UNUSUAL LONG AND LUMINOUS OPTICAL TRANSIENT IN THE SUBARU DEEP FIELD

    International Nuclear Information System (INIS)

    Urata, Yuji; Tsai, Patrick P.; Huang, Kuiyun; Morokuma, Tomoki; Motohara, Kentaro; Yasuda, Naoki; Tanaka, Masaomi; Hayashi, Masao; Kashikawa, Nobunari; Ly, Chun; Malkan, Matthew A.

    2012-01-01

    We present observations of SDF-05M05, an unusual optical transient discovered in the Subaru Deep Field (SDF). The duration of the transient is > ∼ 800 days in the observer frame, and the maximum brightness during observation reached approximately 23 mag in the i' and z' bands. The faint host galaxy is clearly identified in all five optical bands of the deep SDF images. The photometric redshift of the host yields z ∼ 0.6 and the corresponding absolute magnitude at maximum is ∼ – 20. This implies that this event shone with an absolute magnitude brighter than –19 mag for approximately 300 days in the rest frame, which is significantly longer than a typical supernova and ultraluminous supernova. The total radiated energy during our observation was 1 × 10 51 erg. The light curves and color evolution are marginally consistent with some luminous IIn supernovae. We suggest that the transient may be a unique and peculiar supernova at intermediate redshift.

  20. UNUSUAL LONG AND LUMINOUS OPTICAL TRANSIENT IN THE SUBARU DEEP FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Yuji; Tsai, Patrick P. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Huang, Kuiyun [Academia Sinica Institute of Astronomy and Astrophysics, Taipei 106, Taiwan (China); Morokuma, Tomoki; Motohara, Kentaro [Institute of Astronomy, Graduate School of Science, University of Tokyo, Mitaka, Tokyo 181-0015 (Japan); Yasuda, Naoki [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8568 (Japan); Tanaka, Masaomi; Hayashi, Masao; Kashikawa, Nobunari [Optical and Infrared Astronomy Division, National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Ly, Chun [Space Telescope Science Institute, Baltimore, MD (United States); Malkan, Matthew A., E-mail: urata@astro.ncu.edu.tw [Department of Physics and Astronomy, UCLA, Box 951547, Los Angeles, CA (United States)

    2012-11-20

    We present observations of SDF-05M05, an unusual optical transient discovered in the Subaru Deep Field (SDF). The duration of the transient is > {approx} 800 days in the observer frame, and the maximum brightness during observation reached approximately 23 mag in the i' and z' bands. The faint host galaxy is clearly identified in all five optical bands of the deep SDF images. The photometric redshift of the host yields z {approx} 0.6 and the corresponding absolute magnitude at maximum is {approx} - 20. This implies that this event shone with an absolute magnitude brighter than -19 mag for approximately 300 days in the rest frame, which is significantly longer than a typical supernova and ultraluminous supernova. The total radiated energy during our observation was 1 Multiplication-Sign 10{sup 51} erg. The light curves and color evolution are marginally consistent with some luminous IIn supernovae. We suggest that the transient may be a unique and peculiar supernova at intermediate redshift.

  1. Low temperature intermediate band metallic behavior in Ti implanted Si

    Energy Technology Data Exchange (ETDEWEB)

    Olea, Javier, E-mail: oleaariza@fis.ucm.es; Pastor, David; Garcia-Hemme, Eric; Garcia-Hernansanz, Rodrigo; Prado, Alvaro del; Martil, Ignacio; Gonzalez-Diaz, German

    2012-08-31

    Si samples implanted with very high Ti doses and subjected to Pulsed-Laser Melting (PLM) have been electrically analyzed in the scope of a two-layer model previously reported based on the Intermediate Band (IB) theory. Conductivity and Hall effect measurements using the van der Pauw technique suggest that the insulator-metal transition takes place for implantation doses in the 10{sup 14}-10{sup 16} cm{sup -2} range. Results of the sample implanted with the 10{sup 16} cm{sup -2} dose show a metallic behavior at low temperature that is explained by the formation of a p-type IB out of the Ti deep levels. This suggests that the IB would be semi-filled, which is essential for IB photovoltaic devices. - Highlights: Black-Right-Pointing-Pointer We fabricated high dose Ti implanted Si samples for intermediate band research. Black-Right-Pointing-Pointer We measured the electronic transport properties in the 7-300 K range. Black-Right-Pointing-Pointer We show an insulator to metallic transition when the intermediate band is formed. Black-Right-Pointing-Pointer The intermediate band is semi-filled and populated by holes. Black-Right-Pointing-Pointer We satisfactorily explain the electrical behavior by an intermediate band model.

  2. Deep levels in p-type InGaAsN lattice matched to GaAs

    International Nuclear Information System (INIS)

    Kwon, D.; Kaplar, R.J.; Ringel, S.A.; Allerman, A.A.; Kurtz, S.R.; Jones, E.D.

    1999-01-01

    Deep-level transient spectroscopy measurements were utilized to investigate deep-level defects in metal - organic chemical vapor deposition-grown, unintentionally doped p-type InGaAsN films lattice matched to GaAs. The as-grown material displayed a high concentration of deep levels distributed within the band gap, with a dominant hole trap at E v +0.10eV. Postgrowth annealing simplified the deep-level spectra, enabling the identification of three distinct hole traps at 0.10, 0.23, and 0.48 eV above the valence-band edge, with concentrations of 3.5x10 14 , 3.8x10 14 , and 8.2x10 14 cm -3 , respectively. A direct comparison between the as-grown and annealed spectra revealed the presence of an additional midgap hole trap, with a concentration of 4x10 14 cm -3 in the as-grown material. The concentration of this trap is sharply reduced by annealing, which correlates with improved material quality and minority-carrier properties after annealing. Of the four hole traps detected, only the 0.48 eV level is not influenced by annealing, suggesting this level may be important for processed InGaAsN devices in the future. copyright 1999 American Institute of Physics

  3. Dynamics of the deep-level emission in ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Dongchao; Rueckmann, Ilja; Voss, Tobias [Institut fuer Festkoerperphysik, Universitaet Bremen (Germany)

    2010-07-01

    Due to its wide direct band gap and large exciton binding energy (60 meV), ZnO nanowires possess an efficient near band-edge emission (NBE) in UV range. Additional energy levels in the band gap of ZnO, commonly introduced by point defects such as oxygen or zinc vacancies and Cu impurities, can largely weaken the UV emission by providing extra recombination routes for the electrons in conduction band. In ZnO nanowires this deep-level emission band (DLE) is expected to be largely activated by tunneling processes of holes trapped in the surface depletion layer after optical excitation. We studied the dependence of the DLE and NBE intensities of ZnO nanowires on the excitation power at different temperatures. For the experiments, the fundamental (1064 nm) and frequency-tripled (355 nm) pulses of an Nd:YAG microchip laser were used. The additional infrared laser radiation was used to directly populate the defect levels with electrons from the valence band. Our results show that the additional infrared photons lead to a reduction of the DLE while the NBE is enhanced. We discuss the implications of our results for the models of DLE in ZnO nanowires.

  4. Diagnosis of deep vein thrombosis using multi-detector helical CT

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Masashi; Minamiguchi, Hiroki; Sahara, Shinya [Wakayama Medical Coll. (Japan)] [and others

    2002-11-01

    The purpose of this study was to evaluate the usefulness of multi-detector helical CT (MDHCT) with contrast medium in the diagnosis of deep vein thrombosis (DVT). The bilateral veins of the dorsal pedis in 45 patients (12 men, 33 women; average age, 64 years) under clinical suspicion of DVT were first punctured using 22-G needles. Then CT scanning from the level of the foot to the inferior vena cava was started 20 sec after the initial injection of 200 mL of dilute contrast medium (50 mL nonionic iodinated contrast medium of 300 mgI/mL and 150 mL saline) at a rate of 5 mL/sec. Two patients were excluded because of unsuccessful venous puncture. The average scanning time in 43 patients was 38.5{+-}7.9 seconds. Images of veins from the foot to the inferior vena cava were clearly demonstrated in each case. MDHCT showed DVT in 32 cases and patent deep vein in 11 cases. Simultaneous venography of the lower extremity in 18 patients clearly visualized DVT at the same level detected by contrast MDHCT. MDHCT for the diagnosis of DVT has the advantages of wider scanning rage, shorter scanning time, and finer Z-axis resolution than the other diagnostic modalities. (author)

  5. Diagnosis of deep vein thrombosis using multi-detector helical CT

    International Nuclear Information System (INIS)

    Kimura, Masashi; Minamiguchi, Hiroki; Sahara, Shinya

    2002-01-01

    The purpose of this study was to evaluate the usefulness of multi-detector helical CT (MDHCT) with contrast medium in the diagnosis of deep vein thrombosis (DVT). The bilateral veins of the dorsal pedis in 45 patients (12 men, 33 women; average age, 64 years) under clinical suspicion of DVT were first punctured using 22-G needles. Then CT scanning from the level of the foot to the inferior vena cava was started 20 sec after the initial injection of 200 mL of dilute contrast medium (50 mL nonionic iodinated contrast medium of 300 mgI/mL and 150 mL saline) at a rate of 5 mL/sec. Two patients were excluded because of unsuccessful venous puncture. The average scanning time in 43 patients was 38.5±7.9 seconds. Images of veins from the foot to the inferior vena cava were clearly demonstrated in each case. MDHCT showed DVT in 32 cases and patent deep vein in 11 cases. Simultaneous venography of the lower extremity in 18 patients clearly visualized DVT at the same level detected by contrast MDHCT. MDHCT for the diagnosis of DVT has the advantages of wider scanning rage, shorter scanning time, and finer Z-axis resolution than the other diagnostic modalities. (author)

  6. Spectroscopy of bound multi exciton complexes and deep centers in implanted and annealed silicon

    International Nuclear Information System (INIS)

    Babich, V.M.; Valakh, M.Ya.; Kovalchuk, V.B.; Rudko, G.Yu.; Shakhrajchuk, N.I.

    1989-01-01

    The change of silicon properties relevant to device physics caused by ion implantation and thermal annealing is studied. It is shown that in boron-doped p-Si the increase of P + ions implantation doses from 10 12 to 10 14 ions/cm 2 lead to a decrease of the broadening of boron bound exciton bands. This behaviour is caused by implantation-induced disordering of the lattice. The subsequent thermal annealing restores the intensity and the halfwidth of the above-mentioned bands and initiates the increase of the bands which correspond to excitons bond on the implanted phosphorus ions. Measurements of phosphorus bound exciton band intensities are applicable to the characterization of the process of phosphorus activation. Analysis of low energy region of luminescence spectra of heat treated samples shows that there is a correlation between the process of implanted phosphorus activation and the one of radiation defects transformation. The influence of germanium doping on the generation of thermal donors by means of spectroscopy of deep centres luminescence has been investigated. It is shown that the introduction of germanium in concentrations of 10 19 -10 20 cm -3 effectively suppresses the generation of thermal donors and deep centres under investigation. (author)

  7. Medium Band Least Squares Estimation of Fractional Cointegration in the Presence of Low-Frequency Contamination

    DEFF Research Database (Denmark)

    Christensen, Bent Jesper; Varneskov, Rasmus T.

    band least squares (MBLS) estimator uses sample dependent trimming of frequencies in the vicinity of the origin to account for such contamination. Consistency and asymptotic normality of the MBLS estimator are established, a feasible inference procedure is proposed, and rigorous tools for assessing...

  8. Stoffenmanager : a web-based control banding tool using an exposure process model

    NARCIS (Netherlands)

    Marquart, H.; Heussen, H.; Feber, M. Le; Noy, D.; Tielemans, E.; Schinkel, J.; West, J.; Schaaf, D. van der

    2008-01-01

    In the scope of a Dutch programme to reinforce the working conditions policy on hazardous substances, an internet-based tool was developed to help small- and medium-sized companies to handle hazardous substances with more care. The heart of this tool, called the Stoffenmanager, is a risk banding

  9. Evaluation of the JPL X-band 32 element active array. [for deep space communication

    Science.gov (United States)

    Boreham, J. F.; Postal, R. B.; Conroy, B. L.

    1979-01-01

    Tests performed on an X-band 32-element active array are described. Antenna pattern characteristics of the array were tested in its standard operating mode as well as several degraded performance modes, including failures of 1, 2, 3, 4, 8, 16, and 31 elements. Additionally, the array was characterized with the addition of a metallic shroud, and also characterized versus rf drive level and at a single off-axis electronic beamsteered position. Characterization was performed on several of the 3/4-watt, three-stage, X-band solid-state power amplifier modules. The characterization included swept amplitude response, amplitude and phase versus temperature from -20 to +60 C, and intermodulation distortion of selected modules. The array is described and conclusions and recommendations based upon the experience and results achieved are included.

  10. Size-induced axial band structure and directional flow of a ternary-size granular material in a 3-D horizontal rotating drum

    Science.gov (United States)

    Yang, Shiliang; Sun, Yuhao; Ma, Honghe; Chew, Jia Wei

    2018-05-01

    Differences in the material property of the granular material induce segregation which inevitably influences both natural and industrial processes. To understand the dynamical segregation behavior, the band structure, and also the spatial redistribution of particles induced by the size differences of the particles, a ternary-size granular mixture in a three-dimensional rotating drum operating in the rolling flow regime is numerically simulated using the discrete element method. The results demonstrate that (i) the axial bands of the medium particles are spatially sandwiched in between those of the large and small ones; (ii) the total mass in the active and passive regions is a global parameter independent of segregation; (iii) nearly one-third of all the particles are in the active region, with the small particles having the highest mass fraction; (iv) the axial bands initially appear near the end wall, then become wider and purer in the particular species with time as more axial bands form toward the axial center; and (v) the medium particle type exhibits segregation later and has the narrowest axial bandwidth and least purity in the bands. Compared to the binary-size system, the presence of the medium particle type slightly increases the total mass in the active region, leads to larger mass fractions of the small and large particle types in the active region, and enhances the axial segregation in the system. The results obtained in the current work provide valuable insights regarding size segregation, and band structure and formation in the rotating drum with polydisperse particles.

  11. Mini-RF S- and X-band Bistatic Observations of the Floor of Cabeus Crater

    Science.gov (United States)

    Patterson, Gerald Wesley; Stickle, Angela; Turner, Franklin; Jensen, James; Cahill, Joshua; Mini-RF Team

    2017-10-01

    The Mini-RF instrument aboard NASA’s Lunar Reconnaissance Orbiter (LRO) is a hybrid dual-polarized synthetic aperture radar (SAR) and operates in concert with the Arecibo Observatory (AO) and the Goldstone deep space communications complex 34 meter antenna DSS-13 to collect S- and X-band bistatic radar data of the Moon. Bistatic radar data provide a means to probe the near subsurface for the presence of water ice, which exhibits a strong response in the form of a Coherent Backscatter Opposition Effect (CBOE). This effect has been observed in radar data for the icy surfaces of the Galilean satellites, the polar caps of Mars, polar craters on Mercury, and terrestrial ice sheets in Greenland. Previous work using Mini-RF S-band (12.6 cm) bistatic data suggests the presence of a CBOE associated with the floor of the lunar south polar crater Cabeus. The LRO spacecraft has begun its third extended mission. For this phase of operations Mini-RF is leveraging the existing AO architecture to make S-band radar observations of additional polar craters (e.g., Haworth, Shoemaker, Faustini). The purpose of acquiring these data is to determine whether other polar craters exhibit the response observed for Cabeus. Mini-RF has also initiated a new mode of operation that utilizes the X-band (4.2cm) capability of the instrument receiver and a recently commissioned X/C-band transmitter within the Deep Space Network’s (DSN) Goldstone complex to collect bistatic X-band data of the Moon. The purpose of acquiring these data is to constrain the depth/thickness of materials that exhibit a CBOE response - with an emphasis on observing the floor of Cabeus. Recent Mini-RF X-band observations of the floors of the craters Cabeus do not show evidence for a CBOE. This would suggest that the upper ~0.5 meters of the regolith for the floor of Cabeus do not harber water ice in a form detectable at 4.2 cm wavelengths.

  12. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.

    Science.gov (United States)

    Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef

    2016-05-23

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution.

  13. Dimethylurea/citric acid as a highly efficient deep eutectic solvent

    Indian Academy of Sciences (India)

    Dimethylurea/citric acid deep eutectic solvent was used as a dual catalyst and a green reaction medium for the efficient synthesis of bis(indolyl)methanes, quinolines and aryl-4, 5-diphenyl-1H-imidazoles. Ease of recovery and reusability of DES with high activity makes this method efficient and eco-friendly.

  14. Medium modification of fragmentation functions

    International Nuclear Information System (INIS)

    Nezza, Pasquale Di

    2007-01-01

    Deep Inelastic Scattering is the cleanest process to investigate the space-time evolution of the hadronization. This was studied by the influence of the nuclear medium on lepto-production of hadrons at the Hermes experiment at DESY in semi-inclusive DIS of 27.6 GeV positrons off deuterium, nitrogen, krypton and xenon targets. The differential multiplicity for heavy targets relative to that of deuterium has been measured for the first time for various identified hadrons (φ + , φ - , φ 0 , k + , k - , p and anti-p) as a function of the virtual photon energy ?, the fraction z of this energy transferred to the hadron, and the hadron transverse momentum squared p 2 t . The distribution of the hadron transverse momentum is broadened towards high p 2 t in the nuclear medium, in a manner resembling the Cronin effect observed in collisions of heavy ions and protons with nuclei. The pt -broadening results give also important information about the pre-hadron formation time. Moreover, by studying the hadron attenuation of the leading and sub-leading hadrons, we report, for the first time, the possibility to better understand the hadron absorption and the energy loss contributions to the attenuation mechanism. (Author)

  15. Banding ligation versus beta-blockers for primary prevention in oesophageal varices in adults

    DEFF Research Database (Denmark)

    Gluud, Lise Lotte; Krag, Aleksander

    2012-01-01

    Non-selective beta-blockers are used as a first-line treatment for primary prevention in patients with medium- to high-risk oesophageal varices. The effect of non-selective beta-blockers on mortality is debated and many patients experience adverse events. Trials on banding ligation versus non...

  16. Effect of deep levels of radiation-induced defects in silicon γ-irradiated Al-V-n-Si structures characteristics

    International Nuclear Information System (INIS)

    Buzaneva, E.V.; Vdovichenko, A.D.; Kuznetsov, G.V.; Muntyan, Yu.G.

    1985-01-01

    The effect of high energy γ-quanta irradiation on the mechanism of current transmission in Al-V-N-Si structures employed in Schottky barrier instruments has been investigated. Before irradiation the structures have been annealed in the nitrogen atmosphere at T=500 deg C. The samples have been γ-irradiated on the side of the metall film at T=20 deg C. The irradiation spectrum is continuous, maximum γ-quanta energy 50 MeV, medium one is 20 MeV. The integral flux of γ-quanta, PHIsub(γ) varied from 10 7 to 10 13 quantum/cm -2 . The volt-ampere and volt-farad characteristics have been measred. It is shown that variation of the main electrophysical characteristics of the Al-V-nSi structures upon γ-irradiation is due to deep levels of radiation defects arising in silicon with the energetic position Esub(c)-E=0.38-0.4 eV and Esub(v)+Esub(2)=0.23-0.25 → β, where Esub(c), Esub(v) are energies for the conduction band bottom and the valence band ceiling. In the 77-293 K temperature range the determining range the determining effect on current mission mechanism in irradiated structures is exerted by resonance electron tunnelling with participation of a level with the Esub(c)-Esub(1)=0.38-0.4 eV

  17. VIIRS day-night band gain and offset determination and performance

    Science.gov (United States)

    Geis, J.; Florio, C.; Moyer, D.; Rausch, K.; De Luccia, F. J.

    2012-09-01

    On October 28th, 2011, the Visible-Infrared Imaging Radiometer Suite (VIIRS) was launched on-board the Suomi National Polar-orbiting Partnership (NPP) spacecraft. The instrument has 22 spectral bands: 14 reflective solar bands (RSB), 7 thermal emissive bands (TEB), and a Day Night Band (DNB). The DNB is a panchromatic, solar reflective band that provides visible through near infrared (IR) imagery of earth scenes with radiances spanning 7 orders of magnitude. In order to function over this large dynamic range, the DNB employs a focal plane array (FPA) consisting of three gain stages: the low gain stage (LGS), the medium gain stage (MGS), and the high gain stage (HGS). The final product generated from a DNB raw data record (RDR) is a radiance sensor data record (SDR). Generation of the SDR requires accurate knowledge of the dark offsets and gain coefficients for each DNB stage. These are measured on-orbit and stored in lookup tables (LUT) that are used during ground processing. This paper will discuss the details of the offset and gain measurement, data analysis methodologies, the operational LUT update process, and results to date including a first look at trending of these parameters over the early life of the instrument.

  18. Shear bands as growing instabilities in viscoanelastic media with memory

    Directory of Open Access Journals (Sweden)

    Marina Dolfin

    2013-09-01

    Full Text Available In this paper we investigate the critical conditions under which a small perturbation in an homogeneous continuum can possibly grows into a shear band instability. In particular, we analyze from a thermodynamical viewpoint the phenomenon of shear bands in viscoanelastic media with memory. It is emphasized, in the scientific literature, that the specific adopted rheology strongly affects the results so that a special attention has to be paid, also for engineering purposes, to the accuracy of the rheological model. Several well-known rheological model (for instance the so called Maxwell or Jeffreys media are particular cases of the general model we adopt in the paper to analyze shear bands. Instability conditions, giving rise to shear bands formation, are obtained by introducing small perturbations around an homogeneous deformation into the system of differential equations governing the problem of homogeneous deformations in the considered continuous medium; as a result a non-homogeneous linear dynamical system is obtained whose stability is analyzed. A research perspective in view of a possible comparison with experimental results is proposed; in particular the simple methodology proposed in the paper should be applied in view of using the phenomenon of the initiation of shear bands to calculate the thermomechanical coefficients of real materials.

  19. Towards testing quantum physics in deep space

    Science.gov (United States)

    Kaltenbaek, Rainer

    2016-07-01

    MAQRO is a proposal for a medium-sized space mission to use the unique environment of deep space in combination with novel developments in space technology and quantum technology to test the foundations of physics. The goal is to perform matter-wave interferometry with dielectric particles of up to 10^{11} atomic mass units and testing for deviations from the predictions of quantum theory. Novel techniques from quantum optomechanics with optically trapped particles are to be used for preparing the test particles for these experiments. The core elements of the instrument are placed outside the spacecraft and insulated from the hot spacecraft via multiple thermal shields allowing to achieve cryogenic temperatures via passive cooling and ultra-high vacuum levels by venting to deep space. In combination with low force-noise microthrusters and inertial sensors, this allows realizing an environment well suited for long coherence times of macroscopic quantum superpositions and long integration times. Since the original proposal in 2010, significant progress has been made in terms of technology development and in refining the instrument design. Based on these new developments, we submitted/will submit updated versions of the MAQRO proposal in 2015 and 2016 in response to Cosmic-Vision calls of ESA for a medium-sized mission. A central goal has been to address and overcome potentially critical issues regarding the readiness of core technologies and to provide realistic concepts for further technology development. We present the progress on the road towards realizing this ground-breaking mission harnessing deep space in novel ways for testing the foundations of physics, a technology pathfinder for macroscopic quantum technology and quantum optomechanics in space.

  20. (abstract) Deep Space Network Radiometric Remote Sensing Program

    Science.gov (United States)

    Walter, Steven J.

    1994-01-01

    Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid,and precipitation , emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band becausecommunication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of watervapor-induced prop agation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity waveexperiments, and r adio science missions. During 1993, WVRs provided data for propagation mode development, supp orted planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily

  1. Far-Field Focus and Dispersionless Anticrossing Bands in Two-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Xiaoshuang Chen

    2007-01-01

    Full Text Available We review the simulation work for the far-field focus and dispersionless anticrossing bands in two-dimensional (2D photonic crystals. In a two-dimensional photonic-crystal-based concave lens, the far-field focus of a plane wave is given by the distance between the focusing point and the lens. Strong and good-quality far-field focusing of a transmitted wave, explicitly following the well-known wave-beam negative refraction law, can be achieved. The spatial frequency information of the Bloch mode in multiple Brillouin zones (BZs is investigated in order to indicate the wave propagation in two different regions. When considering the photonic transmission in a 2D photonic crystal composed of a negative phase-velocity medium (NPVM, it is shown that the dispersionless anticrossing bands are generated by the couplings among the localized surface polaritons of the NPVM rods. The photonic band structures of the NPVM photonic crystals are characterized by a topographical continuous dispersion relationship accompanied by many anticrossing bands.

  2. Wakefields generated by electron beams passing through a waveguide loaded with a slightly dispersive active medium

    Directory of Open Access Journals (Sweden)

    Andrey V. Tyukhtin

    2007-05-01

    Full Text Available The wakefields of a relativistic electron beam passing through a waveguide loaded with an active medium with weak resonant dispersion are considered. For the calculations in this paper, the parameters of the medium are those of a solution of fullerene (C_{60} in a nematic liquid crystal that exhibits activity in the X-band. It is shown that several of the TM accelerating modes can be amplified for the geometries under consideration; structures in which higher order modes are amplified exhibit essential advantages as PASERs. In particular, the amplification of the highest mode occurs in a structure loaded with a rather thick active medium layer that maximizes the energy stored by the active medium.

  3. Compression of Multispectral Images with Comparatively Few Bands Using Posttransform Tucker Decomposition

    Directory of Open Access Journals (Sweden)

    Jin Li

    2014-01-01

    Full Text Available Up to now, data compression for the multispectral charge-coupled device (CCD images with comparatively few bands (MSCFBs is done independently on each multispectral channel. This compression codec is called a “monospectral compressor.” The monospectral compressor does not have a removing spectral redundancy stage. To fill this gap, we propose an efficient compression approach for MSCFBs. In our approach, the one dimensional discrete cosine transform (1D-DCT is performed on spectral dimension to exploit the spectral information, and the posttransform (PT in 2D-DWT domain is performed on each spectral band to exploit the spatial information. A deep coupling approach between the PT and Tucker decomposition (TD is proposed to remove residual spectral redundancy between bands and residual spatial redundancy of each band. Experimental results on multispectral CCD camera data set show that the proposed compression algorithm can obtain a better compression performance and significantly outperforms the traditional compression algorithm-based TD in 2D-DWT and 3D-DCT domain.

  4. The hierarchically organized splitting of chromosome bands into sub-bands analyzed by multicolor banding (MCB).

    Science.gov (United States)

    Lehrer, H; Weise, A; Michel, S; Starke, H; Mrasek, K; Heller, A; Kuechler, A; Claussen, U; Liehr, T

    2004-01-01

    To clarify the nature of chromosome sub-bands in more detail, the multicolor banding (MCB) probe-set for chromosome 5 was hybridized to normal metaphase spreads of GTG band levels at approximately 850, approximately 550, approximately 400 and approximately 300. It could be observed that as the chromosomes became shorter, more of the initial 39 MCB pseudo-colors disappeared, ending with 18 MCB pseudo-colored bands at the approximately 300-band level. The hierarchically organized splitting of bands into sub-bands was analyzed by comparing the disappearance or appearance of pseudo-color bands of the four different band levels. The regions to split first are telomere-near, centromere-near and in 5q23-->q31, followed by 5p15, 5p14, and all GTG dark bands in 5q apart from 5q12 and 5q32 and finalized by sub-band building in 5p15.2, 5q21.2-->q21.3, 5q23.1 and 5q34. The direction of band splitting towards the centromere or the telomere could be assigned to each band separately. Pseudo-colors assigned to GTG-light bands were resistant to band splitting. These observations are in concordance with the recently proposed concept of chromosome region-specific protein swelling. Copyright 2003 S. Karger AG, Basel

  5. Band structure of metallic pyrochlore ruthenates Bi2Ru2O7 and Pb2Ru2O/sub 6.5/

    International Nuclear Information System (INIS)

    Hsu, W.Y.; Kasowski, R.V.; Miller, T.; Chiang, T.

    1988-01-01

    The band structure of Bi 2 Ru 2 O 7 and Pb 2 Ru 2 O/sub 6.5/ has been computed self-consistently from first principles for the first time by the pseudofunction method. We discover that the 6s bands of Bi and Pb are very deep and unlikely to contribute to the metallic behavior as previously believed. The unoccupied 6p bands, however, are only several eV above the Fermi energy and are mixed with the Ru 4d band at the Fermi surface via the framework O atoms, leading to band conduction and delocalized magnetic moments. The predicted location of the 6s bands and the location and width of the O 2p band are confirmed by synchrotron radiation and ultraviolet electron spectroscopy of single crystals

  6. Application of positron annihilation lifetime technique to the study of deep level transients in semiconductors

    Science.gov (United States)

    Deng, A. H.; Shan, Y. Y.; Fung, S.; Beling, C. D.

    2002-03-01

    Unlike its conventional applications in lattice defect characterization, positron annihilation lifetime technique was applied to study temperature-dependent deep level transients in semiconductors. Defect levels in the band gap can be determined as they are determined by conventional deep level transient spectroscopy (DLTS) studies. The promising advantage of this application of positron annihilation over the conventional DLTS is that it could further extract extra microstructure information of deep-level defects, such as whether a deep level defect is vacancy related or not. A demonstration of EL2 defect level transient study in GaAs was shown and the EL2 level of 0.82±0.02 eV was obtained by a standard Arrhenius analysis, similar to that in conventional DLTS studies.

  7. Scanning deep level transient spectroscopy using an MeV ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Laird, J.S.; Bardos, R.A.; Saint, A.; Moloney, G.M.; Legge, G.F.J. [Melbourne Univ., Parkville, VIC (Australia)

    1993-12-31

    Traditionally the scanning ion microprobe has given little or no information regarding the electronic structure of materials in particular semiconductors. A new imaging technique called Scanning Ion Deep Level Transient Spectroscopy (SIDLTS) is presented which is able to spatially map alterations in the band gap structure of materials by lattice defects or impurities. 3 refs., 2 figs.

  8. Scanning deep level transient spectroscopy using an MeV ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Laird, J S; Bardos, R A; Saint, A; Moloney, G M; Legge, G F.J. [Melbourne Univ., Parkville, VIC (Australia)

    1994-12-31

    Traditionally the scanning ion microprobe has given little or no information regarding the electronic structure of materials in particular semiconductors. A new imaging technique called Scanning Ion Deep Level Transient Spectroscopy (SIDLTS) is presented which is able to spatially map alterations in the band gap structure of materials by lattice defects or impurities. 3 refs., 2 figs.

  9. Assessment of MODIS RSB Detector Uniformity Using Deep Convective Clouds

    Science.gov (United States)

    Chang, Tiejun; Xiong, Xiaoxiong (Jack); Angal, Amit; Mu, Qiaozhen

    2016-01-01

    For satellite sensor, the striping observed in images is typically associated with the relative multiple detector gain difference derived from the calibration. A method using deep convective cloud (DCC) measurements to assess the difference among detectors after calibration is proposed and demonstrated for select reflective solar bands (RSBs) of the Moderate Resolution Imaging Spectroradiometer (MODIS). Each detector of MODIS RSB is calibrated independently using a solar diffuser (SD). Although the SD is expected to accurately characterize detector response, the uncertainties associated with the SD degradation and characterization result in inadequacies in the estimation of each detector's gain. This work takes advantage of the DCC technique to assess detector uniformity and scan mirror side difference for RSB. The detector differences for Terra MODIS Collection 6 are less than 1% for bands 1, 3-5, and 18 and up to 2% for bands 6, 19, and 26. The largest difference is up to 4% for band 7. Most Aqua bands have detector differences less than 0.5% except bands 19 and 26 with up to 1.5%. Normally, large differences occur for edge detectors. The long-term trending shows seasonal oscillations in detector differences for some bands, which are correlated with the instrument temperature. The detector uniformities were evaluated for both unaggregated and aggregated detectors for MODIS band 1 and bands 3-7, and their consistencies are verified. The assessment results were validated by applying a direct correction to reflectance images. These assessments can lead to improvements to the calibration algorithm and therefore a reduction in striping observed in the calibrated imagery.

  10. Zero-phonon line and fine structure of the yellow luminescence band in GaN

    Science.gov (United States)

    Reshchikov, M. A.; McNamara, J. D.; Zhang, F.; Monavarian, M.; Usikov, A.; Helava, H.; Makarov, Yu.; Morkoç, H.

    2016-07-01

    The yellow luminescence band was studied in undoped and Si-doped GaN samples by steady-state and time-resolved photoluminescence. At low temperature (18 K), the zero-phonon line (ZPL) for the yellow band is observed at 2.57 eV and attributed to electron transitions from a shallow donor to a deep-level defect. At higher temperatures, the ZPL at 2.59 eV emerges, which is attributed to electron transitions from the conduction band to the same defect. In addition to the ZPL, a set of phonon replicas is observed, which is caused by the emission of phonons with energies of 39.5 meV and 91.5 meV. The defect is called the YL1 center. The possible identity of the YL1 center is discussed. The results indicate that the same defect is responsible for the strong YL1 band in undoped and Si-doped GaN samples.

  11. Band alignment and defects of the diamond zinc oxide heterojunction; Bandstruktur und Defekte der Diamant-Zinkoxid-Heterostruktur

    Energy Technology Data Exchange (ETDEWEB)

    Geithner, Peter

    2008-09-12

    Zinc oxide films were grown on diamond single crystals by rf sputtering of zinc oxide. The valence and conduction band offset was determined by photoelectron spectroscopy. A deep defect occurring in the zinc oxide films on diamond was characterized by cathodoluminescence spectroscopy. (orig.)

  12. Deep Extragalactic VIsible Legacy Survey (DEVILS): Motivation, Design and Target Catalogue

    Science.gov (United States)

    Davies, L. J. M.; Robotham, A. S. G.; Driver, S. P.; Lagos, C. P.; Cortese, L.; Mannering, E.; Foster, C.; Lidman, C.; Hashemizadeh, A.; Koushan, S.; O'Toole, S.; Baldry, I. K.; Bilicki, M.; Bland-Hawthorn, J.; Bremer, M. N.; Brown, M. J. I.; Bryant, J. J.; Catinella, B.; Croom, S. M.; Grootes, M. W.; Holwerda, B. W.; Jarvis, M. J.; Maddox, N.; Meyer, M.; Moffett, A. J.; Phillipps, S.; Taylor, E. N.; Windhorst, R. A.; Wolf, C.

    2018-06-01

    The Deep Extragalactic VIsible Legacy Survey (DEVILS) is a large spectroscopic campaign at the Anglo-Australian Telescope (AAT) aimed at bridging the near and distant Universe by producing the highest completeness survey of galaxies and groups at intermediate redshifts (0.3 < z < 1.0). Our sample consists of ˜60,000 galaxies to Y<21.2 mag, over ˜6 deg2 in three well-studied deep extragalactic fields (Cosmic Origins Survey field, COSMOS, Extended Chandra Deep Field South, ECDFS and the X-ray Multi-Mirror Mission Large-Scale Structure region, XMM-LSS - all Large Synoptic Survey Telescope deep-drill fields). This paper presents the broad experimental design of DEVILS. Our target sample has been selected from deep Visible and Infrared Survey Telescope for Astronomy (VISTA) Y-band imaging (VISTA Deep Extragalactic Observations, VIDEO and UltraVISTA), with photometry measured by PROFOUND. Photometric star/galaxy separation is done on the basis of NIR colours, and has been validated by visual inspection. To maximise our observing efficiency for faint targets we employ a redshift feedback strategy, which continually updates our target lists, feeding back the results from the previous night's observations. We also present an overview of the initial spectroscopic observations undertaken in late 2017 and early 2018.

  13. Realization of a complementary medium using dielectric photonic crystals.

    Science.gov (United States)

    Xu, Tao; Fang, Anan; Jia, Ziyuan; Ji, Liyu; Hang, Zhi Hong

    2017-12-01

    By exploiting the scaling invariance of photonic band diagrams, a complementary photonic crystal slab structure is realized by stacking two uniformly scaled double-zero-index dielectric photonic crystal slabs together. The space cancellation effect in complementary photonic crystals is demonstrated in both numerical simulations and microwave experiments. The refractive index dispersion of double-zero-index dielectric photonic crystal is experimentally measured. Using pure dielectrics, our photonic crystal structure will be an ideal platform to explore various intriguing properties related to a complementary medium.

  14. Behavior of deep flaws in a thick-wall cylinder under thermal shock loading

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1979-01-01

    Behavior of inner-surface flaws in thick-walled vessels was studied in a 991-mm OD x 152 mm wall x 1220 mm length cylinder with toughness properties similar to those for HSST Plate. The initial temperature of 93 0 C and a thermal shock medium of liquid nitrogen (-197 0 C) were employed. The initial flaw selected was a sharp, 16 mm deep, long (1220 mm) axial crack. Crack arrest methodology was shown to be valid for deep flaws under severe thermal shock

  15. Deep subgap feature in amorphous indium gallium zinc oxide: Evidence against reduced indium

    International Nuclear Information System (INIS)

    Sallis, Shawn; Williams, Deborah S.; Quackenbush, Nicholas F.; Senger, Mikell; Woicik, Joseph C.; White, Bruce E.; Piper, Louis F.J.

    2015-01-01

    Amorphous indium gallium zinc oxide (a-IGZO) is the archetypal transparent amorphous oxide semiconductor. Despite the gains made with a-IGZO over amorphous silicon in the last decade, the presence of deep subgap states in a-IGZO active layers facilitate instabilities in thin film transistor properties under negative bias illumination stress. Several candidates could contribute to the formation of states within the band gap. Here, we present evidence against In + lone pair active electrons as the origin of the deep subgap features. No In + species are observed, only In 0 nano-crystallites under certain oxygen deficient growth conditions. Our results further support under coordinated oxygen as the source of the deep subgap states. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Deuteron structure in the deep inelastic regime

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Canal, C.A.; Tarutina, T. [Universidad Nacional de La Plata, IFLP/CONICET y Departamento de Fisica, La Plata (Argentina); Vento, V. [Universidad de Valencia-CSIC, Departamento de Fisica Teorica-IFIC, Burjassot (Valencia) (Spain)

    2017-06-15

    We study nuclear effects in the deuteron in the deep inelastic regime using the newest available data. We put special emphasis on their Q{sup 2} dependence. The study is carried out using a scheme which parameterizes, in a simple manner, these effects by changing the proton and neutron stucture functions in medium. The result of our analysis is compared with other recent proposals. We conclude that precise EMC ratios cannot be obtained without considering the nuclear effects in the deuteron. (orig.)

  17. Inclusive and exclusive deep-inelastic electron scattering

    International Nuclear Information System (INIS)

    Morgenstern, J.

    1985-11-01

    In this talk, I will present some deep inelastic electron scattering experiments done recently at Saclay with the purpose of studying high momentum components in the nucleus, many body effects as correlations, exchange currents, and the electron-nucleon interaction inside the nuclear medium. For that purpose we have performed (e,e') and (ee'p) experiments. When we detect only the scattered electron, we get some average properties less sensitive to final state interaction; in ee'p measurements we are more specific

  18. Broad-band spectrophotometry of HAT-P-32 b

    DEFF Research Database (Denmark)

    Mallonn, M.; Bernt, I.; Herrero, E.

    2016-01-01

    Multicolour broad-band transit observations offer the opportunity to characterize the atmosphere of an extrasolar planet with small- to medium-sized telescopes. One of the most favourable targets is the hot Jupiter HAT-P-32 b. We combined 21 new transit observations of this planet with 36 previou...... makes a recent tentative detection of a scattering feature less likely. Instead, the available spectral measurements of HAT-P-32 b favour a completely flat spectrum from the near-UV to the near-IR. A plausible interpretation is a thick cloud cover at high altitudes....

  19. Cognitive radio networks medium access control for coexistence of wireless systems

    CERN Document Server

    Bian, Kaigui; Gao, Bo

    2014-01-01

    This book gives a comprehensive overview of the medium access control (MAC) principles in cognitive radio networks, with a specific focus on how such MAC principles enable different wireless systems to coexist in the same spectrum band and carry out spectrum sharing.  From algorithm design to the latest developments in the standards and spectrum policy, readers will benefit from leading-edge knowledge of how cognitive radio systems coexist and share spectrum resources.  Coverage includes cognitive radio rendezvous, spectrum sharing, channel allocation, coexistence in TV white space, and coexistence of heterogeneous wireless systems.   • Provides a comprehensive reference on medium access control (MAC)-related problems in the design of cognitive radio systems and networks; • Includes detailed analysis of various coexistence problems related to medium access control in cognitive radio networks; • Reveals novel techniques for addressing the challenges of coexistence protocol design at a higher level ...

  20. Suppressing band gap of MoS{sub 2} by the incorporation of four- and eight-membered rings

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liyan; Zhang, Tingting, E-mail: ttzhang@hytc.edu.cn [Huaiyin Normal University, School of Physics and Electronic & Electrical Engineering, and Jiangsu Key Laboratory of Modern Measurement Technology and Intelligent Systems (China)

    2015-05-15

    A stable planar allotrope of MoS{sub 2}, formed by introducing four- and eight-membered rings into its hexagonal network (H468), is identified to be a narrow direct-band-gap semiconductor by first principle calculations, which is remarkably different from the large band gap semiconductor of conventional MoS{sub 2} and also the zero band gap allotrope consisting of four- and eight-membered rings (H48) only. The medium-sized direct band gap indicates that H468 would find applications in nanoelectronics and near-infrared optoelectronic devices. Furthermore, the distinctive simulated scanning tunneling microscope images under positive and negative biases might be a unique characteristic for the experimental identification of such an allotrope of MoS{sub 2}.

  1. Biophotonic applications of eigenchannels in a scattering medium (Conference Presentation)

    Science.gov (United States)

    Kim, Moonseok; Choi, Wonjun; Choi, Youngwoon; Yoon, Changhyeong; Choi, Wonshik

    2016-03-01

    When waves travel through disordered media such as ground glass and skin tissues, they are scattered multiple times. Most of the incoming energy bounces back at the superficial layers and only a small fraction can penetrate deep inside. This has been a limiting factor for the working depth of various optical techniques. We present a systematic method to enhance wave penetration to the scattering media. Specifically, we measured the reflection matrix of a disordered medium with wide angular coverage for each orthogonal polarization states. From the reflection matrix, we identified reflection eigenchannels of the medium, and shaped the incident wave into the reflection eigenchannel with smallest eigenvalue, which we call anti-reflection mode. This makes reflectance reduced and wave penetration increased as a result of the energy conservation. We demonstrated transmission enhancement by more than a factor of 3 by the coupling of the incident waves to the anti-reflection modes. Based on the uneven distribution of eigenvalues of reflection eigenchannels, we further developed an iterative feedback control method for finding and coupling light to anti-reflection modes. Since this adaptive control method can keep up with sample perturbation, it promotes the applicability of exploiting reflection eigenchannels. Our approach of delivering light deep into the scattering media will contribute to enhancing the sensitivity of detecting objects hidden under scattering layers, which is universal problem ranging from geology to life science.

  2. SINGLE-BAND, TRIPLE-BAND, OR MULTIPLE-BAND HUBBARD MODELS

    NARCIS (Netherlands)

    ESKES, H; SAWATZKY, GA

    1991-01-01

    The relevance of different models, such as the one-band t-J model and the three-band Emery model, as a realistic description of the electronic structure of high-T(c) materials is discussed. Starting from a multiband approach using cluster calculations and an impurity approach, the following

  3. Proof of concept for a banding scheme to support risk assessments related to multi-product biologics manufacturing.

    Science.gov (United States)

    Card, Jeffrey W; Fikree, Hana; Haighton, Lois A; Blackwell, James; Felice, Brian; Wright, Teresa L

    2015-11-01

    A banding scheme theory has been proposed to assess the potency/toxicity of biologics and assist with decisions regarding the introduction of new biologic products into existing manufacturing facilities. The current work was conducted to provide a practical example of how this scheme could be applied. Information was identified for representatives from the following four proposed bands: Band A (lethal toxins); Band B (toxins and apoptosis signals); Band C (cytokines and growth factors); and Band D (antibodies, antibody fragments, scaffold molecules, and insulins). The potency/toxicity of the representative substances was confirmed as follows: Band A, low nanogram quantities exert lethal effects; Band B, repeated administration of microgram quantities is tolerated in humans; Band C, endogenous substances and recombinant versions administered to patients in low (interferons), intermediate (growth factors), and high (interleukins) microgram doses, often on a chronic basis; and Band D, endogenous substances present or produced in the body in milligram quantities per day (insulin, collagen) or protein therapeutics administered in milligram quantities per dose (mAbs). This work confirms that substances in Bands A, B, C, and D represent very high, high, medium, and low concern with regard to risk of cross-contamination in manufacturing facilities, thus supporting the proposed banding scheme. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Medium effects in DIS from polarized nuclear targets

    Energy Technology Data Exchange (ETDEWEB)

    Fanchiotti, Huner; Garcia Canal, Carlos A.; Tarutina, Tatiana [Universidad Nacional de La Plata, Departamento de Fisica, C.C. 67, La Plata (Argentina); Universidad Nacional de La Plata, IFLP(CONICET), C.C. 67, La Plata (Argentina); Vento, Vicente [Universidad de Valencia, Consejo Superior de Investigaciones Cientificas, Departamento de Fisica Teorica and Instituto de Fisica Corpuscular, Burjassot (Valencia) (Spain)

    2014-07-15

    The behavior of the nucleon structure functions in lepton nuclei deep inelastic scattering, both polarized and unpolarized, due to nuclear structure effects is reanalyzed. The study is performed in two schemes: an x-rescaling approach, and one in which there is an increase of sea quark components in the in-medium nucleon, related to the low-energy N-N interaction. In view of a recent interesting experimental proposal to study the behavior of the proton spin structure functions in nuclei we proceed to compare these approaches in an effort to enlighten the possible phenomenological interest of such difficult experiment. (orig.)

  5. Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit

    OpenAIRE

    Peng Xi; Yan Li; Xiaojin Ge; Dandan Liu; Mingsan Miao

    2018-01-01

    Objective: Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. Method: We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from th...

  6. DeepPy: Pythonic deep learning

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo

    This technical report introduces DeepPy – a deep learning framework built on top of NumPy with GPU acceleration. DeepPy bridges the gap between highperformance neural networks and the ease of development from Python/NumPy. Users with a background in scientific computing in Python will quickly...... be able to understand and change the DeepPy codebase as it is mainly implemented using high-level NumPy primitives. Moreover, DeepPy supports complex network architectures by letting the user compose mathematical expressions as directed graphs. The latest version is available at http...

  7. Wide-band fanned-out supercontinuum source covering O-, E-, S-, C-, L- and U-bands

    Science.gov (United States)

    Ahmad, H.; Latif, A. A.; Awang, N. A.; Zulkifli, M. Z.; Thambiratnam, K.; Ghani, Z. A.; Harun, S. W.

    2012-10-01

    A wide-band supercontinuum source generated by mode-locked pulses injected into a Highly Non-Linear Fiber (HNLF) is proposed and demonstrated. A 49 cm long Bismuth-Erbium Doped Fiber (Bi-EDF) pumped by two 1480 nm laser diodes acts as the active gain medium for a ring fiber laser, from which mode-locked pulses are obtained using the Non-Polarization Rotation (NPR) technique. The mode-locked pulses are then injected into a 100 m long HLNF with a dispersion of 0.15 ps/nm km at 1550 nm to generate a supercontinuum spectrum spanning from 1340 nm to more than 1680 nm with a pulse width of 0.08 ps and an average power of -17 dBm. The supercontinuum spectrum is sliced using a 24 channel Arrayed Waveguide Grating (AWG) with a channel spacing of 100 GHz to obtain a fanned-out laser output covering the O-, E-, S-, C-, L- and U-bands. The lasing wavelengths obtained have an average pulse width of 9 ps with only minor fluctuations and a mode-locked repetition rate of 40 MHz, and is sufficiently stable to be used in a variety of sensing and communication applications, most notably as cost-effective sources for Fiber-to-the-Home (FTTH) networks.

  8. Extended deep level defects in Ge-condensed SiGe-on-Insulator structures fabricated using proton and helium implantations

    International Nuclear Information System (INIS)

    Kwak, D.W.; Lee, D.W.; Oh, J.S.; Lee, Y.H.; Cho, H.Y.

    2012-01-01

    SiGe-on-Insulator (SGOI) structures were created using the Ge condensation method, where an oxidation process is performed on the SiGe/Si structure. This method involves rapid thermal chemical vapor deposition and H + /He + ion-implantations. Deep level defects in these structures were investigated using deep level transient spectroscopy (DLTS) by varying the pulse injection time. According to the DLTS measurements, a deep level defect induced during the Ge condensation process was found at 0.28 eV above the valence band with a capture cross section of 2.67 × 10 −17 cm 2 , two extended deep levels were also found at 0.54 eV and 0.42 eV above the valence band with capture cross sections of 3.17 × 10 −14 cm 2 and 0.96 × 10 −15 cm 2 , respectively. In the SGOI samples with ion-implantation, the densities of the newly generated defects as well as the existing defects were decreased effectively. Furthermore, the Coulomb barrier heights of the extended deep level defects were drastically reduced. Thus, we suggest that the Ge condensation method with H + ion implantation could reduce deep level defects generated from the condensation and control the electrical properties of the condensed SiGe layers. - Highlights: ► We have fabricated low-defective SiGe-on-Insulator (SGOI) with implantation method. ► H + and He + -ions are used for ion-implantation method. ► We have investigated the deep level defects of SGOI layers. ► Ge condensation method using H + ion implantation could reduce extended defects. ► They could enhance electrical properties.

  9. M DWARF ACTIVITY IN THE PAN-STARRS1 MEDIUM-DEEP SURVEY: FIRST CATALOG AND ROTATION PERIODS

    Energy Technology Data Exchange (ETDEWEB)

    Kado-Fong, E. [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Williams, P. K. G.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Mann, A. W. [The University of Texas at Austin, Department of Astronomy, 2515 Speedway C1400, Austin, TX 78712 (United States); Burgett, W. S.; Chambers, K. C.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Wainscoat, R. J.; Waters, C. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Rest, A., E-mail: erin.fong@tufts.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-12-20

    We report on an ongoing project to investigate activity in the M dwarf stellar population observed by the Pan-STARRS1 Medium-Deep Survey (PS1-MDS). Using a custom-built pipeline, we refine an initial sample of ∼4 million sources in PS1-MDS to a sample of 184,148 candidate cool stars using color cuts. Motivated by the well-known relationship between rotation and stellar activity, we use a multiband periodogram analysis and visual vetting to identify 270 sources that are likely rotating M dwarfs. We derive a new set of polynomials relating M dwarf PS1 colors to fundamental stellar parameters and use them to estimate the masses, distances, effective temperatures, and bolometric luminosities of our sample. We present a catalog containing these values, our measured rotation periods, and cross-matches to other surveys. Our final sample spans periods of ≲1–130 days in stars with estimated effective temperatures of ∼2700–4000 K. Twenty-two of our sources have X-ray cross-matches, and they are found to be relatively X-ray bright as would be expected from selection effects. Our data set provides evidence that Kepler -based searches have not been sensitive to very slowly rotating stars ( P {sub rot} ≳ 70 day), implying that the observed emergence of very slow rotators in studies of low-mass stars may be a systematic effect. We also see a lack of low-amplitude (<2%) variability in objects with intermediate (10–40 day) rotation periods, which, considered in conjunction with other observational results, may be a signpost of a loss of magnetic complexity associated with a phase of rapid spin-down in intermediate-age M dwarfs. This work represents just a first step in exploring stellar variability in data from the PS1-MDS and, in the farther future, Large Synoptic Survey Telescope.

  10. The UKIRT Hemisphere Survey: definition and J-band data release

    Science.gov (United States)

    Dye, S.; Lawrence, A.; Read, M. A.; Fan, X.; Kerr, T.; Varricatt, W.; Furnell, K. E.; Edge, A. C.; Irwin, M.; Hambly, N.; Lucas, P.; Almaini, O.; Chambers, K.; Green, R.; Hewett, P.; Liu, M. C.; McGreer, I.; Best, W.; Zhang, Z.; Sutorius, E.; Froebrich, D.; Magnier, E.; Hasinger, G.; Lederer, S. M.; Bold, M.; Tedds, J. A.

    2018-02-01

    This paper defines the UK Infra-Red Telescope (UKIRT) Hemisphere Survey (UHS) and release of the remaining ∼12 700 deg2 of J-band survey data products. The UHS will provide continuous J- and K-band coverage in the Northern hemisphere from a declination of 0° to 60° by combining the existing Large Area Survey, Galactic Plane Survey and Galactic Clusters Survey conducted under the UKIRT Infra-red Deep Sky Survey (UKIDSS) programme with this new additional area not covered by UKIDSS. The released data include J-band imaging and source catalogues over the new area, which, together with UKIDSS, completes the J-band UHS coverage over the full ∼17 900 deg2 area. 98 per cent of the data in this release have passed quality control criteria. The remaining 2 per cent have been scheduled for re-observation. The median 5σ point source sensitivity of the released data is 19.6 mag (Vega). The median full width at half-maximum of the point spread function across the data set is 0.75 arcsec. In this paper, we outline the survey management, data acquisition, processing and calibration, quality control and archiving as well as summarizing the characteristics of the released data products. The data are initially available to a limited consortium with a world-wide release scheduled for 2018 August.

  11. 40Ar/39Ar studies of deep sea igneous rocks

    International Nuclear Information System (INIS)

    Seidemann, D.

    1978-01-01

    An attempt to date deep-sea igneous rocks reliably was made using the 40 Ar/ 39 Ar dating technique. It was determined that the 40 Ar/ 39 Ar incremental release technique could not be used to eliminate the effects of excess radiogenic 40 Ar in deep-sea basalts. Excess 40 Ar is released throughout the extraction temperature range and cannot be distinguished from 40 Ar generated by in situ 40 K decay. The problem of the reduction of K-Ar dates associated with sea water alteration of deep-sea igneous rocks could not be resolved using the 40 Ar/ 39 Ar technique. Irradiation induced 39 Ar loss and/or redistribution in fine-grained and altered igneous rocks results in age spectra that are artifacts of the experimental procedure and only partly reflect the geologic history of the sample. Therefore, caution must be used in attributing significance to age spectra of fine grained and altered deep-sea igneous rocks. Effects of 39 Ar recoil are not important for either medium-grained (or coarser) deep-sea rocks or glasses because only a small fraction of the 39 Ar recoils to channels of easy diffusion, such as intergranular boundaries or cracks, during the irradiation. (author)

  12. Deep subgap feature in amorphous indium gallium zinc oxide: Evidence against reduced indium

    Energy Technology Data Exchange (ETDEWEB)

    Sallis, Shawn; Williams, Deborah S. [Materials Science and Engineering, Binghamton University, Binghamton, New York, 13902 (United States); Quackenbush, Nicholas F.; Senger, Mikell [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York, 13902 (United States); Woicik, Joseph C. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899 (United States); White, Bruce E.; Piper, Louis F.J. [Materials Science and Engineering, Binghamton University, Binghamton, New York, 13902 (United States); Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York, 13902 (United States)

    2015-07-15

    Amorphous indium gallium zinc oxide (a-IGZO) is the archetypal transparent amorphous oxide semiconductor. Despite the gains made with a-IGZO over amorphous silicon in the last decade, the presence of deep subgap states in a-IGZO active layers facilitate instabilities in thin film transistor properties under negative bias illumination stress. Several candidates could contribute to the formation of states within the band gap. Here, we present evidence against In{sup +} lone pair active electrons as the origin of the deep subgap features. No In{sup +} species are observed, only In{sup 0} nano-crystallites under certain oxygen deficient growth conditions. Our results further support under coordinated oxygen as the source of the deep subgap states. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. The injection spectroscopy method for the study of deep traps in CdTe films

    International Nuclear Information System (INIS)

    Lyubchak, V.O.; Opanasyuk, A.S.; Tirkusova, N.V.; Kharchenko, V.Yi.

    1999-01-01

    A simple highly informative method is presented, which enables to precisely identify the mechanism of charge transfer in the investigated structures and to extract a correct information about the parameters of local states in the energy gap band of the material via space-change-limited current-voltage characteristics. The modelling shows a good coincidence of the parameters, reconstructed with the help of this method, of the distribution of traps with the input parameters of deep traps. Some modification of the differential method are tested on high-ohm med CdTe films. Four groups of monoenergetic deep traps are found. The obtained results evidence the perspectives of the injection spectroscopy method for the research of deep traps in semiconducting and dielectric materials

  14. Mars Global Surveyor Ka-Band Frequency Data Analysis

    Science.gov (United States)

    Morabito, D.; Butman, S.; Shambayati, S.

    2000-01-01

    The Mars Global Surveyor (MGS) spacecraft, launched on November 7, 1996, carries an experimental space-to-ground telecommunications link at Ka-band (32 GHz) along with the primary X-band (8.4 GHz) downlink. The signals are simultaneously transmitted from a 1.5-in diameter parabolic high gain antenna (HGA) on MGS and received by a beam-waveguide (BWG) R&D 34-meter antenna located in NASA's Goldstone Deep Space Network (DSN) complex near Barstow, California. The projected 5-dB link advantage of Ka-band relative to X-band was confirmed in previous reports using measurements of MGS signal strength data acquired during the first two years of the link experiment from December 1996 to December 1998. Analysis of X-band and Ka-band frequency data and difference frequency (fx-fka)/3.8 data will be presented here. On board the spacecraft, a low-power sample of the X-band downlink from the transponder is upconverted to 32 GHz, the Ka-band frequency, amplified to I-W using a Solid State Power Amplifier, and radiated from the dual X/Ka HGA. The X-band signal is amplified by one of two 25 W TWTAs. An upconverter first downconverts the 8.42 GHz X-band signal to 8 GHz and then multiplies using a X4 multiplier producing the 32 GHz Ka-band frequency. The frequency source selection is performed by an RF switch which can be commanded to select a VCO (Voltage Controlled Oscillator) or USO (Ultra-Stable Oscillator) reference. The Ka-band frequency can be either coherent with the X-band downlink reference or a hybrid combination of the USO and VCO derived frequencies. The data in this study were chosen such that the Ka-band signal is purely coherent with the X-band signal, that is the downconverter is driven by the same frequency source as the X-band downlink). The ground station used to acquire the data is DSS-13, a 34-meter BWG antenna which incorporates a series of mirrors inside beam waveguide tubes which guide the energy to a subterranean pedestal room, providing a stable environment

  15. Neutrons in a highly diffusive medium a new propulsion tool for deep space exploration?

    CERN Document Server

    Rubbia, Carlo

    1998-01-01

    The recently completed TARC Experiment at the CERN-PS has shown how it is possible to confine neutrons by diffusion in a limited volume of a highly transparent medium for very long times (tens of milliseconds), with correspondingly very long diffusive paths (> 60 m neutron path ÒwoundÓ within a ~ 60 cm effective radius). Assume an empty cavity is introduced inside the previous volume of diffusing medium. The inner walls of the cavity are covered with a thin layer of highly fissionable material, which acts as a neutron multiplying source. This configuration, called Òn-HohlraumÓ, is reminiscent of a classic black-body radiator, with the exception that now neutrons rather than photons are propagated. The flux can be sufficiently enhanced as to permit to reach criticality with a ~ 1 mm thick Americium deposit, corresponding to a mere 1100 atomic layers. Such a layer is so thin that the Fission Fragments (FF) exit freely into the cavity. The energy carried by FF can be recovered directly, thus making use of th...

  16. Band engineering and rational design of high-performance thermoelectric materials by first-principles

    Directory of Open Access Journals (Sweden)

    Lili Xi

    2016-06-01

    Full Text Available Understanding and manipulation of the band structure are important in designing high-performance thermoelectric (TE materials. Our recent work has involved the utilization of band structure in various topics of TE research, i.e., the band convergence, the conductive network, dimensionality reduction by quantum effects, and high throughput material screening. In non-cubic chalcopyrite compounds, we revealed the relations between structural factors and band degeneracy, and a simple unity-η rule was proposed for selecting high performance diamond-like TE materials. Based on the deep understanding of the electrical and thermal transport, we identified the conductive network in filled skutterudites with the “phonon glass-electron crystal” (PGEC paradigm, and extended this concept to caged-free Cu-based diamond-like compounds. By combining the band structure calculations and the Boltzmann transport theory, we conducted a high-throughput material screening in half-Heusler (HH systems, and several promising compositions with high power factors were proposed out of a large composition collection. At last, we introduced the Rashba spin-splitting effect into thermoelectrics, and its influence on the electrical transport properties was discussed. This review demonstrated the importance of the microscopic perspectives for the optimization and design of novel TE materials.

  17. [Comparison of band ligation with sclerotherapy for the treatment of bleeding esophageal varices].

    Science.gov (United States)

    Ríos, Eddy; Sierralta, Armando; Abarzúa, Marigraciela; Bastías, Joaquín; Barra, María Inés

    2012-06-01

    Endoscopic band ligation is the treatment of choice for bleeding esophageal varices. However it is not clear if this procedure is associated with less early and late mortality than sclerotherapy. To assess rates of re-bleeding and mortality in cohorts of patients with bleeding esophageal varices treated with endoscopic injection or band ligation. Analysis of medical records and endoscopy reports of two cohorts of patients with bleeding esophageal varices, treated between 1990 and 2010. Of these, 54 patients were treated with sclerotherapy and 90 patients with band ligation. A third cohort of 116 patients that did not require endoscopic treatment, was included. The mean analyzed follow up period was 2.5 years (range 1-16). Collection of data was retrospective for patients treated with sclerotherapy and prospective for patients treated with band ligation. Rates of re-bleeding and medium term mortality were assessed. During the month ensuing the first endoscopic treatment, re-bleeding was recorded in 39 and 72% of patients treated with band ligation and sclerotherapy, respectively (p < 0.01). The relative risk of bleeding after band ligation was 0.53 (95% confidence limits 0.390.73). Death rates until the end of follow up were 20 and 48% among patients with treated with band ligation and sclerotherapy, respectively (p < 0.01), with a relative risk of dying for patients subjected to band ligation of 0.41 (95% confidence limits 0.25-0.68). Band ligation was associated with lower rates of re-bleeding and mortality in these cohorts of patients.

  18. Deep convective cloud characterizations from both broadband imager and hyperspectral infrared sounder measurements

    Science.gov (United States)

    Ai, Yufei; Li, Jun; Shi, Wenjing; Schmit, Timothy J.; Cao, Changyong; Li, Wanbiao

    2017-02-01

    Deep convective storms have contributed to airplane accidents, making them a threat to aviation safety. The most common method to identify deep convective clouds (DCCs) is using the brightness temperature difference (BTD) between the atmospheric infrared (IR) window band and the water vapor (WV) absorption band. The effectiveness of the BTD method for DCC detection is highly related to the spectral resolution and signal-to-noise ratio (SNR) of the WV band. In order to understand the sensitivity of BTD to spectral resolution and SNR for DCC detection, a BTD to noise ratio method using the difference between the WV and IR window radiances is developed to assess the uncertainty of DCC identification for different instruments. We examined the case of AirAsia Flight QZ8501. The brightness temperatures (Tbs) over DCCs from this case are simulated for BTD sensitivity studies by a fast forward radiative transfer model with an opaque cloud assumption for both broadband imager (e.g., Multifunction Transport Satellite imager, MTSAT-2 imager) and hyperspectral IR sounder (e.g., Atmospheric Infrared Sounder) instruments; we also examined the relationship between the simulated Tb and the cloud top height. Results show that despite the coarser spatial resolution, BTDs measured by a hyperspectral IR sounder are much more sensitive to high cloud tops than broadband BTDs. As demonstrated in this study, a hyperspectral IR sounder can identify DCCs with better accuracy.

  19. The USNO-UKIRT K-band Hemisphere Survey

    Science.gov (United States)

    Dahm, Scott; Bruursema, Justice; Munn, Jeffrey A.; Vrba, Fred J.; Dorland, Bryan; Dye, Simon; Kerr, Tom; Varricatt, Watson; Irwin, Mike; Lawrence, Andy; McLaren, Robert; Hodapp, Klaus; Hasinger, Guenther

    2018-01-01

    We present initial results from the United States Naval Observatory (USNO) and UKIRT K-band Hemisphere Survey (U2HS), currently underway using the Wide Field Camera (WFCAM) installed on UKIRT on Maunakea. U2HS is a collaborative effort undertaken by USNO, the Institute for Astronomy, University of Hawaii, the Cambridge Astronomy Survey Unit (CASU) and the Wide Field Astronomy Unit (WFAU) in Edinburgh. The principal objective of the U2HS is to provide continuous northern hemisphere K-band coverage over a declination range of δ=0o – +60o by combining over 12,700 deg2 of new imaging with the existing UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Galactic Plane Survey (GPS) and Galactic Cluster Survey (GCS). U2HS will achieve a 5-σ point source sensitivity of K~18.4 mag (Vega), over three magnitudes deeper than the Two Micron All Sky Survey (2MASS). In this contribution we discuss survey design, execution, data acquisition and processing, photometric calibration and quality control. The data obtained by the U2HS will be made publicly available through the Wide Field Science Archive (WSA) maintained by the WFAU.

  20. L-band brightness temperature disaggregation for use with S-band and C-band radiometer data for WCOM

    Science.gov (United States)

    Yao, P.; Shi, J.; Zhao, T.; Cosh, M. H.; Bindlish, R.

    2017-12-01

    There are two passive microwave sensors onboard the Water Cycle Observation Mission (WCOM), which includes a synthetic aperture radiometer operating at L-S-C bands and a scanning microwave radiometer operating from C- to W-bands. It provides a unique opportunity to disaggregate L-band brightness temperature (soil moisture) with S-band C-bands radiometer data. In this study, passive-only downscaling methodologies are developed and evaluated. Based on the radiative transfer modeling, it was found that the TBs (brightness temperature) between the L-band and S-band exhibit a linear relationship, and there is an exponential relationship between L-band and C-band. We carried out the downscaling results by two methods: (1) downscaling with L-S-C band passive measurements with the same incidence angle from payload IMI; (2) downscaling with L-C band passive measurements with different incidence angle from payloads IMI and PMI. The downscaling method with L-S bands with the same incident angle was first evaluated using SMEX02 data. The RMSE are 2.69 K and 1.52 K for H and V polarization respectively. The downscaling method with L-C bands is developed with different incident angles using SMEX03 data. The RMSE are 2.97 K and 2.68 K for H and V polarization respectively. These results showed that high-resolution L-band brightness temperature and soil moisture products could be generated from the future WCOM passive-only observations.

  1. Radiometric Evaluation of SNPP VIIRS Band M11 via Sub-Kilometer Intercomparison with Aqua MODIS Band 7 over Snowy Scenes

    Directory of Open Access Journals (Sweden)

    Mike Chu

    2018-03-01

    Full Text Available A refined intersensor comparison study is carried out to evaluate the radiometric stability of the 2257 nm channel (M11 of the first Visible Infrared Imaging Radiometer Suite (VIIRS aboard the Suomi National Polar-orbiting Partnership (SNPP satellite. This study is initiated as part of the examination into the performance of key shortwave infrared (SWIR bands for SNPP VIIRS ocean color data processing and applications, with Band M11 playing key role over turbid and inland waters. The evaluation utilizes simultaneous nadir overpasses (SNOs to compare SNPP VIIRS Band M11 against Band 7 of the MODerate-resolution Imaging Spectroradiometer (MODIS in the Aqua satellite over concurrently observed scenes. The standard result of the radiance comparison is a seemingly uncontrolled and inconsistent time series unsuitable for further analyses, in great contrast to other matching band-pairs whose radiometric comparisons are typically stable around 1.0 within 1% variation. The mismatching relative spectral response (RSR between the two respective bands, with SNPP VIIRS M11 at 2225 to 2275 nm and Aqua MODIS B7 at 2125 to 2175 nm, is demonstrated to be the cause of the large variation because of the different dependence of the spectral responses of the two bands over identical scenes. A consistent radiometric comparison time series, however, can be extracted from SNO events that occur over snowy surfaces. A customized selection and analysis procedure successfully identifies the snowy scenes within the SNO events and builds a stable comparison time series. Particularly instrumental for the success of the comparison is the use of the half-kilometer spatial resolution data of Aqua MODIS B7 that significantly enhances the statistics. The final refined time series of Aqua MODIS B7 radiance over the SNPP VIIRS M11 radiance is stable at around 0.39 within 2.5% showing no evidence of drift. The radiometric ratio near 0.39 suggests the strong presence of medium

  2. Defect properties of Sn- and Ge-doped ZnTe: suitability for intermediate-band solar cells

    Science.gov (United States)

    Flores, Mauricio A.

    2018-01-01

    We investigate the electronic structure and defect properties of Sn- and Ge- doped ZnTe by first-principles calculations within the DFT+GW formalism. We find that ({{{Sn}}}{{Zn}}) and ({{{Ge}}}{{Zn}}) introduce isolated energy levels deep in the band gap of ZnTe, derived from Sn-5s and Ge-4s states, respectively. Moreover, the incorporation of Sn and Ge on the Zn site is favored in p-type ZnTe, in both Zn-rich and Te-rich environments. The optical absorption spectra obtained by solving the Bethe-Salpeter equation reveals that sub-bandgap absorptance is greatly enhanced due to the formation of the intermediate band. Our results suggest that Sn- and Ge-doped ZnTe would be a suitable material for the development of intermediate-band solar cells, which have the potential to achieve efficiencies beyond the single-junction limit.

  3. Biogenic Properties of Deep Waters from the Black Sea Reduction (Hydrogen Sulphide) Zone for Marine Algae

    OpenAIRE

    Polikarpov, Gennady G.; Lazorenko, Galina Е.; Тereschenko, Natalya N.

    2015-01-01

    Abstract Generalized data of biogenic properties investigations of the Black Sea deep waters from its reduction zone for marine algae are presented. It is shown on board and in laboratory that after pre-oxidation of hydrogen sulphide by intensive aeration of the deep waters lifted to the surface of the sea, they are ready to be used for cultivation of the Black Sea unicellular, planktonic, and multicellular, benthic, algae instead of artificial medium. Naturally balanced micro- and macroeleme...

  4. Band structure of cavity-type hypersonic phononic crystals fabricated by femtosecond laser-induced two-photon polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Rakhymzhanov, A. M.; Utegulov, Z. N., E-mail: zhutegulov@nu.edu.kz, E-mail: fytas@mpip-mainz.mpg.de [Department of Physics, School of Science and Technology, Nazarbayev University, Astana 010000 (Kazakhstan); Optics Laboratory, National Laboratory Astana, Nazarbayev University, Astana 10000 (Kazakhstan); Gueddida, A. [Institut d' Electronique, Microélectronique et Nanotechnologie, 59650 Villeneuve d' Ascq (France); LPMR, Département de Physique, Faculté des Sciences, Université Mohamed I, 60000 Oujda (Morocco); Alonso-Redondo, E. [Max Planck Institute of Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Perevoznik, D.; Kurselis, K. [Laser Zentrum Hannover e.V., 30419 Hannover (Germany); Chichkov, B. N. [Laser Zentrum Hannover e.V., 30419 Hannover (Germany); Institute of Laser and Information Technologies RAS, Moscow, 142092 Troitsk (Russian Federation); El Boudouti, E. H. [LPMR, Département de Physique, Faculté des Sciences, Université Mohamed I, 60000 Oujda (Morocco); Djafari-Rouhani, B. [Institut d' Electronique, Microélectronique et Nanotechnologie, 59650 Villeneuve d' Ascq (France); Fytas, G., E-mail: zhutegulov@nu.edu.kz, E-mail: fytas@mpip-mainz.mpg.de [Max Planck Institute of Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Department of Materials Science, University of Crete and FORTH, 71110 Heraklion (Greece)

    2016-05-16

    The phononic band diagram of a periodic square structure fabricated by femtosecond laser pulse-induced two photon polymerization is recorded by Brillouin light scattering (BLS) at hypersonic (GHz) frequencies and computed by finite element method. The theoretical calculations along the two main symmetry directions quantitatively capture the band diagrams of the air- and liquid-filled structure and moreover represent the BLS intensities. The theory helps identify the observed modes, reveals the origin of the observed bandgaps at the Brillouin zone boundaries, and unravels direction dependent effective medium behavior.

  5. Partially Observable Markov Decision Process-Based Transmission Policy over Ka-Band Channels for Space Information Networks

    Directory of Open Access Journals (Sweden)

    Jian Jiao

    2017-09-01

    Full Text Available The Ka-band and higher Q/V band channels can provide an appealing capacity for the future deep-space communications and Space Information Networks (SIN, which are viewed as a primary solution to satisfy the increasing demands for high data rate services. However, Ka-band channel is much more sensitive to the weather conditions than the conventional communication channels. Moreover, due to the huge distance and long propagation delay in SINs, the transmitter can only obtain delayed Channel State Information (CSI from feedback. In this paper, the noise temperature of time-varying rain attenuation at Ka-band channels is modeled to a two-state Gilbert–Elliot channel, to capture the channel capacity that randomly ranging from good to bad state. An optimal transmission scheme based on Partially Observable Markov Decision Processes (POMDP is proposed, and the key thresholds for selecting the optimal transmission method in the SIN communications are derived. Simulation results show that our proposed scheme can effectively improve the throughput.

  6. Unusual near-band-edge photoluminescence at room temperature in heavily-doped ZnO:Al thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Mohanty, Bhaskar Chandra; Yeon, Deuk Ho; Das, Sachindra Nath; Kwak, Ji Hye; Yoon, Kyung Hoon; Cho, Yong Soo

    2013-01-01

    Room temperature photoluminescence (PL) properties of heavily-doped ZnO:Al thin films (with carrier concentration n in the range of 5–20 × 10 20 cm −3 ) prepared by pulsed laser deposition have been investigated. Despite their high carrier concentration, the films exhibited strong room temperature near-band-edge bound excitons at ∼3.34 eV and an unusual peak at ∼3.16 eV, and negligible deep-level emission even for the films deposited at a temperature as low as 25 °C. The radiative efficiency of the films increased with growth temperature as a result of increased n and improved crystallinity. A large blue shift of optical band gap was observed, which is consistent with the n-dependent Burstein–Moss and band gap-renormalization effects. Comparison of the results of the PL and optical measurements revealed a large Stokes shift that increased with increase in n. It has been explained by a model based on local potential fluctuations caused by randomly-distributed doping impurities. - Highlights: • Studied PL properties of heavily-doped ZnO:Al films grown by PLD. • Unusual strong near-band-edge emissions and negligible deep-level emission at RT. • Increased optical band gap with growth temperature and thus carrier concentration. • Stokes shift and PL peak width increased with carrier concentration. • Results explained by a model based on local potential fluctuations

  7. Techniques for Field Operation of Straddle-packer System in Deep Borehole

    International Nuclear Information System (INIS)

    Kim, Kyung Su; Park, Kyung Woo; Kim, Geon Young; Ji, Sung Hoon; Koh, Yong Kwon; Choi, Jong Won

    2010-05-01

    It is necessary to establish an appropriate hydro-testing tool for the qualified characterization of deep geological environments, especially for the hydraulic properties of rock formation. This research project had been initiated for the purpose of establishment of advanced infra-structures in KURT. The straddle packer system was developed for hydraulic characterization of geological formation using deep borehole. This technical report consists of design concept, basic requirements, function of each part, field operation procedures and techniques, detail design drawings, and specifications. The qualified hydro-testing tool, which is suitable for medium to low permeable formation, using large and deep borehole, has been developed. This tool will be applied for the research project on development of HLW disposal technologies and the site characterization activities of LILW disposal project. Prior to field operation using this hydro-testing equipment, every researchers should be well acquainted with this technical report

  8. Deep Photometry of GRB 041006 Afterglow: Hypernova Bump at Redshift z = 0.716

    Science.gov (United States)

    Stanek, K. Z.; Garnavich, P. M.; Nutzman, P. A.; Hartman, J. D.; Garg, A.; Adelberger, K.; Berlind, P.; Bonanos, A. Z.; Calkins, M. L.; Challis, P.; Gaudi, B. S.; Holman, M. J.; Kirshner, R. P.; McLeod, B. A.; Osip, D.; Pimenova, T.; Reiprich, T. H.; Romanishin, W.; Spahr, T.; Tegler, S. C.; Zhao, X.

    2005-06-01

    We present deep optical photometry of the afterglow of gamma-ray burst (GRB) 041006 and its associated hypernova obtained over 65 days after detection (55 R-band epochs on 10 different nights). Our early data (tVatican Advanced Technology Telescope, the Magellan 6.5 m Baade and Clay telescopes, and the Keck II 10 m telescope.

  9. Numerical assessment of the origin of deep salinity in a low permeability fractured medium

    International Nuclear Information System (INIS)

    Guimera, Jordi; Ruiz, Eduardo; Luna, Miguel; Arcos, David; Domenech, Cristina; Jordana, Salvador; Saegusa, Hiromitsu; Iwatsuki, Teruki

    2007-01-01

    Many possible origins have been proposed for the saline groundwater observed in many deep geological environments. In particular, samples obtained from deep boreholes located in granite at the Mizunami Underground Research Laboratory in Central Japan show total dissolved solids increasing to 50 mmol/L at depths below 800 m. Different hypothesis have been formulated to explain the observed fluid composition, among them, long-term water-rock interaction, mixing with residual fluids of magmatic origin and relict seawater dating from Miocene times. A review of the hydrochemical and isotopic data suggests that the three above hypotheses may be valid, at least to different degrees, or that processes acting over more recent geological times may be involved. The origin of the salinity was assessed by simulating land emersion by means of changing the upper recharge boundary. In this manner the Miocene seawater was modeled as being continually mixed with fresh water until the present time. The effects of different retardation processes were considered by varying factors such as matrix diffusion and fracture conductivity. Finally, geochemical reactions reproduced trends in major ions and master variables. This study shows that the salinity observed in the boreholes can be explained qualitatively as residual Miocene age seawater subjected to alteration due to long-term contact with the host material and continuous mixing with meteoric groundwater. (authors)

  10. Preparedness of South African deep rural SMMEs to deliver e-government services to local communities

    CSIR Research Space (South Africa)

    Dlodlo, N

    2009-10-01

    Full Text Available This paper reports on a research to assess the readiness of Small, Medium and Micro Enterprises (SMMEs) to deliver e-government services to deep rural communities through information dissemination by the SMMEs. This research was conducted as a case...

  11. Effects of oxidizing medium on the composition, morphology and optical properties of copper oxide nanoparticles produced by pulsed laser ablation

    KAUST Repository

    Gondal, M. A.; Qahtan, Talal F.; Dastageer, Mohamed Abdulkader; Saleh, Tawfik A.; Maganda, Yasin W.; Anjum, Dalaver H.

    2013-01-01

    Pulsed laser ablation in liquid (PLAL) with 532 nm wavelength laser with 5 ns pulse duration is used to produce the nanostructure copper oxide and the effects of oxidizing media (deionized water and hydrogen peroxide) on the composition, morphology and optical properties of the product materials produced by PLAL were studied. XRD and TEM studies indicate that in the absence of hydrogen peroxide, the product material is in two phases (Cu/Cu2O) with the spherical nanoparticle structure, whereas in the presence of hydrogen peroxide in the liquid medium, the product material revealed other two phases (Cu/CuO) with nanorod-like structure. The optical studies revealed a considerable red shift (3.34-2.5 eV) in the band gap energy in the case of hydrogen peroxide in the liquid medium in PLAL synthesis compared to the one in the absence of it. Also the product material in the presence of hydrogen peroxide in the liquid medium showed a reduced photoluminescence intensity indicating the reduced electron-hole recombination rate. The red shift in the band gap energy and the reduced electron-hole recombination rate make the product material an ideal photocatalyst to harvest solar radiation for various applications. The most relevant signals on the FTIR spectrum for the samples are the absorption bands in the region between 450 and 700 cm-1 which are the characteristics bands of copperoxygen bonds. The reported laser ablation approach for the synthesis of Cu2O and CuO nanoparticles has the advantages of being clean method with controlled particle properties. © 2013 Elsevier B.V. All rights reserved.

  12. Effects of oxidizing medium on the composition, morphology and optical properties of copper oxide nanoparticles produced by pulsed laser ablation

    KAUST Repository

    Gondal, M. A.

    2013-12-01

    Pulsed laser ablation in liquid (PLAL) with 532 nm wavelength laser with 5 ns pulse duration is used to produce the nanostructure copper oxide and the effects of oxidizing media (deionized water and hydrogen peroxide) on the composition, morphology and optical properties of the product materials produced by PLAL were studied. XRD and TEM studies indicate that in the absence of hydrogen peroxide, the product material is in two phases (Cu/Cu2O) with the spherical nanoparticle structure, whereas in the presence of hydrogen peroxide in the liquid medium, the product material revealed other two phases (Cu/CuO) with nanorod-like structure. The optical studies revealed a considerable red shift (3.34-2.5 eV) in the band gap energy in the case of hydrogen peroxide in the liquid medium in PLAL synthesis compared to the one in the absence of it. Also the product material in the presence of hydrogen peroxide in the liquid medium showed a reduced photoluminescence intensity indicating the reduced electron-hole recombination rate. The red shift in the band gap energy and the reduced electron-hole recombination rate make the product material an ideal photocatalyst to harvest solar radiation for various applications. The most relevant signals on the FTIR spectrum for the samples are the absorption bands in the region between 450 and 700 cm-1 which are the characteristics bands of copperoxygen bonds. The reported laser ablation approach for the synthesis of Cu2O and CuO nanoparticles has the advantages of being clean method with controlled particle properties. © 2013 Elsevier B.V. All rights reserved.

  13. Band alignment at the Cu{sub 2}ZnSn(S{sub x}Se{sub 1-x}){sub 4}/CdS interface

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Richard; Barkhouse, Aaron; Gunawan, Oki; Shin, Byungha; Copel, Matt; Hopstaken, Marinus; Mitzi, David B [IBM TJ Watson Research Center, P.O. Box 218, Yorktown Hts., New York 10598 (United States)

    2011-06-20

    Energy band alignments between CdS and Cu{sub 2}ZnSn(S{sub x}Se{sub 1-x}){sub 4} (CZTSSe) grown via solution-based and vacuum-based deposition routes were studied as a function of the [S]/[S+Se] ratio with femtosecond laser ultraviolet photoelectron spectroscopy, photoluminescence, medium energy ion scattering, and secondary ion mass spectrometry. Band bending in the underlying CZTSSe layer was measured via pump/probe photovoltage shifts of the photoelectron spectra and offsets were determined with photoemission under flat band conditions. Increasing the S content of the CZTSSe films produces a valence edge shift to higher binding energy and increases the CZTSSe band gap. In all cases, the CdS conduction band offsets were spikes.

  14. Working group report on hadrons in the nuclear medium

    Energy Technology Data Exchange (ETDEWEB)

    Ent, R. [CEBAF, Newport News, VA (United States); Milner, R.G. [Masachusetts Inst. of Technology, Cambridge, MA (United States)

    1994-04-01

    This working group focussed on the subject of hadrons in the nuclear medium. It encompassed both the understanding of the nucleus itself in terms of its binding and its structure, and the use of the nucleus as a medium to probe QCD and the structure of hadrons. Both aspects were addressed during the workshop, though the emphasis tended towards the latter. Almost inescapably this working group had some overlap with the other working groups, as the nucleus can also be used as a medium to probe the production and structure of vector mesons. Also, inclusive and semi-inclusive processes can be used as a probe of nuclear effects, for instance in the case of deep-inelastic scattering for x > 1. In this summary report the authors will try to restrict themselves to only those issues where the nuclear medium is important. To increase their understanding of the nucleus in terms of its binding and structure, they would like to know the effect of a dense nuclear medium on a nucleon, to know the non-nucleonic degrees of freedom needed to describe a nuclear system, and to understand the implications of the fact that a bound nucleon is necessarily off its mass-shell. The results of many lepton scattering experiments during the last two decades have raised these questions, but at this moment there are no definitive answers. The hope is that the well-known electron probe, with sufficient energy to probe the short-range properties of nuclei, can provide insight. Especially, the authors would like a conclusive answer to the question if, and to what extent, quark degrees of freedom are necessary to describe a nuclear system.

  15. Working group report on hadrons in the nuclear medium

    International Nuclear Information System (INIS)

    Ent, R.; Milner, R.G.

    1994-01-01

    This working group focussed on the subject of hadrons in the nuclear medium. It encompassed both the understanding of the nucleus itself in terms of its binding and its structure, and the use of the nucleus as a medium to probe QCD and the structure of hadrons. Both aspects were addressed during the workshop, though the emphasis tended towards the latter. Almost inescapably this working group had some overlap with the other working groups, as the nucleus can also be used as a medium to probe the production and structure of vector mesons. Also, inclusive and semi-inclusive processes can be used as a probe of nuclear effects, for instance in the case of deep-inelastic scattering for x > 1. In this summary report the authors will try to restrict themselves to only those issues where the nuclear medium is important. To increase their understanding of the nucleus in terms of its binding and structure, they would like to know the effect of a dense nuclear medium on a nucleon, to know the non-nucleonic degrees of freedom needed to describe a nuclear system, and to understand the implications of the fact that a bound nucleon is necessarily off its mass-shell. The results of many lepton scattering experiments during the last two decades have raised these questions, but at this moment there are no definitive answers. The hope is that the well-known electron probe, with sufficient energy to probe the short-range properties of nuclei, can provide insight. Especially, the authors would like a conclusive answer to the question if, and to what extent, quark degrees of freedom are necessary to describe a nuclear system

  16. A Novel Ku-Band/Ka-Band and Ka-Band/E-Band Multimode Waveguide Couplers for Power Measurement of Traveling-Wave Tube Amplifier Harmonic Frequencies

    Science.gov (United States)

    Wintucky, Edwin G.; Simons, Rainee N.

    2015-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler, fabricated from two dissimilar frequency band waveguides, is capable of isolating power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT) amplifier. Test results from proof-of-concept demonstrations are presented for a Ku-band/Ka-band MDC and a Ka-band/E-band MDC. In addition to power measurements at harmonic frequencies, a potential application of the MDC is in the design of a satellite borne beacon source for atmospheric propagation studies at millimeter-wave (mm-wave) frequencies (Ka-band and E-band).

  17. Iron and intrinsic deep level states in Ga2O3

    Science.gov (United States)

    Ingebrigtsen, M. E.; Varley, J. B.; Kuznetsov, A. Yu.; Svensson, B. G.; Alfieri, G.; Mihaila, A.; Badstübner, U.; Vines, L.

    2018-01-01

    Using a combination of deep level transient spectroscopy, secondary ion mass spectrometry, proton irradiation, and hybrid functional calculations, we identify two similar deep levels that are associated with Fe impurities and intrinsic defects in bulk crystals and molecular beam epitaxy and hydride vapor phase epitaxi-grown epilayers of β-Ga2O3. First, our results indicate that FeGa, and not an intrinsic defect, acts as the deep acceptor responsible for the often dominating E2 level at ˜0.78 eV below the conduction band minimum. Second, by provoking additional intrinsic defect generation via proton irradiation, we identified the emergence of a new level, labeled as E2*, having the ionization energy very close to that of E2, but exhibiting an order of magnitude larger capture cross section. Importantly, the properties of E2* are found to be consistent with its intrinsic origin. As such, contradictory opinions of a long standing literature debate on either extrinsic or intrinsic origin of the deep acceptor in question converge accounting for possible contributions from E2 and E2* in different experimental conditions.

  18. C/X-band SAR interferometry applied to ground monitoring: examples and new potential

    Science.gov (United States)

    Nutricato, Raffaele; Nitti, Davide O.; Bovenga, Fabio; Refice, Alberto; Wasowski, Janusz; Chiaradia, Maria T.

    2013-10-01

    Classical applications of the MTInSAR techniques have been carried out in the past on medium resolution data acquired by the ERS, Envisat (ENV) and Radarsat sensors. The new generation of high-resolution X-Band SAR sensors, such as TerraSAR-X (TSX) and the COSMO-SkyMed (CSK) constellation allows acquiring data with spatial resolution reaching metric/submetric values. Thanks to the finer spatial resolution with respect to C-band data, X-band InSAR applications result very promising for monitoring single man-made structures (buildings, bridges, railways and highways), as well as landslides. This is particularly relevant where C-band data show low density of coherent scatterers. Moreover, thanks again to the higher resolution, it is possible to infer reliable estimates of the displacement rates with a number of SAR scenes significantly lower than in C-band within the same time span or by using more images acquired in a narrower time span. We present examples of the application of a Persistent Scatterers Interferometry technique, namely the SPINUA algorithm, to data acquired by ENV, TSX and CSK on selected number of sites. Different cases are considered concerning monitoring of both instable slopes and infrastructure. Results are compared and commented with particular attention paid to the advantages provided by the new generation of X-band high resolution space-borne SAR sensors.

  19. Viscoelastic effect on acoustic band gaps in polymer-fluid composites

    International Nuclear Information System (INIS)

    Merheb, B; Deymier, P A; Muralidharan, K; Bucay, J; Jain, M; Aloshyna-Lesuffleur, M; Mohanty, S; Berker, A; Greger, R W

    2009-01-01

    In this paper, we present a theoretical analysis of the propagation of acoustic waves through elastic and viscoelastic two-dimensional phononic crystal structures. Numerical calculations of transmission spectra are conducted by extending the finite-difference-time-domain method to account for linear viscoelastic materials with time-dependent moduli. We study a phononic crystal constituted of a square array of cylindrical air inclusions in a solid viscoelastic matrix. The elastic properties of the solid are those of a silicone rubber. This system exhibits very wide band gaps in its transmission spectrum that extend to frequencies in the audible range of the spectrum. These gaps are characteristic of fluid matrix/air inclusion systems and result from the very large contrast between the longitudinal and transverse speeds of sound in rubber. By treating the matrix as a viscoelastic medium within the standard linear solid (SLS) model, we demonstrate that viscoelasticity impacts the transmission properties of the rubber/air phononic crystal not only by attenuating the transmitted acoustic waves but also by shifting the passing bands frequencies toward lower values. The ranges of frequencies exhibiting attenuation or frequency shift are determined by the value of the relaxation time in the SLS model. We show that viscoelasticity can be used to decrease the frequency of pass bands (and consequently stop bands) in viscoelastic/air phononic crystals

  20. The origin of the medium OSL component in West Australian quartz

    International Nuclear Information System (INIS)

    Wang, X.L.; Du, J.H.; Adamiec, G.; Wintle, A.G.

    2015-01-01

    Optically stimulated luminescence (OSL) of a coarse-grained sedimentary quartz from West Australia was investigated. Observations of OSL and TL (thermoluminescence) were made following a series of experiments using different heating and optical bleaching conditions, and with optical stimulation at several different temperatures. Analysis of the fast and medium OSL components suggests that the medium OSL component observed after heating at 260 °C is a by-product of the production of the fast component, and both of them have as their original source the 325 °C TL trap. During fast OSL production following irradiation and preheating, some of the electrons evicted into the conduction band are re-trapped in an intermediate trap corresponding to the 170 °C TL peak; from here they are instantaneously stimulated to give rise to the medium OSL signal when the blue light stimulation is switched on, and subsequently result in the residual recuperated TL after the blue light is switched off. The kinetic properties of the medium OSL component are determined by the properties of both the 170 °C and 325 °C TL traps in contrast to the conventional interpretation of the medium component being derived from an independent source trap. Therefore, the 170 °C TL trap also plays unexpected roles in quartz OSL production with elevated stimulation temperatures (e.g. 125 °C or 130 °C, currently used for OSL dating), while the 110 °C TL trap and its influences are being avoided. - Highlights: • Quartz medium OSL component is a by-product of fast OSL component production. • Medium component is mediated by the 170 C TL peak. • Phototransfer is responsible for the medium OSL

  1. Clinopyroxenite dykes within a banded unit in the basal mantle section of the northern part of the Oman ophiolite: A record of the latest deep-seated magmatism

    Science.gov (United States)

    Ishimaru, Satoko; Arai, Shoji; Tamura, Akihiro

    2017-11-01

    We found clinopyroxenite dykes in a banded harzburgite block within the Sumeini area in the uppermost part of the metamorphic sole of the northern part of the Oman ophiolite. The dykes clearly cut the deformational structure of the harzburgite and contain its fragments, indicating dyke formation during obduction of the ophiolite. The Mg# [= Mg / (Mg + total Fe)] of clinopyroxenes in the dykes ranges from 0.81 to 0.91, and increases up to 0.93 proximal to harzburgite fragments. Mantle minerals in the harzburgite fragments were modified chemically through interaction with the magma that formed the dyke, yielding lower clinopyroxene and spinel Mg#, and spinels with higher TiO2 contents than those in the unaltered harzburgite. These geochemical features indicate that the clinopyroxenite dykes are cumulates derived from a relatively deep-seated primitive magma enriched in light rare earth elements (LREE) with an ocean island basalt (OIB)-like affinity, geochemically similar to the V3 lavas of an off-ridge origin. Combining these data with geological observations suggests that the clinopyroxenite dykes represent root system of the V3 lavas. Our analyses of the clinopyroxenite dykes testify to the external nature of the V3 magmas, which was added to the sliced oceanic lithosphere from the outside. It is likely that the V3 magma underwent deep-seated crystallization of clinopyroxene and had limited interaction with mantle peridotite en route to the surface. The mode of occurrence of the Sumeini clinopyroxenites (i.e., emplaced into a banded harzburgite block surrounded by garnet amphibolite) is consistent with the generation of OIB-like magmas (V3 lava) beneath the Oman ophiolite resulting from the break-off of the "subducting slab" and subsequent infiltration of hot asthenospheric mantle. This view is consistent with the limited distribution of V3-related rocks in the Oman ophiolite. The production of such OIB-like magmas during ophiolite obduction is not a rare event

  2. Molding of L band niobium superconductor cavity

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Hitoshi; Funahashi, Yoshisato; Saito, Kenji; Noguchi, Shuichi; Koizumi, Susumu [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1995-07-01

    A cavity to produce high accelerating electron field was developed. The L-band (1.3 GHz) niobium superconductor unit cell cavity was ellipsoid with {phi}217.3 mm outer diameter and 2.5 mm thickness and consisted of two pieces of half cell, two beam pipes and flange. A deep drawing process was adapted. In spite of the first trial manufacture, each good cavity was obtained. Characteristic properties of niobium materials, molding method of cavity, extension of sheet after molding, production of beam pipe, accuracy and the cost were explained. Niobium materials. showed tensile strength 15.6 kg/mm{sup 2}, load-carrying capacity 4.1 kg/mm{sup 2}, density 8.57, extension 42.5% and RRR (resistance residual ratio){>=}200. (S.Y.)

  3. Broad-band simulation of M7.2 earthquake on the North Tehran fault, considering non-linear soil effects

    Science.gov (United States)

    Majidinejad, A.; Zafarani, H.; Vahdani, S.

    2018-05-01

    The North Tehran fault (NTF) is known to be one of the most drastic sources of seismic hazard on the city of Tehran. In this study, we provide broad-band (0-10 Hz) ground motions for the city as a consequence of probable M7.2 earthquake on the NTF. Low-frequency motions (0-2 Hz) are provided from spectral element dynamic simulation of 17 scenario models. High-frequency (2-10 Hz) motions are calculated with a physics-based method based on S-to-S backscattering theory. Broad-band ground motions at the bedrock level show amplifications, both at low and high frequencies, due to the existence of deep Tehran basin in the vicinity of the NTF. By employing soil profiles obtained from regional studies, effect of shallow soil layers on broad-band ground motions is investigated by both linear and non-linear analyses. While linear soil response overestimate ground motion prediction equations, non-linear response predicts plausible results within one standard deviation of empirical relationships. Average Peak Ground Accelerations (PGAs) at the northern, central and southern parts of the city are estimated about 0.93, 0.59 and 0.4 g, respectively. Increased damping caused by non-linear soil behaviour, reduces the soil linear responses considerably, in particular at frequencies above 3 Hz. Non-linear deamplification reduces linear spectral accelerations up to 63 per cent at stations above soft thick sediments. By performing more general analyses, which exclude source-to-site effects on stations, a correction function is proposed for typical site classes of Tehran. Parameters for the function which reduces linear soil response in order to take into account non-linear soil deamplification are provided for various frequencies in the range of engineering interest. In addition to fully non-linear analyses, equivalent-linear calculations were also conducted which their comparison revealed appropriateness of the method for large peaks and low frequencies, but its shortage for small to

  4. A novel approach for characterizing broad-band radio spectral energy distributions

    Science.gov (United States)

    Harvey, V. M.; Franzen, T.; Morgan, J.; Seymour, N.

    2018-05-01

    We present a new broad-band radio frequency catalogue across 0.12 GHz ≤ ν ≤ 20 GHz created by combining data from the Murchison Widefield Array Commissioning Survey, the Australia Telescope 20 GHz survey, and the literature. Our catalogue consists of 1285 sources limited by S20 GHz > 40 mJy at 5σ, and contains flux density measurements (or estimates) and uncertainties at 0.074, 0.080, 0.119, 0.150, 0.180, 0.408, 0.843, 1.4, 4.8, 8.6, and 20 GHz. We fit a second-order polynomial in log-log space to the spectral energy distributions of all these sources in order to characterize their broad-band emission. For the 994 sources that are well described by a linear or quadratic model we present a new diagnostic plot arranging sources by the linear and curvature terms. We demonstrate the advantages of such a plot over the traditional radio colour-colour diagram. We also present astrophysical descriptions of the sources found in each segment of this new parameter space and discuss the utility of these plots in the upcoming era of large area, deep, broad-band radio surveys.

  5. Anticipating Deep Mapping: Tracing the Spatial Practice of Tim Robinson

    Directory of Open Access Journals (Sweden)

    Jos Smith

    2015-07-01

    Full Text Available There has been little academic research published on the work of Tim Robinson despite an illustrious career, first as an artist of the London avant-garde, then as a map-maker in the west of Ireland, and finally as an author of place. In part, this dearth is due to the difficulty of approaching these three diverse strands collectively. However, recent developments in the field of deep mapping encourage us to look back at the continuity of Robinson’s achievements in full and offer a suitable framework for doing so. Socially engaged with living communities and a depth of historical knowledge about place, but at the same time keen to contribute artistically to the ongoing contemporary culture of place, the parameters of deep mapping are broad enough to encompass the range of Robinson’s whole practice and suggest unique ways to illuminate his very unusual career. But Robinson’s achievements also encourage a reflection on the historical context of deep mapping itself, as well as on the nature of its spatial practice (especially where space comes to connote a medium to be worked rather than an area/volume. With this in mind the following article both explores Robinson’s work through deep mapping and deep mapping through the work of this unusual artist.

  6. Rotational bands terminating at maximal spin in the valence space

    Energy Technology Data Exchange (ETDEWEB)

    Ragnarsson, I.; Afanasjev, A.V. [Lund Institute of Technology (Sweden)

    1996-12-31

    For nuclei with mass A {le} 120, the spin available in {open_quotes}normal deformation configurations{close_quotes} is experimentally accessible with present detector systems. Of special interest are the nuclei which show collective features at low or medium-high spin and where the corresponding rotational bands with increasing spin can be followed in a continuous way to or close to a non-collective terminating state. Some specific features in this context are discussed for nuclei in the A = 80 region and for {sup 117,118}Xe.

  7. Morphology of primary human venous endothelial cell cultures before and after culture medium exchange.

    Science.gov (United States)

    Krüger-Genge, A; Fuhrmann, R; Jung, F; Franke, R P

    2015-01-01

    The evaluation of the interaction of human, venous endothelial cells (HUVEC) with body foreign materials on the cellular level cannot be performed in vivo, but is investigated in vitro under standard culture conditions. To maintain the vitality, proliferation and morphology of HUVEC seeded on body foreign substrates over days, the cell culture medium is usually exchanged every second day. It is well known, that alterations in the microenvironment of cells bear the risk of influencing cell morphology and function. In the current study the influence of cell culture medium exchange on HUVEC cytoskeletal microfilament structure and function was investigated. HUVEC in the third passage were seeded on extracellular matrix (ECM) - which was secreted from bovine corneal endothelial cells on glass- until functional confluence was reached. The experiment started 11 days after HUVEC seeding with an exchange of the cell culture medium followed by a staining of the actin microfilaments with phalloidin-rhodamin 1.5 and 5 minutes after medium exchange. The microfilaments were documented by use of an Olympus microscope (IMT-2) equipped with a UV lamp and online connected to a TV chain (Sony XC 50 ST/monochrome) implying an OPTIMAS - Image analysis system. Prostacyclin was analysed in the cell culture supernatant. 1.5 min after culture medium exchange in the functionally confluent cultures a slight disturbance of the actin microfilament structure with a broadening of the marginal filament band, a partial disconnection of cell-cell contacts and the appearance of intercellular fenestrations were observed. 5 minutes after medium exchange a redevelopment of the slightly disturbed microfilament structure with a condensation and narrowing of the marginal filament band was seen. 12 h later a further consolidation of the microfilament structure occurred. In addition, a perturbation of the cultured HUVEC occurred after cell culture medium exchange. The prostacyclin concentration in the

  8. Imaging Features of Superficial and Deep Fibromatoses in the Adult Population

    Directory of Open Access Journals (Sweden)

    Eric A. Walker

    2012-01-01

    Full Text Available The fibromatoses are a group of benign fibroblastic proliferations that vary from benign to intermediate in biological behavior. This article will discuss imaging characteristics and patient demographics of the adult type superficial (fascial and deep (musculoaponeurotic fibromatoses. The imaging appearance of these lesions can be characteristic (particularly when using magnetic resonance imaging. Palmar fibromatosis demonstrates multiple nodular or band-like soft tissue masses arising from the proximal palmar aponeurosis and extending along the subcutaneous tissues of the finger in parallel to the flexor tendons. T1 and T2-weighted signal intensity can vary from low (higher collagen to intermediate (higher cellularity, similar to the other fibromatoses. Plantar fibromatosis manifests as superficial lesions along the deep plantar aponeurosis, which typically blend with the adjacent plantar musculature. Linear tails of extension (“fascial tail sign” along the aponeurosis are frequent. Extraabdominal and abdominal wall fibromatosis often appear as a heterogeneous lesion with low signal intensity bands on all pulse sequences and linear fascial extensions (“fascial tail” sign with MR imaging. Mesenteric fibromatosis usually demonstrates a soft tissue density on CT with radiating strands projecting into the adjacent mesenteric fat. When imaging is combined with patient demographics, a diagnosis can frequently be obtained.

  9. Optoelectronic Characterization by Advanced Ab-Initio Methods of Novel Photovoltaic Intermediate Band Materials = Caracterización optoelectrónica por métodos ab-initio avanzados de nuevos materiales fotovoltaicos de banda intermedia

    OpenAIRE

    Aguilera Bonet, Irene

    2011-01-01

    Intermediate-band materials represent nowadays one of the most promising proposals in the quest for more efficient, lower-cost solar cells. In this thesis we present a deep study of transition-metal substituted semiconductors based on their optoelectronic properties. These materials were proposed as high efficiency photovoltaic absorbers for intermediate-band solar cells for showing a partiallyfilled band placed inside the band gap of the parent semiconductor which enables the absorption of p...

  10. Band calculation of lithium cold compression up to 8.8 Gbar

    International Nuclear Information System (INIS)

    Chernov, S.V.

    1988-01-01

    Quantum-mechanical calculation of pressure ''cold'' component at lithium compression from zero pressure up to 8.8 Gbar is carried out by Coring-Kohm-Rostoker method for bcc and fcc lattices. Changing of pressure curve slope at ≅ 5.4 compression degree, which is connected with 2 1/2 order elctron phase transition, is pointed out. Insiguificant oscillation is observed near the curve of Thomas-Fermi-quantum corrections model, connected with deep level displacement into the band. Three regions, where the existance of rarefaction shoch waves is possible, are pointed out

  11. Novel O-band tunable fiber laser using an array waveguide grating

    International Nuclear Information System (INIS)

    Ahmad, H; Zulkifli, M Z; Latif, A A; Harun, S W

    2010-01-01

    A novel tunable fibre laser (TFL) operating in the ordinary band (O-band) of 1310 nm is proposed and demonstrated. The proposed TFL is developed using a 1×16 arrayed waveguide grating (AWG) as a slicing mechanism for the broadband amplified spontaneous emission (ASE) source and an optical channel selector (OCS) to provide the tunability. A semiconductor optical amplifier (SOA) with a centre wavelength of 1310 nm serves as the compact gain medium for the TFL and also as a broadband ASE source. The TFL has a tuning range of 1301.26 nm to 1311.18 nm with 9.92 nm span and a channel spacing of 0.7 nm. The measured output power is about –4 and –8 dBm and with a side node suppression ratio (SMSR) of 29 to 33 dB

  12. The VLT-FLAMES Tarantula Survey. IX. The interstellar medium seen through diffuse interstellar bands and neutral sodium

    NARCIS (Netherlands)

    van Loon, J.Th.; Bailey, M.; Tatton, B.L.; Maíz Apellániz, J.; Crowther, P.A.; de Koter, A.; Evans, C.J.; Hénault-Brunet, V.; Howarth, I.D.; Richter, P.; Sana, H.; Simón-Díaz, S.; Taylor, W.; Walborn, N.R.

    2013-01-01

    Context. The Tarantula Nebula (a.k.a. 30 Dor) is a spectacular star-forming region in the Large Magellanic Cloud (LMC), seen through gas in the Galactic disc and halo. Diffuse interstellar bands (DIBs) offer a unique probe of the diffuse, cool-warm gas in these regions. Aims. The aim is to use DIBs

  13. Imbalance in multiple sclerosis and neuromyelitis optica: association with deep sensation disturbance.

    Science.gov (United States)

    Demura, Yutaka; Kinoshita, Masako; Fukuda, Osamu; Nose, Shouzou; Nakano, Hitoshi; Juzu, Akira; Murase, Nagako; Yamamoto, Kenji

    2016-12-01

    Abnormality in balance is one of the most important causes of gait disturbance which has a direct impact to disability and medical cost in multiple sclerosis (MS) and neuromyelitis optica (NMO). However, characteristics of imbalance in these two diseases have not been fully elucidated. The aim of this study was to evaluate the degree and features of imbalance using stabilography, the degree of deep sensation disturbance using tibial nerve somatosensory evoked potentials (SEP), and their association with clinical impairment, in patients with MS and NMO. Seven NMO patients and seven MS patients with balance disturbance were examined. The relationship among stabilography measurements representing the degree and features of imbalance, height-adjusted P38 peak latency of SEP, and neurological functional disability, were analyzed. Stabilography evaluation showed a significantly severer degree of imbalance in NMO than in MS. Romberg quotient of the patients with brainstem lesions was significantly larger than those without them. In all patients, length of excursion per second significantly correlated positively with anterio-posterior-axis power spectra at intermediate frequency band. In all patients and in NMO, P38 peak latency adjusted by height significantly correlated positively with anterio-posterior-axis power spectra at intermediate frequency band. These findings suggest that the degree of imbalance of MS and NMO possibly correlate with deep sensation disturbance, which could be evaluated by anterio-posterior-axis power spectra at intermediate frequency band by stabilography. Severer imbalance in NMO than MS may be associated with the severe longitudinally extensive spinal cord lesions.

  14. Clamped seismic metamaterials: ultra-low frequency stop bands

    International Nuclear Information System (INIS)

    Achaoui, Y; Enoch, S; Guenneau, S; Antonakakis, T; Brûlé, S; Craster, R V

    2017-01-01

    The regularity of earthquakes, their destructive power, and the nuisance of ground vibration in urban environments, all motivate designs of defence structures to lessen the impact of seismic and ground vibration waves on buildings. Low frequency waves, in the range 1–10 Hz for earthquakes and up to a few tens of Hz for vibrations generated by human activities, cause a large amount of damage, or inconvenience; depending on the geological conditions they can travel considerable distances and may match the resonant fundamental frequency of buildings. The ultimate aim of any seismic metamaterial, or any other seismic shield, is to protect over this entire range of frequencies; the long wavelengths involved, and low frequency, have meant this has been unachievable to date. Notably this is scalable and the effects also hold for smaller devices in ultrasonics. There are three approaches to obtaining shielding effects: bragg scattering, locally resonant sub-wavelength inclusions and zero-frequency stop-band media. The former two have been explored, but the latter has not and is examined here. Elastic flexural waves, applicable in the mechanical vibrations of thin elastic plates, can be designed to have a broad zero-frequency stop-band using a periodic array of very small clamped circles. Inspired by this experimental and theoretical observation, all be it in a situation far removed from seismic waves, we demonstrate that it is possible to achieve elastic surface (Rayleigh) wave reflectors at very large wavelengths in structured soils modelled as a fully elastic layer periodically clamped to bedrock. We identify zero frequency stop-bands that only exist in the limit of columns of concrete clamped at their base to the bedrock. In a realistic configuration of a sedimentary basin 15 m deep we observe a zero frequency stop-band covering a broad frequency range of 0–30 Hz. (paper)

  15. Design of medium band gap Ag-Bi-Nb-O and Ag-Bi-Ta-O semiconductors for driving direct water splitting with visible light.

    Science.gov (United States)

    Wang, Limin; Cao, Bingfei; Kang, Wei; Hybertsen, Mark; Maeda, Kazuhiko; Domen, Kazunari; Khalifah, Peter G

    2013-08-19

    Two new metal oxide semiconductors belonging to the Ag-Bi-M-O (M = Nb, Ta) chemical systems have been synthesized as candidate compounds for driving overall water splitting with visible light on the basis of cosubstitution of Ag and Bi on the A-site position of known Ca2M2O7 pyrochlores. The low-valence band edge energies of typical oxide semiconductors prevents direct water splitting in compounds with band gaps below 3.0 eV, a limitation which these compounds are designed to overcome through the incorporation of low-lying Ag 4d(10) and Bi 6s(2) states into compounds of nominal composition "AgBiM2O7". It was found that the "AgBiTa2O7" pyrochlores are in fact a solid solution with an approximate range of Ag(x)Bi(5/6)Ta2O(6.25+x/2) with 0.5 semiconductors with the onset of strong direct absorption at 2.72 and 2.96 eV, respectively. Electronic structure calculations for an ordered AgBiNb2O7 structure show that the band gap reduction and the elevation of the valence band primarily result from hybridized Ag d(10)-O 2p orbitals that lie at higher energy than the normal O 2p states in typical pyrochlore oxides. While the minimum energy gap is direct in the band structure, the lowest energy dipole allowed optical transitions start about 0.2 eV higher in energy than the minimum energy transition and involve different bands. This suggests that the minimum electronic band gap in these materials is slightly smaller than the onset energy for strong absorption in the optical measurements. The elevated valence band energies of the niobate and tantalate compounds are experimentally confirmed by the ability of these compounds to reduce 2 H(+) to H2 gas when illuminated after functionalization with a Pt cocatalyst.

  16. Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis.

    Science.gov (United States)

    van der Burgh, Hannelore K; Schmidt, Ruben; Westeneng, Henk-Jan; de Reus, Marcel A; van den Berg, Leonard H; van den Heuvel, Martijn P

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease, with large variation in survival between patients. Currently, it remains rather difficult to predict survival based on clinical parameters alone. Here, we set out to use clinical characteristics in combination with MRI data to predict survival of ALS patients using deep learning, a machine learning technique highly effective in a broad range of big-data analyses. A group of 135 ALS patients was included from whom high-resolution diffusion-weighted and T1-weighted images were acquired at the first visit to the outpatient clinic. Next, each of the patients was monitored carefully and survival time to death was recorded. Patients were labeled as short, medium or long survivors, based on their recorded time to death as measured from the time of disease onset. In the deep learning procedure, the total group of 135 patients was split into a training set for deep learning (n = 83 patients), a validation set (n = 20) and an independent evaluation set (n = 32) to evaluate the performance of the obtained deep learning networks. Deep learning based on clinical characteristics predicted survival category correctly in 68.8% of the cases. Deep learning based on MRI predicted 62.5% correctly using structural connectivity and 62.5% using brain morphology data. Notably, when we combined the three sources of information, deep learning prediction accuracy increased to 84.4%. Taken together, our findings show the added value of MRI with respect to predicting survival in ALS, demonstrating the advantage of deep learning in disease prognostication.

  17. A novel method of microneedle array fabrication using inclined deep x-ray exposure

    International Nuclear Information System (INIS)

    Moon, Sang Jun; Jin, Chun Yan; Lee, Seung S

    2006-01-01

    We report a novel fabrication method for the microneedle array with a 3-dimensional feature and its replication method; 'Hot-pressing' process with bio-compatible material, PLLA (Poly L-LActide). Using inclined deep X-ray exposure technique, we fabricate a band type microneedle array with a single body on the same material basement. Since the single body feature does not make adhesion problem with the microneedle shank and basement during peel-off step of a mold, the PMMA (Poly-Methyl-MethAcrylate) microneedle array mold insert can be used for mold process which is used with the soft material mold, PDMS (Poly-Di- Methyl-Siloxane). The side inclined deep X-ray exposure also makes complex 3-dimensional features by the regions which are not exposed during twice successive exposure steps. In addition, the successive exposure does not need an additional mask alignment after the first side exposure. The fabricated band type microneedle array mold inserts are assembled for large area patch type out-of-plane microneedle array. The bio-compatible microneedle array can be fabricated to the laboratory scale mass production by the single body PMMA mold insert and 'Hot-pressing' process

  18. A novel method of microneedle array fabrication using inclined deep x-ray exposure

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sang Jun; Jin, Chun Yan; Lee, Seung S [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-dong, Daejeon (Korea, Republic of)

    2006-04-01

    We report a novel fabrication method for the microneedle array with a 3-dimensional feature and its replication method; 'Hot-pressing' process with bio-compatible material, PLLA (Poly L-LActide). Using inclined deep X-ray exposure technique, we fabricate a band type microneedle array with a single body on the same material basement. Since the single body feature does not make adhesion problem with the microneedle shank and basement during peel-off step of a mold, the PMMA (Poly-Methyl-MethAcrylate) microneedle array mold insert can be used for mold process which is used with the soft material mold, PDMS (Poly-Di- Methyl-Siloxane). The side inclined deep X-ray exposure also makes complex 3-dimensional features by the regions which are not exposed during twice successive exposure steps. In addition, the successive exposure does not need an additional mask alignment after the first side exposure. The fabricated band type microneedle array mold inserts are assembled for large area patch type out-of-plane microneedle array. The bio-compatible microneedle array can be fabricated to the laboratory scale mass production by the single body PMMA mold insert and 'Hot-pressing' process.

  19. A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification.

    Science.gov (United States)

    Yildirim, Özal

    2018-05-01

    Long-short term memory networks (LSTMs), which have recently emerged in sequential data analysis, are the most widely used type of recurrent neural networks (RNNs) architecture. Progress on the topic of deep learning includes successful adaptations of deep versions of these architectures. In this study, a new model for deep bidirectional LSTM network-based wavelet sequences called DBLSTM-WS was proposed for classifying electrocardiogram (ECG) signals. For this purpose, a new wavelet-based layer is implemented to generate ECG signal sequences. The ECG signals were decomposed into frequency sub-bands at different scales in this layer. These sub-bands are used as sequences for the input of LSTM networks. New network models that include unidirectional (ULSTM) and bidirectional (BLSTM) structures are designed for performance comparisons. Experimental studies have been performed for five different types of heartbeats obtained from the MIT-BIH arrhythmia database. These five types are Normal Sinus Rhythm (NSR), Ventricular Premature Contraction (VPC), Paced Beat (PB), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). The results show that the DBLSTM-WS model gives a high recognition performance of 99.39%. It has been observed that the wavelet-based layer proposed in the study significantly improves the recognition performance of conventional networks. This proposed network structure is an important approach that can be applied to similar signal processing problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. The ESO Diffuse Interstellar Bands Large Exploration Survey (EDIBLES) . I. Project description, survey sample, and quality assessment

    Science.gov (United States)

    Cox, Nick L. J.; Cami, Jan; Farhang, Amin; Smoker, Jonathan; Monreal-Ibero, Ana; Lallement, Rosine; Sarre, Peter J.; Marshall, Charlotte C. M.; Smith, Keith T.; Evans, Christopher J.; Royer, Pierre; Linnartz, Harold; Cordiner, Martin A.; Joblin, Christine; van Loon, Jacco Th.; Foing, Bernard H.; Bhatt, Neil H.; Bron, Emeric; Elyajouri, Meriem; de Koter, Alex; Ehrenfreund, Pascale; Javadi, Atefeh; Kaper, Lex; Khosroshadi, Habib G.; Laverick, Mike; Le Petit, Franck; Mulas, Giacomo; Roueff, Evelyne; Salama, Farid; Spaans, Marco

    2017-10-01

    The carriers of the diffuse interstellar bands (DIBs) are largely unidentified molecules ubiquitously present in the interstellar medium (ISM). After decades of study, two strong and possibly three weak near-infrared DIBs have recently been attributed to the C60^+ fullerene based on observational and laboratory measurements. There is great promise for the identification of the over 400 other known DIBs, as this result could provide chemical hints towards other possible carriers. In an effort tosystematically study the properties of the DIB carriers, we have initiated a new large-scale observational survey: the ESO Diffuse Interstellar Bands Large Exploration Survey (EDIBLES). The main objective is to build on and extend existing DIB surveys to make a major step forward in characterising the physical and chemical conditions for a statistically significant sample of interstellar lines-of-sight, with the goal to reverse-engineer key molecular properties of the DIB carriers. EDIBLES is a filler Large Programme using the Ultraviolet and Visual Echelle Spectrograph at the Very Large Telescope at Paranal, Chile. It is designed to provide an observationally unbiased view of the presence and behaviour of the DIBs towards early-spectral-type stars whose lines-of-sight probe the diffuse-to-translucent ISM. Such a complete dataset will provide a deep census of the atomic and molecular content, physical conditions, chemical abundances and elemental depletion levels for each sightline. Achieving these goals requires a homogeneous set of high-quality data in terms of resolution (R 70 000-100 000), sensitivity (S/N up to 1000 per resolution element), and spectral coverage (305-1042 nm), as well as a large sample size (100+ sightlines). In this first paper the goals, objectives and methodology of the EDIBLES programme are described and an initial assessment of the data is provided.

  1. Multi-wavelength fiber laser in the S-band region using a Sagnac loop mirror as a comb generator in an SOA gain medium

    International Nuclear Information System (INIS)

    Zulkifli, M Z; Hassan, N A; Awang, N A; Ahmad, H; Ghani, Z A; Harun, S W

    2010-01-01

    A simple design of multi-wavelength generation in the S-band region of the optical network transmission is proposed. The design consists of broad-band fiber Bragg grating (BB-FBG), which acts as a filter to enhance operation in the S-band region. A Sagnac loop mirror (SLM) is used to generate multiple wavelength oscillations in the ring cavity. The output consists of 60 lasing wavelengths oscillating simultaneously between 1464 nm and 1521 nm with a spacing of 0.92 nm and an output linewidth of 0.66 nm

  2. Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for thousand and original band optical communication

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Matsumoto, Atsushi; Kawanishi, Tetsuya

    2016-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed with T-band (1.0 µm waveband) and O-band (1.3 µm waveband) QD optical gain materials for Gbps-order, high-speed optical data generation. The insertion loss due to coupling between the device and the optical fiber was effectively compensated for by the SOA section. It was also confirmed that the monolithic QD-OGM/SOA device enabled >4.8 Gbps optical data generation with a clear eye opening in the T-band. Furthermore, we successfully demonstrated error-free 4.8 Gbps optical data transmissions in each of the six wavelength channels over a 10-km-long photonic crystal fiber using the monolithic QD-OGM/SOA device in multiple O-band wavelength channels, which were generated by the single QD gain chip. These results suggest that the monolithic QD-OGM/SOA device will be advantageous in ultra-broadband optical frequency systems that utilize the T+O-band for short- and medium-range optical communications.

  3. Discovery of z ~ 8 Galaxies in the Hubble Ultra Deep Field from Ultra-Deep WFC3/IR Observations

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Oesch, P. A.; Stiavelli, M.; van Dokkum, P.; Trenti, M.; Magee, D.; Labbé, I.; Franx, M.; Carollo, C. M.; Gonzalez, V.

    2010-02-01

    We utilize the newly acquired, ultra-deep WFC3/IR observations over the Hubble Ultra Deep Field (HUDF) to search for star-forming galaxies at z ~ 8-8.5, only 600 million years from recombination, using a Y 105-dropout selection. The new 4.7 arcmin2 WFC3/IR observations reach to ~28.8 AB mag (5σ) in the Y 105 J 125 H 160 bands. These remarkable data reach ~1.5 AB mag deeper than the previous data over the HUDF, and now are an excellent match to the HUDF optical ACS data. For our search criteria, we use a two-color Lyman break selection technique to identify z ~ 8-8.5Y 105-dropouts. We find five likely z ~ 8-8.5 candidates. The sources have H 160-band magnitudes of ~28.3 AB mag and very blue UV-continuum slopes, with a median estimated β of lsim-2.5 (where f λ vprop λβ). This suggests that z ~ 8 galaxies are not only essentially dust free but also may have very young ages or low metallicities. The observed number of Y 105-dropout candidates is smaller than the 20 ± 6 sources expected assuming no evolution from z ~ 6, but is consistent with the five expected extrapolating the Bouwens et al. luminosity function (LF) results to z ~ 8. These results provide evidence that the evolution in the LF seen from z ~ 7 to z ~ 3 continues to z ~ 8. The remarkable improvement in the sensitivity of WFC3/IR has enabled Hubble Space Telescope to cross a threshold, revealing star-forming galaxies at z~ 8-9. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 11563, 9797.

  4. Reward banding to determine reporting rate of recovered mourning dove bands

    Science.gov (United States)

    Tomlinson, R.E.

    1968-01-01

    Reward bands placed on the other leg of certain regularly banded immature mourning doves (Zenaidura macroura) were used to develop information on reporting rates of recovered dove bands. Reports from 15 widely separated sections of the United States showed considerable variation in recovery rate of doves both with and without reward bands. The overall percentages of banded doves that were reported as recovered were 9.69% for those with reward bands and 3.83% for controls. The bandreporting rate for states influenced by publicity was 66%; that for states not influenced was 32%.

  5. Supra-transmission and bistability in nonlinear media with a photonic and electronic forbidden band gap; Supratransmission et bistabilite nonlineaire dans les milieux a bandes interdites photoniques et electroniques

    Energy Technology Data Exchange (ETDEWEB)

    Chevriaux, D

    2007-06-15

    We study wave scattering in different nonlinear media possessing a natural forbidden band gap. In particular, we show the existence of a bistable behavior in media governed by the sine-Gordon equation (short pendular chain, Josephson junction array, quantum Hall bilayer), or the nonlinear Schroedinger equation (Kerr and Bragg media), in discrete and continuous models. These different media are submitted to periodic boundary conditions with a frequency in the forbidden band gap and an amplitude that determines their stability states. Indeed, for a sufficient amplitude (supra-transmission), the medium switches from reflector to transmitter, hence allowing the output signal to jump from evanescent to large values. We give a complete analytical description of the bistability that allows to understand the different stationary states observed and to predict the switch of one state to the other. (author)

  6. Field testing of stiffened deep cement mixing piles under lateral cyclic loading

    Science.gov (United States)

    Raongjant, Werasak; Jing, Meng

    2013-06-01

    Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.

  7. The development of a subsea power transmission system for deep water boosting applications

    Energy Technology Data Exchange (ETDEWEB)

    Godinho, C.A.F. [Pirelli Cabos S.A. (Brazil); Campagnac, L.A. [Siemens S.A. (Brazil); Nicholson, A. [Tronic Electronics Services Ltd. (WEC); Magalhaes, W.M. de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    1996-12-31

    This paper presents the development of a sub sea power transmission in medium voltage and variable frequency, as a key system for application of Boosting technology and for electrical submersible Pumping in deep water wells. This work focuses on the design and manufacture of sub sea power cables and transformers for 1,000 m water depth. 8 refs., 6 figs.

  8. PROBING THE IONIZATION STATES OF POLYCYCLIC AROMATIC HYDROCARBONS VIA THE 15–20 μm EMISSION BANDS

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, M. J.; Stock, D. J.; Peeters, E., E-mail: mshann3@uwo.ca [Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7 (Canada)

    2015-10-01

    We report new correlations between ratios of band intensities of the 15–20 μm emission bands of polycyclic aromatic hydrocarbons (PAHs) in a sample of 57 sources observed with the Spitzer/Infrared Spectrograph. This sample includes Large Magellanic Cloud point sources from the SAGE-Spec survey, nearby galaxies from the Spitzer Infrared Nearby Galaxies Survey survey, two Galactic interstellar medium cirrus sources, and the spectral maps of the Galactic reflection nebulae NGC 2023 and NGC 7023. We find that the 16.4, 17.4, and 17.8 μm band intensities are inter-correlated in all environments. In NGC 2023 and NGC 7023 these bands also correlate with the 11.0 and 12.7 μm band intensities. The 15.8 μm band correlates only with the 15–18 μm plateau and the 11.2 μm emission. We examine the spatial morphology of these bands and introduce radial cuts. We find that these bands can be spatially organized into three sets: the 12.7, 16.4, and 17.8 μm bands; the 11.2, 15.8 μm bands and the 15–18 μm plateau; and the 11.0 and 17.4 μm bands. We also find that the spatial distribution of the 12.7, 16.4, and 17.8 μm bands can be reconstructed by averaging the spatial distributions of the cationic 11.0 μm and neutral 11.2 μm bands. We conclude that the 17.4 μm band is dominated by cations, the 15.8 μm band by neutral species, and the 12.7, 16.4, and 17.8 μm bands by a combination of the two. These results highlight the importance of PAH ionization for spatially differentiating sub-populations by their 15–20 μm emission variability.

  9. Surface Brightness Profiles of Composite Images of Compact Galaxies at Z approximately equal 4-6 in the Hubble Ultra Deep Field

    National Research Council Canada - National Science Library

    Hathi, N. P; Jansen, R. A; Windhorst, R. A; Cohen, S. H; Keel, W. C; Corbin, M. R; Ryan, Jr, R. E

    2007-01-01

    The Hubble Ultra Deep Field (HUDF) contains a significant number of B-, V-, and iota'-band dropout objects, many of which were recently confirmed to be young star-forming galaxies at Z approximately equal 4-6...

  10. Mechanism of photonic band gap, optical properties, tuning and applications

    International Nuclear Information System (INIS)

    Tiwari, A.; Johri, M.

    2006-05-01

    Mechanism of occurrence of Photonic Band Gap (PBG) is presented for 3-D structure using close packed face centered cubic lattice. Concepts and our work, specifically optical properties of 3-D photonic crystal, relative width, filling fraction, effective refractive index, alternative mechanism of photonic band gap scattering strength and dielectric contrast, effect of fluctuations and minimum refractive index contrast, are reported. The temperature tuning and anisotropy of nematic and ferroelectric liquid crystal infiltrated opal for different phase transitions are given. Effective dielectric constant with filling fraction using Maxwell Garnet theory (MG), multiple modified Maxwell Garnet (MMMG) and Effective Medium theory (EM) and results are compared with experiment to understand the occurrence of PBG. Our calculations of Lamb shifts including fluctuations are given and compared with those of literature values. We have also done band structure calculations including anisotropy and compared isotropic characteristic of liquid crystal. A possibility of lowest refractive index contrast useful for the fabrication of PBG is given. Our calculations for relative width as a function of refractive index contrast are reported and comparisons with existing theoretical and experimental optimal values are briefed. Applications of photonic crystals are summarized. The investigations conducted on PBG materials and reported here may pave the way for understanding the challenges in the field of PBG. (author)

  11. [Laparoscopic adjustable gastric-banding treatment for morbid obesity our first year experience].

    Science.gov (United States)

    Iordache, N; Vizeteu, R; Iorgulescu, A; Zmeu, B; Iordache, M

    2003-01-01

    The authors present the results of a prospective study regarding their 1st year experience in laparoscopic adjustable gastric banding (LABG), which included 21 patients (5 males, 16 females), with an average age of 39 (between 20-53 years). The follow up was made at one and six months postoperative. The medium weight was 138 kg (between 95-172 kg), with a medium excess of body mass of 66.89 kg (extremes between 27.75 and 104 kg). The medium BMI (body mass index) was 48.9 (extremes: 34.5-66), 8 patients being superobese (BMI > 50). The average operating time was 120 min, all operations were finished laparosopically. Postoperative complications were: total disfagia (1 case), parietal suppuration (2 cases) and partial intragastric migration of the prosthesis (1 case). There were no deceased patients. The medium excess of body mass at 6 months after surgery was 46.57 (only 13 patients evaluated in this interval). After 6 months postoperative the comorbidities were healed at half of the patients. Although we do not benefit of a long time follow up, the favorable initial results permits us to state that LABG must find its place in the efforts of struggling against obesity and its consequences.

  12. PAHs and the Diffuse Interstellar Bands. What have we Learned from the New Generation of Laboratory and Observational Studies?

    Science.gov (United States)

    Salama, Farid

    2005-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrophysics is to reproduce (in a realistic way) the physical conditions that exist in the emission and/or absorption interstellar zones, An extensive laboratory program has been developed at NASA Ames to characterize the physical and chemical properties of PAHs in astrophysical environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. In particular, laboratory experiments provide measurements of the spectral characteristics of interstellar PAH analogs from the ultraviolet and visible range to the infrared range for comparison with astronomical data. This paper will focus on the recent progress made in the laboratory to measure the direct absorption spectra of neutral and ionized PAHs in the gas phase in the near-W and visible range in astrophysically relevant environments. These measurements provide data on PAHs and nanometer-sized particles that can now be directly compared to astronomical observations. The harsh physical conditions of the IS medium - characterized by a low temperature, an absence of collisions and strong V W radiation fields - are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions are formed from the neutral

  13. Oil Slick Observation at Low Incidence Angles in Ku-Band

    Science.gov (United States)

    Panfilova, M. A.; Karaev, V. Y.; Guo, Jie

    2018-03-01

    On the 20 April 2010 the oil platform Deep Water Horizon in the Gulf of Mexico suffered an explosion during the final phases of drilling an exploratory well. As a result, an oil film covered the sea surface area of several thousand square kilometers. In the present paper the data of the Ku-band Precipitation Radar, which operates at low incidence angles, were used to explore the oil spill event. The two-scale model of the scattering surface was used to describe radar backscatter from the sea surface. The algorithm for retrieval of normalized radar cross section at nadir and the total slope variance of large-scale waves compared to the wavelength of electromagnetic wave (22 mm) was developed for the Precipitation Radar swath. It is shown that measurements at low incidence angles can be used for oil spill detection. This is the first time that the dependence of mean square slope of large-scale waves on wind speed has been obtained for oil slicks from Ku-band data, and compared to mean square slope obtained by Cox and Munk from optical data.

  14. High-frequency homogenization of zero frequency stop band photonic and phononic crystals

    CERN Document Server

    Antonakakis, Tryfon; Guenneau, Sebastien

    2013-01-01

    We present an accurate methodology for representing the physics of waves, for periodic structures, through effective properties for a replacement bulk medium: This is valid even for media with zero frequency stop-bands and where high frequency phenomena dominate. Since the work of Lord Rayleigh in 1892, low frequency (or quasi-static) behaviour has been neatly encapsulated in effective anisotropic media. However such classical homogenization theories break down in the high-frequency or stop band regime. Higher frequency phenomena are of significant importance in photonics (transverse magnetic waves propagating in infinite conducting parallel fibers), phononics (anti-plane shear waves propagating in isotropic elastic materials with inclusions), and platonics (flexural waves propagating in thin-elastic plates with holes). Fortunately, the recently proposed high-frequency homogenization (HFH) theory is only constrained by the knowledge of standing waves in order to asymptotically reconstruct dispersion curves an...

  15. In-Situ Characterization of Deformation and Fracture Behavior of Hot-Rolled Medium Manganese Lightweight Steel

    Science.gov (United States)

    Zhao, Zheng-zhi; Cao, Rong-hua; Liang, Ju-hua; Li, Feng; Li, Cheng; Yang, Shu-feng

    2018-02-01

    The deformation and fracture behavior of hot-rolled medium manganese lightweight (0.32C-3.85Mn-4.18Al-1.53Si) steel was revealed by an in situ tensile test. Deformed δ-ferrite with plenty of cross-parallel deformation bands during in situ tensile tests provides δ-ferrite of good plasticity and ductility, although it is finally featured by the cleavage fracture. The soft and ductile δ-ferrite and high-volume fraction of austenite contribute to the superior mechanical properties of medium manganese lightweight steel heated at 800°C, with a tensile strength of 924 MPa, total elongation of 35.2% and product of the strength and elongation of 32.5 GPa %.

  16. Physiologically anaerobic microorganisms of the deep subsurface

    International Nuclear Information System (INIS)

    Stevens, S.E. Jr.; Chung, K.T.

    1993-10-01

    Anaerobic bacteria were isolated from deep subsurface sediment samples taken at study sites in Idaho (INEL) and Washington (HR) by culturing on dilute and concentrated medium. Morphologically distinct colonies were purified, and their responses to 21 selected physiological tests were determined. Although the number of isolates was small (18 INEL, 27 HR) some general patterns could be determined. Most strains could utilize all the carbon sources, however the glycerol and melizitose utilization was positive for 50% or less of the HR isolates. Catalase activity (27.78% at INEL, 74.07% at HR) and tryptophan metabolism (11.12% at INEL, 40.74% at HR) were significantly different between the two study sites. MPN and viable counts indicate that sediments near the water table yield the greatest numbers of anaerobes. Deeper sediments also appear to be more selective with the greatest number of viable counts on low-nutrient mediums. Likewise, only strictly obligate anaerobes were found in the deepest sediment samples. Selective media indicated the presence of methanogens, acetogens, and sulfate reducers at only the HR site

  17. An OSSE Study for Deep Argo Array using the GFDL Ensemble Coupled Data Assimilation System

    Science.gov (United States)

    Chang, You-Soon; Zhang, Shaoqing; Rosati, Anthony; Vecchi, Gabriel A.; Yang, Xiaosong

    2018-03-01

    An observing system simulation experiment (OSSE) using an ensemble coupled data assimilation system was designed to investigate the impact of deep ocean Argo profile assimilation in a biased numerical climate system. Based on the modern Argo observational array and an artificial extension to full depth, "observations" drawn from one coupled general circulation model (CM2.0) were assimilated into another model (CM2.1). Our results showed that coupled data assimilation with simultaneous atmospheric and oceanic constraints plays a significant role in preventing deep ocean drift. However, the extension of the Argo array to full depth did not significantly improve the quality of the oceanic climate estimation within the bias magnitude in the twin experiment. Even in the "identical" twin experiment for the deep Argo array from the same model (CM2.1) with the assimilation model, no significant changes were shown in the deep ocean, such as in the Atlantic meridional overturning circulation and the Antarctic bottom water cell. The small ensemble spread and corresponding weak constraints by the deep Argo profiles with medium spatial and temporal resolution may explain why the deep Argo profiles did not improve the deep ocean features in the assimilation system. Additional studies using different assimilation methods with improved spatial and temporal resolution of the deep Argo array are necessary in order to more thoroughly understand the impact of the deep Argo array on the assimilation system.

  18. The relationship between the deep-level structure in crust and brewing of strong earthquakes in Xingtai area

    Science.gov (United States)

    Xiao, Lan-Xi; Zhu, Yuan-Qing; Zhang, Shao-Quan; Liu, Xu; Guo, Yu

    1999-11-01

    In this paper, crust medium is treated as Maxwell medium, and crust model includes hard inclusion, soft inclusion, deep-level fault. The stress concentration and its evolution with time are obtained by using three-dimensional finite element method and differential method. The conclusions are draw as follows: (1) The average stress concentration and maximum shear stress concentration caused by non-heterogeneous of crust are very high in hard inclusion and around the deep fault. With the time passing by, the concentration of average stress in the model gradually trends to uniform. At the same time, the concentration of maximum shear stress in hard inclusion increases gradually. This character is favorable to transfer shear strain energy from soft inclusion to hard inclusion. (2) When the upper mantle beneath the inclusion upheave at a certain velocity of 1 cm/a, the changes of average stress concentration with time become complex, and the boundary of the hard and soft inclusion become unconspicuous, but the maximum shear stress concentration increases much more in the hard inclusion with time at a higher velocity. This feature make for transformation of energy from the soft inclusion to the hard inclusion. (3) The changes of average stress concentration and maximum shear stress concentration with time around the deep-level fault result in further accumulation of maximum shear stress concentration and finally cause the deep-level fault instable and accelerated creep along fault direction. (4) The changes of vertical displacement on the surface of the model, which is caused by the accelerated creep of the deep-level fault, is similar to that of the observation data before Xingtai strong earthquake.

  19. Deep Echo State Network (DeepESN): A Brief Survey

    OpenAIRE

    Gallicchio, Claudio; Micheli, Alessio

    2017-01-01

    The study of deep recurrent neural networks (RNNs) and, in particular, of deep Reservoir Computing (RC) is gaining an increasing research attention in the neural networks community. The recently introduced deep Echo State Network (deepESN) model opened the way to an extremely efficient approach for designing deep neural networks for temporal data. At the same time, the study of deepESNs allowed to shed light on the intrinsic properties of state dynamics developed by hierarchical compositions ...

  20. Shallow trapping vs. deep polarons in a hybrid lead halide perovskite, CH3NH3PbI3.

    Science.gov (United States)

    Kang, Byungkyun; Biswas, Koushik

    2017-10-18

    There has been considerable speculation over the nature of charge carriers in organic-inorganic hybrid perovskites, i.e., whether they are free and band-like, or they are prone to self-trapping via short range deformation potentials. Unusually long minority-carrier diffusion lengths and moderate-to-low mobilities, together with relatively few deep defects add to their intrigue. Here we implement density functional methods to investigate the room-temperature, tetragonal phase of CH 3 NH 3 PbI 3 . We compare charge localization behavior at shallow levels and associated lattice relaxation versus those at deep polaronic states. The shallow level originates from screened Coulomb interaction between the perturbed host and an excited electron or hole. The host lattice has a tendency towards forming these shallow traps where the electron or hole is localized not too far from the band edge. In contrast, there is a considerable potential barrier that must be overcome in order to initiate polaronic hole trapping. The formation of a hole polaron (I 2 - center) involves strong lattice relaxation, including large off-center displacement of the organic cation, CH 3 NH 3 + . This type of deep polaron is energetically unfavorable, and active shallow traps are expected to shape the carrier dynamics in this material.

  1. Deep learning with convolutional neural networks for EEG decoding and visualization.

    Science.gov (United States)

    Schirrmeister, Robin Tibor; Springenberg, Jost Tobias; Fiederer, Lukas Dominique Josef; Glasstetter, Martin; Eggensperger, Katharina; Tangermann, Michael; Hutter, Frank; Burgard, Wolfram; Ball, Tonio

    2017-11-01

    Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end-to-end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end-to-end EEG analysis, but a better understanding of how to design and train ConvNets for end-to-end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task-related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG-based brain mapping. Hum Brain Mapp 38:5391-5420, 2017. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  2. Deep learning with convolutional neural networks for EEG decoding and visualization

    Science.gov (United States)

    Springenberg, Jost Tobias; Fiederer, Lukas Dominique Josef; Glasstetter, Martin; Eggensperger, Katharina; Tangermann, Michael; Hutter, Frank; Burgard, Wolfram; Ball, Tonio

    2017-01-01

    Abstract Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end‐to‐end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end‐to‐end EEG analysis, but a better understanding of how to design and train ConvNets for end‐to‐end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task‐related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG‐based brain mapping. Hum Brain Mapp 38:5391–5420, 2017. © 2017 Wiley Periodicals, Inc. PMID:28782865

  3. The Research on Subsidence Prediction of Soils Around Deep Foundation Pit

    Directory of Open Access Journals (Sweden)

    Ge LIU

    2014-12-01

    Full Text Available Deep foundation pit will cause settlement of surround buildings in the process of excavation. When the settlement is excessive, it will give rise to safety issues. Subsidence monitoring has become an important measure to ensure the safety of deep foundation pits. But in current subsidence monitoring engineering, the costs of wiring, unwiring and installation are particularly high. This paper proposes a portable wireless data transmission device in forecasting and early warning of settlement deformation of soils around deep foundation pits. We solve the problem by adopting the means of wireless communication to replace the cable transmission link part. The device does not rely on any personal computers. Instead, it can directly deal with the collected data through grey prediction GM (1, 1 mathematical model, neural network and interpolation model to give short-term, medium- term and long-term forecasts, respectively. Additionally it is able to set a threshold value. Once the forecast data reach the threshold, the device can issue alert and achieve the target of reminding technicians, so as to provide reliable basis to prevent and reduce disasters.

  4. DISCOVERY OF z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD FROM ULTRA-DEEP WFC3/IR OBSERVATIONS

    International Nuclear Information System (INIS)

    Bouwens, R. J.; Illingworth, G. D.; Magee, D.; Gonzalez, V.; Oesch, P. A.; Carollo, C. M.; Stiavelli, M.; Van Dokkum, P.; Trenti, M.; Labbe, I.; Franx, M.

    2010-01-01

    We utilize the newly acquired, ultra-deep WFC3/IR observations over the Hubble Ultra Deep Field (HUDF) to search for star-forming galaxies at z ∼ 8-8.5, only 600 million years from recombination, using a Y 105 -dropout selection. The new 4.7 arcmin 2 WFC3/IR observations reach to ∼28.8 AB mag (5σ) in the Y 105 J 125 H 160 bands. These remarkable data reach ∼1.5 AB mag deeper than the previous data over the HUDF, and now are an excellent match to the HUDF optical ACS data. For our search criteria, we use a two-color Lyman break selection technique to identify z ∼ 8-8.5Y 105 -dropouts. We find five likely z ∼ 8-8.5 candidates. The sources have H 160 -band magnitudes of ∼28.3 AB mag and very blue UV-continuum slopes, with a median estimated β of ∼ λ ∝ λ β ). This suggests that z ∼ 8 galaxies are not only essentially dust free but also may have very young ages or low metallicities. The observed number of Y 105 -dropout candidates is smaller than the 20 ± 6 sources expected assuming no evolution from z ∼ 6, but is consistent with the five expected extrapolating the Bouwens et al. luminosity function (LF) results to z ∼ 8. These results provide evidence that the evolution in the LF seen from z ∼ 7 to z ∼ 3 continues to z ∼ 8. The remarkable improvement in the sensitivity of WFC3/IR has enabled Hubble Space Telescope to cross a threshold, revealing star-forming galaxies at z∼ 8-9.

  5. Pressure-Induced Structural Evolution and Band Gap Shifts of Organometal Halide Perovskite-Based Methylammonium Lead Chloride.

    Science.gov (United States)

    Wang, Lingrui; Wang, Kai; Xiao, Guanjun; Zeng, Qiaoshi; Zou, Bo

    2016-12-15

    Organometal halide perovskites are promising materials for optoelectronic devices. Further development of these devices requires a deep understanding of their fundamental structure-property relationships. The effect of pressure on the structural evolution and band gap shifts of methylammonium lead chloride (MAPbCl 3 ) was investigated systematically. Synchrotron X-ray diffraction and Raman experiments provided structural information on the shrinkage, tilting distortion, and amorphization of the primitive cubic unit cell. In situ high pressure optical absorption and photoluminescence spectra manifested that the band gap of MAPbCl 3 could be fine-tuned to the ultraviolet region by pressure. The optical changes are correlated with pressure-induced structural evolution of MAPbCl 3 , as evidenced by band gap shifts. Comparisons between Pb-hybrid perovskites and inorganic octahedra provided insights on the effects of halogens on pressure-induced transition sequences of these compounds. Our results improve the understanding of the structural and optical properties of organometal halide perovskites.

  6. Dual-band frequency selective surface with large band separation and stable performance

    Science.gov (United States)

    Zhou, Hang; Qu, Shao-Bo; Peng, Wei-Dong; Lin, Bao-Qin; Wang, Jia-Fu; Ma, Hua; Zhang, Jie-Qiu; Bai, Peng; Wang, Xu-Hua; Xu, Zhuo

    2012-05-01

    A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations.

  7. SHARPENDING OF THE VNIR AND SWIR BANDS OF THE WIDE BAND SPECTRAL IMAGER ONBOARD TIANGONG-II IMAGERY USING THE SELECTED BANDS

    Directory of Open Access Journals (Sweden)

    Q. Liu

    2018-04-01

    Full Text Available The Tiangong-II space lab was launched at the Jiuquan Satellite Launch Center of China on September 15, 2016. The Wide Band Spectral Imager (WBSI onboard the Tiangong-II has 14 visible and near-infrared (VNIR spectral bands covering the range from 403–990 nm and two shortwave infrared (SWIR bands covering the range from 1230–1250 nm and 1628–1652 nm respectively. In this paper the selected bands are proposed which aims at considering the closest spectral similarities between the VNIR with 100 m spatial resolution and SWIR bands with 200 m spatial resolution. The evaluation of Gram-Schmidt transform (GS sharpening techniques embedded in ENVI software is presented based on four types of the different low resolution pan band. The experimental results indicated that the VNIR band with higher CC value with the raw SWIR Band was selected, more texture information was injected the corresponding sharpened SWIR band image, and at that time another sharpened SWIR band image preserve the similar spectral and texture characteristics to the raw SWIR band image.

  8. Dual-band frequency selective surface with large band separation and stable performance

    International Nuclear Information System (INIS)

    Zhou Hang; Qu Shao-Bo; Lin Bao-Qin; Wang Jia-Fu; Ma Hua; Zhang Jie-Qiu; Peng Wei-Dong; Bai Peng; Wang Xu-Hua; Xu Zhuo

    2012-01-01

    A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  9. Deep learning based classification for head and neck cancer detection with hyperspectral imaging in an animal model

    Science.gov (United States)

    Ma, Ling; Lu, Guolan; Wang, Dongsheng; Wang, Xu; Chen, Zhuo Georgia; Muller, Susan; Chen, Amy; Fei, Baowei

    2017-03-01

    Hyperspectral imaging (HSI) is an emerging imaging modality that can provide a noninvasive tool for cancer detection and image-guided surgery. HSI acquires high-resolution images at hundreds of spectral bands, providing big data to differentiating different types of tissue. We proposed a deep learning based method for the detection of head and neck cancer with hyperspectral images. Since the deep learning algorithm can learn the feature hierarchically, the learned features are more discriminative and concise than the handcrafted features. In this study, we adopt convolutional neural networks (CNN) to learn the deep feature of pixels for classifying each pixel into tumor or normal tissue. We evaluated our proposed classification method on the dataset containing hyperspectral images from 12 tumor-bearing mice. Experimental results show that our method achieved an average accuracy of 91.36%. The preliminary study demonstrated that our deep learning method can be applied to hyperspectral images for detecting head and neck tumors in animal models.

  10. The dynamic deformation of a layered viscoelastic medium under surface excitation

    International Nuclear Information System (INIS)

    Aglyamov, Salavat R; Karpiouk, Andrei B; Emelianov, Stanislav Y; Wang, Shang; Li, Jiasong; Larin, Kirill V; Twa, Michael

    2015-01-01

    In this study the dynamic behavior of a layered viscoelastic medium in response to the harmonic and impulsive acoustic radiation force applied to its surface was investigated both theoretically and experimentally. An analytical solution for a layered viscoelastic compressible medium in frequency and time domains was obtained using the Hankel transform. A special incompressible case was considered to model soft biological tissues. To verify our theoretical model, experiments were performed using tissue-like gel-based phantoms with varying mechanical properties. A 3.5 MHz single-element focused ultrasound transducer was used to apply the radiation force at the surface of the phantoms. A phase-sensitive optical coherence tomography system was used to track the displacements of the phantom surface. Theoretically predicted displacements were compared with experimental measurements. The role of the depth dependence of the elastic properties of a medium in its response to an acoustic pulse at the surface was studied. It was shown that the low-frequency vibrations at the surface are more sensitive to the deep layers than high-frequency ones. Therefore, the proposed model in combination with spectral analysis can be used to evaluate depth-dependent distribution of the mechanical properties based on the measurements of the surface deformation. (paper)

  11. M-BAND IMAGING OF THE HR 8799 PLANETARY SYSTEM USING AN INNOVATIVE LOCI-BASED BACKGROUND SUBTRACTION TECHNIQUE

    International Nuclear Information System (INIS)

    Galicher, Raphael; Marois, Christian; Macintosh, Bruce; Konopacky, Quinn; Barman, Travis

    2011-01-01

    Multi-wavelength observations/spectroscopy of exoplanetary atmospheres are the basis of the emerging exciting field of comparative exoplanetology. The HR 8799 planetary system is an ideal laboratory to study our current knowledge gap between massive field brown dwarfs and the cold 5 Gyr old solar system planets. The HR 8799 planets have so far been imaged at J- to L-band, with only upper limits available at M-band. We present here deep high-contrast Keck II adaptive optics M-band observations that show the imaging detection of three of the four currently known HR 8799 planets. Such detections were made possible due to the development of an innovative LOCI-based background subtraction scheme that is three times more efficient than a classical median background subtraction for Keck II AO data, representing a gain in telescope time of up to a factor of nine. These M-band detections extend the broadband photometric coverage out to ∼5 μm and provide access to the strong CO fundamental absorption band at 4.5 μm. The new M-band photometry shows that the HR 8799 planets are located near the L/T-type dwarf transition, similar to what was found by other studies. We also confirm that the best atmospheric fits are consistent with low surface gravity, dusty, and non-equilibrium CO/CH 4 chemistry models.

  12. Why & When Deep Learning Works: Looking Inside Deep Learnings

    OpenAIRE

    Ronen, Ronny

    2017-01-01

    The Intel Collaborative Research Institute for Computational Intelligence (ICRI-CI) has been heavily supporting Machine Learning and Deep Learning research from its foundation in 2012. We have asked six leading ICRI-CI Deep Learning researchers to address the challenge of "Why & When Deep Learning works", with the goal of looking inside Deep Learning, providing insights on how deep networks function, and uncovering key observations on their expressiveness, limitations, and potential. The outp...

  13. Deep-level transient spectroscopy on an amorphous InGaZnO{sub 4} Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Chasin, Adrian, E-mail: adrian.chasin@imec.be; Bhoolokam, Ajay; Nag, Manoj; Genoe, Jan; Heremans, Paul [imec, Kapeldreef 75, 3001 Leuven (Belgium); ESAT, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven (Belgium); Simoen, Eddy [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, 9000 Gent (Belgium); Gielen, Georges [ESAT, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven (Belgium)

    2014-02-24

    The first direct measurement is reported of the bulk density of deep states in amorphous IGZO (indium-gallium-zinc oxide) semiconductor by means of deep-level transient spectroscopy (DLTS). The device under test is a Schottky diode of amorphous IGZO semiconductor on a palladium (Pd) Schottky-barrier electrode and with a molybdenum (Mo) Ohmic contact at the top. The DLTS technique allows to independently measure the energy and spatial distribution of subgap states in the IGZO thin film. The subgap trap concentration has a double exponential distribution as a function energy, with a value of ∼10{sup 19} cm{sup −3} eV{sup −1} at the conduction band edge and a value of ∼10{sup 17} cm{sup −3} eV{sup −1} at an energy of 0.55 eV below the conduction band. Such spectral distribution, however, is not uniform through the semiconductor film. The spatial distribution of subgap states correlates well with the background doping density distribution in the semiconductor, which increases towards the Ohmic Mo contact, suggesting that these two properties share the same physical origin.

  14. Density changes in shear bands of a metallic glass determined by correlative analytical transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rösner, Harald, E-mail: rosner@uni-muenster.de [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Peterlechner, Martin [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Kübel, Christian [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen (Germany); Schmidt, Vitalij [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Wilde, Gerhard [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)

    2014-07-01

    Density changes between sheared zones and their surrounding amorphous matrix as a result of plastic deformation in a cold-rolled metallic glass (melt-spun Al{sub 88}Y{sub 7}Fe{sub 5}) were determined using high-angle annular dark-field (HAADF) detector intensities supplemented by electron-energy loss spectroscopy (EELS), energy-dispersive X-ray (EDX) and nano-beam diffraction analyses. Sheared zones or shear bands were observed as regions of bright or dark contrast arising from a higher or lower density relative to the matrix. Moreover, abrupt contrast changes from bright to dark and vice versa were found within individual shear bands. We associate the decrease in density mainly with an enhanced free volume in the shear bands and the increase in density with concomitant changes of the mass. This interpretation is further supported by changes in the zero loss and Plasmon signal originating from such sites. The limits of this new approach are discussed. - Highlights: • We describe a novel approach for measuring densities in shear bands of metallic glasses. • The linear relation of the dark-field intensity I/I{sub 0} and the mass thickness ρt was used. • Individual shear bands showed abrupt contrast changes from bright to dark and vice versa. • Density changes ranging from about −10% to +6% were found for such shear bands. • Mixtures of amorphous/medium range ordered domains were found within the shear bands.

  15. Motor System Interactions in the Beta Band Decrease during Loss of Consciousness.

    Science.gov (United States)

    Swann, Nicole C; de Hemptinne, Coralie; Maher, Ryan B; Stapleton, Catherine A; Meng, Lingzhong; Gelb, Adrian W; Starr, Philip A

    2016-01-01

    Communication between brain areas and how they are influenced by changes in consciousness are not fully understood. One hypothesis is that brain areas communicate via oscillatory processes, utilizing network-specific frequency bands, that can be measured with metrics that reflect between-region interactions, such as coherence and phase amplitude coupling (PAC). To evaluate this hypothesis and understand how these interactions are modulated by state changes, we analyzed electrophysiological recordings in humans at different nodes of one well-studied brain network: the basal ganglia-thalamocortical loops of the motor system during loss of consciousness induced by anesthesia. We recorded simultaneous electrocorticography over primary motor cortex (M1) with local field potentials from subcortical motor regions (either basal ganglia or thalamus) in 15 movement disorder patients during anesthesia (propofol) induction as a part of their surgery for deep brain stimulation. We observed reduced coherence and PAC between M1 and the subcortical nuclei, which was specific to the beta band (∼18-24 Hz). The fact that this pattern occurs selectively in beta underscores the importance of this frequency band in the motor system and supports the idea that oscillatory interactions at specific frequencies are related to the capacity for normal brain function and behavior.

  16. Reed-Solomon Codes and the Deep Hole Problem

    Science.gov (United States)

    Keti, Matt

    In many types of modern communication, a message is transmitted over a noisy medium. When this is done, there is a chance that the message will be corrupted. An error-correcting code adds redundant information to the message which allows the receiver to detect and correct errors accrued during the transmission. We will study the famous Reed-Solomon code (found in QR codes, compact discs, deep space probes,ldots) and investigate the limits of its error-correcting capacity. It can be shown that understanding this is related to understanding the "deep hole" problem, which is a question of determining when a received message has, in a sense, incurred the worst possible corruption. We partially resolve this in its traditional context, when the code is based on the finite field F q or Fq*, as well as new contexts, when it is based on a subgroup of F q* or the image of a Dickson polynomial. This is a new and important problem that could give insight on the true error-correcting potential of the Reed-Solomon code.

  17. Multishell method: Exact treatment of a cluster in an effective medium

    International Nuclear Information System (INIS)

    Gonis, A.; Garland, J.W.

    1977-01-01

    A method is presented for the exact determination of the Green's function of a cluster embedded in a given effective medium. This method, the multishell method, is applicable even to systems with off-diagonal disorder, extended-range hopping, multiple bands, and/or hybridization, and is computationally practicable for any system described by a tight-binding or interpolation-scheme Hamiltonian. It allows one to examine the effects of local environment on the densities of states and site spectral weight functions of disordered systems. For any given analytic effective medium characterized by a non-negative density of states the method yields analytic cluster Green's functions and non-negative site spectral weight functions. Previous methods used for the calculation of the Green's function of a cluster embedded in a given effective medium have not been exact. The results of numerical calculations for model systems show that even the best of these previous methods can lead to substantial errors, at least for small clusters in two- and three-dimensional lattices. These results also show that fluctuations in local environment have large effects on site spectral weight functions, even in cases in which the single-site coherent-potential approximation yields an accurate overall density of states

  18. The FourStar Galaxy Evolution Survey (ZFOURGE): Ultraviolet to Far-infrared Catalogs, Medium-bandwidth Photometric Redshifts with Improved Accuracy, Stellar Masses, and Confirmation of Quiescent Galaxies to z ˜ 3.5

    Science.gov (United States)

    Straatman, Caroline M. S.; Spitler, Lee R.; Quadri, Ryan F.; Labbé, Ivo; Glazebrook, Karl; Persson, S. Eric; Papovich, Casey; Tran, Kim-Vy H.; Brammer, Gabriel B.; Cowley, Michael; Tomczak, Adam; Nanayakkara, Themiya; Alcorn, Leo; Allen, Rebecca; Broussard, Adam; van Dokkum, Pieter; Forrest, Ben; van Houdt, Josha; Kacprzak, Glenn G.; Kawinwanichakij, Lalitwadee; Kelson, Daniel D.; Lee, Janice; McCarthy, Patrick J.; Mehrtens, Nicola; Monson, Andrew; Murphy, David; Rees, Glen; Tilvi, Vithal; Whitaker, Katherine E.

    2016-10-01

    The FourStar galaxy evolution survey (ZFOURGE) is a 45 night legacy program with the FourStar near-infrared camera on Magellan and one of the most sensitive surveys to date. ZFOURGE covers a total of 400 arcmin2 in cosmic fields CDFS, COSMOS and UDS, overlapping CANDELS. We present photometric catalogs comprising >70,000 galaxies, selected from ultradeep K s -band detection images (25.5-26.5 AB mag, 5σ, total), and >80% complete to K s inclusion of FourStar medium bands. σ z,pairs is smallest for bright, blue star-forming samples, while red star-forming galaxies have the worst σ z,pairs. Including FourStar medium bands reduces σ z,pairs by 50% at 1.5 ×15. This paper contains data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas observatory, Chile

  19. Application of variance reduction techniques of Monte-Carlo method to deep penetration shielding problems

    International Nuclear Information System (INIS)

    Rawat, K.K.; Subbaiah, K.V.

    1996-01-01

    General purpose Monte Carlo code MCNP is being widely employed for solving deep penetration problems by applying variance reduction techniques. These techniques depend on the nature and type of the problem being solved. Application of geometry splitting and implicit capture method are examined to study the deep penetration problems of neutron, gamma and coupled neutron-gamma in thick shielding materials. The typical problems chosen are: i) point isotropic monoenergetic gamma ray source of 1 MeV energy in nearly infinite water medium, ii) 252 Cf spontaneous source at the centre of 140 cm thick water and concrete and iii) 14 MeV fast neutrons incident on the axis of 100 cm thick concrete disk. (author). 7 refs., 5 figs

  20. Concrete decontamination: two innovative processes in response to surface or deep contamination

    International Nuclear Information System (INIS)

    CUER, F.; Nadai, A. de; Faure, S.

    2008-01-01

    To meet the future needs in the nuclear industry as regards dismantling and decommissioning, the LPAD (Laboratoire des Procedes Avances de Decontamination) develops new specific techniques to decontaminate concretes: the drying gel process adapted to surface contamination and the electrokinetics process to treat deep contamination. Indeed, because the concrete constitute a porous medium, two types of contamination can be met according to the environment to which is subjected the material. In the case of an accidental or dry contamination, radio elements do not penetrate beyond the first millimeters of the material. The contamination is then considered as surface. On the contrary, the contamination is considered as 'deep' when radioactive ions have diffused deeply under the effects of the natural diffusion. This is the case in fuel storage pond or other many nuclear infrastructures. (authors)

  1. On the dragnosis of deep vein thrombosis

    International Nuclear Information System (INIS)

    Olsson, C.-G.

    1979-01-01

    Clinical and laboratory diagnostic methods were studied in 301 consecutive patients with suspected deep vein thrombosis (DVT). Unexpectedly, phlebography (the reference method) was found to cause DVT in estimated 48 % of patients without initial DVT. Using a new type of contrast medium, however, no thrombotic complications were found. - Neither clinical examination nor plethysmography were found to give reliable results. Using a modified technique for radioisotope detection, high sensitivity to DVT was found with the 125 I-fibrinogen uptake test (within 2 days) and a newly developed 99 Tcsup(m)-plasmin test (within one hour). Since both tests showed low specificity, they are reliable as screening tests to exclude DVT, but not as independent diagnostic methods. (author)

  2. MAGIICAT II. GENERAL CHARACTERISTICS OF THE Mg II ABSORBING CIRCUMGALACTIC MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Nikole M.; Churchill, Christopher W. [New Mexico State University, Las Cruces, NM 88003 (United States); Kacprzak, Glenn G., E-mail: nnielsen@nmsu.edu, E-mail: cwc@nmsu.edu, E-mail: gkacprzak@astro.swin.edu.au [Swinburne University of Technology, Victoria 3122 (Australia)

    2013-10-20

    We examine the Mg II absorbing circumgalactic medium (CGM) for the 182 intermediate redshift (0.072 ≤ z ≤ 1.120) galaxies in the 'Mg II Absorber-Galaxy Catalog' (MAGIICAT). We parameterize the anti-correlation between equivalent width, W{sub r} (2796), and impact parameter, D, with a log-linear fit, and show that a power law poorly describes the data. We find that higher luminosity galaxies have larger W{sub r} (2796) at larger D (4.3σ). The covering fractions, f{sub c} , decrease with increasing D and W{sub r} (2796) detection threshold. Higher luminosity galaxies have larger f{sub c} ; no absorption is detected in lower luminosity galaxies beyond 100 kpc. Bluer and redder galaxies have similar f{sub c} for D < 100 kpc, but for D > 100 kpc, bluer galaxies have larger f{sub c} , as do higher redshift galaxies. The 'absorption radius', R(L) = R{sub *}(L/L*){sup β}, which we examine for four different W{sub r} (2796) detection thresholds, is more luminosity sensitive to the B-band than the K-band, more sensitive for redder galaxies than for bluer galaxies, and does not evolve with redshift for the K-band, but becomes more luminosity sensitive toward lower redshift for the B-band. These trends clearly indicate a more extended Mg II absorbing CGM around higher luminosity, bluer, and higher redshift galaxies. Several of our findings are in conflict with other works. We address these conflicts and discuss the implications of our results for the low-ionization, intermediate redshift CGM.

  3. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  4. Hydrogen effects on deep level defects in proton implanted Cu(In,Ga)Se{sub 2} based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.W.; Seol, M.S.; Kwak, D.W.; Oh, J.S. [Department of Physics, Dongguk University, Seoul 100-715 (Korea, Republic of); Jeong, J.H. [Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Cho, H.Y., E-mail: hycho@dongguk.edu [Department of Physics, Dongguk University, Seoul 100-715 (Korea, Republic of)

    2012-08-01

    Hydrogen effects on deep level defects and a defect generation in proton implanted Cu(In,Ga)Se{sub 2} (CIGS) based thin films for solar cell were investigated. CIGS films with a thickness of 3 {mu}m were grown on a soda-lime glass substrate by a co-evaporation method, and then were implanted with protons. To study deep level defects in the proton implanted CIGS films, deep level transient spectroscopy measurements on the CIGS-based solar cells were carried out, these measurements found 6 traps (including 3 hole traps and 3 electron traps). In the proton implanted CIGS films, the deep level defects, which are attributed to the recombination centers of the CIGS solar cell, were significantly reduced in intensity, while a deep level defect was generated around 0.28 eV above the valence band maximum. Therefore, we suggest that most deep level defects in CIGS films can be controlled by hydrogen effects. - Highlights: Black-Right-Pointing-Pointer Proton implanted Cu(In,Ga)Se{sub 2} thin film and solar cell are prepared. Black-Right-Pointing-Pointer Deep level defects of Cu(In,Ga)Se{sub 2} thin film and solar cell are investigated. Black-Right-Pointing-Pointer Hydrogenation using proton implantation and H{sub 2} annealing reduces deep level defects. Black-Right-Pointing-Pointer Hydrogenation could enhance electrical properties and efficiency of solar cells.

  5. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    Science.gov (United States)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  6. Experimental and numerical validation of the effective medium theory for the B-term band broadening in 1st and 2nd generation monolithic silica columns.

    Science.gov (United States)

    Deridder, Sander; Vanmessen, Alison; Nakanishi, Kazuki; Desmet, Gert; Cabooter, Deirdre

    2014-07-18

    Effective medium theory (EMT) expressions for the B-term band broadening in monolithic silica columns are presented at the whole-column as well as at the mesoporous skeleton level. Given the bi-continuous nature of the monolithic medium, regular as well as inverse formulations of the EMT-expressions have been established. The established expressions were validated by applying them to a set of experimental effective diffusion (Deff)-data obtained via peak parking on a number of 1st and 2nd generation monolithic silica columns, as well as to a set of numerical diffusion simulations in a simplified monolithic column representation (tetrahedral skeleton model) with different external porosities and internal diffusion coefficients. The numerically simulated diffusion data can be very closely represented over a very broad range of zone retention factors (up to k″=80) using the established EMT-expressions, especially when using the inverse variant. The expressions also allow representing the experimentally measured effective diffusion data very closely. The measured Deff/Dmol-values were found to decrease significantly with increasing retention factor, in general going from about Deff/Dmol=0.55 to 0.65 at low k″ (k″≅1.5-3.8) to Deff/Dmol=0.25 at very high k″ (k″≅40-80). These values are significantly larger than observed in fully-porous and core-shell particles. The intra-skeleton diffusion coefficient (Dpz) was typically found to be of the order of Dpz/Dmol=0.4, compared to Dpz/Dmol=0.2-0.35 observed in most particle-based columns. These higher Dpz/Dmol values are the cause of the higher Deff/Dmol values observed. In addition, it also appears that the higher internal diffusion is linked to the higher porosity of the mesoporous skeleton that has a relatively open structure with relatively wide pores. The observed (weak) relation between Dpz/Dmol and the zone retention factor appears to be in good agreement with that predicted when applying the regular

  7. Two orthogonal carriers assisted 101-Gb/s dual-band DDO-OFDM transmission over 320-km SSMF.

    Science.gov (United States)

    Chen, Yiqin; Hu, Rong; Yang, Qi; Luo, Ming; Yu, Shaohua; Li, Wei

    2015-05-04

    We propose a novel fading-free direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) scheme for 100-Gb/s medium-reach transmission. In the proposed scheme, we adopts two bands spaced at 100-GHz to accommodate the same complex-valued OFDM signal. However, the signals are coupled with a pair of orthogonal optical carriers. By doing so, real and imaginary parts of the complex-valued OFDM signal can be recovered from the two bands, respectively. We also propose a cost-effective scheme to generate such DDO-OFDM signal using an optical 90-degree hybrid and an optical I/Q modulator. The advantage of the proposed method is that it is fading-free, and the electrical spectral efficiency (SE) is doubled compared to traditional direct-detection method. Finally, we experimentally demonstrated a 101-Gb/s dual-band transmission over 320-km SSMF within only 30-GHz electrical bandwidth, which is highly competitive in both capacity and cost.

  8. Assessment of MODIS On-Orbit Calibration Using a Deep Convective Cloud Technique

    Science.gov (United States)

    Mu, Qiaozhen; Wu, Aisheng; Chang, Tiejun; Angal, Amit; Link, Daniel; Xiong, Xiaoxiong; Doelling, David R.; Bhatt, Rajendra

    2016-01-01

    The MODerate Resolution Imaging Spectroradiometer (MODIS) sensors onboard Terra and Aqua satellites are calibrated on-orbit with a solar diffuser (SD) for the reflective solar bands (RSB). The MODIS sensors are operating beyond their designed lifetime and hence present a major challenge to maintain the calibration accuracy. The degradation of the onboard SD is tracked by a solar diffuser stability monitor (SDSM) over a wavelength range from 0.41 to 0.94 micrometers. Therefore, any degradation of the SD beyond 0.94 micrometers cannot be captured by the SDSM. The uncharacterized degradation at wavelengths beyond this limit could adversely affect the Level 1B (L1B) product. To reduce the calibration uncertainties caused by the SD degradation, invariant Earth-scene targets are used to monitor and calibrate the MODIS L1B product. The use of deep convective clouds (DCCs) is one such method and particularly significant for the short-wave infrared (SWIR) bands in assessing their long-term calibration stability. In this study, we use the DCC technique to assess the performance of the Terra and Aqua MODIS Collection-6 L1B for RSB 1 3- 7, and 26, with spectral coverage from 0.47 to 2.13 micrometers. Results show relatively stable trends in Terra and Aqua MODIS reflectance for most bands. Careful attention needs to be paid to Aqua band 1, Terra bands 3 and 26 as their trends are larger than 1% during the study time period. We check the feasibility of using the DCC technique to assess the stability in MODIS bands 17-19. The assessment test on response versus scan angle (RVS) calibration shows substantial trend difference for Aqua band 1between different angles of incidence (AOIs). The DCC technique can be used to improve the RVS calibration in the future.

  9. A deep staring campaign in the σ Orionis cluster. Variability in substellar members

    Science.gov (United States)

    Elliott, P.; Scholz, A.; Jayawardhana, R.; Eislöffel, J.; Hébrard, E. M.

    2017-12-01

    Context. The young star cluster near σ Orionis is one of the primary environments to study the properties of young brown dwarfs down to masses comparable to those of giant planets. Aims: Deep optical imaging is used to study time-domain properties of young brown dwarfs over typical rotational timescales and to search for new substellar and planetary-mass cluster members. Methods: We used the Visible Multi Object Spectrograph (VIMOS) at the Very Large Telescope (VLT) to monitor a 24'× 16' field in the I-band. We stared at the same area over a total integration time of 21 h, spanning three observing nights. Using the individual images from this run we investigated the photometric time series of nine substellar cluster members with masses from 10 to 60 MJup. The deep stacked image shows cluster members down to ≈5 MJup. We searched for new planetary-mass objects by combining our deep I-band photometry with public J-band magnitudes and by examining the nearby environment of known very low mass members for possible companions. Results: We find two brown dwarfs, with significantly variable, aperiodic light curves, both with masses around 50 MJup, one of which was previously unknown to be variable. The physical mechanism responsible for the observed variability is likely to be different for the two objects. The variability of the first object, a single-lined spectroscopic binary, is most likely linked to its accretion disc; the second may be caused by variable extinction by large grains. We find five new candidate members from the colour-magnitude diagram and three from a search for companions within 2000 au. We rule all eight sources out as potential members based on non-stellar shape and/or infrared colours. The I-band photometry is made available as a public dataset. Conclusions: We present two variable brown dwarfs. One is consistent with ongoing accretion, the other exhibits apparent transient variability without the presence of an accretion disc. Our analysis

  10. Atomic-Monolayer MoS2 Band-to-Band Tunneling Field-Effect Transistor

    KAUST Repository

    Lan, Yann Wen

    2016-09-05

    The experimental observation of band-to-band tunneling in novel tunneling field-effect transistors utilizing a monolayer of MoS2 as the conducting channel is demonstrated. Our results indicate that the strong gate-coupling efficiency enabled by two-dimensional materials, such as monolayer MoS2, results in the direct manifestation of a band-to-band tunneling current and an ambipolar transport.

  11. The O2 A-Band in the Fluxes and Polarization of Starlight Reflected by Earth-Like Exoplanets

    International Nuclear Information System (INIS)

    Fauchez, Thomas; Rossi, Loic; Stam, Daphne M.

    2017-01-01

    Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo A s , the optical thickness b cloud , the altitude of water clouds, and the mixing ratio of biosignature O 2 on the strength of the O 2 A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios ( η < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O 2 mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O 2 or any other absorbing gas.

  12. Numerical calculation of acoustic radiation from band-vibrating structures via FEM/FAQP method

    Directory of Open Access Journals (Sweden)

    GAO Honglin

    2017-08-01

    Full Text Available The Finite Element Method (FEM combined with the Frequency Averaged Quadratic Pressure method (FAQP are used to calculate the acoustic radiation of structures excited in the frequency band. The surface particle velocity of stiffened cylindrical shells under frequency band excitation is calculated using finite element software, the normal vibration velocity is converted from the surface particle velocity to calculate the average energy source (frequency averaged across intensity, frequency averaged across pressure and frequency averaged across velocity, and the FAQP method is used to calculate the average sound pressure level within the bandwidth. The average sound pressure levels are then compared with the bandwidth using finite element and boundary element software, and the results show that FEM combined with FAQP is more suitable for high frequencies and can be used to calculate the average sound pressure level in the 1/3 octave band with good stability, presenting an alternative to applying frequency-by-frequency calculation and the average frequency process. The FEM/FAQP method can be used as a prediction method for calculating acoustic radiation while taking the randomness of vibration at medium and high frequencies into consideration.

  13. Experimental and Numerical Studies of Particle Acceleration by an Active Microwave Medium

    CERN Document Server

    Schoessow, Paul

    2005-01-01

    There has been considerable theoretical work on the so-called PASER concept, in which a particle beam is accelerated directly by absorbing energy from an active medium, analogous to the amplification of an optical signal in a laser. Use of an active microwave (maser) medium would have the advantage of requiring relaxed beam quality (mm vs. nm characteristic beam dimensions). Recent work using electron paramagnetic resonance (EPR) techniques has demonstrated activity in the microwave regime (i.e. negative imaginary part of the magnetic susceptibility) for a class of organic compounds. A solution of fullerene (C60) in a liquid crystal solvent has been reported in the literature to possess a maser transition in the X-band region. An external DC magnetic field is required to obtain the effect; the frequency of the maser transition is adjustable by varying the magnetic field strength. We will report on the development of numerical and laboratory tools to evaluate the use of this material for accelerator applicatio...

  14. Scattering and extinction by spherical particles immersed in an absorbing host medium

    Science.gov (United States)

    Mishchenko, Michael I.; Dlugach, Janna M.

    2018-05-01

    Many applications of electromagnetic scattering involve particles immersed in an absorbing rather than lossless medium, thereby making the conventional scattering theory potentially inapplicable. To analyze this issue quantitatively, we employ the FORTRAN program developed recently on the basis of the first-principles electromagnetic theory to study far-field scattering by spherical particles embedded in an absorbing infinite host medium. We further examine the phenomenon of negative extinction identified recently for monodisperse spheres and uncover additional evidence in favor of its interference origin. We identify the main effects of increasing the width of the size distribution on the ensemble-averaged extinction efficiency factor and show that negative extinction can be eradicated by averaging over a very narrow size distribution. We also analyze, for the first time, the effects of absorption inside the host medium and ensemble averaging on the phase function and other elements of the Stokes scattering matrix. It is shown in particular that increasing absorption significantly suppresses the interference structure and can result in a dramatic expansion of the areas of positive polarization. Furthermore, the phase functions computed for larger effective size parameters can develop a very deep minimum at side-scattering angles bracketed by a strong diffraction peak in the forward direction and a pronounced backscattering maximum.

  15. Enhanced 1.32 μm fluorescence and broadband amplifying for O-band optical amplifier in Nd3+-doped tellurite glass

    Science.gov (United States)

    Zhou, Zi-zhong; Zhou, Ming-han; Su, Xiu-e.; Cheng, Pan; Zhou, Ya-xun

    2017-01-01

    WO3 oxides with relatively high phonon energy and different concentrations were introduced into the Nd3+-doped tellurite-based glasses of TeO2-ZnO-Na2O to improve the 1.32 μm band fluorescence emission. The absorption spectra, Raman spectra, 1.32 μm band fluorescence spectra and differential scanning calorimeter (DSC) curves were measured, together with the Judd-Ofelt intensity parameters, stimulated emission and gain parameters were calculated to evaluate the effects of WO3 amount on the glass structure and spectroscopic properties of 1.32 μm band fluorescence. It is shown that the introduction of an appropriate amount of WO3 oxide can effectively improve the 1.32 μm band fluorescence intensity through the enhanced multi-phonon relaxation (MPR) processes between the excited levels of Nd3+. The results indicate that the prepared Nd3+-doped tellurite glass with an appropriate amount of WO3 oxide is a potential gain medium applied for the O-band broad and high-gain fiber amplifier.

  16. Lunar Reconnaissance Orbiter K-Band (26 GHz) Signal Analysis: Initial Study Results

    Science.gov (United States)

    Morabito, D. D.; Heckman, D.

    2017-11-01

    Lower frequency telemetry bands are becoming more limited in bandwidth due to increased competition between flight projects and other entities. Higher frequency bands offer significantly more bandwidth and hence the prospect of much higher data rates. Future or prospective flight projects considering higher frequency bands such as Ka-band (32 GHz) for deep-space and K-band (26 GHz) for near-Earth telemetry links are interested in past flight experience with available received data at these frequencies. Given that there is increased degradation due to the atmosphere at these higher frequencies, there is an effort to retrieve flight data of received signal strength to analyze performance under a variety of factors. Such factors include elevation angle, season, and atmospheric conditions. This article reports on the analysis findings of over 10 million observations of received signal strength of the Lunar Reconnaissance Orbiter (LRO) spacecraft collected between 2014 and 2017. We analyzed these data to characterize link performance over a wide range of weather conditions, season, and as a function of elevation angle. Based on this analysis, we have confirmed the safety of using a 3-dB margin for preflight planning purposes. These results suggest that a 3-dB margin with respect to adverse conditions will ensure a 98 to 99 percent data return under 95 percent weather conditions at 26 GHz (K-band), thus confirming expectations from link budget predictions. The results suggest that this margin should be applicable for all elevation angles above 10 deg. Thus, missions that have sufficient power for their desired data rates may opt to use 10 deg as their minimum elevation angle. Limitations of this study include climate variability and the fact that the observations require removal of hotbody noise in order to perform an adequate cumulative distribution function (CDF) analysis, which is planned for a future comprehensive study. Flight projects may use other link margins

  17. Band-notched spiral antenna

    Science.gov (United States)

    Jeon, Jae; Chang, John

    2018-03-13

    A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.

  18. THE AGE SPREAD OF QUIESCENT GALAXIES WITH THE NEWFIRM MEDIUM-BAND SURVEY: IDENTIFICATION OF THE OLDEST GALAXIES OUT TO z ∼ 2

    International Nuclear Information System (INIS)

    Whitaker, Katherine E.; Van Dokkum, Pieter G.; Brammer, Gabriel; Bezanson, Rachel; Lee, Kyoung-Soo; Muzzin, Adam; Wake, David A.; Kriek, Mariska; Franx, Marijn; Quadri, Ryan F.; Labbe, Ivo; Marchesini, Danilo; Illingworth, Garth D.; Rudnick, Gregory

    2010-01-01

    With a complete, mass-selected sample of quiescent galaxies from the NEWFIRM Medium-Band Survey, we study the stellar populations of the oldest and most massive galaxies (>10 11 M sun ) to high redshift. The sample includes 570 quiescent galaxies selected based on their extinction-corrected U - V colors out to z = 2.2, with accurate photometric redshifts, σ z /(1 + z) ∼ 2%, and rest-frame colors, σ U-V ∼ 0.06 mag. We measure an increase in the intrinsic scatter of the rest-frame U - V colors of quiescent galaxies with redshift. This scatter in color arises from the spread in ages of the quiescent galaxies, where we see both relatively quiescent red, old galaxies and quiescent blue, younger galaxies toward higher redshift. The trends between color and age are consistent with the observed composite rest-frame spectral energy distributions (SEDs) of these galaxies. The composite SEDs of the reddest and bluest quiescent galaxies are fundamentally different, with remarkably well-defined 4000 A and Balmer breaks, respectively. Some of the quiescent galaxies may be up to four times older than the average age and up to the age of the universe, if the assumption of solar metallicity is correct. By matching the scatter predicted by models that include growth of the red sequence by the transformation of blue galaxies to the observed intrinsic scatter, the data indicate that most early-type galaxies formed their stars at high redshift with a burst of star formation prior to migrating to the red sequence. The observed U - V color evolution with redshift is weaker than passive evolution predicts; possible mechanisms to slow the color evolution include increasing amounts of dust in quiescent galaxies toward higher redshift, red mergers at z ∼< 1, and a frosting of relatively young stars from star formation at later times.

  19. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 1: The LBNF and DUNE Projects

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); et al.

    2016-01-22

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  20. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE Projects

    CERN Document Server

    Acciarri, R.; Adamowski, M.; Adams, C.; Adamson, P.; Adhikari, S.; Ahmad, Z.; Albright, C.H.; Alion, T.; Amador, E.; Anderson, J.; Anderson, K.; Andreopoulos, C.; Andrews, M.; Andrews, R.; Anghel, I.; Anjos, J. d.; Ankowski, A.; Antonello, M.; Aranda Fernandez, A.; Ariga, A.; Ariga, T.; Aristizabal, D.; Arrieta-Diaz, E.; Aryal, K.; Asaadi, J.; Asner, D.; Athar, M.S.; Auger, M.; Aurisano, A.; Aushev, V.; Autiero, D.; Avila, M.; Back, J.J.; Bai, X.; Baibussinov, B.; Baird, M.; Balantekin, B.; Baller, B.; Ballett, P.; Bambah, B.; Bansal, M.; Bansal, S.; Barker, G.J.; Barletta, W.A.; Barr, G.; Barros, N.; Bartosz, B.; Bartoszek, L.; Bashyal, A.; Bass, M.; Bay, F.; Beacom, J.; Behera, B.R.; Bellettini, G.; Bellini, V.; Beltramello, O.; Benekos, N.; Benetti, P.A.; Bercellie, A.; Bergevin, M.; Berman, E.; Berns, H.; Bernstein, R.; Bertolucci, S.; Bhandari, B.; Bhatnagar, V.; Bhuyan, B.; Bian, J.; Biery, K.; Bishai, M.; Blackburn, T.; Blake, A.; Blaszczyk, F. d. M.; Blaufuss, E.; Bleakley, B.; Blucher, E.; Bocean, V.; Boffelli, F.; Boissevain, J.; Bolognesi, S.; Bolton, T.; Bonesini, M.; Boone, T.; Booth, C.; Bordoni, S.; Borysova, M.; Bourguille, B.; Boyd, S.B.; Brailsford, D.; Brandt, A.; Bremer, J.; Brice, S.; Bromberg, C.; Brooijmans, G.; Brown, G.; Brown, R.; Brunetti, G.; Bu, X.; Buchanan, N.; Budd, H.; Bugg, B.; Calafiura, P.; Calligarich, E.; Calvo, E.; Camilleri, L.; Campanelli, M.; Cantini, C.; Carls, B.; Carr, R.; Cascella, M.; Castromonte, C.; Mur, E.Catano; Cavanna, F.; Centro, S.; Cervera Villanueva, A.; Chalifour, M.; Chandratre, V.B.; Chatterjee, A.; Chattopadhyay, S.; Chattopadhyay, S.; Chaussard, L.; Chembra, S.; Chen, H.; Chen, K.; Chen, M.; Cherdack, D.; Chi, C.; Childress, S.; Choubey, S.; Choudhary, B.C.; Christodoulou, G.; Christofferson, C.; Church, E.; Cianci, D.; Cline, D.; Coan, T.; Cocco, A.; Coelho, J.; Cole, P.; Collin, G.; Conrad, J.M.; Convery, M.; Corey, R.; Corwin, L.; Cranshaw, J.; Crivelli, P.; Cronin-Hennessy, D.; Curioni, A.; Cushing, J.; Adams, D.L.; Dale, D.; Das, S.R.; Davenne, T.; Davies, G.S.; Davies, J.; Dawson, J.; De, K.; de Gouvea, A.; de Jong, J.K.; de Jong, P.; De Lurgio, P.; Decowski, M.; Delbart, A.; Densham, C.; Dharmapalan, R.; Dhingra, N.; Di Luise, S.; Diamantopoulou, M.; Diaz, J.S.; Diaz Bautista, G.; Diwan, M.; Djurcic, Z.; Dolph, J.; Drake, G.; Duchesneau, D.; Duvernois, M.; Duyang, H.; Dwyer, D.A.; Dye, S.; Dytman, S.; Eberly, B.; Edgecock, R.; Edmunds, D.; Elliott, S.; Elnimr, M.; Emery, S.; Endress, E.; Eno, S.; Ereditato, A.; Escobar, C.O.; Evans, J.; Falcone, A.; Falk, L.; Farbin, A.; Farnese, C.; Farzan, Y.; Fava, A.; Favilli, L.; Felde, J.; Felix, J.; Fernandes, S.; Fields, L.; Finch, A.; Fitton, M.; Fleming, B.; Forest, T.; Fowler, J.; Fox, W.; Fried, J.; Friedland, A.; Fuess, S.; Fujikawa, B.; Gago, A.; Gallagher, H.; Galymov, S.; Gamble, T.; Gandhi, R.; Garcia-Gamez, D.; Gardiner, S.; Garvey, G.; Gehman, V.M.; Gendotti, A.; Geronimo, G. d.; Ghag, C.; Ghoshal, P.; Gibin, D.; Gil-Botella, I.; Gill, R.; Girardelli, D.; Giri, A.; Glavin, S.; Goeldi, D.; Golapinni, S.; Gold, M.; Gomes, R.A.; Gomez Cadenas, J.J.; Goodman, M.C.; Gorbunov, D.; Goswami, S.; Graf, N.; Graf, N.; Graham, M.; Gramelini, E.; Gran, R.; Grant, C.; Grant, N.; Greco, V.; Greenlee, H.; Greenler, L.; Greenley, C.; Groh, M.; Grullon, S.; Grundy, T.; Grzelak, K.; Guardincerri, E.; Guarino, V.; Guarnaccia, E.; Guedes, G.P.; Guenette, R.; Guglielmi, A.; Habig, A.T.; Hackenburg, R.W.; Hackenburg, A.; Hadavand, H.; Haenni, R.; Hahn, A.; Haigh, M.D.; Haines, T.; Hamernik, T.; Handler, T.; Hans, S.; Harris, D.; Hartnell, J.; Hasegawa, T.; Hatcher, R.; Hatzikoutelis, A.; Hays, S.; Hazen, E.; Headley, M.; Heavey, A.; Heeger, K.; Heise, J.; Hennessy, K.; Hewes, J.; Higuera, A.; Hill, T.; Himmel, A.; Hogan, M.; Holanda, P.; Holin, A.; Honey, W.; Horikawa, S.; Horton-Smith, G.; Howard, B.; Howell, J.; Hurh, P.; Huston, J.; Hylen, J.; Imlay, R.; Insler, J.; Introzzi, G.; Ioanisyan, D.; Ioannisian, A.; Iwamoto, K.; Izmaylov, A.; Jackson, C.; Jaffe, D.E.; James, C.; James, E.; Jediny, F.; Jen, C.; Jhingan, A.; Jimenez, S.; Jo, J.H.; Johnson, M.; Johnson, R.; Johnstone, J.; Jones, B.J.; Joshi, J.; Jostlein, H.; Jung, C.K.; Junk, T.; Kaboth, A.; Kadel, R.; Kafka, T.; Kalousis, L.; Kamyshkov, Y.; Karagiorgi, G.; Karasavvas, D.; Karyotakis, Y.; Kaur, A.; Kaur, P.; Kayser, B.; Kazaryan, N.; Kearns, E.; Keener, P.; Kemboi, S.; Kemp, E.; Kettell, S.H.; Khabibullin, M.; Khandaker, M.; Khotjantsev, A.; Kirby, B.; Kirby, M.; Klein, J.; Kobilarcik, T.; Kohn, S.; Koizumi, G.; Kopylov, A.; Kordosky, M.; Kormos, L.; Kose, U.; Kostelecky, A.; Kramer, M.; Kreslo, I.; Kriske, R.; Kropp, W.; Kudenko, Y.; Kudryavtsev, V.A.; Kulagin, S.; Kumar, A.; Kumar, G.; Kumar, J.; Kumar, L.; Kutter, T.; Laminack, A.; Lande, K.; Lane, C.; Lang, K.; Lanni, F.; Learned, J.; Lebrun, P.; Lee, D.; Lee, H.; Lee, K.; Lee, W.M.; Leigui de Oliveira, M.A.; Li, Q.; Li, S.; Li, S.; Li, X.; Li, Y.; Li, Z.; Libo, J.; Lin, C.S.; Lin, S.; Ling, J.; Link, J.; Liptak, Z.; Lissauer, D.; Littenberg, L.; Littlejohn, B.; Liu, Q.; Liu, T.; Lockwitz, S.; Lockyer, N.; Loew, T.; Lokajicek, M.; Long, K.; Lopes, M.D.L.; Lopez, J.P.; Losecco, J.; Louis, W.; Lowery, J.; Luethi, M.; Luk, K.; Lundberg, B.; Lundin, T.; Luo, X.; Lux, T.; Lykken, J.; Machado, A.A.; Macier, J.R.; Magill, S.; Mahler, G.; Mahn, K.; Malek, M.; Malhotra, S.; Malon, D.; Mammoliti, F.; Mancina, S.; Mandal, S.K.; Mandodi, S.; Manly, S.L.; Mann, A.; Marchionni, A.; Marciano, W.; Mariani, C.; Maricic, J.; Marino, A.; Marshak, M.; Marshall, C.; Marshall, J.; Marteau, J.; Martin-Albo, J.; Martinez, D.; Matsuno, S.; Matthews, J.; Mauger, C.; Mavrokoridis, K.; Mayilyan, D.; Mazzucato, E.; McCauley, N.; McCluskey, E.; McConkey, N.; McDonald, K.; McFarland, K.S.; McGowan, A.M.; McGrew, C.; McKeown, R.; McNulty, D.; McTaggart, R.; Mefodiev, A.; Mehrian, M.; Mehta, P.; Mei, D.; Mena, O.; Menary, S.; Mendez, H.; Menegolli, A.; Meng, G.; Meng, Y.; Mertins, D.; Merritt, H.; Messier, M.; Metcalf, W.; Mewes, M.; Meyer, H.; Miao, T.; Milincic, R.; Miller, W.; Mills, G.; Mineev, O.; Miranda, O.; Mishra, C.S.; Mishra, S.R.; Mitrica, B.; Mladenov, D.; Mocioiu, I.; Mohanta, R.; Mokhov, N.; Montanari, C.; Montanari, D.; Moon, J.; Mooney, M.; Moore, C.; Morfin, J.; Morgan, B.; Morris, C.; Morse, W.; Moss, Z.; Mossey, C.; Moura, C.A.; Mousseau, J.; Mualem, L.; Muether, M.; Mufson, S.; Murphy, S.; Musser, J.; Musser, R.; Nakajima, Y.; Naples, D.; Napolitano, J.; Navarro, J.; Navas, D.; Nelson, J.; Nessi, M.; Newcomer, M.; Ng, Y.; Nichol, R.; Nicholls, T.C.; Nikolics, K.; Niner, E.; Norris, B.; Noto, F.; Novakova, P.; Novella, P.; Nowak, J.; Nunes, M.S.; O'Keeffe, H.; Oldeman, R.; Oliveira, R.; Olson, T.; Onishchuk, Y.; Osta, J.; Ovsjannikova, T.; Page, B.; Pakvasa, S.; Pal, S.; Palamara, O.; Palazzo, A.; Paley, J.; Palomares, C.; Pantic, E.; Paolone, V.; Papadimitriou, V.; Park, J.; Parke, S.; Parsa, Z.; Pascoli, S.; Patterson, R.; Patton, S.; Patzak, T.; Paulos, B.; Paulucci, L.; Pavlovic, Z.; Pawloski, G.; Peeters, S.; Pennacchio, E.; Perch, A.; Perdue, G.N.; Periale, L.; Perkin, J.D.; Pessard, H.; Petrillo, G.; Petti, R.; Petukhov, A.; Pietropaolo, F.; Plunkett, R.; Pordes, S.; Potekhin, M.; Potenza, R.; Potukuchi, B.; Poudyal, N.; Prokofiev, O.; Pruthi, N.; Przewlocki, P.; Pushka, D.; Qian, X.; Raaf, J.L.; Raboanary, R.; Radeka, V.; Radovic, A.; Raffelt, G.; Rakhno, I.; Rakotondramanana, H.T.; Rakotondravohitra, L.; Ramachers, Y.A.; Rameika, R.; Ramsey, J.; Rappoldi, A.; Raselli, G.; Ratoff, P.; Rebel, B.; Regenfus, C.; Reichenbacher, J.; Reitzner, D.; Remoto, A.; Renshaw, A.; Rescia, S.; Richardson, M.; Rielage, K.; Riesselmann, K.; Robinson, M.; Rochester, L.; Rodrigues, O.B.; Rodrigues, P.; Roe, B.; Rosen, M.; Roser, R.M.; Ross-Lonergan, M.; Rossella, M.; Rubbia, A.; Rubbia, C.; Rucinski, R.; von Rohr, C.Rudolph; Russell, B.; Ruterbories, D.; Saakyan, R.; Sahu, N.; Sala, P.; Samios, N.; Sanchez, F.; Sanchez, M.; Sands, B.; Santana, S.; Santorelli, R.; Santucci, G.; Saoulidou, N.; Scaramelli, A.; Schellman, H.; Schlabach, P.; Schmitt, R.; Schmitz, D.; Schneps, J.; Scholberg, K.; Schukraft, A.; Schwehr, J.; Segreto, E.; Seibert, S.; Sepulveda-Quiroz, J.A.; Sergiampietri, F.; Sexton-Kennedy, L.; Sgalaberna, D.; Shaevitz, M.; Shahi, J.; Shahsavarani, S.; Shanahan, P.; Shankar, S.U.; Sharma, R.; Sharma, R.K.; Shaw, T.; Shrock, R.; Shyrma, I.; Simos, N.; Sinev, G.; Singh, I.; Singh, J.; Singh, J.; Singh, V.; Sinnis, G.; Sippach, W.; Smargianaki, D.; Smy, M.; Snider, E.; Snopok, P.; Sobczyk, J.; Sobel, H.; Soderberg, M.; Solomey, N.; Sondheim, W.; Sorel, M.; Sousa, A.; Soustruznik, K.; Spitz, J.; Spooner, N.J.; Stancari, M.; Stancu, I.; Stefan, D.; Steiner, H.M.; Stewart, J.; Stock, J.; Stoica, S.; Stone, J.; Strait, J.; Strait, M.; Strauss, T.; Striganov, S.; Sulej, R.; Sullivan, G.; Sun, Y.; Suter, L.; Sutera, C.M.; Svoboda, R.; Szczerbinska, B.; Szelc, A.; Soldner-Rembold, S.; Talaga, R.; Tamsett, M.; Tariq, S.; Tatar, E.; Tayloe, R.; Taylor, C.; Taylor, D.; Terao, K.; Thiesse, M.; Thomas, J.; Thompson, L.F.; Thomson, M.; Thorn, C.; Thorpe, M.; Tian, X.; Tiedt, D.; Timm, S.C.; Tonazzo, A.; Tope, T.; Topkar, A.; Torres, F.R.; Torti, M.; Tortola, M.; Tortorici, F.; Toups, M.; Touramanis, C.; Tripathi, M.; Tropin, I.; Tsai, Y.; Tsang, K.V.; Tsenov, R.; Tufanli, S.; Tull, C.; Turner, J.; Tzanov, M.; Tziaferi, E.; Uchida, Y.; Urheim, J.; Usher, T.; Vagins, M.; Vahle, P.; Valdiviesso, G.A.; Valerio, L.; Vallari, Z.; Valle, J.; Van Berg, R.; Van de Water, R.; Van Gemmeren, P.; Varanini, F.; Varner, G.; Vasseur, G.; Vaziri, K.; Velev, G.; Ventura, S.; Verdugo, A.; Viant, T.; Vieira, T.V.; Vignoli, C.; Vilela, C.; Viren, B.; Vrba, T.; Wachala, T.; Wahl, D.; Wallbank, M.; Walsh, N.; Wang, B.; Wang, H.; Wang, L.; Wang, T.; Warburton, T.K.; Warner, D.; Wascko, M.; Waters, D.; Watson, T.B.; Weber, A.; Weber, M.; Wei, W.; Weinstein, A.; Wells, D.; Wenman, D.; Wetstein, M.; White, A.; Whitehead, L.; Whittington, D.; Wilking, M.; Willhite, J.; Wilson, P.; Wilson, R.J.; Winslow, L.; Wittich, P.; Wojcicki, S.; Wong, H.H.; Wood, K.; Worcester, E.; Worcester, M.; Wu, S.; Xin, T.; Yanagisawa, C.; Yang, S.; Yang, T.; Yarritu, K.; Ye, J.; Yeh, M.; Yershov, N.; Yonehara, K.; Yu, B.; Yu, J.; Zalesak, J.; Zalewska, A.; Zamorano, B.; Zang, L.; Zani, A.; Zani, A.; Zavala, G.; Zeller, G.; Zhang, C.; Zhang, C.; Zimmerman, E.D.; Zito, M.; Zwaska, R.

    2016-01-01

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  1. Architectural design of a ground-based deep-space optical reception antenna

    Science.gov (United States)

    Kerr, E. L.

    1989-01-01

    An architectural design of a ground-based antenna (telescope) for receiving optical communications from deep space is presented. Physical and optical parameters, and their effect on the performance and cost considerations, are described. The channel capacity of the antenna is 100 kbits/s from Saturn and 5 Mbits/s from Mars. A novel sunshade is designed to permit optical communication even when the deep-space laser source is as close to the sun as 12 deg. Inserts in the tubes of the sunshade permit operations at solar elongations as small as 6 or 3 deg. The Nd:YAG source laser and the Fraunhofer filter (a narrow-band predetection optical filter) are tuned to match the Doppler shifts of the source and background. A typical Saturn-to-earth data link can reduce its source power requirement from 8.2 W to 2 W of laser output by employing a Fraunhofer filter instead of a conventional multilayer dielectric filter.

  2. A study of ion implanted gallium arsenide using deep level transient spectroscopy

    International Nuclear Information System (INIS)

    Emerson, N.G.

    1981-03-01

    This thesis is concerned with the study of deep energy levels in ion implanted gallium arsenide (GaAs) using deep level transient spectroscopy (D.L.T.S.). The D.L.T.S. technique is used to characterise deep levels in terms of their activation energies and capture cross-sections and to determine their concentration profiles. The main objective is to characterise the effects on deep levels, of ion implantation and the related annealing processes. In the majority of cases assessment is carried out using Schottky barrier diodes. Low doses of selenium ions 1 to 3 x 10 12 cm -2 are implanted into vapour phase epitaxial (V.P.E.) GaAs and the effects of post-implantation thermal and pulsed laser annealing are compared. The process of oxygen implantation with doses in the range 1 x 10 12 to 5 x 10 13 cm -2 followed by thermal annealing at about 750 deg C, introduces a deep level at 0.79 eV from the conduction band. Oxygen implantation, at doses of 5 x 10 13 cm -2 , into V.P.E. GaAs produces a significant increase in the concentration of the A-centre (0.83 eV). High doses of zinc (10 15 cm -2 ) are implanted into n-type V.P.E. GaAs to form shallow p-type layers. The D.L.T.S. system described in the text is used to measure levels in the range 0.16 to 1.1 eV (for GaAs) with a sensitivity of the order 1:10 3 . (U.K.)

  3. Medium-Based Design: Extending a Medium to Create an Exploratory Learning Environment

    Science.gov (United States)

    Rick, Jochen; Lamberty, K. K.

    2005-01-01

    This article introduces "medium-based" design -- an approach to creating "exploratory learning environments" using the method of "extending a medium". First, the characteristics of exploratory learning environments and medium-based design are described and grounded in related work. Particular attention is given to "extending a medium" --…

  4. A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells.

    Science.gov (United States)

    Li, Sunsun; Ye, Long; Zhao, Wenchao; Yan, Hongping; Yang, Bei; Liu, Delong; Li, Wanning; Ade, Harald; Hou, Jianhui

    2018-05-21

    To simultaneously achieve low photon energy loss ( E loss ) and broad spectral response, the molecular design of the wide band gap (WBG) donor polymer with a deep HOMO level is of critical importance in fullerene-free polymer solar cells (PSCs). Herein, we developed a new benzodithiophene unit, i.e., DTBDT-EF, and conducted systematic investigations on a WBG DTBDT-EF-based donor polymer, namely, PDTB-EF-T. Due to the synergistic electron-withdrawing effect of the fluorine atom and ester group, PDTB-EF-T exhibits a higher oxidation potential, i.e., a deeper HOMO level (ca. -5.5 eV) than most well-known donor polymers. Hence, a high open-circuit voltage of 0.90 V was obtained when paired with a fluorinated small molecule acceptor (IT-4F), corresponding to a low E loss of 0.62 eV. Furthermore, side-chain engineering demonstrated that subtle side-chain modulation of the ester greatly influences the aggregation effects and molecular packing of polymer PDTB-EF-T. With the benefits of the stronger interchain π-π interaction, the improved ordering structure, and thus the highest hole mobility, the most symmetric charge transport and reduced recombination are achieved for the linear decyl-substituted PDTB-EF-T (P2)-based PSCs, leading to the highest short-circuit current density and fill factor (FF). Due to the high Flory-Huggins interaction parameter (χ), surface-directed phase separation occurs in the P2:IT-4F blend, which is supported by X-ray photoemission spectroscopy results and cross-sectional transmission electron microscope images. By taking advantage of the vertical phase distribution of the P2:IT-4F blend, a high power conversion efficiency (PCE) of 14.2% with an outstanding FF of 0.76 was recorded for inverted devices. These results demonstrate the great potential of the DTBDT-EF unit for future organic photovoltaic applications.

  5. Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery

    Science.gov (United States)

    Mahdianpari, Masoud; Salehi, Bahram; Mohammadimanesh, Fariba; Motagh, Mahdi

    2017-08-01

    Wetlands are important ecosystems around the world, although they are degraded due both to anthropogenic and natural process. Newfoundland is among the richest Canadian province in terms of different wetland classes. Herbaceous wetlands cover extensive areas of the Avalon Peninsula, which are the habitat of a number of animal and plant species. In this study, a novel hierarchical object-based Random Forest (RF) classification approach is proposed for discriminating between different wetland classes in a sub-region located in the north eastern portion of the Avalon Peninsula. Particularly, multi-polarization and multi-frequency SAR data, including X-band TerraSAR-X single polarized (HH), L-band ALOS-2 dual polarized (HH/HV), and C-band RADARSAT-2 fully polarized images, were applied in different classification levels. First, a SAR backscatter analysis of different land cover types was performed by training data and used in Level-I classification to separate water from non-water classes. This was followed by Level-II classification, wherein the water class was further divided into shallow- and deep-water classes, and the non-water class was partitioned into herbaceous and non-herbaceous classes. In Level-III classification, the herbaceous class was further divided into bog, fen, and marsh classes, while the non-herbaceous class was subsequently partitioned into urban, upland, and swamp classes. In Level-II and -III classifications, different polarimetric decomposition approaches, including Cloude-Pottier, Freeman-Durden, Yamaguchi decompositions, and Kennaugh matrix elements were extracted to aid the RF classifier. The overall accuracy and kappa coefficient were determined in each classification level for evaluating the classification results. The importance of input features was also determined using the variable importance obtained by RF. It was found that the Kennaugh matrix elements, Yamaguchi, and Freeman-Durden decompositions were the most important parameters

  6. The correlation between the ultraviolet lambda 220 feature and the diffuse lambda 4430 band

    International Nuclear Information System (INIS)

    Nandy, K.; Thompson, G.I.

    1975-01-01

    Observations of the ultraviolet feature which occurs close to 2200 A are presented for over 60 stars for which interstellar lambda 4430 data are available in the literature. Observational material used here is obtained from the ultraviolet spectra taken with the Sky Survey telescope (S2/68) in the ESRO TD1 satellite. The equivalent widths of the lambda 2200 feature have been determined from ultraviolet extinction at 2190 and 2500 A, and the relation between the equivalent width of the ultraviolet feature and the central depth of the lambda 4430 band has been determined. It is found that they are well correlated and the correlation coefficient, including allowance for errors, is greater than 0.9; this indicates that the carriers for the lambda 2200 feature and diffuse band lambda 4430 coexist in the interstellar medium. (author)

  7. MUSE spectroscopy and deep observations of a unique compact JWST target, lensing cluster CLIO

    Science.gov (United States)

    Griffiths, Alex; Conselice, Christopher J.; Alpaslan, Mehmet; Frye, Brenda L.; Diego, Jose M.; Zitrin, Adi; Yan, Haojing; Ma, Zhiyuan; Barone-Nugent, Robert; Bhatawdekar, Rachana; Driver, Simon P.; Robotham, Aaron S. G.; Windhorst, Rogier A.; Wyithe, J. Stuart B.

    2018-04-01

    We present the results of a VLT MUSE/FORS2 and Spitzer survey of a unique compact lensing cluster CLIO at z = 0.42, discovered through the GAMA survey using spectroscopic redshifts. Compact and massive clusters such as this are understudied, but provide a unique prospective on dark matter distributions and for finding background lensed high-z galaxies. The CLIO cluster was identified for follow-up observations due to its almost unique combination of high-mass and dark matter halo concentration, as well as having observed lensing arcs from ground-based images. Using dual band optical and infra-red imaging from FORS2 and Spitzer, in combination with MUSE optical spectroscopy we identify 89 cluster members and find background sources out to z = 6.49. We describe the physical state of this cluster, finding a strong correlation between environment and galaxy spectral type. Under the assumption of an NFW profile, we measure the total mass of CLIO to be M200 = (4.49 ± 0.25) × 1014 M⊙. We build and present an initial strong-lensing model for this cluster, and measure a relatively low intracluster light (ICL) fraction of 7.21 ± 1.53 per cent through galaxy profile fitting. Due to its strong potential for lensing background galaxies and its low ICL, the CLIO cluster will be a target for our 110 h James Webb Space Telescope `Webb Medium-Deep Field' (WMDF) GTO program.

  8. A detailed analysis of the energy levels configuration existing in the band gap of supersaturated silicon with titanium for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, E.; Dueñas, S.; Castán, H.; García, H.; Bailón, L. [Dept. de Electricidad y Electrónica, Universidad de Valladolid, Paseo de Belén 15, 47011 Valladolid (Spain); Montero, D.; García-Hernansanz, R.; García-Hemme, E.; González-Díaz, G. [Dept. de Física Aplicada III (Electricidad y Electrónica), Univ. Complutense de Madrid, 28040 Madrid (Spain); CEI Campus Moncloa, UCM-UPM, 28040 Madrid (Spain); Olea, J. [CEI Campus Moncloa, UCM-UPM, 28040 Madrid (Spain); Instituto de Energía Solar, E.T.S.I. de Telecomunicación, Univ. Politécnica de Madrid, 28040 Madrid (Spain)

    2015-12-28

    The energy levels created in supersaturated n-type silicon substrates with titanium implantation in the attempt to create an intermediate band in their band-gap are studied in detail. Two titanium ion implantation doses (10{sup 13 }cm{sup -2} and 10{sup 14 }cm{sup -2}) are studied in this work by conductance transient technique and admittance spectroscopy. Conductance transients have been measured at temperatures of around 100 K. The particular shape of these transients is due to the formation of energy barriers in the conduction band, as a consequence of the band-gap narrowing induced by the high titanium concentration. Moreover, stationary admittance spectroscopy results suggest the existence of different energy level configuration, depending on the local titanium concentration. A continuum energy level band is formed when titanium concentration is over the Mott limit. On the other hand, when titanium concentration is lower than the Mott limit, but much higher than the donor impurity density, a quasi-continuum energy level distribution appears. Finally, a single deep center appears for low titanium concentration. At the n-type substrate, the experimental results obtained by means of thermal admittance spectroscopy at high reverse bias reveal the presence of single levels located at around E{sub c}-425 and E{sub c}-275 meV for implantation doses of 10{sup 13 }cm{sup −2} and 10{sup 14 }cm{sup −2}, respectively. At low reverse bias voltage, quasi-continuously distributed energy levels between the minimum of the conduction bands, E{sub c} and E{sub c}-450 meV, are obtained for both doses. Conductance transients detected at low temperatures reveal that the high impurity concentration induces a band gap narrowing which leads to the formation of a barrier in the conduction band. Besides, the relationship between the activation energy and the capture cross section values of all the energy levels fits very well to the Meyer-Neldel rule. As it is known

  9. Deep iCrawl: An Intelligent Vision-Based Deep Web Crawler

    OpenAIRE

    R.Anita; V.Ganga Bharani; N.Nityanandam; Pradeep Kumar Sahoo

    2011-01-01

    The explosive growth of World Wide Web has posed a challenging problem in extracting relevant data. Traditional web crawlers focus only on the surface web while the deep web keeps expanding behind the scene. Deep web pages are created dynamically as a result of queries posed to specific web databases. The structure of the deep web pages makes it impossible for traditional web crawlers to access deep web contents. This paper, Deep iCrawl, gives a novel and vision-based app...

  10. Highly increased detection of silver stained protein bands in polyacrylamide gels with thermo-optical methods

    Science.gov (United States)

    Mazza, Giulia; Posnicek, Thomas; Brandl, Martin

    2016-11-01

    Sodium dodecyl sulfate polyacrylamide gel electrophoresis is a well-known technique to separate proteins by their molecular weight. After electrophoresis, the gels are commonly stained for protein band analysis with silver stain; this allows the detection of protein loads to about 1 ng. To increase the detection sensitivity of the protein bands down in the subnanogram level, a sensor has been developed based on the thermal lens effect to scan and quantify protein loads which would remain undetected using the standard imaging systems. The thermal lens sensor is equipped with a 450 nm diode pump laser modulated at 1 Hz and a HeNe probe laser mounted in collinear geometry. The sensor could detect protein bands of 0.05 ng when the gel was soaked in methanol/water and 0.1 ng in water. The limit of detection ranged from 8 to 20 pg, depending on the soaking medium and the staining efficiency. Thus, the detection of silver stain by thermal lens effect results 10 to 20 times more sensitive than the standard colorimetric method.

  11. C-Band Airport Surface Communications System Engineering-Initial High-Level Safety Risk Assessment and Mitigation

    Science.gov (United States)

    Zelkin, Natalie; Henriksen, Stephen

    2011-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed C-band (5091- to 5150-MHz) airport surface communication system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents an initial high-level safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the C-band communication system after the profile is finalized and system rollout timing is determined. A security risk assessment has been performed by NASA as a parallel activity. While safety analysis is concerned with a prevention of accidental errors and failures, the security threat analysis focuses on deliberate attacks. Both processes identify the events that affect operation of the system; and from a safety perspective the security threats may present safety risks.

  12. L-Band Digital Aeronautical Communications System Engineering - Initial Safety and Security Risk Assessment and Mitigation

    Science.gov (United States)

    Zelkin, Natalie; Henriksen, Stephen

    2011-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed L-band (960 to 1164 MHz) terrestrial en route communications system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents a preliminary safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the L-band communication system after the technology is chosen and system rollout timing is determined. The security risk analysis resulted in identifying main security threats to the proposed system as well as noting additional threats recommended for a future security analysis conducted at a later stage in the system development process. The document discusses various security controls, including those suggested in the COCR Version 2.0.

  13. Comparison of Travel-Time and Amplitude Measurements for Deep-Focusing Time-Distance Helioseismology

    Science.gov (United States)

    Pourabdian, Majid; Fournier, Damien; Gizon, Laurent

    2018-04-01

    The purpose of deep-focusing time-distance helioseismology is to construct seismic measurements that have a high sensitivity to the physical conditions at a desired target point in the solar interior. With this technique, pairs of points on the solar surface are chosen such that acoustic ray paths intersect at this target (focus) point. Considering acoustic waves in a homogeneous medium, we compare travel-time and amplitude measurements extracted from the deep-focusing cross-covariance functions. Using a single-scattering approximation, we find that the spatial sensitivity of deep-focusing travel times to sound-speed perturbations is zero at the target location and maximum in a surrounding shell. This is unlike the deep-focusing amplitude measurements, which have maximum sensitivity at the target point. We compare the signal-to-noise ratio for travel-time and amplitude measurements for different types of sound-speed perturbations, under the assumption that noise is solely due to the random excitation of the waves. We find that, for highly localized perturbations in sound speed, the signal-to-noise ratio is higher for amplitude measurements than for travel-time measurements. We conclude that amplitude measurements are a useful complement to travel-time measurements in time-distance helioseismology.

  14. Effect of deep dislocation levels in silicon on the properties of p-n junctions

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, A.G.; Dudko, V.G.; Nabokov, G.M.; Sechenov, D.A.

    1988-07-01

    We present the results of studies on the influence of deep levels, due to dislocations in electronic-grade silicon, on the lifetime of minority carriers and on the current-voltage and capacitance-voltage characteristics of p-n junctions. The parameters of the deep levels were determined by means of dynamic spectroscopy. The carrier lifetime in the high-resistance region of the p-n junction correlates well with the dislocation density and varies from 10/sup /minus/7/ sec to 3 /centered dot/10/sup /minus/6/ sec when the dislocation density N/sub d/ varies from 10/sup 7/ cm/sup /minus/2/ to 5 /centered dot/10/sup 3/ cm/sup /minus/2/. The voltage across the p-n junction at a high level of injection varies 1.6 to 6.2 v as a function of N/sub d/. The ionization energy of deep levels associated with dislocation in silicon is 0.44 and 0.57 eV, measured from the bottom of the conduction band.

  15. Identification of nitrogen- and host-related deep-level traps in n-type GaNAs and their evolution upon annealing

    International Nuclear Information System (INIS)

    Gelczuk, Ł.; Kudrawiec, R.; Henini, M.

    2014-01-01

    Deep level traps in as-grown and annealed n-GaNAs layers (doped with Si) of various nitrogen concentrations (N = 0.2%, 0.4%, 0.8%, and 1.2%) were investigated by deep level transient spectroscopy. In addition, optical properties of GaNAs layers were studied by photoluminescence and contactless electroreflectance. The identification of N- and host-related traps has been performed on the basis of band gap diagram [Kudrawiec, Appl. Phys. Lett. 101, 082109 (2012)], which assumes that the activation energy of electron traps of the same microscopic nature decreases with the rise of nitrogen concentration in accordance with the N-related shift of the conduction band towards trap levels. The application of this diagram has allowed to investigate the evolution of donor traps in GaNAs upon annealing. In general, it was observed that the concentration of N- and host-related traps decreases after annealing and PL improves very significantly. However, it was also observed that some traps are generated due to annealing. It explains why the annealing conditions have to be carefully optimized for this material system.

  16. INNOVATIVE CULTURE IN SMALL AND MEDIUM ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Aluisio Broering Mambrini

    2011-10-01

    Full Text Available In the last two decades, innovation has been a key driver of economic growth. Innovation is closely related to creating value and generating wealth through successful service to consumer needs. Thus, it is not necessarily restricted to the use of new knowledge generated from research, but on the development of new products or services that are obtained with creative use of knowledge, new or already known. This study aimed to identify management practices that promote a culture of innovation in small and medium enterprises and analyze how they contribute to the innovative capacity of these companies. The research method was the multiple case study with six small and medium businesses that have at least one case of significant innovation in its history. The main results showed that amongst the practices are: a performance in highly specialized niches and deep focus on customer needs; b strong investment and incorporation of new knowledge outside the company (open innovation; c speed and agility in the absorption and deployment of new knowledge and technologies; d retention of employees; e acting as an integrator combining diverse knowledge and technologies; f the information management of the knowledge acquired by the company; g little concern to patent the technology; h flexibility and informal, fluid and open communication between employees of the company that promotes agility in management and i the management of partnerships across the value chain, including the functional areas.

  17. CMU DeepLens: deep learning for automatic image-based galaxy-galaxy strong lens finding

    Science.gov (United States)

    Lanusse, François; Ma, Quanbin; Li, Nan; Collett, Thomas E.; Li, Chun-Liang; Ravanbakhsh, Siamak; Mandelbaum, Rachel; Póczos, Barnabás

    2018-01-01

    Galaxy-scale strong gravitational lensing can not only provide a valuable probe of the dark matter distribution of massive galaxies, but also provide valuable cosmological constraints, either by studying the population of strong lenses or by measuring time delays in lensed quasars. Due to the rarity of galaxy-scale strongly lensed systems, fast and reliable automated lens finding methods will be essential in the era of large surveys such as Large Synoptic Survey Telescope, Euclid and Wide-Field Infrared Survey Telescope. To tackle this challenge, we introduce CMU DeepLens, a new fully automated galaxy-galaxy lens finding method based on deep learning. This supervised machine learning approach does not require any tuning after the training step which only requires realistic image simulations of strongly lensed systems. We train and validate our model on a set of 20 000 LSST-like mock observations including a range of lensed systems of various sizes and signal-to-noise ratios (S/N). We find on our simulated data set that for a rejection rate of non-lenses of 99 per cent, a completeness of 90 per cent can be achieved for lenses with Einstein radii larger than 1.4 arcsec and S/N larger than 20 on individual g-band LSST exposures. Finally, we emphasize the importance of realistically complex simulations for training such machine learning methods by demonstrating that the performance of models of significantly different complexities cannot be distinguished on simpler simulations. We make our code publicly available at https://github.com/McWilliamsCenter/CMUDeepLens.

  18. Congenital Constriction Band Syndrome

    OpenAIRE

    Rajesh Gupta, Fareed Malik, Rishabh Gupta, M.A.Basit, Dara Singh

    2008-01-01

    Congenital constriction bands are anomalous bands that encircle a digit or an extremity. Congenitalconstriction band syndrome is rare condition and is mostly associated with other musculoskeletaldisorders.We report such a rare experience.

  19. 'That proves my point': How mediums reconstrue disconfirmation in medium-sitter interactions.

    Science.gov (United States)

    Enoksen, Anette Einan; Dickerson, Paul

    2018-04-01

    Previous research has examined how the talk of mediums attends to the epistemological status of their readings. Such work has identified that mediums frequently use question-framed propositions that are typically confirmed by the sitter, thereby conferring epistemological status on the medium. This study seeks to investigate what happens when the sitter disconfirms the propositions of the medium. The study focuses on the ways in which such disconfirmation can be responded to such that it is reconstrued as evidence of the psychic nature of the medium's reading. Televised demonstrations of psychic readings involving British and US mediums and their sitters are analysed. The results suggest that mediums rework disconfirmation as proof in several ways: first, by emphasizing the different access that sitter and medium have to knowledge (e.g., about the future); second, as evidence that the medium has access to the actual voice of the deceased (and may therefore mishear what the deceased has said to them); and third, as revealing an important truth that has hitherto been concealed from the sitter. The implications of these findings are considered for cases where speakers bring different and potentially competing, epistemological resources to an interaction. © 2018 The British Psychological Society.

  20. The O{sub 2} A-Band in the Fluxes and Polarization of Starlight Reflected by Earth-Like Exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Fauchez, Thomas [Laboratoire d’Optique Atmosphèrique (LOA), UMR 8518, Université Lille 1, Villeneuve d’Ascq (France); Rossi, Loic; Stam, Daphne M. [Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

    2017-06-10

    Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo A {sub s}, the optical thickness b {sub cloud}, the altitude of water clouds, and the mixing ratio of biosignature O{sub 2} on the strength of the O{sub 2} A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios ( η < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O{sub 2} mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O{sub 2} or any other absorbing gas.

  1. Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists.

    Science.gov (United States)

    Testolin, Alberto; Stoianov, Ivilin; De Filippo De Grazia, Michele; Zorzi, Marco

    2013-01-01

    Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programing parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low cost graphic cards (graphic processor units) without any specific programing effort, thanks to the use of high-level programming routines (available in MATLAB or Python). We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior.

  2. Deep unsupervised learning on a desktop PC: A primer for cognitive scientists

    Directory of Open Access Journals (Sweden)

    Alberto eTestolin

    2013-05-01

    Full Text Available Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programming parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low-cost graphic cards (GPUs without any specific programming effort, thanks to the use of high-level programming routines (available in MATLAB or Python. We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior.

  3. Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists

    Science.gov (United States)

    Testolin, Alberto; Stoianov, Ivilin; De Filippo De Grazia, Michele; Zorzi, Marco

    2013-01-01

    Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programing parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low cost graphic cards (graphic processor units) without any specific programing effort, thanks to the use of high-level programming routines (available in MATLAB or Python). We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior. PMID:23653617

  4. A design study for a medium-scale field demonstration of the viscous barrier technology

    International Nuclear Information System (INIS)

    Moridis, G.; Yen, P.; Persoff, P.; Finsterle, S.; Williams, P.; Myer, L.; Pruess, K.

    1996-09-01

    This report is the design study for a medium-scale field demonstration of Lawrence Berkeley National Laboratory's new subsurface containment technology for waste isolation using a new generation of barrier liquids. The test site is located in central California in a quarry owned by the Los Banos Gravel Company in Los Banos, California, in heterogeneous unsaturated deposits of sand, silt, and -ravel typical of many of the and DOE cleanup sites and particularly analogous to the Hanford site. The coals of the field demonstration are (a) to demonstrate the ability to create a continuous subsurface barrier isolating a medium-scale volume (30 ft long by 30 ft wide by 20 ft deep, i.e. 1/10th to 1/8th the size of a buried tank at the Hanford Reservation) in the subsurface, and (b) to demonstrate the continuity, performance, and integrity of the barrier

  5. Quasar 3C351: VLA maps and a deep search for optical emission in the outer lobes

    International Nuclear Information System (INIS)

    Kronberg, P.P.; Clarke, J.N.; van den Bergh, S.

    1980-01-01

    VLA radio maps of the quasar 3C351 (z=0.371) at approx.2'' and 0.''4 resolution (a) show interaction with a relatively dense intergalactic medium, (b) show that there is electron acceleration within at least one of the radio lobes, and (c) imply that the intergalactic gas density is different on one side of the source than on the other. Striking similarities are found between the northern radio lobe of 3C351 and one of the outer hotspots of Cygnus A, and possibly other similar systems, in that the outer, on-axis hotspot is resolved and cusp-shaped, and the ''secondary'' off-axis hotspot is more compact. A search for optical emission in the outer lobes shows no emission stronger than 22/sup m/ in the J band and approx.21/sup m/ in the F band. There is also no evidence at these limits for a cluster of galaxies near the radio source, as is suggested by our conclusion that it is interacting with a medium of typical intracluster density

  6. Preliminary design work on a DSN VLBI correlator. [Deep Space Network

    Science.gov (United States)

    Lushbaugh, W. A.; Layland, J. W.

    1978-01-01

    The Deep Space Network is in the process of fielding high-density digital instrumentation recorders for support of the Pioneer Venus 1978 entry experiment and other related tasks. It has long been obvious that these recorders would also serve well as the recording medium for very long base interferometry (VLBI) experiments with relatively weak radio sources, provided that a suitable correlation processor for these tape recordings could be established. The overall design and current status of a VLBI correlator designed to mate with these tape recorders are described.

  7. Convection and waves on Small Earth and Deep Atmosphere

    Directory of Open Access Journals (Sweden)

    Noureddine Semane

    2015-06-01

    Full Text Available A scaled version of the European Centre for Medium-Range Weather Forecasts (ECMWF spectral hydrostatic forecast model (IFS has been developed with full physics using an Aqua planet configuration. This includes Kuang et al.'s Small Earth Diabatic Acceleration and REscaling (DARE/SE approach bringing the synoptic scale a factor γ closer to the convective scale by reducing the Earth radius by γ, and increasing the rotation rate and all diabatic processes by the same factor. Furthermore, the scaled version also provides an alternative system to DARE/SE, dubbed ‘Deep Atmosphere Diabatic Acceleration and REscaling’ (DARE/DA, which reduces gravity by a factor γ and thereby increases the horizontal scale of convection by γ, while only weakly affecting the large-scale flow. The two approaches have been evaluated using a T159 spectral truncation and γ = 8 with the deep convection scheme switched off. The evaluation is against the baseline unscaled model at T1279 spectral resolution without deep convection parametrisation, as well as the unscaled T159 model using the deep convection parametrisation. It is shown that the DARE/SE and DARE/DA systems provide fairly equivalent results, while the DARE/DA system seems to be the preferred choice as it damps divergent modes, providing a better climatology, and is technically easier to implement. However, neither of the systems could reproduce the motion range and modes of the high-resolution spectral model. Higher equivalent horizontal resolution in the 1–10 km range and the full non-hydrostatic system might be necessary to successfully simulate the convective and large-scale explicitly at reduced cost.

  8. Airborne S-Band SAR for Forest Biophysical Retrieval in Temperate Mixed Forests of the UK

    Directory of Open Access Journals (Sweden)

    Ramesh K. Ningthoujam

    2016-07-01

    Full Text Available Radar backscatter from forest canopies is related to forest cover, canopy structure and aboveground biomass (AGB. The S-band frequency (3.1–3.3 GHz lies between the longer L-band (1–2 GHz and the shorter C-band (5–6 GHz and has been insufficiently studied for forest applications due to limited data availability. In anticipation of the British built NovaSAR-S satellite mission, this study evaluates the benefits of polarimetric S-band SAR for forest biophysical properties. To understand the scattering mechanisms in forest canopies at S-band the Michigan Microwave Canopy Scattering (MIMICS-I radiative transfer model was used. S-band backscatter was found to have high sensitivity to the forest canopy characteristics across all polarisations and incidence angles. This sensitivity originates from ground/trunk interaction as the dominant scattering mechanism related to broadleaved species for co-polarised mode and specific incidence angles. The study was carried out in the temperate mixed forest at Savernake Forest and Wytham Woods in southern England, where airborne S-band SAR imagery and field data are available from the recent AirSAR campaign. Field data from the test sites revealed wide ranges of forest parameters, including average canopy height (6–23 m, diameter at breast-height (7–42 cm, basal area (0.2–56 m2/ha, stem density (20–350 trees/ha and woody biomass density (31–520 t/ha. S-band backscatter-biomass relationships suggest increasing backscatter sensitivity to forest AGB with least error between 90.63 and 99.39 t/ha and coefficient of determination (r2 between 0.42 and 0.47 for the co-polarised channel at 0.25 ha resolution. The conclusion is that S-band SAR data such as from NovaSAR-S is suitable for monitoring forest aboveground biomass less than 100 t/ha at 25 m resolution in low to medium incidence angle range.

  9. Influence of growth temperature and temperature ramps on deep level defect incorporation in m-plane GaN

    International Nuclear Information System (INIS)

    Armstrong, A. M.; Kelchner, K.; Nakamura, S.; DenBaars, S. P.; Speck, J. S.

    2013-01-01

    The dependence of deep level defect incorporation in m-plane GaN films grown by metal-organic chemical vapor deposition on bulk m-plane GaN substrates as a function of growth temperature (T g ) and T g ramping method was investigated using deep level optical spectroscopy. Understanding the influence of T g on GaN deep level incorporation is important for InGaN/GaN multi-quantum well (MQW) light emitting diodes (LEDs) and laser diodes (LDs) because GaN quantum barrier (QB) layers are grown much colder than thin film GaN to accommodate InGaN QW growth. Deep level spectra of low T g (800 °C) GaN films grown under QB conditions were compared to deep level spectra of high T g (1150 °C) GaN. Reducing T g , increased the defect density significantly (>50×) through introduction of emergent deep level defects at 2.09 eV and 2.9 eV below the conduction band minimum. However, optimizing growth conditions during the temperature ramp when transitioning from high to low T g substantially reduced the density of these emergent deep levels by approximately 40%. The results suggest that it is important to consider the potential for non-radiative recombination in QBs of LED or LD active regions, and tailoring the transition from high T g GaN growth to active layer growth can mitigate such non-radiative channels

  10. Making Data Mobile: The Hubble Deep Field Academy iPad app

    Science.gov (United States)

    Eisenhamer, Bonnie; Cordes, K.; Davis, S.; Eisenhamer, J.

    2013-01-01

    Many school districts are purchasing iPads for educators and students to use as learning tools in the classroom. Educators often prefer these devices to desktop and laptop computers because they offer portability and an intuitive design, while having a larger screen size when compared to smart phones. As a result, we began investigating the potential of adapting online activities for use on Apple’s iPad to enhance the dissemination and usage of these activities in instructional settings while continuing to meet educators’ needs. As a pilot effort, we are developing an iPad app for the “Hubble Deep Field Academy” - an activity that is currently available online and commonly used by middle school educators. The Hubble Deep Field Academy app features the HDF-North image while centering on the theme of how scientists use light to explore and study the universe. It also includes features such as embedded links to vocabulary, images and videos, teacher background materials, and readings about Hubble’s other deep field surveys. It is our goal is to impact students’ engagement in STEM-related activities, while enhancing educators’ usage of NASA data via new and innovative mediums. We also hope to develop and share lessons learned with the E/PO community that can be used to support similar projects. We plan to test the Hubble Deep Field Academy app during the school year to determine if this new activity format is beneficial to the education community.

  11. Single-Band and Dual-Band Infrared Detectors

    Science.gov (United States)

    Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)

    2017-01-01

    Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.

  12. Physical Conditions of the Interstellar Medium in Star-forming Galaxies at z1.5

    Science.gov (United States)

    Hayashi, Masao; Ly, Chun; Shimasaku, Kazuhiro; Motohara, Kentaro; Malkan, Matthew A.; Nagao, Tohru; Kashikawa, Nobunari; Goto, Ryosuke; Naito, Yoshiaki

    2015-01-01

    We present results from Subaru/FMOS near-infrared (NIR) spectroscopy of 118 star-forming galaxies at z approximately equal to 1.5 in the Subaru Deep Field. These galaxies are selected as [O II] lambda 3727 emitters at z approximately equal to 1.47 and 1.62 from narrow-band imaging. We detect H alpha emission line in 115 galaxies, [O III] lambda 5007 emission line in 45 galaxies, and H Beta, [N II] lambda 6584, and [S II]lambda lambda 6716, 6731 in 13, 16, and 6 galaxies, respectively. Including the [O II] emission line, we use the six strong nebular emission lines in the individual and composite rest-frame optical spectra to investigate physical conditions of the interstellar medium in star-forming galaxies at z approximately equal to 1.5. We find a tight correlation between H alpha and [O II], which suggests that [O II] can be a good star formation rate (SFR) indicator for galaxies at z approximately equal to 1.5. The line ratios of H alpha / [O II] are consistent with those of local galaxies. We also find that [O II] emitters have strong [O III] emission lines. The [O III]/[O II] ratios are larger than normal star-forming galaxies in the local Universe, suggesting a higher ionization parameter. Less massive galaxies have larger [O III]/[O II] ratios. With evidence that the electron density is consistent with local galaxies, the high ionization of galaxies at high redshifts may be attributed to a harder radiation field by a young stellar population and/or an increase in the number of ionizing photons from each massive star.

  13. Deep neural network-based bandwidth enhancement of photoacoustic data.

    Science.gov (United States)

    Gutta, Sreedevi; Kadimesetty, Venkata Suryanarayana; Kalva, Sandeep Kumar; Pramanik, Manojit; Ganapathy, Sriram; Yalavarthy, Phaneendra K

    2017-11-01

    Photoacoustic (PA) signals collected at the boundary of tissue are always band-limited. A deep neural network was proposed to enhance the bandwidth (BW) of the detected PA signal, thereby improving the quantitative accuracy of the reconstructed PA images. A least square-based deconvolution method that utilizes the Tikhonov regularization framework was used for comparison with the proposed network. The proposed method was evaluated using both numerical and experimental data. The results indicate that the proposed method was capable of enhancing the BW of the detected PA signal, which inturn improves the contrast recovery and quality of reconstructed PA images without adding any significant computational burden. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  14. Study of multimuon-final states in deep inelastic neutrino scattering

    International Nuclear Information System (INIS)

    Renk, B.

    1984-01-01

    In this thesis the measurement of the momentum spectra, angular correlations, and transverse momentum distributions of the secondary muons produced in deep inelastic neutrino scattering at the CERN 300 GeV narrow band neutrino beam is described. From the experimental results conclusions are drawn about neutrino oscillations and the quantum numbers of charm-violating neutral currents. Furthermore upper limits for the momentum part of the c quark in the nucleon, and the fragmentation function for c quarks at high energies were determined. The prompt μ - μ - events are interpreted as pair production of charmed particles. Finally dimuon events induced by axions were looked for. (HSI) [de

  15. AlN/GaN Digital Alloy for Mid- and Deep-Ultraviolet Optoelectronics.

    Science.gov (United States)

    Sun, Wei; Tan, Chee-Keong; Tansu, Nelson

    2017-09-19

    The AlN/GaN digital alloy (DA) is a superlattice-like nanostructure formed by stacking ultra-thin ( ≤ 4 monolayers) AlN barriers and GaN wells periodically. Here we performed a comprehensive study on the electronics and optoelectronics properties of the AlN/GaN DA for mid- and deep-ultraviolet (UV) applications. Our numerical analysis indicates significant miniband engineering in the AlN/GaN DA by tuning the thicknesses of AlN barriers and GaN wells, so that the effective energy gap can be engineered from ~3.97 eV to ~5.24 eV. The band structure calculation also shows that the valence subbands of the AlN/GaN DA is properly rearranged leading to the heavy-hole (HH) miniband being the top valence subband, which results in the desired transverse-electric polarized emission. Furthermore, our study reveals that the electron-hole wavefunction overlaps in the AlN/GaN DA structure can be remarkably enhanced up to 97% showing the great potential of improving the internal quantum efficiency for mid- and deep-UV device application. In addition, the optical absorption properties of the AlN/GaN DA are analyzed with wide spectral coverage and spectral tunability in mid- and deep-UV regime. Our findings suggest the potential of implementing the AlN/GaN DA as a promising active region design for high efficiency mid- and deep-UV device applications.

  16. Ultrastructure of interstitial cells of Cajal associated with deep muscular plexus of human small intestine

    DEFF Research Database (Denmark)

    Rumessen, J J; Mikkelsen, H B; Thuneberg, L

    1992-01-01

    Evidence showing that interstitial cells of Cajal have important regulatory functions in the gut musculature is accumulating. In the current study, the ultrastructure of the deep muscular plexus and associated interstial cells of Cajal in human small intestine were studied to provide a reference...... a continuous basal lamina, caveolae, intermediate filaments, dense bodies, dense bands, and a well-developed subsurface smooth endoplasmic reticulum), but the arrangement of organelles was clearly different, and cisternae of granular endoplasmic reticulum were abundant. Interstitial cells of Cajal were......, and only few gap junctions with other interstitial cells of Cajal or with the musculature were observed. Compared with interstitial cells of Cajal from other mammals, those associated with the deep muscular plexus in the human small intestine more closely resemble smooth muscle cells...

  17. Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals.

    Science.gov (United States)

    Livache, Clément; Goubet, Nicolas; Martinez, Bertille; Jagtap, Amardeep; Qu, Junling; Ithurria, Sandrine; Silly, Mathieu G; Dubertret, Benoit; Lhuillier, Emmanuel

    2018-04-11

    Mercury chalcogenide nanocrystals and especially HgTe appear as an interesting platform for the design of low cost mid-infrared (mid-IR) detectors. Nevertheless, their electronic structure and transport properties remain poorly understood, and some critical aspects such as the carrier relaxation dynamics at the band edge have been pushed under the rug. Some of the previous reports on dynamics are setup-limited, and all of them have been obtained using photon energy far above the band edge. These observations raise two main questions: (i) what are the carrier dynamics at the band edge and (ii) should we expect some additional effect (multiexciton generation (MEG)) as such narrow band gap materials are excited far above the band edge? To answer these questions, we developed a high-bandwidth setup that allows us to understand and compare the carrier dynamics resonantly pumped at the band edge in the mid-IR and far above the band edge. We demonstrate that fast (>50 MHz) photoresponse can be obtained even in the mid-IR and that MEG is occurring in HgTe nanocrystal arrays with a threshold around 3 times the band edge energy. Furthermore, the photoresponse can be effectively tuned in magnitude and sign using a phototransistor configuration.

  18. Enhancement in irradiated mononuclear cells in culture of mitogen-induced incorporation of [3H]thymidine by homologous conditioned medium

    International Nuclear Information System (INIS)

    Sandru, G.; Greiner, R.

    1994-01-01

    Incorporation of [ 3 H]thymidine in irradiated peripheral blood mononuclear cell cultures irradiated in vitro was stimulated significantly by either concanavalin A or phytohemagglutinin only in the presence of homologous conditioned medium. Production of this activity by mononuclear cells was enhanced by irradiation and/or pulsed exposure to puromycin but was abolished by actinomycin D. Addition of anti-interleukin 1 or anti-interleukin 2 monoclonal antibodies to the conditioned medium before assay did not influence the stimulatory action. A similar significant stimulation of mononuclear cell cultures irradiated with 6 Gy by concanavalin A was obtained when purified preparations of homologous conditioned medium were used in the assay. Purification was done by ultrafiltration and concentration, heparin agarose chromatography, ammonium sulfate precipitation, concanavalin A agarose chromatography, DEAE-ion exchange chromatography and HPLC gel filtration chromatography. With SDS-PAGE and silver staining, the active HPLC fraction gave one band of 50 kDa, suggesting that this protein is responsible for the co-stimulatory effect of homologous conditioned medium for both mitogen-induced irradiated and nonirradiated mononuclear cell cultures. 42 refs., 9 figs., 3 tabs

  19. Study of interfaces and band offsets in TiN/amorphous LaLuO3 gate stacks

    KAUST Repository

    Mitrovic, Ivona Z.

    2011-07-01

    TiN/LaLuO3 (LLO) gate stacks formed by molecular beam deposition have been investigated by X-ray photoelectron spectroscopy, medium energy ion scattering, spectroscopic ellipsometry, scanning transmission electron microscopy, electron energy loss spectroscopy and atomic force microscopy. The results indicate an amorphous structure for deposited LLO films. The band offset between the Fermi level of TiN and valence band of LLO is estimated to be 2.65 ± 0.05 eV. A weaker La-O-Lu bond and a prominent Ti2p sub-peak which relates to Ti bond to interstitial oxygen have been identified for an ultra-thin 1.7 nm TiN/3 nm LLO gate stack. The angle-dependent XPS analysis of Si2s spectra as well as shifts of La4d, La3d and Lu4d core levels suggests a silicate-type with Si-rich SiOx LLO/Si interface. Symmetrical valence and conduction band offsets for LLO to Si of 2.2 eV and the bandgap of 5.5 ± 0.1 eV have been derived from the measurements. The band alignment for ultra-thin TiN/LLO gate stack is affected by structural changes. Copyright © 2011 Published by Elsevier B.V. All rights reserved.

  20. Noise exposure in marching bands

    Science.gov (United States)

    Keefe, Joseph

    2005-09-01

    Previous studies involving orchestras have shown that music ensembles can produce hazardous noise levels. There are no similar data for marching bands and pep bands. In order to evaluate the noise levels produced by marching and pep bands, 1/3-octave-band sound-pressure levels were measured while these groups rehearsed and performed. Data were collected while marching with the bands to ensure a realistic environment. Comparing these data to OSHA and NIOSH criteria, marching and pep band exposures often exceed safe values. For typical exposures, OSHA doses range from 11% to 295%, while NIOSH doses range from 35% to 3055%. Exposures that would be considered hazardous in the workplace are common in marching and pep bands; students and band directors should take steps to recognize the risk posed by various instruments and various locations, and should implement hearing conservation efforts.

  1. Deep Impact as a World Observatory Event: Synergies in Space, Time, and Wavelength

    CERN Document Server

    Käufl, H.U; ESO/VUB Conference

    2009-01-01

    In the context of the NASA Deep Impact space mission, comet 9P/Tempel1 has been at the focus of an unprecedented worldwide long-term multi-wavelength observation campaign. The comet was also studied throughout its perihelion passage by various sources including the Deep Impact mission itself, the Hubble Space Telescope, Spitzer, Rosetta, XMM and all major ground-based observatories in a wavelength band from cm-wave radio astronomy to x-rays. This book includes the proceedings of a meeting that brought together an audience of theoreticians and observers - across the electromagnetic spectrum and from different sites and projects - to make full use of the massive ground-based observing data set. The coherent presentation of all data sets illustrates and examines the various observational constraints on modelling the cometary nucleus, cometary gas, cometary plasma, cometary dust, and the comet's surface and its activity.

  2. Deep learning

    CERN Document Server

    Goodfellow, Ian; Courville, Aaron

    2016-01-01

    Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language proces...

  3. Reconstruction of Hyaline Cartilage Deep Layer Properties in 3-Dimensional Cultures of Human Articular Chondrocytes.

    Science.gov (United States)

    Nanduri, Vibudha; Tattikota, Surendra Mohan; T, Avinash Raj; Sriramagiri, Vijaya Rama Rao; Kantipudi, Suma; Pande, Gopal

    2014-06-01

    Articular cartilage (AC) injuries and malformations are commonly noticed because of trauma or age-related degeneration. Many methods have been adopted for replacing or repairing the damaged tissue. Currently available AC repair methods, in several cases, fail to yield good-quality long-lasting results, perhaps because the reconstructed tissue lacks the cellular and matrix properties seen in hyaline cartilage (HC). To reconstruct HC tissue from 2-dimensional (2D) and 3-dimensional (3D) cultures of AC-derived human chondrocytes that would specifically exhibit the cellular and biochemical properties of the deep layer of HC. Descriptive laboratory study. Two-dimensional cultures of human AC-derived chondrocytes were established in classical medium (CM) and newly defined medium (NDM) and maintained for a period of 6 weeks. These cells were suspended in 2 mm-thick collagen I gels, placed in 24-well culture inserts, and further cultured up to 30 days. Properties of chondrocytes, grown in 2D cultures and the reconstructed 3D cartilage tissue, were studied by optical and scanning electron microscopic techniques, immunohistochemistry, and cartilage-specific gene expression profiling by reverse transcription polymerase chain reaction and were compared with those of the deep layer of native human AC. Two-dimensional chondrocyte cultures grown in NDM, in comparison with those grown in CM, showed more chondrocyte-specific gene activity and matrix properties. The NDM-grown chondrocytes in 3D cultures also showed better reproduction of deep layer properties of HC, as confirmed by microscopic and gene expression analysis. The method used in this study can yield cartilage tissue up to approximately 1.6 cm in diameter and 2 mm in thickness that satisfies the very low cell density and matrix composition properties present in the deep layer of normal HC. This study presents a novel and reproducible method for long-term culture of AC-derived chondrocytes and reconstruction of cartilage

  4. Time reversal optical tomography locates fluorescent targets in a turbid medium

    Science.gov (United States)

    Wu, Binlin; Cai, W.; Gayen, S. K.

    2013-03-01

    A fluorescence optical tomography approach that extends time reversal optical tomography (TROT) to locate fluorescent targets embedded in a turbid medium is introduced. It uses a multi-source illumination and multi-detector signal acquisition scheme, along with TR matrix formalism, and multiple signal classification (MUSIC) to construct pseudo-image of the targets. The samples consisted of a single or two small tubes filled with water solution of Indocyanine Green (ICG) dye as targets embedded in a 250 mm × 250 mm × 60 mm rectangular cell filled with Intralipid-20% suspension as the scattering medium. The ICG concentration was 1μM, and the Intralipid-20% concentration was adjusted to provide ~ 1-mm transport length for both excitation wavelength of 790 nm and fluorescence wavelength around 825 nm. The data matrix was constructed using the diffusely transmitted fluorescence signals for all scan positions, and the TR matrix was constructed by multiplying data matrix with its transpose. A pseudo spectrum was calculated using the signal subspace of the TR matrix. Tomographic images were generated using the pseudo spectrum. The peaks in the pseudo images provided locations of the target(s) with sub-millimeter accuracy. Concurrent transmission TROT measurements corroborated fluorescence-TROT findings. The results demonstrate that TROT is a fast approach that can be used to obtain accurate three-dimensional position information of fluorescence targets embedded deep inside a highly scattering medium, such as, a contrast-enhanced tumor in a human breast.

  5. B(M1) values in the band-crossing of shears bands in 197Pb

    Science.gov (United States)

    Krücken, R.; Cooper, J. R.; Beausang, C. W.; Novak, J. R.; Dewald, A.; Klug, T.; Kemper, G.; von Brentano, P.; Carpenter, M.; Wiedenhöver, I.

    We present details of the band crossing mechanism of shears bands using the example of 197Pb. Absolute reduced matrix elements B(M1) were determined by means of a RDM lifetime measurement in one of the shears bands in 197Pb. The experiment was performed using the New Yale Plunger Device (NYPD) in conjunction with the Gammasphere array. Band mixing calculations on the basis of the semi-classical model of the shears mechanism are used to describe the transition matrix elements B(M1) and energies throughout the band-crossing regions. Good agreement with the data was obtained and the detailed composition of the states in the shears band are discussed.

  6. A New Blind Pointing Model Improves Large Reflector Antennas Precision Pointing at Ka-Band (32 GHz)

    Science.gov (United States)

    Rochblatt, David J.

    2009-01-01

    The National Aeronautics and Space Administration (NASA), Jet Propulsion Laboratory (JPL)-Deep Space Network (DSN) subnet of 34-m Beam Waveguide (BWG) Antennas was recently upgraded with Ka-Band (32-GHz) frequency feeds for space research and communication. For normal telemetry tracking a Ka-Band monopulse system is used, which typically yields 1.6-mdeg mean radial error (MRE) pointing accuracy on the 34-m diameter antennas. However, for the monopulse to be able to acquire and lock, for special radio science applications where monopulse cannot be used, or as a back-up for the monopulse, high-precision open-loop blind pointing is required. This paper describes a new 4th order pointing model and calibration technique, which was developed and applied to the DSN 34-m BWG antennas yielding 1.8 to 3.0-mdeg MRE pointing accuracy and amplitude stability of 0.2 dB, at Ka-Band, and successfully used for the CASSINI spacecraft occultation experiment at Saturn and Titan. In addition, the new 4th order pointing model was used during a telemetry experiment at Ka-Band (32 GHz) utilizing the Mars Reconnaissance Orbiter (MRO) spacecraft while at a distance of 0.225 astronomical units (AU) from Earth and communicating with a DSN 34-m BWG antenna at a record high rate of 6-megabits per second (Mb/s).

  7. Precipitation Estimation Using L-Band and C-Band Soil Moisture Retrievals

    Science.gov (United States)

    Koster, Randal D.; Brocca, Luca; Crow, Wade T.; Burgin, Mariko S.; De Lannoy, Gabrielle J. M.

    2016-01-01

    An established methodology for estimating precipitation amounts from satellite-based soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterometer (ASCAT) mission. The precipitation estimates so obtained are evaluated against in situ (gauge-based) precipitation observations from across the globe. The precipitation estimation skill achieved using the L-band SMAP and SMOS data sets is higher than that obtained with the C-band product, as might be expected given that L-band is sensitive to a thicker layer of soil and thereby provides more information on the response of soil moisture to precipitation. The square of the correlation coefficient between the SMAP-based precipitation estimates and the observations (for aggregations to approximately100 km and 5 days) is on average about 0.6 in areas of high rain gauge density. Satellite missions specifically designed to monitor soil moisture thus do provide significant information on precipitation variability, information that could contribute to efforts in global precipitation estimation.

  8. TiO2 obtained by laser ablation and it response in alkaline medium for the oxygen detachment reaction

    International Nuclear Information System (INIS)

    Jimenez B, J.; Escobar A, L.; Fernandez V, S.M.

    2007-01-01

    The performance of the photo electrocatalysts materials depends on one hand of the it structures of the crystalline lattice and of their surface properties, those which in turn are determined by the material preparation method. In this work the laser ablation technique to obtain thin films of titanium dioxide on recovered glass with tin oxide is presented. The carried out analyses showed homogeneous films, one of amorphous titanium oxide with a band width of 3.43 eV and the other one with anatase structure with a band energy of 3.41 eV. The photoresponse for the oxygen detachment it was better for the anatase. In a 0.1M KOH medium it was found corrosion in the films. (Author)

  9. Primordial environment of supermassive black holes. II. Deep Y- and J-band images around the z 6.3 quasar SDSS J1030+0524

    Science.gov (United States)

    Balmaverde, B.; Gilli, R.; Mignoli, M.; Bolzonella, M.; Brusa, M.; Cappelluti, N.; Comastri, A.; Sani, E.; Vanzella, E.; Vignali, C.; Vito, F.; Zamorani, G.

    2017-10-01

    Many cosmological studies predict that early supermassive black holes (SMBHs) can only form in the most massive dark matter halos embedded within large-scale structures marked by galaxy overdensities that may extend up to 10 physical Mpc. This scenario, however, has not been confirmed observationally, as the search for galaxy overdensities around high-z quasars has returned conflicting results. The field around the z = 6.31 quasar SDSSJ1030+0524 (J1030) is unique for multi-band coverage and represents an excellent data legacy for studying the environment around a primordial SMBH. In this paper we present wide-area ( 25' × 25') Y- and J-band imaging of the J1030 field obtained with the near infrared camera WIRCam at the Canada-France-Hawaii Telescope (CFHT). We built source catalogs in the Y- and J-band, and matched those with our photometric catalog in the r, z, and I bands presented in our previous paper and based on sources with zAB4σ. The overdensity value and its significance are higher than those found in our previous paper and we interpret this as evidence of an improved LBG selection.

  10. Fine-Structure Measurements of Oxygen A Band Absorbance for Estimating the Thermodynamic Average Temperature of the Earth's Atmosphere: An Experiment in Physical and Environmental Chemistry

    Science.gov (United States)

    Myrick, M. L.; Greer, A. E.; Nieuwland, A.; Priore, R. J.; Scaffidi, J.; Andreatta, Daniele; Colavita, Paula

    2006-01-01

    The experiment describe the measures of the A band transitions of atmospheric oxygen, a rich series of rotation-electronic absorption lines falling in the deep red portion of the optical spectrum and clearly visible owing to attenuation of solar radiation. It combines pure physical chemistry with analytical and environmental science and provides a…

  11. LUMINOUS AND HIGH STELLAR MASS CANDIDATE GALAXIES AT z ≈ 8 DISCOVERED IN THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY

    International Nuclear Information System (INIS)

    Yan Haojing; Finkelstein, Steven L.; Huang, Kuang-Han; Ryan, Russell E.; Ferguson, Henry C.; Koekemoer, Anton M.; Grogin, Norman A.; Dickinson, Mark; Newman, Jeffrey A.; Somerville, Rachel S.; Davé, Romeel; Faber, S. M.; Papovich, Casey; Guo Yicheng; Giavalisco, Mauro; Lee, Kyoung-soo; Reddy, Naveen; Siana, Brian D.; Cooray, Asantha R.; Hathi, Nimish P.

    2012-01-01

    One key goal of the Hubble Space Telescope Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey is to track galaxy evolution back to z ≈ 8. Its two-tiered ''wide and deep'' strategy bridges significant gaps in existing near-infrared surveys. Here we report on z ≈ 8 galaxy candidates selected as F105W-band dropouts in one of its deep fields, which covers 50.1 arcmin 2 to 4 ks depth in each of three near-infrared bands in the Great Observatories Origins Deep Survey southern field. Two of our candidates have J 1 mag brighter than any previously known F105W-dropouts. We derive constraints on the bright end of the rest-frame ultraviolet luminosity function of galaxies at z ≈ 8, and show that the number density of such very bright objects is higher than expected from the previous Schechter luminosity function estimates at this redshift. Another two candidates are securely detected in Spitzer Infrared Array Camera images, which are the first such individual detections at z ≈ 8. Their derived stellar masses are on the order of a few × 10 9 M ☉ , from which we obtain the first measurement of the high-mass end of the galaxy stellar mass function at z ≈ 8. The high number density of very luminous and very massive galaxies at z ≈ 8, if real, could imply a large stellar-to-halo mass ratio and an efficient conversion of baryons to stars at such an early time.

  12. A small satellite design for deep space network testing and training

    Science.gov (United States)

    Mcwilliams, Dennis; Slatton, Clint; Norman, Cassidy; Araiza, Joe; Jones, Jason; Tedesco, Mark; Wortman, Michael; Opiela, John; Lett, Pat; Clavenna, Michael

    1993-01-01

    With the continuing exploration of the Solar System and the reemphasis on Earth focused missions, the need for faster data transmission rates has grown. Ka-band could allow a higher data delivery rate over the current X-band, however the adverse effects of the Earth's atmosphere on Ka are as yet unknown. The Deep Space Network and Jet Propulsion Lab have proposed to launch a small satellite that would simultaneously transmit X and Ka signals to test the viability of switching to Ka-band. The Mockingbird Design Team at the University of Texas at Austin applied small satellite design principles to achieve this objective. The Mockingbird design, named BATSAT, incorporates simple, low-cost systems designed for university production and testing. The BATSAT satellite is a 0.64 m diameter, spherical panel led satellite, mounted with solar cells and omni-directional antennae. The antennae configuration negates the need for active attitude control or spin stabilization. The space-frame truss structure was designed for 11 g launch loads while allowing for easy construction and solar-panel mounting. The communication system transmits at 1 mW by carrying the required Ka and X-band transmitters, as well as an S band transmitter used for DSN training. The power system provides the 8.6 W maximum power requirements via silicon solar arrays and nickel-cadmium batteries. The BATSAT satellite will be lofted into an 1163 km, 70 deg orbit by the Pegasus launch system. This orbit fulfills DSN dish slew rate requirements while keeping the satellite out of the heaviest regions of the Van Allen radiation belts. Each of the three DSN stations capable of receiving Ka-band (Goldstone, Canberra, and Madrid) will have an average of 85 minutes of view-time per day over the satellites ten year design life. Mockingbird Designs hopes that its small satellite design will not only be applicable to this specific mission scenario, but that it could easily be modified for instrument capability for

  13. A small satellite design for deep space network testing and training

    Science.gov (United States)

    McWilliams, Dennis; Slatton, Clint; Norman, Cassidy; Araiza, Joe; Jones, Jason; Tedesco, Mark; Wortman, Michael; Opiela, John; Lett, Pat; Clavenna, Michael

    1993-05-01

    With the continuing exploration of the Solar System and the reemphasis on Earth focused missions, the need for faster data transmission rates has grown. Ka-band could allow a higher data delivery rate over the current X-band, however the adverse effects of the Earth's atmosphere on Ka are as yet unknown. The Deep Space Network and Jet Propulsion Lab have proposed to launch a small satellite that would simultaneously transmit X and Ka signals to test the viability of switching to Ka-band. The Mockingbird Design Team at the University of Texas at Austin applied small satellite design principles to achieve this objective. The Mockingbird design, named BATSAT, incorporates simple, low-cost systems designed for university production and testing. The BATSAT satellite is a 0.64 m diameter, spherical panel led satellite, mounted with solar cells and omni-directional antennae. The antennae configuration negates the need for active attitude control or spin stabilization. The space-frame truss structure was designed for 11 g launch loads while allowing for easy construction and solar-panel mounting. The communication system transmits at 1 mW by carrying the required Ka and X-band transmitters, as well as an S band transmitter used for DSN training. The power system provides the 8.6 W maximum power requirements via silicon solar arrays and nickel-cadmium batteries. The BATSAT satellite will be lofted into an 1163 km, 70 deg orbit by the Pegasus launch system. This orbit fulfills DSN dish slew rate requirements while keeping the satellite out of the heaviest regions of the Van Allen radiation belts. Each of the three DSN stations capable of receiving Ka-band (Goldstone, Canberra, and Madrid) will have an average of 85 minutes of view-time per day over the satellites ten year design life. Mockingbird Designs hopes that its small satellite design will not only be applicable to this specific mission scenario, but that it could easily be modified for instrument capability for

  14. ISM band to U-NII band frequency transverter and method of frequency transversion

    Science.gov (United States)

    Stepp, Jeffrey David [Grandview, MO; Hensley, Dale [Grandview, MO

    2006-09-12

    A frequency transverter (10) and method for enabling bi-frequency dual-directional transfer of digitally encoded data on an RF carrier by translating between a crowded or otherwise undesirable first frequency band, such as the 2.4 GHz ISM band, and a less-crowded or otherwise desirable second frequency band, such as the 5.0 GHz 6.0 GHz U-NII band. In a preferred embodiment, the transverter (10) connects between an existing data radio (11) and its existing antenna (30), and comprises a bandswitch (12); an input RF isolating device (14); a transmuter (16); a converter (18); a dual output local oscillator (20); an output RF isolating device (22); and an antenna (24) tuned to the second frequency band. The bandswitch (12) allows for bypassing the transverter (10), thereby facilitating its use with legacy systems. The transmuter (14) and converter (16) are adapted to convert to and from, respectively, the second frequency band.

  15. Status and prospects of exploration and exploitation key technologies of the deep petroleum resources in onshore China

    Directory of Open Access Journals (Sweden)

    Genshun Yao

    2018-02-01

    Full Text Available In recent years, China's deep oil and gas exploration and exploitation have developed rapidly. Technological advancements have played an important role in the rapid exploration and highly efficient development. Aimed at the complex engineering geological environment of deep oil and gas in China, this paper has combined the four technological systems that have made significant progress, mainly including: (1 seismic imaging and reservoir prediction techniques for deep–burial complex structures, includign “2W1S” technique (wide-band, wide azimuth, and small bin, RTM (Reverse Time Migration, integrated modeling technology for complex structures and variable velocity mapping technique, improving structural interpretation accuracy, ensuring high precision ofimaging, and prediction for deep geological bodies; (2 deep speed raising and efficiency drilling technology series, which significantly improved the drilling speed, in turn reduced the drilling cost and drilling risk; (3 development of a deep high-temperature and high-pressure logging technology series, which provided a guarantee for the accurate identification of reservoir properties and fluid properties; (4 the efficient development technology for deep reservoirs, especially the development and maturity of the reconstruction volume technology, improve the production of single well and the benefit of deep oil and gas development. This paper further points out the improvement direction of the four major technology series of deep oil based on the analysis of the current development of the four major technological systems. Moreover, the development of applicability and economy for technical system is the key to realize high efficiency and low-cost exploration and development of deep oil and gas. Keywords: Deep oil & gas, Exploration and exploitation technologies, Seismic, Logging, Drilling, Petroleum reservoir stimulation

  16. Design of a side-band-separating heterodyne mixer for band 9 of ALMA

    NARCIS (Netherlands)

    Baryshev, AM; Kooi, J; Mena, FR; Lodewijk, CRJ; Wild, W

    2005-01-01

    A side-band-separating (SBS) heterodyne mixer has been designed for the Atacama Large Millimeter Array (ALMA) 602-720 GHz band, as it will present a great improvement over the current double-side-band configuration under development at the moment. Here we present design details and the results of

  17. Detection of Xanthomonas axonopodis pv. Phaseoli and Pseudomonas savastanoi pv. Phaseolicola on bean seed using a Milk-tween medium

    Directory of Open Access Journals (Sweden)

    Popović Tatjana

    2012-01-01

    Full Text Available Bean production is threaten by phytopathogenic bacteria causing agents of blights, Xanthomonas axonopodis pv. phaseoli (Xap and Pseudomonas savastanoi pv. phaseolicola (Psp. Since there is no satisfactory chemical control for the disease, the recommended measures are preventive and include use of healthy seed, crop rotation, deep plowing and use of resistant cultivars. In this work we involved a detection method for isolation of Xap and Psp from bean seed to semi-selective medium Milk Agar Tween (MT. On this medium, Xap formed yellow, mucoid and convex colonies with two hydrolysis zones (less milk and more enlightened, and Psp formed whitish-cream, flat and round colonies. The identification of Xap and Psp was confirmed using the ELISA and PCR. Due to its selectivity, easy preparation and possibility of simultaneous detection of bacteria Xap and Psp, MT medium can be recommended for routine test of seed health for local seed or seed from import.

  18. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.

    Science.gov (United States)

    Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R

    2009-01-01

    This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.

  19. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    International Nuclear Information System (INIS)

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-01-01

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material

  20. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    Science.gov (United States)

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-01

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  1. Micropropagation of Alstroemeria in liquid medium using slow release of medium components

    NARCIS (Netherlands)

    Klerk, de G.J.M.; Brugge, ter J.

    2010-01-01

    Alstroemeria rhizomes were micropropagated on semi-solid medium (AM) and in liquid medium (LM). In LM, growth was much enhanced (ca. 70%). Adequate gas exchange was crucial. This was obtained by agitation and in static medium by a sufficient large contact area of the explant and the gaseous

  2. Collapse and revival in inter-band oscillations of a two-band Bose-Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Ploetz, Patrick; Wimberger, Sandro [Institut fuer Theoretische Physik, Universitaet Heidelberg, Philosophenweg 19, 69120 Heidelberg (Germany); Madronero, Javier, E-mail: ploetz@thphys.uni-heidelberg.d [Physik Department, Technische Universitaet Muenchen, James-Franck-Str. 1, 85748 Garching (Germany)

    2010-04-28

    We study the effect of a many-body interaction on inter-band oscillations in a two-band Bose-Hubbard model with an external Stark force. Weak and strong inter-band oscillations are observed, where the latter arise from a resonant coupling of the bands. These oscillations collapse and revive due to a weak two-body interaction between the atoms. Effective models for oscillations in and out of resonance are introduced that provide predictions for the system's behaviour, particularly for the time scales for the collapse and revival of the resonant inter-band oscillations. (fast track communication)

  3. Deep benign fibrous histiocytoma: computed tomography and histology findings; Histiocitoma fibroso benigno profundo: achados na tomografia computadorizada e histologia

    Energy Technology Data Exchange (ETDEWEB)

    Farage, Luciano; Castro, Mario Augusto Padula; Macedo, Tulio Augusto Alves [Uberlandia Univ., MG (Brazil). Hospital das Clinicas. Setor de Radiologia; Salomao, Eliana Chaves; Machado, Tania Alcantara; Souza, Lincoln Pereira de; Freitas, Luiz de Oliveira [Uberlandia Univ., MG (Brazil). Faculdade de Medicina. Dept. de Clinica Medica

    2005-04-01

    We present the computed tomography images of an 83-year-old male patient with a deep benign fibrous histiocytoma at the lateral aspect of the left leg. Computed tomography images showed a well-defined mass with marked peripheral enhancement by iodinated contrast medium. Only few reports of this rare soft tissue tumor can be found in the literature. (author)

  4. Deep-well injection of liquid radioactive waste in Russia. Present situation

    International Nuclear Information System (INIS)

    Rybalchenko, A.

    1998-01-01

    At present there are 3 facilities (polygons) for the deep-well injection of liquid radioactive waste in Russia, all of which were constructed in the mid60's. These facilities are operating successfully, and activities have started in preparation for decommissioning. Liquid radioactive waste is injected into deep porous horizons which act as 'collector-layers', isolated from the surface and from groundwaters by a relatively thick sequence of rock of low permeability. The collector-layers (also collector-horizons) contain salt waters or fresh waters of no practical application, lying beneath the main horizons containing potable waters. Construction of facilities for the deep-well injection of liquid radioactive waste was preceded by geological surveys and investigations which were able to substantiate the feasibility and safety of radioactive waste injection, and to obtain initial data for facility design. Operation of the facilities was accompanied by monitoring which confirmed that the main safety requirement was satisfied i.e. localisation of radioactive waste within specified boundaries of the geologic medium. The opinion of most specialists in the atomic power industry in Russia favours deep-well injection as a solution to the problem of liquid radioactive waste management; during the period of active operation of defence facilities (atomic power industry of the former U.S.S.R.), this disposal method prevented the impact of radioactive waste on man and the environment. The experience accumulated concerning the injection of liquid radioactive waste in Russia is of interest to scientists and engineers engaged in problems of protection and remediation of the environment in the vicinity of nuclear industry facilities; an example of the utilisation of the deep subsurface for solidified radioactive waste and the disposal of different types of nuclear materials. Information on the scientific principles and background for the development of facilities for the injection

  5. Deep Incremental Boosting

    OpenAIRE

    Mosca, Alan; Magoulas, George D

    2017-01-01

    This paper introduces Deep Incremental Boosting, a new technique derived from AdaBoost, specifically adapted to work with Deep Learning methods, that reduces the required training time and improves generalisation. We draw inspiration from Transfer of Learning approaches to reduce the start-up time to training each incremental Ensemble member. We show a set of experiments that outlines some preliminary results on some common Deep Learning datasets and discuss the potential improvements Deep In...

  6. Anatomical variations within the deep posterior compartment of the leg and important clinical consequences.

    Science.gov (United States)

    Hislop, M; Tierney, P

    2004-09-01

    The management of musculoskeletal conditions makes up a large part of a sports medicine practitioner's practice. A thorough knowledge of anatomy is an essential component of the armament necessary to decipher the large number of potential conditions that may confront these practitioners. To cloud the issue further, anatomical variations may be present, such as supernumerary muscles, thickened fascial bands or variant courses of nerves and blood vessels, which can themselves manifest as acute or chronic conditions that lead to significant morbidity or limitation of activity. There are a number of contentious areas within the literature surrounding the anatomy of the leg, particularly involving the deep posterior compartment. Conditions such as chronic exertional compartment syndrome, tibial periostitis (shin splints), peripheral nerve entrapment and tarsal tunnel syndrome may all be affected by subtle anatomical variations. This paper primarily focuses on the deep posterior compartment of the leg and uses the gross dissection of cadaveric specimens to describe definitively the anatomy of the deep posterior compartment. Variant fascial attachments of flexor digitorum longus are documented and potential clinical sequelae such as chronic exertional compartment syndrome and tarsal tunnel syndrome are discussed.

  7. Side-band-separating heterodyne mixer for band 9 of ALMA.

    NARCIS (Netherlands)

    Mena, F. P.; Baryshev, A. M.; Kooi, J.; Lodewijk, C. F. J.; Gerlofsma, G.; Hesper, R.; Wild, W.; Shen, XC; Lu, W; Zhang, J; Dou, WB

    2006-01-01

    Here we present the realization of a side-band-separating (2SB) heterodyne mixer for the frequency range from 602 to 720 GHz (corresponding to ALMA band 9). The mixer, in brief, consists of a quadrature hybrid, two LO injectors, two SIS junctions, and three dumping loads. All the parts were modeled

  8. K-Band Phased Array Developed for Low- Earth-Orbit Satellite Communications

    Science.gov (United States)

    Anzic, Godfrey

    1999-01-01

    Future rapid deployment of low- and medium-Earth-orbit satellite constellations that will offer various narrow- to wide-band wireless communications services will require phased-array antennas that feature wide-angle and superagile electronic steering of one or more antenna beams. Antennas, which employ monolithic microwave integrated circuits (MMIC), are perfectly suited for this application. Under a cooperative agreement, an MMIC-based, K-band phased-array antenna is being developed with 50/50 cost sharing by the NASA Lewis Research Center and Raytheon Systems Company. The transmitting array, which will operate at 19 gigahertz (GHz), is a state-of-the-art design that features dual, independent, electronically steerable beam operation ( 42 ), a stand-alone thermal management, and a high-density tile architecture. This array can transmit 622 megabits per second (Mbps) in each beam from Earth orbit to small Earth terminals. The weight of the total array package is expected to be less than 8 lb. The tile integration technology (flip chip MMIC tile) chosen for this project represents a major advancement in phased-array engineering and holds much promise for reducing manufacturing costs.

  9. Polarization field gradient effects in inhomogeneous metal-ferroelectric bilayers: Optical response and band gap tunability

    Energy Technology Data Exchange (ETDEWEB)

    Vivas C, H., E-mail: hvivasc@unal.edu.co [Grupo de las Propiedades Opticas de los Materiales (POM), Departamento de Fisica, Universidad Nacional de Colombia, Sede Manizales, A.A. 127 (Colombia); Vargas-Hernandez, C. [Grupo de las Propiedades Opticas de los Materiales (POM), Departamento de Fisica, Universidad Nacional de Colombia, Sede Manizales, A.A. 127 (Colombia)

    2012-06-15

    Optical constants, reflectivity response and direct band gap energy (E{sub g}{sup d}) were calculated and simulated by developing an electrodynamic-based model for a three medium system, namely vacuum/ferroelectric film/metallic substrate. Depolarization effects due to the contact between the metallic substrate and the FE film, as well as the spatially dependent profile of the dielectric susceptibility {epsilon}(z) enter into the formalism by adapting the phenomenological Landau-Ginzburg-Devonshire theory (LGD). Absorption coefficient is obtained from the Lambert-Beer-Bouguer (LBB) approximation and the direct band gap energy as a function of the characteristic length is calculated by using the general Tauc power law. Numerical simulations lead to range of values for tunable E{sub g}{sup d} from 2.6 to 2.8 eV for characteristic lengths up to 30% the thickness of the film, in concordance with recent reports.

  10. Deep postoperative spine infection treated by negative pressure therapy in patients with progressive spinal deformities.

    Science.gov (United States)

    Canavese, Federico; Marengo, Lorenza; Corradin, Marco; Mansour, Mounira; Samba, Antoine; Andreacchio, Antonio; Rousset, Marie; Dimeglio, Alain

    2018-04-01

    The aim of the study is to review the outcome of using the VAC system in children and adolescents who have developed postoperative spinal infection after posterior instrumented spinal fusion, and to evaluate whether this technique is also feasible in patients treated with posterior instrumented fusion with polyester sublaminar bands. A total of 11 out of 118 consecutive children and adolescents (5 males) with deep postoperative spinal infection were identified; infections were categorised as early (acute), delayed (subacute) or late (chronic) according to time of onset. Irrespective of the etiology and the onset, all the deep infections were managed with the reported technique. All the patients had regular clinical and radiological follow-up. Eight out of 11 patients developed an early (72.7%), 2 a delayed (18.2%) and 1 a late deep postoperative infection (9.1%); 7 out of 11 (63.6%) showed severe mental compromise. No statistically significant differences were observed for mean number of VAC dressing changes (p = 0.81) and mean length of hospitalisation comparing patients with early infection versus patients with delayed or late infections (p = 0.32). Mean number of VAC dressing changes (p = 0.02) and mean number of hospitalisation days (p = 0.05) were higher in patients with underlying neurological disorders than in those without, while mean length of hospitalisation was longer in neuromuscular patients. The application of the VAC system, as an adjunct to surgical debridement and adequate antibiotic therapy, is a reliable method for the treatment of postoperative infection in children and adolescents undergoing spinal instrumentation and fusion. It can reduce the need for further complex soft-tissue procedure, removal of hardware with consequent loss of correction, and pseudoarthrosis. Finally, the use of VAC therapy is not contraindicated in patients treated with hybrid constructs with sublaminar bands. III.

  11. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering

    Science.gov (United States)

    Jeong, Seungwon; Lee, Ye-Ryoung; Choi, Wonjun; Kang, Sungsam; Hong, Jin Hee; Park, Jin-Sung; Lim, Yong-Sik; Park, Hong-Gyu; Choi, Wonshik

    2018-05-01

    The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.

  12. Band structure of one-dimensional doped photonic crystal with three level atoms using the Fresnel coefficients method

    Science.gov (United States)

    Jafari, A.; Rahmat, A.; Bakkeshizadeh, S.

    2018-01-01

    We consider a one-dimensional photonic crystal (1DPC) composed of double-layered dielectrics. Electric permittivity and magnetic permeability of this crystal depends on the incident electromagnetic wave frequency. We suppose that three level atoms have been added to the second layer of each dielectric and this photonic crystal (PC) has been doped. These atoms can be added to the layer with different rates. In this paper, we have calculated and compared the band structure of the mentioned PC considering the effect of added atoms to the second layer with different rates through the Fresnel coefficients method. We find out that according to the effective medium theory, the electric permittivity of the second layer changes. Also the band structure of PC for both TE and TM polarizations changes, too. The width of bandgaps related to “zero averaged refractive index” and “Bragg” increases. Moreover, new gap branches appear in new frequencies at both TE and TM polarizations. In specific state, two branches of “zero permittivity” gap appear in the PC band structure related to TM polarization. With increasing the amount of the filling rate of total volume with three level atoms, we observe a lot of changes in the PC band structure.

  13. Deep Super Learner: A Deep Ensemble for Classification Problems

    OpenAIRE

    Young, Steven; Abdou, Tamer; Bener, Ayse

    2018-01-01

    Deep learning has become very popular for tasks such as predictive modeling and pattern recognition in handling big data. Deep learning is a powerful machine learning method that extracts lower level features and feeds them forward for the next layer to identify higher level features that improve performance. However, deep neural networks have drawbacks, which include many hyper-parameters and infinite architectures, opaqueness into results, and relatively slower convergence on smaller datase...

  14. DeepRT: deep learning for peptide retention time prediction in proteomics

    OpenAIRE

    Ma, Chunwei; Zhu, Zhiyong; Ye, Jun; Yang, Jiarui; Pei, Jianguo; Xu, Shaohang; Zhou, Ruo; Yu, Chang; Mo, Fan; Wen, Bo; Liu, Siqi

    2017-01-01

    Accurate predictions of peptide retention times (RT) in liquid chromatography have many applications in mass spectrometry-based proteomics. Herein, we present DeepRT, a deep learning based software for peptide retention time prediction. DeepRT automatically learns features directly from the peptide sequences using the deep convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) model, which eliminates the need to use hand-crafted features or rules. After the feature learning, pr...

  15. Transport in bilayer and trilayer graphene: band gap engineering and band structure tuning

    Science.gov (United States)

    Zhu, Jun

    2014-03-01

    Controlling the stacking order of atomically thin 2D materials offers a powerful tool to control their properties. Linearly dispersed bands become hyperbolic in Bernal (AB) stacked bilayer graphene (BLG). Both Bernal (ABA) and rhombohedral (ABC) stacking occur in trilayer graphene (TLG), producing distinct band structures and electronic properties. A symmetry-breaking electric field perpendicular to the sample plane can further modify the band structures of BLG and TLG. In this talk, I will describe our experimental effort in these directions using dual-gated devices. Using thin HfO2 film deposited by ALD as gate dielectric, we are able to apply large displacement fields D > 6 V/nm and observe the opening and saturation of the field-induced band gap Eg in bilayer and ABC-stacked trilayer graphene, where the conduction in the mid gap changes by more than six decades. Its field and temperature dependence highlights the crucial role played by Coulomb disorder in facilitating hopping conduction and suppressing the effect of Eg in the tens of meV regime. In contrast, mid-gap conduction decreases with increasing D much more rapidly in clean h-BN dual-gated devices. Our studies also show the evolution of the band structure in ABA-stacked TLG, in particular the splitting of the Dirac-like bands in large D field and the signatures of two-band transport at high carrier densities. Comparison to theory reveals the need for more sophisticated treatment of electronic screening beyond self-consistent Hartree calculations to accurately predict the band structures of trilayer graphene and graphenic materials in general.

  16. Advances in X-Band and S-Band Linear Accelerators for Security, NDT, and Other Applications

    CERN Document Server

    Mishin, Andrey V

    2005-01-01

    At AS&E High Energy Systems Division, we designed several new advanced high energy electron beam and X-ray sources. Our primary focus has always been in building the world's most portable commercial X-band accelerators. Today, our X-band systems frequently exceed performance of the similar S-band machines, while they are more portable compared to the latter. The new designs of the X-band accelerators in the most practical energy range from 1 MeV to 6 MeV have been tested delivering outstanding results. Seventy 6 MeV X-band linacs systems have been produced. The most compact linac for security is used by AS&E in a self-shielded, Shaped Energy™ cargo screening system. We pioneered using the X-band linear accelerators for CT, producing high quality images of oil pipes and wood logs. An X-band linear accelerator head on a robotic arm has been used for electron beam radiation curing of an odd-shaped graphite composite part. We developed the broad-range 4 MeV to over 10 MeV energy-regulated X-band ...

  17. Detection of small surface vessels in near, medium, and far infrared spectral bands

    Science.gov (United States)

    Dulski, R.; Milewski, S.; Kastek, M.; Trzaskawka, P.; Szustakowski, M.; Ciurapinski, W.; Zyczkowski, M.

    2011-11-01

    Protection of naval bases and harbors requires close co-operation between security and access control systems covering land areas and those monitoring sea approach routes. The typical location of naval bases and harbors - usually next to a large city - makes it difficult to detect and identify a threat in the dense regular traffic of various sea vessels (i.e. merchant ships, fishing boats, tourist ships). Due to the properties of vessel control systems, such as AIS (Automatic Identification System), and the effectiveness of radar and optoelectronic systems against different targets it seems that fast motor boats called RIB (Rigid Inflatable Boat) could be the most serious threat to ships and harbor infrastructure. In the paper the process and conditions for the detection and identification of high-speed boats in the areas of ports and naval bases in the near, medium and far infrared is presented. Based on the results of measurements and recorded thermal images the actual temperature contrast delta T (RIB / sea) will be determined, which will further allow to specify the theoretical ranges of detection and identification of the RIB-type targets for an operating security system. The data will also help to determine the possible advantages of image fusion where the component images are taken in different spectral ranges. This will increase the probability of identifying the object by the multi-sensor security system equipped additionally with the appropriate algorithms for detecting, tracking and performing the fusion of images from the visible and infrared cameras.

  18. Measuring and slowing decoherence in Electromagnetically induced transparency medium

    International Nuclear Information System (INIS)

    Shuker, M.; Firstenberg, O.; Sagi, Y.; Ben-Kish, A.; Fisher, A.; Ron, A.; Davidson, N.

    2005-01-01

    Full Text:Electromagnetically induced transparency is a unique light-matter interaction that exhibits extremely narrow-band spectroscopic features along with low absorption. Recent interest in this phenomenon is driven by its possible applications in quantum information (slow light, storage of light), atomic clocks and precise magnetometers. The Electromagnetically induced transparency phenomenon takes place when an atomic ensemble is driven to a coherent superposition of its ground state sub-levels by two phase-coherent radiation fields. A key parameter of the Electromagnetically induced transparency medium, that limits its applicability, is the coherence lifetime of this superposition (decoherence rate). We have developed a simple technique to measure decay rates within the ground state of an atomic ensemble, and specifically the decoherence rate of the Electromagnetically induced transparency coherent superposition. Detailed measurements were performed in a Rubidium vapor cell at 60 - 80 with 30 Torr of Neon buffer gas. We have found that the Electromagnetically induced transparency decoherence is dominated by spin-exchange collisions between Rubidium atoms. We discuss the sensitivity of various quantum states of the atomic ensemble to spin exchange decoherence, and find a set of quantum states that minimize this effect. Finally, we demonstrate a unique quantum state which is both insensitive to spin exchange decoherence and constitutes an Electromagnetically induced transparency state of the medium

  19. THE ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: IMPLICATIONS FOR SPECTRAL LINE INTENSITY MAPPING AT MILLIMETER WAVELENGTHS AND CMB SPECTRAL DISTORTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Carilli, C. L.; Walter, F. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Chluba, J. [Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, M13 9PL (United Kingdom); Decarli, R. [Max-Planck Institute for Astronomy, D-69117 Heidelberg (Germany); Aravena, M. [Nucleo de Astronomia, Facultad de Ingenieria, Universidad Diego Portales, Av. Ejercito 441, Santiago (Chile); Wagg, J. [Square Kilometre Array Organisation, Lower Withington, Cheshire (United Kingdom); Popping, G. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748, Garching (Germany); Cortes, P. [Joint ALMA Observatory—ESO, Av. Alonso de Cordova, 3104, Santiago (Chile); Hodge, J. [Leiden Observatory, Leiden University, Niels Bohrweg 2, NL2333 RA Leiden (Netherlands); Weiss, A. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Bertoldi, F. [Argelander Institute for Astronomy, University of Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); Riechers, D., E-mail: ccarilli@aoc.nrao.edu [Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States)

    2016-12-10

    We present direct estimates of the mean sky brightness temperature in observing bands around 99 and 242 GHz due to line emission from distant galaxies. These values are calculated from the summed line emission observed in a blind, deep survey for spectral line emission from high redshift galaxies using ALMA (the ALMA spectral deep field observations “ASPECS” survey). In the 99 GHz band, the mean brightness will be dominated by rotational transitions of CO from intermediate and high redshift galaxies. In the 242 GHz band, the emission could be a combination of higher order CO lines, and possibly [C ii] 158 μ m line emission from very high redshift galaxies ( z  ∼ 6–7). The mean line surface brightness is a quantity that is relevant to measurements of spectral distortions of the cosmic microwave background, and as a potential tool for studying large-scale structures in the early universe using intensity mapping. While the cosmic volume and the number of detections are admittedly small, this pilot survey provides a direct measure of the mean line surface brightness, independent of conversion factors, excitation, or other galaxy formation model assumptions. The mean surface brightness in the 99 GHZ band is: T{sub B}  = 0.94 ± 0.09 μ K. In the 242 GHz band, the mean brightness is: T{sub B}  = 0.55 ± 0.033 μ K. These should be interpreted as lower limits on the average sky signal, since we only include lines detected individually in the blind survey, while in a low resolution intensity mapping experiment, there will also be the summed contribution from lower luminosity galaxies that cannot be detected individually in the current blind survey.

  20. Band gap and band offset of (GaIn)(PSb) lattice matched to InP

    Science.gov (United States)

    Köhler, F.; Böhm, G.; Meyer, R.; Amann, M.-C.

    2005-07-01

    Metastable (GaxIn1-x)(PySb1-y) layers were grown on (001) InP substrates by gas source molecular beam epitaxy. Low-temperature photoluminescence spectroscopy was applied to these heterostructures and revealed spatially indirect band-to-band recombination of electrons localized in the InP with holes in the (GaxIn1-x)(PySb1-y). In addition, samples with layer thicknesses larger than 100nm showed direct PL across the band gap of (GaxIn1-x)(PySb1-y). Band-gap energies and band offset energies of (GaxIn1-x)(PySb1-y) relative to InP were derived from these PL data. A strong bowing parameter was observed.

  1. Deep reversible storage. Safety options for the storage in deep geological formation - High-medium activity, long living wastes 2009 milestone

    International Nuclear Information System (INIS)

    2010-09-01

    This large document aims at presenting safety options which have been adopted for the current design status (notably for the installation architecture), elements of description of envisaged technical solutions and exploitation principles which are required for the control of risks (either internal or external) and uncertainties on a long term which could lead to radiological consequences for the project of storage of nuclear wastes in a deep geological formation. After a presentation of the context and of input data, this report discusses the principle of a modular construction and then discusses the safety approach. One part deals with risk analysis for surface installations and aims at showing how internal risks (handling, fire) and external risks (earthquake, plane crash) are taken into account in terms of design choices, processes and control measures. Another part deals with risk analysis for underground installations during the reversible exploitation phase (the considered risks are about the same as in the previous part). The next part addresses risk analysis after closing, and tries to describe how the location, storage construction elements and its architecture ensure a passive safety. Uncertainty management is presented in relationship with envisaged technical solutions and scientific knowledge advances. Additional elements (detailed study, researches and experimentations) for the establishment of the future creation authorization request are identified all along the report

  2. Key technologies for well drilling and completion in ultra-deep sour gas reservoirs, Yuanba Gasfield, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Jiaxiang Xia

    2016-12-01

    Full Text Available The Yuanba Gasfield is a large gas field discovered by Sinopec in the Sichuan Basin in recent years, and another main exploration area for natural gas reserves and production increase after the Puguang Gasfield. The ultra-deep sour gas reservoir in the Yuanba Gasfield is characterized by complicated geologic structure, deep reservoirs and complex drilled formation, especially in the continental deep strata which are highly abrasive with low ROP (rate of penetration and long drilling period. After many years of drilling practice and technical research, the following six key drilling and completion technologies for this type reservoir are established by introducing new tools and technologies, developing specialized drill bits and optimizing drilling design. They are: casing program optimization technology for ROP increasing and safe well completion; gas drilling technology for shallow continental strata and high-efficiency drilling technology for deep high-abrasion continental strata; drilling fluid support technologies of gas–liquid conversion, ultra-deep highly-deviated wells and horizontal-well lubrication and drag reduction, hole stability control and sour gas contamination prevention; well cementing technologies for gas medium, deep-well long cementing intervals and ultra-high pressure small space; horizontal-well trajectory control technologies for measuring instrument, downhole motor optimization and bottom hole assembly design; and liner completion modes and completion string optimization technologies suitable for this gas reservoir. Field application shows that these key technologies are contributive to ROP increase and efficiency improvement of 7000 m deep horizontal wells and to significant operational cycle shortening.

  3. Description of new systems for acquiring in situ data from deep wells

    International Nuclear Information System (INIS)

    Peyrus, J.C.; Vinson, J.M.

    1984-02-01

    The studies being made by CEA/IPSN in respect of storage sites in a granite medium require a knowledge of the physico-chemical parameters of the water in the geological formation, since these waters are the principal vectors of hydrogeological transfers. In order to attain this objective, the design, construction and operation of two new experimental systems for sampling water in a deep well without modifying the pressure of the fluid as well was undertaken, at the same time as the measurement of pH, oxidation-reduction potential and water temperature of the aqueous medium. A pressure-compensated combined pH-Eh electrode for completely representative measurements down to 2000 metres was studied. The first results obtained at the Auriat site in France show confrontation with water belonging to the sodium bicarbonate facies, which is rich in CO 2 , CH 4 and H 2 , and that pH and Eh vary as a function of the mineralogical nature of the granite and tectonic fractures

  4. Nuclear medium effects in the evaluation of Callan Gross relation

    International Nuclear Information System (INIS)

    Zaidi, F.; Haider, H.; Athar, M. Sajjad; Singh, S.K.

    2015-01-01

    JLab has recently measured F 1 (x) and F 2 (x) structure functions separately as well as studied the difference F 2 (x) - 2 xF 1 (x) (Callan-Gross relation) using electron-nucleus deep inelastic scattering (DIS) in the energy region of 2-6 GeV of the electron beam. Theoretically, it is important to understand nuclear medium effects for a fundamental process eN → eX (N is the nucleon and X is jet of hadrons) taking place with a nucleon bound inside the nucleus. Generally, nuclear medium effects in the DIS region are understood due to shadowing and antishadowing effects, mesonic cloud contributions, Fermi motion and binding energy etc. In the present paper we have studied nuclear medium effects in microscopic model using relativistic nucleon spectral function to describe nucleon momentum distribution. The Fermi motion, binding energy effect and nucleon-nucleon correlations are taken into account using spectral functions. The spectral functions that describe energy and momentum distribution of nucleon is obtained by using the Lehmann's representation for the relativistic nucleon propagator and nuclear many body theory is used to calculate it for an interacting Fermi sea in nuclear matter. A local density approximation is then applied to translate these results to a finite nucleus. We have taken into account pion and rho mesons cloud contributions which are found to have important contribution in the intermediate region of Bjorken variable x. Furthermore, shadowing and antishadowing effects are also taken into account using phenomenological model of Kulagin and Petti. Numerical evaluation have been performed both at the leading order (LO) and next-to-leading order (NLO)

  5. Geological characters and petrological characters of metamorphosed medium-acidic intrusive complexes in Ludong Orogenic Belt,China

    Institute of Scientific and Technical Information of China (English)

    凌贤长; 胡庆立; 王丽霞

    2002-01-01

    Ludong orogenic belt in China is an importantal continent collision orogenic belt in eastern Asia, between Sino-Korean landmass and Yangtze landmass. The host rock of the orogenic belt is metamorphosed medium-acidic intrusive complexes, which can be divided into four types, that's, quartz dioritz, granite dioritz, monzonitic granite and undertint monzonitic granite, principal minerals are plagioclases, potassium feldspars and quartzs, minor minerals are hornblendes, biotites, clinopyxenes and garnets, accessory mineral types and assemblages are very similar, specially, various rocks are mainly fine-grained textures. They have the history of regional amphibolite facies metamorphism and deep-middle-shallow structural layer deformation, and are changed into various gneiss and tectonic system. There are many xenolithes of middle Proterozoic eclogite-host rock extrahigh-high pressure metamorphic complexes, a small xenolithes of early Proterozoic layered metamorphite system and granulites, and ultrabasic-basic rocks of various epoches in the metamorphosed medium-acidic intrusive complexes.

  6. Analyses of the deep borehole drilling status for a deep borehole disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Youl; Choi, Heui Joo; Lee, Min Soo; Kim, Geon Young; Kim, Kyung Su [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of disposal for radioactive wastes is not only to isolate them from humans, but also to inhibit leakage of any radioactive materials into the accessible environment. Because of the extremely high level and long-time scale radioactivity of HLW(High-level radioactive waste), a mined deep geological disposal concept, the disposal depth is about 500 m below ground, is considered as the safest method to isolate the spent fuels or high-level radioactive waste from the human environment with the best available technology at present time. Therefore, as an alternative disposal concept, i.e., deep borehole disposal technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general status of deep drilling technologies was reviewed for deep borehole disposal of high level radioactive wastes. Based on the results of these review, very preliminary applicability of deep drilling technology for deep borehole disposal analyzed. In this paper, as one of key technologies of deep borehole disposal system, the general status of deep drilling technologies in oil industry, geothermal industry and geo scientific field was reviewed for deep borehole disposal of high level radioactive wastes. Based on the results of these review, the very preliminary applicability of deep drilling technology for deep borehole disposal such as relation between depth and diameter, drilling time and feasibility classification was analyzed.

  7. The Identification of Complex Organic Molecules in the Interstellar Medium: Using Lasers and Matrix Isolation Spectroscopy to Simulate the Interstellar Environment

    Science.gov (United States)

    Stone, Bradley M.

    1998-01-01

    The Astrochemistry Group at NASA Ames Research Center is interested in the identification of large organic molecules in the interstellar medium Many smaller organic species (e.g. hydrocarbons, alcohols, etc.) have been previously identified by their radiofrequency signature due to molecular rotations. However, this becomes increasingly difficult to observe as the size of the molecule increases. Our group in interested in the identification of the carriers of the Diffuse Interstellar Bands (absorption features observed throughout the visible and near-infrared in the spectra of stars, due to species in the interstellar medium). Polycyclic Aromatic Hydrocarbons (PAHs) and related molecules are thought to be good candidates for these carriers. Laboratory experiments am performed at Ames to simulate the interstellar environment, and to compare spectra obtained from molecules in the laboratory to those derived astronomically. We are also interested in PAHs with respect to their possible connection to the UIR (Unidentified infrared) and ERE (Extended Red Emission) bands - emission features found to emanate from particular regions of our galaxy (e.g. Orion nebula, Red Rectangle, etc.). An old, "tried and proven spectroscopic technique, matrix isolation spectroscopy creates molecular conditions ideal for performing laboratory astrophysics.

  8. A Monte Carlo simulation for bipolar resistive memory switching in large band-gap oxides

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Ji-Hyun, E-mail: jhhur123@gmail.com, E-mail: jeonsh@korea.ac.kr [Department of Applied Physics, Korea University, Sejong 2511, Sejong 339-700 (Korea, Republic of); Compound Device Laboratory, Samsung Advanced Institute of Technology, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-Do 446-712 (Korea, Republic of); Lee, Dongsoo [Compound Device Laboratory, Samsung Advanced Institute of Technology, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-Do 446-712 (Korea, Republic of); Jeon, Sanghun, E-mail: jhhur123@gmail.com, E-mail: jeonsh@korea.ac.kr [Department of Applied Physics, Korea University, Sejong 2511, Sejong 339-700 (Korea, Republic of)

    2015-11-16

    A model that describes bilayered bipolar resistive random access memory (BL-ReRAM) switching in oxide with a large band gap is presented. It is shown that, owing to the large energy barrier between the electrode and thin oxide layer, the electronic conduction is dominated by trap-assisted tunneling. The model is composed of an atomic oxygen vacancy migration model and an electronic tunneling conduction model. We also show experimentally observed three-resistance-level switching in Ru/ZrO{sub 2}/TaO{sub x} BL-ReRAM that can be explained by the two types of traps, i.e., shallow and deep traps in ZrO{sub 2}.

  9. In-house L-band niobium single cell cavities at KEK

    International Nuclear Information System (INIS)

    Inoue, Hitoshi; Kobayashi, Yoshiharu; Funahashi, Yoshisato; Koizumi, Susumu; Saito, Kenji; Noguchi, Shuichi; Kako, Eiji; Shishido, Toshio

    1993-01-01

    For the TESLA (TeV Energy Superconducting Linear Accelerator) as an energy frontier accelerator of the next generation improving the performance of the niobium superconducting cavities is the most important issue and much reduction of fabrication cost of cavities is another key. Since manufacturing of niobium material requires hard techniques due to the easily oxidizable metal, fabrication of niobium cavities has been conducted in only companies providing enough equipments in Japan. KEK has accumulated the fabrication technics such as forming method by deep drawing, trimming, centering of beam tubes, electron beam welding and measurement of manufacturing error so on. We made in-house L-band single cell cavities using these technologies. In this paper we present these manufacturing of the niobium cavities and estimate the fabrication cost as exactly as possible. The manufacturing error is also described. (author)

  10. Wide-band IR imaging in the NIR-MIR-FIR regions for in situ analysis of frescoes

    Science.gov (United States)

    Daffara, C.; Pezzati, L.; Ambrosini, D.; Paoletti, D.; Di Biase, R.; Mariotti, P. I.; Frosinini, C.

    2011-06-01

    Imaging methods offer several advantages in the field of conservation allowing to perform non-invasive inspection of works of art. In particular, non-invasive techniques based on imaging in different infrared (IR) regions are widely used for the investigation of paintings. Using radiation beyond the visible range, different characteristics of the inspected artwork may be revealed according to the bandwidth acquired. In this paper we present the recent results of a joint project among the two research institutes DIMEG and CNR-INO, and the restoration facility Opificio delle Pietre Dure, concerning the wide-band integration of IR imaging techniques, in the spectral ranges NIR 0.8-2.5 μm, MIR 3-5 μm, and FIR 8-12 μm, for in situ analysis of artworks. A joint, multi-mode use of reflection and thermal bands is proposed for the diagnostics of mural paintings, and it is demonstrated to be an effective tool in inspecting the layered structure. High resolution IR reflectography and, to a greater extent, IR imaging in the 3-5 μm band, are effectively used to characterize the superficial layer of the fresco and to analyze the stratigraphy of different pictorial layers. IR thermography in the 8-12 μm band is used to characterize the support deep structure. The integration of all the data provides a multi- layered and multi-spectral representation of the fresco that yields a comprehensive analysis.

  11. Dual-band infrared camera

    Science.gov (United States)

    Vogel, H.; Schlemmer, H.

    2005-10-01

    Every year, numerous accidents happen on European roads due to bad visibility (fog, night, heavy rain). Similarly, the dramatic aviation accidents of year 2001 in Milan and Zurich have reminded us that aviation safety is equally affected by reduced visibility. A dual-band thermal imager was developed in order to raise human situation awareness under conditions of reduced visibility especially in the automotive and aeronautical context but also for all transportation or surveillance tasks. The chosen wavelength bands are the Short Wave Infrared SWIR and the Long Wave Infrared LWIR band which are less obscured by reduced visibility conditions than the visible band. Furthermore, our field tests clearly show that the two different spectral bands very often contain complementary information. Pyramidal fusion is used to integrate complementary and redundant features of the multi-spectral images into a fused image which can be displayed on a monitor to provide more and better information for the driver or pilot.

  12. BioSentinel: Biosensors for Deep-Space Radiation Study

    Science.gov (United States)

    Lokugamage, Melissa P.; Santa Maria, Sergio R.; Marina, Diana B.; Bhattacharya, Sharmila

    2016-01-01

    The BioSentinel mission will be deployed on NASA's Exploration Mission 1 (EM-1) in 2018. We will use the budding yeast, Saccharomyces cerevisiae, as a biosensor to study the effect of deep-space radiation on living cells. The BioSentinel mission will be the first investigation of a biological response to space radiation outside Low Earth Orbit (LEO) in over 40 years. Radiation can cause damage such as double stand breaks (DSBs) on DNA. The yeast cell was chosen for this mission because it is genetically controllable, shares homology with human cells in its DNA repair pathways, and can be stored in a desiccated state for long durations. Three yeast strains will be stored dry in multiple microfluidic cards: a wild type control strain, a mutant defective strain that cannot repair DSBs, and a biosensor strain that can only grow if it gets DSB-and-repair events occurring near a specific gene. Growth and metabolic activity of each strain will be measured by a 3-color LED optical detection system. Parallel experiments will be done on the International Space Station and on Earth so that we can compare the results to that of deep space. One of our main objectives is to characterize the microfluidic card activation sequence before the mission. To increase the sensitivity of yeast cells as biosensors, desiccated yeast in each card will be resuspended in a rehydration buffer. After several weeks, the rehydration buffer will be exchanged with a growth medium in order to measure yeast growth and metabolic activity. We are currently working on a time-course experiment to better understand the effects of the rehydration buffer on the response to ionizing radiation. We will resuspend the dried yeast in our rehydration medium over a period of time; then each week, we will measure the viability and ionizing radiation sensitivity of different yeast strains taken from this rehydration buffer. The data obtained in this study will be useful in finalizing the card activation sequence for

  13. Diamonds in dense molecular clouds - A challenge to the standard interstellar medium paradigm

    Science.gov (United States)

    Allamandola, L. J.; Sandford, S. A.; Tielens, A. G. G. M.; Herbst, T. M.

    1993-01-01

    Observations of a newly discovered infrared C-H stretching band indicate that interstellar diamond-like material appears to be characteristic of dense clouds. In sharp contrast, the spectral signature of dust in the diffuse interstellar medium is dominated by -CH2- and -CH3 groups. This dichotomy in the aliphatic organic component between the dense and diffuse media challenges standard assumptions about the processes occurring in, and interactions between, these two media. The ubiquity of this interstellar diamond-like material rules out models for meteoritic diamond formation in unusual circumstellar environments and implies that the formation of the diamond-like material is associated with common interstellar processes or stellar types.

  14. Deep Space Telecommunications

    Science.gov (United States)

    Kuiper, T. B. H.; Resch, G. M.

    2000-01-01

    The increasing load on NASA's deep Space Network, the new capabilities for deep space missions inherent in a next-generation radio telescope, and the potential of new telescope technology for reducing construction and operation costs suggest a natural marriage between radio astronomy and deep space telecommunications in developing advanced radio telescope concepts.

  15. Decay of superdeformed bands

    International Nuclear Information System (INIS)

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-01-01

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in 194 Hg. 42 refs., 5 figs

  16. Analysis of deep learning methods for blind protein contact prediction in CASP12.

    Science.gov (United States)

    Wang, Sheng; Sun, Siqi; Xu, Jinbo

    2018-03-01

    Here we present the results of protein contact prediction achieved in CASP12 by our RaptorX-Contact server, which is an early implementation of our deep learning method for contact prediction. On a set of 38 free-modeling target domains with a median family size of around 58 effective sequences, our server obtained an average top L/5 long- and medium-range contact accuracy of 47% and 44%, respectively (L = length). A complete implementation has an average accuracy of 59% and 57%, respectively. Our deep learning method formulates contact prediction as a pixel-level image labeling problem and simultaneously predicts all residue pairs of a protein using a combination of two deep residual neural networks, taking as input the residue conservation information, predicted secondary structure and solvent accessibility, contact potential, and coevolution information. Our approach differs from existing methods mainly in (1) formulating contact prediction as a pixel-level image labeling problem instead of an image-level classification problem; (2) simultaneously predicting all contacts of an individual protein to make effective use of contact occurrence patterns; and (3) integrating both one-dimensional and two-dimensional deep convolutional neural networks to effectively learn complex sequence-structure relationship including high-order residue correlation. This paper discusses the RaptorX-Contact pipeline, both contact prediction and contact-based folding results, and finally the strength and weakness of our method. © 2017 Wiley Periodicals, Inc.

  17. Greedy Deep Dictionary Learning

    OpenAIRE

    Tariyal, Snigdha; Majumdar, Angshul; Singh, Richa; Vatsa, Mayank

    2016-01-01

    In this work we propose a new deep learning tool called deep dictionary learning. Multi-level dictionaries are learnt in a greedy fashion, one layer at a time. This requires solving a simple (shallow) dictionary learning problem, the solution to this is well known. We apply the proposed technique on some benchmark deep learning datasets. We compare our results with other deep learning tools like stacked autoencoder and deep belief network; and state of the art supervised dictionary learning t...

  18. Identification of new deep sea sinuous channels in the eastern Arabian Sea.

    Science.gov (United States)

    Mishra, Ravi; Pandey, D K; Ramesh, Prerna; Clift, Peter D

    2016-01-01

    Deep sea channel systems are recognized in most submarine fans worldwide as well as in the geological record. The Indus Fan is the second largest modern submarine fan, having a well-developed active canyon and deep sea channel system. Previous studies from the upper Indus Fan have reported several active channel systems. In the present study, deep sea channel systems were identified within the middle Indus Fan using high resolution multibeam bathymetric data. Prominent morphological features within the survey block include the Raman Seamount and Laxmi Ridge. The origin of the newly discovered channels in the middle fan has been inferred using medium resolution satellite bathymetry data. Interpretation of new data shows that the highly sinuous deep sea channel systems also extend to the east of Laxmi Ridge, as well as to the west of Laxmi Ridge, as previously reported. A decrease in sinuosity southward can be attributed to the morphological constraints imposed by the elevated features. These findings have significance in determining the pathways for active sediment transport systems, as well as their source characterization. The geometry suggests a series of punctuated avulsion events leading to the present array of disconnected channels. Such channels have affected the Laxmi Basin since the Pliocene and are responsible for reworking older fan sediments, resulting in loss of the original erosional signature supplied from the river mouth. This implies that distal fan sediments have experienced significant signal shredding and may not represent the erosion and weathering conditions within the onshore basin at the time of sedimentation.

  19. DeepBipolar: Identifying genomic mutations for bipolar disorder via deep learning.

    Science.gov (United States)

    Laksshman, Sundaram; Bhat, Rajendra Rana; Viswanath, Vivek; Li, Xiaolin

    2017-09-01

    Bipolar disorder, also known as manic depression, is a brain disorder that affects the brain structure of a patient. It results in extreme mood swings, severe states of depression, and overexcitement simultaneously. It is estimated that roughly 3% of the population of the United States (about 5.3 million adults) suffers from bipolar disorder. Recent research efforts like the Twin studies have demonstrated a high heritability factor for the disorder, making genomics a viable alternative for detecting and treating bipolar disorder, in addition to the conventional lengthy and costly postsymptom clinical diagnosis. Motivated by this study, leveraging several emerging deep learning algorithms, we design an end-to-end deep learning architecture (called DeepBipolar) to predict bipolar disorder based on limited genomic data. DeepBipolar adopts the Deep Convolutional Neural Network (DCNN) architecture that automatically extracts features from genotype information to predict the bipolar phenotype. We participated in the Critical Assessment of Genome Interpretation (CAGI) bipolar disorder challenge and DeepBipolar was considered the most successful by the independent assessor. In this work, we thoroughly evaluate the performance of DeepBipolar and analyze the type of signals we believe could have affected the classifier in distinguishing the case samples from the control set. © 2017 Wiley Periodicals, Inc.

  20. Deep learning? What deep learning? | Fourie | South African ...

    African Journals Online (AJOL)

    In teaching generally over the past twenty years, there has been a move towards teaching methods that encourage deep, rather than surface approaches to learning. The reason for this being that students, who adopt a deep approach to learning are considered to have learning outcomes of a better quality and desirability ...

  1. 50 MW C-band pulse klystron; 50MW C band pulse klystron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    C-band pulse klystron E3746 with an output of 50 MW class was developed jointly with the High-Energy Accelerator Research Organization in the Ministry of Education as the klystron for a linear accelerator. For a large-sized linear accelerator in the next generation, a klystron with higher operating frequency has been required to obtain a compact and efficient accelerator. In E3746, the problem of power resistance during high-frequency operation was solved by mounting a traveling-wave multi-cell output circuit. Moreover, stable operation in the pulse width of 2.5 {mu}s and the output of 54 MW was performed at the same operation efficiency (44%) as the conventional S-band tube by using the frequency (in a C-band frequency band) that is two times as high as the conventional general accelerator. (translated by NEDO)

  2. Hazard banding in compliance with the new Globally Harmonised System (GHS) for use in control banding tools.

    Science.gov (United States)

    Arnone, Mario; Koppisch, Dorothea; Smola, Thomas; Gabriel, Stefan; Verbist, Koen; Visser, Remco

    2015-10-01

    Many control banding tools use hazard banding in risk assessments for the occupational handling of hazardous substances. The outcome of these assessments can be combined with advice for the required risk management measures (RMMs). The Globally Harmonised System of Classification and Labelling of Chemicals (GHS) has resulted in a change in the hazard communication elements, i.e. Hazard (H) statements instead of Risk-phrases. Hazard banding schemes that depend on the old form of safety information have to be adapted to the new rules. The purpose of this publication is to outline the rationales for the assignment of hazard bands to H statements under the GHS. Based on this, this publication proposes a hazard banding scheme that uses the information from the safety data sheets as the basis for assignment. The assignment of hazard bands tiered according to the severity of the underlying hazards supports the important principle of substitution. Additionally, the set of assignment rules permits an exposure-route-specific assignment of hazard bands, which is necessary for the proposed route-specific RMMs. Ideally, all control banding tools should apply the same assignment rules. This GHS-compliant hazard banding scheme can hopefully help to establish a unified hazard banding strategy in the various control banding tools. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Effect of shape of scatterers and plasma frequency on the complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fathollahi Khalkhali, T., E-mail: tfathollahi@aeoi.org.ir; Bananej, A.

    2016-12-16

    In this study, we analyze complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals with triangular and square lattices, composed of plasma rods with different geometrical shapes in the anisotropic tellurium background. Using the finite-difference time-domain method we discuss the maximization of the complete photonic band gap width as a function of plasma frequency and plasma rods parameters with different shapes and orientations. The numerical results demonstrate that our proposed structures represent significantly wide complete photonic band gaps in comparison to previously studied dielectric-plasma photonic crystals. - Highlights: • In this paper, we have investigated plasma photonic crystals. • Plasma is a kind of dispersive medium with its equivalent refractive index related to the frequency of an incident EM wave. • In this work, our simulations are performed using the Meep implementation of the finite-difference time-domain (FDTD) method. • For this study, the lattice structures investigated are triangular and square. • Extensive calculations reveal that almost all of these structures represent wide complete band gaps.

  4. Effect of shape of scatterers and plasma frequency on the complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals

    International Nuclear Information System (INIS)

    Fathollahi Khalkhali, T.; Bananej, A.

    2016-01-01

    In this study, we analyze complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals with triangular and square lattices, composed of plasma rods with different geometrical shapes in the anisotropic tellurium background. Using the finite-difference time-domain method we discuss the maximization of the complete photonic band gap width as a function of plasma frequency and plasma rods parameters with different shapes and orientations. The numerical results demonstrate that our proposed structures represent significantly wide complete photonic band gaps in comparison to previously studied dielectric-plasma photonic crystals. - Highlights: • In this paper, we have investigated plasma photonic crystals. • Plasma is a kind of dispersive medium with its equivalent refractive index related to the frequency of an incident EM wave. • In this work, our simulations are performed using the Meep implementation of the finite-difference time-domain (FDTD) method. • For this study, the lattice structures investigated are triangular and square. • Extensive calculations reveal that almost all of these structures represent wide complete band gaps.

  5. DeepInfer: open-source deep learning deployment toolkit for image-guided therapy

    Science.gov (United States)

    Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A.; Kapur, Tina; Wells, William M.; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang

    2017-03-01

    Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research work ows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose "DeepInfer" - an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections.

  6. Deep electron traps in HfO_2-based metal-oxide-semiconductor capacitors

    International Nuclear Information System (INIS)

    Salomone, L. Sambuco; Lipovetzky, J.; Carbonetto, S.H.; García Inza, M.A.; Redin, E.G.; Campabadal, F.

    2016-01-01

    Hafnium oxide (HfO_2) is currently considered to be a good candidate to take part as a component in charge-trapping nonvolatile memories. In this work, the electric field and time dependences of the electron trapping/detrapping processes are studied through a constant capacitance voltage transient technique on metal-oxide-semiconductor capacitors with atomic layer deposited HfO_2 as insulating layer. A tunneling-based model is proposed to reproduce the experimental results, obtaining fair agreement between experiments and simulations. From the fitting procedure, a band of defects is identified, located in the first 1.7 nm from the Si/HfO_2 interface at an energy level E_t = 1.59 eV below the HfO_2 conduction band edge with density N_t = 1.36 × 10"1"9 cm"−"3. A simplified analytical version of the model is proposed in order to ease the fitting procedure for the low applied voltage case considered in this work. - Highlights: • We characterized deep electron trapping/detrapping in HfO_2 structures. • We modeled the experimental results through a tunneling-based model. • We obtained an electron trap energy level of 1.59 eV below conduction band edge. • We obtained a spatial trap distribution extending 1.7 nm within the insulator. • A simplified tunneling front model is able to reproduce the experimental results.

  7. Dual-wavelength photo-Hall effect spectroscopy of deep levels in high resistive CdZnTe with negative differential photoconductivity

    Science.gov (United States)

    Musiienko, A.; Grill, R.; Moravec, P.; Korcsmáros, G.; Rejhon, M.; Pekárek, J.; Elhadidy, H.; Šedivý, L.; Vasylchenko, I.

    2018-04-01

    Photo-Hall effect spectroscopy was used in the study of deep levels in high resistive CdZnTe. The monochromator excitation in the photon energy range 0.65-1.77 eV was complemented by a laser diode high-intensity excitation at selected photon energies. A single sample characterized by multiple unusual features like negative differential photoconductivity and anomalous depression of electron mobility was chosen for the detailed study involving measurements at both the steady and dynamic regimes. We revealed that the Hall mobility and photoconductivity can be both enhanced and suppressed by an additional illumination at certain photon energies. The anomalous mobility decrease was explained by an excitation of the inhomogeneously distributed deep level at the energy Ev + 1.0 eV, thus enhancing potential non-uniformities. The appearance of negative differential photoconductivity was interpreted by an intensified electron occupancy of that level by a direct valence band-to-level excitation. Modified Shockley-Read-Hall theory was used for fitting experimental results by a model comprising five deep levels. Properties of the deep levels and their impact on the device performance were deduced.

  8. Band parameters of phosphorene

    DEFF Research Database (Denmark)

    Lew Yan Voon, L. C.; Wang, J.; Zhang, Y.

    2015-01-01

    Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory...... are computed using a first-principles theory based upon the generalized-gradient approximation to the density-functional theory. These parameters and Hamiltonian will be useful for modeling physical properties of phosphorene....

  9. History and Evolution of Control Banding: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Zalk, D; Nelson, D

    2006-07-19

    Control Banding (CB) strategies offer simplified solutions for controlling worker exposures to constituents often encountered in the workplace. The original CB model was developed within the pharmaceutical industry; however, the modern movement involves models developed for non-experts to input hazard and exposure potential information for bulk chemical processes, receiving control advice as a result. The CB approach utilizes these models for the dissemination of qualitative and semi-quantitative risk assessment tools being developed to complement the traditional industrial hygiene model of air sampling and analysis. It is being applied and tested in small and medium size enterprises (SMEs) within developed countries and industrially developing countries; however, large enterprises (LEs) have also incorporated these strategies within chemical safety programs. Existing research of the components of the most available CB model, the Control of Substances Hazardous to Health (COSHH) Essentials, has shown that exposure bands do not always provide adequate margins of safety, that there is a high rate of under-control errors, that it works better with dusts than with vapors, that there is an inherent inaccuracy in estimating variability, and that when taken together the outcomes of this model may lead to potentially inappropriate workplace confidence in chemical exposure reduction in some operations. Alternatively, large-scale comparisons of industry exposure data to this CB model's outcomes have indicated more promising results with a high correlation seen internationally. With the accuracy of the toxicological ratings and hazard band classification currently in question, their proper reevaluation will be of great benefit to the reliability of existing and future CB models. The need for a more complete analysis of CB model components and, most importantly, a more comprehensive prospective research process remains and will be important in understanding implications

  10. Computational Design of Flat-Band Material

    Science.gov (United States)

    Hase, I.; Yanagisawa, T.; Kawashima, K.

    2018-02-01

    Quantum mechanics states that hopping integral between local orbitals makes the energy band dispersive. However, in some special cases, there are bands with no dispersion due to quantum interference. These bands are called as flat band. Many models having flat band have been proposed, and many interesting physical properties are predicted. However, no real compound having flat band has been found yet despite the 25 years of vigorous researches. We have found that some pyrochlore oxides have quasi-flat band just below the Fermi level by first principles calculation. Moreover, their valence bands are well described by a tight-binding model of pyrochlore lattice with isotropic nearest neighbor hopping integral. This model belongs to a class of Mielke model, whose ground state is known to be ferromagnetic with appropriate carrier doping and on-site repulsive Coulomb interaction. We have also performed a spin-polarized band calculation for the hole-doped system from first principles and found that the ground state is ferromagnetic for some doping region. Interestingly, these compounds do not include magnetic element, such as transition metal and rare-earth elements.

  11. Multi-band Modelling of Appearance

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Larsen, Rasmus

    2003-01-01

    the appearance of both derived feature bands and an intensity band. As a special case of feature-band augmented appearance modelling we propose a dedicated representation with applications to face segmentation. The representation addresses a major problem within face recognition by lowering the sensitivity...

  12. Multi-band Modelling of Appearance

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Larsen, Rasmus

    2002-01-01

    the appearance of both derived feature bands and an intensity band. As a special case of feature-band augmented appearance modelling we propose a dedicated representation with applications to face segmentation. The representation addresses a major problem within face recognition by lowering the sensitivity...

  13. Table of members of quasi-bands

    International Nuclear Information System (INIS)

    Sakai, Mitsuo.

    1984-04-01

    The probable members of the quasi-bands in even-even nuclei for Z between 6 and 100 are listed in this table. The terms quasi-bands have been introduced in the so-called spherical regions as the counter parts of the collective bands in the deformed regions. In the present compilation, the data for deformed nuclei are classified for convenience under the same titles, Quasi-Ground Band, Quasi-Beta Band and Quasi-Gamma Band, as are used for other nuclear regions. The present edition covers the literature through September, 1983. Fifteen newly discovered nuclides are included. The classification of energy level into quasi-bands is made on the basis of the systematic trend in the data over large groups of nuclei. (Kato, T.)

  14. Deep levels in a-plane, high Mg-content MgxZn1−xO epitaxial layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Gür, Emre; Tabares, G.; Hierro, A.; Arehart, A.; Ringel, S. A.; Chauveau, J. M.

    2012-01-01

    Deep level defects in n-type unintentionally doped a-plane Mg x Zn 1−x O, grown by molecular beam epitaxy on r-plane sapphire were fully characterized using deep level optical spectroscopy (DLOS) and related methods. Four compositions of Mg x Zn 1−x O were examined with x = 0.31, 0.44, 0.52, and 0.56 together with a control ZnO sample. DLOS measurements revealed the presence of five deep levels in each Mg-containing sample, having energy levels of E c − 1.4 eV, 2.1 eV, 2.6 V, and E v + 0.3 eV and 0.6 eV. For all Mg compositions, the activation energies of the first three states were constant with respect to the conduction band edge, whereas the latter two revealed constant activation energies with respect to the valence band edge. In contrast to the ternary materials, only three levels, at E c − 2.1 eV, E v + 0.3 eV, and 0.6 eV, were observed for the ZnO control sample in this systematically grown series of samples. Substantially higher concentrations of the deep levels at E v + 0.3 eV and E c − 2.1 eV were observed in ZnO compared to the Mg alloyed samples. Moreover, there is a general invariance of trap concentration of the E v + 0.3 eV and 0.6 eV levels on Mg content, while at least and order of magnitude dependency of the E c − 1.4 eV and E c − 2.6 eV levels in Mg alloyed samples.

  15. The Optical-Mid-infrared Extinction Law of the l = 165° Sightline in the Galactic Plane: Diversity of the Extinction Law in the Diffuse Interstellar Medium

    Science.gov (United States)

    Wang, Shu; Jiang, B. W.; Zhao, He; Chen, Xiaodian; de Grijs, Richard

    2017-10-01

    Understanding the effects of dust extinction is important to properly interpret observations. The optical total-to-selective extinction ratio, {R}V={A}V/E(B-V), is widely used to describe extinction variations in ultraviolet and optical bands. Since the {R}V=3.1 extinction curve adequately represents the average extinction law of diffuse regions in the Milky Way, it is commonly used to correct observational measurements along sightlines toward diffuse regions in the interstellar medium. However, the {R}V value may vary even along different diffuse interstellar medium sightlines. In this paper, we investigate the optical-mid-infrared (mid-IR) extinction law toward a very diffuse region at l=165^\\circ in the Galactic plane, which was selected based on a CO emission map. Adopting red clump stars as extinction tracers, we determine the optical-mid-IR extinction law for our diffuse region in two APASS bands (B,V), three XSTPS-GAC bands (g,r,I), three 2MASS bands (J,H,{K}s), and two WISE bands (W1,W2). Specifically, 18 red clump stars were selected from the APOGEE-RC catalog based on spectroscopic data in order to explore the diversity of the extinction law. We find that the optical extinction curves exhibit appreciable diversity. The corresponding {R}V ranges from 1.7 to 3.8, while the mean {R}V value of 2.8 is consistent with the widely adopted average value of 3.1 for Galactic diffuse clouds. There is no apparent correlation between {R}V value and color excess E(B-V) in the range of interest, from 0.2 to 0.6 mag, or with specific visual extinction per kiloparsec, {A}V/d.

  16. Deep learning with Python

    CERN Document Server

    Chollet, Francois

    2018-01-01

    DESCRIPTION Deep learning is applicable to a widening range of artificial intelligence problems, such as image classification, speech recognition, text classification, question answering, text-to-speech, and optical character recognition. Deep Learning with Python is structured around a series of practical code examples that illustrate each new concept introduced and demonstrate best practices. By the time you reach the end of this book, you will have become a Keras expert and will be able to apply deep learning in your own projects. KEY FEATURES • Practical code examples • In-depth introduction to Keras • Teaches the difference between Deep Learning and AI ABOUT THE TECHNOLOGY Deep learning is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more. AUTHOR BIO Francois Chollet is the author of Keras, one of the most widely used libraries for deep learning in Python. He has been working with deep neural ...

  17. Band parameters of phosphorene

    International Nuclear Information System (INIS)

    Lew Yan Voon, L C; Wang, J; Zhang, Y; Willatzen, M

    2015-01-01

    Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory are computed using a first-principles theory based upon the generalized-gradient approximation to the density-functional theory. These parameters and Hamiltonian will be useful for modeling physical properties of phosphorene. (paper)

  18. Deep learning evaluation using deep linguistic processing

    OpenAIRE

    Kuhnle, Alexander; Copestake, Ann

    2017-01-01

    We discuss problems with the standard approaches to evaluation for tasks like visual question answering, and argue that artificial data can be used to address these as a complement to current practice. We demonstrate that with the help of existing 'deep' linguistic processing technology we are able to create challenging abstract datasets, which enable us to investigate the language understanding abilities of multimodal deep learning models in detail, as compared to a single performance value ...

  19. Amniotic constriction bands

    Science.gov (United States)

    ... Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Amniotic band sequence URL of this page: //medlineplus.gov/ency/ ... birth. The baby should be delivered in a medical center that has specialists experienced in caring for babies ... or partial loss of function of a body part. Congenital bands affecting large parts of the body cause the ...

  20. VizieR Online Data Catalog: R-band light curves of type II supernovae (Rubin+, 2016)

    Science.gov (United States)

    Rubin, A.; Gal-Yam, A.; De Cia, A.; Horesh, A.; Khazov, D.; Ofek, E. O.; Kulkarni, S. R.; Arcavi, I.; Manulis, I.; Yaron, O.; Vreeswijk, P.; Kasliwal, M. M.; Ben-Ami, S.; Perley, D. A.; Cao, Y.; Cenko, S. B.; Rebbapragada, U. D.; Wozniak, P. R.; Filippenko, A. V.; Clubb, K. I.; Nugent, P. E.; Pan, Y.-C.; Badenes, C.; Howell, D. A.; Valenti, S.; Sand, D.; Sollerman, J.; Johansson, J.; Leonard, D. C.; Horst, J. C.; Armen, S. F.; Fedrow, J. M.; Quimby, R. M.; Mazzali, P.; Pian, E.; Sternberg, A.; Matheson, T.; Sullivan, M.; Maguire, K.; Lazarevic, S.

    2016-05-01

    Our sample consists of 57 SNe from the PTF (Law et al. 2009PASP..121.1395L; Rau et al. 2009PASP..121.1334R) and the intermediate Palomar Transient Factory (iPTF; Kulkarni 2013ATel.4807....1K) surveys. Data were routinely collected by the Palomar 48-inch survey telescope in the Mould R-band. Follow-up observations were conducted mainly with the robotic 60-inch telescope using an SDSS r-band filter, with additional telescopes providing supplementary photometry and spectroscopy (see Gal-Yam et al. 2011, J/ApJ/736/159). The full list of SNe, their coordinates, and classification spectra are presented in Table 1. Most of the spectra were obtained with the Double Spectrograph on the 5m Hale telescope at Palomar Observatory, the Kast spectrograph on the Shane 3m telescope at Lick Observatory, the Low Resolution Imaging Spectrometer (LRIS) on the Keck I 10m telescope, and the DEep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II 10m telescope. (2 data files).

  1. Trifluoromethyl-Substituted Large Band-Gap Polytriphenylamines for Polymer Solar Cells with High Open-Circuit Voltages

    Directory of Open Access Journals (Sweden)

    Shuwang Yi

    2018-01-01

    Full Text Available Two large band-gap polymers (PTPACF and PTPA2CF based on polytriphenylamine derivatives with the introduction of electron-withdrawing trifluoromethyl groups were designed and prepared by Suzuki polycondensation reaction. The chemical structures, thermal, optical and electrochemical properties were characterized in detail. From the UV-visible absorption spectra, the PTPACF and PTPA2CF showed the optical band gaps of 2.01 and 2.07 eV, respectively. The cyclic voltammetry (CV measurement displayed the deep highest occupied molecular orbital (HOMO energy levels of −5.33 and −5.38 eV for PTPACF and PTPA2CF, respectively. The hole mobilities, determined by field-effect transistor characterization, were 2.5 × 10−3 and 1.1 × 10−3 cm2 V−1 S−1 for PTPACF and PTPA2CF, respectively. The polymer solar cells (PSCs were tested under the conventional device structure of ITO/PEDOT:PSS/polymer:PC71BM/PFN/Al. All of the PSCs showed the high open circuit voltages (Vocs with the values approaching 1 V. The PTPACF and PTPA2CF based PSCs gave the power conversion efficiencies (PCEs of 3.24% and 2.40%, respectively. Hence, it is a reliable methodology to develop high-performance large band-gap polymer donors with high Vocs through the feasible side-chain modification.

  2. The spectral invariant approximation within canopy radiative transfer to support the use of the EPIC/DSCOVR oxygen B-band for monitoring vegetation

    International Nuclear Information System (INIS)

    Marshak, Alexander; Knyazikhin, Yuri

    2017-01-01

    EPIC (Earth Polychromatic Imaging Camera) is a 10-channel spectroradiometer onboard DSCOVR (Deep Space Climate Observatory) spacecraft. In addition to the near-infrared (NIR, 780 nm) and the ‘red’ (680 nm) channels, EPIC also has the O2 A-band (764±0.2 nm) and B-band (687.75±0.2 nm). The EPIC Normalized Difference Vegetation Index (NDVI) is defined as the difference between NIR and ‘red’ channels normalized to their sum. However, the use of the O2 B-band instead of the ‘red’ channel mitigates the effect of atmosphere on remote sensing of surface reflectance because O2 reduces contribution from the radiation scattered by the atmosphere. Applying the radiative transfer theory and the spectral invariant approximation to EPIC observations, the paper provides supportive arguments for using the O2 band instead of the red channel for monitoring vegetation dynamics. Our results suggest that the use of the O2 B-band enhances the sensitivity of the top-of-atmosphere NDVI to the presence of vegetation. - Highlights: • The use of the O2 B-band channel (688 nm) instead of the red channel (680 nm) mitigates the effect of atmosphere on remote sensing of surface reflectance. • The spectral invariant approach confirms that the synergy of the green, O2 B-band and near IR channels mimics spectral properties of vegetation. • The structural parameter of vegetation retrieved remotely is weakly sensitive to the uncertainty in the atmospheric optical depth.

  3. Persistent photoconductivity in AlGaN/GaN heterojunction channels caused by the ionization of deep levels in the AlGaN barrier layer

    International Nuclear Information System (INIS)

    Murayama, H.; Akiyama, Y.; Niwa, R.; Sakashita, H.; Sakaki, H.; Kachi, T.; Sugimoto, M.

    2013-01-01

    Time-dependent responses of drain current (I d ) in an AlGaN/GaN HEMT under UV (3.3 eV) and red (2.0 eV) light illumination have been studied at 300 K and 250 K. UV illumination enhances I d by about 10 %, indicating that the density of two-dimensional electrons is raised by about 10 12 cm −2 . When UV light is turned off at 300 K, a part of increased I d decays quickly but the other part of increment is persistent, showing a slow decay. At 250 K, the majority of increment remains persistent. It is found that such a persistent increase of I d at 250 K can be partially erased by the illumination of red light. These photo-responses are explained by a simple band-bending model in which deep levels in the AlGaN barrier get positively charged by the UV light, resulting in a parabolic band bending in the AlGaN layer, while some potion of those deep levels are neutralized by the red light

  4. Methane assimilation and trophic interactions with marine Methylomicrobium in deep-water coral reef sediment off the coast of Norway.

    Science.gov (United States)

    Jensen, Sigmund; Neufeld, Josh D; Birkeland, Nils-Kåre; Hovland, Martin; Murrell, John Colin

    2008-11-01

    Deep-water coral reefs are seafloor environments with diverse biological communities surrounded by cold permanent darkness. Sources of energy and carbon for the nourishment of these reefs are presently unclear. We investigated one aspect of the food web using DNA stable-isotope probing (DNA-SIP). Sediment from beneath a Lophelia pertusa reef off the coast of Norway was incubated until assimilation of 5 micromol 13CH4 g(-1) wet weight occurred. Extracted DNA was separated into 'light' and 'heavy' fractions for analysis of labelling. Bacterial community fingerprinting of PCR-amplified 16S rRNA gene fragments revealed two predominant 13C-specific bands. Sequencing of these bands indicated that carbon from 13CH4 had been assimilated by a Methylomicrobium and an uncultivated member of the Gammaproteobacteria. Cloning and sequencing of 16S rRNA genes from the heavy DNA, in addition to genes encoding particulate methane monooxygenase and methanol dehydrogenase, all linked Methylomicrobium with methane metabolism. Putative cross-feeders were affiliated with Methylophaga (Gammaproteobacteria), Hyphomicrobium (Alphaproteobacteria) and previously unrecognized methylotrophs of the Gammaproteobacteria, Alphaproteobacteria, Deferribacteres and Bacteroidetes. This first marine methane SIP study provides evidence for the presence of methylotrophs that participate in sediment food webs associated with deep-water coral reefs.

  5. Photoconductivities from band states and a dissipative electron dynamics: Si(111) without and with adsorbed Ag clusters

    International Nuclear Information System (INIS)

    Vazhappilly, Tijo; Hembree, Robert H.; Micha, David A.

    2016-01-01

    A new general computational procedure is presented to obtain photoconductivities starting from atomic structures, combining ab initio electronic energy band states with populations from density matrix theory, and implemented for a specific set of materials based on Si crystalline slabs and their nanostructured surfaces without and with adsorbed Ag clusters. The procedure accounts for charge mobility in semiconductors in photoexcited states, and specifically electron and hole photomobilities at Si(111) surfaces with and without adsorbed Ag clusters using ab initio energy bands and orbitals generated from a generalized gradient functional, however with excited energy levels modified to provide correct bandgaps. Photoexcited state populations for each band and carrier type were generated using steady state solution of a reduced density matrix which includes dissipative medium effects. The present calculations provide photoexcited electronic populations and photoinduced mobilities resulting from applied electric fields and obtained from the change of driven electron energies with their electronic momentum. Extensive results for Si slabs with 8 layers, without and with adsorbed Ag clusters, show that the metal adsorbates lead to substantial increases in the photomobility and photoconductivity of electrons and holes

  6. Time dependent rise and decay of photocurrent in zinc oxide nanoparticles in ambient and vacuum medium

    Science.gov (United States)

    C, Rajkumar; Srivastava, Rajneesh K.

    2018-05-01

    Zinc oxide (ZnO) nanoparticle has been synthesized by cost effective Co-precipitation method and studied its photo-response activity. The synthesized ZnO nanomaterial was characterized by using various analytical techniques such as x-ray diffraction (XRD), UV–visible spectroscopy, FTIR spectroscopy, photoluminescence (PL) spectroscopy, and Scanning Electron Microscopy (SEM). From the XRD results, it is confirmed that synthesized ZnO nanomaterial possess hexagonal wurtzite phase structure with an average crystallite size of ∼16–17 nm. The UV-Visible absorption spectrum shows that it has blue shift compared to their bulk counterparts. Photoluminescence spectra of ZnO nanoparticles have a strong violet band at 423 nm and three weak bands at 485 nm (blue), 506 nm (green), and 529 nm (green). The presence of hydroxyl group was confirmed by FTIR. The photo-response analysis was studied by the time-dependent rise and decay photocurrent of ZnO nanoparticle was tested in the air as well as vacuum medium.

  7. Hetero-gate-dielectric double gate junctionless transistor (HGJLT) with reduced band-to-band tunnelling effects in subthreshold regime

    International Nuclear Information System (INIS)

    Ghosh, Bahniman; Mondal, Partha; Akram, M. W.; Bal, Punyasloka; Salimath, Akshay Kumar

    2014-01-01

    We propose a hetero-gate-dielectric double gate junctionless transistor (HGJLT), taking high-k gate insulator at source side and low-k gate insulator at drain side, which reduces the effects of band-to-band tunnelling (BTBT) in the sub-threshold region. A junctionless transistor (JLT) is turned off by the depletion of carriers in the highly doped thin channel (device layer) which results in a significant band overlap between the valence band of the channel region and the conduction band of the drain region, due to off-state drain bias, that triggers electrons to tunnel from the valence band of the channel region to the conduction band of the drain region leaving behind holes in the channel. These effects of band-to-band tunnelling increase the sub-threshold leakage current, and the accumulation of holes in the channel forms a parasitic bipolar junction transistor (n–p–n BJT for channel JLT) in the lateral direction by the source (emitter), channel (base) and drain (collector) regions in JLT structure in off-state. The proposed HGJLT reduces the subthreshold leakage current and suppresses the parasitic BJT action in off-state by reducing the band-to-band tunnelling probability. (semiconductor devices)

  8. 47 CFR 90.531 - Band plan.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Band plan. 90.531 Section 90.531...-805 MHz Bands § 90.531 Band plan. This section sets forth the band plan for the 763-775 MHz and 793... and portables subject to Commission-approved regional planning committee regional plans. Transmitter...

  9. Feasibility studies for a radioactive waste repository in a deep clay formation

    International Nuclear Information System (INIS)

    Chapman, N.; Tassoni, E.

    1985-01-01

    This report assesses the feasibility of deep geological disposal of long-lived, heat-emitting radioactive wastes produced from the Italian nuclear power programme. Disposal is envisaged in argillaceous formations of medium plasticity at depths between 200 and 3000 metres. Thermal and geotechnical data, together with information on cost and feasibility of construction techniques are used to devise two conceptual designs (repository or deep borehole disposal) for a facility to contain all the high-level wastes arising from a 10 GWe power programme. Alternative designs and their merits are discussed and assessed. The two reference designs are used to construct a simple model of long-term performance and safety of the proposed disposal system. Recommendations are made for further work required to develop these concepts into an operational facility. It should be borne in mind that since no definite area or site has yet been identified for a disposal facility, all considerations are purely generic. Consequently data on rock properties and geological environment represent average values or best estimates for those likely to be encountered in the regions currently being considered as suitable for deep diposal purposes, and several broad assumptions have had to be made. However, the designs presented could be adapted without difficulty on a site-specific basis when the results of further research become available

  10. Sleuthing the MSL EDL performance from an X band carrier perspective

    Science.gov (United States)

    Oudrhiri, Kamal; Asmar, Sami; Estabrook, Polly; Kahan, Daniel; Mukai, Ryan; Ilott, Peter; Schratz, Brian; Soriano, Melissa; Finley, Susan; Shidner, Jeremy

    During the Entry, Descent, and Landing (EDL) of NASA's Mars Science Laboratory (MSL), or Curiosity, rover to Gale Crater on Mars on August 6, 2012 UTC, the rover transmitted an X-band signal composed of carrier and tone frequencies and a UHF signal modulated with an 8kbps data stream. During EDL, the spacecraft's orientation is determined by its guidance and mechanical subsystems to ensure that the vehicle land safely at its destination. Although orientation to maximize telecom performance is not possible, antennas are especially designed and mounted to provide the best possible line of sight to Earth and to the Mars orbiters supporting MSL's landing. The tones and data transmitted over these links are selected carefully to reflect the most essential parameters of the vehicle's state and the performance of the EDL subsystems for post-EDL reconstruction should no further data transmission from the vehicle be possible. This paper addresses the configuration of the X band receive system used at NASA / JPL's Deep Space Network (DSN) to capture the signal spectrum of MSL's X band carrier and tone signal, examines the MSL vehicle state information obtained from the X band carrier signal only and contrasts the Doppler-derived information against the post-EDL known vehicle state. The paper begins with a description of the MSL EDL sequence of events and discusses the impact of the EDL maneuvers such as guided entry, parachute deploy, and powered descent on the frequency observables expected at the DSN. The range of Doppler dynamics possible is derived from extensive 6 Degrees-Of-Freedom (6 DOF) vehicle state calculations performed by MSL's EDL simulation team. The configuration of the DSN's receive system, using the Radio Science Receivers (RSR) to perform open-loop recording for both for nominal and off-nominal EDL scenarios, is detailed. Expected signal carrier power-to-noise levels during EDL are shown and their impact on signal detection is considered. Particula

  11. Properties of the Variation of the Infrared Emission of OH/IR Stars I. The K Band Light Curves

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2009-09-01

    Full Text Available To study properties of the variation of the infrared emission of OH/IR stars, we collect and analyze the infrared observational data in K band for nine OH/IR stars. We use the observational data obtained for about three decades including recent data from the two micron all sky survey (2MASS and the deep near infrared survey of the southern sky (DENIS. We use Marquardt-Levenberg algorithm to determine the pulsation period and amplitude for each star and compare them with previous results of infrared and radio investigations.

  12. Final storage of radioactive waste in deep boreholes

    International Nuclear Information System (INIS)

    Eichmeyer, H.; Wolff, H.

    1985-01-01

    The plans of the Danish Atomic Energy Authority expect the storage of 4500 containers with high activity waste each weighing 15 tonnes in deep boreholes in rock salt over a period of 30 years. The Danish plans are concerned with the storage medium salt in one of the many salt mines in North Germany and Denmark with a depth of 1200 metres, because of the high plasticity, good thermal conductivity and non-permeability to liquids and gases. Eight deep boreholes with a diameter of 750 mm are provided in a circle of radius r=250 metres. With a deviation of 0 , the boreholes will be piped down to 1000 metres and after completion, will be filled with clay slurry and barium sulphate. At the start of storage of the waste in containers 6.8 metres long, the clay slurry is replaced by cement slurry with saturated NaCl solution. Another possibility is to fill the borehole volume with saturated NaCl solution, in order to let the convergence act on the annular space between the container and the borehole wall. After filling the borehole, the open borehole should be sealed over a distance of 200 metres with rock salt and over 50 metres with a concrete stopper. It is planned to provide a dense and corrosion-proof seal with bitumen above the concrete. (orig./GB) [de

  13. Two-band superconductor magnesium diboride

    International Nuclear Information System (INIS)

    Xi, X X

    2008-01-01

    This review focuses on the most important features of the 40 K superconductor MgB 2 -the weakly interacting multiple bands (the σ and π bands) and the distinct multiple superconducting energy gaps (the σ and π gaps). Even though the pairing mechanism of superconductor MgB 2 is the conventional electron-phonon coupling, the prominent influence of the two bands and two gaps on its properties sets it apart from other superconductors. It leads to markedly different behaviors in upper critical field, vortex structure, magnetoresistance and many other superconducting and normal-state properties in MgB 2 from single-band superconductors. Further, it gives rise to new physics that does not exist in single-band superconductors, such as the internal Josephson effects between the two order parameters. These unique phenomena depend sensitively on scattering inside and between the two bands, and the intraband and interband scattering can be modified by chemical substitution and irradiation. MgB 2 has brought unprecedented attention to two-band superconductivity, which has been found to exist in other old and new superconductors. The legacy of MgB 2 will be long lasting because of this, as well as the lessons it teaches in terms of the search for new phonon-mediated higher T c superconductors

  14. Analytical results of variance reduction characteristics of biased Monte Carlo for deep-penetration problems

    International Nuclear Information System (INIS)

    Murthy, K.P.N.; Indira, R.

    1986-01-01

    An analytical formulation is presented for calculating the mean and variance of transmission for a model deep-penetration problem. With this formulation, the variance reduction characteristics of two biased Monte Carlo schemes are studied. The first is the usual exponential biasing wherein it is shown that the optimal biasing parameter depends sensitively on the scattering properties of the shielding medium. The second is a scheme that couples exponential biasing to the scattering angle biasing proposed recently. It is demonstrated that the coupled scheme performs better than exponential biasing

  15. Population of yrast states in 191Os using deep-inelastic reactions

    Science.gov (United States)

    Jones, G. A.; Podolyák, Zs; Walker, P. M.; Regan, P. H.; de Angelis, G.; Axiotis, M.; Bazzacco, D.; Bizzeti, P. G.; Brandolini, F.; Broda, R.; Bucurescu, D.; Farnea, E.; Gelletly, W.; Gadea, A.; Ionescu-Bujor, M.; Iordachescu, A.; Kröll, Th; Langdown, S. D.; Lunardi, S.; Marginean, N.; Martinez, T.; Medina, N. H.; Quintana, B.; Rubio, B.; Ur, C. A.; Valiente-Dobón, J. J.; Williams, S. J.; Zhang, Y. H.

    2005-10-01

    Several nuclei in the A ~ 190 region have been studied following deep-inelastic reactions using a 460 MeV 82Se projectile impinging upon a thick 192Os target. The GASP array (at the Legnaro National Laboratory in Italy) was used to measure the resulting γ-decays. The previously reported near-yrast structure of 191Os is extended to a t\\frac{1{2}} = 61 ns isomer, at an energy of 2640 keV. Branching ratios for ΔI = 1 and ΔI = 2 transitions in the Kπ =\\frac{11}{2}+ band have been measured, giving |(gK - gR)/Q0| = 0.022(3) and 0.024(7) for transitions from the \\frac{17}{2}+ and \\big(\\frac{19}{2}^+\\big) states respectively. These are consistent with the theoretical calculation for the proposed ν11/2+[615] configuration of the band. Nilsson plus BCS calculations reveal that the isomer is likely to have a {ν11/2+[615] π11/2-[505] π9/2-[514]} configuration with Jπ =Kπ =\\frac{31}{2}+ . This yields an implied reduced hindrance of fν= 1.9, in accordance with empirical systematics of K isomers in the A ~ 180-190 region.

  16. Comparison of band-to-band tunneling models in Si and Si—Ge junctions

    International Nuclear Information System (INIS)

    Jiao Yipeng; Wang Taihuan; Wei Kangliang; Du Gang; Liu Xiaoyan

    2013-01-01

    We compared several different band-to-band tunneling (BTBT) models with both Sentaurus and the two-dimensional full-band Monte Carlo simulator in Si homo-junctions and Si—Ge hetero-junctions. It was shown that in Si homo-junctions, different models could achieve similar results. However, in the Si—Ge hetero-junctions, there were significant differences among these models at high reverse biases (over 2 V). Compared to the nonlocal model, the local models in Sentaurus underrated the BTBT rate distinctly, and the Monte Carlo method was shown to give a better approximation. Additionally, it was found that in the Si region near the interface of the Si—Ge hetero-junctions, the direct tunneling rates increased largely due to the interaction of the band structures of Si and Ge. (semiconductor physics)

  17. Elastic band prediction equations for combined free-weight and elastic band bench presses and squats.

    Science.gov (United States)

    Shoepe, Todd C; Ramirez, David A; Almstedt, Hawley C

    2010-01-01

    Elastic bands added to traditional free-weight techniques have become a part of suggested training routines in recent years. Because of the variable loading patterns of elastic bands (i.e., greater stretch produces greater resistance), it is necessary to quantify the exact loading patterns of bands to identify the volume and intensity of training. The purpose of this study was to determine the length vs. tension properties of multiple sizes of a set of commonly used elastic bands to quantify the resistance that would be applied to free-weight plus elastic bench presses (BP) and squats (SQ). Five elastic bands of varying thickness were affixed to an overhead support beam. Dumbbells of varying weights were progressively added to the free end while the linear deformation was recorded with each subsequent weight increment. The resistance was plotted as a factor of linear deformation, and best-fit nonlinear logarithmic regression equations were then matched to the data. For both the BP and SQ loading conditions and all band thicknesses tested, R values were greater than 0.9623. These data suggest that differences in load exist as a result of the thickness of the elastic band, attachment technique, and type of exercise being performed. Facilities should adopt their own form of loading quantification to match their unique set of circumstances when acquiring, researching, and implementing elastic band and free-weight exercises into the training programs.

  18. Highly Simple Deep Eutectic Solvent Extraction of Manganese in Vegetable Samples Prior to Its ICP-OES Analysis.

    Science.gov (United States)

    Bağda, Esra; Altundağ, Hüseyin; Soylak, Mustafa

    2017-10-01

    In the present work, simple and sensitive extraction methods for selective determination of manganese have been successfully developed. The methods were based on solubilization of manganese in deep eutectic solvent medium. Three deep eutectic solvents with choline chloride (vitamin B4) and tartaric/oxalic/citric acids have been prepared. Extraction parameters were optimized with using standard reference material (1573a tomato leaves). The quantitative recovery values were obtained with 1.25 g/L sample to deep eutectic solvent (DES) volume, at 95 °C for 2 h. The limit of detection was found as 0.50, 0.34, and 1.23 μg/L for DES/tartaric, DES/oxalic, and DES/citric acid, respectively. At optimum conditions, the analytical signal was linear for the range of 10-3000 μg/L for all studied DESs with the correlation coefficient >0.99. The extraction methods were applied to different real samples such as basil herb, spinach, dill, and cucumber barks. The known amount of manganese was spiked to samples, and good recovery results were obtained.

  19. DeepMitosis: Mitosis detection via deep detection, verification and segmentation networks.

    Science.gov (United States)

    Li, Chao; Wang, Xinggang; Liu, Wenyu; Latecki, Longin Jan

    2018-04-01

    Mitotic count is a critical predictor of tumor aggressiveness in the breast cancer diagnosis. Nowadays mitosis counting is mainly performed by pathologists manually, which is extremely arduous and time-consuming. In this paper, we propose an accurate method for detecting the mitotic cells from histopathological slides using a novel multi-stage deep learning framework. Our method consists of a deep segmentation network for generating mitosis region when only a weak label is given (i.e., only the centroid pixel of mitosis is annotated), an elaborately designed deep detection network for localizing mitosis by using contextual region information, and a deep verification network for improving detection accuracy by removing false positives. We validate the proposed deep learning method on two widely used Mitosis Detection in Breast Cancer Histological Images (MITOSIS) datasets. Experimental results show that we can achieve the highest F-score on the MITOSIS dataset from ICPR 2012 grand challenge merely using the deep detection network. For the ICPR 2014 MITOSIS dataset that only provides the centroid location of mitosis, we employ the segmentation model to estimate the bounding box annotation for training the deep detection network. We also apply the verification model to eliminate some false positives produced from the detection model. By fusing scores of the detection and verification models, we achieve the state-of-the-art results. Moreover, our method is very fast with GPU computing, which makes it feasible for clinical practice. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Deep frying

    NARCIS (Netherlands)

    Koerten, van K.N.

    2016-01-01

    Deep frying is one of the most used methods in the food processing industry. Though practically any food can be fried, French fries are probably the most well-known deep fried products. The popularity of French fries stems from their unique taste and texture, a crispy outside with a mealy soft

  1. MR findings in iliotibial band syndrome

    International Nuclear Information System (INIS)

    Nishimura, G.; Yamato, M.; Tamai, K.; Takahashi, J.; Uetani, M.

    1997-01-01

    Objective. To elucidate the MR findings in iliotibial band (ITB) syndrome. Design and patients. The subjects comprised four patients (five knees) with lateral knee pain: two athletes and two non-athletes. One non-athlete was engaged in work requiring repetitive knee movement, and the other suffered from Cushing syndrome and had bilateral abnormalities. All patients were suspected of having a lateral meniscal tear prior to MR examination, but physical examination following provisional MR diagnosis warranted the final diagnosis. MR studies included fast spin echo sagittal imaging, fat-saturated fast spin echo proton density coronal imaging, and T2* radial imaging. Twelve normal volunteers were examined. Results and conclusion. Fat-saturated coronal imaging demonstrated an ill-defined, high-intensity area deep to the ITB. T2* radial imaging showed an identical, but less conspicuous, abnormality. The MR finding suggested soft tissue inflammation and/or edema rather than focal fluid collection in the bursae. The signal alteration predominated in the region beneath the posterior fibers of the ITB, thus supporting the current opinion that the posterior fibers of the ITB are tighter against the lateral femoral epicondyle than the anterior fibers. The ITB itself did not show any signal alteration or increased thickness. (orig.). With 4 figs., 1 tab

  2. Solid State KA-Band, Solid State W-Band and TWT Amplifiers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase I of the proposal describes plans to develop a state of the art transmitter for the W-Band and KA -Band Cloud Radar system. Our focus will be concentrated in...

  3. The role of surface and deep-level defects on the emission of tin oxide quantum dots

    International Nuclear Information System (INIS)

    Kumar, Vinod; Kumar, Vijay; Som, S; Ntwaeaborwa, O M; Swart, H C; Neethling, J H; Lee, Mike

    2014-01-01

    This paper reports on the role of surface and deep-level defects on the blue emission of tin oxide quantum dots (SnO 2 QDs) synthesized by the solution-combustion method at different combustion temperatures. X-ray diffraction studies showed the formation of a single rutile SnO 2 phase with a tetragonal lattice structure. High resolution transmission electron microscopy studies revealed an increase in the average dot size from 2.2 to 3.6 nm with an increase of the combustion temperature from 350 to 550 °C. A decrease in the band gap value from 3.37 to 2.76 eV was observed with the increase in dot size due to the quantum confinement effect. The photoluminescence emission was measured for excitation at 325 nm and it showed a broad blue emission band for all the combustion temperatures studied. This was due to the creation of various oxygen and tin vacancies/defects as confirmed by x-ray photoelectron spectroscopy data. The origin of the blue emission in the SnO 2 QDs is discussed with the help of an energy band diagram. (paper)

  4. DeepPVP: phenotype-based prioritization of causative variants using deep learning

    KAUST Repository

    Boudellioua, Imene

    2018-05-02

    Background: Prioritization of variants in personal genomic data is a major challenge. Recently, computational methods that rely on comparing phenotype similarity have shown to be useful to identify causative variants. In these methods, pathogenicity prediction is combined with a semantic similarity measure to prioritize not only variants that are likely to be dysfunctional but those that are likely involved in the pathogenesis of a patient\\'s phenotype. Results: We have developed DeepPVP, a variant prioritization method that combined automated inference with deep neural networks to identify the likely causative variants in whole exome or whole genome sequence data. We demonstrate that DeepPVP performs significantly better than existing methods, including phenotype-based methods that use similar features. DeepPVP is freely available at https://github.com/bio-ontology-research-group/phenomenet-vp Conclusions: DeepPVP further improves on existing variant prioritization methods both in terms of speed as well as accuracy.

  5. Subgap time of flight: A spectroscopic study of deep levels in semi-insulating CdTe:Cl

    Energy Technology Data Exchange (ETDEWEB)

    Pousset, J.; Farella, I.; Cola, A., E-mail: adriano.cola@le.imm.cnr.it [Institute for Microelectronics and Microsystems—Unit of Lecce, National Council of Research (IMM/CNR), Lecce I-73100 (Italy); Gambino, S. [Dipartimento di Matematica e Fisica “Ennio De Giorgi,” Università del Salento, Lecce I-73100 (Italy); CNR NANOTEC—Istituto di Nanotecnologia, Polo di Nanotecnologia c/o Campus Ecotekne, via Monteroni, 73100 Lecce (Italy)

    2016-03-14

    We report on a study of deep levels in semi-insulating CdTe:Cl by means of a time-of-flight spectral approach. By varying the wavelength of a pulsed optical source within the CdTe energy gap, transitions to/from localized levels generate free carriers which are analysed through the induced photocurrent transients. Both acceptor-like centers, related to the A-center, and a midgap level, 0.725 eV from the valence band, have been detected. The midgap level is close to the Fermi level and is possibly a recombination center responsible for the compensation mechanism. When the irradiance is varied, either linear or quadratic dependence of the electron and hole collected charge are observed, depending on the dominant optical transitions. The analysis discloses the potentiality of such a novel approach exploitable in the field of photorefractive materials as well as for deep levels spectroscopy.

  6. Subgap time of flight: A spectroscopic study of deep levels in semi-insulating CdTe:Cl

    International Nuclear Information System (INIS)

    Pousset, J.; Farella, I.; Cola, A.; Gambino, S.

    2016-01-01

    We report on a study of deep levels in semi-insulating CdTe:Cl by means of a time-of-flight spectral approach. By varying the wavelength of a pulsed optical source within the CdTe energy gap, transitions to/from localized levels generate free carriers which are analysed through the induced photocurrent transients. Both acceptor-like centers, related to the A-center, and a midgap level, 0.725 eV from the valence band, have been detected. The midgap level is close to the Fermi level and is possibly a recombination center responsible for the compensation mechanism. When the irradiance is varied, either linear or quadratic dependence of the electron and hole collected charge are observed, depending on the dominant optical transitions. The analysis discloses the potentiality of such a novel approach exploitable in the field of photorefractive materials as well as for deep levels spectroscopy.

  7. Extension of the energy-to-moment parameter Θ to intermediate and deep earthquakes

    Science.gov (United States)

    Saloor, Nooshin; Okal, Emile A.

    2018-01-01

    We extend to intermediate and deep earthquakes the slowness parameter Θ originally introduced by Newman and Okal (1998). Because of the increasing time lag with depth between the phases P, pP and sP, and of variations in anelastic attenuation parameters t∗ , we define four depth bins featuring slightly different algorithms for the computation of Θ . We apply this methodology to a global dataset of 598 intermediate and deep earthquakes with moments greater than 1025 dyn∗cm. We find a slight increase with depth in average values of Θ (from -4.81 between 80 and 135 km to -4.48 between 450 and 700 km), which however all have intersecting one- σ bands. With widths ranging from 0.26 to 0.31 logarithmic units, these are narrower than their counterpart for a reference dataset of 146 shallow earthquakes (σ = 0.55). Similarly, we find no correlation between values of Θ and focal geometry. These results point to stress conditions within the seismogenic zones inside the Wadati-Benioff slabs more homogeneous than those prevailing at the shallow contacts between tectonic plates.

  8. Retrospective biodosimetry with small tooth enamel samples using K-Band and X-Band

    International Nuclear Information System (INIS)

    Gomez, Jorge A.; Kinoshita, Angela; Leonor, Sergio J.; Belmonte, Gustavo C.; Baffa, Oswaldo

    2011-01-01

    In an attempt to make the in vitro electron spin resonance (ESR) retrospective dosimetry of the tooth enamel a lesser invasive method, experiments using X-Band and K-Band were performed, aiming to determine conditions that could be used in cases of accidental exposures. First, a small prism from the enamel was removed and ground with an agate mortar and pestle until particles reach a diameter of approximately less than 0.5 mm. This enamel extraction process resulted in lower signal artifact compared with the direct enamel extraction performed with a diamond burr abrasion. The manual grinding of the enamel does not lead to any induced ESR signal artifact, whereas the use of a diamond burr at low speed produces a signal artifact equivalent to the dosimetric signal induced by a dose of 500 mGy of gamma irradiation. A mass of 25 mg of enamel was removed from a sound molar tooth previously irradiated in vitro with a dose of 100 mGy. This amount of enamel was enough to detect the dosimetric signal in a standard X-Band spectrometer. However using a K-Band spectrometer, samples mass between 5 and 10 mg were sufficient to obtain the same sensitivity. An overall evaluation of the uncertainties involved in the process in this and other dosimetric assessments performed at our laboratory indicates that it is possible at K-Band to estimate a 100 mGy dose with 25% accuracy. In addition, the use of K-Band also presented higher sensitivity and allowed the use of smaller sample mass in comparison with X-Band. Finally, the restoration process performed on a tooth after extraction of the 25 mg of enamel is described. This was conducted by dental treatment using photopolymerizable resin which enabled complete recovery of the tooth from the functional and aesthetic viewpoint showing that this procedure can be minimally invasive.

  9. Retrospective biodosimetry with small tooth enamel samples using K-Band and X-Band

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Jorge A. [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Kinoshita, Angela [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Universidade Sagrado Coracao - USC, 17011-160 Bauru, Sao Paulo (Brazil); Leonor, Sergio J. [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Belmonte, Gustavo C. [Universidade Sagrado Coracao - USC, 17011-160 Bauru, Sao Paulo (Brazil); Baffa, Oswaldo, E-mail: baffa@usp.br [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2011-09-15

    In an attempt to make the in vitro electron spin resonance (ESR) retrospective dosimetry of the tooth enamel a lesser invasive method, experiments using X-Band and K-Band were performed, aiming to determine conditions that could be used in cases of accidental exposures. First, a small prism from the enamel was removed and ground with an agate mortar and pestle until particles reach a diameter of approximately less than 0.5 mm. This enamel extraction process resulted in lower signal artifact compared with the direct enamel extraction performed with a diamond burr abrasion. The manual grinding of the enamel does not lead to any induced ESR signal artifact, whereas the use of a diamond burr at low speed produces a signal artifact equivalent to the dosimetric signal induced by a dose of 500 mGy of gamma irradiation. A mass of 25 mg of enamel was removed from a sound molar tooth previously irradiated in vitro with a dose of 100 mGy. This amount of enamel was enough to detect the dosimetric signal in a standard X-Band spectrometer. However using a K-Band spectrometer, samples mass between 5 and 10 mg were sufficient to obtain the same sensitivity. An overall evaluation of the uncertainties involved in the process in this and other dosimetric assessments performed at our laboratory indicates that it is possible at K-Band to estimate a 100 mGy dose with 25% accuracy. In addition, the use of K-Band also presented higher sensitivity and allowed the use of smaller sample mass in comparison with X-Band. Finally, the restoration process performed on a tooth after extraction of the 25 mg of enamel is described. This was conducted by dental treatment using photopolymerizable resin which enabled complete recovery of the tooth from the functional and aesthetic viewpoint showing that this procedure can be minimally invasive.

  10. Dust bands in the asteroid belt

    International Nuclear Information System (INIS)

    Sykes, M.V.; Greenberg, R.; Dermott, S.F.; Nicholson, P.D.; Burns, J.A.

    1989-01-01

    This paper describes the original IRAS observations leading to the discovery of the three dust bands in the asteroid belt and the analysis of data. Special attention is given to an analytical model of the dust band torus and to theories concerning the origin of the dust bands, with special attention given to the collisional equilibrium (asteroid family), the nonequilibrium (random collision), and the comet hypotheses of dust-band origin. It is noted that neither the equilibrium nor nonequilibrium models, as currently formulated, present a complete picture of the IRAS dust-band observations. 32 refs

  11. Thematic mapper studies band correlation analysis

    Science.gov (United States)

    Ungar, S. G.; Kiang, R.

    1976-01-01

    Spectral data representative of thematic mapper candidate bands 1 and 3 to 7 were obtained by selecting appropriate combinations of bands from the JSC 24 channel multispectral scanner. Of all the bands assigned, only candidate bands 4 (.74 mu to .80 mu) and 5 (.80 mu to .91 mu) showed consistently high intercorrelation from region to region and time to time. This extremely high correlation persisted when looking at the composite data set in a multitemporal, multilocation domain. The GISS investigations lend positive confirmation to the hypothesis, that TM bands 4 and 5 are redundant.

  12. Hot, deep origin of petroleum: deep basin evidence and application

    Science.gov (United States)

    Price, Leigh C.

    1978-01-01

    Use of the model of a hot deep origin of oil places rigid constraints on the migration and entrapment of crude oil. Specifically, oil originating from depth migrates vertically up faults and is emplaced in traps at shallower depths. Review of petroleum-producing basins worldwide shows oil occurrence in these basins conforms to the restraints of and therefore supports the hypothesis. Most of the world's oil is found in the very deepest sedimentary basins, and production over or adjacent to the deep basin is cut by or directly updip from faults dipping into the basin deep. Generally the greater the fault throw the greater the reserves. Fault-block highs next to deep sedimentary troughs are the best target areas by the present concept. Traps along major basin-forming faults are quite prospective. The structural style of a basin governs the distribution, types, and amounts of hydrocarbons expected and hence the exploration strategy. Production in delta depocenters (Niger) is in structures cut by or updip from major growth faults, and structures not associated with such faults are barren. Production in block fault basins is on horsts next to deep sedimentary troughs (Sirte, North Sea). In basins whose sediment thickness, structure and geologic history are known to a moderate degree, the main oil occurrences can be specifically predicted by analysis of fault systems and possible hydrocarbon migration routes. Use of the concept permits the identification of significant targets which have either been downgraded or ignored in the past, such as production in or just updip from thrust belts, stratigraphic traps over the deep basin associated with major faulting, production over the basin deep, and regional stratigraphic trapping updip from established production along major fault zones.

  13. Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices

    Science.gov (United States)

    Carrillo-Nuñez, H.; Ziegler, A.; Luisier, M.; Schenk, A.

    2015-06-01

    A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduction and valence bands (CVBs) is derived using a multiband envelope method. A general form of the BTBT probability is then obtained from the linear response to the "CVBs interaction" that drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral function are developed to compute the BTBT current in two- and three-dimensional semiconductor structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary dispersion is proposed for the same purpose. In order to characterize their accuracy and differences, both approaches are compared with full-band, atomistic quantum transport simulations of Ge, InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with high accuracy. The first one is considerably easier to conceive and could be implemented straightforwardly in existing quantum transport tools based on the effective mass approximation to account for BTBT in nanodevices.

  14. Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices

    International Nuclear Information System (INIS)

    Carrillo-Nuñez, H.; Ziegler, A.; Luisier, M.; Schenk, A.

    2015-01-01

    A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduction and valence bands (CVBs) is derived using a multiband envelope method. A general form of the BTBT probability is then obtained from the linear response to the “CVBs interaction” that drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral function are developed to compute the BTBT current in two- and three-dimensional semiconductor structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary dispersion is proposed for the same purpose. In order to characterize their accuracy and differences, both approaches are compared with full-band, atomistic quantum transport simulations of Ge, InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with high accuracy. The first one is considerably easier to conceive and could be implemented straightforwardly in existing quantum transport tools based on the effective mass approximation to account for BTBT in nanodevices

  15. Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo-Nuñez, H.; Ziegler, A.; Luisier, M.; Schenk, A. [Integrated Systems Laboratory ETH Zürich, Gloriastrasse 35, 8092 Zürich (Switzerland)

    2015-06-21

    A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduction and valence bands (CVBs) is derived using a multiband envelope method. A general form of the BTBT probability is then obtained from the linear response to the “CVBs interaction” that drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral function are developed to compute the BTBT current in two- and three-dimensional semiconductor structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary dispersion is proposed for the same purpose. In order to characterize their accuracy and differences, both approaches are compared with full-band, atomistic quantum transport simulations of Ge, InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with high accuracy. The first one is considerably easier to conceive and could be implemented straightforwardly in existing quantum transport tools based on the effective mass approximation to account for BTBT in nanodevices.

  16. A coupler for parasitic mode diagnosis in an X-band triaxial klystron amplifier

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2017-10-01

    Full Text Available The traditional methods of parasitic mode excitation diagnosis in an X-band triaxial klystron amplifier (TKA meet two difficulties: limited installation space and vacuum sealing. In order to solve these issues, a simple and compact coupler with good sealing performance, which can prevent air flow between the main and the auxiliary waveguides, is proposed and investigated experimentally. The coupler is designed with the aperture diffraction theory and the finite-different time-domain (FDTD method. The designed coupler consists of a main coaxial waveguide (for microwave transmission and a rectangular auxiliary waveguide (for parasitic mode diagnosis. The entire coupler structure has been fabricated by macromolecule polymer which is transparent to microwave signal in frequency range of X-band. The metal coating of about 200 microns has been performed through electroplating technique to ensure that the device operates well at high power. A small aperture is made in the metal coating. Hence, microwave can couple through the hole and the wave-transparent medium, whereas air flow is blocked by the wave-transparent medium. The coupling coefficient is analyzed and simulated with CST software. The coupler model is also included in particle-in-cell (PIC simulation with CHIPIC software and the associated parasitic mode excitation is studied. A frequency component of 11.46 GHz is observed in the FFT of the electric field of the drift tube and its corresponding competition mode appears as TE61 mode according to the electric field distribution. Besides, a frequency component of 10.8 GHz is also observed in the FFT of the electric field. After optimization of TE61 mode suppression, an experiment of the TKA with the designed coupler is carried out and the parasitic mode excitation at 10.8 GHz is observed through the designed coupler.

  17. On AdS/QCD correspondence and the partonic picture of deep inelastic scattering

    International Nuclear Information System (INIS)

    Pire, B.; Roiesnel, C.; Szymanowski, L.; Wallon, S.

    2008-01-01

    We critically examine the question of scaling of the Deep Inelastic Scattering process in the medium Bjorken x region on a scalar boson in the framework of the AdS/QCD correspondence. To get the right polarization structure of the forward electroproduction amplitude, we show that one needs to add (at least) the scalar to scalar and scalar to vector hadronic amplitudes. This illustrates how the partonic picture may emerge from a simple scenario based on the AdS/QCD correspondence, provided one allows the conformal dimension of the hadronic field to equal 1 and use the concept of 'hadron-parton duality'

  18. Superdeformed bands in 64147Gd83, a possible test of the existence of octupole correlations in superdeformed bands

    International Nuclear Information System (INIS)

    Zuber, K.; Balouka, D.; Beck, F.A.; Byrski, T.; Curien, D.; Duchene, G.; Gehringer, C.; Haas, B.; Merdinger, J.C.; Romain, P.; Santos, D.; Styczen, J.; Vivien, J.P.; Dudek, J.; Szymanski, Z.; Werner, T.

    1990-01-01

    Two discrete superdeformed bands (SD) have been identified in the nucleus 147 Gd. The transitions energies of the SD yrast band lie halfway between the γ-ray energies of the yrast SD band in 146 Gd while the transition energies of the excited band lie half way between the transition energies of the yrast SD band in 148 Gd. These two bands are shown to exhibit the presence of the pseudo SU(3) symmetry and also indicate the possible existence of octupole correlations at large elongations and high spins. (orig.)

  19. Light scattering by rough surfaces for increase of absorption of low band gap light in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kloppstech, Konstantin; Knabe, Sebastian; Bauer, Gottfried H. [Institute of Physics, Carl von Ossietzky University Oldenburg (Germany)

    2011-07-01

    Scattering of low band gap light for the increase of the absorption of low band gap photons is commonly formulated in phenomenological magnitudes such as haze factors resulting from experiments at particular scattering media. We have formulated analytically and described by numerical simulations the scattering of light by the interaction of photons with rough surfaces based on wave numbers of photons k{sub {lambda}} and wave numbers of the topological surface contour k{sub s} that has been derived in 2 dimensions via AFM analyses of the contour function h(x,y) of the scattering medium, e.g. a glassy diffusor. We have distinguished two regimes: i) k{sub {lambda}}medium and scattering angle {beta}. In particular for the wave optical approach we find a ''scattering function'' that contains the contour function h(x,y) however that substantially departs from its puristic Fourier Transform.

  20. Dimensionality-varied deep convolutional neural network for spectral-spatial classification of hyperspectral data

    Science.gov (United States)

    Qu, Haicheng; Liang, Xuejian; Liang, Shichao; Liu, Wanjun

    2018-01-01

    Many methods of hyperspectral image classification have been proposed recently, and the convolutional neural network (CNN) achieves outstanding performance. However, spectral-spatial classification of CNN requires an excessively large model, tremendous computations, and complex network, and CNN is generally unable to use the noisy bands caused by water-vapor absorption. A dimensionality-varied CNN (DV-CNN) is proposed to address these issues. There are four stages in DV-CNN and the dimensionalities of spectral-spatial feature maps vary with the stages. DV-CNN can reduce the computation and simplify the structure of the network. All feature maps are processed by more kernels in higher stages to extract more precise features. DV-CNN also improves the classification accuracy and enhances the robustness to water-vapor absorption bands. The experiments are performed on data sets of Indian Pines and Pavia University scene. The classification performance of DV-CNN is compared with state-of-the-art methods, which contain the variations of CNN, traditional, and other deep learning methods. The experiment of performance analysis about DV-CNN itself is also carried out. The experimental results demonstrate that DV-CNN outperforms state-of-the-art methods for spectral-spatial classification and it is also robust to water-vapor absorption bands. Moreover, reasonable parameters selection is effective to improve classification accuracy.

  1. The effects of illumination on deep levels observed in as-grown and low-energy electron irradiated high-purity semi-insulating 4H-SiC

    Science.gov (United States)

    Alfieri, G.; Knoll, L.; Kranz, L.; Sundaramoorthy, V.

    2018-05-01

    High-purity semi-insulating 4H-SiC can find a variety of applications, ranging from power electronics to quantum computing applications. However, data on the electronic properties of deep levels in this material are scarce. For this reason, we present a deep level transient spectroscopy study on HPSI 4H-SiC substrates, both as-grown and irradiated with low-energy electrons (to displace only C-atoms). Our investigation reveals the presence of four deep levels with activation energies in the 0.4-0.9 eV range. The concentrations of three of these levels increase by at least one order of magnitude after irradiation. Furthermore, we analyzed the behavior of these traps under sub- and above-band gap illumination. The nature of the traps is discussed in the light of the present data and results reported in the literature.

  2. GMSK Modulation for Deep Space Applications

    Science.gov (United States)

    Shambayati, Shervin; Lee, Dennis K.

    2012-01-01

    Due to scarcity of spectrum at 8.42 GHz deep space Xband allocation, many deep space missions are now considering the use of higher order modulation schemes instead of the traditional binary phase shift keying (BPSK). One such scheme is pre-coded Gaussian minimum shift keying (GMSK). GMSK is an excellent candidate for deep space missions. GMSK is a constant envelope, bandwidth efficien modulation whose frame error rate (FER) performance with perfect carrier tracking and proper receiver structure is nearly identical to that of BPSK. There are several issues that need to be addressed with GMSK however. Specificall, we are interested in the combined effects of spectrum limitations and receiver structure on the coded performance of the X-band link using GMSK. The receivers that are typically used for GMSK demodulations are variations on offset quadrature phase shift keying (OQPSK) receivers. In this paper we consider three receivers: the standard DSN OQPSK receiver, DSN OQPSK receiver with filte ed input, and an optimum OQPSK receiver with filte ed input. For the DSN OQPSK receiver we show experimental results with (8920, 1/2), (8920, 1/3) and (8920, 1/6) turbo codes in terms of their error rate performance. We also consider the tracking performance of this receiver as a function of data rate, channel code and the carrier loop signal-to-noise ratio (SNR). For the other two receivers we derive theoretical results that will show that for a given loop bandwidth, a receiver structure, and a channel code, there is a lower data rate limit on the GMSK below which a higher SNR than what is required to achieve the required FER on the link is needed. These limits stem from the minimum loop signal-to-noise ratio requirements on the receivers for achieving lock. As a result of this, for a given channel code and a given FER, there could be a gap between the maximum data rate that BPSK can support without violating the spectrum limits and the minimum data rate that GMSK can support

  3. Deep learning in bioinformatics.

    Science.gov (United States)

    Min, Seonwoo; Lee, Byunghan; Yoon, Sungroh

    2017-09-01

    In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Band-to-Band Misregistration of the Images of MODIS Onboard Calibrators and Its Impact on Calibration

    Science.gov (United States)

    Wang, Zhipeng; Xiong, Xiaoxiong

    2017-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard Terra and Aqua satellites are radiometrically calibrated on-orbit with a set of onboard calibrators (OBCs), including a solar diffuser, a blackbody, and a space view port through which the detectors can view the dark space. As a whisk-broom scanning spectroradiometer, thirty-six MODIS spectral bands are assembled in the along-scan direction on four focal plane assemblies (FPAs). These bands capture images of the same target sequentially with the motion of a scan mirror. Then the images are coregistered onboard by delaying the appropriate band-dependent amount of time, depending on the band locations on the FPA. While this coregistration mechanismis functioning well for the far-field remote targets such as earth view scenes or the moon, noticeable band-to-band misregistration in the along-scan direction has been observed for near field targets, particularly in OBCs. In this paper, the misregistration phenomenon is presented and analyzed. It is concluded that the root cause of the misregistration is that the rotating element of the instrument, the scan mirror, is displaced from the focus of the telescope primary mirror. The amount of the misregistrationis proportional to the band location on the FPA and is inversely proportional to the distance between the target and the scan mirror. The impact of this misregistration on the calibration of MODIS bands is discussed. In particular, the calculation of the detector gain coefficient m1of bands 8-16 (412 nm 870 nm) is improved by up to 1.5% for Aqua MODIS.

  5. Infrared diffuse interstellar bands

    Science.gov (United States)

    Galazutdinov, G. A.; Lee, Jae-Joon; Han, Inwoo; Lee, Byeong-Cheol; Valyavin, G.; Krełowski, J.

    2017-05-01

    We present high-resolution (R ˜ 45 000) profiles of 14 diffuse interstellar bands in the ˜1.45 to ˜2.45 μm range based on spectra obtained with the Immersion Grating INfrared Spectrograph at the McDonald Observatory. The revised list of diffuse bands with accurately estimated rest wavelengths includes six new features. The diffuse band at 15 268.2 Å demonstrates a very symmetric profile shape and thus can serve as a reference for finding the 'interstellar correction' to the rest wavelength frame in the H range, which suffers from a lack of known atomic/molecular lines.

  6. Analysis of optical band-gap shift in impurity doped ZnO thin films by using nonparabolic conduction band parameters

    International Nuclear Information System (INIS)

    Kim, Won Mok; Kim, Jin Soo; Jeong, Jeung-hyun; Park, Jong-Keuk; Baik, Young-Jun; Seong, Tae-Yeon

    2013-01-01

    Polycrystalline ZnO thin films both undoped and doped with various types of impurities, which covered the wide carrier concentration range of 10 16 –10 21 cm −3 , were prepared by magnetron sputtering, and their optical-band gaps were investigated. The experimentally measured optical band-gap shifts were analyzed by taking into account the carrier density dependent effective mass determined by the first-order nonparabolicity approximation. It was shown that the measured shifts in optical band-gaps in ZnO films doped with cationic dopants, which mainly perturb the conduction band, could be well represented by theoretical estimation in which the band-gap widening due to the band-filling effect and the band-gap renormalization due to the many-body effect derived for a weakly interacting electron-gas model were combined and the carrier density dependent effective mass was incorporated. - Highlights: ► Optical band-gaps of polycrystalline ZnO thin films were analyzed. ► Experimental carrier concentration range covered from 10 16 to 10 21 cm −3 . ► Nonparabolic conduction band parameters were used in theoretical analysis. ► The band-filling and the band-gap renormalization effects were considered. ► The measured optical band-gap shifts corresponded well with the calculated ones

  7. Very High Specific Energy, Medium Power Li/CFx Primary Battery for Launchers and Space Probes

    Science.gov (United States)

    Brochard, Paul; Godillot, Gerome; Peres, Jean Paul; Corbin, Julien; Espinosa, Amaya

    2014-08-01

    Benchmark with existing technologies shows the advantages of the lithium-fluorinated carbon (Li/CFx) technology for use aboard future launchers in terms of a low Total Cost of Ownership (TCO), especially for high energy demanding missions such as re-ignitable upper stages for long GTO+ missions and probes for deep space exploration.This paper presents the new results obtained on this chemistry in terms of electrical and climatic performances, abuse tests and life tests. Studies - co-financed between CNES and Saft - looked at a pure CFx version with a specific energy up to 500 Wh/kg along with a medium power of 80 to 100 W/kg.

  8. Modelling band-to-band tunneling current in InP-based heterostructure photonic devices

    NARCIS (Netherlands)

    van Engelen, J.P.; Shen, L.; van der Tol, J.J.G.M.; Smit, M.K.; Kockaert, P.; Emplit, P.; Gorza, S.-P.; Massar, S.

    2015-01-01

    Some semiconductor photonic devices show large discontinuities in the band structure. Short tunnel paths caused by this band structure may lead to an excessive tunneling current, especially in highly doped layers. Modelling of this tunnelling current is therefore important when designing photonic

  9. Neutrino oscillations with the full IceCube DeepCore detector

    Energy Technology Data Exchange (ETDEWEB)

    Yanez Garza, Juan Pablo [DESY, Zeuthen (Germany); Collaboration: IceCube-Collaboration

    2013-07-01

    The IceCube detector and its low energy extension, DeepCore, have recorded over 300,000 atmospheric neutrino events since completion almost two years ago. With an energy threshold of about 10 GeV and the possibility of observing different baselines between source and detector location, these events can be used to probe neutrino oscillations with unprecedented statistics. However, the measurement uncertainties, due to unknown properties of the detector and the medium where it stands, limit the sensitivity of such a study. The particular analysis under discussion is a special attempt to diminish the impact of systematic uncertainties while keeping a large high quality neutrino sample. The tools developed for it, as well as the current status of the analysis are presented.

  10. Change in optimum genetic algorithm solution with changing band discontinuities and band widths of electrically conducting copolymers

    Science.gov (United States)

    Kaur, Avneet; Bakhshi, A. K.

    2010-04-01

    The interest in copolymers stems from the fact that they present interesting electronic and optical properties leading to a variety of technological applications. In order to get a suitable copolymer for a specific application, genetic algorithm (GA) along with negative factor counting (NFC) method has recently been used. In this paper, we study the effect of change in the ratio of conduction band discontinuity to valence band discontinuity (Δ Ec/Δ Ev) on the optimum solution obtained from GA for model binary copolymers. The effect of varying bandwidths on the optimum GA solution is also investigated. The obtained results show that the optimum solution changes with varying parameters like band discontinuity and band width of constituent homopolymers. As the ratio Δ Ec/Δ Ev increases, band gap of optimum solution decreases. With increasing band widths of constituent homopolymers, the optimum solution tends to be dependent on the component with higher band gap.

  11. Band connectivity for topological quantum chemistry: Band structures as a graph theory problem

    Science.gov (United States)

    Bradlyn, Barry; Elcoro, L.; Vergniory, M. G.; Cano, Jennifer; Wang, Zhijun; Felser, C.; Aroyo, M. I.; Bernevig, B. Andrei

    2018-01-01

    The conventional theory of solids is well suited to describing band structures locally near isolated points in momentum space, but struggles to capture the full, global picture necessary for understanding topological phenomena. In part of a recent paper [B. Bradlyn et al., Nature (London) 547, 298 (2017), 10.1038/nature23268], we have introduced the way to overcome this difficulty by formulating the problem of sewing together many disconnected local k .p band structures across the Brillouin zone in terms of graph theory. In this paper, we give the details of our full theoretical construction. We show that crystal symmetries strongly constrain the allowed connectivities of energy bands, and we employ graph theoretic techniques such as graph connectivity to enumerate all the solutions to these constraints. The tools of graph theory allow us to identify disconnected groups of bands in these solutions, and so identify topologically distinct insulating phases.

  12. Probes for the development of medium deep geothermal energy; Sonden zur Erschliessung der mitteltiefen Geothermie

    Energy Technology Data Exchange (ETDEWEB)

    Stuckmann, Uwe; Gottschalk, Daniel [REHAU AG und Co., Rehau (Germany)

    2011-10-24

    Compared to the near-surface geothermal energy, higher temperatures can be developed in the medium-depth geothermal energy (400 to 1,000 meters). Thus, the efficiency of geothermal power plants can be increased. The significantly higher yield performance and extraction performance are opposite to the higher costs of installation. At high thermal gradients of the surface one may completely dispense with the heat pump and directly heat. Geothermal probes at the current state of the art are reaching the limits of its applicability. Only newly developed geothermal probes offer a pressure resistance and temperature resistance in order to exploit these deeper regions. Such projects will be accompanied by the mining authority according to the power of approval. Extensive financial supports are available with the market incentive program of the Federal Government. Thus, the use of geothermal probes is possible in deeper regions. The feasibility and cost of future projects will be affected positively.

  13. DeepSimulator: a deep simulator for Nanopore sequencing

    KAUST Repository

    Li, Yu

    2017-12-23

    Motivation: Oxford Nanopore sequencing is a rapidly developed sequencing technology in recent years. To keep pace with the explosion of the downstream data analytical tools, a versatile Nanopore sequencing simulator is needed to complement the experimental data as well as to benchmark those newly developed tools. However, all the currently available simulators are based on simple statistics of the produced reads, which have difficulty in capturing the complex nature of the Nanopore sequencing procedure, the main task of which is the generation of raw electrical current signals. Results: Here we propose a deep learning based simulator, DeepSimulator, to mimic the entire pipeline of Nanopore sequencing. Starting from a given reference genome or assembled contigs, we simulate the electrical current signals by a context-dependent deep learning model, followed by a base-calling procedure to yield simulated reads. This workflow mimics the sequencing procedure more naturally. The thorough experiments performed across four species show that the signals generated by our context-dependent model are more similar to the experimentally obtained signals than the ones generated by the official context-independent pore model. In terms of the simulated reads, we provide a parameter interface to users so that they can obtain the reads with different accuracies ranging from 83% to 97%. The reads generated by the default parameter have almost the same properties as the real data. Two case studies demonstrate the application of DeepSimulator to benefit the development of tools in de novo assembly and in low coverage SNP detection. Availability: The software can be accessed freely at: https://github.com/lykaust15/DeepSimulator.

  14. Deep learning relevance

    DEFF Research Database (Denmark)

    Lioma, Christina; Larsen, Birger; Petersen, Casper

    2016-01-01

    train a Recurrent Neural Network (RNN) on existing relevant information to that query. We then use the RNN to "deep learn" a single, synthetic, and we assume, relevant document for that query. We design a crowdsourcing experiment to assess how relevant the "deep learned" document is, compared...... to existing relevant documents. Users are shown a query and four wordclouds (of three existing relevant documents and our deep learned synthetic document). The synthetic document is ranked on average most relevant of all....

  15. Wide Band to ''Double Band'' upgrade

    International Nuclear Information System (INIS)

    Kasper, P.; Currier, R.; Garbincius, P.; Butler, J.

    1988-06-01

    The Wide Band beam currently uses electrons obtained from secondary photon conversions to produce the photon beam incident on the experimental targets. By transporting the positrons produced in these conversions as well as the electrons it is possible to almost double the number of photons delivered to the experiments per primary beam proton. 11 figs

  16. Attenuation and velocity dispersion in the exploration seismic frequency band

    Science.gov (United States)

    Sun, Langqiu

    In an anelastic medium, seismic waves are distorted by attenuation and velocity dispersion, which depend on petrophysical properties of reservoir rocks. The effective attenuation and velocity dispersion is a combination of intrinsic attenuation and apparent attenuation due to scattering, transmission response, and data acquisition system. Velocity dispersion is usually neglected in seismic data processing partly because of insufficient observations in the exploration seismic frequency band. This thesis investigates the methods of measuring velocity dispersion in the exploration seismic frequency band and interprets the velocity dispersion data in terms of petrophysical properties. Broadband, uncorrelated vibrator data are suitable for measuring velocity dispersion in the exploration seismic frequency band, and a broad bandwidth optimizes the observability of velocity dispersion. Four methods of measuring velocity dispersion in uncorrelated vibrator VSP data are investigated, which are the sliding window crosscorrelation (SWCC) method, the instantaneous phase method, the spectral decomposition method, and the cross spectrum method. Among them, the SWCC method is a new method and has satisfactory robustness, accuracy, and efficiency. Using the SWCC method, velocity dispersion is measured in the uncorrelated vibrator VSP data from three areas with different geological settings, i.e., Mallik gas hydrate zone, McArthur River uranium mines, and Outokumpu crystalline rocks. The observed velocity dispersion is fitted to a straight line with respect to log frequency for a constant (frequency-independent) Q value. This provides an alternative method for calculating Q. A constant Q value does not directly link to petrophysical properties. A modeling study is implemented for the Mallik and McArthur River data to interpret the velocity dispersion observations in terms of petrophysical properties. The detailed multi-parameter petrophysical reservoir models are built according to

  17. Quantum state engineering with ultra-short-period (AlN)m/(GaN)n superlattices for narrowband deep-ultraviolet detection.

    Science.gov (United States)

    Gao, Na; Lin, Wei; Chen, Xue; Huang, Kai; Li, Shuping; Li, Jinchai; Chen, Hangyang; Yang, Xu; Ji, Li; Yu, Edward T; Kang, Junyong

    2014-12-21

    Ultra-short-period (AlN)m/(GaN)n superlattices with tunable well and barrier atomic layer numbers were grown by metal-organic vapour phase epitaxy, and employed to demonstrate narrowband deep ultraviolet photodetection. High-resolution transmission electron microscopy and X-ray reciprocal space mapping confirm that superlattices containing well-defined, coherently strained GaN and AlN layers as thin as two atomic layers (∼ 0.5 nm) were grown. Theoretical and experimental results demonstrate that an optical absorption band as narrow as 9 nm (210 meV) at deep-ultraviolet wavelengths can be produced, and is attributable to interband transitions between quantum states along the [0001] direction in ultrathin GaN atomic layers isolated by AlN barriers. The absorption wavelength can be precisely engineered by adjusting the thickness of the GaN atomic layers because of the quantum confinement effect. These results represent a major advance towards the realization of wavelength selectable and narrowband photodetectors in the deep-ultraviolet region without any additional optical filters.

  18. Tritium dating of underground water from the Jian River valley and Houjialiang loess platform in the basin side-band of the East-Mountain Region of Taiyuan

    International Nuclear Information System (INIS)

    Yu Songsheng; Wu Qinghua

    1991-01-01

    The tritium content is measured in underground water from the basin side-band of the East-Mountain Region of Taiyuan, Shanxi Province, and hence the age, i.e. resident time, of underground water is estimated. The region belongs to deep water-poor zone in a long loess ridge situated in a loess hill plateau. The level of underground water is 40-80 m deep hidden. In the runway and the scouring channel the aqueous bed is of river pebble and cobble, with a level of 2-10 m in depth. The age of underground water from different wells were determined to be 23a, 14a, 25a, 41a and 53a respectively

  19. Thermal evolution of the band edges of 6H-SiC: X-ray methods compared to the optical band gap

    International Nuclear Information System (INIS)

    Miedema, P.S.; Beye, M.; Könnecke, R.; Schiwietz, G.; Föhlisch, A.

    2014-01-01

    Highlights: • Conduction band minima (CBM) of 6H-SiC are estimated with Si 2p XAS. • Valence band maxima (VBM) of 6H-SiC are estimated with non-resonant Si 2p XES. • Temperature-dependent VBM and CBM of 6H-SiC show asymmetric band gap closing. • XAS, XES and RIXS band gap estimates are compared with the optical band gap. • XAS + XES versus optical band gap provides core-excitonic screening energies. - Abstract: The band gap of semiconductors like silicon and silicon carbide (SiC) is the key for their device properties. In this research, the band gap of 6H-SiC and its temperature dependence were analyzed with silicon 2p X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS) allowing for a separate analysis of the conduction-band minimum (CBM) and valence-band maximum (VBM) components of the band gap. The temperature-dependent asymmetric band gap shrinking of 6H-SiC was determined with a valence-band slope of +2.45 × 10 −4 eV/K and a conduction-band slope of −1.334 × 10 −4 eV/K. The apparent asymmetry, e.g., that two thirds of the band-gap shrinking with increasing temperature is due to the VBM evolution in 6H-SiC, is similar to the asymmetry obtained for pure silicon before. The overall band gap temperature-dependence determined with XAS and non-resonant XES is compared to temperature-dependent optical studies. The core-excitonic binding energy appearing in the Si 2p XAS is extracted as the main difference. In addition, the energy loss of the onset of the first band in RIXS yields to values similar to the optical band gap over the tested temperature range

  20. Underground disposal for radioactive wastes: study of the thermal impact in a fractured medium

    International Nuclear Information System (INIS)

    Coudrain, A.; Hosanski, J.M.; Ledoux, E.; Vouille, G.

    1982-01-01

    Radioactive waste storage in deep geologic formations, like granitic rocks, is one of the solutions studied for long-life radioactive wastes disposal. The study, presented in this document, has been developed in five stages: (1) theorical analysis of heat transfer in a fractured medium; bench-scale experiments (2) to study the convection in an artificial fracture with a punctual heat source, and, (3) in a real fracture with a spread heat source; (4) influence of the thermal stresses on the permeability of a fracture; (5) and finally, the mathematical model, validated in laboratory, used to simulate water and heat transfer, allows to discuss the radionuclides migration from an hydrodynamical point of view