WorldWideScience

Sample records for muscle calcium sensitivity

  1. Myofilament calcium sensitivity: Role in regulation of in vivo cardiac contraction and relaxation

    Directory of Open Access Journals (Sweden)

    Jae-Hoon Chung

    2016-12-01

    Full Text Available Myofilament calcium sensitivity is an often-used indicator of cardiac muscle function, often assessed in disease states such as hypertrophic cardiomyopathy (HCM and dilated cardiomyopathy (DCM. While calcium sensitivity measurement provides important insights into the mechanical force-generating capability of a muscle at steady-state, the dynamic behavior of the muscle cannot be sufficiently assessed with a force-pCa curve alone. The dissociation constant (Kd of the force-pCa curve depends on the ratio of the apparent on-rate (kon and apparent off-rate (koff of calcium on TnC and as a stand-alone parameter cannot provide an accurate depiction of the dynamic contraction and relaxation behavior without the additional quantification of kon or koff, or actually measuring dynamic twitch kinetics in an intact muscle. In this review, we examine the effect of length, frequency, and beta-adrenergic stimulation on myofilament calcium sensitivity and dynamic contraction, the effect of membrane permeabilization on calcium sensitivity, and the dynamic consequences of various myofilament protein mutations with potential implications in contractile and relaxation behavior.

  2. Calcium dynamics in vascular smooth muscle

    OpenAIRE

    Amberg, Gregory C.; Navedo, Manuel F.

    2013-01-01

    Smooth muscle cells are ultimately responsible for determining vascular luminal diameter and blood flow. Dynamic changes in intracellular calcium are a critical mechanism regulating vascular smooth muscle contractility. Processes influencing intracellular calcium are therefore important regulators of vascular function with physiological and pathophysiological consequences. In this review we discuss the major dynamic calcium signals identified and characterized in vascular smooth muscle cells....

  3. Contracture of Slow Striated Muscle during Calcium Deprivation

    Science.gov (United States)

    Irwin, Richard L.; Hein, Manfred M.

    1963-01-01

    When deprived of calcium the slow striated muscle fibers of the frog develop reversible contractures in either hypertonic or isotonic solutions. While calcium deprivation continues because of a flowing calcium-free solution the muscles relax slowly and completely. Restoration of calcium during contracture relaxes the muscle promptly to initial tension. When relaxed during calcium lack the return of calcium does not change tension and the muscle stays relaxed. When contractures are induced by solutions containing small amounts of calcium relaxation does not occur or requires several hours. The rate of tension development depends upon the rate at which calcium moves outward since the contractures develop slower in low concentrations of calcium and are absent or greatly slowed in a stagnant calcium-free solution. Withdrawal of calcium prevents the contractile responses to ACh, KCl, or electrical stimulation through the nerve. Muscles return to their original excitability after calcium is restored. Origin of the contractures is unrelated to nerve activity since they are maximal during transmission failure from calcium lack, occur in denervated muscles, and are not blocked by high concentrations of d-tubocurarine, procaine, or atropine. The experiments also indicate that the contractures do not originate from repetitive activity of muscle membranes. The findings are most simply explained by relating the outward movement of calcium as a link for initiating contraction in slow type striated muscle. PMID:14065284

  4. Calcium-sensitivity of smooth muscle contraction in the isolated ...

    African Journals Online (AJOL)

    sensitivity of smooth muscle contraction were studied in the isolated perfused rat tail artery, employing the activators noradrenaline (NA) (3ìM) sand potassium chloride (KC1) (100mM). Experiments were conduced in Ca2+ - buffered saline.

  5. Divergent biophysical properties, gating mechanisms, and possible functions of the two skeletal muscle Ca(V)1.1 calcium channel splice variants.

    Science.gov (United States)

    Tuluc, Petronel; Flucher, Bernhard E

    2011-12-01

    Voltage-gated calcium channels are multi-subunit protein complexes that specifically allow calcium ions to enter the cell in response to membrane depolarization. But, for many years it seemed that the skeletal muscle calcium channel Ca(V)1.1 is the exception. The classical splice variant Ca(V)1.1a activates slowly, has a very small current amplitude and poor voltage sensitivity. In fact adult muscle fibers work perfectly well even in the absence of calcium influx. Recently a new splice variant of the skeletal muscle calcium channel Ca(V)1.1e has been characterized. The lack of the 19 amino acid exon 29 in this splice variant results in a rapidly activating calcium channel with high current amplitude and good voltage sensitivity. Ca(V)1.1e is the dominant channel in embryonic muscle, where the expression of this high calcium-conducting Ca(V)1.1 isoform readily explains developmental processes depending on L-type calcium currents. Moreover, the availability of these two structurally similar but functionally distinct channel variants facilitates the analysis of the molecular mechanisms underlying the unique current properties of the classical Ca(V)1.1a channel.

  6. Calcium and the role of motoneuronal doublets in skeletal muscle control

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2009-01-01

    + resources and the dynamics of calcium transport is proposed. The model correctly accounts for catch-like effects in slow and fast-twitch fibers during long-train stimulations and force-frequency relations in different muscle types. Results obtained from the model compare favorably to experiments showing...... in the central nervous system. This is a potentially very useful property directly mediated by the catch-like process modeled here. One further prediction of the model is that the slope of the frequency-tension profile of a given muscle is highly sensitive to changes in the efficiency and temporal...

  7. Effect of sepsis on calcium uptake and content in skeletal muscle and regulation in vitro by calcium of total and myofibrillar protein breakdown in control and septic muscle: Results from a preliminary study

    International Nuclear Information System (INIS)

    Benson, D.W.; Hasselgren, P.O.; Hiyama, D.T.; James, J.H.; Li, S.; Rigel, D.F.; Fischer, J.E.

    1989-01-01

    Because high calcium concentration in vitro stimulates muscle proteolysis, calcium has been implicated in the pathogenesis of increased muscle breakdown in different catabolic conditions. Protein breakdown in skeletal muscle is increased during sepsis, but the effect of sepsis on muscle calcium uptake and content is not known. In this study the influence of sepsis, induced in rats by cecal ligation and puncture, on muscle calcium uptake and content was studied. Sixteen hours after cecal ligation and puncture or sham operation, calcium content of the extensor digitorum longus (EDL) and soleus (SOL) muscles was determined with an atomic absorption spectrometer. Calcium uptake was measured in intact SOL muscles incubated in the presence of calcium 45 (45Ca) for between 1 and 120 minutes. Total and myofibrillar protein breakdown was determined in SOL muscles, incubated in the presence of different calcium concentrations (0; 2.5; 5.0 mmol/L), and measured as release into the incubation medium of tyrosine and 3-methylhistidine (3-MH), respectively. Calcium content was increased by 51% (p less than 0.001) during sepsis in SOL and by 10% (p less than 0.05) in EDL muscle. There was no difference in 45Ca uptake between control and septic muscles during the early phase (1 to 5 minutes) of incubation. During more extended incubation (30 to 120 minutes), muscles from septic rats took up significantly more 45Ca than control muscles (p less than 0.05). Tyrosine release by incubated SOL muscles from control and septic rats was increased when calcium was added to the incubation medium, and at a calcium concentration of 2.5 mmol/L, the increase in tyrosine release was greater in septic than in control muscle. Addition of calcium to the incubation medium did not affect 3-MH release in control or septic muscle

  8. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    Energy Technology Data Exchange (ETDEWEB)

    Sirvent, P., E-mail: pascal.sirvent@univ-bpclermont.fr [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France); Clermont Université, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l' Exercice en conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171 Aubière cedex (France); Fabre, O.; Bordenave, S. [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France); Hillaire-Buys, D. [CHRU Montpellier, 34295 Montpellier (France); Raynaud De Mauverger, E.; Lacampagne, A.; Mercier, J. [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France)

    2012-03-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complex I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. -- Highlights: ► The most common and problematic side effect of statins is myopathy. ► Patients treated with statins showed impairment of mitochondrial respiration. ► Statins-treated patients showed altered frequency and amplitude of calcium sparks.

  9. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    International Nuclear Information System (INIS)

    Sirvent, P.; Fabre, O.; Bordenave, S.; Hillaire-Buys, D.; Raynaud De Mauverger, E.; Lacampagne, A.; Mercier, J.

    2012-01-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complex I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. -- Highlights: ► The most common and problematic side effect of statins is myopathy. ► Patients treated with statins showed impairment of mitochondrial respiration. ► Statins-treated patients showed altered frequency and amplitude of calcium sparks.

  10. Changes in force and calcium sensitivity in the developing avian heart.

    Science.gov (United States)

    Godt, R E; Fogaça, R T; Nosek, T M

    1991-11-01

    The aim of this study was to characterize the development of the contractile properties of intact and chemically skinned muscle from chicken heart and to compare these characteristics with those of developing mammalian heart reported by others. Small trabeculae were dissected from left ventricles of Arbor Acre chickens between embryonic day 7 and young adulthood (7 weeks post-hatching). At all ages, increasing extracellular calcium (0.45-3.6 mM) progressively increased twitch force of electrically stimulated trabeculae. Twitch force at 1.8 mM extracellular calcium, normalized to cross-sectional area, increased to a maximum at 1 day post-hatching, remained constant through 3 weeks post-hatching, but then decreased at 7 weeks post-hatching. The maximal calcium-activated force of trabeculae chemically skinned with Triton X-100 detergent increased to a maximum 2 days before the time of hatching and was not significantly changed up to 7 weeks post-hatching. Over the ages studied, average twitch force in 1.8 mM calcium was between 26 and 66% of maximal calcium-activated force after skinning, suggesting that the contractile apparatus is not fully activated during the twitch in normal Ringer. In skinned trabeculae, the calcium sensitivity of the contractile apparatus was higher in the embryo than in the young adult. These age-dependent changes in calcium sensitivity are correlated with isoform switching in troponin T. A decrease in pH from 7.0 to 6.5 decreased the calcium sensitivity of the contractile apparatus to a greater degree in skinned trabeculae from young adult hearts than in those from embryonic hearts. This change in susceptibility to acidosis is temporally associated with isoform switching in troponin I.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Calcium electrotransfer for termination of transgene expression in muscle

    DEFF Research Database (Denmark)

    Hojman, Pernille; Spanggaard, Iben; Olsen, Caroline Holkman

    2011-01-01

    Gene electrotransfer is expanding in clinical use, thus we have searched for an emergency procedure to stop transgene expression in case of serious adverse events. Calcium is cytotoxic at high intracellular levels, so we tested effects of calcium electrotransfer on transgene expression in muscle....... A clinical grade calcium solution (20 μl, 168 mM) was injected into transfected mouse or rat tibialis cranialis muscle. Ca(2+) uptake was quantified using calcium 45 ((45)Ca), and voltage and time between injection and pulsation were varied. Extinction of transgene expression was investigated by using both...... voltage pulses of 1000 V/cm. Using these parameters, in vivo imaging showed that transgene expression significantly decreased 4 hr after Ca(2+) electrotransfer and was eliminated within 24 hr. Similarly, serum erythropoietin was reduced by 46% at 4 hr and to control levels at 2 days. Histological analyses...

  12. Calcium influx through L-type channels attenuates skeletal muscle contraction via inhibition of adenylyl cyclases.

    Science.gov (United States)

    Menezes-Rodrigues, Francisco Sandro; Pires-Oliveira, Marcelo; Duarte, Thiago; Paredes-Gamero, Edgar Julian; Chiavegatti, Tiago; Godinho, Rosely Oliveira

    2013-11-15

    Skeletal muscle contraction is triggered by acetylcholine induced release of Ca(2+) from sarcoplasmic reticulum. Although this signaling pathway is independent of extracellular Ca(2+), L-type voltage-gated calcium channel (Cav) blockers have inotropic effects on frog skeletal muscles which occur by an unknown mechanism. Taking into account that skeletal muscle fiber expresses Ca(+2)-sensitive adenylyl cyclase (AC) isoforms and that cAMP is able to increase skeletal muscle contraction force, we investigated the role of Ca(2+) influx on mouse skeletal muscle contraction and the putative crosstalk between extracellular Ca(2+) and intracellular cAMP signaling pathways. The effects of Cav blockers (verapamil and nifedipine) and extracellular Ca(2+) chelator EGTA were evaluated on isometric contractility of mouse diaphragm muscle under direct electrical stimulus (supramaximal voltage, 2 ms, 0.1 Hz). Production of cAMP was evaluated by radiometric assay while Ca(2+) transients were assessed by confocal microscopy using L6 cells loaded with fluo-4/AM. Ca(2+) channel blockers verapamil and nifedipine had positive inotropic effect, which was mimicked by removal of extracellular Ca(+2) with EGTA or Ca(2+)-free Tyrode. While phosphodiesterase inhibitor IBMX potentiates verapamil positive inotropic effect, it was abolished by AC inhibitors SQ22536 and NYK80. Finally, the inotropic effect of verapamil was associated with increased intracellular cAMP content and mobilization of intracellular Ca(2+), indicating that positive inotropic effects of Ca(2+) blockers depend on cAMP formation. Together, our results show that extracellular Ca(2+) modulates skeletal muscle contraction, through inhibition of Ca(2+)-sensitive AC. The cross-talk between extracellular calcium and cAMP-dependent signaling pathways appears to regulate the extent of skeletal muscle contraction responses. © 2013 Published by Elsevier B.V.

  13. A cyclic GMP-dependent calcium-activated chloride current in smooth-muscle cells from rat mesenteric resistance arteries

    DEFF Research Database (Denmark)

    Matchkov, Vladimir; Aalkjær, Christian; Nilsson, Holger

    2004-01-01

    We have previously demonstrated the presence of a cyclic GMP (cGMP)-dependent calcium-activated inward current in vascular smooth-muscle cells, and suggested this to be of importance in synchronizing smooth-muscle contraction. Here we demonstrate the characteristics of this current. Using......M) in the pipette solution. The current was found to be a calcium-activated chloride current with an absolute requirement for cyclic GMP (EC50 6.4 microM). The current could be activated by the constitutively active subunit of PKG. Current activation was blocked by the protein kinase G antagonist Rp-8-Br-PET-cGMP...... differed from those of the calcium-activated chloride current in pulmonary myocytes, which was cGMP-independent, exhibited a high sensitivity to inhibition by niflumic acid, was unaffected by zinc ions, and showed outward current rectification as has previously been reported for this current. Under...

  14. Altered Elementary Calcium Release Events and Enhanced Calcium Release by Thymol in Rat Skeletal Muscle

    OpenAIRE

    Szentesi, Péter; Szappanos, Henrietta; Szegedi, Csaba; Gönczi, Monika; Jona, István; Cseri, Julianna; Kovács, László; Csernoch, László

    2004-01-01

    The effects of thymol on steps of excitation-contraction coupling were studied on fast-twitch muscles of rodents. Thymol was found to increase the depolarization-induced release of calcium from the sarcoplasmic reticulum, which could not be attributed to a decreased calcium-dependent inactivation of calcium release channels/ryanodine receptors or altered intramembrane charge movement, but rather to a more efficient coupling of depolarization to channel opening. Thymol increased ryanodine bind...

  15. Calcium model for mammalian skeletal muscle

    NARCIS (Netherlands)

    Wallinga, W.; Boom, H.B.K.; Heijink, R.J.; van der Vliet, G.H.

    1981-01-01

    A model is presented describing quantitatively the events between excitation and force development in skeletal muscle. It consists of a calcium mediated activation model (c.m.a.m.) in series with a force generator model (f.g.m.). The c.m.a.m. was based on intracellular processes such as cisternal

  16. Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole-cell oscillations in smooth muscle cells

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian; Aalkjær, Christian; Nilsson, Holger

    2007-01-01

    waves sweeping through the cytoplasm when the SR is stimulated to release calcium. A rise in cyclic guanosine monophosphate (cGMP) leads to the experimentally observed transition from waves to whole-cell calcium oscillations. At the same time membrane potential starts to oscillate and the frequency...... approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes uniform opening of L-type calcium...... onset of oscillations in membrane potential within the individual cell may underlie sudden intercellular synchronization and the appearance of vasomotion. Key words: Vasomotion, Chloride channel, cGMP, Mathematical model, Calcium waves....

  17. The gene for the alpha 1 subunit of the skeletal muscle dihydropyridine-sensitive calcium channel (Cchl1a3) maps to mouse chromosome 1.

    Science.gov (United States)

    Chin, H; Krall, M; Kim, H L; Kozak, C A; Mock, B

    1992-12-01

    Cchl1a3 encodes the dihydropyridine-sensitive calcium channel alpha 1 subunit isoform predominantly expressed in skeletal muscle. mdg (muscular dysgenesis) has previously been implicated as a mutant allele of this gene. Hybridization of a rat brain cDNA probe for Cchl1a3 to Southern blots of DNAs from a panel of Chinese hamster x mouse somatic cell hybrids suggested that this gene maps to mouse Chromosome 1. Analysis of the progeny of an inbred strain cross-positioned Cchl1a3 1.3 cM proximal to the Pep-3 locus on Chr 1.

  18. Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole-cell oscillations in smooth muscle cells

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian; Aalkjær, Christian; Nilsson, Holger

    2007-01-01

    approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes uniform opening of L-type calcium...... channels on the cell surface stimulating synchronized release of SR-calcium and inducing the shift from waves to whole-cell oscillations. The effect of the channel is therefore to couple the processes of the SR with those of the membrane. We hypothesize that the shift in oscillatory mode and the associated...

  19. Calcium currents in a fast-twitch skeletal muscle of the rat.

    Science.gov (United States)

    Donaldson, P L; Beam, K G

    1983-10-01

    Slow ionic currents were measured in the rat omohyoid muscle with the three-microelectrode voltage-clamp technique. Sodium and delayed rectifier potassium currents were blocked pharmacologically. Under these conditions, depolarizing test pulses elicited an early outward current, followed by a transient slow inward current, followed in turn by a late outward current. The early outward current appeared to be a residual delayed rectifier current. The slow inward current was identified as a calcium current on the basis that (a) its magnitude depended on extracellular calcium concentration, (b) it was blocked by the addition of the divalent cations cadmium or nickel, and reduced in magnitude by the addition of manganese or cobalt, and (c) barium was able to replace calcium as an inward current carrier. The threshold potential for inward calcium current was around -20 mV in 10mM extracellular calcium and about -35 mV in 2 mM calcium. Currents were net inward over part of their time course for potentials up to at least +30 mV. At temperatures of 20-26 degrees C, the peak inward current (at approximately 0 mV) was 139 +/- 14 microA/cm2 (mean +/- SD), increasing to 226 +/- 28 microA/cm2 at temperatures of 27-37 degrees C. The late outward current exhibited considerable fiber-to-fiber variability. In some fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it appeared to be the sum of both leak and a slowly activated outward current. The rate of activation of inward calcium current was strongly temperature dependent. For example, in a representative fiber, the time-to-peak inward current for a +10-mV test pulse decreased from approximately 250 ms at 20 degrees C to 100 ms at 30 degrees C. At 37 degrees C, the time-to-peak current was typically approximately 25 ms. The earliest phase of activation was difficult to quantify because the ionic current was partially

  20. Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle.

    Science.gov (United States)

    Fusi, L; Brunello, E; Yan, Z; Irving, M

    2016-10-31

    Recent X-ray diffraction studies on actively contracting fibres from skeletal muscle showed that the number of myosin motors available to interact with actin-containing thin filaments is controlled by the stress in the myosin-containing thick filaments. Those results suggested that thick filament mechano-sensing might constitute a novel regulatory mechanism in striated muscles that acts independently of the well-known thin filament-mediated calcium signalling pathway. Here we test that hypothesis using probes attached to the myosin regulatory light chain in demembranated muscle fibres. We show that both the extent and kinetics of thick filament activation depend on thick filament stress but are independent of intracellular calcium concentration in the physiological range. These results establish direct control of myosin motors by thick filament mechano-sensing as a general regulatory mechanism in skeletal muscle that is independent of the canonical calcium signalling pathway.

  1. Sodium pump activity and calcium relaxation in vascular smooth muscle of deoxycorticosterone acetate-salt rats

    International Nuclear Information System (INIS)

    Soltis, E.E.; Field, F.P.

    1986-01-01

    The Na + -K + pump activity was determined in femoral arterial smooth muscle from deoxycorticosterone acetate (DOCA)-salt hypertensive rats using potassium relaxation and ouabain-sensitive 86 Rb uptake as indices. The membrane-stabilizing effect of calcium and its relation to Na + -K + pump activity also were examined. Femoral arteries from DOCA-salt rats exhibited a greater relaxation in response to potassium addition after contraction with norepinephrine in a low potassium (0.6 mM) Krebs solution. The concentration of potassium required to produce a 50% relaxation was significantly less in DOCA-salt rats. Ouabain-sensitive 86 Rb uptake was significantly greater at 3, 10, and 20 minutes of 86 Rb incubation in femoral arteries from DOCA-salt rats. Linear regression analysis revealed a significant correlation between the uptake of 86 Rb and time of incubation in both control and DOCA-salt rats. A significant difference in the slopes of the regression lines showed that the rate of uptake was greater in DOCA-salt rats. No difference was observed in ouabain-insensitive 86 Rb uptake. A dose-dependent relaxation in response to increasing concentrations of calcium following contraction to norepinephrine was observed in femoral arteries from control and DOCA-salt rats. The relaxation was directly dependent on the level of extracellular potassium and was blocked by ouabain. Femoral arteries from DOCA-salt rats relaxed to a significantly greater extent in response to calcium at each level of potassium when compared with controls. These results provide further evidence for an increase in Na + -K + pump activity in vascular smooth muscle from DOCA-salt hypertensive rats

  2. Contractile properties and sarcoplasmic reticulum calcium content in type I and type II skeletal muscle fibres in active aged humans.

    Science.gov (United States)

    Lamboley, C R; Wyckelsma, V L; Dutka, T L; McKenna, M J; Murphy, R M; Lamb, G D

    2015-06-01

    Muscle weakness in old age is due in large part to an overall loss of skeletal muscle tissue, but it remains uncertain how much also stems from alterations in the properties of the individual muscle fibres. This study examined the contractile properties and amount of stored intracellular calcium in single muscle fibres of Old (70 ± 4 years) and Young (22 ± 3 years) adults. The maximum level of force production (per unit cross-sectional area) in fast twitch fibres in Old subjects was lower than in Young subjects, and the fibres were also less sensitive to activation by calcium. The amount of calcium stored inside muscle fibres and available to trigger contraction was also lower in both fast- and slow-twitch muscle fibres in the Old subjects. These findings indicate that muscle weakness in old age stems in part from an impaired capacity for force production in the individual muscle fibres. This study examined the contractile properties and sarcoplasmic reticulum (SR) Ca(2+) content in mechanically skinned vastus lateralis muscle fibres of Old (70 ± 4 years) and Young (22 ± 3 years) humans to investigate whether changes in muscle fibre properties contribute to muscle weakness in old age. In type II fibres of Old subjects, specific force was reduced by ∼17% and Ca(2+) sensitivity was also reduced (pCa50 decreased ∼0.05 pCa units) relative to that in Young. S-Glutathionylation of fast troponin I (TnIf ) markedly increased Ca(2+) sensitivity in type II fibres, but the increase was significantly smaller in Old versus Young (+0.136 and +0.164 pCa unit increases, respectively). Endogenous and maximal SR Ca(2+) content were significantly smaller in both type I and type II fibres in Old subjects. In fibres of Young, the SR could be nearly fully depleted of Ca(2+) by a combined caffeine and low Mg(2+) stimulus, whereas in fibres of Old the amount of non-releasable Ca(2+) was significantly increased (by > 12% of endogenous Ca(2+) content). Western

  3. Altered elementary calcium release events and enhanced calcium release by thymol in rat skeletal muscle.

    Science.gov (United States)

    Szentesi, Péter; Szappanos, Henrietta; Szegedi, Csaba; Gönczi, Monika; Jona, István; Cseri, Julianna; Kovács, László; Csernoch, László

    2004-03-01

    The effects of thymol on steps of excitation-contraction coupling were studied on fast-twitch muscles of rodents. Thymol was found to increase the depolarization-induced release of calcium from the sarcoplasmic reticulum, which could not be attributed to a decreased calcium-dependent inactivation of calcium release channels/ryanodine receptors or altered intramembrane charge movement, but rather to a more efficient coupling of depolarization to channel opening. Thymol increased ryanodine binding to heavy sarcoplasmic reticulum vesicles, with a half-activating concentration of 144 micro M and a Hill coefficient of 1.89, and the open probability of the isolated and reconstituted ryanodine receptors, from 0.09 +/- 0.03 to 0.22 +/- 0.04 at 30 micro M. At higher concentrations the drug induced long-lasting open events on a full conducting state. Elementary calcium release events imaged using laser scanning confocal microscopy in the line-scan mode were reduced in size, 0.92 +/- 0.01 vs. 0.70 +/- 0.01, but increased in duration, 56 +/- 1 vs. 79 +/- 1 ms, by 30 micro M thymol, with an increase in the relative proportion of lone embers. Higher concentrations favored long events, resembling embers in control, with duration often exceeding 500 ms. These findings provide direct experimental evidence that the opening of a single release channel will generate an ember, rather than a spark, in mammalian skeletal muscle.

  4. Calcium versus strontium handling by the heart muscle.

    Science.gov (United States)

    Hendrych, Michal; Olejnickova, Veronika; Novakova, Marie

    2016-01-01

    Calcium plays a crucial role in numerous processes in living systems, from both intracellular and intercellular signalling to blood clotting. Calcium can be replaced by strontium in various intracellular processes due to high level of their similarity and strontium thus may serve as a valuable tool for different experimental studies. On the other hand, strontium is also used in clinical medicine and is commonly taken to the human body with food and water. The negative cardiac side effects of strontium therapy of osteoporosis and bone metastases are well known, but still not fully explained. This fact explains enhanced interest in this element and its impact on human body. This article reviews effects of calcium and strontium on several biochemical and physiological processes, with special emphasis on cardiac muscle.

  5. Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin-induced cachexia.

    Science.gov (United States)

    Conte, Elena; Camerino, Giulia Maria; Mele, Antonietta; De Bellis, Michela; Pierno, Sabata; Rana, Francesco; Fonzino, Adriano; Caloiero, Roberta; Rizzi, Laura; Bresciani, Elena; Ben Haj Salah, Khoubaib; Fehrentz, Jean-Alain; Martinez, Jean; Giustino, Arcangela; Mariggiò, Maria Addolorata; Coluccia, Mauro; Tricarico, Domenico; Lograno, Marcello Diego; De Luca, Annamaria; Torsello, Antonio; Conte, Diana; Liantonio, Antonella

    2017-06-01

    Cachexia is a wasting condition associated with cancer types and, at the same time, is a serious and dose-limiting side effect of cancer chemotherapy. Skeletal muscle loss is one of the main characteristics of cachexia that significantly contributes to the functional muscle impairment. Calcium-dependent signaling pathways are believed to play an important role in skeletal muscle decline observed in cachexia, but whether intracellular calcium homeostasis is affected in this situation remains uncertain. Growth hormone secretagogues (GHS), a family of synthetic agonists of ghrelin receptor (GHS-R1a), are being developed as a therapeutic option for cancer cachexia syndrome; however, the exact mechanism by which GHS interfere with skeletal muscle is not fully understood. By a multidisciplinary approach ranging from cytofluorometry and electrophysiology to gene expression and histology, we characterized the calcium homeostasis in fast-twitch extensor digitorum longus (EDL) muscle of adult rats with cisplatin-induced cachexia and established the potential beneficial effects of two GHS (hexarelin and JMV2894) at this level. Additionally, in vivo measures of grip strength and of ultrasonography recordings allowed us to evaluate the functional impact of GHS therapeutic intervention. Cisplatin-treated EDL muscle fibres were characterized by a ~18% significant reduction of the muscle weight and fibre diameter together with an up-regulation of atrogin1/Murf-1 genes and a down-regulation of Pgc1-a gene, all indexes of muscle atrophy, and by a two-fold increase in resting intracellular calcium, [Ca 2+ ] i , compared with control rats. Moreover, the amplitude of the calcium transient induced by caffeine or depolarizing high potassium solution as well as the store-operated calcium entry were ~50% significantly reduced in cisplatin-treated rats. Calcium homeostasis dysregulation parallels with changes of functional ex vivo (excitability and resting macroscopic conductance) and in

  6. Nanosecond electric pulses modulate skeletal muscle calcium dynamics and contraction

    Science.gov (United States)

    Valdez, Chris; Jirjis, Michael B.; Roth, Caleb C.; Barnes, Ronald A.; Ibey, Bennett L.

    2017-02-01

    Irreversible electroporation therapy is utilized to remove cancerous tissues thru the delivery of rapid (250Hz) and high voltage (V) (1,500V/cm) electric pulses across microsecond durations. Clinical research demonstrated that bipolar (BP) high voltage microsecond pulses opposed to monophasic waveforms relieve muscle contraction during electroporation treatment. Our group along with others discovered that nanosecond electric pulses (nsEP) can activate second messenger cascades, induce cytoskeletal rearrangement, and depending on the nsEP duration and frequency, initiate apoptotic pathways. Of high interest across in vivo and in vitro applications, is how nsEP affects muscle physiology, and if nuances exist in comparison to longer duration electroporation applications. To this end, we exposed mature skeletal muscle cells to monopolar (MP) and BP nsEP stimulation across a wide range of electric field amplitudes (1-20 kV/cm). From live confocal microscopy, we simultaneously monitored intracellular calcium dynamics along with nsEP-induced muscle movement on a single cell level. In addition, we also evaluated membrane permeability with Yo-PRO-1 and Propidium Iodide (PI) across various nsEP parameters. The results from our findings suggest that skeletal muscle calcium dynamics, and nsEP-induced contraction exhibit exclusive responses to both MP and BP nsEP exposure. Overall the results suggest in vivo nsEP application may elicit unique physiology and field applications compared to longer pulse duration electroporation.

  7. Comparison of the calcium release channel of cardiac and skeletal muscle sarcoplasmic reticulum by target inactivation analysis

    International Nuclear Information System (INIS)

    McGrew, S.G.; Inui, Makoto; Chadwick, C.C.; Boucek, R.J. Jr.; Jung, C.Y.; Fleischer, S.

    1989-01-01

    The calcium release channel of sarcoplasmic reticulum which triggers muscle contraction in excitation-contraction coupling has recently been isolated. The channel has been found to be morphologically identical with the feet structures of the junctional face membrane of terminal cisternae and consists of an oligomer of a unique high molecular weight polypeptide. In this study, the authors compare the target size of the calcium release channel from heart and skeletal muscle using target inactivation analysis. The target molecular weights of the calcium release channel estimated by measuring ryanodine binding after irradiation are similar for heart (139,000) and skeletal muscle (143,000) and are smaller than the monomeric unit (estimated to be about 360,000). The target size, estimated by measuring polypeptide remaining after irradiation, was essentially the same for heart and skeletal muscle, 1,061,000 and 1,070,000, respectively, indicating an oligomeric association of protomers. Thus, the calcium release channel of both cardiac and skeletal muscle reacts uniquely with regard to target inactivation analysis in that (1) the size by ryanodine binding is smaller than the monomeric unit and (2) a single hit leads to destruction of more than one polypeptide, by measuring polypeptide remaining. The target inactivation analysis studies indicate that heart and skeletal muscle receptors are structurally very similar

  8. Purification and reconstitution of the calcium antagonist receptor of the voltage-sensitive calcium channel

    International Nuclear Information System (INIS)

    Curtis, B.M.

    1986-01-01

    Treatment with digitonin solubilized the calcium antagonist receptor as a stable complex with [ 3 H]nitrendipine from rat brain membranes. The solubilized complex retains allosteric coupling to binding sites for diltiazem, verapamil, and inorganic calcium antagonist sites. The calcium antagonist receptor from cardiac sarcolemma and the transverse-tubule membrane of skeletal muscle is also efficiently solubilized with digitonin and the receptor in all three tissues is a large glycoprotein with a sedimentation coefficient of 20 S. The T-tubule calcium antagonist receptor complex was extensively purified by a combination of chromatography on WGA-Sepharose, ion exchange chromatography, and sedimentation on sucrose gradients to yield preparations estimated to be 41% homogeneous by specific activity and 63% homogeneous by SDS gel electrophoresis. Analysis of SDS gels detect three polypeptides termed α(Mr 135,000), β(Mr 50,000), and γ(Mr 32,000) as noncovalently associated subunits of the calcium antagonist receptor. The α and γ subunits are glycosylated polypeptides, and the molecular weight of the core polypeptides are 108,000 and 24,000 respectively. The calcium antagonist receptor was reconstituted into a phospholipid bilayer by adding CHAPS and exogeneous lipid to the purified receptor followed by rapid detergent removal. This procedure resulted in the incorporation of 45% of the calcium antagonist receptor into closed phospholipid vesicles. Data suggests that the α, β, and γ subunits of the T-tubule calcium antagonist receptor are sufficient to form a functional calcium channel

  9. Contracture Coupling of Slow Striated Muscle in Non-Ionic Solutions and Replacement of Calcium, Sodium, and Potassium

    Science.gov (United States)

    Irwin, Richard L.; Hein, Manfred M.

    1964-01-01

    The development of contracture related to changes of ionic environment (ionic contracture coupling) has been studied in the slowly responding fibers of frog skeletal muscle. When deprived of external ions for 30 minutes by use of solutions of sucrose, mannitol, or glucose, the slow skeletal muscle fibers, but not the fast, develop pronounced and easily reversible contractures. Partial replacement of the non-ionic substance with calcium or sodium reduces the development of the contractures but replacement by potassium does not. The concentration of calcium necessary to prevent contracture induced by a non-ionic solution is greater than that needed to maintain relaxation in ionic solutions. To suppress the non-ionic-induced contractures to the same extent as does calcium requires several fold higher concentrations of sodium. Two types of ionic contracture coupling occur in slow type striated muscle fibers: (a) a calcium deprivation type which develops maximally at full physiological concentration of external sodium, shows a flow rate dependency for the calcium-depriving fluid, and is lessened when the sodium concentration is decreased by replacement with sucrose; (b) a sodium deprivation type which occurs maximally without external sodium, is lessened by increasing the sodium concentration, and has no flow rate dependency for ion deprivation. Both types of contracture are largely prevented by the presence of sufficient calcium. There thus seem to be calcium- and sodium-linked processes at work in the ionic contracture coupling of slow striated muscle. PMID:14127603

  10. Application of Response Surface Methodology to study the effect of different calcium sources in fish muscle-alginate restructured products

    Directory of Open Access Journals (Sweden)

    Helena María Moreno

    2011-03-01

    Full Text Available Sodium alginate needs the presence of calcium ions to gelify. For this reason, the contribution of the calcium source in a fish muscle mince added by sodium alginate, makes gelification possible, resulting a restructured fish product. The three different calcium sources considered were: Calcium Chloride (CC; Calcium Caseinate (CCa; and Calcium lactate (CLa. Several physical properties were analyzed, including mechanical properties, colour and cooking loss. Response Surface Methodology (RSM was used to determine the contribution of different calcium sources to a restructured fish muscle. The calcium source that modifies the system the most is CC. A combination of CC and sodium alginate weakened mechanical properties as reflected in the negative linear contribution of sodium alginate. Moreover, CC by itself increased lightness and cooking loss. The mechanical properties of restructured fish muscle elaborated were enhanced by using CCa and sodium alginate, as reflected in the negative linear contribution of sodium alginate. Also, CCa increased cooking loss. The role of CLa combined with sodium alginate was not so pronounced in the system discussed here.

  11. Fatigue in isometric contraction in a single muscle fibre: a compartmental calcium ion flow model.

    Science.gov (United States)

    Kothiyal, K P; Ibramsha, M

    1986-01-01

    Fatigue in muscle is a complex biological phenomenon which has so far eluded a definite explanation. Many biochemical and physiological models have been suggested in the literature to account for the decrement in the ability of muscle to sustain a given level of force for a long time. Some of these models have been critically analysed in this paper and are shown to be not able to explain all the experimental observations. A new compartmental model based on the intracellular calcium ion movement in muscle is proposed to study the mechanical responses of a muscle fibre. Computer simulation is performed to obtain model responses in isometric contraction to an impulse and a train of stimuli of long duration. The simulated curves have been compared with experimentally observed mechanical responses of the semitendinosus muscle fibre of Rana pipiens. The comparison of computed and observed responses indicates that the proposed calcium ion model indeed accounts very well for the muscle fatigue.

  12. Increased skeletal muscle capillarization enhances insulin sensitivity

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Laub, Lasse; Vedel, Kenneth

    2014-01-01

    Increased skeletal muscle capillarization is associated with improved glucose tolerance and insulin sensitivity. However, a possible causal relationship has not previously been identified. We therefore investigated whether increased skeletal muscle capillarization increases insulin sensitivity....... Skeletal muscle specific angiogenesis was induced by adding the α1-adrenergic receptor antagonist Prazosin to the drinking water of Sprague Dawley rats (n=33) while 34 rats served as controls. Insulin sensitivity was measured ≥40 h after termination of the 3-week Prazosin treatment, which ensured...... that Prazosin was cleared from the blood stream. Whole-body insulin sensitivity was measured in conscious, unrestrained rats by hyperinsulinemic euglycemic clamp. Tissue specific insulin sensitivity was assessed by administration of 2-deoxy-[(3)H]-Glucose during the plateau phase of the clamp. Whole...

  13. Effects of thyroid hormones on calcium contents and 45Ca exchange in rat skeletal muscle

    International Nuclear Information System (INIS)

    Everts, M.E.; Clausen, T.

    1986-01-01

    In 4-wk-old rats, pretreatment with L-triiodothyronine (T3) increased calcium content by 100% and the 30-min 45 Ca uptake by 64% in the soleus, whereas the extensor digitorum longus (EDL) muscle showed no significant change. The stimulation of 45 Ca uptake was resistant to dantrolene and methoxyverapamil (D600) and could not be attributed to altered permeability of the plasma membrane to calcium, but appears to reflect increased net accumulation of calcium in intracellular pools. The stimulating effect of high K0 (20 mM) on 45 Ca uptake was more pronounced in soleus than in EDL and could be suppressed by dantrolene and D600. The results indicate that the effects of T3 on calcium content and 45 Ca exchange are primarily exerted on muscles containing a large proportion of slow-twitch, oxidative fibers. In soleus muscle from hyperthyroid rats the stimulating effects of high K0 on 45 Ca uptake and lactate production were, respectively, 3.4 and 4.5 times larger than in those obtained from controls. These observations further support the earlier proposed idea [C. van Hardeveld and T. Clausen. Am. J. Physiol. 247 (Endocrinol. Metab. 10): E421-E430, 1984] that the metabolic effects of thyroid hormone depend on the availability of cellular as well as extracellular calcium

  14. Effects of thyroid hormones on calcium contents and 45Ca exchange in rat skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Everts, M.E.; Clausen, T.

    1986-09-01

    In 4-wk-old rats, pretreatment with L-triiodothyronine (T3) increased calcium content by 100% and the 30-min /sup 45/Ca uptake by 64% in the soleus, whereas the extensor digitorum longus (EDL) muscle showed no significant change. The stimulation of /sup 45/Ca uptake was resistant to dantrolene and methoxyverapamil (D600) and could not be attributed to altered permeability of the plasma membrane to calcium, but appears to reflect increased net accumulation of calcium in intracellular pools. The stimulating effect of high K0 (20 mM) on /sup 45/Ca uptake was more pronounced in soleus than in EDL and could be suppressed by dantrolene and D600. The results indicate that the effects of T3 on calcium content and /sup 45/Ca exchange are primarily exerted on muscles containing a large proportion of slow-twitch, oxidative fibers. In soleus muscle from hyperthyroid rats the stimulating effects of high K0 on /sup 45/Ca uptake and lactate production were, respectively, 3.4 and 4.5 times larger than in those obtained from controls. These observations further support the earlier proposed idea (C. van Hardeveld and T. Clausen. Am. J. Physiol. 247 (Endocrinol. Metab. 10): E421-E430, 1984) that the metabolic effects of thyroid hormone depend on the availability of cellular as well as extracellular calcium.

  15. Nitrite-cured color and phosphate-mediated water binding of pork muscle proteins as affected by calcium in the curing solution.

    Science.gov (United States)

    Zhao, Jing; Xiong, Youling L

    2012-07-01

    Calcium is a mineral naturally present in water and may be included into meat products during processing thereby influencing meat quality. Phosphates improve myofibril swelling and meat water-holding capacity (WHC) but can be sensitive to calcium precipitation. In this study, pork shoulder meat was used to investigate the impact of calcium at 0, 250, and 500 ppm and phosphate type [sodium pyrophosphate (PP), tripolyphosphate (TPP), and hexametaphopshate (HMP)] at 10 mM on nitrite-cured protein extract color at various pH levels (5.5, 6.0, and 6.5) and crude myofibril WHC at pH 6.0. Neither calcium nor phosphates present in the curing brines significantly affected the cured color. Increasing the pH tended to promote the formation of metmyoglobin instead of nitrosylmyoglobin. The ability of PP to enhance myofibril WHC was hampered (P meat products. Although not affecting nitrite-cured color, calcium hampers the efficacy of phosphates to promote water binding by muscle proteins, underscoring the importance of water quality for brine-enhanced meat products. © 2012 Institute of Food Technologists®

  16. Calcium inhibition of the NAD+-linked isocitrate dehydrogenase from blowfly flight muscle mitochondria.

    Science.gov (United States)

    Bulos, B A; Thomas, B J; Sacktor, B

    1984-08-25

    Free Ca2+ was shown to inhibit the NAD+-isocitrate dehydrogenase from blowfly flight muscle mitochondria. Inhibition by free Ca2+ concentrations of 40 microM or greater was found in the absence or presence of ADP and citrate, two known activators of the enzyme. Calcium decreased the affinity of the enzyme for its substrate, the magnesium DL-isocitrate chelate; no change in the apparent V of the reaction was observed. Calcium was inhibitory when activity was measured in the presence of fixed concentrations of magnesium DL-isocitrate chelate in the presence of several fixed concentrations of either free isocitrate3-, an activator, or free Mg2+, an inhibitor of the enzyme. That NAD+-isocitrate dehydrogenase from blowfly flight muscle mitochondria was not activated by micromolar free Ca2+ is consistent with the view that calcium does not play a role in regulating the flux through the tricarboxylate cycle in this species.

  17. Long-Term Blocking of Calcium Channels in mdx Mice Results in Differential Effects on Heart and Skeletal Muscle

    DEFF Research Database (Denmark)

    Jørgensen, Louise Helskov; Blain, Alison; Greally, Elizabeth

    2011-01-01

    in older mice. However, streptomycin treatment did not show positive effects in diaphragm or heart muscle, and heart pathology was worsened. Thus, blocking calcium channels even before disease onset does not prevent dystrophy, making this an unlikely treatment for DMD. These findings highlight......The disease mechanisms underlying dystrophin-deficient muscular dystrophy are complex, involving not only muscle membrane fragility, but also dysregulated calcium homeostasis. Specifically, it has been proposed that calcium channels directly initiate a cascade of pathological events by allowing...... calcium ions to enter the cell. The objective of this study was to investigate the effect of chronically blocking calcium channels with the aminoglycoside antibiotic streptomycin from onset of disease in the mdx mouse model of Duchenne muscular dystrophy (DMD). Treatment in utero onwards delayed onset...

  18. 43. Calmodulin regulating calcium sensitivity of Na channels

    Directory of Open Access Journals (Sweden)

    R. Vegiraju

    2016-07-01

    Full Text Available By extrapolating information from existing research and observing previous assumptions regarding the structure of the Na Channel, this experiment was conducted under the hypothesis that the Na Channel is in part regulated by the calmodulin protein, as a result proving calcium sensitivity of the Na Channel. Furthermore, we assume that there is a one to one stoichiometry between the Na Channel and the Calmodulin. There has been extensive research into the functionality and structure of sodium ion channels (Na channels, as several diseases are associated with the lack of regulation of sodium ions, that is caused by the disfunction of these Na channels. However, one highly controversial matter in the field is the importance of the protein calmodulin (CaM and calcium in Na channel function. Calmodulin is a protein that is well known for its role as a calcium binding messenger protein, and that association is believed to play an indirect role in regulating the Na channel through the Na channel’s supposed calcium sensitivity. While there are proponents for both sides, there has been relatively little research that provides strong evidence for either case. In this experiment, the effect of calmodulin on NaV 1.5 is tested by preparing a set of cardiac cells (of the human specie with the NaV 1.5 C-Termini and CaM protein, which were then to be placed in solutions with varying concentrations of calcium. We took special care to test multiple concentrations of calcium, as previous studies have tested very low concentrations, with Manu Ben-Johny’s team from the John Hopkins laboratory in particular testing up to a meager 50 micromolar, despite producing a well-respected paper (By comparison, the average Na channel can naturally sustain a concentration of almost 1-2 millimolar and on some occasions, reaching even higher concentrations. After using light scattering and observing the signals given off by the calcium interacting with these Nav1.5/Ca

  19. Skeletal Muscle Angiogenesis and Its Relation to Insulin Sensitivity

    DEFF Research Database (Denmark)

    Lindqvist, Anna Maria Charlotte K

    mediator of angiogenesis) are reduced in insulin resistant individuals. Exercise training can improve skeletal muscle capillarization and the angiogenic potential and physical activity has also been proven to enhance muscle insulin sensitivity. Increased skeletal muscle capillarization is associated......) or by overexpression of VEGF-A in the tibialis anterior muscle (transfection; study II) and the effect of the increased muscle capillarization on muscle insulin sensitivity was examined. In study I skeletal muscle specific angiogenesis was induced by administering an α1-adrenergic antagonist (prazosin) to healthy...

  20. Cultured smooth muscle cells of the human vesical sphincter are more sensitive to histamine than are detrusor smooth muscle cells.

    Science.gov (United States)

    Neuhaus, Jochen; Oberbach, Andreas; Schwalenberg, Thilo; Stolzenburg, Jens-Uwe

    2006-05-01

    To compare histamine receptor expression in cultured smooth muscle cells from the human detrusor and internal sphincter using receptor-specific agonists. Smooth muscle cells from the bladder dome and internal sphincter were cultured from 5 male patients undergoing cystectomy for bladder cancer therapy. Calcium transients in cells stimulated with carbachol, histamine, histamine receptor 1 (H1R)-specific heptanecarboxamide (HTMT), dimaprit (H2R), and R-(alpha)-methylhistamine (H3R) were measured by calcium imaging. Histamine receptor proteins were detected by Western blot analysis and immunocytochemistry. H1R, H2R, and H3R expression was found in tissue and cultured cells. Carbachol stimulated equal numbers of detrusor and sphincter cells (60% and 51%, respectively). Histamine stimulated significantly more cells than carbachol in detrusor (100%) and sphincter (99.34%) cells. Calcium responses to carbachol in detrusor and sphincter cells were comparable and did not differ from those to histamine in detrusor cells. However, histamine and specific agonists stimulated more sphincter cells than did carbachol (P <0.001), and the calcium increase was greater in sphincter cells than in detrusor cells. Single cell analysis revealed comparable H2R responses in detrusor and sphincter cells, but H1R and H3R-mediated calcium reactions were significantly greater in sphincter cells. Histamine very effectively induces calcium release in smooth muscle cells. In sphincter cells, histamine is even more effective than carbachol regarding the number of reacting cells and the intracellular calcium increase. Some of the variability in the outcome of antihistaminic interstitial cystitis therapies might be caused by the ineffectiveness of the chosen antihistaminic or unintentional weakening of sphincteric function.

  1. Specific association of growth-associated protein 43 with calcium release units in skeletal muscles of lower vertebrates

    Directory of Open Access Journals (Sweden)

    G.A. Caprara

    2014-10-01

    Full Text Available Growth-associated protein 43 (GAP43, is a strictly conserved protein among vertebrates implicated in neuronal development and neurite branching. Since GAP43 structure contains a calmodulin-binding domain, this protein is able to bind calmodulin and gather it nearby membrane network, thus regulating cytosolic calcium and consequently calcium-dependent intracellular events. Even if for many years GAP43 has been considered a neuronal-specific protein, evidence from different laboratories described its presence in myoblasts, myotubes and adult skeletal muscle fibers. Data from our laboratory showed that GAP43 is localized between calcium release units (CRUs and mitochondria in mammalian skeletal muscle suggesting that, also in skeletal muscle, this protein can be a key player in calcium/calmodulin homeostasis. However, the previous studies could not clearly distinguish between a mitochondrion- or a triad-related positioning of GAP43. To solve this question, the expression and localization of GAP43 was studied in skeletal muscle of Xenopus and Zebrafish known to have triads located at the level of the Z-lines and mitochondria not closely associated with them. Western blotting and immunostaining experiments revealed the expression of GAP43 also in skeletal muscle of lower vertebrates (like amphibians and fishes, and that the protein is localized closely to the triad junction. Once more, these results and GAP43 structural features, support an involvement of the protein in the dynamic intracellular Ca2+ homeostasis, a common conserved role among the different species.

  2. Myogenic activation and calcium sensitivity of cannulated rat mesenteric small arteries

    NARCIS (Netherlands)

    VanBavel, E.; Wesselman, J. P.; Spaan, J. A.

    1998-01-01

    Pressure-induced activation of vascular smooth muscle may involve electromechanical as well as nonelectromechanical coupling mechanisms. We compared calcium-tone relations of cannulated rat mesenteric small arteries during pressure-induced activation, depolarization (16 to 46 mmol/L K+), and

  3. Kinetic identification of an intracellular calcium compartment sensitive to phosphate and dinitrophenol in intact isolated rabbit aorta

    International Nuclear Information System (INIS)

    Hai, C.M.; Phair, R.D.

    1986-01-01

    Previous work from this laboratory revealed the presence of at least three distinct intracellular calcium compartments in intact segments of rabbit aorta. In this study one of these intracellular compartments is shown to be sensitive to dinitrophenol and to increased extracellular phosphate. Intact aortic segments were loaded with 45 Ca in bicarbonate-buffered physiologic salt solution for 1 hour, and then transferred to a flow-through chamber perfused with physiologic salt solution. Effluent from the chamber was collected for 8 hours, and 45 Ca efflux curves were analyzed using compartmental analysis. When aortic segments were loaded and washed out in dinitrophenol, the slowest component of the efflux curve was less prominent; in high phosphate it was more prominent. The rate constant changes required to account for these data were primarily in the exchange between the cytosolic and slowest intracellular calcium compartment, suggesting that the slowest calcium compartment resolved during the 8-hour washout was mitochondrial. This compartment contained 5.4 +/- 3.2 nmol calcium/g wet wt. tissue. The calcium flux across its membranes was 0.32 +/- 0.04 nmol min-1g-1. Because this flux is much smaller than the plasma-membrane calcium flux, we suggest that, in normal physiological circumstances, plasma-membrane extrusion is more important for the removal of Ca from the smooth muscle cytosol than is uptake into this slow intracellular compartment

  4. Muscle as an osteoinductive niche for local bone formation with the use of a biphasic calcium sulphate/hydroxyapatite biomaterial

    DEFF Research Database (Denmark)

    Raina, D. B.; Gupta, A.; Petersen, M. M.

    2016-01-01

    Objectives: We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth...... factors secreted from local bone cells induce osteoblastic differentiation of muscle cells. Materials and Methods: We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra...

  5. Enhanced muscle insulin sensitivity after contraction/exercise is mediated by AMPK

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus; Munk-Hansen, Nanna; Birk, Jesper Bratz

    2017-01-01

    muscle and whole body insulin sensitivity in wild type (WT) mice, respectively. These effects were not found in AMPKα1α2 muscle-specific knockout mice. Prior in situ contraction did not increase insulin sensitivity in m. soleus from either genotype. Improvement in muscle insulin sensitivity....... Collectively, our data suggest that the AMPK-TBC1D4 signaling axis is likely mediating the improved muscle insulin sensitivity after contraction/exercise and illuminates an important and physiological relevant role of AMPK in skeletal muscle.......Earlier studies have demonstrated that muscle insulin sensitivity to stimulate glucose uptake is enhanced several hours after an acute bout of exercise. Using 5-aminoimidazole-4-carboxamide-ribonucleotide (AICAR), we recently demonstrated that prior activation of AMPK is sufficient to increase...

  6. Effects of chronic administration of clenbuterol on contractile properties and calcium homeostasis in rat extensor digitorum longus muscle.

    Science.gov (United States)

    Sirvent, Pascal; Douillard, Aymerick; Galbes, Olivier; Ramonatxo, Christelle; Py, Guillaume; Candau, Robin; Lacampagne, Alain

    2014-01-01

    Clenbuterol, a β2-agonist, induces skeletal muscle hypertrophy and a shift from slow-oxidative to fast-glycolytic muscle fiber type profile. However, the cellular mechanisms of the effects of chronic clenbuterol administration on skeletal muscle are not completely understood. As the intracellular Ca2+ concentration must be finely regulated in many cellular processes, the aim of this study was to investigate the effects of chronic clenbuterol treatment on force, fatigue, intracellular calcium (Ca2+) homeostasis and Ca2+-dependent proteolysis in fast-twitch skeletal muscles (the extensor digitorum longus, EDL, muscle), as they are more sensitive to clenbuterol-induced hypertrophy. Male Wistar rats were chronically treated with 4 mg.kg-1 clenbuterol or saline vehicle (controls) for 21 days. Confocal microscopy was used to evaluate sarcoplasmic reticulum Ca2+ load, Ca2+-transient amplitude and Ca2+ spark properties. EDL muscles from clenbuterol-treated animals displayed hypertrophy, a shift from slow to fast fiber type profile and increased absolute force, while the relative force remained unchanged and resistance to fatigue decreased compared to control muscles from rats treated with saline vehicle. Compared to control animals, clenbuterol treatment decreased Ca2+-transient amplitude, Ca2+ spark amplitude and frequency and the sarcoplasmic reticulum Ca2+ load was markedly reduced. Conversely, calpain activity was increased by clenbuterol chronic treatment. These results indicate that chronic treatment with clenbuterol impairs Ca2+ homeostasis and this could contribute to the remodeling and functional impairment of fast-twitch skeletal muscle.

  7. Pharmacological analysis of calcium antagonist receptors

    International Nuclear Information System (INIS)

    Reynolds, I.J.

    1987-01-01

    This work focuses on two aspects of the action of calcium antagonist drugs, namely, the interaction of drugs with receptors for verapamil-like calcium antagonists, and the interactions of drugs with voltage-sensitive calcium fluxes in rat brain synaptosomes. From binding studies I have found that the ligand of choice for labeling the verapamil receptor is (-)[ 3 H]desmethoxy-verapamil. This drug labels potently, reversibly and stereoselectively two receptors in membranes prepared from rat brain and rabbit skeletal muscle tissues. In equilibrium studies dihydropyridine calcium antagonists interact in a non-competitive fashion, while many non-DHPs are apparently competitive. In-depth kinetic studies in skeletal muscle membranes indicate that the two receptors are linked in a negative heterotropic fashion, and that low-affinity binding of (-) [ 3 H]desmethoxy-verapamil may be to the diltiazem receptor. However, these studies were not able to distinguish between the hypothesis that diltiazem binds to spatially separate, allosterically coupled receptors, and the hypothesis that diltiazem binds to a subsite of the verapamil receptor

  8. [Mg2+, ATP-dependent plasma membrane calcium pump of smooth muscle cells. I. Structural organization and properties].

    Science.gov (United States)

    Veklich, T O; Mazur, Iu Iu; Kosterin, S O

    2015-01-01

    Tight control of cytoplasm Ca2+ concentration is essential in cell functioning. Changing of Ca2+ concentration is thorough in smooth muscle cells, because it determines relaxation/constraint process. One of key proteins which control Ca2+ concentration in cytoplasm is Mg2+, ATP-dependent plasma membrane calcium pump. Thus, it is important to find compoumds which allowed one to change Mg2+, ATP-dependent plasma membrane calcium pump activity, as long as this topic is of current interest in biochemical research which regards energy and pharmacomechanical coupling mechanism of muscle excitation and contraction. In this article we generalized literatute and own data about properties of smooth muscle cell plasma membrane Ca(2+)-pump. Stuctural oganization, kinetical properties and molecular biology are considered.

  9. Functional Modeling of the Shift in Cellular Calcium Dynamics at the Onset of Synchronization in Smooth Muscle Cells

    DEFF Research Database (Denmark)

    Postnov, D E; Brings Jacobsen, J C; von Holstein-Rathlou, Niels-Henrik

    2011-01-01

    In the present paper we address the nature of synchronization properties found in populations of mesenteric artery smooth muscle cells. We present a minimal model of the onset of synchronization in the individual smooth muscle cell that is manifested as a transition from calcium waves to whole......-cell calcium oscillations. We discuss how different types of ion currents may influence both amplitude and frequency in the regime of whole-cell oscillations. The model may also explain the occurrence of mixed-mode oscillations and chaotic oscillations frequently observed in the experimental system....

  10. Analysis of Spontaneous and Nerve-Evoked Calcium Transients in Intact Extraocular Muscles in Vitro

    Science.gov (United States)

    Feng, Cheng-Yuan; Hennig, Grant W.; Corrigan, Robert D.; Smith, Terence K.; von Bartheld, Christopher S.

    2012-01-01

    Extraocular muscles (EOMs) have unique calcium handling properties, yet little is known about the dynamics of calcium events underlying ultrafast and tonic contractions in myofibers of intact EOMs. Superior oblique EOMs of juvenile chickens were dissected with their nerve attached, maintained in oxygenated Krebs buffer, and loaded with fluo-4. Spontaneous and nerve stimulation-evoked calcium transients were recorded and, following calcium imaging, some EOMs were double-labeled with rhodamine-conjugated alpha-bungarotoxin (rhBTX) to identify EOM myofiber types. EOMs showed two main types of spontaneous calcium transients, one slow type (calcium waves with 1/2max duration of 2–12 s, velocity of 25–50 μm/s) and two fast “flash-like” types (Type 1, 30–90 ms; Type 2, 90–150 ms 1/2max duration). Single pulse nerve stimulation evoked fast calcium transients identical to the fast (Type 1) calcium transients. Calcium waves were accompanied by a local myofiber contraction that followed the calcium transient wavefront. The magnitude of calcium-wave induced myofiber contraction far exceeded those of movement induced by nerve stimulation and associated fast calcium transients. Tetrodotoxin eliminated nerve-evoked transients, but not spontaneous transients. Alpha-bungarotoxin eliminated both spontaneous and nerve-evoked fast calcium transients, but not calcium waves, and caffeine increased wave activity. Calcium waves were observed in myofibers lacking spontaneous or evoked fast transients, suggestive of multiply-innervated myofibers, and this was confirmed by double-labeling with rhBTX. We propose that the abundant spontaneous calcium transients and calcium waves with localized contractions that do not depend on innervation may contribute to intrinsic generation of tonic functions of EOMs. PMID:22579493

  11. Muscle triacylglycerol and hormone-sensitive lipase activity in untrained and trained human muscles

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Biba, Taus O; Galbo, Henrik

    2006-01-01

    During exercise, triacylglycerol (TG) is recruited in skeletal muscles. We hypothesized that both muscle hormone-sensitive lipase (HSL) activity and TG recruitment would be higher in trained than in untrained subjects in response to prolonged exercise. Healthy male subjects (26 +/- 1 years, body ...

  12. Calcium-sensitive immunoaffinity chromatography

    DEFF Research Database (Denmark)

    Henriksen, Maiken L; Lindhardt Madsen, Kirstine; Skjoedt, Karsten

    2014-01-01

    Immunoaffinity chromatography is a powerful fractionation technique that has become indispensable for protein purification and characterization. However, it is difficult to retrieve bound proteins without using harsh or denaturing elution conditions, and the purification of scarce antigens...... to homogeneity may be impossible due to contamination with abundant antigens. In this study, we purified the scarce, complement-associated plasma protein complex, collectin LK (CL-LK, complex of collectin liver 1 and kidney 1), by immunoaffinity chromatography using a calcium-sensitive anti-collectin-kidney-1 m...... chromatography was superior to the traditional immunoaffinity chromatographies and resulted in a nine-fold improvement of the purification factor. The technique is applicable for the purification of proteins in complex mixtures by single-step fractionation without the denaturation of eluted antigens...

  13. SENSITIVE EFFECTS OF POTASSIUM AND CALCIUM CHANNEL BLOCKING AND ATP-SENSITIVE POTASSIUM CHANNEL ACTIVATORS ON SEMINAL VESICLE SMOOTH MUSCLE CONTRACTIONS

    Directory of Open Access Journals (Sweden)

    H SADRAEI

    2000-12-01

    Full Text Available Background. Seminal vesicle smooth muscle contraction is mediated through sympathetic and parasympathetic neurons activity. Although seminal vesicle plays an important role in male fertility, but little attention is given to mechanism involved in contraction of this organ.
    Methods. In this study effects of drugs which activate ATP - sensitive K channels and blockers of K and Ca channels were examined on contraction of guinea - pig isolated seminal vesicle due to electrical filled stimulation (EFS, noradrenaline, carbachol and KCI.
    Results. The K channel blocker tetraethyl ammonium potentate the EFS responses at all frequencies, while, the ATP - sensitive K channel inhibitor glibenclamide and the K channel opener levcromakalim, diazoxide, minoxidil and Ca channel blocker nifedipine all had relaxant effect on guinea - pig seminal vesicle.
    Discussion. This study indicate that activities of K and Ca channels is important in regulation of seminal vesicle contraction due to nerve stimulation, noradrenaline or carbachol.

  14. Role of T-type calcium channels in myogenic tone of skeletal muscle resistance arteries

    DEFF Research Database (Denmark)

    VanBavel, Ed; Sorop, Oana; Andreasen, Ditte

    2002-01-01

    T-type calcium channels may be involved in the maintenance of myogenic tone. We tested their role in isolated rat cremaster arterioles obtained after CO(2) anesthesia and decapitation. Total RNA was analyzed by RT-PCR and Southern blotting for calcium channel expression. We observed expression...... of voltage-operated calcium (Ca(V)) channels Ca(V)3.1 (T-type), Ca(V)3.2 (T-type), and Ca(V)1.2 (L-type) in cremaster arterioles (n = 3 rats). Amplification products were observed only in the presence of reverse transcriptase and cDNA. Concentration-response curves of the relatively specific L-type blocker......); K(+) -5.4 +/- 0.3 (n = 4); all log(IC(50)) P maintenance of myogenic tone in rat cremaster muscle arterioles....

  15. Porcine malignant hyperthermia susceptibility: hypersensitive calcium-release mechanism of skeletal muscle sarcoplasmic reticulum.

    Science.gov (United States)

    O'Brien, P J

    1986-01-01

    This study tested the hypothesis that calcium-release from sarcoplasmic reticulum isolated from malignant hyperthermia swine had abnormal concentration-dependency on release modulators. Halothane stimulated half-maximal calcium-release at similar concentrations for malignant hyperthermia and control sarcoplasmic reticulum (0.10 +/- 0.04 mM). However, concentrations causing half-maximal calcium-release were lower for malignant hyperthermia sarcoplasmic reticulum (P less than 0.001) by an order of magnitude for Ca2+ (28.1 +/- 8.3 versus 1.23 +/- 0.45 nM), adenosine triphosphate (0.33 +/- 0.09 versus 0.023 +/- 0.014 mM) and caffeine (7.79 +/- 1.56 versus 0.80 +/- 0.44 mM). Half-maximal inhibition by Mg2+ occurred at threefold higher concentrations for malignant hyperthermia sarcoplasmic reticulum (0.23 +/- 0.02 versus 0.78 +/- 0.17 mM). The Ca2+-sensitivity curves for calcium-release by sarcoplasmic reticulum isolated from heterozygotes for the malignant hyperthermia-defect were indistinguishable from the averages of the curves for controls and malignant hyperthermia-homozygotes. Results of this study suggest that malignant hyperthermia is initiated due to a hypersensitive calcium-release mechanism which is inherited in an autosomal, codominant pattern and may be diagnosed using calcium-release sensitivity-tests on isolated sarcoplasmic reticulum. Images Fig. 1. PMID:3742367

  16. Activation of purified calcium channels by stoichiometric protein phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Nunoki, K.; Florio, V.; Catterall, W.A. (Univ. of Washington, Seattle (USA))

    1989-09-01

    Purified dihydropyridine-sensitive calcium channels from rabbit skeletal muscle were reconstituted into phosphatidylcholine vesicles to evaluate the effect of phosphorylation by cyclic AMP-dependent protein kinase (PK-A) on their function. Both the rate and extent of {sup 45}Ca{sup 2+} uptake into vesicles containing reconstituted calcium channels were increased severalfold after incubation with ATP and PK-A. The degree of stimulation of {sup 45}Ca{sup 2+} uptake was linearly proportional to the extent of phosphorylation of the alpha 1 and beta subunits of the calcium channel up to a stoichiometry of approximately 1 mol of phosphate incorporated into each subunit. The calcium channels activated by phosphorylation were determined to be incorporated into the reconstituted vesicles in the inside-out orientation and were completely inhibited by low concentrations of dihydropyridines, phenylalkylamines, Cd{sup 2+}, Ni{sup 2+}, and Mg{sup 2+}. The results demonstrate a direct relationship between PK-A-catalyzed phosphorylation of the alpha 1 and beta subunits of the purified calcium channel and activation of the ion conductance activity of the dihydropyridine-sensitive calcium channels.

  17. Activation of purified calcium channels by stoichiometric protein phosphorylation

    International Nuclear Information System (INIS)

    Nunoki, K.; Florio, V.; Catterall, W.A.

    1989-01-01

    Purified dihydropyridine-sensitive calcium channels from rabbit skeletal muscle were reconstituted into phosphatidylcholine vesicles to evaluate the effect of phosphorylation by cyclic AMP-dependent protein kinase (PK-A) on their function. Both the rate and extent of 45 Ca 2+ uptake into vesicles containing reconstituted calcium channels were increased severalfold after incubation with ATP and PK-A. The degree of stimulation of 45 Ca 2+ uptake was linearly proportional to the extent of phosphorylation of the alpha 1 and beta subunits of the calcium channel up to a stoichiometry of approximately 1 mol of phosphate incorporated into each subunit. The calcium channels activated by phosphorylation were determined to be incorporated into the reconstituted vesicles in the inside-out orientation and were completely inhibited by low concentrations of dihydropyridines, phenylalkylamines, Cd 2+ , Ni 2+ , and Mg 2+ . The results demonstrate a direct relationship between PK-A-catalyzed phosphorylation of the alpha 1 and beta subunits of the purified calcium channel and activation of the ion conductance activity of the dihydropyridine-sensitive calcium channels

  18. Calcium: the molecular basis of calcium action in biology and medicine

    National Research Council Canada - National Science Library

    Pochet, Roland; Donato, Rosario

    2000-01-01

    ... of Calcium Calcium Signalling in Excitable Cells Ca2+ Release in Muscle Cells by N. Macrez and J. Mironneau Calcium Signalling in Neurons Exemplified by Rat Sympathetic Ganglion Cells by S.J. M...

  19. Sensitivity of various bone parameters of laying hens to different daily calcium intakes.

    Science.gov (United States)

    Cheng, T K; Coon, C N

    1990-12-01

    Experiments were designed to examine the sensitivity of various bone parameters of laying hens to different levels of calcium intake (2.0, 2.5, 3.0, 3.5, 4.0, and 4.5 g/day). All birds were individually fed 85 g of feed daily. Dry femur weight (DW) and absolute ash weight (AW) of the whole bone (WB), cortical bone (CB), or medullary bone (MB) were reliable indicators of bone status affected by changes in calcium intake. Expressing AW as a percentage of fat-free dry matter (AW/FFDM) or a percentage of dry weight (AW/DW) showed no effect due to different levels of calcium intake. The correlations between CB-AW/FFDM or CB-AW/DW with calcium intake were .05 and -.07, respectively. Bone ash concentration and bone ash per unit volume (AW/VOL, mg/mL) was very sensitive to different levels of calcium intake; the values increased linearly as calcium intake increased from 2 to 4.5 g/day (WB = 316 to 403; CB = 479 to 571; MB = 133 to 213). Bone-breaking force (BBF), bone-bending moment (BBM), bone stress, and BBF/100 g body weight were equally sensitive in indicating bone mineral reserves due to different levels of calcium intake. Regression equations showed that AW/VOL alone (true for WB, CB, and MB) was capable of predicting BBM well (all with R2 greater than .82). However, AW/FFDM did not have predictive power over BBM (CB-AW/FFDM:R2 less than .001). Using daily calcium intake as the predictor, regression lines for BBM, WB-AW, WB-AW/VOL, CB-AW/VOL, and MB-AW/VOL yielded significant slopes of 1.24 kg.cm, .01 g, 17.11 mg/mL, 16.34 mg/mL, and 16.42 mg/mL, respectively.

  20. Observation of the molecular organization of calcium release sites in fast- and slow-twitch skeletal muscle with nanoscale imaging.

    Science.gov (United States)

    Jayasinghe, Isuru D; Munro, Michelle; Baddeley, David; Launikonis, Bradley S; Soeller, Christian

    2014-10-06

    Localization microscopy is a fairly recently introduced super-resolution fluorescence imaging modality capable of achieving nanometre-scale resolution. We have applied the dSTORM variation of this method to image intracellular molecular assemblies in skeletal muscle fibres which are large cells that critically rely on nanoscale signalling domains, the triads. Immunofluorescence staining in fixed adult rat skeletal muscle sections revealed clear differences between fast- and slow-twitch fibres in the molecular organization of ryanodine receptors (RyRs; the primary calcium release channels) within triads. With the improved resolution offered by dSTORM, abutting arrays of RyRs in transverse view of fast fibres were observed in contrast to the fragmented distribution on slow-twitch muscle that were approximately 1.8 times shorter and consisted of approximately 1.6 times fewer receptors. To the best of our knowledge, for the first time, we have quantified the nanometre-scale spatial association between triadic proteins using multi-colour super-resolution, an analysis difficult to conduct with electron microscopy. Our findings confirm that junctophilin-1 (JPH1), which tethers the sarcoplasmic reticulum ((SR) intracellular calcium store) to the tubular (t-) system at triads, was present throughout the RyR array, whereas JPH2 was contained within much smaller nanodomains. Similar imaging of the primary SR calcium buffer, calsequestrin (CSQ), detected less overlap of the triad with CSQ in slow-twitch muscle supporting greater spatial heterogeneity in the luminal Ca2+ buffering when compared with fast twitch muscle. Taken together, these nanoscale differences can explain the fundamentally different physiologies of fast- and slow-twitch muscle. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. Calcium Carbonate

    Science.gov (United States)

    ... Calcium is needed by the body for healthy bones, muscles, nervous system, and heart. Calcium carbonate also ... to your pharmacist or contact your local garbage/recycling department to learn about take-back programs in ...

  2. Mucosal versus muscle pain sensitivity in provoked vestibulodynia

    Directory of Open Access Journals (Sweden)

    Witzeman K

    2015-08-01

    Full Text Available Kathryn Witzeman,1 Ruby HN Nguyen,2 Alisa Eanes,3 Sawsan As-Sanie,4 Denniz Zolnoun51Department of Obstetrics and Gynecology, Denver Health Medical Center, Denver, CO, 2Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, 3Pelvic Pain Research Unit, Division of Advanced Laparoscopy and Pelvic Pain, Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, NC, 4Department of Obstetrics and Gynecology, Division of Minimally Invasive Gynecologic Surgery, University of Michigan, Ann Arbor, MI, 5Department of Obstetrics and Gynecology and Center for Neurosensory Disorders, University of North Carolina, Chapel Hill, NC, USABackground: An estimated 8.3%–16% of women experience vulvovaginal discomfort during their lifetime. Frequently these patients report provoked pain on contact or with attempted intercourse, commonly referred to as provoked vestibulodynia (PVD. Despite the burden of this condition, little is known about its potential etiologies including pelvic floor muscular dysfunction and mucosal components. This knowledge would be beneficial in developing targeted therapies including physical therapy.Objective: To explore the relative contribution of mucosal versus muscle pain sensitivity on pain report from intercourse among women with PVD.Design: In this proof of concept study, 54 women with PVD underwent a structured examination assessing mucosal and pelvic muscle sensitivity.Methods: We examined three mucosal sites in the upper and lower vestibule. Patients were asked to rate their pain on cotton swab palpation of the mucosa using a 10-point visual analog scale. Muscle pain was assessed using transvaginal application of pressure on right and left puborectalis, and the perineal muscle complex. The Gracely pain scale (0–100 was used to assess the severity of pain with intercourse, with women rating the lowest, average, and highest pain levels; a 100 rating the

  3. Deuterium oxide normalizes blood pressure and vascular calcium uptake in Dahl salt-sensitive hypertensive rats

    International Nuclear Information System (INIS)

    Vasdev, S.; Prabhakaran, V.; Sampson, C.A.

    1990-01-01

    This study examined the effect of 25% deuterium oxide in drinking water on systolic blood pressure, uptakes of calcium, and rubidium 86 by aortas of Dahl salt-sensitive rats on 0.4% (low) and 8% (high) sodium chloride (salt) diet. Twenty-four rats were divided into four groups. Groups I and II were on the low salt diet and groups III and IV on the high salt diet from 6 weeks of age. Additionally, at 10 weeks of age groups I and III were placed on 100% water and groups II and IV on 25% deuterium oxide. At 14 weeks, systolic blood pressure, uptakes of calcium, and rubidium 86 by aortas were significantly higher (p less than 0.01) in rats on the high salt diet as compared with those on the low salt diet. Deuterium oxide intake normalized systolic blood pressure and aortic calcium uptake but not aortic rubidium 86 uptake in hypertensive rats on the high salt diet. Deuterium oxide had no effect on blood pressure or aortic calcium uptake in rats on the low salt diet. The parallel increase in systolic blood pressure and vascular calcium uptake suggests that increased calcium uptake mechanisms are associated with hypertension in salt-sensitive Dahl rats. Furthermore, deuterium oxide appears to normalize elevated blood pressure in salt-sensitive hypertensive rats by normalizing elevated vascular (aortic) calcium uptake

  4. Developmental regulation of voltage-sensitive sodium channels in rat skeletal muscle

    International Nuclear Information System (INIS)

    Sherman, S.J.

    1985-01-01

    The developmental regulation of the voltage-sensitive Na + channel in rat skeletal muscle was studied in vivo and in vitro. In triceps surae muscle developing in vivo the development of TTX-sensitive Na + channel occurred primarily during the first three postnatal weeks as determined by the specific binding of [ 3 H]saxitoxin. This development proceeded in two separate phases. The first phase occurs independently of continuing motor neuron innervation and accounts for 60% of the adult density of TTX-sensitive Na + channels. The second phase, which begins about day 11, requires innervation. Muscle cells in primary culture were found to have both TTX-sensitive and insensitive Na + channels. The development of the TTX-sensitive channel, in vitro, paralleled the initial innervation-independent phase of development observed in vivo. The density of TTX-sensitive Na + channels in cultured muscle cells was regulated by electrical activity and cytosolic Ca ++ levels. Pharmacological blockade of the spontaneous electrical activity present in these cells lead to a nearly 2-fold increase in the surface density of TTX-sensitive channels. The turnover time of the TTX-sensitive Na + channel was measured by blocking the incorporation of newly synthesized channels with tunicamycin, an inhibitor of N-linked protein glycosylation. The regulation of channel density by electrical activity, cytosolic Ca ++ levels, and agents affecting cyclic neucleotide levels had no effect on the turnover time of the TTX-sensitive Na + channel, indicating that these regulatory agents instead affect the synthesis of the channel

  5. Role of PKCδ in Insulin Sensitivity and Skeletal Muscle Metabolism

    DEFF Research Database (Denmark)

    Li, Mengyao; Vienberg, Sara G; Bezy, Olivier

    2015-01-01

    Protein kinase C (PKC)δ has been shown to be increased in liver in obesity and plays an important role in the development of hepatic insulin resistance in both mice and humans. In the current study, we explored the role of PKCδ in skeletal muscle in the control of insulin sensitivity and glucose......-body insulin sensitivity and muscle insulin resistance and by 15 months of age improved the age-related decline in whole-body glucose tolerance. At 15 months of age, M-PKCδKO mice also exhibited decreased metabolic rate and lower levels of some proteins of the OXPHOS complex suggesting a role for PKCδ...... in the regulation of mitochondrial mass at older age. These data indicate an important role of PKCδ in the regulation of insulin sensitivity and mitochondrial homeostasis in skeletal muscle with aging....

  6. The Associations between Pain Sensitivity and Knee Muscle Strength in Healthy Volunteers

    DEFF Research Database (Denmark)

    Henriksen, Marius; Klokker, Louise; Bartholdy, Cecilie

    2013-01-01

    lateralis, deltoid, and infrapatellar fat pad. Quadriceps and hamstring muscle strength was assessed isometrically at 60-degree knee flexion using a dynamometer. Associations between pain sensitivity and muscle strength were investigated using multiple regressions including age, gender, and body mass index...... as covariates. Results. Knee extension strength was associated with computer-controlled PPT on the vastus lateralis muscle. Computer-controlled PPTs were significantly correlated between sites (r > 0.72) and with cuff PPT (r > 0.4). Saline induced pain intensity and duration were correlated between sites (r > 0......Objectives. To investigate associations between muscle strength and pain sensitivity among healthy volunteers and associations between different pain sensitivity measures. Methods. Twenty-eight healthy volunteers (21 females) participated. Pressure pain thresholds (PPTs) were obtained from 1...

  7. A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity

    Science.gov (United States)

    Tien, Jason; Peters, Christian J; Wong, Xiu Ming; Cheng, Tong; Jan, Yuh Nung; Jan, Lily Yeh; Yang, Huanghe

    2014-01-01

    TMEM16A forms calcium-activated chloride channels (CaCCs) that regulate physiological processes such as the secretions of airway epithelia and exocrine glands, the contraction of smooth muscles, and the excitability of neurons. Notwithstanding intense interest in the mechanism behind TMEM16A-CaCC calcium-dependent gating, comprehensive surveys to identify and characterize potential calcium sensors of this channel are still lacking. By aligning distantly related calcium-activated ion channels in the TMEM16 family and conducting systematic mutagenesis of all conserved acidic residues thought to be exposed to the cytoplasm, we identify four acidic amino acids as putative calcium-binding residues. Alterations of the charge, polarity, and size of amino acid side chains at these sites alter the ability of different divalent cations to activate the channel. Furthermore, TMEM16A mutant channels containing double cysteine substitutions at these residues are sensitive to the redox potential of the internal solution, providing evidence for their physical proximity and solvent accessibility. DOI: http://dx.doi.org/10.7554/eLife.02772.001 PMID:24980701

  8. A histochemical and X-ray microanalysis study of calcium changes in insect flight muscle degeneration in Solenopsis, the queen fire ant

    International Nuclear Information System (INIS)

    Jones, R.G.; Davis, W.L.; Vinson, S.B.

    1982-01-01

    Potassium pyroantimonate histochemistry, coupled with ethyleneglycoltetraacetic acid (EGTA)-chelation and X-ray microprobe analysis, was employed to localize intracellular calcium binding sites in the normal and degenerating flight musculature in queens of Solenopsis, the fire ant. In normal animals, calcium distribution was light to moderate within myofibrils and mitochondria. In the early contracture stages of the insemination-induced degeneration, both myofilament and mitochondrial calcium loading was markedly increased. In the terminal stages of myofibril breakdown, only Z-lines (isolated or in clusters) with an associated filamentous residue persisted. These complexes were also intensely calcium positive. This study further documents the presence of increased sarcoplasmic calcium during muscle necrosis. Surface membrane defects, mitochondrial calcium overload, and calcium-activated proteases may all be involved in this ''normal'' breakdown process

  9. Nitric oxide is required for the insulin sensitizing effects of contraction in mouse skeletal muscle.

    Science.gov (United States)

    Zhang, Xinmei; Hiam, Danielle; Hong, Yet-Hoi; Zulli, Anthony; Hayes, Alan; Rattigan, Stephen; McConell, Glenn K

    2017-12-15

    People with insulin resistance or type 2 diabetes can substantially increase their skeletal muscle glucose uptake during exercise and insulin sensitivity after exercise. Skeletal muscle nitric oxide (NO) is important for glucose uptake during exercise, although how prior exercise increases insulin sensitivity is unclear. In the present study, we examined whether NO is necessary for normal increases in skeletal muscle insulin sensitivity after contraction ex vivo in mouse muscle. The present study uncovers, for the first time, a novel role for NO in the insulin sensitizing effects of ex vivo contraction, which is independent of blood flow. The factors regulating the increase in skeletal muscle insulin sensitivity after exercise are unclear. We examined whether nitric oxide (NO) is required for the increase in insulin sensitivity after ex vivo contractions. Isolated C57BL/6J mouse EDL muscles were contracted for 10 min or remained at rest (basal) with or without the NO synthase (NOS) inhibition (N G -monomethyl-l-arginine; l-NMMA; 100 μm). Then, 3.5 h post contraction/basal, muscles were exposed to saline or insulin (120 μU ml -1 ) with or without l-NMMA during the last 30 min. l-NMMA had no effect on basal skeletal muscle glucose uptake. The increase in muscle glucose uptake with insulin (57%) was significantly (P contraction (140% increase). NOS inhibition during the contractions had no effect on this insulin-sensitizing effect of contraction, whereas NOS inhibition during insulin prevented the increase in skeletal muscle insulin sensitivity post-contraction. Soluble guanylate cyclase inhibition, protein kinase G (PKG) inhibition or cyclic nucleotide phosphodiesterase inhibition each had no effect on the insulin-sensitizing effect of prior contraction. In conclusion, NO is required for increases in insulin sensitivity several hours after contraction of mouse skeletal muscle via a cGMP/PKG independent pathway. © 2017 The Authors. The Journal of Physiology

  10. Binding of [125I]iodipine to parathyroid cell membranes: Evidence of a dihydropyridine-sensitive calcium channel

    International Nuclear Information System (INIS)

    Jones, J.I.; Fitzpatrick, L.A.

    1990-01-01

    The parathyroid cell is unusual, in that an increase in extracellular calcium concentrations inhibits PTH release. Calcium channels are glycoproteins that span cell membranes and allow entry of extracellular calcium into cells. We have demonstrated that the calcium channel agonist (+)202-791, which opens calcium channels, inhibits PTH release and that the antagonist (-)202-791, which closes calcium channels, stimulates PTH release. To identify the calcium channels responsible for these effects, we used a radioligand that specifically binds to calcium channels. Bovine parathyroid cell membranes were prepared and incubated under reduced lighting with [125I] iodipine (SA, 2000 Ci/mmol), which recognizes 1,4-dihydropyridine-sensitive calcium channels. Bound ligand was separated from free ligand by rapid filtration through Whatman GF/B filters. Nonspecific binding was measured by the inclusion of nifedipine at 10 microM. Specific binding represented approximately 40% of the total binding. The optimal temperature for [125I] iodipine binding was 4 C, and binding reached equilibrium by 30 min. The equilibrium dissociation constant (Kd) was approximately 550 pM, and the maximum number of binding sites was 780 fmol/mg protein. Both the calcium channel agonist (+)202-791 and antagonist (-)202-791 competitively inhibited [125I] iodipine binding, with 50% inhibition concentrations of 20 and 300 nM, respectively. These data indicate the presence of dihydropyridine-sensitive calcium channels on parathyroid cell membranes

  11. Endoplasmic Reticulum Stress, Calcium Dysregulation and Altered Protein Translation: Intersection of Processes That Contribute to Cancer Cachexia Induced Skeletal Muscle Wasting.

    Science.gov (United States)

    Isaac, Stephanie T; Tan, Timothy C; Polly, Patsie

    2016-01-01

    Cancer cachexia is a debilitating paraneoplastic wasting syndrome characterized by skeletal muscle depletion and unintentional weight loss. It affects up to 50-80% of patients with cancer and directly accounts for one-quarter of cancer-related deaths due to cardio-respiratory failure. Muscle weakness, one of the hallmarks of this syndrome, has been postulated to be due to a combination of muscle breakdown, dysfunction and decrease in the ability to repair, with effective treatment strategies presently limited. Excessive inflammatory cytokine levels due to the host-tumor interaction, such as Interleukin (IL)-6 and Tumor Necrosis Factor (TNF)-α, are hypothesised to drive this pathological process but the specific mechanisms by which these cytokines produce skeletal muscle dysfunction in cancer cachexia remain undefined. Endoplasmic Reticulum (ER) stress and the associated disruptions in calcium signaling have been implicated in cytokine-mediated disruptions in skeletal muscle and function. Disrupted ER stress-related processes such as the Unfolded Protein Response (UPR), calcium homeostasis and altered muscle protein synthesis have been reported in clinical and experimental cachexia and other inflammation-driven muscle diseases such as myositis, potentially suggesting a link between increased IL-6 and TNF-α and ER stress in skeletal muscle cells. As the concept of upregulated ER stress in skeletal muscle cells due to elevated cytokines is novel and potentially very relevant to our understanding of cancer cachexia, this review aims to examine the potential relationship between inflammatory cytokine mediated muscle breakdown and ER stress, in the context of cancer cachexia, and to discuss the molecular signaling pathways underpinning this pathology.

  12. Regulation of the sodium/potassium/chloride cotransporter by calcium and cyclic AMP in cultured vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Higgins, B.L.; Smith, L.; Smith, J.B.

    1987-01-01

    The activity of the Na/K/Cl cotransporter in smooth muscle cells cultured from rat aorta was assayed by measuring the initial rate of furosemide-inhibitable 86 Rb influx or efflux. Five uM furosemide or 0.2 uM bumetanide inhibited influx by 50%. Furosemide-inhibitable 86 Rb influx depended on the presence of all 3 ions in the external medium. The dependence on Na and K was hyperbolic with apparent Km values of 45 and 5 mM, respectively. The dependence on Cl was sigmoidal. Assuming a stoichiometry of 1:1:2 for Na:K:Cl, a Km for Cl of 60 mM was obtained from a Hofstee plot of the data. Rapidly growing cells had 3 fold higher cotransport activity than quiescent cells. Angiotensin II (ANG) stimulated furosemide-inhibitable 86 Rb efflux by 2 fold. An ANG receptor antagonist prevented ANG from increasing cotransport activity. Two calcium ionophores, A23187 and ionomycin, increased cotransport activity by 2 fold. Phorbol myristate acetate had no effect on cotransport activity. Isoproterenol, dibutyryl cyclic AMP, cholera toxin, or methylisobutylxanthine inhibited furosemide-sensitive 86 Rb influx by 35 to 50%. From these findings they conclude that increasing cytoplasmic free calcium stimulates cotransport activity, whereas increasing cellular cyclic AMP inhibits the cotransporter

  13. Diffusion properties of conventional and calcium-sensitive MRI contrast agents in the rat cerebral cortex.

    Science.gov (United States)

    Hagberg, Gisela E; Mamedov, Ilgar; Power, Anthony; Beyerlein, Michael; Merkle, Hellmut; Kiselev, Valerij G; Dhingra, Kirti; Kubìček, Vojtĕch; Angelovski, Goran; Logothetis, Nikos K

    2014-01-01

    Calcium-sensitive MRI contrast agents can only yield quantitative results if the agent concentration in the tissue is known. The agent concentration could be determined by diffusion modeling, if relevant parameters were available. We have established an MRI-based method capable of determining diffusion properties of conventional and calcium-sensitive agents. Simulations and experiments demonstrate that the method is applicable both for conventional contrast agents with a fixed relaxivity value and for calcium-sensitive contrast agents. The full pharmacokinetic time-course of gadolinium concentration estimates was observed by MRI before, during and after intracerebral administration of the agent, and the effective diffusion coefficient D* was determined by voxel-wise fitting of the solution to the diffusion equation. The method yielded whole brain coverage with a high spatial and temporal sampling. The use of two types of MRI sequences for sampling of the diffusion time courses was investigated: Look-Locker-based quantitative T(1) mapping, and T(1) -weighted MRI. The observation times of the proposed MRI method is long (up to 20 h) and consequently the diffusion distances covered are also long (2-4 mm). Despite this difference, the D* values in vivo were in agreement with previous findings using optical measurement techniques, based on observation times of a few minutes. The effective diffusion coefficient determined for the calcium-sensitive contrast agents may be used to determine local tissue concentrations and to design infusion protocols that maintain the agent concentration at a steady state, thereby enabling quantitative sensing of the local calcium concentration. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity

    Directory of Open Access Journals (Sweden)

    Hao Shi

    2018-05-01

    Full Text Available Objective: Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT, the enzyme that mediates O-GlcNAcylation, in skeletal muscle. Methods: We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. Results: We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2. Conclusions: Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders. Keywords: O-GlcNAc signaling, Type 2 diabetes, N

  15. Gender differences in skeletal muscle substrate metabolism - molecular mechanisms and insulin sensitivity

    DEFF Research Database (Denmark)

    Lundsgaard, Annemarie; Kiens, Bente

    2014-01-01

    higher insulin sensitivity of female skeletal muscle can be related to gender-specific regulation of molecular metabolism will be topic for discussion. Gender differences in muscle fiber type distribution and substrate availability to and in skeletal muscle are highly relevant for substrate metabolism...

  16. Impact of calcium-sensitive dyes on the beating properties and pharmacological responses of human iPS-derived cardiomyocytes using the calcium transient assay.

    Science.gov (United States)

    Kopljar, Ivan; Hermans, An N; Teisman, Ard; Gallacher, David J; Lu, Hua Rong

    Calcium-based screening of hiPS-CMs is a useful preclinical safety evaluation platform with the ability to generate robust signals that facilitates high-throughput screening and data analysis. However, due to the potential inherent toxicities, it is important to understand potential effects of different calcium-sensitive dyes on the hiPS-CMs model. We compared three calcium-sensitive fluorescence dyes (Cal520, ACTOne and Calcium 5) for their impact on the variability, the beating properties and the pharmacological responses of hiPS-CMs using the Hamamatsu FDSS/μCell imaging platform. Direct effects of three dyes on the electrophysiological properties of hiPS-CMs were evaluated with the multi-electrode array (MEA) Axion Maestro platform. We propose a specific experimental protocol for each dye which gives the most optimal assay conditions to minimize variability and possible adverse effects. We showed that Cal520 had the smallest effect on hiPS-CMs together with the longest-lasting stable amplitude signal (up to 4 h). Although all dyes had a (minor) acute effect on hiPS-CMs, in the form of reduced beat rate and prolonged field potential duration, the selection of the dye did not influence the pharmacological response of four cardioactive drugs (dofetilide, moxifloxacin, nimodipine and isoprenaline). In conclusion, we have documented that different calcium sensitive dyes have only minor direct (acute) effects on hiPS-CMs with Cal520 showing the least effects and the longest lasting signal amplitude. Importantly, drug-induced pharmacological responses in hiPS-CMs were comparable between the three dyes. These findings should help further improve the robustness of the hiPS-CMs-based calcium transient assay as a predictive, preclinical cardiac safety evaluation tool. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity

    DEFF Research Database (Denmark)

    Shi, Hao; Munk, Alexander; Nielsen, Thomas Svava

    2018-01-01

    -GlcNAcylation, in skeletal muscle. METHODS: We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body...... of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated...

  18. Calcineurin signaling and PGC-1alpha expression are suppressed during muscle atrophy due to diabetes.

    Science.gov (United States)

    Roberts-Wilson, Tiffany K; Reddy, Ramesh N; Bailey, James L; Zheng, Bin; Ordas, Ronald; Gooch, Jennifer L; Price, S Russ

    2010-08-01

    PGC-1alpha is a transcriptional coactivator that controls energy homeostasis through regulation of glucose and oxidative metabolism. Both PGC-1alpha expression and oxidative capacity are decreased in skeletal muscle of patients and animals undergoing atrophy, suggesting that PGC-1alpha participates in the regulation of muscle mass. PGC-1alpha gene expression is controlled by calcium- and cAMP-sensitive pathways. However, the mechanism regulating PGC-1alpha in skeletal muscle during atrophy remains unclear. Therefore, we examined the mechanism responsible for decreased PGC-1alpha expression using a rodent streptozotocin (STZ) model of chronic diabetes and atrophy. After 21days, the levels of PGC-1alpha protein and mRNA were decreased. We examined the activation state of CREB, a potent activator of PGC-1alpha transcription, and found that phospho-CREB was paradoxically high in muscle of STZ-rats, suggesting that the cAMP pathway was not involved in PGC-1alpha regulation. In contrast, expression of calcineurin (Cn), a calcium-dependent phosphatase, was suppressed in the same muscles. PGC-1alpha expression is regulated by two Cn substrates, MEF2 and NFATc. Therefore, we examined MEF2 and NFATc activity in muscles from STZ-rats. Target genes MRF4 and MCIP1.4 mRNAs were both significantly reduced, consistent with reduced Cn signaling. Moreover, levels of MRF4, MCIP1.4, and PGC-1alpha were also decreased in muscles of CnAalpha-/- and CnAbeta-/- mice without diabetes indicating that decreased Cn signaling, rather than changes in other calcium- or cAMP-sensitive pathways, were responsible for decreased PGC-1alpha expression. These findings demonstrate that Cn activity is a major determinant of PGC-1alpha expression in skeletal muscle during diabetes and possibly other conditions associated with loss of muscle mass.

  19. Calcineurin signaling and PGC-1α expression are suppressed during muscle atrophy due to diabetes

    Science.gov (United States)

    Roberts-Wilson, Tiffany K.; Reddy, Ramesh N.; Bailey, James L.; Zheng, Bin; Ordas, Ronald; Gooch, Jennifer L.; Price, S. Russ

    2010-01-01

    PGC-1α is a transcriptional coactivator that controls energy homeostasis through regulation of glucose and oxidative metabolism. Both PGC-1α expression and oxidative capacity are decreased in skeletal muscle of patients and animals undergoing atrophy, suggesting that PGC-1α participates in the regulation of muscle mass. PGC-1α gene expression is controlled by calcium- and cAMP-sensitive pathways. However, the mechanism regulating PGC-1α in skeletal muscle during atrophy remains unclear. Therefore, we examined the mechanism responsible for decreased PGC-1α expression using a rodent streptozotocin (STZ) model of chronic diabetes and atrophy. After 21d, the levels of PGC-1α protein and mRNA were decreased. We examined the activation state of CREB, a potent activator of PGC-1α transcription, and found that phospho-CREB was paradoxically high in muscle of STZ-rats, suggesting that the cAMP pathway was not involved in PGC-1α regulation. In contrast, expression of calcineurin (Cn), a calcium-dependent phosphatase, was suppressed in the same muscles. PGC-1α expression is regulated by two Cn substrates, MEF2 and NFATc. Therefore, we examined MEF2 and NFATc activity in muscles from STZ-rats. Target genes MRF4 and MCIP1.4 were both significantly reduced, consistent with reduced Cn signaling. Moreover, levels of MRF4, MCIP1.4, and PGC-1α were also decreased in muscles of CnAα-/- and CnAβ-/- mice without diabetes indicating that decreased Cn signaling, rather than changes in other calcium- or cAMP-sensitive pathways, were responsible for decreased PGC-1α expression. These findings demonstrate that Cn activity is a major determinant of PGC-1α expression in skeletal muscle during diabetes and possibly other conditions associated with loss of muscle mass. PMID:20359506

  20. Repetitive muscle compression reduces vascular mechano-sensitivity and the hyperemic response to muscle contraction.

    Science.gov (United States)

    Messere, A; Turturici, M; Millo, G; Roatta, S

    2017-06-01

    Animal studies have shown that the rapid hyperemic response to external muscle compression undergoes inactivation upon repetitive stimulation, but this phenomenon has never been observed in humans. The aim of the present study was to determine whether 1) the vascular mechano-sensitivity underlying muscle compression-induced hyperemia is inactivated in an inter-stimulus interval (ISI)-dependent fashion upon repetitive stimulation, as suggested by animal studies, and 2) whether such inactivation also attenuates contraction-induced hyperemia. Brachial artery blood flow was measured by echo Doppler sonography in 13 healthy adults in response to 1) single and repetitive cuff muscle compression (CMC) of the forearm (20 CMCs, 1 s ISI); 2) a sequence of CMC delivered at decreasing ISI from 120 to 2 s; and 3) electrically-stimulated contraction of the forearm muscles before and after repetitive CMC. The peak amplitude of hyperemia in response to CMC normalized to baseline decreased from 2.2 ± 0.6 to 1.4 ± 0.4 after repetitive CMC and, in general, was decreased at ISI < 240 s. The peak amplitude of contraction-induced hyperemia was attenuated after as compared to before repeated CMC (1.7 ± 0.4 and 2.6 ± 0.6, respectively). Mechano-sensitivity of the vascular network can be conditioned by previous mechanical stimulation, and such preconditioning may substantially decrease contraction-induced hyperemia.

  1. Bilateral experimental neck pain reorganize axioscapular muscle coordination and pain sensitivity.

    Science.gov (United States)

    Christensen, S W; Hirata, R P; Graven-Nielsen, T

    2017-04-01

    Neck pain is a large clinical problem where reorganized trunk and axioscapular muscle activities have been hypothesised contributing to pain persistence and pain hypersensitivity. This study investigated the effects of bilateral experimental neck pain on trunk and axioscapular muscle function and pain sensitivity. In 25 healthy volunteers, bilateral experimental neck pain was induced in the splenius capitis muscles by hypertonic saline injections. Isotonic saline was used as control. In sitting, subjects performed slow, fast and slow-resisted unilateral arm movements before, during and after injections. Electromyography (EMG) was recorded from eight shoulder and trunk muscles bilaterally. Pressure pain thresholds (PPTs) were assessed bilaterally at the neck, head and arm. Data were normalized to the before-measures. Compared with control and post measurements, experimental neck pain caused (1) decreased EMG activity of the ipsilateral upper trapezius muscles during all but slow-resisted down movements (p neck pain reorganized axioscapular and trunk muscle activity together with local hyperalgesia and widespread hypoalgesia indicating that acute neck pain immediately affects trunk and axioscapular function which may affect both assessment and treatment. Bilateral clinical neck pain alters axioscapular muscle coordination but only effects of unilateral experimental neck pain has been investigated. Bilateral experimental neck pain causes task-dependent reorganized axioscapular and trunk muscle activity in addition to widespread decrease in pressure pain sensitivity. © 2016 European Pain Federation - EFIC®.

  2. Calcium and Mitosis

    Science.gov (United States)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  3. A deterministic model predicts the properties of stochastic calcium oscillations in airway smooth muscle cells.

    Science.gov (United States)

    Cao, Pengxing; Tan, Xiahui; Donovan, Graham; Sanderson, Michael J; Sneyd, James

    2014-08-01

    The inositol trisphosphate receptor ([Formula: see text]) is one of the most important cellular components responsible for oscillations in the cytoplasmic calcium concentration. Over the past decade, two major questions about the [Formula: see text] have arisen. Firstly, how best should the [Formula: see text] be modeled? In other words, what fundamental properties of the [Formula: see text] allow it to perform its function, and what are their quantitative properties? Secondly, although calcium oscillations are caused by the stochastic opening and closing of small numbers of [Formula: see text], is it possible for a deterministic model to be a reliable predictor of calcium behavior? Here, we answer these two questions, using airway smooth muscle cells (ASMC) as a specific example. Firstly, we show that periodic calcium waves in ASMC, as well as the statistics of calcium puffs in other cell types, can be quantitatively reproduced by a two-state model of the [Formula: see text], and thus the behavior of the [Formula: see text] is essentially determined by its modal structure. The structure within each mode is irrelevant for function. Secondly, we show that, although calcium waves in ASMC are generated by a stochastic mechanism, [Formula: see text] stochasticity is not essential for a qualitative prediction of how oscillation frequency depends on model parameters, and thus deterministic [Formula: see text] models demonstrate the same level of predictive capability as do stochastic models. We conclude that, firstly, calcium dynamics can be accurately modeled using simplified [Formula: see text] models, and, secondly, to obtain qualitative predictions of how oscillation frequency depends on parameters it is sufficient to use a deterministic model.

  4. Regulation of myofibrillar accumulation in chick muscle cultures - Evidence for the involvement of calcium and lysosomes in non-uniform turnover of contractile proteins

    Science.gov (United States)

    Silver, Geri; Etlinger, Joseph D.

    1985-01-01

    The effects of calcium on the synthesis and the degradation of individual myofibrillar proteins were investigated using primary chick-leg skeletal muscle cultures labeled with S-35-methionine (for protein accumulation experiments) or Ca(2+)-45 (for calcium efflux experiments). It was found that the turnover of individual contractile proteins is regulated nonuniformly by a calcium-dependent mechanism involving lysosomes. The results also indicate that contractile proteins are released from the myofibril before their breakdown to amino acids.

  5. Hormone-sensitive lipase (HSL) expression and regulation in skeletal muscle

    DEFF Research Database (Denmark)

    Langfort, J; Ploug, T; Ihlemann, J

    1998-01-01

    Because the enzymatic regulation of muscle triglyceride metabolism is poorly understood we explored the character and activation of neutral lipase in muscle. Western blotting of isolated rat muscle fibers demonstrated expression of hormone-sensitive lipase (HSL). In incubated soleus muscle...... epinephrine increased neutral lipase activity by beta-adrenergic mechanisms involving cyclic AMP-dependent protein kinase (PKA). The increase was paralleled by an increase in glycogen phosphorylase activity and could be abolished by antiserum against HSL. Electrical stimulation caused a transient increase...... in activity of both neutral lipase and glycogen phosphorylase. The increase in lipase activity during contractions was not influenced by sympathectomy or propranolol. Training diminished the epinephrine induced lipase activation in muscle but enhanced the activation as well as the overall concentration...

  6. Muscle magnetic resonance imaging sensitivity does not decrease in chronic, mild, or proximal lower limb neuropathies.

    Science.gov (United States)

    Deroide, Nicolas; Bousson, Valérie; Daguet, Edouard; Dumurgier, Julien; Tin, Sophie Ng Wing; Hannouche, Didier; Richette, Pascal; Beaudreuil, Johann; Lioté, Frédéric; Lévy, Bernard; Vicaut, Eric; Laredo, Jean Denis; Kubis, Nathalie

    2012-05-01

    Muscle magnetic resonance imaging (MRI) is an innovative tool for exploring focal neuropathies. However, its usefulness in mild, proximal, or chronic lesions, when electromyography (EMG), the current "gold standard" sensitivity is inadequate, has yet to be studied. Clinical, MRI, and EMG examinations were performed in 113 muscles of 17 consecutive patients with clinically diagnosed lower limb focal neuropathies. The sensitivity and specificity of MRI and EMG were evaluated in relation to disease duration, severity, and anatomical location. Muscle MRI was highly sensitive for the detection of denervated muscle, and, unlike EMG, its sensitivity did not decrease regardless of the anatomical location, duration, or severity of the neuropathy. Five MRI false positives were noted, including three in the thigh muscles. Muscle MRI is an alternative tool to EMG in proximal, mild, or chronic clinical diagnoses of lower limb focal neuropathies. However, it also seems prone to false-positive results, particularly in proximal muscles. Copyright © 2012 Wiley Periodicals, Inc.

  7. Enhancement of S1P-induced contractile response in detrusor smooth muscle of rats having cystitis.

    Science.gov (United States)

    Anjum, Irfan; Denizalti, Merve; Kandilci, Hilmi Burak; Durlu-Kandilci, Nezahat Tugba; Sahin-Erdemli, Inci

    2017-11-05

    Interstitial cystitis is a chronic disease characterized by lower abdominal pain and some nonspecific symptoms including an increase in urinary frequency and urgency. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that controls smooth muscle tone via G-protein coupled receptors (S1P 1-3 receptors). S1P production is known to take place both in physiological states and some pathological situations, such as in overactive bladder syndrome. The intracellular mechanism of S1P-induced contractile response was investigated in β-escin permeabilized detrusor smooth muscle of rats having cyclophosphamide-induced cystitis. The bladder was isolated from rats and detrusor smooth muscle strips were permeabilized with β-escin. S1P (50µM)-induced contraction and calcium sensitization response were significantly increased in cystitis. S1P-induced augmented contractile response was inhibited by S1P 2 receptor antagonist JTE-013 and S1P 3 receptor antagonist suramin. S1P 2 receptor protein expressions were increased in cystitis, where no change was observed in S1P 3 expressions between control and cystitis groups. S1P-induced contraction was reduced by Rho kinase (ROCK) inhibitor Y-27632 and protein kinase C (PKC) inhibitor GF-109203X in both control and cystitis group. S1P-induced increased calcium sensitization response was decreased by ROCK inhibitor and PKC inhibitor in cystitis. Our findings provide the first evidence that interstitial cystitis triggers S1P-induced increase in intracellular calcium in permeabilized detrusor smooth muscle of female rats. Both S1P 2 and S1P 3 receptors are involved in S1P mediated enhanced contractile response. The augmentation in S1P-induced contraction in interstitial cystitis involves both PKC and ROCK pathways of calcium sensitization. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The interaction of calcium entry and calcium sensitization in the control of vascular tone and blood pressure of normotensive and hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Zicha, Josef; Behuliak, Michal; Pintérová, Mária; Bencze, Michal; Kuneš, Jaroslav; Vaněčková, Ivana

    2014-01-01

    Roč. 63, Suppl.1 (2014), S19-S27 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/09/0336; GA ČR(CZ) GAP304/12/0259 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : calcium sensitization * RhoA/Rho kinase * fasudil * calcium entry * nifedipine Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.293, year: 2014

  9. An artificial neural network approach and sensitivity analysis in predicting skeletal muscle forces.

    Science.gov (United States)

    Vilimek, Miloslav

    2014-01-01

    This paper presents the use of an artificial neural network (NN) approach for predicting the muscle forces around the elbow joint. The main goal was to create an artificial NN which could predict the musculotendon forces for any general muscle without significant errors. The input parameters for the network were morphological and anatomical musculotendon parameters, plus an activation level experimentally measured during a flexion/extension movement in the elbow. The muscle forces calculated by the 'Virtual Muscle System' provide the output. The cross-correlation coefficient expressing the ability of an artificial NN to predict the "true" force was in the range 0.97-0.98. A sensitivity analysis was used to eliminate the less sensitive inputs, and the final number of inputs for a sufficient prediction was nine. A variant of an artificial NN for a single specific muscle was also studied. The artificial NN for one specific muscle gives better results than a network for general muscles. This method is a good alternative to other approaches to calculation of muscle force.

  10. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity.

    Science.gov (United States)

    Shi, Hao; Munk, Alexander; Nielsen, Thomas S; Daughtry, Morgan R; Larsson, Louise; Li, Shize; Høyer, Kasper F; Geisler, Hannah W; Sulek, Karolina; Kjøbsted, Rasmus; Fisher, Taylor; Andersen, Marianne M; Shen, Zhengxing; Hansen, Ulrik K; England, Eric M; Cheng, Zhiyong; Højlund, Kurt; Wojtaszewski, Jørgen F P; Yang, Xiaoyong; Hulver, Matthew W; Helm, Richard F; Treebak, Jonas T; Gerrard, David E

    2018-05-01

    Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT), the enzyme that mediates O-GlcNAcylation, in skeletal muscle. We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2). Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  11. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine are related to insulin sensitivity and respond to acute exercise in humans.

    Science.gov (United States)

    Newsom, Sean A; Brozinick, Joseph T; Kiseljak-Vassiliades, Katja; Strauss, Allison N; Bacon, Samantha D; Kerege, Anna A; Bui, Hai Hoang; Sanders, Phil; Siddall, Parker; Wei, Tao; Thomas, Melissa; Kuo, Ming Shang; Nemkov, Travis; D'Alessandro, Angelo; Hansen, Kirk C; Perreault, Leigh; Bergman, Bryan C

    2016-06-01

    Several recent reports indicate that the balance of skeletal muscle phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is a key determinant of muscle contractile function and metabolism. The purpose of this study was to determine relationships between skeletal muscle PC, PE and insulin sensitivity, and whether PC and PE are dynamically regulated in response to acute exercise in humans. Insulin sensitivity was measured via intravenous glucose tolerance in sedentary obese adults (OB; n = 14), individuals with type 2 diabetes (T2D; n = 15), and endurance-trained athletes (ATH; n = 15). Vastus lateralis muscle biopsies were obtained at rest, immediately after 90 min of cycle ergometry at 50% maximal oxygen consumption (V̇o2 max), and 2-h postexercise (recovery). Skeletal muscle PC and PE were measured via infusion-based mass spectrometry/mass spectrometry analysis. ATH had greater levels of muscle PC and PE compared with OB and T2D (P insulin sensitivity (both P insulin sensitivity among the entire cohort (r = -0.43, P = 0.01). Muscle PC and PE were altered by exercise, particularly after 2 h of recovery, in a highly group-specific manner. However, muscle PC:PE ratio remained unchanged in all groups. In summary, total muscle PC and PE are positively related to insulin sensitivity while PC:PE ratio is inversely related to insulin sensitivity in humans. A single session of exercise significantly alters skeletal muscle PC and PE levels, but not PC:PE ratio. Copyright © 2016 the American Physiological Society.

  12. Calcium regulation and muscle disease.

    NARCIS (Netherlands)

    Gommans, I.M.P.; Vlak, M.; Haan, A. de; Engelen, B.G.M. van

    2002-01-01

    Changes in intracellular Ca2+-concentration play an important role in the excitation-contraction-relaxation cycle of skeletal muscle. In this review we describe various inheritable muscle diseases to highlight the role of Ca2+-regulatory mechanisms. Upon excitation the ryanodine receptor releases

  13. Monitoring Calcium in Trout Eggs Exposed to Hydrazine.

    Science.gov (United States)

    1981-07-10

    healthy muscle of the same individual. The notochord of the 8.0 mg/P group showed a higher calcium level than the control group. The chorion did not...calcium in quantities that can be monitored with conventional instru- ments or techniques. The chorion, muscle and notochord tissues were the primary...deposits of calcium pyorantimonate (Figure 26), supported the findings of the microelemental analysis. NOTOCHORD 1. Control The notochord of control embryos

  14. Calcium Homeostasis and Muscle Energy Metabolism Are Modified in HspB1-Null Mice

    Directory of Open Access Journals (Sweden)

    Brigitte Picard

    2016-05-01

    Full Text Available Hsp27—encoded by HspB1—is a member of the small heat shock proteins (sHsp, 12–43 kDa (kilodalton family. This protein is constitutively present in a wide variety of tissues and in many cell lines. The abundance of Hsp27 is highest in skeletal muscle, indicating a crucial role for muscle physiology. The protein identified as a beef tenderness biomarker was found at a crucial hub in a functional network involved in beef tenderness. The aim of this study was to analyze the proteins impacted by the targeted invalidation of HspB1 in the Tibialis anterior muscle of the mouse. Comparative proteomics using two-dimensional gel electrophoresis revealed 22 spots that were differentially abundant between HspB1-null mice and their controls that could be identified by mass spectrometry. Eighteen spots were more abundant in the muscle of the mutant mice, and four were less abundant. The proteins impacted by the absence of Hsp27 belonged mainly to calcium homeostasis (Srl and Calsq1, contraction (TnnT3, energy metabolism (Tpi1, Mdh1, PdhB, Ckm, Pygm, ApoA1 and the Hsp proteins family (HspA9. These data suggest a crucial role for these proteins in meat tenderization. The information gained by this study could also be helpful to predict the side effects of Hsp27 depletion in muscle development and pathologies linked to small Hsps.

  15. Effects of inorganic phosphate and ADP on calcium handling by the sarcoplasmic reticulum in rat skinned cardiac muscles.

    Science.gov (United States)

    Xiang, J Z; Kentish, J C

    1995-03-01

    The aim was to investigate whether, and how, increases in inorganic phosphate (Pi) and ADP, similar to those occurring intracellularly during early myocardial ischaemia, affect the calcium handling of the sarcoplasmic reticulum. Rat ventricular trabeculae were permeabilised with saponin. The physiological process of calcium induced calcium release (CICR) from the muscle sarcoplasmic reticulum was triggered via flash photolysis of the "caged Ca2+", nitr-5. Alternatively, calcium release was induced by rapid application of caffeine to give an estimate of sarcoplasmic reticular calcium loading. The initial rate of sarcoplasmic reticular calcium pumping was also assessed by photolysis of caged ATP at saturating [Ca2+]. Myoplasmic [Ca2+] (using fluo-3) and isometric force were measured. Pi (2-20 mM) significantly depressed the magnitude of CICR and the associated force transient. Sarcoplasmic reticular calcium loading was inhibited even more than CICR by Pi, suggesting that reduced calcium loading could account for all of the inhibitory effect of Pi on CICR and that Pi may slightly activate the calcium release mechanism. The reduced sarcoplasmic reticular calcium loading seemed to be due to a fall in the free energy of ATP hydrolysis (delta GATP) available for the calcium pump, since equal decreases in delta GATP produced by adding both Pi and ADP in various ratios caused similar falls in the calcium loading of the sarcoplasmic reticulum. The caged ATP experiments indicated that Pi (20 mM) did not affect the rate constant of sarcoplasmic reticular calcium uptake. ADP (10 mM) alone, or with 1 mM Pi, inhibited calcium loading. In spite of this, ADP (10 mM) did not alter CICR and, when 1 mM Pi was added, ADP increased CICR above control. An increase in intracellular Pi reduces sarcoplasmic reticular calcium loading and thus depresses the CICR. This could be an important contributing factor in the hypoxic or ischaemic contractile failure of the myocardium. However the

  16. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine respond to exercise and influence insulin sensitivity in men.

    Science.gov (United States)

    Lee, Sindre; Norheim, Frode; Gulseth, Hanne L; Langleite, Torgrim M; Aker, Andreas; Gundersen, Thomas E; Holen, Torgeir; Birkeland, Kåre I; Drevon, Christian A

    2018-04-25

    Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) composition in skeletal muscle have been linked to insulin sensitivity. We evaluated the relationships between skeletal muscle PC:PE, physical exercise and insulin sensitivity. We performed lipidomics and measured PC and PE in m. vastus lateralis biopsies obtained from 13 normoglycemic normal weight men and 13 dysglycemic overweight men at rest, immediately after 45 min of cycling at 70% maximum oxygen uptake, and 2 h post-exercise, before as well as after 12 weeks of combined endurance- and strength-exercise intervention. Insulin sensitivity was monitored by euglycemic-hyperinsulinemic clamp. RNA-sequencing was performed on biopsies, and mitochondria and lipid droplets were quantified on electron microscopic images. Exercise intervention for 12 w enhanced insulin sensitivity by 33%, skeletal muscle levels of PC by 21%, PE by 42%, and reduced PC:PE by 16%. One bicycle session reduced PC:PE by 5%. PC:PE correlated negatively with insulin sensitivity (β = -1.6, P insulin sensitivity.

  17. Role of AMPK in Regulating Muscle Insulin Sensitivity

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus

    The ability of insulin to stimulate skeletal muscle glucose uptake is instrumental for controlling whole-body glucose homeostasis. Decreased peripheral sensitivity to insulin increases the risk of developing type 2 diabetes. Insulin sensitivity can be defined as the concentration of insulin that ...... prevail in healthy lean subjects. In the present thesis, experimental results from the three studies as well as unpublished observations are placed in the context of existing literature in order to provide a general overview of the current understandings within this field of research....

  18. Single Nisoldipine-Sensitive Calcium Channels in Smooth Muscle Cells Isolated from Rabbit Mesenteric Artery

    Science.gov (United States)

    Worley, Jennings F.; Deitmer, Joachim W.; Nelson, Mark T.

    1986-08-01

    Single smooth muscle cells were enzymatically isolated from the rabbit mesenteric artery. At physiological levels of external Ca, these cells were relaxed and contracted on exposure to norepinephrine, caffeine, or high levels of potassium. The patch-clamp technique was used to measure unitary currents through single channels in the isolated cells. Single channels were selective for divalent cations and exhibited two conductance levels, 8 pS and 15 pS. Both types of channels were voltage-dependent, and channel activity occurred at potentials positive to -40 mV. The activity of both channel types was almost completely inhibited by 50 nM nisoldipine. These channels appear to be the pathways for voltage-dependent Ca influx in vascular smooth muscle and may be the targets of the clinically used dihydropyridines.

  19. Ca2+ sensitizers: An emerging class of agents for counterbalancing weakness in skeletal muscle diseases?

    Science.gov (United States)

    Ochala, Julien

    2010-02-01

    Ca(2+) ions are key regulators of skeletal muscle contraction. By binding to contractile proteins, they initiate a cascade of molecular events leading to cross-bridge formation and ultimately, muscle shortening and force production. The ability of contractile proteins to respond to Ca(2+) attachment, also known as Ca(2+) sensitivity, is often compromised in acquired and congenital skeletal muscle disorders. It constitutes, undoubtedly, a major physiological cause of weakness for patients. In this review, we discuss recent studies giving strong molecular and cellular evidence that pharmacological modulators of some of the contractile proteins, also termed Ca(2+) sensitizers, are efficient agents to improve Ca(2+) sensitivity and function in diseased skeletal muscle cells. In fact, they compensate for the impaired contractile proteins response to Ca(2+) binding. Currently, such Ca(2+) sensitizing compounds are successfully used for reducing problems in cardiac disorders. Therefore, in the future, under certain conditions, these agents may represent an emerging class of agents to enhance the quality of life of patients suffering from skeletal muscle weakness. Copyright 2009 Elsevier B.V. All rights reserved.

  20. PKA Controls Calcium Influx into Motor Neurons during a Rhythmic Behavior

    Science.gov (United States)

    Wang, Han; Sieburth, Derek

    2013-01-01

    Cyclic adenosine monophosphate (cAMP) has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine) rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR) signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels. PMID:24086161

  1. PKA controls calcium influx into motor neurons during a rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    Han Wang

    Full Text Available Cyclic adenosine monophosphate (cAMP has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels.

  2. Nickel affects gill and muscle development in oriental fire-bellied toad (Bombina orientalis) embryos

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Jin; Song, Sang Ha; Kim, Dae Han; Gye, Myung Chan, E-mail: mcgye@hanyang.ac.kr

    2017-01-15

    Highlights: • Nickel inhibited the development of external gill in B. orientalis embryos. • The 168 h LC{sub 50} and EC{sub 50} values of nickel were 33.8 and 5.4 μM, respectively, in embryos. • Nickel induced abnormal tail development of embryos. • NF stage 26–31 was the most sensitive window for embryos to nickel exposure. • Nickel affected the calcium-dependent myogenic gene expression in embryos. - Abstract: The developmental toxicity of nickel was examined in the embryos of Bombina orientalis, a common amphibian in Korea. Based on a standard frog embryo teratogenesis assay, the LC{sub 50} and EC{sub 50} for malformation of nickel after 168 h of treatment were 33.8 μM and 5.4 μM, respectively. At a lethal concentration (100 μM), nickel treatment decreased the space between gill filaments and caused epithelial swelling and abnormal fusion of gill filaments. These findings suggest that nickel affects the functional development of gills, leading to embryonic death. At sublethal concentrations (1–10 μM), nickel produced multiple embryonic abnormalities, including bent tail and tail dysplasia. At 10 μM, nickel significantly decreased tail length and tail muscle fiber density in tadpoles, indicating inhibition of myogenic differentiation. Before hatching, the pre-muscular response to muscular response stages (stages 26–31) were the most sensitive period to nickel with respect to tail muscle development. During these stages, MyoD mRNA was upregulated, whereas myogenic regulatory factor 4 mRNA was downregulated by 0.1 μM nickel. Calcium-dependent kinase activities in muscular response stage embryos were significantly decreased by nickel, whereas these activities were restored by exogenous calcium. In tadpoles, 10 μM nickel significantly decreased the expression of the myosin heavy chain and the 12/101 muscle marker protein in the tail. Expression was restored by exogenous calcium. Our results indicate that nickel affects muscle development by

  3. Human skeletal muscle perilipin 2 and 3 expression varies with insulin sensitivity

    DEFF Research Database (Denmark)

    Vigelsø Hansen, Andreas; Prats Gavalda, Clara; Ploug, Thorkil

    2013-01-01

    Background: Impaired insulin sensitivity may partly arise from a dysregulated lipid metabolism in human skeletal muscle. This study investigates the expression levels of perilipin 2, 3, and 5, and four key lipases in human skeletal muscle from the subjects that exhibit a range from normal to very...

  4. Gentamicin treatment in exercised mdx mice: Identification of dystrophin-sensitive pathways and evaluation of efficacy in work-loaded dystrophic muscle.

    Science.gov (United States)

    De Luca, Annamaria; Nico, Beatrice; Rolland, Jean-François; Cozzoli, Anna; Burdi, Rosa; Mangieri, Domenica; Giannuzzi, Viviana; Liantonio, Antonella; Cippone, Valentina; De Bellis, Michela; Nicchia, Grazia Paola; Camerino, Giulia Maria; Frigeri, Antonio; Svelto, Maria; Camerino, Diana Conte

    2008-11-01

    Aminoglycosides force read through of premature stop codon mutations and introduce new mutation-specific gene-corrective strategies in Duchenne muscular dystrophy. A chronic treatment with gentamicin (32 mg/kg/daily i.p., 8-12 weeks) was performed in exercised mdx mice with the dual aim to clarify the dependence on dystrophin of the functional, biochemical and histological alterations present in dystrophic muscle and to verify the long term efficiency of small molecule gene-corrective strategies in work-loaded dystrophic muscle. The treatment counteracted the exercise-induced impairment of in vivo forelimb strength after 6-8 weeks. We observed an increase in dystrophin expression level in all the fibers, although lower than that observed in normal fibers, and found a concomitant recovery of aquaporin-4 at sarcolemma. A significant reduction in centronucleated fibers, in the area of necrosis and in the percentage of nuclear factor-kB-positive nuclei was observed in gastrocnemious muscle of treated animals. Plasma creatine kinase was reduced by 70%. Ex vivo, gentamicin restored membrane ionic conductance in mdx diaphragm and limb muscle fibers. No effects were observed on the altered calcium homeostasis and sarcolemmal calcium permeability, detected by electrophysiological and microspectrofluorimetric approaches. Thus, the maintenance of a partial level of dystrophin is sufficient to reinforce sarcolemmal stability, reducing leakiness, inflammation and fiber damage, while correction of altered calcium homeostasis needs greater expression of dystrophin or direct interventions on the channels involved.

  5. Calcium fluoride whispering gallery mode optical resonator with reduced thermal sensitivity

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey

    2018-03-01

    We demonstrate a crystalline CaF2 resonator with thermal sensitivity of the optical modes approaching zero. The resonator is made by laminating a calcium fluoride layer forming an optical monolithic cavity with ceramic compensation layers. The ceramics is characterized with negative thermal expansion coefficient achievable in a certain temperature range. The thermally compensated resonator has a potential application for laser frequency stabilization.

  6. Pharmacologic study of calcium influx pathways in rabbit aortic smooth muscle

    International Nuclear Information System (INIS)

    Lukeman, D.S.

    1987-01-01

    Functional characteristics and pharmacologic domains of receptor-operated and potential-sensitive calcium (Ca 2+ ) channels (ROCs and PSCs, respectively) were derived via measurements of 45 Ca 2+ influx (M/sup Ca/) during activation by the neurotransmitters norepinephrine (NE), histamine (HS), and serotonin (5-HT) and by elevated extracellular potassium (K + ) in the individual or combined presence of organic Ca 2+ channel antagonists (CAts), calmodulin antagonists (Calm-ants), lanthanum (La 3+ ), and agents that increase intracellular levels of cyclic AMP

  7. Human skeletal muscle ceramide content is not a major factor in muscle insulin sensitivity

    DEFF Research Database (Denmark)

    Skovbro, M; Baranowski, M; Skov-Jensen, C

    2008-01-01

    -hyperinsulinaemic clamp was performed for 120 and 90 min for step 1 and step 2, respectively. Muscle biopsies were obtained from vastus lateralis at baseline, and after steps 1 and 2. RESULTS: Glucose infusion rates increased in response to insulin infusion, and significant differences were present between groups (T2D......AIMS/HYPOTHESIS: In skeletal muscle, ceramides may be involved in the pathogenesis of insulin resistance through an attenuation of insulin signalling. This study investigated total skeletal muscle ceramide fatty acid content in participants exhibiting a wide range of insulin sensitivities. METHODS......: The middle-aged male participants (n=33) were matched for lean body mass and divided into four groups: type 2 diabetes (T2D, n=8), impaired glucose tolerance (IGT, n=9), healthy controls (CON, n=8) and endurance-trained (TR, n=8). A two step (28 and 80 mU m(-2) min(-1)) sequential euglycaemic...

  8. Entropy as a new measure of mechanical pain sensitivity in the masseter muscle

    DEFF Research Database (Denmark)

    Castrillon, Eduardo; Sato, Hitoshi; Tanosoto, Tomohiro

    ENTROPY AS A NEW MEASURE OF MECHANICAL PAIN SENSITIVITY IN THE MASSETER MUSCLE Author Block: E. E. Castrillon1, H. Sato2,3, T. Tanosoto4, T. Arima4, L. Baad-Hansen1, P. Svensson1, 1Clinical Oral Physiology, Århus Univ., Aarhus, Denmark, 2Dept. of Dentistry & Oral Physiology, Sch. of Med., Keio Un...... injections (Pmechanical pain sensitivity that captures new aspects of spatial characteristics and could therefore complement more classical assessments of TMD pain patients.......ENTROPY AS A NEW MEASURE OF MECHANICAL PAIN SENSITIVITY IN THE MASSETER MUSCLE Author Block: E. E. Castrillon1, H. Sato2,3, T. Tanosoto4, T. Arima4, L. Baad-Hansen1, P. Svensson1, 1Clinical Oral Physiology, Århus Univ., Aarhus, Denmark, 2Dept. of Dentistry & Oral Physiology, Sch. of Med., Keio Univ......., Tokyo, Japan, 3Japan Society for the Promotion of Sci., Tokyo, Japan, 4Dept. of Oral Rehabilitation, Graduate Sch. of Dental Med., Hokkaido Univ., Sapporo, Japan : Aim of Investigation: Manual palpation is a psychophysical technique to evaluate mechanical pain sensitivity in craniofacial muscles...

  9. ATP-sensitive K(+-channels in muscle cells: features and physiological role

    Directory of Open Access Journals (Sweden)

    O. B. Vadzyuk

    2014-08-01

    Full Text Available ATP-sensitive K+-channels of plasma membranes belong to the inward rectifier potassium channels type. They are involved in coupling of electrical activity of muscle cell with its metabolic­ state. These channels are heterooctameric and consist of two types of subunits: four poreforming (Kir 6.х and four regulatory (SUR, sulfonylurea receptor. The Kir subunits contain highly selective K+ filter and provide for high-velocity K+ currents. The SUR subunits contain binding sites for activators and blockers and have metabolic sensor, which enables channel activation under conditions of metabolic stress. ATP blocks K+ currents through the ATP-sensitive K+-channels in the most types of muscle cells. However, functional activity of these channels does not depend on absolute concentration of ATP but on the АТР/ADP ratio and presence of Mg2+. Physiologically active substances, such as phosphatidylinositol bisphosphate and fatty acid esters can regulate the activity of these structures in muscle cells. Activation of these channels under ischemic conditions underlies their cytoprotective action, which results in prevention of Ca2+ overload in cytosol. In contrast to ATP-sensitive K+-channels of plasma membranes, the data regarding the structure and function of ATP-sensitive K+-channels of mitochondrial membrane are contradictory. Pore-forming subunits of this channel have not been firmly identified yet. ATP-sensitive K+ transport through the mitochondrial­ membrane is easily tested by different methods, which are briefly reviewed in this paper. Interaction of mitoKATP with physiological and pharmacological ligands is discussed as well.

  10. Action potential-evoked calcium release is impaired in single skeletal muscle fibers from heart failure patients.

    Directory of Open Access Journals (Sweden)

    Marino DiFranco

    Full Text Available Exercise intolerance in chronic heart failure (HF has been attributed to abnormalities of the skeletal muscles. Muscle function depends on intact excitation-contraction coupling (ECC, but ECC studies in HF models have been inconclusive, due to deficiencies in the animal models and tools used to measure calcium (Ca2+ release, mandating investigations in skeletal muscle from HF patients. The purpose of this study was to test the hypothesis that Ca2+ release is significantly impaired in the skeletal muscle of HF patients in whom exercise capacity is severely diminished compared to age-matched healthy volunteers.Using state-of-the-art electrophysiological and optical techniques in single muscle fibers from biopsies of the locomotive vastus lateralis muscle, we measured the action potential (AP-evoked Ca2+ release in 4 HF patients and 4 age-matched healthy controls. The mean peak Ca2+ release flux in fibers obtained from HF patients (10±1.2 µM/ms was markedly (2.6-fold and significantly (p<0.05 smaller than in fibers from healthy volunteers (28±3.3 µM/ms. This impairment in AP-evoked Ca2+ release was ubiquitous and was not explained by differences in the excitability mechanisms since single APs were indistinguishable between HF patients and healthy volunteers.These findings prove the feasibility of performing electrophysiological experiments in single fibers from human skeletal muscle, and offer a new approach for investigations of myopathies due to HF and other diseases. Importantly, we have demonstrated that one step in the ECC process, AP-evoked Ca2+ release, is impaired in single muscle fibers in HF patients.

  11. Serum Is Not Necessary for Prior Pharmacological Activation of AMPK to Increase Insulin Sensitivity of Mouse Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Nicolas O. Jørgensen

    2018-04-01

    Full Text Available Exercise, contraction, and pharmacological activation of AMP-activated protein kinase (AMPK by 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR have all been shown to increase muscle insulin sensitivity for glucose uptake. Intriguingly, improvements in insulin sensitivity following contraction of isolated rat and mouse skeletal muscle and prior AICAR stimulation of isolated rat skeletal muscle seem to depend on an unknown factor present in serum. One study recently questioned this requirement of a serum factor by showing serum-independency with muscle from old rats. Whether a serum factor is necessary for prior AICAR stimulation to increase insulin sensitivity of mouse skeletal muscle is not known. Therefore, we investigated the necessity of serum for this effect of AICAR in mouse skeletal muscle. We found that the ability of prior AICAR stimulation to improve insulin sensitivity of mouse skeletal muscle did not depend on the presence of serum during AICAR stimulation. Although prior AICAR stimulation did not enhance proximal insulin signaling, insulin-stimulated phosphorylation of Tre-2/BUB2/CDC16- domain family member 4 (TBC1D4 Ser711 was greater in prior AICAR-stimulated muscle compared to all other groups. These results imply that the presence of a serum factor is not necessary for prior AMPK activation by AICAR to enhance insulin sensitivity of mouse skeletal muscle.

  12. Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels.

    Science.gov (United States)

    Tuluc, Petronel; Benedetti, Bruno; Coste de Bagneaux, Pierre; Grabner, Manfred; Flucher, Bernhard E

    2016-06-01

    Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3-S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3-S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3-S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3-S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3-S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular mechanisms

  13. Excitation-contraction coupling and mechano-sensitivity in denervated skeletal muscles

    Directory of Open Access Journals (Sweden)

    Fabio Francini

    2010-09-01

    Full Text Available Skeletal muscle atrophy can be defined as a wasting or decrease in muscle mass and muscle force generation owing lack of use, ageing, injury or disease. Thus, the etiology of atrophy can be different. Atrophy in denervated muscle is a consequence of two factors: 1 the complete lack of motoneuron activity inducing the deficiency of neurotransmitter release and 2 the muscles disuse. The balance of the muscular functions depends on extra- and intra-muscular signals. In the balance are involved the excitation-contraction coupling (ECC, local growth factors, Ca2+-dependent and independent intracellular signals, mechano-sensitivity and mechano-transduction that activate Ca2+-dependent signaling proteins and cytoskeleton- nucleus pathways to the nucleus, that regulate the gene expression. Moreover, retrograde signal from intracellular compartments and cytoskeleton to the sarcolemma are additional factors that regulate the muscle function. Proteolytic systems that operate in atrophic muscles progressively reduce the muscle protein content and so the sarcolemma, ECC and the force generation. In this review we will focus on the more relevant changes of the sarcolemma, excitation-contraction coupling, ECC and mechano-transduction evaluated by electrophysiological methods and observed from early- to long-term denervated skeletal muscles. This review put in particular evidence that long-term denervated muscle maintain a sub-population of fibers with ECC and contractile machinery able to be activated, albeit in lesser amounts, by electrical and mechanical stimulation. Accordingly, this provides a potential molecular explanation of the muscle recovery that occurs in response to rehabilitation strategy as transcutaneous electrical stimulation and passive stretching of denervated muscles, which wre developed as a result of empirical clinical observations.

  14. Prion protein misfolding affects calcium homeostasis and sensitizes cells to endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Mauricio Torres

    2010-12-01

    Full Text Available Prion-related disorders (PrDs are fatal neurodegenerative disorders characterized by progressive neuronal impairment as well as the accumulation of an abnormally folded and protease resistant form of the cellular prion protein, termed PrP(RES. Altered endoplasmic reticulum (ER homeostasis is associated with the occurrence of neurodegeneration in sporadic, infectious and familial forms of PrDs. The ER operates as a major intracellular calcium store, playing a crucial role in pathological events related to neuronal dysfunction and death. Here we investigated the possible impact of PrP misfolding on ER calcium homeostasis in infectious and familial models of PrDs. Neuro2A cells chronically infected with scrapie prions showed decreased ER-calcium content that correlated with a stronger upregulation of UPR-inducible chaperones, and a higher sensitivity to ER stress-induced cell death. Overexpression of the calcium pump SERCA stimulated calcium release and increased the neurotoxicity observed after exposure of cells to brain-derived infectious PrP(RES. Furthermore, expression of PrP mutants that cause hereditary Creutzfeldt-Jakob disease or fatal familial insomnia led to accumulation of PrP(RES and their partial retention at the ER, associated with a drastic decrease of ER calcium content and higher susceptibility to ER stress. Finally, similar results were observed when a transmembrane form of PrP was expressed, which is proposed as a neurotoxic intermediate. Our results suggest that alterations in calcium homeostasis and increased susceptibility to ER stress are common pathological features of both infectious and familial PrD models.

  15. Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics.

    Science.gov (United States)

    Zampieri, Sandra; Mammucari, Cristina; Romanello, Vanina; Barberi, Laura; Pietrangelo, Laura; Fusella, Aurora; Mosole, Simone; Gherardi, Gaia; Höfer, Christian; Löfler, Stefan; Sarabon, Nejc; Cvecka, Jan; Krenn, Matthias; Carraro, Ugo; Kern, Helmut; Protasi, Feliciano; Musarò, Antonio; Sandri, Marco; Rizzuto, Rosario

    2016-12-01

    Age-related sarcopenia is characterized by a progressive loss of muscle mass with decline in specific force, having dramatic consequences on mobility and quality of life in seniors. The etiology of sarcopenia is multifactorial and underlying mechanisms are currently not fully elucidated. Physical exercise is known to have beneficial effects on muscle trophism and force production. Alterations of mitochondrial Ca 2+ homeostasis regulated by mitochondrial calcium uniporter (MCU) have been recently shown to affect muscle trophism in vivo in mice. To understand the relevance of MCU-dependent mitochondrial Ca 2+ uptake in aging and to investigate the effect of physical exercise on MCU expression and mitochondria dynamics, we analyzed skeletal muscle biopsies from 70-year-old subjects 9 weeks trained with either neuromuscular electrical stimulation (ES) or leg press. Here, we demonstrate that improved muscle function and structure induced by both trainings are linked to increased protein levels of MCU Ultrastructural analyses by electron microscopy showed remodeling of mitochondrial apparatus in ES-trained muscles that is consistent with an adaptation to physical exercise, a response likely mediated by an increased expression of mitochondrial fusion protein OPA1. Altogether these results indicate that the ES-dependent physiological effects on skeletal muscle size and force are associated with changes in mitochondrial-related proteins involved in Ca 2+ homeostasis and mitochondrial shape. These original findings in aging human skeletal muscle confirm the data obtained in mice and propose MCU and mitochondria-related proteins as potential pharmacological targets to counteract age-related muscle loss. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  16. Functional characterization of muscle fibres from patients with chronic fatigue syndrome: case-control study.

    Science.gov (United States)

    Pietrangelo, T; Toniolo, L; Paoli, A; Fulle, S; Puglielli, C; Fanò, G; Reggiani, C

    2009-01-01

    Chronic fatigue syndrome (CFS) is a disabling condition characterized by unexplained chronic fatigue that impairs normal activities. Although immunological and psychological aspects are present, symptoms related to skeletal muscles, such as muscle soreness, fatigability and increased lactate accumulation, are prominent in CFS patients. In this case-control study, the phenotype of the same biopsy samples was analyzed by determining i) fibre-type proportion using myosin isoforms as fibre type molecular marker and gel electrophoresis as a tool to separate and quantify myosin isoforms, and ii) contractile properties of manually dissected, chemically made permeable and calcium-activated single muscle fibres. The results showed that fibre-type proportion was significantly altered in CSF samples, which showed a shift from the slow- to the fast-twitch phenotype. Cross sectional area, force, maximum shortening velocity and calcium sensitivity were not significantly changed in single muscle fibres from CSF samples. Thus, the contractile properties of muscle fibres were preserved but their proportion was changed, with an increase in the more fatigue-prone, energetically expensive fast fibre type. Taken together, these results support the view that muscle tissue is directly involved in the pathogenesis of CSF and it might contribute to the early onset of fatigue typical of the skeletal muscles of CFS patients.

  17. Dynamic measurement of the calcium buffering properties of the sarcoplasmic reticulum in mouse skeletal muscle.

    Science.gov (United States)

    Manno, Carlo; Sztretye, Monika; Figueroa, Lourdes; Allen, Paul D; Ríos, Eduardo

    2013-01-15

    The buffering power, B, of the sarcoplasmic reticulum (SR), ratio of the changes in total and free [Ca(2+)], was determined in fast-twitch mouse muscle cells subjected to depleting membrane depolarization. Changes in total SR [Ca(2+)] were measured integrating Ca(2+) release flux, determined with a cytosolic [Ca(2+)] monitor. Free [Ca(2+)](SR) was measured using the cameleon D4cpv-Casq1. In 34 wild-type (WT) cells average B during the depolarization (ON phase) was 157 (SEM 26), implying that of 157 ions released, 156 were bound inside the SR. B was significantly greater when BAPTA, which increases release flux, was present in the cytosol. B was greater early in the pulse - when flux was greatest - than at its end, and greater in the ON than in the OFF. In 29 Casq1-null cells, B was 40 (3.6). The difference suggests that 75% of the releasable calcium is normally bound to calsequestrin. In the nulls the difference in B between ON and OFF was less than in the WT but still significant. This difference and the associated decay in B during the ON were not artifacts of a slow SR monitor, as they were also found in the WT when [Ca(2+)](SR) was tracked with the fast dye fluo-5N. The calcium buffering power, binding capacity and non-linear binding properties of the SR measured here could be accounted for by calsequestrin at the concentration present in mammalian muscle, provided that its properties were substantially different from those found in solution. Its affinity should be higher, or K(D) lower than the conventionally accepted 1 mm; its cooperativity (n in a Hill fit) should be higher and the stoichiometry of binding should be at the higher end of the values derived in solution. The reduction in B during release might reflect changes in calsequestrin conformation upon calcium loss.

  18. Gestational diabetes is characterized by reduced mitochondrial protein expression and altered calcium signaling proteins in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Kristen E Boyle

    Full Text Available The rising prevalence of gestational diabetes mellitus (GDM affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM and obese pregnant women with normal glucose tolerance (ONGT. Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I subunits (NDUFS3, NDUFV2 and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4 in OGDM (n = 6 vs. ONGT (n = 6. Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (-60-75% in the OGDM (n = 8 compared with ONGT (n = 10 subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum.

  19. mTORC2 Regulation of Muscle Metabolism and Insulin Sensitivity

    DEFF Research Database (Denmark)

    Kleinert, Maximilian

    and skeletal muscle to take up blood glucose, ultimately lowering blood glucose levels. A hallmark of T2D is decreased organ sensitivity to the effects of the insulin. Therefore, an early event in the pathogenesis of T2D is an increase in insulin secretion in response to eating a meal, as more insulin....... In the absence of insulin, the majority of GLUT4 resides within the muscle. Conversely, insulin stimulation increases the muscle’s permeability to glucose, by triggering GLUT4 translocation to the plasma membrane. The effect of insulin on GLUT4 translocation is mediated by a chain of molecular signaling events...... that mTORC2 controls skeletal muscle glycolysis and lipid storage. In agreement, Ric mKO mice exhibited reduced muscle glycolytic flux, greater reliance on fat as an energy substrate, re-partitioning of lean to fat mass and higher intramyocellular triacylglycerol (IMTG) levels compared to Ric WT mice...

  20. Calcium channel blocker poisoning

    Directory of Open Access Journals (Sweden)

    Miran Brvar

    2005-04-01

    Full Text Available Background: Calcium channel blockers act at L-type calcium channels in cardiac and vascular smooth muscles by preventing calcium influx into cells with resultant decrease in vascular tone and cardiac inotropy, chronotropy and dromotropy. Poisoning with calcium channel blockers results in reduced cardiac output, bradycardia, atrioventricular block, hypotension and shock. The findings of hypotension and bradycardia should suggest poisoning with calcium channel blockers.Conclusions: Treatment includes immediate gastric lavage and whole-bowel irrigation in case of ingestion of sustainedrelease products. All patients should receive an activated charcoal orally. Specific treatment includes calcium, glucagone and insulin, which proved especially useful in shocked patients. Supportive care including the use of catecholamines is not always effective. In the setting of failure of pharmacological therapy transvenous pacing, balloon pump and cardiopulmonary by-pass may be necessary.

  1. Polyunsaturated fatty acids acutely affect triacylglycerol-derived skeletal muscle fatty acid uptake and increases postprandial insulin sensitivity

    NARCIS (Netherlands)

    Jans, Anneke; Konings, Ellen; Goossens, Gijs H.; Bouwman, Freek G.; Moors, Chantalle C.; Boekschoten, Mark; Afman, Lydia; Muller, Michael; Mariman, Edwin C.; Blaak, Ellen E.

    2012-01-01

    Dietary fat quality may influence skeletal muscle lipid handling and fat accumulation, thereby modulating insulin sensitivity. Objective: To examine acute effects of meals with various fatty acid (FA) compositions on skeletal muscle FA handling and postprandial insulin sensitivity in obese insulin

  2. Evidence for a dihydropyridine-sensitive and conotoxin-insensitive release of noradrenaline and uptake of calcium in adrenal chromaffin cells.

    Science.gov (United States)

    Owen, P. J.; Marriott, D. B.; Boarder, M. R.

    1989-01-01

    1. It has been suggested that neuronal voltage-sensitive calcium channels (VSCC) may be divided into dihydropyridine (DHP)-sensitive (L) and DHP-insensitive (N and T), and that both the L and the N type channels are attenuated by the peptide blocker omega-conotoxin. Here the effects of omega-conotoxin on release of noradrenaline and uptake of calcium in bovine adrenal chromaffin cells were investigated. 2. Release of noradrenaline in response to 25 mM K+, 65 mM K+, 10 nM bradykinin or 10 microM prostaglandin E1 was not affected by omega-conotoxin in the range 10 nM-1 microM. 3. 45Ca2+ uptake stimulated by high K+ and prostaglandin was attenuated by 1 microM nitrendipine and enhanced by 1 microM Bay K 8644; these calcium fluxes were not modified by 20 nM omega-conotoxin. 4. With superfused rat brain striatal slices in the same medium as the above cell studies, release of dopamine in response to 25 mM K+ was attenuated by 20 nM omega-conotoxin. 5. These results show that in these neurone-like cells, release may be effected by calcium influx through DHP-sensitive but omega-conotoxin-insensitive VSCC, a result inconsistent with the suggestion that omega-conotoxin blocks both L-type and N-type neuronal calcium channels. PMID:2470457

  3. Soleus muscle injury: sensitivity of ultrasound patterns

    Energy Technology Data Exchange (ETDEWEB)

    Balius, Ramon [Sport Catalan Council, Generalitat de Catalunya, Barcelona (Spain); Clinica CMI Diagonal, Barcelona (Spain); Rodas, Gil [F.C. Barcelona Medical Services, Barcelona (Spain); Pedret, Carles [Clinica CMI Diagonal, Barcelona (Spain); Clinica Mapfre de Medicina del Tenis, Sports Medicine and Imaging Department, Barcelona (Spain); Centre de Diagnostic per Imatge de Tarragona, Tarragona (Spain); Capdevila, Lluis [Universitat Autonoma de Barcelona, Laboratory of Sport Psychology, Barcelona (Spain); Alomar, Xavier [Clinica Creu Blanca, Barcelona (Spain); Bong, David A. [Instituto Poal de Reumatologia, Barcelona (Spain)

    2014-06-15

    To assess the sensitivity of ultrasound in detecting soleus muscle lesions diagnosed on magnetic resonance imaging (MRI) and to characterize their location, ultrasound pattern, and evolution. Ultrasound and MRI studies were performed between May 2009 and February 2013 on all patients who presented to the Medical Services Clinic of the Catalan Sport Council with the initial onset of sharp pain in the calf compatible with injury of the soleus muscle. An inter-observer ultrasound reliability study was also performed. A total of 55 cases of soleus injury were studied prospectively (22 with right leg involvement, 33 left) by ultrasound and MRI, which was utilized as the ''gold standard.'' In MRI studies, 24 cases (43.7 %) had myofascial injuries that were localized in the posterior aponeurosis (PMF) in 15 cases (27.3 %) and in the anterior aponeurosis (AMF) in 9 (16.4 %). Thirty-one cases (56.3 %) were musculotendinous injuries, with 9 cases (16.4 %) in the medial aponeurosis (MMT), 11 cases (20 %) in the lateral aponeurosis (LMT), and 11 cases (20 %) in the central tendon (CMT). In comparison to MRI, ultrasound was able to detect injury to the soleus in 27.2 % of cases. No injuries were detected by ultrasound alone. Posterior myofascial injuries were more likely to be detected by ultrasound than anterior myofascial injuries or all types of musculotendinous injuries. Ultrasound patterns for each type of injury were described. Ultrasound is not a sensitive technique for detecting and assessing soleus traumatic tears compared with MRI, although the sensitivity is enhanced by a thorough anatomically based ultrasound examination. Timing of the ultrasound examination may be of importance. Each type of soleus injury appears to have a characteristic ultrasound pattern based on a defect of connective expansions, the existence of small myofascial filiform collections, and the rarefaction of the fibrillar area. (orig.)

  4. Soleus muscle injury: sensitivity of ultrasound patterns.

    Science.gov (United States)

    Balius, Ramon; Rodas, Gil; Pedret, Carles; Capdevila, Lluís; Alomar, Xavier; Bong, David A

    2014-06-01

    To assess the sensitivity of ultrasound in detecting soleus muscle lesions diagnosed on magnetic resonance imaging (MRI) and to characterize their location, ultrasound pattern, and evolution. Ultrasound and MRI studies were performed between May 2009 and February 2013 on all patients who presented to the Medical Services Clinic of the Catalan Sport Council with the initial onset of sharp pain in the calf compatible with injury of the soleus muscle. An inter-observer ultrasound reliability study was also performed. A total of 55 cases of soleus injury were studied prospectively (22 with right leg involvement, 33 left) by ultrasound and MRI, which was utilized as the "gold standard." In MRI studies, 24 cases (43.7%) had myofascial injuries that were localized in the posterior aponeurosis (PMF) in 15 cases (27.3%) and in the anterior aponeurosis (AMF) in 9 (16.4%). Thirty-one cases (56.3%) were musculotendinous injuries, with 9 cases (16.4%) in the medial aponeurosis (MMT), 11 cases (20%) in the lateral aponeurosis (LMT), and 11 cases (20%) in the central tendon (CMT). In comparison to MRI, ultrasound was able to detect injury to the soleus in 27.2% of cases. No injuries were detected by ultrasound alone. Posterior myofascial injuries were more likely to be detected by ultrasound than anterior myofascial injuries or all types of musculotendinous injuries. Ultrasound patterns for each type of injury were described. Ultrasound is not a sensitive technique for detecting and assessing soleus traumatic tears compared with MRI, although the sensitivity is enhanced by a thorough anatomically based ultrasound examination. Timing of the ultrasound examination may be of importance. Each type of soleus injury appears to have a characteristic ultrasound pattern based on a defect of connective expansions, the existence of small myofascial filiform collections, and the rarefaction of the fibrillar area.

  5. Soleus muscle injury: sensitivity of ultrasound patterns

    International Nuclear Information System (INIS)

    Balius, Ramon; Rodas, Gil; Pedret, Carles; Capdevila, Lluis; Alomar, Xavier; Bong, David A.

    2014-01-01

    To assess the sensitivity of ultrasound in detecting soleus muscle lesions diagnosed on magnetic resonance imaging (MRI) and to characterize their location, ultrasound pattern, and evolution. Ultrasound and MRI studies were performed between May 2009 and February 2013 on all patients who presented to the Medical Services Clinic of the Catalan Sport Council with the initial onset of sharp pain in the calf compatible with injury of the soleus muscle. An inter-observer ultrasound reliability study was also performed. A total of 55 cases of soleus injury were studied prospectively (22 with right leg involvement, 33 left) by ultrasound and MRI, which was utilized as the ''gold standard.'' In MRI studies, 24 cases (43.7 %) had myofascial injuries that were localized in the posterior aponeurosis (PMF) in 15 cases (27.3 %) and in the anterior aponeurosis (AMF) in 9 (16.4 %). Thirty-one cases (56.3 %) were musculotendinous injuries, with 9 cases (16.4 %) in the medial aponeurosis (MMT), 11 cases (20 %) in the lateral aponeurosis (LMT), and 11 cases (20 %) in the central tendon (CMT). In comparison to MRI, ultrasound was able to detect injury to the soleus in 27.2 % of cases. No injuries were detected by ultrasound alone. Posterior myofascial injuries were more likely to be detected by ultrasound than anterior myofascial injuries or all types of musculotendinous injuries. Ultrasound patterns for each type of injury were described. Ultrasound is not a sensitive technique for detecting and assessing soleus traumatic tears compared with MRI, although the sensitivity is enhanced by a thorough anatomically based ultrasound examination. Timing of the ultrasound examination may be of importance. Each type of soleus injury appears to have a characteristic ultrasound pattern based on a defect of connective expansions, the existence of small myofascial filiform collections, and the rarefaction of the fibrillar area. (orig.)

  6. Shikonin increases glucose uptake in skeletal muscle cells and improves plasma glucose levels in diabetic Goto-Kakizaki rats.

    Directory of Open Access Journals (Sweden)

    Anette I Öberg

    Full Text Available BACKGROUND: There is considerable interest in identifying compounds that can improve glucose homeostasis. Skeletal muscle, due to its large mass, is the principal organ for glucose disposal in the body and we have investigated here if shikonin, a naphthoquinone derived from the Chinese plant Lithospermum erythrorhizon, increases glucose uptake in skeletal muscle cells. METHODOLOGY/PRINCIPAL FINDINGS: Shikonin increases glucose uptake in L6 skeletal muscle myotubes, but does not phosphorylate Akt, indicating that in skeletal muscle cells its effect is medaited via a pathway distinct from that used for insulin-stimulated uptake. Furthermore we find no evidence for the involvement of AMP-activated protein kinase in shikonin induced glucose uptake. Shikonin increases the intracellular levels of calcium in these cells and this increase is necessary for shikonin-mediated glucose uptake. Furthermore, we found that shikonin stimulated the translocation of GLUT4 from intracellular vesicles to the cell surface in L6 myoblasts. The beneficial effect of shikonin on glucose uptake was investigated in vivo by measuring plasma glucose levels and insulin sensitivity in spontaneously diabetic Goto-Kakizaki rats. Treatment with shikonin (10 mg/kg intraperitoneally once daily for 4 days significantly decreased plasma glucose levels. In an insulin sensitivity test (s.c. injection of 0.5 U/kg insulin, plasma glucose levels were significantly lower in the shikonin-treated rats. In conclusion, shikonin increases glucose uptake in muscle cells via an insulin-independent pathway dependent on calcium. CONCLUSIONS/SIGNIFICANCE: Shikonin increases glucose uptake in skeletal muscle cells via an insulin-independent pathway dependent on calcium. The beneficial effects of shikonin on glucose metabolism, both in vitro and in vivo, show that the compound possesses properties that make it of considerable interest for developing novel treatment of type 2 diabetes.

  7. Compression-induced hyperaemia in the rabbit masseter muscle: a model to investigate vascular mechano-sensitivity of skeletal muscle

    International Nuclear Information System (INIS)

    Turturici, Marco; Roatta, Silvestro

    2013-01-01

    Recent evidence suggests that the mechano-sensitivity of the vascular network may underlie rapid dilatory events in skeletal muscles. Previous investigations have been mostly based either on in vitro or on whole-limb studies, neither preparation allowing one to assess the musculo-vascular specificity under physiological conditions. The aim of this work is to characterize the mechano-sensitivity of an exclusively-muscular vascular bed in vivo. In five anesthetized rabbits, muscle blood flow was continuously monitored in the masseteric artery, bilaterally (n = 10). Hyperaemic responses were evoked by compressive stimuli of different extent (50, 100 and 200 mm Hg) and duration (0.5, 1, 2 and 5 s) exerted by a servo-controlled motor on the masseter muscle. Peak amplitude of the hyperaemic response ranged from 340 ± 30% of baseline (at 50 mm Hg) to 459 ± 57% (at 200 mm Hg) (P < 0.05), did not depend on stimulus duration and exhibited very good reliability (ICC = 0.98) when reassessed at 30 min intervals. The time course of the response depended neither on applied pressure nor on the duration of the stimulus. In conclusion, for its high sensitivity and reliability this technique is adequate to characterize mechano-vascular reactivity and may prove useful in the investigation of the underlying mechanisms, with implications in the control of vascular tone and blood pressure in health and disease. (paper)

  8. Sandia National Laboratories Small-Scale Sensitivity Testing (SSST) Report: Calcium Nitrate Mixtures with Various Fuels.

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Jason Joe [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    Based upon the presented sensitivity data for the examined calcium nitrate mixtures using sugar and sawdust, contact handling/mixing of these materials does not present hazards greater than those occurring during handling of dry PETN powder. The aluminized calcium nitrate mixtures present a known ESD fire hazard due to the fine aluminum powder fuel. These mixtures may yet present an ESD explosion hazard, though this has not been investigated at this time. The detonability of these mixtures will be investigated during Phase III testing.

  9. Laser flash photolysis of diazo-2, a caged calcium chelator: The relationship between the extent and rate of smooth muscle relaxation

    Czech Academy of Sciences Publication Activity Database

    Pelc, Radek; Ishii, N.; Ashley, C. C.

    2009-01-01

    Roč. 21, č. 1 (2009), s. 32-38 ISSN 1042-346X R&D Projects: GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z50200510 Keywords : caged calcium chelator * smooth muscle * blood pressure Subject RIV: ED - Physiology Impact factor: 0.652, year: 2009

  10. Capsaicin-sensitive muscle afferents modulate the monosynaptic reflex in response to muscle ischemia and fatigue in the rat.

    Science.gov (United States)

    Della Torre, G; Brunetti, O; Pettorossi, V E

    2002-01-01

    The role of muscle ischemia and fatigue in modulating the monosynaptic reflex was investigated in decerebrate and spinalized rats. Field potentials and fast motoneuron single units in the lateral gastrocnemious (LG) motor pool were evoked by dorsal root stimulation. Muscle ischemia was induced by occluding the LG vascular supply and muscle fatigue by prolonged tetanic electrical stimulation of the LG motor nerve. Under muscle ischemia the monosynaptic reflex was facilitated since the size of the early and late waves of the field potential and the excitability of the motoneuron units increased. This effect was abolished after L3-L6 dorsal rhizotomy, but it was unaffected after L3-L6 ventral rhizotomy. By contrast, the monosynaptic reflex was inhibited by muscle fatiguing stimulation, and this effect did not fully depend on the integrity of the dorsal root. However, when ischemia was combined with repetitive tetanic muscle stimulation the inhibitory effect of fatigue was significantly enhanced. Both the ischemia and fatigue effects were abolished by capsaicin injected into the LG muscle at a dose that blocked a large number of group III and IV muscle afferents. We concluded that muscle ischemia and fatigue activate different groups of muscle afferents that are both sensitive to capsaicin, but enter the spinal cord through different roots. They are responsible for opposite effects, when given separately: facilitation during ischemia and inhibition during fatigue; however, in combination, ischemia enhances the responsiveness of the afferent fibres to fatigue.

  11. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Tingqing Guo

    Full Text Available Myostatin (Mstn is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Mstn(-/- mice have a dramatic increase in muscle mass, reduction in fat mass, and resistance to diet-induced and genetic obesity. To determine how Mstn deletion causes reduced adiposity and resistance to obesity, we analyzed substrate utilization and insulin sensitivity in Mstn(-/- mice fed a standard chow. Despite reduced lipid oxidation in skeletal muscle, Mstn(-/- mice had no change in the rate of whole body lipid oxidation. In contrast, Mstn(-/- mice had increased glucose utilization and insulin sensitivity as measured by indirect calorimetry, glucose and insulin tolerance tests, and hyperinsulinemic-euglycemic clamp. To determine whether these metabolic effects were due primarily to the loss of myostatin signaling in muscle or adipose tissue, we compared two transgenic mouse lines carrying a dominant negative activin IIB receptor expressed specifically in adipocytes or skeletal muscle. We found that inhibition of myostatin signaling in adipose tissue had no effect on body composition, weight gain, or glucose and insulin tolerance in mice fed a standard diet or a high-fat diet. In contrast, inhibition of myostatin signaling in skeletal muscle, like Mstn deletion, resulted in increased lean mass, decreased fat mass, improved glucose metabolism on standard and high-fat diets, and resistance to diet-induced obesity. Our results demonstrate that Mstn(-/- mice have an increase in insulin sensitivity and glucose uptake, and that the reduction in adipose tissue mass in Mstn(-/- mice is an indirect result of metabolic changes in skeletal muscle. These data suggest that increasing muscle mass by administration of myostatin antagonists may be a promising therapeutic target for treating patients with obesity or diabetes.

  12. Lipid droplet size and location in human skeletal muscle fibers are associated with insulin sensitivity

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Christensen, Anders E; Nellemann, Birgitte

    2017-01-01

    In skeletal muscle, an accumulation of lipid droplets (LDs) in the subsarcolemmal space is associated with insulin resistance, but the underlying mechanism is not clear. We aimed to investigate how the size, number and location of LDs are associated with insulin sensitivity and muscle fiber types...... are associated with insulin resistance in skeletal muscle....

  13. Reduced sarcoplasmic reticulum content of releasable Ca2+ in rat soleus muscle fibres after eccentric contractions

    DEFF Research Database (Denmark)

    Nielsen, J S; Sahlin, K; Ørtenblad, N

    2007-01-01

    AIM: The purpose was to evaluate the effects of fatiguing eccentric contractions (EC) on calcium (Ca2+) handling properties in mammalian type I muscles. We hypothesized that EC reduces both endogenous sarcoplasmic reticulum (SR) content of releasable Ca2+ (eSRCa2+) and myofibrillar Ca2+ sensitivity....... METHODS: Isolated rat soleus muscles performed 30 EC bouts. Single fibres were isolated from the muscle and after mechanical removal of sarcolemma used to measure eSRCa2+, rate of SR Ca2+ loading and myofibrillar Ca2+ sensitivity. RESULTS: Following EC maximal force in whole muscle was reduced by 30......% and 16/100 Hz force ratio by 33%. The eSRCa2+ in fibres from non-stimulated muscles was 45 +/- 5% of the maximal loading capacity. After EC, eSRCa2+ per fibre CSA decreased by 38% (P = 0.05), and the maximal capacity of SR Ca2+ loading was depressed by 32%. There were no effects of EC on either...

  14. Intracellular Ca2+ Regulation in Calcium Sensitive Phenotype of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    HERMANSYAH

    2010-03-01

    Full Text Available Intracellular cytosolic Ca2+ concentration accumulation plays an essential information in Saccharomyces cerevisiae i.e. to explain cellular mechanism of Ca2+ sensitive phenotype. Disruption both S. cerevisiae PPase PTP2 and MSG5 genes showed an inhibited growth in the presence of Ca2+. On the other hand, by using Luminocounter with apoaequorin system, a method based upon luminescent photoprotein aequorin, intracellular Ca2+ concentration was accumulated as a consequence of calcium sensitive phenotype of S. cerevisiae. This fact indicated that PPase ptp2Δ and msg5Δ were involved in intracellular Ca2+ transport in addition their already known pathways i.e Mitogen Activated Protein Kinase cell wall integrity pathway, high osmolarity glycerol (HOG pathway, and pheromone response FUS3 pathway.

  15. Sensitivity of subject-specific models to Hill muscle-tendon model parameters in simulations of gait.

    Science.gov (United States)

    Carbone, V; van der Krogt, M M; Koopman, H F J M; Verdonschot, N

    2016-06-14

    Subject-specific musculoskeletal (MS) models of the lower extremity are essential for applications such as predicting the effects of orthopedic surgery. We performed an extensive sensitivity analysis to assess the effects of potential errors in Hill muscle-tendon (MT) model parameters for each of the 56 MT parts contained in a state-of-the-art MS model. We used two metrics, namely a Local Sensitivity Index (LSI) and an Overall Sensitivity Index (OSI), to distinguish the effect of the perturbation on the predicted force produced by the perturbed MT parts and by all the remaining MT parts, respectively, during a simulated gait cycle. Results indicated that sensitivity of the model depended on the specific role of each MT part during gait, and not merely on its size and length. Tendon slack length was the most sensitive parameter, followed by maximal isometric muscle force and optimal muscle fiber length, while nominal pennation angle showed very low sensitivity. The highest sensitivity values were found for the MT parts that act as prime movers of gait (Soleus: average OSI=5.27%, Rectus Femoris: average OSI=4.47%, Gastrocnemius: average OSI=3.77%, Vastus Lateralis: average OSI=1.36%, Biceps Femoris Caput Longum: average OSI=1.06%) and hip stabilizers (Gluteus Medius: average OSI=3.10%, Obturator Internus: average OSI=1.96%, Gluteus Minimus: average OSI=1.40%, Piriformis: average OSI=0.98%), followed by the Peroneal muscles (average OSI=2.20%) and Tibialis Anterior (average OSI=1.78%) some of which were not included in previous sensitivity studies. Finally, the proposed priority list provides quantitative information to indicate which MT parts and which MT parameters should be estimated most accurately to create detailed and reliable subject-specific MS models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Altered mechanical properties of titin immunoglobulin domain 27 in the presence of calcium.

    Science.gov (United States)

    DuVall, Michael M; Gifford, Jessica L; Amrein, Matthias; Herzog, Walter

    2013-04-01

    Titin (connectin) based passive force regulation has been an important physiological mechanism to adjust to varying muscle stretch conditions. Upon stretch, titin behaves as a spring capable of modulating its elastic response in accordance with changes in muscle biochemistry. One such mechanism has been the calcium-dependent stiffening of titin domains that renders the spring inherently more resistant to stretch. This transient titin-calcium interaction may serve a protective function in muscle, which could preclude costly unfolding of select domains when muscles elongate to great lengths. To test this idea, fluorescence spectroscopy was performed revealing a change in the microenvironment of the investigated immunoglobulin domain 27 (I27) of titin with calcium. Additionally, an atomic force microscope was used to evaluate the calcium-dependent regulation of passive force by stretching eight linked titin I27 domains until they unfolded. When stretching in the presence of calcium, the I27 homopolymer chain became stabilized, displaying three novel properties: (1) higher stretching forces were needed to unfold the domains, (2) the stiffness, measured as a persistence length (PL), increased and (3) the peak-to-peak distance between adjacent I27 domains increased. Furthermore, a peak order dependence became apparent for both force and PL, reflecting the importance of characterizing the dynamic unfolding history of a polymer with this approach. Together, this novel titin Ig-calcium interaction may serve to stabilize the I27 domain permitting titin to tune passive force within stretched muscle in a calcium-dependent manner.

  17. Differential calcium sensitivity in NaV 1.5 mixed syndrome mutants.

    Science.gov (United States)

    Abdelsayed, Mena; Baruteau, Alban-Elouen; Gibbs, Karen; Sanatani, Shubhayan; Krahn, Andrew D; Probst, Vincent; Ruben, Peter C

    2017-09-15

    SCN5a mutations may express gain-of-function (Long QT Syndrome-3), loss-of-function (Brugada Syndrome 1) or both (mixed syndromes), depending on the mutation and environmental triggers. One such trigger may be an increase in cytosolic calcium, accompanying exercise. Many mixed syndromes mutants, including ∆KPQ, E1784K, 1795insD and Q1909R, are found in calcium-sensitive regions. Elevated cytosolic calcium attenuates gain-of-function properties in ∆KPQ, 1795insD and Q1909R, but not in E1784K. By contrast, elevated cytosolic calcium further exacerbates gain-of-function in E1784K by destabilizing slow inactivation. Action potential modelling, using a modified O'Hara Rudy model, suggests that elevated heart rate rescues action potential duration in ∆KPQ, 1795insD and Q1909R, but not in E1784K. Action potential simulations suggest that E1784K carriers have an increased intracellular sodium-to-calcium ratio under bradycardia and tachycardia conditions. Elevated cytosolic calcium, which is common during high heart rates, ameliorates or exacerbates the mixed syndrome phenotype depending on the genetic signature. Inherited arrhythmias may arise from mutations in the gene for SCN5a, which encodes the cardiac voltage-gated sodium channel, Na V 1.5. Mutants in Na V 1.5 result in Brugada Syndrome (BrS1), Long-QT Syndrome (LQT3) or mixed syndromes (an overlap of BrS1/LQT3). Exercise is a potential arrhythmogenic trigger in mixed syndromes. We aimed to determine the effects of elevated cytosolic calcium, which is common during exercise, in mixed syndrome Na V 1.5 mutants. We used whole-cell patch clamp to assess the biophysical properties of Na V 1.5 wild-type (WT), ∆KPQ, E1784K, 1795insD and Q1909R mutants in human embryonic kidney 293 cells transiently transfected with the Na V 1.5 α subunit (WT or mutants), β1 subunit and enhanced green fluorescent protein. Voltage-dependence and kinetics were measured at cytosolic calcium levels of approximately 0, 500 and 2500

  18. The Genetic and Molecular Bases for Hypertrophic Cardiomyopathy: The Role for Calcium Sensitization.

    Science.gov (United States)

    Ren, Xianfeng; Hensley, Nadia; Brady, Mary Beth; Gao, Wei Dong

    2018-02-01

    Hypertrophic cardiomyopathy (HCM) affects millions of people around the world as one of the most common genetic heart disorders and leads to cardiac ischemia, heart failure, dysfunction of other organ systems, and increased risk for sudden unexpected cardiac deaths. HCM can be caused by single-point mutations, insertion or deletion mutations, or truncation of cardiac myofilament proteins. The molecular mechanism that leads to disease progression and presentation is still poorly understood, despite decades of investigations. However, recent research has made dramatic advances in the understanding of HCM disease development. Studies have shown that increased calcium sensitivity is a universal feature in HCM. At the molecular level, increased crossbridge force (or power) generation resulting in hypercontractility is the prominent feature. Thus, calcium sensitization/hypercontractility is emerging as the primary stimulus for HCM disease development and phenotypic expression. Cross-bridge inhibition has been shown to halt HCM presentation, and myofilament desensitization appears to reduce lethal arrhythmias in animal models of HCM. These advances in basic research will continue to deepen the knowledge of HCM pathogenesis and are beginning to revolutionize the management of HCM. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. An in vivo model for studying the dynamics of intracellular free calcium changes in slow- and fast-twitch muscle fibres.

    Science.gov (United States)

    Bátkai, S; Rácz, I B; Ivanics, T; Tóth, A; Hamar, J; Slaaf, D W; Reneman, R S; Ligeti, L

    1999-10-01

    The understanding of the regulation of the free cytosolic [Ca2+] ([Ca2+]i) in skeletal muscle is hampered by the lack of techniques for quantifying free [Ca2+]i in muscle fibres in situ. We describe a model for studying the dynamics of free [Ca2+]i in the fast-twitch extensor digitorum longus (EDL) and the slow-twitch soleus (SOL) muscles of the rat in vivo using caffeine superfusion to induce changes in free [Ca2+]i. We assumed that differences in sensitivity between the two muscle types for this substance reflect differences in intracellular Ca2+ handling in the fibres of which these muscles consist. The Indo-1 ratiometric method, using intravital microscopy with incident light, was adapted to measure free [Ca2+]i in vivo. Fluorescence images were collected by means of a digital camera. Caffeine superfusion at 37 degrees C for 2 min, at concentrations of 1, 2, 5, 10 or 20 mmol/l, induced a concentration-dependent increase in free [Ca2+]i and revealed differences in caffeine sensitivity between the muscle types, with the SOL being more sensitive. In a separate set of experiments the contracture threshold, as assessed by topical application of caffeine, was determined in both muscle types. EDL had a higher threshold for developing contracture than SOL. These finding are in agreement with previous in vitro studies. We may conclude that the dynamics of free [Ca2+]i can be assessed reliably in intact mammalian muscle in vivo.

  20. [3H]PN200-110 and [3H]ryanodine binding and reconstitution of ion channel activity with skeletal muscle membranes

    International Nuclear Information System (INIS)

    Hamilton, S.L.; Alvarez, R.M.; Fill, M.; Hawkes, M.J.; Brush, K.L.; Schilling, W.P.; Stefani, E.

    1989-01-01

    Skeletal muscle membranes derived either from the tubular (T) network or from the sarcoplasmic reticulum (SR) were characterized with respect to the binding of the dihydropyridine, [ 3 H]PN200-110, and the alkaloid, [ 3 H]ryanodine; polypeptide composition; and ion channel activity. Conditions for optimizing the binding of these radioligands are discussed. A bilayer pulsing technique is described and is used to examine the channels present in these membranes. Fusion of T-tubule membranes into bilayers revealed the presence of chloride channels and dihydropyridine-sensitive calcium channels with three distinct conductances. The dihydropyridine-sensitive channels were further characterized with respect to their voltage dependence. Pulsing experiments indicated that two different populations of dihydropyridine-sensitive channels existed. Fusion of heavy SR vesicles revealed three different ion channels; the putative calcium release channel, a potassium channel, and a chloride channel. Thus, this fractionation procedure provides T-tubules and SR membranes which, with radioligand binding and single channel recording techniques, provide a useful tool to study the characteristics of skeletal muscle ion channels and their possible role in excitation-contraction coupling

  1. From depolarization-dependent contractions in gastrointestinal smooth muscle to aortic pulse-synchronized contractions

    Directory of Open Access Journals (Sweden)

    Marion SB

    2014-03-01

    Full Text Available Sarah B Marion, Allen W MangelRTI Health Solutions, Research Triangle Park, NC, USAAbstract: For decades, it was believed that the diameter of gastrointestinal smooth muscle cells is sufficiently narrow, and that the diffusion of calcium across the plasma membrane is sufficient, to support contractile activity. Thus, depolarization-triggered release of intracellular calcium was not believed to be operative in gastrointestinal smooth muscle. However, after the incubation of muscle segments in solutions devoid of calcium and containing the calcium chelator ethylene glycol tetraacetic acid, an alternative electrical event occurred that was distinct from normal slow waves and spikes. Subsequently, it was demonstrated in gastrointestinal smooth muscle segments that membrane depolarization associated with this alternative electrical event triggered rhythmic contractions by release of intracellular calcium. Although this concept of depolarization-triggered calcium release was iconoclastic, it has now been demonstrated in multiple gastrointestinal smooth muscle preparations. On the basis of these observations, we investigated whether a rhythmic electrical and mechanical event would occur in aortic smooth muscle under the same calcium-free conditions. The incubation of aortic segments in a solution with no added calcium plus ethylene glycol tetraacetic acid induced a fast electrical event without corresponding tension changes. On the basis of the frequency of these fast electrical events, we pursued, contrary to what has been established dogma for more than three centuries, the question of whether the smooth muscle wall of the aorta undergoes rhythmic activation during the cardiac cycle. As with depolarization-triggered contractile activity in gastrointestinal smooth muscle, it was “well known” that rhythmic activation of the aorta does not occur in synchrony with the heartbeat. In a series of experiments, however, it was demonstrated that rhythmic

  2. Sensitivity of vertical jumping performance to changes in muscle stimulation onset times: a simulation study

    NARCIS (Netherlands)

    Bobbert, M.F.; van Zandwijk, J.P.

    1999-01-01

    The effect of muscle stimulation dynamics on the sensitivity of jumping achievement to variations in timing of muscle stimulation onsets was investigated. Vertical squat jumps were simulated using a forward dynamic model of the human musculoskeletal system. The model calculates the motion of body

  3. Localization and function of ATP-sensitive potassium channels in human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Jens Jung; Kristensen, Michael; Hellsten, Ylva

    2003-01-01

    The present study investigated the localization of ATP-sensitive K+ (KATP) channels in human skeletal muscle and the functional importance of these channels for human muscle K+ distribution at rest and during muscle activity. Membrane fractionation based on the giant vesicle technique...... or the sucrose-gradient technique in combination with Western blotting demonstrated that the KATP channels are mainly located in the sarcolemma. This localization was confirmed by immunohistochemical measurements. With the microdialysis technique, it was demonstrated that local application of the KATP channel...... to in vitro conditions, the present study demonstrated that under in vivo conditions the KATP channels are active at rest and contribute to the accumulation of interstitial K+....

  4. The role of uncoupling protein 3 regulating calcium ion uptake into mitochondria during sarcopenia

    Science.gov (United States)

    Nikawa, Takeshi; Choi, Inho; Haruna, Marie; Hirasaka, Katsuya; Maita Ohno, Ayako; Kondo Teshima, Shigetada

    Overloaded mitochondrial calcium concentration contributes to progression of mitochondrial dysfunction in aged muscle, leading to sarcopenia. Uncoupling protein 3 (UCP3) is primarily expressed in the inner membrane of skeletal muscle mitochondria. Recently, it has been reported that UCP3 is associated with calcium uptake into mitochondria. However, the mechanisms by which UCP3 regulates mitochondrial calcium uptake are not well understood. Here we report that UCP3 interacts with HS-1 associated protein X-1 (Hax-1), an anti-apoptotic protein that is localized in mitochondria, which is involved in cellular responses to calcium ion. The hydrophilic sequences within the loop 2, matrix-localized hydrophilic domain of mouse UCP3 are necessary for binding to Hax-1 of the C-terminal domain in adjacent to mitochondrial innermembrane. Interestingly, these proteins interaction occur the calcium-dependent manner. Indeed, overexpression of UCP3 significantly enhanced calcium uptake into mitochondria on Hax-1 endogenously expressing C2C12 myoblasts. In addition, Hax-1 knock-down enhanced calcium uptake into mitochondria on both UCP3 and Hax-1 endogenously expressing C2C12 myotubes, but not myoblasts. Finally, the dissociation of UCP3 and Hax-1 enhances calcium uptake into mitochondria in aged muscle. These studies identify a novel UCP3-Hax-1 complex regulates the influx of calcium ion into mitochondria in muscle. Thus, the efficacy of UCP3-Hax-1 in mitochondrial calcium regulation may provide a novel therapeutic approach against mitochondrial dysfunction-related disease containing sarcopenia.

  5. Ca2+-Dependent Regulations and Signaling in Skeletal Muscle: From Electro-Mechanical Coupling to Adaptation

    Science.gov (United States)

    Gehlert, Sebastian; Bloch, Wilhelm; Suhr, Frank

    2015-01-01

    Calcium (Ca2+) plays a pivotal role in almost all cellular processes and ensures the functionality of an organism. In skeletal muscle fibers, Ca2+ is critically involved in the innervation of skeletal muscle fibers that results in the exertion of an action potential along the muscle fiber membrane, the prerequisite for skeletal muscle contraction. Furthermore and among others, Ca2+ regulates also intracellular processes, such as myosin-actin cross bridging, protein synthesis, protein degradation and fiber type shifting by the control of Ca2+-sensitive proteases and transcription factors, as well as mitochondrial adaptations, plasticity and respiration. These data highlight the overwhelming significance of Ca2+ ions for the integrity of skeletal muscle tissue. In this review, we address the major functions of Ca2+ ions in adult muscle but also highlight recent findings of critical Ca2+-dependent mechanisms essential for skeletal muscle-regulation and maintenance. PMID:25569087

  6. Effects of menopause and high-intensity training on insulin sensitivity and muscle metabolism.

    Science.gov (United States)

    Mandrup, Camilla M; Egelund, Jon; Nyberg, Michael; Enevoldsen, Lotte Hahn; Kjær, Andreas; Clemmensen, Andreas E; Christensen, Anders Nymark; Suetta, Charlotte; Frikke-Schmidt, Ruth; Steenberg, Dorte Enggaard; Wojtaszewski, Jørgen F P; Hellsten, Ylva; Stallknecht, Bente M

    2018-02-01

    To investigate peripheral insulin sensitivity and skeletal muscle glucose metabolism in premenopausal and postmenopausal women, and evaluate whether exercise training benefits are maintained after menopause. Sedentary, healthy, normal-weight, late premenopausal (n = 21), and early postmenopausal (n = 20) women were included in a 3-month high-intensity exercise training intervention. Body composition was assessed by magnetic resonance imaging and dual-energy x-ray absorptiometry, whole body glucose disposal rate (GDR) by hyperinsulinemic euglycemic clamp (40 mU/m/min), and femoral muscle glucose uptake by positron emission tomography/computed tomography, using the glucose analog fluorodeoxyglucose, expressed as estimated metabolic rate (eMR). Insulin signaling was investigated in muscle biopsies. Age difference between groups was 4.5 years, and no difference was observed in body composition. Training increased lean body mass (estimate [95% confidence interval] 0.5 [0.2-0.9] kg, P training (eMR vastus lateralis muscle: 27.8 [19.6-36.0] μmol/min/kg, P training-induced increases in insulin sensitivity included increased expression of hexokinase (19.2 [5.0-24.7] AU, P = 0.02) and glycogen synthase (32.4 [15.0-49.8] AU, P high-intensity exercise training.

  7. Tx1, from Phoneutria nigriventer spider venom, interacts with dihydropyridine sensitive-calcium channels in GH3 cells

    International Nuclear Information System (INIS)

    Gouvea dos Santos, R.; Soares, M.A.; Pimenta, A.M.; De Lima, M.E.; ICB, UFMG, Belo Horizonte

    2006-01-01

    The aim of this work was to use the binding assay of tritiated-dihydropyridine and radioiodinated Tx1, isolated from the Phoneutria nigriventer venom, in order to show the presence of Ca v 1 calcium channels on pituitary tumour cell (GH3). We showed that GH3 cells have specific sites for 125 I-Tx1, which are sensitive to nifedipine (∼20%). Reverse competition assay with 3 H-PN200-110 (40% inhibition) and electrophysiological data (50% inhibition) suggest that Ca v 1 calcium channels are target sites for this toxin. To summarize, Tx1 binds to specific sites on GH3 cells and this interaction results in Ca v 1 calcium channel blockade. 3 H-PN200-110 and 125 I-Tx1 binding assays proved to be useful tools to show the presence of calcium channels on GH3 cells. (author)

  8. The ability of AIF-1 to activate human vascular smooth muscle cells is lost by mutations in the EF-hand calcium-binding region

    International Nuclear Information System (INIS)

    Autieri, Michael V.; Chen Xing

    2005-01-01

    Allograft Inflammatory Factor-1 (AIF-1) is a cytoplasmic calcium-binding protein expressed in vascular smooth muscle cells (VSMC) in response to injury or cytokine stimulation. AIF-1 contains a partially conserved EF-hand calcium-binding domain, and participates in VSMC activation by activation of Rac1 and induction of Granulocyte-Colony Stimulating Factor (G-CSF) expression; however, the mechanism whereby AIF-1 mediates these effects is presently uncharacterized. To determine if calcium binding plays a functional role in AIF-1 activity, a single site-specific mutation was made in the EF-hand calcium-binding domain to abrogate binding of calcium (AIF-1ΔA), which was confirmed by calcium overlay. Functionally, similar to wild-type AIF-1, AIF-1ΔA was able to polymerize F-actin in vitro. However, in contrast to wild-type AIF-1, over-expression of AIF-1ΔA was unable to increase migration or proliferation of primary human VSMC. Further, it was unable to activate Rac1, or induce G-CSF expression to the degree as wild-type AIF-1. Taken together, modification of the wild-type EF-hand domain and native calcium-binding activity results in a loss of AIF-1 function. We conclude that appropriate calcium-binding potential is critical in AIF-1-mediated effects on VSMC pathophysiology, and that AIF-1 activity is mediated by Rac1 activation and G-CSF expression

  9. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.

    Science.gov (United States)

    Wu, Jing; Tao, Wei-Wei; Chong, Dan-Yang; Lai, Shan-Shan; Wang, Chuang; Liu, Qi; Zhang, Tong-Yu; Xue, Bin; Li, Chao-Jun

    2018-03-15

    Postprandial insulin desensitization plays a critical role in maintaining whole-body glucose homeostasis by avoiding the excessive absorption of blood glucose; however, the detailed mechanisms that underlie how the major player, skeletal muscle, desensitizes insulin action remain to be elucidated. Herein, we report that early growth response gene-1 ( Egr-1) is activated by insulin in skeletal muscle and provides feedback inhibition that regulates insulin sensitivity after a meal. The inhibition of the transcriptional activity of Egr-1 enhanced the phosphorylation of the insulin receptor (InsR) and Akt, thus increasing glucose uptake in L6 myotubes after insulin stimulation, whereas overexpression of Egr-1 decreased insulin sensitivity. Furthermore, deletion of Egr-1 in the skeletal muscle improved systemic insulin sensitivity and glucose tolerance, which resulted in lower blood glucose levels after refeeding. Mechanistic analysis demonstrated that EGR-1 inhibited InsR phosphorylation and glucose uptake in skeletal muscle by binding to the proximal promoter region of protein tyrosine phosphatase-1B (PTP1B) and directly activating transcription. PTP1B knockdown largely restored insulin sensitivity and enhanced glucose uptake, even under conditions of EGR-1 overexpression. Our results indicate that EGR-1/PTP1B signaling negatively regulates postprandial insulin sensitivity and suggest a potential therapeutic target for the prevention and treatment of excessive glucose absorption.-Wu, J., Tao, W.-W., Chong, D.-Y., Lai, S.-S., Wang, C., Liu, Q., Zhang, T.-Y., Xue, B., Li, C.-J. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.

  10. Effect of a high dose of simvastatin on muscle mitochondrial metabolism and calcium signaling in healthy volunteers

    International Nuclear Information System (INIS)

    Galtier, F.; Mura, T.; Raynaud de Mauverger, E.; Chevassus, H.; Farret, A.; Gagnol, J.-P.; Costa, F.; Dupuy, A.

    2012-01-01

    Statin use may be limited by muscle side effects. Although incompletely understood to date, their pathophysiology may involve oxidative stress and impairments of mitochondrial function and of muscle Ca 2+ homeostasis. In order to simultaneously assess these mechanisms, 24 male healthy volunteers were randomized to receive either simvastatin for 80 mg daily or placebo for 8 weeks. Blood and urine samples and a stress test were performed at baseline and at follow-up, and mitochondrial respiration and Ca 2+ spark properties were evaluated on a muscle biopsy 4 days before the second stress test. Simvastatin-treated subjects were separated according to their median creatine kinase (CK) increase. Simvastatin treatment induced a significant elevation of aspartate amino transferase (3.38 ± 5.68 vs − 1.15 ± 4.32 UI/L, P 2+ sparks. However, among statin-treated subjects, those with the highest CK increase displayed a significantly lower Vmax rotenone succinate and an increase in Ca 2+ spark amplitude vs both subjects with the lowest CK increase and placebo-treated subjects. Moreover, Ca 2+ spark amplitude was positively correlated with treatment-induced CK increase in the whole group (r = 0.71, P = 0.0045). In conclusion, this study further supports that statin induced muscular toxicity may be related to alterations in mitochondrial respiration and muscle calcium homeostasis independently of underlying disease or concomitant medication. -- Highlights: ► Statin use may be limited by side effects, particularly myopathy. ► Statins might impair mitochondrial function and muscle Ca2+ signaling in muscle. ► This was tested among healthy volunteers receiving simvastatin 80 mg daily for 8 weeks. ► CK increase was associated with alterations in Ca2+ sparks and mitochondrial function.

  11. Charge movement and depolarization-contraction coupling in arthropod vs. vertebrate skeletal muscle.

    OpenAIRE

    Scheuer, T; Gilly, W F

    1986-01-01

    Voltage-dependent charge movement has been characterized in arthropod skeletal muscle. Charge movement in scorpion (Centuroides sculpturatus) muscle is distinguishable from that in vertebrate skeletal muscle by criteria of kinetics, voltage dependence, and pharmacology. The function of scorpion charge movement is gating of calcium channels in the sarcolemma, and depolarization-contraction coupling relies on calcium influx through these channels.

  12. Increased mitochondrial substrate sensitivity in skeletal muscle of patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Larsen, S; Stride, N; Hey-Mogensen, Martin

    2011-01-01

    AIMS/HYPOTHESIS: Mitochondrial respiration has been linked to insulin resistance. We studied mitochondrial respiratory capacity and substrate sensitivity in patients with type 2 diabetes (patients), and obese and lean control participants. METHODS: Mitochondrial respiration was measured.......4). Substrate sensitivity for octanoyl-carnitine did not differ between groups. CONCLUSIONS/INTERPRETATION: Increased mitochondrial substrate sensitivity is seen in skeletal muscle from type 2 diabetic patients and is confined to non-lipid substrates. Respiratory capacity per mitochondrion is not decreased...... and maximal oxygen uptake (VO2) were also determined. Insulin sensitivity was determined with the isoglycaemic-hyperinsulinaemic clamp technique. RESULTS: Insulin sensitivity was different (p

  13. Troponin T3 regulates nuclear localization of the calcium channel Cavβ1a subunit in skeletal muscle

    International Nuclear Information System (INIS)

    Zhang, Tan; Taylor, Jackson; Jiang, Yang; Pereyra, Andrea S.; Messi, Maria Laura; Wang, Zhong-Min; Hereñú, Claudia; Delbono, Osvaldo

    2015-01-01

    The voltage-gated calcium channel (Ca v ) β 1a subunit (Ca v β 1a ) plays an important role in excitation–contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Ca v β 1a subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160–244 aa) and Ca v β 1a NH 2 -terminus (1–99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Ca v β 1a /YFP shows that TnT3 facilitates Ca v β 1a nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation. - Highlights: • Previously, we demonstrated that Ca v β 1a is a gene transcription regulator. • Here, we show that TnT3 interacts with Ca v β 1a . • We mapped TnT3 and Ca v β 1a interaction domain. • TnT3 facilitates Ca v β 1a nuclear enrichment. • The two proteins play a heretofore unknown role during early muscle differentiation

  14. Calcium signaling in smooth muscle.

    Science.gov (United States)

    Hill-Eubanks, David C; Werner, Matthias E; Heppner, Thomas J; Nelson, Mark T

    2011-09-01

    Changes in intracellular Ca(2+) are central to the function of smooth muscle, which lines the walls of all hollow organs. These changes take a variety of forms, from sustained, cell-wide increases to temporally varying, localized changes. The nature of the Ca(2+) signal is a reflection of the source of Ca(2+) (extracellular or intracellular) and the molecular entity responsible for generating it. Depending on the specific channel involved and the detection technology employed, extracellular Ca(2+) entry may be detected optically as graded elevations in intracellular Ca(2+), junctional Ca(2+) transients, Ca(2+) flashes, or Ca(2+) sparklets, whereas release of Ca(2+) from intracellular stores may manifest as Ca(2+) sparks, Ca(2+) puffs, or Ca(2+) waves. These diverse Ca(2+) signals collectively regulate a variety of functions. Some functions, such as contractility, are unique to smooth muscle; others are common to other excitable cells (e.g., modulation of membrane potential) and nonexcitable cells (e.g., regulation of gene expression).

  15. EFFECTS OF VERAPAMIL ON CHICKEN BIVENTER - CERVICIS MUSCLE

    Directory of Open Access Journals (Sweden)

    F.Farokhy

    1999-06-01

    Full Text Available - Verapamil produces a sustained contraction in isolated biventer-cervicis muscle of chickens between 2-8 days old. From cumulative dose-response curves, ED50 of was calculated for this effect of verapamil. when isolated chicken biventer-cervicis muscle was electrically stimulated, verapamil had no effect on twitch contractures but increased the base line tone of the muscle. Glycerol treatment of the muscle reduced the responses to acetylcholine and KCl but had little effect on contracture produced by verapamil, and no effect on contracture produced by caffeine. Incubation of the muscles with calcium-free Krcbs solution omitted the responses of the muscle to acetylcholine and reduced the response to caffeine. Again, the responses to caffeine and verapamil were less affected compared to KCL. Addition of ethylene glycol tetra-acetic acid (EGTA (2.5 mM abolished the responses of muscle to all compounds. It was concluded that verapamil produces contracture of the muscle by release of calcium from intracellular stores.

  16. Effects of nifedipine on anorectal smooth muscle in vitro.

    Science.gov (United States)

    Cook, T A; Brading, A F; Mortensen, N J

    1999-06-01

    Glyceryl trinitrate reduces anal resting pressure and aids the healing of anal fissures. However, some patients develop tachyphylaxis and the fissure fails to heal, suggesting that other agents are needed. This study assesses the effects of nifedipine (a calcium channel antagonist) in modulating resting tone and agonist-induced contractions in human internal anal sphincter (IAS) and rectal circular muscle. Smooth muscle strips from the IAS and rectal circular muscle from ten patients undergoing surgical resection were mounted for isometric tension recording in a superfusion organ bath. The effects of noradrenaline and carbachol were assessed in the presence of various perfusates. LAS strips developed tone and spontaneous activity. Noradrenaline produced dose-dependent contractions. In calcium-free Krebs solution, tone and activity were abolished and no contractions were elicited in response to noradrenaline. Nifedipine also abolished tone and spontaneous activity, but contractions to noradrenaline were only slightly attenuated. In contrast, rectal smooth muscle strips developed spontaneous activity but no resting tone and contracted in response to carbachol. In calcium-free Krebs solution, the spontaneous activity and carbachol contractions were abolished. Addition of nifedipine to the perfusate abolished spontaneous activity and greatly reduced contractions. These data suggest that spontaneous activity and resting tone are dependent on extracellular calcium and flux across the cells. Agonist-induced contraction in the IAS is attributable mainly to the release of calcium from intracellular stores, whereas rectal circular smooth muscle depends principally on extracellular calcium entering the cell for contraction. The attenuation of contractions in both tissues and the abolition of resting tone in the IAS suggest that nifedipine may be useful in the management of patients with anorectal disorders.

  17. Calcium-binding properties of troponin C in detergent-skinned heart muscle fibers

    International Nuclear Information System (INIS)

    Pan, B.S.; Solaro, R.J.

    1987-01-01

    In order to obtain information with regard to behavior of the Ca 2+ receptor, troponin C (TnC), in intact myofilament lattice of cardiac muscle, we investigated Ca 2+ -binding properties of canine ventricular muscle fibers skinned with Triton X-100. Analysis of equilibrium Ca 2+ -binding data of the skinned fibers in ATP-free solutions suggested that there were two distinct classes of binding sites which were saturated over the physiological range of negative logarithm of free calcium concentration (pCa): class I (KCa = 7.4 X 10(7) M-1, KMg = 0.9 X 10(3) M-1) and class II (KCa = 1.2 X 10(6) M-1, KMg = 1.1 X 10(2) M-1). The class I and II were considered equivalent, respectively, to the Ca 2+ -Mg 2+ and Ca 2+ -specific sites of TnC. The assignments were supported by TnC content of the skinned fibers determined by electrophoresis and 45 Ca autoradiograph of electroblotted fiber proteins. Dissociation of rigor complexes by ATP caused a downward shift of the binding curve between pCa 7 and 5, an effect which could be largely accounted for by lowering of KCa of the class II sites. When Ca 2+ binding and isometric force were measured simultaneously, it was found that the threshold pCa for activation corresponds to the range of pCa where class II sites started to bind Ca 2+ significantly. We concluded that the low affinity site of cardiac TnC plays a key role in Ca 2+ regulation of contraction under physiological conditions, just as it does in the regulation of actomyosin ATPase. Study of kinetics of 45 Ca washout from skinned fibers and myofibrils revealed that cardiac TnC in myofibrils contains Ca 2+ -binding sites whose off-rate constant for Ca 2+ is significantly lower than the Ca 2+ off-rate constant hitherto documented for the divalent ion-binding sites of either cardiac/slow muscle TnC or fast skeletal TnC

  18. Basal and Activated Calcium Sensitization Mediated by RhoA/Rho Kinase Pathway in Rats with Genetic and Salt Hypertension

    Czech Academy of Sciences Publication Activity Database

    Behuliak, Michal; Bencze, Michal; Vaněčková, Ivana; Kuneš, Jaroslav; Zicha, Josef

    2017-01-01

    Roč. 2017, January (2017), č. článku 8029728. ISSN 2314-6133 R&D Projects: GA ČR(CZ) GP14-16225P; GA MZd(CZ) NV15-25396A Institutional support: RVO:67985823 Keywords : calcium sensitization * RhoA/Rho kinase * fasudil * calcium influx * nifedipine * BAY K8644 Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery OBOR OECD: Cardiac and Cardiovascular systems Impact factor: 2.476, year: 2016

  19. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease

    DEFF Research Database (Denmark)

    Berchtold, M W; Brinkmeier, H; Müntener, M

    2000-01-01

    in the sarcoplasmic reticulum. In addition, a multitude of Ca(2+)-binding proteins is present in muscle tissue including parvalbumin, calmodulin, S100 proteins, annexins, sorcin, myosin light chains, beta-actinin, calcineurin, and calpain. These Ca(2+)-binding proteins may either exert an important role in Ca(2......Mammalian skeletal muscle shows an enormous variability in its functional features such as rate of force production, resistance to fatigue, and energy metabolism, with a wide spectrum from slow aerobic to fast anaerobic physiology. In addition, skeletal muscle exhibits high plasticity that is based...... on the potential of the muscle fibers to undergo changes of their cytoarchitecture and composition of specific muscle protein isoforms. Adaptive changes of the muscle fibers occur in response to a variety of stimuli such as, e.g., growth and differentition factors, hormones, nerve signals, or exercise...

  20. Methylation-sensitive amplification polymorphism analysis of fat and muscle tissues in pigs.

    Science.gov (United States)

    Ma, J D; Li, M Z; Zhou, S L; Zhou, C W; Li, X W

    2012-09-26

    DNA methylation may be involved in regulating the expression of protein-coding genes, resulting in different fat and muscle phenotypes. Using a methylation-sensitive amplified polymorphism approach, we obtained 7423 bands by selective amplification of genomic DNA from six different fat depots and two heterogeneous muscle types from Duroc/Landrace/Yorkshire cross-bred pigs. The degrees of DNA methylation, determined by the percentages of hemi- and fully methylated sites relative to the total number of CCGG sites, were similar in male and female pigs for each specific tissue [χ(2) test; P (two-tailed) > 0.05]. Gender bias was therefore ignored. There were significant differences in the degree of DNA methylation among the eight tissue types [χ(2) test; P(total) (two-tailed) = 0.009]. However, similar degrees of methylation were observed among the six fat depots [χ(2) test; P(fat) (two-tailed) = 0.24 > 0.05]and between the two muscle types [χ(2) test; P(muscle) (two-tailed) = 0.76 > 0.05]. We conclude that the degree of DNA methylation differs between porcine fat and muscle tissue, but that the methylation status of a particular tissue type is similar, despite being deposited at different body sites.

  1. SH Oxidation Stimulates Calcium Release Channels (Ryanodine Receptors From Excitable Cells

    Directory of Open Access Journals (Sweden)

    CECILIA HIDALGO

    2000-01-01

    Full Text Available The effects of redox reagents on the activity of the intracellular calcium release channels (ryanodine receptors of skeletal and cardiac muscle, or brain cortex neurons, was examined. In lipid bilayer experiments, oxidizing agents (2,2'-dithiodipyridine or thimerosal modified the calcium dependence of all single channels studied. After controlled oxidation channels became active at sub µM calcium concentrations and were not inhibited by increasing the calcium concentration to 0.5 mM. Subsequent reduction reversed these effects. Channels purified from amphibian skeletal muscle exhibited the same behavior, indicating that the SH groups responsible for modifying the calcium dependence belong to the channel protein. Parallel experiments that measured calcium release through these channels in sarcoplasmic reticulum vesicles showed that following oxidation, the channels were no longer inhibited by sub mM concentrations of Mg2+. It is proposed that channel redox state controls the high affinity sites responsible for calcium activation as well as the low affinity sites involved in Mg2+ inhibition of channel activity. The possible physiological and pathological implications of these results are discussed

  2. Exercise enhance the ectopic bone formation of calcium phosphate biomaterials in muscles of mice.

    Science.gov (United States)

    Cheng, Lijia; Yan, Shuo; Zhu, Jiang; Cai, Peiling; Wang, Ting; Shi, Zheng

    2017-08-01

    To investigate whether exercise can enhance ectopic bone formation of calcium phosphate (Ca-P) biomaterials in muscles of mice. Firstly, ten transient receptor potential vanilloid subfamily member 1 (TRPV1) knockout mice (group KO) and ten C57BL/6 mice (group WT) were randomly chosen, 10μg Ca-P biomaterials were implanted into the thigh muscle pouch of each mouse which was far away from femur; after that, all animals were kept in open field for free exploration 5min, and the movement time and distance were automatically analyzed. Ten weeks later, the Ca-P samples were harvested for histological staining and immunochemistry. Secondly, the Ca-P biomaterials were implanted into the thigh muscle pouch of C57BL/6 mice the same as previous operation, and then randomly divided into two groups: running group and non-running group (n=10); in running group, all mice run 1h as a speed of 6m/h in a treadmill for 10weeks. Ten weeks later, the blood was collected to detect the interleukin-4 (IL-4) and IL-12 levels by enzyme linked immunosorbent assay (ELISA), and the samples were harvested for histological staining. In groups KO and WT, both the movement time and distance were significant higher in group KO than that in group WT (Pstronger athletic ability of mice, causing better osteoinductivity of Ca-P biomaterials both in TRPV1 -/- mice and running mice; according to this, we want to offer a proposal to patients who suffer from bone defects and artificial bone transplantation: do moderate exercise, don't convalesce all the time. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Calcium/Calmodulin-Dependent Protein Kinase IV Mediates IFN-γ-Induced Immune Behaviors in Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    RuiCai Gu

    2018-03-01

    Full Text Available Background/Aims: Whether calcium/calmodulin-dependent protein kinase IV (CaMKIV plays a role in regulating immunologic features of muscle cells in inflammatory environment, as it does for immune cells, remains mostly unknown. In this study, we investigated the influence of endogenous CaMKIV on the immunological characteristics of myoblasts and myotubes received IFN-γ stimulation. Methods: C2C12 and murine myogenic precursor cells (MPCs were cultured and differentiated in vitro, in the presence of pro-inflammatory IFN-γ. CaMKIV shRNA lentivirus transfection was performed to knockdown CaMKIV gene in C2C12 cells. pEGFP-N1-CaMKIV plasmid was delivered into knockout cells for recovering intracellular CaMKIV gene level. CREB1 antagonist KG-501 was used to block CREB signal. qPCR, immunoblot analysis, or immunofluorescence was used to detect mRNA and protein levels of CaMKIV, immuno-molecules, or pro-inflammatory cytokines and chemokines. Co-stimulatory molecules expression was assessed by FACS analysis. Results: IFN-γ induces the expression or up-regulation of MHC-I/II and TLR3, and the up-regulation of CaMKIV level in muscle cells. In contrast, CaMKIV knockdown in myoblasts and myotubes leads to expression inhibition of the above immuno-molecules. As well, CaMKIV knockdown selectively inhibits pro-inflammatory cytokines/chemokines, and co-stimulatory molecules expression in IFN-γ treated myoblasts and myotubes. Finally, CaMKIV knockdown abolishes IFN-γ induced CREB pathway molecules accumulation in differentiated myotubes. Conclusions: CaMKIV can be induced to up-regulate in muscle cells under inflammatory condition, and positively mediates intrinsic immune behaviors of muscle cells triggered by IFN-γ.

  4. Calcium Occupancy of N-terminal Sites within Calmodulin Induces Inhibition of the Ryanodine Receptor Calcium Release Channel

    Energy Technology Data Exchange (ETDEWEB)

    Boschek, Curt B; Jones, Terry E; Squier, Thomas C; Bigelow, Diana J

    2007-08-01

    Calmodulin (CaM) regulates calcium release from intracellular stores in skeletal muscle through its association with the ryanodine receptor (RyR1) calcium release channel, where CaM association enhances channel opening at resting calcium levels and its closing at micromolar calcium levels associated with muscle contraction. A high-affinity CaM-binding sequence (RyRp) has been identified in RyR1, which corresponds to a 30-residue sequence (i.e., K3614 – N3643) located within the central portion of the primary sequence. However, it is currently unclear whether the identified CaM-binding sequence a) senses calcium over the physiological range of calcium-concentrations associated with RyR1 regulation or b) plays a structural role unrelated to the calcium-dependent modulation of RyR1 function. Therefore, we have measured the calcium-dependent activation of the individual domains of CaM in association with RyRp and their relationship to the CaM-dependent regulation of RyR1. These measurements utilize an engineered CaM, permitting the site-specific incorporation of N-(1-pyrene) maleimide at either T34C (PyN-CaM) or T110C (PyC-CaM) in the N- and C-domains, respectively. Consistent with prior measurements, we observe a high-affinity association between both apo- and calcium-activated CaM and RyRp. Upon association with RyRp, fluorescence changes in PyN-CaM or PyC-CaM permit the measurement of the calcium-activation of these individual domains. Fluorescence changes upon calcium-activation of PyC-CaM in association with RyRp are indicative of high-affinity calcium-dependent activation of the C-terminal domain of CaM bound to RyRp at resting calcium levels and the activation of the N-terminal domain at levels of calcium associated cellular activation. In comparison, occupancy of calcium-binding sites in the N-domain of CaM mirrors the calcium-dependence of RyR1 inhibition observed at activating calcium levels, where [Ca]1/2 = 4.3 0.4 μM, suggesting a direct regulation of Ry

  5. Calcium-dependence of Donnan potentials in glycerinated rabbit psoas muscle in rigor, at and beyond filament overlap; a role for titin in the contractile process

    DEFF Research Database (Denmark)

    Coomber, S J; Bartels, E M; Elliott, G F

    2011-01-01

    contracts and breaks the microelectrode. Therefore the rigor state was studied. There is no reason to suppose a priori that a similar voltage switch does not occur during contraction, however. Calcium dependence is still apparent in muscles stretched beyond overlap (sarcomere length>3.8 μm) and is also seen...... in the gap filaments between the A- and I-band ends; further stretching abolishes the dependence. These experiments strongly suggest that calcium dependence is controlled initially by the titin component, and that this control is lost when titin filaments break. We suppose that that effect is mediated...

  6. Effects of menopause and high-intensity training on insulin sensitivity and muscle metabolism

    DEFF Research Database (Denmark)

    Mandrup, Camilla M; Egelund, Jon; Nyberg, Michael

    2018-01-01

    To investigate peripheral insulin sensitivity and skeletal muscle glucose metabolism in premenopausal and postmenopausal women, and evaluate whether exercise training benefits are maintained after menopause. Sedentary, healthy, normal-weight, late premenopausal (n = 21), and early postmenopausal (n...

  7. PHYSICAL CONTACT BETWEEN HUMAN VASCULAR ENDOTHELIAL AND SMOOTH MUSCLE CELLS MODULATES CYTOSOLIC AND NUCLEAR CALCIUM HOMEOSTASIS.

    Science.gov (United States)

    Hassan, Ghada S; Jacques, Danielle; D'Orleans-Juste, Pedro; Magder, Sheldon; Bkaily, Ghassan

    2018-05-14

    The interaction between vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) plays an important role in the modulation of vascular tone. There is however no information on whether direct physical communication regulates the intracellular calcium levels of human VECs (hVECs) and/or hVSMCs . Thus, the objective of the study is to verify whether co-culture of hVECs and hVSMCs modulates cytosolic ([Ca2+]c) and nuclear calcium ([Ca2+]n) levels via physical contact and/or factors released by both cell types. Quantitative 3D confocal microscopy for [Ca2+]c and [Ca2+]n measurement was performed in cultured hVECs or hVSMCs or in co-culture of hVECs-hVSMCs. Our results show that: 1) physical contact between hVECs-hVECs or hVSMCs-hVSMCs does not affect [Ca2+]c and [Ca2+]n in these two cell types; 2) physical contact between hVECs and hVSMCs induces a significant increase only of [Ca2+]n of hVECs without affecting the level of [Ca2+]c and [Ca2+]n of hVSMCs; and 3) preconditioned culture medium of hVECs or hVSMCs does not affect [Ca2+]c and [Ca2+]n of both types of cells. We concluded that physical contact between hVECs and hVSMCs only modulates [Ca2+]n in hVECs. The increase of [Ca2+]n in hVECs may modulate nuclear functions that are calcium dependent.

  8. Radioisotope 45Ca labeling four calcium chemical compounds and tracing calcium bioavailability

    International Nuclear Information System (INIS)

    Zheng Hui; Zhen Rong; Niu Huisheng; Li Huaifen

    2004-01-01

    Objective: To build up a new method of the radioisotope 45 Ca labeling four calcium chemical compounds, observe and tracing bioavailability change of calcium labeled with radioisotope 45 Ca. Methods: The calcium gluconate (Ca-Glu), calcium citrate (Ca-Cit), calcium carbonate (Ca-Car) and calcium L-threonate (Ca-Thr)were labeled by radioisotope 45 Ca. Four calcium chemical compounds of 45 Ca labeling were used of calcium content 200 mg/kg in the rats and measure the absorption content and bioavailability of calcium in tissue of heart, lever spleen, stomach, kidney, brain, intestine, whole blood, urine, faeces. Results: 1) Radioisotope 45 Ca labeling calcium chemical compound has high radio intensity, more steady standard curve and recover rate. 2) The absorption of organic calcium chemical compounds is higher than the inorganic calcium chemical compound in the study of calcium bioavailability. Conclusion: The method of tracing with radioisotope 45 Ca labeling calcium chemical compounds has the characteristic of the sensitive, objective, accurate and steady in the study of calcium bioavailability

  9. Insulin sensitivity is independent of lipid binding protein trafficking at the plasma membrane in human skeletal muscle

    DEFF Research Database (Denmark)

    Jordy, Andreas Børsting; Serup, Annette Karen; Karstoft, Kristian

    2014-01-01

    The aim of the present study was to investigate lipid-induced regulation of lipid binding proteins in human skeletal muscle and the impact hereof on insulin sensitivity. Eleven healthy male subjects underwent a 3-day hyper-caloric and high-fat diet regime. Muscle biopsies were taken before......-regulated by increased fatty acid availability. This suggests a time dependency in the up-regulation of FAT/CD36 and FABPpm protein during high availability of plasma fatty acids. Furthermore, we did not detect FATP1 and FATP4 protein in giant sarcolemmal vesicles obtained from human skeletal muscle. In conclusion......, this study shows that a short-term lipid-load increases mRNA content of key lipid handling proteins in human muscle. However, decreased insulin sensitivity after high-fat diet is not accompanied with relocation of FAT/CD36 or FABPpm protein to the sarcolemma. Finally, FATP1 and FATP4 protein could...

  10. Entropy of Masseter Muscle Pain Sensitivity: A New Technique for Pain Assessment.

    Science.gov (United States)

    Castrillon, Eduardo E; Exposto, Fernando G; Sato, Hitoshi; Tanosoto, Tomohiro; Arima, Taro; Baad-Hansen, Lene; Svensson, Peter

    2017-01-01

    To test whether manipulation of mechanical pain sensitivity (MPS) of the masseter muscle is reflected in quantitative measures of entropy. In a randomized, single-blinded, placebo-controlled design, 20 healthy volunteers had glutamate, lidocaine, and isotonic saline injected into the masseter muscle. Self-assessed pain intensity on a numeric rating scale (NRS) was evaluated up to 10 minutes following the injection, and MPS was evaluated after application (at 5 minutes and 30 minutes) of three different forces (0.5 kg, 1 kg, and 2 kg) to 15 different sites of the masseter muscle. Finally, the entropy and center of gravity (COG) of the pain sensitivity scores were calculated. Analysis of variance was used to test differences in means of tested outcomes and Tukey post hoc tests were used to adjust for multiple comparisons. The main findings were: (1) Compared with both lidocaine and isotonic saline, glutamate injections caused an increase in peak, duration, and area under the NRS pain curve (P entropy values (P entropy values when assessed with 0.5 kg and 1.0 kg but not with 2.0 kg of pressure; and (4) COG coordinates revealed differences between the x coordinates for time (P entropy measures. Entropy allows quantification of the diversity of MPS, which may be important in clinical assessment of pain states such as myofascial temporomandibular disorders.

  11. Contraction-induced lipolysis is not impaired by inhibition of hormone-sensitive lipase in skeletal muscle.

    Science.gov (United States)

    Alsted, Thomas J; Ploug, Thorkil; Prats, Clara; Serup, Annette K; Høeg, Louise; Schjerling, Peter; Holm, Cecilia; Zimmermann, Robert; Fledelius, Christian; Galbo, Henrik; Kiens, Bente

    2013-10-15

    In skeletal muscle hormone-sensitive lipase (HSL) has long been accepted to be the principal enzyme responsible for lipolysis of intramyocellular triacylglycerol (IMTG) during contractions. However, this notion is based on in vitro lipase activity data, which may not reflect the in vivo lipolytic activity. We investigated lipolysis of IMTG in soleus muscles electrically stimulated to contract ex vivo during acute pharmacological inhibition of HSL in rat muscles and in muscles from HSL knockout (HSL-KO) mice. Measurements of IMTG are complicated by the presence of adipocytes located between the muscle fibres. To circumvent the problem with this contamination we analysed intramyocellular lipid droplet content histochemically. At maximal inhibition of HSL in rat muscles, contraction-induced breakdown of IMTG was identical to that seen in control muscles (P contractions IMTG staining decreased significantly in both HSL-KO and WT muscles (P skeletal muscle, other TG lipases accordingly being of negligible importance for lipolysis of IMTG. The present study is the first to demonstrate that contraction-induced lipolysis of IMTG occurs in the absence of HSL activity in rat and mouse skeletal muscle. Furthermore, the results suggest that ATGL is activated and plays a major role in lipolysis of IMTG during muscle contractions.

  12. Effect of a high dose of simvastatin on muscle mitochondrial metabolism and calcium signaling in healthy volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Galtier, F., E-mail: f-galtier@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); CPID, Faculté de Pharmacie, 15 Av. Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, Montpellier (France); Mura, T., E-mail: t-mura@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); Raynaud de Mauverger, E., E-mail: eric.raynaud-de-mauverger@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); Université Montpellier 1, 5 bd Henri IV CS 19044, 34967 Montpellier Cedex 2 (France); Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex 5 (France); INSERM, U1046, 371 Avenue du Doyen G. Giraud, CHU Arnaud de Villeneuve, Bâtiment INSERM Crastes de Paulet, 34295 Montpellier Cedex 5 (France); Chevassus, H., E-mail: h-chevassus@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); Farret, A., E-mail: a-farret@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); Gagnol, J.-P., E-mail: jp-gagnol@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); Costa, F., E-mail: francoisecosta@sfr.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); Dupuy, A., E-mail: am-dupuy@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); and others

    2012-09-15

    Statin use may be limited by muscle side effects. Although incompletely understood to date, their pathophysiology may involve oxidative stress and impairments of mitochondrial function and of muscle Ca{sup 2+} homeostasis. In order to simultaneously assess these mechanisms, 24 male healthy volunteers were randomized to receive either simvastatin for 80 mg daily or placebo for 8 weeks. Blood and urine samples and a stress test were performed at baseline and at follow-up, and mitochondrial respiration and Ca{sup 2+} spark properties were evaluated on a muscle biopsy 4 days before the second stress test. Simvastatin-treated subjects were separated according to their median creatine kinase (CK) increase. Simvastatin treatment induced a significant elevation of aspartate amino transferase (3.38 ± 5.68 vs − 1.15 ± 4.32 UI/L, P < 0.001) and CK (− 24.3 ± 99.1 ± 189.3vs 48.3 UI/L, P = 0.01) and a trend to an elevation of isoprostanes (193 ± 408 vs12 ± 53 pmol/mmol creatinine, P = 0.09) with no global change in mitochondrial respiration, lactate/pyruvate ratio or Ca{sup 2+} sparks. However, among statin-treated subjects, those with the highest CK increase displayed a significantly lower Vmax rotenone succinate and an increase in Ca{sup 2+} spark amplitude vs both subjects with the lowest CK increase and placebo-treated subjects. Moreover, Ca{sup 2+} spark amplitude was positively correlated with treatment-induced CK increase in the whole group (r = 0.71, P = 0.0045). In conclusion, this study further supports that statin induced muscular toxicity may be related to alterations in mitochondrial respiration and muscle calcium homeostasis independently of underlying disease or concomitant medication. -- Highlights: ► Statin use may be limited by side effects, particularly myopathy. ► Statins might impair mitochondrial function and muscle Ca2+ signaling in muscle. ► This was tested among healthy volunteers receiving simvastatin 80 mg daily for 8 weeks. ► CK

  13. Membrane depolarization increases ryanodine sensitivity to Ca2+ release to the cytosol in L6 skeletal muscle cells: Implications for excitation-contraction coupling.

    Science.gov (United States)

    Pitake, Saumitra; Ochs, Raymond S

    2016-04-01

    The dihydropyridine receptor in the plasma membrane and the ryanodine receptor in the sarcoplasmic reticulum are known to physically interact in the process of excitation-contraction coupling. However, the mechanism for subsequent Ca(2+) release through the ryanodine receptor is unknown. Our lab has previously presented evidence that the dihydropyridine receptor and ryanodine receptor combine as a channel for the entry of Ca(2+) under resting conditions, known as store operated calcium entry. Here, we provide evidence that depolarization during excitation-contraction coupling causes the dihydropyridine receptor to disengage from the ryanodine receptor. The newly freed ryanodine receptor can then transport Ca(2+) from the sarcoplasmic reticulum to the cytosol. Experimentally, this should more greatly expose the ryanodine receptor to exogenous ryanodine. To examine this hypothesis, we titrated L6 skeletal muscle cells with ryanodine in resting and excited (depolarized) states. When L6 muscle cells were depolarized with high potassium or exposed to the dihydropyridine receptor agonist BAYK-8644, known to induce dihydropyridine receptor movement within the membrane, ryanodine sensitivity was enhanced. However, ryanodine sensitivity was unaffected when Ca(2+) was elevated without depolarization by the ryanodine receptor agonist chloromethylcresol, or by increasing Ca(2+) concentration in the media. Ca(2+) entry currents (from the extracellular space) during excitation were strongly inhibited by ryanodine, but Ca(2+) entry currents in the resting state were not. We conclude that excitation releases the ryanodine receptor from occlusion by the dihydropyridine receptor, enabling Ca(2+) release from the ryanodine receptor to the cytosol. © 2015 by the Society for Experimental Biology and Medicine.

  14. [The fasting calcium/creatinine ratio in patients with calcium stones and the relation with hypercalciuria and phosphocalcium metabolism].

    Science.gov (United States)

    Arrabal-Polo, Miguel Ángel; del Carmen Cano-García, María; Arrabal-Martín, Miguel

    2016-04-01

    To determine the importance of fasting calcium/creatinine ratio in patients with calcium stones and its relation with hypercalciuria and phospho-calcium metabolism. Cross-sectional study including 143 patients divided into two groups according to fasting calcium/creatinine. Group 1: 66 patients (calcium/ creatininecreatinine>0.11). A comparative study is performed between groups including phospho-calcium metabolism parameters and excretion of urinary lithogenic markers. Linear correlation studying calciuria and fasting calcium/ creatinine was performed. SPSS 17.0 statistical analysis software was used, considering p≤0.05. It is noteworthy that group 2 had increased 24 h urine calcium excretion in comparison to group 1 (229.3 vs 158.1; p=0.0001) and calcium/citrate (0.47 vs 0.34; p=0.001). There is a positive and significant correlation between calcium levels in 24 h urine and fasting calcium/creatinine (R=0.455; p=0.0001) and a cutoff is set at 0.127 (sensitivity 72%, specificity 66%) to determine hypercalciuria (>260 mg in 24 h). Increased fasting calcium/creatinine determines increased 24 hours calcium excretion, although the sensitivity and specificity to determine hypercalciuria is not high.

  15. Strength Exercise Improves Muscle Mass and Hepatic Insulin Sensitivity in Obese Youth

    NARCIS (Netherlands)

    Van Der Heijden, Gert-Jan; Wang, Zhiyue J.; Chu, Zili; Toffolo, Gianna; Manesso, Erica; Sauer, Pieter J. J.; Sunehag, Agneta L.

    VAN DER HEIJDEN, G.-J., Z. J. WANG, Z. CHU, G. TOFFOLO, E. MANESSO, P. J. J. SAUER, and A. L. SUNEHAG. Strength Exercise Improves Muscle Mass and Hepatic Insulin Sensitivity in Obese Youth. Med. Sci. Sports Exerc., Vol. 42, No. 11, pp. 1973-1980, 2010. Introduction: Data on the metabolic effects of

  16. Strength Exercise Improves Muscle Mass and Hepatic Insulin Sensitivity in Obese Youth

    NARCIS (Netherlands)

    Van Der Heijden, Gert-Jan; Wang, Zhiyue J.; Chu, Zili; Toffolo, Gianna; Manesso, Erica; Sauer, Pieter J. J.; Sunehag, Agneta L.

    2010-01-01

    VAN DER HEIJDEN, G.-J., Z. J. WANG, Z. CHU, G. TOFFOLO, E. MANESSO, P. J. J. SAUER, and A. L. SUNEHAG. Strength Exercise Improves Muscle Mass and Hepatic Insulin Sensitivity in Obese Youth. Med. Sci. Sports Exerc., Vol. 42, No. 11, pp. 1973-1980, 2010. Introduction: Data on the metabolic effects of

  17. Disruption of ATP-sensitive potassium channel function in skeletal muscles promotes production and secretion of musclin

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, Ana, E-mail: ana-sierra@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Subbotina, Ekaterina, E-mail: ekaterina-subbotina@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Zhu, Zhiyong, E-mail: zhiyong-zhu@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Gao, Zhan, E-mail: zhan-gao@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Koganti, Siva Rama Krishna, E-mail: sivaramakrishna.koganti@ttuhc.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Coetzee, William A., E-mail: william.coetzee@nyumc.org [Department of Pediatrics, NYU School of Medicine, New York, NY 10016 (United States); Goldhamer, David J., E-mail: david.goldhamer@uconn.edu [Center for Regenerative Biology, Department of Molecular and Cell Biology, Advanced Technology Laboratory, University of Connecticut, 1392 Storrs Road Unit 4243, Storrs, Connecticut 06269 (United States); Hodgson-Zingman, Denice M., E-mail: denice-zingman@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, Iowa City, IA 52242 (United States); Zingman, Leonid V., E-mail: leonid-zingman@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, Iowa City, IA 52242 (United States); Department of Veterans Affairs, Medical Center, Iowa City, IA 52242 (United States)

    2016-02-26

    Sarcolemmal ATP-sensitive potassium (K{sub ATP}) channels control skeletal muscle energy use through their ability to adjust membrane excitability and related cell functions in accordance with cellular metabolic status. Mice with disrupted skeletal muscle K{sub ATP} channels exhibit reduced adipocyte size and increased fatty acid release into the circulation. As yet, the molecular mechanisms underlying this link between skeletal muscle K{sub ATP} channel function and adipose mobilization have not been established. Here, we demonstrate that skeletal muscle-specific disruption of K{sub ATP} channel function in transgenic (TG) mice promotes production and secretion of musclin. Musclin is a myokine with high homology to atrial natriuretic peptide (ANP) that enhances ANP signaling by competing for elimination. Augmented musclin production in TG mice is driven by a molecular cascade resulting in enhanced acetylation and nuclear exclusion of the transcription factor forkhead box O1 (FOXO1) – an inhibitor of transcription of the musclin encoding gene. Musclin production/secretion in TG is paired with increased mobilization of fatty acids and a clear trend toward increased circulating ANP, an activator of lipolysis. These data establish K{sub ATP} channel-dependent musclin production as a potential mechanistic link coupling “local” skeletal muscle energy consumption with mobilization of bodily resources from fat. Understanding such mechanisms is an important step toward designing interventions to manage metabolic disorders including those related to excess body fat and associated co-morbidities. - Highlights: • ATP-sensitive K{sup +} channels regulate musclin production by skeletal muscles. • Lipolytic ANP signaling is promoted by augmented skeletal muscle musclin production. • Skeletal muscle musclin transcription is promoted by a CaMKII/HDAC/FOXO1 pathway. • Musclin links adipose mobilization to energy use in K{sub ATP} channel deficient skeletal muscle.

  18. Disruption of ATP-sensitive potassium channel function in skeletal muscles promotes production and secretion of musclin

    International Nuclear Information System (INIS)

    Sierra, Ana; Subbotina, Ekaterina; Zhu, Zhiyong; Gao, Zhan; Koganti, Siva Rama Krishna; Coetzee, William A.; Goldhamer, David J.; Hodgson-Zingman, Denice M.; Zingman, Leonid V.

    2016-01-01

    Sarcolemmal ATP-sensitive potassium (K_A_T_P) channels control skeletal muscle energy use through their ability to adjust membrane excitability and related cell functions in accordance with cellular metabolic status. Mice with disrupted skeletal muscle K_A_T_P channels exhibit reduced adipocyte size and increased fatty acid release into the circulation. As yet, the molecular mechanisms underlying this link between skeletal muscle K_A_T_P channel function and adipose mobilization have not been established. Here, we demonstrate that skeletal muscle-specific disruption of K_A_T_P channel function in transgenic (TG) mice promotes production and secretion of musclin. Musclin is a myokine with high homology to atrial natriuretic peptide (ANP) that enhances ANP signaling by competing for elimination. Augmented musclin production in TG mice is driven by a molecular cascade resulting in enhanced acetylation and nuclear exclusion of the transcription factor forkhead box O1 (FOXO1) – an inhibitor of transcription of the musclin encoding gene. Musclin production/secretion in TG is paired with increased mobilization of fatty acids and a clear trend toward increased circulating ANP, an activator of lipolysis. These data establish K_A_T_P channel-dependent musclin production as a potential mechanistic link coupling “local” skeletal muscle energy consumption with mobilization of bodily resources from fat. Understanding such mechanisms is an important step toward designing interventions to manage metabolic disorders including those related to excess body fat and associated co-morbidities. - Highlights: • ATP-sensitive K"+ channels regulate musclin production by skeletal muscles. • Lipolytic ANP signaling is promoted by augmented skeletal muscle musclin production. • Skeletal muscle musclin transcription is promoted by a CaMKII/HDAC/FOXO1 pathway. • Musclin links adipose mobilization to energy use in K_A_T_P channel deficient skeletal muscle.

  19. Presynaptic calcium signalling in cerebellar mossy fibres

    DEFF Research Database (Denmark)

    Thomsen, Louiza Bohn; Jörntell, Henrik; Midtgaard, Jens

    2010-01-01

    Whole-cell recordings were obtained from mossy fibre terminals in adult turtles in order to characterize the basic membrane properties. Calcium imaging of presynaptic calcium signals was carried out in order to analyse calcium dynamics and presynaptic GABA B inhibition. A tetrodotoxin (TTX......)-sensitive fast Na(+) spike faithfully followed repetitive depolarizing pulses with little change in spike duration or amplitude, while a strong outward rectification dominated responses to long-lasting depolarizations. High-threshold calcium spikes were uncovered following addition of potassium channel blockers....... Calcium imaging using Calcium-Green dextran revealed a stimulus-evoked all-or-none TTX-sensitive calcium signal in simple and complex rosettes. All compartments of a complex rosette were activated during electrical activation of the mossy fibre, while individual simple and complex rosettes along an axon...

  20. Calcium pathways such as cAMP modulate clothianidin action through activation of α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptors.

    Science.gov (United States)

    Calas-List, Delphine; List, Olivier; Quinchard, Sophie; Thany, Steeve H

    2013-07-01

    Clothianidin is a neonicotinoid insecticide developed in the early 2000s. We have recently demonstrated that it was a full agonist of α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptors expressed in the cockroach dorsal unpaired median neurons. Clothianidin was able to act as an agonist of imidacloprid-insensitive nAChR2 receptor and internal regulation of cAMP concentration modulated nAChR2 sensitivity to clothianidin. In the present study, we demonstrated that cAMP modulated the agonist action of clothianidin via α-bungarotoxin-sensitive and insensitive receptors. Clothianidin-induced current-voltage curves were dependent to clothianidin concentrations. At 10 μM clothianidin, increasing cAMP concentration induced a linear current-voltage curve. Clothianidin effects were blocked by 0.5 μM α-bungarotoxin suggesting that cAMP modulation occurred through α-bungarotoxin-sensitive receptors. At 1 mM clothianidin, cAMP effects were associated to α-bungarotoxin-insensitive receptors because clothianidin-induced currents were blocked by 5 μM mecamylamine and 20 μM d-tubocurarine. In addition, we found that application of 1mM clothianidin induced a strong increase of intracellular calcium concentration. These data reinforced the finding that calcium pathways including cAMP modulated clothianidin action on insect nicotinic acetylcholine receptors. We proposed that intracellular calcium pathways such as cAMP could be a target to modulate the mode of action of neonicotinoid insecticides. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Osteoinduction of calcium phosphate biomaterials in small animals

    International Nuclear Information System (INIS)

    Cheng, Lijia; Shi, Yujun; Ye, Feng; Bu, Hong

    2013-01-01

    Although osteoinduction mechanism of calcium phosphate (CP) ceramics is still unclear, several essential properties have been reported, such as chemical composition, pore size and porosity, etc. In this study, calcium phosphate powder (Ca 3 (PO 4 ) 2 , CaP, group 1), biphasic calcium phosphate ceramic powder (BCP, group 2), and intact BCP rods (group 3) were implanted into leg muscles of mice and dorsal muscles of rabbits. One month and three months after implantation, samples were harvested for biological and histological analysis. New bone tissues were observed in 10/10 samples in group 1, 3/10 samples in group 2, and 9/10 samples in group 3 at 3rd month in mice, but not in rabbits. In vitro, human mesenchymal stem cells (hMSCs) were cultured with trace CaP and BCP powder, and osteogenic differentiation was observed at day 7. Our results suggested that chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation. - Highlights: ► Intrinsic osteoinduction of calcium phosphate biomaterials was observed implanted in muscles of mice. ► Biomaterials powder also has osteoinduction property. ► Osteogenic genes and protein could be detected by RT-PCR and Western blot in implanted biomaterials. ► Osteogenic phenomenon could be observed by electron microscopy. ► The chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation

  2. Osteoinduction of calcium phosphate biomaterials in small animals

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lijia; Shi, Yujun [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Ye, Feng [Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041 (China); Bu, Hong, E-mail: hongbu@scu.edu.cn [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041 (China)

    2013-04-01

    Although osteoinduction mechanism of calcium phosphate (CP) ceramics is still unclear, several essential properties have been reported, such as chemical composition, pore size and porosity, etc. In this study, calcium phosphate powder (Ca{sub 3}(PO{sub 4}){sub 2}, CaP, group 1), biphasic calcium phosphate ceramic powder (BCP, group 2), and intact BCP rods (group 3) were implanted into leg muscles of mice and dorsal muscles of rabbits. One month and three months after implantation, samples were harvested for biological and histological analysis. New bone tissues were observed in 10/10 samples in group 1, 3/10 samples in group 2, and 9/10 samples in group 3 at 3rd month in mice, but not in rabbits. In vitro, human mesenchymal stem cells (hMSCs) were cultured with trace CaP and BCP powder, and osteogenic differentiation was observed at day 7. Our results suggested that chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation. - Highlights: ► Intrinsic osteoinduction of calcium phosphate biomaterials was observed implanted in muscles of mice. ► Biomaterials powder also has osteoinduction property. ► Osteogenic genes and protein could be detected by RT-PCR and Western blot in implanted biomaterials. ► Osteogenic phenomenon could be observed by electron microscopy. ► The chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation.

  3. Allergic sensitization enhances the contribution of Rho-kinase to airway smooth muscle contraction

    NARCIS (Netherlands)

    Schaafsma, D.; Gosens, Reinout; Bos, I.S.T.; Meurs, Herman; Zaagsma, Hans; Nelemans, Herman

    2004-01-01

    1 Repeated allergen challenge has been shown to increase the role of Rho-kinase in airway smooth muscle (ASM) contraction. We considered the possibility that active allergic sensitization by itself, that is, without subsequent allergen exposure, could be sufficient to enhance Rho-kinase-mediated ASM

  4. Age-Associated Impairments in Mitochondrial ADP Sensitivity Contribute to Redox Stress in Senescent Human Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Graham P. Holloway

    2018-03-01

    Full Text Available Summary: It remains unknown if mitochondrial bioenergetics are altered with aging in humans. We established an in vitro method to simultaneously determine mitochondrial respiration and H2O2 emission in skeletal muscle tissue across a range of biologically relevant ADP concentrations. Using this approach, we provide evidence that, although the capacity for mitochondrial H2O2 emission is not increased with aging, mitochondrial ADP sensitivity is impaired. This resulted in an increase in mitochondrial H2O2 and the fraction of electron leak to H2O2, in the presence of virtually all ADP concentrations examined. Moreover, although prolonged resistance training in older individuals increased muscle mass, strength, and maximal mitochondrial respiration, exercise training did not alter H2O2 emission rates in the presence of ADP, the fraction of electron leak to H2O2, or the redox state of the muscle. These data establish that a reduction in mitochondrial ADP sensitivity increases mitochondrial H2O2 emission and contributes to age-associated redox stress. : Holloway et al. show that an inability of ADP to decrease mitochondrial reactive oxygen species emission contributes to redox stress in skeletal muscle tissue of older individuals and that this process is not recovered following prolonged resistance-type exercise training, despite the general benefits of resistance training for muscle health. Keywords: mitochondria, aging, muscle, ROS, H2O2, ADP, respiration, bioenergetics, exercise, resistance training

  5. Intrauterine growth-restricted sheep fetuses exhibit smaller hindlimb muscle fibers and lower proportions of insulin-sensitive Type I fibers near term.

    Science.gov (United States)

    Yates, Dustin T; Cadaret, Caitlin N; Beede, Kristin A; Riley, Hannah E; Macko, Antoni R; Anderson, Miranda J; Camacho, Leticia E; Limesand, Sean W

    2016-06-01

    Intrauterine growth restriction (IUGR) reduces muscle mass and insulin sensitivity in offspring. Insulin sensitivity varies among muscle fiber types, with Type I fibers being most sensitive. Differences in fiber-type ratios are associated with insulin resistance in adults, and thus we hypothesized that near-term IUGR sheep fetuses exhibit reduced size and proportions of Type I fibers. Placental insufficiency-induced IUGR fetuses were ∼54% smaller (P fetal muscles develop smaller fibers and have proportionally fewer Type I fibers, which is indicative of developmental adaptations that may help explain the link between IUGR and adulthood insulin resistance. Copyright © 2016 the American Physiological Society.

  6. Skeletal muscle phosphatidylcholine fatty acids and insulin sensitivity in normal humans.

    Science.gov (United States)

    Clore, J N; Li, J; Gill, R; Gupta, S; Spencer, R; Azzam, A; Zuelzer, W; Rizzo, W B; Blackard, W G

    1998-10-01

    The fatty acid composition of skeletal muscle membrane phospholipids (PL) is known to influence insulin responsiveness in humans. However, the contribution of the major PL of the outer (phosphatidylcholine, PC) and inner (phosphatidylethanolamine, PE) layers of the sarcolemma to insulin sensitivity is not known. Fatty acid composition of PC and PE from biopsies of vastus lateralis from 27 normal men and women were correlated with insulin sensitivity determined by the hyperinsulinemic euglycemic clamp technique at insulin infusion rates of 0.4, 1.0, and 10.0 mU . kg-1 . min-1. Significant variation in the half-maximal insulin concentration (ED50) was observed in the normal volunteers (range 24.0-146.0 microU/ml), which correlated directly with fasting plasma insulin (r = 0.75, P insulin sensitivity was observed in PE (NS). These studies suggest that the fatty acid composition of PC may be of particular importance in the relationship between fatty acids and insulin sensitivity in normal humans.

  7. Calcium homeostasis in myogenic differentiation factor 1 (MyoD-transformed, virally-transduced, skin-derived equine myotubes.

    Directory of Open Access Journals (Sweden)

    Marta Fernandez-Fuente

    Full Text Available Dysfunctional skeletal muscle calcium homeostasis plays a central role in the pathophysiology of several human and animal skeletal muscle disorders, in particular, genetic disorders associated with ryanodine receptor 1 (RYR1 mutations, such as malignant hyperthermia, central core disease, multiminicore disease and certain centronuclear myopathies. In addition, aberrant skeletal muscle calcium handling is believed to play a pivotal role in the highly prevalent disorder of Thoroughbred racehorses, known as Recurrent Exertional Rhabdomyolysis. Traditionally, such defects were studied in human and equine subjects by examining the contractile responses of biopsied muscle strips exposed to caffeine, a potent RYR1 agonist. However, this test is not widely available and, due to its invasive nature, is potentially less suitable for valuable animals in training or in the human paediatric setting. Furthermore, increasingly, RYR1 gene polymorphisms (of unknown pathogenicity and significance are being identified through next generation sequencing projects. Consequently, we have investigated a less invasive test that can be used to study calcium homeostasis in cultured, skin-derived fibroblasts that are converted to the muscle lineage by viral transduction with a MyoD (myogenic differentiation 1 transgene. Similar models have been utilised to examine calcium homeostasis in human patient cells, however, to date, there has been no detailed assessment of the cells' calcium homeostasis, and in particular, the responses to agonists and antagonists of RYR1. Here we describe experiments conducted to assess calcium handling of the cells and examine responses to treatment with dantrolene, a drug commonly used for prophylaxis of recurrent exertional rhabdomyolysis in horses and malignant hyperthermia in humans.

  8. Sustained NFκB inhibition improves insulin sensitivity but is detrimental to muscle health.

    Science.gov (United States)

    Zhang, Ning; Valentine, Joseph M; Zhou, You; Li, Mengyao E; Zhang, Yiqiang; Bhattacharya, Arunabh; Walsh, Michael E; Fischer, Katherine E; Austad, Steven N; Osmulski, Pawel; Gaczynska, Maria; Shoelson, Steven E; Van Remmen, Holly; Chen, Hung I; Chen, Yidong; Liang, Hanyu; Musi, Nicolas

    2017-08-01

    Older adults universally suffer from sarcopenia and approximately 60-70% are diabetic or prediabetic. Nonetheless, the mechanisms underlying these aging-related metabolic disorders are unknown. NFκB has been implicated in the pathogenesis of several aging-related pathologies including sarcopenia and type 2 diabetes and has been proposed as a target against them. NFκB also is thought to mediate muscle wasting seen with disuse, denervation, and some systemic diseases (e.g., cancer, sepsis). We tested the hypothesis that lifelong inhibition of the classical NFκB pathway would protect against aging-related sarcopenia and insulin resistance. Aged mice with muscle-specific overexpression of a super-repressor IκBα mutant (MISR) were protected from insulin resistance. However, MISR mice were not protected from sarcopenia; to the contrary, these mice had decreases in muscle mass and strength compared to wild-type mice. In MISR mice, NFκB suppression also led to an increase in proteasome activity and alterations in several genes and pathways involved in muscle growth and atrophy (e.g., myostatin). We conclude that the mechanism behind aging-induced sarcopenia is NFκB independent and differs from muscle wasting due to pathologic conditions. Our findings also indicate that, while suppressing NFκB improves insulin sensitivity in aged mice, this transcription factor is important for normal muscle mass maintenance and its sustained inhibition is detrimental to muscle function. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  9. Masticatory and cervical muscle tenderness and pain sensitivity in a remote area in subjects with a temporomandibular disorder and neck disability.

    Science.gov (United States)

    Silveira, Anelise; Armijo-Olivo, Susan; Gadotti, Inae C; Magee, David

    2014-01-01

    To compare the masticatory and cervical muscle tenderness and pain sensitivity in the hand (remote region) between patients with temporomandibular disorders (TMD) and healthy controls. Twenty female subjects were diagnosed with chronic TMD, and 20 were considered healthy. Subjects completed the Neck Disability Index and Limitations of Daily Functions in a TMD questionnaire. Tenderness of the masticatory and cervical muscles and pain sensitivity in the hand were measured using an algometer. Three-way mixed analysis of variance (ANOVA) evaluated differences in muscle tenderness between groups. One-way ANOVA compared pain sensitivity in the hand between groups. Effect sizes were assessed using Cohen guidelines. Significantly increased masticatory and cervical muscle tenderness and pain sensitivity in the hand were found in subjects with TMD when compared with healthy subjects. Moderate to high effect sizes showed the clinical relevance of the findings. The results of this study have highlighted the importance of assessing TMD patients not only in the craniofacial region but also in the neck and other parts of the body. Future studies should focus on testing the effectiveness of treatments addressing the neck and the pain sensitivity in the hand in patients with TMD.

  10. Calcium waves.

    Science.gov (United States)

    Jaffe, Lionel F

    2008-04-12

    Waves through living systems are best characterized by their speeds at 20 degrees C. These speeds vary from those of calcium action potentials to those of ultraslow ones which move at 1-10 and/or 10-20 nm s(-1). All such waves are known or inferred to be calcium waves. The two classes of calcium waves which include ones with important morphogenetic effects are slow waves that move at 0.2-2 microm s(-1) and ultraslow ones. Both may be propagated by cycles in which the entry of calcium through the plasma membrane induces subsurface contraction. This contraction opens nearby stretch-sensitive calcium channels. Calcium entry through these channels propagates the calcium wave. Many slow waves are seen as waves of indentation. Some are considered to act via cellular peristalsis; for example, those which seem to drive the germ plasm to the vegetal pole of the Xenopus egg. Other good examples of morphogenetic slow waves are ones through fertilizing maize eggs, through developing barnacle eggs and through axolotl embryos during neural induction. Good examples of ultraslow morphogenetic waves are ones during inversion in developing Volvox embryos and across developing Drosophila eye discs. Morphogenetic waves may be best pursued by imaging their calcium with aequorins.

  11. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha

    2015-01-01

    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p

  12. Electromyographic Study of Differential Sensitivity to Succinylcholine of the Diaphragm, Laryngeal and Somatic Muscles: A Swine Model

    Directory of Open Access Journals (Sweden)

    I-Cheng Lu

    2010-12-01

    Full Text Available Neuromuscular blocking agents (NMBAs might diminish the electromyography signal of the vocalis muscles during intraoperative neuromonitoring of the recurrent laryngeal nerve. The aim of this study was to compare differential sensitivity of different muscles to succinylcholine in a swine model, and to realize the influence of NMBAs on neuromonitoring. Six male Duroc-Landrace piglets were anesthetized with thiamylal and underwent tracheal intubation without the use of an NMBA. The left recurrent laryngeal nerve, the spinal accessory nerve, the right phrenic nerve and the brachial plexus were stimulated. Evoked potentials (electromyography signal of four muscle groups were elicited from needle electrodes before and after intravenous succinylcholine bolus (1.0 mg/kg. Recorded muscles included the vocalis muscles, trapezius muscle, diaphragm and triceps brachii muscles. The onset time and 80% recovery of control response were recorded and analyzed. The testing was repeated after 30 minutes. The onset time of neuromuscular blocking for the vocalis muscles, trapezius muscle, diaphragm and triceps brachii muscle was 36.3 ± 6.3 seconds, 38.8 ± 14.9 seconds, 52.5 ± 9.7 seconds and 45.0 ± 8.2 seconds during the first test; and 49.3 ± 10.8 seconds, 40.0 ± 12.2 seconds, 47.5 ± 11.9 seconds and 41.3 ± 10.1 seconds during the second test. The 80% recovery of the control response for each muscle was 18.3 ± 2.7 minutes, 16.5±6.9 minutes, 8.1±2.5 minutes and 14.8±2.9 minutes during the first test; and 21.5±3.8 minutes, 12.5 ± 4.3 minutes, 10.5 ± 3.1 minutes and 16.4 ± 4.2 minutes during the second test. The sensitivity of the muscles to succinylcholine, ranked in order, was: the vocalis muscles, the triceps brachii muscle, the trapezius muscle and the diaphragm. We demonstrated a useful and reliable animal model to investigate the effects of NMBAs on intraoperative neuromonitoring. Extrapolation of these data to humans should be done with caution.

  13. Repeated prolonged whole-body low-intensity exercise: effects on insulin sensitivity and limb muscle adaptations

    DEFF Research Database (Denmark)

    Helge, Jørn Mikael; Overgaard, Kristian; Damsgaard, Rasmus

    2006-01-01

    arbitrary units) than in the arm (54 ± 9 arbitrary units) and was not changed in the leg, but was increased (P increased glucose transporter expression in arm muscle may compensate for the loss of lean body mass...... or body mass, were not affected by the crossing. Citrate synthase activity was higher (P muscle (16 ± 2 µmol · g-1 · min-1) and was unchanged after the crossing. Muscle GLUT4 protein concentration was higher (P ...This study investigates the effect of prolonged whole-body low-intensity exercise on insulin sensitivity and the limb muscle adaptive response. Seven male subjects (weight, 90.2 ± 3.2 kg; age, 35 ± 3 years) completed a 32-day unsupported crossing of the Greenland icecap on cross-country skies...

  14. Comparative study the expression of calcium cycling genes in Bombay duck (Harpadon nehereus and beltfish (Trichiurus lepturus with different swimming activities

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2017-06-01

    Full Text Available The contraction and relaxation events of the muscle is mediated by the coordination of many important calcium cycling proteins of ryanodine receptor (RYR, troponin C (TNNC, parvalbumin (PVALB, sarcoendoplasmic reticulum calcium transport ATPase (SERCA and calsequestrin (CASQ. In higher vertebrates, the expression level of calcium cycling proteins are positively correlated to the muscle contraction/relaxation ability of the cell. In this study, we used RNAseq to explore the expression profile of calcium cycling genes between two marine fish of Bombay duck (Harpadon nehereus and beltfish (Trichiurus lepturus with poor and robust swimming activities, respectively. We have studied the hypothesis whether the expression level of calcium cycling proteins are also positive correlated to swimming ability in fish. We used Illumina sequencing technology (NextSeq500 to sequence, assemble and annotate the muscle transcriptome of Bombay duck for the first time. A total of 47,752,240 cleaned reads (deposited in NCBI SRA database with accession number of SRX1706379 were obtained from RNA sequencing and 26,288 unigenes (with N50 of 486 bp were obtained after de novo assembling with Trinity software. BLASTX against NR, GO, KEGG and eggNOG databases show 100%, 65%, 26%, 94% and 88% annotation rate, respectively. Comparison of the dominantly expressed unigenes in fish muscle shows calcium cycling gene expression in beltfish (SRX1674471 is 1.4- to 51.6-fold higher than Bombay duck. Among five calcium cycling genes, the fold change results are very significant in CASQ (51.6 fold and PVALB (9.1 fold and both of them are responsive for calcium binding to reduce free calcium concentration in the sarcoendoplasmic reticulum and cytoplasm. In conclusion, we confirmed that the high abundant expression rate of calcium cycling genes in robust swimming fish species. The current muscle transcriptome and identified calcium cycling gene data can provide more insights into the

  15. Calcium as a cardiovascular toxin in CKD-MBD.

    Science.gov (United States)

    Moe, Sharon M

    2017-07-01

    Disordered calcium balance and homeostasis are common in patients with chronic kidney disease. Such alterations are commonly associated with abnormal bone remodeling, directly and indirectly. Similarly, positive calcium balance may also be a factor in the pathogenesis of extra skeletal soft tissue and arterial calcification. Calcium may directly affect cardiac structure and function through direct effects to alter cell signaling due to abnormal intracellular calcium homeostasis 2) extra-skeletal deposition of calcium and phosphate in the myocardium and small cardiac arterioles, 3) inducing cardiomyocyte hypertrophy through calcium and hormone activation of NFAT signaling mechanisms, and 4) increased aorta calcification resulting in chronic increased afterload leading to hypertrophy. Similarly, calcium may alter vascular smooth muscle cell function and affect cell signaling which may predispose to a proliferative phenotype important in arteriosclerosis and arterial calcification. Thus, disorders of calcium balance and homeostasis due to CKD-MBD may play a role in the high cardiovascular burden observed in patients with CKD. Published by Elsevier Inc.

  16. Phagocytosis-induced /sup 45/calcium efflux in polymorphonuclear leucocytes

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, A; Schell-Frederick, E [Brussels Univ. (Belgium). Institut de Recherche Interdisciplinaire; Paridaens, R [Brussels Univ. (Belgium). Faculte de Medicine

    1977-10-15

    The role of calcium ions in regulating the structure and function of non-muscle cells is a subject of intense study. Several lines of evidence that calcium may be essential in the function of polymorphonuclear leuocytes (PMNL) and an important control element in the process of phagocytosis. Direct studies of calcium distribution and fluxes have only recently been undertaken. To our knowledge, no report of calcium movements during normal phagocytosis has been published. In the context of an overall study of calcium dynamics in the PMNL, we report here initial studies on /sup 45/Ca efflux in prelabelled guinea pig PMNL. The results demonstrate the energy-dependence of resting calcium efflux and an increased efflux upon addition of phagocytic particles which is not dependent on particle internalization.

  17. The relationship between heat shock protein 72 expression in skeletal muscle and insulin sensitivity is dependent on adiposity

    DEFF Research Database (Denmark)

    Henstridge, Darren C; Forbes, Josephine M; Penfold, Sally A

    2010-01-01

    Decreased gene expression of heat shock protein 72 (HSP72) in skeletal muscle is associated with insulin resistance in humans. We aimed to determine whether HSP72 protein expression in insulin-sensitive tissues is related to criterion standard measures of adiposity and insulin resistance in a young...... healthy human population free of hyperglycemia. Healthy participants (N = 17; age, 30 ± 3 years) underwent measurement of body composition (dual-energy x-ray absorptiometry), a maximum aerobic capacity test (VO(2max)), an oral glucose tolerance test, and a hyperinsulinemic-euglycemic clamp (M) to access...... insulin sensitivity. Skeletal muscle and subcutaneous adipose tissue biopsies were obtained by percutaneous needle biopsy. HSP72 protein expression in skeletal muscle was inversely related to percentage body fat (r = -0.54, P

  18. Filamin and phospholipase C-ε are required for calcium signaling in the Caenorhabditis elegans spermatheca.

    Directory of Open Access Journals (Sweden)

    Ismar Kovacevic

    2013-05-01

    Full Text Available The Caenorhabditis elegans spermatheca is a myoepithelial tube that stores sperm and undergoes cycles of stretching and constriction as oocytes enter, are fertilized, and exit into the uterus. FLN-1/filamin, a stretch-sensitive structural and signaling scaffold, and PLC-1/phospholipase C-ε, an enzyme that generates the second messenger IP3, are required for embryos to exit normally after fertilization. Using GCaMP, a genetically encoded calcium indicator, we show that entry of an oocyte into the spermatheca initiates a distinctive series of IP3-dependent calcium oscillations that propagate across the tissue via gap junctions and lead to constriction of the spermatheca. PLC-1 is required for the calcium release mechanism triggered by oocyte entry, and FLN-1 is required for timely initiation of the calcium oscillations. INX-12, a gap junction subunit, coordinates propagation of the calcium transients across the spermatheca. Gain-of-function mutations in ITR-1/IP3R, an IP3-dependent calcium channel, and loss-of-function mutations in LFE-2, a negative regulator of IP3 signaling, increase calcium release and suppress the exit defect in filamin-deficient animals. We further demonstrate that a regulatory cassette consisting of MEL-11/myosin phosphatase and NMY-1/non-muscle myosin is required for coordinated contraction of the spermatheca. In summary, this study answers long-standing questions concerning calcium signaling dynamics in the C. elegans spermatheca and suggests FLN-1 is needed in response to oocyte entry to trigger calcium release and coordinated contraction of the spermathecal tissue.

  19. Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats.

    Science.gov (United States)

    Yamazaki, Ricardo K; Brito, Gleisson A P; Coelho, Isabela; Pequitto, Danielle C T; Yamaguchi, Adriana A; Borghetti, Gina; Schiessel, Dalton Luiz; Kryczyk, Marcelo; Machado, Juliano; Rocha, Ricelli E R; Aikawa, Julia; Iagher, Fabiola; Naliwaiko, Katya; Tanhoffer, Ricardo A; Nunes, Everson A; Fernandes, Luiz Claudio

    2011-04-28

    Obesity is commonly associated with diabetes, cardiovascular diseases and cancer. The purpose of this study was to determinate the effect of a lower dose of fish oil supplementation on insulin sensitivity, lipid profile, and muscle metabolism in obese rats. Monosodium glutamate (MSG) (4 mg/g body weight) was injected in neonatal Wistar male rats. Three-month-old rats were divided in normal-weight control group (C), coconut fat-treated normal weight group (CO), fish oil-treated normal weight group (FO), obese control group (Ob), coconut fat-treated obese group (ObCO) and fish oil-treated obese group (ObFO). Obese insulin-resistant rats were supplemented with fish oil or coconut fat (1 g/kg/day) for 4 weeks. Insulin sensitivity, fasting blood biochemicals parameters, and skeletal muscle glucose metabolism were analyzed. Obese animals (Ob) presented higher Index Lee and 2.5 fold epididymal and retroperitoneal adipose tissue than C. Insulin sensitivity test (Kitt) showed that fish oil supplementation was able to maintain insulin sensitivity of obese rats (ObFO) similar to C. There were no changes in glucose and HDL-cholesterol levels amongst groups. Yet, ObFO revealed lower levels of total cholesterol (TC; 30%) and triacylglycerol (TG; 33%) compared to Ob. Finally, since exposed to insulin, ObFO skeletal muscle revealed an increase of 10% in lactate production, 38% in glycogen synthesis and 39% in oxidation of glucose compared to Ob. Low dose of fish oil supplementation (1 g/kg/day) was able to reduce TC and TG levels, in addition to improved systemic and muscle insulin sensitivity. These results lend credence to the benefits of n-3 fatty acids upon the deleterious effects of insulin resistance mechanisms.

  20. Troponin T3 regulates nuclear localization of the calcium channel Ca{sub v}β{sub 1a} subunit in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tan; Taylor, Jackson; Jiang, Yang [Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157 (United States); Pereyra, Andrea S. [Department of Histology, National University of La Plata, 1900 La Plata (Argentina); Messi, Maria Laura; Wang, Zhong-Min [Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157 (United States); Hereñú, Claudia [Department of Histology, National University of La Plata, 1900 La Plata (Argentina); Delbono, Osvaldo, E-mail: odelbono@wakehealth.edu [Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157 (United States); Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC 27157 (United States)

    2015-08-15

    The voltage-gated calcium channel (Ca{sub v}) β{sub 1a} subunit (Ca{sub v}β{sub 1a}) plays an important role in excitation–contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Ca{sub v}β{sub 1a} subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160–244 aa) and Ca{sub v}β{sub 1a} NH{sub 2}-terminus (1–99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Ca{sub v}β{sub 1a}/YFP shows that TnT3 facilitates Ca{sub v}β{sub 1a} nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation. - Highlights: • Previously, we demonstrated that Ca{sub v}β{sub 1a} is a gene transcription regulator. • Here, we show that TnT3 interacts with Ca{sub v}β{sub 1a}. • We mapped TnT3 and Ca{sub v}β{sub 1a} interaction domain. • TnT3 facilitates Ca{sub v}β{sub 1a} nuclear enrichment. • The two proteins play a heretofore unknown role during early muscle differentiation.

  1. RIGOR MORTIS AND THE INFLUENCE OF CALCIUM AND MAGNESIUM SALTS UPON ITS DEVELOPMENT.

    Science.gov (United States)

    Meltzer, S J; Auer, J

    1908-01-01

    Calcium salts hasten and magnesium salts retard the development of rigor mortis, that is, when these salts are administered subcutaneously or intravenously. When injected intra-arterially, concentrated solutions of both kinds of salts cause nearly an immediate onset of a strong stiffness of the muscles which is apparently a contraction, brought on by a stimulation caused by these salts and due to osmosis. This contraction, if strong, passes over without a relaxation into a real rigor. This form of rigor may be classed as work-rigor (Arbeitsstarre). In animals, at least in frogs, with intact cords, the early contraction and the following rigor are stronger than in animals with destroyed cord. If M/8 solutions-nearly equimolecular to "physiological" solutions of sodium chloride-are used, even when injected intra-arterially, calcium salts hasten and magnesium salts retard the onset of rigor. The hastening and retardation in this case as well as in the cases of subcutaneous and intravenous injections, are ion effects and essentially due to the cations, calcium and magnesium. In the rigor hastened by calcium the effects of the extensor muscles mostly prevail; in the rigor following magnesium injection, on the other hand, either the flexor muscles prevail or the muscles become stiff in the original position of the animal at death. There seems to be no difference in the degree of stiffness in the final rigor, only the onset and development of the rigor is hastened in the case of the one salt and retarded in the other. Calcium hastens also the development of heat rigor. No positive facts were obtained with regard to the effect of magnesium upon heat vigor. Calcium also hastens and magnesium retards the onset of rigor in the left ventricle of the heart. No definite data were gathered with regard to the effects of these salts upon the right ventricle.

  2. Effects of hypothyroidism on the sensitivity of glycolysis and glycogen synthesis to insulin in the soleus muscle of the rat.

    Science.gov (United States)

    Dimitriadis, G D; Leighton, B; Parry-Billings, M; West, D; Newsholme, E A

    1989-01-01

    1. The effects of hypothyroidism on the sensitivity of glycolysis and glycogen synthesis to insulin were investigated in the isolated, incubated soleus muscle of the rat. 2. Hypothyroidism, which was induced by administration of propylthiouracil to the rats, decreased fasting plasma levels of free fatty acids and increased plasma levels of glucose but did not significantly change plasma levels of insulin. 3. The sensitivity of the rates of glycogen synthesis to insulin was increased at physiological, but decreased at supraphysiological, concentrations of insulin. 4. The rates of glycolysis in the hypothyroid muscles were decreased at all insulin concentrations studied and the EC50 for insulin was increased more than 8-fold; the latter indicates decreased sensitivity of this process to insulin. However, at physiological concentrations of insulin, the rates of glucose phosphorylation in the soleus muscles of hypothyroid rats were not different from controls. This suggests that hypothyroidism affects glucose metabolism in muscle not by affecting glucose transport but by decreasing the rate of glucose 6-phosphate conversion to lactate and increasing the rate of conversion of glucose 6-phosphate to glycogen. 5. The rates of glucose oxidation were decreased in the hypothyroid muscles at all insulin concentrations. PMID:2649073

  3. Diffusion-weighted magnetic resonance imaging of extraocular muscles in patients with Grave's ophthalmopathy using turbo field echo with diffusion-sensitized driven-equilibrium preparation.

    Science.gov (United States)

    Hiwatashi, A; Togao, O; Yamashita, K; Kikuchi, K; Momosaka, D; Honda, H

    2018-03-20

    The purpose of this study was to correlate diffusivity of extraocular muscles, measured by three-dimensional turbo field echo (3DTFE) magnetic resonance (MR) imaging using diffusion-sensitized driven-equilibrium preparation, with their size and activity in patients with Grave's ophthalmopathy. Twenty-three patients with Grave's ophthalmopathy were included. There were 17 women and 6 men with a mean age of 55.8±12.6 (SD) years (range: 26-83 years). 3DTFE with diffusion-sensitized driven-equilibrium MR images were obtained with b-values of 0 and 500s/mm 2 . The apparent diffusion coefficient (ADC) of extraocular muscles was measured on coronal reformatted MR images. Signal intensities of extraocular muscles on conventional MR images were compared to those of normal-appearing white matter, and cross-sectional areas of the muscles were also measured. The clinical activity score was also evaluated. Statistical analyses were performed with Pearson correlation and Mann-Whitney U tests. On 3DTFE with diffusion-sensitized driven-equilibrium preparation, the mean ADC of the extraocular muscles was 2.23±0.37 (SD)×10 -3 mm2/s (range: 1.70×10 -3 -3.11×10 -3 mm 2 /s). There was a statistically significant moderate correlation between ADC and the size of the muscles (r=0.61). There were no statistically significant correlations between ADC and signal intensity on conventional MR and the clinical activity score. 3DTFE with diffusion-sensitized driven-equilibrium preparation technique allows quantifying diffusivity of extraocular muscles in patients with Grave's ophthalmopathy. The diffusivity of the extraocular muscles on 3DTFE with diffusion-sensitized driven-equilibrium preparation MR images moderately correlates with their size. Copyright © 2018. Published by Elsevier Masson SAS.

  4. Effect of cadmium on myocardial contractility and calcium fluxes

    International Nuclear Information System (INIS)

    Pilati, C.F.

    1979-01-01

    The effect of cadmium on myocardial mechanical performance and calcium fluxes was studied in kitten isometric papillary muscles and in isovolumic Langendorff-perfused rabbit hearts. Therefore, it is concluded that cadmium-induced decreases in contractility are not primarily the result of cadmium interference with ATP metabolic processes. Furthermore, these results imply that cadmium causes no structural alterations of the contractile proteins. These data suggest that cadmium may be competing with the calcium needed for excitation-contraction coupling. During experiments using radioisotopic calcium, a statistically significant cellular influx of calcium was observed following the onset of 100 μM Cd ++ perfusion of isolated, Langendorff-prepared rabbit hearts

  5. Decrease in sarcoplasmic reticulum calcium content, not myofilament function, contributes to muscle twitch force decline in isolated cardiac trabeculae

    Science.gov (United States)

    Milani-Nejad, Nima; Brunello, Lucia; Gyorke, Sándor; Janssen, Paul M.L.

    2014-01-01

    We set out to determine the factors responsible for twitch force decline in isolated intact rat cardiac trabeculae. The contractile force of trabeculae declined over extended periods of isometric twitch contractions. The force-frequency relationship within the frequency range of 4–8 Hz, at 37 °C, became more positive and the frequency optimum shifted to higher rates with this decline in baseline twitch tensions. The post-rest potentiation (37 °C), a phenomenon highly dependent on calcium handling mechanisms, became more pronounced with decrease in twitch tensions. We show that the main abnormality during muscle run-down was not due to a deficit in the myofilaments; maximal tension achieved using a K+ contracture protocol was either unaffected or only slightly decreased. Conversely, the sarcoplasmic reticulum (SR) calcium content, as assessed by rapid cooling contractures (from 27 °C to 0 °C), decreased, and had a close association with the declining twitch tensions (R2 ~ 0.76). SR Ca2+-ATPase, relative to Na+/Ca2+ exchanger activity, was not altered as there was no significant change in paired rapid cooling contracture ratios. Furthermore, confocal microscopy detected no abnormalities in the overall structure of the cardiomyocytes and t-tubules in the cardiac trabeculae (~23 °C). Overall, the data indicates that the primary mechanism responsible for force run-down in multi-cellular cardiac preparations is a decline in the SR calcium content and not the maximal tension generation capability of the myofilaments. PMID:25056841

  6. Muscle-Type Specific Autophosphorylation of CaMKII Isoforms after Paced Contractions

    Directory of Open Access Journals (Sweden)

    Wouter Eilers

    2014-01-01

    Full Text Available We explored to what extent isoforms of the regulator of excitation-contraction and excitation-transcription coupling, calcium/calmodulin protein kinase II (CaMKII contribute to the specificity of myocellular calcium sensing between muscle types and whether concentration transients in its autophosphorylation can be simulated. CaMKII autophosphorylation at Thr287 was assessed in three muscle compartments of the rat after slow or fast motor unit-type stimulation and was compared against a computational model (CaMuZclE coupling myocellular calcium dynamics with CaMKII Thr287 phosphorylation. Qualitative differences existed between fast- (gastrocnemius medialis and slow-type muscle (soleus for the expression pattern of CaMKII isoforms. Phospho-Thr287 content of δA CaMKII, associated with nuclear functions, demonstrated a transient and compartment-specific increase after excitation, which contrasted to the delayed autophosphorylation of the sarcoplasmic reticulum-associated βM CaMKII. In soleus muscle, excitation-induced δA CaMKII autophosphorylation demonstrated frequency dependence (P = 0.02. In the glycolytic compartment of gastrocnemius medialis, CaMKII autophosphorylation after excitation was blunted. In silico assessment emphasized the importance of mitochondrial calcium buffer capacity for excitation-induced CaMKII autophosphorylation but did not predict its isoform specificity. The findings expose that CaMKII autophosphorylation with paced contractions is regulated in an isoform and muscle type-specific fashion and highlight properties emerging for phenotype-specific regulation of CaMKII.

  7. Mechanisms of exertional fatigue in muscle glycogenoses

    DEFF Research Database (Denmark)

    Vissing, John; Haller, Ronald G

    2012-01-01

    , which may be important for maintaining muscle membrane excitability by decreasing chloride permeability, (2) loss of the osmotic effect related to lactate accumulation, which may account for absence of the normal increase in water content of exercised muscle, and thus promote higher than normal...... concentrations of extracellular potassium in exercising muscle and (3) exaggerated accumulation of ADP during exercise that may inhibit sodium-potassium and calcium-ATPases. Disorders of muscle glycogenolysis and glycolysis reveal the crucial role of these metabolic processes for supplying both anaerobic...

  8. Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats

    Directory of Open Access Journals (Sweden)

    Iagher Fabiola

    2011-04-01

    Full Text Available Abstract Background Obesity is commonly associated with diabetes, cardiovascular diseases and cancer. The purpose of this study was to determinate the effect of a lower dose of fish oil supplementation on insulin sensitivity, lipid profile, and muscle metabolism in obese rats. Methods Monosodium glutamate (MSG (4 mg/g body weight was injected in neonatal Wistar male rats. Three-month-old rats were divided in normal-weight control group (C, coconut fat-treated normal weight group (CO, fish oil-treated normal weight group (FO, obese control group (Ob, coconut fat-treated obese group (ObCO and fish oil-treated obese group (ObFO. Obese insulin-resistant rats were supplemented with fish oil or coconut fat (1 g/kg/day for 4 weeks. Insulin sensitivity, fasting blood biochemicals parameters, and skeletal muscle glucose metabolism were analyzed. Results Obese animals (Ob presented higher Index Lee and 2.5 fold epididymal and retroperitoneal adipose tissue than C. Insulin sensitivity test (Kitt showed that fish oil supplementation was able to maintain insulin sensitivity of obese rats (ObFO similar to C. There were no changes in glucose and HDL-cholesterol levels amongst groups. Yet, ObFO revealed lower levels of total cholesterol (TC; 30% and triacylglycerol (TG; 33% compared to Ob. Finally, since exposed to insulin, ObFO skeletal muscle revealed an increase of 10% in lactate production, 38% in glycogen synthesis and 39% in oxidation of glucose compared to Ob. Conclusions Low dose of fish oil supplementation (1 g/kg/day was able to reduce TC and TG levels, in addition to improved systemic and muscle insulin sensitivity. These results lend credence to the benefits of n-3 fatty acids upon the deleterious effects of insulin resistance mechanisms.

  9. Gene expression changes of single skeletal muscle fibers in response to modulation of the mitochondrial calcium uniporter (MCU

    Directory of Open Access Journals (Sweden)

    Francesco Chemello

    2015-09-01

    Full Text Available The mitochondrial calcium uniporter (MCU gene codifies for the inner mitochondrial membrane (IMM channel responsible for mitochondrial Ca2+ uptake. Cytosolic Ca2+ transients are involved in sarcomere contraction through cycles of release and storage in the sarcoplasmic reticulum. In addition cytosolic Ca2+ regulates various signaling cascades that eventually lead to gene expression reprogramming. Mitochondria are strategically placed in close contact with the ER/SR, thus cytosolic Ca2+ transients elicit large increases in the [Ca2+] of the mitochondrial matrix ([Ca2+]mt. Mitochondrial Ca2+ uptake regulates energy production and cell survival. In addition, we recently showed that MCU-dependent mitochondrial Ca2+ uptake controls skeletal muscle trophism. In the same report, we dissected the effects of MCU-dependent mitochondrial Ca2+ uptake on gene expression through microarray gene expression analysis upon modulation of MCU expression by in vivo AAV infection. Analyses were performed on single skeletal muscle fibers at two time points (7 and 14 days post-AAV injection. Raw and normalized data are available on the GEO database (http://www.ncbi.nlm.nih.gov/geo/ (GSE60931.

  10. Prior AICAR stimulation increases insulin sensitivity in mouse skeletal muscle in an AMPK-dependent manner

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus; Treebak, Jonas Thue; Fentz, Joachim

    2015-01-01

    Acute exercise increases glucose uptake in skeletal muscle by an insulin-independent mechanism. In the period after exercise insulin sensitivity to increase glucose uptake is enhanced. The molecular mechanisms underpinning this phenomenon are poorly understood, but appear to involve an increased ...

  11. Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker; Frøsig, Christian; Kjøbsted, Rasmus

    2017-01-01

    and increased similarly in both legs during the clamp and L-NMMA had no effect on these insulin-stimulated signaling pathways. Therefore, acute exercise increases insulin sensitivity of muscle by a coordinated increase in insulin-stimulated microvascular perfusion and molecular signaling at the level of TBC1D4...... and glycogen synthase in muscle. This secures improved glucose delivery on the one hand and increased ability to take up and dispose of the delivered glucose on the other hand....

  12. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock

    DEFF Research Database (Denmark)

    Dyar, Kenneth A.; Ciciliot, Stefano; Wright, Lauren E.

    2014-01-01

    Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-s...

  13. Calcium channels in the brain as targets for the calcium-channel modulators used in the treatment of neurological disorders

    NARCIS (Netherlands)

    Peters, Thies; WILFFERT, B; VANHOUTTE, PM; VANZWIETEN, PA

    1991-01-01

    Recent investigations of calcium channels in brain cells by voltage-clamp techniques have revealed that, in spite of electrophysiological similarities, the pharmacological properties of these channels differ considerably from channels in peripheral tissues, e.g., heart and smooth muscle. Therefore,

  14. Mitochondria from rat uterine smooth muscle possess ATP-sensitive potassium channel

    Directory of Open Access Journals (Sweden)

    Olga B. Vadzyuk

    2018-03-01

    Full Text Available The objective of this study was to detect ATP-sensitive K+ uptake in rat uterine smooth muscle mitochondria and to determine possible effects of its activation on mitochondrial physiology. By means of fluorescent technique with usage of K+-sensitive fluorescent probe PBFI (potassium-binding benzofuran isophthalate we showed that accumulation of K ions in isolated mitochondria from rat myometrium is sensitive to effectors of KATP-channel (ATP-sensitive K+-channel – ATP, diazoxide, glibenclamide and 5HD (5-hydroxydecanoate. Our data demonstrates that K+ uptake in isolated myometrium mitochondria results in a slight decrease in membrane potential, enhancement of generation of ROS (reactive oxygen species and mitochondrial swelling. Particularly, the addition of ATP into incubation medium led to a decrease in mitochondrial swelling and ROS production, and an increase in membrane potential. These effects were eliminated by diazoxide. If blockers of KATP-channel were added along with diazoxide, the effects of diazoxide were removed. So, we postulate the existence of KATP-channels in rat uterus mitochondria and assume that their functioning may regulate physiological conditions of mitochondria, such as matrix volume, ROS generation and polarization of mitochondrial membrane. Keywords: ATP-sensitive potassium channel, Diazoxide, 5-hydroxydecanoate, Myometrium, Mitochondria, Mitochondrial swelling, Mitochondrial membrane potential, ROS

  15. The Complex Role of Store Operated Calcium Entry Pathways and Related Proteins in the Function of Cardiac, Skeletal and Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Javier Avila-Medina

    2018-03-01

    Full Text Available Cardiac, skeletal, and smooth muscle cells shared the common feature of contraction in response to different stimuli. Agonist-induced muscle's contraction is triggered by a cytosolic free Ca2+ concentration increase due to a rapid Ca2+ release from intracellular stores and a transmembrane Ca2+ influx, mainly through L-type Ca2+ channels. Compelling evidences have demonstrated that Ca2+ might also enter through other cationic channels such as Store-Operated Ca2+ Channels (SOCCs, involved in several physiological functions and pathological conditions. The opening of SOCCs is regulated by the filling state of the intracellular Ca2+ store, the sarcoplasmic reticulum, which communicates to the plasma membrane channels through the Stromal Interaction Molecule 1/2 (STIM1/2 protein. In muscle cells, SOCCs can be mainly non-selective cation channels formed by Orai1 and other members of the Transient Receptor Potential-Canonical (TRPC channels family, as well as highly selective Ca2+ Release-Activated Ca2+ (CRAC channels, formed exclusively by subunits of Orai proteins likely organized in macromolecular complexes. This review summarizes the current knowledge of the complex role of Store Operated Calcium Entry (SOCE pathways and related proteins in the function of cardiac, skeletal, and vascular smooth muscle cells.

  16. The Functional Role of Calcineurin in Hypertrophy, Regeneration, and Disorders of Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Kunihiro Sakuma

    2010-01-01

    Full Text Available Skeletal muscle uses calcium as a second messenger to respond and adapt to environmental stimuli. Elevations in intracellular calcium levels activate calcineurin, a serine/threonine phosphatase, resulting in the expression of a set of genes involved in the maintenance, growth, and remodeling of skeletal muscle. In this review, we discuss the effects of calcineurin activity on hypertrophy, regeneration, and disorders of skeletal muscle. Calcineurin is a potent regulator of muscle remodeling, enhancing the differentiation through upregulation of myogenin or MEF2A and downregulation of the Id1 family and myostatin. Foxo may also be a downstream candidate for a calcineurin signaling molecule during muscle regeneration. The strategy of controlling the amount of calcineurin may be effective for the treatment of muscular disorders such as DMD, UCMD, and LGMD. Activation of calcineurin produces muscular hypertrophy of the slow-twitch soleus muscle but not fast-twitch muscles.

  17. Plants sensitivity on nickel under different conditions of iron or calcium concentration in the nutrient medium

    Directory of Open Access Journals (Sweden)

    Renata Matraszek

    2013-12-01

    Full Text Available The sensitivity of six vegetable plants on nickel at early stages of their growth was investigated by index of tolerance. Besides the possibility of nickel fitostabilization by additional application of iron or calcium was tested. The experiment was conducted on Petri dishes. Different concentrations of nickel (0; 0,03; 0,06mM Ni as nickel sulphate, iron (0,05; O,OlmM Fe as Fe2+ citrate and calcium (0,50; 0,75; lmM Ca as calcium carbonate were added. Taking into consideration the sensitivity, investigated vegetables can be ordered in the following way: Cucurbita pepo conv. giromontiina L.>Lactuca sativa L.>Sinapis alba L.>Spinacia oleracea L.=Zea mays var. saccharata Kcke.>Phaseolus vulgaris L. Positive, statistically significant effect ofnickel fitostabilization (0,03 or 0,06mM Ni on elongative growth by the iron application (0,10mM Fe was shown for Zea mays var. saccharata Kcke independently of Ni concentration in the nutrient medium as well as for Sinapis alba L. and Phaseolus vulgaris L. in 0,06mM Ni. Addition as much as 0,75mM Ca in the presence 0,03mM Ni had positive result on Sinapis alba L and Phaseolus vulgaris L. seedlings as well as on Zea mays var. saccharata Kcke and Lactuca sativa L. roots and Cucurbita pepo convar. giromontiina L. shoots. Addition of 0,75mM Ca in the presence 0,06mM Ni promoted elongative growth of Zea mays var. saccharata Kcke seedlings. Application lmM Ca resulted in the promotion of elongative growth of Zea mays var. saccharata Kcke. roots (0,03mM Ni as well as Spinacia oleracea L. roots (0,06mM Ni.

  18. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock★

    Science.gov (United States)

    Dyar, Kenneth A.; Ciciliot, Stefano; Wright, Lauren E.; Biensø, Rasmus S.; Tagliazucchi, Guidantonio M.; Patel, Vishal R.; Forcato, Mattia; Paz, Marcia I.P.; Gudiksen, Anders; Solagna, Francesca; Albiero, Mattia; Moretti, Irene; Eckel-Mahan, Kristin L.; Baldi, Pierre; Sassone-Corsi, Paolo; Rizzuto, Rosario; Bicciato, Silvio; Pilegaard, Henriette; Blaauw, Bert; Schiaffino, Stefano

    2013-01-01

    Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-stimulated glucose uptake with reduced protein levels of GLUT4, the insulin-dependent glucose transporter, and TBC1D1, a Rab-GTPase involved in GLUT4 translocation. Pyruvate dehydrogenase (PDH) activity was also reduced due to altered expression of circadian genes Pdk4 and Pdp1, coding for PDH kinase and phosphatase, respectively. PDH inhibition leads to reduced glucose oxidation and diversion of glycolytic intermediates to alternative metabolic pathways, as revealed by metabolome analysis. The impaired glucose metabolism induced by muscle-specific Bmal1 knockout suggests that a major physiological role of the muscle clock is to prepare for the transition from the rest/fasting phase to the active/feeding phase, when glucose becomes the predominant fuel for skeletal muscle. PMID:24567902

  19. Identification of a Novel EF-Loop in the N-terminus of TRPM2 Channel Involved in Calcium Sensitivity

    Directory of Open Access Journals (Sweden)

    Yuhuan Luo

    2018-06-01

    Full Text Available As an oxidative stress sensor, transient receptor potential melastatin 2 (TRPM2 channel is involved in many physiological and pathological processes including warmth sensing, ischemia injury, inflammatory diseases and diabetes. Intracellular calcium is critical for TRPM2 channel activation and the IQ-like motif in the N-terminus has been shown to be important by mediating calmodulin binding. Sequence analysis predicted two potential EF-loops in the N-terminus of TRPM2. Site-directed mutagenesis combining with functional assay showed that substitution with alanine of several residues, most of which are conserved in the typical EF-loop, including D267, D278, D288, and E298 dramatically reduced TRPM2 channel currents. By further changing the charges or side chain length of these conserved residues, our results indicate that the negative charge of D267 and the side chain length of D278 are critical for calcium-induced TRPM2 channel activation. G272I mutation also dramatically reduced the channel currents, suggesting that this site is critical for calcium-induced TRPM2 channel activation. Furthermore, D267A mutant dramatically reduced the currents induced by calcium alone compared with that by ADPR, indicating that D267 residue in D267–D278 motif is the most important site for calcium sensitivity of TRPM2. In addition, inside-out recordings showed that mutations at D267, G272, D278, and E298 had no effect on single-channel conductance. Taken together, our data indicate that D267–D278 motif in the N-terminus as a novel EF-loop is critical for calcium-induced TRPM2 channel activation.

  20. Sensitivity of subject-specific models to Hill muscle-tendon model parameters in simulations of gait

    NARCIS (Netherlands)

    Carbone, V.; Krogt, M.M. van der; Koopman, H.F.J.M.; Verdonschot, N.J.

    2016-01-01

    Subject-specific musculoskeletal (MS) models of the lower extremity are essential for applications such as predicting the effects of orthopedic surgery. We performed an extensive sensitivity analysis to assess the effects of potential errors in Hill muscle-tendon (MT) model parameters for each of

  1. Contractions induce phosphorylation of the AMPK site Ser565 in hormone-sensitive lipase in muscle

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2004-01-01

    Intramyocellular triglyceride is an important energy store which is related to insulin resistance. Mobilization of fatty acids from this pool is probably regulated by hormone-sensitive lipase (HSL), which has recently been shown to exist in muscle and to be activated by epinephrine via PKA...

  2. FENOFIBRATE ADMINISTRATION DOES NOT AFFECT MUSCLE TRIGLYCERIDE CONCENTRATION OR INSULIN SENSITIVITY IN HUMANS

    Science.gov (United States)

    Perreault, Leigh; Bergman, Bryan C.; Hunerdosse, Devon M.; Howard, David J.; Eckel, Robert H.

    2010-01-01

    Objective Animal data suggest that males, in particular, rely on PPAR-α activity to maintain normal muscle triglyceride metabolism. We sought to examine whether this was also true in men vs. women and its relationship to insulin sensitivity. Materials/Methods Normolipidemic obese men (n=9) and women (n=9) underwent an assessment of insulin sensitivity (IVGTT) and intramuscular triglyceride metabolism (GC/MS and GC/C/IRMS from plasma and muscle biopsies taken after infusion of [U-13C]palmitate) before and after 12 weeks of fenofibrate treatment. Results Women were more insulin sensitive (Si; 5.2(0.7 vs. 2.4(0.4 ×10−4/uU/ml, W vs. M, ptriglyceride (IMTG) concentration (41.9(15.5 vs. 30.8(5.1 ug/mg dry weight, W vs. M, p=0.43), and IMTG fractional synthesis rate (FSR; 0.27(0.07 vs. 0.35(0.06/hr, W vs. M, p=0.41) as men. Fenofibrate enhanced FSR in men (0.35(0.06 to 0.54(0.06, p=0.05), with no such change seen in women (0.27(0.07 to 0.32(0.13, p=0.73), and no change in IMTG concentration in either group (23.0(3.9 in M, p=0.26 vs. baseline; 36.3(12.0 in W, p=0.79 vs. baseline). Insulin sensitivity was unaffected by fenofibrate (p>0.68). Lower percent saturation of IMTG in women vs. men before (29.1(2.3 vs. 35.2(1.7%, p=0.06) and after (27.3(2.8 vs. 35.1(1.9%, p=0.04) fenofibrate most closely related to their greater insulin sensitivity (R2=0.34, p=0.10), and was largely unchanged by the drug. Conclusions PPAR-α agonist therapy had little effect on IMTG metabolism in men or women. IMTG saturation, rather than IMTG concentration or FSR, most closely (but not significantly) related to insulin sensitivity and was unchanged by fenofibrate administration. PMID:21306746

  3. Muscle-derived interleukin-6: lipolytic, anti-inflammatory and immune regulatory effects

    DEFF Research Database (Denmark)

    Pedersen, Bente Klarlund; Steensberg, Adam; Keller, Pernille

    2003-01-01

    is low. Furthermore, cultured human primary muscle cells can increase IL-6 mRNA when incubated with the calcium ionophore ionomycin and it is likely that myocytes produce IL-6 in response to muscle contraction. The biological roles of muscle-derived IL-6 have been investigated in studies in which human...

  4. Muscle-Type Specific Autophosphorylation of CaMKII Isoforms after Paced Contractions

    NARCIS (Netherlands)

    Eilers, W.; Gevers, W.; van Overbeek, D.; de Haan, A.; Jaspers, R.T.; Hilbers, P.A.; van Riel, A.C.R.; Flueck, M.

    2014-01-01

    We explored to what extent isoforms of the regulator of excitation-contraction and excitation-transcription coupling, calcium/calmodulin protein kinase II (CaMKII) contribute to the specificity of myocellular calcium sensing between muscle types and whether concentration transients in its

  5. New Role of P/Q-type Voltage-gated Calcium Channels

    DEFF Research Database (Denmark)

    Hansen, Pernille B L

    2015-01-01

    Voltage-gated calcium channels are important for the depolarization-evoked contraction of vascular smooth muscle cells (SMCs), with L-type channels being the classical channel involved in this mechanism. However, it has been demonstrated that the CaV2.1 subunit, which encodes a neuronal isoform...... of the voltage-gated calcium channels (P/Q-type), is also expressed and contributes functionally to contraction of renal blood vessels in both mice and humans. Furthermore, preglomerular vascular SMCs and aortic SMCs coexpress L-, P-, and Q-type calcium channels within the same cell. Calcium channel blockers...... are widely used as pharmacological treatments. However, calcium channel antagonists vary in their selectivity for the various calcium channel subtypes, and the functional contribution from P/Q-type channels as compared with L-type should be considered. Confirming the presence of P/Q-type voltage...

  6. Exercise-intensity dependent alterations in plasma redox status do not reflect skeletal muscle redox-sensitive protein signaling.

    Science.gov (United States)

    Parker, Lewan; Trewin, Adam; Levinger, Itamar; Shaw, Christopher S; Stepto, Nigel K

    2018-04-01

    Redox homeostasis and redox-sensitive protein signaling play a role in exercise-induced adaptation. The effects of sprint-interval exercise (SIE), high-intensity interval exercise (HIIE) and continuous moderate-intensity exercise (CMIE), on post-exercise plasma redox status are unclear. Furthermore, whether post-exercise plasma redox status reflects skeletal muscle redox-sensitive protein signaling is unknown. In a randomized crossover design, eight healthy adults performed a cycling session of HIIE (5×4min at 75% W max ), SIE (4×30s Wingate's), and CMIE work-matched to HIIE (30min at 50% of W max ). Plasma hydrogen peroxide (H 2 O 2 ), thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD) activity, and catalase activity were measured immediately post, 1h, 2h and 3h post-exercise. Plasma redox status biomarkers were correlated with phosphorylation of skeletal muscle p38-MAPK, JNK, NF-κB, and IκBα protein content immediately and 3h post-exercise. Plasma catalase activity was greater with SIE (56.6±3.8Uml -1 ) compared to CMIE (42.7±3.2, pexercise plasma TBARS and SOD activity significantly (pexercise protocol. A significant positive correlation was detected between plasma catalase activity and skeletal muscle p38-MAPK phosphorylation 3h post-exercise (r=0.40, p=0.04). No other correlations were detected (all p>0.05). Low-volume SIE elicited greater post-exercise plasma catalase activity compared to HIIE and CMIE, and greater H 2 O 2 compared to CMIE. Plasma redox status did not, however, adequately reflect skeletal muscle redox-sensitive protein signaling. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  7. Studies on endogenous circulating calcium entry blocker and stimulator

    International Nuclear Information System (INIS)

    Pang, P.K.T.; Yang, M.C.M.

    1986-01-01

    Several synthetic compounds have been studied extensively for their calcium entry blockade and stimulation in smooth muscles. It is hypothesized that there should be endogenous substances which control calcium entry into cells. We recently investigated the effect of some vasoactive hormones on calcium entry. Our studies on rat tail artery helical strip showed that the in vitro vasoconstriction produced by arginine vasopressin (AVP) decreased stepwise with decreasing concentration of both calcium. After exposure of the tail artery to calcium-free Ringer's solution for 1 minute or longer, the tissue lost its ability to respond to AVP. Subsequent addition of calcium to the medium produced immediate contraction. Measurements of low affinity lanthanum resistant pool of calcium with 45 Ca showed that AVP increased calcium uptake by tail artery in a dose-dependent manner. In another study rat tail artery helical strip indicated that the vasorelaxing action of parathyroid hormone (PTH) was related to an inhibition of calcium uptake. AVP or 60 mM potassium chloride increased the low affinity lanthanum resistant pool of calcium in rate tail artery and PTH inhibited the increase. In conclusion, AVP and PTH may behave like endogenous calcium entry stimulator and inhibitor respectively in vascular tissues

  8. Calcium electrotransfer for termination of transgene expression in muscle

    DEFF Research Database (Denmark)

    Hojman, Pernille; Spanggaard, Iben; Olsen, Caroline Holkman

    2011-01-01

    in vivo imaging of infrared fluorescent "Katushka" and erythropoietin evaluated by ELISA and hemoglobin. Histology was performed. Electrotransfer of Katushka and erythropoietin yielded significant expression. Maximal calcium uptake occurred after injection of Ca(2+) before electropulsing using eight high...

  9. Calcium signal communication in the central nervous system.

    Science.gov (United States)

    Braet, Katleen; Cabooter, Liesbet; Paemeleire, Koen; Leybaert, Luc

    2004-02-01

    The communication of calcium signals between cells is known to be operative between neurons where these signals integrate intimately with electrical and chemical signal communication at synapses. Recently, it has become clear that glial cells also exchange calcium signals between each other in cultures and in brain slices. This communication pathway has received utmost attention since it is known that astrocytic calcium signals can be induced by neuronal stimulation and can be communicated back to the neurons to modulate synaptic transmission. In addition to this, cells that are generally not considered as brain cells become progressively incorporated in the picture, as astrocytic calcium signals are reported to be communicated to endothelial cells of the vessel wall and can affect smooth muscle cell tone to influence the vessel diameter and thus blood flow. We review the available evidence for calcium signal communication in the central nervous system, taking into account a basic functional unit -the brain cell tripartite- consisting of neurons, glial cells and vascular cells and with emphasis on glial-vascular calcium signaling aspects.

  10. Multiple active myofascial trigger points and pressure pain sensitivity maps in the temporalis muscle are related in women with chronic tension type headache.

    Science.gov (United States)

    Fernández-de-las-Peñas, César; Caminero, Ana B; Madeleine, Pascal; Guillem-Mesado, Amparo; Ge, Hong-You; Arendt-Nielsen, Lars; Pareja, Juan A

    2009-01-01

    To describe the common locations of active trigger points (TrPs) in the temporalis muscle and their referred pain patterns in chronic tension type headache (CTTH), and to determine if pressure sensitivity maps of this muscle can be used to describe the spatial distribution of active TrPs. Forty women with CTTH were included. An electronic pressure algometer was used to assess pressure pain thresholds (PPT) from 9 points over each temporalis muscle: 3 points in the anterior, medial and posterior part, respectively. Both muscles were examined for the presence of active TrPs over each of the 9 points. The referred pain pattern of each active TrP was assessed. Two-way analysis of variance detected significant differences in mean PPT levels between the measurement points (F=30.3; P<0.001), but not between sides (F=2.1; P=0.2). PPT scores decreased from the posterior to the anterior column (P<0.001). No differences were found in the number of active TrPs (F=0.3; P=0.9) between the dominant side the nondominant side. Significant differences were found in the distribution of the active TrPs (chi2=12.2; P<0.001): active TrPs were mostly found in the anterior column and in the middle of the muscle belly. The analysis of variance did not detect significant differences in the referred pain pattern between active TrPs (F=1.1, P=0.4). The topographical pressure pain sensitivity maps showed the distinct distribution of the TrPs indicated by locations with low PPTs. Multiple active TrPs in the temporalis muscle were found, particularly in the anterior column and in the middle of the muscle belly. Bilateral posterior to anterior decreased distribution of PPTs in the temporalis muscle in women with CTTH was found. The locations of active TrPs in the temporalis muscle corresponded well to the muscle areas with lower PPT, supporting the relationship between multiple active muscle TrPs and topographical pressure sensitivity maps in the temporalis muscle in women with CTTH.

  11. Sensitivity of the amplitude of the single muscle fibre action potential to microscopic volume conduction parameters

    NARCIS (Netherlands)

    Alberts, B.A.; Rutten, Wim; Wallinga, W.; Boom, H.B.K.

    1988-01-01

    A microscopic model of volume conduction was applied to examine the sensitivity of the single muscle fibre action potential to variations in parameters of the source and of the volume conductor, such as conduction velocity, intracellular conductivity and intracellular volume fraction. The model

  12. Regulation of skeletal muscle glycogenolysis during exercise

    DEFF Research Database (Denmark)

    Hargreaves, M; Richter, Erik

    1988-01-01

    Muscle-glycogen breakdown during exercise is influenced by both local and systemic factors. Contractions per se increase glycogenolysis via a calcium-induced, transient increase in the activity of phosphorylase a, and probably also via increased concentrations of Pi. In fast-twitch muscle...... in contracting muscle by increasing the phosphorylase a activity via increased cyclic AMP production. The availability of blood-borne substrates may also influence muscle glycogenolysis and, therefore, exercise performance......., increases in the AMP and IMP levels may increase phosphorylase activity. The rate of muscle-glycogen breakdown during exercise depends on the pre-exercise glycogen concentration and is also influenced by hormones. Insulin may inhibit glycogen breakdown, whereas epinephrine enhances the rate of glycogen use...

  13. Hormone-sensitive lipase serine phosphorylation and glycerol exchange across skeletal muscle in lean and obese subjects

    DEFF Research Database (Denmark)

    Jocken, Johan We; Roepstorff, Carsten; Goossens, Gijs H.

    2008-01-01

    from the vastus lateralis muscle before and during ISO to investigate hormone-sensitive lipase (HSL) protein expression and serine phosphorylation. Results: Baseline total glycerol release across the forearm was significantly blunted in obese compared with lean subjects (P=0.045). This was accompanied......Objective: Increased intramuscular triacylglycerol (IMTG) storage is a characteristic of the obese insulin resistant state. We aimed to investigate whether a blunted fasting or beta-adrenergically mediated lipolysis contributes to this increased IMTG storage in obesity. Research design and Methods......: Forearm skeletal muscle (SM) lipolysis was investigated in thirteen lean and ten obese men using [(2)H(5)]-glycerol combined with the measurement of arterio-venous differences before and during beta-adrenergic stimulation using the non-selective beta-agonist isoprenaline (ISO). Muscle biopsies were taken...

  14. Calcium microdomains near R-type calcium channels control the induction of presynaptic LTP at parallel fiber to Purkinje cell synapses

    Science.gov (United States)

    Myoga, Michael H.; Regehr, Wade G.

    2011-01-01

    R-type calcium channels in postsynaptic spines signal through functional calcium microdomains to regulate a calcium-calmodulin sensitive potassium channel that in turn regulates postsynaptic hippocampal LTP. Here we ask whether R-type calcium channels in presynaptic terminals also signal through calcium microdomains to control presynaptic LTP. We focus on presynaptic LTP at parallel fiber to Purkinje cell synapses in the cerebellum (PF-LTP), which is mediated by calcium/calmodulin-stimulated adenylyl cyclases. Although most presynaptic calcium influx is through N-type and P/Q-type calcium channels, blocking these channels does not disrupt PF-LTP, but blocking R-type calcium channels does. Moreover, global calcium signaling cannot account for the calcium dependence of PF-LTP because R-type channels contribute modestly to overall calcium entry. These findings indicate that within presynaptic terminals, R-type calcium channels produce calcium microdomains that evoke presynaptic LTP at moderate frequencies that do not greatly increase global calcium levels,. PMID:21471358

  15. S-glutathionylation of troponin I (fast) increases contractile apparatus Ca2+ sensitivity in fast-twitch muscle fibres of rats and humans.

    Science.gov (United States)

    Mollica, J P; Dutka, T L; Merry, T L; Lamboley, C R; McConell, G K; McKenna, M J; Murphy, R M; Lamb, G D

    2012-03-15

    Oxidation can decrease or increase the Ca2+ sensitivity of the contractile apparatus in rodent fast-twitch (type II) skeletal muscle fibres, but the reactions and molecular targets involved are unknown. This study examined whether increased Ca2+ sensitivity is due to S-glutathionylation of particular cysteine residues. Skinned muscle fibres were directly activated in heavily buffered Ca2+ solutions to assess contractile apparatus Ca2+ sensitivity. Rat type II fibres were subjected to S-glutathionylation by successive treatments with 2,2′-dithiodipyridine (DTDP) and glutathione (GSH), and displayed a maximal increase in pCa50 (−log10 [Ca2+] at half-maximal force) of ∼0.24 pCa units, with little or no effect on maximum force or Hill coefficient. Partial similar effect was produced by exposure to oxidized gluthathione (GSSG, 10 mM) for 10 min at pH 7.1, and near-maximal effect by GSSG treatment at pH 8.5. None of these treatments significantly altered Ca2+ sensitivity in rat type I fibres. Western blotting showed that both the DTDP–GSH and GSSG–pH 8.5 treatments caused marked S-glutathionylation of the fast troponin I isoform (TnI(f)) present in type II fibres, but not of troponin C (TnC) or myosin light chain 2. Both the increased Ca2+ sensitivity and glutathionylation of TnI(f) were blocked by N-ethylmaleimide (NEM). S-nitrosoglutathione (GSNO) also increased Ca2+ sensitivity, but only in conditions where it caused S-glutathionylation of TnI(f). In human type II fibres from vastus lateralis muscle, DTDP–GSH treatment also caused similar increased Ca2+ sensitivity and S-glutathionylation of TnI(f). When the slow isoform of TnI in type I fibres of rat was partially substituted (∼30%) with TnI(f), DTDP–GSH treatment caused a significant increase in Ca2+ sensitivity (∼0.08 pCa units). TnIf in type II fibres from toad and chicken muscle lack Cys133 present in mammalian TnIf, and such fibres showed no change in Ca2+ sensitivity with DTDP–GSH nor any S

  16. Intercellular calcium signaling and nitric oxide feedback during constriction of rabbit renal afferent arterioles

    DEFF Research Database (Denmark)

    Uhrenholt, Torben Rene; Schjerning, J; Vanhoutte, Paul M. G.

    2007-01-01

    Vasoconstriction and increase in the intracellular calcium concentration ([Ca(2+)](i)) of vascular smooth muscle cells may cause an increase of endothelial cell [Ca(2+)](i), which, in turn, augments nitric oxide (NO) production and inhibits smooth muscle cell contraction. This hypothesis was test...

  17. Functional Effects of Hyperthyroidism on Cardiac Papillary Muscle in Rats.

    Science.gov (United States)

    Vieira, Fabricio Furtado; Olivoto, Robson Ruiz; Silva, Priscyla Oliveira da; Francisco, Julio Cesar; Fogaça, Rosalvo Tadeu Hochmuller

    2016-12-01

    Hyperthyroidism is currently recognized to affect the cardiovascular system, leading to a series of molecular and functional changes. However, little is known about the functional influence of hyperthyroidism in the regulation of cytoplasmic calcium and on the sodium/calcium exchanger (NCX) in the cardiac muscle. To evaluate the functional changes in papillary muscles isolated from animals with induced hyperthyroidism. We divided 36 Wistar rats into a group of controls and another of animals with hyperthyroidism induced by intraperitoneal T3 injection. We measured in the animals' papillary muscles the maximum contraction force, speed of contraction (+df/dt) and relaxation (-df/dt), contraction and relaxation time, contraction force at different concentrations of extracellular sodium, post-rest potentiation (PRP), and contraction force induced by caffeine. In hyperthyroid animals, we observed decreased PRP at all rest times (p < 0.05), increased +df/dt and -df/dt (p < 0.001), low positive inotropic response to decreased concentration of extracellular sodium (p < 0.001), reduction of the maximum force in caffeine-induced contraction (p < 0.003), and decreased total contraction time (p < 0.001). The maximal contraction force did not differ significantly between groups (p = 0.973). We hypothesize that the changes observed are likely due to a decrease in calcium content in the sarcoplasmic reticulum, caused by calcium leakage, decreased expression of NCX, and increased expression of a-MHC and SERCA2.

  18. Diuretics and disorders of calcium homeostasis.

    Science.gov (United States)

    Grieff, Marvin; Bushinsky, David A

    2011-11-01

    Diuretics commonly are administered in disorders of sodium balance. Loop diuretics inhibit the Na-K-2Cl transporter and also increase calcium excretion. They are often used in the treatment of hypercalcemia. Thiazide diuretics block the thiazide-sensitive NaCl transporter in the distal convoluted tubule, and can decrease calcium excretion. They are often used in the treatment of nephrolithiasis. Carbonic anhydrase inhibitors decrease bicarbonate absorption and the resultant metabolic acidosis can increase calcium excretion. Their use can promote nephrocalcinosis and nephrolithiasis. This review will address the use of diuretics on disorders of calcium homeostasis. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Verapamil reverses PTH- or CRF-induced abnormal fatty acid oxidation in muscle

    International Nuclear Information System (INIS)

    Perna, A.F.; Smogorzewski, M.; Massry, S.G.

    1988-01-01

    Chronic renal failure (CRF) is associated with impaired long chain fatty acids (LCFA) oxidation by skeletal muscle mitochondria. This is due to reduced activity of carnitine palmitoyl transferase (CPT). These derangements were attributed to the secondary hyperparathyroidism of CRF, since prior parathyroidectomy in CRF rats reversed these abnormalities and PTH administration to normal rats reproduced them. It was proposed that these effects of PTH are mediated by its ionophoric property leading to increased entry of calcium into skeletal muscle. A calcium channel blocker may, therefore, correct these derangements. The present study examined the effects of verapamil on LCFA oxidation, CPT activity by skeletal muscle mitochondria, and 45 Ca uptake by skeletal muscle obtained from CRF rats and normal animals treated with PTH with and without verapamil. Both four days of PTH administration and 21 days of CRF produced significant (P less than 0.01) reduction in LCFA oxidation and CPT activity of skeletal muscle mitochondria, and significant (P less than 0.01) increment in 45 Ca uptake by skeletal muscle. Simultaneous treatment with verapamil corrected all these derangements. Administration of verapamil alone to normal rats did not cause a significant change in any of these parameters. The data are consistent with the proposition that the alterations in LCFA in CRF or after PTH treatment are related to the ionophoric action of the hormone and could be reversed by a calcium channel blocker

  20. Store-operated calcium entry is required for sustained contraction and Ca2+ oscillations of airway smooth muscle.

    Science.gov (United States)

    Chen, Jun; Sanderson, Michael J

    2017-05-15

    Airway hyper-responsiveness in asthma is driven by excessive contraction of airway smooth muscle cells (ASMCs). Agonist-induced Ca 2+ oscillations underlie this contraction of ASMCs and the magnitude of this contraction is proportional to the Ca 2+ oscillation frequency. Sustained contraction and Ca 2+ oscillations require an influx of extracellular Ca 2+ , although the mechanisms and pathways mediating this Ca 2+ influx during agonist-induced ASMC contraction are not well defined. By inhibiting store-operated calcium entry (SOCE) or voltage-gated Ca 2+ channels (VGCCs), we show that SOCE, rather than Ca 2+ influx via VGCCs, provides the major Ca 2+ entry pathway into ASMCs to sustain ASMCs contraction and Ca 2+ oscillations. SOCE may therefore serve as a potential target for new bronchodilators to reduce airway hyper-responsiveness in asthma. Asthma is characterized by airway hyper-responsiveness: the excessive contraction of airway smooth muscle. The extent of this airway contraction is proportional to the frequency of Ca 2+ oscillations within airway smooth muscle cells (ASMCs). Sustained Ca 2+ oscillations require a Ca 2+ influx to replenish Ca 2+ losses across the plasma membrane. Our previous studies implied store-operated calcium entry (SOCE) as the major pathway for this Ca 2+ influx. In the present study, we explore this hypothesis, by examining the effects of SOCE inhibitors (GSK7975A and GSK5498A) as well as L-type voltage-gated Ca 2+ channel inhibitors (nifedipine and nimodipine) on airway contraction and Ca 2+ oscillations and SOCE-mediated Ca 2+ influx in ASMCs within mouse precision-cut lung slices. We found that both GSK7975A and GSK5498A were able to fully relax methacholine-induced airway contraction by abolishing the Ca 2+ oscillations, in a manner similar to that observed in zero extracellular Ca 2+ ([Ca 2+ ] e ). In addition, GSK7975A and GSK5498A inhibited increases in intracellular Ca 2+ ([Ca 2+ ] i ) in ASMCs with depleted Ca 2+ -stores in

  1. Denervation in murine fast-twitch muscle: short-term physiological changes and temporal expression profiling.

    Science.gov (United States)

    Raffaello, Anna; Laveder, Paolo; Romualdi, Chiara; Bean, Camilla; Toniolo, Luana; Germinario, Elena; Megighian, Aram; Danieli-Betto, Daniela; Reggiani, Carlo; Lanfranchi, Gerolamo

    2006-03-13

    Denervation deeply affects muscle structure and function, the alterations being different in slow and fast muscles. Because the effects of denervation on fast muscles are still controversial, and high-throughput studies on gene expression in denervated muscles are lacking, we studied gene expression during atrophy progression following denervation in mouse tibialis anterior (TA). The sciatic nerve was cut close to trochanter in adult CD1 mice. One, three, seven, and fourteen days after denervation, animals were killed and TA muscles were dissected out and utilized for physiological experiments and gene expression studies. Target cDNAs from TA muscles were hybridized on a dedicated cDNA microarray of muscle genes. Seventy-one genes were found differentially expressed. Microarray results were validated, and the expression of relevant genes not probed on our array was monitored by real-time quantitative PCR (RQ-PCR). Nuclear- and mitochondrial-encoded genes implicated in energy metabolism were consistently downregulated. Among genes implicated in muscle contraction (myofibrillar and sarcoplasmic reticulum), genes typical of fast fibers were downregulated, whereas those typical of slow fibers were upregulated. Electrophoresis and Western blot showed less pronounced changes in myofibrillar protein expression, partially confirming changes in gene expression. Isometric tension of skinned fibers was little affected by denervation, whereas calcium sensitivity decreased. Functional studies in mouse extensor digitorum longus muscle showed prolongation in twitch time parameters and shift to the left in force-frequency curves after denervation. We conclude that, if studied at the mRNA level, fast muscles appear not less responsive than slow muscles to the interruption of neural stimulation.

  2. Superoxide activates a GDP-sensitive proton conductance in skeletal muscle mitochondria from king penguin (Aptenodytes patagonicus).

    Science.gov (United States)

    Talbot, Darren A; Hanuise, Nicolas; Rey, Benjamin; Rouanet, Jean-Louis; Duchamp, Claude; Brand, Martin D

    2003-12-26

    We present the partial nucleotide sequence of the avian uncoupling protein (avUCP) gene from king penguin (Aptenodytes patagonicus), showing that the protein is 88-92% identical to chicken (Gallus gallus), turkey (Meleagris gallopavo), and hummingbird (Eupetomena macroura). We show that superoxide activates the proton conductance of mitochondria isolated from king penguin skeletal muscle. GDP abolishes the superoxide-activated proton conductance, indicating that it is mediated via avUCP. In the absence of superoxide there is no GDP-sensitive component of the proton conductance from penguin muscle mitochondria demonstrating that avUCP plays no role in the basal proton leak.

  3. Calcium and Strontium in Swedish Waters and Fish, and Accumulation of Strontium-90

    Energy Technology Data Exchange (ETDEWEB)

    Agnedal, P O

    1966-04-15

    The purpose of this study has been to investigate the correlation between calcium and strontium in fish in relation to the concentration of these elements in the water. An investigation of the uptake of strontium-90 has also been made and permissible levels of strontium-90 in the water is calculated based upon the uptake in fish muscle tissues. Lakes with calcium concentrations between 2 - 63 mg/l have been studied and samples from the Baltic coastal water are also included. Three fish species are studied, viz. pike (Esox lucius (L.)), perch (Perca fluviatilis (L.)) and roach (Leuciscus rutilus (L.)). Bones, muscle tissues and skin + scales have been analysed. Strontium-90 measurements have been made showing an increase in both water and fish. Calculations show that in water with about 2 mg Ca/l a 10-fold increase of the existing strontium-90 level might give strontium-90 concentrations in fish muscle tissues close to what is permissible. In lakes with calcium concentrations 20 - 40 mg/l the permissible levels for drinking water will be exceeded before the fish consumption would have to be restricted.

  4. Calcium and Strontium in Swedish Waters and Fish, and Accumulation of Strontium-90

    International Nuclear Information System (INIS)

    Agnedal, P.O.

    1966-04-01

    The purpose of this study has been to investigate the correlation between calcium and strontium in fish in relation to the concentration of these elements in the water. An investigation of the uptake of strontium-90 has also been made and permissible levels of strontium-90 in the water is calculated based upon the uptake in fish muscle tissues. Lakes with calcium concentrations between 2 - 63 mg/l have been studied and samples from the Baltic coastal water are also included. Three fish species are studied, viz. pike (Esox lucius (L.)), perch (Perca fluviatilis (L.)) and roach (Leuciscus rutilus (L.)). Bones, muscle tissues and skin + scales have been analysed. Strontium-90 measurements have been made showing an increase in both water and fish. Calculations show that in water with about 2 mg Ca/l a 10-fold increase of the existing strontium-90 level might give strontium-90 concentrations in fish muscle tissues close to what is permissible. In lakes with calcium concentrations 20 - 40 mg/l the permissible levels for drinking water will be exceeded before the fish consumption would have to be restricted

  5. Vibration sensitivity of human muscle spindles and Golgi tendon organs.

    Science.gov (United States)

    Fallon, James B; Macefield, Vaughan G

    2007-07-01

    The responses of the various muscle receptors to vibration are more complicated than a naïve categorization into stretch (muscle spindle primary ending), length (muscle spindle secondary endings), and tension (Golgi tendon organs) receptors. To emphasize the similarity of responses to small length changes, we recorded from 58 individual muscle afferents subserving receptors in the ankle or toe dorsiflexors of awake human subjects (32 primary endings, 20 secondary endings, and six Golgi tendon organs). Transverse sinusoidal vibration was applied to the distal tendon of the receptor-bearing muscle, while subjects either remained completely relaxed or maintained a weak isometric contraction of the appropriate muscle. In relaxed muscle, few units responded in a 1:1 manner to vibration, and there was no evidence of a preferred frequency of activation. In active muscle the response profiles of all three receptor types overlapped, with no significant difference in threshold between receptor types. These results emphasize that when intramuscular tension increases during a voluntary contraction, Golgi tendon organs and muscle spindle secondary endings, not just muscle spindle primary endings, can effectively encode small imposed length changes.

  6. Potassium-induced contraction in the lamb proximal urethra: Involvement of norepinephrine and different calcium entry pathways

    International Nuclear Information System (INIS)

    Garcia-Pascual, A.; Costa, G.; Isla, M.; Jimenez, E.; Garcia-Sacristan, A.

    1991-01-01

    The purpose of this work was to investigate the mechanisms involved in the peculiar biphasic response of the lamb urethral smooth muscle to high K+ solutions. The relative amplitude of the phasic and tonic components of the contraction and its reproducibility were dependent on the concentration of K+ used. Only concentrations higher than 80 mM (i.e., 120 mM) showed a tonic component greater in amplitude than the phasic one and manifested a tachyphylactic effect. Phentolamine (10(-6) M), prazosin (10(-6) M) and chemical denervation with 6-hydroxydopamine significantly inhibited the tonic component of the K+ (120 mM)-induced contraction, modifying its morphology. Reproducible contractions to K+ (120 mM) could be obtained in the presence of prazosin (10(-6) M) or cocaine (10(-6) M). The preparations were also shown to accumulate [3H]noradrenaline and release it upon depolarization with K+ (60 and 120 mM). Calcium removal inhibited the K+ (120 mM)-induced contraction. After addition of calcium (0.5-5 mM) the contractile activity was restored. Nifedipine (10(-6) M) and verapamil (10(-6) M) but not sodium nitroprusside (10(-6) M) significantly blocked the contractile response for calcium as well as the phasic component of the K+ contraction in calcium-containing medium. In preparations treated with prazosin (10(-6) M) the tonic component of the K+ (120 mM) contraction was more sensitive to nifedipine and removal of extracellular calcium than the phasic one

  7. Cardiac muscle: a miracle of creation.

    Science.gov (United States)

    Seely, S

    1989-09-01

    The paper proposes that energy conversion in muscle is a two-step process, chemical energy being first converted into electrical energy which is then converted into mechanical work. The chemo-electrical transducers are, in effect, minute voltaic cells--more precisely calcium-magnesium cells--with the magnesium electrodes on myosin heads and the calcium electrodes on the C subunits of troponin molecules associated with actin filaments. These cells are established when, after the passage of an action potential, calcium ions are admitted to the sarcomere. In an energy-consuming process, calcium ions are bound to troponin molecules, the energy for the process being supplied by hydrolysis of adenosine triphosphate. The electro-mechanical transducer utilises the electrostatic field established between the oppositely charged electrodes of the voltaic cell. As the two are pulled towards each other, doing mechanical work, energy is supplied by the voltaic cells. In the course of this action, calcium ions go back into solution. The action ceases when, after the passage of an action potential, calcium ions are withdrawn into the sarcoplasmic reticulum.

  8. A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched Bioglass using surface sensitive shallow angle X-ray diffraction.

    Science.gov (United States)

    Martin, R A; Twyman, H; Qiu, D; Knowles, J C; Newport, R J

    2009-04-01

    Melt quenched silicate glasses containing calcium, phosphorous and alkali metals have the ability to promote bone regeneration and to fuse to living bone. These glasses, including 45S5 Bioglass((R)) [(CaO)(26.9)(Na(2)O)(24.4)(SiO(2))(46.1)(P(2)O(5))(2.6)], are routinely used as clinical implants. Consequently there have been numerous studies on the structure of these glasses using conventional diffraction techniques. These studies have provided important information on the atomic structure of Bioglass((R)) but are of course intrinsically limited in the sense that they probe the bulk material and cannot be as sensitive to thin layers of near-surface dissolution/growth. The present study therefore uses surface sensitive shallow angle X-ray diffraction to study the formation of amorphous calcium phosphate and hydroxyapatite on Bioglass((R)) samples, pre-reacted in simulated body fluid (SBF). Unreacted Bioglass((R)) is dominated by a broad amorphous feature around 2.2 A(-1) which is characteristic of sodium calcium silicate glass. After reacting Bioglass((R)) in SBF a second broad amorphous feature evolves ~1.6 A(-1) which is attributed to amorphous calcium phosphate. This feature is evident for samples after only 4 h reacting in SBF and by 8 h the amorphous feature becomes comparable in magnitude to the background signal of the bulk Bioglass((R)). Bragg peaks characteristic of hydroxyapatite form after 1-3 days of reacting in SBF.

  9. Partial transformation from fast to slow muscle fibers induced by deafferentation of capsaicin-sensitive muscle afferents.

    Science.gov (United States)

    Brunetti, O; Barazzoni, A M; Della Torre, G; Clavenzani, P; Pettorossi, V E; Bortolami, R

    1997-11-01

    Mechanical and histochemical characteristics of the lateral gastrocnemius (LG) muscle of the rat were examined 21 days after capsaicin injection into the LG muscle. The capsaicin caused a decrease in generation rate of twitch and tetanic tension and an increase in fatigue resistance of LG muscle. The histochemical muscle fiber profile evaluated by myosin adenosine triphosphatase and reduced nicotinamide adenine dinucleotide tetrazolium reductase methods showed an increase of type I and IIC fibers and a decrease of the type IIB in whole muscle, and a decrease of the IIA, IIX fibers in the red part accompanied by their increase in the white part. Therefore the capsaicin treatment, which selectively eliminated fibers belonging to the III and IV groups of muscle afferents, induced muscle fiber transformation from fast contracting fatiguing fibers to slowly contracting nonfatiguing ones.

  10. Adiponectin concentration is associated with muscle insulin sensitivity, AMPK phosphorylation and ceramide content in skeletal muslce of men, but not women

    DEFF Research Database (Denmark)

    Høeg, Louise Dalgas; Sjøberg, Kim Anker; Lundsgaard, Annemarie

    2013-01-01

    Adiponectin is an adipokine that regulates metabolism and increases insulin sensitivity. Mechanisms behind this insulin sensitizing effect have been investigated in rodents, but little is known in humans especially in skeletal muscle. Women have higher serum concentrations of adiponectin than men...

  11. Rapid screening of oxytetracycline residue in catfish muscle by dispersive liquid-liquid microextraction and europium-sensitized luminescence

    Science.gov (United States)

    Oxytetracycline (OTC) residue in catfish muscle was screened by dispersive liquid-liquid microextraction (DLLME) and europium-sensitized luminescence (ESL). After extraction in EDTA, HCl, and acetonitrile, cleanup was carried out by DLLME, and ESL was measured at microgram = 385 nm and wavelength = ...

  12. Regulation of Contraction by the Thick Filaments in Skeletal Muscle.

    Science.gov (United States)

    Irving, Malcolm

    2017-12-19

    Contraction of skeletal muscle cells is initiated by a well-known signaling pathway. An action potential in a motor nerve triggers an action potential in a muscle cell membrane, a transient increase of intracellular calcium concentration, binding of calcium to troponin in the actin-containing thin filaments, and a structural change in the thin filaments that allows myosin motors from the thick filaments to bind to actin and generate force. This calcium/thin filament mediated pathway provides the "START" signal for contraction, but it is argued that the functional response of the muscle cell, including the speed of its contraction and relaxation, adaptation to the external load, and the metabolic cost of contraction is largely determined by additional mechanisms. This review considers the role of the thick filaments in those mechanisms, and puts forward a paradigm for the control of contraction in skeletal muscle in which both the thick and thin filaments have a regulatory function. The OFF state of the thick filament is characterized by helical packing of most of the myosin head or motor domains on the thick filament surface in a conformation that makes them unavailable for actin binding or ATP hydrolysis, although a small fraction of the myosin heads are constitutively ON. The availability of the majority fraction of the myosin heads for contraction is controlled in part by the external load on the muscle, so that these heads only attach to actin and hydrolyze ATP when they are required. This phenomenon seems to be the major determinant of the well-known force-velocity relationship of muscle, and controls the metabolic cost of contraction. The regulatory state of the thick filament also seems to control the dynamics of both muscle activation and relaxation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Coordinated balancing of muscle oxidative metabolism through PGC-1{alpha} increases metabolic flexibility and preserves insulin sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Summermatter, Serge [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland); Troxler, Heinz [Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University Children' s Hospital, University of Zurich, Steinwiesstrasse 75, CH-8032 Zurich (Switzerland); Santos, Gesa [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland); Handschin, Christoph, E-mail: christoph.handschin@unibas.ch [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland)

    2011-04-29

    Highlights: {yields} PGC-1{alpha} enhances muscle oxidative capacity. {yields} PGC-1{alpha} promotes concomitantly positive and negative regulators of lipid oxidation. {yields} Regulator abundance enhances metabolic flexibility and balances oxidative metabolism. {yields} Balanced oxidation prevents detrimental acylcarnitine and ROS generation. {yields} Absence of detrimental metabolites preserves insulin sensitivity -- Abstract: The peroxisome proliferator-activated receptor {gamma} coactivator 1{alpha} (PGC-1{alpha}) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1{alpha} on metabolic control and generation of insulin desensitizing agents in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1{alpha} in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1{alpha} induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1{alpha} enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1{alpha} boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1{alpha} coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1{alpha} does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1{alpha} mimic the beneficial effects of endurance training

  14. Coordinated balancing of muscle oxidative metabolism through PGC-1α increases metabolic flexibility and preserves insulin sensitivity

    International Nuclear Information System (INIS)

    Summermatter, Serge; Troxler, Heinz; Santos, Gesa; Handschin, Christoph

    2011-01-01

    Highlights: → PGC-1α enhances muscle oxidative capacity. → PGC-1α promotes concomitantly positive and negative regulators of lipid oxidation. → Regulator abundance enhances metabolic flexibility and balances oxidative metabolism. → Balanced oxidation prevents detrimental acylcarnitine and ROS generation. → Absence of detrimental metabolites preserves insulin sensitivity -- Abstract: The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1α on metabolic control and generation of insulin desensitizing agents in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1α in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1α induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1α enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1α boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1α coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1α does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1α mimic the beneficial effects of endurance training on muscle metabolism in this context.

  15. Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin.

    Science.gov (United States)

    Atanasijevic, Tatjana; Shusteff, Maxim; Fam, Peter; Jasanoff, Alan

    2006-10-03

    We describe a family of calcium indicators for magnetic resonance imaging (MRI), formed by combining a powerful iron oxide nanoparticle-based contrast mechanism with the versatile calcium-sensing protein calmodulin and its targets. Calcium-dependent protein-protein interactions drive particle clustering and produce up to 5-fold changes in T2 relaxivity, an indication of the sensors' potency. A variant based on conjugates of wild-type calmodulin and the peptide M13 reports concentration changes near 1 microM Ca(2+), suitable for detection of elevated intracellular calcium levels. The midpoint and cooperativity of the response can be tuned by mutating the protein domains that actuate the sensor. Robust MRI signal changes are achieved even at nanomolar particle concentrations (calcium levels. When combined with technologies for cellular delivery of nanoparticulate agents, these sensors and their derivatives may be useful for functional molecular imaging of biological signaling networks in live, opaque specimens.

  16. How is AMPK activity regulated in skeletal muscles during exercise?

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Rose, Adam John

    2008-01-01

    AMPK is a metabolic "master" controller activated in skeletal muscle by exercise in a time and intensity dependent manner, and has been implicated in regulating metabolic pathways in muscle during physical exercise. AMPK signaling in skeletal muscle is regulated by several systemic...... and intracellular factors and the regulation of skeletal muscle AMPK in response to exercise is the focus of this review. Specifically, the role of LKB1 and phosphatase PP2C in nucleotide-dependent activation of AMPK, and ionized calcium in CaMKK-dependent activation of AMPK in working muscle is discussed. We also...

  17. Functional Effects of Hyperthyroidism on Cardiac Papillary Muscle in Rats

    Directory of Open Access Journals (Sweden)

    Fabricio Furtado Vieira

    Full Text Available Abstract Background: Hyperthyroidism is currently recognized to affect the cardiovascular system, leading to a series of molecular and functional changes. However, little is known about the functional influence of hyperthyroidism in the regulation of cytoplasmic calcium and on the sodium/calcium exchanger (NCX in the cardiac muscle. Objectives: To evaluate the functional changes in papillary muscles isolated from animals with induced hyperthyroidism. Methods: We divided 36 Wistar rats into a group of controls and another of animals with hyperthyroidism induced by intraperitoneal T3 injection. We measured in the animals' papillary muscles the maximum contraction force, speed of contraction (+df/dt and relaxation (-df/dt, contraction and relaxation time, contraction force at different concentrations of extracellular sodium, post-rest potentiation (PRP, and contraction force induced by caffeine. Results: In hyperthyroid animals, we observed decreased PRP at all rest times (p < 0.05, increased +df/dt and -df/dt (p < 0.001, low positive inotropic response to decreased concentration of extracellular sodium (p < 0.001, reduction of the maximum force in caffeine-induced contraction (p < 0.003, and decreased total contraction time (p < 0.001. The maximal contraction force did not differ significantly between groups (p = 0.973. Conclusion: We hypothesize that the changes observed are likely due to a decrease in calcium content in the sarcoplasmic reticulum, caused by calcium leakage, decreased expression of NCX, and increased expression of a-MHC and SERCA2.

  18. Calcium-dependent smooth muscle excitatory effect elicited by the venom of the hydrocoral Millepora complanata.

    Science.gov (United States)

    Rojas, Alejandra; Torres, Mónica; Rojas, J Isela; Feregrino, Angélica; Heimer-de la Cotera, Edgar P

    2002-06-01

    In the present paper, we describe the results obtained from a preliminary pharmacological and biochemical study of the fire coral Millepora complanata, a regular component of coral reefs in the Mexican Caribbean. The protein-containing crude extract obtained from M. complanata (tested from 0.001 to 1000 microg protein/ml) caused a concentration-dependent stimulation of spontaneous contractions of the guinea pig ileum. The extract (EC(50)=11.55+/-2.36 microg/ml) was approximately 12-fold less potent than ionomycin (EC(50)=0.876+/-0.25 microg/ml) and its maximum induced contraction (1mg protein/ml) was equivalent to 68% of the response to 60mM KCl. FPLC size exclusion chromatography of the M. complanta extract afforded 12 primary fractions, of which only FV (containing proteins with molecular weights ranging from 17 to 44 kDa) and FVIII (consisting of peptides with molecular weights lesser than 1.8k Da) elicited an excitatory effect when tested at the EC(50) of the original extract. After incubation in Ca(2+)-free medium, the ileal response to FV and FVIII was significantly reduced. Blockage of L-type Ca(2+) channels with nifedipine (1 microM) inhibited FV and FVIII-evoked contractions. Cd(2+) (10 microM), an unspecific blocker of voltage-activated calcium channels, also antagonized FV and FVIII-induced effects, whereas the Na(+) channel blocker tetrodotoxin (10nM) did not significantly affect FV and FVIII responses. These results suggest that the contractions induced by the bioactive fractions obtained from the crude extract of M. complanata are caused mainly by a direct action on smooth muscle cells, via an increase in Ca(2+) permeability that occurs, at least partly, through L-type voltage-dependent Ca(2+) channels found in the cell membrane of smooth muscle. Copright 2002 Elsevier Science Ltd.

  19. New Conotoxin SO-3 Targeting N-type Voltage-Sensitive Calcium Channels

    Directory of Open Access Journals (Sweden)

    Lei Wen

    2006-04-01

    Full Text Available Selective blockers of the N-type voltage-sensitive calcium (CaV channels are useful in the management of severe chronic pain. Here, the structure and function characteristics of a novel N-type CaV channel blocker, SO-3, are reviewed. SO-3 is a 25-amino acid conopeptide originally derived from the venom of Conus striatus, and contains the same 4-loop, 6-cysteine framework (C-C-CC-C-C as O-superfamily conotoxins. The synthetic SO-3 has high analgesic activity similar to ω-conotoxin MVIIA (MVIIA, a selective N-type CaV channel blocker approved in the USA and Europe for the alleviation of persistent pain states. In electrophysiological studies, SO-3 shows more selectivity towards the N-type CaV channels than MVIIA. The dissimilarity between SO-3 and MVIIA in the primary and tertiary structures is further discussed in an attempt to illustrate the difference in selectivity of SO-3 and MVIIA towards N-type CaV channels.

  20. Discovery and Development of Calcium Channel Blockers

    Directory of Open Access Journals (Sweden)

    Théophile Godfraind

    2017-05-01

    Full Text Available In the mid 1960s, experimental work on molecules under screening as coronary dilators allowed the discovery of the mechanism of calcium entry blockade by drugs later named calcium channel blockers. This paper summarizes scientific research on these small molecules interacting directly with L-type voltage-operated calcium channels. It also reports on experimental approaches translated into understanding of their therapeutic actions. The importance of calcium in muscle contraction was discovered by Sidney Ringer who reported this fact in 1883. Interest in the intracellular role of calcium arose 60 years later out of Kamada (Japan and Heibrunn (USA experiments in the early 1940s. Studies on pharmacology of calcium function were initiated in the mid 1960s and their therapeutic applications globally occurred in the the 1980s. The first part of this report deals with basic pharmacology in the cardiovascular system particularly in isolated arteries. In the section entitled from calcium antagonists to calcium channel blockers, it is recalled that drugs of a series of diphenylpiperazines screened in vivo on coronary bed precontracted by angiotensin were initially named calcium antagonists on the basis of their effect in depolarized arteries contracted by calcium. Studies on arteries contracted by catecholamines showed that the vasorelaxation resulted from blockade of calcium entry. Radiochemical and electrophysiological studies performed with dihydropyridines allowed their cellular targets to be identified with L-type voltage-operated calcium channels. The modulated receptor theory helped the understanding of their variation in affinity dependent on arterial cell membrane potential and promoted the terminology calcium channel blocker (CCB of which the various chemical families are introduced in the paper. In the section entitled tissue selectivity of CCBs, it is shown that characteristics of the drug, properties of the tissue, and of the stimuli are

  1. EFFECTS OF PYRETHROIDS ON VOLTAGE-SENSITIVE CALCIUM CHANNELS: A CRITICAL EVALUATION OF STRENGTHS, WEAKNESSES, DATA NEEDS, AND RELATIONSHIP TO ASSESSMENT OF CUMULATIVE NEUROTOXICITY.

    Science.gov (United States)

    A recently published review (Soderlund et al., 2002, Toxicology 171, 3-59.) of the mechanisms of acute neurotoxicity of pyrethroid compounds postulated that voltage-sensitive calcium channels (VSCC) may be a target of some pyrethroid compounds and that effects on VSCC may contrib...

  2. Transmembrane potential polarization, calcium influx, and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nicotinic acetylcholine receptor to neonicotinoid insecticides.

    Science.gov (United States)

    Bodereau-Dubois, Béatrice; List, Olivier; Calas-List, Delphine; Marques, Olivier; Communal, Pierre-Yves; Thany, Steeve H; Lapied, Bruno

    2012-05-01

    Neonicotinoid insecticides act selectively on insect nicotinic acetylcholine receptors (nAChRs). Recent studies revealed that their efficiency was altered by the phosphorylation/dephosphorylation process and the intracellular signaling pathway involved in the regulation of nAChRs. Using whole-cell patch-clamp electrophysiology adapted for dissociated cockroach dorsal unpaired median (DUM) neurons, we demonstrated that intracellular factors involved in the regulation of nAChR function modulated neonicotinoid sensitivity. DUM neurons were known to express two α-bungarotoxin-insensitive nAChR subtypes: nAChR1 and nAChR2. Whereas nAChR1 was sensitive to imidacloprid, nAChR2 was insensitive to this insecticide. Here, we demonstrated that, like nicotine, acetamiprid and clothianidin, other types of neonicotinoid insecticides, acted as agonists on the nAChR2 subtype. Using acetamiprid, we revealed that both steady-state depolarization and hyperpolarization affected nAChR2 sensitivity. The measurement of the input membrane resistance indicated that change in the acetamiprid-induced agonist activity was related to the receptor conformational state. Using cadmium chloride, ω-conotoxin GVIA, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-acetamide (LOE 908), we found that inhibition of calcium influx through high voltage-activated calcium channels and transient receptor potential γ (TRPγ) activated by both depolarization and hyperpolarization increased nAChR2 sensitivity to acetamiprid. Finally, using N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7), forskolin, and cAMP, we demonstrated that adenylyl cyclase sensitive to the calcium/calmodulin complex regulated internal cAMP concentration, which in turn modulated TRPγ function and nAChR2 sensitivity to acetamiprid. Similar TRPγ-induced modulatory effects were also obtained when clothianidin was tested. These findings bring insights into the signaling pathway modulating

  3. Functionally heterogenous ryanodine receptors in avian cerebellum.

    Science.gov (United States)

    Sierralta, J; Fill, M; Suárez-Isla, B A

    1996-07-19

    The functional heterogeneity of the ryanodine receptor (RyR) channels in avian cerebellum was defined. Heavy endoplasmic reticulum microsomes had significant levels of ryanodine and inositol 1,4,5-trisphosphate binding. Scatchard analysis and kinetic studies indicated the existence of at least two distinct ryanodine binding sites. Ryanodine binding was calcium-dependent but was not significantly enhanced by caffeine. Incorporation of microsomes into planar lipid bilayers revealed ion channels with pharmacological features (calcium, magnesium, ATP, and caffeine sensitivity) similar to the RyR channels found in mammalian striated muscle. Despite a wide range of unitary conductances (220-500 picosiemens, symmetrical cesium methanesulfonate), ryanodine locked both channels into a characteristic slow gating subconductance state, positively identifying them as RyR channels. Two populations of avian RyR channels were functionally distinguished by single channel calcium sensitivity. One population was defined by a bell-shaped calcium sensitivity analogous to the skeletal muscle RyR isoform (type I). The calcium sensitivity of the second RyR population was sigmoidal and analogous to the cardiac muscle RyR isoform (type II). These data show that there are at least two functionally distinct RyR channel populations in avian cerebellum. This leads to the possibility that these functionally distinct RyR channels are involved in different intracellular calcium signaling pathways.

  4. Research of pharmacokinetics of L-threonate calcium with 45Ca radiotrace

    International Nuclear Information System (INIS)

    Tong Jian; Niu Huisheng; Li Huaifen

    2001-01-01

    The pharmacokinetics of calcium in L-threonate calcium is studied by radiotrace method. The results show the relationship between drug-time curve, pharmacokinetics parameters and dosage are positive correlation, and calcium distributes in important tissues such as stomach, intestines, blood and bone. In 24 hours, about 40% calcium is drained in urine, 30% calcium is evacuated in feces, 10%-20% calcium deposit in blood or bone. The radiotrace method is a kind of special, sensitive, accurate method of testing calcium metabolism

  5. Vitamin D, muscle and bone: Integrating effects in development, aging and injury.

    Science.gov (United States)

    Girgis, Christian M; Baldock, Paul A; Downes, Michael

    2015-07-15

    Beyond the established effects of muscle loading on bone, a complex network of hormones and growth factors integrates these adjacent tissues. One such hormone, vitamin D, exerts broad-ranging effects in muscle and bone calcium handling, differentiation and development. Vitamin D also modulates muscle and bone-derived hormones, potentially facilitating cross-talk between these tissues. In the clinical setting, vitamin D deficiency or mutations of the vitamin D receptor result in generalized atrophy of muscle and bone, suggesting coordinated effects of vitamin D at these sites. In this review, we discuss emerging evidence that vitamin D exerts specific effects throughout the life of the musculoskeletal system - in development, aging and injury. From this holistic viewpoint, we offer new insights into an old debate: whether vitamin D's effects in the musculoskeletal system are direct via local VDR signals or indirect via its systemic effects in calcium and phosphate homeostasis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. CaMKII content affects contractile, but not mitochondrial, characteristics in regenerating skeletal muscle

    NARCIS (Netherlands)

    Eilers, W.; Jaspers, R.T.; de Haan, A.; Ferrié, C.; Valdivieso, P.; Flueck, M.

    2014-01-01

    Background: The multi-meric calcium/calmodulin-dependent protein kinase II (CaMKII) is the main CaMK in skeletal muscle and its expression increases with endurance training. CaMK family members are implicated in contraction-induced regulation of calcium handling, fast myosin type IIA expression and

  7. Increased rhythmicity in hypertensive arterial smooth muscle is linked to transient receptor potential canonical channels

    DEFF Research Database (Denmark)

    Chen, Xiaoping; Yang, Dachun; Ma, Shuangtao

    2010-01-01

    Vasomotion describes oscillations of arterial vascular tone due to synchronized changes of intracellular calcium concentrations. Since increased calcium influx into vascular smooth muscle cells from spontaneously hypertensive rats (SHR) has been associated with variances of transient receptor pot...

  8. Tensiomyographic Markers Are Not Sensitive for Monitoring Muscle Fatigue in Elite Youth Athletes: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Thimo Wiewelhove

    2017-06-01

    Full Text Available Objective: Tensiomyography (TMG is an indirect measure of a muscle's contractile properties and has the potential as a technique for detecting exercise-induced skeletal muscle fatigue. Therefore, the aim of this study was to assess the sensitivity of tensiomyographic markers to identify reduced muscular performance in elite youth athletes.Methods: Fourteen male junior tennis players (age: 14.9 ± 1.2 years with an international (International Tennis Federation ranking position participated in this pre-post single group trial. They completed a 4-day high-intensity interval training (HIT microcycle, which was composed of seven training sessions. TMG markers; countermovement jump (CMJ performance (criterion measure of fatigue; delayed onset muscle soreness; and perceived recovery and stress were measured 24 h before and after the training program. The TMG measures included maximal radial deformation of the rectus femoris muscle belly (Dm, contraction time between 10 and 90% Dm (Tc and the rate of deformation until 10% (V10 and 90% Dm (V90, respectively. Diagnostic characteristics were assessed with a receiver-operating curve (ROC analysis and a contingency table, in which the area under the curve (AUC, Youden's index, sensitivity, specificity, and the diagnostic effectiveness (DE of TMG measures were reported. A minimum AUC of 0.70 and a lower confidence interval (CI >0.50 classified “good” diagnostic markers to assess performance changes.Results: Twenty-four hours after the microcycle, CMJ performance was observed to be significantly (p < 0.001 reduced (Effect Size [ES] = −0.68, and DOMS (ES = 3.62 as well as perceived stress were significantly (p < 0.001 increased. In contrast, Dm (ES = −0.35, Tc (ES = 0.04, V10 (ES = −0.32, and V90 (ES = −0.33 remained unchanged (p > 0.05 throughout the study. ROC analysis and the data derived from the contingency table revealed that none of the tensiomyographic markers were effective diagnostic

  9. Effects of (-)-desmethoxyverapamil on heart and vascular smooth muscle

    International Nuclear Information System (INIS)

    Nawrath, H.; Raschack, M.

    1987-01-01

    (-)-Desmethoxyverapamil [also known as (-)-devapamil or (-)-D888] has been developed as a verapamil type radioligand for the study of calcium channels. In the present investigation, the effects of (-)-desmethoxyverapamil on action potential (AP) and force of contraction in heart muscle preparations and on tension and 45 Ca influx in vascular smooth muscle are described. In part, the effects were compared with the (+)-isomer of desmethoxyverapamil and the isomers of both verapamil and methoxyverapamil. In atrial and/or ventricular heart muscle preparations from guinea pigs, cats and man, (-)-desmethoxyverapamil decreased the force of contraction and shortened the AP duration. Slow response APs were depressed, whereas dV/dtmax of phase 0 of the AP remained unchanged. The rank order of potency of the (-)-isomers was as follows: desmethoxyverapamil greater than methoxyverapamil greater than verapamil. Potassium-induced contractures and 45 Ca influx were depressed by the (-)-isomers of desmethoxyverapamil, methoxyverapamil and verapamil in the same potency rank order as observed in heart muscle. The (+)-isomers exerted qualitatively similar effects at about 10 to 200 times higher concentrations. Correspondingly, the increase in potency of the racemic mixtures of the drugs was accompanied by increases in stereoselectivity. It is concluded that (-)-desmethoxyverapamil is the most potent stereoselective calcium antagonist of the verapamil type with respect to its effects on heart and vascular smooth muscle

  10. Effects of (-)-desmethoxyverapamil on heart and vascular smooth muscle

    Energy Technology Data Exchange (ETDEWEB)

    Nawrath, H.; Raschack, M.

    1987-09-01

    (-)-Desmethoxyverapamil (also known as (-)-devapamil or (-)-D888) has been developed as a verapamil type radioligand for the study of calcium channels. In the present investigation, the effects of (-)-desmethoxyverapamil on action potential (AP) and force of contraction in heart muscle preparations and on tension and /sup 45/Ca influx in vascular smooth muscle are described. In part, the effects were compared with the (+)-isomer of desmethoxyverapamil and the isomers of both verapamil and methoxyverapamil. In atrial and/or ventricular heart muscle preparations from guinea pigs, cats and man, (-)-desmethoxyverapamil decreased the force of contraction and shortened the AP duration. Slow response APs were depressed, whereas dV/dtmax of phase 0 of the AP remained unchanged. The rank order of potency of the (-)-isomers was as follows: desmethoxyverapamil greater than methoxyverapamil greater than verapamil. Potassium-induced contractures and /sup 45/Ca influx were depressed by the (-)-isomers of desmethoxyverapamil, methoxyverapamil and verapamil in the same potency rank order as observed in heart muscle. The (+)-isomers exerted qualitatively similar effects at about 10 to 200 times higher concentrations. Correspondingly, the increase in potency of the racemic mixtures of the drugs was accompanied by increases in stereoselectivity. It is concluded that (-)-desmethoxyverapamil is the most potent stereoselective calcium antagonist of the verapamil type with respect to its effects on heart and vascular smooth muscle.

  11. Electrophoretic mobility shift in native gels indicates calcium-dependent structural changes of neuronal calcium sensor proteins.

    Science.gov (United States)

    Viviano, Jeffrey; Krishnan, Anuradha; Wu, Hao; Venkataraman, Venkat

    2016-02-01

    In proteins of the neuronal calcium sensor (NCS) family, changes in structure as well as function are brought about by the binding of calcium. In this article, we demonstrate that these structural changes, solely due to calcium binding, can be assessed through electrophoresis in native gels. The results demonstrate that the NCS proteins undergo ligand-dependent conformational changes that are detectable in native gels as a gradual decrease in mobility with increasing calcium but not other tested divalent cations such as magnesium, strontium, and barium. Surprisingly, such a gradual change over the entire tested range is exhibited only by the NCS proteins but not by other tested calcium-binding proteins such as calmodulin and S100B, indicating that the change in mobility may be linked to a unique NCS family feature--the calcium-myristoyl switch. Even within the NCS family, the changes in mobility are characteristic of the protein, indicating that the technique is sensitive to the individual features of the protein. Thus, electrophoretic mobility on native gels provides a simple and elegant method to investigate calcium (small ligand)-induced structural changes at least in the superfamily of NCS proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Are mechanically sensitive regulators involved in the function and (patho)physiology of cerebral palsy-related contractures?

    Science.gov (United States)

    Pingel, Jessica; Suhr, Frank

    2017-08-01

    Skeletal muscle tissue is mechanosensitive, as it is able to sense mechanical impacts and to translate these into biochemical signals making the tissue adapt. Among its mechanosensitive nature, skeletal muscle tissue is the largest metabolic organ of the human body. Disturbances in skeletal muscle mechanosensing and metabolism cause and contribute to many diseases, i.e. muscular dystrophies/myopathies, cardiovascular diseases, COPD or diabetes mellitus type 2. A less commonly focused muscle-related disorder is clinically known as muscle contractures that derive from cerebral palsy (CP) conditions in young and adults. Muscle contractures are characterized by gradually increasing passive muscle stiffness resulting in complete fixation of joints. Different mechanisms have been identified in CP-related contractures, i.e. altered calcium handling, altered metabolism or altered titin regulation. The muscle-related extracellular matrix (ECM), specifically collagens, plays a role in CP-related contractures. Herein, we focus on mechanically sensitive complexes, known as costameres (Cstms), and discuss their potential role in CP-related contractures. We extend our discussion to the ECM due to the limited knowledge of its role in CP-related contractures. The aims of this review are (1) to summarize CP-related contracture mechanisms, (2) to raise novel hypotheses on the genesis of contractures with a focus on Cstms, and (3) to stimulate novel approaches to study CP-related contractures.

  13. The role of capsaicin-sensitive muscle afferents in fatigue-induced modulation of the monosynaptic reflex in the rat.

    Science.gov (United States)

    Pettorossi, V E; Della Torre, G; Bortolami, R; Brunetti, O

    1999-03-01

    1. The role of group III and IV afferent fibres of the lateral gastrocnemious muscle (LG) in modulating the homonymous monosynaptic reflex was investigated during muscle fatigue in spinalized rats. 2. Muscle fatigue was induced by a series of increasing tetanic electrical stimuli (85 Hz, 600 ms) delivered to the LG muscle nerve. Series consisted of increasing train numbers from 1 to 60. 3. Potentials from the spinal cord LG motor pool and from the ventral root were recorded in response to proprioceptive afferent stimulation and analysed before and during tetanic muscle activations. Both the pre- and postsynaptic waves showed an initial enhancement and, after a '12-train' series, an increasing inhibition. 4. The enhancement of the responses to muscle fatiguing stimulation disappeared after L3-L6 dorsal root section, while a partial reflex inhibition was still present. Conversely, after section of the corresponding ventral root, there was only a reduction in the inhibitory effect. 5. The monosynaptic reflex was also studied in animals in which a large number of group III and IV muscle afferents were eliminated by injecting capsaicin (10 mM) into the LG muscle. As a result of capsaicin treatment, the fatigue-induced inhibition of the pre- and postsynaptic waves disappeared, while the response enhancement remained. 6. We concluded that the monosynaptic reflex inhibition, but not the enhancement, was mediated by those group III and IV muscle afferents that are sensitive to the toxic action of capsaicin. The afferents that are responsible for the response enhancement enter the spinal cord through the dorsal root, while those responsible for the inhibition enter the spinal cord through both the ventral and dorsal roots.

  14. Effects of combined calcium and vitamin D supplementation on insulin secretion, insulin sensitivity and β-cell function in multi-ethnic vitamin D-deficient adults at risk for type 2 diabetes: a pilot randomized, placebo-controlled trial.

    Directory of Open Access Journals (Sweden)

    Claudia Gagnon

    Full Text Available To examine whether combined vitamin D and calcium supplementation improves insulin sensitivity, insulin secretion, β-cell function, inflammation and metabolic markers.6-month randomized, placebo-controlled trial.Ninety-five adults with serum 25-hydroxyvitamin D [25(OHD] ≤55 nmol/L at risk of type 2 diabetes (with prediabetes or an AUSDRISK score ≥15 were randomized. Analyses included participants who completed the baseline and final visits (treatment n = 35; placebo n = 45.Daily calcium carbonate (1,200 mg and cholecalciferol [2,000-6,000 IU to target 25(OHD >75 nmol/L] or matching placebos for 6 months.Insulin sensitivity (HOMA2%S, Matsuda index, insulin secretion (insulinogenic index, area under the curve (AUC for C-peptide and β-cell function (Matsuda index x AUC for C-peptide derived from a 75 g 2-h OGTT; anthropometry; blood pressure; lipid profile; hs-CRP; TNF-α; IL-6; adiponectin; total and undercarboxylated osteocalcin.Participants were middle-aged adults (mean age 54 years; 69% Europid at risk of type 2 diabetes (48% with prediabetes. Compliance was >80% for calcium and vitamin D. Mean serum 25(OHD concentration increased from 48 to 95 nmol/L in the treatment group (91% achieved >75 nmol/L, but remained unchanged in controls. There were no significant changes in insulin sensitivity, insulin secretion and β-cell function, or in inflammatory and metabolic markers between or within the groups, before or after adjustment for potential confounders including waist circumference and season of recruitment. In a post hoc analysis restricted to participants with prediabetes, a significant beneficial effect of vitamin D and calcium supplementation on insulin sensitivity (HOMA%S and Matsuda was observed.Daily vitamin D and calcium supplementation for 6 months may not change OGTT-derived measures of insulin sensitivity, insulin secretion and β-cell function in multi-ethnic adults with low vitamin D status at risk of type 2 diabetes

  15. Inhibition of parathyroid hormone release by maitotoxin, a calcium channel activator

    International Nuclear Information System (INIS)

    Fitzpatrick, L.A.; Yasumoto, T.; Aurbach, G.D.

    1989-01-01

    Maitotoxin, a toxin derived from a marine dinoflagellate, is a potent activator of voltage-sensitive calcium channels. To further test the hypothesis that inhibition of PTH secretion by calcium is mediated via a calcium channel we studied the effect of maitotoxin on dispersed bovine parathyroid cells. Maitotoxin inhibited PTH release in a dose-dependent fashion, and inhibition was maximal at 1 ng/ml. Chelation of extracellular calcium by EGTA blocked the inhibition of PTH by maitotoxin. Maitotoxin enhanced the effects of the dihydropyridine calcium channel agonist (+)202-791 and increased the rate of radiocalcium uptake in parathyroid cells. Pertussis toxin, which ADP-ribosylates and inactivates a guanine nucleotide regulatory protein that interacts with calcium channels in the parathyroid cell, did not affect the inhibition of PTH secretion by maitotoxin. Maitotoxin, by its action on calcium channels allows entry of extracellular calcium and inhibits PTH release. Our results suggest that calcium channels are involved in the release of PTH. Inhibition of PTH release by maitotoxin is not sensitive to pertussis toxin, suggesting that maitotoxin may act distal to the site interacting with a guanine nucleotide regulatory protein, or maitotoxin could interact with other ions or second messengers to inhibit PTH release

  16. Effects of cholecalciferol supplementation and optimized calcium intakes on vitamin D status, muscle strength and bone health: a one-year pilot randomized controlled trial in adults with severe burns.

    Science.gov (United States)

    Rousseau, Anne-Françoise; Foidart-Desalle, Marguerite; Ledoux, Didier; Remy, Christophe; Croisier, Jean-Louis; Damas, Pierre; Cavalier, Etienne

    2015-03-01

    Burn patients are at risk of hypovitaminosis D and osteopenia or sarcopenia. Vitamin D pleiotropic effects may influence bone and muscle health. The aim of this pilot study was to assess effects of a cholecalciferol (VD3) supplementation and an optimized calcium (Ca) regimen on vitamin D (VD) status, bone and muscle health during sequelar stage of burn injury. Monocentric randomized controlled trial. Fifteen adults with thermal burns dating from 2 to 5 years were randomized into two groups. For 12 months, they either received a quarterly IM injection of 200,000IU VD3 and daily oral Ca (Group D) or placebo (Group P). VD status and bone remodeling markers were assessed every 3 months. Knee muscle strength and bone mineral density were, respectively, assessed using isokinetic dynamometry and dual X-ray absorptiometry at initiation (M0) and completion (M12) of the protocol. Of all the patients, 66% presented with VD deficiency and 53% (with 3 men burn adults. When combined with optimized Ca intakes, it demonstrated positive effects on muscle health but not on bone health. A high prevalence of hypovitaminosis D and osteopenia in these patients, as well as their wide range of muscle performances, seem to be worrying when considering rehabilitation and quality of life. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  17. Improved detection of calcium-binding proteins in polyacrylamide gels

    International Nuclear Information System (INIS)

    Anthony, F.A.; Babitch, J.A.

    1984-01-01

    The authors refined the method of Schibeci and Martonosi (1980) to enhance detection of calcium-binding proteins in polyacrylamide gels using 45 Ca 2+ . Their efforts have produced a method which is shorter, has 40-fold greater sensitivity over the previous method, and will detect 'EF hand'-containing calcium-binding proteins in polyacrylamide gels below the 0.5 μg level. In addition this method will detect at least one example from every described class of calcium-binding protein, including lectins and γ-carboxyglutamic acid containing calcium-binding proteins. The method should be useful for detecting calcium-binding proteins which may trigger neurotransmitter release. (Auth.)

  18. Calcium homeostasis in diabetes mellitus.

    Science.gov (United States)

    Ahn, Changhwan; Kang, Ji-Houn; Jeung, Eui-Bae

    2017-09-30

    Diabetes mellitus (DM) is becoming a lifestyle-related pandemic disease. Diabetic patients frequently develop electrolyte disorders, especially diabetic ketoacidosis or nonketotic hyperglycemic hyperosmolar syndrome. Such patients show characteristic potassium, magnesium, phosphate, and calcium depletion. In this review, we discuss a homeostatic mechanism that links calcium and DM. We also provide a synthesis of the evidence in favor or against this linking mechanism by presenting recent clinical indications, mainly from veterinary research. There are consistent results supporting the use of calcium and vitamin D supplementation to reduce the risk of DM. Clinical trials support a marginal reduction in circulating lipids, and some meta-analyses support an increase in insulin sensitivity, following vitamin D supplementation. This review provides an overview of the calcium and vitamin D disturbances occurring in DM and describes the underlying mechanisms. Such elucidation will help indicate potential pathophysiology-based precautionary and therapeutic approaches and contribute to lowering the incidence of DM.

  19. Excessive signal transduction of gain-of-function variants of the calcium-sensing receptor (CaSR are associated with increased ER to cytosol calcium gradient.

    Directory of Open Access Journals (Sweden)

    Marianna Ranieri

    Full Text Available In humans, gain-of-function mutations of the calcium-sensing receptor (CASR gene are the cause of autosomal dominant hypocalcemia or type 5 Bartter syndrome characterized by an abnormality of calcium metabolism with low parathyroid hormone levels and excessive renal calcium excretion. Functional characterization of CaSR activating variants has been so far limited at demonstrating an increased sensitivity to external calcium leading to lower Ca-EC50. Here we combine high resolution fluorescence based techniques and provide evidence that for the efficiency of calcium signaling system, cells expressing gain-of-function variants of CaSR monitor cytosolic and ER calcium levels increasing the expression of the Sarco-Endoplasmic Reticulum Calcium-ATPase (SERCA and reducing expression of Plasma Membrane Calcium-ATPase (PMCA. Wild-type CaSR (hCaSR-wt and its gain-of-function (hCaSR-R990G; hCaSR-N124K variants were transiently transfected in HEK-293 cells. Basal intracellular calcium concentration was significantly lower in cells expressing hCaSR-wt and its gain of function variants compared to mock. In line, FRET studies using the D1ER probe, which detects [Ca2+]ER directly, demonstrated significantly higher calcium accumulation in cells expressing the gain of function CaSR variants compared to hCaSR-wt. Consistently, cells expressing activating CaSR variants showed a significant increase in SERCA activity and expression and a reduced PMCA expression. This combined parallel regulation in protein expression increases the ER to cytosol calcium gradient explaining the higher sensitivity of CaSR gain-of-function variants to external calcium. This control principle provides a general explanation of how cells reliably connect (and exacerbate receptor inputs to cell function.

  20. Effect of gamma rays on electrically evoked contractions of non-vascular smooth muscles (rat vas deferens)

    International Nuclear Information System (INIS)

    Azroony, R.; Ksies, F.; Alya, G.

    2002-10-01

    We have tried, in this experiment, to study the modifications of non-vascular smooth muscles contraction induced via gamma rays. Smooth muscular fibers were isolated from the vas deferens of an adult rat and contractions were electrically evoked. Our results show that irradiation activates the VOC (Voltage Operated Channel) type of ionic channels which causes an increasing in the inward flux of Ca 2+ and then causes an increasing in the inner calcium concentration [Ca 2] i, the matter which means an increasing in the force of muscular contraction. Concerning to the response of vas deferens smooth muscles to the activation of membrane receptors, we have tried to study the effects of gamma rays on activating adrenergic and cholinergic receptors, also, we have tried to show the effects of different doses of gamma rays (1, 3, 5, 7 Gy) on regulating the contractile response of this type of smooth muscles. And results show that: - Irradiation increases contraction force, mediated by adrenergic and cholinergic receptors, in a dose dependent manner, with E m ax 1 Gy m axc 3 Gy m ax 5 Gy m ax 7 Gy. There is an important shift on irradiated rats (3, 5, 7 Gy) where the maximum effect of Acetylcholine (E m ax) can be obtained in lower concentrations of Acetylcholine. These results mean that irradiation activates the inward flux of Ca 2+ through the ROC (Receptors Operated Channels) type of ionic channels, which rely, in their activation, on activating the membrane receptors. By comparing these results with the effects of gamma rays on activating vascular adrenergic and cholinergic receptors, we concluded that: Non-vascular smooth muscles (vas deferens) are less sensitive to irradiation in comparing with vascular smooth muscles (venae portal hepatica), and irradiation increases the sensitivity of cholinergic receptors to acetylcholine in the smooth muscular fibers of vas deferens while; if decreases this sensitivity in the smooth muscular fibers of venae portal hepatica

  1. 6-OHDA induced calcium influx through N-type calcium channel alters membrane properties via PKA pathway in substantia nigra pars compacta dopaminergic neurons.

    Science.gov (United States)

    Qu, Liang; Wang, Yuan; Zhang, Hai-Tao; Li, Nan; Wang, Qiang; Yang, Qian; Gao, Guo-Dong; Wang, Xue-Lian

    2014-07-11

    Voltage gated calcium channels (VGCC) are sensitive to oxidative stress, and their activation or inactivation can impact cell death. Although these channels have been extensively studied in expression systems, their role in the brain, particularly in the substantia nigra pars compacta (SNc), remain controversial. In this study, we assessed 6-hydroxydopamine (6-OHDA) induced transformation of firing pattern and functional changes of calcium channels in SNc dopaminergic neurons. Application of 6-OHDA (0.5-2mM) evoked a dose-dependent, desensitizing inward current and intracellular free calcium concentration ([Ca(2+)]i) rise. In voltage clamp, ω-conotoxin-sensitive Ca(2+) current modulation mediated by 6-OHDA reflected an altered sensitivity. Furthermore, we found that 6-OHDA modulated Ca(2+) currents through PKA pathway. These results provided evidence for the potential role of VGCCs and PKA involved in oxidative stress in degeneration of SNc neurons in Parkinson's disease (PD). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Inhibition of muscle spindle afferent activity during masseter muscle fatigue in the rat.

    Science.gov (United States)

    Brunetti, Orazio; Della Torre, Giovannella; Lucchi, Maria Luisa; Chiocchetti, Roberto; Bortolami, Ruggero; Pettorossi, Vito Enrico

    2003-09-01

    The influence of muscle fatigue on the jaw-closing muscle spindle activity has been investigated by analyzing: (1) the field potentials evoked in the trigeminal motor nucleus (Vmot) by trigeminal mesencephalic nucleus (Vmes) stimulation, (2) the orthodromic and antidromic responses evoked in the Vmes by stimulation of the peripheral and central axons of the muscle proprioceptive afferents, and (3) the extracellular unitary discharge of masseter muscle spindles recorded in the Vmes. The masseter muscle was fatigued by prolonged tetanic masseter nerve electrical stimulation. Pre- and postsynaptic components of the potentials evoked in the Vmot showed a significant reduction in amplitude following muscle fatigue. Orthodromic and antidromic potentials recorded in the Vmes also showed a similar amplitude decrease. Furthermore, muscle fatigue caused a decrease of the discharge frequency of masseter muscle spindle afferents in most of the examined units. The inhibition of the potential amplitude and discharge frequency was strictly correlated with the extent of muscle fatigue and was mediated by the group III and IV afferent muscle fibers activated by fatigue. In fact, the inhibitory effect was abolished by capsaicin injection in the masseter muscle that provokes selective degeneration of small afferent muscle fibers containing neurokinins. We concluded that fatigue signals originating from the muscle and traveling through capsaicin-sensitive fibers are able to diminish the proprioceptive input by a central presynaptic influence. In the second part of the study, we examined the central projection of the masseter small afferents sensitive to capsaicin at the electron-microscopic level. Fiber degeneration was induced by injecting capsaicin into the masseter muscle. Degenerating terminals were found on the soma and stem process in Vmes and on the dendritic tree of neurons in Vmot. This suggests that small muscle afferents may influence the muscle spindle activity through

  3. Evaluation of DNA damage induced by gamma radiation in gill and muscle tissues of Cyprinus carpio and their relative sensitivity.

    Science.gov (United States)

    M K, Praveen Kumar; Shyama, Soorambail K; D'Costa, Avelyno; Kadam, Samit B; Sonaye, Bhagatsingh Harisingh; Chaubey, Ramesh Chandra

    2017-10-01

    The effect of radiation on the aquatic environment is of major concern in recent years. Limited data is available on the genotoxicity of gamma radiation on different tissues of aquatic organisms. Hence, the present investigation was carried out to study the DNA damage induced by gamma radiation in the gill and muscle tissues and their relative sensitivity using the comet assay in the freshwater teleost fish, common carp (Cyprinus carpio). The comet assay was optimized and validated in common carp using cyclophosphamide (CP), a reference genotoxic agent. The fish were exposed (acute) to various doses of gamma radiation (2, 4, 6, 8 and 10Gy) and samplings (gill and muscle tissue) were done at regular intervals (24, 48 and 72h) to assess the DNA damage. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA for all doses of gamma radiation in both tissues. We also observed a dose-related increase and a time-dependent decrease of DNA damage. In comparison, DNA damage showed different sensitivity among the tissues at different doses. This shows that a particular dose may have different effects on different tissues which could be due to physiological factors of the particular tissue. Our study also suggests that the gills and muscle of fish are sensitive and reliable tissues for evaluating the genotoxic effects of reference and environmental agents, using the comet assay. Copyright © 2017. Published by Elsevier Inc.

  4. Membrane defect in procine malignant hyperthermia

    International Nuclear Information System (INIS)

    O'Brien, P.J.

    1985-01-01

    Malignant hyperthermia (MH) has been proposed to result from abnormal calcium-homeostasis in skeletal muscle. This study tested the hypothesis that calcium-sequestration or calcium-release by sarcoplasmic reticulum was abnormal in MH-susceptible swine. A heavy sarcoplasmic reticulum fraction (HSR), enriched in terminal cisternae, was isolated from MH and control muscle using differential and density-gradient centrifugation. Calcium transport was studied using 45 Ca radioisotope and Millipore filtration. Enzymatic activities, cholesterol, phospholipid, and protein composition were determined using spectrophotometric techniques and polyacrylamide gel electrophoresis. Properties of calcium-sequestration by MH and control HSR were indistinguishable, although Ca 2+ -ATPase and calsequestrin content were 100% increased in MH HSR. However when muscle homogenate pH was decreased due to MH, calcium-uptake activity was depressed to <5% of control values. Results of this study indicate a model for the etiopathogenesis of MH, and for the inheritance and diagnosis of susceptibility to MH. Malignant hyperthermia is initiated due to a hypersensitive HSR calcium-release mechanism and propagated by a loss of calcium-sequestering function as acidosis develops. Susceptibility is inherited in an autosomal, codominant pattern and may be diagnosed most definitively and sensitively on the basis of calcium-release sensitivity-tests, performed on isolated HSR

  5. SIGNIFICANCE OF THE CALCIUM DEFICIT IN PEDIATRICS AND WAYS TO CORRECT IT

    Directory of Open Access Journals (Sweden)

    O.A. Gromova

    2007-01-01

    Full Text Available Calcium takes an active part in provision and development of the motion function (tractions, transmission of the neural impulse, muscle reactions to the neural excitement, change of the hormone activity, realizing together with adenylate cyclase. But no less important is the calcium role in participation of the supporting tissue buildup, organization of the integral child's skeletal system, in which there is 99% of the body calcium. This is a sort of depot, in which the element is in the dynamic equilibrium with its level in blood. The skeletal system acts as a buffer to support the stable level of the calcium circulation in the course of the entire life cycle. The calcium deficit among children should fully be treated, frequently conducting therapy of the accompanied pathology of the gastrointestinal tract, liver and intestinal dysbiosis. We should exclude the hereditary pathology of the calcium exchange. For the usual growth of the human body and prevention of the senile osteoporosis, the necessary amount of calcium consumption should be provided from the very childhood of a person. For the prevention and treatment of the calcium deficit among children, we use specific calcium medications together with phosphorus, magnesium, microelements and vitamins tested in clinical practice and approved by the union of pediatricians of Russia.Key words: calcium, deficit of major mineral elements, treatment, prevention, children.

  6. Mediators on human airway smooth muscle.

    Science.gov (United States)

    Armour, C; Johnson, P; Anticevich, S; Ammit, A; McKay, K; Hughes, M; Black, J

    1997-01-01

    1. Bronchial hyperresponsiveness in asthma may be due to several abnormalities, but must include alterations in the airway smooth muscle responsiveness and/or volume. 2. Increased responsiveness of airway smooth muscle in vitro can be induced by certain inflammatory cell products and by induction of sensitization (atopy). 3. Increased airway smooth muscle growth can also be induced by inflammatory cell products and atopic serum. 4. Mast cell numbers are increased in the airways of asthmatics and, in our studies, in airway smooth muscle that is sensitized and hyperresponsive. 5. We propose that there is a relationship between mast cells and airway smooth muscle cells which, once an allergic process has been initiated, results in the development of critical features in the lungs in asthma.

  7. Novel excitation-contraction coupling related genes reveal aspects of muscle weakness beyond atrophy—new hopes for treatment of musculoskeletal diseases

    Science.gov (United States)

    Manring, Heather; Abreu, Eduardo; Brotto, Leticia; Weisleder, Noah; Brotto, Marco

    2013-01-01

    Research over the last decade strengthened the understanding that skeletal muscles are not only the major tissue in the body from a volume point of view but also function as a master regulator contributing to optimal organismal health. These new contributions to the available body of knowledge triggered great interest in the roles of skeletal muscle beyond contraction. The World Health Organization, through its Global Burden of Disease (GBD) report, recently raised further awareness about the key importance of skeletal muscles as the GDB reported musculoskeletal (MSK) diseases have become the second greatest cause of disability, with more than 1.7 billion people in the globe affected by a diversity of MSK conditions. Besides their role in MSK disorders, skeletal muscles are also seen as principal metabolic organs with essential contributions to metabolic disorders, especially those linked to physical inactivity. In this review, we have focused on the unique function of new genes/proteins (i.e., MTMR14, MG29, sarcalumenin, KLF15) that during the last few years have helped provide novel insights about muscle function in health and disease, muscle fatigue, muscle metabolism, and muscle aging. Next, we provide an in depth discussion of how these genes/proteins converge into a common function of acting as regulators of intracellular calcium homeostasis. A clear link between dysfunctional calcium homeostasis is established and the special role of store-operated calcium entry is analyzed. The new knowledge that has been generated by the understanding of the roles of previously unknown modulatory genes of the skeletal muscle excitation-contraction coupling (ECC) process brings exciting new possibilities for treatment of MSK diseases, muscle regeneration, and skeletal muscle tissue engineering. The next decade of skeletal muscle and MSK research is bound to bring to fruition applied knowledge that will hopefully offset the current heavy and sad burden of MSK diseases on the

  8. Na+ -K+ pump activity in rat peritoneal mast cells: inhibition by extracellular calcium

    DEFF Research Database (Denmark)

    Knudsen, Torben; Johansen, Torben

    1989-01-01

    1. Pure populations of rat peritoneal mast cells were used to study cellular potassium uptake. The radioactive potassium analogue, 86rubidium, was used as a tracer for potassium for measurements of the activity of the cellular potassium uptake process. 2. The ouabain-sensitive and the ouabain......-resistant potassium (86rubidium) uptake of mast cells incubated in the presence of calcium, 1 mmol l-1, were very low, 52 and 147 pmol per 10(6) cells min-1. 3. Calcium-deprivation of the cells uncovered a large capacity ouabain-sensitive potassium (86rubidium) uptake mechanism. The activity of the uptake mechanism...... was decreased by reintroduction of calcium into the cell suspension, and it was dependent on cellular energy metabolism, temperature and pH. 4. The potassium (86rubidium) uptake of mast cells incubated in a calcium-free medium occurs through an active and ouabain-sensitive mechanism that has the nature...

  9. Best time window for the use of calcium-modulating agents to improve functional recovery in injured peripheral nerves-An experiment in rats.

    Science.gov (United States)

    Yan, Yuhui; Shen, Feng-Yi; Agresti, Michael; Zhang, Lin-Ling; Matloub, Hani S; LoGiudice, John A; Havlik, Robert; Li, Jifeng; Gu, Yu-Dong; Yan, Ji-Geng

    2017-09-01

    Peripheral nerve injury can have a devastating effect on daily life. Calcium concentrations in nerve fibers drastically increase after nerve injury, and this activates downstream processes leading to neuron death. Our previous studies showed that calcium-modulating agents decrease calcium accumulation, which aids in regeneration of injured peripheral nerves; however, the optimal therapeutic window for this application has not yet been identified. In this study, we show that calcium clearance after nerve injury is positively correlated with functional recovery in rats suffering from a crushed sciatic nerve injury. After the nerve injury, calcium accumulation increased. Peak volume is from 2 to 8 weeks post injury; calcium accumulation then gradually decreased over the following 24-week period. The compound muscle action potential (CMAP) measurement from the extensor digitorum longus muscle recovered to nearly normal levels in 24 weeks. Simultaneously, real-time polymerase chain reaction results showed that upregulation of calcium-ATPase (a membrane protein that transports calcium out of nerve fibers) mRNA peaked at 12 weeks. These results suggest that without intervention, the peak in calcium-ATPase mRNA expression in the injured nerve occurs after the peak in calcium accumulation, and CMAP recovery continues beyond 24 weeks. Immediately using calcium-modulating agents after crushed nerve injury improved functional recovery. These studies suggest that a crucial time frame in which to initiate effective clinical approaches to accelerate calcium clearance and nerve regeneration would be prior to 2 weeks post injury. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Spot light on skeletal muscles: optogenetic stimulation to understand and restore skeletal muscle function.

    Science.gov (United States)

    van Bremen, Tobias; Send, Thorsten; Sasse, Philipp; Bruegmann, Tobias

    2017-08-01

    Damage of peripheral nerves results in paralysis of skeletal muscle. Currently, the only treatment option to restore proper function is electrical stimulation of the innervating nerve or of the skeletal muscles directly. However this approach has low spatial and temporal precision leading to co-activation of antagonistic muscles and lacks cell-type selectivity resulting in pain or discomfort by stimulation of sensible nerves. In contrast to electrical stimulation, optogenetic methods enable spatially confined and cell-type selective stimulation of cells expressing the light sensitive channel Channelrhodopsin-2 with precise temporal control over the membrane potential. Herein we summarize the current knowledge about the use of this technology to control skeletal muscle function with the focus on the direct, non-neuronal stimulation of muscle fibers. The high temporal flexibility of using light pulses allows new stimulation patterns to investigate skeletal muscle physiology. Furthermore, the high spatial precision of focused illumination was shown to be beneficial for selective stimulation of distinct nearby muscle groups. Finally, the cell-type specific expression of the light-sensitive effector proteins in muscle fibers will allow pain-free stimulation and open new options for clinical treatments. Therefore, we believe that direct optogenetic stimulation of skeletal muscles is a very potent method for basic scientists that also harbors several distinct advantages over electrical stimulation to be considered for clinical use in the future.

  11. Sex differences in hormone-sensitive lipase expression, activity, and phosphorylation in skeletal muscle at rest and during exercise

    DEFF Research Database (Denmark)

    Roepstorff, Carsten; Donsmark, Morten; Thiele, Maja

    2006-01-01

    significantly (r = 0.72, P = 0.001). Muscle HSL mRNA (80%, P = 0.11) and protein content (50%, P differ between sexes. Accordingly, HSL specific activity (HSL activity per HSL protein content......Women have been shown to use more intramuscular triacylglycerol (IMTG) during exercise than men. To investigate whether this could be due to sex-specific regulation of hormone-sensitive lipase (HSL) and to use sex comparison as a model to gain further insight into HSL regulation, nine women...... than in women during the end of the exercise bout (P sex specific, total muscle HSL activity measured in vitro was similar between sexes. The higher basal IMTG content in women compared...

  12. Clinical features of neuromuscular disorders in patients with N-type voltage-gated calcium channel antibodies

    Directory of Open Access Journals (Sweden)

    Andreas Totzeck

    2016-09-01

    Full Text Available Neuromuscular junction disorders affect the pre- or postsynaptic nerve to muscle transmission due to autoimmune antibodies. Members of the group like myasthenia gravis and Lambert-Eaton syndrome have pathophysiologically distinct characteristics. However, in practice, distinction may be difficult. We present a series of three patients with a myasthenic syndrome, dropped-head syndrome, bulbar and respiratory muscle weakness and positive testing for anti-N-type voltage-gated calcium channel antibodies. In two cases anti-acetylcholin receptor antibodies were elevated, anti-P/Q-type voltage-gated calcium channel antibodies were negative. All patients initially responded to pyridostigmine with a non-response in the course of the disease. While one patient recovered well after treatment with intravenous immunoglobulins, 3,4-diaminopyridine, steroids and later on immunosuppression with mycophenolate mofetil, a second died after restriction of treatment due to unfavorable cancer diagnosis, the third patient declined treatment. Although new antibodies causing neuromuscular disorders were discovered, clinical distinction has not yet been made. Our patients showed features of pre- and postsynaptic myasthenic syndrome as well as severe dropped-head syndrome and bulbar and axial muscle weakness, but only anti-N-type voltage-gated calcium channel antibodies were positive. When administered, one patient benefited from 3,4-diaminopyridine. We suggest that this overlap-syndrome should be considered especially in patients with assumed seronegative myasthenia gravis and lack of improvement under standard therapy.

  13. Regional thermal specialisation in a mammal: temperature affects power output of core muscle more than that of peripheral muscle in adult mice (Mus musculus).

    Science.gov (United States)

    James, Rob S; Tallis, Jason; Angilletta, Michael J

    2015-01-01

    In endotherms, such as mammals and birds, internal organs can specialise to function within a narrow thermal range. Consequently, these organs should become more sensitive to changes in body temperature. Yet, organs at the periphery of the body still experience considerable fluctuations in temperature, which could select for lower thermal sensitivity. We hypothesised that the performance of soleus muscle taken from the leg would depend less on temperature than would the performance of diaphragm muscle taken from the body core. Soleus and diaphragm muscles were isolated from mice and subjected to isometric and work-loop studies to analyse mechanical performance at temperatures between 15 and 40 °C. Across this thermal range, soleus muscle took longer to generate isometric force and longer to relax, and tended to produce greater normalised maximal force (stress) than did diaphragm muscle. The time required to produce half of maximal force during isometric tetanus and the time required to relax half of maximal force were both more sensitive to temperature in soleus than they were in diaphragm. However, thermal sensitivities of maximal force during isometric tetani were similar for both muscles. Consistent with our hypothesis, power output (the product of speed and force) was greater in magnitude and more thermally sensitive in diaphragm than it was in soleus. Our findings, when combined with previous observations of muscles from regionally endothermic fish, suggest that endothermy influences the thermal sensitivities of power output in core and peripheral muscles.

  14. Altered Fetal Skeletal Muscle Nutrient Metabolism Following an Adverse In Utero Environment and the Modulation of Later Life Insulin Sensitivity

    Directory of Open Access Journals (Sweden)

    Kristyn Dunlop

    2015-02-01

    Full Text Available The importance of the in utero environment as a contributor to later life metabolic disease has been demonstrated in both human and animal studies. In this review, we consider how disruption of normal fetal growth may impact skeletal muscle metabolic development, ultimately leading to insulin resistance and decreased insulin sensitivity, a key precursor to later life metabolic disease. In cases of intrauterine growth restriction (IUGR associated with hypoxia, where the fetus fails to reach its full growth potential, low birth weight (LBW is often the outcome, and early in postnatal life, LBW individuals display modifications in the insulin-signaling pathway, a critical precursor to insulin resistance. In this review, we will present literature detailing the classical development of insulin resistance in IUGR, but also discuss how this impaired development, when challenged with a postnatal Western diet, may potentially contribute to the development of later life insulin resistance. Considering the important role of the skeletal muscle in insulin resistance pathogenesis, understanding the in utero programmed origins of skeletal muscle deficiencies in insulin sensitivity and how they may interact with an adverse postnatal environment, is an important step in highlighting potential therapeutic options for LBW offspring born of pregnancies characterized by placental insufficiency.

  15. Altered fetal skeletal muscle nutrient metabolism following an adverse in utero environment and the modulation of later life insulin sensitivity.

    Science.gov (United States)

    Dunlop, Kristyn; Cedrone, Megan; Staples, James F; Regnault, Timothy R H

    2015-02-12

    The importance of the in utero environment as a contributor to later life metabolic disease has been demonstrated in both human and animal studies. In this review, we consider how disruption of normal fetal growth may impact skeletal muscle metabolic development, ultimately leading to insulin resistance and decreased insulin sensitivity, a key precursor to later life metabolic disease. In cases of intrauterine growth restriction (IUGR) associated with hypoxia, where the fetus fails to reach its full growth potential, low birth weight (LBW) is often the outcome, and early in postnatal life, LBW individuals display modifications in the insulin-signaling pathway, a critical precursor to insulin resistance. In this review, we will present literature detailing the classical development of insulin resistance in IUGR, but also discuss how this impaired development, when challenged with a postnatal Western diet, may potentially contribute to the development of later life insulin resistance. Considering the important role of the skeletal muscle in insulin resistance pathogenesis, understanding the in utero programmed origins of skeletal muscle deficiencies in insulin sensitivity and how they may interact with an adverse postnatal environment, is an important step in highlighting potential therapeutic options for LBW offspring born of pregnancies characterized by placental insufficiency.

  16. Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells.

    Science.gov (United States)

    Kampourakis, Thomas; Yan, Ziqian; Gautel, Mathias; Sun, Yin-Biao; Irving, Malcolm

    2014-12-30

    Myosin binding protein-C (MyBP-C) is a key regulatory protein in heart muscle, and mutations in the MYBPC3 gene are frequently associated with cardiomyopathy. However, the mechanism of action of MyBP-C remains poorly understood, and both activating and inhibitory effects of MyBP-C on contractility have been reported. To clarify the function of the regulatory N-terminal domains of MyBP-C, we determined their effects on the structure of thick (myosin-containing) and thin (actin-containing) filaments in intact sarcomeres of heart muscle. We used fluorescent probes on troponin C in the thin filaments and on myosin regulatory light chain in the thick filaments to monitor structural changes associated with activation of demembranated trabeculae from rat ventricle by the C1mC2 region of rat MyBP-C. C1mC2 induced larger structural changes in thin filaments than calcium activation, and these were still present when active force was blocked with blebbistatin, showing that C1mC2 directly activates the thin filaments. In contrast, structural changes in thick filaments induced by C1mC2 were smaller than those associated with calcium activation and were abolished or reversed by blebbistatin. Low concentrations of C1mC2 did not affect resting force but increased calcium sensitivity and reduced cooperativity of force and structural changes in both thin and thick filaments. These results show that the N-terminal region of MyBP-C stabilizes the ON state of thin filaments and the OFF state of thick filaments and lead to a novel hypothesis for the physiological role of MyBP-C in the regulation of cardiac contractility.

  17. Variability of femoral muscle attachments.

    Science.gov (United States)

    Duda, G N; Brand, D; Freitag, S; Lierse, W; Schneider, E

    1996-09-01

    Analytical and experimental models of the musculoskeletal system often assume single values rather than ranges for anatomical input parameters. The hypothesis of the present study was that anatomical variability significantly influences the results of biomechanical analyses, specifically regarding the moment arms of the various thigh muscles. Insertions and origins of muscles crossing or attaching to the femur were digitized in six specimens. Muscle volumes were measured; muscle attachment area and centroid location were computed. To demonstrate the influence of inter-individual anatomic variability on a mechanical modeling parameter, the corresponding range of muscle moment arms were calculated. Standard deviations, as a percentage of the mean, were about 70% for attachment area and 80% for muscle volume and attachment centroid location. The resulting moment arms of the m. gluteus maximus and m. rectus femoris were especially sensitive to anatomical variations (SD 65%). The results indicate that sensitivity to anatomical variations should be analyzed in any investigation simulating musculoskeletal interactions. To avoid misinterpretations, investigators should consider using several anatomical configurations rather than relying on a mean data set.

  18. Resistance training, insulin sensitivity and muscle function in the elderly

    DEFF Research Database (Denmark)

    Dela, Flemming; Kjaer, Michael

    2006-01-01

    Ageing is associated with a loss in both muscle mass and in the metabolic quality of skeletal muscle. This leads to sarcopenia and reduced daily function, as well as to an increased risk for development of insulin resistance and type 2 diabetes. A major part, but not all, of these changes......, and likewise to improve muscle strength in both elderly healthy individuals and in elderly individuals with chronic disease. The increased strength is coupled to improved function and a decreased risk for fall injuries and fractures. Elderly individuals have preserved the capacity to improve muscle strength...... are associated with an age-related decrease in the physical activity level and can be counteracted by increased physical activity of a resistive nature. Strength training has been shown to improve insulin-stimulated glucose uptake in both healthy elderly individuals and patients with manifest diabetes...

  19. Depletion of intracellular calcium stores facilitates the influx of extracellular calcium in platelet derived growth factor stimulated A172 glioblastoma cells.

    Science.gov (United States)

    Vereb, G; Szöllösi, J; Mátyus, L; Balázs, M; Hyun, W C; Feuerstein, B G

    1996-05-01

    Calcium signaling in non-excitable cells is the consequence of calcium release from intracellular stores, at times followed by entry of extracellular calcium through the plasma membrane. To study whether entry of calcium depends upon the level of saturation of intracellular stores, we measured calcium channel opening in the plasma membrane of single confluent A172 glioblastoma cells stimulated with platelet derived growth factor (PDGF) and/or bradykinin (BK). We monitored the entry of extracellular calcium by measuring manganese quenching of Indo-1 fluorescence. PDGF raised intracellular calcium concentration ([Ca2+]i) after a dose-dependent delay (tdel) and then opened calcium channels after a dose-independent delay (tch). At higher doses (> 3 nM), BK increased [Ca2+]i after a tdel approximately 0 s, and tch decreased inversely with both dose and peak [Ca2+]i. Experiments with thapsigargin (TG), BK, and PDGF indicated that BK and PDGF share intracellular Ca2+ pools that are sensitive to TG. When these stores were depleted by treatment with BK and intracellular BAPTA, tdel did not change, but tch fell to almost 0 s in PDGF stimulated cells, indicating that depletion of calcium stores affects calcium channel opening in the plasma membrane. Our data support the capacitative model for calcium channel opening and the steady-state model describing quantal Ca2+ release from intracellular stores.

  20. Relationship between mycotoxicosis and calcium during preproduction period in layers

    Directory of Open Access Journals (Sweden)

    T. S. Qubih

    2012-01-01

    Full Text Available This study was conducted to examine field cases of mycotoxicosis (A flatoxicosis and ochratoxicosis and their effects on calcium during the preproduction period of 1SA brown pullets. Birds were 12-15 weeks of age. The feed was subjected to analysis for mycotoxin and blood samples were laboratory diagnosed for infectious bronchitis and infectious bursal viruses antibody titer and for determination calcium level. Clinical signs of affected birds were rubbery bone, ruffled feather, paleness and high mortality. Necropsy findings of sick birds were characterized by muscle dehydration, enlarged livers yellowished, kidney enlargement and urate deposition. Histopathological features of liver consisted of capsular thickening hepatocellular necrosis, subcapsular infiltration with inflammatory kidneys cells showed swelling of tubular cells, deposition of calcium between kidney tubules with infiltration of inflammatory cells. ELISA test revealed the presence of 800 ppb aflatoxin and 100 ppb ochratoxin. Normal titers of infectious bronchitis virus and infectious bursal diseases antibodies were recorded. Low blood calcium level of 8.2 mg/dl was registered in the tested blood samples.

  1. PLEIOTROPIC EFFECTS OF PARATHYROIDECTOMY AND AGONIST CALCIUM-SENSITIVE RECEPTOR, CINACALCET

    Directory of Open Access Journals (Sweden)

    L. V. Egshatyan

    2013-01-01

    Full Text Available Aim. To evaluate the effect of parathyroidectomy and cinacalcet on anemia, lipid profile and blood pressure (BP in uremic hyperparathyroidism.Material and methods. Uremic patients (n=39 treated with hemodialysis and having secondary hyperparathyroidism were included into the study. Radical parathyroidectomy was performed in 21 patients, 18 patients were treated with cinacalcet. BP measurement, determination of blood levels of albumin, total calcium, phosphorus, total cholesterol (TC, low (LDL and high density lipoproteins, triglycerides, intact parathyroid hormone, and hemoglobin were performed in all patients initially and during treatment. Doses of antihypertensive and erythropoiesis-stimulating agents were also assessed.Results. Calcium-phosphorus metabolism indices improved after 6 months of cinacalcet therapy and parathyroidectomy (p<0.05. BP reduction not requiring antihypertensive drugs dose adjustment was found in patients treated with cinacalcet. Significant BP reduction (p<0.05 was observed after parathyroidectomy and it required antihypertensive drugs cancellation or dose lowering. Cinacalcet therapy and parathyroidectomy led to increase in hemoglobin level by 2.02% (p=0.143 and 7.6% (p=0.029, respectively, as well as reduction in weekly dose of erythropoiesis-stimulating drugs by 2.7% (p=0.875 and 8.9% (p=0.751, respectively. Significant (p<0.05 decrease in LDL (5.6%, and triglycerides (23.7% levels was found in patients treated with cinacalcet. Reduction (p<0.05 in total cholesterol (1.4% and LDL (4.3% levels was observed after parathyroidectomy.Conclusion. The pleiotropic effects (reduction in BP and atherogenic lipids levels, as well as decrease in anemia resistant to the action of erythropoiesis-stimulating agents were found after parathyroidectomy and cinacalcet therapy additionally to calcium-phosphorus metabolism improvement.

  2. Membrane Currents in Airway Smooth Muscle: Mechanisms and Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Luke J Janssen

    1997-01-01

    Full Text Available Electrophysiological and pharmacological techniques were used to characterize the membrane conductance changes underlying spasmogen-evoked depolarization in airway smooth muscle (ASM. Changes included a transient activation of chloride ion channels and prolonged suppression of potassium ion channels; both changes are triggered by release of internally sequestered calcium ion and in turn cause opening of voltage-dependent calcium channels. The resultant influx of calcium ions contributes to contraction as well as to refilling of the internal calcium ion pool. Bronchodilators, on the other hand, act in part through activation of potassium channels, with consequent closure of calcium channels. The tools used to study ion channels in ASM are described, and the investigations of the roles of ion channels in ASM physiology (autacoid-evoked depolarization and hyperpolarization and pathophysiology (airway hyperresponsiveness are summarized. Finally, how the relationship between ion channels and ASM function/dysfunction may relate to the treatment of asthma and related breathing disorders is discussed.

  3. The association between calcium consumption and students body composition

    Directory of Open Access Journals (Sweden)

    Przemysław Zając

    2017-09-01

    Full Text Available Introduction: The consumption of calcium in the Polish population is insufficient, which may negatively influence the occurrence of osteoporosis, as well as cause overweight and obesity. Aim of the research : To analyse the relationship between calcium consumption and body composition of the participants of this study. Material and methods : The study was carried out on a sample group of 103 nursing students. The study group consisted of 91 (88.3% women and 12 (11.7% men, aged from 19 to 33 years. The participants of the study had their body composition analysed, the body mass index (BMI was calculated, and the authors carried out a survey involving the Dairy Products Frequency Questionnaire (ADOS-Ca as well as their own questionnaire to evaluate the socio-economic status of the subjects. Results : The students who had the lowest calcium consumption also had the lowest BMI (p = 0.0015 and the lowest amount of visceral fat (p = 0.0260. Individuals who consumed the lowest amount of calcium also had the lowest muscle mass (p = 0.007 and bone mass (p = 0.004. However, the authors did not notice a significant statistical difference between the level of calcium consumption and the percentage of adipose tissue (p = 0.5000 as well as body water percentage (p = 0.3200. Conclusions: The results of the research do not confirm the hypothesis that high calcium consumption is associated with a lower probability of the occurrence of excess body mass and adipose tissue.

  4. Evaluation of the calcium-antagonist, antidiarrhoeic and central nervous system activities of Baccharis serraefolia.

    Science.gov (United States)

    Tortoriello, J; Aguilar-Santamaría, L

    1996-09-01

    Baccharis serraefolia is a widely used plant to treat diarrhoea in Mexican traditional medicine. Although the methanolic extract of this plant has shown an important dose-dependent spasmolytic activity, its underlying mechanism has not been studied. In the present work, the methanolic extract of B. serraefolia significantly delayed the onset of tonic seizures induced by strychnine and pentylenetetrazol; besides, it diminished the death rate and number of animals that exhibited convulsions. It produced potentiation of the hypnotic effect of pentobarbital. Oral administration produced an inhibition of gastrointestinal transit in mice as effective as that produced by loperamide. As to the effect on smooth muscles, the active extract produced an inhibition of contraction induced electrically, which could not be reversed by naloxone. The calcium concentration-contraction curve showed a rightward displacement when the extract was added to isolated guinea pig ileum depolarized with high K+ and cumulative concentrations of Ca2+. The results suggest that the methanolic extract does not interact with classical opiate receptors and its effects, at least that produced on smooth muscle, may be due to a probable interference with calcium influx and/or calcium release from an intra-cellular store.

  5. Voltage-gated calcium flux mediates Escherichia coli mechanosensation.

    Science.gov (United States)

    Bruni, Giancarlo N; Weekley, R Andrew; Dodd, Benjamin J T; Kralj, Joel M

    2017-08-29

    Electrically excitable cells harness voltage-coupled calcium influx to transmit intracellular signals, typically studied in neurons and cardiomyocytes. Despite intense study in higher organisms, investigations of voltage and calcium signaling in bacteria have lagged due to their small size and a lack of sensitive tools. Only recently were bacteria shown to modulate their membrane potential on the timescale of seconds, and little is known about the downstream effects from this modulation. In this paper, we report on the effects of electrophysiology in individual bacteria. A genetically encoded calcium sensor expressed in Escherichia coli revealed calcium transients in single cells. A fusion sensor that simultaneously reports voltage and calcium indicated that calcium influx is induced by voltage depolarizations, similar to metazoan action potentials. Cytoplasmic calcium levels and transients increased upon mechanical stimulation with a hydrogel, and single cells altered protein concentrations dependent on the mechanical environment. Blocking voltage and calcium flux altered mechanically induced changes in protein concentration, while inducing calcium flux reproduced these changes. Thus, voltage and calcium relay a bacterial sense of touch and alter cellular lifestyle. Although the calcium effectors remain unknown, these data open a host of new questions about E. coli , including the identity of the underlying molecular players, as well as other signals conveyed by voltage and calcium. These data also provide evidence that dynamic voltage and calcium exists as a signaling modality in the oldest domain of life, and therefore studying electrophysiology beyond canonical electrically excitable cells could yield exciting new findings.

  6. Tissue reaction and material biodegradation of a calcium sulfate/apatite biphasic bone substitute in rat muscle

    Directory of Open Access Journals (Sweden)

    Jian-Sheng Wang

    2016-07-01

    Conclusion: Calcium sulfate hydroxyapatite bone substitute can be used as a carrier for antibiotics or other drugs, without adverse reaction due to the fast resorption of the calcium sulfate. No bone formation was seen despite treating the bone substitute with autologous bone marrow.

  7. MICU1 Serves as a Molecular Gatekeeper to Prevent In Vivo Mitochondrial Calcium Overload

    Directory of Open Access Journals (Sweden)

    Julia C. Liu

    2016-08-01

    Full Text Available MICU1 is a component of the mitochondrial calcium uniporter, a multiprotein complex that also includes MICU2, MCU, and EMRE. Here, we describe a mouse model of MICU1 deficiency. MICU1−/− mitochondria demonstrate altered calcium uptake, and deletion of MICU1 results in significant, but not complete, perinatal mortality. Similar to afflicted patients, viable MICU1−/− mice manifest marked ataxia and muscle weakness. Early in life, these animals display a range of biochemical abnormalities, including increased resting mitochondrial calcium levels, altered mitochondrial morphology, and reduced ATP. Older MICU1−/− mice show marked, spontaneous improvement coincident with improved mitochondrial calcium handling and an age-dependent reduction in EMRE expression. Remarkably, deleting one allele of EMRE helps normalize calcium uptake while simultaneously rescuing the high perinatal mortality observed in young MICU1−/− mice. Together, these results demonstrate that MICU1 serves as a molecular gatekeeper preventing calcium overload and suggests that modulating the calcium uniporter could have widespread therapeutic benefits.

  8. Association of calcium sensing receptor polymorphisms at rs1801725 with circulating calcium in breast cancer patients.

    Science.gov (United States)

    Wang, Li; Widatalla, Sarrah E; Whalen, Diva S; Ochieng, Josiah; Sakwe, Amos M

    2017-08-02

    Breast cancer (BC) patients with late-stage and/or rapidly growing tumors are prone to develop high serum calcium levels which have been shown to be associated with larger and aggressive breast tumors in post and premenopausal women respectively. Given the pivotal role of the calcium sensing receptor (CaSR) in calcium homeostasis, we evaluated whether polymorphisms of the CASR gene at rs1801725 and rs1801726 SNPs in exon 7, are associated with circulating calcium levels in African American and Caucasian control subjects and BC cases. In this retrospective case-control study, we assessed the mean circulating calcium levels, the distribution of two inactivating CaSR SNPs at rs1801725 and rs1801726 in 199 cases and 384 age-matched controls, and used multivariable regression analysis to determine whether these SNPs are associated with circulating calcium in control subjects and BC cases. We found that the mean circulating calcium levels in African American subjects were higher than those in Caucasian subjects (p calcium levels were higher in BC cases compared to control subjects (p calcium levels in BC patients were independent of race. We also show that in BC cases and control subjects, the major alleles at rs1801725 (G/T, A986S) and at rs1801726 (C/G, Q1011E) were common among Caucasians and African Americans respectively. Compared to the wild type alleles, polymorphisms at the rs1801725 SNP were associated with higher calcium levels (p = 0.006) while those at rs1801726 were not. Using multivariable linear mixed-effects models and adjusting for age and race, we show that circulating calcium levels in BC cases were associated with tumor grade (p = 0.009), clinical stage (p = 0.003) and more importantly, with inactivating mutations of the CASR at the rs1801725 SNP (p = 0.038). These data suggest that decreased sensitivity of the CaSR to calcium due to inactivating polymorphisms at rs1801725, may predispose up to 20% of BC cases to high circulating calcium

  9. Contractions activate hormone-sensitive lipase in rat muscle by protein kinase C and mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2003-01-01

    and contractions. Adrenaline acts via cAMP-dependent protein kinase (PKA). The signalling mediating the effect of contractions is unknown and was explored in this study. Incubated soleus muscles from 70 g male rats were electrically stimulated to perform repeated tetanic contractions for 5 min. The contraction......Intramuscular triacylglycerol is an important energy store and is also related to insulin resistance. The mobilization of fatty acids from this pool is probably regulated by hormone-sensitive lipase (HSL), which has recently been shown to exist in muscle and to be activated by both adrenaline......-induced activation of HSL was abolished by the protein kinase C (PKC) inhibitors bisindolylmaleimide I and calphostin C and reduced 50% by the mitogen-activated protein kinase kinase (MEK) inhibitor U0126, which also completely blocked extracellular signal-regulated kinase (ERK) 1 and 2 phosphorylation. None...

  10. Redox regulation of calcium release in skeletal and cardiac muscle

    Directory of Open Access Journals (Sweden)

    CECILIA HIDALGO

    2002-01-01

    Full Text Available In skeletal and cardiac muscle cells, specific isoforms of the Ryanodine receptor channels mediate Ca2+ release from the sarcoplasmic reticulum. These channels are highly susceptible to redox modifications, which regulate channel activity. In this work, we studied the effects of Ca2+ (endogenous agonist and Mg2+ (endogenous inhibitor on the kinetics of Ca2+ release from sarcoplasmic reticulum vesicles isolated from skeletal or cardiac mammalian muscle. Native skeletal vesicles exhibited maximal stimulation of release kinetics by 10-20 µM [Ca2+], whereas in native cardiac vesicles, maximal stimulation of release required only 1 µM [Ca2+]. In 10 µM [Ca2+], free [Mg2+] < 0.1 mM produced marked inhibition of release from skeletal vesicles but free [Mg2+] ­ 0.8 mM did not affect release from cardiac vesicles. Incubation of skeletal or cardiac vesicles with the oxidant thimerosal increased their susceptibility to stimulation by Ca2+ and decreased the inhibitory effect of Mg2+ in skeletal vesicles. Sulfhydryl-reducing agents fully reversed the effects of thimerosal. The endogenous redox species, glutathione disulfide and S-nitrosoglutathione, also stimulated release from skeletal sarcoplasmic reticulum vesicles. In 10 µM [Ca2+], 35S-nitrosoglutathione labeled a protein fraction enriched in release channels through S-glutathiolation. Free [Mg2+] 1 mM or decreasing free [Ca2+] to the nM range prevented this reaction. Possible physiological and pathological consequences of redox modification of release channels on Ca2+ signaling in heart and muscle cells are discussed

  11. Calcium paradox and calcium entry blockers

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Slade, A.M.; Nayler, W.G.; Meijler, F.L.

    1984-01-01

    Reperfusion of isolated hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). This phenomenon is characterized by an excessive influx of calcium into the cells, the rapid onset of myocardial contracture,

  12. Functional and pharmacological consequences of the distribution of voltage-gated calcium channels in the renal blood vessels

    DEFF Research Database (Denmark)

    Hansen, P B L

    2013-01-01

    Calcium channel blockers are widely used to treat hypertension because they inhibit voltage-gated calcium channels that mediate transmembrane calcium influx in, for example, vascular smooth muscle and cardiomyocytes. The calcium channel family consists of several subfamilies, of which the L......-type is usually associated with vascular contractility. However, the L-, T- and P-/Q-types of calcium channels are present in the renal vasculature and are differentially involved in controlling vascular contractility, thereby contributing to regulation of kidney function and blood pressure. In the preglomerular...... vascular bed, all the three channel families are present. However, the T-type channel is the only channel in cortical efferent arterioles which is in contrast to the juxtamedullary efferent arteriole, and that leads to diverse functional effects of L- and T-type channel inhibition. Furthermore...

  13. Calcium-Responsive Liposomes via a Synthetic Lipid Switch.

    Science.gov (United States)

    Lou, Jinchao; Carr, Adam J; Watson, Alexa J; Mattern-Schain, Samuel I; Best, Michael D

    2018-03-07

    Liposomal drug delivery would benefit from enhanced control over content release. Here, we report a novel avenue for triggering release driven by chemical composition using liposomes sensitized to calcium-a target chosen due to its key roles in biology and disease. To demonstrate this principle, we synthesized calcium-responsive lipid switch 1, designed to undergo conformational changes upon calcium binding. The conformational change perturbs membrane integrity, thereby promoting cargo release. This was shown through fluorescence-based release assays via dose-dependent response depending on the percentage of 1 in liposomes, with minimal background leakage in controls. DLS experiments indicated dramatic changes in particle size upon treatment of liposomes containing 1 with calcium. In a comparison of ten naturally occurring metal cations, calcium provided the greatest release. Finally, STEM images showed significant changes in liposome morphology upon treatment of liposomes containing 1 with calcium. These results showcase lipid switches driven by molecular recognition principles as an exciting avenue for controlling membrane properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Partial characterization and response under hyperregulating conditions of Na+-K+ ATPase and levamisole-sensitive alkaline phosphatase activities in chela muscle of the euryhaline crab Cyrtograpsus angulatus

    Directory of Open Access Journals (Sweden)

    Silvina Andrea Pinoni

    2008-03-01

    Full Text Available The occurrence, characteristics and response to changes in environmental salinity of Na+-K+ ATPase and levamisole-sensitive alkaline phosphatase (AP activities were studied in chela muscle of the euryhaline crab Cyrtograpsus angulatus. Chela muscle exhibited an Na+-K+ ATPase activity which was strongly dependent on ATP concentration, pH and temperature of the reaction mixture. Maximal activity was found at 1 mM ATP, 30-37°C and pH 7.4. Levamisole-sensitive AP activity was characterised at physiological pH 7.4 and at pH 8.0. I50 for levamisole-sensitive AP activity was 8.8 mM and 8.0 mM at pH 7.4 and 8.0, respectively. At both pH levels, levamisole-sensitive AP activity exhibited Michaelis-Menten kinetics (Km=3.451 mM and 6.906 mM at pH 7.4 and 8.0, respectively. Levamisole-sensitive AP activities were strongly affected by temperature, exhibiting a peak at 37ºC. In crabs acclimated to low salinity (10; hyperegulating conditions, Na+-K+ ATPase activity and levamisole-sensitive AP activity at the physiological pH were higher than in 35 psu (osmoconforming conditions. The response to low salinity suggests that both activities could be components of muscle regulatory mechanisms at the biochemical level secondary to hyperegulation of C. angulatus. The study of these activities under hyperegulating conditions contributes to a better understanding of the complexity of biochemical mechanisms underlying the adaptive process of euryhaline crabs.

  15. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  16. Proteomics of Skeletal Muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul

    2016-01-01

    , of altered protein expressions profiles and/or their posttranslational modifications (PTMs). Mass spectrometry (MS)-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle......Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability...... of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence...

  17. Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Jensen, Boye L.; Andreasen, D

    2001-01-01

    The distribution of voltage-dependent calcium channels in kidney pre- and postglomerular resistance vessels was determined at the molecular and functional levels. Reverse transcription-polymerase chain reaction analysis of microdissected rat preglomerular vessels and cultured smooth muscle cells...... on vascular diameter in the afferent arteriole. We conclude that voltage-dependent L- and T-type calcium channels are expressed and of functional significance in renal cortical preglomerular vessels, in juxtamedullary efferent arterioles, and in outer medullary vasa recta, but not in cortical efferent...

  18. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Søren; Scheele, Camilla; Yfanti, Christina

    2010-01-01

    Muscle specific miRNAs, myomiRs, have been shown to control muscle development in vitro and are differentially expressed at rest in diabetic skeletal muscle. Therefore, we investigated the expression of these myomiRs, including miR-1, miR-133a, miR-133b and miR-206 in muscle biopsies from vastus...... lateralis of healthy young males (n = 10) in relation to a hyperinsulinaemic–euglycaemic clamp as well as acute endurance exercise before and after 12 weeks of endurance training. The subjects increased their endurance capacity, VO2max (l min-1) by 17.4% (P improved insulin sensitivity by 19......, but their role in regulating human skeletal muscle adaptation remains unknown....

  19. In vivo experimental stroke and in vitro organ culture induce similar changes in vasoconstrictor receptors and intracellular calcium handling in rat cerebral arteries

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Waldsee, Roya; Ahnstedt, Hilda

    2012-01-01

    Cerebral arteries subjected to different types of experimental stroke upregulate their expression of certain G-protein-coupled vasoconstrictor receptors, a phenomenon that worsens the ischemic brain damage. Upregulation of contractile endothelin B (ET(B)) and 5-hydroxytryptamine 1B (5-HT(1B......)) receptors has been demonstrated after subarachnoid hemorrhage and global ischemic stroke, but the situation is less clear after focal ischemic stroke. Changes in smooth muscle calcium handling have been implicated in different vascular diseases but have not hitherto been investigated in cerebral arteries...... and extracellular sources, whereas 5-HT(1B) receptor-mediated contraction was solely dependent on extracellular calcium. Organ culture and stroke increased basal intracellular calcium levels in MCA smooth muscle cells and decreased the expression of inositol triphosphate receptor and transient receptor potential...

  20. Structure-function of proteins interacting with the alpha1 pore-forming subunit of high voltage-activated calcium channel

    Directory of Open Access Journals (Sweden)

    Alan eNeely

    2014-06-01

    Full Text Available Openings of high-voltage-activated calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, high-voltage-activated calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1 associated with four additional polypeptide chains β, α2, δ and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of high-voltage-activated calcium channels.

  1. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels

    Science.gov (United States)

    Neely, Alan; Hidalgo, Patricia

    2014-01-01

    Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels. PMID:24917826

  2. Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum

    Science.gov (United States)

    Bezprozvanny, Llya; Watras, James; Ehrlich, Barbara E.

    1991-06-01

    RELEASE of calcium from intracellular stores occurs by two pathways, an inositol 1,4,5-trisphosphate (InsP3)-gated channel1-3 and a calcium-gated channel (ryanodine receptor)4-6. Using specific antibodies, both receptors were found in Purkinje cells of cerebellum7,8. We have now compared the functional properties of the channels corresponding to the two receptors by incorporating endoplasmic reticulum vesicles from canine cerebellum into planar bilayers. InsP3-gated channels were observed most frequently. Another channel type was activated by adenine nucleotides or caffeine, inhibited by ruthenium red, and modified by ryanodine, characteristics of the ryanodine receptor/channel6. The open probability of both channel types displayed a bell-shaped curve for dependence on calcium. For the InsP3-gated channel, the maximum probability of opening occurred at 0.2 µM free calcium, with sharp decreases on either side of the maximum. Maximum activity for the ryanodine receptor/channel was maintained between 1 and 100 µM calcium. Thus, within the physiological range of cytoplasmic calcium, the InsP3-gated channel itself allows positive feed-back and then negative feedback for calcium release, whereas the ryanodine receptor/channel behaves solely as a calcium-activated channel. The existence in the same cell of two channels with different responses to calcium and different ligand sensitivities provides a basis for complex patterns of intracellular calcium regulation.

  3. Barcoding T Cell Calcium Response Diversity with Methods for Automated and Accurate Analysis of Cell Signals (MAAACS)

    Science.gov (United States)

    Sergé, Arnauld; Bernard, Anne-Marie; Phélipot, Marie-Claire; Bertaux, Nicolas; Fallet, Mathieu; Grenot, Pierre; Marguet, Didier; He, Hai-Tao; Hamon, Yannick

    2013-01-01

    We introduce a series of experimental procedures enabling sensitive calcium monitoring in T cell populations by confocal video-microscopy. Tracking and post-acquisition analysis was performed using Methods for Automated and Accurate Analysis of Cell Signals (MAAACS), a fully customized program that associates a high throughput tracking algorithm, an intuitive reconnection routine and a statistical platform to provide, at a glance, the calcium barcode of a population of individual T-cells. Combined with a sensitive calcium probe, this method allowed us to unravel the heterogeneity in shape and intensity of the calcium response in T cell populations and especially in naive T cells, which display intracellular calcium oscillations upon stimulation by antigen presenting cells. PMID:24086124

  4. Sensitivity of different types of fibres in rabbit skeletal muscle to pneumatic compression by tourniquet and to ischaemia.

    Science.gov (United States)

    Fridén, J; Pedowitz, R A; Thornell, L E

    1994-06-01

    Morphometric properties (distribution of types of fibre and fibre areas) in the non-necrotic regions of four different rabbit muscles (superficial portions of semimembranosus, biceps femoris, tibialis anterior, and soleus muscles) were measured 48 hours after a tourniquet had been applied around the thigh for two hours at either 125 or 350 mmHg. There was an considerable increase of the relative numbers of both large and small fibres as well as changes in the proportions of the types of fibre. The most dramatic percentage change in type of fibre was in the semimembranosus when compressed at 350 mmHg, which showed an increase of the relative frequency of fibres with type 2AB staining characteristics from 10.2% to 18.0% (p < 0.001). Extreme changes in fibre area were found exclusively in semimembranosus and biceps femoris. Most fibres of abnormal size were of type 2, type 2B fibre areas being the most affected. This study shows that morphometry is a valuable tool in the assessment of the more subtle indications of injury. Compression and ischaemia together have a more dramatic effect on muscle morphology and morphometric properties in the non-necrotic regions than ischaemia alone. These data also show that muscles are differentially sensitive to compression and ischaemia. This information may be useful into the understanding of more complex functional deficits observed after the use of tourniquet.

  5. Regulation and role of hormone-sensitive lipase in rat skeletal muscle

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2004-01-01

    the effects of contractions and adrenaline on HSL activity are partially additive. In line with the view that the two stimuli act by different mechanisms, training increases contraction-mediated HSL activation but diminishes adrenaline-mediated HSL activation in muscle. In conclusion, HSL is present...... fibre types, being higher in oxidative fibres than in glycolytic fibres. When analysed under conditions optimal for HSL, neutral lipase activity in muscle can be stimulated by adrenaline as well as by contractions. These increases are abolished by the presence of anti-HSL antibody during analysis....... Moreover, immunoprecipitation with affinity-purified anti-HSL antibody causes similar reductions in muscle HSL protein concentration and in measured neutral lipase responses to contractions. The immunoreactive HSL in muscle is stimulated by adrenaline via beta-adrenergic activation of c...

  6. Regulation of Metabolic Signaling in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Albers, Peter Hjorth

    sensitivity in type I muscle fibers possibly reflects a superior effect of insulin on metabolic signaling compared to type II muscle fibers. This was investigated in the present thesis by examining muscle biopsies from lean and obese healthy subjects as well as patients with type 2 diabetes. From these muscle...

  7. Rac1 in muscle is dispensable for improved insulin action after exercise in mice

    DEFF Research Database (Denmark)

    Sylow, Lykke; Møller, Lisbeth Liliendal Valbjørn; D'Hulst, Gommaar

    2016-01-01

    sensitivity in inducible muscle-specific Rac1 knockout (mKO) and wildtype littermate (WT) mice. Prior exercise enhanced whole body insulin sensitivity by 40% in WT mice and rescued the insulin intolerance in Rac1 mKO mice by improving whole body insulin sensitivity by 230%. In agreement, prior exercise...... significantly improved insulin sensitivity by 20% in WT and by 40% in Rac1 mKO soleus muscles. These findings suggest that muscle Rac1 is dispensable for the insulin sensitizing effect of exercise. Moreover, insulin resistance in Rac1 mKO mice can be completely normalized by prior exercise explaining why......Exercise has a potent insulin-sensitivity enhancing effect on skeletal muscle but the intracellular mechanisms that mediate this effect are not well understood. In muscle, Rac1 regulates both insulin- and contraction-stimulated glucose transport and is dysregulated in insulin resistant muscle...

  8. A model of propagating calcium-induced calcium release mediated by calcium diffusion

    NARCIS (Netherlands)

    Backx, P. H.; de Tombe, P. P.; van Deen, J. H.; Mulder, B. J.; ter Keurs, H. E.

    1989-01-01

    The effect of sudden local fluctuations of the free sarcoplasmic [Ca++]i in cardiac cells on calcium release and calcium uptake by the sarcoplasmic reticulum (SR) was calculated with the aid of a simplified model of SR calcium handling. The model was used to evaluate whether propagation of calcium

  9. Muscle spindle autogenetic inhibition in the extraocular muscles of lamb.

    Science.gov (United States)

    Pettorossi, V E; Filippi, G M

    1981-09-01

    The role of extraocular muscle (EOM) proprioceptors on eye motility has been investigated in lambs on "encéphale isolé", by evaluating the tension of EOMs at various lengths and velocities of stretch before and after proprioceptive blocks. The EOM tension, in the absence of proprioceptive input, was higher than in normal conditions. Such an effect occurred at lengthening values greater than 3 mm of stretch from resting muscle length, corresponding to 18 degrees of eye deviation and was dependent on the velocity of the stretch, being more effective at high velocity. The muscle receptors responsible for this effect was determined by comparing the sensitivity to vibratory stimulation of spindles and tendon organs to the amount of inhibition provoked by the same stimulation on an EOM electromyographic activity. The tension inhibition appeared to be correlated to muscle spindle activation. Thus, the presence of muscle spindles can determine a reduction of the tension within the stretched muscles. This result suggests that the EOM length and velocity signals operate moment to moment reduction on the stiffness of the muscle which antagonizes eye displacement, thus facilitating the ocular movements.

  10. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export

    Directory of Open Access Journals (Sweden)

    Phillip J. White

    2016-07-01

    Full Text Available Objective: A branched-chain amino acid (BCAA-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition. Methods: Zucker-lean rats (ZLR and Zucker-fatty rats (ZFR were fed either a custom control, low fat (LF diet, or an isonitrogenous, isocaloric LF diet in which all three BCAA (Leu, Ile, Val were reduced by 45% (LF-RES. We performed comprehensive metabolic and physiologic profiling to characterize the effects of BCAA restriction on energy balance, insulin sensitivity, and glucose, lipid and amino acid metabolism. Results: LF-fed ZFR had higher levels of circulating BCAA and lower levels of glycine compared to LF-fed ZLR. Feeding ZFR with the LF-RES diet lowered circulating BCAA to levels found in LF-fed ZLR. Activity of the rate limiting enzyme in the BCAA catabolic pathway, branched chain keto acid dehydrogenase (BCKDH, was lower in liver but higher in skeletal muscle of ZFR compared to ZLR and was not responsive to diet in either tissue. BCAA restriction had very little impact on metabolites studied in liver of ZFR where BCAA content was low, and BCKDH activity was suppressed. However, in skeletal muscle of LF-fed ZFR compared to LF-fed ZLR, where BCAA content and BCKDH activity were increased, accumulation of fatty acyl CoAs was completely normalized by dietary BCAA restriction. BCAA restriction also normalized skeletal muscle glycine content and increased urinary acetyl glycine excretion in ZFR. These effects were accompanied by lower RER and improved skeletal muscle insulin sensitivity in LF-RES fed ZFR as measured by hyperinsulinemic-isoglycemic clamp. Conclusions: Our data are consistent with a model wherein

  11. Transcriptional response of zebrafish embryos exposed to neurotoxic compounds reveals a muscle activity dependent hspb11 expression.

    Directory of Open Access Journals (Sweden)

    Nils Klüver

    Full Text Available Acetylcholinesterase (AChE inhibitors are widely used as pesticides and drugs. Their primary effect is the overstimulation of cholinergic receptors which results in an improper muscular function. During vertebrate embryonic development nerve activity and intracellular downstream events are critical for the regulation of muscle fiber formation. Whether AChE inhibitors and related neurotoxic compounds also provoke specific changes in gene transcription patterns during vertebrate development that allow them to establish a mechanistic link useful for identification of developmental toxicity pathways has, however, yet not been investigated. Therefore we examined the transcriptomic response of a known AChE inhibitor, the organophosphate azinphos-methyl (APM, in zebrafish embryos and compared the response with two non-AChE inhibiting unspecific control compounds, 1,4-dimethoxybenzene (DMB and 2,4-dinitrophenol (DNP. A highly specific cluster of APM induced gene transcripts was identified and a subset of strongly regulated genes was analyzed in more detail. The small heat shock protein hspb11 was found to be the most sensitive induced gene in response to AChE inhibitors. Comparison of expression in wildtype, ache and sop(fixe mutant embryos revealed that hspb11 expression was dependent on the nicotinic acetylcholine receptor (nAChR activity. Furthermore, modulators of intracellular calcium levels within the whole embryo led to a transcriptional up-regulation of hspb11 which suggests that elevated intracellular calcium levels may regulate the expression of this gene. During early zebrafish development, hspb11 was specifically expressed in muscle pioneer cells and Hspb11 morpholino-knockdown resulted in effects on slow muscle myosin organization. Our findings imply that a comparative toxicogenomic approach and functional analysis can lead to the identification of molecular mechanisms and specific marker genes for potential neurotoxic compounds.

  12. Quantitative evaluation of skeletal muscle defects in second harmonic generation images

    Science.gov (United States)

    Liu, Wenhua; Raben, Nina; Ralston, Evelyn

    2013-02-01

    Skeletal muscle pathologies cause irregularities in the normally periodic organization of the myofibrils. Objective grading of muscle morphology is necessary to assess muscle health, compare biopsies, and evaluate treatments and the evolution of disease. To facilitate such quantitation, we have developed a fast, sensitive, automatic imaging analysis software. It detects major and minor morphological changes by combining texture features and Fourier transform (FT) techniques. We apply this tool to second harmonic generation (SHG) images of muscle fibers which visualize the repeating myosin bands. Texture features are then calculated by using a Haralick gray-level cooccurrence matrix in MATLAB. Two scores are retrieved from the texture correlation plot by using FT and curve-fitting methods. The sensitivity of the technique was tested on SHG images of human adult and infant muscle biopsies and of mouse muscle samples. The scores are strongly correlated to muscle fiber condition. We named the software MARS (muscle assessment and rating scores). It is executed automatically and is highly sensitive even to subtle defects. We propose MARS as a powerful and unbiased tool to assess muscle health.

  13. MRI appearance of muscle denervation

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, S. [University Hospital of Wales, Department of Radiology, Cardiff (United Kingdom); Venkatanarasimha, N.; Walsh, M.A.; Hughes, P.M. [Derriford Hospital, Department of Radiology, Plymouth (United Kingdom)

    2008-05-15

    Muscle denervation results from a variety of causes including trauma, neoplasia, neuropathies, infections, autoimmune processes and vasculitis. Traditionally, the diagnosis of muscle denervation was based on clinical examination and electromyography. Magnetic resonance imaging (MRI) offers a distinct advantage over electromyography, not only in diagnosing muscle denervation, but also in determining its aetiology. MRI demonstrates characteristic signal intensity patterns depending on the stage of muscle denervation. The acute and subacutely denervated muscle shows a high signal intensity pattern on fluid sensitive sequences and normal signal intensity on T1-weighted MRI images. In chronic denervation, muscle atrophy and fatty infiltration demonstrate high signal changes on T1-weighted sequences in association with volume loss. The purpose of this review is to summarise the MRI appearance of denervated muscle, with special emphasis on the signal intensity patterns in acute and subacute muscle denervation. (orig.)

  14. Localization and pharmacological characterization of voltage dependent calcium channels in cultured neocortical neurons

    DEFF Research Database (Denmark)

    Timmermann, D B; Lund, Trine Meldgaard; Belhage, B

    2001-01-01

    The physiological significance and subcellular distribution of voltage dependent calcium channels was defined using calcium channel blockers to inhibit potassium induced rises in cytosolic calcium concentration in cultured mouse neocortical neurons. The cytosolic calcium concentration was measured...... channels were differentially distributed in somata, neurites and nerve terminals. omega-conotoxin MVIIC (omega-CgTx MVIIC) inhibited approximately 40% of the Ca(2+)-rise in both somata and neurites and 60% of the potassium induced [3H]GABA release, indicating that the Q-type channel is the quantitatively...... most important voltage dependent calcium channel in all parts of the neuron. After treatment with thapsigargin the increase in cytosolic calcium was halved, indicating that calcium release from thapsigargin sensitive intracellular calcium stores is an important component of the potassium induced rise...

  15. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors

    Directory of Open Access Journals (Sweden)

    Miyatake S

    2016-08-01

    Full Text Available Shouta Miyatake,1 Yuko Shimizu-Motohashi,2 Shin’ichi Takeda,1 Yoshitsugu Aoki1 1Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; 2Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan Abstract: Duchenne muscular dystrophy (DMD, an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD. Keywords: calcium channels, ryanodine receptor 1, exon skipping, NF-κB, myokine, ROS

  16. Regulation of intracellular calcium in resting and stimulated rat basophilic leukemia cells

    International Nuclear Information System (INIS)

    Mohr, F.C.

    1988-01-01

    Intracellular calcium regulation was studied in a cell line of mast cells, the rat basophilic leukemia (RBL) cells with the purpose of determining (1) The properties of the plasma membrane calcium permeability pathway and (2) The role of intracellular calcium stores. The first set of experiments showed that depolarization did not induce calcium entry or secretion in resting cells and did inhibit antigen-stimulated calcium uptake and secretion. In the second set of experiments the ionic basis of antigen-induced depolarization was studied using the fluorescent potential-sensitive probe bis-oxonol. The properties of the calcium entry pathway were more consistent with a calcium channel than a calcium transport mechanism such as Na:Ca exchange. The third set of experiments examined the effects of the proton ionophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) on RBL cells. CCCP inhibited antigen-stimulated 45 Ca uptake and secretion by depolarizing the plasma membrane

  17. Bex1 knock out mice show altered skeletal muscle regeneration

    International Nuclear Information System (INIS)

    Koo, Jae Hyung; Smiley, Mark A.; Lovering, Richard M.; Margolis, Frank L.

    2007-01-01

    Bex1 and Calmodulin (CaM) are upregulated during skeletal muscle regeneration. We confirm this finding and demonstrate the novel finding that they interact in a calcium-dependent manner. To study the role of Bex1 and its interaction with CaM in skeletal muscle regeneration, we generated Bex1 knock out (Bex1-KO) mice. These mice appeared to develop normally and are fertile, but displayed a functional deficit in exercise performance compared to wild type (WT) mice. After intramuscular injection of cardiotoxin, which causes extensive and reproducible myotrauma followed by recovery, regenerating muscles of Bex1-KO mice exhibited elevated and prolonged cell proliferation, as well as delayed cell differentiation, compared to WT mice. Thus, our results provide the first evidence that Bex1-KO mice show altered muscle regeneration, and allow us to propose that the interaction of Bex1 with Ca 2+ /CaM may be involved in skeletal muscle regeneration

  18. ATP- and gap junction-dependent intercellular calcium signaling in osteoblastic cells

    DEFF Research Database (Denmark)

    Jorgensen, N R; Geist, S T; Civitelli, R

    1997-01-01

    mechanically induced calcium waves in two rat osteosarcoma cell lines that differ in the gap junction proteins they express, in their ability to pass microinjected dye from cell to cell, and in their expression of P2Y2 (P2U) purinergic receptors. ROS 17/2.8 cells, which express the gap junction protein......Many cells coordinate their activities by transmitting rises in intracellular calcium from cell to cell. In nonexcitable cells, there are currently two models for intercellular calcium wave propagation, both of which involve release of inositol trisphosphate (IP3)- sensitive intracellular calcium...... stores. In one model, IP3 traverses gap junctions and initiates the release of intracellular calcium stores in neighboring cells. Alternatively, calcium waves may be mediated not by gap junctional communication, but rather by autocrine activity of secreted ATP on P2 purinergic receptors. We studied...

  19. How to diminish calcium loss and muscle atrophy in space

    Science.gov (United States)

    Gorgolewski, S.

    Humans in micro-gravity suffer from Ca loss and muscle atrophy, efforts are made to prevent it by means of physical exercises and with medicaments. The tread-mill and exercise bike are just two most frequently used examples. This can and should be widely extended, and in such a way as to mimic as close as possible the normal loading of the muscles and skeleton which we experience here on the earth. Special very light weight active harness is proposed which monitors the body loading. This is accomplished by means of computer aided monitoring of muscle and bone loading systems. Using feedback it helps the crew to load their bodies and skeletons in the same way as it happens here on the earth. The active exercise mat with pressure sensors first creates a record here on the earth of all normal muscle tensions during exercise. In space the computer guides each exercising crew member to follow their earthbound training routine. High care is needed to select the best and most effective exercises which should demand least energy, yet providing the very best results. May I suggest the very best known to me kind of comprehensive exercises: Yoga. Doing it on the Earth you need next to none special training equipment. Our body is in principle all we need here to do Yoga exercises on the Earth. Integral part of Yoga exercises are abdominal breathing exercises, which can slow down the breathing rate even threefold. This improves the oxygen and CO_2 exchange and massages all internal organs around the clock, helping the adept to stay fit and also keeps their minds steady and calm. Yoga exercises should be mastered already here on the earth, providing the crew with much greater tolerance to micro-gravity. In Yoga we acquire the tolerance not only to zero gravity but also to "negative" gravity: as it happens in all inverted positions. This should help the astronauts to be more tolerant of the half way only step into "zero gravity". Weightlessness state provides us the ultimate in

  20. Mammary-Specific Ablation of the Calcium-Sensing Receptor During Lactation Alters Maternal Calcium Metabolism, Milk Calcium Transport, and Neonatal Calcium Accrual

    Science.gov (United States)

    Mamillapalli, Ramanaiah; VanHouten, Joshua; Dann, Pamela; Bikle, Daniel; Chang, Wenhan; Brown, Edward

    2013-01-01

    To meet the demands for milk calcium, the lactating mother adjusts systemic calcium and bone metabolism by increasing dietary calcium intake, increasing bone resorption, and reducing renal calcium excretion. As part of this adaptation, the lactating mammary gland secretes PTHrP into the maternal circulation to increase bone turnover and mobilize skeletal calcium stores. Previous data have suggested that, during lactation, the breast relies on the calcium-sensing receptor (CaSR) to coordinate PTHrP secretion and milk calcium transport with calcium availability. To test this idea genetically, we bred BLG-Cre mice with CaSR-floxed mice to ablate the CaSR specifically from mammary epithelial cells only at the onset of lactation (CaSR-cKO mice). Loss of the CaSR in the lactating mammary gland did not disrupt alveolar differentiation or milk production. However, it did increase the secretion of PTHrP into milk and decreased the transport of calcium from the circulation into milk. CaSR-cKO mice did not show accelerated bone resorption, but they did have a decrease in bone formation. Loss of the mammary gland CaSR resulted in hypercalcemia, decreased PTH secretion, and increased renal calcium excretion in lactating mothers. Finally, loss of the mammary gland CaSR resulted in decreased calcium accrual by suckling neonates, likely due to the combination of increased milk PTHrP and decreased milk calcium. These results demonstrate that the mammary gland CaSR coordinates maternal bone and calcium metabolism, calcium transport into milk, and neonatal calcium accrual during lactation. PMID:23782944

  1. Tibialis anterior muscle needle biopsy and sensitive biomolecular methods: a useful tool in myotonic dystrophy type 1

    Directory of Open Access Journals (Sweden)

    S. Iachettini

    2015-10-01

    Full Text Available Myotonic dystrophy type 1 (DM1 is a neuromuscular disorder caused by a CTG repeat expansion in 3’UTR of DMPK gene. This mutation causes accumulation of toxic RNA in nuclear foci leading to splicing misregulation of specific genes. In view of future clinical trials with antisense oligonucleotides in DM1 patients, it is important to set up sensitive and minimally-invasive tools to monitor the efficacy of treatments on skeletal muscle. A tibialis anterior (TA muscle sample of about 60 mg was obtained from 5 DM1 patients and 5 healthy subjects through a needle biopsy. A fragment of about 40 mg was used for histological examination and a fragment of about 20 mg was used for biomolecular analysis. The TA fragments obtained with the minimally-invasive needle biopsy technique is enough to perform all the histopathological and biomolecular evaluations useful to monitor a clinical trial on DM1 patients.

  2. Synthesis and evaluation of calcium channel antagonist activity of new 1, 4-dihydropyridines containing phenylamineimidazolyl substitute in guinea-pig ileal smooth muscle

    Directory of Open Access Journals (Sweden)

    A Fassihi

    2004-02-01

    Full Text Available Background: 1,4-dihydropyridines are a class of drugs which are used in the treatment of some cardiovascular disorders. The prototype, Nifedipine, does not have optimal pharmacokinetic and pharmacodynamic properties. Several new derivatives of 1, 4-dihydropyridine have been produced and pharmacologically evaluated in order to find drugs with better pharmacological properties. Among them, those with a substituted heteroaromatic ring in the C4 position of the 1, 4-dihydropyridine ring, instead of the phenyl ring in Nifedipine, are most considered. In this study, eight novel derivatives of this class with “2-methylthio-1-(phenylaminoimidazole-5-yl” in the C4, C3 and C5 positions were prepared and evaluated as calcium channel antagonist agents. Methods: To prepare these compounds, Hantzsch method for the synthesis of 1, 4-dihydropyridine derivatives was deployed. An aldehyde was reacted with appropriate acetoacetate ester and ammonium acetate. This aldehyde was prepared in three steps. Cumulative doses were applied to determine the relaxing effect of the compounds on the longitudinal smooth muscle of male albino guinea pigs. Results: Chemical structures of the compounds were characterized by 1H nuclear magnetic resonance, infrared and mass spectroscopy. The IC50 of each compound was graphically determined from the concentration-response curves. Conclusions: Two compounds were more active than Nifedipine. Both had lipophilic ester groups with low steric hindrance that met the merits of a better receptor binding of 1, 4-dihydropyridines. These derivatives have high potential for further study. Keywords: 1, 4-dihydropyridine, Calcium channel antagonist, Phenylamineimidazolyl, Cardiovascular disorder

  3. Inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling mediates delayed myogenesis in Duchenne muscular dystrophy fetal muscle.

    Science.gov (United States)

    Farini, Andrea; Sitzia, Clementina; Cassinelli, Letizia; Colleoni, Federica; Parolini, Daniele; Giovanella, Umberto; Maciotta, Simona; Colombo, Augusto; Meregalli, Mirella; Torrente, Yvan

    2016-02-15

    Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disorder characterized by muscle wasting and premature death. The defective gene is dystrophin, a structural protein, absence of which causes membrane fragility and myofiber necrosis. Several lines of evidence showed that in adult DMD patients dystrophin is involved in signaling pathways that regulate calcium homeostasis and differentiation programs. However, secondary aspects of the disease, such as inflammation and fibrosis development, might represent a bias in the analysis. Because fetal muscle is not influenced by gravity and does not suffer from mechanical load and/or inflammation, we investigated 12-week-old fetal DMD skeletal muscles, highlighting for the first time early alterations in signaling pathways mediated by the absence of dystrophin itself. We found that PLC/IP3/IP3R/Ryr1/Ca(2+) signaling is widely active in fetal DMD skeletal muscles and, through the calcium-dependent PKCα protein, exerts a fundamental regulatory role in delaying myogenesis and in myofiber commitment. These data provide new insights into the origin of DMD pathology during muscle development. © 2016. Published by The Company of Biologists Ltd.

  4. Nuclear microprobe analysis of muscle biopsies: Applications in pathology and clinic

    International Nuclear Information System (INIS)

    Moretto, Ph.; Coquet, M.; Gherardi, R.K.; Stoedzel, P.

    2000-01-01

    The nuclear microprobe analysis of muscle biopsy sections has been recently applied to investigate different muscle disorders. This technique, employed as a complementary examination in the frame of pathological studies, permitted to confirm the diagnosis for a first pathology and to elucidate the cause of a second. In skeletal muscles of a young patient suffering from a slow progressive myopathy, calcium accumulations have been demonstrated in histologically abnormal fibers. These findings have been compared to histopathological characteristics previously described. On the other hand, we have evaluated muscle sections from two patients who presented symptoms of an inflammatory myopathy, a rare pathology that recently emerged in France. The chemical analyses permitted us to highlight local aluminium infiltration in muscles. The hypothesis of an unusual reaction to intramuscular aluminium accumulation has been advanced. These studies demonstrate the capability for ion beam microanalytical techniques to address acute problems in pathology

  5. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice.

    Science.gov (United States)

    Coomans, Claudia P; Biermasz, Nienke R; Geerling, Janine J; Guigas, Bruno; Rensen, Patrick C N; Havekes, Louis M; Romijn, Johannes A

    2011-12-01

    Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated tissue-specific glucose uptake. Tolbutamide, an inhibitor of ATP-sensitive K(+) channels (K(ATP) channels), or vehicle was infused into the lateral ventricle in the basal state and during hyperinsulinemic-euglycemic conditions in postabsorptive, chow-fed C57Bl/6J mice and in postabsorptive C57Bl/6J mice with diet-induced obesity. Whole-body glucose uptake was measured by d-[(14)C]glucose kinetics and tissue-specific glucose uptake by 2-deoxy-d-[(3)H]glucose uptake. During clamp conditions, intracerebroventricular administration of tolbutamide impaired the ability of insulin to inhibit EGP by ∼20%. In addition, intracerebroventricular tolbutamide diminished insulin-stimulated glucose uptake in muscle (by ∼59%) but not in heart or adipose tissue. In contrast, in insulin-resistant mice with diet-induced obesity, intracerebroventricular tolbutamide did not alter the effects of insulin during clamp conditions on EGP or glucose uptake by muscle. Insulin stimulates glucose uptake in muscle in part through effects via K(ATP) channels in the central nervous system, in analogy with the inhibitory effects of insulin on EGP. High-fat diet-induced obesity abolished the central effects of insulin on liver and muscle. These observations stress the role of central insulin resistance in the pathophysiology of diet-induced insulin resistance.

  6. Exercise Promotes Healthy Aging of Skeletal Muscle

    DEFF Research Database (Denmark)

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M

    2016-01-01

    caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial...... respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle....

  7. Inherent rhythm of smooth muscle cells in rat mesenteric arterioles: An eigensystem formulation

    Science.gov (United States)

    Ho, I. Lin; Moshkforoush, Arash; Hong, Kwangseok; Meininger, Gerald A.; Hill, Michael A.; Tsoukias, Nikolaos M.; Kuo, Watson

    2016-04-01

    On the basis of experimental data and mathematical equations in the literature, we remodel the ionic dynamics of smooth muscle cells (SMCs) as an eigensystem formulation, which is valid for investigating finite variations of variables from the equilibrium such as in common experimental operations. This algorithm provides an alternate viewpoint from frequency-domain analysis and enables one to probe functionalities of SMCs' rhythm by means of a resonance-related mechanism. Numerical results show three types of calcium oscillations of SMCs in mesenteric arterioles: spontaneous calcium oscillation, agonist-dependent calcium oscillation, and agonist-dependent calcium spike. For simple single and double SMCs, we demonstrate properties of synchronization among complex signals related to calcium oscillations, and show different correlation relations between calcium and voltage signals for various synchronization and resonance conditions. For practical cell clusters, our analyses indicate that the rhythm of SMCs could (1) benefit enhancements of signal communications among remote cells, (2) respond to a significant calcium peaking against transient stimulations for triggering globally oscillating modes, and (3) characterize the globally oscillating modes via frog-leap (non-molecular-diffusion) calcium waves across inhomogeneous SMCs.

  8. Calcium-activated-calcineurin reduces the In vitro and In vivo sensitivity of fluconazole to Candida albicans via Rta2p.

    Directory of Open Access Journals (Sweden)

    Yu Jia

    Full Text Available Due to the emergence of drug-resistance, first-line therapy with fluconazole (FLC increasingly resulted in clinical failure for the treatment of candidemia. Our previous studies found that in vitro RTA2 was involved in the calcineurin-mediated resistance to FLC in C. albicans. In this study, we found that calcium-activated-calcineurin significantly reduced the in vitro sensitivity of C. albicans to FLC by blocking the impairment of FLC to the plasma membrane via Rta2p. Furthermore, we found that RTA2 itself was not involved in C. albicans virulence, but the disruption of RTA2 dramatically increased the therapeutic efficacy of FLC in a murine model of systemic candidiasis. Conversely, both re-introduction of one RTA2 allele and ectopic expression of RTA2 significantly reduced FLC efficacy in a mammalian host. Finally, we found that calcium-activated-calcineurin, through its target Rta2p, dramatically reduced the efficacy of FLC against candidemia. Given the critical roles of Rta2p in controlling the efficacy of FLC, Rta2p can be a potential drug target for antifungal therapies.

  9. Loss of the inducible Hsp70 delays the inflammatory response to skeletal muscle injury and severely impairs muscle regeneration.

    Directory of Open Access Journals (Sweden)

    Sarah M Senf

    Full Text Available Skeletal muscle regeneration following injury is a highly coordinated process that involves transient muscle inflammation, removal of necrotic cellular debris and subsequent replacement of damaged myofibers through secondary myogenesis. However, the molecular mechanisms which coordinate these events are only beginning to be defined. In the current study we demonstrate that Heat shock protein 70 (Hsp70 is increased following muscle injury, and is necessary for the normal sequence of events following severe injury induced by cardiotoxin, and physiological injury induced by modified muscle use. Indeed, Hsp70 ablated mice showed a significantly delayed inflammatory response to muscle injury induced by cardiotoxin, with nearly undetected levels of both neutrophil and macrophage markers 24 hours post-injury. At later time points, Hsp70 ablated mice showed sustained muscle inflammation and necrosis, calcium deposition and impaired fiber regeneration that persisted several weeks post-injury. Through rescue experiments reintroducing Hsp70 intracellular expression plasmids into muscles of Hsp70 ablated mice either prior to injury or post-injury, we confirm that Hsp70 optimally promotes muscle regeneration when expressed during both the inflammatory phase that predominates in the first four days following severe injury and the regenerative phase that predominates thereafter. Additional rescue experiments reintroducing Hsp70 protein into the extracellular microenvironment of injured muscles at the onset of injury provides further evidence that Hsp70 released from damaged muscle may drive the early inflammatory response to injury. Importantly, following induction of physiological injury through muscle reloading following a period of muscle disuse, reduced inflammation in 3-day reloaded muscles of Hsp70 ablated mice was associated with preservation of myofibers, and increased muscle force production at later time points compared to WT. Collectively our

  10. Insulin Sensitivity in Adipose and Skeletal Muscle Tissue of Dairy Cows in Response to Dietary Energy Level and 2,4-Thiazolidinedione (TZD.

    Directory of Open Access Journals (Sweden)

    Afshin Hosseini

    Full Text Available The effects of dietary energy level and 2,4-thiazolidinedione (TZD injection on feed intake, body fatness, blood biomarkers and TZD concentrations, genes related to insulin sensitivity in adipose tissue (AT and skeletal muscle, and peroxisome proliferator-activated receptor gamma (PPARG protein in subcutaneous AT (SAT were evaluated in Holstein cows. Fourteen nonpregnant nonlactating cows were fed a control low-energy (CON, 1.30 Mcal/kg diet to meet 100% of estimated nutrient requirements for 3 weeks, after which half of the cows were assigned to a higher-energy diet (OVE, 1.60 Mcal/kg and half of the cows continued on CON for 6 weeks. All cows received an intravenous injection of TZD starting 2 weeks after initiation of dietary treatments and for an additional 2 weeks, which served as the washout period. Cows fed OVE had greater energy intake and body mass than CON, and TZD had no effect during the administration period. The OVE cows had greater TZD clearance rate than CON cows. The lower concentration of nonesterified fatty acids (NEFA and greater concentration of insulin in blood of OVE cows before TZD injection indicated positive energy balance and higher insulin sensitivity. Administration of TZD increased blood concentrations of glucose, insulin, and beta-hydroxybutyrate (BHBA at 2 to 4 weeks after diet initiation, while the concentration of NEFA and adiponectin (ADIPOQ remained unchanged during TZD. The TZD upregulated the mRNA expression of PPARG and its targets FASN and SREBF1 in SAT, but also SUMO1 and UBC9 which encode sumoylation proteins known to down-regulate PPARG expression and curtail adipogenesis. Therefore, a post-translational response to control PPARG gene expression in SAT could be a counteregulatory mechanism to restrain adipogenesis. The OVE cows had greater expression of the insulin sensitivity-related genes IRS1, SLC2A4, INSR, SCD, INSIG1, DGAT2, and ADIPOQ in SAT. In skeletal muscle, where PPARA and its targets

  11. Insulin Sensitivity in Adipose and Skeletal Muscle Tissue of Dairy Cows in Response to Dietary Energy Level and 2,4-Thiazolidinedione (TZD).

    Science.gov (United States)

    Hosseini, Afshin; Tariq, Muhammad Rizwan; Trindade da Rosa, Fernanda; Kesser, Julia; Iqbal, Zeeshan; Mora, Ofelia; Sauerwein, Helga; Drackley, James K; Trevisi, Erminio; Loor, Juan J

    2015-01-01

    The effects of dietary energy level and 2,4-thiazolidinedione (TZD) injection on feed intake, body fatness, blood biomarkers and TZD concentrations, genes related to insulin sensitivity in adipose tissue (AT) and skeletal muscle, and peroxisome proliferator-activated receptor gamma (PPARG) protein in subcutaneous AT (SAT) were evaluated in Holstein cows. Fourteen nonpregnant nonlactating cows were fed a control low-energy (CON, 1.30 Mcal/kg) diet to meet 100% of estimated nutrient requirements for 3 weeks, after which half of the cows were assigned to a higher-energy diet (OVE, 1.60 Mcal/kg) and half of the cows continued on CON for 6 weeks. All cows received an intravenous injection of TZD starting 2 weeks after initiation of dietary treatments and for an additional 2 weeks, which served as the washout period. Cows fed OVE had greater energy intake and body mass than CON, and TZD had no effect during the administration period. The OVE cows had greater TZD clearance rate than CON cows. The lower concentration of nonesterified fatty acids (NEFA) and greater concentration of insulin in blood of OVE cows before TZD injection indicated positive energy balance and higher insulin sensitivity. Administration of TZD increased blood concentrations of glucose, insulin, and beta-hydroxybutyrate (BHBA) at 2 to 4 weeks after diet initiation, while the concentration of NEFA and adiponectin (ADIPOQ) remained unchanged during TZD. The TZD upregulated the mRNA expression of PPARG and its targets FASN and SREBF1 in SAT, but also SUMO1 and UBC9 which encode sumoylation proteins known to down-regulate PPARG expression and curtail adipogenesis. Therefore, a post-translational response to control PPARG gene expression in SAT could be a counteregulatory mechanism to restrain adipogenesis. The OVE cows had greater expression of the insulin sensitivity-related genes IRS1, SLC2A4, INSR, SCD, INSIG1, DGAT2, and ADIPOQ in SAT. In skeletal muscle, where PPARA and its targets orchestrate

  12. Roles of calcium and IP3 in impaired colon contractility of rats following multiple organ dysfunction syndrome

    Directory of Open Access Journals (Sweden)

    C. Zheyu

    2007-10-01

    Full Text Available The purpose of the present study was to explore changes in rat colon motility, and determine the roles of calcium and inositol (1,4,5-triphosphate (IP3 in colon dysmotility induced by multiple organ dysfunction syndrome (MODS caused by bacteria peritonitis. The number of stools, the contractility of the muscle strips and the length of smooth muscle cells (SMC in the colon, the concentration of calcium and IP3 in SMC, and serum nitric oxide were measured. Number of stools, fecal weight, IP3 concentration in SMC and serum nitric oxide concentration were 0.77 ± 0.52 pellets, 2.51 ± 0.39 g, 4.14 ± 2.07 pmol/tube, and 113.95 ± 37.89 µmol/L, respectively, for the MODS group (N = 11 vs 1.54 ± 0.64 pellets, 4.32 ± 0.57 g, 8.19 ± 3.11 pmol/tube, and 37.42 ± 19.56 µmol/L for the control group (N = 20; P < 0.05. After treatment with 0.1 mM acetylcholine and 0.1 M potassium chloride, the maximum contraction stress of smooth muscle strips, the length of SMC and the changes of calcium concentration were 593 ± 81 and 458 ± 69 g/cm³, 48.1 ± 11.8 and 69.2 ± 15.7 µM, 250 ± 70 and 167 ± 48%, respectively, for the control group vs 321 ± 53 and 284 ± 56 g/cm³, 65.1 ± 18.5 and 87.2 ± 23.7 µM, 127 ± 35 and 112 ± 35% for the MODS group (P < 0.05. Thus, colon contractility was decreased in MODS, a result possibly related to reduced calcium concentration and IP3 in SMC.

  13. Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats

    OpenAIRE

    Iagher Fabiola; Aikawa Julia; Rocha Ricelli ER; Machado Juliano; Kryczyk Marcelo; Schiessel Dalton; Borghetti Gina; Yamaguchi Adriana A; Pequitto Danielle CT; Coelho Isabela; Brito Gleisson AP; Yamazaki Ricardo K; Naliwaiko Katya; Tanhoffer Ricardo A; Nunes Everson A

    2011-01-01

    Abstract Background Obesity is commonly associated with diabetes, cardiovascular diseases and cancer. The purpose of this study was to determinate the effect of a lower dose of fish oil supplementation on insulin sensitivity, lipid profile, and muscle metabolism in obese rats. Methods Monosodium glutamate (MSG) (4 mg/g body weight) was injected in neonatal Wistar male rats. Three-month-old rats were divided in normal-weight control group (C), coconut fat-treated normal weight group (CO), fish...

  14. The concentration of adrenaline and noradrenaline in the serum of dogs under the influence of calcium channels blockers

    Directory of Open Access Journals (Sweden)

    Milanović Tamara

    2015-01-01

    Full Text Available The most important characteristic of calcium channels is selective regulation of slow incoming stream of calcium into the cell tissue providing the slow increasement of action potential. Such tissues include smooth muscles of blood vessels, cardiocytes and heart noduses (AV and SA node. Different calcium antagonists have different effects on previous tissues due to their different chemical formula. Verapamile, Nifedipin and Diltiazem are the most frequently used of all. Their commonest characteristic is blocking the calcium channels causing vasodilatation of blood vessels as well as negative inotropic and chronotropic influence. By blocking the incoming calcium through slow channels of myofibrils of smooth muscles, the antagonists of calcium decrease the quantity of available calcium for contraction which causes vasodilatation. The most famous and most frequently used calcium antagonist is Verapamile. In terms of electrophysiology, Verapamile inhibits action potentials of heart noduses, especially the AV node, where the slow incoming of calcium is the most important for depolarization. Prolongation of the efective refractory period of SA node causes the heart frequency decreasement while prolongation of the effective refractory period of AV node slows down the work of chambers in case of flater and fibrillation of atriums. The molecules of calcium-bonding protein called kalmodulin are located in synaptic endings. Each kalmodulin can bond four calcium ions providing transfer into active calcium-kalmodulin complex which activates the kinase protein. Activated kinase protein starts the exocytosis of neurotransmitters into synaptic gap. Apart from activating kinase protein, calcium-kalmodulin complex also starts the activity of calcium pump presynaptic membrane which pumps calcium out of presynaptic ending stopping the further exocytosis of neurotransmitters into synaptic gap. Taking into consideration the fact that opening the calcium channels on

  15. Altered calcium pump and secondary deficiency of γ-sarcoglycan and microspan in sarcoplasmic reticulum membranes isolated from δ-sarcoglycan knockout mice

    Science.gov (United States)

    Solares-Pérez, Alhondra; Álvarez, Rocío; Crosbie, Rachelle H.; Vega-Moreno, Jesús; Medina-Monares, Joel; Estrada, Francisco J.; Ortega, Alicia; Coral-Vazquez, Ramón

    2016-01-01

    Sarcoglycans (SGs) and sarcospan (SSPN) are transmembrane proteins of the dystrophin-glycoprotein complex. Mutations in the genes encoding SGs cause many inherited forms of muscular dystrophy. In this study, using purified membranes of wild-type (WT) and δ-SG knockout (KO) mice, we found the specific localization of the SG-SSPN isoforms in transverse tubules (TT) and sarcoplasmic reticulum (SR) membranes. Immunoblotting revealed that the absence of δ-SG isoforms in TT and SR results in a secondary deficiency of γ-SG and µSPN. Our results showed augmented ATP hydrolytic activity, ATP-dependent calcium uptake and passive calcium efflux, probably through SERCA1 in KO compared to WT mice. Furthermore, we found a conformational change in SERCA1 isolated from KO muscle as demonstrated by calorimetric analysis. Following these alterations with mechanical properties, we found an increase in force in KO muscle with the same rate of fatigue but with a decreased fatigue recovery compared to WT. Together our observations suggest, for the first time, that the δ-SG isoforms may stabilize the expression of γ-SG and µSPN in the TT and SR membranes and that this possible complex may play a role in the maintenance of a stable level of resting cytosolic calcium concentration in skeletal muscle. PMID:20638123

  16. Effects of Ginger and Its Constituents on Airway Smooth Muscle Relaxation and Calcium Regulation

    Science.gov (United States)

    Siviski, Matthew E.; Zhang, Yi; Xu, Carrie; Hoonjan, Bhupinder; Emala, Charles W.

    2013-01-01

    The prevalence of asthma has increased in recent years, and is characterized by airway hyperresponsiveness and inflammation. Many patients report using alternative therapies to self-treat asthma symptoms as adjuncts to short-acting and long-acting β-agonists and inhaled corticosteroids (ICS). As many as 40% of patients with asthma use herbal therapies to manage asthma symptoms, often without proven efficacy or known mechanisms of action. Therefore, investigations of both the therapeutic and possible detrimental effects of isolated components of herbal treatments on the airway are important. We hypothesized that ginger and its active components induce bronchodilation by modulating intracellular calcium ([Ca2+]i) in airway smooth muscle (ASM). In isolated human ASM, ginger caused significant and rapid relaxation. Four purified constituents of ginger were subsequently tested for ASM relaxant properties in both guinea pig and human tracheas: [6]-gingerol, [8]-gingerol, and [6]-shogaol induced rapid relaxation of precontracted ASM (100–300 μM), whereas [10]-gingerol failed to induce relaxation. In human ASM cells, exposure to [6]-gingerol, [8]-gingerol, and [6]-shogaol, but not [10]-gingerol (100 μM), blunted subsequent Ca2+ responses to bradykinin (10 μM) and S-(−)-Bay K 8644 (10 μM). In A/J mice, the nebulization of [8]-gingerol (100 μM), 15 minutes before methacholine challenge, significantly attenuated airway resistance, compared with vehicle. Taken together, these novel data show that ginger and its isolated active components, [6]-gingerol, [8]-gingerol, and [6]-shogaol, relax ASM, and [8]-gingerol attenuates airway hyperresponsiveness, in part by altering [Ca2+]i regulation. These purified compounds may provide a therapeutic option alone or in combination with accepted therapeutics, including β2-agonists, in airway diseases such as asthma. PMID:23065130

  17. Exercise induces expression of leukaemia inhibitory factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Broholm, Christa; Mortensen, Ole Hartvig; Nielsen, Søren

    2008-01-01

    the exercise trial. Skeletal muscle LIF mRNA increased immediately after the exercise and declined gradually during recovery. However, LIF protein was unchanged at the investigated time points. Moreover, we tested the hypothesis that LIF mRNA and protein expressions are modulated by calcium (Ca(2+)) in primary...

  18. Skeletal muscle apolipoprotein B expression reduces muscular triglyceride accumulation

    DEFF Research Database (Denmark)

    Bartels, Emil D; Ploug, Thorkil; Størling, Joachim

    2014-01-01

    Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design. In t...... accumulation and attenuates peripheral insulin resistance in obese mice........ In this study, we investigated whether expression of a human apoB transgene affects triglyceride accumulation and insulin sensitivity in skeletal muscle in fat fed obese mice. Results. Expression of apoB and MTP mRNA and the human apoB transgene was seen in skeletal muscle of the transgene mice. Human apo......Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design...

  19. Central projections and entries of capsaicin-sensitive muscle afferents.

    Science.gov (United States)

    Della Torre, G; Lucchi, M L; Brunetti, O; Pettorossi, V E; Clavenzani, P; Bortolami, R

    1996-03-25

    The entry pathway and central distribution of A delta and C muscle afferents within the central nervous system (CNS) were investigated by combining electron microscopy and electrophysiological analysis after intramuscular injection of capsaicin. The drug was injected into the rat lateral gastrocnemius (LG) and extraocular (EO) muscles. The compound action potentials of LG nerve and the evoked field potentials recorded in semilunar ganglion showed an immediate and permanent reduction in A delta and C components. The morphological data revealed degenerating unmyelinated axons and terminals in the inner sublamina II and in the border of laminae I-II of the dorsal horn at L4-L5 and C1-C2 (subnucleus caudalis trigemini) spinal cord segments. Most degenerating terminals were the central bouton (C) of type I and II synaptic glomeruli. Furthermore, degenerating peripheral axonal endings (V2) presynaptic to normal C were found. Since V2 were previously found degenerated after cutting the oculomotor nerve (ON) or L4 ventral root, we conclude that some A delta and C afferents from LG and EO muscles entering the CNS by ON or ventral roots make axoaxonic synapses on other primary afferents to promote an afferent control of sensory input.

  20. [Calcium suppletion for patients who use gastric acid inhibitors: calcium citrate or calcium carbonate?].

    NARCIS (Netherlands)

    Jonge, H.J. de; Gans, R.O.; Huls, G.A.

    2012-01-01

    Various calcium supplements are available for patients who have an indication for calcium suppletion. American guidelines and UpToDate recommend prescribing calcium citrate to patients who use antacids The rationale for this advice is that water-insoluble calcium carbonate needs acid for adequate

  1. Mitochondria in the Aging Muscles of Flies and Mice: New Perspectives for Old Characters

    Directory of Open Access Journals (Sweden)

    Andrea del Campo

    2016-01-01

    Full Text Available Sarcopenia is the loss of muscle mass accompanied by a decrease in muscle strength and resistance and is the main cause of disability among the elderly. Muscle loss begins long before there is any clear physical impact in the senior adult. Despite all this, the molecular mechanisms underlying muscle aging are far from being understood. Recent studies have identified that not only mitochondrial metabolic dysfunction but also mitochondrial dynamics and mitochondrial calcium uptake could be involved in the degeneration of skeletal muscle mass. Mitochondrial homeostasis influences muscle quality which, in turn, could play a triggering role in signaling of systemic aging. Thus, it has become apparent that mitochondrial status in muscle cells could be a driver of whole body physiology and organismal aging. In the present review, we discuss the existing evidence for the mitochondria related mechanisms underlying the appearance of muscle aging and sarcopenia in flies and mice.

  2. Hydrostatic Pressure–Induced Release of Stored Calcium in Cultured Rat Optic Nerve Head Astrocytes

    Science.gov (United States)

    Mandal, Amritlal; Delamere, Nicholas A.

    2010-01-01

    Purpose. Elevated intraocular pressure is associated with glaucomatous optic nerve damage. Other investigators have shown functional changes in optic nerve head astrocytes subjected to elevated hydrostatic pressure (HP) for 1 to 5 days. Recently, the authors reported ERK1/2, p90RSK and NHE1 phosphorylation after 2 hours. Here they examine calcium responses at the onset of HP to determine what precedes ERK1/2 phosphorylation. Methods. Cytoplasmic calcium concentration ([Ca2+]i) was measured in cultured rat optic nerve astrocytes loaded with fura-2. The cells were placed in a closed imaging chamber and subjected to an HP increase of 15 mm Hg. Protein phosphorylation was detected by Western blot analysis. Results. The increase of HP caused an immediate slow increase in [Ca2+]i. The response persisted in calcium-free solution and when nickel chloride (4 mM) was added to suppress channel-mediated calcium entry. Previous depletion of the ER calcium stores by cyclopiazonic acid abolished the HP-induced calcium level increase. The HP-induced increase persisted in cells exposed to xestospongin C, an inhibitor of IP3R-mediated calcium release. In contrast, ryanodine receptor (RyR) antagonist ruthenium red (10 μM) or dantrolene (25 μM) inhibited the HP-induced calcium increase. The HP-induced calcium increase was abolished when ryanodine-sensitive calcium stores were pre-depleted with caffeine (3 mM). HP caused ERK1/2 phosphorylation. The magnitude of the ERK1/2 phosphorylation response was reduced by ruthenium red and dantrolene. Conclusions. Increasing HP causes calcium release from a ryanodine-sensitive cytoplasmic store and subsequent ERK1/2 activation. Calcium store release appears to be a required early step in the initial astrocyte response to an HP increase. PMID:20071675

  3. The effect of mitochondrial inhibitors on calcium homeostasis in tumor mast cells

    International Nuclear Information System (INIS)

    Mohr, F.C.; Fewtrell, C.

    1990-01-01

    The depletion of intracellular ATP by mitochondrial inhibitors in a glucose-free saline solution inhibited antigen-stimulated 45Ca uptake, the rise in cytoplasmic calcium, measured by fura-2, and secretion in rat basophilic leukemia cells. Lowering the intracellular ATP concentration also released calcium from an intracellular store and made further 45Ca efflux from the cells unresponsive to subsequent antigen stimulation. Antigen-stimulated 45Ca efflux could be restored by the addition of glucose. The ATP-sensitive calcium store appeared to be the same store that releases calcium in response to antigen. In contrast, intracellular ATP was not lowered, and antigen-stimulated secretion was unaffected by mitochondrial inhibitors, provided that glucose was present in the bathing solution. Similarly, antigen-stimulated 45Ca uptake, 45Ca efflux, and the rise in free ionized calcium were unaffected by individual mitochondrial inhibitors in the presence of glucose. However, when the respiratory chain inhibitor antimycin A was used in combination with the ATP synthetase inhibitor oligomycin in the presence of glucose, antigen-stimulated 45Ca uptake was inhibited, whereas the rise in free ionized calcium and secretion were unaffected. Also, antigen-induced depolarization (an indirect measurement of Ca2+ influx across the plasma membrane) was not affected. The inhibition of antigen-stimulated 45Ca uptake could, however, be overcome if a high concentration of the Ca2+ buffer quin2 was present in the cells to buffer the incoming 45Ca. These results suggest that in fully functional rat basophilic leukemia cells the majority of the calcium entering in response to antigen stimulation is initially buffered by a calcium store sensitive to antimycin A and oligomycin, presumably the mitochondria

  4. Calcium carbonate electronic-insulating layers improve the charge collection efficiency of tin oxide photoelectrodes in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Shaikh, Shoyebmohamad F.; Mane, Rajaram S.; Hwang, Yun Jeong; Joo, Oh-Shim

    2015-01-01

    In dye-sensitized solar cells (DSSCs), a surface passivation layer has been employed on the tin oxide (SnO 2 ) photoanodes to enhance the charge collection efficiency, and thus the power conversion efficiency. Herein, we demonstrate that the electronic-insulating layering of calcium carbonate (CaCO 3 ) can improve the charge collection efficiency in dye-sensitized solar cells designed with photoanodes. In order to evaluate the effectiveness of CaCO 3 layering, both layered and pristine SnO 2 photoanodes are characterized with regard to their structures, morphologies, and photo-electrochemical measurements. The SnO 2 -6L CaCO 3 photoanode has demonstrated as high as 3.5% power conversion efficiency; 3.5-fold greater than that of the pristine SnO 2 photoanode. The enhancement in the power conversion efficiency is corroborated with the number of the dye molecules, the passivation of surface states, a negative shift in the conduction band position, and the reduced electron recombination rate of photoelectrons following the coating of the CaCO 3 surface layer

  5. Local and Systemic Changes in Pain Sensitivity After 4 Weeks of Calf Muscle Stretching in a Nonpainful Population

    DEFF Research Database (Denmark)

    Bartholdy, Cecilie; Zangger, Graziella; Hansen, Lisbeth

    2016-01-01

    BACKGROUND: Stretching is often used in clinical practice for a variety of purposes, including pain therapy. The possible mechanism behind the effect of stretching remains to be clarified. AIM: To investigate whether 4 weeks of unilateral stretching of the calf muscles would affect local...... and central pain sensitivity. METHOD: This study was a randomized assessor-blinded clinical study. Healthy participants (age 18 to 40) were included and randomized. Participants in the intervention group were instructed to perform 2 stretching exercises targeting the calf muscles; 3 times 30 seconds, 7 days...... a week for 4 weeks on the dominant leg. Participants in the control group were instructed not to do any stretching for 4 weeks. Pressure pain threshold (PPT) and temporal summation (TS) of pressure pain were measured on the stretched calf, the contra-lateral calf, and contra-lateral lower arm using...

  6. The Kinetics of Myosin Light Chain Kinase Activation of Smooth Muscle Myosin in an In Vitro Model System

    OpenAIRE

    Hong, Feng; Facemyer, Kevin C.; Carter, Michael S.; Jackson, Del R.; Haldeman, Brian D.; Ruana, Nick; Sutherland, Cindy; Walsh, Michael P.; Cremo, Christine R.; Baker, Josh E.

    2013-01-01

    During activation of smooth muscle contraction, one myosin light chain kinase (MLCK) molecule rapidly phosphorylates many smooth muscle myosin (SMM) molecules, suggesting that muscle activation rates are influenced by the kinetics of MLCK-SMM interactions. To determine the rate-limiting step underlying activation of SMM by MLCK, we measured the kinetics of calcium-calmodulin (Ca2+-CaM)-MLCK-mediated SMM phosphorylation and the corresponding initiation of SMM-based F-actin motility in an in vi...

  7. Distribution of TTX-sensitive voltage-gated sodium channels in primary sensory endings of mammalian muscle spindles.

    Science.gov (United States)

    Carrasco, Dario I; Vincent, Jacob A; Cope, Timothy C

    2017-04-01

    Knowledge of the molecular mechanisms underlying signaling of mechanical stimuli by muscle spindles remains incomplete. In particular, the ionic conductances that sustain tonic firing during static muscle stretch are unknown. We hypothesized that tonic firing by spindle afferents depends on sodium persistent inward current (INaP) and tested for the necessary presence of the appropriate voltage-gated sodium (NaV) channels in primary sensory endings. The NaV 1.6 isoform was selected for both its capacity to produce INaP and for its presence in other mechanosensors that fire tonically. The present study shows that NaV 1.6 immunoreactivity (IR) is concentrated in heminodes, presumably where tonic firing is generated, and we were surprised to find NaV 1.6 IR strongly expressed also in the sensory terminals, where mechanotransduction occurs. This spatial pattern of NaV 1.6 IR distribution was consistent for three mammalian species (rat, cat, and mouse), as was tonic firing by primary spindle afferents. These findings meet some of the conditions needed to establish participation of INaP in tonic firing by primary sensory endings. The study was extended to two additional NaV isoforms, selected for their sensitivity to TTX, excluding TTX-resistant NaV channels, which alone are insufficient to support firing by primary spindle endings. Positive immunoreactivity was found for NaV 1.1 , predominantly in sensory terminals together with NaV 1.6 and for NaV 1.7 , mainly in preterminal axons. Differential distribution in primary sensory endings suggests specialized roles for these three NaV isoforms in the process of mechanosensory signaling by muscle spindles. NEW & NOTEWORTHY The molecular mechanisms underlying mechanosensory signaling responsible for proprioceptive functions are not completely elucidated. This study provides the first evidence that voltage-gated sodium channels (NaVs) are expressed in the spindle primary sensory ending, where NaVs are found at every site

  8. Vitamin D and muscle function in the elderly: the elixir of youth?

    Science.gov (United States)

    Girgis, Christian M

    2014-11-01

    Circumstantial evidence suggests that vitamin D deficiency may contribute to age-related changes in skeletal muscle. This review discusses recent clinical trials examining effects of vitamin D on muscle function in the elderly, and poses the important question: can vitamin D reverse muscle ageing? Observational studies report an association between vitamin D and muscle atrophy/weakness in elderly subjects. Interventional studies suggest that frail, elderly subjects may benefit from vitamin D supplementation by displaying reduced falls, improved muscle function and increased muscle fibre size. However, meta-analyses do not report convincing effects of vitamin D in the elderly. This may be because of multiple factors including lack of standardized endpoints for muscle function, variable study design and different doses of vitamin D supplementation amongst these studies. The evidence base is therefore inconsistent. Vitamin D deficiency may exacerbate ageing of skeletal muscle. However, current evidence that vitamin D supplementation reverses age-related muscle dysfunction is equivocal and does not justify stringent vitamin D targets in the elderly. Until these issues are clarified, the safest option is to aim for conservative vitamin D targets that are sufficient for normal calcium homeostasis.

  9. Generation of a Homozygous Transgenic Rat Strain Stably Expressing a Calcium Sensor Protein for Direct Examination of Calcium Signaling.

    Science.gov (United States)

    Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Pergel, Enikő; Bősze, Zsuzsanna; Bender, Balázs; Vajdovich, Péter; Tóvári, József; Homolya, László; Szakács, Gergely; Héja, László; Enyedi, Ágnes; Sarkadi, Balázs; Apáti, Ágota; Orbán, Tamás I

    2015-08-03

    In drug discovery, prediction of selectivity and toxicity require the evaluation of cellular calcium homeostasis. The rat is a preferred laboratory animal for pharmacology and toxicology studies, while currently no calcium indicator protein expressing rat model is available. We established a transgenic rat strain stably expressing the GCaMP2 fluorescent calcium sensor by a transposon-based methodology. Zygotes were co-injected with mRNA of transposase and a CAG-GCaMP2 expressing construct, and animals with one transgene copy were pre-selected by measuring fluorescence in blood cells. A homozygous rat strain was generated with high sensor protein expression in the heart, kidney, liver, and blood cells. No pathological alterations were found in these animals, and fluorescence measurements in cardiac tissue slices and primary cultures demonstrated the applicability of this system for studying calcium signaling. We show here that the GCaMP2 expressing rat cardiomyocytes allow the prediction of cardiotoxic drug side-effects, and provide evidence for the role of Na(+)/Ca(2+) exchanger and its beneficial pharmacological modulation in cardiac reperfusion. Our data indicate that drug-induced alterations and pathological processes can be followed by using this rat model, suggesting that transgenic rats expressing a calcium-sensitive protein provide a valuable system for pharmacological and toxicological studies.

  10. Note: Inhibiting bottleneck corrosion in electrical calcium tests for ultra-barrier measurements

    Energy Technology Data Exchange (ETDEWEB)

    Nehm, F., E-mail: frederik.nehm@iapp.de; Müller-Meskamp, L.; Klumbies, H.; Leo, K. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany)

    2015-12-15

    A major failure mechanism is identified in electrical calcium corrosion tests for quality assessment of high-end application moisture barriers. Accelerated calcium corrosion is found at the calcium/electrode junction, leading to an electrical bottleneck. This causes test failure not related to overall calcium loss. The likely cause is a difference in electrochemical potential between the aluminum electrodes and the calcium sensor, resulting in a corrosion element. As a solution, a thin, full-area copper layer is introduced below the calcium, shifting the corrosion element to the calcium/copper junction and inhibiting bottleneck degradation. Using the copper layer improves the level of sensitivity for the water vapor transmission rate (WVTR) by over one order of magnitude. Thin-film encapsulated samples with 20 nm of atomic layer deposited alumina barriers this way exhibit WVTRs of 6 × 10{sup −5} g(H{sub 2}O)/m{sup 2}/d at 38 °C, 90% relative humidity.

  11. N-Acetylcysteine-induced vasodilatation is modulated by KATP channels, Na+/K+-ATPase activity and intracellular calcium concentration: An in vitro study.

    Science.gov (United States)

    Vezir, Özden; Çömelekoğlu, Ülkü; Sucu, Nehir; Yalın, Ali Erdinç; Yılmaz, Şakir Necat; Yalın, Serap; Söğüt, Fatma; Yaman, Selma; Kibar, Kezban; Akkapulu, Merih; Koç, Meryem İlkay; Seçer, Didem

    2017-08-01

    In this study, we aimed to investigate the role of ATP-sensitive potassium (K ATP ) channel, Na + /K + -ATPase activity, and intracellular calcium levels on the vasodilatory effect of N-acetylcysteine (NAC) in thoracic aorta by using electrophysiological and molecular techniques. Rat thoracic aorta ring preparations and cultured thoracic aorta cells were divided into four groups as control, 2mM NAC, 5mM NAC, and 10mM NAC. Thoracic aorta rings were isolated from rats for measurements of relaxation responses and Na + /K + -ATPase activity. In the cultured thoracic aorta cells, we measured the currents of K ATP channel, the concentration of intracellular calcium and mRNA expression level of K ATP channel subunits (KCNJ8, KCNJ11, ABCC8 and ABCC9). The relaxation rate significantly increased in all NAC groups compared to control. Similarly, Na + /K + - ATPase activity also significantly decreased in NAC groups. Outward K ATP channel current significantly increased in all NAC groups compared to the control group. Intracellular calcium concentration decreased significantly in all groups with compared control. mRNA expression level of ABCC8 subunit significantly increased in all NAC groups compared to the control group. Pearson correlation analysis showed that relaxation rate was significantly associated with K ATP current, intracellular calcium concentration, Na + /K + -ATPase activity and mRNA expression level of ABCC8 subunit. Our findings suggest that NAC relaxes vascular smooth muscle cells through a direct effect on K ATP channels, by increasing outward K+ flux, partly by increasing mRNA expression of K ATP subunit ABCC8, by decreasing in intracellular calcium and by decreasing in Na + /K + -ATPase activity. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  12. Patterns of experimentally induced pain in pericranial muscles

    DEFF Research Database (Denmark)

    Schmidt-Hansen, Peter Thede; Svensson, Peter; Jensen, Troels Staehelin

    2006-01-01

    into the masseter muscle (anova: P pain areas (anova: P cervically innervated muscles had significantly different patterns of spread and referral of pain according to trigeminally vs....... cervically innervated dermatomes (P pain patterns and pain sensitivity in different craniofacial muscles in healthy volunteers, which may be of importance for further research on different craniofacial pain conditions.......Nociceptive mechanisms in the craniofacial muscle tissue are poorly understood. The pain pattern in individual pericranial muscles has not been described before. Experimental muscle pain was induced by standardized infusions of 0.2 ml 1 m hypertonic saline into six craniofacial muscles (masseter...

  13. Insulin binding to individual rat skeletal muscles

    International Nuclear Information System (INIS)

    Koerker, D.J.; Sweet, I.R.; Baskin, D.G.

    1990-01-01

    Studies of insulin binding to skeletal muscle, performed using sarcolemmal membrane preparations or whole muscle incubations of mixed muscle or typical red (soleus, psoas) or white [extensor digitorum longus (EDL), gastrocnemius] muscle, have suggested that red muscle binds more insulin than white muscle. We have evaluated this hypothesis using cryostat sections of unfixed tissue to measure insulin binding in a broad range of skeletal muscles; many were of similar fiber-type profiles. Insulin binding per square millimeter of skeletal muscle slice was measured by autoradiography and computer-assisted densitometry. We found a 4.5-fold range in specific insulin tracer binding, with heart and predominantly slow-twitch oxidative muscles (SO) at the high end and the predominantly fast-twitch glycolytic (FG) muscles at the low end of the range. This pattern reflects insulin sensitivity. Evaluation of displacement curves for insulin binding yielded linear Scatchard plots. The dissociation constants varied over a ninefold range (0.26-2.06 nM). Binding capacity varied from 12.2 to 82.7 fmol/mm2. Neither binding parameter was correlated with fiber type or insulin sensitivity; e.g., among three muscles of similar fiber-type profile, the EDL had high numbers of low-affinity binding sites, whereas the quadriceps had low numbers of high-affinity sites. In summary, considerable heterogeneity in insulin binding was found among hindlimb muscles of the rat, which can be attributed to heterogeneity in binding affinities and the numbers of binding sites. It can be concluded that a given fiber type is not uniquely associated with a set of insulin binding parameters that result in high or low binding

  14. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium pantothenate, calcium chloride double salt... FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  15. Influence of temperature on muscle recruitment and muscle function in vivo.

    Science.gov (United States)

    Rome, L C

    1990-08-01

    Temperature has a large influence on the maximum velocity of shortening (Vmax) and maximum power output of muscle (Q10 = 1.5-3). In some animals, maximum performance and maximum sustainable performance show large temperature sensitivities, because these parameters are dependent solely on mechanical power output of the muscles. The mechanics of locomotion (sarcomere length excursions and muscle-shortening velocities, V) at a given speed, however, are precisely the same at all temperatures. Animals compensate for the diminished power output of their muscles at low temperatures by compressing their recruitment order into a narrower range of locomotor speeds, that is, recruiting more muscle fibers and faster fiber types at a given speed. By examining V/Vmax, I calculate that fish at 10 degrees C must recruit 1.53-fold greater fiber cross section than at 20 degrees C. V/Vmax also appears to be an important design constraint in muscle. It sets the lowest V and the highest V over which a muscle can be used effectively. Because the Vmax of carp slow red muscle has a Q10 of 1.6 between 10 and 20 degrees C, the slow aerobic fibers can be used over a 1.6-fold greater range of swim speeds at the warmer temperature. In some species of fish, Vmax can be increased during thermal acclimation, enabling animals to swim at higher speeds.

  16. Characterization of calcium signals in human induced pluripotent stem cell-derived dentate gyrus neuronal progenitors and mature neurons, stably expressing an advanced calcium indicator protein.

    Science.gov (United States)

    Vőfély, Gergő; Berecz, Tünde; Szabó, Eszter; Szebényi, Kornélia; Hathy, Edit; Orbán, Tamás I; Sarkadi, Balázs; Homolya, László; Marchetto, Maria C; Réthelyi, János M; Apáti, Ágota

    2018-04-01

    Pluripotent stem cell derived human neuronal progenitor cells (hPSC-NPCs) and their mature neuronal cell culture derivatives may efficiently be used for central nervous system (CNS) drug screening, including the investigation of ligand-induced calcium signalization. We have established hippocampal NPC cultures derived from human induced PSCs, which were previously generated by non-integrating Sendai virus reprogramming. Using established protocols these NPCs were differentiated into hippocampal dentate gyrus neurons. In order to study calcium signaling without the need of dye loading, we have stably expressed an advanced calcium indicator protein (GCaMP6fast) in the NPCs using the Sleeping Beauty transposon system. We observed no significant effects of the long-term GCaMP6 expression on NPC morphology, gene expression pattern or neural differentiation capacity. In order to compare the functional properties of GCaMP6-expressing neural cells and the corresponding parental cells loaded with calcium indicator dye Fluo-4, a detailed characterization of calcium signals was performed. We found that the calcium signals induced by ATP, glutamate, LPA, or proteases - were similar in these two systems. Moreover, the presence of the calcium indicator protein allowed for a sensitive, repeatable detection of changes in calcium signaling during the process of neurogenesis and neuronal maturation. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Association between statin-associated myopathy and skeletal muscle damage.

    Science.gov (United States)

    Mohaupt, Markus G; Karas, Richard H; Babiychuk, Eduard B; Sanchez-Freire, Verónica; Monastyrskaya, Katia; Iyer, Lakshmanan; Hoppeler, Hans; Breil, Fabio; Draeger, Annette

    2009-07-07

    Many patients taking statins often complain of muscle pain and weakness. The extent to which muscle pain reflects muscle injury is unknown. We obtained biopsy samples from the vastus lateralis muscle of 83 patients. Of the 44 patients with clinically diagnosed statin-associated myopathy, 29 were currently taking a statin, and 15 had discontinued statin therapy before the biopsy (minimal duration of discontinuation 3 weeks). We also included 19 patients who were taking statins and had no myopathy, and 20 patients who had never taken statins and had no myopathy. We classified the muscles as injured if 2% or more of the muscle fibres in a biopsy sample showed damage. Using reverse transcriptase polymerase chain reaction, we evaluated the expression levels of candidate genes potentially related to myocyte injury. Muscle injury was observed in 25 (of 44) patients with myopathy and in 1 patient without myopathy. Only 1 patient with structural injury had a circulating level of creatine phosphokinase that was elevated more than 1950 U/L (10x the upper limit of normal). Expression of ryanodine receptor 3 was significantly upregulated in patients with biopsy evidence of structural damage (1.7, standard error of the mean 0.3). Persistent myopathy in patients taking statins reflects structural muscle damage. A lack of elevated levels of circulating creatine phosphokinase does not rule out structural muscle injury. Upregulation of the expression of ryanodine receptor 3 is suggestive of an intracellular calcium leak.

  18. The influence of dietary microbial phytase and calcium on the accumulation of cadmium in different organs of pigs

    Energy Technology Data Exchange (ETDEWEB)

    Zacharias, B.; Lantzsch, H.J.; Drochner, W. [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Tierernaehrung

    2001-07-01

    A total of 72 barrows (initial body weight 16.7 kg) was used, to evaluate the influence of microbial phytase supplementation alone or in combination with calcium to barley soybean meal diets on the accumulation of cadmium (Cd) in kidney, liver, muscle, brain and bone. The control group received the basal diet with 6 g Ca and a low native Cd concentration of 0.03 mg/kg dry matter (DM). In the experimental groups 2, 3, 4 and 5 dietary cadmium concentration was elevated to 0.78 mg/kg DM. The diet of group 3 was supplemented with 800 U microbial phytase/kg, the diet of group 4 with 6 g Ca/kg. The diet of group 5 contained both supplements. The addition of microbial phytase caused an increase of Cd retention in kidney and liver at 30 and 50 kg body weight. This effect was counteracted by the contemporary addition of calcium. A supplementation of Ca alone showed no effect on the Cd accumulation in kidney and liver. In muscle, brain and bone no effects of phytase and calcium on the accumulation of Cd could be found. (orig.)

  19. Assessing soil calcium depletion following growth and harvesting of Sitka spruce plantation forestry in the acid sensitive Welsh uplands

    Directory of Open Access Journals (Sweden)

    B. Reynolds

    1998-01-01

    Full Text Available A simple mass balance has been used to estimate soil calcium depletion during the growth of a 50 year old Sitka spruce crop on acid, base-poor peaty podzol soils in upland Wales. Growth of the crop will deplete the soil calcium reserve by an amount (205 kg Ca ha-1 approximately equivalent to the exchangeable calcium pool to the bottom of the profile and equal to 14% of the total soil calcium reserve to the bottom of the B horizon. Despite these predictions, measurements of exchangeable calcium show no differences beneath mature forest and acid grassland, implying that i weathering rates in forest soils are greater than long-term estimates and predictions by the PROFILE soil chemistry model ii the trees can access other sources of calcium or iii there are significant errors in the mass balance. Following stem-only harvesting, growth of a 50 year old second rotation crop will lead to further depletion of soil calcium, but this amount (79 kg Ca ha-1, is less than for a second rotation crop following whole-tree harvesting (197 kg Ca ha-1. After the first crop, stem-only harvesting would allow a further 18 rotations before depletion of the total calcium reserve to the bottom of the B horizon. Whole-tree harvesting would allow for seven rotations after the first crop. These calculations assume that all sources of calcium are equally available to the crop. This can only be resolved by dynamic modelling of the calcium cycle at the ecosystem scale based on appropriate field measurements. The potential for significant soil acidification is therefore greater following whole-tree harvesting and, in line with current recommendations (Nisbet et al., 1997, this technique should probably be avoided on acidic, nutrient-poor soils unless remedial measures are included to enhance the soil base cation status.

  20. Data on final calcium concentration in native gel reagents determined accurately through inductively coupled plasma measurements

    Directory of Open Access Journals (Sweden)

    Jeffrey Viviano

    2016-03-01

    Full Text Available In this article we present data on the concentration of calcium as determined by Inductively Coupled Plasma (ICP measurements. Calcium was estimated in the reagents used for native gel electrophoresis of Neuronal Calcium Sensor (NCS proteins. NCS proteins exhibit calcium-dependent mobility shift in native gels. The sensitivity of this shift to calcium necessitated a precise determination of calcium concentrations in all reagents used. We determined the calcium concentrations in different components used along with the samples in the native gel experiments. These were: 20 mM Tris pH 7.5, loading dye and running buffer, with distilled water as reference. Calcium determinations were through ICP measurements. It was found that the running buffer contained calcium (244 nM over the blank. Keywords: Neuronal calcium sensor proteins, Electrophoresis, Mobility shift, Calcium, Magnesium

  1. Telmisartan ameliorates insulin sensitivity by activating the AMPK/SIRT1 pathway in skeletal muscle of obese db/db mice

    Directory of Open Access Journals (Sweden)

    Shiota Asuka

    2012-11-01

    Full Text Available Abstract Background Telmisartan is a well-established angiotensin II type 1 receptor blocker that improves insulin sensitivity in animal models of obesity and insulin resistance, as well as in humans. Telmisartan has been reported to function as a partial agonist of the peroxisome proliferator-activated receptor (PPAR γ, which is also targeted by the nicotinamide adenine dinucleotide (NAD-dependent deacetylase (SIRT1. Here, we investigated the pathways through which telmisartan acts on skeletal muscle, in vitro as well as in vivo. Methods Nine-week-old male db/db mice were fed a 60% high-fat diet, with orally administrated either vehicle (carboxymethyl-cellulose, CMC, 5 mg/kg telmisartan, or 5 mg/kg telmisartan and 1 mg/kg GW9662, a selective irreversible antagonist of PPARγ, for 5 weeks. Effects of telmisartan on Sirt1 mRNA, AMPK phosphorylation, and NAD+/NADH ratio were determined in C2C12 cultured myocytes. Results and discussion Telmisartan treatment improved insulin sensitivity in obese db/db mice fed a high-fat diet and led to reduction in the size of hypertrophic pancreatic islets in these mice. Moreover, in vitro treatment with telmisartan led to increased expression of Sirt1 mRNA in C2C12 skeletal muscle cells; the increase in Sirt1 mRNA in telmisartan-treated C2C12 myoblasts occurred concomitantly with an increase in AMPK phosphorylation, an increase in NAD+/NADH ratio, and increases in the mRNA levels of PGC1α, FATP1, ACO, and GLUT4. Conclusions Our results indicate that telmisartan acts through a PPARγ-independent pathway, but at least partially exerts its effects by acting directly on skeletal muscle AMPK/SIRT1 pathways.

  2. Long-term rates of mitochondrial protein synthesis are increased in mouse skeletal muscle with high-fat feeding regardless of insulin-sensitizing treatment.

    Science.gov (United States)

    Newsom, Sean A; Miller, Benjamin F; Hamilton, Karyn L; Ehrlicher, Sarah E; Stierwalt, Harrison D; Robinson, Matthew M

    2017-11-01

    Skeletal muscle mitochondrial protein synthesis is regulated in part by insulin. The development of insulin resistance with diet-induced obesity may therefore contribute to impairments to protein synthesis and decreased mitochondrial respiration. Yet the impact of diet-induced obesity and insulin resistance on mitochondrial energetics is controversial, with reports varying from decreases to increases in mitochondrial respiration. We investigated the impact of changes in insulin sensitivity on long-term rates of mitochondrial protein synthesis as a mechanism for changes to mitochondrial respiration in skeletal muscle. Insulin resistance was induced in C57BL/6J mice using 4 wk of a high-fat compared with a low-fat diet. For 8 additional weeks, diets were enriched with pioglitazone to restore insulin sensitivity compared with nonenriched control low-fat or high-fat diets. Skeletal muscle mitochondrial protein synthesis was measured using deuterium oxide labeling during weeks 10-12 High-resolution respirometry was performed using palmitoyl-l-carnitine, glutamate+malate, and glutamate+malate+succinate as substrates for mitochondria isolated from quadriceps. Mitochondrial protein synthesis and palmitoyl- l-carnitine oxidation were increased in mice consuming a high-fat diet, regardless of differences in insulin sensitivity with pioglitazone treatment. There was no effect of diet or pioglitazone treatment on ADP-stimulated respiration or H 2 O 2 emission using glutamate+malate or glutamate+malate+succinate. The results demonstrate no impairments to mitochondrial protein synthesis or respiration following induction of insulin resistance. Instead, mitochondrial protein synthesis was increased with a high-fat diet and may contribute to remodeling of the mitochondria to increase lipid oxidation capacity. Mitochondrial adaptations with a high-fat diet appear driven by nutrient availability, not intrinsic defects that contribute to insulin resistance. Copyright © 2017 the

  3. Changes in calsequestrin, TNF-α, TGF-β and MyoD levels during the progression of skeletal muscle dystrophy in mdx mice: a comparative analysis of the quadriceps, diaphragm and intrinsic laryngeal muscles.

    Science.gov (United States)

    Barros Maranhão, Juliana; de Oliveira Moreira, Drielen; Maurício, Adriana Fogagnolo; de Carvalho, Samara Camaçari; Ferretti, Renato; Pereira, Juliano Alves; Santo Neto, Humberto; Marques, Maria Julia

    2015-10-01

    In Duchenne muscular dystrophy (DMD), the search for new biomarkers to follow the evolution of the disease is of fundamental importance in the light of the evolving gene and pharmacological therapies. In addition to the lack of dystrophin, secondary events including changes in calcium levels, inflammation and fibrosis greatly contribute to DMD progression and the molecules involved in these events may represent potential biomarkers. In this study, we performed a comparative evaluation of the progression of dystrophy within muscles that are differently affected by dystrophy (diaphragm; DIA and quadriceps; QDR) or spared (intrinsic laryngeal muscles) using the mdx mice model of DMD. We assessed muscle levels of calsequestrin (calcium-related protein), tumour necrosis factor (TNF-α; pro-inflammatory cytokine), tumour growth factor (TGF-β; pro-fibrotic factor) and MyoD (muscle proliferation) vs. histopathology at early (1 and 4 months of age) and late (9 months of age) stages of dystrophy. Fibrosis was the primary feature in the DIA of mdx mice (9 months: 32% fibrosis), which was greater than in the QDR (9 months: 0.6% fibrosis). Muscle regeneration was the primary feature in the QDR (9 months: 90% of centrally nucleated fibres areas vs. 33% in the DIA). The QDR expressed higher levels of calsequestrin than the DIA. Laryngeal muscles showed normal levels of TNF-α, TGF-β and MyoD. A positive correlation between histopathology and cytokine levels was observed only in the diaphragm, suggesting that TNF-α and TGF-β serve as markers of dystrophy primarily for the diaphragm. © 2015 The Authors. International Journal of Experimental Pathology © 2015 International Journal of Experimental Pathology.

  4. Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells.

    Science.gov (United States)

    Huang, Jinghui; Ye, Zhengxu; Hu, Xueyu; Lu, Lei; Luo, Zhuojing

    2010-04-01

    Production of nerve growth factor (NGF) from Schwann cells (SCs) progressively declines in the distal stump, if axonal regeneration is staggered across the suture site after peripheral nerve injuries. This may be an important factor limiting the outcome of nerve injury repair. Thus far, extensive efforts are devoted to modulating NGF production in cultured SCs, but little has been achieved. In the present in vitro study, electrical stimulation (ES) was attempted to stimulate cultured SCs to release NGF. Our data showed that ES was capable of enhancing NGF release from cultured SCs. An electrical field (1 Hz, 5 V/cm) caused a 4.1-fold increase in NGF release from cultured SCs. The ES-induced NGF release is calcium dependent. Depletion of extracellular or/and intracellular calcium partially/ completely abolished the ES-induced NGF release. Further pharmacological interventions showed that ES induces calcium influx through T-type voltage-gated calcium channels and mobilizes calcium from 1, 4, 5-trisphosphate-sensitive stores and caffeine/ryanodine-sensitive stores, both of which contributed to the enhanced NGF release induced by ES. In addition, a calcium-triggered exocytosis mechanism was involved in the ES-induced NGF release from cultured SCs. These findings show the feasibility of using ES in stimulating SCs to release NGF, which holds great potential in promoting nerve regeneration by enhancing survival and outgrowth of damaged nerves, and is of great significance in nerve injury repair and neuronal tissue engineering.

  5. Determination of percent calcium carbonate in calcium chromate

    International Nuclear Information System (INIS)

    Middleton, H.W.

    1979-01-01

    The precision, accuracy and reliability of the macro-combustion method is superior to the Knorr alkalimetric method, and it is faster. It also significantly reduces the calcium chromate waste accrual problem. The macro-combustion method has been adopted as the official method for determination of percent calcium carbonate in thermal battery grade anhydrous calcium chromate and percent calcium carbonate in quicklime used in the production of calcium chromate. The apparatus and procedure can be used to measure the percent carbonate in inorganic materials other than calcium chromate. With simple modifications in the basic apparatus and procedure, the percent carbon and hydrogen can be measured in many organic material, including polymers and polymeric formulations. 5 figures, 5 tables

  6. Regulation of Bicarbonate Secretion in Marine Fish Intestine by the Calcium-Sensing Receptor

    Directory of Open Access Journals (Sweden)

    Sílvia F. Gregório

    2018-04-01

    Full Text Available In marine fish, high epithelial intestinal HCO3− secretion generates luminal carbonate precipitates of divalent cations that play a key role in water and ion homeostasis. The present study was designed to expose the putative role for calcium and the calcium-sensing receptor (CaSR in the regulation of HCO3− secretion in the intestine of the sea bream (Sparus aurata L.. Effects on the expression of the CaSR in the intestine were evaluated by qPCR and an increase was observed in the anterior intestine in fed fish compared with unfed fish and with different regions of intestine. CaSR expression reflected intestinal fluid calcium concentration. In addition, anterior intestine tissue was mounted in Ussing chambers to test the putative regulation of HCO3− secretion in vitro using the anterior intestine. HCO3− secretion was sensitive to varying calcium levels in luminal saline and to calcimimetic compounds known to activate/block the CaSR i.e., R 568 and NPS-2143. Subsequent experiments were performed in intestinal sacs to measure water absorption and the sensitivity of water absorption to varying luminal levels of calcium and calcimimetics were exposed as well. It appears, that CaSR mediates HCO3− secretion and water absorption in marine fish as shown by responsiveness to calcium levels and calcimimetic compounds.

  7. Properties of slow- and fast-twitch muscle fibres in a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Atkin, Julie D; Scott, Rachel L; West, Jan M; Lopes, Elizabeth; Quah, Alvin K J; Cheema, Surindar S

    2005-05-01

    This investigation was undertaken to determine if there are altered histological, pathological and contractile properties in presymptomatic or endstage diseased muscle fibres from representative slow-twitch and fast-twitch muscles of SOD1 G93A mice in comparison to wildtype mice. In presymptomatic SOD1 G93A mice, there was no detectable peripheral dysfunction, providing evidence that muscle pathology is secondary to motor neuronal dysfunction. At disease endstage however, single muscle fibre contractile analysis demonstrated that fast-twitch muscle fibres and neuromuscular junctions are preferentially affected by amyotrophic lateral sclerosis-induced denervation, being unable to produce the same levels of force when activated by calcium as muscle fibres from their age-matched controls. The levels of transgenic SOD1 expression, aggregation state and activity were also examined in these muscles but there no was no preference for muscle fibre type. Hence, there is no simple correlation between SOD1 protein expression/activity, and muscle fibre type vulnerability in SOD1 G93A mice.

  8. Contraction-induced lipolysis is not impaired by inhibition of hormone-sensitive lipase in skeletal muscle

    DEFF Research Database (Denmark)

    Alsted, Thomas Junker; Ploug, Thorkil; Prats Gavalda, Clara

    2013-01-01

    activity. We investigated lipolysis of IMTG in soleus muscles electrically-stimulated to contract ex vivo during acute pharmacological inhibition of HSL in rat muscles and in muscles from HSL-KO mice. Measurements of IMTG are complicated by the presence of adipocytes located between the muscle fibers....... To circumvent the problem with this contamination we analyzed intramyocellular lipid droplet content histochemically. At maximal inhibition of HSL in rat muscles, contraction-induced breakdown of IMTG was identical to that seen in control muscles (p...

  9. Physical inactivity and muscle oxidative capacity in humans.

    Science.gov (United States)

    Gram, Martin; Dahl, Rannvá; Dela, Flemming

    2014-01-01

    Physical inactivity is associated with a high prevalence of type 2 diabetes and is an independent predictor of mortality. It is possible that the detrimental effects of physical inactivity are mediated through a lack of adequate muscle oxidative capacity. This short review will cover the present literature on the effects of different models of inactivity on muscle oxidative capacity in humans. Effects of physical inactivity include decreased mitochondrial content, decreased activity of oxidative enzymes, changes in markers of oxidative stress and a decreased expression of genes and contents of proteins related to oxidative phosphorylation. With such a substantial down-regulation, it is likely that a range of adenosine triphosphate (ATP)-dependent pathways such as calcium signalling, respiratory capacity and apoptosis are affected by physical inactivity. However, this has not been investigated in humans, and further studies are required to substantiate this hypothesis, which could expand our knowledge of the potential link between lifestyle-related diseases and muscle oxidative capacity. Furthermore, even though a large body of literature reports the effect of physical training on muscle oxidative capacity, the adaptations that occur with physical inactivity may not always be opposite to that of physical training. Thus, it is concluded that studies on the effect of physical inactivity per se on muscle oxidative capacity in functional human skeletal muscle are warranted.

  10. Modulation effects of cordycepin on the skeletal muscle contraction of toad gastrocnemius muscle.

    Science.gov (United States)

    Yao, Li-Hua; Meng, Wei; Song, Rong-Feng; Xiong, Qiu-Ping; Sun, Wei; Luo, Zhi-Qiang; Yan, Wen-Wen; Li, Yu-Ping; Li, Xin-Ping; Li, Hai-Hang; Xiao, Peng

    2014-03-05

    Isolated toad gastrocnemius muscle is a typical skeletal muscle tissue that is frequently used to study the motor system because it is an important component of the motor system. This study investigates the effects of cordycepin on the skeletal muscle contractile function of isolated toad gastrocnemius muscles by electrical field stimulation. Results showed that cordycepin (20 mg/l to 100 mg/l) significantly decreased the contractile responses in a concentration-dependent manner. Cordycepin (50 mg/l) also produced a rightward shift of the contractile amplitude-stimulation intensity relationship, as indicated by the increases in the threshold stimulation intensity and the saturation stimulation intensity. However, the most notable result was that the maximum amplitude of the muscle contractile force was significantly increased under cordycepin application (122±3.4% of control). This result suggests that the skeletal muscle contractile function and muscle physical fitness to the external stimulation were improved by the decreased response sensitivity in the presence of cordycepin. Moreover, cordycepin also prevented the repetitive stimulation-induced decrease in muscle contractile force and increased the recovery amplitude and recovery ratio of muscle contraction. However, these anti-fatigue effects of cordycepin on muscle contraction during long-lasting muscle activity were absent in Ca2+-free medium or in the presence of all Ca2+ channels blocker (0.4 mM CdCl2). These results suggest that cordycepin can positively affect muscle performance and provide ergogenic and prophylactic benefits in decreasing skeletal muscle fatigue. The mechanisms involving excitation-coupled Ca2+ influxes are strongly recommended.

  11. Caffeine and length dependence of staircase potentiation in skeletal muscle.

    Science.gov (United States)

    Rassier, D E; Tubman, L A; MacIntosh, B R

    1998-01-01

    Skeletal muscle sensitivity to Ca2+ is greater at long lengths, and this results in an optimal length for twitch contractions that is longer than optimal length for tetanic contractions. Caffeine abolishes this length dependence of Ca2+ sensitivity. Muscle length (ML) also affects the degree of staircase potentiation. Since staircase potentiation is apparently caused by an increased Ca2+ sensitivity of the myofilaments, we tested the hypothesis that caffeine depresses the length dependence of staircase potentiation. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 10 s of 10-Hz stimulation were analyzed at seven different lengths to evaluate the length dependence of staircase potentiation. In the absence of caffeine, length dependence of Ca2+ sensitivity was observed, and the degree of potentiation after 10-Hz stimulation showed a linear decrease with increased length (DT = 1.47 - 0.05 ML, r2 = 0.95, where DT is developed tension). Length dependence of Ca2+ sensitivity was decreased by caffeine when caffeine was administered in amounts estimated to result in 0.5 and 0.75 mM concentrations. Furthermore, the negative slope of the relationship between staircase potentiation and muscle length was diminished at the lower caffeine dose, and the slope was not different from zero after the higher dose (DT = 1.53 - 0.009 ML, r2 = 0.43). Our study shows that length dependence of Ca2+ sensitivity in intact skeletal muscle is diminished by caffeine. Caffeine also suppressed the length dependence of staircase potentiation, suggesting that the mechanism of this length dependence may be closely related to the mechanism for length dependence of Ca2+ sensitivity.

  12. Muscle type-specific responses to NAD+ salvage biosynthesis promote muscle function in Caenorhabditis elegans.

    Science.gov (United States)

    Vrablik, Tracy L; Wang, Wenqing; Upadhyay, Awani; Hanna-Rose, Wendy

    2011-01-15

    Salvage biosynthesis of nicotinamide adenine dinucleotide (NAD(+)) from nicotinamide (NAM) lowers NAM levels and replenishes the critical molecule NAD(+) after it is hydrolyzed. This pathway is emerging as a regulator of multiple biological processes. Here we probe the contribution of the NAM-NAD(+) salvage pathway to muscle development and function using Caenorhabditis elegans. C. elegans males with mutations in the nicotinamidase pnc-1, which catalyzes the first step of this NAD(+) salvage pathway, cannot mate due to a spicule muscle defect. Multiple muscle types are impaired in the hermaphrodites, including body wall muscles, pharyngeal muscles and vulval muscles. An active NAD(+) salvage pathway is required for optimal function of each muscle cell type. However, we found surprising muscle-cell-type specificity in terms of both the timing and relative sensitivity to perturbation of NAD(+) production or NAM levels. Active NAD(+) biosynthesis during development is critical for function of the male spicule protractor muscles during adulthood, but these muscles can surprisingly do without salvage biosynthesis in adulthood under the conditions examined. The body wall muscles require ongoing NAD(+) salvage biosynthesis both during development and adulthood for maximum function. The vulval muscles do not function in the presence of elevated NAM concentrations, but NAM supplementation is only slightly deleterious to body wall muscles during development or upon acute application in adults. Thus, the pathway plays distinct roles in different tissues. As NAM-NAD(+) biosynthesis also impacts muscle differentiation in vertebrates, we propose that similar complexities may be found among vertebrate muscle cell types. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Exercise Promotes Healthy Aging of Skeletal Muscle.

    Science.gov (United States)

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M; Zierath, Juleen R

    2016-06-14

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Masses of exotic calcium isotopes pin down nuclear forces

    CERN Document Server

    Wienholtz, F; Blaum, K; Borgmann, Ch; Breitenfeldt, M; Cakirli, R B; George, S; Herfurth, F; Holt, J D; Kowalska, M; Kreim, S; Lunney, D; Manea, V; Menéndez, J; Neidherr, D; Rosenbusch, M; Schweikhard, L; Schwenk, A; Simonis, J; Stanja, J; Wolf, R N; Zuber, K

    2013-01-01

    The properties of exotic nuclei on the verge of existence play a fundamental part in our understanding of nuclear interactions. Exceedingly neutron-rich nuclei become sensitive to new aspects of nuclear forces. Calcium, with its doubly magic isotopes $^{40}$Ca and $^{48}$Ca, is an ideal test for nuclear shell evolution, from the valley of stability to the limits of existence. With a closed proton shell, the calcium isotopes mark the frontier for calculations with three-nucleon forces from chiral effective field theory. Whereas predictions for the masses of $^{51}$Ca and $^{52}$Ca have been validated by direct measurements$^4$, it is an open question as to how nuclear masses evolve for heavier calcium isotopes. Here we report the mass determination of the exotic calcium isotopes $^{53}$Ca and $^{54}$Ca, using the multi-reflection time-of-flight mass spectrometer of ISOLTRAP at CERN. The measured masses unambiguously establish a prominent shell closure at neutron number N = 32, in excellent agreement with our t...

  15. Single channel recording of a mitochondrial calcium uniporter.

    Science.gov (United States)

    Wu, Guangyan; Li, Shunjin; Zong, Guangning; Liu, Xiaofen; Fei, Shuang; Shen, Linda; Guan, Xiangchen; Yang, Xue; Shen, Yuequan

    2018-01-29

    Mitochondrial calcium uniporter (MCU) is the pore-forming subunit of the entire uniporter complex and plays an important role in mitochondrial calcium uptake. However, the single channel recording of MCU remains controversial. Here, we expressed and purified different MCU proteins and then reconstituted them into planar lipid bilayers for single channel recording. We showed that MCU alone from Pyronema omphalodes (pMCU) is active with prominent single channel Ca 2+ currents. In sharp contrast, MCU alone from Homo sapiens (hMCU) is inactive. The essential MCU regulator (EMRE) activates hMCU, and therefore, the complex (hMCU-hEMRE) shows prominent single channel Ca 2+ currents. These single channel currents are sensitive to the specific MCU inhibitor Ruthenium Red. Our results clearly demonstrate that active MCU can conduct large amounts of calcium into the mitochondria. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Calcium Nutrition and Extracellular Calcium Sensing: Relevance for the Pathogenesis of Osteoporosis, Cancer and Cardiovascular Diseases

    Science.gov (United States)

    Peterlik, Meinrad; Kállay, Enikoe; Cross, Heide S.

    2013-01-01

    Through a systematic search in Pubmed for literature, on links between calcium malnutrition and risk of chronic diseases, we found the highest degree of evidence for osteoporosis, colorectal and breast cancer, as well as for hypertension, as the only major cardiovascular risk factor. Low calcium intake apparently has some impact also on cardiovascular events and disease outcome. Calcium malnutrition can causally be related to low activity of the extracellular calcium-sensing receptor (CaSR). This member of the family of 7-TM G-protein coupled receptors allows extracellular Ca2+ to function as a “first messenger” for various intracellular signaling cascades. Evidence demonstrates that Ca2+/CaSR signaling in functional linkage with vitamin D receptor (VDR)-activated pathways (i) promotes osteoblast differentiation and formation of mineralized bone; (ii) targets downstream effectors of the canonical and non-canonical Wnt pathway to inhibit proliferation and induce differentiation of colorectal cancer cells; (iii) evokes Ca2+ influx into breast cancer cells, thereby activating pro-apoptotic intracellular signaling. Furthermore, Ca2+/CaSR signaling opens Ca2+-sensitive K+ conductance channels in vascular endothelial cells, and also participates in IP3-dependent regulation of cytoplasmic Ca2+, the key intermediate of cardiomyocyte functions. Consequently, impairment of Ca2+/CaSR signaling may contribute to inadequate bone formation, tumor progression, hypertension, vascular calcification and, probably, cardiovascular disease. PMID:23340319

  17. Group Ia afferents likely contribute to short-latency interlimb reflexes in the human biceps femoris muscle

    DEFF Research Database (Denmark)

    Stevenson, Andrew James Thomas; Kamavuako, Ernest Nlandu; Geertsen, Svend Sparre

    2017-01-01

    amplitudes (4 vs. 8°) at the same 150°/s velocity (p’s > 0.08). Conclusion: Because fast conducting group Ia muscle spindle afferents are sensitive to changes in muscle stretch velocity, while group II spindle afferents are sensitive to changes in amplitude (Grey et al., JPhysiol., 2001; Matthews, Trends...... Neurosci., 1991), group Ia velocity sensitive muscle spindle afferents likely contribute to the short-latency crossed spinal reflexes in the cBF muscle following iKnee joint rotations. This supports the findings for the short-latency crossed responses in the human soleus muscle (Stubbs & Mrachacz...... neurons in humans, with primary contributions from group Ia muscle spindle afferents....

  18. Higher insulin sensitivity in EDL muscle of rats fed a low-protein, high-carbohydrate diet inhibits the caspase-3 and ubiquitin-proteasome proteolytic systems but does not increase protein synthesis.

    Science.gov (United States)

    Dos Santos, Maísa Pavani; Batistela, Emanuele; Pereira, Mayara Peron; Paula-Gomes, Silvia; Zanon, Neusa Maria; Kettelhut, Isis do Carmo; Karatzaferi, Christina; Andrade, Claudia Marlise Balbinotti; de França, Suélem Aparecida; Baviera, Amanda Martins; Kawashita, Nair Honda

    2016-08-01

    Compared with the extensor digitorum longus (EDL) muscle of control rats (C), the EDL muscle of rats fed a low-protein, high-carbohydrate diet (LPHC) showed a 36% reduction in mass. Muscle mass is determined by the balance between protein synthesis and proteolysis; thus, the aim of this work was to evaluate the components involved in these processes. Compared with the muscle from C rats, the EDL muscle from LPHC diet-fed rats showed a reduction (34%) in the in vitro basal protein synthesis and a 22% reduction in the in vitro basal proteolysis suggesting that the reduction in the mass can be associated with a change in the rate of the two processes. Soon after euthanasia, in the EDL muscles of the rats fed the LPHC diet for 15days, the activity of caspase-3 and that of components of the ubiquitin-proteasome system (atrogin-1 content and chymotrypsin-like activity) were decreased. The phosphorylation of p70(S6K) and 4E-BP1, proteins involved in protein synthesis, was also decreased. We observed an increase in the insulin-stimulated protein content of p-Akt. Thus, the higher insulin sensitivity in the EDL muscle of LPHC rats seemed to contribute to the lower proteolysis in LPHC rats. However, even with the higher insulin sensitivity, the reduction in p-E4-BP1 and p70(S6K) indicates a reduction in protein synthesis, showing that factors other than insulin can have a greater effect on the control of protein synthesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Systematic Sensitivity Analysis of Metabolic Controllers During Reductions in Skeletal Muscle Blood Flow

    Science.gov (United States)

    Radhakrishnan, Krishnan; Cabrera, Marco

    2000-01-01

    An acute reduction in oxygen delivery to skeletal muscle is generally associated with profound derangements in substrate metabolism. Given the complexity of the human bioenergetic system and its components, it is difficult to quantify the interaction of cellular metabolic processes to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). Of special interest is the determination of mechanisms relating tissue oxygenation to observed metabolic responses at the tissue, organ, and whole body levels and the quantification of how changes in oxygen availability affect the pathways of ATP synthesis and their regulation. In this study, we apply a previously developed mathematical model of human bioenergetics to study effects of ischemia during periods of increased ATP turnover (e.g., exercise). By using systematic sensitivity analysis the oxidative phosphorylation rate was found to be the most important rate parameter affecting lactate production during ischemia under resting conditions. Here we examine whether mild exercise under ischemic conditions alters the relative importance of pathways and parameters previously obtained.

  20. Longitudinal sensitivity to change of MRI-based muscle cross-sectional area versus isometric strength analysis in osteoarthritic knees with and without structural progression: pilot data from the Osteoarthritis Initiative.

    Science.gov (United States)

    Dannhauer, Torben; Sattler, Martina; Wirth, Wolfgang; Hunter, David J; Kwoh, C Kent; Eckstein, Felix

    2014-08-01

    Biomechanical measurement of muscle strength represents established technology in evaluating limb function. Yet, analysis of longitudinal change suffers from relatively large between-measurement variability. Here, we determine the sensitivity to change of magnetic resonance imaging (MRI)-based measurement of thigh muscle anatomical cross sectional areas (ACSAs) versus isometric strength in limbs with and without structural progressive knee osteoarthritis (KOA), with focus on the quadriceps. Of 625 "Osteoarthritis Initiative" participants with radiographic KOA, 20 had MRI cartilage and radiographic joint space width loss in the right knee isometric muscle strength measurement and axial T1-weighted spin-echo acquisitions of the thigh. Muscle ACSAs were determined from manual segmentation at 33% femoral length (distal to proximal). In progressor knees, the reduction in quadriceps ACSA between baseline and 2-year follow-up was -2.8 ± 7.9 % (standardized response mean [SRM] = -0.35), and it was -1.8 ± 6.8% (SRM = -0.26) in matched, non-progressive KOA controls. The decline in extensor strength was more variable than that in ACSAs, both in progressors (-3.9 ± 20%; SRM = -0.20) and in non-progressive controls (-4.5 ± 28%; SRM = -0.16). MRI-based analysis of quadriceps muscles ACSAs appears to be more sensitive to longitudinal change than isometric extensor strength and is suggestive of greater loss in limbs with structurally progressive KOA than in non-progressive controls.

  1. Effect of calcium chloride concentration on output force in electrical actuator made of sodium alginate gel

    Science.gov (United States)

    Wu, Yuda; Zhao, Gang; Wei, Chengye; Liu, Shuang; Fu, Yu; Liu, Xvxiong

    2018-01-01

    As a kind of artificial muscle intelligent material, the biological gel electric driver has the advantages of low driving voltage, large strain, good biological compatibility, good flexibility, low price, etc. The application prospect is broad and it has high academic value. Alginate, as a common substance in sea, has characteristics of low cost, green and pollution-free. Therefore,this paper obtains biological gel electric actuator by sodium alginate and calcium chloride. Effects on output force of the electric actuator is researched by changing the crosslinking of calcium chloride concentration and the output force enhancement mechanism is analyzed in this paper.

  2. Function of skeletal muscle tissue formed after myoblast transplantation into irradiated mouse muscles.

    Science.gov (United States)

    Wernig, A; Zweyer, M; Irintchev, A

    2000-01-15

    1. Pretreatment of muscles with ionising radiation enhances tissue formation by transplanted myoblasts but little is known about the effects on muscle function. We implanted myoblasts from an expanded, male-donor-derived, culture (i28) into X-ray irradiated (16 Gy) or irradiated and damaged soleus muscles of female syngeneic mice (Balb/c). Three to 6 months later the isometric contractile properties of the muscles were studied in vitro, and donor nuclei were visualised in muscle sections with a Y chromosome-specific DNA probe. 2. Irradiated sham-injected muscles had smaller masses than untreated solei and produced less twitch and tetanic force (all by about 18 %). Injection of 106 myoblasts abolished these deficiencies and innervation appeared normal. 3. Cryodamage of irradiated solei produced muscle remnants with few (1-50) or no fibres. Additional myoblast implantation led to formation of large muscles (25 % above normal) containing numerous small-diameter fibres. Upon direct electrical stimulation, these muscles produced considerable twitch (53 % of normal) and tetanic forces (35 % of normal) but innervation was insufficient as indicated by weak nerve-evoked contractions and elevated ACh sensitivity. 4. In control experiments on irradiated muscles, reinnervation was found to be less complete after botulinum toxin paralysis than after nerve crush indicating that proliferative arrest of irradiated Schwann cells may account for the observed innervation deficits. 5. Irradiation appears to be an effective pretreatment for improving myoblast transplantation. The injected cells can even produce organised contractile tissue replacing whole muscle. However, impaired nerve regeneration limits the functional performance of the new muscle.

  3. Hormone-sensitive lipase (HSL) expression and regulation by epinephrine and exercise in skeletal muscle

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Stallknecht, Bente Merete; Donsmark, Morten

    2002-01-01

    Abstract Triacylglycerol (TG) is stored in lipid droplets in the cytoplasm of skeletal muscle. The energy content of the TG depot is higher than the energy content of the muscle glycogen depot. The enzymatic regulation of intracellular TG hydrolysis in skeletal muscle has not been elucidated...... in the presence of an anti-HSL antibody. The effect of epinephrine could be blocked by propanolol and mimicked by incubation of a crude supernatant from control muscle with the catalytic subunit of cAMP-dependent protein kinase. The effect of contractions was transient as TO activity declined to basal levels...... and contractions were partially additive. In rats training increased epinephrine-stimulated TO activity and HSL concentration in adipose tissue but not in muscle. In humans, at the end of 60 min of exercise muscle, TO activity was increased in healthy, but not in adrenalectomized, subjects. In conclusion, HSL...

  4. Calcium binding to an elastic portion of connectin/titin filaments.

    Science.gov (United States)

    Tatsumi, R; Maeda, K; Hattori, A; Takahashi, K

    2001-01-01

    Da fragment was changed by the binding of calcium ions, connectin filaments could be expected to alter their elasticity during the contraction-relaxation cycle of skeletal muscle.

  5. Muscle Moment Arms and Sensitivity Analysis of a Mouse Hindlimb Musculoskeletal Model

    Science.gov (United States)

    2016-05-12

    musculature in squirrels, rats, and guinea pigs with con- trast-enhanced microCT. Anat Rec (Hoboken) 294, 915–928. Deisseroth K (2011) Optogenetics. Nat...downhill running in mdx mice. Muscle Nerve 43, 878–886. Medler S (2002) Comparative trends in shortening velocity and force production in skeletal muscles

  6. Enhanced muscle glucose metabolism after exercise in the rat

    DEFF Research Database (Denmark)

    Garetto, L P; Richter, Erik; Goodman, M N

    1984-01-01

    glycogen was substantially repleted at the time (30 min postexercise) that glucose metabolism was examined. When rats were run at twice the previous rate (36 m/min), muscle glycogen was still substantially diminished 30 min after the run. At this time the previously noted increase in insulin sensitivity......Thirty minutes after a treadmill run, glucose utilization and glycogen synthesis in perfused rat skeletal muscle are enhanced due to an increase in insulin sensitivity (Richter et al., J. Clin. Invest. 69: 785-793, 1982). The exercise used in these studies was of moderate intensity, and muscle...... was still observed in perfused muscle; however, glucose utilization was also increased in the absence of added insulin (1.5 vs. 4.2 mumol X g-1 X h-1). In contrast 2.5 h after the run, muscle glycogen had returned to near preexercise values, and only the insulin-induced increase in glucose utilization...

  7. Ryanodine receptor gating controls generation of diastolic calcium waves in cardiac myocytes

    Science.gov (United States)

    Petrovič, Pavol; Valent, Ivan; Cocherová, Elena; Pavelková, Jana

    2015-01-01

    The role of cardiac ryanodine receptor (RyR) gating in the initiation and propagation of calcium waves was investigated using a mathematical model comprising a stochastic description of RyR gating and a deterministic description of calcium diffusion and sequestration. We used a one-dimensional array of equidistantly spaced RyR clusters, representing the confocal scanning line, to simulate the formation of calcium sparks. Our model provided an excellent description of the calcium dependence of the frequency of diastolic calcium sparks and of the increased tendency for the production of calcium waves after a decrease in cytosolic calcium buffering. We developed a hypothesis relating changes in the propensity to form calcium waves to changes of RyR gating and tested it by simulation. With a realistic RyR gating model, increased ability of RyR to be activated by Ca2+ strongly increased the propensity for generation of calcium waves at low (0.05–0.1-µM) calcium concentrations but only slightly at high (0.2–0.4-µM) calcium concentrations. Changes in RyR gating altered calcium wave formation by changing the calcium sensitivity of spontaneous calcium spark activation and/or the average number of open RyRs in spontaneous calcium sparks. Gating changes that did not affect RyR activation by Ca2+ had only a weak effect on the propensity to form calcium waves, even if they strongly increased calcium spark frequency. Calcium waves induced by modulating the properties of the RyR activation site could be suppressed by inhibiting the spontaneous opening of the RyR. These data can explain the increased tendency for production of calcium waves under conditions when RyR gating is altered in cardiac diseases. PMID:26009544

  8. Evolution of the Calcium Paradigm: The Relation between Vitamin D, Serum Calcium and Calcium Absorption

    Directory of Open Access Journals (Sweden)

    Borje E. Christopher Nordin

    2010-09-01

    Full Text Available Osteoporosis is the index disease for calcium deficiency, just as rickets/osteomalacia is the index disease for vitamin D deficiency, but there is considerable overlap between them. The common explanation for this overlap is that hypovitaminosis D causes malabsorption of calcium which then causes secondary hyperparathyroidism and is effectively the same thing as calcium deficiency. This paradigm is incorrect. Hypovitaminosis D causes secondary hyperparathyroidism at serum calcidiol levels lower than 60 nmol/L long before it causes malabsorption of calcium because serum calcitriol (which controls calcium absorption is maintained until serum calcidiol falls below 20 nmol/L. This secondary hyperparathyroidism, probably due to loss of a “calcaemic” action of vitamin D on bone first described in 1957, destroys bone and explains why vitamin D insufficiency is a risk factor for osteoporosis. Vitamin D thus plays a central role in the maintenance of the serum (ionised calcium, which is more important to the organism than the preservation of the skeleton. Bone is sacrificed when absorbed dietary calcium does not match excretion through the skin, kidneys and bowel which is why calcium deficiency causes osteoporosis in experimental animals and, by implication, in humans.

  9. Calcium absorption

    International Nuclear Information System (INIS)

    Carlmark, B.; Reizenstein, P.; Dudley, R.A.

    1976-01-01

    The methods most commonly used to measure the absorption and retention of orally administered calcium are reviewed. Nearly all make use of calcium radioisotopes. The magnitude of calcium absorption and retention depends upon the chemical form and amount of calcium administered, and the clinical and nutritional status of the subject; these influences are briefly surveyed. (author)

  10. Radioimmunoassay studies of intestinal calcium-binding protein in the pig. 2. The distribution of intestinal CaBP in pig tissues

    International Nuclear Information System (INIS)

    Arnold, B.M.; Kuttner, M.; Willis, D.M.; Hitchman, A.J.W.; Harrison, J.E.; Murray, T.M.

    1975-01-01

    Using a specific radioimmunoassay for porcine intestinal calcium-binding protein (CaBP), we have measured the concentration of CaBP in the various tissues and organs of normal pigs. Intestinal CaBP was present in highest concentration in the upper small intestine, with lower concentrations in the distal small intestine. Intestinal CaBP was also found, in lower concentrations, in kidney, liver, thyroid, pancreas, and blood. In all other tissues, including parathyroid, bone, skeletal muscle, and brain, CaBP immunoreactivity was undetectable or less than in blood. The elution profile of calcium-binding activity and immunoreactivity from gel filtration analysis of kidney and parathyroid extracts suggest that the calcium-binding protein in the parathyroid gland, and the major calcium-binding protein(s) in the kidney, are chemically and immunochemically different from intestinal CaBP. (author)

  11. Radioimmunoassay studies of intestinal calcium-binding protein in the pig. II. The distribution of intestinal CaBP in pig tissues

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, B M; Kuttner, M; Willis, D M; Hitchman, A J.W.; Harrison, J E; Murray, T M [Toronto Univ., Ontario (Canada). Dept. of Medicine

    1975-12-01

    Using a specific radioimmunoassay for porcine intestinal calcium-binding protein (CaBP), we have measured the concentration of CaBP in the various tissues and organs of normal pigs. Intestinal CaBP was present in highest concentration in the upper small intestine, with lower concentrations in the distal small intestine. Intestinal CaBP was also found, in lower concentrations, in kidney, liver, thyroid, pancreas, and blood. In all other tissues, including parathyroid, bone, skeletal muscle, and brain, CaBP immunoreactivity was undetectable or less than in blood. The elution profile of calcium-binding activity and immunoreactivity from gel filtration analysis of kidney and parathyroid extracts suggest that the calcium-binding protein in the parathyroid gland, and the major calcium-binding protein(s) in the kidney, are chemically and immunochemically different from intestinal CaBP.

  12. The mode of inhibition of the Na+-K+ pump activity in mast cells by calcium

    DEFF Research Database (Denmark)

    Knudsen, T; Johansen, Torben

    1989-01-01

    , and hence the pump activity. This hypothesis is supported by the stimulation of pump activity produced by monensin, which is not inhibited by calcium. The enhancement of pump activity after exposure of calcium-deprived cells to EGTA might be the result of a further increase in the sodium permeability......1 The inhibition by calcium of the Na(+)-K+ pump in the plasma membrane of rat peritoneal mast cells was studied in pure populations of the cells by measuring the ouabain-sensitive uptake of the radioactive potassium analogue, 86rubidium (86Rb+). 2 Exposure of the cells to calcium induced a time......- and concentration-dependent decrease in the ouabain-sensitive K+(86Rb+)-uptake of the cells without influencing the ouabain-resistant uptake. The development of the inhibition required the presence of potassium in the medium in the millimolar range (1.5-8.0 mM), and it did not occur at a concentration of potassium...

  13. Restoration of Muscle Mitochondrial Function and Metabolic Flexibility in Type 2 Diabetes by Exercise Training Is Paralleled by Increased Myocellular Fat Storage and Improved Insulin Sensitivity

    NARCIS (Netherlands)

    Meex, R.C.R.; Schrauwen-Hinderling, V.B.; Moonen-Kornips, E.; Schaart, G.; Mensink, M.R.; Phielix, E.; Weijer, van de T.; Sels, J.P.; Schrauwen, P.; Hesselink, M.K.C.

    2010-01-01

    OBJECTIVE-Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2

  14. The impact of calcium assay change on a local adjusted calcium equation.

    Science.gov (United States)

    Davies, Sarah L; Hill, Charlotte; Bailey, Lisa M; Davison, Andrew S; Milan, Anna M

    2016-03-01

    Deriving and validating local adjusted calcium equations is important for ensuring appropriate calcium status classification. We investigated the impact on our local adjusted calcium equation of a change in calcium method by the manufacturer from cresolphthalein complexone to NM-BAPTA. Calcium and albumin results from general practice requests were extracted from the Laboratory Information Management system for a three-month period. Results for which there was evidence of disturbance in calcium homeostasis were excluded leaving 13,482 sets of results for analysis. The adjusted calcium equation was derived following least squares regression analysis of total calcium on albumin and normalized to the mean calcium concentration of the data-set. The revised equation (NM-BAPTA calcium method) was compared with the previous equation (cresolphthalein complexone calcium method). The switch in calcium assay resulted in a small change in the adjusted calcium equation but was not considered to be clinically significant. The calcium reference interval differed from that proposed by Pathology Harmony in the UK. Local adjusted calcium equations should be re-assessed following changes in the calcium method. A locally derived reference interval may differ from the consensus harmonized reference interval. © The Author(s) 2015.

  15. Effects of endothelin, calcium channel blockade and EDRF inhibition on the contractility of human uteroplacental arteries.

    Science.gov (United States)

    Fried, G; Liu, Y A

    1994-08-01

    In order to examine the possibility that endothelin might be important in the regulation of placental blood flow, human uteroplacental vessels were superfused in vitro to study the contractile effect of endothelin as compared with a known strong contractor of placental blood vessels, serotonin (5-HT). The contractile responses were compared in the presence and absence of calcium channel blocking agents, as well as in the presence of L-NMA, an inhibitor of EDRF/nitric oxide. Endothelin (ET, 10(-10)-10(-6) M) and 5-HT (10(-8)-10(-4) M) induced contractions in the vessels. Maximal contractions in the presence of endothelin were elicited at 10(-7) M, whereas 5-HT elicited maximal contractions at 10(-5) M. At 10(-7) M, ET was more potent than 5-HT. The calcium-channel blocking agents nifedipine, diltiazem and NiCl2 relaxed the vessels by 5-15% from baseline. The contractile response to ET in the presence of nifedipine or diltiazem was reduced by 55 and 67%, respectively. The response of 5-HT in the presence of nifedipine was reduced by 58%. The contractile response to 5-HT as well as ET in the presence of both nifedipine and NiCl2 was not significantly lower than in the presence of nifedipine only. The EDRF-inhibiting agent L-NMA caused a small contractile response at concentrations of 10(-6)-10(-5) M. ET as well as 5-HT added after pretreatment with L-NMA produced a larger contractile response than ET or 5-HT alone. The results show that ET has a strong contractile effect on placental blood vessels at concentrations likely to occur during labor and delivery. The mechanism whereby ET as well as 5-HT contracts placental vessel smooth muscle appears to partly involve nifedipine- and diltiazem-sensitive calcium channels, but almost half of the response depends on mobilization of calcium through other means.

  16. Deletion of interleukin 1 receptor-associated kinase 1 (Irak1) improves glucose tolerance primarily by increasing insulin sensitivity in skeletal muscle.

    Science.gov (United States)

    Sun, Xiao-Jian; Kim, Soohyun Park; Zhang, Dongming; Sun, Helen; Cao, Qi; Lu, Xin; Ying, Zhekang; Li, Liwu; Henry, Robert R; Ciaraldi, Theodore P; Taylor, Simeon I; Quon, Michael J

    2017-07-21

    Chronic inflammation may contribute to insulin resistance via molecular cross-talk between pathways for pro-inflammatory and insulin signaling. Interleukin 1 receptor-associated kinase 1 (IRAK-1) mediates pro-inflammatory signaling via IL-1 receptor/Toll-like receptors, which may contribute to insulin resistance, but this hypothesis is untested. Here, we used male Irak1 null (k/o) mice to investigate the metabolic role of IRAK-1. C57BL/6 wild-type (WT) and k/o mice had comparable body weights on low-fat and high-fat diets (LFD and HFD, respectively). After 12 weeks on LFD (but not HFD), k/o mice ( versus WT) had substantially improved glucose tolerance (assessed by the intraperitoneal glucose tolerance test (IPGTT)). As assessed with the hyperinsulinemic euglycemic glucose clamp technique, insulin sensitivity was 30% higher in the Irak1 k/o mice on chow diet, but the Irak1 deletion did not affect IPGTT outcomes in mice on HFD, suggesting that the deletion did not overcome the impact of obesity on glucose tolerance. Moreover, insulin-stimulated glucose-disposal rates were higher in the k/o mice, but we detected no significant difference in hepatic glucose production rates (± insulin infusion). Positron emission/computed tomography scans indicated higher insulin-stimulated glucose uptake in muscle, but not liver, in Irak1 k/o mice in vivo Moreover, insulin-stimulated phosphorylation of Akt was higher in muscle, but not in liver, from Irak1 k/o mice ex vivo In conclusion, Irak1 deletion improved muscle insulin sensitivity, with the effect being most apparent in LFD mice. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Carotid bifurcation calcium and correlation with percent stenosis of the internal carotid artery on CT angiography

    International Nuclear Information System (INIS)

    McKinney, Alexander M.; Casey, Sean O.; Teksam, Mehmet; Truwit, Charles L.; Kieffer, Stephen; Lucato, Leandro T.; Smith, Maurice

    2005-01-01

    The aim of this paper was to determine the correlation between calcium burden (expressed as a volume) and extent of stenosis of the origin of the internal carotid artery (ICA) by CT angiography (CTA). Previous studies have shown that calcification in the coronary arteries correlates with significant vessel stenosis, and severe calcification (measured by CT) in the carotid siphon correlates with significant (greater than 50% stenosis) as determined angiographically. Sixty-one patients (age range 50-85 years) underwent CT of the neck with intravenous administration of iodinated contrast for a variety of conditions. Images were obtained with a helical multidetector array CT scanner and reviewed on a three-dimensional workstation. A single observer manipulated window and level to segment calcified plaque from vascular enhancement in order to quantify vascular calcium volume (cc) in the region of the bifurcation of the common carotid artery/ICA origin, and to measure the extent of ICA stenosis near the origin. A total of 117 common carotid artery bifurcations were reviewed. A ''significant'' stenosis was defined arbitrarily as >40% (to detect lesions before they become hemodynamically significant) of luminal diameter on CTA using NASCET-like criteria. All ''significant'' stenoses (21 out of 117 carotid bifurcations) had measurable calcium. We found a relatively strong correlation between percent stenosis and the calcium volume (Pearson's r= 0.65, P<0.0001). We also found that there was an even stronger correlation between the square root of the calcium volume and the percent stenosis as measured by CTA (r= 0.77, P<0.0001). Calcium volumes of 0.01, 0.03, 0.06, 0.09 and 0.12 cc were used as thresholds to evaluate for a ''significant'' stenosis. A receiver operating characteristic (ROC) curve demonstrated that thresholds of 0.06 cc (sensitivity 88%, specificity 87%) and 0.03 cc (sensitivity 94%, specificity 76%) generated the best combinations of sensitivity and

  18. Proof of Concept: Matrix metalloproteinase inhibitor decreases inflammation and improves muscle insulin sensitivity in people with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Frankwich Karen

    2012-10-01

    Full Text Available Abstract Background Obesity is a state of subclinical inflammation resulting in loss of function of insulin receptors and decreased insulin sensitivity. Inhibition of the inflammatory enzymes, matrix metalloproteinases (MMPs, for 6 months in rodent models restores insulin receptor function and insulin sensitivity. Methods This 12-week double-blind, randomized, placebo (PL-controlled proof-of-concept study was performed to determine if the MMP inhibitor (MMPI, doxycycline, decreased global markers of inflammation and enhanced muscle insulin sensitivity in obese people with type 2 diabetes (DM2. The study included non-DM2 controls (n = 15, and DM2 subjects randomized to PL (n = 13 or doxycycline 100 mg twice daily (MMPI; n = 11. All participants were evaluated on Day 1; MMPI and PL groups were also evaluated after 84 days of treatment. Results There was a significant decrease in inflammatory markers C-reactive protein (P  Conclusions This study demonstrated short term treatment of people with diabetes with an MMPI resulted in decreased inflammation and improved insulin sensitivity. Larger, longer studies are warranted to determine if doxycycline can improve glucose control in people with diabetes. Trial Registration Clinicaltrials.gov NCT01375491

  19. Trace metal concentrations in edible muscle tissues of some locally marketed fish

    International Nuclear Information System (INIS)

    Ansari, T.M.; Ichokitar, M.Y.; Ashraf, M.

    2000-01-01

    Edible muscle tissues of five fish species marketed in Multan, i.e., Rohu (Labeo rohita). (Labeo calhasu). Mori (cirrina inrigala). Ichagga (Rita rita) and Singliaree (mystus (osteobagrus) nor) have been analyzed quantitatively for trace elements, essential as well as toxic, using flame atomic absorption spectrometry. Dry ashing procedure has been employed to prepare sample solutions. Result indicate that edible muscle tissue of these fish, in general, contain higher amounts of potassium, calcium, sodium and magnesium, moderate quantities of zinc and iron and lessor amounts of copper and manganese. However, cadmium and lead were found to be below the limit of detection. (author)

  20. Myofilament Calcium Sensitivity: Mechanistic Insight into TnI Ser-23/24 and Ser-150 Phosphorylation Integration

    Directory of Open Access Journals (Sweden)

    Hussam E Salhi

    2016-12-01

    Full Text Available Troponin I (TnI is a major regulator of cardiac muscle contraction and relaxation. During physiological and pathological stress, TnI is differentially phosphorylated at multiple residues through different signaling pathways to match cardiac function to demand. The combination of these TnI phosphorylations can exhibit an expected or unexpected functional integration, whereby the function of two phosphorylations are different than that predicted from the combined function of each individual phosphorylation alone. We have shown that TnI Ser-23/24 and Ser-150 phosphorylation exhibit functional integration and are simultaneously increased in response to cardiac stress. In the current study, we investigated the functional integration of TnI Ser-23/24 and Ser-150 to alter cardiac contraction. We hypothesized that Ser-23/24 and Ser-150 phosphorylation each utilize distinct molecular mechanisms to alter the TnI binding affinity within the thin filament. Mathematical modeling predicts that Ser-23/24 and Ser-150 phosphorylation affect different TnI affinities within the thin filament to distinctly alter the Ca2+-binding properties of troponin. Protein binding experiments validate this assertion by demonstrating pseudo-phosphorylated Ser-150 decreases the affinity of isolated TnI for actin, whereas Ser-23/24 pseudo-phosphorylation is not different from unphosphorylated. Thus, our data supports that TnI Ser-23/24 affects TnI-TnC binding, while Ser-150 phosphorylation alters TnI-actin binding. By measuring force development in troponin-exchanged skinned myocytes, we demonstrate that the Ca2+ sensitivity of force is directly related to the amount of phosphate present on TnI. Furthermore, we demonstrate that Ser-150 pseudo-phosphorylation blunts Ser-23/24-mediated decreased Ca2+-sensitive force development whether on the same or different TnI molecule. Therefore, TnI phosphorylations can integrate across troponins along the myofilament. These data demonstrate

  1. Fetuin-A and albumin alter cytotoxic effects of calcium phosphate nanoparticles on human vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Yana Dautova

    Full Text Available Calcification is a detrimental process in vascular ageing and in diseases such as atherosclerosis and arthritis. In particular, small calcium phosphate (CaP crystal deposits are associated with inflammation and atherosclerotic plaque de-stabilisation. We previously reported that CaP particles caused human vascular smooth muscle cell (VSMC death and that serum reduced the toxic effects of the particles. Here, we found that the serum proteins fetuin-A and albumin (≥ 1 µM reduced intracellular Ca2+ elevations and cell death in VSMCs in response to CaP particles. In addition, CaP particles functionalised with fetuin-A, but not albumin, were less toxic than naked CaP particles. Electron microscopic studies revealed that CaP particles were internalised in different ways; via macropinocytosis, membrane invagination or plasma membrane damage, which occurred within 10 minutes of exposure to particles. However, cell death did not occur until approximately 30 minutes, suggesting that plasma membrane repair and survival mechanisms were activated. In the presence of fetuin-A, CaP particle-induced damage was inhibited and CaP/plasma membrane interactions and particle uptake were delayed. Fetuin-A also reduced dissolution of CaP particles under acidic conditions, which may contribute to its cytoprotective effects after CaP particle exposure to VSMCs. These studies are particularly relevant to the calcification observed in blood vessels in patients with kidney disease, where circulating levels of fetuin-A and albumin are low, and in pathological situations where CaP crystal formation outweighs calcification-inhibitory mechanisms.

  2. Cholesterol influences voltage-gated calcium channels and BK-type potassium channels in auditory hair cells.

    Directory of Open Access Journals (Sweden)

    Erin K Purcell

    Full Text Available The influence of membrane cholesterol content on a variety of ion channel conductances in numerous cell models has been shown, but studies exploring its role in auditory hair cell physiology are scarce. Recent evidence shows that cholesterol depletion affects outer hair cell electromotility and the voltage-gated potassium currents underlying tall hair cell development, but the effects of cholesterol on the major ionic currents governing auditory hair cell excitability are unknown. We investigated the effects of a cholesterol-depleting agent (methyl beta cyclodextrin, MβCD on ion channels necessary for the early stages of sound processing. Large-conductance BK-type potassium channels underlie temporal processing and open in a voltage- and calcium-dependent manner. Voltage-gated calcium channels (VGCCs are responsible for calcium-dependent exocytosis and synaptic transmission to the auditory nerve. Our results demonstrate that cholesterol depletion reduced peak steady-state calcium-sensitive (BK-type potassium current by 50% in chick cochlear hair cells. In contrast, MβCD treatment increased peak inward calcium current (~30%, ruling out loss of calcium channel expression or function as a cause of reduced calcium-sensitive outward current. Changes in maximal conductance indicated a direct impact of cholesterol on channel number or unitary conductance. Immunoblotting following sucrose-gradient ultracentrifugation revealed BK expression in cholesterol-enriched microdomains. Both direct impacts of cholesterol on channel biophysics, as well as channel localization in the membrane, may contribute to the influence of cholesterol on hair cell physiology. Our results reveal a new role for cholesterol in the regulation of auditory calcium and calcium-activated potassium channels and add to the growing evidence that cholesterol is a key determinant in auditory physiology.

  3. Reconstruction of Cell Surface Densities of Ion Pumps, Exchangers, and Channels from mRNA Expression, Conductance Kinetics, Whole-Cell Calcium, and Current-Clamp Voltage Recordings, with an Application to Human Uterine Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Jolene Atia

    2016-04-01

    Full Text Available Uterine smooth muscle cells remain quiescent throughout most of gestation, only generating spontaneous action potentials immediately prior to, and during, labor. This study presents a method that combines transcriptomics with biophysical recordings to characterise the conductance repertoire of these cells, the 'conductance repertoire' being the total complement of ion channels and transporters expressed by an electrically active cell. Transcriptomic analysis provides a set of potential electrogenic entities, of which the conductance repertoire is a subset. Each entity within the conductance repertoire was modeled independently and its gating parameter values were fixed using the available biophysical data. The only remaining free parameters were the surface densities for each entity. We characterise the space of combinations of surface densities (density vectors consistent with experimentally observed membrane potential and calcium waveforms. This yields insights on the functional redundancy of the system as well as its behavioral versatility. Our approach couples high-throughput transcriptomic data with physiological behaviors in health and disease, and provides a formal method to link genotype to phenotype in excitable systems. We accurately predict current densities and chart functional redundancy. For example, we find that to evoke the observed voltage waveform, the BK channel is functionally redundant whereas hERG is essential. Furthermore, our analysis suggests that activation of calcium-activated chloride conductances by intracellular calcium release is the key factor underlying spontaneous depolarisations.

  4. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export.

    Science.gov (United States)

    White, Phillip J; Lapworth, Amanda L; An, Jie; Wang, Liping; McGarrah, Robert W; Stevens, Robert D; Ilkayeva, Olga; George, Tabitha; Muehlbauer, Michael J; Bain, James R; Trimmer, Jeff K; Brosnan, M Julia; Rolph, Timothy P; Newgard, Christopher B

    2016-07-01

    A branched-chain amino acid (BCAA)-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition. Zucker-lean rats (ZLR) and Zucker-fatty rats (ZFR) were fed either a custom control, low fat (LF) diet, or an isonitrogenous, isocaloric LF diet in which all three BCAA (Leu, Ile, Val) were reduced by 45% (LF-RES). We performed comprehensive metabolic and physiologic profiling to characterize the effects of BCAA restriction on energy balance, insulin sensitivity, and glucose, lipid and amino acid metabolism. LF-fed ZFR had higher levels of circulating BCAA and lower levels of glycine compared to LF-fed ZLR. Feeding ZFR with the LF-RES diet lowered circulating BCAA to levels found in LF-fed ZLR. Activity of the rate limiting enzyme in the BCAA catabolic pathway, branched chain keto acid dehydrogenase (BCKDH), was lower in liver but higher in skeletal muscle of ZFR compared to ZLR and was not responsive to diet in either tissue. BCAA restriction had very little impact on metabolites studied in liver of ZFR where BCAA content was low, and BCKDH activity was suppressed. However, in skeletal muscle of LF-fed ZFR compared to LF-fed ZLR, where BCAA content and BCKDH activity were increased, accumulation of fatty acyl CoAs was completely normalized by dietary BCAA restriction. BCAA restriction also normalized skeletal muscle glycine content and increased urinary acetyl glycine excretion in ZFR. These effects were accompanied by lower RER and improved skeletal muscle insulin sensitivity in LF-RES fed ZFR as measured by hyperinsulinemic-isoglycemic clamp. Our data are consistent with a model wherein elevated circulating BCAA contribute to development of

  5. Calcium supplements

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007477.htm Calcium supplements To use the sharing features on this page, please enable JavaScript. WHO SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the ...

  6. Modeling the dispersion effects of contractile fibers in smooth muscles

    Science.gov (United States)

    Murtada, Sae-Il; Kroon, Martin; Holzapfel, Gerhard A.

    2010-12-01

    Micro-structurally based models for smooth muscle contraction are crucial for a better understanding of pathological conditions such as atherosclerosis, incontinence and asthma. It is meaningful that models consider the underlying mechanical structure and the biochemical activation. Hence, a simple mechanochemical model is proposed that includes the dispersion of the orientation of smooth muscle myofilaments and that is capable to capture available experimental data on smooth muscle contraction. This allows a refined study of the effects of myofilament dispersion on the smooth muscle contraction. A classical biochemical model is used to describe the cross-bridge interactions with the thin filament in smooth muscles in which calcium-dependent myosin phosphorylation is the only regulatory mechanism. A novel mechanical model considers the dispersion of the contractile fiber orientations in smooth muscle cells by means of a strain-energy function in terms of one dispersion parameter. All model parameters have a biophysical meaning and may be estimated through comparisons with experimental data. The contraction of the middle layer of a carotid artery is studied numerically. Using a tube the relationships between the internal pressure and the stretches are investigated as functions of the dispersion parameter, which implies a strong influence of the orientation of smooth muscle myofilaments on the contraction response. It is straightforward to implement this model in a finite element code to better analyze more complex boundary-value problems.

  7. Multiscale Vision Model Highlights Spontaneous Glial Calcium Waves Recorded by 2-Photon Imaging in Brain Tissue

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Mathiesen, Claus; Lauritzen, Martin

    2013-01-01

    Intercellular glial calcium waves constitute a signaling pathway which can be visualized by fluorescence imaging of cytosolic Ca2+ changes. However, there is a lack of procedures for sensitive and reliable detection of calcium waves in noisy multiphoton imaging data. Here we extend multiscale...

  8. Impaired Muscle Regeneration in Ob/ob and Db/db Mice

    Directory of Open Access Journals (Sweden)

    Mai-Huong Nguyen

    2011-01-01

    Full Text Available In obesity and type 2 diabetes, efficient skeletal muscle repair following injury may be required, not only for restoring muscle structure and function, but also for maintaining exercise capacity and insulin sensitivity. The hypothesis of this study was that muscle regeneration would be impaired in ob/ob and db/db mice, which are common mouse models of obesity and type 2 diabetes. Muscle injury was produced by cardiotoxin injection, and regeneration was assessed by morphological and immunostaining techniques. Muscle regeneration was delayed in ob/ob and db/db mice, but not in a less severe model of insulin resistance – feeding a high-fat diet to wild-type mice. Angiogenesis, cell proliferation, and myoblast accumulation were also impaired in ob/ob and db/db mice, but not the high-fat diet mice. The impairments in muscle regeneration were associated with impaired macrophage accumulation; macrophages have been shown previously to be required for efficient muscle regeneration. Impaired regeneration in ob/ob and db/db mice could be due partly to the lack of leptin signaling, since leptin is expressed both in damaged muscle and in cultured muscle cells. In summary, impaired muscle regeneration in ob/ob and db/db mice was associated with reduced macrophage accumulation, angiogenesis, and myoblast activity, and could have implications for insulin sensitivity in the skeletal muscle of obese and type 2 diabetic patients.

  9. The investigation of calcium and iron participation in wound healing using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Lux, F.; Bozanic, D.

    1979-01-01

    Instrumental neutron activation analysis was used for the determination of Ca, Cr, Fe, Co, Ni, Zn, Mo, Ag, Sb and Hg. Blood and tissue samples of 70 mg each were analysed to establish changes in the concentrations of calcium, iron and zinc in affected tissue. In this paper the results of the behaviour of calcium and iron are reported. The calcium concentration of fracture haematoma blood (FHB) is about 20 times as high as that of arterial or venous blood (rabbits). The level and the change with time of the calcium concentration in FHB-deposits (rabbits) can be explained by the participation of calcium in the haemolysis of the erythrocytes of the FHB which has been injected to form the deposits. The behaviour of the iron in the FHB-deposits is in agreement with this explanation. The change in calcium concentration in the crust of punch-hole wounds in the skin (rats) can be attributed to the mobilization of calcium for fibrin formation. As a likely reason for the level and change with time of the iron concentration in the tissue in the area of fascia and muscle incision wounds (rabbits), the participation of iron in the formation of collagen is discussed. From a comparison of the behaviour of the iron in the FHB-deposits with that in the area of incision wounds it follows that iron enrichments in the area of a complication-free wound are not predominantly caused by a wound haematoma. (author)

  10. Physical inactivity and muscle oxidative capacity in humans

    DEFF Research Database (Denmark)

    Gram, Martin; Dahl, Rannvá; Dela, Flemming

    2014-01-01

    Physical inactivity is associated with a high prevalence of type 2 diabetes and is an independent predictor of mortality. It is possible that the detrimental effects of physical inactivity are mediated through a lack of adequate muscle oxidative capacity. This short review will cover the present...... literature on the effects of different models of inactivity on muscle oxidative capacity in humans. Effects of physical inactivity include decreased mitochondrial content, decreased activity of oxidative enzymes, changes in markers of oxidative stress and a decreased expression of genes and contents...... of proteins related to oxidative phosphorylation. With such a substantial down-regulation, it is likely that a range of adenosine triphosphate (ATP)-dependent pathways such as calcium signalling, respiratory capacity and apoptosis are affected by physical inactivity. However, this has not been investigated...

  11. Subjective evaluation of physical and mental workload interactions across different muscle groups.

    Science.gov (United States)

    Mehta, Ranjana K; Agnew, Michael J

    2015-01-01

    Both physical and mental demands, and their interactions, have been shown to increase biomechanical loading and physiological reactivity as well as impair task performance. Because these interactions have shown to be muscle-dependent, the aim of this study was to determine the sensitivity of the NASA Task Load Index (NASA TLX) and Ratings of Perceived Exertion (RPE) to evaluate physical and mental workload during muscle-specific tasks. Twenty-four participants performed upper extremity and low back exertions at three physical workload levels in the absence and presence of a mental stressor. Outcome measures included RPE and NASA TLX (six sub-scales) ratings. The findings indicate that while both RPEs and NASA TLX ratings were sensitive to muscle-specific changes in physical demand, only an additional mental stressor and its interaction with either physical demand or muscle groups influenced the effort sub-scale and overall workload scores of the NASA TLX. While additional investigations in actual work settings are warranted, the NASA TLX shows promise in evaluating perceived workload that is sensitive not only to physical and mental demands but also sensitive in determining workload for tasks that employ different muscle groups.

  12. Morphology of the lateral pterygoid muscle associated to the mandibular condyle in the human prenatal stage.

    Science.gov (United States)

    Carranza, Miriam L; Carda, Carmen; Simbrón, Alicia; Quevedo, María C Sánchez; Celaya, Gabriela; de Ferraris, Maria Elsa Gómez

    2006-01-01

    The lateral pterygoid muscle (LPM) inserts at the condyle and the articular disc and plays a central role in mandibular movement via the Temporomandibular Articular Complex. The aim of this study was to examine the association between the morphology of LPM muscular fascicles and the degree of mineralization of the mandibular condyle in the prenatal stage employing structural, ultrastructural and microanalytical evaluation. Sixteen human fetuses at 11-37 weeks of gestation, with no apparent pathology and resulting from spontaneous abortions, were included in the study. Samples from lateral pterygoid muscle and the mandibular condyle were processed for light microscopy and electron microscopy and microanalysis. Desmin immunolabeling (dilution 1: 25 Dako) and alpha sarcomeric actin immunolabeling (dilution 1:50 Dako) employing the avidin-biotin system were used in paraffin embedded samples. Contralateral samples were examine by transmission electron microscopy. Four condyles (at 17-21 weeks of gestation) were used to measure the relative content of calcium and phosphorous employing the X-ray diffraction microanalytical technique. At 11-16 weeks of gestation, the LPM was composed of secondary myotubes associated to satellite cells and nerve fibers. At 18 weeks, the muscle exhibited multiple compact fascicles and the condyle showed a thin, external, subperiostal mineralized layer with few central bone spicules. At 20 weeks, at the site of insertion of the LPM, the bone trabeculae of the condyle contained an electrondense matrix with abundant mineralization nuclei. At 17-21 weeks of gestation no significant variations in the contents of phosphorous and calcium were observed. At 24 weeks, transmission electron calcium and microscopy studies revealed a marked increase in the functional units of the muscle fascicles. Also, at this age muscle fibers exhibited differences in the expression of desmin and alpha sarcomeric actin. At 37 weeks the muscle became multipennate in

  13. Absorbability of calcium from calcium-bound phosphoryl oligosaccharides in comparison with that from various calcium compounds in the rat ligated jejunum loop.

    Science.gov (United States)

    To-o, Kenji; Kamasaka, Hiroshi; Nishimura, Takahisa; Kuriki, Takashi; Saeki, Shigeru; Nakabou, Yukihiro

    2003-08-01

    Calcium-bound phosphoryl oligosaccharides (POs-Ca) were prepared from potato starch. Their solubility and in situ absorbability as a calcium source were investigated by comparing with the soluble calcium compounds, calcium chloride and calcium lactate, or insoluble calcium compounds, calcium carbonate and dibasic calcium phosphate. The solubility of POs-Ca was as high as that of calcium chloride and about 3-fold higher than that of calcium lactate. An in situ experiment showed that the intestinal calcium absorption rate of POs-Ca was almost comparable with that of the soluble calcium compounds, and was significantly higher (pcalcium groups. Moreover, the total absorption rate of a 1:1 mixture of the calcium from POs-Ca and a whey mineral complex (WMC) was significantly higher (psoluble calcium source with relatively high absorption in the intestinal tract.

  14. Fesselin is a target protein for calmodulin in a calcium-dependent manner

    International Nuclear Information System (INIS)

    KoIakowski, Janusz; Wrzosek, Antoni; Dabrowska, Renata

    2004-01-01

    Fesselin is a basic protein isolated from smooth muscle which binds G-actin and accelerates its polymerization as well as cross-links assembled filaments [J. Muscle Res. Cell Motil. 20 (1999) 539; Biochemistry 40 (2001) 14252]. In this report experimental evidence is provided for the first time proving that fesselin can interact with calmodulin in a Ca 2+ -dependent manner in vitro. Using ion exchange, followed by calmodulin-affinity chromatography, enabled us to simplify and shorten the fesselin preparation procedure and increase its yield by about three times in comparison to the procedure described by Leinweber et al. [J. Muscle Res. Cell Motil. 20 (1999) 539]. Fesselin interaction with dansyl-labelled calmodulin causes a 2-fold increase in maximum fluorescence intensity of the fluorophore and a 21 nm blue shift of the spectrum. The transition of complex formation between fesselin and calmodulin occurs at submicromolar concentration of calcium ions. The dissociation constant of fesselin Ca 2+ /calmodulin complexes amounted to 10 -8 M. The results suggest the existence of a direct link between Ca 2+ /calmodulin and fesselin at the level of actin cytoskeleton dynamics in smooth muscle

  15. Role of IGF-I in follistatin-induced skeletal muscle hypertrophy.

    Science.gov (United States)

    Barbé, Caroline; Kalista, Stéphanie; Loumaye, Audrey; Ritvos, Olli; Lause, Pascale; Ferracin, Benjamin; Thissen, Jean-Paul

    2015-09-15

    Follistatin, a physiological inhibitor of myostatin, induces a dramatic increase in skeletal muscle mass, requiring the type 1 IGF-I receptor/Akt/mTOR pathway. The aim of the present study was to investigate the role of IGF-I and insulin, two ligands of the IGF-I receptor, in the follistatin hypertrophic action on skeletal muscle. In a first step, we showed that follistatin increases muscle mass while being associated with a downregulation of muscle IGF-I expression. In addition, follistatin retained its full hypertrophic effect toward muscle in hypophysectomized animals despite very low concentrations of circulating and muscle IGF-I. Furthermore, follistatin did not increase muscle sensitivity to IGF-I in stimulating phosphorylation of Akt but, surprisingly, decreased it once hypertrophy was present. Taken together, these observations indicate that increased muscle IGF-I production or sensitivity does not contribute to the muscle hypertrophy caused by follistatin. Unlike low IGF-I, low insulin, as obtained by streptozotocin injection, attenuated the hypertrophic action of follistatin on skeletal muscle. Moreover, the full anabolic response to follistatin was restored in this condition by insulin but also by IGF-I infusion. Therefore, follistatin-induced muscle hypertrophy requires the activation of the insulin/IGF-I pathway by either insulin or IGF-I. When insulin or IGF-I alone is missing, follistatin retains its full anabolic effect, but when both are deficient, as in streptozotocin-treated animals, follistatin fails to stimulate muscle growth. Copyright © 2015 the American Physiological Society.

  16. Muscle MRI findings in facioscapulohumeral muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Gerevini, Simonetta; Caliendo, Giandomenico; Falini, Andrea [IRCCS San Raffaele Scientific Institute, Neuroradiology Unit, Head and Neck Department, Milan (Italy); Scarlato, Marina; Previtali, Stefano Carlo [IRCCS San Raffaele Scientific Institute, Department of Neurology, INSPE and Division of Neuroscience, Milan (Italy); Maggi, Lorenzo; Pasanisi, Barbara; Morandi, Lucia [Fondazione IRCCS Istituto Neurologico ' ' Carlo Besta' ' , Neuromuscular Diseases and Neuroimmunology Unit, Milan (Italy); Cava, Mariangela [IRCCS San Raffaele Scientific Institute, Department of Radiology and Center for Experimental Imaging, Milan (Italy)

    2016-03-15

    Facioscapulohumeral muscular dystrophy (FSHD) is characterized by extremely variable degrees of facial, scapular and lower limb muscle involvement. Clinical and genetic determination can be difficult, as molecular analysis is not always definitive, and other similar muscle disorders may have overlapping clinical manifestations. Whole-body muscle MRI examination for fat infiltration, atrophy and oedema was performed to identify specific patterns of muscle involvement in FSHD patients (30 subjects), and compared to a group of control patients (23) affected by other myopathies (NFSHD). In FSHD patients, we detected a specific pattern of muscle fatty replacement and atrophy, particularly in upper girdle muscles. The most frequently affected muscles, including paucisymptomatic and severely affected FSHD patients, were trapezius, teres major and serratus anterior. Moreover, asymmetric muscle involvement was significantly higher in FSHD as compared to NFSHD patients. In conclusion, muscle MRI is very sensitive for identifying a specific pattern of involvement in FSHD patients and in detecting selective muscle involvement of non-clinically testable muscles. Muscle MRI constitutes a reliable tool for differentiating FSHD from other muscular dystrophies to direct diagnostic molecular analysis, as well as to investigate FSHD natural history and follow-up of the disease. (orig.)

  17. Get Enough Calcium

    Science.gov (United States)

    ... Calcium Print This Topic En español Get Enough Calcium Browse Sections The Basics Overview Foods and Vitamins ... women, don't get enough calcium. How much calcium do I need every day? Women: If you ...

  18. The genetic background affects the vascular response in T-type calcium channels 3.2 deficient mice

    DEFF Research Database (Denmark)

    Svenningsen, Per; Hansen, Pernille B L

    2016-01-01

    -type channels are the dominant Ca(2+) entry pathway in vascular smooth muscle cells, however, T-type calcium channels are also expressed in the cardiovascular system where they play a functional role in the regulation of both contraction and vasodilation in (Chen et al. 2003; Hansen et al. 2001). This article...... is protected by copyright. All rights reserved....

  19. [Total serum calcium and corrected calcium as severity predictors in acute pancreatitis].

    Science.gov (United States)

    Gutiérrez-Jiménez, A A; Castro-Jiménez, E; Lagunes-Córdoba, R

    2014-01-01

    To evaluate total serum calcium (TC) and albumin-corrected calcium (ACC) as prognostic severity factors in acute pancreatitis (AP). Ninety-six patients were included in the study. They were diagnosed with AP and admitted to the Hospital Regional de Veracruz within the time frame of January 2010 to December 2012. AP severity was determined through the updated Atlanta Classification (2013). TC and ACC values were measured in the first 24hours of admittance and the percentages of sensitivity (S), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR+), and negative likelihood ratio (LR-) were calculated through ROC curves and contingency tables. In accordance with the updated Atlanta Classification, 70 patients presented with mild AP, 17 with moderately severe AP, and 9 with severe AP. Of the patient total, 61.5% were women, and 69.8% presented with biliary etiology. The maximum TC cut-off point was 7.5mg/dL, with values of S, 67%; Sp, 82%; PPV, 27%, and NPV, 96%. The maximum ACC cut-off point was 7.5mg/dL, with values of S, 67%; Sp, 90%; PPV, 40%; NPV, 96%. Both had values similar to those of the Ranson and APACHE II prognostic scales. TC and ACC, measured within the first 24hours, are useful severity predictors in acute pancreatitis, with sensitivity and predictive values comparable or superior to those of the conventional prognostic scales. Copyright © 2013 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

  20. Calcium currents in a fast-twitch skeletal muscle of the rat

    OpenAIRE

    1983-01-01

    Slow ionic currents were measured in the rat omohyoid muscle with the three-microelectrode voltage-clamp technique. Sodium and delayed rectifier potassium currents were blocked pharmacologically. Under these conditions, depolarizing test pulses elicited an early outward current, followed by a transient slow inward current, followed in turn by a late outward current. The early outward current appeared to be a residual delayed rectifier current. The slow inward current was identified as a calci...

  1. The Effects of Dietary Calcium and/or Iron Deficiency upon Murine Intestinal Calcium Binding Protein Activity and Calcium Absorption

    OpenAIRE

    McDonald, Catherine M.

    1980-01-01

    Iron deficiency has been shown to impair calcium absorption, leading to decreased bone mass. Vitamin D3-dependent calcium binding protein (CaBP) has been demonstrated to be necessary for the active transport of calcium in the intestine of numerous species. Iron deficiency might affect the activity of the calcium binding protein. Four experimental diets were formulated as follows: Diet 1, iron adequate, calcium adequate; Diet 2, iron deficient, calcium adequate; Diet 3, iron adequate, calci...

  2. Increases in cellular calcium concentration stimulate pepsinogen secretion from dispersed chief cells

    International Nuclear Information System (INIS)

    Raufman, J.P.; Berger, S.; Cosowsky, L.; Straus, E.

    1986-01-01

    Intracellular calcium concentration ([Ca]i) and pepsinogen secretion from dispersed chief cells from guinea pig stomach were determined before and after stimulation with calcium ionophores. [Ca]i was measured using the fluorescent probe quin2. Basal [Ca]i was 105 +/- 4 nM. Pepsinogen secretion was measured with a new assay using 125 I-albumin substrate. This assay is 1000-fold more sensitive than the widely-used spectrophotometric assay, technically easy to perform, rapid, and relatively inexpensive. The kinetics and stoichiometry of ionophore-induced changes in [Ca]i and pepsinogen secretion were similar. These data support a role for calcium as a cellular mediator of pepsinogen secretion

  3. Maternal protein restriction compromises myocardial contractility in the young adult rat by changing proteins involved in calcium handling.

    Science.gov (United States)

    de Belchior, Aucelia C S; Freire, David D; da Costa, Carlos P; Vassallo, Dalton V; Padilha, Alessandra S; Dos Santos, Leonardo

    2016-02-01

    Maternal protein restriction (MPR) during pregnancy is associated with increased cardiovascular risk in the offspring in adulthood. In this study we evaluated the cardiac function of young male rats born from mothers subjected to MPR during pregnancy, focusing on the myocardial mechanics and calcium-handling proteins. After weaning, rats received normal diet until 3 mo old, when the following parameters were assessed: arterial and left ventricular hemodynamics and in vitro cardiac contractility in isolated papillary muscles. The body weight was lower and arterial pressure higher in the MPR group compared with young adult offspring of female rats that received standard diet (controls); and left ventricle time derivatives increased in the MPR group. The force developed by the cardiac muscle was similar; but time to peak and relaxation time were longer, and the derivatives of force were depressed in the MPR. In addition, MPR group exhibited decreased post-pause potentiation of force, suggesting reduced reuptake function of the sarcoplasmic reticulum. Corroborating, the myocardial content of SERCA-2a and phosphorylated PLB-Ser16/total PLB ratio was decreased and sodium-calcium exchanger was increased in the MPR group. The contraction dependent on transsarcolemmal influx of calcium was higher in MPR if compared with the control group. In summary, young rats born from mothers subjected to protein restriction during pregnancy exhibit changes in the myocardial mechanics with altered expression of calcium-handling proteins, reinforcing the hypothesis that maternal malnutrition is related to increased cardiovascular risk in the offspring, not only for hypertension, but also cardiac dysfunction. Copyright © 2016 the American Physiological Society.

  4. Effects of diphosphonate on kidney calcium content and duodenal absorption of 45calcium

    International Nuclear Information System (INIS)

    Goulding, A.; Cameron, V.

    1978-01-01

    In rats the relationships between EHDP-induced changes in serum calcium concentration, kidney calcium content and duodenal transport of 45 calcium were studied. Body weights and kidney weights were similar in all groups. EHDP administration was associated with an increase in serum calcium concentration and kidney calcium content, and a decrease in duodenal 45 calcium transport. In the EHDP-treated rats, there was a significant negative correlation between kidney calcium concentration and duodenal 45 calcium transport but no correlation between either kidney calcium content and serum calcium concentration (r = 0.116) or between serum calcium concentration and duodenal 45 calcium transport (r = 0.02). Further experiments will be needed to determine whether the demonstrated increase in kidney calcium content induced by EHDP administration was the cause of, or was secondary to, inhibition of 1, 25(OH) 2 D 3 synthesis. (orig./AJ) [de

  5. Effect of lowering dietary calcium intake on fractional whole body calcium retention

    International Nuclear Information System (INIS)

    Dawson-Hughes, B.; Stern, D.T.; Shipp, C.C.; Rasmussen, H.M.

    1988-01-01

    Although fractional calcium absorption is known to vary inversely with calcium intake, the extent and timing of individual hormonal and calcium absorption responses to altered calcium intake have not been defined. We measured fractional whole body retention of orally ingested 47 Ca, an index of calcium absorption, in nine normal women after they had eaten a 2000-mg calcium diet for 8 weeks and a 300-mg calcium diet for 1, 2, 4, and 8 weeks. After the diet change, serum intact PTH (32.2% increase; P = 0.005), serum 1,25-dihydroxyvitamin D [1,25-(OH)2D; 43.8% increase; P = 0.003], and fractional whole body calcium retention (42.8% increase; P = 0.004) increased within 1 week. Although the PTH and calcium retention responses remained fairly constant throughout the low calcium intake period, serum 1,25-(OH)2D concentrations declined toward baseline after week 1. Thus, the late increase in calcium retention may have resulted from calcium absorption that was independent of 1,25-(OH)2D stimulation

  6. Inhibition of hydrogen sulfide on the proliferation of vascular smooth muscle cells involved in the modulation of calcium sensing receptor in high homocysteine

    International Nuclear Information System (INIS)

    Wang, Yuwen; Wang, Xiyao; Liang, Xiaohui; Wu, Jichao; Dong, Shiyun; Li, Hongzhu; Jin, Meili; Sun, Dianjun; Zhang, Weihua; Zhong, Xin

    2016-01-01

    Hyperhomocysteinemia induces the proliferation of vascular smooth muscle cells (VSMCs). Hydrogen sulfide (H 2 S) inhibits the phenotype switch of VSMCs and calcium-sensing receptor (CaSR) regulated the production of endogenous H 2 S. However, whether CaSR inhibits the proliferation of VSMCs by regulating the endogenous cystathionine-gamma-lyase (CSE, a major enzyme that produces H 2 S) pathway in high homocysteine (HHcy) has not been previously investigated. The intracellular calcium concentration, the concentration of H 2 S, the cell viability, the proliferation and the expression of proteins of cultured VSMCs from rat thoracic aortas were measured, respectively. The results showed that the [Ca 2+ ] i and the expression of p-CaMK and CSE increased upon treatment with CaSR agonist. In HHcy, the H 2 S concentration decrease, the proliferation and migration rate increased, the expression of Cyclin D1, PCNA, Osteopontin and p-Erk1/2 increased while the α-SM actin, P21 Cip/WAK−1 and Calponin decreased. The CaSR agonist or exogenous H 2 S significantly reversed the changes of VSMCs caused by HHcy. In conclusion, our results demonstrated that CaSR regulate the endogenous CSE/H 2 S is related to the PLC-IP 3 receptor and CaM signal pathways which inhibit the proliferation of VSMCs, and the latter is involved in the Erk1/2 dependent signal pathway in high homocysteine. - Highlights: • CaSR activation increased the production of endogenous H 2 S in high homocysteine VSMCs. • CaSR modulated the CSE/H 2 S are related to the PLC-IP 3 R and Ca 2+ -CaM signal pathways. • Inhibition of H 2 S on the proliferation of VSMCs is involved in the Erk1/2 pathway. • Explore the potential roles of CaSR in regulating VSMCs proliferation in high homocysteine.

  7. Chronic alcohol feeding potentiates hormone-induced calcium signalling in hepatocytes.

    Science.gov (United States)

    Bartlett, Paula J; Antony, Anil Noronha; Agarwal, Amit; Hilly, Mauricette; Prince, Victoria L; Combettes, Laurent; Hoek, Jan B; Gaspers, Lawrence D

    2017-05-15

    Chronic alcohol consumption causes a spectrum of liver diseases, but the pathogenic mechanisms driving the onset and progression of disease are not clearly defined. We show that chronic alcohol feeding sensitizes rat hepatocytes to Ca 2+ -mobilizing hormones resulting in a leftward shift in the concentration-response relationship and the transition from oscillatory to more sustained and prolonged Ca 2+ increases. Our data demonstrate that alcohol-dependent adaptation in the Ca 2+ signalling pathway occurs at the level of hormone-induced inositol 1,4,5 trisphosphate (IP 3 ) production and does not involve changes in the sensitivity of the IP 3 receptor or size of internal Ca 2+ stores. We suggest that prolonged and aberrant hormone-evoked Ca 2+ increases may stimulate the production of mitochondrial reactive oxygen species and contribute to alcohol-induced hepatocyte injury. ABSTRACT: 'Adaptive' responses of the liver to chronic alcohol consumption may underlie the development of cell and tissue injury. Alcohol administration can perturb multiple signalling pathways including phosphoinositide-dependent cytosolic calcium ([Ca 2+ ] i ) increases, which can adversely affect mitochondrial Ca 2+ levels, reactive oxygen species production and energy metabolism. Our data indicate that chronic alcohol feeding induces a leftward shift in the dose-response for Ca 2+ -mobilizing hormones resulting in more sustained and prolonged [Ca 2+ ] i increases in both cultured hepatocytes and hepatocytes within the intact perfused liver. Ca 2+ increases were initiated at lower hormone concentrations, and intercellular calcium wave propagation rates were faster in alcoholics compared to controls. Acute alcohol treatment (25 mm) completely inhibited hormone-induced calcium increases in control livers, but not after chronic alcohol-feeding, suggesting desensitization to the inhibitory actions of ethanol. Hormone-induced inositol 1,4,5 trisphosphate (IP 3 ) accumulation and phospholipase C

  8. FLIPR assays of intracellular calcium in GPCR drug discovery

    DEFF Research Database (Denmark)

    Hansen, Kasper Bø; Bräuner-Osborne, Hans

    2009-01-01

    Fluorescent dyes sensitive to changes in intracellular calcium have become increasingly popular in G protein-coupled receptor (GPCR) drug discovery for several reasons. First of all, the assays using the dyes are easy to perform and are of low cost compared to other assays. Second, most non...

  9. Anabolic sensitivity of postprandial muscle protein synthesis to the ingestion of a protein-dense food is reduced in overweight and obese young adults.

    Science.gov (United States)

    Beals, Joseph W; Sukiennik, Richard A; Nallabelli, Julian; Emmons, Russell S; van Vliet, Stephan; Young, Justin R; Ulanov, Alexander V; Li, Zhong; Paluska, Scott A; De Lisio, Michael; Burd, Nicholas A

    2016-10-01

    Excess body fat diminishes muscle protein synthesis rates in response to hyperinsulinemic-hyperaminoacidemic clamps. However, muscle protein synthetic responses after the ingestion of a protein-dense food source across a range of body mass indexes (BMIs) have not been compared. We compared the myofibrillar protein synthetic response and underlying nutrient-sensing mechanisms after the ingestion of lean pork between obese, overweight, and healthy-weight adults. Ten healthy-weight [HW; BMI (in kg/m 2 ): 22.7 ± 0.4], 10 overweight (OW; BMI: 27.1 ± 0.5), and 10 obese (OB; BMI: 35.9 ± 1.3) adults received primed continuous l-[ring- 13 C 6 ]phenylalanine infusions. Blood and muscle biopsy samples were collected before and after the ingestion of 170 g pork (36 g protein and 3 g fat) to assess skeletal muscle anabolic signaling, amino acid transporters [large neutral and small neutral amino acid transporters (LAT1, SNAT2) and CD98], and myofibrillar protein synthesis. At baseline, OW and OB groups showed greater relative amounts of mammalian target of rapamycin complex 1 (mTORC1) protein than the HW group. Pork ingestion increased mTORC1 phosphorylation only in the HW group (P = 0.001). LAT1 and SNAT2 protein content increased during the postprandial period in all groups (time effect, P anabolic signals, that reduces muscle sensitivity to food ingestion. This trial was registered at clinicaltrials.gov as NCT02613767. © 2016 American Society for Nutrition.

  10. Effect of 3-substituted 1,4-benzodiazepin-2-ones on maximal normalized rate of bradykinin-induced smooth muscle contraction in the presence of calcium channel blockers

    Directory of Open Access Journals (Sweden)

    P. A. Virych

    2017-05-01

    Full Text Available The development of modern organic chemistry and molecular modeling technologies simplify the search for potential inhibitors of various receptor systems and biological processes. The one of the directions is the development of analgesics of broad spectrum and low toxicity. It is important to search for inhibitors of the kinin-kallikrein system that regulates many functions: inflammation, pain, carcinogenesis, vascular tone, smooth muscle contraction and other. Derivatives of 3-substituted 1,4-benzodiazepine-2-ones have a unique spatial conformation that allows one to simulate β-structures of bioactive peptides. The functional activity of compounds is determined by properties of their peripheral chemical radicals. We analyzed the effect of 3-substituted 1,4-benzodiazepin-2-ones derivatives on the normalized maximal rate of bradykinin-induced smooth muscle contraction and relaxation of the stomach in the presence of calcium channel blockers: verapamil (1 μM, gadolinium (300 μM and 2-aminoethyl diphenylborinate (0.1 μM. The levels of bradykinin and 3-arylamino-1,2-dihydro-3H-1,4-benzodiazepine-2-ones in incubation solution were 10–6 M. Data processing on dynamics of contraction was performed according to the method of Burdyha and Kosterin. Compounds MX-1775 and MX-1925 reduced maximal normalized rate (Vn of bradykinin-induced smooth muscle contraction in the presence of Gd3+ by 21.2% and 31.0% respectively. Compound MX-1925 increased Vn of relaxation by 11.6%. A similar effect is typical for MX-2011, where there is an increase by 34.6%. In the presence of verapamil this compound additionally decreased Vn contraction by 20.5%. Substances MX-1775, MX-2004 and MX-1925 restored maximal normalized rate of relaxation to original values of bradykinin-induced contraction. In the presence of 2-aminoethyldiphenylborinate MX-1775 additionally reduced Vn of contractions by 7.5%. 3-substituted 1,4-benzo­diazepine-2-ones did not change the maximal

  11. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2007-07-01

    Full Text Available Abstract Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types. Results Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border. Conclusion Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events.

  12. Calcium hydroxide isotope effect in calcium isotope enrichment by ion exchange

    International Nuclear Information System (INIS)

    Jepson, B.E.; Shockey, G.C.

    1984-01-01

    The enrichment of calcium isotopes has been observed in ion-exchange chromatography with an aqueous phase of calcium hydroxide and a solid phase of sulfonic acid resin. The band front was exceedingly sharp as a result of the acid-base reaction occuring at the front of the band. Single-stage separation coefficients were found to be epsilon( 44 Ca/ 40 Ca) = 11 x 10 -4 and epsilon( 48 Ca/ 40 Ca) = 18 x 10 -4 . The maximum column separation factors achieved were 1.05 for calcium-44 and 1.09 for calcium-48 with the heavy isotopes enriching in the fluid phase. The calcium isotope effect between fully hydrated aqueous calcium ions and undissociated aqueous calcium hydroxide was estimated. For the calcium-44/40 isotope pair the separation coefficient was 13 x 10 -4 . 20 references, 2 figures

  13. Surface acidity and solid-state compatibility of excipients with an acid-sensitive API: case study of atorvastatin calcium.

    Science.gov (United States)

    Govindarajan, Ramprakash; Landis, Margaret; Hancock, Bruno; Gatlin, Larry A; Suryanarayanan, Raj; Shalaev, Evgenyi Y

    2015-04-01

    The objectives of this study were to measure the apparent surface acidity of common excipients and to correlate the acidity with the chemical stability of an acid-sensitive active pharmaceutical ingredient (API) in binary API-excipient powder mixtures. The acidity of 26 solid excipients was determined by two methods, (i) by measuring the pH of their suspensions or solutions and (ii) the pH equivalent (pHeq) measured via ionization of probe molecules deposited on the surface of the excipients. The chemical stability of an API, atorvastatin calcium (AC), in mixtures with the excipients was evaluated by monitoring the appearance of an acid-induced degradant, atorvastatin lactone, under accelerated storage conditions. The extent of lactone formation in AC-excipient mixtures was presented as a function of either solution/suspension pH or pHeq. No lactone formation was observed in mixtures with excipients having pHeq > 6, while the lactone levels were pronounced (> 0.6% after 6 weeks at 50°C/20% RH) with excipients exhibiting pHeq 6, 3-6, and < 3) were consistent with the reported solution pH-stability profile of AC. In contrast to the pHeq scale, lactone formation did not show any clear trend when plotted as a function of the suspension/solution pH. Two mechanisms to explain the discrepancy between the suspension/solution pH and the chemical stability data were discussed. Acidic excipients, which are expected to be incompatible with an acid-sensitive API, were identified based on pHeq measurements. The incompatibility prediction was confirmed in the chemical stability tests using AC as an example of an acid-sensitive API.

  14. Local calcium signalling is mediated by mechanosensitive ion channels in mesenchymal stem cells

    International Nuclear Information System (INIS)

    Chubinskiy-Nadezhdin, Vladislav I.; Vasileva, Valeria Y.; Pugovkina, Natalia A.; Vassilieva, Irina O.; Morachevskaya, Elena A.; Nikolsky, Nikolay N.; Negulyaev, Yuri A.

    2017-01-01

    Mechanical forces are implicated in key physiological processes in stem cells, including proliferation, differentiation and lineage switching. To date, there is an evident lack of understanding of how external mechanical cues are coupled with calcium signalling in stem cells. Mechanical reactions are of particular interest in adult mesenchymal stem cells because of their promising potential for use in tissue remodelling and clinical therapy. Here, single channel patch-clamp technique was employed to search for cation channels involved in mechanosensitivity in mesenchymal endometrial-derived stem cells (hMESCs). Functional expression of native mechanosensitive stretch-activated channels (SACs) and calcium-sensitive potassium channels of different conductances in hMESCs was shown. Single current analysis of stretch-induced channel activity revealed functional coupling of SACs and BK channels in plasma membrane. The combination of cell-attached and inside-out experiments have indicated that highly localized Ca 2+ entry via SACs triggers BK channel activity. At the same time, SK channels are not coupled with SACs despite of high calcium sensitivity as compared to BK. Our data demonstrate novel mechanism controlling BK channel activity in native cells. We conclude that SACs and BK channels are clusterized in functional mechanosensitive domains in the plasma membrane of hMESCs. Co-clustering of ion channels may significantly contribute to mechano-dependent calcium signalling in stem cells. - Highlights: • Stretch-induced channel activity in human mesenchymal stem cells was analyzed. • Functional expression of SACs and Ca 2+ -sensitive BK and SK channels was shown. • Local Ca 2+ influx via stretch-activated channels triggers BK channel activity. • SK channels are not coupled with SACs despite higher sensitivity to [Ca 2+ ] i . • Functional clustering of SACs and BK channels in stem cell membrane is proposed.

  15. Calcium

    Science.gov (United States)

    ... You can get decent amounts of calcium from baked beans, navy beans, white beans, and others. Canned fish. You're in luck if you like sardines and canned salmon with bones. Almond milk. Working Calcium Into Your ...

  16. Influence of dietary calcium on bone calcium utilization

    International Nuclear Information System (INIS)

    Farmer, M.; Roland, D.A. Sr.; Clark, A.J.

    1986-01-01

    In Experiment 1, 10 microCi 45 Ca/day were administered to 125 hens for 10 days. Hens were then allocated to five treatments with calcium levels ranging from .08 to 3.75% of the diet. In Experiment 2, hens with morning oviposition times were randomly allocated to 11 treatments that were periods of time postoviposition ranging from 6 hr to 24 hr, in 2-hr increments (Experiment 2). At the end of each 2-hr period, eggs from 25 hens were removed from the uterus. The 18-, 20-, and 22-hr treatments were replicated three times. In Experiment 3, hens were fed either ad libitum or feed was withheld the last 5 or 6 hr before oviposition. In Experiment 4, hens were fed 10 microCi of 45 Ca for 15 days to label skeletal calcium. Hens were divided into two groups and fed a .08 or 3.75% calcium diet for 2 days. On the second day, 25 hens fed the 3.75% calcium diet were intubated with 7 g of the same diet containing .5 g calcium at 1700, 2100, 0100, 0500, and 0700 hr. The measurements used were egg weight, shell weight, and 45 Ca content of the egg shell. Results indicated a significant linear or quadratic regression of dietary calcium levels on 45 Ca accumulation in eggshells and eggshell weight (Experiment 1). As the calcium level of the diet increased, eggshell weight increased and 45 Ca recovery decreased. Utilization of skeletal calcium for shell formation ranged from 28 to 96%. In Experiment 2, the rate of shell calcification was not constant throughout the calcification process but varied significantly

  17. Calcium uptake by sarcoplasmic reticulum in the presence of organophosphorus insecticide methyl-parathion

    International Nuclear Information System (INIS)

    Blasiak, J.

    1995-01-01

    Using an isotope labelling technique it has been shown that an organophosphorus insecticide methyl parathion (0,0-diethyl 0-4-nitrophenyl phosphorothionate) depressed calcium uptake by sarcoplasmic reticulum isolated from rabbit hind leg muscle. The effect was significant for insecticide concentrations of 50 and 100 μM and was dose-dependent. The insecticide exerted a more pronounced effect on calcium uptake in the presence of ATP in the reticulum environment than in the absence of ATP. The inhibitory action of methyl parathion on Ca 2+ accumulation by sarcoplasmic reticulum can cause a rise in myoplasmic free Ca 2+ , the essential prerequisite for contracture activation. Because methyl parathion, as well as other organophosphorus insecticides, is primarily neurotoxic, evidence of non-specific effect could be important for assessing its environmental safety. (author). 20 refs, 2 figs

  18. Calcium D-saccharate

    DEFF Research Database (Denmark)

    Garcia, André Castilho; Hedegaard, Martina Vavrusova; Skibsted, Leif Horsfelt

    2016-01-01

    Molar conductivity of saturated aqueous solutions of calcium d-saccharate, used as a stabilizer of beverages fortified with calcium d-gluconate, increases strongly upon dilution, indicating complex formation between calcium and d-saccharate ions, for which, at 25 °C, Kassoc = 1032 ± 80, ΔHassoc......° = -34 ± 6 kJ mol-1, and ΔSassoc° = -55 ± 9 J mol-1 K-1, were determined electrochemically. Calcium d-saccharate is sparingly soluble, with a solubility product, Ksp, of (6.17 ± 0.32) × 10-7 at 25 °C, only moderately increasing with the temperature: ΔHsol° = 48 ± 2 kJ mol-1, and ΔSassoc° = 42 ± 7 J mol-1...... K-1. Equilibria in supersaturated solutions of calcium d-saccharate seem only to adjust slowly, as seen from calcium activity measurements in calcium d-saccharate solutions made supersaturated by cooling. Solutions formed by isothermal dissolution of calcium d-gluconate in aqueous potassium d...

  19. Bcl-2 overexpression: effects on transmembrane calcium movement

    International Nuclear Information System (INIS)

    Rangaswami, Arun A.; Premack, Brett; Walleczek, Jan; Killoran, Pamela; Gardner, Phyllis; Knox, Susan J.

    1996-01-01

    Purpose/Objective: High levels of expression of the proto-oncogene bcl-2 and its 26 kD protein product Bcl-2 have been correlated with the inhibition of apoptosis and the increased resistance of tumor cells to cytotoxic drugs and ionizing radiation. Unfortunately, the specific mechanism of action of Bcl-2 remains poorly understood. In the studies described here, the role of intracellular calcium fluxes and plasma membrane calcium cycling in the induction of apoptosis, and the effect of Bcl-2 expression on the modulation of transmembrane calcium fluxes following treatment of cells with cytotoxic agents were studied. The relationship between intracellular calcium release, capacitive calcium entry, and the plasma membrane potential were also investigated. Materials and Methods: Human B-cell lymphoma (PW) and human promyelocytic leukemia (HL60) cell lines were transfected with Bcl-2 and a control vector. The Bcl-2 transfectants over expressed the Bcl-2 onco-protein and were more resistant to irradiation than the control cells. Cells were loaded with fluorescent indicators indo-1 and fura-2 AM to quantify the cytosolic calcium concentration and subsequent calcium responses to a variety of cytotoxic stimuli, including the microsomal ATPase inhibitor, thapsigargin, using fluorometric measurements. Comparisons of resting and stimulated cytosolic calcium concentrations were made between the parental, neomycin control, and bcl-2 transfected cells. In order to determine the actual calcium influx rate, cells were loaded with either indo-1 or fura-2 and then exposed to 0.1 mM extracellular manganese, which enters the cells through calcium influx channels and quenches the fluorescent signal in proportion to the calcium influx rate. In order to determine the role of the membrane potential in driving calcium influx, cells were treated with either 0.1 μM Valinomycin or isotonic potassium chloride to either hyper polarize or depolarize the resting membrane potential, and the

  20. Influence of the cooling rate on the ageing of lead-calcium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F.; Lambertin, M. [LaBoMaP, Arts et Metiers ParisTech, Rue porte de Paris, 71250 Cluny (France); Delfaut-Durut, L. [CEA, centre de Valduc [SEMP, LECM], 21120 Is-sur-Tille (France); Maitre, A. [SPCTS, UFR Sciences et Techniques, 87060 Limoges (France); Vilasi, M. [LCSM, Universite Nancy I, 54506 Vandoeuvre les Nancy (France)

    2009-03-01

    Cast lead-calcium alloys were known to be sensitive to experimental parameters, which cause large variations on the ageing and overageing behaviour. From the study of these parameters, the quenching rate was the only significant parameter. A critical cooling rate was defined based on hardness, electrical resistivity and metallographical observations. The inconsistencies in the literature noticed on the evolutions of lead-calcium alloys can now be explained by whether or not this critical cooling rate was respected. (author)

  1. Lean muscle volume of the thigh has a stronger relationship with muscle power than muscle strength in women with knee osteoarthritis.

    Science.gov (United States)

    Davison, Michael J; Maly, Monica R; Keir, Peter J; Hapuhennedige, Sandani M; Kron, Amie T; Adachi, Jonathan D; Beattie, Karen A

    2017-01-01

    Thigh lean muscle and intramuscular fat have been implicated in the impairment of physical function observed in people with knee osteoarthritis. We investigated the relationships of quadriceps and hamstrings intramuscular fat fraction and lean muscle volume with muscle power and strength, controlling for neuromuscular activation, and physical performance in women with knee OA. Women (n=20) 55years or older with symptomatic, radiographic knee osteoarthritis underwent a 3.0T magnetic resonance imaging scan of the thigh of their most symptomatic knee. Axial fat-separated images were analyzed using software to quantify intramuscular fat and lean muscle volumes of the quadriceps and hamstrings. To quantify strength and power of the knee extensors and flexors, participants performed maximum voluntary isometric contraction and isotonic knee extensions and flexions, respectively. Electromyography of the quadriceps and hamstrings was measured. Participants also completed five physical performance tests. Quadriceps and hamstrings lean muscle volumes were related to isotonic knee extensor (B=0.624; p=0.017) and flexor (B=1.518; p=0.032) power, but not knee extensor (B=0.001; p=0.615) or flexor (B=0.001; p=0.564) isometric strength. Intramuscular fat fractions were not related to isotonic knee extensor or flexor power, nor isometric strength. No relationships were found between intramuscular fat or lean muscle volume and physical performance. Muscle power may be more sensitive than strength to lean muscle mass in women with knee osteoarthritis. Thigh lean muscle mass, but neither intramuscular nor intermuscular fat, is related to knee extensor and flexor power in women with knee osteoarthritis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Investigation of thermo luminesce properties of calcium chloride doped with manganese

    International Nuclear Information System (INIS)

    Farag, H.

    1999-01-01

    Thermoluminescence (TL) properties of calcium chloride doped with manganese (CaCI: Mn) have been investigated. Three thermoluminescence peaks were detected, where the prominent TL-peak appeared at 210 degree. TL response had a linear relation from 0.36 cGy up to 400cGy. The ratio between the sensitivity of calcium chloride: Mn and LiF-700 was found to be 1.42. The TL fading was studied by applying different annealing temperatures. The TL residual percentage was found to be 0.023% for 300degree annealing temperature after 50 min of annealing time. Fading was not observed for the sample, which was stored at room temperature. Calcium chloride doped with manganese could be used as personal radiation detector.

  3. Calcium channel agonists and antagonists regulate protein phosphorylation in intact synaptosomes

    International Nuclear Information System (INIS)

    Robinson, P.J.; Lovenberg, Walter

    1986-01-01

    Protein phosphorylation in intact synaptosomes is highly sensitive to alterations in calcium fluxes and was used to probe the possible mechanism of action of the calcium channel agonist BAY K 8644 and antagonists verapamil and nifedipine. These agents (at 1μM) all increased the basal phosphorylation of a specific set of 4 synaptosomal phosphoproteins termed P139, P124, P96 and P60, but did not alter depolarization-dependent protein phosphorylation. The increases could not be explained by a direct stimulation of protein kinases and appears unrelated to the known effects of these + drugs on K + -stimulated neuro-transmitter release. This finding may reveal a possible new mechanism of action for drugs which interact with calcium channels. (Author)

  4. Hamster thecal cells express muscle characteristics

    International Nuclear Information System (INIS)

    Self, D.A.; Schroeder, P.C.; Gown, A.M.

    1988-01-01

    Contraction of the follicular wall about the time of ovulation appears to be a coordinated event; however, the cells that mediate it remain poorly studied. We examined the theca externa cells in the wall of hamster follicles for the presence of a functional actomyosin system, both in developing follicles and in culture. We used a monoclonal antibody (HHF35) that recognizes the alpha and gamma isoelectric variants of actin normally found in muscle, but not the beta variant associated with non-muscle sources, to evaluate large preovulatory follicles for actin content and composition. Antibody staining of sectioned ovaries showed intense circumferential reactivity in the outermost wall of developing follicles. Immunoblots from two-dimensional gels of theca externa lysates demonstrated the presence of the two muscle-specific isozymes of actin. Immunofluorescence of cultured follicular cells pulse-labeled with [3H] thymidine (for autoradiographic detection of DNA replication) revealed the presence, in many dividing cells, of actin filaments aligned primarily along the longitudinal axis of the cells. In cultures exposed to the calcium ionophore A23187 (10(-4) M) for varying periods (5 min to 1 h), contraction of many individual muscle-actin-positive cells was observed. Immunofluorescence of these cells, fixed immediately after ionophore-induced contraction, revealed compaction of the actin filaments. Our findings demonstrate that the cells of the theca externa contain muscle actins from an early stage and that these cells are capable of contraction even while proliferating in subconfluent cultures. They suggest that follicular growth may include a naturally occurring developmental sequence in which a contractile cell type proliferates in the differentiated state

  5. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, A. [Shenzhen College of International Education, 1st HuangGang Park St., Shenzhen, GuangDong (China); Luo, J. [Department of Biomedical Engineering, University at Buffalo, 332 Bonner Hall, Buffalo, NY 14260-1920 (United States); Wang, A. [Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Broadbent, C. [School of Engineering, Columbia University, 1130 Amsterdam Av., New York, NY 10027 (United States); Zhong, J. [Department of English, Dartmouth College, 6032 Sanborn House, Hanover, NH 03755 (United States); Dilmanian, F.A. [Departments of Radiation Oncology, Neurology, and Radiology, Stony Brook University, Stony Brook, NY 11794 (United States); Zafonte, F.; Zhong, Z. [National Synchrotron Light Source II, Brookhaven National Laboratory, Bldg. 743, Upton, NY 11973 (United States)

    2015-07-11

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. An efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent in the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.

  6. Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes.

    Science.gov (United States)

    Samigullin, Dmitry; Fatikhov, Nijaz; Khaziev, Eduard; Skorinkin, Andrey; Nikolsky, Eugeny; Bukharaeva, Ellya

    2014-01-01

    At the frog neuromuscular junction, under physiological conditions, the direct measurement of calcium currents and of the concentration of intracellular calcium buffers-which determine the kinetics of calcium concentration and neurotransmitter release from the nerve terminal-has hitherto been technically impossible. With the aim of quantifying both Ca(2+) currents and the intracellular calcium buffers, we measured fluorescence signals from nerve terminals loaded with the low-affinity calcium dye Magnesium Green or the high-affinity dye Oregon Green BAPTA-1, simultaneously with microelectrode recordings of nerve-action potentials and end-plate currents. The action-potential-induced fluorescence signals in the nerve terminals developed much more slowly than the postsynaptic response. To clarify the reasons for this observation and to define a spatiotemporal profile of intracellular calcium and of the concentration of mobile and fixed calcium buffers, mathematical modeling was employed. The best approximations of the experimental calcium transients for both calcium dyes were obtained when the calcium current had an amplitude of 1.6 ± 0.08 pA and a half-decay time of 1.2 ± 0.06 ms, and when the concentrations of mobile and fixed calcium buffers were 250 ± 13 μM and 8 ± 0.4 mM, respectively. High concentrations of endogenous buffers define the time course of calcium transients after an action potential in the axoplasm, and may modify synaptic plasticity.

  7. Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration.

    Science.gov (United States)

    Gregorevic, Paul; Plant, David R; Stupka, Nicole; Lynch, Gordon S

    2004-07-15

    Damaged skeletal muscle fibres are replaced with new contractile units via muscle regeneration. Regenerating muscle fibres synthesize functionally distinct isoforms of contractile and regulatory proteins but little is known of their functional properties during the regeneration process. An advantage of utilizing single muscle fibre preparations is that assessment of their function is based on the overall characteristics of the contractile apparatus and regulatory system and as such, these preparations are sensitive in revealing not only coarse, but also subtle functional differences between muscle fibres. We examined the Ca(2+)- and Sr(2+)-activated contractile characteristics of permeabilized fibres from rat fast-twitch (extensor digitorum longus) and slow-twitch (soleus) muscles at 7, 14 and 21 days following myotoxic injury, to test the hypothesis that fibres from regenerating fast and slow muscles have different functional characteristics to fibres from uninjured muscles. Regenerating muscle fibres had approximately 10% of the maximal force producing capacity (P(o)) of control (uninjured) fibres, and an altered sensitivity to Ca(2+) and Sr(2+) at 7 days post-injury. Increased force production and a shift in Ca(2+) sensitivity consistent with fibre maturation were observed during regeneration such that P(o) was restored to 36-45% of that in control fibres by 21 days, and sensitivity to Ca(2+) and Sr(2+) was similar to that of control (uninjured) fibres. The findings support the hypothesis that regenerating muscle fibres have different contractile activation characteristics compared with mature fibres, and that they adopt properties of mature fast- or slow-twitch muscle fibres in a progressive manner as the regeneration process is completed.

  8. Preparation and preclinical evaluation of 68Ga-DOTA-amlodipine for L-type calcium channel imaging

    Science.gov (United States)

    Firuzyar, Tahereh; Jalilian, Amir Reza; Aboudzadeh, Mohammad Reza; Sadeghpour, Hossein; Shafiee-Ardestani, Mahdi; Khalaj, Ali

    2016-01-01

    Aim: In order to develop a possible tracer for L-type calcium channel imaging, we here report the development of a Ga-68 amlodipine derivative for possible PET imaging. Materials and Methods: Amlodipine DOTA conjugate was synthesized, characterized and went through calcium channel blockade, toxicity, apoptosis/necrosis tests. [68Ga] DOTA AMLO was prepared at optimized conditions followed by stability tests, partition coefficient determination and biodistribution studies using tissue counting and co incidence imaging up to 2 h. Results: [68Ga] DOTA AMLO was prepared at pH 4–5 in 7–10 min at 95°C in high radiochemical purity (>99%, radio thin layer chromatography; specific activity: 1.9–2.1 GBq/mmol) and was stable up to 4 h with a log P of −0.94. Calcium channel rich tissues including myocardium, and tissues with smooth muscle cells such as colon, intestine, and lungs demonstrated significant uptake. Co incidence images supported the biodistribution data up to 2 h. Conclusions: The complex can be a candidate for further positron emission tomography imaging for L type calcium channels. PMID:27833311

  9. The role of calcium in modulating the reactivity of the smooth muscle cells during ischemia/reperfusion. Part 2

    Directory of Open Access Journals (Sweden)

    Katarzyna Szadujkis-Szadurska

    2010-04-01

    Full Text Available Background:Damage of transplanted organs during reperfusion is still a problem that prompts the search for new drugs able to diminish the risk of graft rejection. The aim of this study was to examine the influence of antioxidant system on the contraction of arteries induced by angiotensin II during ischemia/reperfusion and to determine the role of intracellular and extracellular calcium ions under these conditions.Material/Methods:The experiments were performed on male Wistar rats’ tail arteries. The effects of angiotensin II on vascular tone were examined after ischemia/reperfusion in the presence of catalase or aminotriazole. To determine the role of intracellular and extracellular Ca[sup]2 [/sup], the experiments were performed in Ca[sup]2 [/sup]-free PSS and PSS.Results:Angiotensin II increased perfusion pressure in both Ca[sup]2 [/sup]-free PSS and PSS. After ischemia, the reactions induced by angiotensin II were lower, while after reperfusion they were higher. In the presence of catalase the effects induced by angiotensin II were lower and in the presence of aminotriazole higher.Conclusions:Ischemia inhibits and reperfusion augments the perfusion pressure induced by angiotensin II. The results confirm the vasoprotective effect of catalase and the destructive influence of aminotriazole in modulating the reactions of vascular smooth muscle cells to ANG II after ischemia/reperfusion. These results suggest that the antioxidant system plays a role in modulating the reactions induced by angiotensin II after ischemia/reperfusion and that reperfusion disturbs the balance between antioxidants and the production of reactive oxygen species.

  10. Pattern analysis in MR imaging of muscle diseases

    International Nuclear Information System (INIS)

    Kaiser, W.A.; Schalke, B.C.G.

    1987-01-01

    Between March 1984 and March 1987, 161 patients with muscle diseases underwent MR imaging performed with a 1.0-T superconductive magnet. Forty-four had progressive muscular dystrophies, 25 had different types of myositis, 19 had spinal or neural muscular atrophies, 16 had myotonic dystrophy, 22 had metabolic disorders, and 35 had other muscle disease, including muscle tumors, posttraumatic muscular atrophies, and postradiation effects. The advantages of MR imaging are the high sensitivity and soft-tissue contrast, as well as the depiction of typical distribution patterns of affected muscle groups, which can be used in diagnosis, biopsy planning, and design of therapy

  11. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity.

    Science.gov (United States)

    Meex, Ruth C R; Schrauwen-Hinderling, Vera B; Moonen-Kornips, Esther; Schaart, Gert; Mensink, Marco; Phielix, Esther; van de Weijer, Tineke; Sels, Jean-Pierre; Schrauwen, Patrick; Hesselink, Matthijs K C

    2010-03-01

    Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes. Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and VO2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training. Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P type 2 diabetic subjects (delta Rd 63% increase; P type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers. Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near-significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity.

  12. Calcium carbonate growth in the presence of water soluble cellulose ethers

    International Nuclear Information System (INIS)

    Zhang Fengju; Yang Xinguo; Tian Fei

    2009-01-01

    Calcium carbonate precipitation was performed in the presence of methyl cellulose (MC) and two kinds of hydroxyethyl cellulose (HEC FD-10000, HEC FD-30000). The results demonstrated that the final product morphology and structure of CaCO 3 crystals are highly sensitive to the concentration of the cellulose ethers aqueous solution. By precisely controlling their concentrations, all these three cellulose ethers solutions have the ability of protecting metastable vaterite from thermodynamically transforming into stable calcite. The intermediate products investigation showed to some extent the phase transformation of calcium carbonate in its growing process from metastable vaterite to calcite and indicated that the calcium carbonate crystal growth in HEC solutions occurs through dissolution and reprecipitation process. Calcium carbonate growth in both presence of HEC and ethanol or Mg 2+ was also examined. This work demonstrates the potential of water soluble cellulose ethers in controlling biominerals crystallization and growth. The results are revelatory for biomineralization and fabricating new organic-inorganic hybrids based on cellulose derivatives.

  13. Effect of ionizing radiation on catalytic properties of Ca2+-ATP-ase from sarcoplasmic reticulum of skeletal muscle

    International Nuclear Information System (INIS)

    Bagel', I.M.; Shafranovskaya, E.V.; Gorokh, G.A.; Markova, A.G.

    1999-01-01

    It was studied kinetic and thermodynamic characteristics of Ca 2+ -ATP-ase of rat skeletal muscle (membranes of sarcoplasmic reticulum) after irradiation in doses 0,5, 4,0 and 8,0 Gy. It was shown that external gamma-irradiation at different doses changed kinetic and thermodynamic characteristics of the enzyme of sarcoplasmic reticulum membranes of skeletal muscle. These alterations probably correlate with disbalance of hormonal regulation of intracellular calcium metabolism and changes in membrane structure and functions

  14. Research of calcium oxide hydration in calcium nitrate solutions

    Directory of Open Access Journals (Sweden)

    M.A. Oliynyk

    2016-09-01

    Full Text Available Mineral fertilizers are one of the important factors of agriculture intensification and increasing of food products quantity. The volume of fertilizers production and its domestic consumption in Ukraine indicate that nitrogen fertilizer using only comes nearer to the required number of science-based. One of the most widespread artificial fertilizers is the calcium nitrate. Aim: The aim is to study and theoretically substantiate the processes occurring in the preparation of suspensions of calcium hydroxide Са(ОН2 in solution of calcium nitrate Ca(NО32. Materials and Methods: The technical calcium oxide (quicklime DSTU BV.2.7-90-99, solutions of calcium nitrate of 15, 20, 25, 30, 35 and 40% Ca(NО32 concentrations were used in the work. The content of lime in the preparation of a suspension in the solution changed (in terms of calcium oxide CaO from 150 g/dm3 to the maximum possible. Each of these solutions saturated at 40°С in lime to maximum concentration. Suitable for use in these experiments and in the technology of calcium nitrate obtaining are considered the solutions (suspensions that within 12 hours did not lose their mobility (transportability. Results: The experimental results show that increasing of the concentration of calcium nitrate in solution within the range 15...40%, the amount of lime that you can put into the solution without loss of transportability decreases. Further increasing of lime quantity in solutions concentrations causes to its solidifying, loss of mobility (transportability. Calculations showed that in the presence of calcium nitrate the solubility of Са(ОН2 is reduced nearly by order that can lead to the formation of calcium oxide CaO the solid phase Са(ОН2 on the surface, which also can form hydrogen bonds with the components of the solution. As the probability of formation of hydrogen bonds in solutions is high, there is a possibility of formation of clusters.

  15. Advanced Glycation End Products Impair Ca2+ Mobilization and Sensitization in Colonic Smooth Muscle Cells via the CAMP/PKA Pathway

    Directory of Open Access Journals (Sweden)

    Ting Yu

    2017-10-01

    Full Text Available Background/Aims: Excessive production of advanced glycation end products (AGEs has been implicated in diabetes-related complications. This study aimed to investigate the mechanism by which AGEs potentially contribute to diabetes-associated colonic dysmotility. Methods: Control and streptozotocin (STZ-induced diabetic groups were treated with aminoguanidine (AG. The colonic transit time and contractility of circular muscle strips was measured. ELISA, immunohistochemistry and western blotting were used to measure Nε-carboxymethyl-lysine (CML levels. Primary cultured colonic smooth muscle cells (SMCs were used in complementary in vitro studies. Results: Diabetic rats showed prolonged colonic transit time, weak contractility of colonic smooth muscle strips, and elevated levels of AGEs in the serum and colon tissues. cAMP levels, protein kinase-A (PKA activities, and inositol 1,4,5-trisphosphate receptor type 3 (IP3R3 phosphorylation were increased in the colon muscle tissues of diabetic rats, whereas RhoA/Rho kinase activity and myosin phosphatase target subunit 1 (MYPT1 phosphorylation were reduced. The inhibition of the production of AGEs (AG treatment reduced these effects. In cultured colonic SMCs, AGE-BSA treatment increased IP3R3 phosphorylation and reduced intracellular Ca2+ concentration, myosin light chain (MLC phosphorylation, RhoA/Rho kinase activity, and MYPT1 phosphorylation. The PKA inhibitor H-89 and anti-RAGE antibody inhibited the AGE-BSA–induced impairment of Ca2+ signaling and cAMP/PKA activation. Conclusion: AGEs/RAGE participate in diabetes-associated colonic dysmotility by interfering with Ca2+ signaling in colonic SMCs through targeting IP3R3-mediated Ca2+ mobilization and RhoA/Rho kinase-mediated Ca2+ sensitization via the cAMP/PKA pathway.

  16. Exercise Increases Insulin Sensitivity and Skeletal Muscle AMPK Expression in Systemic Lupus Erythematosus: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Fabiana B. Benatti

    2018-04-01

    Full Text Available Systemic lupus erythematosus (SLE patients may show increased insulin resistance (IR when compared with their healthy peers. Exercise training has been shown to improve insulin sensitivity in other insulin-resistant populations, but it has never been tested in SLE. Therefore, the aim of the present study was to assess the efficacy of a moderate-intensity exercise training program on insulin sensitivity and potential underlying mechanisms in SLE patients with mild/inactive disease. A 12-week, randomized controlled trial was conducted. Nineteen SLE patients were randomly assigned into two groups: trained (SLE-TR, n = 9 and non-trained (SLE-NT, n = 10. Before and after 12 weeks of the exercise training program, patients underwent a meal test (MT, from which surrogates of insulin sensitivity and beta-cell function were determined. Muscle biopsies were performed after the MT for the assessment of total and membrane GLUT4 and proteins related to insulin signaling [Akt and AMP-activated protein kinase (AMPK]. SLE-TR showed, when compared with SLE-NT, significant decreases in fasting insulin [−39 vs. +14%, p = 0.009, effect size (ES = −1.0] and in the insulin response to MT (−23 vs. +21%, p = 0.007, ES = −1.1, homeostasis model assessment IR (−30 vs. +15%, p = 0.005, ES = −1.1, a tendency toward decreased proinsulin response to MT (−19 vs. +6%, p = 0.07, ES = −0.9 and increased glucagon response to MT (+3 vs. −3%, p = 0.09, ES = 0.6, and significant increases in the Matsuda index (+66 vs. −31%, p = 0.004, ES = 0.9 and fasting glucagon (+4 vs. −8%, p = 0.03, ES = 0.7. No significant differences between SLT-TR and SLT-NT were observed in fasting glucose, glucose response to MT, and insulinogenic index (all p > 0.05. SLE-TR showed a significant increase in AMPK Thr 172 phosphorylation when compared to SLE-NT (+73 vs. −12%, p = 0.014, ES = 1.3, whereas no

  17. Production of precipitated calcium carbonate from calcium silicates and carbon dioxide

    International Nuclear Information System (INIS)

    Teir, Sebastian; Eloneva, Sanni; Zevenhoven, Ron

    2005-01-01

    The possibilities for reducing carbon dioxide emissions from the pulp and paper industry by calcium carbonation are presented. The current precipitated calcium carbonate (PCC) production uses mined, crushed calcium carbonate as raw materials. If calcium silicates were used instead, carbon dioxide emissions from the calcination of carbonates would be eliminated. In Finland, there could, thus, be a potential for eliminating 200 kt of carbon dioxide emissions per year, considering only the PCC used in the pulp and paper industry. A preliminary investigation of the feasibility to produce PCC from calcium silicates and the potential to replace calcium carbonate as the raw material was made. Calcium carbonate can be manufactured from calcium silicates by various methods, but only a few have been experimentally verified. The possibility and feasibility of these methods as a replacement for the current PCC production process was studied by thermodynamic equilibrium calculations using HSC software and process modelling using Aspen Plus[reg]. The results from the process modelling showed that a process that uses acetic acid for extraction of the calcium ions is a high potential option for sequestering carbon dioxide by mineral carbonation. The main obstacle seems to be the limited availability and relatively high price of wollastonite, which is a mineral with high calcium silicate content. An alternative is to use the more common, but also more complex, basalt rock instead

  18. Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes

    Directory of Open Access Journals (Sweden)

    Dmitry eSamigullin

    2015-01-01

    Full Text Available At the frog neuromuscular junction, under physiological conditions, the direct measurement of calcium currents and of the concentration of intracellular calcium buffers—which determine the kinetics of calcium concentration and neurotransmitter release from the nerve terminal—has hitherto been technically impossible. With the aim of quantifying both Ca2+ currents and the intracellular calcium buffers, we measured fluorescence signals from nerve terminals loaded with the low-affinity calcium dye Magnesium Green or the high-affinity dye Oregon Green BAPTA-1, simultaneously with microelectrode recordings of nerve-action potentials and end-plate currents. The action-potential-induced fluorescence signals in the nerve terminals developed much more slowly than the postsynaptic response. To clarify the reasons for this observation and to define a spatiotemporal profile of intracellular calcium and of the concentration of mobile and fixed calcium buffers, mathematical modeling was employed. The best approximations of the experimental calcium transients for both calcium dyes were obtained when the calcium current had an amplitude of 1.6 ± 0.08 рА and a half-decay time of 1.2 ± 0.06 ms, and when the concentrations of mobile and fixed calcium buffers were 250 ± 13 µM and 8 ± 0.4 mM, respectively. High concentrations of endogenous buffers define the time course of calcium transients after an action potential in the axoplasm, and may modify synaptic plasticity.

  19. Muscle metaboreflex control of the circulation during exercise

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher

    2010-01-01

    . It can both elevate and decrease muscle blood flow depending on (1) the intensity and mode of contraction, (2) the limb in which the reflex is evoked, (3) the strength of the signal defined by the muscle mass, (4) the extent to which blood flow is redistributed from inactive vascular beds to increase......This review covers the control of blood pressure, cardiac output and muscle blood flow by the muscle metaboreflex which involves chemically sensitive nerves located in muscle parenchyma activated by metabolites accumulating in the muscle during contraction. The efferent response to metaboreflex...... activation is an increase in sympathetic nerve activity that constricts the systemic vasculature and also evokes parallel inotropic and chronotropic effects on the heart to increase cardiac output. The metaboreflex elicits a significant blood pressure elevating response during exercise and functions...

  20. Calcium electroporation in three cell lines; a comparison of bleomycin and calcium, calcium compounds, and pulsing conditions

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gissel, Hanne; Hojman, Pernille

    2013-01-01

    offers several advantages over standard treatment options: calcium is inexpensive and may readily be applied without special precautions, as is the case with cytostatic drugs. Therefore, details on the use of calcium electroporation are essential for carrying out clinical trials comparing calcium...

  1. Voltage-dependent inward currents in smooth muscle cells of skeletal muscle arterioles

    Science.gov (United States)

    Shirokov, Roman E.

    2018-01-01

    Voltage-dependent inward currents responsible for the depolarizing phase of action potentials were characterized in smooth muscle cells of 4th order arterioles in mouse skeletal muscle. Currents through L-type Ca2+ channels were expected to be dominant; however, action potentials were not eliminated in nominally Ca2+-free bathing solution or by addition of L-type Ca2+ channel blocker nifedipine (10 μM). Instead, Na+ channel blocker tetrodotoxin (TTX, 1 μM) reduced the maximal velocity of the upstroke at low, but not at normal (2 mM), Ca2+ in the bath. The magnitude of TTX-sensitive currents recorded with 140 mM Na+ was about 20 pA/pF. TTX-sensitive currents decreased five-fold when Ca2+ increased from 2 to 10 mM. The currents reduced three-fold in the presence of 10 mM caffeine, but remained unaltered by 1 mM of isobutylmethylxanthine (IBMX). In addition to L-type Ca2+ currents (15 pA/pF in 20 mM Ca2+), we also found Ca2+ currents that are resistant to 10 μM nifedipine (5 pA/pF in 20 mM Ca2+). Based on their biophysical properties, these Ca2+ currents are likely to be through voltage-gated T-type Ca2+ channels. Our results suggest that Na+ and at least two types (T- and L-) of Ca2+ voltage-gated channels contribute to depolarization of smooth muscle cells in skeletal muscle arterioles. Voltage-gated Na+ channels appear to be under a tight control by Ca2+ signaling. PMID:29694371

  2. Transcellular transport of calcium

    Energy Technology Data Exchange (ETDEWEB)

    Terepka, A R; Coleman, J R; Armbrecht, H J; Gunter, T E

    1976-01-01

    Studies of two calcium transporting epithelia, embryonic chick chorioallantoic membrane and the small intestine of rat and chick, have strongly suggested that the transfer of calcium across a cell involves processes distinctly different from intracellular calcium ion regulation. In the proposed model, transcellular calcium transport is considered as a specialized process developed only by certain cells in those tissues charged with bulk transfer of calcium. The overall effect of the endocytotic mechanism is bulk calcium movement across a cell, protection of mitochondria from exposure to high concentrations of calcium, and the avoidance of wide and potentially toxic fluctuations in cytosol ionic calcium levels. (MFB)

  3. Distribution of ABO Blood Groups and Coronary Artery Calcium.

    Science.gov (United States)

    Wang, Yao; Zhou, Bing-Yang; Zhu, Cheng-Gang; Guo, Yuan-Lin; Wu, Na-Qiong; Qing, Ping; Gao, Ying; Liu, Geng; Dong, Qian; Li, Jian-Jun

    2017-06-01

    ABO blood groups have been confirmed to be associated with cardiovascular diseases such as coronary artery disease. However, whether ABO blood group is correlated with coronary artery calcium (CAC) is still unknown. 301 patients with coronary artery calcium score (CACS) assessed by computed tomography were consecutively enrolled and divided into two groups: with calcium group (CACS>0, n=104) and without calcium group (CACS=0, n=197). Distribution of ABO blood groups was evaluated between the two groups. The percentage of A blood type was significantly higher (p=0.008) and O blood type was significantly lower (p=0.037) in the calcium group. Univariate regression analysis showed that age, total cholesterol, low density lipoprotein cholesterol, high-sensitivity C-reactive protein, A blood type were positively correlated with CAC, and O blood type was inversely associated with CAC. Multivariate regression analysis showed that A blood type was independently associated with CAC (odds ratio: 2.217, 95% confidence interval: 1.260-3.900, p=0.006) even after further adjustment for variables that were clearly different between the two groups. Our data has suggested for the first time that A blood type was an independent risk marker for CAC. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  4. Proteome-wide Adaptations of Mouse Skeletal Muscles during a Full Month in Space.

    Science.gov (United States)

    Tascher, Georg; Brioche, Thomas; Maes, Pauline; Chopard, Angèle; O'Gorman, Donal; Gauquelin-Koch, Guillemette; Blanc, Stéphane; Bertile, Fabrice

    2017-07-07

    The safety of space flight is challenged by a severe loss of skeletal muscle mass, strength, and endurance that may compromise the health and performance of astronauts. The molecular mechanisms underpinning muscle atrophy and decreased performance have been studied mostly after short duration flights and are still not fully elucidated. By deciphering the muscle proteome changes elicited in mice after a full month aboard the BION-M1 biosatellite, we observed that the antigravity soleus incurred the greatest changes compared with locomotor muscles. Proteomics data notably suggested mitochondrial dysfunction, metabolic and fiber type switching toward glycolytic type II fibers, structural alterations, and calcium signaling-related defects to be the main causes for decreased muscle performance in flown mice. Alterations of the protein balance, mTOR pathway, myogenesis, and apoptosis were expected to contribute to muscle atrophy. Moreover, several signs reflecting alteration of telomere maintenance, oxidative stress, and insulin resistance were found as possible additional deleterious effects. Finally, 8 days of recovery post flight were not sufficient to restore completely flight-induced changes. Thus in-depth proteomics analysis unraveled the complex and multifactorial remodeling of skeletal muscle structure and function during long-term space flight, which should help define combined sets of countermeasures before, during, and after the flight.

  5. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors.

    Science.gov (United States)

    Miyatake, Shouta; Shimizu-Motohashi, Yuko; Takeda, Shin'ichi; Aoki, Yoshitsugu

    2016-01-01

    Duchenne muscular dystrophy (DMD), an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD.

  6. Effect of calcium on excitatory neuromuscular transmission in the crayfish

    Science.gov (United States)

    Bracho, H.; Orkand, R. K.

    1970-01-01

    1. The effects of varying the external Ca concentration from 1·8 to 30 mM/l. (⅛-2 times normal) have been studied at the in vitro crayfish excitatory neuromuscular junction. Electrophysiological techniques were used to record transmembrane junctional potentials from muscle fibres and extracellular junctional currents from the vicinity of nerve terminals. 2. The excitatory junctional potential amplitude was proportional to [Ca]0n, where n varied between 0·68 and 0·94 (mean 0·82) when [Ca]0 was varied from 1·8 to 15 mM/l. 3. The increase in junctional potential amplitude on raising [Ca]0 resulted primarily from an increase in the average number of quanta of excitatory transmitter released from the presynaptic nerve terminal by the nerve impulse. 4. The size of the quanta, synaptic delay, presynaptic potential and electrical properties of the muscle membrane were little affected by changes in calcium concentration in the range studied. PMID:5498460

  7. Ethanol Exposure Causes Muscle Degeneration in Zebrafish

    Directory of Open Access Journals (Sweden)

    Elizabeth C. Coffey

    2018-03-01

    Full Text Available Alcoholic myopathies are characterized by neuromusculoskeletal symptoms such as compromised movement and weakness. Although these symptoms have been attributed to neurological damage, EtOH may also target skeletal muscle. EtOH exposure during zebrafish primary muscle development or adulthood results in smaller muscle fibers. However, the effects of EtOH exposure on skeletal muscle during the growth period that follows primary muscle development are not well understood. We determined the effects of EtOH exposure on muscle during this phase of development. Strikingly, muscle fibers at this stage are acutely sensitive to EtOH treatment: EtOH induces muscle degeneration. The severity of EtOH-induced muscle damage varies but muscle becomes more refractory to EtOH as muscle develops. NF-kB induction in muscle indicates that EtOH triggers a pro-inflammatory response. EtOH-induced muscle damage is p53-independent. Uptake of Evans blue dye shows that EtOH treatment causes sarcolemmal instability before muscle fiber detachment. Dystrophin-null sapje mutant zebrafish also exhibit sarcolemmal instability. We tested whether Trichostatin A (TSA, which reduces muscle degeneration in sapje mutants, would affect EtOH-treated zebrafish. We found that TSA and EtOH are a lethal combination. EtOH does, however, exacerbate muscle degeneration in sapje mutants. EtOH also disrupts adhesion of muscle fibers to their extracellular matrix at the myotendinous junction: some detached muscle fibers retain beta-Dystroglycan indicating failure of muscle end attachments. Overexpression of Paxillin, which reduces muscle degeneration in zebrafish deficient for beta-Dystroglycan, is not sufficient to rescue degeneration. Taken together, our results suggest that EtOH exposure has pleiotropic deleterious effects on skeletal muscle.

  8. Calcium hydroxide poisoning

    Science.gov (United States)

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  9. Effects of calcium on seed germination, seedling growth and photosynthesis of six forest tree species under simulated acid rain

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ting-Wu; Wu, Fei-Hua; Wang, Wen-Hua; Chen, Juan; Li, Zhen-Ji; Dong, Xue-Jun; Patton, Janet; Pei, Zhen-Ming; Zheng, Hai-Lei

    2011-04-15

    For several decades, acid rain has been an environmental problem in North America and Europe and is now so in China. The aim of that study was to determine the effects and potential interactions between simulated acid rain (SiAR) and calcium on seed germination of different tree species present in China. Seeds from six tree species were grown is a laboratory where they were spread with SiAR or water as control and where calcium was applied at three levels. Results showed that two species were highly tolerant to SiAR while the others were sensitive; the addition of calcium also had a rescue effect on sensitive seeds but no significant effect on the tolerant ones.

  10. Lipolysis in Skeletal Muscle

    DEFF Research Database (Denmark)

    Serup, Annette Karen Lundbeck

    chemical structure of DAG. We took advantage of the fact that insulin sensitivity is increased after exercise, and that mice knocked out (KO) of HSL accumulate DAG after exercise, and measured insulin stimulated glucose uptake after treadmill running in skeletal muscle from HSL KO mice and wildtype control...

  11. Coordinate Transcriptomic and Metabolomic Effects of the Insulin Sensitizer Rosiglitazone on Fundamental Metabolic Pathways in Liver, Soleus Muscle, and Adipose Tissue in Diabetic db/db Mice

    Directory of Open Access Journals (Sweden)

    Sabrina Le Bouter

    2010-01-01

    Full Text Available Rosiglitazone (RSG, developed for the treatment of type 2 diabetes mellitus, is known to have potent effects on carbohydrate and lipid metabolism leading to the improvement of insulin sensitivity in target tissues. To further assess the capacity of RSG to normalize gene expression in insulin-sensitive tissues, we compared groups of 18-day-treated db/db mice with increasing oral doses of RSG (10, 30, and 100 mg/kg/d with untreated non-diabetic littermates (db/+. For this aim, transcriptional changes were measured in liver, inguinal adipose tissue (IAT and soleus muscle using microarrays and real-time PCR. In parallel, targeted metabolomic assessment of lipids (triglycerides (TGs and free fatty acids (FFAs in plasma and tissues was performed by UPLC-MS methods. Multivariate analyses revealed a relationship between the differential gene expressions in liver and liver trioleate content and between blood glucose levels and a combination of differentially expressed genes measured in liver, IAT, and muscle. In summary, we have integrated gene expression and targeted metabolomic data to present a comprehensive overview of RSG-induced changes in a diabetes mouse model and improved the molecular understanding of how RSG ameliorates diabetes through its effect on the major insulin-sensitive tissues.

  12. Muscle Carnosine Is Associated with Cardiometabolic Risk Factors in Humans.

    Directory of Open Access Journals (Sweden)

    Barbora de Courten

    Full Text Available Carnosine is a naturally present dipeptide abundant in skeletal muscle and an over-the counter food additive. Animal data suggest a role of carnosine supplementation in the prevention and treatment of obesity, insulin resistance, type 2 diabetes and cardiovascular disease but only limited human data exists.Samples of vastus lateralis muscle were obtained by needle biopsy. We measured muscle carnosine levels (high-performance liquid chromatography, % body fat (bioimpedance, abdominal subcutaneous and visceral adiposity (magnetic resonance imaging, insulin sensitivity (euglycaemic hyperinsulinemic clamp, resting energy expenditure (REE, indirect calorimetry, free-living ambulatory physical activity (accelerometers and lipid profile in 36 sedentary non-vegetarian middle aged men (45±7 years with varying degrees of adiposity and glucose tolerance. Muscle carnosine content was positively related to % body fat (r = 0.35, p = 0.04 and subcutaneous (r = 0.38, p = 0.02 but not visceral fat (r = 0.17, p = 0.33. Muscle carnosine content was inversely associated with insulin sensitivity (r = -0.44, p = 0.008, REE (r = -0.58, p<0.001 and HDL-cholesterol levels (r = -0.34, p = 0.048. Insulin sensitivity and physical activity were the best predictors of muscle carnosine content after adjustment for adiposity.Our data shows that higher carnosine content in human skeletal muscle is positively associated with insulin resistance and fasting metabolic preference for glucose. Moreover, it is negatively associated with HDL-cholesterol and basal energy expenditure. Intervention studies targeting insulin resistance, metabolic and cardiovascular disease risk factors are necessary to evaluate its putative role in the prevention and management of type 2 diabetes and cardiovascular disease.

  13. Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder. Studies using a fast-reaction apparatus

    International Nuclear Information System (INIS)

    Chase, H.S. Jr.; Al-Awqati, Q.

    1983-01-01

    Regulation of the sodium permeability of the luminal membrane is the major mechanism by which the net rate of sodium transport across tight epithelia is varied. Previous evidence has suggested that the permeability of the luminal membrane might be regulated by changes in intracellular sodium or calcium activities. To test this directly, we isolated a fraction of the plasma membrane from the toad urinary bladder, which contains a fast, amiloride-sensitive sodium flux with characteristics similar to those of the native luminal membrane. Using a flow-quench apparatus to measure the initial rate of sodium efflux from these vesicles in the millisecond time range, we have demonstrated that the isotope exchange permeability of these vesicles is very sensitive to calcium. Calcium reduces the sodium permeability, and the half-maximal inhibitory concentration is 0.5 microM, well within the range of calcium activity found in cells. Also, the permeability of the luminal membrane vesicles is little affected by the ambient sodium concentration. These results, when taken together with studies on whole tissue, suggest that cell calcium may be an important regulator of transepithelial sodium transport by its effect on luminal sodium permeability. The effect of cell sodium on permeability may be mediated by calcium rather than by sodium itself

  14. Mitochondrial alterations and oxidative stress in an acute transient mouse model of muscle degeneration: implications for muscular dystrophy and related muscle pathologies.

    Science.gov (United States)

    Ramadasan-Nair, Renjini; Gayathri, Narayanappa; Mishra, Sudha; Sunitha, Balaraju; Mythri, Rajeswara Babu; Nalini, Atchayaram; Subbannayya, Yashwanth; Harsha, Hindalahalli Chandregowda; Kolthur-Seetharam, Ullas; Srinivas Bharath, Muchukunte Mukunda

    2014-01-03

    Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases.

  15. PEGylated Red-Emitting Calcium Probe with Improved Sensing Properties for Neuroscience.

    Science.gov (United States)

    Ponsot, Flavien; Shen, Weida; Ashokkumar, Pichandi; Audinat, Etienne; Klymchenko, Andrey S; Collot, Mayeul

    2017-11-22

    Monitoring calcium concentration in the cytosol is of main importance as this ion drives many biological cascades within the cell. To this end, molecular calcium probes are widely used. Most of them, especially the red emitting probes, suffer from nonspecific interactions with inner membranes due to the hydrophobic nature of their fluorophore. To circumvent this issue, calcium probes conjugated to dextran can be used to enhance the hydrophilicity and reduce the nonspecific interaction and compartmentalization. However, dextran conjugates also feature important drawbacks including lower affinity, lower dynamic range, and slow diffusion. Herein, we combined the advantage of molecular probes and dextran conjugate without their drawbacks by designing a new red emitting turn-on calcium probe based on PET quenching, Rhod-PEG, in which the rhodamine fluorophore bears four PEG 4 units. This modification led to a high affinity calcium probe (K d = 748 nM) with reduced nonspecific interactions, enhanced photostability, two-photon absorbance, and brightness compared to the commercially available Rhod-2. After spectral characterizations, we showed that Rhod-PEG quickly and efficiently diffused through the dendrites of pyramidal neurons with an enhanced sensitivity (ΔF/F 0 ) at shorter time after patching compared to Rhod-2.

  16. Vitamin K3 inhibits mouse uterine contraction in vitro via interference with the calcium transfer and the potassium channels.

    Science.gov (United States)

    Zhang, Xian-Xia; Lu, Li-Min; Wang, Li

    2016-08-05

    Previous studies have demonstrated vitamin K3 had a great relief to smooth muscle spastic disorders, but no researches have yet pinpointed its possible anti-contractile activity in the uterus. Here, we evaluated the effect of vitamin K3 on myometrial contractility and explored the possible mechanisms of vitamin K3 action. Myograph apparatus were used to record the changes in contractility of isolated mouse uterine strips in a tissue bath. Uterine strips were exposed to vitamin K3 or vehicle. Vitamin K3 suppressed spontaneous contractions in a concentration dependent manner. It significantly decreased the contractile frequency induced by PGF2ɑ but not their amplitude (expect 58.0 μM). Prior incubation with vitamin K3 reduced the effectiveness of PGF2ɑ-induced contraction. The antispasmodic effect of vitamin K3 was also sensitive to potassium channel blockers, such as tetraethylammonium, 4-aminopyridine, iberiotoxin) but not to the nitric oxide related pathway blockers. High concentrations (29.0, 58.0 μM) of vitamin K3 weakened the Ca(2+) dose response and inhibited phase 1 contraction (intracellular stored calcium release). These dates suggest that vitamin K3 specifically suppresses myometrial contractility by affecting calcium and potassium channels; thus, this approach has potential therapy for uterine contractile activity related disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The α2δ subunit and absence epilepsy: Beyond calcium channels?

    NARCIS (Netherlands)

    Celli, R.; Santolini, I.; Guiducci, M.; Luijtelaar, E.L.J.M. van; Parisi, P.; Striano, P.; Gradini, R.; Battaglia, G.; Ngomba, R.T.; Nicoletti, F.

    2017-01-01

    Spike-wave discharges, underlying absence seizures, are generated within a cortico-thalamo-cortical network that involves the somatosensory cortex, the reticular thalamic nucleus, and the ventrobasal thalamic nuclei. Activation of T-type voltage-sensitive calcium channels (VSCCs) contributes to the

  18. Phytoplankton calcification as an effective mechanism to prevent cellular calcium poisoning

    Science.gov (United States)

    Müller, M. N.; Ramos, J. Barcelos e.; Schulz, K. G.; Riebesell, U.; Kaźmierczak, J.; Gallo, F.; Mackinder, L.; Li, Y.; Nesterenko, P. N.; Trull, T. W.; Hallegraeff, G. M.

    2015-08-01

    Marine phytoplankton has developed the remarkable ability to tightly regulate the concentration of free calcium ions in the intracellular cytosol at a level of ~ 0.1 μmol L-1 in the presence of seawater Ca2+ concentrations of 10 mmol L-1. The low cytosolic calcium ion concentration is of utmost importance for proper cell signalling function. While the regulatory mechanisms responsible for the tight control of intracellular Ca2+ concentration are not completely understood, phytoplankton taxonomic groups appear to have evolved different strategies, which may affect their ability to cope with changes in seawater Ca2+ concentrations in their environment on geological time scales. For example, the Cretaceous (145 to 66 Ma ago), an era known for the high abundance of coccolithophores and the production of enormous calcium carbonate deposits, exhibited seawater calcium concentrations up to four times present-day levels. We show that calcifying coccolithophore species (Emiliania huxleyi, Gephyrocapsa oceanica and Coccolithus braarudii) are able to maintain their relative fitness (in terms of growth rate and photosynthesis) at simulated Cretaceous seawater calcium concentrations, whereas these rates are severely reduced under these conditions in some non-calcareous phytoplankton species (Chaetoceros sp., Ceratoneis closterium and Heterosigma akashiwo). Most notably, this also applies to a non-calcifying strain of E. huxleyi which displays a calcium-sensitivity similar to the non-calcareous species. We hypothesize that the process of calcification in coccolithophores provides an efficient mechanism to prevent cellular calcium poisoning and thereby offered a potential key evolutionary advantage, responsible for the proliferation of coccolithophores during times of high seawater calcium concentrations.

  19. Kinetics of calcium sulfoaluminate formation from tricalcium aluminate, calcium sulfate and calcium oxide

    International Nuclear Information System (INIS)

    Li, Xuerun; Zhang, Yu; Shen, Xiaodong; Wang, Qianqian; Pan, Zhigang

    2014-01-01

    The formation kinetics of tricalcium aluminate (C 3 A) and calcium sulfate yielding calcium sulfoaluminate (C 4 A 3 $) and the decomposition kinetics of calcium sulfoaluminate were investigated by sintering a mixture of synthetic C 3 A and gypsum. The quantitative analysis of the phase composition was performed by X-ray powder diffraction analysis using the Rietveld method. The results showed that the formation reaction 3Ca 3 Al 2 O 6 + CaSO 4 → Ca 4 Al 6 O 12 (SO 4 ) + 6CaO was the primary reaction 4 Al 6 O 12 (SO 4 ) + 10CaO → 6Ca 3 Al 2 O 6 + 2SO 2 ↑ + O 2 ↑ primarily occurred beyond 1350 °C with an activation energy of 792 ± 64 kJ/mol. The optimal formation region for C 4 A 3 $ was from 1150 °C to 1350 °C and from 6 h to 1 h, which could provide useful information on the formation of C 4 A 3 $ containing clinkers. The Jander diffusion model was feasible for the formation and decomposition of calcium sulfoaluminate. Ca 2+ and SO 4 2− were the diffusive species in both the formation and decomposition reactions. -- Highlights: •Formation and decomposition of calcium sulphoaluminate were studied. •Decomposition of calcium sulphoaluminate combined CaO and yielded C 3 A. •Activation energy for formation was 231 ± 42 kJ/mol. •Activation energy for decomposition was 792 ± 64 kJ/mol. •Both the formation and decomposition were controlled by diffusion

  20. Why Calcium? How Calcium Became the Best Communicator*

    Science.gov (United States)

    Carafoli, Ernesto; Krebs, Joachim

    2016-01-01

    Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these “calcium sensors” are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death. PMID:27462077