WorldWideScience

Sample records for mushy brains working

  1. Density of Ni-Cr Alloy in the Mushy State

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The density of Ni-Cr alloy in the mushy state has been measured using the modified sessile drop method. The density of Ni-Cr alloy in the mushy state was found to decrease with increasing temperature and Cr concentration in alloy.The molar volume of Ni-Cr alloy in the mushy state therefore increases with increasing the Cr concentration in alloy.The ratio of the difference of density divided by the temperature difference between liquidus and solidus temperatures decreases with increasing Cr concentration. The density of the alloy increased with the precipitation of a solid phase in alloy during the solidification process. The temperature dependence of the density of alloy in the mushy state was not linear but biquadratic.

  2. Nonlinear dynamics of mushy layers induced by external stochastic fluctuations.

    Science.gov (United States)

    Alexandrov, Dmitri V; Bashkirtseva, Irina A; Ryashko, Lev B

    2018-02-28

    The time-dependent process of directional crystallization in the presence of a mushy layer is considered with allowance for arbitrary fluctuations in the atmospheric temperature and friction velocity. A nonlinear set of mushy layer equations and boundary conditions is solved analytically when the heat and mass fluxes at the boundary between the mushy layer and liquid phase are induced by turbulent motion in the liquid and, as a result, have the corresponding convective form. Namely, the 'solid phase-mushy layer' and 'mushy layer-liquid phase' phase transition boundaries as well as the solid fraction, temperature and concentration (salinity) distributions are found. If the atmospheric temperature and friction velocity are constant, the analytical solution takes a parametric form. In the more common case when they represent arbitrary functions of time, the analytical solution is given by means of the standard Cauchy problem. The deterministic and stochastic behaviour of the phase transition process is analysed on the basis of the obtained analytical solutions. In the case of stochastic fluctuations in the atmospheric temperature and friction velocity, the phase transition interfaces (mushy layer boundaries) move faster than in the deterministic case. A cumulative effect of these noise contributions is revealed as well. In other words, when the atmospheric temperature and friction velocity fluctuate simultaneously due to the influence of different external processes and phenomena, the phase transition boundaries move even faster. This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'. © 2018 The Author(s).

  3. HOW THE BRAIN MAY WORK

    OpenAIRE

    Bartlett, Rodney

    2016-01-01

    The brain's functioning has always been a great mystery. Despite the remarkable progress of neuroscience since the 19th century, it remains a puzzle. While continued study of the nervous system is obviously absolutely essential to comprehending how the brain works, that alone may be insufficient. The input of other scientific disciplines appears necessary - studies like physics, holography, and even astronomy. Albert Einstein, one of the world's greatest physicists, regretted not making a big...

  4. Mushy Zone Properties and Castability of Aluminium Foundry Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, A.K.

    1996-01-01

    The growing application and market share of aluminium castings demand better understanding of the mechanisms of defect formation during casting. Although casting is a cost-effective production route, inadequate reproducibility and quality of the cast structure often restrict the utilization of castings. This doctoral thesis aims to (1) determine how the solidification conditions affect the rheological behaviour in the partially solidified state, (2) to measure how alterations in solidification variables influence castability, and (3) to investigate the relationship between mushy zone rheology and castability. The development of mechanical strength in the mushy zone was measured as a function of chemical composition. Measurements of the dendrite coherency point provided accurate determination of the point where the dendrite network is established. The strength measurements confirm that the dendrites are largely independent and free-floating before dendrite coherency. The point and rate of strength development in the subsequently established interdendritic network strongly depend on the size and morphology of the dendrites and fraction solid. The castability investigation was limited to evaluations of fluidity and feeding. Fluidity measurements showed a complex effect of increased grain refinement. Alterations of the concentration and type of main alloying element gave a direct relationship between mushy zone rheology and fluidity. The range of the operating feeding mechanisms during solidification is directly related to the rheological properties of the mushy zone. 251 refs., 77 refs., 25 tabs.

  5. Structure of a mushy layer at the inner core boundary

    Science.gov (United States)

    Deguen, R.; Huguet, L.; Bergman, M. I.; Labrosse, S.; Alboussiere, T.

    2015-12-01

    We present experimental results on the solidification of ammonium chloride from an aqueous solution, yielding a mushy zone, under hyper-gravity. A commercial centrifuge has been equipped with a slip-ring so that electric power, temperature and ultrasonic signals could be transmitted between the experimental setup and the laboratory. A Peltier element provides cooling at the bottom of the cell. Probes monitor the temperature along the height of the cell. Ultrasound measurements (2 to 6 MHz) is used to detect the position of the front of the mushy zone and to determine attenuation in the mush. A significant increase of solid fraction (or decrease of mushy layer thickness) and attenuation in the mush is observed as gravity is increased. Kinetic undercooling is significant in our experiments and has been included in a macroscopic mush model. The other ingredients of the model are conservation of energy and chemical species, along with heat/species transfer between the mush and the liquid phase: boundary-layer exchanges at the top of the mush and bulk convection within the mush (formation of chimneys). The outputs of the model compare well with our experiments. We have then run the model in a range of parameters suitable for the Earth's inner core, which has shown the role of bulk mush convection for the inner core and the reason why a solid fraction very close to unity should be expected. We have also run melting experiments: after crystallization of a mush, the liquid has been heated from above until the mush started to melt, while the bottom cold temperature was maintained. These melting experiments were motivated by the possible local melting at the inner core boundary that has been invoked to explain the formation of the anomalously slow F-layer at the bottom of the outer core or inner core hemispherical asymmetry. Oddly, the consequences of melting are an increase in solid fraction and a decrease in attenuation. It is hence possible that surface seismic velocity

  6. The associative brain at work

    DEFF Research Database (Denmark)

    Suppa, A.; Quartarone, A.; Siebner, H.

    2017-01-01

    with movement disorders and other neuropsychiatric diseases. The present review covers the physiology, pharmacology, pathology and motor effects of PAS. Further sections of the review focus on new protocols of “modified PAS” and possible future application of PAS in neuromorphic circuits designed for brain...

  7. Solute redistribution and Rayleigh number in the mushy zone during directional solidifi cation of Inconel 718

    Directory of Open Access Journals (Sweden)

    Wang Ling

    2009-08-01

    Full Text Available The interdendritic segregation along the mushy zone of directionally solidifi ed superalloy Inconel 718 has been measured by scanning electron microscope (SEM and energy dispersion analysis spectrometry (EDAXtechniques and the corresponding liquid composition profile was presented. The liquid density and Rayleigh number (Ra profi les along the mushy zone were calculated as well. It was found that the liquid density difference increased from top to bottom in the mushy zone and there was no density inversion due to the segregation of Nb and Mo. However carbide formation in the freezing range and the preferred angle of the orientated dendrite array could prompt the fl uid fl ow in the mushy zone although there was no liquid density inversion. The largest relative Rayleigh number appeared at 1,326 篊 for Inconel 718 where the fl uid fl ow most easily occurred.

  8. Finite bandwidth, nonlinear convective flow in a mushy layer

    Energy Technology Data Exchange (ETDEWEB)

    Riahi, D N, E-mail: daniel.riahi@utrgv.edu [School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, One West University Boulevard, Brownsville, TX 78520 (United States)

    2017-04-15

    Finite amplitude convection with a continuous finite bandwidth of modes in a horizontal mushy layer during the solidification of binary alloys is investigated. We analyze the nonlinear convection for values of the Rayleigh number close to its critical value by using multiple scales and perturbation techniques. Applying a combined temporal and spatial evolution approach, we determine a set of three coupled differential equations for the amplitude functions of the convective modes. A large number of new subcritical or supercritical stable solutions to these equations in the form of steady rolls and hexagons with different horizontal length scales are detected. We find, in particular, that depending on the parameter values and on the magnitude and direction of the wave number vectors for the amplitude functions, hexagons with down-flow or up-flow at the cells’ centers or rolls can be stable. Rolls or hexagons with longer horizontal wave length can be stable at higher amplitudes, and there are cases where hexagons are unstable for any value of the Rayleigh number, while rolls are stable only for the values of the Rayleigh number beyond some value. We also detected new stable and irregular flow patterns with two different horizontal scales in the form of superposition of either two sets of hexagons or two sets of inclined rolls. (paper)

  9. Use of the Niyama criterion to predict porosity of the mushy zone with deformation

    Directory of Open Access Journals (Sweden)

    S. Polyakov

    2011-10-01

    Full Text Available The article presents new results on the use of the Niyama criterion to estimate porosity appearance in castings under hindered shrinkage. The effect of deformation of the mushy zone on filtration is shown. A new form of the Niyama criterion accounting for the hindered shrinkage and the range of deformation localization has been obtained. The results of this study are illustrated by the examp le of the Niyama criterion calculated for Al-Cu alloys under different diffusion conditions of solidification and rate of deformation in the mushy zone. Derived equations can be used in a mathematical model of the casting solidification as well as for interpretation of the simulation results of casting solidification under hindered shrinkage. The presented study resulted in a new procedure of using the Niyama criterion under mushy zone deformation.

  10. Seismological evidence for a localized mushy zone at the Earth?s inner core boundary

    OpenAIRE

    Tian, Dongdong; Wen, Lianxing

    2017-01-01

    Although existence of a mushy zone in the Earth?s inner core has been hypothesized several decades ago, no seismic evidence has ever been reported. Based on waveform modeling of seismic compressional waves that are reflected off the Earth?s inner core boundary, here we present seismic evidence for a localized 4?8?km thick zone across the inner core boundary beneath southwest Okhotsk Sea with seismic properties intermediate between those of the inner and outer core and of a mushy zone. Such a ...

  11. Global conservation model for a mushy region over a moving substrate

    Czech Academy of Sciences Publication Activity Database

    Kyselica, Juraj; Šimkanin, Ján

    2018-01-01

    Roč. 276, March (2018), s. 60-67 ISSN 0031-9201 Institutional support: RVO:67985530 Keywords : solidification * binary alloy * mushy region * global conservation * boundary-layer flow Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.075, year: 2016

  12. A Brain System for Auditory Working Memory.

    Science.gov (United States)

    Kumar, Sukhbinder; Joseph, Sabine; Gander, Phillip E; Barascud, Nicolas; Halpern, Andrea R; Griffiths, Timothy D

    2016-04-20

    The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. Copyright © 2016 Kumar et al.

  13. Global conservation model for a mushy region over a moving substrate

    Science.gov (United States)

    Kyselica, J.; Šimkanin, J.

    2018-03-01

    We study solidification over a cool substrate moving with a relative velocity with respect to the rest of the fluid. A mathematical model based on global conservation of solute is presented. The explicit solutions of the governing equations are found and analysed via the asymptotic methods. The assessment of how the boundary-layer flow influences the physical characteristics of the mushy region is given, together with the discussion of a possible connection with the solidification at the inner core boundary.

  14. Brain-computer interface supported collaborative work: Implications for rehabilitation.

    Science.gov (United States)

    Nam, C S; Lee, J; Bahn, S

    2013-01-01

    Working together and collaborating in a group can provide greater benefits for people with severe motor disability. However, it is still not clear how collaboration should be supported by BCI systems. The present study explored BCI-supported collaborative work by investigating differences in performance and brain activity between when a pair of users performs a task jointly with each other and when they do alone only through means of their brain activity. We found differences in performance and brain activity between different work conditions. The results of this research should provide fundamental knowledge of BCI-supported cooperative work.

  15. Working with Students with Traumatic Brain Injury

    Science.gov (United States)

    Lucas, Matthew D.

    2010-01-01

    The participation of a student with Traumatic Brain Injury (TBI) in general physical education can often be challenging and rewarding for the student and physical education teacher. This article addresses common characteristics of students with TBI and presents basic solutions to improve the education of students with TBI in the general physical…

  16. Neuroradiologic work-up of brain tumors

    International Nuclear Information System (INIS)

    Fishbein, D.S.

    1988-01-01

    The presence of an intracranial tumor may be suspected or deduced from the clinical history and examination, or it may be discovered incidentally during investigation of another disorder. Once the suggestion is raised, a variety of neuroradiologic techniques are available to define the extent and nature of the lesion. The studies performed may allow a tissue diagnosis to be presumed, may serve as a guide to proposed surgical therapy, or may allow the course of a previously diagnosed lesion to be followed. This chapter discusses the utility of common neuroradiologic techniques and their specific indications in the work-up of intracranial tumors. Emphasis is placed upon tests that are most frequently utilized and have the greatest value

  17. Brain connectivity during verbal working memory in children and adolescents

    NARCIS (Netherlands)

    G.E. van den Bosch (Gerbrich); H.E. Marroun (Hanan); M. Schmidt (Marcus); D. Tibboel (Dick); D.S. Manoach (Dara); V.D. Calhoun (Vince); T.J.H. White (Tonya)

    2014-01-01

    textabstractWorking memory (WkM) is a fundamental cognitive process that serves as a building block for higher order cognitive functions. While studies have shown that children and adolescents utilize similar brain regions during verbal WkM, there have been few studies that evaluate the

  18. Differences in brain morphology and working memory capacity across childhood.

    Science.gov (United States)

    Bathelt, Joe; Gathercole, Susan E; Johnson, Amy; Astle, Duncan E

    2018-05-01

    Working memory (WM) skills are closely associated with learning progress in key areas such as reading and mathematics across childhood. As yet, however, little is known about how the brain systems underpinning WM develop over this critical developmental period. The current study investigated whether and how structural brain correlates of components of the working memory system change over development. Verbal and visuospatial short-term and working memory were assessed in 153 children between 5.58 and 15.92 years, and latent components of the working memory system were derived. Fractional anisotropy and cortical thickness maps were derived from T1-weighted and diffusion-weighted MRI and processed using eigenanatomy decomposition. There was a greater involvement of the corpus callosum and posterior temporal white matter in younger children for performance associated with the executive part of the working memory system. For older children, this was more closely linked with the thickness of the occipitotemporal cortex. These findings suggest that increasing specialization leads to shifts in the contribution of neural substrates over childhood, moving from an early dependence on a distributed system supported by long-range connections to later reliance on specialized local circuitry. Our findings demonstrate that despite the component factor structure being stable across childhood, the underlying brain systems supporting working memory change. Taking the age of the child into account, and not just their overall score, is likely to be critical for understanding the nature of the limitations on their working memory capacity. © 2017 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  19. Analytical solutions of mushy layer equations describing directional solidification in the presence of nucleation

    Science.gov (United States)

    Alexandrov, Dmitri V.; Ivanov, Alexander A.; Alexandrova, Irina V.

    2018-01-01

    The processes of particle nucleation and their evolution in a moving metastable layer of phase transition (supercooled liquid or supersaturated solution) are studied analytically. The transient integro-differential model for the density distribution function and metastability level is solved for the kinetic and diffusionally controlled regimes of crystal growth. The Weber-Volmer-Frenkel-Zel'dovich and Meirs mechanisms for nucleation kinetics are used. We demonstrate that the phase transition boundary lying between the mushy and pure liquid layers evolves with time according to the following power dynamic law: , where Z1(t)=βt7/2 and Z1(t)=βt2 in cases of kinetic and diffusionally controlled scenarios. The growth rate parameters α, β and ε are determined analytically. We show that the phase transition interface in the presence of crystal nucleation and evolution propagates slower than in the absence of their nucleation. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  20. Massive Formation of Equiaxed Crystals by Avalanches of Mushy Zone Segments

    Science.gov (United States)

    Ludwig, A.; Stefan-Kharicha, M.; Kharicha, A.; Wu, M.

    2017-06-01

    It is well known that the growth and motion of equiaxed crystals govern important microstructural features, especially in larger castings such as heavy ingots. To determine the origin of the equiaxed crystals, heterogeneous nucleation, and/or fragmentation of dendrite arms from columnar regions are often discussed. In the present study, we demonstrate that under certain conditions relatively large areas of mushy regions slide downward and form spectacular crystal avalanches. These avalanches crumble into thousands of dendritic fragments, whereby the larger fragments immediately sediment and the smaller proceed to behave as equiaxed crystals. Traces of such crystal avalanches can be seen by conspicuous equiaxed layers in the lower part of the casting. From the arguments in the discussion, it is believed that such a phenomenon may occur in alloys which reveal an upward solutal buoyancy in the interdendritic mush. This would include certain steels and other alloys such as Cu-Al, Pb-Sn, or Ni-Al-alloys. Moreover, the occurrence of crystal avalanches contribute to the formation of V-segregations.

  1. Brain injury impairs working memory and prefrontal circuit function

    Directory of Open Access Journals (Sweden)

    Colin James Smith

    2015-11-01

    Full Text Available More than 2.5 million Americans suffer a traumatic brain injury (TBI each year. Even mild to moderate traumatic brain injury causes long-lasting neurological effects. Despite its prevalence, no therapy currently exists to treat the underlying cause of cognitive impairment suffered by TBI patients. Following lateral fluid percussion injury (LFPI, the most widely used experimental model of TBI, we investigated alterations in working memory and excitatory/inhibitory synaptic balance in the prefrontal cortex. LFPI impaired working memory as assessed with a T-maze behavioral task. Field excitatory postsynaptic potentials recorded in the prefrontal cortex were reduced in slices derived from brain-injured mice. Spontaneous and miniature excitatory postsynaptic currents onto layer 2/3 neurons were more frequent in slices derived from LFPI mice while inhibitory currents onto layer 2/3 neurons were smaller after LFPI. Additionally, an increase in action potential threshold and concomitant decrease in firing rate was observed in layer 2/3 neurons in slices from injured animals. Conversely, no differences in excitatory or inhibitory synaptic transmission onto layer 5 neurons were observed; however, layer 5 neurons demonstrated a decrease in input resistance and action potential duration after LFPI. These results demonstrate synaptic and intrinsic alterations in prefrontal circuitry that may underlie working memory impairment caused by TBI.

  2. Modulating the brain at work using noninvasive transcranial stimulation.

    Science.gov (United States)

    McKinley, R Andy; Bridges, Nathaniel; Walters, Craig M; Nelson, Jeremy

    2012-01-02

    This paper proposes a shift in the way researchers currently view and use transcranial brain stimulation technologies. From a neuroscience perspective, the standard application of both transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) has been mainly to explore the function of various brain regions. These tools allow for noninvasive and painless modulation of cortical tissue. In the course of studying the function of an area, many studies often report enhanced performance of a task during or following the stimulation. However, little follow-up research is typically done to further explore these effects. Approaching this growing pool of cognitive neuroscience literature with a neuroergonomics mindset (i.e., studying the brain at work), the possibilities of using these stimulation techniques for more than simply investigating the function of cortical areas become evident. In this paper, we discuss how cognitive neuroscience brain stimulation studies may complement neuroergonomics research on human performance optimization. And, through this discussion, we hope to shift the mindset of viewing transcranial stimulation techniques as solely investigatory basic science tools or possible clinical therapeutic devices to viewing transcranial stimulation techniques as interventional tools to be incorporated in applied science research and systems for the augmentation and enhancement of human operator performance. Published by Elsevier Inc.

  3. Putting the brain to work: neuroergonomics past, present, and future.

    Science.gov (United States)

    Parasuraman, Raja; Wilson, Glenn F

    2008-06-01

    The authors describe research and applications in prominent areas of neuroergonomics. Because human factors/ergonomics examines behavior and mind at work, it should include the study of brain mechanisms underlying human performance. Neuroergonomic studies are reviewed in four areas: workload and vigilance, adaptive automation, neuroengineering, and molecular genetics and individual differences. Neuroimaging studies have helped identify the components of mental workload, workload assessment in complex tasks, and resource depletion in vigilance. Furthermore, real-time neurocognitive assessment of workload can trigger adaptive automation. Neural measures can also drive brain-computer interfaces to provide disabled users new communication channels. Finally, variants of particular genes can be associated with individual differences in specific cognitive functions. Neuroergonomics shows that considering what makes work possible - the human brain - can enrich understanding of the use of technology by humans and can inform technological design. Applications of neuroergonomics include the assessment of operator workload and vigilance, implementation of real-time adaptive automation, neuroengineering for people with disabilities, and design of selection and training methods.

  4. Functional MR imaging of working memory in the human brain

    International Nuclear Information System (INIS)

    Na, Dong Gyu; Ryu, Jae Wook; Byun, Hong Sik; Lee, Eun Jeong; Chung, Woo In; Cho, Jae Min; Han, Boo Kyung; Choi, Dae Seob

    2000-01-01

    In order to investigate the functional brain anatomy associated with verbal and visual working memory, functional magnetic resonance imaging was performed. In ten normal right handed subjects, functional MR images were obtained using a 1.5-T MR scanner and the EPI BOLD technique. An item recognition task was used for stimulation, and during the activation period of the verbal working memory task, consonant letters were used. During the activation period of the visual working memory task, symbols or diagrams were employed instead of letters. For the post-processing of images, the SPM program was used, with the threshold of significance set at p < .001. We assessed activated brain areas during the two stimulation tasks and compared the activated regions between the two tasks. The prefrontal cortex and secondary visual cortex were activated bilaterally by both verbal and visual working memory tasks, and the patterns of activated signals were similar in both tasks. The superior parietal cortex was also activated by both tasks, with lateralization to the left in the verbal task, and bilaterally without lateralization in the visual task. The inferior frontal cortex, inferior parietal cortex and temporal gyrus were activated exclusively by the verbal working memory task, predominantly in the left hemisphere. The prefrontal cortex is activated by two stimulation tasks, and this is related to the function of the central executive. The language areas activated by the verbal working memory task may be a function of the phonological loop. Bilateral prefrontal and superior parietal cortices activated by the visual working memory task may be related to the visual maintenance of objects, representing visual working memory

  5. Functional MR imaging of working memory in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Na, Dong Gyu; Ryu, Jae Wook; Byun, Hong Sik; Lee, Eun Jeong; Chung, Woo In; Cho, Jae Min; Han, Boo Kyung [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Choi, Dae Seob [Dongguk University College of Medicine, Seoul (Korea, Republic of)

    2000-03-01

    In order to investigate the functional brain anatomy associated with verbal and visual working memory, functional magnetic resonance imaging was performed. In ten normal right handed subjects, functional MR images were obtained using a 1.5-T MR scanner and the EPI BOLD technique. An item recognition task was used for stimulation, and during the activation period of the verbal working memory task, consonant letters were used. During the activation period of the visual working memory task, symbols or diagrams were employed instead of letters. For the post-processing of images, the SPM program was used, with the threshold of significance set at p < .001. We assessed activated brain areas during the two stimulation tasks and compared the activated regions between the two tasks. The prefrontal cortex and secondary visual cortex were activated bilaterally by both verbal and visual working memory tasks, and the patterns of activated signals were similar in both tasks. The superior parietal cortex was also activated by both tasks, with lateralization to the left in the verbal task, and bilaterally without lateralization in the visual task. The inferior frontal cortex, inferior parietal cortex and temporal gyrus were activated exclusively by the verbal working memory task, predominantly in the left hemisphere. The prefrontal cortex is activated by two stimulation tasks, and this is related to the function of the central executive. The language areas activated by the verbal working memory task may be a function of the phonological loop. Bilateral prefrontal and superior parietal cortices activated by the visual working memory task may be related to the visual maintenance of objects, representing visual working memory.

  6. Effect of homogeneity of particle distribution on tensile crack propagation in mushy state rolled in situ Al–4.5Cu–5TiB2 particulate composite

    International Nuclear Information System (INIS)

    Jana, A.; Siddhalingeshwar, I.G.; Mitra, R.

    2013-01-01

    The effect of mushy state rolling with 20 vol% liquid at 626 °C for 5% thickness reduction per pass on homogeneity of TiB 2 and CuAl 2 particle distribution in the in situ Al–4.5Cu–5TiB 2 composite has been examined. These particles, appearing as segregated at grain boundaries in the as-cast composite, are redistributed on mushy state rolling. The homogeneity of particle distribution has been quantitatively evaluated by developing a computer program for multi-scalar analysis of area-fractions in scanning electron microscope (SEM) images to estimate homogeneous length scales. The optimum homogeneity is found in the composite subjected to two mushy state roll passes. The matrix microhardness increases with decrease in the homogeneous length scale. In situ tensile straining experiments inside SEM have shown linkage of particle–matrix interfacial microcracks at particle-clusters as fracture mechanism in as-cast or 4-pass mushy state rolled composites. In contrast, crack propagation through matrix is favored in the 2-pass mushy state rolled composite

  7. Modeling of macrosegregation caused by volumetric deformation in a coherent mushy zone

    Science.gov (United States)

    Nicolli, Lilia C.; Mo, Asbjørn; M'hamdi, Mohammed

    2005-02-01

    A two-phase volume-averaged continuum model is presented that quantifies macrosegregation formation during solidification of metallic alloys caused by deformation of the dendritic network and associated melt flow in the coherent part of the mushy zone. Also, the macrosegregation formation associated with the solidification shrinkage (inverse segregation) is taken into account. Based on experimental evidence established elsewhere, volumetric viscoplastic deformation (densification/dilatation) of the coherent dendritic network is included in the model. While the thermomechanical model previously outlined (M. M’Hamdi, A. Mo, and C.L. Martin: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2081-93) has been used to calculate the temperature and velocity fields associated with the thermally induced deformations and shrinkage driven melt flow, the solute conservation equation including both the liquid and a solid volume-averaged velocity is solved in the present study. In modeling examples, the macrosegregation formation caused by mechanically imposed as well as by thermally induced deformations has been calculated. The modeling results for an Al-4 wt pct Cu alloy indicate that even quite small volumetric strains (≈2 pct), which can be associated with thermally induced deformations, can lead to a macroscopic composition variation in the final casting comparable to that resulting from the solidification shrinkage induced melt flow. These results can be explained by the relatively large volumetric viscoplastic deformation in the coherent mush resulting from the applied constitutive model, as well as the relatively large difference in composition for the studied Al-Cu alloy in the solid and liquid phases at high solid fractions at which the deformation takes place.

  8. Working memory and new learning following pediatric traumatic brain injury.

    Science.gov (United States)

    Mandalis, Anna; Kinsella, Glynda; Ong, Ben; Anderson, Vicki

    2007-01-01

    Working memory (WM), the ability to monitor, process and maintain task relevant information on-line to respond to immediate environmental demands, is controlled by frontal systems (D'Esposito et al., 2006), which are particularly vulnerable to damage from a traumatic brain injury (TBI). This study employed the adult-based Working Memory model of Baddeley and Hitch (1974) to examine the relationship between working memory function and new verbal learning in children with TBI. A cross-sectional sample of 36 school-aged children with a moderate to severe TBI was compared to age-matched healthy Controls on a series of tasks assessing working memory subsystems: the Phonological Loop (PL) and Central Executive (CE). The TBI group performed significantly more poorly than Controls on the PL measure and the majority of CE tasks. On new learning tasks, the TBI group consistently produced fewer words than Controls across the learning and delayed recall phases. Results revealed impaired PL function related to poor encoding and acquisition on a new verbal learning task in the TBI group. CE retrieval deficits in the TBI group contributed to general memory dysfunction in acquisition, retrieval and recognition memory. These results suggest that the nature of learning and memory deficits in children with TBI is related to working memory impairment.

  9. Volunteer work and psychological health following traumatic brain injury.

    Science.gov (United States)

    Ouellet, Marie-Christine; Morin, Charles M; Lavoie, André

    2009-01-01

    To compare the long-term psychological functioning of 3 groups of survivors of traumatic brain injury (TBI): (1) those who report being regularly active either by working or studying, (2) those who are not competitively employed but are active volunteers, and (3) those who report neither working, studying, nor volunteering. PARTICIPANTS AND PROCEDURE: Two hundred eight participants aged 16 years and older with minor to severe TBI were classified as (1) Working/Studying (N = 78), (2) Volunteering (N = 54), or (3) Nonactive (N = 76). Measures of psychological distress (anxiety, depression, cognitive disturbance, irritability/anger), fatigue, sleep disturbance, and perception of pain. Survivors of TBI who report being active through work, studies, or volunteering demonstrate a significantly higher level of psychological adjustment than persons who report no activity. Even among participants who are unable to return to work and are declared on long-term disability leave, those who report engaging in volunteer activities present significantly better psychological functioning than participants who are nonactive. Volunteering is associated with enhanced psychological well-being and should be encouraged following TBI.

  10. The working memory networks of the human brain.

    Science.gov (United States)

    Linden, David E J

    2007-06-01

    Working memory and short-term memory are closely related in their cognitive architecture, capacity limitations, and functional neuroanatomy, which only partly overlap with those of long-term memory. The author reviews the functional neuroimaging literature on the commonalities and differences between working memory and short-term memory and the interplay of areas with modality-specific and supramodal representations in the brain networks supporting these fundamental cognitive processes. Sensory stores in the visual, auditory, and somatosensory cortex play a role in short-term memory, but supramodal parietal and frontal areas are often recruited as well. Classical working memory operations such as manipulation, protection against interference, or updating almost certainly require at least some degree of prefrontal support, but many pure maintenance tasks involve these areas as well. Although it seems that activity shifts from more posterior regions during encoding to more anterior regions during delay, some studies reported sustained delay activity in sensory areas as well. This spatiotemporal complexity of the short-term memory/working memory networks is mirrored in the activation patterns that may explain capacity constraints, which, although most prominent in the parietal cortex, seem to be pervasive across sensory and premotor areas. Finally, the author highlights open questions for cognitive neuroscience research of working memory, such as that of the mechanisms for integrating different types of content (binding) or those providing the link to long-term memory.

  11. Atypical spatiotemporal signatures of working memory brain processes in autism.

    Science.gov (United States)

    Urbain, C M; Pang, E W; Taylor, M J

    2015-08-11

    Working memory (WM) impairments may contribute to the profound behavioural manifestations in children with autism spectrum disorder (ASD). However, previous behavioural results are discrepant as are the few functional magnetic resonance imaging (fMRI) results collected in adults and adolescents with ASD. Here we investigate the precise temporal dynamics of WM-related brain activity using magnetoencephalography (MEG) in 20 children with ASD and matched controls during an n-back WM task across different load levels (1-back vs 2-back). Although behavioural results were similar between ASD and typically developing (TD) children, the between-group comparison performed on functional brain activity showed atypical WM-related brain processes in children with ASD compared with TD children. These atypical responses were observed in the ASD group from 200 to 600 ms post stimulus in both the low- (1-back) and high- (2-back) memory load conditions. During the 1-back condition, children with ASD showed reduced WM-related activations in the right hippocampus and the cingulate gyrus compared with TD children who showed more activation in the left dorso-lateral prefrontal cortex and the insulae. In the 2-back condition, children with ASD showed less activity in the left insula and midcingulate gyrus and more activity in the left precuneus than TD children. In addition, reduced activity in the anterior cingulate cortex was correlated with symptom severity in children with ASD. Thus, this MEG study identified the precise timing and sources of atypical WM-related activity in frontal, temporal and parietal regions in children with ASD. The potential impacts of such atypicalities on social deficits of autism are discussed.

  12. Associative memory cells and their working principle in the brain

    Science.gov (United States)

    Wang, Jin-Hui; Cui, Shan

    2018-01-01

    The acquisition, integration and storage of exogenous associated signals are termed as associative learning and memory. The consequences and processes of associative thinking and logical reasoning based on these stored exogenous signals can be memorized as endogenous signals, which are essential for decision making, intention, and planning. Associative memory cells recruited in these primary and secondary associative memories are presumably the foundation for the brain to fulfill cognition events and emotional reactions in life, though the plasticity of synaptic connectivity and neuronal activity has been believed to be involved in learning and memory. Current reports indicate that associative memory cells are recruited by their mutual synapse innervations among co-activated brain regions to fulfill the integration, storage and retrieval of associated signals. The activation of these associative memory cells initiates information recall in the mind, and the successful activation of their downstream neurons endorses memory presentations through behaviors and emotion reactions. In this review, we aim to draw a comprehensive diagram for associative memory cells, working principle and modulation, as well as propose their roles in cognition, emotion and behaviors. PMID:29487741

  13. Structure of a mushy layer under hypergravity with implications for Earth's inner core

    Science.gov (United States)

    Huguet, Ludovic; Alboussière, Thierry; Bergman, Michael I.; Deguen, Renaud; Labrosse, Stéphane; Lesœur, Germain

    2016-03-01

    Crystallization experiments in the dendritic regime have been carried out in hypergravity conditions (from 1 to 1300 g) from an ammonium chloride solution (NH4Cl and H2O). A commercial centrifuge was equipped with a slip ring so that electric power (needed for a Peltier device and a heating element), temperature and ultrasonic signals could be transmitted between the experimental setup and the laboratory. Ultrasound measurements (2-6 MHz) were used to detect the position of the front of the mushy zone and to determine attenuation in the mush. Temperature measurements were used to control a Peltier element extracting heat from the bottom of the setup and to monitor the evolution of crystallization in the mush and in the liquid. A significant increase of solid fraction and attenuation in the mush is observed as gravity is increased. Kinetic undercooling is significant in our experiments and has been included in a macroscopic mush model. The other ingredients of the model are conservation of energy and chemical species, along with heat/species transfer between the mush and the liquid phase: boundary-layer exchanges at the top of the mush and bulk convection within the mush (formation of chimneys). The outputs of the model compare well with our experiments. We have then run the model in a range of parameters suitable for the Earth's inner core. This has shown the role of bulk mush convection for the inner core and the reason why a solid fraction very close to unity should be expected. We have also run melting experiments: after crystallization of a mush, the liquid has been heated from above until the mush started to melt, while the bottom cold temperature was maintained. These melting experiments were motivated by the possible local melting at the inner core boundary that has been invoked to explain the formation of the anomalously slow F-layer at the bottom of the outer core or inner core hemispherical asymmetry. Oddly, the consequences of melting are an increase in

  14. Modeling Brain Responses in an Arithmetic Working Memory Task

    Science.gov (United States)

    Hamid, Aini Ismafairus Abd; Yusoff, Ahmad Nazlim; Mukari, Siti Zamratol-Mai Sarah; Mohamad, Mazlyfarina; Manan, Hanani Abdul; Hamid, Khairiah Abdul

    2010-07-01

    Functional magnetic resonance imaging (fMRI) was used to investigate brain responses due to arithmetic working memory. Nine healthy young male subjects were given simple addition and subtraction instructions in noise and in quiet. The general linear model (GLM) and random field theory (RFT) were implemented in modelling the activation. The results showed that addition and subtraction evoked bilateral activation in Heschl's gyrus (HG), superior temporal gyrus (STG), inferior frontal gyrus (IFG), supramarginal gyrus (SG) and precentral gyrus (PCG). The HG, STG, SG and PCG activate higher number of voxels in noise as compared to in quiet for addition and subtraction except for IFG that showed otherwise. The percentage of signal change (PSC) in all areas is higher in quiet as compared to in noise. Surprisingly addition (not subtraction) exhibits stronger activation.

  15. Work Productivity Loss After Mild Traumatic Brain Injury.

    Science.gov (United States)

    Silverberg, Noah D; Panenka, William J; Iverson, Grant L

    2018-02-01

    To examine the completeness of return to work (RTW) and the degree of productivity loss in individuals who do achieve a complete RTW after mild traumatic brain injury (MTBI). Multisite prospective cohort. Outpatient concussion clinics. Patients (N=79; mean age, 41.5y; 55.7% women) who sustained an MTBI and were employed at the time of the injury. Participants were enrolled at their first clinic visit and assessed by telephone 6 to 8 months postinjury. Not applicable. Structured interview of RTW status, British Columbia Postconcussion Symptom Inventory (BC-PSI), Lam Employment Absence and Productivity Scale (LEAPS), Mini International Neuropsychiatric Interview, and brief pain questionnaire. Participants who endorsed symptoms from ≥3 categories with at least moderate severity on the BC-PSI were considered to meet International Classification of Diseases, 10th Revision criteria for postconcussional syndrome. RTW status was classified as complete if participants returned to their preinjury job with the same hours and responsibilities or to a new job that was at least as demanding. Of the 46 patients (58.2%) who achieved an RTW, 33 (71.7%) had a complete RTW. Participants with complete RTW had high rates of postconcussional syndrome (44.5%) and comorbid depression (18.2%), anxiety disorder (24.2%), and bodily pain (30.3%). They also reported productivity loss on the LEAPS, such as "getting less work done" (60.6%) and "making more mistakes" (42.4%). In a regression model, productivity loss was predicted by the presence of postconcussional syndrome and a comorbid psychiatric condition, but not bodily pain. Even in patients who RTW after MTBI, detailed assessment revealed underemployment and productivity loss associated with residual symptoms and psychiatric complications. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Effect of mushy state rolling on age-hardening and tensile behavior of Al-4.5Cu alloy and in situ Al-4.5Cu-5TiB2 composite

    International Nuclear Information System (INIS)

    Siddhalingeshwar, I.G.; Herbert, M.A.; Chakraborty, M.; Mitra, R.

    2011-01-01

    Research highlights: → Mushy state rolling of composites reduces peak-aging times to ∼7.5-10% of that of as-cast alloy. → Uniform Cu atom distribution achieved in matrices by mushy state rolling enhances aging kinetics. → Uniform precipitate distribution obtained by mushy state rolling leads to higher microhardness. → Peak-age tensile strength and strain hardening rates are found to increase on mushy state rolling. - Abstract: The effect of mushy state rolling on aging kinetics of stir-cast Al-4.5Cu alloy and in situ Al-4.5Cu-5TiB 2 composite and their tensile behavior in solution-treated (495 deg. C) or differently aged (170 deg. C) conditions, has been investigated. As-cast or pre-hot rolled alloy and composite samples were subjected to single or multiple mushy state roll passes to 5% thickness reduction at temperatures for 20% liquid content. Peak-aging times of mushy state rolled composite matrices have been found as ∼7.5-10% of that of as-cast alloy. Such enhancement in aging kinetics is attributed to homogeneity in Cu atom distribution as well as increase in matrix dislocation density due to thermal expansion coefficient mismatch between Al and TiB 2 , matrix grain refinement and particle redistribution, achieved by mushy state rolling. Uniform precipitate distribution in mushy state rolled composite matrices leads to greater peak-age microhardness with higher yield and ultimate tensile strengths than those in as-cast alloy and composite.

  17. Brain-Based Teaching: Does It Really Work?

    Science.gov (United States)

    Calhoun, Christie F.

    2012-01-01

    In an effort to keep up with today's advanced students, methods and strategies used in modern classrooms are ever-changing. In this manuscript, one method is discussed. Whole brain teaching has recently come to the forefront of education research. How does the brain affect learning? How can teachers ensure that students are actively engaged in the…

  18. An integrated brain-behavior model for working memory.

    Science.gov (United States)

    Moser, D A; Doucet, G E; Ing, A; Dima, D; Schumann, G; Bilder, R M; Frangou, S

    2017-12-05

    Working memory (WM) is a central construct in cognitive neuroscience because it comprises mechanisms of active information maintenance and cognitive control that underpin most complex cognitive behavior. Individual variation in WM has been associated with multiple behavioral and health features including demographic characteristics, cognitive and physical traits and lifestyle choices. In this context, we used sparse canonical correlation analyses (sCCAs) to determine the covariation between brain imaging metrics of WM-network activation and connectivity and nonimaging measures relating to sensorimotor processing, affective and nonaffective cognition, mental health and personality, physical health and lifestyle choices derived from 823 healthy participants derived from the Human Connectome Project. We conducted sCCAs at two levels: a global level, testing the overall association between the entire imaging and behavioral-health data sets; and a modular level, testing associations between subsets of the two data sets. The behavioral-health and neuroimaging data sets showed significant interdependency. Variables with positive correlation to the neuroimaging variate represented higher physical endurance and fluid intelligence as well as better function in multiple higher-order cognitive domains. Negatively correlated variables represented indicators of suboptimal cardiovascular and metabolic control and lifestyle choices such as alcohol and nicotine use. These results underscore the importance of accounting for behavioral-health factors in neuroimaging studies of WM and provide a neuroscience-informed framework for personalized and public health interventions to promote and maintain the integrity of the WM network.Molecular Psychiatry advance online publication, 5 December 2017; doi:10.1038/mp.2017.247.

  19. Brain-Based Learning and Educational Neuroscience: Boundary Work

    NARCIS (Netherlands)

    Edelenbosch, R.M.; Kupper, J.F.H.; Krabbendam, A.C.; Broerse, J.E.W.

    2015-01-01

    Much attention has been given to "bridging the gap" between neuroscience and educational practice. In order to gain better understanding of the nature of this gap and of possibilities to enable the linking process, we have taken a boundary perspective on these two fields and the brain-based learning

  20. Brain-Based Learning and Educational Neuroscience: Boundary Work

    Science.gov (United States)

    Edelenbosch, Rosanne; Kupper, Frank; Krabbendam, Lydia; Broerse, Jacqueline E. W.

    2015-01-01

    Much attention has been given to "bridging the gap" between neuroscience and educational practice. In order to gain better understanding of the nature of this gap and of possibilities to enable the linking process, we have taken a boundary perspective on these two fields and the brain-based learning approach, focusing on…

  1. Measuring dynamic process of working memory training with functional brain networks

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2015-12-01

    Full Text Available In this paper, we proposed the functional brain networks and graphic theory method to measure the effect of working memory training on the neural activities. 12 subjects were recruited in this study, and they did the same working memory task before they had been trained and after training. We architected functional brain networks based on EEG coherence and calculated properties of brain networks to measure the neural co-activities and the working memory level of subjects. As the result, the internal connections in frontal region decreased after working memory training, but the connection between frontal region and top region increased. And the more small-world feature was observed after training. The features observed above were in alpha (8-13 Hz and beta (13-30 Hz bands. The functional brain networks based on EEG coherence proposed in this paper can be used as the indicator of working memory level.

  2. The Gift and the Trap: Working the "Teen Brain" into Our Concept of Youth

    Science.gov (United States)

    Sercombe, Howard

    2010-01-01

    Progressive developments in scanning technologies over the last decade have led to a surge of new research into the structure and function of the brain and into differences between the brains of teenagers and other adults. This work has not been free of controversy, notably around the question of deficits in the capacity of young people concerning…

  3. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance?

    Science.gov (United States)

    Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten

    2015-03-01

    Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing

  4. Traumatic brain injuries from work accidents: a retrospective study.

    Science.gov (United States)

    Salem, A M O; Jaumally, B A; Bayanzay, K; Khoury, K; Torkaman, A

    2013-07-01

    The United Arab Emirates is a rapidly developing country with recent expansion in construction and manufacturing. To investigate the occurrence and outcomes following occupational traumatic brain injury (TBI) requiring hospital admission. Records for all TBI cases admitted to an Abu Dhabi hospital between 2005 and 2009 were reviewed. Data on mechanisms of occupational injuries, Glasgow Coma Scale (GCS) on admission and Glasgow Outcome Scale (GOS) on follow-up, were analysed. Of 581 TBI cases reviewed, 56 (10%) cases were reported as occupational by either the patient or the informant accompanying the patient. All cases were male migrants, and 63% were aged 25-44. Falls accounted for 63% of cases, falling objects 34% and motor vehicle collisions 4%. Median GCS score was 13 for all cases. Median hospital stay was 7.5 days. Intensive care unit admission data were available in 47 cases, of which 34% (16) were admitted with a median stay of 5 days. GOS data were available in 95% (53) of cases, with good recovery in 81% cases, moderate-to-severe disability in 11% of cases and death in 8% (4) cases. Occupational TBI requiring hospitalization is most frequently due to falls and falling objects, with potentially grave consequences. This study further highlights the urgent need to implement preventative measures to improve construction worker safety.

  5. Brain and effort: brain activation and effort-related working memory in healthy participants and patients with working memory deficits

    Directory of Open Access Journals (Sweden)

    Maria eEngstrom

    2013-04-01

    Full Text Available Despite the interest in the neuroimaging of working memory, little is still known about the neurobiology of complex working memory in tasks that require simultaneous manipulation and storage of information. In addition to the central executive network, we assumed that the recently described salience network (involving the anterior insular cortex and the anterior cingulate cortex might be of particular importance to working memory tasks that require complex, effortful processing. Method: Healthy participants (n=26 and participants suffering from working memory problems related to the Kleine-Levin syndrome (a specific form of periodic idiopathic hypersomnia; n=18 participated in the study. Participants were further divided into a high and low capacity group, according to performance on a working memory task (listening span. In a functional Magnetic Resonance Imaging (fMRI study, participants were administered the reading span complex working memory task tapping cognitive effort. Principal findings: The fMRI-derived blood oxygen level dependent (BOLD signal was modulated by 1 effort in both the central executive and the salience network and 2 capacity in the salience network in that high performers evidenced a weaker BOLD signal than low performers. In the salience network there was a dichotomy between the left and the right hemisphere; the right hemisphere elicited a steeper increase of the BOLD signal as a function of increasing effort. There was also a stronger functional connectivity within the central executive network because of increased task difficulty. Conclusion: The ability to allocate cognitive effort in complex working memory is contingent upon focused resources in the executive and in particular the salience network. Individual capacity during the complex working memory task is related to activity in the salience (but not the executive network so that high-capacity participants evidence a lower signal and possibly hence a larger

  6. Development of Spatial and Verbal Working Memory Capacity in the Human Brain

    Science.gov (United States)

    Thomason, Moriah E.; Race, Elizabeth; Burrows, Brittany; Whitfield-Gabrieli, Susan; Glover, Gary H.; Gabrieli, John D. E.

    2009-01-01

    A core aspect of working memory (WM) is the capacity to maintain goal-relevant information in mind, but little is known about how this capacity develops in the human brain. We compared brain activation, via fMRI, between children (ages 7-12 years) and adults (ages 20-29 years) performing tests of verbal and spatial WM with varying amounts (loads)…

  7. Functional brain activation associated with working memory training and transfer.

    Science.gov (United States)

    Clark, Cameron M; Lawlor-Savage, Linette; Goghari, Vina M

    2017-09-15

    While behavioural trials of working memory (WM) training have received much attention in recent years, a lesser explored parallel approach is functional neuroimaging. A small literature has suggested a complex time course for functional activation pattern changes following WM training (i.e. not simply increasing or decreasing due to training); however, no study to date has examined such neuroplastic effects in both the training task (dual n-back) and the fluid intelligence transfer task to which the training is purported to transfer (Raven's Matrices). This study investigated neural correlates of WM training in healthy young adults randomized to six weeks of WM training, or an active control condition (processing speed training) with a pre- and post-training fMRI design. Results indicated significant reductions in activation for the WM trained group in key WM-task related areas for trained WM tasks after training compared to the processing speed active control group. The same pattern of training related decreases in activation for the WM trained group was not observed for the transfer task, which is consistent with null results for all cognitive outcomes of the present trial. The observed pattern of results suggests that repetitive practice with a complex task does indeed lead to neuroplastic processes that very likely represent the reduced demand for attentional control while sub-components of the task become more routinized with practice. We suggest that future research investigate neural correlates of WM training in populations for which WM itself is impaired and/or behavioural trials of WM training have returned more promising results. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Phase selection in the mushy-zone: LODESTARS and ELFSTONE projects

    International Nuclear Information System (INIS)

    Matson, D M; Hyers, R W; Volkmann, T; Fecht, H-J

    2011-01-01

    In a collaboration sponsored by ESA and NASA, international partners have developed a work plan to successfully address key issues relating to understanding the role of convection on alloy phase selection for commercially important structural alloys using the MSL-EML facility aboard the International Space Station. The approach is two-pronged. First, ground and space-based experiments will develop a baseline database to anchor subsequent modelling predictions. Tasks include sample preparation and verification, ground-based transformation evaluation, space-based experiments, and thermophysical property evaluation to support modelling activities. Second, modelling and theoretical analysis tasks will lead to a new understanding of the role of convection in phase selection for this class of materials. These models will allow prediction and control of microstructural evolution during solidification processing. Tasks include modelling of macroconvection induced by the EM levitation field, modelling of microconvection within the dendrite array, nucleation modelling, and modelling of the transformation kinetics specific to each alloy system. This paper outlines how two NASA-sponsored projects relate to the goals of the international collaboration.

  9. Phase selection in the mushy-zone: LODESTARS and ELFSTONE projects

    Science.gov (United States)

    Matson, D. M.; Hyers, R. W.; Volkmann, T.; Fecht, H.-J.

    2011-12-01

    In a collaboration sponsored by ESA and NASA, international partners have developed a work plan to successfully address key issues relating to understanding the role of convection on alloy phase selection for commercially important structural alloys using the MSL-EML facility aboard the International Space Station. The approach is two-pronged. First, ground and space-based experiments will develop a baseline database to anchor subsequent modelling predictions. Tasks include sample preparation and verification, ground-based transformation evaluation, space-based experiments, and thermophysical property evaluation to support modelling activities. Second, modelling and theoretical analysis tasks will lead to a new understanding of the role of convection in phase selection for this class of materials. These models will allow prediction and control of microstructural evolution during solidification processing. Tasks include modelling of macroconvection induced by the EM levitation field, modelling of microconvection within the dendrite array, nucleation modelling, and modelling of the transformation kinetics specific to each alloy system. This paper outlines how two NASA-sponsored projects relate to the goals of the international collaboration.

  10. Dynamic Connectivity between Brain Networks Supports Working Memory: Relationships to Dopamine Release and Schizophrenia

    Science.gov (United States)

    Van Snellenberg, Jared X.; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa

    2016-01-01

    Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during an n-back working-memory task) and positron emission tomography using the radiotracer [11C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. SIGNIFICANCE

  11. Dynamic Connectivity between Brain Networks Supports Working Memory: Relationships to Dopamine Release and Schizophrenia.

    Science.gov (United States)

    Cassidy, Clifford M; Van Snellenberg, Jared X; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa; Horga, Guillermo

    2016-04-13

    Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during ann-back working-memory task) and positron emission tomography using the radiotracer [(11)C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. It is unclear

  12. Pivotal role of anterior cingulate cortex in working memory after traumatic brain injury in youth

    Directory of Open Access Journals (Sweden)

    Fabienne eCazalis

    2011-01-01

    Full Text Available In this fMRI study, the functions of the Anterior Cingulate Cortex were studied in a group of adolescents who had sustained a moderate to severe Traumatic Brain Injury. A spatial working memory task with varying working memory loads, representing experimental conditions of increasing difficulty, was administered.In a cross-sectional comparison between the patients and a matched control group, patients performed worse than Controls, showing longer reaction times and lower response accuracy on the spatial working memory task. Brain imaging findings suggest a possible double-dissociation: activity of the Anterior Cingulate Cortex in the Traumatic Brain Injury group, but not in the Control group, was associated with task difficulty; conversely, activity of the left Sensorimotor Cortex in the Control group, but not in the TBI group, was correlated with task difficulty.In addition to the main cross-sectional study, a longitudinal study of a group of adolescent patients with moderate to severe Traumatic Brain Injury was done using fMRI and the same spatial working memory task. The patient group was studied at two time points: one time point during the post-acute phase and one time point 12 months later, during the chronic phase. Results indicated that patients' behavioral performance improved over time, suggesting cognitive recovery. Brain imaging findings suggest that, over this 12 month period, patients recruited less of the Anterior Cingulate Cortex and more of the left Sensorimotor Cortex in response to increasing task difficulty.The role of Anterior Cingulate Cortex in executive functions following a moderate to severe brain injury in adolescence is discussed within the context of conflicting models of the Anterior Cingulate Cortex functions in the existing literature.

  13. Changes in brain network efficiency and working memory performance in aging.

    Science.gov (United States)

    Stanley, Matthew L; Simpson, Sean L; Dagenbach, Dale; Lyday, Robert G; Burdette, Jonathan H; Laurienti, Paul J

    2015-01-01

    Working memory is a complex psychological construct referring to the temporary storage and active processing of information. We used functional connectivity brain network metrics quantifying local and global efficiency of information transfer for predicting individual variability in working memory performance on an n-back task in both young (n = 14) and older (n = 15) adults. Individual differences in both local and global efficiency during the working memory task were significant predictors of working memory performance in addition to age (and an interaction between age and global efficiency). Decreases in local efficiency during the working memory task were associated with better working memory performance in both age cohorts. In contrast, increases in global efficiency were associated with much better working performance for young participants; however, increases in global efficiency were associated with a slight decrease in working memory performance for older participants. Individual differences in local and global efficiency during resting-state sessions were not significant predictors of working memory performance. Significant group whole-brain functional network decreases in local efficiency also were observed during the working memory task compared to rest, whereas no significant differences were observed in network global efficiency. These results are discussed in relation to recently developed models of age-related differences in working memory.

  14. Effective return-to-work interventions after acquired brain injury: A systematic review

    NARCIS (Netherlands)

    Donker-Cools, Birgit H. P. M.; Daams, Joost G.; Wind, Haije; Frings-Dresen, Monique H. W.

    2016-01-01

    To gather knowledge about effective return-to-work (RTW) interventions for patients with acquired brain injury (ABI). A database search was performed in PubMed, EMBASE, PsycINFO, CINAHL and the Cochrane Library using keywords and Medical Subject Headings. Studies were included if they met inclusion

  15. Individual Differences in Working Memory, Nonverbal IQ, and Mathematics Achievement and Brain Mechanisms Associated with Symbolic and Nonsymbolic Number Processing

    Science.gov (United States)

    Gullick, Margaret M.; Sprute, Lisa A.; Temple, Elise

    2011-01-01

    Individual differences in mathematics performance may stem from domain-general factors like working memory and intelligence. Parietal and frontal brain areas have been implicated in number processing, but the influence of such cognitive factors on brain activity during mathematics processing is not known. The relationship between brain mechanisms…

  16. Interaction Effects of BDNF and COMT Genes on Resting-State Brain Activity and Working Memory

    Science.gov (United States)

    Chen, Wen; Chen, Chunhui; Xia, Mingrui; Wu, Karen; Chen, Chuansheng; He, Qinghua; Xue, Gui; Wang, Wenjing; He, Yong; Dong, Qi

    2016-01-01

    Catechol-O-methyltransferase (COMT) and brain-derived neurotrophic factor (BDNF) genes have been found to interactively influence working memory (WM) as well as brain activation during WM tasks. However, whether the two genes have interactive effects on resting-state activities of the brain and whether these spontaneous activations correlate with WM are still unknown. This study included behavioral data from WM tasks and genetic data (COMT rs4680 and BDNF Val66Met) from 417 healthy Chinese adults and resting-state fMRI data from 298 of them. Significant interactive effects of BDNF and COMT were found for WM performance as well as for resting-state regional homogeneity (ReHo) in WM-related brain areas, including the left medial frontal gyrus (lMeFG), left superior frontal gyrus (lSFG), right superior and medial frontal gyrus (rSMFG), right medial orbitofrontal gyrus (rMOFG), right middle frontal gyrus (rMFG), precuneus, bilateral superior temporal gyrus, left superior occipital gyrus, right middle occipital gyrus, and right inferior parietal lobule. Simple effects analyses showed that compared to other genotypes, subjects with COMT-VV/BDNF-VV had higher WM and lower ReHo in all five frontal brain areas. The results supported the hypothesis that COMT and BDNF polymorphisms influence WM performance and spontaneous brain activity (i.e., ReHo). PMID:27853425

  17. Improving working memory performance in brain-injured patients using hypnotic suggestion

    DEFF Research Database (Denmark)

    Lindeløv, Jonas K.; Overgaard, Rikke; Overgaard, Morten

    2017-01-01

    be effectively restored by suggesting to hypnotized patients that they have regained their pre-injury level of working memory functioning. Following four 1-h sessions, 27 patients had a medium-sized improvement relative to 22 active controls (Bayes factors of 342 and 37.5 on the two aggregate outcome measures...... group was crossed over to the working memory suggestion and showed superior improvement. By the end of the study, both groups reached a performance level at or above the healthy population mean with standardized mean differences between 1.55 and 2.03 relative to the passive control group. We conclude...... that, if framed correctly, hypnotic suggestion can effectively improve working memory following acquired brain injury. The speed and consistency with which this improvement occurred, indicate that there may be a residual capacity for normal information processing in the injured brain....

  18. Adolescent binge drinking linked to abnormal spatial working memory brain activation: differential gender effects.

    Science.gov (United States)

    Squeglia, Lindsay M; Schweinsburg, Alecia Dager; Pulido, Carmen; Tapert, Susan F

    2011-10-01

    Binge drinking is prevalent during adolescence, and its effect on neurocognitive development is of concern. In adult and adolescent populations, heavy substance use has been associated with decrements in cognitive functioning, particularly on tasks of spatial working memory (SWM). Characterizing the gender-specific influences of heavy episodic drinking on SWM may help elucidate the early functional consequences of drinking on adolescent brain functioning. Forty binge drinkers (13 females, 27 males) and 55 controls (24 females, 31 males), aged 16 to 19 years, completed neuropsychological testing, substance use interviews, and an SWM task during functional magnetic resonance imaging. Significant binge drinking status × gender interactions were found (p working memory performances (p performance (p gender-specific differences in frontal, temporal, and cerebellar brain activation during an SWM task, which in turn relate to cognitive performance. Activation correlates with neuropsychological performance, strengthening the argument that blood oxygen level-dependent activation is affected by alcohol use and is an important indicator of behavioral functioning. Females may be more vulnerable to the neurotoxic effects of heavy alcohol use during adolescence, while males may be more resilient to the deleterious effects of binge drinking. Future longitudinal research will examine the significance of SWM brain activation as an early neurocognitive marker of alcohol impact to the brain on future behaviors, such as driving safety, academic performance, and neuropsychological performance. Copyright © 2011 by the Research Society on Alcoholism.

  19. Interest of workplace support for returning to work after a traumatic brain injury: a retrospective study.

    Science.gov (United States)

    Bonneterre, V; Pérennou, D; Trovatello, V; Mignot, N; Segal, P; Balducci, F; Laloua, F; de Gaudemaris, R

    2013-12-01

    To analyse usefulness of the SPASE programme, a coordinated facility programme to assist traumatic brain injury (TBI) persons in returning to work and retaining their job in the ordinary work environment. A retrospective study including 100 subjects aged over 18 who had suffered traumatic brain injury (GOS 1 or 2). The criterion for return to work (RTW) success was the ability to return to the job he/she had before the accident or to a new professional activity. Factors associated with RTW success were at short-term (2-3 years): the presence of significant workplace support OR=15.1 [3.7-61.7], the presence of physical disabilities OR=0.32 [0.12-0.87] or serious traumatic brain injury OR=0.22 [0.07-0.66]. At medium-term (over 3 years) these factors were: significant workplace support OR=3.9 [1.3-11.3] and presence of mental illness OR=0.15 [0.03-0.7]. This study suggests that a case coordination vocational programme may facilitate the return and maintain to work of TBI persons. It reveals that the workplace support is a key factor for job retention in the medium-term. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Brain training game boosts executive functions, working memory and processing speed in the young adults: a randomized controlled trial.

    Science.gov (United States)

    Nouchi, Rui; Taki, Yasuyuki; Takeuchi, Hikaru; Hashizume, Hiroshi; Nozawa, Takayuki; Kambara, Toshimune; Sekiguchi, Atsushi; Miyauchi, Carlos Makoto; Kotozaki, Yuka; Nouchi, Haruka; Kawashima, Ryuta

    2013-01-01

    Do brain training games work? The beneficial effects of brain training games are expected to transfer to other cognitive functions. Yet in all honesty, beneficial transfer effects of the commercial brain training games in young adults have little scientific basis. Here we investigated the impact of the brain training game (Brain Age) on a wide range of cognitive functions in young adults. We conducted a double-blind (de facto masking) randomized controlled trial using a popular brain training game (Brain Age) and a popular puzzle game (Tetris). Thirty-two volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris). Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into eight categories (fluid intelligence, executive function, working memory, short-term memory, attention, processing speed, visual ability, and reading ability). Our results showed that commercial brain training game improves executive functions, working memory, and processing speed in young adults. Moreover, the popular puzzle game can engender improvement attention and visuo-spatial ability compared to playing the brain training game. The present study showed the scientific evidence which the brain training game had the beneficial effects on cognitive functions (executive functions, working memory and processing speed) in the healthy young adults. Our results do not indicate that everyone should play brain training games. However, the commercial brain training game might be a simple and convenient means to improve some cognitive functions. We believe that our findings are highly relevant to applications in educational and clinical fields. UMIN Clinical Trial Registry 000005618.

  1. Brain training game boosts executive functions, working memory and processing speed in the young adults: a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Rui Nouchi

    Full Text Available BACKGROUND: Do brain training games work? The beneficial effects of brain training games are expected to transfer to other cognitive functions. Yet in all honesty, beneficial transfer effects of the commercial brain training games in young adults have little scientific basis. Here we investigated the impact of the brain training game (Brain Age on a wide range of cognitive functions in young adults. METHODS: We conducted a double-blind (de facto masking randomized controlled trial using a popular brain training game (Brain Age and a popular puzzle game (Tetris. Thirty-two volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris. Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into eight categories (fluid intelligence, executive function, working memory, short-term memory, attention, processing speed, visual ability, and reading ability. RESULTS AND DISCUSSION: Our results showed that commercial brain training game improves executive functions, working memory, and processing speed in young adults. Moreover, the popular puzzle game can engender improvement attention and visuo-spatial ability compared to playing the brain training game. The present study showed the scientific evidence which the brain training game had the beneficial effects on cognitive functions (executive functions, working memory and processing speed in the healthy young adults. CONCLUSIONS: Our results do not indicate that everyone should play brain training games. However, the commercial brain training game might be a simple and convenient means to improve some cognitive functions. We believe that our findings are highly relevant to applications in educational and clinical fields

  2. Increased Working Memory-Related Brain Activity in Middle-Aged Women with Cognitive Complaints

    OpenAIRE

    Dumas, Julie A.; Kutz, Amanda M.; McDonald, Brenna C.; R.Naylor, Magdalena; Pfaff, Ashley C.; Saykin, Andrew J.; Newhouse, Paul A.

    2012-01-01

    Individuals who report subjective cognitive complaints but perform normally on neuropsychological tests may be at increased risk for pathological cognitive aging. The current study examined the effects of the presence of subjective cognitive complaints on functional brain activity during a working memory task in a sample of middle-aged postmenopausal women. Twenty-three postmenopausal women aged 50–60 completed a cognitive complaint battery of questionnaires. Using 20% of items endorsed as th...

  3. Dynamical Origin of the Effective Storage Capacity in the Brain's Working Memory

    Science.gov (United States)

    Bick, Christian; Rabinovich, Mikhail I.

    2009-11-01

    The capacity of working memory (WM), a short-term buffer for information in the brain, is limited. We suggest a model for sequential WM that is based upon winnerless competition amongst representations of available informational items. Analytical results for the underlying mathematical model relate WM capacity and relative lateral inhibition in the corresponding neural network. This implies an upper bound for WM capacity, which is, under reasonable neurobiological assumptions, close to the “magical number seven.”

  4. Working memory and proverb comprehension in adolescents with traumatic brain injury: a preliminary investigation.

    Science.gov (United States)

    Moran, Catherine A; Nippold, Marilyn A; Gillon, Gail T

    2006-04-01

    This study investigated the relationship between working memory and comprehension of low-familiarity proverbs in adolescents with traumatic brain injury (TBI). Ten adolescents, aged 12-21 years who had suffered a TBI prior to the age of 10 years and 10 individually age-matched peers with typical development participated in the study. The participants listened to short paragraphs containing a proverb and interpreted the meaning of the proverb using a forced-choice task. In addition, participants engaged in a task that evaluated working memory ability. Analysis revealed that individuals with TBI differed from their non-injured peers in their understanding of proverbs. In addition, working memory capacity influenced performance for all participants. The importance of considering working memory when evaluating figurative language comprehension in adolescents with TBI is highlighted. Implications for future research, particularly with regard to varying working memory and task demands, are considered.

  5. Conference: Brain-ways of Working Together, Friday 15 June at 11 am!

    CERN Multimedia

    Staff Association

    2018-01-01

    FRIDAY 15 JUNE AT 11 AM CERN Meyrin, Main Auditorium (500-1-001) Have you heard of Tapping into Collective Intelligence or Reinventing Organizations? They are new ways and philosophies of working together. This conference, led by Jorge Cendales, will discuss the neuro-scientific underpinnings of recent key findings in brain science and their implications on how we think today about effective work cultures for businesses, science and governments. (Conference in English) Find out more and sign up: https://indico.cern.ch/e/brainways

  6. Effects of overnight fasting on working memory-related brain network: an fMRI study.

    Science.gov (United States)

    Chechko, Natalia; Vocke, Sebastian; Habel, Ute; Toygar, Timur; Kuckartz, Lisa; Berthold-Losleben, Mark; Laoutidis, Zacharias G; Orfanos, Stelios; Wassenberg, Annette; Karges, Wölfram; Schneider, Frank; Kohn, Nils

    2015-03-01

    Glucose metabolism serves as the central source of energy for the human brain. Little is known about the effects of blood glucose level (BGL) on higher-order cognitive functions within a physiological range (e.g., after overnight fasting). In this randomized, placebo-controlled, double blind study, we assessed the impact of overnight fasting (14 h) on brain activation during a working memory task. We sought to mimic BGLs that occur naturally in healthy humans after overnight fasting. After standardized periods of food restriction, 40 (20 male) healthy participants were randomly assigned to receive either glucagon to balance the BGL or placebo (NaCl). A parametric fMRI paradigm, including 2-back and 0-back tasks, was used. Subclinically low BGL following overnight fasting was found to be linked to reduced involvement of the bilateral dorsal midline thalamus and the bilateral basal ganglia, suggesting high sensitivity of those regions to minimal changes in BGLs. Our results indicate that overnight fasting leads to physiologically low levels of glucose, impacting brain activation during working memory tasks even when there are no differences in cognitive performance. © 2014 Wiley Periodicals, Inc.

  7. Gender Influences on Return to Work After Mild Traumatic Brain Injury.

    Science.gov (United States)

    Stergiou-Kita, Mary; Mansfield, Elizabeth; Sokoloff, Sandra; Colantonio, Angela

    2016-02-01

    To examine the influence of gender on the return to work experience of workers who sustained a work-related mild traumatic brain injury (TBI). Qualitative study using in-depth telephone interviews. Community. Purposive sampling was used to recruit participants. Participants were adults (N=12; males, n=6, females, n=6) with a diagnosis of mild TBI sustained through a workplace injury. Not applicable. Not applicable. Our findings suggest that gender impacts return to work experiences in multiple ways. Occupational and breadwinner roles were significant for both men and women after work-related mild TBI. Women in this study were more proactive than men in seeking and requesting medical and rehabilitation services; however, the workplace culture may contribute to whether and how health issues are discussed. Among our participants, those who worked in supportive, nurturing (eg, feminine) workplaces reported more positive return to work (RTW) experiences than participants employed in traditionally masculine work environments. For all participants, employer and coworker relations were critical elements in RTW outcomes. The application of a gender analysis in this preliminary exploratory study revealed that gender is implicated in the RTW process on many levels for men and women alike. Further examination of the work reintegration processes that takes gender into account is necessary for the development of successful policy and practice for RTW after work-related MTBI. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Amphetamine modulates brain signal variability and working memory in younger and older adults.

    Science.gov (United States)

    Garrett, Douglas D; Nagel, Irene E; Preuschhof, Claudia; Burzynska, Agnieszka Z; Marchner, Janina; Wiegert, Steffen; Jungehülsing, Gerhard J; Nyberg, Lars; Villringer, Arno; Li, Shu-Chen; Heekeren, Hauke R; Bäckman, Lars; Lindenberger, Ulman

    2015-06-16

    Better-performing younger adults typically express greater brain signal variability relative to older, poorer performers. Mechanisms for age and performance-graded differences in brain dynamics have, however, not yet been uncovered. Given the age-related decline of the dopamine (DA) system in normal cognitive aging, DA neuromodulation is one plausible mechanism. Hence, agents that boost systemic DA [such as d-amphetamine (AMPH)] may help to restore deficient signal variability levels. Furthermore, despite the standard practice of counterbalancing drug session order (AMPH first vs. placebo first), it remains understudied how AMPH may interact with practice effects, possibly influencing whether DA up-regulation is functional. We examined the effects of AMPH on functional-MRI-based blood oxygen level-dependent (BOLD) signal variability (SD(BOLD)) in younger and older adults during a working memory task (letter n-back). Older adults expressed lower brain signal variability at placebo, but met or exceeded young adult SD(BOLD) levels in the presence of AMPH. Drug session order greatly moderated change-change relations between AMPH-driven SD(BOLD) and reaction time means (RT(mean)) and SDs (RT(SD)). Older adults who received AMPH in the first session tended to improve in RT(mean) and RT(SD) when SD(BOLD) was boosted on AMPH, whereas younger and older adults who received AMPH in the second session showed either a performance improvement when SD(BOLD) decreased (for RT(mean)) or no effect at all (for RT(SD)). The present findings support the hypothesis that age differences in brain signal variability reflect aging-induced changes in dopaminergic neuromodulation. The observed interactions among AMPH, age, and session order highlight the state- and practice-dependent neurochemical basis of human brain dynamics.

  9. Intrinsic resting-state activity predicts working memory brain activation and behavioral performance.

    Science.gov (United States)

    Zou, Qihong; Ross, Thomas J; Gu, Hong; Geng, Xiujuan; Zuo, Xi-Nian; Hong, L Elliot; Gao, Jia-Hong; Stein, Elliot A; Zang, Yu-Feng; Yang, Yihong

    2013-12-01

    Although resting-state brain activity has been demonstrated to correspond with task-evoked brain activation, the relationship between intrinsic and evoked brain activity has not been fully characterized. For example, it is unclear whether intrinsic activity can also predict task-evoked deactivation and whether the rest-task relationship is dependent on task load. In this study, we addressed these issues on 40 healthy control subjects using resting-state and task-driven [N-back working memory (WM) task] functional magnetic resonance imaging data collected in the same session. Using amplitude of low-frequency fluctuation (ALFF) as an index of intrinsic resting-state activity, we found that ALFF in the middle frontal gyrus and inferior/superior parietal lobules was positively correlated with WM task-evoked activation, while ALFF in the medial prefrontal cortex, posterior cingulate cortex, superior frontal gyrus, superior temporal gyrus, and fusiform gyrus was negatively correlated with WM task-evoked deactivation. Further, the relationship between the intrinsic resting-state activity and task-evoked activation in lateral/superior frontal gyri, inferior/superior parietal lobules, superior temporal gyrus, and midline regions was stronger at higher WM task loads. In addition, both resting-state activity and the task-evoked activation in the superior parietal lobule/precuneus were significantly correlated with the WM task behavioral performance, explaining similar portions of intersubject performance variance. Together, these findings suggest that intrinsic resting-state activity facilitates or is permissive of specific brain circuit engagement to perform a cognitive task, and that resting activity can predict subsequent task-evoked brain responses and behavioral performance. Copyright © 2012 Wiley Periodicals, Inc.

  10. Frontal brain activation during a working memory task: a time-domain fNIRS study

    Science.gov (United States)

    Molteni, E.; Baselli, G.; Bianchi, A. M.; Caffini, M.; Contini, D.; Spinelli, L.; Torricelli, A.; Cerutti, S.; Cubeddu, R.

    2009-02-01

    We evaluated frontal brain activation during a working memory task with graded levels of difficulty in a group of 19 healthy subjects, by means of time-resolved fNIRS technique. Brain activation was computed, and was then separated into a "block-related" and a "tonic" components. Load-related increases of blood oxygenation were studied for the four different levels of task difficulty. Generalized Linear Models were applied to the data in order to explore the metabolic processes occurring during the mental effort and, possibly, their involvement in short term memorization. Results attest the presence of a persistent attentional-related metabolic activity, superimposed to a task-related mnemonic contribution. Moreover, a systemic component probably deriving from the extra-cerebral capillary bed was detected.

  11. Increased working memory-related brain activity in middle-aged women with cognitive complaints.

    Science.gov (United States)

    Dumas, Julie A; Kutz, Amanda M; McDonald, Brenna C; Naylor, Magdalena R; Pfaff, Ashley C; Saykin, Andrew J; Newhouse, Paul A

    2013-04-01

    Individuals who report subjective cognitive complaints but perform normally on neuropsychological tests might be at increased risk for pathological cognitive aging. The current study examined the effects of the presence of subjective cognitive complaints on functional brain activity during a working memory task in a sample of middle-aged postmenopausal women. Twenty-three postmenopausal women aged 50-60 completed a cognitive complaint battery of questionnaires. Using 20% of items endorsed as the threshold, 12 women were categorized as cognitive complainers (CC) and 11 were noncomplainers (NC). All subjects then took part in a functional magnetic resonance imaging scanning session during which they completed a visual-verbal N-back test of working memory. Results showed no difference in working memory performance between CC and NC groups. However, the CC group showed greater activation relative to the NC group in a broad network involved in working memory including the middle frontal gyrus (Brodmann area [BA] 9 and 10), the precuneus (BA 7), and the cingulate gyrus (BA 24 and 32). The CC group recruited additional regions of the working memory network compared with the NC group as the working memory load and difficulty of the task increased. This study showed brain activation differences during working memory performance in a middle-aged group of postmenopausal women with subjective cognitive complaints but without objective cognitive deficit. These findings suggest that subjective cognitive complaints in postmenopausal women might be associated with increased cortical activity during effort-demanding cognitive tasks. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Effective return-to-work interventions after acquired brain injury: A systematic review.

    Science.gov (United States)

    Donker-Cools, Birgit H P M; Daams, Joost G; Wind, Haije; Frings-Dresen, Monique H W

    2016-01-01

    To gather knowledge about effective return-to-work (RTW) interventions for patients with acquired brain injury (ABI). A database search was performed in PubMed, EMBASE, PsycINFO, CINAHL and the Cochrane Library using keywords and Medical Subject Headings. Studies were included if they met inclusion criteria: adult patients with non-progressive ABI, working pre-injury and an intervention principally designed to improve RTW as an outcome. The methodological quality of included studies was determined and evidence was assessed qualitatively. Twelve studies were included, of which five were randomized controlled trials and seven were cohort studies. Nine studies had sufficient methodological quality. There is strong evidence that work-directed interventions in combination with education/coaching are effective regarding RTW and there are indicative findings for the effectiveness of work-directed interventions in combination with skills training and education/coaching. Reported components of the most effective interventions were tailored approach, early intervention, involvement of patient and employer, work or workplace accommodations, work practice and training of social and work-related skills, including coping and emotional support. Effective RTW interventions for patients with ABI are a combination of work-directed interventions, coaching/education and/or skills training. These interventions have the potential to facilitate sustained RTW for patients with ABI.

  13. Improving the Work Potential of Brain-Injured Adolescents and Young Adults: A Model for Evaluation and Individualized Training.

    Science.gov (United States)

    Deaton, Ann V.; And Others

    1987-01-01

    A work program is described that was designed for the brain-injured population. The program addresses cognitive abilities that may be affected by brain injury (orientation, attention, memory, sequencing and problem solving) and possible socioemotional changes (disinhibition, anger control, frustration tolerance, and emotional ability). Case…

  14. Working Memory after Traumatic Brain Injury: The Neural Basis of Improved Performance with Methylphenidate.

    Science.gov (United States)

    Manktelow, Anne E; Menon, David K; Sahakian, Barbara J; Stamatakis, Emmanuel A

    2017-01-01

    Traumatic brain injury (TBI) often results in cognitive impairments for patients. The aim of this proof of concept study was to establish the nature of abnormalities, in terms of activity and connectivity, in the working memory network of TBI patients and how these relate to compromised behavioral outcomes. Further, this study examined the neural correlates of working memory improvement following the administration of methylphenidate. We report behavioral, functional and structural MRI data from a group of 15 Healthy Controls (HC) and a group of 15 TBI patients, acquired during the execution of the N-back task. The patients were studied on two occasions after the administration of either placebo or 30 mg of methylphenidate. Between group tests revealed a significant difference in performance when HCs were compared to TBI patients on placebo [ F (1, 28) = 4.426, p performance demonstrated the most benefit from methylphenidate. Changes in the TBI patient activation levels in the Left Cerebellum significantly and positively correlated with changes in performance ( r = 0.509, df = 13, p = 0.05). Whole-brain connectivity analysis using the Left Cerebellum as a seed revealed widespread negative interactions between the Left Cerebellum and parietal and frontal cortices as well as subcortical areas. Neither the TBI group on methylphenidate nor the HC group demonstrated any significant negative interactions. Our findings indicate that (a) TBI significantly reduces the levels of activation and connectivity strength between key areas of the working memory network and (b) Methylphenidate improves the cognitive outcomes on a working memory task. Therefore, we conclude that methylphenidate may render the working memory network in a TBI group more consistent with that of an intact working memory network.

  15. Work Limitations 4 Years After Mild Traumatic Brain Injury: A Cohort Study.

    Science.gov (United States)

    Theadom, Alice; Barker-Collo, Suzanne; Jones, Kelly; Kahan, Michael; Te Ao, Braden; McPherson, Kathryn; Starkey, Nicola; Feigin, Valery

    2017-08-01

    To explore employment status, work limitations, and productivity loss after mild traumatic brain injury (TBI). Inception cohort study over 4 years. General community. Adults (N=245; >16y at the time of injury) who experienced a mild TBI and who were employed prior to their injury. Not applicable. Details of the injury, demographic information, and preinjury employment status were collected from medical records and self-report. Symptoms and mood were assessed 1 month postinjury using the Rivermead Post-Concussion Symptom Questionnaire and the Hospital Anxiety and Depression Scale. Postinjury employment status and work productivity were assessed 4 years postinjury using the Work Limitations Questionnaire. Four years after mild TBI, 17.3% of participants had exited the workforce (other than for reasons of retirement or to study) or had reduced their working hours compared with preinjury. A further 15.5% reported experiencing limitations at work because of their injury. Average work productivity loss was 3.6%. The symptom of taking longer to think 1 month postinjury significantly predicted work productivity loss 4 years later (β=.47, t=3.79, P≤.001). Although changes in employment status and difficulties at work are likely over time, the results indicate increased unemployment rates, work limitations, and productivity loss in the longer term after a mild TBI. Identification of cognitive difficulties 1 month after TBI in working aged adults and subsequent interventions to address these difficulties are required to facilitate work productivity. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. The effects of working memory training on functional brain network efficiency.

    Science.gov (United States)

    Langer, Nicolas; von Bastian, Claudia C; Wirz, Helen; Oberauer, Klaus; Jäncke, Lutz

    2013-10-01

    The human brain is a highly interconnected network. Recent studies have shown that the functional and anatomical features of this network are organized in an efficient small-world manner that confers high efficiency of information processing at relatively low connection cost. However, it has been unclear how the architecture of functional brain networks is related to performance in working memory (WM) tasks and if these networks can be modified by WM training. Therefore, we conducted a double-blind training study enrolling 66 young adults. Half of the subjects practiced three WM tasks and were compared to an active control group practicing three tasks with low WM demand. High-density resting-state electroencephalography (EEG) was recorded before and after training to analyze graph-theoretical functional network characteristics at an intracortical level. WM performance was uniquely correlated with power in the theta frequency, and theta power was increased by WM training. Moreover, the better a person's WM performance, the more their network exhibited small-world topology. WM training shifted network characteristics in the direction of high performers, showing increased small-worldness within a distributed fronto-parietal network. Taken together, this is the first longitudinal study that provides evidence for the plasticity of the functional brain network underlying WM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. The Polarity-Dependent Effects of the Bilateral Brain Stimulation on Working Memory

    Directory of Open Access Journals (Sweden)

    Fatemeh Keshvari

    2013-08-01

    Full Text Available Introduction: Working memory plays a critical role in cognitive processes which are central to our daily life. Neuroimaging studies have shown that one of the most important areas corresponding to the working memory is the dorsolateral prefrontal cortex (DLFPC. This study was aimed to assess whether bilateral modulation of the DLPFC using a noninvasive brain stimulation, namely transcranial direct current stimulation (tDCS, modi.es the working memory function in healthy adults.Methods: In a randomized sham-controlled cross-over study, 60 subjects (30 Males received sham and active tDCS in two subgroups (anode left/cathode right and anode right/cathode left of the DLPFC. Subjects were presented working memory n-back task while the reaction time and accuracy were recorded.Results: A repeated measures, mixed design ANOVA indicated a signi.cant difference between the type of stimulation (sham vs. active in anodal stimulation of the left DLPFC with cathodal stimulation of the right DLPFC [F(1,55= 5.29,  P=0.019], but not the inverse polarity worsened accuracy in the 2-back working memory task. There were also no statistically signi.cant changes in speed of working memory [F(1,55= 0.458 ,P=0.502] related to type or order of stimulation..Discussion: The results would imply to a polarity dependence of bilateral tDCS of working memory. Left anodal/ right cathodal stimulation of DLPFC could impair working memory, while the reverser stimulation had no effect. Meaning that bilateral stimulation of DLFC would not be a useful procedure to improve working memory. Further studies are required to understand subtle effects of different tDCS stimulation/inhibition electrode positioning on the working memory.

  18. Whatever works: a systematic user-centered training protocol to optimize brain-computer interfacing individually.

    Directory of Open Access Journals (Sweden)

    Elisabeth V C Friedrich

    Full Text Available This study implemented a systematic user-centered training protocol for a 4-class brain-computer interface (BCI. The goal was to optimize the BCI individually in order to achieve high performance within few sessions for all users. Eight able-bodied volunteers, who were initially naïve to the use of a BCI, participated in 10 sessions over a period of about 5 weeks. In an initial screening session, users were asked to perform the following seven mental tasks while multi-channel EEG was recorded: mental rotation, word association, auditory imagery, mental subtraction, spatial navigation, motor imagery of the left hand and motor imagery of both feet. Out of these seven mental tasks, the best 4-class combination as well as most reactive frequency band (between 8-30 Hz was selected individually for online control. Classification was based on common spatial patterns and Fisher's linear discriminant analysis. The number and time of classifier updates varied individually. Selection speed was increased by reducing trial length. To minimize differences in brain activity between sessions with and without feedback, sham feedback was provided in the screening and calibration runs in which usually no real-time feedback is shown. Selected task combinations and frequency ranges differed between users. The tasks that were included in the 4-class combination most often were (1 motor imagery of the left hand (2, one brain-teaser task (word association or mental subtraction (3, mental rotation task and (4 one more dynamic imagery task (auditory imagery, spatial navigation, imagery of the feet. Participants achieved mean performances over sessions of 44-84% and peak performances in single-sessions of 58-93% in this user-centered 4-class BCI protocol. This protocol is highly adjustable to individual users and thus could increase the percentage of users who can gain and maintain BCI control. A high priority for future work is to examine this protocol with severely

  19. Abnormalities of brain response during encoding into verbal working memory among euthymic patients with bipolar disorder.

    Science.gov (United States)

    McKenna, Benjamin S; Sutherland, Ashley N; Legenkaya, Anna P; Eyler, Lisa T

    2014-05-01

    Individuals with bipolar disorder (BD) have trait-like deficits in attention and working memory (WM). A fundamental dissociation for most verbal WM theories involves the separation of sensory-perceptual encoding, reliant upon attention, from the maintenance of this information in WM proper. The present study examined if patients with BD demonstrate differential neural changes in encoding and maintenance WM processes that underlie cognitive impairment. Event-related functional magnetic resonance imaging during a delayed match-to-sample WM paradigm was employed in 23 inter-episode medicated patients with BD and 23 demographically similar healthy comparison participants. We examined brain regions during encoding and maintenance task intervals to identify regions that demonstrated differential effects between groups. Medication effects and functional connectivity between prefrontal cortex and basal ganglia/thalamus were examined during the encoding interval due to the importance of these regions and the connection among them for encoding into WM. Patients with BD exhibited deficits in task accuracy and attenuated brain response during the encoding interval in areas of the prefrontal cortex, caudate, thalamus, and posterior visual regions. In contrast, patients with BD exhibited hyperactivation in posterior sensory regions during the maintenance interval. Among the BD group, those with greater medication load exhibited the greatest brain response within the prefrontal cortex. Reduction in activation during the encoding interval suggests that attentional deficits underlie WM deficits in patients with BD. These deficits appear to be trait-like in so far as they were observed during periods of euthymia in patients with BD. Medication effects remain to be further explored as there was evidence of prefrontal changes dependent on medication load. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Dorsal and ventral working memory-related brain areas support distinct processes in contextual cueing.

    Science.gov (United States)

    Manginelli, Angela A; Baumgartner, Florian; Pollmann, Stefan

    2013-02-15

    Behavioral evidence suggests that the use of implicitly learned spatial contexts for improved visual search may depend on visual working memory resources. Working memory may be involved in contextual cueing in different ways: (1) for keeping implicitly learned working memory contents available during search or (2) for the capture of attention by contexts retrieved from memory. We mapped brain areas that were modulated by working memory capacity. Within these areas, activation was modulated by contextual cueing along the descending segment of the intraparietal sulcus, an area that has previously been related to maintenance of explicit memories. Increased activation for learned displays, but not modulated by the size of contextual cueing, was observed in the temporo-parietal junction area, previously associated with the capture of attention by explicitly retrieved memory items, and in the ventral visual cortex. This pattern of activation extends previous research on dorsal versus ventral stream functions in memory guidance of attention to the realm of attentional guidance by implicit memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Brain oscillation and connectivity during a chemistry visual working memory task.

    Science.gov (United States)

    Huang, Li-Yu; She, Hsiao-Ching; Chou, Wen-Chi; Chuang, Ming-Hua; Duann, Jeng-Ren; Jung, Tzyy-Ping

    2013-11-01

    Many studies have reported that frontal theta and posterior alpha activities are associated with working memory tasks. However, fewer studies have focused on examining whether or not the frontal alpha or posterior theta can play a role in the working memory task. This study investigates electroencephalography (EEG) dynamics and connectivity among different brain regions' theta and alpha oscillations. The EEG was collected from undergraduate students (n = 64) while they were performing a Sternberg-like working memory task involving chemistry concepts. The results showed that the frontal midline cluster exhibited sustained theta augmentation across the periods of stimulus presentations, maintenance, and probe presentation, suggesting that the frontal midline theta might associate with facilitating the central execute function to maintain information in the working memory. Study of the central parietal and the occipital clusters revealed a sequence of theta augmentation followed by alpha suppression at constant intervals after the onset of stimulus and probe presentations, suggesting that the posterior theta might be associated with sensory processing, theta gating, or stimulus selection. It further suggests that the posterior alpha event-related de-synchronization (ERD) might be linked to direct information flow into and out of the long-term memory (LTM) and precede stimulus recognition. An alternating phasic alpha event-related synchronization (ERS) and ERD following the 1st stimulus and probe presentations were observed at the occipital cluster, in which alpha ERS might be linked to the inhibition of irrelevant information. © 2013.

  2. Subthalamic nucleus deep brain stimulation affects distractor interference in auditory working memory.

    Science.gov (United States)

    Camalier, Corrie R; Wang, Alice Y; McIntosh, Lindsey G; Park, Sohee; Neimat, Joseph S

    2017-03-01

    Computational and theoretical accounts hypothesize the basal ganglia play a supramodal "gating" role in the maintenance of working memory representations, especially in preservation from distractor interference. There are currently two major limitations to this account. The first is that supporting experiments have focused exclusively on the visuospatial domain, leaving questions as to whether such "gating" is domain-specific. The second is that current evidence relies on correlational measures, as it is extremely difficult to causally and reversibly manipulate subcortical structures in humans. To address these shortcomings, we examined non-spatial, auditory working memory performance during reversible modulation of the basal ganglia, an approach afforded by deep brain stimulation of the subthalamic nucleus. We found that subthalamic nucleus stimulation impaired auditory working memory performance, specifically in the group tested in the presence of distractors, even though the distractors were predictable and completely irrelevant to the encoding of the task stimuli. This study provides key causal evidence that the basal ganglia act as a supramodal filter in working memory processes, further adding to our growing understanding of their role in cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Interventions aimed at improving the ability to use everyday technology in work after brain injury.

    Science.gov (United States)

    Kassberg, Ann-Charlotte; Prellwitz, Maria; Malinowsky, Camilla; Larsson-Lund, Maria

    2016-01-01

    The aim of this study was to explore and describe how client-centred occupational therapy interventions may support and improve the ability to use everyday technology (ET) in work tasks in people with acquired brain injury (ABI). A qualitative, descriptive multiple-case study was designed, and occupation-based interventions were provided to three working-age participants with ABI. Multiple sources were used to collect data throughout the three intervention processes, including assessments, field notes, and interviews. The Canadian Occupational Performance Measure and the Management of Everyday Technology Assessment were administered before the interventions, after the interventions and at a follow-up session 2-3 months subsequent to the interventions. The three intervention processes initially consisted of similar actions, but subsequently the actions took on a different focus and intensity for each case. All of the goals in each of the three case processes were achieved, and both perceived and observed abilities to use ET in work tasks improved. Client-centred occupational therapy interventions might have the potential to improve the ability to use ET in work tasks in people with ABI.

  4. Memory as the "whole brain work": a large-scale model based on "oscillations in super-synergy".

    Science.gov (United States)

    Başar, Erol

    2005-01-01

    According to recent trends, memory depends on several brain structures working in concert across many levels of neural organization; "memory is a constant work-in progress." The proposition of a brain theory based on super-synergy in neural populations is most pertinent for the understanding of this constant work in progress. This report introduces a new model on memory basing on the processes of EEG oscillations and Brain Dynamics. This model is shaped by the following conceptual and experimental steps: 1. The machineries of super-synergy in the whole brain are responsible for formation of sensory-cognitive percepts. 2. The expression "dynamic memory" is used for memory processes that evoke relevant changes in alpha, gamma, theta and delta activities. The concerted action of distributed multiple oscillatory processes provides a major key for understanding of distributed memory. It comprehends also the phyletic memory and reflexes. 3. The evolving memory, which incorporates reciprocal actions or reverberations in the APLR alliance and during working memory processes, is especially emphasized. 4. A new model related to "hierarchy of memories as a continuum" is introduced. 5. The notions of "longer activated memory" and "persistent memory" are proposed instead of long-term memory. 6. The new analysis to recognize faces emphasizes the importance of EEG oscillations in neurophysiology and Gestalt analysis. 7. The proposed basic framework called "Memory in the Whole Brain Work" emphasizes that memory and all brain functions are inseparable and are acting as a "whole" in the whole brain. 8. The role of genetic factors is fundamental in living system settings and oscillations and accordingly in memory, according to recent publications. 9. A link from the "whole brain" to "whole body," and incorporation of vegetative and neurological system, is proposed, EEG oscillations and ultraslow oscillations being a control parameter.

  5. Individual visual working memory capacities and related brain oscillatory activities are modulated by color preferences.

    Science.gov (United States)

    Kawasaki, Masahiro; Yamaguchi, Yoko

    2012-01-01

    Subjective preferences affect many processes, including motivation, along with individual differences. Although incentive motivations are proposed to increase our limited visual working memory (VWM) capacity, much less is known about the effects of subjective preferences on VWM-related brain systems, such as the prefrontal and parietal cortices. Here, we investigate the differences in VWM capacities and brain activities during presentation of preferred and non-preferred colors. To this end, we used time-frequency (TF) analyses of electroencephalograph (EEG) data recorded during a delayed-response task. Behavioral results showed that the individual VWM capacities of preferred colors were significantly higher than those of non-preferred colors. The EEG results showed that the frontal theta and beta amplitudes for maintenance of preferred colors were higher than those of non-preferred colors. Interestingly, the frontal beta amplitudes were consistent with recent EEG recordings of the effects of reward on VWM systems, in that they were strongly and individually correlated with increasing VWM capacities from non-preferred to preferred colors. These results suggest that subjective preferences affect VWM systems in a similar manner to reward-incentive motivations.

  6. Brain systems underlying attentional control and emotional distraction during working memory encoding.

    Science.gov (United States)

    Ziaei, Maryam; Peira, Nathalie; Persson, Jonas

    2014-02-15

    Goal-directed behavior requires that cognitive operations can be protected from emotional distraction induced by task-irrelevant emotional stimuli. The brain processes involved in attending to relevant information while filtering out irrelevant information are still largely unknown. To investigate the neural and behavioral underpinnings of attending to task-relevant emotional stimuli while ignoring irrelevant stimuli, we used fMRI to assess brain responses during attentional instructed encoding within an emotional working memory (WM) paradigm. We showed that instructed attention to emotion during WM encoding resulted in enhanced performance, by means of increased memory performance and reduced reaction time, compared to passive viewing. A similar performance benefit was also demonstrated for recognition memory performance, although for positive pictures only. Functional MRI data revealed a network of regions involved in directed attention to emotional information for both positive and negative pictures that included medial and lateral prefrontal cortices, fusiform gyrus, insula, the parahippocampal gyrus, and the amygdala. Moreover, we demonstrate that regions in the striatum, and regions associated with the default-mode network were differentially activated for emotional distraction compared to neutral distraction. Activation in a sub-set of these regions was related to individual differences in WM and recognition memory performance, thus likely contributing to performing the task at an optimal level. The present results provide initial insights into the behavioral and neural consequences of instructed attention and emotional distraction during WM encoding. © 2013.

  7. Type 1 Diabetes Modifies Brain Activation in Young Patients While Performing Visuospatial Working Memory Tasks

    Directory of Open Access Journals (Sweden)

    Geisa B. Gallardo-Moreno

    2015-01-01

    Full Text Available In recent years, increasing attention has been paid to the effects of Type 1 Diabetes (T1D on cognitive functions. T1D onset usually occurs during childhood, so it is possible that the brain could be affected during neurodevelopment. We selected young patients of normal intelligence with T1D onset during neurodevelopment, no complications from diabetes, and adequate glycemic control. The purpose of this study was to compare the neural BOLD activation pattern in a group of patients with T1D versus healthy control subjects while performing a visuospatial working memory task. Sixteen patients and 16 matched healthy control subjects participated. There was no significant statistical difference in behavioral performance between the groups, but, in accordance with our hypothesis, results showed distinct brain activation patterns. Control subjects presented the expected activations related to the task, whereas the patients had greater activation in the prefrontal inferior cortex, basal ganglia, posterior cerebellum, and substantia nigra. These different patterns could be due to compensation mechanisms that allow them to maintain a behavioral performance similar to that of control subjects.

  8. Effects of visual working memory on brain information processing of irrelevant auditory stimuli.

    Directory of Open Access Journals (Sweden)

    Jiagui Qu

    Full Text Available Selective attention has traditionally been viewed as a sensory processing modulator that promotes cognitive processing efficiency by favoring relevant stimuli while inhibiting irrelevant stimuli. However, the cross-modal processing of irrelevant information during working memory (WM has been rarely investigated. In this study, the modulation of irrelevant auditory information by the brain during a visual WM task was investigated. The N100 auditory evoked potential (N100-AEP following an auditory click was used to evaluate the selective attention to auditory stimulus during WM processing and at rest. N100-AEP amplitudes were found to be significantly affected in the left-prefrontal, mid-prefrontal, right-prefrontal, left-frontal, and mid-frontal regions while performing a high WM load task. In contrast, no significant differences were found between N100-AEP amplitudes in WM states and rest states under a low WM load task in all recorded brain regions. Furthermore, no differences were found between the time latencies of N100-AEP troughs in WM states and rest states while performing either the high or low WM load task. These findings suggested that the prefrontal cortex (PFC may integrate information from different sensory channels to protect perceptual integrity during cognitive processing.

  9. Effects of visual working memory on brain information processing of irrelevant auditory stimuli.

    Science.gov (United States)

    Qu, Jiagui; Rizak, Joshua D; Zhao, Lun; Li, Minghong; Ma, Yuanye

    2014-01-01

    Selective attention has traditionally been viewed as a sensory processing modulator that promotes cognitive processing efficiency by favoring relevant stimuli while inhibiting irrelevant stimuli. However, the cross-modal processing of irrelevant information during working memory (WM) has been rarely investigated. In this study, the modulation of irrelevant auditory information by the brain during a visual WM task was investigated. The N100 auditory evoked potential (N100-AEP) following an auditory click was used to evaluate the selective attention to auditory stimulus during WM processing and at rest. N100-AEP amplitudes were found to be significantly affected in the left-prefrontal, mid-prefrontal, right-prefrontal, left-frontal, and mid-frontal regions while performing a high WM load task. In contrast, no significant differences were found between N100-AEP amplitudes in WM states and rest states under a low WM load task in all recorded brain regions. Furthermore, no differences were found between the time latencies of N100-AEP troughs in WM states and rest states while performing either the high or low WM load task. These findings suggested that the prefrontal cortex (PFC) may integrate information from different sensory channels to protect perceptual integrity during cognitive processing.

  10. How does morality work in the brain? A functional and structural perspective of moral behavior

    Science.gov (United States)

    Pascual, Leo; Rodrigues, Paulo; Gallardo-Pujol, David

    2013-01-01

    Neural underpinnings of morality are not yet well understood. Researchers in moral neuroscience have tried to find specific structures and processes that shed light on how morality works. Here, we review the main brain areas that have been associated with morality at both structural and functional levels and speculate about how it can be studied. Orbital and ventromedial prefrontal cortices are implicated in emotionally-driven moral decisions, while dorsolateral prefrontal cortex appears to moderate its response. These competing processes may be mediated by the anterior cingulate cortex. Parietal and temporal structures play important roles in the attribution of others' beliefs and intentions. The insular cortex is engaged during empathic processes. Other regions seem to play a more complementary role in morality. Morality is supported not by a single brain circuitry or structure, but by several circuits overlapping with other complex processes. The identification of the core features of morality and moral-related processes is needed. Neuroscience can provide meaningful insights in order to delineate the boundaries of morality in conjunction with moral psychology. PMID:24062650

  11. Individual visual working memory capacities and related brain oscillatory activities are modulated by color preferences

    Directory of Open Access Journals (Sweden)

    Masahiro eKawasaki

    2012-11-01

    Full Text Available Subjective preferences affect many processes, including motivation, along with individual differences. Although incentive motivations are proposed to increase our limited visual working memory (VWM capacity, much less is known about the effects of subjective preferences on VWM-related brain systems, such as the prefrontal and parietal cortices. Here, we investigate the differences in VWM capacities and brain activities during presentation of preferred and non-preferred colors. To this end, we used time-frequency analyses of electroencephalograph (EEG data recorded during a delayed-response task. Behavioral results showed that the individual VWM capacities of preferred colors were significantly higher than those of non-preferred colors. The EEG results showed that the frontal theta and beta amplitudes for maintenance of preferred colors were higher than those of non-preferred colors. Interestingly, the frontal beta amplitudes were consistent with recent EEG recordings of the effects of reward on VWM systems, in that they were strongly and individually correlated with increasing VWM capacities from non-preferred to preferred colors. These results suggest that subjective preferences affect VWM systems in a similar manner to reward-incentive motivations.

  12. Associative memory cells and their working principle in the brain [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jin-Hui Wang

    2018-01-01

    Full Text Available The acquisition, integration and storage of exogenous associated signals are termed as associative learning and memory. The consequences and processes of associative thinking and logical reasoning based on these stored exogenous signals can be memorized as endogenous signals, which are essential for decision making, intention, and planning. Associative memory cells recruited in these primary and secondary associative memories are presumably the foundation for the brain to fulfill cognition events and emotional reactions in life, though the plasticity of synaptic connectivity and neuronal activity has been believed to be involved in learning and memory. Current reports indicate that associative memory cells are recruited by their mutual synapse innervations among co-activated brain regions to fulfill the integration, storage and retrieval of associated signals. The activation of these associative memory cells initiates information recall in the mind, and the successful activation of their downstream neurons endorses memory presentations through behaviors and emotion reactions. In this review, we aim to draw a comprehensive diagram for associative memory cells, working principle and modulation, as well as propose their roles in cognition, emotion and behaviors.

  13. Sex differences in work-related traumatic brain injury due to assault.

    Science.gov (United States)

    Mollayeva, Tatyana; Mollayeva, Shirin; Lewko, John; Colantonio, Angela

    2016-06-16

    To examine the etiology, prevalence and severity of assault-precipitated work-related traumatic brain injury (wrTBI) in Ontario, Canada through a sex lens. Cross-sectional study using data abstracted from the Ontario Workplace Safety and Insurance Board (WSIB) claims files in 2004. Descriptive analyses were conducted to determine the distribution of worker/employment/incident characteristics. Workplace physical violence that resulted in a TBI accounted for 6.6% percent of all TBI injury claims. Female workers, primarily in the health care/social services sector, accounted for over half of all TBIs. Most workers were assaulted by consumers/clients. Forty five percent of injuries occurred among workers with less than 3 years of employment. This paper identifies profiles of workers and workplaces for targeted preventive efforts. Future studies are needed to further address risk factors by sex and outcomes, such as length of disability and health care cost.

  14. Opportunities and barriers for successful return to work after acquired brain injury: A patient perspective.

    Science.gov (United States)

    Matérne, Marie; Lundqvist, Lars-Olov; Strandberg, Thomas

    2017-01-01

    Many people who suffer an acquired brain injury (ABI) are of working age. There are benefits, for the patient, the workplace, and society, to finding factors that facilitate successful return to work (RTW). The aim was to increase knowledge of opportunities and barriers for a successful RTW in patients with ABI. Five men and five women with ABI participated. All had successfully returned to work at least 20 hours a week. Their experiences were gathered by semi-structured interviews, which were subsequently subjected to qualitative content analysis. Three themes that influenced RTW were identified: individually adapted rehabilitation; motivation for RTW; and cognitive and social abilities. An individually adapted rehabilitation was judged important because the patients were involved in their own rehabilitation and required individually adapted support from rehabilitation specialists, employers, and colleagues. A moderate level of motivation for RTW was needed. Awareness of the person's cognitive and social abilities is essential, in finding compensatory strategies and adaptations. It seems that the vocational rehabilitation process is a balancing act in individualized planning and support, as a partnership with the employer needs to be developed, motivation needs to be generated, and awareness built of abilities that facilitate or hinder RTW.

  15. Deep Brain Stimulation Can Preserve Working Status in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Gabriella Deli

    2015-01-01

    Full Text Available Objectives. Our investigation aimed at evaluating if bilateral subthalamic deep brain stimulation (DBS could preserve working capability in Parkinson’s disease (PD. Materials. We reviewed the data of 40 young (<60 year-old PD patients who underwent DBS implantation and had at least 2 years of follow-up. Patients were categorized based on their working capability at time of surgery: “active job” group (n=20 and “no job” group (n=20. Baseline characteristics were comparable. Quality of life (EQ-5D and presence of active job were evaluated preoperatively and 2 years postoperatively. Results. Although similar (approximately 50% improvement was achieved in the severity of motor and major nonmotor symptoms in both groups, the postoperative quality of life was significantly better in the “active job” group (0.687 versus 0.587, medians, p<0.05. Majority (80% of “active job” group members were able to preserve their job 2 years after the operation. However, only a minimal portion (5% of the “no job” group members was able to return to the world of active employees (p<0.01. Conclusions. Although our study has several limitations, our results suggest that in patients with active job the appropriately “early” usage of DBS might help preserve working capability and gain higher improvement in quality of life.

  16. Gender differences in working memory networks: a BrainMap meta-analysis.

    Science.gov (United States)

    Hill, Ashley C; Laird, Angela R; Robinson, Jennifer L

    2014-10-01

    Gender differences in psychological processes have been of great interest in a variety of fields. While the majority of research in this area has focused on specific differences in relation to test performance, this study sought to determine the underlying neurofunctional differences observed during working memory, a pivotal cognitive process shown to be predictive of academic achievement and intelligence. Using the BrainMap database, we performed a meta-analysis and applied activation likelihood estimation to our search set. Our results demonstrate consistent working memory networks across genders, but also provide evidence for gender-specific networks whereby females consistently activate more limbic (e.g., amygdala and hippocampus) and prefrontal structures (e.g., right inferior frontal gyrus), and males activate a distributed network inclusive of more parietal regions. These data provide a framework for future investigations using functional or effective connectivity methods to elucidate the underpinnings of gender differences in neural network recruitment during working memory tasks. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Contribution of ictal- and interictal brain SPECT to the diagnostic work-up of epileptic patients

    International Nuclear Information System (INIS)

    Dondi, M.; Salgarello, M.; Zoboli, S.; Cidda, C.; Nanni, C.; Rubboli, G.; Meletti, S.; Volpi, L.; Tassinari, C.A.

    2002-01-01

    Aim of the study: We aimed at assessing the contribution of brain SPECT to the diagnostic work-up of patients admitted to the Intensive Epilepsy Monitoring Unit (IEMU) by evaluating concordance of SPECT results with clinical diagnosis (DX) at IEMU admittance (Adm-DX) and at hospital discharge (Disch-DX). Materials and methods: 48 consecutive patients were enrolled in this study and submitted to both ictal and inter-ictal brain SPECT, carried out by means of a three-head system. Before ictal studies, patients were video-EEG monitored in the IEMU. 740 MBq of Tc99m ECD were injected during seizures and imaging performed within 45-60 minutes. For interictal studies, injection was given after at least a 24-hours seizure-free interval. Slices were reconstructed along the orbito-meatal line as well as along the temporal cut. Possible epileptic foci were identified by visual comparison of ictal and interictal studies. Clinical data: Out of the 48 cases, 27 were diagnosed as temporal lobe epilepsies (TLE). Of these, 15 had an Adm-DX of lateralization, whereas 12 were not lateralized according to standardized clinical and EEG criteria. Frontal lobe epilepsy (FLE) was diagnosed in 11 patients, another group of 3 was classified as cryptogenetic (CRYP), while the remaining 7 cases did not fall into any of the previous groups (OTH). SPECT results: in TLE, ictal/interictal SPECT results were congruent with Adm-Dx in 13/27 cases (48%) whereas congruence was found with 25 out of 27 (92%) of Disch-DX. In FLE, concordance between SPECT and clinical diagnosis remained unchanged (9/11 in comparison to either Adm-DX or Disch-DX). CRYPT patients had no lateralization at Adm-DX, while Dis-DX was concordant with SPECT in 2/3 cases. The group labeled as OTH showed concordance SPECT with Adm-DX in 0/7 cases, as opposed to 5/7 of Disch-DX. On the whole, SPECT results were concordant with Adm-DX in 34/48 cases (71%) but concordance was much higher with Dis-DX (41/48; 85%). Conclusions: Brain

  18. Preventive Effects of Safety Helmets on Traumatic Brain Injury after Work-Related Falls

    Directory of Open Access Journals (Sweden)

    Sang Chul Kim

    2016-10-01

    Full Text Available Introduction: Work-related traumatic brain injury (TBI caused by falls is a catastrophic event that leads to disabilities and high socio-medical costs. This study aimed to measure the magnitude of the preventive effect of safety helmets on clinical outcomes and to compare the effect across different heights of fall. Methods: We collected a nationwide, prospective database of work-related injury patients who visited the 10 emergency departments between July 2010 and October 2012. All of the adult patients who experienced work-related fall injuries were eligible, excluding cases with unknown safety helmet use and height of fall. Primary and secondary endpoints were intracranial injury and in-hospital mortality. We calculated adjusted odds ratios (AORs of safety helmet use and height of fall for study outcomes, and adjusted for any potential confounders. Results: A total of 1298 patients who suffered from work-related fall injuries were enrolled. The industrial or construction area was the most common place of fall injury occurrence, and 45.0% were wearing safety helmets at the time of fall injuries. The safety helmet group was less likely to have intracranial injury comparing with the no safety helmet group (the adjusted odds ratios (ORs (95% confidence interval (CI: 0.42 (0.24–0.73, however, there was no statistical difference of in-hospital mortality between two groups (the adjusted ORs (95% CI: 0.83 (0.34–2.03. In the interaction analysis, preventive effects of safety helmet on intracranial injury were significant within 4 m height of fall. Conclusions: A safety helmet is associated with prevention of intracranial injury resulting from work-related fall and the effect is preserved within 4 m height of fall. Therefore, wearing a safety helmet can be an intervention for protecting fall-related intracranial injury in the workplace.

  19. Disruption of caudate working memory activation in chronic blast-related traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mary R. Newsome

    2015-01-01

    Full Text Available Mild to moderate traumatic brain injury (TBI due to blast exposure is frequently diagnosed in veterans returning from the wars in Iraq and Afghanistan. However, it is unclear whether neural damage resulting from blast TBI differs from that found in TBI due to blunt-force trauma (e.g., falls and motor vehicle crashes. Little is also known about the effects of blast TBI on neural networks, particularly over the long term. Because impairment in working memory has been linked to blunt-force TBI, the present functional magnetic resonance imaging (fMRI study sought to investigate whether brain activation in response to a working memory task would discriminate blunt-force from blast TBI. Twenty-five veterans (mean age = 29.8 years, standard deviation = 6.01 years, 1 female who incurred TBI due to blast an average of 4.2 years prior to enrollment and 25 civilians (mean age = 27.4 years, standard deviation = 6.68 years, 4 females with TBI due to blunt-force trauma performed the Sternberg Item Recognition Task while undergoing fMRI. The task involved encoding 1, 3, or 5 items in working memory. A group of 25 veterans (mean age = 29.9 years, standard deviation = 5.53 years, 0 females and a group of 25 civilians (mean age = 27.3 years, standard deviation = 5.81 years, 0 females without history of TBI underwent identical imaging procedures and served as controls. Results indicated that the civilian TBI group and both control groups demonstrated a monotonic relationship between working memory set size and activation in the right caudate during encoding, whereas the blast TBI group did not (p < 0.05, corrected for multiple comparisons using False Discovery Rate. Blast TBI was also associated with worse performance on the Sternberg Item Recognition Task relative to the other groups, although no other group differences were found on neuropsychological measures of episodic memory, inhibition, and general processing speed. These results

  20. Differential associations between impulsivity and risk-taking and brain activations underlying working memory in adolescents.

    Science.gov (United States)

    Panwar, Karni; Rutherford, Helena J V; Mencl, W Einar; Lacadie, Cheryl M; Potenza, Marc N; Mayes, Linda C

    2014-11-01

    Increased impulsivity and risk-taking are common during adolescence and relate importantly to addictive behaviors. However, the extent to which impulsivity and risk-taking relate to brain activations that mediate cognitive processing is not well understood. Here we examined the relationships between impulsivity and risk-taking and the neural correlates of working memory. Neural activity was measured in 18 adolescents (13-18 years) while they engaged in a working memory task that included verbal and visuospatial components that each involved encoding, rehearsal and recognition stages. Risk-taking and impulsivity were assessed using the Balloon Analogue Risk Task (BART) and the adolescent version of the Barratt Impulsiveness Scale-11 (BIS-11A), respectively. We found overlapping as well as distinct regions subserving the different stages of verbal and visuospatial working memory. In terms of risk-taking, we found a positive correlation between BART scores and activity in subcortical regions (e.g., thalamus, dorsal striatum) recruited during verbal rehearsal, and an inverse correlation between BART scores and cortical regions (e.g., parietal and temporal regions) recruited during visuospatial rehearsal. The BIS-11A evidenced that motor impulsivity was associated with activity in regions recruited during all stages of working memory, while attention and non-planning impulsivity was only associated with activity in regions recruited during recognition. In considering working memory, impulsivity and risk-taking together, both impulsivity and risk-taking were associated with activity in regions recruited during rehearsal; however, during verbal rehearsal, differential correlations were found. Specifically, positive correlations were found between: (1) risk-taking and activity in subcortical regions, including the thalamus and dorsal striatum; and, (2) motor impulsivity and activity in the left inferior frontal gyrus, insula, and dorsolateral prefrontal cortex. Therefore

  1. Differential associations between impulsivity and risk-taking and brain activations underlying working memory in adolescents

    Science.gov (United States)

    Panwar, Karni; Rutherford, Helena J.V.; Mencl, W. Einar; Lacadie, Cheryl M.; Potenza, Marc N.; Mayes, Linda C.

    2014-01-01

    Increased impulsivity and risk-taking are common during adolescence and relate importantly to addictive behaviors. However, the extent to which impulsivity and risk-taking relate to brain activations that mediate cognitive processing is not well understood. Here we examined the relationships between impulsivity and risk-taking and the neural correlates of working memory. Neural activity was measured in 18 adolescents (13–18 years) while they engaged in a working memory task that included verbal and visuospatial components that each involved encoding, rehearsal and recognition stages. Risk-taking and impulsivity were assessed using the Balloon Analogue Risk Task (BART) and the adolescent version of the Barratt Impulsiveness Scale -11 (BIS-11A), respectively. We found overlapping as well as distinct regions subserving the different stages of verbal and visuospatial working memory. In terms of risk-taking, we found a positive correlation between BART scores and activity in subcortical regions (e.g., thalamus, dorsal striatum) recruited during verbal rehearsal, and an inverse correlation between BART scores and cortical regions (e.g., parietal and temporal regions) recruited during visuospatial rehearsal. The BIS-11A evidenced that motor impulsivity was associated with activity in regions recruited during all stages of working memory, while attention and non-planning impulsivity was only associated with activity in regions recruited during recognition. In considering working memory, impulsivity and risk-taking together, both impulsivity and risk-taking were associated with activity in regions recruited during rehearsal; however, during verbal rehearsal, differential correlations were found. Specifically, positive correlations were found between: (1) risk-taking and activity in subcortical regions, including the thalamus and dorsal striatum; and, (2) motor impulsivity and activity in the left inferior frontal gyrus, insula, dorsolateral and ventrolateral prefrontal

  2. Neuropsychological factors related to returning to work in patients with higher brain dysfunction.

    Science.gov (United States)

    Kai, Akiko; Hashimoto, Manabu; Okazaki, Tetsuya; Hachisuka, Kenji

    2008-12-01

    We conducted neuropsychological tests of patients with higher brain dysfunction to examine the characteristics of barriers to employment. We tested 92 patients with higher brain dysfunction (average age of 36.3 +/- 13.8 years old, ranging between 16 and 63 years old, with an average post-injury period of 35.6 +/- 67.8 months) who were hospitalized at the university hospital between February 2002 and June 2007 for further neuropsychological evaluation, conducting the Wechsler Adult Intelligence Scale-Revised (WAIS-R), Wechsler Memory Scale-Revised (WMS-R), the Rivermead Behavioral Memory Test (RBMT), Frontal Assessment Battery (FAB) and Behavioral Assessment of Dysexecutive Syndrome (BADS). The outcomes after discharge were classified between competitive employment, sheltered employment and non-employment, and the three groups were compared using one-way analysis of variance and the Scheffe test. The WAIS-R subtests were mutually compared based on the standard values of significant differences described in the WAIS-R manual. Verbal performance and full scale Intelligence Quotient (IQ) of WAIS-R were 87.7 +/- 15.6 (mean +/- standard deviation), 78.5 +/- 18.1 and 81.0 +/- 17.2, respectively, and verbal memory, visual memory, general memory, attention/concentration and delayed recall were 74.6 +/- 20.0, 76.6 +/- 21.4, 72.0 +/- 20.4, 89.0 +/- 16.5 and 65.2 +/- 20.8, respectively. The competitive employment group showed significantly higher scores in performance IQ and full IQ on the WAIS-R and verbal memory, visual memory, general memory and delayed recall on the WMS-R and RBMT than the non-employment group. The sheltered employment group showed a significantly higher score in delayed recall than the non-employment group. No difference was observed in the FAB or BADS between the three groups. In the subtests of the WAIS-R, the score for Digit Symbol-Coding was significantly lower than almost all the other subtests. For patients with higher brain dysfunction, IQ (full

  3. Multi-disciplinary rehabilitation for acquired brain injury in adults of working age.

    Science.gov (United States)

    Turner-Stokes, Lynne; Pick, Anton; Nair, Ajoy; Disler, Peter B; Wade, Derick T

    2015-12-22

    moderate to severe brain injury benefit from routine follow-up so their needs for rehabilitation can be assessed. Intensive intervention appears to lead to earlier gains, and earlier intervention whilst still in emergency and acute care has been supported by limited evidence. The balance between intensity and cost-effectiveness has yet to be determined. Patients discharged from in-patient rehabilitation benefit from access to out-patient or community-based services appropriate to their needs. Group-based rehabilitation in a therapeutic milieu (where patients undergo neuropsychological rehabilitation in a therapeutic environment with a peer group of individuals facing similar challenges) represents an effective approach for patients requiring neuropsychological rehabilitation following severe brain injury. Not all questions in rehabilitation can be addressed by randomised controlled trials or other experimental approaches. For example, trial-based literature does not tell us which treatments work best for which patients over the long term, and which models of service represent value for money in the context of life-long care. In the future, such questions will need to be considered alongside practice-based evidence gathered from large systematic longitudinal cohort studies conducted in the context of routine clinical practice.

  4. Intrinsic brain indices of verbal working memory capacity in children and adolescents

    Directory of Open Access Journals (Sweden)

    Zhen Yang

    2015-10-01

    Full Text Available Working memory (WM is central to the acquisition of knowledge and skills throughout childhood and adolescence. While numerous behavioral and task-based functional magnetic resonance imaging (fMRI studies have examined WM development, few have used resting-state fMRI (R-fMRI. Here, we present a systematic R-fMRI examination of age-related differences in the neural indices of verbal WM performance in a cross-sectional pediatric sample (ages: 7–17; n = 68, using data-driven approaches. Verbal WM capacity was measured with the digit span task, a commonly used educational and clinical assessment. We found distinct neural indices of digit span forward (DSF and backward (DSB performance, reflecting their unique neuropsychological demands. Regardless of age, DSB performance was related to intrinsic properties of brain areas previously implicated in attention and cognitive control, while DSF performance was related to areas less commonly implicated in verbal WM storage (precuneus, lateral visual areas. From a developmental perspective, DSF exhibited more robust age-related differences in brain–behavior relationships than DSB, and implicated a broader range of networks (ventral attention, default, somatomotor, limbic networks – including a number of regions not commonly associated with verbal WM (angular gyrus, subcallosum. These results highlight the importance of examining the neurodevelopment of verbal WM and of considering regions beyond the “usual suspects”.

  5. The effect of caffeine on working memory load-­related brain activation in middle-­aged males

    NARCIS (Netherlands)

    Klaassen, Elissa; De Groot, Renate; Evers, Lisbeth; Snel, Jan; Veerman, Enno; Ligtenberg, Antoon; Jolles, Jelle; Veltman, Dick

    2012-01-01

    Klaassen, E. B., De Groot, R. H. M., Evers, E. A. T., Snel, J., Veerman, E. C. I., Ligtenberg, A. J. M., Jolles, J., & Veltman, D. J. (2013). The effect of caffeine on working memory load-related brain activation in middle-aged male. Neuropharmacology, 64, 160-167.

  6. Working memory in middle-aged males: Age-related brain activation changes and cognitive fatigue effects

    NARCIS (Netherlands)

    Klaassen, Elissa; Evers, Elisabeth; De Groot, Renate; Backes, Walter; Veltman, Dick; Jolles, Jelle

    2017-01-01

    We examined the effects of aging and cognitive fatigue on working memory (WM) related brain activation using functional magnetic resonance imaging. Age-related differences were investigated in 13 young and 16 middle-aged male school teachers. Cognitive fatigue was induced by sustained performance on

  7. Building the Brain's "Air Traffic Control" System: How Early Experiences Shape the Development of Executive Function. Working Paper 11

    Science.gov (United States)

    National Scientific Council on the Developing Child, 2011

    2011-01-01

    Being able to focus, hold, and work with information in mind, filter distractions, and switch gears is like having an air traffic control system at a busy airport to manage the arrivals and departures of dozens of planes on multiple runways. In the brain, this air traffic control mechanism is called executive functioning, a group of skills that…

  8. Encoding of faces and objects into visual working memory: an event-related brain potential study.

    Science.gov (United States)

    Meinhardt-Injac, Bozana; Persike, Malte; Berti, Stefan

    2013-09-11

    Visual working memory (VWM) is an important prerequisite for cognitive functions, but little is known on whether the general perceptual processing advantage for faces also applies to VWM processes. The aim of the present study was (a) to test whether there is a general advantage for face stimuli in VWM and (b) to unravel whether this advantage is related to early sensory processing stages. To address these questions, we compared encoding of faces and complex nonfacial objects into VWM within a combined behavioral and event-related brain potential (ERP) study. In detail, we tested whether the N170 ERP component - which is associated with face-specific holistic processing - is affected by memory load for faces or whether it might be involved in WM encoding of any complex object. Participants performed a same-different task with either face or watch stimuli and with two different levels of memory load. Behavioral measures show an advantage for faces on the level of VWM, mirrored in higher estimated VWM capacity (i.e. Cowan's K) for faces compared with watches. In the ERP, the N170 amplitude was enhanced for faces compared with watches. However, the N170 was not modulated by working memory load either for faces or for watches. In contrast, the P3b component was affected by memory load irrespective of the stimulus category. Taken together, the results suggest that the VWM advantage for faces is not reflected at the sensory stages of stimulus processing, but rather at later higher-level processes as reflected by the P3b component.

  9. Administration of raloxifene reduces sensorimotor and working memory deficits following traumatic brain injury.

    Science.gov (United States)

    Kokiko, Olga N; Murashov, Alexander K; Hoane, Michael R

    2006-06-30

    Hormonal differences between males and females have surfaced as a crucial component in the search for effective treatments after experimental models of traumatic brain injury (TBI). Recent findings have shown that selective estrogen receptor modulators (SERMs) may have therapeutic benefit. The present study examined the effects of raloxifene, a SERM, on functional recovery after bilateral cortical contusion injury (bCCI) or sham procedure. Male rats received injections of raloxifene (3.0mg/kg, i.p.) or vehicle (1.0 ml/kg, i.p.) 15 min, 24, 48, 72, and 96 h after bCCI or sham procedure. Rats were tested on both sensorimotor (bilateral tactile removal and locomotor placing tests) and cognitive tests (reference and working memory in the Morris water maze). Raloxifene-treated animals showed a significant reduction in the initial magnitude of the deficit and facilitated the rate of recovery for the bilateral tactile removal test, compared to vehicle-treated animals. The raloxifene-treated animals also showed a significant improvement in the acquisition of working memory compared to vehicle-treated animals. However, raloxifene did not significantly improve the acquisition of reference memory or locomotor placing ability. Raloxifene treatment also did not result in a significant reduction in the size of the lesion cavity. Thus, the task-dependent improvements seen following raloxifene treatment do not appear to be the result of cortical neuroprotection. However, these results suggest that raloxifene improves functional outcome following bCCI and may present an interesting avenue for future research.

  10. Disrupted functional brain connectivity during verbal working memory in children and adolescents with schizophrenia

    NARCIS (Netherlands)

    T.J.H. White (Tonya); M. Schmidt (Marcus); D. Kim (Danbee); V.D. Calhoun (Vince)

    2011-01-01

    textabstractChildren and adolescents who develop schizophrenia tend to have greater symptom severity than adults who develop the illness. Since the brain continues to mature into early adulthood, developmental differences in brain structure and function may provide clues to the underlying

  11. Working memory-related functional brain patterns in never medicated children with ADHD.

    Directory of Open Access Journals (Sweden)

    Isabelle Massat

    Full Text Available Attention Deficit/Hyperactivity Disorder (ADHD is a pervasive neurodevelopmental disorder characterized by 3 clusters of age-inappropriate cardinal symptoms: inattention, hyperactivity and impulsivity. These clinical/behavioural symptoms are assumed to result from disturbances within brain systems supporting executive functions including working memory (WM, which refers to the ability to transiently store and flexibly manipulate task-relevant information. Ongoing or past medications, co-morbidity and differences in task performance are potential, independent confounds in assessing the integrity of cerebral patterns in ADHD. In the present study, we recorded WM-related cerebral activity during a memory updating N-back task using functional Magnetic Resonance Imaging (fMRI in control children and never medicated, prepubescent children with ADHD but without comorbid symptoms. Despite similar updating performance than controls, children with ADHD exhibited decreased, below baseline WM-related activation levels in a widespread cortico-subcortical network encompassing bilateral occipital and inferior parietal areas, caudate nucleus, cerebellum and functionally connected brainstem nuclei. Distinctive functional connectivity patterns were also found in the ADHD in these regions, with a tighter coupling in the updating than in the control condition with a distributed WM-related cerebral network. Especially, cerebellum showed tighter coupling with activity in an area compatible with the brainstem red nucleus. These results in children with clinical core symptoms of ADHD but without comorbid affections and never treated with medication yield evidence for a core functional neuroanatomical network subtending WM-related processes in ADHD, which may participate to the pathophysiology and expression of clinical symptoms.

  12. Brain network segregation and integration during an epoch-related working memory fMRI experiment.

    Science.gov (United States)

    Fransson, Peter; Schiffler, Björn C; Thompson, William Hedley

    2018-05-17

    The characterization of brain subnetwork segregation and integration has previously focused on changes that are detectable at the level of entire sessions or epochs of imaging data. In this study, we applied time-varying functional connectivity analysis together with temporal network theory to calculate point-by-point estimates in subnetwork segregation and integration during an epoch-based (2-back, 0-back, baseline) working memory fMRI experiment as well as during resting-state. This approach allowed us to follow task-related changes in subnetwork segregation and integration at a high temporal resolution. At a global level, the cognitively more taxing 2-back epochs elicited an overall stronger response of integration between subnetworks compared to the 0-back epochs. Moreover, the visual, sensorimotor and fronto-parietal subnetworks displayed characteristic and distinct temporal profiles of segregation and integration during the 0- and 2-back epochs. During the interspersed epochs of baseline, several subnetworks, including the visual, fronto-parietal, cingulo-opercular and dorsal attention subnetworks showed pronounced increases in segregation. Using a drift diffusion model we show that the response time for the 2-back trials are correlated with integration for the fronto-parietal subnetwork and correlated with segregation for the visual subnetwork. Our results elucidate the fast-evolving events with regard to subnetwork integration and segregation that occur in an epoch-related task fMRI experiment. Our findings suggest that minute changes in subnetwork integration are of importance for task performance. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Valuation of opportunity costs by rats working for rewarding electrical brain stimulation.

    Directory of Open Access Journals (Sweden)

    Rebecca Brana Solomon

    Full Text Available Pursuit of one goal typically precludes simultaneous pursuit of another. Thus, each exclusive activity entails an "opportunity cost:" the forgone benefits from the next-best activity eschewed. The present experiment estimates, in laboratory rats, the function that maps objective opportunity costs into subjective ones. In an operant chamber, rewarding electrical brain stimulation was delivered when the cumulative time a lever had been depressed reached a criterion duration. The value of the activities forgone during this duration is the opportunity cost of the electrical reward. We determined which of four functions best describes how objective opportunity costs, expressed as the required duration of lever depression, are translated into their subjective equivalents. The simplest account is the identity function, which equates subjective and objective opportunity costs. A variant of this function called the "sigmoidal-slope function," converges on the identity function at longer durations but deviates from it at shorter durations. The sigmoidal-slope function has the form of a hockey stick. The flat "blade" denotes a range over which opportunity costs are subjectively equivalent; these durations are too short to allow substitution of more beneficial activities. The blade extends into an upward-curving portion over which costs become discriminable and finally into the straight "handle," over which objective and subjective costs match. The two remaining functions are based on hyperbolic and exponential temporal discounting, respectively. The results are best described by the sigmoidal-slope function. That this is so suggests that different principles of intertemporal choice are involved in the evaluation of time spent working for a reward or waiting for its delivery. The subjective opportunity-cost function plays a key role in the evaluation and selection of goals. An accurate description of its form and parameters is essential to successful

  14. Individual Differences in Working Memory Capacity Predicts Responsiveness to Memory Rehabilitation After Traumatic Brain Injury.

    Science.gov (United States)

    Sandry, Joshua; Chiou, Kathy S; DeLuca, John; Chiaravalloti, Nancy D

    2016-06-01

    To explore how individual differences affect rehabilitation outcomes by specifically investigating whether working memory capacity (WMC) can be used as a cognitive marker to identify who will and will not improve from memory rehabilitation. Post hoc analysis of a randomized controlled clinical trial designed to treat learning and memory impairment after traumatic brain injury (TBI): 2 × 2 between-subjects quasiexperimental design (2 [group: treatment vs control] × 2 [WMC: high vs low]). Nonprofit medical rehabilitation research center. Participants (N=65) with moderate to severe TBI with pre- and posttreatment data. The treatment group completed 10 cognitive rehabilitation sessions in which subjects were taught a memory strategy focusing on learning to use context and imagery to remember information. The placebo control group engaged in active therapy sessions that did not involve learning the memory strategy. Long-term memory percent retention change scores for an unorganized list of words from the California Verbal Learning Test-II. Group and WMC interacted (P=.008, ηp(2)=.12). High WMC participants showed a benefit from treatment compared with low WMC participants. Individual differences in WMC accounted for 45% of the variance in whether participants with TBI in the treatment group benefited from applying the compensatory treatment strategy to learn unorganized information. Individuals with higher WMC showed a significantly greater rehabilitation benefit when applying the compensatory strategy to learn unorganized information. WMC is a useful cognitive marker for identifying participants with TBI who respond to memory rehabilitation with the modified Story Memory Technique. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. Dynamics of brain activity underlying working memory for music in a naturalistic condition.

    Science.gov (United States)

    Burunat, Iballa; Alluri, Vinoo; Toiviainen, Petri; Numminen, Jussi; Brattico, Elvira

    2014-08-01

    We aimed at determining the functional neuroanatomy of working memory (WM) recognition of musical motifs that occurs while listening to music by adopting a non-standard procedure. Western tonal music provides naturally occurring repetition and variation of motifs. These serve as WM triggers, thus allowing us to study the phenomenon of motif tracking within real music. Adopting a modern tango as stimulus, a behavioural test helped to identify the stimulus motifs and build a time-course regressor of WM neural responses. This regressor was then correlated with the participants' (musicians') functional magnetic resonance imaging (fMRI) signal obtained during a continuous listening condition. In order to fine-tune the identification of WM processes in the brain, the variance accounted for by the sensory processing of a set of the stimulus' acoustic features was pruned from participants' neurovascular responses to music. Motivic repetitions activated prefrontal and motor cortical areas, basal ganglia, medial temporal lobe (MTL) structures, and cerebellum. The findings suggest that WM processing of motifs while listening to music emerges from the integration of neural activity distributed over cognitive, motor and limbic subsystems. The recruitment of the hippocampus stands as a novel finding in auditory WM. Effective connectivity and agglomerative hierarchical clustering analyses indicate that the hippocampal connectivity is modulated by motif repetitions, showing strong connections with WM-relevant areas (dorsolateral prefrontal cortex - dlPFC, supplementary motor area - SMA, and cerebellum), which supports the role of the hippocampus in the encoding of the musical motifs in WM, and may evidence long-term memory (LTM) formation, enabled by the use of a realistic listening condition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Diagnostic work up for language testing in patients undergoing awake craniotomy for brain lesions in language areas.

    Science.gov (United States)

    Bilotta, Federico; Stazi, Elisabetta; Titi, Luca; Lalli, Diana; Delfini, Roberto; Santoro, Antonio; Rosa, Giovanni

    2014-06-01

    Awake craniotomy is the technique of choice in patients with brain tumours adjacent to primary and accessory language areas (Broca's and Wernicke's areas). Language testing should be aimed to detect preoperative deficits, to promptly identify the occurrence of new intraoperative impairments and to establish the course of postoperative language status. Aim of this case series is to describe our experience with a dedicated language testing work up to evaluate patients with or at risk for language disturbances undergoing awake craniotomy for brain tumour resection. Pre- and intra operative testing was accomplished with 8 tests. Intraoperative evaluation was accomplished when patients were fully cooperative (Ramsey awake craniotomy for brain tumour resection with preoperative language disturbances or at risk for postoperative language deficits. This approach allows a systematic evaluation and recording of language function status and can be accomplished even when a neuropsychologist or speech therapist are not involved in the operation crew.

  17. Subcortical brain alterations in major depressive disorder : findings from the ENIGMA Major Depressive Disorder working group

    NARCIS (Netherlands)

    Schmaal, L.; Veltman, D. J.; van Erp, T. G. M.; Saemann, P. G.; Frodl, T.; Jahanshad, N.; Loehrer, E.; Tiemeier, H.; Hofman, A.; Niessen, W. J.; Vernooij, M. W.; Ikram, M. A.; Wittfeld, K.; Grabe, H. J.; Block, A.; Hegenscheid, K.; Voelzke, H.; Hoehn, D.; Czisch, M.; Lagopoulos, J.; Hatton, S. N.; Hickie, I. B.; Goya-Maldonado, R.; Kraemer, B.; Gruber, O.; Couvy-Duchesne, B.; Renteria, M. E.; Strike, L. T.; Mills, N. T.; de Zubicaray, G. I.; McMahon, K. L.; Medland, S. E.; Martin, N. G.; Gillespie, N. A.; Wright, M. J.; Hall, G.B.; MacQueen, G. M.; Frey, E. M.; Carballedo, A.; van Velzen, L. S.; van Tol, M. J.; van der Wee, N. J.; Veer, I. M.; Walter, H.; Schnell, K.; Schramm, E.; Normann, C.; Schoepf, D.; Konrad, C.; Penninx, B. W. J. H.

    The pattern of structural brain alterations associated with major depressive disorder (MDD) remains unresolved. This is in part due to small sample sizes of neuroimaging studies resulting in limited statistical power, disease heterogeneity and the complex interactions between clinical

  18. A pioneer work on electric brain stimulation in psychotic patients. Rudolph Gottfried Arndt and his 1870s studies.

    Science.gov (United States)

    Steinberg, Holger

    2013-07-01

    Today's brain stimulation methods are commonly traced back historically to surgical brain operations. With this one-sided historical approach it is easy to overlook the fact that non-surgical electrical brain-stimulating applications preceded present-day therapies. The first study on transcranial electrical brain stimulation for the treatment of severe mental diseases in a larger group of patients was carried out in the 1870s. Between 1870 and 1878 German psychiatrist Rudolph Gottfried Arndt published the results of his studies in three reports. These are contextualized with contemporary developments of the time, focusing in particular on the (neuro-) sciences. As was common practice at the time, Arndt basically reported individual cases in which electricity was applied to treat severe psychoses with depressive symptoms or even catatonia, hypochondriac delusion and melancholia. Despite their lengthiness, there is frequently a lack of precise physical data on the application of psychological-psychopathological details. Only his 1878 report includes general rules for electrical brain stimulation. Despite their methodological shortcomings and lack of precise treatment data impeding exact understanding, Arndt's studies are pioneering works in the field of electric brain stimulation with psychoses and its positive impacts. Today's transcranial direct current stimulation, and partly vagus nerve stimulation, can be compared with Arndt's methods. Although Arndt's only tangible results were indications for the application of faradic electricity (for inactivity, stupor, weakness and manic depressions) and galvanic current (for affective disorders and psychoses), a historiography of present-day brain stimulation therapies should no longer neglect studies on electrotherapy published in German and international psychiatric and neurological journals and monographs in the 1870s and 1880s. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Stereotactic radiosurgery for treatment of brain metastases. A report of the DEGRO Working Group on Stereotactic Radiotherapy

    International Nuclear Information System (INIS)

    Kocher, Martin; Wittig, Andrea; Piroth, Marc Dieter; Treuer, Harald; Ruge, Maximilian; Seegenschmiedt, Heinrich; Grosu, Anca-Ligia; Guckenberger, Matthias

    2014-01-01

    This report from the Working Group on Stereotaktische Radiotherapie of the German Society of Radiation Oncology (Deutsche Gesellschaft fuer Radioonkologie, DEGRO) provides recommendations for the use of stereotactic radiosurgery (SRS) on patients with brain metastases. It considers existing international guidelines and details them where appropriate. The main recommendations are: Patients with solid tumors except germ cell tumors and small-cell lung cancer with a life expectancy of more than 3 months suffering from a single brain metastasis of less than 3 cm in diameter should be considered for SRS. Especially when metastases are not amenable to surgery, are located in the brain stem, and have no mass effect, SRS should be offered to the patient. For multiple (two to four) metastases - all less than 2.5 cm in diameter - in patients with a life expectancy of more than 3 months, SRS should be used rather than whole-brain radiotherapy (WBRT). Adjuvant WBRT after SRS for both single and multiple (two to four) metastases increases local control and reduces the frequency of distant brain metastases, but does not prolong survival when compared with SRS and salvage treatment. As WBRT carries the risk of inducing neurocognitive damage, it seems reasonable to withhold WBRT for as long as possible. A single (marginal) dose of 20 Gy is a reasonable choice that balances the effect on the treated lesion (local control, partial remission) against the risk of late side effects (radionecrosis). Higher doses (22-25 Gy) may be used for smaller ( [de

  20. Decrease in fMRI brain activation during working memory performed after sleeping under 10 lux light.

    Science.gov (United States)

    Kang, Seung-Gul; Yoon, Ho-Kyoung; Cho, Chul-Hyun; Kwon, Soonwook; Kang, June; Park, Young-Min; Lee, Eunil; Kim, Leen; Lee, Heon-Jeong

    2016-11-09

    The aim of this study was to investigate the effect of exposure to dim light at night (dLAN) when sleeping on functional brain activation during a working-memory tasks. We conducted the brain functional magnetic resonance imaging (fMRI) analysis on 20 healthy male subjects. All participants slept in a polysomnography laboratory without light exposure on the first and second nights and under a dim-light condition of either 5 or 10 lux on the third night. The fMRI scanning was conducted during n-back tasks after second and third nights. Statistical parametric maps revealed less activation in the right inferior frontal gyrus (IFG) after exposure to 10-lux light. The brain activity in the right and left IFG areas decreased more during the 2-back task than during the 1- or 0-back task in the 10-lux group. The exposure to 5-lux light had no significant effect on brain activities. The exposure to dLAN might influence the brain function which is related to the cognition.

  1. [The impact of malnutrition on brain development, intelligence and school work performance].

    Science.gov (United States)

    Leiva Plaza, B; Inzunza Brito, N; Pérez Torrejón, H; Castro Gloor, V; Jansana Medina, J M; Toro Díaz, T; Almagiá Flores, A; Navarro Díaz, A; Urrutia Cáceres, M S; Cervilla Oltremari, J; Ivanovic Marincovich, D

    2001-03-01

    The findings from several authors confirm that undernutrition at an early age affects brain growth and intellectual quotient. Most part of students with the lowest scholastic achievement scores present suboptimal head circumference (anthropometric indicator of past nutrition and brain development) and brain size. On the other hand, intellectual quotient measured through intelligence tests (Weschler-R, or the Raven Progressives Matrices Test) has been described positively and significantly correlated with brain size measured by magnetic resonance imaging (MRI); in this respect, intellectual ability has been recognized as one of the best predictors of scholastic achievement. Considering that education is the change lever for the improvement of the quality of life and that the absolute numbers of undernourished children have been increasing in the world, is of major relevance to analyse the long-term effects of undernutrition at an early age. The investigations related to the interrelationships between nutritional status, brain development, intelligence and scholastic achievement are of greatest importance, since nutritional problems affect the lowest socioeconomic stratum with negative consequences manifested in school-age, in higher levels of school dropout, learning problems and a low percentage of students enrolling into higher education. This limits the development of people by which a clear economic benefit to increase adult productivity for government policies might be successful preventing childhood malnutrition.

  2. [Geomagnetic storm decreases coherence of electric oscillations of human brain while working at the computer].

    Science.gov (United States)

    Novik, O B; Smirnov, F A

    2013-01-01

    The effect of geomagnetic storms at the latitude of Moscow on the electric oscillations of the human brain cerebral cortex was studied. In course of electroencephalogram measurements it was shown that when the voluntary persons at the age of 18-23 years old were performing tasks using a computer during moderate magnetic storm or no later than 24 hrs after it, the value of the coherence function of electric oscillations of the human brain in the frontal and occipital areas in a range of 4.0-7.9 Hz (so-called the theta rhythm oscillations of the human brain) decreased by a factor of two or more, sometimes reaching zero, although arterial blood pressure, respiratory rate and the electrocardiogram registered during electroencephalogram measurements remained within the standard values.

  3. Who among patients with acquired brain injury returned to work after occupational rehabilitation? The rapid-return-to-work-cohort-study.

    Science.gov (United States)

    Aas, Randi Wågø; Haveraaen, Lise Aasen; Brouwers, Evelien P M; Skarpaas, Lisebet Skeie

    2017-07-20

    Acquired brain injury (ABI) is known to be severely disabling. On average, 40% of employees return to work (RTW) within two years after injury. There is, however, limited research on what might contribute to successful RTW. To examine factors that might impact the time-to first RTW for patients with ABI, participating in a RTW-program. The study was designed as a cohort study of patients on sick leave due to mild or moderate ABI (n = 137). The mean age of the patients was 51 years, and 58% were men. The most common diagnoses were stroke (75%) and traumatic brain injury (12%). Data were collected through questionnaires, and combined with register data on sickness absence. Survival analyses were used to analyse the effect of different variables on time to first RTW (full or partial), at one- and two-year follow-up. Generally, women (HR = 0.447; CI: 0.239-0.283) had higher RTW-rates than men, and patients with non-comorbid impairments returned to work earlier than patients with multiple impairments. Although not statistically significant, receiving individual consultations and participating in group-sessions were generally associated with a delayed RTW at both follow-up-times. The only service-related factor significantly associated with delayed RTW was meetings with the social insurance office (HR = 0.522; CI: 0.282-0.965), and only at one-year follow-up. Women and patients with non-comorbid impairments returned to work earlier than men and patients with multiple impairments. There seems to be an association between intense and long-lasting participation in the RTW program and prolonged time-to first-RTW, even after controlling for level of cognitive impairments and comorbidity. Implications for Rehabilitation Acquired brain injury (ABI) is known to be severely disabling, and persons with ABI often experience difficulties in regard to returning to work. This study provides information on prognostic factors that might contribute to return to work (RTW

  4. Reorganization of functional brain networks mediates the improvement of cognitive performance following real-time neurofeedback training of working memory.

    Science.gov (United States)

    Zhang, Gaoyan; Yao, Li; Shen, Jiahui; Yang, Yihong; Zhao, Xiaojie

    2015-05-01

    Working memory (WM) is essential for individuals' cognitive functions. Neuroimaging studies indicated that WM fundamentally relied on a frontoparietal working memory network (WMN) and a cinguloparietal default mode network (DMN). Behavioral training studies demonstrated that the two networks can be modulated by WM training. Different from the behavioral training, our recent study used a real-time functional MRI (rtfMRI)-based neurofeedback method to conduct WM training, demonstrating that WM performance can be significantly improved after successfully upregulating the activity of the target region of interest (ROI) in the left dorsolateral prefrontal cortex (Zhang et al., [2013]: PloS One 8:e73735); however, the neural substrate of rtfMRI-based WM training remains unclear. In this work, we assessed the intranetwork and internetwork connectivity changes of WMN and DMN during the training, and their correlations with the change of brain activity in the target ROI as well as with the improvement of post-training behavior. Our analysis revealed an "ROI-network-behavior" correlation relationship underlying the rtfMRI training. Further mediation analysis indicated that the reorganization of functional brain networks mediated the effect of self-regulation of the target brain activity on the improvement of cognitive performance following the neurofeedback training. The results of this study enhance our understanding of the neural basis of real-time neurofeedback and suggest a new direction to improve WM performance by regulating the functional connectivity in the WM related networks. © 2014 Wiley Periodicals, Inc.

  5. The early puberal brain: Work in progress. A study on genetic and hormonal influences

    NARCIS (Netherlands)

    Peper, J.S.

    2008-01-01

    The timing and speed of developmental processes during healthy puberty might be of critical importance to optimal adult functioning. Indeed, diseases that affect the brain at a young age, such as schizophrenia, are likely to have their origin in this period. The general aim of this thesis was to

  6. Return to Work and Social Communication Ability Following Severe Traumatic Brain Injury

    Science.gov (United States)

    Douglas, Jacinta M.; Bracy, Christine A.; Snow, Pamela C.

    2016-01-01

    Purpose: Return to competitive employment presents a major challenge to adults who survive traumatic brain injury (TBI). This study was undertaken to better understand factors that shape employment outcome by comparing the communication profiles and self-awareness of communication deficits of adults who return to and maintain employment with those…

  7. Overdiagnosing Vascular Dementia using Structural Brain Imaging for Dementia Work-Up

    NARCIS (Netherlands)

    Niemantsverdriet, Ellis; Feyen, Bart F. E.; Le Bastard, Nathalie; Martin, Jean-Jacques; Goeman, Johan; De Deyn, Peter Paul; Engelborghs, Sebastiaan

    2015-01-01

    Hypothesizing that non-significant cerebrovascular lesions on structural brain imaging lead to overdiagnosis of a vascular etiology of dementia as compared to autopsy-confirmed diagnosis, we set up a study including 71 patients with autopsy-confirmed diagnoses. Forty-two patients in the population

  8. Noninvasive brain stimulation to suppress craving in substance use disorders: Review of human evidence and methodological considerations for future work.

    Science.gov (United States)

    Hone-Blanchet, Antoine; Ciraulo, Domenic A; Pascual-Leone, Alvaro; Fecteau, Shirley

    2015-12-01

    Substance use disorders (SUDs) can be viewed as a pathology of neuroadaptation. The pharmacological overstimulation of neural mechanisms of reward, motivated learning and memory leads to drug-seeking behavior. A critical characteristic of SUDs is the appearance of craving, the motivated desire and urge to use, which is a main focus of current pharmacological and behavioral therapies. Recent proof-of-concept studies have tested the effects of noninvasive brain stimulation on craving. Although its mechanisms of action are not fully understood, this approach shows interesting potential in tuning down craving and possibly consumption of diverse substances. This article reviews available results on the use of repetitive transcranial magnetic stimulation (rTMS) and transcranial electrical stimulation (tES) in SUDs, specifically tobacco, alcohol and psychostimulant use disorders. We discuss several important factors that need to be addressed in future works to improve clinical assessment and effects of noninvasive brain stimulation in SUDs. Factors discussed include brain stimulation devices and parameters, study designs, brain states and subjects' characteristics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Extending brain-training to the affective domain: increasing cognitive and affective executive control through emotional working memory training.

    Directory of Open Access Journals (Sweden)

    Susanne Schweizer

    Full Text Available So-called 'brain-training' programs are a huge commercial success. However, empirical evidence regarding their effectiveness and generalizability remains equivocal. This study investigated whether brain-training (working memory [WM] training improves cognitive functions beyond the training task (transfer effects, especially regarding the control of emotional material since it constitutes much of the information we process daily. Forty-five participants received WM training using either emotional or neutral material, or an undemanding control task. WM training, regardless of training material, led to transfer gains on another WM task and in fluid intelligence. However, only brain-training with emotional material yielded transferable gains to improved control over affective information on an emotional Stroop task. The data support the reality of transferable benefits of demanding WM training and suggest that transferable gains across to affective contexts require training with material congruent to those contexts. These findings constitute preliminary evidence that intensive cognitively demanding brain-training can improve not only our abstract problem-solving capacity, but also ameliorate cognitive control processes (e.g. decision-making in our daily emotive environments.

  10. View-Independent Working Memory Representations of Artificial Shapes in Prefrontal and Posterior Regions of the Human Brain.

    Science.gov (United States)

    Christophel, Thomas B; Allefeld, Carsten; Endisch, Christian; Haynes, John-Dylan

    2017-05-13

    Traditional views of visual working memory postulate that memorized contents are stored in dorsolateral prefrontal cortex using an adaptive and flexible code. In contrast, recent studies proposed that contents are maintained by posterior brain areas using codes akin to perceptual representations. An important question is whether this reflects a difference in the level of abstraction between posterior and prefrontal representations. Here, we investigated whether neural representations of visual working memory contents are view-independent, as indicated by rotation-invariance. Using functional magnetic resonance imaging and multivariate pattern analyses, we show that when subjects memorize complex shapes, both posterior and frontal brain regions maintain the memorized contents using a rotation-invariant code. Importantly, we found the representations in frontal cortex to be localized to the frontal eye fields rather than dorsolateral prefrontal cortices. Thus, our results give evidence for the view-independent storage of complex shapes in distributed representations across posterior and frontal brain regions. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Fast learning of simple perceptual discriminations reduces brain activation in working memory and in high-level auditory regions.

    Science.gov (United States)

    Daikhin, Luba; Ahissar, Merav

    2015-07-01

    Introducing simple stimulus regularities facilitates learning of both simple and complex tasks. This facilitation may reflect an implicit change in the strategies used to solve the task when successful predictions regarding incoming stimuli can be formed. We studied the modifications in brain activity associated with fast perceptual learning based on regularity detection. We administered a two-tone frequency discrimination task and measured brain activation (fMRI) under two conditions: with and without a repeated reference tone. Although participants could not explicitly tell the difference between these two conditions, the introduced regularity affected both performance and the pattern of brain activation. The "No-Reference" condition induced a larger activation in frontoparietal areas known to be part of the working memory network. However, only the condition with a reference showed fast learning, which was accompanied by a reduction of activity in two regions: the left intraparietal area, involved in stimulus retention, and the posterior superior-temporal area, involved in representing auditory regularities. We propose that this joint reduction reflects a reduction in the need for online storage of the compared tones. We further suggest that this change reflects an implicit strategic shift "backwards" from reliance mainly on working memory networks in the "No-Reference" condition to increased reliance on detected regularities stored in high-level auditory networks.

  12. Right-sided representational neglect after left brain damage in a case without visuospatial working memory deficits.

    Science.gov (United States)

    van Dijck, Jean-Philippe; Gevers, Wim; Lafosse, Christophe; Fias, Wim

    2013-10-01

    Brain damaged patients suffering from representational neglect (RN) fail to report, orient to, or verbally describe contra-lesional elements of imagined environments or objects. So far this disorder has only been reported after right brain damage, leading to the idea that only the right hemisphere is involved in this deficit. A widely accepted account attributes RN to a lateralized impairment in the visuospatial component of working memory. So far, however, this hypothesis has not been tested in detail. In the present paper, we describe, for the first time, the case of a left brain damaged patient suffering from right-sided RN while imagining both known and new environments and objects. An in-depth evaluation of her visuospatial working memory abilities, with special focus on the presence of a lateralized deficit, did not reveal any abnormality. In sharp contrast, her ability to memorize visual information was severely compromised. The implications of these results are discussed in the light of recent insights in the neglect syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Cerebral abnormalities in cocaine abusers: Demonstration by SPECT perfusion brain scintigraphy. Work in progress

    International Nuclear Information System (INIS)

    Tumeh, S.S.; Nagel, J.S.; English, R.J.; Moore, M.; Holman, B.L.

    1990-01-01

    Single photon emission computed tomography (SPECT) perfusion brain scans with iodine-123 isopropyl iodoamphetamine (IMP) were obtained in 12 subjects who acknowledged using cocaine on a sporadic to a daily basis. The route of cocaine administration varied from nasal to intravenous. Concurrent abuse of other drugs was also reported. None of the patients were positive for human immunodeficiency virus. Brain scans demonstrated focal defects in 11 subjects, including seven who were asymptomatic, and no abnormality in one. Among the findings were scattered focal cortical deficits, which were seen in several patients and which ranged in severity from small and few to multiple and large, with a special predilection for the frontal and temporal lobes. No perfusion deficits were seen on I-123 SPECT images in five healthy volunteers. Focal alterations in cerebral perfusion are seen commonly in asymptomatic drug users, and these focal deficits are readily depicted by I-123 IMP SPECT

  14. How does stochastic resonance work within the human brain? - Psychophysics of internal and external noise

    International Nuclear Information System (INIS)

    Aihara, Takatsugu; Kitajo, Keiichi; Nozaki, Daichi; Yamamoto, Yoshiharu

    2010-01-01

    We review how research on stochastic resonance (SR) in neuroscience has evolved and point out that the previous studies have overlooked the interaction between internal and external noise. We propose a new psychometric function incorporating SR effects, and show that a Bayesian adaptive method applied to the function efficiently estimates the parameters of the function. Using this procedure in visual detection experiments, we provide significant insight into the relationship between internal and external noise in SR within the human brain.

  15. Automatic brain matter segmentation of computed tomography images using a statistical model: A tool to gain working time!

    Science.gov (United States)

    Bertè, Francesco; Lamponi, Giuseppe; Bramanti, Placido; Calabrò, Rocco S

    2015-10-01

    Brain computed tomography (CT) is useful diagnostic tool for the evaluation of several neurological disorders due to its accuracy, reliability, safety and wide availability. In this field, a potentially interesting research topic is the automatic segmentation and recognition of medical regions of interest (ROIs). Herein, we propose a novel automated method, based on the use of the active appearance model (AAM) for the segmentation of brain matter in CT images to assist radiologists in the evaluation of the images. The method described, that was applied to 54 CT images coming from a sample of outpatients affected by cognitive impairment, enabled us to obtain the generation of a model overlapping with the original image with quite good precision. Since CT neuroimaging is in widespread use for detecting neurological disease, including neurodegenerative conditions, the development of automated tools enabling technicians and physicians to reduce working time and reach a more accurate diagnosis is needed. © The Author(s) 2015.

  16. [Formula: see text]Working memory and attention in pediatric brain tumor patients treated with and without radiation therapy.

    Science.gov (United States)

    Raghubar, Kimberly P; Mahone, E Mark; Yeates, Keith Owen; Cecil, Kim M; Makola, Monwabisi; Ris, M Douglas

    2017-08-01

    Children are at risk for cognitive difficulties following the diagnosis and treatment of a brain tumor. Longitudinal studies have consistently demonstrated declines on measures of intellectual functioning, and recently it has been proposed that specific neurocognitive processes underlie these changes, including working memory, processing speed, and attention. However, a fine-grained examination of the affected neurocognitive processes is required to inform intervention efforts. Radiation therapy (RT) impacts white matter integrity, likely affecting those cognitive processes supported by distributed neural networks. This study examined working memory and attention in children during the early delayed stages of recovery following surgical resection and RT. The participants included 27 children diagnosed with pediatric brain tumor, treated with (n = 12) or without (n = 15) RT, who completed experimental and standardized measures of working memory and attention (n-back and digit span tasks). Children treated with radiation performed less well than those who did not receive radiation on the n-back measure, though performance at the 0-back level was considerably poorer than would be expected for both groups, perhaps suggesting difficulties with more basic processes such as vigilance. Along these lines, marginal differences were noted on digit span forward. The findings are discussed with respect to models of attention and working memory, and the interplay between the two.

  17. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain

    Science.gov (United States)

    Mattfeld, Aaron T.; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D.E.

    2015-01-01

    Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity. PMID:26900567

  18. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain

    Directory of Open Access Journals (Sweden)

    Aaron T. Mattfeld

    2016-01-01

    Full Text Available Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI. Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity.

  19. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain.

    Science.gov (United States)

    Mattfeld, Aaron T; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D E

    2016-01-01

    Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity.

  20. Creatine as a booster for human brain function. How might it work?

    Science.gov (United States)

    Rae, Caroline D; Bröer, Stefan

    2015-10-01

    Creatine, a naturally occurring nitrogenous organic acid found in animal tissues, has been found to play key roles in the brain including buffering energy supply, improving mitochondrial efficiency, directly acting as an anti-oxidant and acting as a neuroprotectant. Much of the evidence for these roles has been established in vitro or in pre-clinical studies. Here, we examine the roles of creatine and explore the current status of translation of this research into use in humans and the clinic. Some further possibilities for use of creatine in humans are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Working Memory and Reasoning Benefit from Different Modes of Large-scale Brain Dynamics in Healthy Older Adults.

    Science.gov (United States)

    Lebedev, Alexander V; Nilsson, Jonna; Lövdén, Martin

    2018-07-01

    Researchers have proposed that solving complex reasoning problems, a key indicator of fluid intelligence, involves the same cognitive processes as solving working memory tasks. This proposal is supported by an overlap of the functional brain activations associated with the two types of tasks and by high correlations between interindividual differences in performance. We replicated these findings in 53 older participants but also showed that solving reasoning and working memory problems benefits from different configurations of the functional connectome and that this dissimilarity increases with a higher difficulty load. Specifically, superior performance in a typical working memory paradigm ( n-back) was associated with upregulation of modularity (increased between-network segregation), whereas performance in the reasoning task was associated with effective downregulation of modularity. We also showed that working memory training promotes task-invariant increases in modularity. Because superior reasoning performance is associated with downregulation of modular dynamics, training may thus have fostered an inefficient way of solving the reasoning tasks. This could help explain why working memory training does little to promote complex reasoning performance. The study concludes that complex reasoning abilities cannot be reduced to working memory and suggests the need to reconsider the feasibility of using working memory training interventions to attempt to achieve effects that transfer to broader cognition.

  2. Effects of gamma-aminobutyric acid-modulating drugs on working memory and brain function in patients with schizophrenia.

    Science.gov (United States)

    Menzies, Lara; Ooi, Cinly; Kamath, Shri; Suckling, John; McKenna, Peter; Fletcher, Paul; Bullmore, Ed; Stephenson, Caroline

    2007-02-01

    Cognitive impairment causes morbidity in schizophrenia and could be due to abnormalities of cortical interneurons using the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). To test the predictions that cognitive and brain functional responses to GABA-modulating drugs are correlated and abnormal in schizophrenia. Pharmacological functional magnetic resonance imaging study of 2 groups, each undergoing scanning 3 times, using an N-back working memory task, after placebo, lorazepam, or flumazenil administration. Eleven patients with chronic schizophrenia were recruited from a rehabilitation service, and 11 healthy volunteers matched for age, sex, and premorbid IQ were recruited from the local community. Intervention Participants received 2 mg of oral lorazepam, a 0.9-mg intravenous flumazenil bolus followed by a flumazenil infusion of 0.0102 mg/min, or oral and intravenous placebo. Working memory performance was summarized by the target discrimination index at several levels of difficulty. Increasing (or decreasing) brain functional activation in response to increasing task difficulty was summarized by the positive (or negative) load response. Lorazepam impaired performance and flumazenil enhanced it; these cognitive effects were more salient in schizophrenic patients. Functional magnetic resonance imaging demonstrated positive load response in a frontoparietal system and negative load response in the temporal and posterior cingulate regions; activation of the frontoparietal cortex was positively correlated with deactivation of the temporocingulate cortex. After placebo administration, schizophrenic patients had abnormally attenuated activation of the frontoparietal cortex and deactivation of the temporocingulate cortex; this pattern was mimicked in healthy volunteers and exacerbated in schizophrenic patients by lorazepam. However, in schizophrenic patients, flumazenil enhanced deactivation of the temporocingulate and activation of the anterior cingulate

  3. Working memory load related modulations of the oscillatory brain activity. N-back ERD/ERS study

    International Nuclear Information System (INIS)

    Nakao, Yoshiaki; Tamura, Toshiyo; Kodabashi, Atsushi; Fujimoto, Toshiro; Yarita, Masaru

    2011-01-01

    In recent cognitive neuroscience, a lot of studies of the human working memory were examined, and electroencephalography (EEG) measurements during n-back task were often used. However, they were almost studied by event related potentials (ERP) analysis. In the ERP study, time-locked components can be elicited, but non time-locked components such as the modulated brain oscillatory activity might be lost by an averaging procedure. To elucidate the contribution of the modulations of the brain oscillatory activity to the human working memory, we examined event related desynchronization (ERD)/event related synchronization (ERS) analysis on the source waveforms during n-back task. Source waveforms were calculated from a source model which was constructed with the sources seeded from fMRI meta-analysis of n-back task and additional sources in the orbitofrontal cortex and the visual cortex estimated with P100 and P360 components in the n-back ERP. Our results suggested the network which included the prefrontal cortex and the parietal lobe had a contribution to human working memory process, and it was mediated by theta oscillatory activity. (author)

  4. Work first then play: Prior task difficulty increases motivation-related brain responses in a risk game.

    Science.gov (United States)

    Schmidt, Barbara; Mussel, Patrick; Osinsky, Roman; Rasch, Björn; Debener, Stefan; Hewig, Johannes

    2017-05-01

    Task motivation depends on what we did before. A recent theory differentiates between tasks that we want to do and tasks that we have to do. After a have-to task, motivation shifts towards a want-to task. We measured this shift of motivation via brain responses to monetary feedback in a risk game that was used as want-to task in our study. We tested 20 healthy participants that were about 28 years old in a within-subjects design. Participants worked on a Stroop task (have-to task) or an easier version of the Stroop task as a control condition and played a risk game afterwards (want-to task). After the Stroop task, brain responses to monetary feedback in the risk game were larger compared to the easier control task, especially for feedback indicating higher monetary rewards. We conclude that higher amplitudes of feedback-related brain responses in the risk game reflect the shift of motivation after a have-to task towards a want-to task. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A Clarion Call for Social Work Attention: Brothers and Sisters of Persons With Acquired Brain Injury in the United States.

    Science.gov (United States)

    Degeneffe, Charles Edmund

    2016-08-11

    This article presents a clarion call for increased social work attention to the needs of siblings of persons with acquired brain injury (ABI) in the United States. The article overviews how siblings are psychosocially affected, how they provide care to the injured brothers and sisters, and how they personally develop as a result of their experiences. The article highlights the fact that social workers and other professionals often overlook the needs of siblings of persons with ABI and makes an appeal for social workers to advance clinical practice and research to benefit this often neglected population.

  6. Specialization in the default mode: Task-induced brain deactivations dissociate between visual working memory and attention.

    Science.gov (United States)

    Mayer, Jutta S; Roebroeck, Alard; Maurer, Konrad; Linden, David E J

    2010-01-01

    The idea of an organized mode of brain function that is present as default state and suspended during goal-directed behaviors has recently gained much interest in the study of human brain function. The default mode hypothesis is based on the repeated observation that certain brain areas show task-induced deactivations across a wide range of cognitive tasks. In this event-related functional resonance imaging study we tested the default mode hypothesis by comparing common and selective patterns of BOLD deactivation in response to the demands on visual attention and working memory (WM) that were independently modulated within one task. The results revealed task-induced deactivations within regions of the default mode network (DMN) with a segregation of areas that were additively deactivated by an increase in the demands on both attention and WM, and areas that were selectively deactivated by either high attentional demand or WM load. Attention-selective deactivations appeared in the left ventrolateral and medial prefrontal cortex and the left lateral temporal cortex. Conversely, WM-selective deactivations were found predominantly in the right hemisphere including the medial-parietal, the lateral temporo-parietal, and the medial prefrontal cortex. Moreover, during WM encoding deactivated regions showed task-specific functional connectivity. These findings demonstrate that task-induced deactivations within parts of the DMN depend on the specific characteristics of the attention and WM components of the task. The DMN can thus be subdivided into a set of brain regions that deactivate indiscriminately in response to cognitive demand ("the core DMN") and a part whose deactivation depends on the specific task. 2009 Wiley-Liss, Inc.

  7. Brain activity related to working memory for temporal order and object information.

    Science.gov (United States)

    Roberts, Brooke M; Libby, Laura A; Inhoff, Marika C; Ranganath, Charan

    2017-06-08

    Maintaining items in an appropriate sequence is important for many daily activities; however, remarkably little is known about the neural basis of human temporal working memory. Prior work suggests that the prefrontal cortex (PFC) and medial temporal lobe (MTL), including the hippocampus, play a role in representing information about temporal order. The involvement of these areas in successful temporal working memory, however, is less clear. Additionally, it is unknown whether regions in the PFC and MTL support temporal working memory across different timescales, or at coarse or fine levels of temporal detail. To address these questions, participants were scanned while completing 3 working memory task conditions (Group, Position and Item) that were matched in terms of difficulty and the number of items to be actively maintained. Group and Position trials probed temporal working memory processes, requiring the maintenance of hierarchically organized coarse and fine temporal information, respectively. To isolate activation related to temporal working memory, Group and Position trials were contrasted against Item trials, which required detailed working memory maintenance of visual objects. Results revealed that working memory encoding and maintenance of temporal information relative to visual information was associated with increased activation in dorsolateral PFC (DLPFC), and perirhinal cortex (PRC). In contrast, maintenance of visual details relative to temporal information was characterized by greater activation of parahippocampal cortex (PHC), medial and anterior PFC, and retrosplenial cortex. In the hippocampus, a dissociation along the longitudinal axis was observed such that the anterior hippocampus was more active for working memory encoding and maintenance of visual detail information relative to temporal information, whereas the posterior hippocampus displayed the opposite effect. Posterior parietal cortex was the only region to show sensitivity to temporal

  8. Brain Diseases

    Science.gov (United States)

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  9. Structural maturation and brain activity predict future working memory capacity during childhood development.

    Science.gov (United States)

    Ullman, Henrik; Almeida, Rita; Klingberg, Torkel

    2014-01-29

    Human working memory capacity develops during childhood and is a strong predictor of future academic performance, in particular, achievements in mathematics and reading. Predicting working memory development is important for the early identification of children at risk for poor cognitive and academic development. Here we show that structural and functional magnetic resonance imaging data explain variance in children's working memory capacity 2 years later, which was unique variance in addition to that predicted using cognitive tests. While current working memory capacity correlated with frontoparietal cortical activity, the future capacity could be inferred from structure and activity in basal ganglia and thalamus. This gives a novel insight into the neural mechanisms of childhood development and supports the idea that neuroimaging can have a unique role in predicting children's cognitive development.

  10. Biographical disruption, adjustment and reconstruction of everyday occupations and work participation after mild traumatic brain injury. A focus group study.

    Science.gov (United States)

    Sveen, Unni; Søberg, Helene Lundgaard; Østensjø, Sigrid

    2016-11-01

    To explore traumatic brain injury (TBI) as a biographical disruption and to study the reconstruction of everyday occupations and work participation among individuals with mild TBI. Seven focus groups were conducted with 12 women and 8 men (22-60 years) who had sustained mild TBI and participated in a return-to-work program. Interviews were analyzed using qualitative content analysis. Four interrelated themes emerged: disruption of occupational capacity and balance; changes in self-perceptions; experience of time; and occupational adjustment and reconstruction. The meaning of the impairments lies in their impact on the individual's everyday occupations. The abandonment of meaningful daily occupations and the feeling of not recognizing oneself were experienced as threats to the sense of self. Successful integration of the past, present and future was paramount to continuing life activities. The unpredictability of the future seemed to permeate the entire process of adjustment and reconstruction of daily life. Our findings show that the concept of time is important in understanding and supporting the reconstruction of daily life after TBI. The fundamental work of rehabilitation is to ameliorate the disruptions caused by the injury, restoring a sense of personal narrative and supporting the ability to move forward with life. Implications for Rehabilitation Individuals with a protracted recovery after a mild traumatic brain injury must reconstruct a new way of being and acting in the world to achieve biographical continuity. The perceived anxiety regarding changes in self and occupational identity, as well as loss of control over the future, can be attenuated through informational sessions during the hospital stay and at follow-up visits. The significant personal costs of returning to full-time employment too early indicate the need for early and ongoing vocational support in achieving a successful return to work.

  11. Persistence of Gender Related-Effects on Visuo-Spatial and Verbal Working Memory in Right Brain-Damaged Patients

    Science.gov (United States)

    Piccardi, Laura; Matano, Alessandro; D’Antuono, Giovanni; Marin, Dario; Ciurli, Paola; Incoccia, Chiara; Verde, Paola; Guariglia, Paola

    2016-01-01

    The aim of the present study was to verify if gender differences in verbal and visuo-spatial working memory would persist following right cerebral lesions. To pursue our aim we investigated a large sample (n. 346) of right brain-damaged patients and healthy participants (n. 272) for the presence of gender effects in performing Corsi and Digit Test. We also assessed a subgroup of patients (n. 109) for the nature (active vs. passive) of working memory tasks. We tested working memory (WM) administering the Corsi Test (CBT) and the Digit Span (DS) using two different versions: forward (fCBT and fDS), subjects were required to repeat stimuli in the same order that they were presented; and backward (bCBT and bDS), subjects were required to repeat stimuli in the opposite order of presentation. In this way, passive storage and active processing of working memory were assessed. Our results showed the persistence of gender-related effects in spite of the presence of right brain lesions. We found that men outperformed women both in CBT and DS, regardless of active and passive processing of verbal and visuo-spatial stimuli. The presence of visuo-spatial disorders (i.e., hemineglect) can affect the performance on Corsi Test. In our sample, men and women were equally affected by hemineglect, therefore it did not mask the gender effect. Generally speaking, the persistence of the men’s superiority in visuo-spatial tasks may be interpreted as a protective factor, at least for men, within other life factors such as level of education or kind of profession before retirement. PMID:27445734

  12. Persistence of Gender Related-Effects on Visuo-Spatial and Verbal Working Memory in Right Brain-Damaged Patients.

    Science.gov (United States)

    Piccardi, Laura; Matano, Alessandro; D'Antuono, Giovanni; Marin, Dario; Ciurli, Paola; Incoccia, Chiara; Verde, Paola; Guariglia, Paola

    2016-01-01

    The aim of the present study was to verify if gender differences in verbal and visuo-spatial working memory would persist following right cerebral lesions. To pursue our aim we investigated a large sample (n. 346) of right brain-damaged patients and healthy participants (n. 272) for the presence of gender effects in performing Corsi and Digit Test. We also assessed a subgroup of patients (n. 109) for the nature (active vs. passive) of working memory tasks. We tested working memory (WM) administering the Corsi Test (CBT) and the Digit Span (DS) using two different versions: forward (fCBT and fDS), subjects were required to repeat stimuli in the same order that they were presented; and backward (bCBT and bDS), subjects were required to repeat stimuli in the opposite order of presentation. In this way, passive storage and active processing of working memory were assessed. Our results showed the persistence of gender-related effects in spite of the presence of right brain lesions. We found that men outperformed women both in CBT and DS, regardless of active and passive processing of verbal and visuo-spatial stimuli. The presence of visuo-spatial disorders (i.e., hemineglect) can affect the performance on Corsi Test. In our sample, men and women were equally affected by hemineglect, therefore it did not mask the gender effect. Generally speaking, the persistence of the men's superiority in visuo-spatial tasks may be interpreted as a protective factor, at least for men, within other life factors such as level of education or kind of profession before retirement.

  13. The effects of working memory on brain-computer interface performance.

    Science.gov (United States)

    Sprague, Samantha A; McBee, Matthew T; Sellers, Eric W

    2016-02-01

    The purpose of the present study is to evaluate the relationship between working memory and BCI performance. Participants took part in two separate sessions. The first session consisted of three computerized tasks. The List Sorting Working Memory Task was used to measure working memory, the Picture Vocabulary Test was used to measure general intelligence, and the Dimensional Change Card Sort Test was used to measure executive function, specifically cognitive flexibility. The second session consisted of a P300-based BCI copy-spelling task. The results indicate that both working memory and general intelligence are significant predictors of BCI performance. This suggests that working memory training could be used to improve performance on a BCI task. Working memory training may help to reduce a portion of the individual differences that exist in BCI performance allowing for a wider range of users to successfully operate the BCI system as well as increase the BCI performance of current users. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Use of an eight-arm radial water maze to assess working and reference memory following neonatal brain injury.

    Science.gov (United States)

    Penley, Stephanie C; Gaudet, Cynthia M; Threlkeld, Steven W

    2013-12-04

    Working and reference memory are commonly assessed using the land based radial arm maze. However, this paradigm requires pretraining, food deprivation, and may introduce scent cue confounds. The eight-arm radial water maze is designed to evaluate reference and working memory performance simultaneously by requiring subjects to use extra-maze cues to locate escape platforms and remedies the limitations observed in land based radial arm maze designs. Specifically, subjects are required to avoid the arms previously used for escape during each testing day (working memory) as well as avoid the fixed arms, which never contain escape platforms (reference memory). Re-entries into arms that have already been used for escape during a testing session (and thus the escape platform has been removed) and re-entries into reference memory arms are indicative of working memory deficits. Alternatively, first entries into reference memory arms are indicative of reference memory deficits. We used this maze to compare performance of rats with neonatal brain injury and sham controls following induction of hypoxia-ischemia and show significant deficits in both working and reference memory after eleven days of testing. This protocol could be easily modified to examine many other models of learning impairment.

  15. Improving everyday memory performance after acquired brain injury: An RCT on recollection and working memory training.

    Science.gov (United States)

    Richter, Kim Merle; Mödden, Claudia; Eling, Paul; Hildebrandt, Helmut

    2018-04-26

    To show the effectiveness of a combined recognition and working memory training on everyday memory performance in patients suffering from organic memory disorders. In this double-blind, randomized controlled Study 36 patients with organic memory impairments, mainly attributable to stroke, were assigned to either the experimental or the active control group. In the experimental group a working memory training was combined with a recollection training based on the repetition-lag procedure. Patients in the active control group received the memory therapy usually provided in the rehabilitation center. Both groups received nine hours of therapy. Prior (T0) and subsequent (T1) to the therapy, patients were evaluated on an everyday memory test (EMT) as well as on a neuropsychological test battery. Based on factor analysis of the neuropsychological test scores at T0 we calculated composite scores for working memory, verbal learning and word fluency. After treatment, the intervention group showed a significantly greater improvement for WM performance compared with the active control group. More importantly, performance on the EMT also improved significantly in patients receiving the recollection and working memory training compared with patients with standard memory training. Our results show that combining working memory and recollection training significantly improves performance on everyday memory tasks, demonstrating far transfer effects. The present study argues in favor of a process-based approach for treating memory impairments. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. Non-invasive brain stimulation targeting the right fusiform gyrus selectively increases working memory for faces.

    Science.gov (United States)

    Brunyé, Tad T; Moran, Joseph M; Holmes, Amanda; Mahoney, Caroline R; Taylor, Holly A

    2017-04-01

    The human extrastriate cortex contains a region critically involved in face detection and memory, the right fusiform gyrus. The present study evaluated whether transcranial direct current stimulation (tDCS) targeting this anatomical region would selectively influence memory for faces versus non-face objects (houses). Anodal tDCS targeted the right fusiform gyrus (Brodmann's Area 37), with the anode at electrode site PO10, and cathode at FP2. Two stimulation conditions were compared in a repeated-measures design: 0.5mA versus 1.5mA intensity; a separate control group received no stimulation. Participants completed a working memory task for face and house stimuli, varying in memory load from 1 to 4 items. Individual differences measures assessed trait-based differences in facial recognition skills. Results showed 1.5mA intensity stimulation (versus 0.5mA and control) increased performance at high memory loads, but only with faces. Lower overall working memory capacity predicted a positive impact of tDCS. Results provide support for the notion of functional specialization of the right fusiform regions for maintaining face (but not non-face object) stimuli in working memory, and further suggest that low intensity electrical stimulation of this region may enhance demanding face working memory performance particularly in those with relatively poor baseline working memory skills. Published by Elsevier Inc.

  17. The First Six Years of Building and Implementing a Return-to-Work Service for Patients with Acquired Brain Injury. The Rapid-Return-to-Work-Cohort-Study.

    Science.gov (United States)

    Haveraaen, L; Brouwers, E P M; Sveen, U; Skarpaas, L S; Sagvaag, H; Aas, R W

    2017-12-01

    Background and objective Despite large activity worldwide in building and implementing new return-to-work (RTW) services, few studies have focused on how such implementation processes develop. The aim of this study was to examine the development in patient and service characteristics the first six years of implementing a RTW service for persons with acquired brain injury (ABI). Methods The study was designed as a cohort study (n=189). Data were collected by questionnaires, filled out by the service providers. The material was divided into, and analyzed with, two implementation phases. Non-parametrical statistical methods and hierarchical regression analyses were applied on the material. Results The number of patients increased significantly, and the patient group became more homogeneous. Both the duration of the service, and the number of consultations and group session days were significantly reduced. Conclusion The patient group became more homogenous, but also significantly larger during the first six years of building the RTW service. At the same time, the duration of the service decreased. This study therefore questions if there is a lack of consensus on the intensity of work rehabilitation for this group.

  18. Cognitive factors shape brain networks for auditory skills: spotlight on auditory working memory

    Science.gov (United States)

    Kraus, Nina; Strait, Dana; Parbery-Clark, Alexandra

    2012-01-01

    Musicians benefit from real-life advantages such as a greater ability to hear speech in noise and to remember sounds, although the biological mechanisms driving such advantages remain undetermined. Furthermore, the extent to which these advantages are a consequence of musical training or innate characteristics that predispose a given individual to pursue music training is often debated. Here, we examine biological underpinnings of musicians’ auditory advantages and the mediating role of auditory working memory. Results from our laboratory are presented within a framework that emphasizes auditory working memory as a major factor in the neural processing of sound. Within this framework, we provide evidence for music training as a contributing source of these abilities. PMID:22524346

  19. Alpha desynchronization/synchronization during working memory testing is compromised in acute mild traumatic brain injury (mTBI).

    Science.gov (United States)

    Arakaki, Xianghong; Shoga, Michael; Li, Lianyang; Zouridakis, George; Tran, Thao; Fonteh, Alfred N; Dawlaty, Jessica; Goldweber, Robert; Pogoda, Janice M; Harrington, Michael G

    2018-01-01

    Diagnosing and monitoring recovery of patients with mild traumatic brain injury (mTBI) is challenging because of the lack of objective, quantitative measures. Diagnosis is based on description of injuries often not witnessed, subtle neurocognitive symptoms, and neuropsychological testing. Since working memory (WM) is at the center of cognitive functions impaired in mTBI, this study was designed to define objective quantitative electroencephalographic (qEEG) measures of WM processing that may correlate with cognitive changes associated with acute mTBI. First-time mTBI patients and mild peripheral (limb) trauma controls without head injury were recruited from the emergency department. WM was assessed by a continuous performance task (N-back). EEG recordings were obtained during N-back testing on three occasions: within five days, two weeks, and one month after injury. Compared with controls, mTBI patients showed abnormal induced and evoked alpha activity including event-related desynchronization (ERD) and synchronization (ERS). For induced alpha power, TBI patients had excessive frontal ERD on their first and third visit. For evoked alpha, mTBI patients had lower parietal ERD/ERS at the second and third visits. These exploratory qEEG findings offer new and non-invasive candidate measures to characterize the evolution of injury over the first month, with potential to provide much-needed objective measures of brain dysfunction to diagnose and monitor the consequences of mTBI.

  20. Sustained maintenance of somatotopic information in brain regions recruited by tactile working memory

    OpenAIRE

    Katus, Tobias; Muller, M.M.; Eimer, Martin

    2015-01-01

    To adaptively guide ongoing behavior, representations in working memory (WM) often have to be modified in line with changing task demands. We used event-related potentials (ERPs) to demonstrate that tactile WM representations are stored in modality-specific cortical regions, that the goal-directed modulation of these representations is mediated through hemispheric-specific activation of somatosensory areas, and that the rehearsal of somatotopic coordinates in memory is accomplished by modalit...

  1. Dynamics of brain activity underlying working memory for music in a naturalistic condition

    OpenAIRE

    Burunat Pérez, Iballa

    2012-01-01

    Working memory (WM) is at the core of any cognitive function as it is necessary for the integration of information over time. Despite WM’s critical role in high-level cognitive functions, its implementation in the neural tissue is poorly understood. Preliminary studies on auditory WM show differences between linguistic and musical memory, leading to the speculation of specific neural networks encoding memory for music. Moreover, in neuroscience WM has not been studied in naturalistic listenin...

  2. Deep brain stimulation of the subthalamic nucleus alters frontal activity during spatial working memory maintenance of patients with Parkinson's disease.

    Science.gov (United States)

    Mayer, Jutta S; Neimat, Joseph; Folley, Bradley S; Bourne, Sarah K; Konrad, Peter E; Charles, David; Park, Sohee

    2016-08-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves the motor symptoms of Parkinson's disease (PD). The STN may represent an important relay station not only in the motor but also the associative cortico-striato-thalamocortical pathway. Therefore, STN stimulation may alter cognitive functions, such as working memory (WM). We examined cortical effects of STN-DBS on WM in early PD patients using functional near-infrared spectroscopy. The effects of dopaminergic medication on WM were also examined. Lateral frontal activity during WM maintenance was greater when patients were taking dopaminergic medication. STN-DBS led to a trend-level worsening of WM performance, accompanied by increased lateral frontal activity during WM maintenance. These findings suggest that STN-DBS in PD might lead to functional modifications of the basal ganglia-thalamocortical pathway during WM maintenance.

  3. Functional brain mapping using H215O positron emission tomography (II): mapping of human working memory

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Lee, Dong Soo; Lee, Sang Kun; Nam, Hyun Woo; Kim, Seok Ki; Park, Kwang Suk; Jeong, Jae Min; Chung, June Key; Lee, Myung Chul

    1998-01-01

    To localize and compare the neural basis of verbal and visual human working memory, we performed functional activation study using H 2 15 O PET. Repeated H 2 15 O PET scans with one control and three different activation tasks were performed on six right-handed normal volunteers. Each activation task was composed of 13 matching trials. On each trial, four targets, a fixation dot and a prove were presented sequentially and subject's tasks was to press a response button to indicate whether or not the prove was one of the previous targets. Short meaningful Korean words, simple drawings and monochromic pictures of human faces were used as matching objects for verbal or visual memory. All the images were spatially normalized and the differences between control and activation states were statistically analyzed using SPM96. Statistical analysis of verbal memory activation with short words showed activation in the left Broca's area, premotor cortex, cerebellum and right cingulate gyrus. In verbal memory with simple drawing, activation was shown in the larger regions including where activated with short words and left superior temporal cortex, basal ganglia, thalamus, prefrontal cortex, anterior portion of right superior temporal gyrus and right infero-lateral frontal cortex. On the other hand, the visual memory task activated predominantly right-sided structures, especially inferior frontal cortex, supplementary motor cortex and superior parietal cortex. The results are consistent with the hypothesis of the laterality and dissociation of the verbal and visual working memory from the invasive electrophysiological studies and emphasize the pivotal role of frontal cortex and cingulate gyrus in working memory system

  4. Impact of real-time fMRI working memory feedback training on the interactions between three core brain networks.

    Science.gov (United States)

    Zhang, Qiushi; Zhang, Gaoyan; Yao, Li; Zhao, Xiaojie

    2015-01-01

    Working memory (WM) refers to the temporary holding and manipulation of information during the performance of a range of cognitive tasks, and WM training is a promising method for improving an individual's cognitive functions. Our previous work demonstrated that WM performance can be improved through self-regulation of dorsal lateral prefrontal cortex (PFC) activation using real-time functional magnetic resonance imaging (rtfMRI), which enables individuals to control local brain activities volitionally according to the neurofeedback. Furthermore, research concerning large-scale brain networks has demonstrated that WM training requires the engagement of several networks, including the central executive network (CEN), the default mode network (DMN) and the salience network (SN), and functional connectivity within the CEN and DMN can be changed by WM training. Although a switching role of the SN between the CEN and DMN has been demonstrated, it remains unclear whether WM training can affect the interactions between the three networks and whether a similar mechanism also exists during the training process. In this study, we investigated the dynamic functional connectivity between the three networks during the rtfMRI feedback training using independent component analysis (ICA) and correlation analysis. The results indicated that functional connectivity within and between the three networks were significantly enhanced by feedback training, and most of the changes were associated with the insula and correlated with behavioral improvements. These findings suggest that the insula plays a critical role in the reorganization of functional connectivity among the three networks induced by rtfMRI training and in WM performance, thus providing new insights into the mechanisms of high-level functions and the clinical treatment of related functional impairments.

  5. NOS1 ex1f-VNTR polymorphism influences prefrontal brain oxygenation during a working memory task.

    Science.gov (United States)

    Kopf, Juliane; Schecklmann, Martin; Hahn, Tim; Dresler, Thomas; Dieler, Alica C; Herrmann, Martin J; Fallgatter, Andreas J; Reif, Andreas

    2011-08-15

    Nitric oxide (NO) synthase produces NO, which serves as first and second messenger in neurons, where the protein is encoded by the NOS1 gene. A functional variable number of tandem repeats (VNTR) polymorphism in the promoter region of the alternative first exon 1f of NOS1 is associated with various functions of human behavior, for example increased impulsivity, while another, non-functional variant was linked to decreased verbal working memory and a heightened risk for schizophrenia. We therefore investigated the influence of NOS1 ex 1f-VNTR on working memory function as reflected by both behavioral measures and prefrontal oxygenation. We hypothesized that homozygous short allele carriers exhibit altered brain oxygenation in task-related areas, namely the dorsolateral and ventrolateral prefrontal cortex and the parietal cortex. To this end, 56 healthy subjects were stratified into a homozygous long allele group and a homozygous short allele group comparable for age, sex and intelligence. All subjects completed a letter n-back task (one-, two-, and three-back), while concentration changes of oxygenated (O(2)Hb) hemoglobin in the prefrontal cortex were measured with functional near-infrared spectroscopy (fNIRS). We found load-associated O(2)Hb increases in the prefrontal and parts of the parietal cortex. Significant load-associated oxygenation differences between the two genotype groups could be shown for the dorsolateral prefrontal cortex and the parietal cortex. Specifically, short allele carriers showed a significantly larger increase in oxygenation in all three n-back tasks. This suggests a potential compensatory mechanism, with task-related brain regions being more active in short allele carriers to compensate for reduced NOS1 expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. White matter integrity of the medial forebrain bundle and attention and working memory deficits following traumatic brain injury.

    Science.gov (United States)

    Owens, Jacqueline A; Spitz, Gershon; Ponsford, Jennie L; Dymowski, Alicia R; Ferris, Nicholas; Willmott, Catherine

    2017-02-01

    The medial forebrain bundle (MFB) contains ascending catecholamine fibers that project to the prefrontal cortex (PFC). Damage to these fibers following traumatic brain injury (TBI) may alter extracellular catecholamine levels in the PFC and impede attention and working memory ability. This study investigated white matter microstructure of the medial MFB, specifically the supero-lateral branch (slMFB), following TBI, and its association with performance on attention and working memory tasks. Neuropsychological measures of attention and working memory were administered to 20 moderate-severe participants with TBI (posttraumatic amnesia M  = 40.05 ± 37.10 days, median time since injury 10.48 months, range 3.72-87.49) and 20 healthy controls. Probabilistic tractography was used to obtain fractional anisotropy (FA) and mean diffusivity (MD) values for 17 participants with TBI and 20 healthy controls. When compared to controls, participants with TBI were found to have significantly lower FA ( p  attention task, n -back, and Symbol Digit Modalities Test. This study was the first to demonstrate microstructural white matter damage within the slMFB following TBI. However, no evidence was found for an association of alterations to this tract and performance on attentional tasks.

  7. Effects of subthalamic nucleus deep brain stimulation on emotional working memory capacity and mood in patients with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Merkl A

    2017-06-01

    Full Text Available Angela Merkl,1,2 Eva Röck,1 Tanja Schmitz-Hübsch,1,3 Gerd-Helge Schneider,4 Andrea A Kühn1,3,5 1Department of Neurology, Charité – University Medicine Berlin, Campus Virchow Klinikum, 2Department of Psychiatry and Psychotherapy, Charité – University Medicine Berlin, Campus Benjamin Franklin, 3NeuroCure, Charité – University Medicine Berlin, 4Department of Neurosurgery, Charité – University Medicine Berlin, Campus Virchow Klinikum, 5Berlin School of Mind and Brain, Charité – University Medicine Berlin, Berlin, Germany Background: In Parkinson’s disease (PD, cognitive symptoms and mood changes may be even more distressing for the patient than motor symptoms.Objective: Our aim was to determine the effects of bilateral subthalamic nucleus deep brain stimulation (STN-DBS on working memory (WM and mood.Methods: Sixteen patients with PD were assessed with STN-DBS switched on (DBS-ON and with dopaminergic treatment (Med-ON compared to switched off (DBS-OFF and without dopaminergic treatment (Med-OFF. The primary outcome measures were a Visual Analog Mood Scale (VAMS and an emotional 2-back WM task at 12 months after DBS in the optimal DBS-ON/Med-ON setting compared to DBS-OFF/Med-OFF.Results: Comparison of DBS-OFF/Med-OFF to DBS-ON/Med-ON revealed a significant increase in alertness (meanoff/off =51.59±24.54; meanon/on =72.75; P=0.016 and contentedness (meanoff/off =38.73±24.41; meanon/on =79.01±17.66; P=0.001, n=16, and a trend for reduction in sedation (P=0.060, which was related to stimulation as shown in a subgroup of seven patients. The N-back task revealed a significant increase in accuracy with DBS-ON/Med-ON compared to DBS-OFF/Med-OFF (82.0% vs 76.0%, respectively (P=0.044, regardless of stimulus valence.Conclusion: In line with previous studies, we found that patients rated themselves subjectively as more alert, content, and less sedated during short-term DBS-ON. Accuracy in the WM task increased with the combination of

  8. Effects of tolcapone on working memory and brain activity in abstinent smokers: A proof-of-concept study

    Science.gov (United States)

    Ashare, Rebecca L.; Wileyto, E. Paul; Ruparel, Kosha; Goelz, Patricia M.; Hopson, Ryan D.; Valdez, Jeffrey N.; Gur, Ruben C.; Loughead, James; Lerman, Caryn

    2014-01-01

    Background Dopamine levels in the prefrontal cortex (PFC) are thought to play an important role in cognitive function and nicotine dependence. The catechol-O-methyltransferase (COMT) inhibitor tolcapone, an FDA-approved treatment for Parkinson’s disease, increases prefrontal dopamine levels, with cognitive benefits that may vary by COMT genotype. We tested whether tolcapone alters working memory-related brain activity and performance in abstinent smokers. Methods In this double-blind crossover study, 20 smokers completed 8 days of treatment with tolcapone and placebo. In both medication periods, smokers completed blood oxygen level-dependent (BOLD) fMRI scans while performing a working memory N-back task after 24 h of abstinence. Smokers were genotyped prospectively for the COMT val158met polymorphism for exploratory analysis. Results Compared to placebo, tolcapone modestly improved accuracy (p = 0.017) and enhanced suppression of activation in the ventromedial prefrontal cortex (vmPFC) (p = 0.002). There were no effects of medication in other a priori regions of interest (dorsolateral PFC, dorsal cingulate/medial prefrontal cortex, or posterior cingulate cortex). Exploratory analyses suggested that tolcapone led to a decrease in BOLD signal in several regions among smokers with val/val genotypes, but increased or remained unchanged among met allele carriers. Tolcapone did not attenuate craving, mood, or withdrawal symptoms compared to placebo. Conclusions Data from this proof-of-concept study do not provide strong support for further evaluation of COMT inhibitors as smoking cessation aids. PMID:24095246

  9. The effects of nicotine and non-nicotine smoking factors on working memory and associated brain function.

    Science.gov (United States)

    McClernon, Francis Joseph; Froeliger, Brett; Rose, Jed E; Kozink, Rachel V; Addicott, Merideth A; Sweitzer, Maggie M; Westman, Eric C; Van Wert, Dana M

    2016-07-01

    Smoking abstinence impairs executive function, which may promote continued smoking behavior and relapse. The differential influence of nicotine and non-nicotine (i.e. sensory, motor) smoking factors and related neural substrates is not known. In a fully factorial, within-subjects design, 33 smokers underwent fMRI scanning following 24 hours of wearing a nicotine or placebo patch while smoking very low nicotine content cigarettes or remaining abstinent from smoking. During scanning, blood oxygenation level-dependent (BOLD) signal was acquired while participants performed a verbal N-back task. Following 24-hour placebo (versus nicotine) administration, accuracy on the N-back task was significantly worse and task-related BOLD signal lower in dorsomedial frontal cortex. These effects were observed irrespective of smoking. Our data provide novel evidence that abstinence-induced deficits in working memory and changes in underlying brain function are due in large part to abstinence from nicotine compared with non-nicotine factors. This work has implications both for designing interventions that target abstinence-induced cognitive deficits and for nicotine-reduction policy. © 2015 Society for the Study of Addiction.

  10. Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed.

    Science.gov (United States)

    Posthuma, Daniëlle; Baaré, Wim F C; Hulshoff Pol, Hilleke E; Kahn, René S; Boomsma, Dorret I; De Geus, Eco J C

    2003-04-01

    We recently showed that the correlation of gray and white matter volume with full scale IQ and the Working Memory dimension are completely mediated by common genetic factors (Posthuma et al., 2002). Here we examine whether the other WAIS III dimensions (Verbal Comprehension, Perceptual Organization, Processing Speed) are also related to gray and white matter volume, and whether any of the dimensions are related to cerebellar volume. Two overlapping samples provided 135 subjects from 60 extended twin families for whom both MRI scans and WAIS III data were available. All three brain volumes are related to Working Memory capacity (r = 0.27). This phenotypic correlation is completely due to a common underlying genetic factor. Processing Speed was genetically related to white matter volume (r(g) = 0.39). Perceptual Organization was both genetically (r(g) = 0.39) and environmentally (r(e) = -0.71) related to cerebellar volume. Verbal Comprehension was not related to any of the three brain volumes. It is concluded that brain volumes are genetically related to intelligence which suggests that genes that influence brain volume may also be important for intelligence. It is also noted however, that the direction of causation (i.e., do genes influence brain volume which in turn influences intelligence, or alternatively, do genes influence intelligence which in turn influences brain volume), or the presence or absence of pleiotropy has not been resolved yet.

  11. Frequency-dependent brain regional homogeneity alterations in patients with mild cognitive impairment during working memory state relative to resting state

    Directory of Open Access Journals (Sweden)

    Pengyun eWang

    2016-03-01

    Full Text Available Several studies have reported working memory deficits in patients with mild cognitive impairment (MCI. However, previous studies investigating the neural mechanisms of MCI have primarily focused on brain activity alterations during working memory tasks. No study to date has compared brain network alterations in the working memory state between MCI patients and normal control subjects. Therefore, using the index of regional homogeneity (ReHo, we explored brain network impairments in MCI patients during a working memory task relative to the resting state, and identified frequency-dependent effects in separate frequency bands.Our results indicate that, in MCI patients, ReHo is altered in the posterior cingulate cortex in the slow-3 band (0.073–0.198 Hz, and in the bottom of the right occipital lobe and part of the right cerebellum, the right thalamus, a diffusing region in the bilateral prefrontal cortex, the left and right parietal-occipital regions, and the right angular gyrus in the slow-5 band (0.01–0.027 Hz. Furthermore, in normal controls, the value of ReHo in clusters belonging to the default mode network decreased, while the value of ReHo in clusters belonging to the attentional network increased during the task state. However, this pattern was reversed in MCI patients, and was associated with decreased working memory performance. In addition, we identified altered functional connectivity of the abovementioned regions with other parts of the brain in MCI patients.This is the first study to compare frequency-dependent alterations of ReHo in MCI patients between resting and working memory states. The results provide a new perspective regarding the neural mechanisms of working memory deficits in MCI patients, and extend our knowledge of altered brain patterns in resting and task-evoked states.

  12. A gene-brain-cognition pathway for the effect of an Alzheimer׳s risk gene on working memory in young adults.

    Science.gov (United States)

    Stevens, Benson W; DiBattista, Amanda M; William Rebeck, G; Green, Adam E

    2014-08-01

    Identifying pathways by which genetic Alzheimer׳s disease (AD) risk factors exert neurocognitive effects in young adults are essential for the effort to develop early interventions to forestall or prevent AD onset. Here, in a brain-imaging cohort of 59 young adults, we investigated effects of a variant within the clusterin (CLU) gene on working memory function and gray matter volume in cortical areas that support working memory. In addition, we investigated the extent to which effects of CLU genotype on working memory were independent of variation in the strongest AD risk factor gene apolipoprotein E (APOE). CLU is among the strongest genetic AD risk factors and, though it appears to share AD pathogenesis-related features with, APOE, it has been far less well studied. CLU genotype was associated with working memory performance in our study cohort. Notably, we found that variation in gray matter volume in a parietal region, previously implicated in maintenance of information for working memory, mediated the effect of CLU on working memory performance. APOE genotype did not affect working memory within our sample, and did not interact with CLU genotype. To our knowledge, this work represents the first evidence of a behavioral effect of CLU genotype in young people. In addition, this work identifies the first gene-brain-cognition mediation effect pathway for the transmission of the effect of an AD risk factor. Relative to conventional pairwise associations in cognitive neurogenetic research, gene-brain-cognition mediation modeling provides a more integrated understanding of how genetic effects transmit from gene to brain to cognitive function. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The Most-Cited Works in Severe Traumatic Brain Injury: A Bibliometric Analysis of the 100 Most-Cited Articles.

    Science.gov (United States)

    Li, Lei; Ma, Xiaoye; Pandey, Sajan; Deng, Xianyu; Chen, Songyu; Cui, Daming; Gao, Liang

    2018-05-01

    There is an abundance of works published on severe traumatic brain injury (sTBI). Bibliometric analyses aim to provide a macroscopic view of research activities regarding sTBI and are helpful in determining the most impactful studies within this field. We performed a generalized search using the database of Web of Science, organized the references by the number of citations, and reviewed full length-articles for the top-100 most-cited articles on sTBI. The articles were classified according to focus. The top-100 articles were cited on average 326.4 times per paper. The Journal of Neurosurgery published the greatest number of top-100 cited articles (9 of 100). Authors from the United States published the majority (67%) of the most-cited articles. The most popular categories were "reviews and guidelines" and "etiology and epidemiology." The present study provides a cross-sectional summary of the 100 most-cited articles on sTBI, highlighting areas of research needing further investigation and development. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. MEG Working Memory N-Back Task Reveals Functional Deficits in Combat-Related Mild Traumatic Brain Injury.

    Science.gov (United States)

    Huang, Ming-Xiong; Nichols, Sharon; Robb-Swan, Ashley; Angeles-Quinto, Annemarie; Harrington, Deborah L; Drake, Angela; Huang, Charles W; Song, Tao; Diwakar, Mithun; Risbrough, Victoria B; Matthews, Scott; Clifford, Royce; Cheng, Chung-Kuan; Huang, Jeffrey W; Sinha, Anusha; Yurgil, Kate A; Ji, Zhengwei; Lerman, Imanuel; Lee, Roland R; Baker, Dewleen G

    2018-04-13

    Combat-related mild traumatic brain injury (mTBI) is a leading cause of sustained cognitive impairment in military service members and Veterans. However, the mechanism of persistent cognitive deficits including working memory (WM) dysfunction is not fully understood in mTBI. Few studies of WM deficits in mTBI have taken advantage of the temporal and frequency resolution afforded by electromagnetic measurements. Using magnetoencephalography (MEG) and an N-back WM task, we investigated functional abnormalities in combat-related mTBI. Study participants included 25 symptomatic active-duty service members or Veterans with combat-related mTBI and 20 healthy controls with similar combat experiences. MEG source-magnitude images were obtained for alpha (8-12 Hz), beta (15-30 Hz), gamma (30-90 Hz), and low-frequency (1-7 Hz) bands. Compared with healthy combat controls, mTBI participants showed increased MEG signals across frequency bands in frontal pole (FP), ventromedial prefrontal cortex, orbitofrontal cortex (OFC), and anterior dorsolateral prefrontal cortex (dlPFC), but decreased MEG signals in anterior cingulate cortex. Hyperactivations in FP, OFC, and anterior dlPFC were associated with slower reaction times. MEG activations in lateral FP also negatively correlated with performance on tests of letter sequencing, verbal fluency, and digit symbol coding. The profound hyperactivations from FP suggest that FP is particularly vulnerable to combat-related mTBI.

  15. Effects of deep brain stimulation of the peduncolopontine area on working memory tasks in patients with Parkinson's disease.

    Science.gov (United States)

    Costa, Alberto; Carlesimo, Giovanni Augusto; Caltagirone, Carlo; Mazzone, Paolo; Pierantozzi, Mariangela; Stefani, Alessandro; Peppe, Antonella

    2010-01-01

    The present paper was aimed at investigating the effect of low-frequency electrical stimulation (25 Hz) of the peduncolopontine (PPN) area on working memory (WM) functioning in patients with Parkinson's disease (PD). Five PD patients who underwent simultaneous PPN area- and subthalamic nucleus-deep brain stimulation (DBS) implantation participated in the study. PD patients were evaluated in the morning at least 12 h after antiparkinsonian therapy withdrawal in two conditions: i) after continuous PPN area stimulation (Off Therapy/On PPN: "On" condition); ii) at least 120 min after PPN area had been switched "Off" (Off Ther/Off PPN: "Off" condition). The experimental WM task consisted of an n-back paradigm with verbal and visual-object stimuli. PD patients showed a consistent response time decrease on both the verbal and the visual-object tasks passing from the "Off" to the "On" condition (p processing of information in the content of WM, possibly through the modulation of the attentional resources.

  16. Improving data availability for brain image biobanking in healthy subjects: Practice-based suggestions from an international multidisciplinary working group.

    Science.gov (United States)

    Shenkin, Susan D; Pernet, Cyril; Nichols, Thomas E; Poline, Jean-Baptiste; Matthews, Paul M; van der Lugt, Aad; Mackay, Clare; Lanyon, Linda; Mazoyer, Bernard; Boardman, James P; Thompson, Paul M; Fox, Nick; Marcus, Daniel S; Sheikh, Aziz; Cox, Simon R; Anblagan, Devasuda; Job, Dominic E; Dickie, David Alexander; Rodriguez, David; Wardlaw, Joanna M

    2017-06-01

    Brain imaging is now ubiquitous in clinical practice and research. The case for bringing together large amounts of image data from well-characterised healthy subjects and those with a range of common brain diseases across the life course is now compelling. This report follows a meeting of international experts from multiple disciplines, all interested in brain image biobanking. The meeting included neuroimaging experts (clinical and non-clinical), computer scientists, epidemiologists, clinicians, ethicists, and lawyers involved in creating brain image banks. The meeting followed a structured format to discuss current and emerging brain image banks; applications such as atlases; conceptual and statistical problems (e.g. defining 'normality'); legal, ethical and technological issues (e.g. consents, potential for data linkage, data security, harmonisation, data storage and enabling of research data sharing). We summarise the lessons learned from the experiences of a wide range of individual image banks, and provide practical recommendations to enhance creation, use and reuse of neuroimaging data. Our aim is to maximise the benefit of the image data, provided voluntarily by research participants and funded by many organisations, for human health. Our ultimate vision is of a federated network of brain image biobanks accessible for large studies of brain structure and function. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Neck Collar with Mild Jugular Vein Compression Ameliorates Brain Activation Changes during a Working Memory Task after a Season of High School Football.

    Science.gov (United States)

    Yuan, Weihong; Leach, James; Maloney, Thomas; Altaye, Mekibib; Smith, David; Gubanich, Paul J; Barber Foss, Kim D; Thomas, Staci; DiCesare, Christopher A; Kiefer, Adam W; Myer, Gregory D

    2017-08-15

    Emerging evidence indicates that repetitive head impacts, even at a sub-concussive level, may result in exacerbated or prolonged neurological deficits in athletes. This study aimed to: 1) quantify the effect of repetitive head impacts on the alteration of neuronal activity based on functional magnetic resonance imaging (fMRI) of working memory after a high school football season; and 2) determine whether a neck collar that applies mild jugular vein compression designed to reduce brain energy absorption in head impact through "slosh" mitigation can ameliorate the altered fMRI activation during a working memory task. Participants were recruited from local high school football teams with 27 and 25 athletes assigned to the non-collar and collar group, respectively. A standard N-Back task was used to engage working memory in the fMRI at both pre- and post-season. The two study groups experienced similar head impact frequency and magnitude during the season (all p > 0.05). fMRI blood oxygen level dependent (BOLD) signal response (a reflection of the neuronal activity level) during the working memory task increased significantly from pre- to post-season in the non-collar group (corrected p working memory related brain activity, as well as a potential protective effect that resulted from the use of the purported brain slosh reducing neck collar in contact sports.

  18. The use of 4D-CTA in the diagnostic work-up of brain arteriovenous malformations

    Energy Technology Data Exchange (ETDEWEB)

    Willems, Peter W.A. [Toronto Western Hospital, UHN, Division of Neuroradiology, Department of Medical Imaging, Toronto, Ontario (Canada); Leiden University Medical Center, Department of Radiology, Leiden (Netherlands); Taeshineetanakul, Patamintita; Terbrugge, Karel G.; Krings, Timo [Toronto Western Hospital, UHN, Division of Neuroradiology, Department of Medical Imaging, Toronto, Ontario (Canada); Schenk, Barry; Brouwer, Patrick A. [Leiden University Medical Center, Department of Radiology, Leiden (Netherlands)

    2012-02-15

    We aimed to evaluate the use of time-resolved whole-head CT angiography (4D-CTA) in patients with an untreated arteriovenous malformation of the brain (bAVM), as demonstrated by catheter angiography (DSA). Seventeen patients with a DSA-proven bAVM were enrolled. These were subjected to 4D-CTA imaging using a 320 detector row CT scanner. Using a standardized scoring sheet, all studies were analyzed by a panel of three readers. This panel was blind to the DSA results at the time of reading the 4D-CTA. 4D-CTA detected all bAVMs. With regard to the Spetzler-Martin grade, 4D-CTA disagreed with DSA in only one case, where deep venous drainage was missed. Further discrepancies between 4D-CTA and DSA analyses included underestimation of the nidus size in small lesions (four cases), misinterpretation of a feeding vessel (one case), misinterpretation of indirect feeding through pial collaterals (three cases) and oversight of mild arterial enlargement (two cases). 4D-CTA correctly distinguished low-flow from high-flow lesions and detected dural/transosseous feeding (one case), venous narrowing (one case) and venous pouches (nine cases). In this series, 4D-CTA was able to detect all bAVMs. Although some angioarchitectural details were missed or misinterpreted when compared to DSA, 4D-CTA evaluation was sufficiently accurate to diagnose the shunt and classify it. Moreover, 4D-CTA adds cross-sectional imaging and perfusion maps, helpful in treatment planning. 4D-CTA appears to be a valuable new adjunct in the non-invasive diagnostic work-up of bAVMs and their follow-up when managed conservatively. (orig.)

  19. The use of 4D-CTA in the diagnostic work-up of brain arteriovenous malformations

    International Nuclear Information System (INIS)

    Willems, Peter W.A.; Taeshineetanakul, Patamintita; Terbrugge, Karel G.; Krings, Timo; Schenk, Barry; Brouwer, Patrick A.

    2012-01-01

    We aimed to evaluate the use of time-resolved whole-head CT angiography (4D-CTA) in patients with an untreated arteriovenous malformation of the brain (bAVM), as demonstrated by catheter angiography (DSA). Seventeen patients with a DSA-proven bAVM were enrolled. These were subjected to 4D-CTA imaging using a 320 detector row CT scanner. Using a standardized scoring sheet, all studies were analyzed by a panel of three readers. This panel was blind to the DSA results at the time of reading the 4D-CTA. 4D-CTA detected all bAVMs. With regard to the Spetzler-Martin grade, 4D-CTA disagreed with DSA in only one case, where deep venous drainage was missed. Further discrepancies between 4D-CTA and DSA analyses included underestimation of the nidus size in small lesions (four cases), misinterpretation of a feeding vessel (one case), misinterpretation of indirect feeding through pial collaterals (three cases) and oversight of mild arterial enlargement (two cases). 4D-CTA correctly distinguished low-flow from high-flow lesions and detected dural/transosseous feeding (one case), venous narrowing (one case) and venous pouches (nine cases). In this series, 4D-CTA was able to detect all bAVMs. Although some angioarchitectural details were missed or misinterpreted when compared to DSA, 4D-CTA evaluation was sufficiently accurate to diagnose the shunt and classify it. Moreover, 4D-CTA adds cross-sectional imaging and perfusion maps, helpful in treatment planning. 4D-CTA appears to be a valuable new adjunct in the non-invasive diagnostic work-up of bAVMs and their follow-up when managed conservatively. (orig.)

  20. Carrying the past to the future: Distinct brain networks underlie individual differences in human spatial working memory capacity.

    Science.gov (United States)

    Liu, Siwei; Poh, Jia-Hou; Koh, Hui Li; Ng, Kwun Kei; Loke, Yng Miin; Lim, Joseph Kai Wei; Chong, Joanna Su Xian; Zhou, Juan

    2018-08-01

    Spatial working memory (SWM) relies on the interplay of anatomically separated and interconnected large-scale brain networks. EEG studies often observe load-associated sustained negative activity during SWM retention. Yet, whether and how such sustained negative activity in retention relates to network-specific functional activation/deactivation and relates to individual differences in SWM capacity remain to be elucidated. To cover these gaps, we recorded concurrent EEG-fMRI data in 70 healthy young adults during the Sternberg delayed-match-to-sample SWM task with three memory load levels. To a subset of participants (N = 28) that performed the task properly and had artefact-free fMRI and EEG data, we employed a novel temporo-spatial principal component analysis to derive load-dependent negative slow wave (NSW) from retention-related event-related potentials. The associations between NSW responses with SWM capacity were divergent in the higher (N = 14) and lower (N = 14) SWM capacity groups. Specifically, larger load-related increase in NSW amplitude was associated with greater SWM capacity for the higher capacity group but lower SWM capacity for the lower capacity group. Furthermore, for the higher capacity group, larger NSW amplitude was related to greater activation in bilateral parietal areas of the fronto-parietal network (FPN) and greater deactivation in medial frontal gyrus and posterior mid-cingulate cortex of the default mode network (DMN) during retention. In contrast, the lower capacity group did not show similar pattern. Instead, greater NSW was linked to higher deactivation in right posterior middle temporal gyrus. Our findings shed light on the possible differential EEG-informed neural network mechanism during memory maintenance underlying individual differences in SWM capacity. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Neuromodulators for Functional Gastrointestinal Disorders (Disorders of Gut-Brain Interaction): A Rome Foundation Working Team Report.

    Science.gov (United States)

    Drossman, Douglas A; Tack, Jan; Ford, Alexander C; Szigethy, Eva; Törnblom, Hans; Van Oudenhove, Lukas

    2018-03-01

    Central neuromodulators (antidepressants, antipsychotics, and other central nervous system-targeted medications) are increasingly used for treatment of functional gastrointestinal disorders (FGIDs), now recognized as disorders of gut-brain interaction. However, the available evidence and guidance for the use of central neuromodulators in these conditions is scanty and incomplete. In this Rome Foundation Working Team report, a multidisciplinary team summarized available research evidence and clinical experience to provide guidance and treatment recommendations. The working team summarized the literature on the pharmacology of central neuromodulators and their effects on gastrointestinal sensorimotor function and conducted an evidence-based review on their use for treating FGID syndromes. Because of the paucity of data for FGIDs, we included data for non-gastrointestinal painful disorders and specific symptoms of pain, nausea, and vomiting. This information was combined into a final document comprising a synthesis of available evidence and recommendations for clinical use guided by the research and clinical experience of the experts on the committee. The evidence-based review on neuromodulators in FGID, restricted by the limited available controlled trials, was integrated with open-label studies and case series, along with the experience of experts to create recommendations using a consensus (Delphi) approach. Due to the diversity of conditions and complexity of treatment options, specific recommendations were generated for different FGIDs. However, some general recommendations include: (1) low to modest dosages of tricyclic antidepressants provide the most convincing evidence of benefit for treating chronic gastrointestinal pain and painful FGIDs and serotonin noradrenergic reuptake inhibitors can also be recommended, though further studies are needed; (2) augmentation, that is, adding a second treatment (adding quetiapine, aripiprazole, buspirone α2δ ligand

  2. Cancer 'survivor-care': II. Disruption of prefrontal brain activation top-down control of working memory capacity as possible mechanism for chemo-fog/brain (chemotherapy-associated cognitive impairment).

    Science.gov (United States)

    Raffa, R B

    2013-08-01

    Cancer chemotherapy-associated cognitive impairments (termed 'chemo-fog' or 'chemo-brain'), particularly in memory, have been self-reported or identified in cancer survivors previously treated with chemotherapy. Although a variety of deficits have been detected, a consistent theme is a detriment in visuospatial working memory. The parietal cortex, a major site of storage of such memory, is implicated in chemotherapy-induced damage. However, if the findings of two recent publications are combined, the (pre)frontal cortex might be an equally viable target. Two recent studies, one postulating a mechanism for 'top-down control' of working memory capacity and another visualizing chemotherapy-induced alterations in brain activation during working memory processing, are reviewed and integrated. A computational model and the proposal that the prefrontal cortex plays a role in working memory via top-down control of parietal working memory capacity is consistent with a recent demonstration of decreased frontal hyperactivation following chemotherapy. Chemotherapy-associated impairment of visuospatial working memory might include the (pre)frontal cortex in addition to the parietal cortex. This provides new opportunity for basic science and clinical investigation. © 2013 John Wiley & Sons Ltd.

  3. Treatment with a nicotine vaccine does not lead to changes in brain activity during smoking cue exposure or a working memory task.

    Science.gov (United States)

    Havermans, Anne; Vuurman, Eric F; van den Hurk, Job; Hoogsteder, Philippe; van Schayck, Onno C P

    2014-08-01

    To assess whether immunization attenuates nicotinic stimulation of the brain and elucidate brain and behavioural responses during exposure to smoking cues and a working memory task. Randomized, placebo-controlled parallel-group, repeated-measures design. Maastricht University, the Netherlands. Forty-eight male smokers were randomized to receive five injections with either 400 μg/ml of the 3'-aminomethylnicotine Pseudomonas aeruginosa r-Exoprotein-conjugated vaccine or placebo. Subjects were tested on two occasions, once after a nicotine challenge and once after a placebo challenge, and were asked to refrain from smoking 10 hours before testing. Reaction-times and accuracies were recorded during an n-back task. Moreover, regional blood oxygenated level-dependent (BOLD) response was measured during this task and during smoking cue exposure. Greater activation was found in response to smoking cues compared to neutral cues in bilateral trans-occipital sulcus (P cues between the treatment groups and no effects of acute nicotine challenge were established. For the n-back task we found working memory load-sensitive increases in brain activity in several frontal and parietal areas (P < 0.0025). However, no effects of immunization or nicotine challenge were observed. No significant effects of immunization on brain activity in response to a nicotine challenge were established. Therefore this vaccine is not likely to be an effective aid in smoking cessation. © 2014 Society for the Study of Addiction.

  4. Rehabilitation Utilization following a Work-Related Traumatic Brain Injury: A Sex-Based Examination of Workers' Compensation Claims in Victoria, Australia.

    Directory of Open Access Journals (Sweden)

    E Niki Guerriero

    Full Text Available To report on and examine differences in the use of four types of rehabilitation services (occupational therapy, physiotherapy, psychology, and speech therapy by men and women following a work-related traumatic brain injury in Victoria, Australia; and to examine the importance of demographic, need, work-related and geographic factors in explaining these differences.A retrospective cohort design was used to analyze 1786 work-related traumatic brain injury workers' compensation claims lodged between 2004 and 2012 in Victoria, Australia. ZINB regressions were conducted for each type of rehabilitation service to examine the relationship between sex and rehabilitation use. Covariates included demographic, need-related, work-related, and geographic factors.Out of all claims (63% male, 37% female, 13% used occupational therapy, 23% used physiotherapy, 9% used psychology, and 2% used speech therapy at least once during the first year of service utilization. After controlling for demographic, need-related, work-related, and geographic factors, women were more likely to use physiotherapy compared to men. Men and women were equally likely to use occupational therapy and psychology services. The number of visits in the first year for each type of service did not differ between male and female users.Our findings support a sex-based approach to studying rehabilitation utilization in work-related populations. Future research is needed to examine other factors associated with rehabilitation utilization and to determine the implications of different rehabilitation utilization patterns on health and return-to-work outcomes.

  5. Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty

    Science.gov (United States)

    Molteni, Erika; Contini, Davide; Caffini, Matteo; Baselli, Giuseppe; Spinelli, Lorenzo; Cubeddu, Rinaldo; Cerutti, Sergio; Bianchi, Anna Maria; Torricelli, Alessandro

    2012-05-01

    We evaluated frontal brain activation during a mixed attentional/working memory task with graded levels of difficulty in a group of 19 healthy subjects, by means of time-domain functional near-infrared spectroscopy (fNIRS). Brain activation was assessed, and load-related oxy- and deoxy-hemoglobin changes were studied. Generalized linear model (GLM) was applied to the data to explore the metabolic processes occurring during the mental effort and, possibly, their involvement in short-term memorization. GLM was applied to the data twice: for modeling the task as a whole and for specifically investigating brain activation at each cognitive load. This twofold employment of GLM allowed (1) the extraction and isolation of different information from the same signals, obtained through the modeling of different cognitive categories (sustained attention and working memory), and (2) the evaluation of model fitness, by inspection and comparison of residuals (i.e., unmodeled part of the signal) obtained in the two different cases. Results attest to the presence of a persistent attentional-related metabolic activity, superimposed to a task-related mnemonic contribution. Some hemispherical differences have also been highlighted frontally: deoxy-hemoglobin changes manifested a strong right lateralization, whereas modifications in oxy- and total hemoglobin showed a medial localization. The present work successfully explored the capability of fNIRS to detect the two neurophysiological categories under investigation and distinguish their activation patterns.

  6. Shaping internal working models : parental love withdrawal, oxytocin, and asymmetric frontal brain activity affect socio-emotional information processing

    NARCIS (Netherlands)

    Huffmeijer, Renske

    2011-01-01

    The aim of this thesis is to gain insight into the associations between experiences of parental love withdrawal, oxytocin, and asymmetric frontal brain activity (reflecting basic motivational tendencies) on the one hand, and (neural) processing of and responses to socio-emotional stimuli on the

  7. Influence of the fragile X mental retardation (FMR1) gene on the brain and working memory in men with normal FMR1 alleles

    OpenAIRE

    Wang, Jun Yi; Hessl, David; Iwahashi, Christine; Cheung, Katherine; Schneider, Andrea; Hagerman, Randi J.; Hagerman, Paul J.; Rivera, Susan M.

    2012-01-01

    The fragile X mental retardation 1 (FMR1) gene plays an important role in the development and maintenance of neuronal circuits that are essential for cognitive functioning. We explored the functional linkage(s) among lymphocytic FMR1 gene expression, brain structure, and working memory in healthy adult males. We acquired T1-weighted and diffusion tensor imaging from 34 males (18–80 years, mean ± SD = 43.6 ± 18.4 years) with normal FMR1 alleles and performed genetic and working memory assessme...

  8. Alpha synchronization as a brain model for unconscious defense: An overview of the work of Howard Shevrin and his team.

    Science.gov (United States)

    Bazan, Ariane

    2017-10-01

    Howard Shevrin and his team have developed a stringent subliminal priming methodology, which experimentally approximates a situation of an internal, mental triggering of unconscious defense. Through a series of four studies they thus are able to bring evidence for this type of unconscious defense. With event-related potentials, three clinical studies show how synchronization of a specific brain wave, the alpha wave, known for its inhibitory function, is also induced by subliminally presented conflictual subject-specific stimuli. Therefore, alpha synchronization could serve as the brain mechanism of unconscious defense. The results only make sense if we suppose the existence of a dynamic unconscious, which has inherited childhood conflicts, and with privileged connections to neurotic symptom characteristics. Moreover, by showing that the unconscious conflict phrases, inferred by clinicians from clinical interviews, have a similar brain behavior, Shevrin and his team provide evidence that these inferences are not simply clinician-dependent subjective interpretations but also imply some form of independent mental reality. Finally, interpretation of the results has led us to propose two distinct physiological mechanisms for defense: one, unconscious defense, by alpha synchronization in connection with the drive derivatives, and another, repression, based on the indications of reality in connection with the ego. Copyright © 2017 Institute of Psychoanalysis.

  9. Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group.

    Science.gov (United States)

    van Rooij, Daan; Anagnostou, Evdokia; Arango, Celso; Auzias, Guillaume; Behrmann, Marlene; Busatto, Geraldo F; Calderoni, Sara; Daly, Eileen; Deruelle, Christine; Di Martino, Adriana; Dinstein, Ilan; Duran, Fabio Luis Souza; Durston, Sarah; Ecker, Christine; Fair, Damien; Fedor, Jennifer; Fitzgerald, Jackie; Freitag, Christine M; Gallagher, Louise; Gori, Ilaria; Haar, Shlomi; Hoekstra, Liesbeth; Jahanshad, Neda; Jalbrzikowski, Maria; Janssen, Joost; Lerch, Jason; Luna, Beatriz; Martinho, Mauricio Moller; McGrath, Jane; Muratori, Filippo; Murphy, Clodagh M; Murphy, Declan G M; O'Hearn, Kirsten; Oranje, Bob; Parellada, Mara; Retico, Alessandra; Rosa, Pedro; Rubia, Katya; Shook, Devon; Taylor, Margot; Thompson, Paul M; Tosetti, Michela; Wallace, Gregory L; Zhou, Fengfeng; Buitelaar, Jan K

    2018-04-01

    Neuroimaging studies show structural differences in both cortical and subcortical brain regions in children and adults with autism spectrum disorder (ASD) compared with healthy subjects. Findings are inconsistent, however, and it is unclear how differences develop across the lifespan. The authors investigated brain morphometry differences between individuals with ASD and healthy subjects, cross-sectionally across the lifespan, in a large multinational sample from the Enhancing Neuroimaging Genetics Through Meta-Analysis (ENIGMA) ASD working group. The sample comprised 1,571 patients with ASD and 1,651 healthy control subjects (age range, 2-64 years) from 49 participating sites. MRI scans were preprocessed at individual sites with a harmonized protocol based on a validated automated-segmentation software program. Mega-analyses were used to test for case-control differences in subcortical volumes, cortical thickness, and surface area. Development of brain morphometry over the lifespan was modeled using a fractional polynomial approach. The case-control mega-analysis demonstrated that ASD was associated with smaller subcortical volumes of the pallidum, putamen, amygdala, and nucleus accumbens (effect sizes [Cohen's d], 0.13 to -0.13), as well as increased cortical thickness in the frontal cortex and decreased thickness in the temporal cortex (effect sizes, -0.21 to 0.20). Analyses of age effects indicate that the development of cortical thickness is altered in ASD, with the largest differences occurring around adolescence. No age-by-ASD interactions were observed in the subcortical partitions. The ENIGMA ASD working group provides the largest study of brain morphometry differences in ASD to date, using a well-established, validated, publicly available analysis pipeline. ASD patients showed altered morphometry in the cognitive and affective parts of the striatum, frontal cortex, and temporal cortex. Complex developmental trajectories were observed for the different

  10. Retrieval deficiency in brain activity of working memory in amnesic mild cognitive impairment patients: A brain event-related potentials study

    Directory of Open Access Journals (Sweden)

    Binyin eLi

    2016-03-01

    Full Text Available In the early stage of Alzheimer disease (AD or mild cognitive impairment (MCI, working memory (WM deficiency is prominent and could be attributed to failure in encoding, maintenance or retrieval of information. However, evidence for a retention or retrieval deficit remains equivocal. It is also unclear what cognitive mechanism in working memory is impaired in MCI or early AD. We enrolled forty-six subjects from our Memory Clinics and community, with 24 amnesic MCI patients and 22 normal subjects. After neurological and cognitive assessments, they performed a classic delayed match to sample task with simultaneous event-related potential (ERP recorded. The ERPs in encoding and retrieval epoch during WM were analyzed separately. The latency and amplitude of every ERP component were compared between two groups, and then analyzed to explore their relationship with neuropsychological performance. Finally, the locations of maximal difference in cortex were calculated by standard low-resolution tomographic analysis. A total of five components were found: P1, N1, P2, N2 and P300. The amplitude of P2 and P300 was larger in normal subjects than in MCI patients only during retrieval, not encoding epoch, while the latency did not show statistical difference. The latency and amplitude of P1 and N1 were similar in two groups. P2 amplitude in the retrieval epoch positively correlated with memory test (auditory verbal learning test and visual spatial score of Chinese Addenbrooke’s Cognitive Examination-Revised (ACE-R, while P300 amplitude correlated with ACE-R. The activation difference in P2 time range was maximal at medial frontal gyrus. However, the difference in cortex activation during P300 time range did not show significance. The amplitude of P2 indicated deficiency in memory retrieval process, potentially due to dysfunction of central executive in WM model. Regarding the location of P2 during WM task, medial frontal plays important role in memory

  11. Examining Brain-Cognition Effects of Ginkgo Biloba Extract: Brain Activation in the Left Temporal and Left Prefrontal Cortex in an Object Working Memory Task

    Directory of Open Access Journals (Sweden)

    R. B. Silberstein

    2011-01-01

    Full Text Available Ginkgo Biloba extract (GBE is increasingly used to alleviate symptoms of age related cognitive impairment, with preclinical evidence pointing to a pro-cholinergic effect. While a number of behavioral studies have reported improvements to working memory (WM associated with GBE, electrophysiological studies of GBE have typically been limited to recordings during a resting state. The current study investigated the chronic effects of GBE on steady state visually evoked potential (SSVEP topography in nineteen healthy middle-aged (50-61 year old male participants whilst completing an object WM task. A randomized double-blind crossover design was employed in which participants were allocated to receive 14 days GBE and 14 days placebo in random order. For both groups, SSVEP was recorded from 64 scalp electrode sites during the completion of an object WM task both pre- and 14 days post-treatment. GBE was found to improve behavioural performance on the WM task. GBE was also found to increase the SSVEP amplitude at occipital and frontal sites and increase SSVEP latency at left temporal and left frontal sites during the hold component of the WM task. These SSVEP changes associated with GBE may represent more efficient processing during WM task completion.

  12. Neural markers of negative symptom outcomes in distributed working memory brain activity of antipsychotic-naive schizophrenia patients

    DEFF Research Database (Denmark)

    Nejad, Ayna B.; Madsen, Kristoffer H.; Ebdrup, Bjørn H.

    2013-01-01

    Since working memory deficits in schizophrenia have been linked to negative symptoms, we tested whether features of the one could predict the treatment outcome in the other. Specifically, we hypothesized that working memory-related functional connectivity at pre-treatment can predict improvement...

  13. The International Deep Brain Stimulation Registry and Database for Gilles de la Tourette Syndrome: How Does it Work?

    Directory of Open Access Journals (Sweden)

    Wissam eDeeb

    2016-04-01

    Full Text Available Tourette Syndrome (TS is a neuropsychiatric disease characterized by a combination of motor and vocal tics. Deep brain stimulation (DBS, already widely utilized for Parkinson’s disease and other movement disorders, is an emerging therapy for select and severe cases of TS that are resistant to medication and behavioral therapy. Over the last two decades, DBS has been used experimentally to manage severe TS cases. The results of case reports and small case series have been variable but in general positive. The reported interventions have, however, been variable, and there remain non-standardized selection criteria, various brain targets, differences in hardware, as well as variability in the programming parameters utilized. DBS centers perform only a handful of TS DBS cases each year, making large-scale outcomes difficult to study and to interpret. These limitations, coupled with the variable effect of surgery, and the overall small numbers of TS patients with implanted DBS worldwide, have delayed regulatory agency approval (e.g. FDA and equivalent agencies around the world. The Tourette Association of America, in response to the worldwide need for a more organized and collaborative effort, launched an international TS DBS registry and database. The main goal of the project has been to share data, uncover best practices, improve outcomes, and to provide critical information to regulatory agencies. The international registry and database has improved the communication and collaboration among TS DBS centers worldwide. In this paper we will review some of the key operation details for the international TS DBS database and registry.

  14. Load-related brain activation predicts spatial working memory performance in youth aged 9-12 and is associated with executive function at earlier ages.

    Science.gov (United States)

    Huang, Anna S; Klein, Daniel N; Leung, Hoi-Chung

    2016-02-01

    Spatial working memory is a central cognitive process that matures through adolescence in conjunction with major changes in brain function and anatomy. Here we focused on late childhood and early adolescence to more closely examine the neural correlates of performance variability during this important transition period. Using a modified spatial 1-back task with two memory load conditions in an fMRI study, we examined the relationship between load-dependent neural responses and task performance in a sample of 39 youth aged 9-12 years. Our data revealed that between-subject differences in task performance was predicted by load-dependent deactivation in default network regions, including the ventral anterior cingulate cortex (vACC) and posterior cingulate cortex (PCC). Although load-dependent increases in activation in prefrontal and posterior parietal regions were only weakly correlated with performance, increased prefrontal-parietal coupling was associated with better performance. Furthermore, behavioral measures of executive function from as early as age 3 predicted current load-dependent deactivation in vACC and PCC. These findings suggest that both task positive and task negative brain activation during spatial working memory contributed to successful task performance in late childhood/early adolescence. This may serve as a good model for studying executive control deficits in developmental disorders. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Load-related brain activation predicts spatial working memory performance in youth aged 9–12 and is associated with executive function at earlier ages

    Science.gov (United States)

    Huang, Anna S.; Klein, Daniel N.; Leung, Hoi-Chung

    2015-01-01

    Spatial working memory is a central cognitive process that matures through adolescence in conjunction with major changes in brain function and anatomy. Here we focused on late childhood and early adolescence to more closely examine the neural correlates of performance variability during this important transition period. Using a modified spatial 1-back task with two memory load conditions in an fMRI study, we examined the relationship between load-dependent neural responses and task performance in a sample of 39 youth aged 9–12 years. Our data revealed that between-subject differences in task performance was predicted by load-dependent deactivation in default network regions, including the ventral anterior cingulate cortex (vACC) and posterior cingulate cortex (PCC). Although load-dependent increases in activation in prefrontal and posterior parietal regions were only weakly correlated with performance, increased prefrontal-parietal coupling was associated with better performance. Furthermore, behavioral measures of executive function from as early as age 3 predicted current load-dependent deactivation in vACC and PCC. These findings suggest that both task positive and task negative brain activation during spatial working memory contributed to successful task performance in late childhood/early adolescence. This may serve as a good model for studying executive control deficits in developmental disorders. PMID:26562059

  16. Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed

    DEFF Research Database (Denmark)

    Posthuma, Daniëlle; Baare, Wim F.C.; Hulshoff Pol, Hilleke E.

    2003-01-01

    We recently showed that the correlation of gray and white matter volume with full scale IQ and the Working Memory dimension are completely mediated by common genetic factors (Posthuma et al., 2002). Here we examine whether the other WAIS III dimensions (Verbal Comprehension, Perceptual Organization......, Processing Speed) are also related to gray and white matter volume, and whether any of the dimensions are related to cerebellar volume. Two overlapping samples provided 135 subjects from 60 extended twin families for whom both MRI scans and WAIS III data were available. All three brain volumes are related...... to Working Memory capacity (r = 0.27). This phenotypic correlation is completely due to a common underlying genetic factor. Processing Speed was genetically related to white matter volume (r(g) = 0.39). Perceptual Organization was both genetically (r(g) = 0.39) and environmentally (r(e) = -0.71) related...

  17. The brain as a working syncytium and memory as a continuum in a hyper timespace: Oscillations lead to a new model.

    Science.gov (United States)

    Başar, Erol; Düzgün, Aysel

    2016-05-01

    The aim of this study is threefold: (1) we propose a new framework describing the neurophysiologic functioning and cognitive processing of neural populations, and we extend the neuron doctrine to the physiology of neural assemblies. (2) The extension from neurons to neural populations implies that the brain, with its connectivity, should be considered a working syncytium, which extends Brodmann mapping to the CLAIR model, which includes oscillatory components and their connectivity. (3) In such a working syncytium, a new description of "memory" is needed in the broad time-space continuum, which embraces all memory states. This will be called "hypermemory." Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Use of an Eight-arm Radial Water Maze to Assess Working and Reference Memory Following Neonatal Brain Injury

    OpenAIRE

    Penley, Stephanie C.; Gaudet, Cynthia M.; Threlkeld, Steven W.

    2013-01-01

    Working and reference memory are commonly assessed using the land based radial arm maze. However, this paradigm requires pretraining, food deprivation, and may introduce scent cue confounds. The eight-arm radial water maze is designed to evaluate reference and working memory performance simultaneously by requiring subjects to use extra-maze cues to locate escape platforms and remedies the limitations observed in land based radial arm maze designs. Specifically, subjects are required to avoid ...

  19. Amplitude spectrum EEG signal evidence for the dissociation of motor and perceptual spatial working memory in the human brain.

    Science.gov (United States)

    Smyrnis, Nikolaos; Protopapa, Foteini; Tsoukas, Evangelos; Balogh, Allison; Siettos, Constantinos I; Evdokimidis, Ioannis

    2014-02-01

    This study investigated the question whether spatial working memory related to movement plans (motor working memory) and spatial working memory related to spatial attention and perceptual processes (perceptual spatial working memory) share the same neurophysiological substrate or there is evidence for separate motor and perceptual working memory streams of processing. Towards this aim, ten healthy human subjects performed delayed responses to visual targets presented at different spatial locations. Two tasks were attained, one in which the spatial location of the target was the goal for a pointing movement and one in which the spatial location of the target was used for a perceptual (yes or no) change detection. Each task involved two conditions: a memory condition in which the target remained visible only for the first 250 ms of the delay period and a delay condition in which the target location remained visible throughout the delay period. The amplitude spectrum analysis of the EEG revealed that the alpha (8-12 Hz) band signal was smaller, while the beta (13-30 Hz) and gamma (30-45 Hz) band signals were larger in the memory compared to the non-memory condition. The alpha band signal difference was confined to the frontal midline area; the beta band signal difference extended over the right hemisphere and midline central area, and the gamma band signal difference was confined to the right occipitoparietal area. Importantly, both in beta and gamma bands, we observed a significant increase in the movement-related compared to the perceptual-related memory-specific amplitude spectrum signal in the central midline area. This result provides clear evidence for the dissociation of motor and perceptual spatial working memory.

  20. Brain Activation and Deactivation during Location and Color Working Memory Tasks in 11-13-Year-Old Children

    Science.gov (United States)

    Vuontela, Virve; Steenari, Maija-Riikka; Aronen, Eeva T.; Korvenoja, Antti; Aronen, Hannu J.; Carlson, Synnove

    2009-01-01

    Using functional magnetic resonance imaging (fMRI) and n-back tasks we investigated whether, in 11-13-year-old children, spatial (location) and nonspatial (color) information is differentially processed during visual attention (0-back) and working memory (WM) (2-back) tasks and whether such cognitive task performance, compared to a resting state,…

  1. Return to work in people with acquired brain injury: association with observed ability to use everyday technology.

    Science.gov (United States)

    Larsson-Lund, Maria; Kottorp, Anders; Malinowsky, Camilla

    2017-07-01

    The aim of this study was to explore how the observed ability to use everyday technology (ET), intrapersonal capacities and environmental characteristics related to ET use contributes to the likelihood of return to work in people with ABI. The aim was also to explore whether these variables added to the likelihood of return to work to earlier defined significant variables in the group: age, perceived ADL ability and perceived ability in ET use. A cross-sectional study. The Management of Everyday Technology Assessment (META), the short version of the Everyday Technology Use Questionnaire (S-ETUQ) and a revised version of the ADL taxonomy were used to evaluate 74 people with ABI. Individual ability measures from all assessments were generated by Rasch analyses and used for additional statistical analysis. The univariate analyses showed that the observed ability to use ET, as well as intrapersonal capacities and environmental characteristics related to ET use were all significantly associated with returning to work. In the multivariate analyses, none of these associations remained. The explanatory precision of return to work in people with ABI increased minimally by adding the observed ability to use ET and the variables related to ET use when age, perceived ability in ET use and ADL had been taken in account.

  2. The effect of caffeine on working memory load-related brain activation in middle-aged males

    NARCIS (Netherlands)

    Klaassen, E.B.; de Groot, R.H.M.; Evers, E.A.T.; Snel, J.; Veerman, E.C.I.; Ligtenberg, A.J.M.; Jolles, J.; Veltman, D.J.

    2013-01-01

    Caffeine is commonly consumed in an effort to enhance cognitive performance. However, little is known about the usefulness of caffeine with regard to memory enhancement, with previous studies showing inconsistent effects on memory performance. We aimed to determine the effect of caffeine on working

  3. Acute caffeine administration impact on working memory-related brain activation and functional connectivity in the elderly: a BOLD and perfusion MRI study.

    Science.gov (United States)

    Haller, S; Rodriguez, C; Moser, D; Toma, S; Hofmeister, J; Sinanaj, I; Van De Ville, D; Giannakopoulos, P; Lovblad, K-O

    2013-10-10

    In young individuals, caffeine-mediated blockade of adenosine receptors and vasoconstriction has direct repercussions on task-related activations, changes in functional connectivity, as well as global vascular effects. To date, no study has explored the effect of caffeine on brain activation patterns during highly demanding cognitive tasks in the elderly. This prospective, placebo-controlled crossover design comprises 24 healthy elderly individuals (mean age 68.8 ± 4.0 years, 17 females) performing a 2-back working memory (WM) task in functional magnetic resonance imaging (fMRI). Analyses include complimentary assessment of task-related activations (general linear model, GLM), functional connectivity (tensorial independent component analysis, TICA), and baseline perfusion (arterial spin labeling). Despite a reduction in whole-brain global perfusion (-22.7%), caffeine-enhanced task-related GLM activation in a local and distributed network is most pronounced in the bilateral striatum and to a lesser degree in the right middle and inferior frontal gyrus, bilateral insula, left superior and inferior parietal lobule as well as in the cerebellum bilaterally. TICA was significantly enhanced (+8.2%) in caffeine versus placebo in a distributed and task-relevant network including the pre-frontal cortex, the supplementary motor area, the ventral premotor cortex and the parietal cortex as well as the occipital cortex (visual stimuli) and basal ganglia. The inverse comparison of placebo versus caffeine had no significant difference. Activation strength of the task-relevant-network component correlated with response accuracy for caffeine yet not for placebo, indicating a selective cognitive effect of caffeine. The present findings suggest that acute caffeine intake enhances WM-related brain activation as well as functional connectivity of blood oxygen level-dependent fMRI in elderly individuals. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Alteration of functional connectivity within visuospatial working memory-related brain network in patients with right temporal lobe epilepsy: a resting-state fMRI study.

    Science.gov (United States)

    Lv, Zong-xia; Huang, Dong-Hong; Ye, Wei; Chen, Zi-rong; Huang, Wen-li; Zheng, Jin-ou

    2014-06-01

    This study aimed to investigate the resting-state brain network related to visuospatial working memory (VSWM) in patients with right temporal lobe epilepsy (rTLE). The functional mechanism underlying the cognitive impairment in VSWM was also determined. Fifteen patients with rTLE and 16 healthy controls matched for age, gender, and handedness underwent a 6-min resting-state functional MRI session and a neuropsychological test using VSWM_Nback. The VSWM-related brain network at rest was extracted using multiple independent component analysis; the spatial distribution and the functional connectivity (FC) parameters of the cerebral network were compared between groups. Behavioral data were subsequently correlated with the mean Z-value in voxels showing significant FC difference during intergroup comparison. The distribution of the VSWM-related resting-state network (RSN) in the group with rTLE was virtually consistent with that in the healthy controls. The distribution involved the dorsolateral prefrontal lobe and parietal lobe in the right hemisphere and the partial inferior parietal lobe and posterior lobe of the cerebellum in the left hemisphere (pright superior frontal lobe (BA8), right middle frontal lobe, and right ventromedial prefrontal lobe compared with the controls (pright superior frontal lobe (BA11), right superior parietal lobe, and left posterior lobe of the cerebellum (prights reserved.

  5. Does visual working memory represent the predicted locations of future target objects? An event-related brain potential study.

    Science.gov (United States)

    Grubert, Anna; Eimer, Martin

    2015-11-11

    During the maintenance of task-relevant objects in visual working memory, the contralateral delay activity (CDA) is elicited over the hemisphere opposite to the visual field where these objects are presented. The presence of this lateralised CDA component demonstrates the existence of position-dependent object representations in working memory. We employed a change detection task to investigate whether the represented object locations in visual working memory are shifted in preparation for the known location of upcoming comparison stimuli. On each trial, bilateral memory displays were followed after a delay period by bilateral test displays. Participants had to encode and maintain three visual objects on one side of the memory display, and to judge whether they were identical or different to three objects in the test display. Task-relevant memory and test stimuli were located in the same visual hemifield in the no-shift task, and on opposite sides in the horizontal shift task. CDA components of similar size were triggered contralateral to the memorized objects in both tasks. The absence of a polarity reversal of the CDA in the horizontal shift task demonstrated that there was no preparatory shift of memorized object location towards the side of the upcoming comparison stimuli. These results suggest that visual working memory represents the locations of visual objects during encoding, and that the matching of memorized and test objects at different locations is based on a comparison process that can bridge spatial translations between these objects. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Sleep, Sleep Disorders, and Mild Traumatic Brain Injury. What We Know and What We Need to Know: Findings from a National Working Group.

    Science.gov (United States)

    Wickwire, Emerson M; Williams, Scott G; Roth, Thomas; Capaldi, Vincent F; Jaffe, Michael; Moline, Margaret; Motamedi, Gholam K; Morgan, Gregory W; Mysliwiec, Vincent; Germain, Anne; Pazdan, Renee M; Ferziger, Reuven; Balkin, Thomas J; MacDonald, Margaret E; Macek, Thomas A; Yochelson, Michael R; Scharf, Steven M; Lettieri, Christopher J

    2016-04-01

    Disturbed sleep is one of the most common complaints following traumatic brain injury (TBI) and worsens morbidity and long-term sequelae. Further, sleep and TBI share neurophysiologic underpinnings with direct relevance to recovery from TBI. As such, disturbed sleep and clinical sleep disorders represent modifiable treatment targets to improve outcomes in TBI. This paper presents key findings from a national working group on sleep and TBI, with a specific focus on the testing and development of sleep-related therapeutic interventions for mild TBI (mTBI). First, mTBI and sleep physiology are briefly reviewed. Next, essential empirical and clinical questions and knowledge gaps are addressed. Finally, actionable recommendations are offered to guide active and efficient collaboration between academic, industry, and governmental stakeholders.

  7. Functional brain mapping using H{sub 2}{sup 15}O positron emission tomography (II): mapping of human working memory

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Lee, Dong Soo; Lee, Sang Kun; Nam, Hyun Woo; Kim, Seok Ki; Park, Kwang Suk; Jeong, Jae Min; Chung, June Key; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    1998-08-01

    To localize and compare the neural basis of verbal and visual human working memory, we performed functional activation study using H{sub 2}{sup 15}O PET. Repeated H{sub 2}{sup 15}O PET scans with one control and three different activation tasks were performed on six right-handed normal volunteers. Each activation task was composed of 13 matching trials. On each trial, four targets, a fixation dot and a prove were presented sequentially and subject's tasks was to press a response button to indicate whether or not the prove was one of the previous targets. Short meaningful Korean words, simple drawings and monochromic pictures of human faces were used as matching objects for verbal or visual memory. All the images were spatially normalized and the differences between control and activation states were statistically analyzed using SPM96. Statistical analysis of verbal memory activation with short words showed activation in the left Broca's area, premotor cortex, cerebellum and right cingulate gyrus. In verbal memory with simple drawing, activation was shown in the larger regions including where activated with short words and left superior temporal cortex, basal ganglia, thalamus, prefrontal cortex, anterior portion of right superior temporal gyrus and right infero-lateral frontal cortex. On the other hand, the visual memory task activated predominantly right-sided structures, especially inferior frontal cortex, supplementary motor cortex and superior parietal cortex. The results are consistent with the hypothesis of the laterality and dissociation of the verbal and visual working memory from the invasive electrophysiological studies and emphasize the pivotal role of frontal cortex and cingulate gyrus in working memory system.

  8. Structural brain correlates of executive engagement in working memory: children's inter-individual differences are reflected in the anterior insular cortex.

    Science.gov (United States)

    Rossi, Sandrine; Lubin, Amélie; Simon, Grégory; Lanoë, Céline; Poirel, Nicolas; Cachia, Arnaud; Pineau, Arlette; Houdé, Olivier

    2013-06-01

    Although the development of executive functions has been extensively investigated at a neurofunctional level, studies of the structural relationships between executive functions and brain anatomy are still scarce. Based on our previous meta-analysis of functional neuroimaging studies examining executive functions in children (Houdé, Rossi, Lubin, and Joliot, (2010). Developmental Science, 13, 876-885), we investigated six a priori regions of interest: the left anterior insular cortex (AIC), the left and the right supplementary motor areas, the right middle and superior frontal gyri, and the left precentral gyrus. Structural magnetic resonance imaging scans were acquired from 22 to 10-year-old children. Local gray matter volumes, assessed automatically using a standard voxel-based morphometry approach, were correlated with executive and storage working memory capacities evaluated using backward and forward digit span tasks, respectively. We found an association between smaller gray matter volume--i.e., an index of neural maturation--in the left AIC and high backward memory span while gray matter volumes in the a priori selected regions of interest were not linked with forward memory span. These results were corroborated by a whole-brain a priori free analysis that revealed a significant negative correlation in the frontal and prefrontal regions, including the left AIC, with the backward memory span, and in the right inferior parietal lobe, with the forward memory span. Taken together, these results suggest a distinct and specific association between regional gray matter volume and the executive component vs. the storage component of working memory. Moreover, they support a key role for the AIC in the executive network of children. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Influence of COMT val158met genotype on the depressed brain during emotional processing and working memory.

    Directory of Open Access Journals (Sweden)

    Esther M Opmeer

    Full Text Available Major depressive disorder (MDD has been associated with abnormal prefrontal-limbic interactions and altered catecholaminergic neurotransmission. The val158met polymorphism on the catechol-O-methyltransferase (COMT gene has been shown to influence prefrontal cortex (PFC activation during both emotional processing and working memory (WM. Although COMT-genotype is not directly associated with MDD, it may affect MDD pathology by altering PFC activation, an endophenotype associated with both COMT and MDD. 125 participants, including healthy controls (HC, n=28 and MDD patients were genotyped for the COMT val158met polymorphism and underwent functional magnetic resonance imaging (fMRI-neuroimaging during emotion processing (viewing of emotional facial expressions and a WM task (visuospatial planning. Within HC, we observed a positive correlation between the number of met-alleles and right inferior frontal gyrus activation during emotional processing, whereas within patients the number of met-alleles was not correlated with PFC activation. During WM a negative correlation between the number of met-alleles and middle frontal gyrus activation was present in the total sample. In addition, during emotional processing there was an effect of genotype in a cluster including the amygdala and hippocampus. These results demonstrate that COMT genotype is associated with relevant endophenotypes for MDD. In addition, presence of MDD only interacts with genotype during emotional processing and not working memory.

  10. Memory, Cognition and the Endogenous Evoked Potentials of the Brain: the Estimation of the Disturbance of Cognitive Functions and Capacity of Working Memory Without the Psychological Testing.

    Science.gov (United States)

    Gnezditskiy, V V; Korepina, O S; Chatskaya, A V; Klochkova, O I

    2017-01-01

    Cognition, cognitive and memory impairments is widely discussed in the literature, especially in the psycho physiological and the neurologic. In essence, this literature is dedicated to the psycho physiological tests, different scales. However, instrument neurophysiologic methods not so widely are used for these purposes. This review is dedicated to the instrument methods of neurophysiology, in particular to the endogenous evoked potentials method Р 300 (by characteristic latency 300 ms), in the estimation of cognitive functions and memory, to their special features dependent on age and to special features to their changes with the pathology. Method cognitive EP - Р 300 is the response of the brain, recorded under the conditions of the identification of the significant distinguishing stimulus, it facilitates the inspection of cognitive functions and memory in the healthy persons and patients with different manifestation of cognitive impairments. In the review it is shown on the basis of literature and our own data, that working (operative) memory and the capacity of the working memory it can be evaluated with the aid of the indices Р 300 within the normal subject and with the pathology. Testing with the estimation of working memory according to latent period of the peak Р 300 can be carried out and when conducting psychological testing is not possible for any reasons. Together with these cognitive EP are used for evidence pharmacotherapy of many neurotropic drugs.

  11. N-terminal pro-brain natriuretic peptide and associated factors in the general working population: a baseline survey of the Uranosaki cohort study.

    Science.gov (United States)

    Tanaka, Atsushi; Yoshida, Hisako; Kawaguchi, Atsushi; Oyama, Jun-Ichi; Kotooka, Norihiko; Toyoda, Shigeru; Inoue, Teruo; Natsuaki, Masafumi; Node, Koichi

    2017-07-19

    Few data on clinical characteristics associated with N-terminal pro-brain natriuretic peptide (NT-proBNP) or the clinical value of measuring NT-proBNP in the working population are available. The aim of the present study was to investigate the levels of NT-proBNP and their association with clinical variables in the Japanese general working population by using baseline data from the Uranosaki cohort study. In the study, the plasma concentration of NT-proBNP and some biomarkers were measured in addition to the standard health checkups at the workplace. Questionnaires regarding health-related quality of life (HR-QOL) were also completed. A total of 2140 participants were enrolled in the study. Plasma levels of NT-proBNP were positively associated with age, female sex, systolic blood pressure, pulse pressure, prevalent hypertension, smoking habit, high-density lipoprotein cholesterol (HDL-C), and prevalent proteinuria, and negatively associated with body mass index, lipid profiles except HDL-C, uric acid, renal function, and hemoglobin. Both the plasma concentration of high-molecular weight adiponectin and that of high-sensitivity troponin T were positively and independently associated with NT-proBNP. In addition, the HR-QOL score regarding sleep disorder was independently associated with NT-proBNP. Thus, we have obtained evidence that the plasma NT-proBNP is affected by several clinical variables in the general working population.

  12. Perceived difficulty in the use of everyday technology: relationships with everyday functioning in people with acquired brain injury with a special focus on returning to work.

    Science.gov (United States)

    Larsson Lund, Maria; Nygård, Louise; Kottorp, Anders

    2014-01-01

    The aim was to explore the relationships between difficulties in the use of everyday technology (ET) and the ability to perform activities of daily life (ADL) in the home and in society and in the workplace in people with acquired brain injury (ABI). The investigation comprises an explorative cross-sectional study of 74 people with ABI. The short version of the Everyday Technology Use Questionnaire (S-ETUQ) and a revised version of the ADL taxonomy were used to evaluate the participants. Rasch-generated person ability measures of ET use and ADL were used in correlation analyses, in group comparisons by ANOVA and in logistic regressions. Difficulty in the use of ET was significantly correlated with ADL limitations. People who worked full- or part-time had significantly higher ability to use ET than those with some type of full-time, long-term sickness compensation. The ability to use ET, ADL ability and age were significantly related to return to work. The ability to use ET is related to all areas of everyday functioning in people with ABI. Therefore, a patient's ability to use ET needs to be considered in rehabilitation strategies following an ABI to enhance the patient's performance of activities in the home and in society and to support his or her likelihood of returning to work.

  13. Switching Attention within Working Memory is Reflected in the P3a Component of the Human Event-Related Brain Potential.

    Directory of Open Access Journals (Sweden)

    Stefan eBerti

    2016-01-01

    Full Text Available The flexible access to information in working memory is crucial for adaptive behavior. It is assumed that this is realized by switching the focus of attention within working memory. Switching of attention is mirrored in the P3a component of the human event-related brain potential (ERP and it has been argued that the processes reflected by the P3a are also relevant for selecting information within working memory. The aim of the present study was to further evaluate whether the P3a mirrors genuine switching of attention within working memory by applying an object switching task: Participants updated a memory list of four digits either by replacing one item with another digit or by processing the stored digit. ERPs were computed separately for two types of trials: (1 trials in which an object was repeated and (2 trials in which a switch to a new object was required in order to perform the task. Object switch trials showed increased response times compared with repetition trials in both task conditions. In addition, switching costs were increased in the processing compared with the replacement condition. Pronounced P3a’s were obtained in switching trials but there were no difference between the two updating tasks (replacement or processing. These results were qualified by the finding that the magnitude of the visual location shift also affects the ERPs in the P3a time window. Taken together, the present pattern of results suggest that the P3a reflects an initial process of selecting information in working memory but not the memory updating itself.

  14. Development of the Young Brain

    Medline Plus

    Full Text Available ... Jay Giedd has studied the development of the adolescent brain. Decades of imaging work have led to remarkable ... and intellectual growth. Studying the development of the adolescent brain has been the life work of National Institute ...

  15. Development of the Young Brain

    Medline Plus

    Full Text Available ... development of the adolescent brain. Decades of imaging work have led to remarkable insight and a more ... of the adolescent brain has been the life work of National Institute of Mental Health researcher Dr. ...

  16. Brain activation and deactivation during location and color working memory tasks in 11-13-year-old children.

    Science.gov (United States)

    Vuontela, Virve; Steenari, Maija-Riikka; Aronen, Eeva T; Korvenoja, Antti; Aronen, Hannu J; Carlson, Synnöve

    2009-02-01

    Using functional magnetic resonance imaging (fMRI) and n-back tasks we investigated whether, in 11-13-year-old children, spatial (location) and nonspatial (color) information is differentially processed during visual attention (0-back) and working memory (WM) (2-back) tasks and whether such cognitive task performance, compared to a resting state, results in regional deactivation. The location 0-back task, compared to the color 0-back task, activated segregated areas in the frontal, parietal and occipital cortices whereas no differentially activated voxels were obtained when location and color 2-back tasks were directly contrasted. Several midline cortical areas were less active during 0- and 2-back task performance than resting state. The task-induced deactivation increased with task difficulty as demonstrated by larger deactivation during 2-back than 0-back tasks. The results suggest that, in 11-13-year-old children, the visual attentional network is differently recruited by spatial and nonspatial information processing, but the functional organization of cortical activation in WM in this age group is not based on the type of information processed. Furthermore, 11-13-year-old children exhibited a similar pattern of cortical deactivation that has been reported in adults during cognitive task performance compared to a resting state.

  17. Mild Traumatic Brain Injury

    Science.gov (United States)

    ... mild Traumatic Brain Injury Resilience Families with Kids Depression Families & Friendships Tobacco Life Stress Spirituality Anger Physical Injury Stigma Health & Wellness Work Adjustment Community Peer-2-Peer Forum ...

  18. The effect of caffeine on working memory load-related brain activation in middle-aged males.

    Science.gov (United States)

    Klaassen, Elissa B; de Groot, Renate H M; Evers, Elisabeth A T; Snel, Jan; Veerman, Enno C I; Ligtenberg, Antoon J M; Jolles, Jelle; Veltman, Dick J

    2013-01-01

    Caffeine is commonly consumed in an effort to enhance cognitive performance. However, little is known about the usefulness of caffeine with regard to memory enhancement, with previous studies showing inconsistent effects on memory performance. We aimed to determine the effect of caffeine on working memory (WM) load-related activation during encoding, maintenance and retrieval phases of a WM maintenance task using functional magnetic resonance imaging (fMRI). 20 healthy, male, habitual caffeine consumers aged 40-61 years were administered 100 mg of caffeine in a double-blind placebo-controlled crossover design. Participants were scanned in a non-withdrawn state following a workday during which caffeinated products were consumed according to individual normal use (range = 145-595 mg). Acute caffeine administration was associated with increased load-related activation compared to placebo in the left and right dorsolateral prefrontal cortex during WM encoding, but decreased load-related activation in the left thalamus during WM maintenance. These findings are indicative of an effect of caffeine on the fronto-parietal network involved in the top-down cognitive control of WM processes during encoding and an effect on the prefrontal cortico-thalamic loop involved in the interaction between arousal and the top-down control of attention during maintenance. Therefore, the effects of caffeine on WM may be attributed to both a direct effect of caffeine on WM processes, as well as an indirect effect on WM via arousal modulation. Behavioural and fMRI results were more consistent with a detrimental effect of caffeine on WM at higher levels of WM load, than caffeine-related WM enhancement. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Return to Work: A Cut-Off of FIM Gain with Montebello Rehabilitation Factor Score in Order to Identify Predictive Factors in Subjects with Acquired Brain Injury.

    Science.gov (United States)

    Franceschini, Marco; Massimiani, Maria Pia; Paravati, Stefano; Agosti, Maurizio

    2016-01-01

    Return to work (RTW) for people with acquired brain injury (ABI) represents a main objective of rehabilitation: this work presents a strong correlation between personal well-being and quality of life. The aim of this study is to investigate the prognostic factors that can predict RTW after ABI (traumatic or non- traumatic aetiology) in patients without disorders of consciousness (e.g. coma, vegetative or minimally conscious state) at the beginning of their admission to rehabilitation. At the end of a 6-month follow-up after discharge, data were successfully collected in 69 patients. The rehabilitation effectiveness (functional Recovery) between admission and discharge was assessed by Functional Independent Measure (FIM) gain, through the Montebello Rehabilitation Factor Score (MRFS), which was obtained as follows: (discharge FIM-admission FIM)/(Maximum possible FIM-Admission FIM) x 100. The cut-off value (criterion) deriving from MRFS, which helped identify RTW patients, resulted in .659 (sn 88.9%; sp 52.4%). Considering the Mini Mental State Examination (MMSE) and the MRFS data, the multivariable binary logistic regression analysis presented 62.96% of correct RTW classification cases, 80.95% of non-RTW leading to an overall satisfactory predictability of 73.91%. The results of the present study suggest that occupational therapy intervention could modify cut-off in patients with an MFRS close to target at the end of an in-hospital rehabilitative program thus developing their capabilities and consequently surpassing cut-off itself.

  20. Return to Work: A Cut-Off of FIM Gain with Montebello Rehabilitation Factor Score in Order to Identify Predictive Factors in Subjects with Acquired Brain Injury.

    Directory of Open Access Journals (Sweden)

    Marco Franceschini

    Full Text Available Return to work (RTW for people with acquired brain injury (ABI represents a main objective of rehabilitation: this work presents a strong correlation between personal well-being and quality of life. The aim of this study is to investigate the prognostic factors that can predict RTW after ABI (traumatic or non- traumatic aetiology in patients without disorders of consciousness (e.g. coma, vegetative or minimally conscious state at the beginning of their admission to rehabilitation. At the end of a 6-month follow-up after discharge, data were successfully collected in 69 patients. The rehabilitation effectiveness (functional Recovery between admission and discharge was assessed by Functional Independent Measure (FIM gain, through the Montebello Rehabilitation Factor Score (MRFS, which was obtained as follows: (discharge FIM-admission FIM/(Maximum possible FIM-Admission FIM x 100. The cut-off value (criterion deriving from MRFS, which helped identify RTW patients, resulted in .659 (sn 88.9%; sp 52.4%. Considering the Mini Mental State Examination (MMSE and the MRFS data, the multivariable binary logistic regression analysis presented 62.96% of correct RTW classification cases, 80.95% of non-RTW leading to an overall satisfactory predictability of 73.91%. The results of the present study suggest that occupational therapy intervention could modify cut-off in patients with an MFRS close to target at the end of an in-hospital rehabilitative program thus developing their capabilities and consequently surpassing cut-off itself.

  1. Brain herniation

    Science.gov (United States)

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  2. Altered brain activation and functional connectivity in working memory related networks in patients with type 2 diabetes: An ICA-based analysis

    Science.gov (United States)

    Zhang, Yang; Lu, Shan; Liu, Chunlei; Zhang, Huimei; Zhou, Xuanhe; Ni, Changlin; Qin, Wen; Zhang, Quan

    2016-01-01

    Type 2 diabetes mellitus (T2DM) can cause multidimensional cognitive deficits, among which working memory (WM) is usually involved at an early stage. However, the neural substrates underlying impaired WM in T2DM patients are still unclear. To clarify this issue, we utilized functional magnetic resonance imaging (fMRI) and independent component analysis to evaluate T2DM patients for alterations in brain activation and functional connectivity (FC) in WM networks and to determine their associations with cognitive and clinical variables. Twenty complication-free T2DM patients and 19 matched healthy controls (HCs) were enrolled, and fMRI data were acquired during a block-designed 1-back WM task. The WM metrics of the T2DM patients showed no differences compared with those of the HCs, except for a slightly lower accuracy rate in the T2DM patients. Compared with the HCs, the T2DM patients demonstrated increased activation within their WM fronto-parietal networks, and activation strength was significantly correlated with WM performance. The T2DM patients also showed decreased FC within and between their WM networks. Our results indicate that the functional integration of WM sub-networks was disrupted in the complication-free T2DM patients and that strengthened regional activity in fronto-parietal networks may compensate for the WM impairment caused by T2DM. PMID:27021340

  3. Genetic influences on individual differences in longitudinal changes in global and subcortical brain volumes: Results of the ENIGMA plasticity working group.

    Science.gov (United States)

    Brouwer, Rachel M; Panizzon, Matthew S; Glahn, David C; Hibar, Derrek P; Hua, Xue; Jahanshad, Neda; Abramovic, Lucija; de Zubicaray, Greig I; Franz, Carol E; Hansell, Narelle K; Hickie, Ian B; Koenis, Marinka M G; Martin, Nicholas G; Mather, Karen A; McMahon, Katie L; Schnack, Hugo G; Strike, Lachlan T; Swagerman, Suzanne C; Thalamuthu, Anbupalam; Wen, Wei; Gilmore, John H; Gogtay, Nitin; Kahn, René S; Sachdev, Perminder S; Wright, Margaret J; Boomsma, Dorret I; Kremen, William S; Thompson, Paul M; Hulshoff Pol, Hilleke E

    2017-09-01

    Structural brain changes that occur during development and ageing are related to mental health and general cognitive functioning. Individuals differ in the extent to which their brain volumes change over time, but whether these differences can be attributed to differences in their genotypes has not been widely studied. Here we estimate heritability (h 2 ) of changes in global and subcortical brain volumes in five longitudinal twin cohorts from across the world and in different stages of the lifespan (N = 861). Heritability estimates of brain changes were significant and ranged from 16% (caudate) to 42% (cerebellar gray matter) for all global and most subcortical volumes (with the exception of thalamus and pallidum). Heritability estimates of change rates were generally higher in adults than in children suggesting an increasing influence of genetic factors explaining individual differences in brain structural changes with age. In children, environmental influences in part explained individual differences in developmental changes in brain structure. Multivariate genetic modeling showed that genetic influences of change rates and baseline volume significantly overlapped for many structures. The genetic influences explaining individual differences in the change rate for cerebellum, cerebellar gray matter and lateral ventricles were independent of the genetic influences explaining differences in their baseline volumes. These results imply the existence of genetic variants that are specific for brain plasticity, rather than brain volume itself. Identifying these genes may increase our understanding of brain development and ageing and possibly have implications for diseases that are characterized by deviant developmental trajectories of brain structure. Hum Brain Mapp 38:4444-4458, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Genetic influences on individual differences in longitudinal changes in global and subcortical brain volumes : Results of the ENIGMA plasticity working group

    NARCIS (Netherlands)

    Brouwer, Rachel M; Panizzon, Matthew S; Glahn, David C; Hibar, Derrek P; Hua, Xue; Jahanshad, Neda; Abramovic, Lucija; De Zubicaray, Greig I; Franz, Carol E; Hansell, Narelle K; Hickie, Ian B; Koenis, Marinka M G; Martin, Nicholas G; Mather, Karen A; McMahon, Katie L; Schnack, Hugo G; Strike, Lachlan T; Swagerman, Suzanne C; Thalamuthu, Anbupalam; Wen, Wei; Gilmore, John H; Gogtay, Nitin; Kahn, René S; Sachdev, Perminder S; Wright, Margaret J; Boomsma, Dorret I; Kremen, William S; Thompson, Paul M; Hulshoff Pol, Hilleke E

    2017-01-01

    Structural brain changes that occur during development and ageing are related to mental health and general cognitive functioning. Individuals differ in the extent to which their brain volumes change over time, but whether these differences can be attributed to differences in their genotypes has not

  5. Five-year follow-up of persons with brain injury entering the French vocational and social rehabilitation programme UEROS: Return-to-work, life satisfaction, psychosocial and community integration.

    Science.gov (United States)

    Cogné, M; Wiart, L; Simion, A; Dehail, P; Mazaux, J-M

    2017-01-01

    Social and vocational reintegration of persons with brain injury is an important element in their rehabilitation. To evaluate the 5-year outcome of persons with brain injury included in 2008 in the Aquitaine Unit for Evaluation, Training and Social and Vocational Counselling programme (UEROS). 57 persons with brain injury were recruited from those who completed the 2008 UEROS programme. Five years later, an interview was done to assess family and vocational status, autonomy and life satisfaction. These results were compared with those from persons completing the 1997-1999 programme. The typical person entered the 2008 UEROS programme 6 years after a severe brain injury (42%) and was male, single and 35 years. At the 5-year follow-up, more persons lived with a partner (+23%) and lived in their own home (+21%). 47% were working vs 11% on entering the programme. Approximately half were satisfied or very satisfied with their quality of life. Having a job in 2013 was associated with a high education level, less cognitive sequelae, having a job in 2008 and no health condition. The UEROS programme is effective with regard to return-to-work and improvement of autonomy in persons with brain injury, irrespective of length of time from injury.

  6. Emotion perception after moderate-severe traumatic brain injury: The valence effect and the role of working memory, processing speed, and nonverbal reasoning

    NARCIS (Netherlands)

    Rosenberg, H.; Dethier, M.; Kessels, R.P.C.; Westbrook, R.F.; McDonald, S.

    2015-01-01

    OBJECTIVE: Traumatic brain injury (TBI) impairs emotion perception. Perception of negative emotions (sadness, disgust, fear, and anger) is reportedly affected more than positive (happiness and surprise) ones. It has been argued that this reflects a specialized neural network underpinning negative

  7. Emotion perception after moderate–severe traumatic brain injury: The valence effect and the role of working memory, processing speed, and nonverbal reasoning

    NARCIS (Netherlands)

    Rosenberg, H.; Dethier, M.; Kessels, R.P.C.; Westbrook, R.F.; McDonald, S.

    2015-01-01

    Objective: Traumatic brain injury (TBI) impairs emotion perception. Perception of negative emotions (sadness, disgust, fear, and anger) is reportedly affected more than positive (happiness and surprise) ones. It has been argued that this reflects a specialized neural network underpinning negative

  8. Development of the Young Brain

    Science.gov (United States)

    ... Institute Announcements (24 items) Development of the Young Brain May 2, 2011 For more than twenty years, ... Giedd has studied the development of the adolescent brain. Decades of imaging work have led to remarkable ...

  9. Development of the Young Brain

    Medline Plus

    Full Text Available ... Traumatic Events (3 items) Institute Announcements (24 items) Development of the Young Brain May 2, 2011 For ... Health neuroscientist Dr. Jay Giedd has studied the development of the adolescent brain. Decades of imaging work ...

  10. Development of the Young Brain

    Medline Plus

    Full Text Available ... development of the adolescent brain has been the life work of National Institute of Mental Health researcher ... Jay Giedd. Dr. Giedd: At different ages of life certain parts of the brain have much more ...

  11. Development of the Young Brain

    Medline Plus

    Full Text Available ... development of the adolescent brain has been the life work of National Institute of Mental Health researcher Dr. Jay Giedd. Dr. Giedd: At different ages of life certain parts of the brain have much more ...

  12. Development of the Young Brain

    Medline Plus

    Full Text Available ... Institute Announcements (24 items) Development of the Young Brain May 2, 2011 For more than twenty years, ... Giedd has studied the development of the adolescent brain. Decades of imaging work have led to remarkable ...

  13. Use of Multichannel Near Infrared Spectroscopy to Study Relationships Between Brain Regions and Neurocognitive Tasks of Selective/Divided Attention and 2-Back Working Memory.

    Science.gov (United States)

    Tomita, Nozomi; Imai, Shoji; Kanayama, Yusuke; Kawashima, Issaku; Kumano, Hiroaki

    2017-06-01

    While dichotic listening (DL) was originally intended to measure bottom-up selective attention, it has also become a tool for measuring top-down selective attention. This study investigated the brain regions related to top-down selective and divided attention DL tasks and a 2-back task using alphanumeric and Japanese numeric sounds. Thirty-six healthy participants underwent near-infrared spectroscopy scanning while performing a top-down selective attentional DL task, a top-down divided attentional DL task, and a 2-back task. Pearson's correlations were calculated to show relationships between oxy-Hb concentration in each brain region and the score of each cognitive task. Different brain regions were activated during the DL and 2-back tasks. Brain regions activated in the top-down selective attention DL task were the left inferior prefrontal gyrus and left pars opercularis. The left temporopolar area was activated in the top-down divided attention DL task, and the left frontopolar area and left dorsolateral prefrontal cortex were activated in the 2-back task. As further evidence for the finding that each task measured different cognitive and brain area functions, neither the percentages of correct answers for the three tasks nor the response times for the selective attentional task and the divided attentional task were correlated to one another. Thus, the DL and 2-back tasks used in this study can assess multiple areas of cognitive, brain-related dysfunction to explore their relationship to different psychiatric and neurodevelopmental disorders.

  14. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  15. Functional brain activity changes after four weeks supplementation with a multi-vitamin/mineral combination: A randomized, double-blind, placebo-controlled trial exploring functional Magnetic Resonance Imaging and Steady-State Visual Evoked Potentials during working memory

    Directory of Open Access Journals (Sweden)

    David J White

    2016-12-01

    Full Text Available This study explored the neurocognitive effects of four weeks daily supplementation with a multivitamin and mineral combination (MVM in healthy adults (aged 18-40 years. Using a randomized, double-blind, placebo-controlled design, participants underwent assessments of brain activity using functional Magnetic Resonance Imaging (fMRI; n=32, 16 females and Steady-State Visual Evoked Potential recordings (SSVEP; n=39, 20 females during working memory and continuous performance tasks at baseline and following four weeks of active MVM treatment or placebo. There were several treatment-related effects suggestive of changes in functional brain activity associated with MVM administration. SSVEP data showed latency reductions across centro-parietal regions during the encoding period of a spatial working memory task following four weeks of active MVM treatment. Complementary results were observed with the fMRI data, in which a subset of those completing fMRI assessment after SSVEP assessment (n=16 demonstrated increased BOLD response during completion of the Rapid Visual Information Processing task (RVIP within regions of interest including bilateral parietal lobes. No treatment-related changes in fMRI data were observed in those who had not first undergone SSVEP assessment, suggesting these results may be most evident under conditions of fatigue. Performance on the working memory and continuous performance tasks did not significantly differ between treatment groups at follow-up. In addition, within the fatigued fMRI sample, increased RVIP BOLD response was correlated with the change in number of target detections as part of the RVIP task. This study provides preliminary evidence of changes in functional brain activity during working memory associated with four weeks of daily treatment with a multivitamin and mineral combination in healthy adults, using two distinct but complementary measures of functional brain activity.

  16. Effects of radiotherapy for brain metastases on quality of life (QoL). Prospective pilot study of the DEGRO QoL working party

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, Diana; Bruns, Frank [Medical School, Hannover (Germany). Radiation Oncology; Schaefer, Christof; Hipp, Matthias [Regensburg Univ. (Germany). Radiation Oncology; Oorschot, Birgitt van [Wuerzburg Univ. (Germany). Radiation Oncology; Wypior, Hans-Joachim [Hospital Landshut (Germany). Radiation Oncology; Boelling, Tobias [Muenster Univ. (Germany). Radiation Oncology; Sehlen, Susanne [Ludwig Maximilians Univ., Muenchen (Germany). Radiation Oncology; Hagg, Juliane [Ulm Univ. (Germany). Radiation Oncology; Bayerl, Anja [Hospital Krems (Austria). Radiation Oncology; Geinitz, Hans [Technical Univ. Muenchen (Germany). Radiation Oncology; Vordermark, Dirk [Halle-Wittenberg Univ., Halle (Germany). Radiation Oncology

    2009-03-15

    Background: Prospective data on quality-of-life (QoL) effects of radiotherapy for brain metastases are currently lacking, but would be of great interest to guide therapeutic decisions. Patients and Methods: From 01/2007 to 08/2007, 46 patients with previously untreated brain metastases were recruited at eight centers. QoL was measured at start of treatment (T{sub 0}) and at 3 months ({sub T3mo}). In the pilot study, two combinations of QoL instruments could be used at the discretion of the centers (A: EORTC QLQ-C30 and B: EORTC QLQ-C15-PAL both with brain module BN20, assessment by proxies with A: Palliative Care Outcome Scale, B: self-constructed brain-specific instrument). Results: All patients received whole-brain radiotherapy, four with an additional boost irradiation. At T{sub 3mo}, 26/46 patients (56.5%) had died. 17/20 survivors (85%) completed the questionnaires. In 3-month survivors, QoL deteriorated in most domains, significant in drowsiness, hair loss and weakness of legs. The scores for headaches and seizures were slightly better after 3 months. Assessment by proxies also suggested worsening of QoL. Initial QoL at T{sub 0} was better in those alive than in those deceased at T{sub 3mo}, significant for physical function and for the symptom scales of fatigue and pain, motor dysfunction, communication deficit and weakness of legs. Conclusion: Practicability and compliance appeared better with the (shorter) version B. This version is now used in the ongoing main phase of the study with additional centers. First results indicate a moderate worsening of QoL during the first 3 months after start of palliative radiotherapy for brain metastases. QoL at initiation of radiotherapy may be prognostic for survival. (orig.)

  17. The Resilient Brain

    Science.gov (United States)

    Brendtro, Larry K.; Longhurst, James E.

    2005-01-01

    Brain research opens new frontiers in working with children and youth experiencing conflict in school and community. Blending this knowledge with resilience science offers a roadmap for reclaiming those identified as "at risk." This article applies findings from resilience research and recent brain research to identify strategies for reaching…

  18. Brain surgery

    Science.gov (United States)

    Craniotomy; Surgery - brain; Neurosurgery; Craniectomy; Stereotactic craniotomy; Stereotactic brain biopsy; Endoscopic craniotomy ... cut depends on where the problem in the brain is located. The surgeon creates a hole in ...

  19. Brain Malformations

    Science.gov (United States)

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  20. Mapping the brain

    International Nuclear Information System (INIS)

    Begley, S.; Wright, L.; Church, V.; Hager, M.

    1992-01-01

    With powerful new technologies such as positron tomography and superconducting quantum interference device that peer through the skull and see the brain at work, neuroscientists seek the wellsprings of thoughts and emotions, the genesis of intelligence and language. A functional map of the brain is thus obtained and its challenge is to move beyond brain structure to create a detailed diagram of which part do what. For that the brain's cartographers rely on a variety of technologies such as positron tomography and superconducting quantum interference devices. Their performances and uses are briefly reviewed. ills

  1. David Ferrier: brain drawings and brain maps.

    Science.gov (United States)

    Lazar, J Wayne

    2013-01-01

    This chapter has two emphases, one is about the men who influenced the visual representations that David Ferrier (1843-1928) used to illustrate his work on localization of brain functions during the years 1873-1875, namely, Alexander Ecker, John C. Galton, and Ernest Waterlow, and the other is about the nature of medical representations and of Ferrier's illustrations in particular. Medical illustrations are characterized either as pictures, line drawings, or brain maps. Ferrier's illustrations will be shown to be increasingly sophisticated brain maps that contrast with early nineteenth-century standards of medical illustrations, as exemplified by John Bell (1763-1829). © 2013 Elsevier B.V. All rights reserved.

  2. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... How Alzheimer's Changes the Brain National Institute On Aging Loading... Unsubscribe from National Institute On Aging? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe 7K Loading... ...

  3. A prospective study of patients with brain MRI showing incidental t2 hyperintensities addressed as multiple sclerosis: a lot of work to do before treating.

    Science.gov (United States)

    Lebrun, Christine; Cohen, Mikael; Chaussenot, Annabelle; Mondot, Lydiane; Chanalet, Stephane

    2014-12-01

    With the development of magnetic resonance imaging (MRI) and publications about radiologically isolated syndrome (RIS), a lot of patients are referred to multiple sclerosis (MS) tertiary centers to confirm diagnosis of RIS or MS when brain T2 abnormalities are identified, whatever their characteristics. We evaluate prospectively the occurrence of RIS or MS and sensitivity, specificity and predictive value of McDonald criteria in diagnosis for patients presenting with incidental brain MRI T2 lesions. The authors ran standardized procedures on 220 consecutive patients addressed by general practitioners or neurologists to confirm RIS or MS diagnosis on brain MRI and give a therapeutic advice. All patients underwent neurological tests, extensive blood screening, cerebrospinal fluid (CSF) examination, visual evoked potential (VEP) and follow-up MRI after 3, 6, 12 and 24 months to consider dissemination in time and space. Patient characteristics were: 165 women and 55 men, mean age: 42.7 years old (23-59). The major symptom motivating MRI was headaches (39%), sensitive atypical manifestations or pain (12%), mood disorders (10%), transient visual symptoms (9%), fatigue (8%), hormonal screening (6%), vertigo (6%), cranial trauma (5%), and dummy run for clinical study (5%). After a structured analysis of T2 lesions, the suspected diagnosis was: inflammatory disease 45%, vascular 33%, non-pathological 19%, genetic 2%, and metabolic 1%. Extensive screening confirmed the proposed diagnosis in 97% of cases. Among all the 220 proposed RIS patients, only 35.4% fulfilled the 2010 McDonald criteria, and 8% can be categorized as RIS. Dissemination in time criteria was present for 82.7% of MS patients and 36% of RIS patients but none of the vascular or non-pathological T2 abnormalities. Even if RIS was initially suspected on MRI, only a third of the patients had an inflammatory disease. Most of the patients had either non-specific T2 lesions or a non-inflammatory disease. Others

  4. Emotion perception after moderate-severe traumatic brain injury: The valence effect and the role of working memory, processing speed, and nonverbal reasoning.

    Science.gov (United States)

    Rosenberg, Hannah; Dethier, Marie; Kessels, Roy P C; Westbrook, R Frederick; McDonald, Skye

    2015-07-01

    Traumatic brain injury (TBI) impairs emotion perception. Perception of negative emotions (sadness, disgust, fear, and anger) is reportedly affected more than positive (happiness and surprise) ones. It has been argued that this reflects a specialized neural network underpinning negative emotions that is vulnerable to brain injury. However, studies typically do not equate for differential difficulty between emotions. We aimed to examine whether emotion recognition deficits in people with TBI were specific to negative emotions, while equating task difficulty, and to determine whether perception deficits might be accounted for by other cognitive processes. Twenty-seven people with TBI and 28 matched control participants identified 6 basic emotions at 2 levels of intensity (a) the conventional 100% intensity and (b) "equated intensity"-that is, an intensity that yielded comparable accuracy rates across emotions in controls. (a) At 100% intensity, the TBI group was impaired in recognizing anger, fear, and disgust but not happiness, surprise, or sadness and performed worse on negative than positive emotions. (b) At equated intensity, the TBI group was poorer than controls overall but not differentially poorer in recognizing negative emotions. Although processing speed and nonverbal reasoning were associated with emotion accuracy, injury severity by itself was a unique predictor. When task difficulty is taken into account, individuals with TBI show impairment in recognizing all facial emotions. There was no evidence for a specific impairment for negative emotions or any particular emotion. Impairment was accounted for by injury severity rather than being a secondary effect of reduced neuropsychological functioning. (c) 2015 APA, all rights reserved).

  5. Non-invasive grading of brain tumours using dynamic amino acid PET imaging: does it work for 11C-Methionine?

    International Nuclear Information System (INIS)

    Moulin-Romsee, Gerard; D'Hondt, Eduard; Mortelmans, Luc; Laere, Koen van; Groot, Tjibbe de; Goffin, Jan; Sciot, Raf; Menten, Johan; Bormans, Guy

    2007-01-01

    Static imaging of amino acids does not allow differentiation of low versus high grade brain tumours. It has been shown that dynamic imaging of the amino acid analogue 18 F-fluoroethyltyrosine (FET) can achieve this goal. In many centres, 11 C-methionine (MET) is used for tumour imaging, but no clinical studies on the use of dynamic scanning for grading have been performed. Thirty-four patients with primary brain glioma and histopathological confirmation were retrospectively studied using 40 min dynamic MET-PET with 220 MBq 11C-methionine. In relation to histopathological grading, various metabolic indices and temporal parameters as documented by Poepperl et al. (JNM 2006;47:393-403) were analyzed. None of the evaluated static or temporal parameters allowed discrimination between high and low grade tumours. On average, low grade tumours showed washout after the initial uptake maximum, while both increases and decreases were seen for high grade tumours. Only the relative early versus late uptake ratio showed a trend towards significance (-0.16 ± 0.17 for low grade versus 0.01 ± 0.25 for high grade; p = 0.07). Unlike FET-PET, the uptake characteristics of MET-PET do not allow classification of low and high grade tumours on an individual patient basis. Since literature data indicate that both tracers have a similar performance regarding biopsy location, tumour delineation, and detection of recurrence, FET-PET should be advocated over MET-PET as its uptake mechanism also allows noninvasive grading in glioma. (orig.)

  6. Usefulness of brain SPECT

    International Nuclear Information System (INIS)

    Raynaud, C.; Rancurel, G.; Kieffer, E.; Ricard, S.; Askienazy, S.; Moretti, J.L.; Bourdoiseau, M.; Rapin, J.; Soussaline, F.

    1983-01-01

    Brain SPECT was not effectively exploited until I-123 isopropyl amphetamine (IAMP), indicator able to penetrate the blood brain barrier, became available. Although the experience of research teams working with IAMP is quite restricted due to the high cost of the indicator, some applications now appear to be worth the cost and in some cases provide data which cannot be obtained with routine techniques, especially in cerebrovascular patients, in epilepsy and some cases of tumor. Brain SPECT appears as an atraumatic test which is useful to establish a functional evaluation of the cerebral parenchyma, and which is a complement to arteriography, X-ray scan and regional cerebral blood flow measurement

  7. Dyslexia singular brain

    International Nuclear Information System (INIS)

    Habis, M.; Robichon, F.; Demonet, J.F.

    1996-01-01

    Of late ten years, neurologists are studying the brain of the dyslectics. The cerebral imagery (NMR imaging, positron computed tomography) has allowed to confirm the anatomical particularities discovered by some of them: asymmetry default of cerebral hemispheres, size abnormally large of the white substance mass which connect the two hemispheres. The functional imagery, when visualizing this singular brain at work, allows to understand why it labors to reading. (O.M.)

  8. Brain Aneurysm

    Science.gov (United States)

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  9. Brain Development

    Science.gov (United States)

    ... Become a Member Home Early Development & Well-Being Brain Development A child’s brain undergoes an amazing period of development from birth ... neural connections each second. The development of the brain is influenced by many factors, including a child’s ...

  10. Left Brain. Right Brain. Whole Brain

    Science.gov (United States)

    Farmer, Lesley S. J.

    2004-01-01

    As the United States student population is becoming more diverse, library media specialists need to find ways to address these distinctive needs. However, some of these differences transcend culture, touching on variations in the brain itself. Most people have a dominant side of the brain, which can affect their personality and learning style.…

  11. Brain Basics: Know Your Brain

    Science.gov (United States)

    ... however, the brain is beginning to relinquish its secrets. Scientists have learned more about the brain in ... through the activity of these lobes. At the top of each temporal lobe is an area responsible ...

  12. Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed

    DEFF Research Database (Denmark)

    Posthuma, Daniëlle; Baare, Wim F.C.; Hulshoff Pol, Hilleke E.

    2003-01-01

    We recently showed that the correlation of gray and white matter volume with full scale IQ and the Working Memory dimension are completely mediated by common genetic factors (Posthuma et al., 2002). Here we examine whether the other WAIS III dimensions (Verbal Comprehension, Perceptual Organization...... to Working Memory capacity (r = 0.27). This phenotypic correlation is completely due to a common underlying genetic factor. Processing Speed was genetically related to white matter volume (r(g) = 0.39). Perceptual Organization was both genetically (r(g) = 0.39) and environmentally (r(e) = -0.71) related...

  13. Characterizing brain oscillations in cognition and disease

    NARCIS (Netherlands)

    Jiang, H.

    2016-01-01

    It has been suggested that neuronal oscillations play a fundamental role for shaping the functional architecture of the working brain. This thesis investigates brain oscillations in rat, human healthy population and major depressive disorder (MDD) patients. A novel measurement termed

  14. Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed

    NARCIS (Netherlands)

    Posthuma, D.; Baare, W.F.C.; Hulshoff Pol, H.E.; Kahn, R.S.; Boomsma, D.I.; de Geus, E.J.C.

    2003-01-01

    We recently showed that the correlation of gray and white matter volume with full scale IQ and the Working Memory dimension are completely mediated by common genetic factors (Posthuma et al., 2002). Here we examine whether the other WAIS III dimensions (Verbal Comprehension, Perceptual Organization,

  15. Distinction between perceptual and attentional processing in working memory tasks: a study of phase-locked and induced oscillatory brain dynamics.

    Science.gov (United States)

    Deiber, Marie-Pierre; Missonnier, Pascal; Bertrand, Olivier; Gold, Gabriel; Fazio-Costa, Lara; Ibañez, Vicente; Giannakopoulos, Panteleimon

    2007-01-01

    Working memory involves the short-term storage and manipulation of information necessary for cognitive performance, including comprehension, learning, reasoning and planning. Although electroencephalogram (EEG) rhythms are modulated during working memory, the temporal relationship of EEG oscillations with the eliciting event has not been well studied. In particular, the dynamics of the neural network supporting memory processes may be best captured in induced oscillations, characterized by a loose temporal link with the stimulus. In order to differentiate induced from evoked functional processes, the present study proposes a time-frequency analysis of the 3 to 30 Hz EEG oscillatory activity in a verbal n-back working memory paradigm. Control tasks were designed to identify oscillatory activity related to stimulus presentation (passive task) and focused attention to the stimulus (detection task). Evoked theta activity (4-8 Hz) phase-locked to the visual stimulus was evidenced in the parieto-occipital region for all tasks. In parallel, induced theta activity was recorded in the frontal region for detection and n-back memory tasks, but not for the passive task, suggesting its dependency on focused attention to the stimulus. Sustained induced oscillatory activity was identified in relation to working memory in the theta and beta (15-25 Hz) frequency bands, larger for the highest memory load. Its late occurrence limited to nonmatched items suggests that it could be related to item retention and active maintenance for further task requirements. Induced theta and beta activities displayed respectively a frontal and parietal topographical distribution, providing further functional information on the fronto-posterior network supporting working memory.

  16. 工作记忆训练对脑卒中患者大脑功能激活的影响%Effects of Working Memory Training on Brain Functional Activition for Stroke Patients

    Institute of Scientific and Technical Information of China (English)

    陈正威; 张璞; 恽晓平

    2015-01-01

    目的:研究计算机化工作记忆训练对脑卒中患者工作记忆及大脑功能激活的影响。方法3例脑卒中患者作为训练组,10名健康成年被试作为正常对照组。训练组接受4周工作记忆训练,对照组不接受任何训练。训练前及训练后各被试均接受认知心理行为测验和神经影像学测验(任务态fMRI)。结果工作记忆训练可有效提升脑卒中患者工作记忆、流体智力及注意力水平(P<0.001);工作记忆训练可改善异常功能激活模式并使功能激活网络发生重组。结论工作记忆训练可作为有效的康复干预措施用于脑卒中患者的认知功能康复。%Objective To explore the effects of computerized working memory training on working memory and brain functional activi-tion for stroke paitents. Methods 3 stroke patients voluntarily joined in the study, 10 healthy adults were recruited as control group. The pa-tients received computerized working memory training for 4 weeks. Cognitive psychological tests (the n-back task, Stroop task and Raven`s Advanced Progressive Matrices task) and neuroimaging test (task-state functional magnetic resonance imaging) were administered before and after treatment. Results Working memory training significantly improved the working memory, fluid intelligence and attention for each trained patient (P<0.001), and could renovate the abnormal functional activity model and reorganize the functional brain network. Conclu-sion Computerized working memory could be used as an effective cognitive rehabilitation intervention for stroke patients.

  17. Brain glycogen

    DEFF Research Database (Denmark)

    Obel, Linea Lykke Frimodt; Müller, Margit S; Walls, Anne B

    2012-01-01

    Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia....... In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies-it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic...... activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms...

  18. Brain imaging

    International Nuclear Information System (INIS)

    Mishkin, F.S.

    1978-01-01

    The techniques of brain imaging and results in perfusion studies and delayed images are outlined. An analysis of the advantages and disadvantages of the brain scan in a variety of common problems is discussed, especially as compared with other available procedures. Both nonneoplastic and neoplastic lesions are considered. (Auth/C.F.)

  19. Ben's Plastic Brain

    Science.gov (United States)

    Kaplan, Susan L.

    2010-01-01

    This article shares a story of Ben who as a result of his premature birth, suffered a brain hemorrhage resulting in cerebral palsy, which affected his left side (left hemiparesis) and caused learning disabilities. Despite these challenges, he graduated from college and currently works doing information management for a local biotech start-up…

  20. Lateralized delay period activity marks the focus of spatial attention in working memory: evidence from somatosensory event-related brain potentials.

    Science.gov (United States)

    Katus, Tobias; Eimer, Martin

    2015-04-29

    The short-term retention of sensory information in working memory (WM) is known to be associated with a sustained enhancement of neural activity. What remains controversial is whether this neural trace indicates the sustained storage of information or the allocation of attention. To evaluate the storage and attention accounts, we examined sustained tactile contralateral delay activity (tCDA component) of the event-related potential. The tCDA manifests over somatosensory cortex contralateral to task-relevant tactile information during stimulus retention. Two tactile sample sets (S1, S2) were presented sequentially, separated by 1.5 s. Each set comprised two stimuli, one per hand. Human participants memorized the location of one task-relevant stimulus per sample set and judged whether one of these locations was stimulated again at memory test. The two relevant pulses were unpredictably located on the same hand (stay trials) or on different hands (shift trials). Initially, tCDA components emerged contralateral to the relevant S1 pulse. Sequential loading of WM enhanced the tCDA after S2 was presented on stay trials. On shift trials, the tCDA's polarity reversed after S2 presentation, resulting in delay activity that was now contralateral to the task-relevant S2 pulse. The disappearance of a lateralized neural trace for the relevant S1 pulse did not impair memory accuracy for this stimulus on shift trials. These results contradict the storage account and suggest that delay period activity indicates the sustained engagement of an attention-based rehearsal mechanism. In conclusion, somatosensory delay period activity marks the current focus of attention in tactile WM. Copyright © 2015 the authors 0270-6474/15/356689-07$15.00/0.

  1. Development of the Young Brain

    Medline Plus

    Full Text Available ... Mental Illnesses Clinical Trials Outreach Outreach Home Stakeholder Engagement Outreach Partnership Program Alliance for Research Progress Coalition ... development of the adolescent brain. Decades of imaging work have led to remarkable insight and a more ...

  2. Development of the Young Brain

    Medline Plus

    Full Text Available ... until now the human brain has done a great job of changing- adapting to these environments but ... each other as spouses. How they talk about work. When they get stuck in traffic. How they ...

  3. Development of the Young Brain

    Medline Plus

    Full Text Available ... Announcer: Through the work of Dr. Giedd and his colleagues, we’ve learned so much about the development of the adolescent brain. But researchers like Dr. Giedd may be entering ...

  4. Development of the Young Brain

    Medline Plus

    Full Text Available ... now the human brain has done a great job of changing- adapting to these environments but there ... each other as spouses. How they talk about work. When they get stuck in traffic. How they ...

  5. Assisted Care Options (Brain Tumors)

    Science.gov (United States)

    ... you with relief from the symptoms, pain, and stress of your brain tumor, while improving quality of life for both you and your family. Palliative care specialists work together as a team to provide an extra ...

  6. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... How Alzheimer's Changes the Brain National Institute On Aging Loading... Unsubscribe from National Institute On Aging? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe 6.8K ...

  7. Development of the Young Brain

    Medline Plus

    Full Text Available ... been fascinated with the development of children- their physical and intellectual growth. Studying the development of the adolescent brain has been the life work of National Institute of Mental Health researcher Dr. Jay Giedd. Dr. Giedd: At ...

  8. Development of the Young Brain

    Medline Plus

    Full Text Available ... have a huge impact on how the brain forms and adapts. Announcer: Through the work of Dr. ... National Institute of Mental Health Office of Science Policy, Planning, and Communications 6001 Executive Boulevard, Room 6200, ...

  9. Cognition and brain functional aging

    Directory of Open Access Journals (Sweden)

    Hui-jie LI

    2014-03-01

    Full Text Available China has the largest population of elderly adults. Meanwhile, it is one of the countries showing fastest aging speed in the world. Aging processing is always companied with a series of brain structural and functional changes, which result in the decline of processing speed, working memory, long-term memory and executive function, etc. The studies based on functional magnetic resonance imaging (fMRI found certain aging effects on brain function activation, spontaneous activity and functional connectivity in old people. However, few studies have explored the brain functional curve during the aging process while most previous studies explored the differences in the brain function between young people and old people. Delineation of the human brain functional aging curve will promote the understanding of brain aging mechanisms and support the normal aging monitoring and early detection of abnormal aging changes. doi: 10.3969/j.issn.1672-6731.2014.03.005

  10. Brain tumor - primary - adults

    Science.gov (United States)

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  11. Brain Stimulation Therapies

    Science.gov (United States)

    ... Magnetic Seizure Therapy Deep Brain Stimulation Additional Resources Brain Stimulation Therapies Overview Brain stimulation therapies can play ... for a shorter recovery time than ECT Deep Brain Stimulation Deep brain stimulation (DBS) was first developed ...

  12. Brain radiation - discharge

    Science.gov (United States)

    Radiation - brain - discharge; Cancer - brain radiation; Lymphoma - brain radiation; Leukemia - brain radiation ... Decadron) while you are getting radiation to the brain. It may make you hungrier, cause leg swelling ...

  13. Brain abscess

    Science.gov (United States)

    ... found. However, the most common source is a lung infection. Less often, a heart infection is the cause. The following raise your chance of developing a brain abscess: A weakened immune system (such as in people ...

  14. Brain imaging and brain function

    International Nuclear Information System (INIS)

    Sokoloff, L.

    1985-01-01

    This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage

  15. Arts, Brain and Cognition.

    Science.gov (United States)

    Demarin, Vida; Bedeković, Marina Roje; Puretić, Marijana Bosnar; Pašić, Marija Bošnjak

    2016-12-01

    Art is a product of human creativity; it is a superior skill that can be learned by study, practice and observation. Modern neuroscience and neuroimaging enable study of the processes during artistic performance. Creative people have less marked hemispheric dominance. It was found that the right hemisphere is specialized for metaphoric thinking, playfulness, solution finding and synthesizing, it is the center of visualization, imagination and conceptualization, but the left hemisphere is still needed for artistic work to achieve balance. A specific functional organization of brain areas was found during visual art activities. Marked hemispheric dominance and area specialization is also very prominent for music perception. Brain is capable of making new connections, activating new pathways and unmasking secondary roads, it is "plastic". Music is a strong stimulus for neuroplasticity. fMRI studies have shown reorganization of motor and auditory cortex in professional musicians. Other studies showed the changes in neurotransmitter and hormone serum levels in correlation to music. The most prominent connection between music and enhancement of performance or changing of neuropsychological activity was shown by studies involving Mozart's music from which the theory of "The Mozart Effect" was derived. Results of numerous studies showed that listening to music can improve cognition, motor skills and recovery after brain injury. In the field of visual art, brain lesion can lead to the visuospatial neglect, loss of details and significant impairment of artistic work while the lesions affecting the left hemisphere reveal new artistic dimensions, disinhibit the right hemisphere, work is more spontaneous and emotional with the gain of artistic quality. All kinds of arts (music, painting, dancing...) stimulate the brain. They should be part of treatment processes. Work of many artists is an excellent example for the interweaving the neurology and arts.

  16. Brain abscess: Current management

    Directory of Open Access Journals (Sweden)

    Hernando Alvis-Miranda

    2013-01-01

    Full Text Available Brain abscess (BA is defined as a focal infection within the brain parenchyma, which starts as a localized area of cerebritis, which is subsequently converted into a collection of pus within a well-vascularized capsule. BA must be differentiated from parameningeal infections, including epidural abscess and subdural empyema. The BA is a challenge for the neurosurgeon because it is needed good clinical, pharmacological, and surgical skills for providing good clinical outcomes and prognosis to BA patients. Considered an infrequent brain infection, BA could be a devastator entity that easily left the patient into dead. The aim of this work is to review the current concepts regarding epidemiology, pathophysiology, etiology, clinical presentation, diagnosis, and management of BA.

  17. Putting Your Company's Whole Brain to Work.

    Science.gov (United States)

    Leonard, Dorothy; Straus, Susaan

    1997-01-01

    Managers who foster innovation succeed in getting different approaches to grate against one another in a productive process called creative abrasion. They nurture and know how to use a cognitively diverse environment. (JOW)

  18. Cooperation driven coherence: Brains working hard together.

    Science.gov (United States)

    Bezerianos, Anastasios; Sun, Yu; Chen, Yu; Woong, Kian Fong; Taya, Fumihiko; Arico, Pietro; Borghini, Gianluca; Babiloni, Fabio; Thakor, Nitish

    2015-01-01

    The current study aims to look at the difference in coupling of EEG activity of participant pairs while they perform a cooperative, concurrent, independent yet different task at high and low difficulty levels. Participants performed the National Aeronautics and Space Administration (NASA) designed Multi-Attribute Task Battery (MATB-II) task which simulates a pilot and copilot operating an aircraft. Each participant in the pair was responsible for 2 out of 4 subtasks which were independent and different from one another while all tasks occurs concurrently in real time with difficulty levels being the frequency that adjustments are required for each subtask. We found that as the task become more difficult, there was more coupling between the pilot and copilot.

  19. Brain SPECT

    International Nuclear Information System (INIS)

    Feistel, H.

    1991-01-01

    Brain SPECT investigations have gained broad acceptance since the introduction of the lipophilic tracer Tc-99m-HMPAO. Depending on equipment and objectives in different departments, the examinations can be divided into three groups: 1. Under normal conditions and standardised patient preparation the 'rest' SPECT can be performed in every department with a tomographic camera. In cerebrovascular disease there is a demand for determination of either the perfusion reserve in reversible ischemia or prognostic values in completed stroke. In cases of dementia, SPECT may yield useful results according to differential diagnosis. Central cerebral system involvement in immunologic disease may be estimated with higher sensitivity than in conventional brain imaging procedures. In psychiatric diseases there is only a relative indication for brain SPECT, since results during recent years have been contradictory and may be derived only in interventional manner. In brain tumor diagnostics SPECT with Tl-201 possibly permits grading. In inflammatory disease, especially in viral encephalitis, SPECT may be used to obtain early diagnosis. Normal pressure hydrocephalus can be distinguished from other forms of dementia and, consequently, the necessity for shunting surgery can be recognised. 2. In departments equipped for emergency cases an 'acute' SPECT can be performed in illnesses with rapid changing symptoms such as different forms of migraine, transient global amnesia, epileptic seizures (so-called 'ictal SPECT') or urgent forms like trauma. 3. In cooperation with several departments brain SPECT can be practised as an interventional procedure in clinical and in scientific studies. (orig./MG) [de

  20. TECHNOLOGIES OF BRAIN IMAGES PROCESSING

    Directory of Open Access Journals (Sweden)

    O.M. Klyuchko

    2017-12-01

    Full Text Available The purpose of present research was to analyze modern methods of processing biological images implemented before storage in databases for biotechnological purposes. The databases further were incorporated into web-based digital systems. Examples of such information systems were described in the work for two levels of biological material organization; databases for storing data of histological analysis and of whole brain were described. Methods of neuroimaging processing for electronic brain atlas were considered. It was shown that certain pathological features can be revealed in histological image processing. Several medical diagnostic techniques (for certain brain pathologies, etc. as well as a few biotechnological methods are based on such effects. Algorithms of image processing were suggested. Electronic brain atlas was conveniently for professionals in different fields described in details. Approaches of brain atlas elaboration, “composite” scheme for large deformations as well as several methods of mathematic images processing were described as well.

  1. Understanding emotion with brain networks.

    Science.gov (United States)

    Pessoa, Luiz

    2018-02-01

    Emotional processing appears to be interlocked with perception, cognition, motivation, and action. These interactions are supported by the brain's large-scale non-modular anatomical and functional architectures. An important component of this organization involves characterizing the brain in terms of networks. Two aspects of brain networks are discussed: brain networks should be considered as inherently overlapping (not disjoint) and dynamic (not static). Recent work on multivariate pattern analysis shows that affective dimensions can be detected in the activity of distributed neural systems that span cortical and subcortical regions. More broadly, the paper considers how we should think of causation in complex systems like the brain, so as to inform the relationship between emotion and other mental aspects, such as cognition.

  2. Brain Fog

    Science.gov (United States)

    ... relationship with your doctor(s): • Always report changes in cognition/memory and mood (depression, anxiety). • Make sure your physician ... joint pain. • Exercise regularly. Adequate physical exercise enhances cognition/memory. • Train the Brain! “If you don’t use ...

  3. Robot brains

    NARCIS (Netherlands)

    Babuska, R.

    2011-01-01

    The brain hosts complex networks of neurons that are responsible for behavior in humans and animals that we generally call intelligent. I is not easy to give an exact definition of intelligence – for the purpose of this talk it will suffice to say that we refer to intelligence as a collection of

  4. Mechanism of brain tumor headache.

    Science.gov (United States)

    Taylor, Lynne P

    2014-04-01

    Headaches occur commonly in all patients, including those who have brain tumors. Using the search terms "headache and brain tumors," "intracranial neoplasms and headache," "facial pain and brain tumors," "brain neoplasms/pathology," and "headache/etiology," we reviewed the literature from the past 78 years on the proposed mechanisms of brain tumor headache, beginning with the work of Penfield. Most of what we know about the mechanisms of brain tumor associated headache come from neurosurgical observations from intra-operative dural and blood vessel stimulation as well as intra-operative observations and anecdotal information about resolution of headache symptoms with various tumor-directed therapies. There is an increasing overlap between the primary and secondary headaches and they may actually share a similar biological mechanism. While there can be some criticism that the experimental work with dural and arterial stimulation produced head pain and not actual headache, when considered with the clinical observations about headache type, coupled with improvement after treatment of the primary tumor, we believe that traction on these structures, coupled with increased intracranial pressure, is clearly part of the genesis of brain tumor headache and may also involve peripheral sensitization with neurogenic inflammation as well as a component of central sensitization through trigeminovascular afferents on the meninges and cranial vessels. © 2014 American Headache Society.

  5. The ischemic perinatal brain damage

    International Nuclear Information System (INIS)

    Crisi, G.; Mauri, C.; Canossi, G.; Della Giustina, E.

    1986-01-01

    The term ''hypoxic-ischemic encephalopathy'' covers a large part of neonatal neuropathology including the various forms of intracerebral haemorrhage. In the present work the term is confined to ischemic brain edema and actual infarction, be it diffuse or focal. Eighteen newborns with CT evidence of ischemic brain lesions and infarctual necrosis were selected. Emphasis is placed on current data on neuropathology of ischemic brain edema and its CT appearance. Particular entities such as periventricular leukomalacia and multicystic encephalopathy are discussed. Relationship between CT and temporal profile of cerebral damage is emphasized in order to predict the structural sequelae and the longterm prognosis

  6. Understanding Brain Tumors

    Science.gov (United States)

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth
 ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  7. Brain tumor - children

    Science.gov (United States)

    ... children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children) ... The cause of primary brain tumors is unknown. Primary brain tumors may ... (spread to nearby areas) Cancerous (malignant) Brain tumors ...

  8. Brain Tumors (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Brain Tumors KidsHealth / For Parents / Brain Tumors What's in ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  9. Brain and Nervous System

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Brain and Nervous System KidsHealth / For Parents / Brain and ... healthy, and remove waste products. All About the Brain The brain is made up of three main ...

  10. The Creative Brain.

    Science.gov (United States)

    Herrmann, Ned

    1982-01-01

    Outlines the differences between left-brain and right-brain functioning and between left-brain and right-brain dominant individuals, and concludes that creativity uses both halves of the brain. Discusses how both students and curriculum can become more "whole-brained." (Author/JM)

  11. Brain imaging

    International Nuclear Information System (INIS)

    Greenfield, L.D.; Bennett, L.R.

    1976-01-01

    Imaging with radionuclides should be used in a complementary fashion with other neuroradiologic techniques. It is useful in the early detection and evaluation of intracranial neoplasm, cerebrovascular accident and abscess, and in postsurgical follow-up. Cisternography yields useful information about the functional status of cerebrospinal fluid pathways. Computerized axial tomography is a new technique of great promise that produced a cross-sectional image of the brain

  12. Brain imaging

    International Nuclear Information System (INIS)

    Bradshaw, J.R.

    1989-01-01

    This book presents a survey of the various imaging tools with examples of the different diseases shown best with each modality. It includes 100 case presentations covering the gamut of brain diseases. These examples are grouped according to the clinical presentation of the patient: headache, acute headache, sudden unilateral weakness, unilateral weakness of gradual onset, speech disorders, seizures, pituitary and parasellar lesions, sensory disorders, posterior fossa and cranial nerve disorders, dementia, and congenital lesions

  13. Innovation in the collective brain

    Science.gov (United States)

    Muthukrishna, Michael; Henrich, Joseph

    2016-01-01

    Innovation is often assumed to be the work of a talented few, whose products are passed on to the masses. Here, we argue that innovations are instead an emergent property of our species' cultural learning abilities, applied within our societies and social networks. Our societies and social networks act as collective brains. We outline how many human brains, which evolved primarily for the acquisition of culture, together beget a collective brain. Within these collective brains, the three main sources of innovation are serendipity, recombination and incremental improvement. We argue that rates of innovation are heavily influenced by (i) sociality, (ii) transmission fidelity, and (iii) cultural variance. We discuss some of the forces that affect these factors. These factors can also shape each other. For example, we provide preliminary evidence that transmission efficiency is affected by sociality—languages with more speakers are more efficient. We argue that collective brains can make each of their constituent cultural brains more innovative. This perspective sheds light on traits, such as IQ, that have been implicated in innovation. A collective brain perspective can help us understand otherwise puzzling findings in the IQ literature, including group differences, heritability differences and the dramatic increase in IQ test scores over time. PMID:26926282

  14. Making 'what works' work

    DEFF Research Database (Denmark)

    Plum, Maja

    2017-01-01

    and a mattress. As such, the paper shows how DR, as an evidence-based method, is established through concrete relations, rather than abstracted and universal principals. It argues that these relations stabilising DR are never enacted once and for all, but require continual work to be held together as a method...... that ‘works’....

  15. From Brain-Environment Connections to Temporal Dynamics and Social Interaction: Principles of Human Brain Function.

    Science.gov (United States)

    Hari, Riitta

    2017-06-07

    Experimental data about brain function accumulate faster than does our understanding of how the brain works. To tackle some general principles at the grain level of behavior, I start from the omnipresent brain-environment connection that forces regularities of the physical world to shape the brain. Based on top-down processing, added by sparse sensory information, people are able to form individual "caricature worlds," which are similar enough to be shared among other people and which allow quick and purposeful reactions to abrupt changes. Temporal dynamics and social interaction in natural environments serve as further essential organizing principles of human brain function. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. From ‘Nerve Fiber Regeneration’ to ‘Functional Changes’ in the Human Brain – On the Paradigm-Shifting Work of the Experimental Physiologist Albrecht Bethe (1872-1954 in Frankfurt am Main

    Directory of Open Access Journals (Sweden)

    Frank W Stahnisch

    2016-02-01

    Full Text Available Until the beginning 1930s the traditional dogma that the human central nervous system did not possess any abilities to adapt functionally to degenerative processes and external injuries loomed large in the field of the brain sciences (Hirnforschung. Cutting-edge neuroanatomists, such as the luminary Wilhelm Waldeyer (1836–1921 in Germany or the Nobel Prize laureate Santiago Ramón y Cajal (1852–1934 in Spain, debated any regenerative and thus plastic properties in the human brain. A renewed interest arose in the scientific community to investigate the pathologies and the healing processes in the human central nervous system after the return of the high number of brain injured war veterans from the fronts during and after the First World War (1914–1918. A leading research center in this area was the Institute for the Scientific Study of the Effects of Brain Injuries, which the neurologist Ludwig Edinger (1855–1918 had founded shortly before the war. This article specifically deals with the physiological research on nerve fiber plasticity by Albrecht Bethe (1872–1954 at the respective institute of the University of Frankfurt am Main. Bethe conducted here his paradigmatic experimental studies on the pathophysiological and clinical phenomena of peripheral and central nervous system regeneration.

  17. Brain network clustering with information flow motifs

    NARCIS (Netherlands)

    Märtens, M.; Meier, J.M.; Hillebrand, Arjan; Tewarie, Prejaas; Van Mieghem, P.F.A.

    2017-01-01

    Recent work has revealed frequency-dependent global patterns of information flow by a network analysis of magnetoencephalography data of the human brain. However, it is unknown which properties on a small subgraph-scale of those functional brain networks are dominant at different frequencies bands.

  18. Baby Brain Map

    Science.gov (United States)

    ... a Member Home Resources & Services Professional Resource Baby Brain Map Mar 17, 2016 The Brain Map was adapted in 2006 by ZERO TO ... supports Adobe Flash Player. To view the Baby Brain Map, please visit this page on a browser ...

  19. Pediatric Brain Tumor Foundation

    Science.gov (United States)

    ... navigate their brain tumor diagnosis. WATCH AND SHARE Brain tumors and their treatment can be deadly so ... Pediatric Central Nervous System Cancers Read more >> Pediatric Brain Tumor Foundation 302 Ridgefield Court, Asheville, NC 28806 ...

  20. That's Using Your Brain!

    Science.gov (United States)

    Visser, Dana R.

    1996-01-01

    Discusses new adult learning theories, including those of Roger Sperry (left brain/right brain), Paul McLean (triune brain), and Howard Gardner (multiple intelligences). Relates adult learning theory to training. (JOW)

  1. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... Get YouTube Red. Working... Not now Try it free Find out why Close How Alzheimer's Changes the ... 4:22 Your Amazing Brain - Dementia Explained - Alzheimer's Research UK - Duration: 4:58. AlzheimersResearch UK 16,695 ...

  2. Development of the Young Brain

    Medline Plus

    Full Text Available ... been fascinated with the development of children- their physical and intellectual growth. Studying the development of the adolescent brain has been the life work of National Institute of Mental Health researcher Dr. Jay Giedd. Dr. Giedd: At different ...

  3. Brain SPECT in children

    International Nuclear Information System (INIS)

    Guyot, M.; Baulieu, J.L.

    1996-01-01

    Brain SPECT in child involves specific trends regarding the patient cooperation, irradiation, resolution and especially interpretation because of the rapid scintigraphic modifications related to the brain maturation. In a general nuclear medicine department, child brain SPECT represents about 2 % of the activity. The choice indications are the perfusion children: thallium and MIBI in brain tumours, pharmacological and neuropsychological interventions. In the future, brain dedicated detectors and new radiopharmaceuticals will promote the development of brain SPECT in children. (author)

  4. Analysis of a human brain transcriptome map

    Directory of Open Access Journals (Sweden)

    Greene Jonathan R

    2002-04-01

    Full Text Available Abstract Background Genome wide transcriptome maps can provide tools to identify candidate genes that are over-expressed or silenced in certain disease tissue and increase our understanding of the structure and organization of the genome. Expressed Sequence Tags (ESTs from the public dbEST and proprietary Incyte LifeSeq databases were used to derive a transcript map in conjunction with the working draft assembly of the human genome sequence. Results Examination of ESTs derived from brain tissues (excluding brain tumor tissues suggests that these genes are distributed on chromosomes in a non-random fashion. Some regions on the genome are dense with brain-enriched genes while some regions lack brain-enriched genes, suggesting a significant correlation between distribution of genes along the chromosome and tissue type. ESTs from brain tumor tissues have also been mapped to the human genome working draft. We reveal that some regions enriched in brain genes show a significant decrease in gene expression in brain tumors, and, conversely that some regions lacking in brain genes show an increased level of gene expression in brain tumors. Conclusions This report demonstrates a novel approach for tissue specific transcriptome mapping using EST-based quantitative assessment.

  5. Revisiting Einstein's brain in Brain Awareness Week.

    Science.gov (United States)

    Chen, Hao; Chen, Su; Zeng, Lidan; Zhou, Lin; Hou, Shengtao

    2014-10-01

    Albert Einstein's brain has long been an object of fascination to both neuroscience specialists and the general public. However, without records of advanced neuro-imaging of his brain, conclusions regarding Einstein's extraordinary cognitive capabilities can only be drawn based on the unique external features of his brain and through comparison of the external features with those of other human brain samples. The recent discovery of 14 previously unpublished photographs of Einstein's brain taken at unconventional angles by Dr. Thomas Stoltz Harvey, the pathologist, ignited a renewed frenzy about clues to explain Einstein's genius. Dr. Dean Falk and her colleagues, in their landmark paper published in Brain (2013; 136:1304-1327), described in such details about the unusual features of Einstein's brain, which shed new light on Einstein's intelligence. In this article, we ask what are the unique structures of his brain? What can we learn from this new information? Can we really explain his extraordinary cognitive capabilities based on these unique brain structures? We conclude that studying the brain of a remarkable person like Albert Einstein indeed provides us a better example to comprehensively appreciate the relationship between brain structures and advanced cognitive functions. However, caution must be exercised so as not to over-interpret his intelligence solely based on the understanding of the surface structures of his brain.

  6. Neuroenergetics: How energy constraints shape brain function

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The nervous system consumes a disproportionate fraction of the resting body’s energy production. In humans, the brain represents 2% of the body’s mass, yet it accounts for ~20% of the total oxygen consumption. Expansion in the size of the brain relative to the body and an increase in the number of connections between neurons during evolution underpin our cognitive powers and are responsible for our brains’ high metabolic rate. The molecules at the center of cellular energy metabolism also act as intercellular signals and constitute an important communication pathway, coordinating for instance the immune surveillance of the brain. Despite the significance of energy consumption in the nervous system, how energy constrains and shapes brain function is often under appreciated. I will illustrate the importance of brain energetics and metabolism with two examples from my recent work. First, I will show how the brain trades information for energy savings in the visual pathway. Indeed, a significant fraction ...

  7. Left brain, right brain: facts and fantasies.

    Science.gov (United States)

    Corballis, Michael C

    2014-01-01

    Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the "norm" of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal.

  8. volBrain: An Online MRI Brain Volumetry System

    Science.gov (United States)

    Manjón, José V.; Coupé, Pierrick

    2016-01-01

    The amount of medical image data produced in clinical and research settings is rapidly growing resulting in vast amount of data to analyze. Automatic and reliable quantitative analysis tools, including segmentation, allow to analyze brain development and to understand specific patterns of many neurological diseases. This field has recently experienced many advances with successful techniques based on non-linear warping and label fusion. In this work we present a novel and fully automatic pipeline for volumetric brain analysis based on multi-atlas label fusion technology that is able to provide accurate volumetric information at different levels of detail in a short time. This method is available through the volBrain online web interface (http://volbrain.upv.es), which is publically and freely accessible to the scientific community. Our new framework has been compared with current state-of-the-art methods showing very competitive results. PMID:27512372

  9. volBrain: an online MRI brain volumetry system

    Directory of Open Access Journals (Sweden)

    Jose V. Manjon

    2016-07-01

    Full Text Available The amount of medical image data produced in clinical and research settings is rapidly growing resulting in vast amount of data to analyze. Automatic and reliable quantitative analysis tools, including segmentation, allow to analyze brain development and to understand specific patterns of many neurological diseases. This field has recently experienced many advances with successful techniques based on non-linear warping and label fusion. In this work we present a novel and fully automatic pipeline for volumetric brain analysis based on multi-atlas label fusion technology that is able to provide accurate volumetric information at different levels of detail in a short time. This method is available through the volBrain online web interface (http://volbrain.upv.es, which is publically and freely accessible to the scientific community. Our new framework has been compared with current state-of-the-art methods showing very competitive results.

  10. volBrain: An Online MRI Brain Volumetry System.

    Science.gov (United States)

    Manjón, José V; Coupé, Pierrick

    2016-01-01

    The amount of medical image data produced in clinical and research settings is rapidly growing resulting in vast amount of data to analyze. Automatic and reliable quantitative analysis tools, including segmentation, allow to analyze brain development and to understand specific patterns of many neurological diseases. This field has recently experienced many advances with successful techniques based on non-linear warping and label fusion. In this work we present a novel and fully automatic pipeline for volumetric brain analysis based on multi-atlas label fusion technology that is able to provide accurate volumetric information at different levels of detail in a short time. This method is available through the volBrain online web interface (http://volbrain.upv.es), which is publically and freely accessible to the scientific community. Our new framework has been compared with current state-of-the-art methods showing very competitive results.

  11. Chemo Brain

    Science.gov (United States)

    ... and memory problems in cancer survivors. Researchers are working to understand the memory changes that people with cancer experience. Despite the ... Difficulty multitasking Fatigue Feeling of mental fogginess Short attention span Short-term memory problems Taking longer than usual to complete routine ...

  12. Building an organic computing device with multiple interconnected brains

    OpenAIRE

    Pais-Vieira, Miguel; Chiuffa, Gabriela; Lebedev, Mikhail; Yadav, Amol; Nicolelis, Miguel A. L.

    2015-01-01

    Recently, we proposed that Brainets, i.e. networks formed by multiple animal brains, cooperating and exchanging information in real time through direct brain-to-brain interfaces, could provide the core of a new type of computing device: an organic computer. Here, we describe the first experimental demonstration of such a Brainet, built by interconnecting four adult rat brains. Brainets worked by concurrently recording the extracellular electrical activity generated by populations of cortical ...

  13. Radionuclide evaluation of brain death

    International Nuclear Information System (INIS)

    Pjura, G.A.; Kim, E.E.

    1987-01-01

    The criteria employed for clinical determination of death have evolved in response to advances in life support and other medical technology. The technical feasibility of organ transplantation has amplified the need for a definition of brain death that can be applied in the shortest possible time in the presence of artificial maintenance of vegetative functions, including circulation. Radionuclide cerebral angiography is one of a group of diagnostic procedures that can be employed to confirm the clinical diagnosis of brain death through demonstration of absence of cerebral blood flow. The focus of this work is to assess its use as a confirmatory test for determination of brain death in the context of currently available alternative technologies

  14. Mobility Work

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Bossen, Claus

    2005-01-01

    We posit the concept of Mobility Work to describe efforts of moving about people and things as part of accomplishing tasks. Mobility work can be seen as a spatial parallel to the concept of articulation work proposed by the sociologist Anselm Strauss. Articulation work describes efforts of coordi....../or resources. To accomplish their work, actors have to make the right configuration of these four aspects emerge.......We posit the concept of Mobility Work to describe efforts of moving about people and things as part of accomplishing tasks. Mobility work can be seen as a spatial parallel to the concept of articulation work proposed by the sociologist Anselm Strauss. Articulation work describes efforts...... of coordination necessary in cooperative work, but focuses, we argue, mainly on the temporal aspects of cooperative work. As a supplement, the concept of mobility work focuses on the spatial aspects of cooperative work. Whereas actors seek to diminish the amount of articulation work needed in collaboration...

  15. Getting to know the brain

    International Nuclear Information System (INIS)

    Creagh, C.

    1992-01-01

    While electrical systems, such as electroencephalography, measure events in milliseconds in 'real time', or the time frame in which brain function actually occurs, radio-isotope techniques such as PET and SPECT (which measure chemical activity) need several minutes in which to build up a portrait of events within the brain. In 1989, researchers from the CSIRO Division of Radiophysics, Mathematics and Statistics and Information Technology, and from the Australian Telescope National Facility and the Cognitive Neuroscience Unit at Westmead Hospital in western Sydney, began a demonstration project designed to address those limitations and to extend our knowledge of the brain. This project builds on a decade of work by the Westmead Neuroscience Unit in measuring and imaging complementary aspects of human brain function and structure. It brings together structural and functional measurements of the brain in a multi-modal display combining data from a variety of sources in a computer workstation. The major aims and potential applications of this 'information fusion' approach are summarized. 8 refs., ills

  16. Reprogramming Cells for Brain Repair

    Directory of Open Access Journals (Sweden)

    Randall D. McKinnon

    2013-08-01

    Full Text Available At present there are no clinical therapies that can repair traumatic brain injury, spinal cord injury or degenerative brain disease. While redundancy and rewiring of surviving circuits can recover some lost function, the brain and spinal column lack sufficient endogenous stem cells to replace lost neurons or their supporting glia. In contrast, pre-clinical studies have demonstrated that exogenous transplants can have remarkable efficacy for brain repair in animal models. Mesenchymal stromal cells (MSCs can provide paracrine factors that repair damage caused by ischemic injury, and oligodendrocyte progenitor cell (OPC grafts give dramatic functional recovery from spinal cord injury. These studies have progressed to clinical trials, including human embryonic stem cell (hESC-derived OPCs for spinal cord repair. However, ESC-derived allografts are less than optimal, and we need to identify a more appropriate donor graft population. The cell reprogramming field has developed the ability to trans-differentiate somatic cells into distinct cell types, a technology that has the potential to generate autologous neurons and glia which address the histocompatibility concerns of allografts and the tumorigenicity concerns of ESC-derived grafts. Further clarifying how cell reprogramming works may lead to more efficient direct reprogram approaches, and possibly in vivo reprogramming, in order to promote brain and spinal cord repair.

  17. Meeting the brain on its own terms

    Directory of Open Access Journals (Sweden)

    Philipp eHaueis

    2014-10-01

    Full Text Available In contemporary human brain mapping, it is commonly assumed that the mind is what the brain does. Based on that assumption, task-based imaging studies of the last three decades measured differences in brain activity that are thought to reflect the exercise of human mental capacities (e.g., perception, attention, memory. With the advancement of resting state studies, tractography and graph theory in the last decade, however, it became possible to study human brain connectivity without relying on cognitive tasks or constructs. It therefore is currently an open question whether the assumption that the mind is what the brain does is an indispensable working hypothesis in human brain mapping. This paper argues that the hypothesis is, in fact, dispensable. If it is dropped, researchers can meet the brain on its own terms by searching for new, more adequate concepts to describe human brain organization. Neuroscientists can establish such concepts by conducting exploratory experiments that do not test particular cognitive hypotheses. The paper provides a systematic account of exploratory neuroscientific research that would allow researchers to form new concepts and formulate general principles of brain connectivity, and to combine connectivity studies with manipulation methods to identify neural entities in the brain. These research strategies would be most fruitful if applied to the mesoscopic scale of neuronal assemblies, since the organizational principles at this scale are currently largely unknown. This could help researchers to link microscopic and macroscopic evidence to provide a more comprehensive understanding of the human brain. The paper concludes by comparing this account of exploratory neuroscientific experiments to recent proposals for large-scale, discovery-based studies of human brain connectivity.

  18. Brain Cancer—Patient Version

    Science.gov (United States)

    Brain cancer refers to growths of malignant cells in tissues of the brain. Tumors that start in the brain are called primary brain tumors. Tumors that spread to the brain are called metastatic brain tumors. Start here to find information on brain cancer treatment, research, and statistics.

  19. Neuroscience, brains, and computers

    Directory of Open Access Journals (Sweden)

    Giorno Maria Innocenti

    2013-07-01

    Full Text Available This paper addresses the role of the neurosciences in establishing what the brain is and how states of the brain relate to states of the mind. The brain is viewed as a computational deviceperforming operations on symbols. However, the brain is a special purpose computational devicedesigned by evolution and development for survival and reproduction, in close interaction with theenvironment. The hardware of the brain (its structure is very different from that of man-made computers.The computational style of the brain is also very different from traditional computers: the computationalalgorithms, instead of being sets of external instructions, are embedded in brain structure. Concerningthe relationships between brain and mind a number of questions lie ahead. One of them is why andhow, only the human brain grasped the notion of God, probably only at the evolutionary stage attainedby Homo sapiens.

  20. FROM BRAIN DRAIN TO BRAIN NETWORKING

    Directory of Open Access Journals (Sweden)

    Irina BONCEA

    2015-06-01

    Full Text Available Scientific networking is the most accessible way a country can turn the brain drain into brain gain. Diaspora’s members offer valuable information, advice or financial support from the destination country, without being necessary to return. This article aims to investigate Romania’s potential of turning brain drain into brain networking, using evidence from the medical sector. The main factors influencing the collaboration with the country of origin are investigated. The conclusions suggest that Romania could benefit from the diaspora option, through an active implication at institutional level and the implementation of a strategy in this area.

  1. A Closer Look at the Brain As Related to Teachers and Learners.

    Science.gov (United States)

    Haglund, Elaine

    1981-01-01

    Recent findings related to neurological research include: (1) the Proster Theory implies that the brain works by sets of programs or prosters; (2) the Brain Growth Spurts theory defines the growth of the brain in spurts with cycles of rest; and (3) in the Hemispheric Specialization Theory, the left and right hemispheres of the brain have specific…

  2. KAROSHI (WORK TO DEATH

    Directory of Open Access Journals (Sweden)

    Moh. Toriqul Chaer

    2017-05-01

    Full Text Available When the tide of unemployment hit the USA and Europe, in Japan the opposite phenomenon occurs. In 2002, in Japan deaths were recorded because of excessive works. In this country, the phenomenon of death because of excessive works is called Karoshi. Karoshi is common in Japan.  It becomes deadly syndrome as a consequence of long hours works. The debate about deaths from excessive work already sticking out in Japan since the 70s. The first official case of Karoshi was reported in 1969 when a 29-year-old male worker died because of stroke. It is estimated over ten thousand workers died each year due to death by brain and stroke caused by an overload work. Karoshi often happen to male workers dominantly. The main cause of karoshi is stress due to high pressure in the work environment, and work habits of exceeding a  standard of normal working time (8 hours. In addition, their extra time to work is imbalance with and the salary they earn. In its development, the phenomenon of karoshi contributes to the term salaryman and workaholic.

  3. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain.

    Science.gov (United States)

    Li, Guangye; Zhang, Dingguo

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain.

  4. Left brain, right brain: facts and fantasies.

    Directory of Open Access Journals (Sweden)

    Michael C Corballis

    2014-01-01

    Full Text Available Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the "norm" of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal.

  5. Biomechanics of the brain

    CERN Document Server

    Miller, Karol

    2011-01-01

    With contributions from scientists at major institutions, this book presents an introduction to brain anatomy for engineers and scientists. It provides, for the first time, a comprehensive resource in the field of brain biomechanics.

  6. Brain Basics: Understanding Sleep

    Science.gov (United States)

    ... You are here Home » Disorders » Patient & Caregiver Education Brain Basics: Understanding Sleep Anatomy of Sleep Sleep Stages ... t form or maintain the pathways in your brain that let you learn and create new memories, ...

  7. Aneurysm in the brain

    Science.gov (United States)

    ... gov/ency/article/001414.htm Aneurysm in the brain To use the sharing features on this page, ... aneurysm occurs in a blood vessel of the brain, it is called a cerebral, or intracranial, aneurysm. ...

  8. Brain injury - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000163.htm Brain injury - discharge To use the sharing features on ... know was in the hospital for a serious brain injury. At home, it will take time for ...

  9. Genetic Brain Disorders

    Science.gov (United States)

    A genetic brain disorder is caused by a variation or a mutation in a gene. A variation is a different form ... mutation is a change in a gene. Genetic brain disorders affect the development and function of the ...

  10. Childhood Brain Tumors

    Science.gov (United States)

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  11. Brain aneurysm repair

    Science.gov (United States)

    ... aneurysm repair; Dissecting aneurysm repair; Endovascular aneurysm repair - brain; Subarachnoid hemorrhage - aneurysm ... Your scalp, skull, and the coverings of the brain are opened. A metal clip is placed at ...

  12. Children's Brain Tumor Foundation

    Science.gov (United States)

    ... 2 Family Donate Volunteer Justin's Hope Fund Children’s Brain Tumor Foundation, A non-profit organization, was founded ... and the long term outlook for children with brain and spinal cord tumors through research, support, education, ...

  13. Brain aneurysm repair - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000123.htm Brain aneurysm repair - discharge To use the sharing features ... this page, please enable JavaScript. You had a brain aneurysm . An aneurysm is a weak area in ...

  14. Numbers and brains.

    Science.gov (United States)

    Gallistel, C R

    2017-12-01

    The representation of discrete and continuous quantities appears to be ancient and pervasive in animal brains. Because numbers are the natural carriers of these representations, we may discover that in brains, it's numbers all the way down.

  15. Protect Your Brain

    Centers for Disease Control (CDC) Podcasts

    At least three and a half million people in the U.S. sustained a traumatic brain injury (TBI), either with or without other injuries. This podcast discusses the importance of early diagnosis and treatment of brain injuries.

  16. Traumatic Brain Injury

    Science.gov (United States)

    ... brain injury Some traumatic brain injuries have lasting effects, and some do not. You may be left with disabilities. These can be physical, behavioral, communicative, and/or mental. Customized treatment helps you to have as full ...

  17. Right Brain Drawing.

    Science.gov (United States)

    Whalen, Adryce C.

    1985-01-01

    The author describes activities of a weekly enrichment class providing right-brain tasks to gifted elementary students. Activities, which centered on artistic creativity, were taken from "Drawing On the Right Side of the Brain" by B. Edwards. (CL)

  18. Mindboggle: Automated brain labeling with multiple atlases

    International Nuclear Information System (INIS)

    Klein, Arno; Mensh, Brett; Ghosh, Satrajit; Tourville, Jason; Hirsch, Joy

    2005-01-01

    To make inferences about brain structures or activity across multiple individuals, one first needs to determine the structural correspondences across their image data. We have recently developed Mindboggle as a fully automated, feature-matching approach to assign anatomical labels to cortical structures and activity in human brain MRI data. Label assignment is based on structural correspondences between labeled atlases and unlabeled image data, where an atlas consists of a set of labels manually assigned to a single brain image. In the present work, we study the influence of using variable numbers of individual atlases to nonlinearly label human brain image data. Each brain image voxel of each of 20 human subjects is assigned a label by each of the remaining 19 atlases using Mindboggle. The most common label is selected and is given a confidence rating based on the number of atlases that assigned that label. The automatically assigned labels for each subject brain are compared with the manual labels for that subject (its atlas). Unlike recent approaches that transform subject data to a labeled, probabilistic atlas space (constructed from a database of atlases), Mindboggle labels a subject by each atlas in a database independently. When Mindboggle labels a human subject's brain image with at least four atlases, the resulting label agreement with coregistered manual labels is significantly higher than when only a single atlas is used. Different numbers of atlases provide significantly higher label agreements for individual brain regions. Increasing the number of reference brains used to automatically label a human subject brain improves labeling accuracy with respect to manually assigned labels. Mindboggle software can provide confidence measures for labels based on probabilistic assignment of labels and could be applied to large databases of brain images

  19. Ibrutinib brain distribution: a preclinical study.

    Science.gov (United States)

    Goldwirt, Lauriane; Beccaria, Kevin; Ple, Alain; Sauvageon, Hélène; Mourah, Samia

    2018-04-01

    Central nervous system (CNS) dissemination occurs in 4.1% of mantle cell lymphoma (MCL) patients and clinically significant CNS involvement in chronic lymphocytic leukemia (CLL) patients reaches 4%. Ibrutinib, an orally administered Bruton's tyrosine kinase (BTK) inhibitor, has shown substantial activity in CLL or MCL patients with CNS localization, and in primary central nervous system lymphoma (PCNSL). The drug efficacy to treat primary or secondary CNS impairments relies on its brain distribution through the blood-brain barrier (BBB), the aim of the present work was to study the brain distribution of ibrutinib using an in vivo mice model. Brain and plasma pharmacokinetics of ibrutinib were assessed in a healthy Swiss mice model. Brain accumulation of ibrutinib was evaluated through an escalation single-dose study and a multiple-dose study in whole brain and in its specific anatomic structures. Ibrutinib plasma and brain quantification was performed using a validated liquid-chromatography mass tandem spectrometry method. Maximal concentration of ibrutinib in plasma and brain were close thus showing that ibrutinib rapidly crosses the BBB in 0.29 h (0.2-0.32 h) [median (min-max)]. Ibrutinib brain exposure was also correlated to the dose, and correlated to plasma exposure. AUC 0-t brain to AUC 0-t plasma ratio average for ibrutinib was found to reach 0.7 and ibrutinib accumulates in the ventricle area. The high level of ibrutinib brain distribution supports the clinical efficacy of this drug in CNS localization of MCL, CLL or PCNSL.

  20. Dance and the brain: a review.

    Science.gov (United States)

    Karpati, Falisha J; Giacosa, Chiara; Foster, Nicholas E V; Penhune, Virginia B; Hyde, Krista L

    2015-03-01

    Dance is a universal form of human expression that offers a rich source for scientific study. Dance provides a unique opportunity to investigate brain plasticity and its interaction with behavior. Several studies have investigated the behavioral correlates of dance, but less is known about the brain basis of dance. Studies on dance observation suggest that long- and short-term dance training affect brain activity in the action observation and simulation networks. Despite methodological challenges, the feasibility of conducting neuroimaging while dancing has been demonstrated, and several brain regions have been implicated in dance execution. Preliminary work from our laboratory suggests that long-term dance training changes both gray and white matter structure. This article provides a critical summary of work investigating the neural correlates of dance. It covers functional neuroimaging studies of dance observation and performance as well as structural neuroimaging studies of expert dancers. To stimulate ongoing dialogue between dance and science, future directions in dance and brain research as well as implications are discussed. Research on the neuroscience of dance will lead to a better understanding of brain-behavior relationships and brain plasticity in experts and nonexperts and can be applied to the development of dance-based therapy programs. © 2014 New York Academy of Sciences.

  1. Parallel Computing for Brain Simulation.

    Science.gov (United States)

    Pastur-Romay, L A; Porto-Pazos, A B; Cedron, F; Pazos, A

    2017-01-01

    The human brain is the most complex system in the known universe, it is therefore one of the greatest mysteries. It provides human beings with extraordinary abilities. However, until now it has not been understood yet how and why most of these abilities are produced. For decades, researchers have been trying to make computers reproduce these abilities, focusing on both understanding the nervous system and, on processing data in a more efficient way than before. Their aim is to make computers process information similarly to the brain. Important technological developments and vast multidisciplinary projects have allowed creating the first simulation with a number of neurons similar to that of a human brain. This paper presents an up-to-date review about the main research projects that are trying to simulate and/or emulate the human brain. They employ different types of computational models using parallel computing: digital models, analog models and hybrid models. This review includes the current applications of these works, as well as future trends. It is focused on various works that look for advanced progress in Neuroscience and still others which seek new discoveries in Computer Science (neuromorphic hardware, machine learning techniques). Their most outstanding characteristics are summarized and the latest advances and future plans are presented. In addition, this review points out the importance of considering not only neurons: Computational models of the brain should also include glial cells, given the proven importance of astrocytes in information processing. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Insulin and the Brain

    Directory of Open Access Journals (Sweden)

    Grosu Cristina

    2017-12-01

    Full Text Available The brain represents an important site for the action of insulin. Besides the traditionally known importance in glucoregulation, insulin has significant neurotrophic properties and influences the brain activity: insulin influences eating behavior, regulates the storage of energy and several aspects concerning memory and knowledge. Insulin resistance and hyperinsulinism could be associated with brain aging, vascular and metabolic pathologies. Elucidating the pathways and metabolism of brain insulin could have a major impact on future targeted therapies.

  3. Brain cancer spreads

    DEFF Research Database (Denmark)

    Perryman, Lara; Erler, Janine Terra

    2014-01-01

    The discovery that ~20% of patients with brain cancer have circulating tumor cells breaks the dogma that these cells are confined to the brain and has important clinical implications (Müller et al., this issue).......The discovery that ~20% of patients with brain cancer have circulating tumor cells breaks the dogma that these cells are confined to the brain and has important clinical implications (Müller et al., this issue)....

  4. Neuromythology of Einstein's brain.

    Science.gov (United States)

    Hines, Terence

    2014-07-01

    The idea that the brain of the great physicist Albert Einstein is different from "average" brains in both cellular structure and external shape is widespread. This belief is based on several studies examining Einstein's brain both histologically and morphologically. This paper reviews these studies and finds them wanting. Their results do not, in fact, provide support for the claim that the structure of Einstein's brain reflects his intellectual abilities. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Brain imaging and schizophrenia

    International Nuclear Information System (INIS)

    Martinot, J.L.; Dao-Castellana, M.H.

    1991-01-01

    Brain structures and brain function have been investigated by the new brain imaging techniques for more than ten years. In Psychiatry, these techniques could afford a new understanding of mental diseases. In schizophrenic patients, CAT scanner and RMI pointed out statistically significant ventricular enlargments which are presently considered as evidence for abnormalities in brain maturation. Functional imaging techniques reported metabolic dysfunctions in the cortical associative areas which are probably linked to the cognitive features of schizophrenics [fr

  6. The Brain Prize 2014: complex human functions.

    Science.gov (United States)

    Grigaityte, Kristina; Iacoboni, Marco

    2014-11-01

    Giacomo Rizzolatti, Stanislas Dehaene, and Trevor Robbins were recently awarded the 2014 Grete Lundbeck European Brain Research Prize for their 'pioneering research on higher brain mechanisms underpinning such complex human functions as literacy, numeracy, motivated behavior and social cognition, and for their effort to understand cognitive and behavioral disorders'. Why was their work highlighted? Is there anything that links together these seemingly disparate lines of research? Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Functional magnetic resonance imaging of higher brain activity

    International Nuclear Information System (INIS)

    Cui He; Wang Yunjiu; Chen Runsheng; Tang Xiaowei.

    1996-01-01

    Functional magnetic resonance images (fMRIs) exhibit small differences in the magnetic resonance signal intensity in positions corresponding to focal areas of brain activation. These signal are caused by variation in the oxygenation state of the venous vasculature. Using this non-invasive and dynamic method, it is possible to localize functional brain activation, in vivo, in normal individuals, with an accuracy of millimeters and a temporal resolution of seconds. Though a series of technical difficulties remain, fMRI is increasingly becoming a key method for visualizing the working brain, and uncovering the topographical organization of the human brain, and understanding the relationship between brain and the mind

  8. Brain atrophy during aging

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju; Takeda, Shumpei; Hatazawa, Jun

    1985-01-01

    Age-related brain atrophy was investigated in thousands of persons with no neurologic disturbances using X-CT and NMR-CT and following results were obtained. Brain atrophy was minimal in 34 -- 35 years old in both sexes, increased exponentially to the increasing age after 34 -- 35 years, and probably resulted in dementia, such as vascular or multiinfarct dementia. Brain atrophy was significantly greater in men than in women at all ages. Brain volumes were maximal in 34 -- 35 years old in both sexes with minimal individual differences which increased proportionally to the increasing age. Remarkable individual differences in the extents of brain atrophy (20 -- 30 %) existed among aged subjects. Some aged subjects had little or no atrophy of their brains, as seen in young subjects, and others had markedly shrunken brains associated with senility. From these results there must be pathological factors promoting brain atrophy with a great individual difference. We have studied the relation of intelligence to brain volume, and have ascertained that progression of brain atrophy was closely related to loss of mental activities independently of their ages. Our longitudinal study has revealed that the most important factors promoting brain atrophy during aging was decrease in the cerebral blood flow. MNR-CT can easily detected small infarction (lacunae) and edematous lesions resulting from ischemia and hypertensive encephalopathy, while X-CT can not. Therefore NMR-CT is very useful for detection of subtle changes in the brain. (J.P.N.)

  9. Brain Migration Revisited

    Science.gov (United States)

    Vinokur, Annie

    2006-01-01

    The "brain drain/brain gain" debate has been going on for the past 40 years, with irresolvable theoretical disputes and unenforceable policy recommendations that economists commonly ascribe to the lack of reliable empirical data. The recent report of the World Bank, "International migration, remittances and the brain drain", documents the…

  10. Radiopharmaceuticals for brain - SPECT

    International Nuclear Information System (INIS)

    Moretti, J.L.

    1992-01-01

    Perfusion tracers for brain SPECT imaging suitable for regional cerebral blood flow measurement and regional cerebral blood volume determination, with respect to their ability to pass the blood-brain-barrier, are described. Problems related t the use of specific radiotracers to map receptors distribution in the brain are also discussed in this lecture. 9 figs, 6 tabs

  11. Brain Research and Learning.

    Science.gov (United States)

    Claycomb, Mary

    Current research on brain activity has many implications for educators. The triune brain concept and the left and right hemisphere concepts are among the many complex theories evolving from experimentation and observation. The triune brain concept suggests that the human forebrain has expanded while retaining three structurally unique formations…

  12. Primary lymphoma of the brain

    Science.gov (United States)

    Brain lymphoma; Cerebral lymphoma; Primary lymphoma of the central nervous system; Lymphoma - brain ... The cause of primary brain lymphoma is not known. People with a weakened immune system are at high risk for primary lymphoma of the brain. ...

  13. Working Memory and Neurofeedback.

    Science.gov (United States)

    YuLeung To, Eric; Abbott, Kathy; Foster, Dale S; Helmer, D'Arcy

    2016-01-01

    Impairments in working memory are typically associated with impairments in other cognitive faculties such as attentional processes and short-term memory. This paper briefly introduces neurofeedback as a treatment modality in general, and, more specifically, we review several of the current modalities successfully used in neurofeedback (NF) for the treatment of working memory deficits. Two case studies are presented to illustrate how neurofeedback is applied in treatment. The development of Low Resolution Electromagnetic Tomography (LORETA) and its application in neurofeedback now makes it possible to specifically target deep cortical/subcortical brain structures. Developments in neuroscience concerning neural networks, combined with highly specific yet practical NF technologies, makes neurofeedback of particular interest to neuropsychological practice, including the emergence of specific methodologies for treating very difficult working memory (WM) problems.

  14. Brain atrophy during aging

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju; Yamada, Kenji; Yamada, Susumu; Ono, Shuichi; Takeda, Shunpei; Hatazawa, Jun; Ito, Masatoshi; Kubota, Kazuo

    1985-01-01

    Age-related brain atrophy was investigated in thousands of persons with no neurologic disturbances using X-CT and NMR-CT. Brain atrophy was minimal in 34-35 years old in both sexes, increased exponentially to the increasing age after 34-35 years, and probably resulted in dementia, such as vascular or multi-infarct dementia. Brain atrophy was significantly greater in men than in women at all ages. Brain volumes were maximal in 34-35 years old in both sexes with minimal individual differences which increased proportionally to the increasing age. Remarkable individual differences in the extent of brain atrophy (20 - 30 %) existed among aged subjects. Progression of brain atrophy was closely related to loss of mental activities independently of their ages. Our longitudinal study has revealed that the most important factors promoting brain atrophy during aging was the decrease in the cerebral blood flow. We have classified brain atrophy into sulcal and cisternal enlargement type (type I), ventricular enlargement type (type II) and mixed type (type III) according to the clinical study using NMR-CT. Brain atrophy of type I progresses significantly in almost all of the geriatric disorders. This type of brain atrophy progresses significantly in heavy smokers and drinkers. Therefore this type of brain atrophy might be caused by the decline in the blood flow in anterior and middle cerebral arteries. Brain atrophy of type II was caused by the disturbance of cerebrospinal fluid circulation after cerebral bleeding and subarachnoid bleeding. Brain atrophy of type III was seen in vascular dementia or multi-infarct dementia which was caused by loss of brain matter after multiple infarction, and was seen also in dementia of Alzheimer type in which degeneration of nerve cells results in brain atrophy. NMR-CT can easily detect small infarction (lacunae) and edematous lesions resulting from ischemia and hypertensive encephalopathy. (J.P.N.)

  15. Caffeine, exercise and the brain.

    Science.gov (United States)

    Meeusen, Romain; Roelands, Bart; Spriet, Lawrence L

    2013-01-01

    Caffeine can improve exercise performance when it is ingested at moderate doses (3-6 mg/kg body mass). Caffeine also has an effect on the central nervous system (CNS), and it is now recognized that most of the performance-enhancing effect of caffeine is accomplished through the antagonism of the adenosine receptors, influencing the dopaminergic and other neurotransmitter systems. Adenosine and dopamine interact in the brain, and this might be one mechanism to explain how the important components of motivation (i.e. vigor, persistence and work output) and higher-order brain processes are involved in motor control. Caffeine maintains a higher dopamine concentration especially in those brain areas linked with 'attention'. Through this neurochemical interaction, caffeine improves sustained attention, vigilance, and reduces symptoms of fatigue. Other aspects that are localized in the CNS are a reduction in skeletal muscle pain and force sensation, leading to a reduction in perception of effort during exercise and therefore influencing the motivational factors to sustain effort during exercise. Because not all CNS aspects have been examined in detail, one should consider that a placebo effect may also be present. Overall, it appears that the performance-enhancing effects of caffeine reside in the brain, although more research is necessary to reveal the exact mechanisms through which the CNS effect is established. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.

  16. Brain control and information transfer.

    Science.gov (United States)

    Tehovnik, Edward J; Chen, Lewis L

    2015-12-01

    In this review, we examine the importance of having a body as essential for the brain to transfer information about the outside world to generate appropriate motor responses. We discuss the context-dependent conditioning of the motor control neural circuits and its dependence on the completion of feedback loops, which is in close agreement with the insights of Hebb and colleagues, who have stressed that for learning to occur the body must be intact and able to interact with the outside world. Finally, we apply information theory to data from published studies to evaluate the robustness of the neuronal signals obtained by bypassing the body (as used for brain-machine interfaces) versus via the body to move in the world. We show that recording from a group of neurons that bypasses the body exhibits a vastly degraded level of transfer of information as compared to that of an entire brain using the body to engage in the normal execution of behaviour. We conclude that body sensations provide more than just feedback for movements; they sustain the necessary transfer of information as animals explore their environment, thereby creating associations through learning. This work has implications for the development of brain-machine interfaces used to move external devices.

  17. Working alone.

    Science.gov (United States)

    Tearle, Paul

    2004-09-01

    Employees may be found working alone in a wide range of occupations. Technological advance, rationalisation and automation mean that more and more frequently. one single person is in charge of several machines, pieces of equipment or different work activities. Employees will be found working alone during work carried out as 'overtime', as part of flexible working hours, on Saturdays, Sundays, Bank Holidays and other statutory leave days, or in situations where their work takes them away from a fixed base (mobile workers). A person may be considered to be 'working alone' whenever it is not possible to offer immediate assistance following an accident or in another critical situation. This article looks at the legal background to lone working and what an employer must do to ensure lone workers are at no greater risk to their health and safety than any other members of the workforce.

  18. Instant BrainShark

    CERN Document Server

    Li, Daniel

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. ""Instant BrainShark"" is a step-by-step guide to creating online presentations using BrainShark. The book covers digital marketing best practices alongside tips for sales conversions. The book is written in an easy-to-read style for anybody to easily pick up and get started with BrainShark.Instant BrainShark is for anyone who wants to use BrainShark to create presentations online and share them around the community. The book is also useful for developers who are looking to explore

  19. Work Overload.

    Science.gov (United States)

    Bateman, Thomas S.

    1980-01-01

    To investigate managerial use of work (or role) overload to increase productivity, the author studied 77 nonclerical white-collar employees and found that work overload had negative effects on productivity, supervisors' ratings, employee attitudes, job satisfaction, and health. He recommends ways for managers and employees to reduce work overload.…

  20. Developmental Work

    DEFF Research Database (Denmark)

    Møller, Niels; Hvid, Helge; Kristensen, Tage Søndergaard

    2003-01-01

    Human Deveoplment and Working Life - Work for Welfare explores whether the development of human resources at company level can improve individuals' quality of life, companies' possibilities of development, and welfare and democracy in society. Chapter two discuss the concept "developmental work...

  1. Signifikansi Brain Based Learning Pendidikan Anak Usia Dini

    OpenAIRE

    Jazariyah

    2017-01-01

    This study based on the reality of learning in the early childhood level and the system has not noticed the potential of the brain learners. The potential and the working system of the brain is very important in early childhood. This paper aims to reveal the importance of brain-based learning in Early Childhood Education (ECD). The problem in this study is what the nature of early childhood education and how to use the potential and work system of the brain in early childhood learning. This s...

  2. Structural similarities between brain and linguistic data provide evidence of semantic relations in the brain.

    Directory of Open Access Journals (Sweden)

    Colleen E Crangle

    Full Text Available This paper presents a new method of analysis by which structural similarities between brain data and linguistic data can be assessed at the semantic level. It shows how to measure the strength of these structural similarities and so determine the relatively better fit of the brain data with one semantic model over another. The first model is derived from WordNet, a lexical database of English compiled by language experts. The second is given by the corpus-based statistical technique of latent semantic analysis (LSA, which detects relations between words that are latent or hidden in text. The brain data are drawn from experiments in which statements about the geography of Europe were presented auditorily to participants who were asked to determine their truth or falsity while electroencephalographic (EEG recordings were made. The theoretical framework for the analysis of the brain and semantic data derives from axiomatizations of theories such as the theory of differences in utility preference. Using brain-data samples from individual trials time-locked to the presentation of each word, ordinal relations of similarity differences are computed for the brain data and for the linguistic data. In each case those relations that are invariant with respect to the brain and linguistic data, and are correlated with sufficient statistical strength, amount to structural similarities between the brain and linguistic data. Results show that many more statistically significant structural similarities can be found between the brain data and the WordNet-derived data than the LSA-derived data. The work reported here is placed within the context of other recent studies of semantics and the brain. The main contribution of this paper is the new method it presents for the study of semantics and the brain and the focus it permits on networks of relations detected in brain data and represented by a semantic model.

  3. Endothelial cell marker PAL-E reactivity in brain tumor, developing brain, and brain disease

    NARCIS (Netherlands)

    Leenstra, S.; Troost, D.; Das, P. K.; Claessen, N.; Becker, A. E.; Bosch, D. A.

    1993-01-01

    The endothelial cell marker PAL-E is not reactive to vessels in the normal brain. The present study concerns the PAL-E reactivity in brain tumors in contrast to normal brain and nonneoplastic brain disease. A total of 122 specimens were examined: brain tumors (n = 94), nonneoplastic brain disease (n

  4. Mapping brain function to brain anatomy

    International Nuclear Information System (INIS)

    Valentino, D.J.; Huang, H.K.; Mazziotta, J.C.

    1988-01-01

    In Imaging the human brain, MRI is commonly used to reveal anatomical structure, while PET is used to reveal tissue function. This paper presents a protocol for correlating data between these two imaging modalities; this correlation can provide in vivo regional measurements of brain function which are essential to our understanding of the human brain. The authors propose a general protocol to standardize the acquisition and analysis of functional image data. First, MR and PET images are collected to form three-dimensional volumes of structural and functional image data. Second, these volumes of image data are corrected for distortions inherent in each imaging modality. Third, the image volumes are correlated to provide correctly aligned structural and functional images. The functional images are then mapped onto the structural images in both two-dimensional and three-dimensional representations. Finally, morphometric techniques can be used to provide statistical measures of the structure and function of the human brain

  5. Brain imaging during seizure: ictal brain SPECT

    International Nuclear Information System (INIS)

    Kottamasu, Sambasiva Rao

    1997-01-01

    The role of single photon computed tomography (SPECT) in presurgical localization of medically intractable complex partial epilepsy (CPE) in children is reviewed. 99m Technetium neurolite, a newer lipophylic agent with a high first pass brain extraction and little or no redistribution is injected during a seizure, while the child is monitored with a video recording and continuous EEG and SPECT imaging is performed in the next 1-3 hours with the images representing regional cerebral profusion at the time of injection. On SPECT studies performed with radiopharmaceutical injected during a seizure, ictal focus is generally hypervascular. Other findings on ictal brain SPECT include hypoperfusion of adjacent cerebral cortex and white matter, hyperperfusion of contralateral motor cortex, hyperperfusion of ipsilateral basal ganglia and thalamus, brain stem and contralateral cerebellum. Ictal brain SPECT is non-invasive, cost effective and highly sensitive for localization of epileptic focus in patients with intractable CPE. (author)

  6. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes...

  7. Photon Entanglement Through Brain Tissue.

    Science.gov (United States)

    Shi, Lingyan; Galvez, Enrique J; Alfano, Robert R

    2016-12-20

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness.

  8. Consciousness and the brain deciphering how the brain codes our thoughts

    CERN Document Server

    Dehaene, Stanislas

    2014-01-01

    How does our brain generate a conscious thought? And why does so much of our knowledge remain unconscious? Thanks to clever psychological and brain-imaging experiments, scientists are closer to cracking this mystery than ever before. In this lively book, Stanislas Dehaene describes the pioneering work his lab and the labs of other cognitive neuroscientists worldwide have accomplished in defining, testing, and explaining the brain events behind a conscious state. We can now pin down the neurons that fire when a person reports becoming aware of a piece of information and understand the crucial role unconscious computations play in how we make decisions. The emerging theory enables a test of consciousness in animals, babies, and those with severe brain injuries. A joyous exploration of the mind and its thrilling complexities, Consciousness and the Brain will excite anyone interested in cutting-edge science and technology and the vast philosophical, personal, and ethical implications of finally quantifying cons...

  9. [The brain in stereotaxic coordinates (a textbook for colleges)].

    Science.gov (United States)

    Budantsev, A Iu; Kisliuk, O S; Shul'govskiĭ, V V; Rykunov, D S; Iarkov, A V

    1993-01-01

    The present textbook is directed forward students of universities and medical colleges, young scientists and practicing doctors dealing with stereotaxic method. The Paxinos and Watson stereotaxic rat brain atlas (1982) is the basis of the textbook. The atlas has been transformed into computer educational program and seven laboratory works: insertion of the electrode into brain, microelectrophoresis, microinjection of drugs into brain, electrolytic destruction in the brain structures, local brain superfusion. The laboratory works are compiled so that they allow not only to study practical use of the stereotaxic method but to model simple problems involving stereotaxic surgery in the deep structures of brain. The textbook is intended for carrying by IBM PC/AT computers. The volume of the textbook is 1.7 Mbytes.

  10. Performative Work

    DEFF Research Database (Denmark)

    Beunza, Daniel; Ferraro, Fabrizio

    2018-01-01

    by attending to the normative and regulative associations of the device. We theorize this route to performativity by proposing the concept of performative work, which designates the necessary institutional work to enable translation and the subsequent adoption of the device. We conclude by considering...... the implications of performative work for the performativity and the institutional work literatures.......Callon’s performativity thesis has illuminated how economic theories and calculative devices shape markets, but has been challenged for its neglect of the organizational, institutional and political context. Our seven-year qualitative study of a large financial data company found that the company...

  11. The biological significance of brain barrier mechanisms

    DEFF Research Database (Denmark)

    Saunders, Norman R; Habgood, Mark D; Møllgård, Kjeld

    2016-01-01

    , but more work is required to evaluate the method before it can be tried in patients. Overall, our view is that much more fundamental knowledge of barrier mechanisms and development of new experimental methods will be required before drug targeting to the brain is likely to be a successful endeavor......Barrier mechanisms in the brain are important for its normal functioning and development. Stability of the brain's internal environment, particularly with respect to its ionic composition, is a prerequisite for the fundamental basis of its function, namely transmission of nerve impulses....... In addition, the appropriate and controlled supply of a wide range of nutrients such as glucose, amino acids, monocarboxylates, and vitamins is also essential for normal development and function. These are all cellular functions across the interfaces that separate the brain from the rest of the internal...

  12. Effects of cannabis on the adolescent brain.

    Science.gov (United States)

    Jacobus, Joanna; Tapert, Susan F

    2014-01-01

    This article reviews neuroimaging, neurocognitive, and preclinical findings on the effects of cannabis on the adolescent brain. Marijuana is the second most widely used intoxicant in adolescence, and teens who engage in heavy marijuana use often show disadvantages in neurocognitive performance, macrostructural and microstructural brain development, and alterations in brain functioning. It remains unclear whether such disadvantages reflect pre-existing differences that lead to increased substances use and further changes in brain architecture and behavioral outcomes. Future work should focus on prospective investigations to help disentangle dose-dependent effects from pre-existing effects, and to better understand the interactive relationships with other commonly abused substances (e.g., alcohol) to better understand the role of regular cannabis use on neurodevelopmental trajectories.

  13. Effects of Cannabis on the Adolescent Brain

    Science.gov (United States)

    Jacobus, Joanna; Tapert, Susan F.

    2014-01-01

    This article reviews neuroimaging, neurocognitive, and preclinical findings on the effects of cannabis on the adolescent brain. Marijuana is the second most widely used intoxicant in adolescence, and teens who engage in heavy marijuana use often show disadvantages in neurocognitive performance, macrostructural and microstructural brain development, and alterations in brain functioning. It remains unclear whether such disadvantages reflect pre-existing differences that lead to increased substances use and further changes in brain architecture and behavioral outcomes. Future work should focus on prospective investigations to help disentangle dose-dependent effects from pre-existing effects, and to better understand the interactive relationships with other commonly abused substances (e.g., alcohol) to better understand the role of regular cannabis use on neurodevelopmental trajectories. PMID:23829363

  14. Brain SPECT in severs traumatic head injury

    International Nuclear Information System (INIS)

    Beaulieu, F.; Eder, V.; Pottier, J.M.; Baulieu, J.L.; Fournier, P.; Legros, B.; Chiaroni, P.; Dalonneau, M.

    2000-01-01

    The aim of this work was to compare the results of the early brain scintigraphy in traumatic brain injury to the long term neuropsychological behavior. Twenty four patients had an ECD-Tc99m SPECT, within one month after the trauma; scintigraphic abnormalities were evaluated according to a semi-quantitative analysis. The neuropsychological clinical investigation was interpreted by a synthetic approach to evaluate abnormalities related to residual motor deficit, frontal behavior, memory and language disorders. Fourteen patients (58%) had sequela symptoms. SPECT revealed 80 abnormalities and CT scan only 31. Statistical analysis of uptake values showed significantly lower uptake in left basal ganglia and brain stem in patients with sequela memory disorders. We conclude that the brain perfusion scintigraphy is able to detect more lesions than CT and that it could really help to predict the neuropsychological behavior after severe head injury. Traumatology could become in the future a widely accepted indication of perfusion SPECT. (authors)

  15. Handbook of Brain Connectivity

    CERN Document Server

    Jirsa, Viktor K

    2007-01-01

    Our contemporary understanding of brain function is deeply rooted in the ideas of the nonlinear dynamics of distributed networks. Cognition and motor coordination seem to arise from the interactions of local neuronal networks, which themselves are connected in large scales across the entire brain. The spatial architectures between various scales inevitably influence the dynamics of the brain and thereby its function. But how can we integrate brain connectivity amongst these structural and functional domains? Our Handbook provides an account of the current knowledge on the measurement, analysis and theory of the anatomical and functional connectivity of the brain. All contributors are leading experts in various fields concerning structural and functional brain connectivity. In the first part of the Handbook, the chapters focus on an introduction and discussion of the principles underlying connected neural systems. The second part introduces the currently available non-invasive technologies for measuring struct...

  16. Fractal characterization of brain lesions in CT images

    International Nuclear Information System (INIS)

    Jauhari, Rajnish K.; Trivedi, Rashmi; Munshi, Prabhat; Sahni, Kamal

    2005-01-01

    Fractal Dimension (FD) is a parameter used widely for classification, analysis, and pattern recognition of images. In this work we explore the quantification of CT (computed tomography) lesions of the brain by using fractal theory. Five brain lesions, which are portions of CT images of diseased brains, are used for the study. These lesions exhibit self-similarity over a chosen range of scales, and are broadly characterized by their fractal dimensions

  17. The Complex Functioning of the Human Brain: The Two Hemispheres

    Directory of Open Access Journals (Sweden)

    Iulia Cristina Timofti

    2010-04-01

    Full Text Available The present study reveals just a glimpse of the possible functions and reactions that the human brain can have. I considered as good examples different situations characteristic both of a normal person and a split-brain one. These situations prove that the brain, although divided in two, works as a unit, as an amazing computer that has data processing as a main goal.

  18. Group Work

    Science.gov (United States)

    Wilson, Kristy J.; Brickman, Peggy; Brame, Cynthia J.

    2018-01-01

    Science, technology, engineering, and mathematics faculty are increasingly incorporating both formal and informal group work in their courses. Implementing group work can be improved by an understanding of the extensive body of educational research studies on this topic. This essay describes an online, evidence-based teaching guide published by…

  19. Work cabinet

    International Nuclear Information System (INIS)

    Hornby, L.

    1981-01-01

    A simple work cabinet is described for handling materials such as radiopharmaceuticals. The cabinet includes a perforated working surface to which an operator can gain hand and forearm access through an aperture. Clean air is supplied through a high efficiency particulate air filter and withdrawn through the perforated surface. (U.K.)

  20. Brain spect imaging

    International Nuclear Information System (INIS)

    Lee, R.G.L.; Hill, T.C.; Holman, B.L.

    1989-01-01

    This paper discusses how the rapid development of single-photon radiopharmaceuticals has given new life to tomographic brain imaging in nuclear medicine. Further developments in radiopharmaceuticals and refinements in neuro-SPECT (single-photon emission computed tomography) instrumentation should help to reinstate brain scintigraphy as an important part of neurologic diagnosis. SPECT of the brain evolved from experimentation using prototype instrumentation during the early 1960s. Although tomographic studies provided superior diagnostic accuracy when compared to planar techniques, the arrival of X-ray CT of the head resulted in the rapid demise of technetium brain imaging

  1. [Wet work].

    Science.gov (United States)

    Kieć-Swierczyńska, Marta; Chomiczewska, Dorota; Krecisz, Beata

    2010-01-01

    Wet work is one of the most important risk factors of occupational skin diseases. Exposure of hands to the wet environment for more than 2 hours daily, wearing moisture-proof protective gloves for a corresponding period of time or necessity to wash hands frequently lead to the disruption of epidermal stratum corneum, damage to skin barrier function and induction of irritant contact dermatitis. It may also promote penetration of allergens into the skin and increase the risk of sensitization to occupational allergens. Exposure to wet work plays a significant role in occupations, such as hairdressers and barbers, nurses and other health care workers, cleaning staff, food handlers and metalworkers. It is more common among women because many occupations involving wet work are female-dominated. The incidence of wet-work-induced occupational skin diseases can be reduced by taking appropriate preventive measures. These include identification of high-risk groups, education of workers, organization of work enabling to minimize the exposure to wet work, use of personal protective equipment and skin care after work.

  2. Putting Knowledge to Work: Collaborating, Influencing and Learning ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2017-02-15

    Feb 15, 2017 ... Download PDF ... Putting Knowledge to Work explores how the brains of such ... She previously worked with Statistics Canada, Graybridge Malkam, Citizenship and Immigration Canada, and Human Resources and Skills ...

  3. Work Stress

    OpenAIRE

    Roeters, Anne

    2014-01-01

    Most of us agree that stress is a growing problem within organizations. We hear about the postal workers who had killed fellow employees and supervisors, and then hear that a major cause of tension is at work. Friends tell us that they are stressed due to increased workload and he has to work overtime because the company is restructured. We read the polls that employees complain about the stress in trying to balance family life with the work. Stress is a dynamic condition in which an individu...

  4. MRI of 'brain death'

    International Nuclear Information System (INIS)

    Nishino, Shigeki; Itoh, Takahiko; Tuchida, Shohei; Kinugasa, Kazushi; Asari, Shoji; Nishimoto, Akira; Sanou, Kazuo.

    1990-01-01

    Magnetic resonance imaging (MRI) was undertaken for two patients who suffered from severe cerebrovascular diseases and were clinically brain dead. The MRI system we used was Resona (Yokogawa Medical Systems, superconductive system 0.5 T) and the CT apparatus was Toshiba TCT-300. Initial CT and MRI were undertaken as soon as possible after admission, and repeated sequentially. After diagnosis of brain death, we performed angiography to determine cerebral circulatory arrest, and MRI obtained at the same time was compared with the angiogram and CT. Case 1 was a 77-year-old man who was admitted in an unconscious state. CT and MRI on the second day after hospitalization revealed cerebellar infarction. He was diagnosed as brain dead on day 4. Case 2 was a 35-year-old man. When he was transferred to our hospital, he was in cardiorespiratory arrested. Cardiac resuscitation was successful but no spontaneous respiration appeared. CT and MRI on admission revealed right intracerebral hemorrhage. Angiography revealed cessation of contrast medium in intracranial vessels in both of the patients. We found no 'flow signal void sign' in the bilateral internal carotid and basilar arteries on MRI images in both cases after brain death. MRI, showing us the anatomical changes of the brain, clearly revealed brain herniations, even though only nuclear findings of 'brain tamponade' were seen on CT. But in Case 1, we could not see the infarct lesions in the cerebellum on MR images obtained after brain death. This phenomenon was caused by the whole brain ischemia masking the initial ischemic lesions. We concluded that MRI was useful not only the anatomical display of lesions and brain herniation with high contrast resolution but for obtaining information on cerebral circulation of brain death. (author)

  5. Working Collaboratively

    DEFF Research Database (Denmark)

    Holder, Anna; Lovett, George

    2009-01-01

    identified as a transformative global force of the last decade, most notably in knowledge and information publishing, communication and creation. This paper presents a structured conversation on changing understandings of collaboration, and the realities of collaborative methodology in architectural work...

  6. Working Mothers

    Science.gov (United States)

    ... work is unpleasant and damages instead of builds self-esteem. Family relationships may suffer if both parents want ... with your child, especially if he is very young. You may worry that you will miss some ...

  7. Working hot

    International Nuclear Information System (INIS)

    Stix, G.

    1988-01-01

    The author says ''barehand'' methods, where specially trained utility workers are called in conductive suits to equalize voltage over their bodies, to maintain high-voltage transmission lines are on the rise. Utilities are building lines at higher voltages and selling more power to other utilities, making it highly inconvenient to take the lines out of service. However, some unions view the barehand work with less than enthusiasm. Touching lines energized at hundreds of thousands of volts demands flawless equipment and rigid work procedures followed to the letter. Some local unions contend that adequate safety procedures and training, and appropriate penalties for workplace negligence, should be in place before utilities may do barehand work. The author discusses some of the methods of barehand work and the equipment used, i.e. steel-mesh lineman's suit, bucket truck's boom, helicopters, and robots

  8. Time delay between cardiac and brain activity during sleep transitions

    NARCIS (Netherlands)

    Long, X.; Arends, J.B.A.M.; Aarts, R.M.; Haakma, R.; Fonseca, P.; Rolink, J.

    2015-01-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by

  9. Long-term brain slice culturing in a microfluidic platform

    DEFF Research Database (Denmark)

    Vedarethinam, Indumathi; Avaliani, N.; Tønnesen, J.

    2011-01-01

    In this work, we present the development of a transparent poly(methyl methacrylate) (PMMA) based microfluidic culture system for handling long-term brain slice cultures independent of an incubator. The different stages of system development have been validated by culturing GFP producing brain sli...

  10. Neurons derived from different brain regions are inherently different in vitro: a novel multiregional brain-on-a-chip.

    Science.gov (United States)

    Dauth, Stephanie; Maoz, Ben M; Sheehy, Sean P; Hemphill, Matthew A; Murty, Tara; Macedonia, Mary Kate; Greer, Angie M; Budnik, Bogdan; Parker, Kevin Kit

    2017-03-01

    Brain in vitro models are critically important to developing our understanding of basic nervous system cellular physiology, potential neurotoxic effects of chemicals, and specific cellular mechanisms of many disease states. In this study, we sought to address key shortcomings of current brain in vitro models: the scarcity of comparative data for cells originating from distinct brain regions and the lack of multiregional brain in vitro models. We demonstrated that rat neurons from different brain regions exhibit unique profiles regarding their cell composition, protein expression, metabolism, and electrical activity in vitro. In vivo, the brain is unique in its structural and functional organization, and the interactions and communication between different brain areas are essential components of proper brain function. This fact and the observation that neurons from different areas of the brain exhibit unique behaviors in vitro underline the importance of establishing multiregional brain in vitro models. Therefore, we here developed a multiregional brain-on-a-chip and observed a reduction of overall firing activity, as well as altered amounts of astrocytes and specific neuronal cell types compared with separately cultured neurons. Furthermore, this multiregional model was used to study the effects of phencyclidine, a drug known to induce schizophrenia-like symptoms in vivo, on individual brain areas separately while monitoring downstream effects on interconnected regions. Overall, this work provides a comparison of cells from different brain regions in vitro and introduces a multiregional brain-on-a-chip that enables the development of unique disease models incorporating essential in vivo features. NEW & NOTEWORTHY Due to the scarcity of comparative data for cells from different brain regions in vitro, we demonstrated that neurons isolated from distinct brain areas exhibit unique behaviors in vitro. Moreover, in vivo proper brain function is dependent on the

  11. The multilingual brain

    OpenAIRE

    Engel de Abreu, Pascale

    2013-01-01

    The multilingual brain. Is a multilingual education beneficial for children? What are the optimal conditions under which a child can become perfectly multilingual? The given lecture will focus on the "cognitive advantages" of multilingualism and illustrate the impact that being multilingual has on the cognitive organisation of the brain. Practical questions regarding multilingual education will also be discussed.

  12. Brain PET scan

    Science.gov (United States)

    ... results on a PET scan. Blood sugar or insulin levels may affect the test results in people with diabetes . PET scans may be done along with a CT scan. This combination scan is called a PET/CT. Alternative Names Brain positron emission tomography; PET scan - brain References Chernecky ...

  13. What a Brain!

    Science.gov (United States)

    Love, Kim

    1997-01-01

    Outlines basic concepts about how the brain develops and considers how Head Start teachers and parents can take full advantage of the brain's multisensory learning approach to develop more effective ways to interact with children. Focuses on the critical developmental period for stimulating neurons and developing neural connections. Suggests…

  14. Baby brain atlases.

    Science.gov (United States)

    Oishi, Kenichi; Chang, Linda; Huang, Hao

    2018-04-03

    The baby brain is constantly changing due to its active neurodevelopment, and research into the baby brain is one of the frontiers in neuroscience. To help guide neuroscientists and clinicians in their investigation of this frontier, maps of the baby brain, which contain a priori knowledge about neurodevelopment and anatomy, are essential. "Brain atlas" in this review refers to a 3D-brain image with a set of reference labels, such as a parcellation map, as the anatomical reference that guides the mapping of the brain. Recent advancements in scanners, sequences, and motion control methodologies enable the creation of various types of high-resolution baby brain atlases. What is becoming clear is that one atlas is not sufficient to characterize the existing knowledge about the anatomical variations, disease-related anatomical alterations, and the variations in time-dependent changes. In this review, the types and roles of the human baby brain MRI atlases that are currently available are described and discussed, and future directions in the field of developmental neuroscience and its clinical applications are proposed. The potential use of disease-based atlases to characterize clinically relevant information, such as clinical labels, in addition to conventional anatomical labels, is also discussed. Copyright © 2018. Published by Elsevier Inc.

  15. Migraine and brain changes

    NARCIS (Netherlands)

    Meinders, I.H.

    2018-01-01

    This thesis describes the longitudinal population-based CAMERA-study on the association between migraine and brain changes (e.g. white matter hyperintensities, infarct-like and other lesions) and possible causes and consequences of those brain changes. Women with migraine showed higher incidence of

  16. Brain imaging in psychiatry

    International Nuclear Information System (INIS)

    Morihisa, J.M.

    1984-01-01

    This book contains the following five chapters: Positron Emission Tomography (PET) in Psychiatry; Regional Cerebral Blood Flow (CBF) in Psychiatry: Methodological Issues; Regional Cerebral Blood Flow in Psychiatry: Application to Clinical Research; Regional Cerebral Blood Flow in Psychiatry: The Resting and Activated Brains of Schizophrenic Patients; and Brain Electrical Activity Mapping (BEAM) in Psychiatry

  17. Inside the Adolescent Brain

    Science.gov (United States)

    Drury, Stacy S.

    2009-01-01

    Dr. Jay Giedd says that the main alterations in the adolescent brain are the inverted U-shaped developmental trajectories with late childhood/early teen peaks for gray matter volume among others. Giedd adds that the adolescent brain is vulnerable to substances that artificially modulate dopamine levels since its reward system is in a state of flux.

  18. One brain, two selves

    NARCIS (Netherlands)

    Reinders, AATS; Nijenhuis, ERS; Paans, AMJ; Korf, J; Willemsen, ATM; den Boer, JA

    2003-01-01

    Having a sense of self is an explicit and high-level functional specialization of the human brain. The anatomical localization of self-awareness and the brain mechanisms involved in consciousness were investigated by functional neuroimaging different emotional mental states of core consciousness in

  19. Coping changes the brain

    Directory of Open Access Journals (Sweden)

    Jordan M. Nechvatal

    2013-02-01

    Full Text Available One of the earliest and most consistent findings in behavioral neuroscience research is that learning changes the brain. Here we consider how learning as an aspect of coping in the context of stress exposure induces neuroadaptations that enhance emotion regulation and resilience. A systematic review of the literature identified 15 brain imaging studies in which humans with specific phobias or posttraumatic stress disorder were randomized to stress exposure therapies that diminished subsequent indications of anxiety. Most of these studies focused on functional changes in the amygdala and anterior corticolimbic brain circuits that control cognitive, motivational, and emotional aspects of physiology and behavior. Corresponding structural brain changes and the timing, frequency, and duration of stress exposure required to modify brain functions remain to be elucidated in future research. These studies will advance our understanding of coping as a learning process and provide mechanistic insights for the development of new interventions that promote stress coping skills.

  20. Epilepsy and Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhi-yi Sha

    2009-01-01

    @@ Epidemiology It is estimated 61,414 new cases of primary brain tumors are expected to be diagnosed in 2009 in the U.S. The incidence statistic of 61,414 persons diagnosed per year includes both malignant (22,738) and non-malignant (38,677) brain tumors. (Data from American Brain Tumor Association). During the years 2004-2005, approximately 359,000 people in the United States were living with the diagnosis of a primary brain or central nervous system tumor. Specifically, more than 81,000 persons were living with a malignant tumor, more than 267,000 persons with a benign tumor. For every 100,000 people in the United States, approximately 131 are living following the diagnosis of a brain tumor. This represents a prevalence rate of 130.8 per 100,000 person years[1].

  1. Brain-computer interfaces

    DEFF Research Database (Denmark)

    Treder, Matthias S.; Miklody, Daniel; Blankertz, Benjamin

    quality measure'. We were able to show that for stimuli close to the perceptual threshold, there was sometimes a discrepancy between overt responses and brain responses, shedding light on subjects using different response criteria (e.g., more liberal or more conservative). To conclude, brain-computer...... of perceptual and cognitive biases. Furthermore, subjects can only report on stimuli if they have a clear percept of them. On the other hand, the electroencephalogram (EEG), the electrical brain activity measured with electrodes on the scalp, is a more direct measure. It allows us to tap into the ongoing neural...... auditory processing stream. In particular, it can tap brain processes that are pre-conscious or even unconscious, such as the earliest brain responses to sounds stimuli in primary auditory cortex. In a series of studies, we used a machine learning approach to show that the EEG can accurately reflect...

  2. Inside the Diabetic Brain

    Directory of Open Access Journals (Sweden)

    Chomova M.

    2014-12-01

    Full Text Available CNS complications resulting from diabetes mellitus (DM are a problem gaining more acceptance and attention in the recent years. Both types 1 and 2 DM represent an significant risk factor for decreased cognitive functions, memory and learning deficits as well as development of Alzheimer’s disease. Chronic hyperglycemia through protein glycation and increased oxidative stress contributes to brain dysfunction, however increasing evidences suggest that the pathology of DM in the brain involves a progressive and coordinated disruption of insulin signaling, with profound consequences for brain function and plasticity. Since many of the CNS changes observed in diabetic patients and animal models of DM are reminiscent of the changes seen in aging, the theory of advanced brain aging in DM has been proposed. This review summarizes the findings of the literature regarding the effects of DM on the brain in the terms of diabetes-related metabolic derangements and intracellular signaling.

  3. Modeling Structural Brain Connectivity

    DEFF Research Database (Denmark)

    Ambrosen, Karen Marie Sandø

    The human brain consists of a gigantic complex network of interconnected neurons. Together all these connections determine who we are, how we react and how we interpret the world. Knowledge about how the brain is connected can further our understanding of the brain’s structural organization, help...... improve diagnosis, and potentially allow better treatment of a wide range of neurological disorders. Tractography based on diffusion magnetic resonance imaging is a unique tool to estimate this “structural connectivity” of the brain non-invasively and in vivo. During the last decade, brain connectivity...... has increasingly been analyzed using graph theoretic measures adopted from network science and this characterization of the brain’s structural connectivity has been shown to be useful for the classification of populations, such as healthy and diseased subjects. The structural connectivity of the brain...

  4. Exploring the brain

    International Nuclear Information System (INIS)

    Bloch, G.; Vernier, P.; Le Bihan, D.; Comtat, C.; Van Wassenhove, V.; Texier, I.; Planat-Chretien, A.; Poher, V.; Dinten, J.M.; Pannetier-lecoeur, M.; Trebossen, R.; Lethimonnier, F.; Eger, E.; Thirion, B.; Dehaene-Lambertz, G.; Piazza, M.; Mangin, J.F.; Dehaene, S.; Pallier, C.; Marti, S.; Klein, E.; Martinot, J.L.; Paillere, M.L.; Artiges, E.; Lemaitre, H.; Karila, L.; Houenou, J.; Sarrazin, S.; Hantraye, P.; Aron Badin, R.; Mergui, S.; Palfi, S.; Bemelmans, A.; Berger, F.; Frouin, V.; Pinel, J.F.; Crivello, F.; Mazoyer, B.; Flury-Herard, A.

    2014-01-01

    CEA (French Alternative Energies and Atomic Energy Commission) has been involved in brain research for over 50 years and this 62. issue of 'Clefs CEA' is the best occasion to come back on the latest advances in this wide field. The purpose is to show how neuroimaging combined with neuro sciences and computational sciences has shed light on various aspects of the brain life and experience such as for instance learning (with highlights on dyslexia and dyscalculia), vision, the feeling of time, consciousness, addictions, ageing, and neuro-degenerative diseases. This document is divided into 6 parts: 1) non-invasive exploration of the brain, 2) development, learning and plasticity of the brain, 3) cognitive architecture and the brain, 4) mental health and vulnerability, 5) neuro-degenerative diseases, and 6) identifying bio-markers for cerebral disorders. (A.C.)

  5. Brain Aneurysm Statistics and Facts

    Science.gov (United States)

    ... Statistics and Facts A- A A+ Brain Aneurysm Statistics and Facts An estimated 6 million people in ... Understanding the Brain Warning Signs/ Symptoms Brain Aneurysm Statistics and Facts Seeking Medical Attention Risk Factors Aneurysm ...

  6. Brain tumor classification using Probabilistic Neural Network

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... Baghdad, Iraq. 1sami.hasan@coie.nahrainuniv.edu.iq ... The Human brain is the most amazing and complex thing known in the world [1]. ... achieved using gray level co-occurrence matrix (GLCM). This work is aimed to ...

  7. Memory Processing: Ripples in the Resting Brain.

    Science.gov (United States)

    Walker, Matthew P; Robertson, Edwin M

    2016-03-21

    Recent work has shown that, during sleep, a functional circuit is created amidst a general breakdown in connectivity following fast-frequency bursts of brain activity. The findings question the unconscious nature of deep sleep, and provide an explanation for its contribution to memory processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Understanding brains: details, intuition, and big data.

    Science.gov (United States)

    Marder, Eve

    2015-05-01

    Understanding how the brain works requires a delicate balance between the appreciation of the importance of a multitude of biological details and the ability to see beyond those details to general principles. As technological innovations vastly increase the amount of data we collect, the importance of intuition into how to analyze and treat these data may, paradoxically, become more important.

  9. Understanding Brains: Details, Intuition, and Big Data

    OpenAIRE

    Marder, Eve

    2015-01-01

    Understanding how the brain works requires a delicate balance between the appreciation of the importance of a multitude of biological details and the ability to see beyond those details to general principles. As technological innovations vastly increase the amount of data we collect, the importance of intuition into how to analyze and treat these data may, paradoxically, become more important.

  10. Understanding brains: details, intuition, and big data.

    Directory of Open Access Journals (Sweden)

    Eve Marder

    2015-05-01

    Full Text Available Understanding how the brain works requires a delicate balance between the appreciation of the importance of a multitude of biological details and the ability to see beyond those details to general principles. As technological innovations vastly increase the amount of data we collect, the importance of intuition into how to analyze and treat these data may, paradoxically, become more important.

  11. Peritumoral brain edema in angiomatous supratentorial meningiomas

    DEFF Research Database (Denmark)

    Nassehi, Damoun; Sørensen, Lars Peter; Dyrbye, Henrik

    2013-01-01

    The aim of this work was to study the vascular endothelial growth factor A (VEGF-A) pathway and peritumoral brain edema (PTBE) through comparison of non-angiomatous and angiomatous meningiomas. Meningiomas are common intracranial tumors, which often have PTBE. VEGF-A is an integral part of PTBE...

  12. Is working memory still working?

    Science.gov (United States)

    Baddeley, A D

    2001-11-01

    The current state of A. D. Baddeley and G. J. Hitch's (1974) multicomponent working memory model is reviewed. The phonological and visuospatial subsystems have been extensively investigated, leading both to challenges over interpretation of individual phenomena and to more detailed attempts to model the processes underlying the subsystems. Analysis of the controlling central executive has proved more challenging, leading to a proposed clarification in which the executive is assumed to be a limited capacity attentional system, aided by a newly postulated fourth system, the episodic buffer. Current interest focuses most strongly on the link between working memory and long-term memory and on the processes allowing the integration of information from the component subsystems. The model has proved valuable in accounting for data from a wide range of participant groups under a rich array of task conditions. Working memory does still appear to be working.

  13. Paid work and unpaid work

    DEFF Research Database (Denmark)

    Bonke, Jens

    Time-use information is preferably obtained from diaries, as this method is considered more reliable than information from questionnaires. The diary-technique seems to be unique in catching the rhythm of every day life and thereby the structuring of work and leisure during a well-defined and memo......Time-use information is preferably obtained from diaries, as this method is considered more reliable than information from questionnaires. The diary-technique seems to be unique in catching the rhythm of every day life and thereby the structuring of work and leisure during a well......-questions are asked about the time spent on paid work and unpaid/household work. The advantage of the latter technique is that it can easily be integrated into surveys. Thus the American National Survey of Families and Households (NSFH) already contains two waves, and a new wave for 2001-2002, which allows...

  14. The negative brain scintiscan in brain tumours

    International Nuclear Information System (INIS)

    Dalke, K.G.

    1978-01-01

    On the basis of 53 histologically verified and two histologically unidentified brain tumours, the author examined the reasons for these wrongly negative scintiscans. EEGs and angiographies carried out at about the same time were taken into account and compared with the scintigraphic findings. (orig.) [de

  15. How the embryonic brain tube twists

    Science.gov (United States)

    Chen, Zi; Guo, Qiaohang; Forsch, Nickolas; Taber, Larry

    2014-03-01

    During early development, the tubular brain of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This deformation is one of the major organ-level symmetry-breaking events in development. Available evidence suggests that bending is caused by differential growth, but the mechanism for torsion remains poorly understood. Since the heart almost always loops in the same direction that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is virtually nonexistent, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. In addition, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model is used to interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''.

  16. How the embryonic chick brain twists.

    Science.gov (United States)

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Forsch, Nickolas; Taber, Larry A

    2016-11-01

    During early development, the tubular embryonic chick brain undergoes a combination of progressive ventral bending and rightward torsion, one of the earliest organ-level left-right asymmetry events in development. Existing evidence suggests that bending is caused by differential growth, but the mechanism for the predominantly rightward torsion of the embryonic brain tube remains poorly understood. Here, we show through a combination of in vitro experiments, a physical model of the embryonic morphology and mechanics analysis that the vitelline membrane (VM) exerts an external load on the brain that drives torsion. Our theoretical analysis showed that the force is of the order of 10 micronewtons. We also designed an experiment to use fluid surface tension to replace the mechanical role of the VM, and the estimated magnitude of the force owing to surface tension was shown to be consistent with the above theoretical analysis. We further discovered that the asymmetry of the looping heart determines the chirality of the twisted brain via physical mechanisms, demonstrating the mechanical transfer of left-right asymmetry between organs. Our experiments also implied that brain flexure is a necessary condition for torsion. Our work clarifies the mechanical origin of torsion and the development of left-right asymmetry in the early embryonic brain. © 2016 The Author(s).

  17. The State of the NIH BRAIN Initiative.

    Science.gov (United States)

    Koroshetz, Walter; Gordon, Joshua; Adams, Amy; Beckel-Mitchener, Andrea; Churchill, James; Farber, Gregory; Freund, Michelle; Gnadt, Jim; Hsu, Nina; Langhals, Nicholas; Lisanby, Sarah; Liu, Guoying; Peng, Grace; Ramos, Khara; Steinmetz, Michael; Talley, Edmund; White, Samantha

    2018-06-19

    The BRAIN Initiative® arose from a grand challenge to "accelerate the development and application of new technologies that will enable researchers to produce dynamic pictures of the brain that show how individual brain cells and complex neural circuits interact at the speed of thought." The BRAIN Initiative is a public-private effort focused on the development and use of powerful tools for acquiring fundamental insights about how information processing occurs in the central nervous system. As the Initiative enters its fifth year, NIH has supported over 500 principal investigators, who have answered the Initiative's challenge via hundreds of publications describing novel tools, methods, and discoveries that address the Initiative's seven scientific priorities. We describe scientific advances produced by individual labs, multi-investigator teams, and entire consortia that, over the coming decades, will produce more comprehensive and dynamic maps of the brain, deepen our understanding of how circuit activity can produce a rich tapestry of behaviors, and lay the foundation for understanding how its circuitry is disrupted in brain disorders. Much more work remains to bring this vision to fruition, and NIH continues to look to the diverse scientific community, from mathematics, to physics, chemistry, engineering, neuroethics, and neuroscience, to ensure that the greatest scientific benefit arises from this unique research Initiative. Copyright © 2018 the authors.

  18. Working hours

    OpenAIRE

    Fialová, Lenka

    2012-01-01

    Working hours The aim of this thesis that I set was a comprehensive analysis of the working hours issue. The main purpose was to summarize this area of labor law while taking into account the Labour Code amendment which came into force on 1st January 2012. The changes in the related legal terms were also included into this thesis because of the mentioned changes. The thesis is composed of three chapters. Chapter One deals briefly with history of Labour Law and regulatory development. Author`s...

  19. Selective vulnerability in brain hypoxia

    DEFF Research Database (Denmark)

    Cervos-Navarro, J.; Diemer, Nils Henrik

    1991-01-01

    Neuropathology, selective vulnerability, brain hypoxia, vascular factors, excitotoxicity, ion homeostasis......Neuropathology, selective vulnerability, brain hypoxia, vascular factors, excitotoxicity, ion homeostasis...

  20. Interacting Brain Modules for Memory: An Adaptive Representations Architecture

    National Research Council Canada - National Science Library

    Gluck, Mark A

    2008-01-01

    ...) as a central system for creating optimal and adaptive stimulus representations, and then worked outwards from the hippocampal region to the brain systems that it modulates, including the cerebellum...

  1. Construction work

    CERN Multimedia

    2004-01-01

    Construction work on building 179 will start on the 16th February 2004 and continue until November 2004. The road between buildings 179 and 158 will temporarily become a one way street from Route Democrite towards building 7. The parking places between buildings 179 and 7 will become obsolete. The ISOLDE collaboration would like to apologize for any inconveniences.

  2. Wetlands Work

    Science.gov (United States)

    Messina, Linda; Blanchard, Pamela Borne

    2004-01-01

    This article describes how a biology teacher's search for a cross-curricular project in science, math, history, and environmental science, that would help her students connect what they were learning in the classroom to their everyday life, resulted in an ongoing stewardship project. Working together with the Louisiana Sea Grant College Program…

  3. Work notice

    CERN Multimedia

    TS-FM

    2005-01-01

    Please note that work to repair the water mains on Route Bloch near Gate C will be carried out between 12 and 30 September 2005. The area between Route Bakker and Gate C will be closed to traffic during this period. You are kindly requested to comply with the road signs in place. Thank you for your understanding. TS-FM Group

  4. Road works

    CERN Multimedia

    GS Department

    2010-01-01

    From Monday 11 October until Friday 29 October 2010, the flow of traffic will be disrupted by road works at the roundabout in front of Restaurant No. 2; The number of spaces available in the car park in front of Rest. No. 2 will be reduced. Thank you for your understanding during this period. GS/SEM Group

  5. Heart Work

    Science.gov (United States)

    Madden, Sandra R.; Gonzales, Alicia C.

    2017-01-01

    It is not every day that a former student greets a teacher with, "Your course changed my life." The authors are the professor and student of the transformative course. Alicia Gonzales wanted to understand how to work with students to co-construct an environment where persistent problem solving in a technologically rich classroom was the…

  6. Work Simplification

    Science.gov (United States)

    Ross, Lynne

    1970-01-01

    Excerpts from a talk by Mrs. Ross at the 23rd annual convention of the American School Food Service Association in Detroit, August 5, 1969. A book on work simplification by Mrs. Ross will be available in June from the Iowa State University Press, Ames, Iowa. (Editor)

  7. Insulin and the brain.

    Science.gov (United States)

    Derakhshan, Fatemeh; Toth, Cory

    2013-03-01

    Mainly known for its role in peripheral glucose homeostasis, insulin has also significant impact within the brain, functioning as a key neuromodulator in behavioral, cellular, biochemical and molecular studies. The brain is now regarded as an insulin-sensitive organ with widespread, yet selective, expression of the insulin receptor in the olfactory bulb, hypothalamus, hippocampus, cerebellum, amygdala and cerebral cortex. Insulin receptor signaling in the brain is important for neuronal development, glucoregulation, feeding behavior, body weight, and cognitive processes such as with attention, executive functioning, learning and memory. Emerging evidence has demonstrated insulin receptor signaling to be impaired in several neurological disorders. Moreover, insulin receptor signaling is recognized as important for dendritic outgrowth, neuronal survival, circuit development, synaptic plasticity and postsynaptic neurotransmitter receptor trafficking. We review the multiple roles of insulin in the brain, as well as its endogenous trafficking to the brain or its exogenous intervention. Although insulin can be directly targeted to the brain via intracerebroventricular (ICV) or intraparenchymal delivery, these invasive techniques are with significant risk, necessitating repeated surgical intervention and providing potential for systemic hypoglycemia. Another method, intranasal delivery, is a non-invasive, safe, and alternative approach which rapidly targets delivery of molecules to the brain while minimizing systemic exposure. Over the last decades, the delivery of intranasal insulin in animal models and human patients has evolved and expanded, permitting new hope for associated neurodegenerative and neurovascular disorders.

  8. Lutein and Brain Function

    Directory of Open Access Journals (Sweden)

    John W. Erdman

    2015-10-01

    Full Text Available Lutein is one of the most prevalent carotenoids in nature and in the human diet. Together with zeaxanthin, it is highly concentrated as macular pigment in the foveal retina of primates, attenuating blue light exposure, providing protection from photo-oxidation and enhancing visual performance. Recently, interest in lutein has expanded beyond the retina to its possible contributions to brain development and function. Only primates accumulate lutein within the brain, but little is known about its distribution or physiological role. Our team has begun to utilize the rhesus macaque (Macaca mulatta model to study the uptake and bio-localization of lutein in the brain. Our overall goal has been to assess the association of lutein localization with brain function. In this review, we will first cover the evolution of the non-human primate model for lutein and brain studies, discuss prior association studies of lutein with retina and brain function, and review approaches that can be used to localize brain lutein. We also describe our approach to the biosynthesis of 13C-lutein, which will allow investigation of lutein flux, localization, metabolism and pharmacokinetics. Lastly, we describe potential future research opportunities.

  9. Cannabinoids on the Brain

    Directory of Open Access Journals (Sweden)

    Andrew J. Irving

    2002-01-01

    Full Text Available Cannabis has a long history of consumption both for recreational and medicinal uses. Recently there have been significant advances in our understanding of how cannabis and related compounds (cannabinoids affect the brain and this review addresses the current state of knowledge of these effects. Cannabinoids act primarily via two types of receptor, CB1 and CB2, with CB1 receptors mediating most of the central actions of cannabinoids. The presence of a new type of brain cannabinoid receptor is also indicated. Important advances have been made in our understanding of cannabinoid receptor signaling pathways, their modulation of synaptic transmission and plasticity, the cellular targets of cannabinoids in different central nervous system (CNS regions and, in particular, the role of the endogenous brain cannabinoid (endocannabinoid system. Cannabinoids have widespread actions in the brain: in the hippocampus they influence learning and memory; in the basal ganglia they modulate locomotor activity and reward pathways; in the hypothalamus they have a role in the control of appetite. Cannabinoids may also be protective against neurodegeneration and brain damage and exhibit anticonvulsant activity. Some of the analgesic effects of cannabinoids also appear to involve sites within the brain. These advances in our understanding of the actions of cannabinoids and the brain endocannabinoid system have led to important new insights into neuronal function which are likely to result in the development of new therapeutic strategies for the treatment of a number of key CNS disorders.

  10. Human brain imaging

    International Nuclear Information System (INIS)

    Kuhar, M.J.

    1987-01-01

    Just as there have been dramatic advances in the molecular biology of the human brain in recent years, there also have been remarkable advances in brain imaging. This paper reports on the development and broad application of microscopic imaging techniques which include the autoradiographic localization of receptors and the measurement of glucose utilization by autoradiography. These approaches provide great sensitivity and excellent anatomical resolution in exploring brain organization and function. The first noninvasive external imaging of receptor distributions in the living human brain was achieved by positron emission tomography (PET) scanning. Developments, techniques and applications continue to progress. Magnetic resonance imaging (MRI) is also becoming important. Its initial clinical applications were in examining the structure and anatomy of the brain. However, more recent uses, such as MRI spectroscopy, indicate the feasibility of exploring biochemical pathways in the brain, the metabolism of drugs in the brain, and also of examining some of these procedures at an anatomical resolution which is substantially greater than that obtainable by PET scanning. The issues will be discussed in greater detail

  11. Brain networks and their origins. Comment on “Understanding brain networks and brain organization” by Luiz Pessoa

    Science.gov (United States)

    Cisek, Paul

    2014-09-01

    Nearly every textbook on psychology or neuroscience contains theories of function described with box and arrow diagrams. Sometimes, the boxes stand for purely theoretical constructs, such as attention or working memory, and sometimes they also correspond to specific brain regions or systems, such as parietal or prefrontal cortex, and the arrows between them to known anatomical pathways. It is common for scientists (present company included) to summarize their theories in this way and to think of the brain as a set of interacting modules with clearly distinguishable functions.

  12. Work and minor work contracts

    CERN Document Server

    1999-01-01

    The Work and Minor Work contracts are all of the result-oriented type. The work is specified by CERN and the contractor is given full responsibility for its performance. The contracts are thus very similar to supply contracts. The re-tendering of the existing contracts is almost complete, except for some building maintenance contracts. A new cycle of re-tendering for some activities will be launched in the next twelve months. The total estimated expenditure in the year 2000 for the contracts referred to in this document is 27 750 000 Swiss francs at 1999 prices. The Finance Committee is invited: - to approve the proposed expenditure for the extension of contracts for which the estimated amount for the year 2000 exceeds 750 000 Swiss francs, namely those under references 1, 2, 3, 5, 7, 8, 9 and 23, highlighted in Table I; - to take note that all Work and Minor Work contracts have been tendered since 1 January 1994, except the small contracts shown under references 12 and 16 in Table I; - to take note that the ...

  13. Functional brain imaging of gastrointestinal sensation in health and disease

    Institute of Scientific and Technical Information of China (English)

    Lukas Van Oudenhove; Steven J Coen; Qasim Aziz

    2007-01-01

    It has since long been known, from everyday experience as well as from animal and human studies, that psychological processes-both affective and cognitiveexert an influence on gastrointestinal sensorimotor function. More specifically, a link between psychological factors and visceral hypersensitivity has been suggested,mainly based on research in functional gastrointestinal disorder patients. However, until recently, the exact nature of this putative relationship remained unclear,mainly due to a lack of non-invasive methods to study the (neurobiological) mechanisms underlying this relationship in non-sleeping humans. As functional brain imaging, introduced in visceral sensory neuroscience some 10 years ago, does provide a method for in vivo study of brain-gut interactions, insight into the neurobiological mechanisms underlying visceral sensation in general and the influence of psychological factors more particularly,has rapidly grown. In this article, an overview of brain imaging evidence on gastrointestinal sensation will be given, with special emphasis on the brain mechanisms underlying the interaction between affective & cognitive processes and visceral sensation. First, the reciprocal neural pathways between the brain and the gut (braingut axis) will be briefly outlined, including brain imaging evidence in healthy volunteers. Second, functional brain imaging studies assessing the influence of psychological factors on brain processing of visceral sensation in healthy humans will be discussed in more detail.Finally, brain imaging work investigating differences in brain responses to visceral distension between healthy volunteers and functional gastrointestinal disorder patients will be highlighted.

  14. Music Education and the Brain: What Does It Take to Make a Change?

    Science.gov (United States)

    Collins, Anita

    2014-01-01

    Neuroscientists have worked for over two decades to understand how the brain processes music, affects emotions, and changes brain development. Much of this research has been based on a model that compares the brain function of participants classified as musicians and nonmusicians. This body of knowledge reveals a large number of benefits from…

  15. Mathematics, anxiety, and the brain.

    Science.gov (United States)

    Moustafa, Ahmed A; Tindle, Richard; Ansari, Zaheda; Doyle, Margery J; Hewedi, Doaa H; Eissa, Abeer

    2017-05-24

    Given that achievement in learning mathematics at school correlates with work and social achievements, it is important to understand the cognitive processes underlying abilities to learn mathematics efficiently as well as reasons underlying the occurrence of mathematics anxiety (i.e. feelings of tension and fear upon facing mathematical problems or numbers) among certain individuals. Over the last two decades, many studies have shown that learning mathematical and numerical concepts relies on many cognitive processes, including working memory, spatial skills, and linguistic abilities. In this review, we discuss the relationship between mathematical learning and cognitive processes as well as the neural substrates underlying successful mathematical learning and problem solving. More importantly, we also discuss the relationship between these cognitive processes, mathematics anxiety, and mathematics learning disabilities (dyscalculia). Our review shows that mathematical cognition relies on a complex brain network, and dysfunction to different segments of this network leads to varying manifestations of mathematical learning disabilities.

  16. Brain Drain: A Child's Brain on Poverty. Poverty Fact Sheet

    Science.gov (United States)

    Damron, Neil

    2015-01-01

    "Brain Drain: A Child's Brain on Poverty," released in March 2015 and prepared by intern Neil Damron, explores the brain's basic anatomy and recent research findings suggesting that poverty affects the brain development of infants and young children and the potential lifelong effects of the changes. The sheet draws from a variety of…

  17. A Right Brain/Left Brain Model of Acting.

    Science.gov (United States)

    Bowlen, Clark

    Using current right brain/left brain research, this paper develops a model that explains acting's underlying quality--the actor is both himself and the character. Part 1 presents (1) the background of the right brain/left brain theory, (2) studies showing that propositional communication is a left hemisphere function while affective communication…

  18. Sedentary work

    DEFF Research Database (Denmark)

    Eriksen, Dorte; Rosthøj, Susanne; Burr, Hermann

    2015-01-01

    OBJECTIVE: The aim of this study is to investigate the association between five-year changes in occupational sitting and body mass index (BMI) in working adults. METHODS: We analyzed data from The Danish Work Environment Cohort Study (2005 and 2010, n=3.482). Data on occupational sitting, weight......, height and several potential confounders were self-reported. The association between change in occupational sitting (hours) (categorized as large decrease 2.5 to 7.5 and large increase >7.5) and change in BMI was explored...... by multiple linear regression analyses. RESULTS: 43.0% men and 36.1% women had high occupational sitting time (≥25h per week) at baseline. 31.8% men and 27.2% women decreased while 30.0% men and 33.0% women increased occupational sitting. The proportion of obese (BMI≥30) increased almost 3% for both genders...

  19. Works notice

    CERN Multimedia

    GS Department

    2009-01-01

    We would like to inform you that renovation work on the road lighting equipment will take place on the Meyrin site between 19 October and 18 December 2009. During this period, traffic will be disrupted on the Schrödinger, Perrin and Siegbahn roads, ie from Building 274 to Building 188. We request that you comply with the road signs and thank you for your understanding. GS-SEM Group

  20. Management of Brain Metastases.

    Science.gov (United States)

    Jeyapalan, Suriya A.; Batchelor, Tracy

    2004-07-01

    Advances in neurosurgery and the development of stereotactic radiosurgery have expanded treatment options available for patients with brain metastases. However, despite several randomized clinical trials and multiple uncontrolled studies, there is not a uniform consensus on the best treatment strategy for all patients with brain metastases. The heterogeneity of this patient population in terms of functional status, types of underlying cancers, status of systemic disease control, and number and location of brain metastases make such consensus difficult. Nevertheless, in certain situations, there is Class I evidence that supports one approach or another. The primary objectives in the management of this patient population include improved duration and quality of survival. Very few patients achieve long-term survival after the diagnosis of a brain metastasis.

  1. of brain tumours

    African Journals Online (AJOL)

    outline of the important clinical issues related to brain tumours and psychiatry. ... Left-sided, frontal tumours also seem to be associated with higher rates of depression, while those in the frontal lobe of the right .... Oxford: Blackwell Science,.

  2. Brain versus Machine Control.

    Directory of Open Access Journals (Sweden)

    Jose M Carmena

    2004-12-01

    Full Text Available Dr. Octopus, the villain of the movie "Spiderman 2", is a fusion of man and machine. Neuroscientist Jose Carmena examines the facts behind this fictional account of a brain- machine interface

  3. Brain Basics: Preventing Stroke

    Science.gov (United States)

    ... NINDS) are committed to reducing that burden through biomedical research. What is a Stroke? A stroke, or "brain ... Testimony Legislative Updates Impact NINDS Contributions to Approved Therapies ... Director, Division of Intramural Research

  4. Brain and Addiction

    Science.gov (United States)

    ... reward” circuit, which is part of the limbic system. Normally, the reward circuit responds to feelings of pleasure by releasing ... infographic, discover how drug use affects the brain's reward system. This publication is available for your use and ...

  5. Severe Traumatic Brain Injury

    Science.gov (United States)

    ... TBI Online Concussion Training Press Room Guide to Writing about TBI in News and Social Media Living with TBI HEADS UP to Brain Injury Awareness Get Email Updates To receive email updates about this topic, ...

  6. The neonatal brain

    International Nuclear Information System (INIS)

    Flodmark, O.

    1987-01-01

    The clinical examination of the CNS in the neonate is often difficult in cases of complex pathology. Diagnostic imaging of the neonatal brain has become extremely useful and in the last decade has developed in two main directions: CT and US. MR imaging has been used recently with varying success in the diagnosis of pathology in the neonatal brain. Despite technical difficulties, this imaging method is likely to become increasingly important in the neonate. The paper examines the normal neonatal brain anatomy as seen with the different modalities, followed by pathologic conditions. Attention is directed to the common pathology, in asphyxiated newborns, the patholphysiology of intraventicular hemorrhage and periventricular leukomalacia in the preterm neonate, and hypoxic-ischemic brain injury in the term neonate. Pitfalls, artifacts, and problems in image interpretation are illustrated. Finally, the subsequent appearance of neonatal pathology later in infancy and childhood is discussed

  7. Postnatal brain development

    DEFF Research Database (Denmark)

    Jernigan, Terry L; Baaré, William F C; Stiles, Joan

    2011-01-01

    After birth, there is striking biological and functional development of the brain's fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact...... in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain-behavior associations in children, including genetic variation, behavioral interventions...... constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes...

  8. Postnatal brain development

    DEFF Research Database (Denmark)

    Jernigan, Terry L; Baaré, William F C; Stiles, Joan

    2011-01-01

    After birth, there is striking biological and functional development of the brain's fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact...... constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes...... in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain-behavior associations in children, including genetic variation, behavioral interventions...

  9. Osmotherapy in brain edema

    DEFF Research Database (Denmark)

    Grände, Per-Olof; Romner, Bertil

    2012-01-01

    Despite the fact that it has been used since the 1960s in diseases associated with brain edema and has been investigated in >150 publications on head injury, very little has been published on the outcome of osmotherapy. We can only speculate whether osmotherapy improves outcome, has no effect......, osmotherapy can be negative for outcome, which may explain why we lack scientific support for its use. These drawbacks, and the fact that the most recent Cochrane meta-analyses of osmotherapy in brain edema and stroke could not find any beneficial effects on outcome, make routine use of osmotherapy in brain...... edema doubtful. Nevertheless, the use of osmotherapy as a temporary measure may be justified to acutely prevent brain stem compression until other measures, such as evacuation of space-occupying lesions or decompressive craniotomy, can be performed. This article is the Con part in a Pro-Con debate...

  10. Brains on video games.

    Science.gov (United States)

    Bavelier, Daphne; Green, C Shawn; Han, Doug Hyun; Renshaw, Perry F; Merzenich, Michael M; Gentile, Douglas A

    2011-11-18

    The popular press is replete with stories about the effects of video and computer games on the brain. Sensationalist headlines claiming that video games 'damage the brain' or 'boost brain power' do not do justice to the complexities and limitations of the studies involved, and create a confusing overall picture about the effects of gaming on the brain. Here, six experts in the field shed light on our current understanding of the positive and negative ways in which playing video games can affect cognition and behaviour, and explain how this knowledge can be harnessed for educational and rehabilitation purposes. As research in this area is still in its early days, the contributors of this Viewpoint also discuss several issues and challenges that should be addressed to move the field forward.

  11. Epigenetics and brain evolution.

    Science.gov (United States)

    Keverne, Eric B

    2011-04-01

    Fundamental aspects of mammalian brain evolution occurred in the context of viviparity and placentation brought about by the epigenetic regulation of imprinted genes. Since the fetal placenta hormonally primes the maternal brain, two genomes in one individual are transgenerationally co-adapted to ensure maternal care and nurturing. Advanced aspects of neocortical brain evolution has shown very few genetic changes between monkeys and humans. Although these lineages diverged at approximately the same time as the rat and mouse (20 million years ago), synonymous sequence divergence between the rat and mouse is double that when comparing monkey with human sequences. Paradoxically, encephalization of rat and mouse are remarkably similar, while comparison of the human and monkey shows the human cortex to be three times the size of the monkey. This suggests an element of genetic stability between the brains of monkey and man with a greater emphasis on epigenetics providing adaptable variability.

  12. Genetics and the Brain

    Science.gov (United States)

    ... Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol Rev , 2011 Apr; 91(2): ... term potentiation and spine size enlargement. J. Neuroscience , March 18, 2009. 29(11):3395–3403 [xviii] Tapper, ...

  13. Brain Training for Seniors

    Science.gov (United States)

    ... it or lose it” commonly refers to the importance of exercising your body and staying fit. Exercising ... physical exercise can make a difference. Just like physical activity, the earlier you start brain-training activity, the ...

  14. Analysis of Brain Recurrence

    Science.gov (United States)

    Frilot, Clifton; Kim, Paul Y.; Carrubba, Simona; McCarty, David E.; Chesson, Andrew L.; Marino, Andrew A.

    Analysis of Brain Recurrence (ABR) is a method for extracting physiologically significant information from the electroencephalogram (EEG), a non-stationary electrical output of the brain, the ultimate complex dynamical system. ABR permits quantification of temporal patterns in the EEG produced by the non-autonomous differential laws that govern brain metabolism. In the context of appropriate experimental and statistical designs, ABR is ideally suited to the task of interpreting the EEG. Present applications of ABR include discovery of a human magnetic sense, increased mechanistic understanding of neuronal membrane processes, diagnosis of degenerative neurological disease, detection of changes in brain metabolism caused by weak environmental electromagnetic fields, objective characterization of the quality of human sleep, and evaluation of sleep disorders. ABR has important beneficial implications for the development of clinical and experimental neuroscience.

  15. Negative brain scintigrams in brain tumors

    International Nuclear Information System (INIS)

    Dalke, K.G.

    1978-01-01

    With 53 histologically verified and 2 histologically not identified brain tumors, that showed a negative scintigram, it was tried to find reasons for the wrong and negative dropout of these scintigrams. The electroencephalograms and angiograms, that were made simultaneously were taken into consideration with respect to their propositional capability and were compared with the scintigram findings. For the formation of the negative brain scintigrams there could be found no unique cause or causal constellation. The scintigraphic tumor representation is likely based on a complex process. Therefore the reasons for the negativity of the brain scintigrams can be a manifold of causes. An important role plays the vascularisation of the tumor, but not in a sole way. As well the tumor localisation gains some importance; especially in the temporal lobe or in the deeper structures situated tumors can be negative in the scintigram. To hold down the rate of wrong-negative quote in the case of intracranial tumor search, one is advised to continue with an further exposure after 2 to 4 hours besides the usual exposures, unless a sequential scintigraphy was made from the beginning. (orig./MG) [de

  16. The multilingual brain

    OpenAIRE

    Engel de Abreu, Pascale

    2014-01-01

    The multilingual brain. Is a multilingual education beneficial for children? What are the optimal conditions under which a child can become perfectly multilingual? The given lecture will focus on the "cognitive advantages" of multilingualism and illustrate the impact that being multilingual has on the cognitive organisation of the brain. Practical questions regarding multilingual education will also be discussed. Ass et gutt e Kand méisproocheg ze erzéien? Wat sinn déi optimal Konditio...

  17. Insulin and brain aging

    OpenAIRE

    Baranowska-Bik, Agnieszka; Bik, Wojciech

    2017-01-01

    The world’s population is living much longer than in the past. It is crucial to find as many pathological factors that deteriorate the health condition and well-being of elderly people as possible. Loss of activity and functions over time is typical for elderly people. Aging affects brain function, metabolism and structure in different ways, and these effects have multiple etiologies. Cognitive impairment, impaired neurotransmitter activity and reduction of brain volume are observed in th...

  18. Pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Poussaint, Tina Y. [Department of Radiology, Boston, MA (United States); Panigrahy, Ashok [Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Department of Radiology, Pittsburgh, PA (United States); Huisman, Thierry A.G.M. [Charlotte R. Bloomberg Children' s Center, Johns Hopkins Hospital, Division of Pediatric Radiology and Pediatric Neuroradiology, Baltimore, MD (United States)

    2015-09-15

    Among all causes of death in children from solid tumors, pediatric brain tumors are the most common. This article includes an overview of a subset of infratentorial and supratentorial tumors with a focus on tumor imaging features and molecular advances and treatments of these tumors. Key to understanding the imaging features of brain tumors is a firm grasp of other disease processes that can mimic tumor on imaging. We also review imaging features of a common subset of tumor mimics. (orig.)

  19. Brain derived neurotrophic factor

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Gede, Lene

    2014-01-01

    Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies are curre......Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies...

  20. Neuroethics and Brain Privacy

    DEFF Research Database (Denmark)

    Ryberg, Jesper

    2017-01-01

    An introduction is presented in which editor discusses various articles within the issue on topics including ethical challenges with importance of privacy for well-being, impact of brain-reading on mind privacy and neurotechnology.......An introduction is presented in which editor discusses various articles within the issue on topics including ethical challenges with importance of privacy for well-being, impact of brain-reading on mind privacy and neurotechnology....

  1. Protect Your Brain

    Centers for Disease Control (CDC) Podcasts

    Recent high-profile cases among professional athletes have called attention to the serious problem of traumatic brain injuries, or TBI, but the problem isn’t limited to playing fields. In 2009, at least three and a half million people in the U.S. sustained a TBI, either with or without other injuries. In this podcast, Dr. Lisa McGuire discusses the importance of early diagnosis and treatment of brain injuries.

  2. Your Brain and Nervous System

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Your Brain & Nervous System KidsHealth / For Kids / Your Brain & Nervous ... The coolest wetsuit? Nope — he needs his cerebellum! Brain Stem Keeps You Breathing — and More Another brain ...

  3. Brain fat embolism

    International Nuclear Information System (INIS)

    Sugiura, Yoshihiro; Kawamura, Yasutaka; Suzuki, Hisato; Yanagimoto, Masahiro; Goto, Yukio

    1994-01-01

    Recently CT and MR imaging have demonstrated that cerebral edema is present in cases of fat embolism syndrome. To simulate this we have made a model of brain-fat embolism in rats under MR imaging. In 20 rats, we did intravenous injection of heparinized blood, 1.5 ml·kg -1 taken from femoral bone marrow cavity. Twenty four hours after the injection, we examined the MR images (1.5 tesla, spin-echo method) of brains and histologic findings of brains and lungs were obtained. In 5 of 20 rats, high signal intensity on T2-weighted images and low signal intensity on T1-weighted images were observed in the area of the unilateral cerebral cortex or hippocampus. These findings showed edema of the brains. They disappeared, however, one week later. Histologic examinations showed massive micro-fat emboli in capillaries of the deep cerebral cortex and substantia nigra, but no edematous findings of the brain were revealed in HE staining. In pulmonary arteries, we also found large fat emboli. We conclude that our model is a useful one for the study of brain fat embolism. (author)

  4. Topodynamics of metastable brains

    Science.gov (United States)

    Tozzi, Arturo; Peters, James F.; Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Marijuán, Pedro C.

    2017-07-01

    The brain displays both the anatomical features of a vast amount of interconnected topological mappings as well as the functional features of a nonlinear, metastable system at the edge of chaos, equipped with a phase space where mental random walks tend towards lower energetic basins. Nevertheless, with the exception of some advanced neuro-anatomic descriptions and present-day connectomic research, very few studies have been addressing the topological path of a brain embedded or embodied in its external and internal environment. Herein, by using new formal tools derived from algebraic topology, we provide an account of the metastable brain, based on the neuro-scientific model of Operational Architectonics of brain-mind functioning. We introduce a ;topodynamic; description that shows how the relationships among the countless intertwined spatio-temporal levels of brain functioning can be assessed in terms of projections and mappings that take place on abstract structures, equipped with different dimensions, curvatures and energetic constraints. Such a topodynamical approach, apart from providing a biologically plausible model of brain function that can be operationalized, is also able to tackle the issue of a long-standing dichotomy: it throws indeed a bridge between the subjective, immediate datum of the naïve complex of sensations and mentations and the objective, quantitative, data extracted from experimental neuro-scientific procedures. Importantly, it opens the door to a series of new predictions and future directions of advancement for neuroscientific research.

  5. mammalian brain system

    Directory of Open Access Journals (Sweden)

    Alan Kania

    2014-06-01

    Full Text Available Relaxin-3, a member of the relaxin peptide family, was discovered in 2001 as a homologue of relaxin – a well-known reproductive hormone. However, it is the brain which turned out to be a major expression site of this newly discovered peptide. Both its molecular structure and expression pattern were shown to be very conserved among vertebrates. Extensive research carried out since the discovery of relaxin-3 contributed to the significant progress in our knowledge regarding this neuropeptide. The endogenous relaxin-3 receptor (RXFP3 was identified and the anatomy of the yet uncharacterized mammalian brain system was described, with nucleus incertus as the main center of relaxin-3 expression. Not only its diffusive projections throughout the whole brain, which reach various brain structures such as the hippocampus, septum, intergeniculate leaflet or amygdala, but also functional studies of the relaxin-3/RXFP3 signaling system, allowed this brain network to be classified as one of the ascending nonspecific brain systems. Thus far, research depicts the connection of relaxin-3 with phenomena such as feeding behavior, spatial memory, sleep/wake cycle or modulation of pituitary gland hormone secretion. Responsiveness of relaxin-3 neurons to stress factors and the strong orexigenic effect exerted by this peptide suggest its participation in modulation of feeding by stress, in particular of the chronic type. The discovery of relaxin-3 opened a new research field which will contribute to our better understanding of the neurobiological basis of feeding disorders.

  6. Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience

    Directory of Open Access Journals (Sweden)

    Ole eJensen

    2011-05-01

    Full Text Available Large efforts are currently being made to develop and improve online analysis of brain activity which can be used e.g. for brain-computer interfacing (BCI. A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for aiding the disabled and for augmenting human performance. While technical developments obviously are important, we will here argue that new insight gained from cognitive neuroscience can be used to identify signatures of neural activation which reliably can be modulated by the subject at will. This review will focus mainly on oscillatory activity in the alpha band which is strongly modulated by changes in covert attention. Besides developing BCIs for their traditional purpose, they might also be used as a research tool for cognitive neuroscience. There is currently a strong interest in how brain state fluctuations impact cognition. These state fluctuations are partly reflected by ongoing oscillatory activity. The functional role of the brain state can be investigated by introducing stimuli in real time to subjects depending on the actual state of the brain. This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior. In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development. These approaches are amongst others informed by new insight gained from EEG/MEG studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work.

  7. Working memory load improves early stages of independent visual processing

    OpenAIRE

    Cocchi, Luca; Toepel, Ulrike; De Lucia, Marzia; Martuzzi, Roberto; Wood, Stephen J.; Carter, Olivia; Murray, Micah M.

    2010-01-01

    Increasing evidence suggests that working memory and perceptual processes are dynamically interrelated due to modulating activity in overlapping brain networks. However, the direct influence of working memory on the spatio-temporal brain dynamics of behaviorally relevant intervening information remains unclear. To investigate this issue, subjects performed a visual proximity grid perception task under three different visual-spatial working memory (VSWM) load conditions. VSWM load was manipula...

  8. Working together

    Energy Technology Data Exchange (ETDEWEB)

    1957-01-01

    The film summarizes international cooperation in advancing peaceful applications of atomic energy. It describes: U.S. shipments abroad of radioisotopes; formation of the European Council for Nuclear Research; former president Dwight D. Eisenhower's 'Atoms for Peace' announcement to the UN; first International Conference at the University of Michigan; first shipment abroad by AEC Libraries; UN General Assembly debate on the international agency; the Joint Norwegian-Dutch Atomic Energy Laboratory; atomic energy work of India, Brazil and others; U.S. training of foreign scientists; U.S. agreements with other nations; Geneva 1955 International Conference; approval and signing of the Charter of the International Atomic Energy Agency

  9. Working together

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1958-12-31

    The film summarizes international cooperation in advancing peaceful applications of atomic energy. It describes: U.S. shipments abroad of radioisotopes; formation of the European Council for Nuclear Research; former president Dwight D. Eisenhower`s `Atoms for Peace` announcement to the UN; first International Conference at the University of Michigan; first shipment abroad by AEC Libraries; UN General Assembly debate on the international agency; the Joint Norwegian-Dutch Atomic Energy Laboratory; atomic energy work of India, Brazil and others; U.S. training of foreign scientists; U.S. agreements with other nations; Geneva 1955 International Conference; approval and signing of the Charter of the International Atomic Energy Agency

  10. Lice work

    DEFF Research Database (Denmark)

    Benali, Amira; Ren, Carina Bregnholm

    2018-01-01

    and Nepalese everyday life and show how these are deployed, contested and reconfigured onsite by volunteer tourism actors. By exploring patterns of absences and presences and using the concept of ontological choreography as an analytical resource, we show how the situated lice work of human and non...... at the orphanage. This post-human approach decenters the volunteer and destabilises the host and guest binary, while adding to our understanding of tourism practices as complex and materially distributed endeavours. We first analyse two configurations of head lice enacted through a Western morality of hygiene...

  11. RESUMING WORK

    CERN Document Server

    2004-01-01

    In application of the Staff Rules and Regulations, every member of the CERN personnel is required to undergo a medical examination on resuming work after sick leave: • if the medical absence has been for 21 calendar days or longer • if absent more than 48 hours due to professional accident It is incumbent upon the member of the personnel himself/herself to contact the Medical Service tel. 73186, without awaiting its summons. The purpose of this exam is not to check on the absenteeism, but to support the professional reinsertion. Medical Service

  12. RESUMING WORK

    CERN Document Server

    2003-01-01

    In application of the Staff Rules and Regulations, every member of the CERN personnel is required to undergo a medical examination on resuming work after sick leave: - if the medical absence has been for 21 calendar days or longer - if absent more than 48 hours due to professional accident It is incumbent upon the member of the personnel himself/herself to contact the Medical Service Tel. 73186, without awaiting its summons. The purpose of this exam is not to check on the absenteeism, but to support the professional reinsertion. Medical Service

  13. RESUMING WORK

    CERN Multimedia

    2003-01-01

    In application of the Staff Rules and Regulations, every member of the CERN personnel is required to undergo a medical examination on resuming work after sick leave: - if the medical absence has been for 21 calendar days or longer - if absent more than 48 hours due to professional accident It is incumbent upon the member of the personnel himself/herself to contact the Medical Service tel. 73186, without awaiting its summons. The purpose of this exam is not to check on the absenteeism, but to support the professional reinsertion. Medical Service

  14. Exact work

    International Nuclear Information System (INIS)

    Zeger, J.

    1993-01-01

    Organized criminals also tried to illegally transfer nuclear material through Austria. Two important questions have to be answered after the material is sized by police authorities: What is the composition of the material and where does it come from? By application of a broad range of analytical techniques, which were developed or refined by our experts, it is possible to measure the exact amount and isotopic composition of uranium and plutonium in any kind of samples. The criminalistic application is only a byproduct of the large scale work on controlling the peaceful application of nuclear energy, which is done in contract with the IAEA in the context of the 'Network of Analytical Laboratories'

  15. Art in school: leisure or work for the brain?

    OpenAIRE

    Mangotić, Goran

    2016-01-01

    The subject of my diploma thesis is the influence of art in school on cognitive development of the student and its positive influence on his/her development as a whole. This thesis entails a rough overlook of the influence of art on cognition and an overlook of the situation of art in school through time from the perspective of cognition. Following that is a description of the most obvious obstacles the art teacher faces when teaching and evaluating the student’s progress in such a specific c...

  16. Advertising, brand and neuromarketing or how consumer brain works

    Directory of Open Access Journals (Sweden)

    Michela Balconi

    2014-11-01

    Full Text Available The present paper explores the relationship between the explicit (consumer’s preference and implicit (EEG measurement consumers’ responses and the important role of the reward-system. In particular we analyzed the impact of reward mechanisms to support cognitive and emotive processes in evaluating consumer goods. We measured the frequency bands (delta, theta, alpha, beta at thirty-four subjects while they saw five commercials. Finally, the subjects evaluated the goods and explained their preferences.

  17. Parenting the Teenage Brain: Understanding a Work in Progress

    Science.gov (United States)

    Feinstein, Sheryl

    2007-01-01

    Teenagers are perplexing, intriguing, and spirited creatures. In an attempt to discover the secrets to their thoughts and actions, parents have tried talking, cajoling, and begging them for answers. The result has usually been just more confusion. Light is being shed on these mysterious young adults. What was once thought to be hormones run amuck…

  18. The changing brain : neurocognitive development and training of working memory

    NARCIS (Netherlands)

    Jolles, Dietsje Diaan

    2011-01-01

    It is well known that complex mental abilities develop at least until late adolescence. Yet, there are also skills that children master perfectly, sometimes even better than adults. The goal of this thesis was to learn more about the possibilities of cognitive functioning in children and young

  19. Brain functional connectivity and cognition in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Xiong, K.L.; Zhang, Y.L.; Chen, H.; Zhang, J.N.; Zhang, Y.; Qiu, M.G.

    2016-01-01

    The aim of this study was to analyze brain functional connectivity and its relationship to cognition in patients with mild traumatic brain injury (mTBI). Twenty-five patients with mTBI and 25 healthy control subjects were studied using resting-state functional MRI (rs-fMRI). Amplitudes of low-frequency fluctuations (ALFFs) and functional connectivity (FC) were calculated and correlated with cognition. Compared with the normal control group, the mTBI patients showed a significant decrease in working memory index (WMI) and processing speed index (PSI), as well as significantly decreased ALFFs in the cingulate gyrus, the middle frontal gyrus and superior frontal gyrus. In contrast, the mTBI patients' ALFFs in the left middle occipital gyrus, the left precuneus, and lingual gyrus increased. Additionally, FC significantly decreased in the thalamus, caudate nucleus, and right hippocampus in the mTBI patients. Statistical analysis further showed a significant positive correlation between the ALFF in the cingulate gyrus and the WMI (R 2 = 0.423, P < 0.05) and a significant positive correlation between the FC in the left thalamus and left middle frontal gyrus and the WMI (R 2 = 0.381, P < 0.05). rs-fMRI can reveal the functional state of the brain in patients with mTBI. This finding differed from observations of the normal control group and was significantly associated with clinical cognitive dysfunction. Therefore, rs-fMRI offers an objective imaging modality for treatment planning and prognosis assessment in patients with mTBI. (orig.)

  20. Brain Transcriptional and Epigenetic Associations with Autism

    Science.gov (United States)

    Ginsberg, Matthew R.; Rubin, Robert A.; Falcone, Tatiana; Ting, Angela H.; Natowicz, Marvin R.

    2012-01-01

    Background Autism is a common neurodevelopmental syndrome. Numerous rare genetic etiologies are reported; most cases are idiopathic. Methodology/Principal Findings To uncover important gene dysregulation in autism we analyzed carefully selected idiopathic autistic and control cerebellar and BA19 (occipital) brain tissues using high resolution whole genome gene expression and whole genome DNA methylation microarrays. No changes in DNA methylation were identified in autistic brain but gene expression abnormalities in two areas of metabolism were apparent: down-regulation of genes of mitochondrial oxidative phosphorylation and of protein translation. We also found associations between specific behavioral domains of autism and specific brain gene expression modules related to myelin/myelination, inflammation/immune response and purinergic signaling. Conclusions/Significance This work highlights two largely unrecognized molecular pathophysiological themes in autism and suggests differing molecular bases for autism behavioral endophenotypes. PMID:22984548

  1. Introduction to machine learning for brain imaging.

    Science.gov (United States)

    Lemm, Steven; Blankertz, Benjamin; Dickhaus, Thorsten; Müller, Klaus-Robert

    2011-05-15

    Machine learning and pattern recognition algorithms have in the past years developed to become a working horse in brain imaging and the computational neurosciences, as they are instrumental for mining vast amounts of neural data of ever increasing measurement precision and detecting minuscule signals from an overwhelming noise floor. They provide the means to decode and characterize task relevant brain states and to distinguish them from non-informative brain signals. While undoubtedly this machinery has helped to gain novel biological insights, it also holds the danger of potential unintentional abuse. Ideally machine learning techniques should be usable for any non-expert, however, unfortunately they are typically not. Overfitting and other pitfalls may occur and lead to spurious and nonsensical interpretation. The goal of this review is therefore to provide an accessible and clear introduction to the strengths and also the inherent dangers of machine learning usage in the neurosciences. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Benevolent sexism alters executive brain responses.

    Science.gov (United States)

    Dardenne, Benoit; Dumont, Muriel; Sarlet, Marie; Phillips, Christophe; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Salmon, Eric; Maquet, Pierre; Collette, Fabienne

    2013-07-10

    Benevolence is widespread in our societies. It is defined as considering a subordinate group nicely but condescendingly, that is, with charity. Deleterious consequences for the target have been reported in the literature. In this experiment, we used functional MRI (fMRI) to identify whether being the target of (sexist) benevolence induces changes in brain activity associated with a working memory task. Participants were confronted by benevolent, hostile, or neutral comments before and while performing a reading span test in an fMRI environment. fMRI data showed that brain regions associated previously with intrusive thought suppression (bilateral, dorsolateral, prefrontal, and anterior cingulate cortex) reacted specifically to benevolent sexism compared with hostile sexism and neutral conditions during the performance of the task. These findings indicate that, despite being subjectively positive, benevolence modifies task-related brain networks by recruiting supplementary areas likely to impede optimal cognitive performance.

  3. The right brain is dominant in psychotherapy.

    Science.gov (United States)

    Schore, Allan N

    2014-09-01

    This article discusses how recent studies of the right brain, which is dominant for the implicit, nonverbal, intuitive, holistic processing of emotional information and social interactions, can elucidate the neurobiological mechanisms that underlie the relational foundations of psychotherapy. Utilizing the interpersonal neurobiological perspective of regulation theory, I describe the fundamental role of the early developing right brain in relational processes, throughout the life span. I present interdisciplinary evidence documenting right brain functions in early attachment processes, in emotional communications within the therapeutic alliance, in mutual therapeutic enactments, and in therapeutic change processes. This work highlights the fact that the current emphasis on relational processes is shared by, cross-fertilizing, and indeed transforming both psychology and neuroscience, with important consequences for clinical psychological models of psychotherapeutic change. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  4. Potential brain imaging using near field radiomety

    International Nuclear Information System (INIS)

    Oikonomou, A; Karanasiou, I S; Uzunoglu, N K

    2009-01-01

    During the past decades there has been a tremendous increase throughout the scientific community for developing methods of understanding human brain functionality, as diagnosis and treatment of diseases and malfunctions could be effectively developed through understanding of how the brain works. In parallel, research effort is driven on minimizing drawbacks of existing imaging techniques including potential risks from radiation and invasive attributes of the imaging methodologies. Towards that direction, we are proposing a near filed radiometry imaging system for intracranial applications. The methodology is based on the fact that human tissues emit chaotic thermal type radiation at temperatures above the absolute zero. Using a phase shifted antenna array system, resolution, detection depth and sensitivity are increased. Several different setups are theoretically investigated and compared, so as to make the proposed system useful for clinical applications. Combining previous research as well as new findings, the possibility of using the proposed system as a complementary method for brain imaging is discussed in the present paper.

  5. A Study of Human Computing on Solving Process of Basic Problems in Exercises for learning by Brain Wave

    OpenAIRE

    山口, 有美; 山口, 晴久

    2001-01-01

    In this paper, we describe the comparative experiments to the students on solving process of problems on typical school teaching material knowledge (caluculation, geometry, Kanji dictations, typewriting, drawing ) in exercises in both in VDT works and on desktop works by frequency analysis of Brain Wave. The cognitive states of each mental working were compared on brain waves. And α reduction rate in brain waves in each mental work (calculation, geometry, Kanji dictations, typewriting, drawin...

  6. Brain/MINDS: brain-mapping project in Japan

    Science.gov (United States)

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-01-01

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas. PMID:25823872

  7. Brain/MINDS: brain-mapping project in Japan.

    Science.gov (United States)

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-05-19

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas.

  8. Information flow dynamics in the brain

    Science.gov (United States)

    Rabinovich, Mikhail I.; Afraimovich, Valentin S.; Bick, Christian; Varona, Pablo

    2012-03-01

    Timing and dynamics of information in the brain is a hot field in modern neuroscience. The analysis of the temporal evolution of brain information is crucially important for the understanding of higher cognitive mechanisms in normal and pathological states. From the perspective of information dynamics, in this review we discuss working memory capacity, language dynamics, goal-dependent behavior programming and other functions of brain activity. In contrast with the classical description of information theory, which is mostly algebraic, brain flow information dynamics deals with problems such as the stability/instability of information flows, their quality, the timing of sequential processing, the top-down cognitive control of perceptual information, and information creation. In this framework, different types of information flow instabilities correspond to different cognitive disorders. On the other hand, the robustness of cognitive activity is related to the control of the information flow stability. We discuss these problems using both experimental and theoretical approaches, and we argue that brain activity is better understood considering information flows in the phase space of the corresponding dynamical model. In particular, we show how theory helps to understand intriguing experimental results in this matter, and how recent knowledge inspires new theoretical formalisms that can be tested with modern experimental techniques.

  9. Novel radioiodinated sibutramine and fluoxetine as models for brain imaging

    International Nuclear Information System (INIS)

    Motaleb, M.A.; El-Kolaly, M.T.; Rashed, H.M.; Abd El-Bary, A.

    2011-01-01

    Brain imaging is a process which allows scientists and physicians to view and monitor the areas of the brain which allow diagnosis and following up different abnormalities in the brain. The aim of this study was to develop potential radiopharmaceuticals for the non-invasive brain imaging. Sibutramine and fluoxetine (two drugs that have the ability to cross blood-brain barrier) were successfully labeled with 125 I via direct electrophilic substitution reaction at ambient temperature. The reaction parameters studied were substrate concentration, oxidizing agent concentration, pH of the reaction mixture, reaction temperature, reaction time and in vitro stability of the iodocompounds. The iodocompounds gave maximum labeling yield of 92 ± 2.77 and 93 ± 2.1%, respectively, and maintained stability throughout working period (24 h). Biodistribution studies showed that maximum in vivo uptake of the iodocompounds in the brain was 5.7 ± 0.19 and 6.14 ± 0.26% injected activity/g tissue organ, respectively, at 15 and 5 min post-injection, whereas the clearance from the mice appeared to proceed via the hepatobiliary pathway. Brain uptake of 125 I-sibutramine and 125 I-fluoxetine is higher than that of 99m Tc-ECD and 99m Tc-HMPAO (currently used radiopharmaceuticals for brain imaging) and so radioiodinated sibutramine and fluoxetine could be used instead of 99m Tc-ECD and 99m Tc-HMPAO for brain SPECT. (author)

  10. Making mushy magma chambers in the lower continental crust: Cold storage and compositional bimodality

    Science.gov (United States)

    Jackson, Matthew; Blundy, Jon; Sparks, Steve

    2017-04-01

    Increasing geological and geophysical evidence suggests that crustal magma reservoirs are normally low melt fraction 'mushes' rather than high melt fraction 'magma chambers'. Yet high melt fractions must form within these mush reservoirs to explain the observed flow and eruption of low crystallinity magmas. In many models, crystallinity is linked directly to temperature, with higher temperature corresponding to lower crystallinity (higher melt fraction). However, increasing temperature yields less evolved (silicic) melt composition for a given starting material. If mobile, low crystallinity magmas require high temperature, it is difficult to explain how they can have evolved composition. Here we use numerical modelling to show that reactive melt flow in a porous and permeable mush reservoir formed by the intrusion of numerous basaltic sills into the lower continental crust produces magma in high melt fraction (> 0.5) layers akin to conventional magma chambers. These magma-chamber-like layers contain evolved (silicic) melt compositions and form at low (close to solidus) temperatures near the top of the mush reservoir. Evolved magma is therefore kept in 'cold storage' at low temperature, but also at low crystallinity so the magma is mobile and can leave the mush reservoir. Buoyancy-driven reactive flow and accumulation of melt in the mush reservoir controls the temperature and composition of magma that can leave the reservoir. The modelling also shows that processes in lower crustal mush reservoirs produce mobile magmas that contain melt of either silicic or mafic composition. Intermediate melt compositions are present but are not within mobile magmas. Silicic melt compositions are found at high melt fraction within the magma-chamber like layers near the top of the mush reservoir. Mafic melt compositions are found at high melt fraction within the cooling sills. Melt elsewhere in the reservoir has intermediate composition, but remains trapped in the reservoir because the local melt fraction is too low to form a mobile magma. The model results are consistent with geochemical data suggesting that lower crustal magma reservoirs supply silicic and mafic melts to arc volcanoes, but intermediate magmas are formed by mixing in shallower reservoirs. We suggest here that lower crustal magma chambers primarily form in response to changes in bulk composition caused by melt migration and chemical reaction in a mush reservoir. This process is different to the conventional and widely applied models of magma chamber formation. Similar processes are likely to operate in shallow mush reservoirs, but will likely be further complicated by the presence of volatile phases, and mixing of different melt compositions sourced from deeper mush reservoirs.

  11. Tanggapan Terhadap Kami No Shiten dan Mushi No Shiten No Gengo Bunka dari Prof. Someya Yoshimichi

    Directory of Open Access Journals (Sweden)

    Sheddy N. Tjandra

    2013-04-01

    Full Text Available This is a preliminary study about Japanese conception of the world’s language and culture. Prof. Someya Yoshimichi, emeritus professor from Shizuoka Unversity Japan, in an international conferene on Japanese studies held at Universitas Nasional Jakarta on February 2012, has pointed out that the present world’s language and culture can be divided into two categories. One is God’s Language and Culture, and the other is Insect’s Language a Culture. According to him, the God’s Language and Culture is mainly from European and American (Europe, and the Insect’s Laguage and Culture is mainly from Asian especially from Japan and South-east Asia. The writer does not understand why the Japanese takes God and Insect as a pair of contrastive culture. Therefore, the writer collected data from Indonesian indigenous culture, mainly from public beliefs and religions to argue about the Japanese pair of contrastive culture.  This writing uses qualitative interpretation method (hermeneutics and a method of descriptive analysis to understand Indonesian data, and to present the results of interpretation. For previous studies, the writer took the Japanese and Chinese In-yooron to check the realities of Japanese conception, and also took hipernym and hyponym theory from semantics to check the contrastive meaning of the word God and Insect. In short, the writer sees that God and Insect are not an antonym, and also have no contrastive meaning in any sense of semantics and logics.  

  12. The Parastatal Sector in Tanzania: Fiscal Impact, 1984-1995 | Mushi ...

    African Journals Online (AJOL)

    The findings tend to provide a further justification on the action taken by the government to either privatize the solvent commercial firms or liquidate the insolvent ones or restructure and rationalize the quasi-government firms. It is concluded that the pace of closing the parastatals has to be expedited to avoid further depletion ...

  13. Mapping how local perturbations influence systems-level brain dynamics.

    Science.gov (United States)

    Gollo, Leonardo L; Roberts, James A; Cocchi, Luca

    2017-10-15

    The human brain exhibits a distinct spatiotemporal organization that supports brain function and can be manipulated via local brain stimulation. Such perturbations to local cortical dynamics are globally integrated by distinct neural systems. However, it remains unclear how local changes in neural activity affect large-scale system dynamics. Here, we briefly review empirical and computational studies addressing how localized perturbations affect brain activity. We then systematically analyze a model of large-scale brain dynamics, assessing how localized changes in brain activity at the different sites affect whole-brain dynamics. We find that local stimulation induces changes in brain activity that can be summarized by relatively smooth tuning curves, which relate a region's effectiveness as a stimulation site to its position within the cortical hierarchy. Our results also support the notion that brain hubs, operating in a slower regime, are more resilient to focal perturbations and critically contribute to maintain stability in global brain dynamics. In contrast, perturbations of peripheral regions, characterized by faster activity, have greater impact on functional connectivity. As a parallel with this region-level result, we also find that peripheral systems such as the visual and sensorimotor networks were more affected by local perturbations than high-level systems such as the cingulo-opercular network. Our findings highlight the importance of a periphery-to-core hierarchy to determine the effect of local stimulation on the brain network. This study also provides novel resources to orient empirical work aiming at manipulating functional connectivity using non-invasive brain stimulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Immunopathogenesis of brain abscess

    Directory of Open Access Journals (Sweden)

    Kielian Tammy

    2004-08-01

    Full Text Available Abstract Brain abscess represents a significant medical problem despite recent advances made in detection and therapy. Due to the emergence of multi-drug resistant strains and the ubiquitous nature of bacteria, the occurrence of brain abscess is likely to persist. Our laboratory has developed a mouse experimental brain abscess model allowing for the identification of key mediators in the CNS anti-bacterial immune response through the use of cytokine and chemokine knockout mice. Studies of primary microglia and astrocytes from neonatal mice have revealed that S. aureus, one of the main etiologic agents of brain abscess in humans, is a potent stimulus for proinflammatory mediator production. Recent evidence from our laboratory indicates that Toll-like receptor 2 plays a pivotal role in the recognition of S. aureus and its cell wall product peptidoglycan by glia, although other receptors also participate in the recognition event. This review will summarize the consequences of S. aureus on CNS glial activation and the resultant neuroinflammatory response in the experimental brain abscess model.

  15. Pediatric acquired brain injury.

    Science.gov (United States)

    Bodack, Marie I

    2010-10-01

    Although pediatric patients are sometimes included in studies about visual problems in patients with acquired brain injury (ABI), few studies deal solely with children. Unlike studies dealing with adult patients, in which mechanisms of brain injury are divided into cerebral vascular accident (CVA) and traumatic brain injury (TBI), studies on pediatric patients deal almost exclusively with traumatic brain injury, specifically caused by accidents. Here we report on the vision problems of 4 pediatric patients, ages 3 to 18 years, who were examined in the ophthalmology/optometry clinic at a children's hospital. All patients had an internally caused brain injury and after the initial insult manifested problems in at least one of the following areas: acuity, binocularity, motility (tracking or saccades), accommodation, visual fields, and visual perceptual skills. Pediatric patients can suffer from a variety of oculo-visual problems after the onset of head injury. These patients may or may not be symptomatic and can benefit from optometric intervention. Copyright © 2010 American Optometric Association. Published by Elsevier Inc. All rights reserved.

  16. Brain hypoxia imaging

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Chun [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-04-15

    The measurement of pathologically low levels of tissue pO{sub 2} is an important diagnostic goal for determining the prognosis of many clinically important diseases including cardiovascular insufficiency, stroke and cancer. The target tissues nowadays have mostly been tumors or the myocardium, with less attention centered on the brain. Radiolabelled nitroimidazole or derivatives may be useful in identifying the hypoxic cells in cerebrovascular disease or traumatic brain injury, and hypoxic-ischemic encephalopathy. In acute stroke, the target of therapy is the severely hypoxic but salvageable tissue. {sup 18}F-MISO PET and {sup 99m}Tc-EC-metronidazole SPECT in patients with acute ischemic stroke identified hypoxic tissues and ischemic penumbra, and predicted its outcome. A study using {sup 123}I-IAZA in patient with closed head injury detected the hypoxic tissues after head injury. Up till now these radiopharmaceuticals have drawbacks due to its relatively low concentration with hypoxic tissues associated with/without low blood-brain barrier permeability and the necessity to wait a long time to achieve acceptable target to background ratios for imaging in acute ischemic stroke. It is needed to develop new hypoxic marker exhibiting more rapid localization in the hypoxic region in the brain. And then, the hypoxic brain imaging with imidazoles or non-imidazoles may be very useful in detecting the hypoxic tissues, determining therapeutic strategies and developing therapeutic drugs in several neurological disease, especially, in acute ischemic stroke.

  17. Imaging brain plasticity after trauma

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Kou; Armin Iraji

    2014-01-01

    The brain is highly plastic after stroke or epilepsy;however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrat-ed both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the ifeld is still short of proper means on how to guide the choice of TBI rehabilitation or treat-ment plan to promote brain plasticity. The authors also point out the new direction of brain plas-ticity investigation.

  18. Phonological Working Memory for Words and Nonwords in Cerebral Cortex

    Science.gov (United States)

    Perrachione, Tyler K.; Ghosh, Satrajit S.; Ostrovskaya, Irina; Gabrieli, John D. E.; Kovelman, Ioulia

    2017-01-01

    Purpose: The primary purpose of this study was to identify the brain bases of phonological working memory (the short-term maintenance of speech sounds) using behavioral tasks analogous to clinically sensitive assessments of nonword repetition. The secondary purpose of the study was to identify how individual differences in brain activation were…

  19. Scintigraphic evaluation of brain death

    International Nuclear Information System (INIS)

    Park, C. H.; Bai, M. S.; Cho, K. K.; Kim, S. J.; Yoon, S. N.; Cho, C. W.

    1997-01-01

    A law recognizing brain death is a life saving legal measure in patients suffering from badly diseased organs such as kidney, liver, heart, and lung. Such law is being discussed for legalization at the Korean National Assembly. There are various criteria used for brain death in western world and brain scintiscan is one of them. However, the scintiscan is not considered in establishing brain death in the draft of the law. The purpose of this report is to spread this technique in nuclear medicine society as well as in other medical societies. We evaluated 7 patients with clinical suspicion of brain death by various causes. The patient's age ranged from 5 to 39 years. We used 5-20mCi 99m Tc-HMPAO (d.1-hexamethyl propylene amine oxime) or ECD (Ethyl Cysteinate Dimer), lipophilic agents that cross BBB (blood brain barrier). A dynamic study followed by static or SPECT (single photon emission tomography) was performed. Interpretive criteria used for brain death were 1) no intracranial circulation 2) no brain uptake. The second criteria is heavily used. Five of 7 patients were scintigraphically brain dead and the remaining 2 had some brain uptake excluding the diagnosis of scintigraphic brain death. In conclusion, cerebral perfusion study using a lipophilic brain tracer offers a noninvasive, rapid, easy, accurate and reliable mean in the diagnosis of brain death. We believe that this modality should be included in the criteria of brain death in the draft of the proposed Korean law

  20. Possible Brain Mechanisms of Creativity.

    Science.gov (United States)

    Heilman, Kenneth M

    2016-06-01

    Creativity is the new discovery, understanding, development and expression of orderly and meaningful relationships. Creativity has three major stages: preparation, the development (nature and nurture) of critical knowledge and skills; innovation, the development of a creative solution; and creative production. Successful preparation requires a basic level of general intelligence and domain specific knowledge and skills and highly creative people may have anatomic alterations of specific neocortical regions. Innovation requires disengagement and divergent thinking primarily mediated by frontal networks. Creative people are often risk-takers and novelty seekers, behaviors that activate their ventral striatal reward system. Innovation also requires associative and convergent thinking, activities that are dependent on the integration of highly distributed networks. People are often most creative when they are in mental states associated with reduced levels of brain norepinephrine, which may enhance the communication between distributed networks. We, however, need to learn more about the brain mechanisms of creativity. Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.