WorldWideScience

Sample records for muon-neutron interactions

  1. Study of muon-induced neutron production using accelerator muon beam at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Y.; Lin, C. J.; Ochoa-Ricoux, J. P. [Lawrence Berkeley National Laboratory, Berkeley, California (United States); Draeger, E.; White, C. G. [Illinois Institute of Technology, Chicago, Illinois (United States); Luk, K. B.; Steiner, H. [Lawrence Berkeley National Laboratory, Berkeley, California (United States); Department of Physics, University of California, Berkeley, California (United States)

    2015-08-17

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experiment for more comprehensive study of muon-induced neutron production.

  2. Muon and neutron observations in connection with the corotating interaction regions

    Science.gov (United States)

    da Silva, M. R.; Dal Lago, A.; Echer, E.; de Lucas, A.; Gonzalez, W. D.; Schuch, N. J.; Munakata, K.; Vieira, L. E. A.; Guarnieri, F. L.

    Ground cosmic ray observations are used for studying several kinds of interplanetary structures. The cosmic ray data has different responses to each kind of interplanetary structure. This article has as objective to study cosmic ray muon and neutron signatures due to the passage of corotating interaction region (CIR) in the interplanetary medium, and identify the signatures in the cosmic ray data due to these events. The cosmic ray muon data used in this work are recorded by the multidirectional muon detector installed at INPE’s Observatório Espacial do Sul OES/CRSPE/INPE-MCT, in São Martinho da Serra, RS (Brazil) and the neutron data was recorded by the neutron monitor installed in Newark (USA). The CIR events were selected in the period from 2001 to 2004. CIRs clearly affect cosmic ray density in the interplanetary medium in the Earth’s vicinity, where the magnetic field plays an important role.

  3. Investigations of fast neutron production by 190 GeV/c muon interactions on graphite target

    CERN Document Server

    Chazal, V; Cook, B; Henrikson, H; Jonkmans, G; Paic, A; Mascarenhas, N; Vogel, P; Vuilleumier, J L

    2002-01-01

    The production of fast neutrons (1 MeV - 1 GeV) in high energy muon-nucleus interactions is poorly understood, yet it is fundamental to the understanding of the background in many underground experiments. The aim of the present experiment (CERN NA55) was to measure spallation neutrons produced by 190 GeV/c muons scattering on carbon target. We have investigated the energy spectrum and angular distribution of spallation neutrons, and we report the result of our measurement of the neutron production differential cross section.

  4. Investigations of fast neutron production by 190 GeV/c muon interactions on different targets

    International Nuclear Information System (INIS)

    Chazal, V.; Boehm, F.; Cook, B.; Henrikson, H.; Jonkmans, G.; Paic, A.; Mascarenhas, N.; Vogel, P.; Vuilleumier, J.-L.

    2002-01-01

    The production of fast neutrons (1 MeV-1 GeV) in high-energy muon-nucleus interactions is poorly understood, yet it is fundamental to the understanding of the background in many underground experiments. The aim of the present experiment (CERN NA55) was to measure spallation neutrons produced by 190 GeV/c muons scattering on carbon, copper and lead targets. We have investigated the energy spectrum and angular distribution of spallation neutrons, and we report the result of our measurement of the neutron production differential cross-section

  5. Neutron emission study after muon capture by nuclei

    International Nuclear Information System (INIS)

    Bouyssy, Alain.

    1974-01-01

    Muon capture by nuclei, used in the beginning for checking the weak interaction, is now a method of investigation of nuclear structure. Study of spectrum, asymmetry and polarization of emitted neutrons after polarized muon capture has been done in three directions: weak coupling constants, final state interaction, nuclear wave functions. The neutron intensity and helicity are very dependent of the neutron - residual nucleus interaction, while the asymmetry is sensitive to the wave functions used for the proton. Moreover if the induced tensor coupling constant is different from zero the asymmetry is increased. Longitudinal polarization experiments, with those for neutron intensity, would be of great interest to give informations on neutron asymmetry [fr

  6. The Muon-Induced Neutron Indirect-Detection EXperiment. MINIDEX

    Energy Technology Data Exchange (ETDEWEB)

    Palermo, Matteo

    2016-06-06

    A new experiment to measure muon-induced neutrons is introduced. The design of the Muon-Induced Neutron Indirect Detection EXperiment, MINIDEX, is presented and its installation and commissioning in the Tuebingen Shallow Underground Laboratory are described. Results from its first data taking period, run I, are presented. Muon-induced neutrons are not only an interesting physics topic by itself, but they are also an important source of background in searches for possible new rare phenomena like neutrinoless double beta decay or directly observable interactions of dark matter. These subjects are of great importance to understand the development of the early universe. Therefore, a new generation of ton-scale experiments which require extremely low background levels is under consideration. Reliable Monte Carlo simulations are needed to design such future experiments and estimate their background levels and sensitivities. The background due to muon-induced neutrons is hard to estimate, because of inconsistencies between different experimental results and discrepancies between measurements and Monte Carlo predictions. Especially for neutron production in high-Z materials, more experimental data and related simulation studies are clearly needed. MINIDEX addresses exactly this subject. Already the first five months of data taking provided valuable data on neutron production, propagation and interaction in lead. A first round of comparisons between MINIDEX data and Monte Carlo predictions are presented. In particular, the predictions of two Monte Carlo packages, based on GEANT4, are compared to the data. The data show an overall 70-100% higher rate of muon-induced events than predicted by the Monte Carlo packages. These packages also predict a faster time evolution of the muon-induced signal than observed in the data. Nevertheless, the time until the signal from the muon-induced events is completely collected was correctly predicted by the Monte Carlos. MINIDEX is foreseen

  7. Study of the muon-induced neutron background with the LVD detector

    International Nuclear Information System (INIS)

    Menghetti, H.; Selvi, M.

    2005-01-01

    High energy neutrons, generated as a product of cosmic muon interaction in the rock or in the detector passive material, represent the most dangerous background for a large list of topics like reactor neutrino studies, the search for SN relic neutrinos, solar antineutrinos, etc.Up to now there are few measurements of the muon-produced neutron flux at large depth underground. Moreover it is difficult to reproduce the measured data with Monte Carlo simulation because of the large uncertainties in the neutron production and propagation models.We present here the results of such a measurement with the LVD detector, which is well suited for the detection of neutrons produced by cosmic-ray muons, reporting the neutron flux at various distances from the muon track, for different neutron energies (E > 20 MeV) and as a function of the muon track length in scintillator

  8. Study of the neutron background noise generated by muons in the Edelweiss-2 experiment; Etude du bruit de fond neutron induit par les muons dans l'experience EDELWEISS-2

    Energy Technology Data Exchange (ETDEWEB)

    Chabert, L

    2004-07-01

    This thesis contributes to the Edelweiss experiment whose aim is to detect interactions between neutralinos and target nuclei. Bolometers used in Edelweiss combine the detection of phonons with the detection of electric charges generated by the energy deposition. This double detection enables us to discard background signals due to electronic interactions and soon detection sensitivity of the experiment will be limited by the neutron background noise due to residual cosmic muons. This work is dedicated to a detailed study of muon inelastic interactions and the consequent production of neutrons. Simulations show that the expected neutron flux is so high that the direct detection of muons is required in order to link it to the neutron signal issued by the bolometer. Results from simulations show that plastic scintillators might be the main components of the muon detector.

  9. Muons, neutrons and superconductivity

    International Nuclear Information System (INIS)

    Aeppli, G.; Risoe National Lab., Roskilde

    1988-01-01

    The principles of the neutron scattering and muon spin relaxation (μSR) techniques and their applications to studies of superconductors are described briefly. μSR and neutron scattering work on magnetic correlations in superconductors and materials directly related to superconductors are reviewed. (orig.)

  10. Simulations of muon-induced neutron flux at large depths underground

    International Nuclear Information System (INIS)

    Kudryavtsev, V.A.; Spooner, N.J.C.; McMillan, J.E.

    2003-01-01

    The production of neutrons by cosmic-ray muons at large depths underground is discussed. The most recent versions of the muon propagation code MUSIC, and particle transport code FLUKA are used to evaluate muon and neutron fluxes. The results of simulations are compared with experimental data

  11. Neutron Production by Muon Spallation I: Theory

    International Nuclear Information System (INIS)

    Luu, T; Hagmann, C

    2006-01-01

    We describe the physics and codes developed in the Muon Physics Package. This package is a self-contained Fortran90 module that is intended to be used with the Monte Carlo package MCNPX. We calculate simulated energy spectra, multiplicities, and angular distributions of direct neutrons and pions from muon spallation

  12. Detecting special nuclear material using muon-induced neutron emission

    Energy Technology Data Exchange (ETDEWEB)

    Guardincerri, Elena; Bacon, Jeffrey; Borozdin, Konstantin; Matthew Durham, J.; Fabritius II, Joseph [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hecht, Adam [University of New Mexico, Albuquerque, NM 87131 (United States); Milner, Edward C. [Southern Methodist University, Dallas, TX 75205 (United States); Miyadera, Haruo; Morris, Christopher L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Perry, John [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of New Mexico, Albuquerque, NM 87131 (United States); Poulson, Daniel [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-07-21

    The penetrating ability of cosmic ray muons makes them an attractive probe for imaging dense materials. Here, we describe experimental results from a new technique that uses neutrons generated by cosmic-ray muons to identify the presence of special nuclear material (SNM). Neutrons emitted from SNM are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of SNM-bearing objects tagged using muon tracking detectors located above or to the side of the objects, and may have potential applications in warhead verification scenarios. During the experiment described here we did not attempt to distinguish the type or grade of the SNM.

  13. Neutron scattering and muon spin rotation as probes of light interstitial transport

    International Nuclear Information System (INIS)

    Brown, D.W.

    1985-01-01

    The transport of light interstitials, specifically of hydrogen isotopes and the positive muon, is studied with the help of microscopic transport models. The principal observables are the differential neutron scattering cross section of the hydrogen isotopes and the muon spin rotation signal of the positive muon. The transport feature of primary interest is coherence arising as a result of persistence of quantum mechanical phase memory. Evaluation of observables is based on the generalized master equation, or alternatively, the stochastic Liouville equation. The latter is applied to obtain the neutron scattering lineshapes for local tunneling systems as well as for extended Bravais and non-Bravais lattices. It is found that the usual form of the stochastic Liouville equation does not address adequately transport among non-degenerate site-states. An appropriate modification is suggested and employed to obtain scattering lineshapes applicable to recent experiments on impurity-trapped hydrogen. The muon spin rotation signal is formulated under the assumption that spin interactions constitute a negligible source of scattering for muon transport. The depolarization function is evaluated for the cases of local tunneling systems and simple models of spatially extended transport. The former addresses consequences of coherence and both address the consequences of the spatial extent of the muon wavefunction. It is found that the depolarization function is sensitive to the wave function extent, and the detail attributable to it is characterized

  14. Monte Carlo simulation study of the muon-induced neutron flux at LNGS

    International Nuclear Information System (INIS)

    Persiani, R.; Garbini, M.; Massoli, F.; Sartorelli, G; Selvi, M.

    2011-01-01

    Muon-induced neutrons are ultimate background for all the experiments searching for rare events in underground laboratories. Several measurements and simulations were performed concerning the neutron production and propagation but there are disagreements between experimental data and simulations. In this work we present our Monte-Carlo simulation study, based on Geant4, to estimate the muon-induced neutron flux at LNGS. The obtained integral flux of neutrons above 1 MeV is 2.31 x 10 -10 n/cm 2 /s.

  15. Electromagnetic Interactions of Muons

    CERN Multimedia

    2002-01-01

    This experiment was the first in a programme of physics experiments with high-energy muons using a large spectrometer facility. The aim of this experiment is to study the inelastic scattering of muons with various targets to try to understand better the physics of virtual photon interactions over a wide range of four-momentum transfer (q$^{2}$).\\\\ \\\\ The spectrometer includes a large aperture dipole magnet (2m x 1m) of bending power $\\simeq$5 T.m and a magnetized iron filter to distinguish the scattered muons from hadrons. Drift chambers and MWPC are used before and after the magnet to detect charged products of the interaction and to allow a momentum determination of the scattered muon to an accuracy of $\\simeq$at 100 GeV/c, and an angular definition of $\\pm$ 0.1 mrad. The triggering on scattered muons relies on three planes of scintillation counter hodoscopes before and after the magnetized iron, whose magnetic field serves to eliminate triggers from low momentum muons which are produced copiously by pion d...

  16. Muon and cosmogenic neutron detection in Borexino

    International Nuclear Information System (INIS)

    Bellini, G; Bonetti, S; Avanzini, M Buizza; Caccianiga, B; D'Angelo, D; Benziger, J; Bick, D; Cadonati, L; Calaprice, F; Chavarria, A; Galbiati, C; Carraro, C; Davini, S; Chepurnov, A; Derbin, A; Etenko, A; Feilitzsch, F von; Fomenko, K; Franco, D; Gazzana, S

    2011-01-01

    Borexino, a liquid scintillator detector at LNGS, is designed for the detection of neutrinos and antineutrinos from the Sun, supernovae, nuclear reactors, and the Earth. The feeble nature of these signals requires a strong suppression of backgrounds below a few MeV. Very low intrinsic radiogenic contamination of all detector components needs to be accompanied by the efficient identification of muons and of muon-induced backgrounds. Muons produce unstable nuclei by spallation processes along their trajectory through the detector whose decays can mimic the expected signals; for isotopes with half-lives longer than a few seconds, the dead time induced by a muon-related veto becomes unacceptably long, unless its application can be restricted to a sub-volume along the muon track. Consequently, not only the identification of muons with very high efficiency but also a precise reconstruction of their tracks is of primary importance for the physics program of the experiment. The Borexino inner detector is surrounded by an outer water-Cherenkov detector that plays a fundamental role in accomplishing this task. The detector design principles and their implementation are described. The strategies adopted to identify muons are reviewed and their efficiency is evaluated. The overall muon veto efficiency is found to be 99.992 % or better. Ad-hoc track reconstruction algorithms developed are presented. Their performance is tested against muon events of known direction such as those from the CNGS neutrino beam, test tracks available from a dedicated External Muon Tracker and cosmic muons whose angular distribution reflects the local overburden profile. The achieved angular resolution is ∼ 3 0 -5 0 and the lateral resolution is ∼ 35-50 cm, depending on the impact parameter of the crossing muon. The methods implemented to efficiently tag cosmogenic neutrons are also presented.

  17. STUDIES OF COSMIC-RAY MUONS AND NEUTRONS IN A FIVE-STORY CONCRETE BUILDING.

    Science.gov (United States)

    Chen, Wei-Lin; Sheu, Rong-Jiun

    2018-05-01

    This study thoroughly determined the flux and dose rate distributions of cosmic-ray muons and neutrons in a five-story concrete building by comparing measurements with Monte Carlo simulations of cosmic-ray showers. An angular-energy-dependent surface source comprising secondary muons and neutrons at a height of 200 m above ground level was established and verified, which was used to concatenate the shower development in the upper atmosphere with subsequent simulations of radiation transport down to ground level, including the effect of the terrain and studied building. A Berkeley Lab cosmic-ray detector and a highly sensitive Bonner cylinder were used to perform muon and neutron measurements on each building floor. After careful calibration and correction, the measured responses of the two detectors were discovered to be reasonably consistent with the theoretical predictions, thus confirming the validity of the two-step calculation model employed in this study. The annual effective doses from cosmic-ray muons and neutrons on the open roof of the building were estimated to be 115.2 and 35.2 μSv, respectively. Muons and neutrons were attenuated floor-by-floor with different attenuation factors of 0.97 and 0.78, and their resultant dose rates on the first floor of the building were 97.8 and 9.9 μSv, respectively.

  18. Simulations of the muon-induced neutron background of the EDELWEISS-II experiment for Dark Matter search

    International Nuclear Information System (INIS)

    Horn, O.M.

    2007-01-01

    In modern astroparticle physics and cosmology, the nature of Dark Matter is one of the central problems. Particle Dark Matter in form of WIMPs is favoured among many proposed candidates. The EDELWEISS direct Dark Matter search uses Germanium bolometers to detect these particles by nuclear recoils. Here, the use of two signal channels on an event-by-event basis, namely the heat and ionisation signal, enables the detectors to discriminate between electron and nuclear recoils. This technique leaves neutrons in the underground laboratory as the main background for the experiment. Besides (α,n) reactions of natural radioactivity, neutrons are produced in electromagnetic and hadronic showers induced by cosmic ray muons in the surrounding rock and shielding material of the Germanium crystals. To reach high sensitivities, the EDELWEISS-II experiment, as well as other direct Dark Matter searches, has to efficiently suppress this neutron background. The present work is devoted to study the muon-induced neutron flux in the underground laboratory LSM and the interaction rate within the Germanium crystals by using the Monte Carlo simulation toolkit Geant4. To ensure reliable results, the implemented physics in the toolkit regarding neutron production is tested in a benchmark geometry and results are compared to experimental data and other simulation codes. Also, the specific energy and angular distribution of the muon flux in the underground laboratory as a consequence of the asymmetric mountain overburden is implemented. A good agreement of the simulated muon flux is shown in a comparison to preliminary experimental data obtained with the EDELWEISS-II muon veto system. Furthermore, within a detailed geometry of the experimental setup, the muon-induced background rate of nuclear recoils in the bolometers is simulated. Coincidences of recoil events in the Germanium with an energy deposit of the muoninduced shower in the plastic scintillators of the veto system are studied to

  19. Simulations of the muon-induced neutron background of the EDELWEISS-II experiment for Dark Matter search

    Energy Technology Data Exchange (ETDEWEB)

    Horn, O M

    2007-12-21

    In modern astroparticle physics and cosmology, the nature of Dark Matter is one of the central problems. Particle Dark Matter in form of WIMPs is favoured among many proposed candidates. The EDELWEISS direct Dark Matter search uses Germanium bolometers to detect these particles by nuclear recoils. Here, the use of two signal channels on an event-by-event basis, namely the heat and ionisation signal, enables the detectors to discriminate between electron and nuclear recoils. This technique leaves neutrons in the underground laboratory as the main background for the experiment. Besides ({alpha},n) reactions of natural radioactivity, neutrons are produced in electromagnetic and hadronic showers induced by cosmic ray muons in the surrounding rock and shielding material of the Germanium crystals. To reach high sensitivities, the EDELWEISS-II experiment, as well as other direct Dark Matter searches, has to efficiently suppress this neutron background. The present work is devoted to study the muon-induced neutron flux in the underground laboratory LSM and the interaction rate within the Germanium crystals by using the Monte Carlo simulation toolkit Geant4. To ensure reliable results, the implemented physics in the toolkit regarding neutron production is tested in a benchmark geometry and results are compared to experimental data and other simulation codes. Also, the specific energy and angular distribution of the muon flux in the underground laboratory as a consequence of the asymmetric mountain overburden is implemented. A good agreement of the simulated muon flux is shown in a comparison to preliminary experimental data obtained with the EDELWEISS-II muon veto system. Furthermore, within a detailed geometry of the experimental setup, the muon-induced background rate of nuclear recoils in the bolometers is simulated. Coincidences of recoil events in the Germanium with an energy deposit of the muoninduced shower in the plastic scintillators of the veto system are studied

  20. Electromagnetic production of trimuons in muon scattering: Bethe-Heitler reactions with muon and heavy-lepton pairs

    International Nuclear Information System (INIS)

    Ganapathi, V.; Smith, J.

    1981-01-01

    We analyze the Bethe-Heitler production of muon and heavy-lepton pairs using high-energy muon beams on a variety of targets. We give results for coherent production from a nucleus, for incoherent production from individual protons and neutrons, and for deep-inelastic production. Differential distributions are presented for the final leptons and the effects of experimental cuts are considered. This work complements our previous study of trimuon production via muon radiation, Compton radiation, and hadronic final-state interactions

  1. Cosmic Rays and Clouds, 1. Formation of Lead Mesoatoms In Neutron Monitor By Soft Negative Muons and Expected Atmospheric Electric Field Effect In The Cosmic Ray Neutron Component

    Science.gov (United States)

    Dorman, L. I.; Dorman, I. V.

    We extend our model (Dorman and Dorman, 1995) of cosmic ray atmospheric electric field effect on the case of neutron monitor. We take into account that about 0.07 of neu- tron monitor counting rate caused by negative soft muons captured by lead nucleons and formed mesoatoms with generation of several MeV energy neutrons from lead. In this case the neutron monitor or neutron supermonitor works as analyzer which de- tects muons of only one, negative sign. It is very important because the atmospheric electric field effect have opposite signs for positive and negative muons that main part of this effect in the muon telescope or in ionization chamber is compensated and we can observe only small part of total effect of one sign muons. On the basis of our gen- eral theory of cosmic ray meteorological effects with taking into account of negative soft muon acceleration and deceleration in the Earth atmosphere (in dependence of di- rection and intensity of electric field) we discuss the possibility of existing this effect in cosmic ray neutron component and made some rough estimations. REFERENCES: Dorman L.I. and Dorman I.V., 1995. "Cosmic-ray atmospheric electric field effects". Canadian J. of Physics, Vol. 73, pp. 440-443.

  2. Personal dosimetry in a mixed field of high energy muons and neutrons

    International Nuclear Information System (INIS)

    Cossairt, J.D.; Elwyn, A.J.

    1986-11-01

    High energy accelerators quite often emit muons. These particles behave in matter as would heavy electrons and are thus difficult to attenuate with shielding in many situations. Hence, these muons can be a source of radiation exposure to personnel and suitable methods of measuring the absorbed dose received to these people is obviously required. In practical situations, such muon radiation fields are often mixed with neutrons, well-known to be an even more troublesome particle species with respect to dosimetry. In this paper, we report on fluence measurements made in such a mixed radiation field and a comparison of dosimeter responses. We conclude that commercial self-reading dosimeters and film badges provided an adequate measure of the absorbed dose due to muons

  3. Magnetic interactions, bonding, and motion of positive muons in magnetite

    International Nuclear Information System (INIS)

    Boekema, C.; Lichti, R.L.; Brabers, V.A.M.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Schillaci, M.E.

    1985-01-01

    Positive-muon behavior in magnetite is investigated by the muon-spin-rotation technique. The observed muon relaxation rate in zero applied field, in conjunction with the measured local field, allows us to separate muon-motion effects from phase transitions associated with magnetite. The local magnetic field is observed to be 4.02 kOe directed along the axis, the easy axis of magnetization. Possible origins of this field are discussed in terms which include local muon diffusion and a supertransfer hyperfine interaction resulting from muon-oxygen bonding. An anomaly in the muon hyperfine interactions is observed at 247 K

  4. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, Lance [Indiana Univ., Bloomington, IN (United States)

    2014-01-01

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  5. Muon collider interaction region design

    Directory of Open Access Journals (Sweden)

    Y. I. Alexahin

    2011-06-01

    Full Text Available Design of a muon collider interaction region (IR presents a number of challenges arising from low β^{*}<1  cm, correspondingly large beta-function values and beam sizes at IR magnets, as well as the necessity to protect superconducting magnets and collider detectors from muon decay products. As a consequence, the designs of the IR optics, magnets and machine-detector interface are strongly interlaced and iterative. A consistent solution for the 1.5 TeV center-of-mass muon collider IR is presented. It can provide an average luminosity of 10^{34}  cm^{-2} s^{-1} with an adequate protection of magnet and detector components.

  6. Aerial Neutron Detection of Cosmic-Ray Interactions with the Earth's Surface

    International Nuclear Information System (INIS)

    Richard Maurer

    2008-01-01

    We have demonstrated the ability to measure the neutron flux produced by the cosmic-ray interaction with nuclei in the ground surface using aerial neutron detection. High energy cosmic-rays (primarily muons with GeV energies) interact with the nuclei in the ground surface and produce energetic neutrons via spallation. At the air-surface interface, the neutrons produced by spallation will either scatter within the surface material, become thermalized and reabsorbed, or be emitted into the air. The mean free path of energetic neutrons in air can be hundreds of feet as opposed to a few feet in dense materials. As such, the flux of neutrons escaping into the air provides a measure of the surface nuclei composition. It has been demonstrated that this effect can be measured at long range using neutron detectors on low flying helicopters. Radiological survey measurements conducted at Government Wash in Las Vegas, Nevada, have shown that the neutron background from the cosmic-soil interactions is repeatable and directly correlated to the geological data. Government Wash has a very unique geology, spanning a wide variety of nuclide mixtures and formations. The results of the preliminary measurements are presented

  7. Charged current weak interaction of polarized muons

    International Nuclear Information System (INIS)

    Smadja, G.; Vesztergombi, G.

    1983-01-01

    The polarization of the muon beam can be used to test the presence of right-handed couplings in charged current interaction of muons in process μ+N->#betta#+X. The experimental feasibility and the limits which can be obtained on the mass of right-handed intermediate boson are discussed. (orig.)

  8. Muon, positron and antiproton interactions with atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Armour, Edward A G, E-mail: edward.armour@nottingham.ac.u [School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2010-04-01

    In this paper, a description is given of some interesting processes involving the interaction of a muon, a positron, or an antiproton with atoms and molecules. The process involving a muon is the resonant formation of the muonic molecular ion, dt{mu}, in the muon catalyzed fusion cycle. In the case of a positron, the process considered is positron annihilation in low-energy positron scattering by the hydrogen molecule. The antiproton is considered as the nucleus of an antihydrogen atom interacting with simple atoms. Attention is given to antiproton annihilation through the strong interaction. An outline is given of proposed tests of fundamental physics to be carried out using antihydrogen.

  9. Measurement of the Ratio of the Neutron and Proton Structure Functions $F_2$ in Inelastic Muon Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Robert D. [UC, San Diego

    1992-01-01

    The ratio of the neutron and proton structure functions $F_2$ has been measured to very low $X_{bj}$ using inelastic muon scattering. Data were taken in 1990 using 475 GeV muons incident on hydrogen and deuterium targets. Electromagnetic calorimetry has been used to remove radiative backgrounds and muon-electron elastic scattering. Results of the measurement are presented which cover the kinematic region 0.0001 $\\le$ $X_{bj} \\le$ 0.4 and 0.1 GeV$^2$ /$c^2$ $\\le$ $Q^2$ $\\le$ 100.0 GeV$^2$ /c$^2$.

  10. Multi-muon events and charm meson production in the neutrino-nucleon and muon-nucleon interactions

    International Nuclear Information System (INIS)

    Choban, Eh.A.

    1981-01-01

    The so-called quasi-parton mechanism is considered that enables one to explain production of singly charged dimuons in νsub(μ)(anti νsub(μ))N interactions. The cross sections are obtained for production of charmed mesons anti D 0 , anti D - in the νsub(μ)+N→μsup(-)+ anti D 0 +c+..., anti νsub(μ)+N→μsup(+)+Dsup(-)+c+..., μ+N→μ+anti D 0 +c+..., μ+N→μ+D - +c+...; a contribution from this mechanism to the processes with production of singly charged dimuons and tri-muons is found. Predictions of the quasi-parton mechanism are compared with the experimental data for the dimuon and tri-muon cross sections, as well as for average kinematical characteristics of the fast muon. The conclusion is drawn that the quasiparton mechanism can explain the results of experiments on single-charged dimuons in νsub(μ)(anti νsub(μ))N interactions, makes a noticeable contribution into 2μ events for μN-collisions and determines a considerable part of nonelectromagnetic nature trimuons in the case of νsub(μ)(anti νsub(μ))N and μN-interactions [ru

  11. Monte Carlo simulation of high-flux 14 MeV neutron source based on muon catalyzed fusion using a high-power 50 MW deuteron beam

    Energy Technology Data Exchange (ETDEWEB)

    Vecchi, M [ENEA, Bologna (Italy); Karmanov, F I [Inst. of Nuclear Power Engineering, Obninsk (Russian Federation); Latysheva, L N; Pshenichnov, I A [Russian Academy of Sciences, Moscow (Russian Federation). Inst. for Nuclear Research

    1997-12-31

    The results Monte Carlo simulations of an intense neutron source based on muon catalyzed fusion process are presented. A deuteron beam is directed onto a cylindrical carbon target, located in vacuum converter chamber with a strong solenoidal magnetic field. The produced pions and muons which originate from pion decay are guided along magnetic field to a DT-synthesizer. Pion production in the primary target is simulated by means of Intranuclear and Internuclear cascade codes developed in INR, Moscow, while pion and muon transport process is studied by using a Monte Carlo code originated at CERN. The main purpose of the work is to calculate the pion and muon utilization efficiency taking into account the pion absorption in the primary target as well as all other losses of pions and muons in the converter and DT-cell walls. Preliminary estimations demonstrate the possibility to reach the level of 1014 n/s/cm{sup 2} for the neutron flux. (J.U.). 3 tabs., 4 figs., 8 refs.

  12. Neutron Interactions in the CUORE Neutrinoless Double Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dolinski, Michelle Jean [Univ. of California, Berkeley, CA (United States)

    2008-10-01

    Neutrinoless double beta decay (0vDBD) is a lepton-number violating process that can occur only for a massive Majorana neutrino. The search for 0vDBD is currently the only practical experimental way to determine whether neutrinos are identical to their own antiparticles (Majorana neutrinos) or have distinct particle and anti-particle states (Dirac neutrinos). In addition, the observation of 0vDBD can provide information about the absolute mass scale of the neutrino. The Cuoricino experiment was a sensitive search for 0vDBD, as well as a proof of principle for the next generation experiment, CUORE. CUORE will search for 0vDBD of 130Te with a ton-scale array of unenriched TeO2 bolometers. By increasing mass and decreasing the background for 0vDBD, the half-life sensitivity of CUORE will be a factor of twenty better than that of Cuoricino. The site for both of these experiments is the Laboratori Nazionali del Gran Sasso, an underground laboratory with 3300 meters water equivalent rock overburden and a cosmic ray muon attenuation factor of 10-6. Because of the extreme low background requirements for CUORE, it is important that all potential sources of background in the 0vDBD peak region at 2530 keV are well understood. One potential source of background for CUORE comes from neutrons, which can be produced underground both by (α,n) reactions and by fast cosmic ray muon interactions. Preliminary simulations by the CUORE collaboration indicate that these backgrounds will be negligible for CUORE. However, in order to accurately simulate the expected neutron background, it is important to understand the cross sections for neutron interactions with detector materials. In order to help refine these simulations, I have measured the gamma-ray production cross sections for interactions of neutrons on the abundant stable isotopes of Te using the GEANIE detector array at the Los Alamos Neutron Science Center. In addition, I have used the GEANIE

  13. Weak interactions: muon decay

    International Nuclear Information System (INIS)

    Sachs, A.M.; Sirlin, A.

    1975-01-01

    The traditional theory of the dominant mode of muon decay is presented, a survey of the experiments which have measured the observable features of the decay is given, and those things which can be learned about the parameters and nature of the theory from the experimental results are indicated. The following aspects of the theory of muon decay are presented first: general four-fermion theory, two-component theory of the neutrino, V--A theory, two-component and V--A theories vs general four-fermion theory, intermediate-boson hypothesis, radiative corrections, radiative corrections in the intermediate-boson theory, and endpoint singularities and corrections of order α 2 . Experiments on muon lifetime, isotropic electron spectrum, total asymmetry and energy dependence of asymmetry of electrons from polarized muons, and electron polarization are described, and a summary of experimental results is given. 7 figures, 2 tables, 109 references

  14. Muon-catalyzed fusion revisited

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-12-15

    A negative muon can induce nuclear fusion in the reaction of deuteron and triton nuclei giving a helium nucleus, a neutron and an emerging negative muon. The muon forms a tightlybound deuteron-triton-muon molecule and fusion follows in about 10{sup -12}s. Then the muon is free again to induce further reactions. Thus the muon can serve as a catalyst for nuclear fusion, which can proceed without the need for the high temperatures which are needed in the confinement and inertial fusion schemes. At room temperature, up to 80 fusions per muon have recently been observed at the LAMPF machine at Los Alamos, and it is clear that this number can be exceeded. These and other results were presented at a summer Workshop on Muon-Catalyzed Fusion held in Jackson, Wyoming. Approximately fifty scientists attended from Austria, Canada, India, Italy, Japan, South Africa, West Germany, and the United States. The Workshop itself is symbolic of the revival of interest in this subject.

  15. No role for neutrons, muons and solar neutrinos in the DAMA annual modulation results

    Energy Technology Data Exchange (ETDEWEB)

    Bernabei, R.; D' Angelo, S.; Di Marco, A. [Universita di Roma ' ' Tor Vergata' ' , Dipt. di Fisica, Rome (Italy); INFN, sez. Roma ' ' Tor Vergata' ' , Rome (Italy); Belli, P. [INFN, sez. Roma ' ' Tor Vergata' ' , Rome (Italy); Cappella, F.; Caracciolo, V.; Cerulli, R. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Dai, C.J.; He, H.L.; Kuang, H.H.; Ma, X.H.; Sheng, X.D.; Wang, R.G. [Chinese Academy of Sciences, Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, P.O. Box 918/3, Beijing (China); D' Angelo, A.; Incicchitti, A. [Universita di Roma ' ' La Sapienza' ' , Dipt. di Fisica, Rome (Italy); INFN, sez. Roma, Rome (Italy); Montecchia, F. [INFN, sez. Roma ' ' Tor Vergata' ' , Rome (Italy); Universita di Roma ' ' Tor Vergata' ' , Dipt. di Ingegneria Civile e Ingegneria Informatica, Rome (Italy); Ye, Z.P. [Chinese Academy of Sciences, Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, P.O. Box 918/3, Beijing (China); University of Jing Gangshan, Ji' an, Jiangxi (China)

    2014-12-01

    This paper summarizes in a simple and intuitive way why the neutrons, the muons and the solar neutrinos cannot give any significant contribution to the DAMA annual modulation results. A number of these elements have already been presented in individual papers; they are recalled here together with few simple considerations which demonstrate the incorrectness of the claim reported in Davis (PRL 113:081302, 2014). (orig.)

  16. No role for neutrons, muons and solar neutrinos in the DAMA annual modulation results

    International Nuclear Information System (INIS)

    Bernabei, R.; D'Angelo, S.; Di Marco, A.; Belli, P.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Dai, C.J.; He, H.L.; Kuang, H.H.; Ma, X.H.; Sheng, X.D.; Wang, R.G.; D'Angelo, A.; Incicchitti, A.; Montecchia, F.; Ye, Z.P.

    2014-01-01

    This paper summarizes in a simple and intuitive way why the neutrons, the muons and the solar neutrinos cannot give any significant contribution to the DAMA annual modulation results. A number of these elements have already been presented in individual papers; they are recalled here together with few simple considerations which demonstrate the incorrectness of the claim reported in Davis (PRL 113:081302, 2014). (orig.)

  17. Muon and neutron investigations of vortex correlations in high-Tc superconductors

    International Nuclear Information System (INIS)

    Aeppli, G.

    1991-01-01

    The muon spin relaxation (μSR) and neutron scattering techniques have made the following contributions to the author's understanding of copper oxide superconductors: (1) determination in absolute units of the magnetic length λ(T); (2) observation in YBa 2 Cu 3 O 7 of well ordered flux lattices, composed of straight flux lines, at low T and intermediate fields; (3) demonstration that sample multiphase coexistence is the most likely cause of reduced Meissner fractions found for La 2-x Sr x CuO 4 ceramics with non-optimal (i.e. x ≠ 0.15); (4) finding that microscopic irreversibility sets in at surprisingly low T; (5) observation of microscopic vortex motion in BiSrCaCuO single crystals. While studies of type (1) have been extensively performed, there have been relatively few experiments of the other four varieties. Therefore, he concludes that both μSR and neutron diffraction still have the potential to provide new information about the magnetic correlations in high-T c materials

  18. Neutron- and muon-induced background in underground physics experiments

    International Nuclear Information System (INIS)

    Kudryavtsev, V.A.; Tomasello, V.; Pandola, L.

    2008-01-01

    Background induced by neutrons in deep underground laboratories is a critical issue for all experiments looking for rare events, such as dark matter interactions or neutrinoless ββ decay. Neutrons can be produced either by natural radioactivity, via spontaneous fission or (α, n) reactions, or by interactions initiated by high-energy cosmic rays. In all underground experiments, Monte Carlo simulations of neutron background play a crucial role for the evaluation of the total background rate and for the optimization of rejection strategies. The Monte Carlo methods that are commonly employed to evaluate neutron-induced background and to optimize the experimental setup, are reviewed and discussed. Focus is given to the issue of reliability of Monte Carlo background estimates. (orig.)

  19. Neutron- and muon-induced background in underground physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, V.A.; Tomasello, V. [University of Sheffield, Department of Physics and Astronomy, Sheffield (United Kingdom); Pandola, L. [Laboratori Nazionali del Gran Sasso, INFN, Assergi (Italy)

    2008-05-15

    Background induced by neutrons in deep underground laboratories is a critical issue for all experiments looking for rare events, such as dark matter interactions or neutrinoless {beta}{beta} decay. Neutrons can be produced either by natural radioactivity, via spontaneous fission or ({alpha}, n) reactions, or by interactions initiated by high-energy cosmic rays. In all underground experiments, Monte Carlo simulations of neutron background play a crucial role for the evaluation of the total background rate and for the optimization of rejection strategies. The Monte Carlo methods that are commonly employed to evaluate neutron-induced background and to optimize the experimental setup, are reviewed and discussed. Focus is given to the issue of reliability of Monte Carlo background estimates. (orig.)

  20. Muon Muon Collider: Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    reactions which are open to a muon collider and the physics of such reactions - what one learns and the necessary luminosity to see interesting events - are described in detail. Most of the physics accesible to an e{sup +} - e{sup -} collider could be studied in a muon collider. In addition the production of Higgs bosons in the s-channel will allow the measurement of Higgs masses and total widths to high precision; likewise, t{bar t} and W{sup +}W{sup -} threshold studies would yield m{sub t} and m{sub w} to great accuracy. These reactions are at low center of mass energy (if the MSSM is correct) and the luminosity and {Delta}p/p of the beams required for these measurements is detailed in the Physics Chapter. On the other hand, at 2 + 2 TeV, a luminosity of L {approx} 10{sup 35} cm{sup -2}s{sup -1} is desirable for studies such as, the scattering of longitudinal W bosons or the production of heavy scalar particles. Not explored in this work, but worth noting, are the opportunities for muon-proton and muon-heavy ion collisions as well as the enormous richness of such a facility for fixed target physics provided by the intense beams of neutrinos, muons, pions, kaons, antiprotons and spallation neutrons. To see all the interesting physics described herein requires a careful study of the operation of a detector in the very large background. Three sources of background have been identified. The first is from any halo accompanying the muon beams in the collider ring. Very carefully prepared beams will have to be injected and maintained. The second is due to the fact that on average 35% of the muon energy appears in its decay electron. The energy of the electron subsequently is converted into EM showers either from the synchrotron radiation they emit in the collider magnetic field or from direct collision with the surrounding material. The decays that occur as the beams traverse the low beta insert are of particular concern for detector backgrounds. A third source of background is

  1. Monte Carlo simulation of muon radiation environment in China Jinping Underground Laboratory

    International Nuclear Information System (INIS)

    Su Jian; Zeng Zhi; Liu Yue; Yue Qian; Ma Hao; Cheng Jianping

    2012-01-01

    Muon radiation background of China Jinping Underground Laboratory (CJPL) was simulated by Monte Carlo method. According to the Gaisser formula and the MUSIC soft, the model of cosmic ray muons was established. Then the yield and the average energy of muon-induced photons and muon-induced neutrons were simulated by FLUKA. With the single-energy approximation, the contribution to the radiation background of shielding structure by secondary photons and neutrons was evaluated. The estimation results show that the average energy of residual muons is 369 GeV and the flux is 3.17 × 10 -6 m -2 · s -1 . The fluence rate of secondary photons is about 1.57 × 10 -4 m -2 · s -1 , and the fluence rate of secondary neutrons is about 8.37 × 10 -7 m -2 · s -1 . The muon radiation background of CJPL is lower than those of most other underground laboratories in the world. (authors)

  2. On evaluation of the nuclear interaction effect on muon sticking in μ-catalyzed dt synthesis

    International Nuclear Information System (INIS)

    Khiger, L.Ya.

    1994-01-01

    The effect of nucler interaction on the muon -alpha-particle sticking coefficient is considered on the basis of the previously developed formalism of description of the deuterium and tritium nuclei muon catalysed fusion. The account of Coulomb interaction between the muon and nuclear subsystem in the intermediate state is shown to change substantially this coefficient. The results of numerical calculations of the sticking coefficient are presented, the value of the coefficient turns out to be 3 - 4% higher than that found in the sudden approximation

  3. Nuclear muon capture

    CERN Document Server

    Mukhopadhyay, N C

    1977-01-01

    Our present knowledge of the nuclear muon capture reactions is surveyed. Starting from the formation of the muonic atom, various phenomena, having a bearing on the nuclear capture, are reviewed. The nuclear reactions are then studied from two angles-to learn about the basic muon+nucleon weak interaction process, and to obtain new insights on the nuclear dynamics. Future experimental prospects with the newer generation muon 'factories' are critically examined. Possible modification of the muon+nucleon weak interaction in complex nuclei remains the most important open problem in this field. (380 refs).

  4. A study of wrong-sign single muon production in νμ-nucleon interaction

    International Nuclear Information System (INIS)

    Mishra, S.R.; Auchincloss, P.S.; Blair, R.; Haber, C.; Ruiz, M.; Oltman, E.; Sciulli, F.J.; Shaevitz, M.H.; Smith, W.H.; Merritt, F.S.; Oreglia, M.; Reutens, P.; Coleman, R.; Fisk, H.E.; Lamm, M.J.; Levinthal, D.; Yovanovitch, D.D.; Marsh, W.; Rapidis, P.A.; White, H.B.; Bodek, A.; Borcherding, F.; Giokaris, N.; Lang, K.; Stockdale, I.E.

    1989-01-01

    We report on a search for ν μ -induced events where the single emerging muon carries lepton number opposite that of the incident neutrino. The rate and kinematic quantities of the candidate events are compared with known backgrounds from anti ν μ -induced charged current interactions and ν-induced interactions that produce dileptons. We derive an upper limit on the rate of wrong-sign single muon production relative to the rate of ν μ charged current interactions to be 1.6x10 -4 for y -4 for y>0.5 (90% CL). These upper limits enable us to constrain exotic sources of wrong-sign muons such as the charm component of the nucleon sea, flavor changing neutral currents and lepton number violating processes. Finally, the rate and kinematic properties of these events are compared with those of the neutrino-induced opposite-sign dimuon events. (orig.)

  5. Study of cosmic ray interaction model based on atmospheric muons for the neutrino flux calculation

    International Nuclear Information System (INIS)

    Sanuki, T.; Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.

    2007-01-01

    We have studied the hadronic interaction for the calculation of the atmospheric neutrino flux by summarizing the accurately measured atmospheric muon flux data and comparing with simulations. We find the atmospheric muon and neutrino fluxes respond to errors in the π-production of the hadronic interaction similarly, and compare the atmospheric muon flux calculated using the HKKM04 [M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 70, 043008 (2004).] code with experimental measurements. The μ + +μ - data show good agreement in the 1∼30 GeV/c range, but a large disagreement above 30 GeV/c. The μ + /μ - ratio shows sizable differences at lower and higher momenta for opposite directions. As the disagreements are considered to be due to assumptions in the hadronic interaction model, we try to improve it phenomenologically based on the quark parton model. The improved interaction model reproduces the observed muon flux data well. The calculation of the atmospheric neutrino flux will be reported in the following paper [M. Honda et al., Phys. Rev. D 75, 043006 (2007).

  6. Studying the muon background component in the Double Chooz experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Dennis

    2013-03-28

    The reactor anti-neutrino experiment Double Chooz (DC) will measure the third neutrino mixing angle θ{sub 13} with very high precision. This mixing angle is connected to fundamental questions in particle physics beyond the current Standard Model. In DC neutrinos are detected via the Inverse Beta Decay reaction, which provides a clean signal distinguishable from most backgrounds. However, as neutrino interactions in the detector are very rare and an interfering muon background is present, a proper understanding and reduction of this background is mandatory. This is crucial because muons create fast neutrons and βn-emitters which lead to background capable of mimicking the neutrino interaction in the detector. This thesis covers different analysis topics related to the cosmic ray muon background at the DC far site. The thesis covers the identification of muons, the applied rejection technique and the determination of the muon rate at DC far site. Utilizing the muon rejection cuts of the neutrino analysis a muon rate of 13 s{sup -1} in the Inner Detector (ID) and of 46 s{sup -1} in the Inner Muon Veto (IV) was found. The efficiency of the IV to identify and reject cosmic ray muons was measured and a value greater than 99.97% has been found. The stability of the determined muon rates was examined and a seasonal modulation was found, compatible with a variation of the temperature profile of the atmosphere over the year. The parameter describing the strength between the relationship of temperature and muon rate change, the effective temperature coefficient was obtained: αT=0.39±0.01(stat.)±0.02(syst.). This gave the opportunity to measure the atmospheric kaon to pion ratio with the DC far detector which was found to be r(K/π)=0.14±0.06. Additional variations of muon rate with surface pressure were found and the barometric coefficient describing this effect was measured as βp=-0.59±0.20(stat.)±0.10(syst.) permille /mbar. Another central theme of this work was

  7. Studying the muon background component in the Double Chooz experiment

    International Nuclear Information System (INIS)

    Dietrich, Dennis

    2013-01-01

    The reactor anti-neutrino experiment Double Chooz (DC) will measure the third neutrino mixing angle θ 13 with very high precision. This mixing angle is connected to fundamental questions in particle physics beyond the current Standard Model. In DC neutrinos are detected via the Inverse Beta Decay reaction, which provides a clean signal distinguishable from most backgrounds. However, as neutrino interactions in the detector are very rare and an interfering muon background is present, a proper understanding and reduction of this background is mandatory. This is crucial because muons create fast neutrons and βn-emitters which lead to background capable of mimicking the neutrino interaction in the detector. This thesis covers different analysis topics related to the cosmic ray muon background at the DC far site. The thesis covers the identification of muons, the applied rejection technique and the determination of the muon rate at DC far site. Utilizing the muon rejection cuts of the neutrino analysis a muon rate of 13 s -1 in the Inner Detector (ID) and of 46 s -1 in the Inner Muon Veto (IV) was found. The efficiency of the IV to identify and reject cosmic ray muons was measured and a value greater than 99.97% has been found. The stability of the determined muon rates was examined and a seasonal modulation was found, compatible with a variation of the temperature profile of the atmosphere over the year. The parameter describing the strength between the relationship of temperature and muon rate change, the effective temperature coefficient was obtained: αT=0.39±0.01(stat.)±0.02(syst.). This gave the opportunity to measure the atmospheric kaon to pion ratio with the DC far detector which was found to be r(K/π)=0.14±0.06. Additional variations of muon rate with surface pressure were found and the barometric coefficient describing this effect was measured as βp=-0.59±0.20(stat.)±0.10(syst.) permille /mbar. Another central theme of this work was the extrapolation

  8. Muons as hyperfine interaction probes in chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ghandi, Khashayar, E-mail: kghandi@triumf.ca; MacLean, Amy [Mount Allison University, Department of Chemistry & Biochemistry (Canada)

    2015-04-15

    Spin polarized positive muons injected in matter serve as magnetic probes for the investigation of physical and chemical properties of free radicals, mechanisms of free radical reactions and their formations, and radiation effects. All muon techniques rely on the evolution of spin polarization (of the muon) and in that respect are similar to conventional magnetic resonance techniques. The applications of the muon as a hyperfine probe in several fields in chemistry are described.

  9. Muons as hyperfine interaction probes in chemistry

    International Nuclear Information System (INIS)

    Ghandi, Khashayar; MacLean, Amy

    2015-01-01

    Spin polarized positive muons injected in matter serve as magnetic probes for the investigation of physical and chemical properties of free radicals, mechanisms of free radical reactions and their formations, and radiation effects. All muon techniques rely on the evolution of spin polarization (of the muon) and in that respect are similar to conventional magnetic resonance techniques. The applications of the muon as a hyperfine probe in several fields in chemistry are described

  10. Muon Production in Relativistic Cosmic-Ray Interactions

    International Nuclear Information System (INIS)

    Klein, Spencer

    2009-01-01

    Cosmic-rays with energies up to 3 x 10 20 eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is √s nn = 700 TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy (> 1 TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon decays and from charm production in the atmosphere. Terrestrial experiments are most sensitive to far-forward muons so the production rates aresensitive to high-x partons in the incident nucleus and low-x partons in the nitrogen/oxygen targets. Muon measurements can complement the central-particle data collected at colliders. This paper will review muon production data and discuss some non-perturbative (soft) models that have been used to interpret the data. I will show measurements of TeV muon transverse momentum (p T ) spectra in cosmic-ray air showers from MACRO, and describe how the IceCube neutrino observatory and the proposed Km3Net detector will extend these measurements to a higher p T region where perturbative QCD should apply. With a 1 km 2 surface area, the full IceCube detector should observe hundreds of muons/year with p T in the pQCD regime.

  11. Muon Production in Relativistic Cosmic-Ray Interactions

    International Nuclear Information System (INIS)

    Klein, Spencer R.

    2009-01-01

    Cosmic-rays with energies up to 3x10 20 eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is √(s nn )=700TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy (>1TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon decays and from charm production in the atmosphere. Terrestrial experiments are most sensitive to far-forward muons so the production rates are sensitive to high-x partons in the incident nucleus and low-x partons in the nitrogen/oxygen targets. Muon measurements can complement the central-particle data collected at colliders. This paper will review muon production data and discuss some non-perturbative (soft) models that have been used to interpret the data. I will show measurements of TeV muon transverse momentum (p T ) spectra in cosmic-ray air showers from MACRO, and describe how the IceCube neutrino observatory and the proposed Km3Net detector will extend these measurements to a higher p T region where perturbative QCD should apply. With a 1 km 2 surface area, the full IceCube detector should observe hundreds of muons/year with p T in the pQCD regime.

  12. Lost Muon Study for the Muon G-2 Experiment at Fermilab*

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Crnkovic, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morse, W. M. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-05-19

    The Fermilab Muon g-2 Experiment has a goal of measuring the muon anomalous magnetic moment to a precision of 140 ppb - a fourfold improvement over the 540 ppb precision obtained by the BNL Muon g-2 Experiment. Some muons in the storage ring will interact with material and undergo bremsstrahlung, emitting radiation and loosing energy. These so called lost muons will curl in towards the center of the ring and be lost, but some of them will be detected by the calorimeters. A systematic error will arise if the lost muons have a different average spin phase than the stored muons. Algorithms are being developed to estimate the relative number of lost muons, so as to optimize the stored muon beam. This study presents initial testing of algorithms that can be used to estimate the lost muons by using either double or triple detection coincidences in the calorimeters.

  13. Study on the spectrum and inelastic interactions of muons using Baksan underground scintillation telescope

    International Nuclear Information System (INIS)

    Bakatanov, V.P.; Novosel'tsev, Yu.F.; Novosel'tseva, R.V.; Semenov, A.M.; Sten'kin, Yu.V.; Chudakov, A.E.

    1989-01-01

    Muon inelastic interaction process was investigated and spectrum of cosmic ray muons was calculated using Baksan underground scintillation telescope. Possibility to separate electromagnetic and nuclear cascades generated at muon inelastic interaction was provided in the experiment. Calculation of spectrum of energy yields initated at cascade passage through the telescope which shows that on an average about 13% of electromagnetic cascade energy and about 11% of nuclear one are detected is presented. Electromagnetic cascades with E k e =0.906 TeV mean energy and E k n =1.14 TeV energy nuclear ones response energy yield within 01.11 ≤ E ≤ 0.133 TeV range. Integral energy spectrum of cascades and dependence of cross section of photonuclear interaction with A=26 nucleus on energy are shown. Measurement results for R exp (E)=N n N e ratio of number of nuclear cascades to number of electromagnetic ones within energy yield different regions are given

  14. Beta decay and muon capture rates in a self-consistent relativistic framework

    Energy Technology Data Exchange (ETDEWEB)

    Marketin, Tomislav; Paar, Nils; Niksic, Tamara; Vretenar, Dario [Physics Department, Faculty of Science, University of Zagreb (Croatia); Ring, Peter [Physik-Department, Technische Universitaet Muenchen, D-85748 Muenchen (Germany)

    2009-07-01

    A fully consistent calculation of muon capture and beta decay rates is presented, based on a microscopic theoretical framework describing the semileptonic weak interaction processes. Nuclear ground state is determined using the Relativistic Hartree-Bogolyubov (RHB) model with density dependent meson-nucleon coupling constants, and transition rates are calculated via proton-neutron relativistic quasiparticle RPA using the same interaction as in the RHB equations. Muon capture rates are calculated for a wide range of nuclei along the valley of stability, from {sup 12}C to {sup 244}Pu, with accuracy of approximately 30%, using the interaction DD-ME2. Previous studies of beta decay rates have only taken into account Gamow-Teller transitions. We extend this approach by including forbidden transitions and systematically study their contribution to decay rates of exotic nuclei along the r-process path, which are important for constraining the conditions in which nucleosynthesis takes place.

  15. Multimuon final states in high energy muon interactions

    International Nuclear Information System (INIS)

    Chen, K.W.

    1977-01-01

    Multimuon final states observed in the MSU-Fermilab deep inelastic muon scattering apparatus are presented. These events, observed at both 150 and 275-GeV, are more numerous and the extra muons have qualitative different production characteristics than muons expected from conventional sources. Origin of these events are examined. The implication of the data on the understanding of scaling violation observed in muon scattering is discussed. (orig.) [de

  16. Cosmic Ray induced Neutron and Gamma-Ray bursts in a Lead Pile

    International Nuclear Information System (INIS)

    Chapline, G; Hagmann, C; Kerr, P; Snyderman, N J; Wurtz, R

    2007-01-01

    The neutron background is created primarily by cosmic rays interactions. Of particular interest for SNM detection is an understanding of burst events that resemble fission chains. We have been studying the interaction of cosmic rays with a lead pile that is efficient at creating neutron bursts from cosmic ray interactions. The neutron burst size depends on the configuration of the lead. We have found that the largest bursts appear to have been created by primaries of energy over 100 GeV that have had a diffractive interaction with the atmosphere. The large events trigger muon coincidence paddles with very high efficiency, and the resulting interactions with the lead pile can create over 10, 000 neutrons in a burst

  17. CONFERENCE: Muon spin rotation

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Erik

    1986-11-15

    An international physics conference centred on muons without a word about leptons, weak interactions, EMC effects, exotic decay modes or any other standard high energy physics jargon. Could such a thing even have been imagined ten years ago? Yet about 120 physicists and chemists from 16 nations gathered at the end of June in Uppsala (Sweden) for their fourth meeting on Muon Spin Rotation, Relaxation and Resonance, without worrying about the muon as an elementary particle. This reflects how the experimental techniques based on the muon spin interactions have reached maturity and are widely recognized by condensed matter physicists and specialized chemists as useful tools.

  18. Multitaper spectral analysis of cosmic rays Sao Martinho da Serra's muon telescope and Newark's neutron monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marlos Rockenbach da; Alarcon, Walter Demetrio Gonzalez; Echer, Ezequiel; Lago, Alisson dal; Lucas, Aline de [National Institute for Space Research - INPE-MCT, Sao Jose dos Campos, SP (Brazil); Vieira, Luis Eduardo Antunes; Guarnieri, Fernando Luis [Universidade do Vale do Paraiba - UNIVAP, Sao Jose dos Campos, SP (Brazil); Schuch, Nelson Jorge [Southern Regional Space Research Center - CRSPE/INPE-MCT, Santa Maria, RS (Brazil); Munakata, Kazuoki, E-mail: marlos@dge.inpe.br, E-mail: gonzalez@dge.inpe.br, E-mail: eecher@dge.inpe.br, E-mail: dallago@dge.inpe.br, E-mail: delucas@dge.inpe.br, E-mail: levieira@univap.br, E-mail: guarnieri@univap.br, E-mail: njschuch@lacesm.ufsm.br, E-mail: kmuna00@gipac.shinshu-u.ac.jp [Physics Department, Shinshu University, Matsumoto (Japan)

    2007-07-01

    In this work we present an analysis on the correction efficiency of atmospheric effects on cosmic ray Sao Martinho da Serra's muon telescope and Newark's neutron monitor data. We use a Multitaper spectral analysis of cosmic rays time series to show the main periodicities present in the corrected and uncorrected data for the atmospheric effects. This kind of correction is very important when intends to study cosmic rays variations of extra-terrestrial origin. (author)

  19. Sea level muon spectrum and muon charge ratio derived from CERN results for nucleon-nucleus inelastic interactions

    CERN Document Server

    Bhattacharya, D P

    1979-01-01

    The sea level cosmic ray spectrum and muon charge ratio have been estimated by using the energy moments of the cross section for proton- air inelastic collisions. These energy moments have been determined by interpolation from CERN results for proton-nucleus inelastic interactions in pion production. The derived results are compared with previous work. (26 refs).

  20. Production of muons for fusion catalysis in a magnetic mirror configuration. Revision 1

    International Nuclear Information System (INIS)

    Moir, R.W.; Chapline, G.F. Jr.

    1986-01-01

    For muon-catalyzed fusion to be of practical interest, a very efficient means of producing muons must be found. We describe a scheme for producing muons that may be more energy efficient than any heretofore proposed. There are, in particular, some potential advantages of creating muons from collisions of high energy tritons confined in a magnetic mirror configuration. If one could catalyze 200 fusions per muon and employ a uranium blanket that would multiply the neutron energy by a factor of 10, one might produce electricity with an overall plant efficiency (ratio of electric energy produced to nuclear energy released) approaching 30%. One possible near term application of a muon-producing magnetic-mirror scheme would be to build a high-flux neutron source for radiation damage studies. The careful arrangement of triton orbits will result in many of the π - 's being produced near the axis of the magnetic mirror. The pions quickly decay into muons, which are transported into a small (few-cm-diameter) reactor chamber producing approximately 1-MW/m 2 neutron flux on the chamber walls, using a laboratory accelerator and magnetic mirror. The costs of construction and operation of the triton injection accelerator probably introduces most of the uncertainty in the viability of this scheme. If a 10-μA, 600 MeV neutral triton accelerator could be built for less than $100 million and operated cheaply enough, one might well bring muon-catalyzed fusion into practical use

  1. Some thoughts on the production of muons for fusion catalysis

    International Nuclear Information System (INIS)

    Chapline, G.; Moir, R.

    1986-01-01

    For muon-catalyzed fusion to be of practical interest, a very efficient means of producing muons must be found. We describe here some schemes for producing muons that may be more energy efficient than any heretofore proposed. There are, in particular, some potential advantages of creating muons from collisions of high-energy tritons confined in a magnetic mirror configuration. If one could catalyze 200 fusions per muon and employ a uranium blanket that would multiply the neutron energy by a factor of ten, one might produce electricity with an overall plant efficiency (ratio of electric energy produced to nuclear energy released) approaching 30%

  2. Muon Production in Relativistic Cosmic-Ray Interactions

    OpenAIRE

    Klein, Spencer

    2009-01-01

    Cosmic-rays with energies up to $3\\times10^{20}$ eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is $\\sqrt{s_{nn}} = 700$ TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy ($>$ 1 TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon de...

  3. Precision muon physics

    Science.gov (United States)

    Gorringe, T. P.; Hertzog, D. W.

    2015-09-01

    The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating processes. Measurements of the muon's anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio μμ /μp, lepton mass ratio mμ /me, and proton charge radius rp. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiments. Another focus is the uncommonly broad and topical range of questions in atomic, nuclear and particle physics that such experiments explore.

  4. Can 250+ fusions per muon be achieved?

    International Nuclear Information System (INIS)

    Jones, S.E.

    1987-01-01

    Nuclear fusion of hydrogen isotopes can be induced by negative muons (μ) in reactions such as: μ - + d + t → α + n + μ - . This reaction is analagous to the nuclear fusion reaction achieved in stars in which hydrogen isotopes (such as deuterium, d, and tritium, t) at very high temperatures first penetrate the Coulomb repulsive barrier and then fuse together to produce an alpha particle (α) and a neutron (n), releasing energy. The muon in general reappears after inducing fusion so that the reaction can be repeated many (N) times. Thus, the muon may serve as an effective catalyst for nuclear fusion. Muon-catalozed fusion is unique in that it proceeds rapidly in deuterium-tritium mixtures at relatively cold temperatures, e.g., room temperature. The need for plasma temperatures to initiate fusion is overcome by the presence of the muon

  5. Impurity Trapping of Positive Muons in Metals

    CERN Multimedia

    2002-01-01

    Polarized positive muons are implanted into metal samples. In an applied magnetic field the muon spin precession is studied. The line width in the precession frequency spectrum gives information about the static and dynamic properties of muons in a metal lattice. At temperatures where the muon is immobile within its lifetime the line width gives information about the site of location. At temperatures where the muon is mobile, the line width gives information on the diffusion process. It is known from experiments on quasi-elastic neutron scattering on hydrogen in niobium that interstitial impurities like nitrogen tend to act as traps for hydrogen. These trapping effects have now been studied systematically for muons in both f.c.c. metals (aluminium and copper) and b.c.c. metals (mainly niobium). Direct information on the trapping rates and the nature of the diffusion processes can be obtained since the muonic lifetime covers a time range where many of these processes occur.\\\\ \\\\ Mathematical models are set up ...

  6. High-Energy Neutron Backgrounds for Underground Dark Matter Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu [Syracuse Univ., NY (United States)

    2016-01-01

    Direct dark matter detection experiments usually have excellent capability to distinguish nuclear recoils, expected interactions with Weakly Interacting Massive Particle (WIMP) dark matter, and electronic recoils, so that they can efficiently reject background events such as gamma-rays and charged particles. However, both WIMPs and neutrons can induce nuclear recoils. Neutrons are then the most crucial background for direct dark matter detection. It is important to understand and account for all sources of neutron backgrounds when claiming a discovery of dark matter detection or reporting limits on the WIMP-nucleon cross section. One type of neutron background that is not well understood is the cosmogenic neutrons from muons interacting with the underground cavern rock and materials surrounding a dark matter detector. The Neutron Multiplicity Meter (NMM) is a water Cherenkov detector capable of measuring the cosmogenic neutron flux at the Soudan Underground Laboratory, which has an overburden of 2090 meters water equivalent. The NMM consists of two 2.2-tonne gadolinium-doped water tanks situated atop a 20-tonne lead target. It detects a high-energy (>~ 50 MeV) neutron via moderation and capture of the multiple secondary neutrons released when the former interacts in the lead target. The multiplicity of secondary neutrons for the high-energy neutron provides a benchmark for comparison to the current Monte Carlo predictions. Combining with the Monte Carlo simulation, the muon-induced high-energy neutron flux above 50 MeV is measured to be (1.3 ± 0.2) ~ 10-9 cm-2s-1, in reasonable agreement with the model prediction. The measured multiplicity spectrum agrees well with that of Monte Carlo simulation for multiplicity below 10, but shows an excess of approximately a factor of three over Monte Carlo prediction for multiplicities ~ 10 - 20. In an effort to reduce neutron backgrounds for the dark matter experiment SuperCDMS SNO- LAB, an active neutron veto was developed

  7. Measurement of the muon-induced neutron yield in liquid scintillator and stainless steel at LNGS with the LVD experiment

    International Nuclear Information System (INIS)

    Persiani, R.; Garbini, M.; Sartorelli, G.; Selvi, M.

    2013-01-01

    We describe the measurement of the muon-induced neutron yield in liquid scintillator and stainless steel (SS) at the Gran Sasso National Laboratory (LNGS), with the LVD experiment. The Large Volume Detector (LVD) is located in Hall A of the LNGS and is made of 1000 t of liquid scintillator and 1000 t of SS. Using an independent measurement to evaluate the background and with the support of a full Monte Carlo simulation based on Geant4, we measured a neutron yield of (2.9±0.6)×10 −4 and (1.5±0.3)×10 −3 in liquid scintillator and in stainless steel, respectively

  8. Physics validation studies for muon collider detector background simulations

    International Nuclear Information System (INIS)

    Morris, Aaron Owen

    2011-01-01

    Within the broad discipline of physics, the study of the fundamental forces of nature and the most basic constituents of the universe belongs to the field of particle physics. While frequently referred to as 'high-energy physics,' or by the acronym 'HEP,' particle physics is not driven just by the quest for ever-greater energies in particle accelerators. Rather, particle physics is seen as having three distinct areas of focus: the cosmic, intensity, and energy frontiers. These three frontiers all provide different, but complementary, views of the basic building blocks of the universe. Currently, the energy frontier is the realm of hadron colliders like the Tevatron at Fermi National Accelerator Laboratory (Fermilab) or the Large Hadron Collider (LHC) at CERN. While the LHC is expected to be adequate for explorations up to 14 TeV for the next decade, the long development lead time for modern colliders necessitates research and development efforts in the present for the next generation of colliders. This paper focuses on one such next-generation machine: a muon collider. Specifically, this paper focuses on Monte Carlo simulations of beam-induced backgrounds vis-a-vis detector region contamination. Initial validation studies of a few muon collider physics background processes using G4beamline have been undertaken and results presented. While these investigations have revealed a number of hurdles to getting G4beamline up to the level of more established simulation suites, such as MARS, the close communication between us, as users, and the G4beamline developer, Tom Roberts, has allowed for rapid implementation of user-desired features. The main example of user-desired feature implementation, as it applies to this project, is Bethe-Heitler muon production. Regarding the neutron interaction issues, we continue to study the specifics of how GEANT4 implements nuclear interactions. The GEANT4 collaboration has been contacted regarding the minor discrepancies in the neutron

  9. Magnetic interactions, bonding, and motion of positive muons in magnetite

    NARCIS (Netherlands)

    Boekema, C.; Lichti, R.L.; Brabers, V.A.M.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Schillaci, M.E.

    1985-01-01

    Positive-muon behavior in magnetite is investigated by the muon-spin-rotation technique. The observed muon relaxation rate in zero applied field, in conjunction with the measured local field, allows us to separate muon-motion effects from phase transitions associated with magnetite. The local

  10. Neutrino physics at a muon collider

    International Nuclear Information System (INIS)

    King, B.J.

    1998-02-01

    This paper gives an overview of the neutrino physics possibilities at a future muon storage ring, which can be either a muon collider ring or a ring dedicated to neutrino physics that uses muon collider technology to store large muon currents. After a general characterization of the neutrino beam and its interactions, some crude quantitative estimates are given for the physics performance of a muon ring neutrino experiment (MURINE) consisting of a high rate, high performance neutrino detector at a 250 GeV muon collider storage ring. The paper is organized as follows. The next section describes neutrino production from a muon storage rings and gives expressions for event rates in general purpose and long baseline detectors. This is followed by a section outlining a serious design constraint for muon storage rings: the need to limit the radiation levels produced by the neutrino beam. The following two sections describe a general purpose detector and the experimental reconstruction of interactions in the neutrino target then, finally, the physics capabilities of a MURINE are surveyed

  11. The muon science facility at the JAERI/KEK joint project

    International Nuclear Information System (INIS)

    Miyake, Y.; Nishiyama, K.; Makimura, S.; Kawamura, N.; Shimomura, K.; Kadono, R.; Higemoto, W.; Fukuchi, K.; Beveridge, J.L.; Ishida, K.; Matsuzaki, T.; Watanabe, I.; Matsuda, Y.; Sakamoto, S.; Nakamura, S.N.; Nagamine, K.

    2003-01-01

    The Muon Science Facility is one of the experimental arenas of the JAERI/KEK Joint Project, which also includes neutron science, particle and nuclear physics, neutrino physics and nuclear transmutation science. Following the recommendations by the review committees, the Joint Project was finally approved for construction at the end of December, 2000. The approval is for Phase 1 of 1335 Oku Yen out of the total project cost of 1890 Oku Yen. It is planned to locate the muon science experimental area together with the neutron facility in an integrated building, as a facility for materials and life science studies. Because its construction will be started in April 2003, we are now working to complete the detailed design of the building structure, shielding, electrical services, cooling water, primary proton beam line, one muon target and secondary beam lines

  12. Muon Fluence Measurements for Homeland Security Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ankney, Austin S.; Berguson, Timothy J.; Borgardt, James D.; Kouzes, Richard T.

    2010-08-10

    This report focuses on work conducted at Pacific Northwest National Laboratory to better characterize aspects of backgrounds in RPMs deployed for homeland security purposes. Two polyvinyl toluene scintillators were utilized with supporting NIM electronics to measure the muon coincidence rate. Muon spallation is one mechanism by which background neutrons are produced. The measurements performed concentrated on a broad investigation of the dependence of the muon flux on a) variations in solid angle subtended by the detector; b) the detector inclination with the horizontal; c) depth underground; and d) diurnal effects. These tests were conducted inside at Building 318/133, outdoors at Building 331G, and underground at Building 3425 at Pacific Northwest National Laboratory.

  13. Online Learning for Muon Science

    Science.gov (United States)

    Baker, Peter J.; Loe, Tom; Telling, Mark; Cottrell, Stephen P.; Hillier, Adrian D.

    As part of the EU-funded project SINE2020 we are developing an online learning environment to introduce people to muon spectroscopy and how it can be applied in a variety of science areas. Currently there are short interactive courses using cosmic ray muons to teach what muons are and how their decays are measured and a guide to analyzing muon data using the Mantid software package, as well as videos from the lectures at the ISIS Muon Spectroscopy Training School 2016. Here we describe the courses that have been developed and how they have already been used.

  14. Test of hadronic interaction models with the KASCADE-Grande muon data

    Directory of Open Access Journals (Sweden)

    Schieler H.

    2013-06-01

    Full Text Available KASCADE-Grande is an air-shower observatory devoted for the detection of cosmic rays with energies in the interval of 1014 – 1018 eV, where the Grande array is responsible for the higher energy range. The experiment comprises different detection systems which allow precise measurements of the charged, electron and muon numbers of extensive air-showers (EAS. These data is employed not only to reconstruct the properties of the primary cosmic-ray particle but also to test hadronic interaction models at high energies. In this contribution, predictions of the muon content of EAS from QGSJET II-2, SIBYLL 2.1 and EPOS 1.99 are confronted with the experimental measurements performed with the KASCADE-Grande experiment in order to test the validity of these hadronic models commonly used in EAS simulations.

  15. Scattering of 7-GeV muons in nuclei

    International Nuclear Information System (INIS)

    May, M.; Aslanides, E.; Lederman, L.M.; Limon, P.; Rapp, P.; Entenberg, A.; Jostlein, H.; Kim, I.J.; Konigsman, K.; Kostoulas, I.G.; Melissinos, A.C.; Gittleson, H.; Kirk, T.; Murtagh, M.; Tannenbaum, M.J.; Sculli, J.; White, T.; Yamanouchi, T.

    1975-01-01

    We have measured the inclusive scattering of muons of average energy 7.2 GeV from a variety of nuclear targets in the four-momentum-transfer range 0.6 2 2 . We find that the data can be well represented as an incoherent sum of muon-proton and muon-neutron scattering except in the region x (equivalent1/ω=Q 2 /2mν) <0.1 A fit in this region by the form A)=sigma/subA//(Z/A) sigma/subp/+(N/A) sigma/subn/=A/sup rho/ yields a value of the exponent rho of 0.963plus-or-minus0.006

  16. Hybrid nuclear reactors and muon catalysis

    International Nuclear Information System (INIS)

    Petrov, Yu.

    1983-01-01

    Three methods are described of the conversion of isotope 238 U to 239 Pu by neutron capture in fast breeder reactors, in the breeding blanket of hybrid thermonuclear reactors using neutrons generated by fusion and electronuclear breeding in which the target is bombarded with 1 GeV protons. Their possible use in power production is discussed. Another prospective energy source is the use of muon catalysis in the fusion of deuterium and tritium nuclei. (J.P.)

  17. Future Muon Source Possibilities at the SNS

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Travis J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); MacDougall, Prof. Gregory J. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2017-06-01

    The workshop “Future Muon Source Possibilities at the SNS” was held September 1-2, 2016 at Oak Ridge National Laboratory. The workshop aimed to examine the technical feasibility and scientific need to construct a μSR and/or β-NMR facility at the SNS. During the course of the workshop it became evident that recently developed technology could enable the development of a world leading pulsed muon source at SNS, without impacting the neutron science missions of the SNS. The details are discussed below.

  18. Local tracking in the ATLAS muon spectrometer

    CERN Document Server

    Primor, David; Mikenberg, Giora

    2007-01-01

    The LHC, the largest hadron collider accelerator ever built, presents new challenges for scientists and engineers. With the anticipated luminosity of the LHC, it is expected to have as many as one billion total collisions per second, of which at most 10 to 100 per second might be of potential scientific interest. One of the two major, general-purpose experiments at LHC is called ATLAS. Since muons are one of the important signs of new physics, the need of their detection has lead to the construction of a stand- alone Muon Spectrometer. This system is located in a high radiation background environment (mostly neutrons and photons) which makes the muon tracking a very challenging task. The Muon Spectrometer consists of two types of precision chambers, the Monitor Drift Tube (MDT) chambers, and the Cathode Strip Chambers (CSC). In order to detect the muon and estimate its track parameters, it is very important to detect and precisely estimate its local tracks within the CSC and MDT chambers. Using advanced signa...

  19. Capture of muons with high energy transfer (μ-,pn) on the 2040Ca

    International Nuclear Information System (INIS)

    Arques, Marc

    1978-01-01

    As several Russian experiments had shown that the capture of mesons of negative charge in some target nuclei (Si, S, Ca, Cu, Pb) could lead to the emission of high energy protons and neutrons (a kinetic energy higher than 30 MeV), the author reports a preliminary measurement of the capture or a negatively charged muon in a K orbit around a nucleus, actually a capture with a simultaneous emission of a proton and a neutron, and of a neutrino with an as low as possible energy. After having outlined the interest of such an experiment, the author describes the kinematics of capture of a resting muon, the production of muons, the experimental assembly, the experiment and the associated electronics. Results are interpreted

  20. A proposed experiment for studying the direct neutron-neutron interaction

    International Nuclear Information System (INIS)

    Hassan Fikry, A.R.; Maayouf, R.M.A.

    1979-01-01

    An experiment for studying the direct neutron-neutron interaction is suggested. The experiment is based on the combined use of an accelerator, e.g., an electron linear accelerator, together with a mobile pulsed reactor; or using a pulsed beam reactor together with a mobile neutron generator

  1. Relativistic quasiparticle random-phase approximation calculation of total muon capture rates

    International Nuclear Information System (INIS)

    Marketin, T.; Paar, N.; Niksic, T.; Vretenar, D.

    2009-01-01

    The relativistic proton-neutron quasiparticle random phase approximation (pn-RQRPA) is applied in the calculation of total muon capture rates on a large set of nuclei from 12 C to 244 Pu, for which experimental values are available. The microscopic theoretical framework is based on the relativistic Hartree-Bogoliubov (RHB) model for the nuclear ground state, and transitions to excited states are calculated using the pn-RQRPA. The calculation is fully consistent, i.e., the same interactions are used both in the RHB equations that determine the quasiparticle basis, and in the matrix equations of the pn-RQRPA. The calculated capture rates are sensitive to the in-medium quenching of the axial-vector coupling constant. By reducing this constant from its free-nucleon value g A =1.262 by 10% for all multipole transitions, the calculation reproduces the experimental muon capture rates to better than 10% accuracy.

  2. Simulation of Underground Muon Flux with Application to Muon Tomography

    Science.gov (United States)

    Yamaoka, J. A. K.; Bonneville, A.; Flygare, J.; Lintereur, A.; Kouzes, R.

    2015-12-01

    Muon tomography uses highly energetic muons, produced by cosmic rays interacting within the upper atmosphere, to image dense materials. Like x-rays, an image can be constructed from the negative of the absorbed (or scattered) muons. Unlike x-rays, these muons can penetrate thousands of meters of earth. Muon tomography has been shown to be useful across a wide range of applications (such as imaging of the interior of volcanoes and cargo containers). This work estimates the sensitivity of muon tomography for various underground applications. We use simulations to estimate the change in flux as well as the spatial resolution when imaging static objects, such as mine shafts, and dynamic objects, such as a CO2 reservoir filling over time. We present a framework where we import ground density data from other sources, such as wells, gravity and seismic data, to generate an expected muon flux distribution at specified underground locations. This information can further be fed into a detector simulation to estimate a final experimental sensitivity. There are many applications of this method. We explore its use to image underground nuclear test sites, both the deformation from the explosion as well as the supporting infrastructure (access tunnels and shafts). We also made estimates for imaging a CO2 sequestration site similar to Futuregen 2.0 in Illinois and for imaging magma chambers beneath the Cascade Range volcanoes. This work may also be useful to basic science, such as underground dark matter experiments, where increasing experimental sensitivity requires, amongst other factors, a precise knowledge of the muon background.

  3. Neutron matter, neutron pairing, and neutron drops based on chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Thomas

    2016-10-19

    The physics of neutron-rich systems is of great interest in nuclear and astrophysics. Precise knowledge of the properties of neutron-rich nuclei is crucial for understanding the synthesis of heavy elements. Infinite neutron matter determines properties of neutron stars, a final stage of heavy stars after a core-collapse supernova. It also provides a unique theoretical laboratory for nuclear forces. Strong interactions are determined by quantum chromodynamics (QCD). However, QCD is non-perturbative at low energies and one presently cannot directly calculate nuclear forces from it. Chiral effective field theory circumvents these problems and connects the symmetries of QCD to nuclear interactions. It naturally and systematically includes many-nucleon forces and gives access to uncertainty estimates. We use chiral interactions throughout all calculation in this thesis. Neutron stars are very extreme objects. The densities in their interior greatly exceed those in nuclei. The exact composition and properties of neutron stars is still unclear but they consist mainly of neutrons. One can explore neutron stars theoretically with calculations of neutron matter. In the inner core of neutron stars exist very high densities and thus maybe exotic phases of matter. To investigate whether there exists a phase transition to such phases even at moderate densities we study the chiral condensate in neutron matter, the order parameter of chiral symmetry breaking, and find no evidence for a phase transition at nuclear densities. We also calculate the more extreme system of spin-polarised neutron matter. With this we address the question whether there exists such a polarised phase in neutron stars and also provide a benchmark system for lattice QCD. We find spin-polarised neutron matter to be an almost non-interacting Fermi gas. To understand the cooling of neutron stars neutron pairing is of great importance. Due to the high densities especially triplet pairing is of interest. We

  4. Quasiparticle Interactions in Neutron Matter for Applications in Neutron Stars

    Science.gov (United States)

    Wambach, J.; Anisworth, T. L.; Pines, D.

    1993-01-01

    A microscopic model for the quaisiparticle interaction in neutron matter is presented. Both particle-particle (pp) and particle-hole (ph) correlation are are included. The pp correlations are treated in semi-empirical way, while ph correlations are incorporated by solving coupled two-body equations for the particle hole interaction and the scattering amplitude on the Fermi sphere. The resulting integral equations self-consistently sum the ph reducible diagrams. Antisymmetry is kept at all stages and hence the forward-scattering sum rules are obeyed. Results for Landau parameters and transport coefficients in a density regime representing the crust of a neutron star are presented. We also estimate the S-1 gap parameter for neutron superfluidity and comment briefly on neutron-star implications.

  5. Additional neutral vector boson in the 7-dimensional theory of gravy-electro-weak interactions

    International Nuclear Information System (INIS)

    Gavrilov, V.R.

    1988-01-01

    Possibilities of manifestation of an additional neutron vector boson, the existence of which is predicted by the 7-dimensional theory of gravy-electro-weak interactions, are analyzed. A particular case of muon neutrino scattering on a muon is considered. In this case additional neutral current manifests both at high and at relatively low energies of particle collisions

  6. Measurement of the cosmic-induced neutron yield at the Modane underground laboratory

    International Nuclear Information System (INIS)

    Kluck, Holger Martin

    2013-01-01

    Muon-induced neutrons are an important background source for rare event searches such as Dark Matter searches looking for nuclear recoils induced by the elastic scattering of galactic WIMPs off nuclei. Due to a shielding of 4800 mwe against muons at the Laboratoire Souterrain de Modane (LSM), the rate of muon-induced neutrons in EDELWEISS is too low, to be studied in situ with satisfying statistical accuracy. One thus relies on Monte Carlo (MC) modelling of the relevant processes, using e.g. the package Geant4. However, the reliability of MC simulations is debatable, as the published differences between simulation and measurement is often larger than a factor two. The lack of reliable data on the neutron production yield in lead at LSM and the dubious accuracy of the MC simulations motivated this work and lead to the following results: A high statistics reference data set of muon-induced neutrons at LSM was collected by running a dedicated neutron counter consisting of a lead target below a neutron multiplicity meter based on 1000 l liquid scintillator loaded with gadolinium. Within a live-time of 964.5 d from 2009 to 2012, a sample of 5583 tagged muons were measured in coincidence with 313 candidates for muon-induced neutrons distributed over 181 neutron cascades. Using the modelling package Geant4, we propagated about 5.5 . 10"7 muons (μ"+/μ"- ∼ 1.37) through a detailed three-dimensional geometry and tracked all electromagnetic and hadronic shower products. Albeit more than 95.5 % of all neutrons which terminated in the liquid scintillator were produced within a distance of 1.19 m around the neutron counter, only 78.2 % of them originated from the lead target. This highlights the importance of a detailed geometry implemented in simulation packages. Taking into account a calibrated detector response model on an event-by-event base, the measured and simulated absolute integral rates of neutron candidates agree within the statistical, systematic, and theoretical

  7. Electron-muon correlation as a new probe of strongly interacting quark-gluon plasma

    International Nuclear Information System (INIS)

    Akamatsu, Yukinao; Hatsuda, Tetsuo; Hirano, Tetsufumi

    2009-01-01

    As a new and clean probe to the strongly interacting quark-gluon plasma (sQGP), we propose an azimuthal correlation of an electron and a muon that originate from the semileptonic decay of charm and bottom quarks. By solving the Langevin equation for the heavy quarks under the hydrodynamic evolution of the hot plasma, we show that substantial quenching of the away-side peak in the electron-muon correlation can be seen if the sQGP drag force acting on heavy quarks is large enough as suggested from the gauge/gravity correspondence. The effect could be detected in high-energy heavy ion collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider.

  8. Some thoughts on the muon catalyzed fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, H.

    1986-01-01

    The design of the muon catalyzed fusion reactor is discussed. Some of the engineering challenges and critical research areas such as ..pi../sup -/ meson transport, beam entry single crystal window and coherent x-ray for stripping the muon from ..cap alpha.. particle, are considered. In order to reduce the tritium inventory and neutron wall loading, use of the laser technique for manipulating the d-t mixture is considered. The heterogeneous d-t mixture using the droplet or jet is discussed. 39 refs., 6 figs.

  9. Precision Muon Tracking Detectors for High-Energy Hadron Colliders

    CERN Document Server

    Gadow, Philipp; Kroha, Hubert; Richter, Robert

    2016-01-01

    Small-diameter muon drift tube (sMDT) chambers with 15 mm tube diameter are a cost-effective technology for high-precision muon tracking over large areas at high background rates as expected at future high-energy hadron colliders including HL-LHC. The chamber design and construction procedures have been optimized for mass production and provide sense wire positioning accuracy of better than 10 ?m. The rate capability of the sMDT chambers has been extensively tested at the CERN Gamma Irradiation Facility. It exceeds the one of the ATLAS muon drift tube (MDT) chambers, which are operated at unprecedentedly high background rates of neutrons and gamma-rays, by an order of magnitude, which is sufficient for almost the whole muon detector acceptance at FCC-hh at maximum luminosity. sMDT operational and construction experience exists from ATLAS muon spectrometer upgrades which are in progress or under preparation for LHC Phase 1 and 2.

  10. Radiation testing of electronics for the CMS endcap muon system

    Energy Technology Data Exchange (ETDEWEB)

    Bylsma, B. [Ohio State University (United States); Cady, D.; Celik, A. [Texas A and M University, College Station, TX 77843 (United States); Durkin, L.S. [Ohio State University (United States); Gilmore, J., E-mail: gilmore@tamu.edu [Texas A and M University, College Station, TX 77843 (United States); Haley, J. [Northeastern University (United States); Khotilovich, V.; Lakdawala, S. [Texas A and M University, College Station, TX 77843 (United States); Liu, J.; Matveev, M.; Padley, B.P.; Roberts, J. [Rice University (United States); Roe, J.; Safonov, A.; Suarez, I. [Texas A and M University, College Station, TX 77843 (United States); Wood, D. [Northeastern University (United States); Zawisza, I. [Texas A and M University, College Station, TX 77843 (United States)

    2013-01-11

    The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels of neutron radiation expected at the HL-LHC. The highest total ionizing dose (TID) for the muon system is expected at the innermost portion of the CMS detector, with 8900 rad over 10 years. Our results show that Commercial Off-The-Shelf (COTS) components selected for the new electronics will operate reliably in the CMS radiation environment.

  11. Radiation testing of electronics for the CMS endcap muon system

    Science.gov (United States)

    Bylsma, B.; Cady, D.; Celik, A.; Durkin, L. S.; Gilmore, J.; Haley, J.; Khotilovich, V.; Lakdawala, S.; Liu, J.; Matveev, M.; Padley, B. P.; Roberts, J.; Roe, J.; Safonov, A.; Suarez, I.; Wood, D.; Zawisza, I.

    2013-01-01

    The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels of neutron radiation expected at the HL-LHC. The highest total ionizing dose (TID) for the muon system is expected at the innermost portion of the CMS detector, with 8900 rad over 10 years. Our results show that Commercial Off-The-Shelf (COTS) components selected for the new electronics will operate reliably in the CMS radiation environment.

  12. Ordinary muon capture as a probe of virtual transitions of ββ decay

    International Nuclear Information System (INIS)

    Kortelainen, M.; Suhonen, J.

    2002-01-01

    A reliable theoretical description of double-beta-decay processes needs a possibility to test the involved virtual transitions against experimental data. Unfortunately, only the lowest virtual transition can be probed by the traditional electron capture of β - decay experiments. In this article we propose that calculated amplitudes for many virtual transitions can be probed by experiments measuring rates of ordinary muon capture (OMC) to the relevant intermediate states. The first results form such experiments are expected to appear soon. As an example, we discuss the ββ decays of 76 Ge and 106 Cd and the corresponding OMC for the 76 Se and 106 Cd nuclei in the framework of the proton-neutron QRPA with realistic interactions. It is found that the OMC observables, just like the 2νββ-decay amplitudes, strongly depend on the strength of the particle-particle part of the proton-neutron interaction. (author)

  13. Reactor prospects of muon-catalyzed fusion of deuterium and tritium concentrated in transition metals

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1989-01-01

    It is conjectured that the number of fusion events catalyzed by a single muon is orders of magnitude greater for deuterium and tritium concentrated in a transition metal than in gaseous form and that the recent observation of 2.5-MeV neutrons from a D 2 O electrolytic cell with palladium and titanium cathodes can thereby be interpreted in terms of cosmic muon-catalyzed deuterium-deuterium fusion. This suggests a new fusion reactor reactor consisting of deuterium and tritium concentrated in transition metal fuel elements in a fusion core that surrounds an accelerator-produced muon source. The feasibility of net energy production in such a reactor is established in terms of requirements on the number of fusion events catalyzed per muon. The technological implications for a power reactor based on this concept are examined. The potential of such a concept as a neutron source for materials testing and tritium and plutonium production is briefly discussed

  14. Influence of hadronic interaction models and the cosmic ray spectrum on the high-energy atmospheric muon and neutrino flux

    Directory of Open Access Journals (Sweden)

    Desiati Paolo

    2013-06-01

    Full Text Available The recent observations of muon charge ratio up to about 10 TeV and of atmospheric neutrinos up to energies of about 400 TeV has triggered a renewed interest into the high-energy interaction models and cosmic ray primary composition. A reviewed calculation of lepton spectra produced in cosmic ray induced extensive air showers is carried out with a primary cosmic ray spectrum that fits the latest direct measurements below the knee. In order to achieve this, we used a full Monte Carlo method to derive the inclusive differential spectra (yields of muons, muon neutrinos and electron neutrinos at the surface for energies between 80 GeV and hundreds of PeV. Using these results the differential flux and the flavor ratios of leptons were calculated. The air shower simulator CORSIKA 6.990 was used for showering and propagation of the secondary particles through the atmosphere, employing the established high energy hadronic interaction models SIBYLL 2.1, QGSJet-01 and QGSJet-II-03. We show that the performance of the interaction models allows makes it possible to predict the spectra within experimental uncertainties, while SIBYLL generally yields a higher flux at the surface than the QGSJet models. The calculation of the flavor and charge ratios has lead to inconsistent results, mainly influenced by the different representations of the K/π ratio within the models. The influence of the knee of cosmic rays is reflected in the secondary spectra at energies between 100 and 200 TeV. Furthermore, we could quantify systematic uncertainties of atmospheric muon- and neutrino fluxes, associated to the models of the primary cosmic ray spectrum and the interaction models. For most recent parametrizations of the cosmic ray primary spectrum, atmospheric muons can be determined with an uncertainty smaller than +15/-13% of the average flux. Uncertainties of the muon and electron neutrino fluxes can be calculated within an average error of +32/-22% and +25

  15. Muon Detection Based on a Hadronic Calorimeter

    CERN Document Server

    Ciodaro, T; Abreu, R; Achenbach, R; Adragna, P; Aharrouche, M; Aielli, G; Al-Shabibi, A; Aleksandrov, I; Alexandrov, E; Aloisio, A; Alviggi, M G; Amorim, A; Amram, N; Andrei, V; Anduaga, X; Angelaszek, D; Anjos, N; Annovi, A; Antonelli, S; Anulli, F; Apolle, R; Aracena, I; Ask, S; Åsman, B; Avolio, G; Baak, M; Backes, M; Backlund, S; Badescu, E; Baines, J; Ballestrero, S; Banerjee, S; Bansil, H S; Barnett, B M; Bartoldus, R; Bartsch, V; Batraneanu, S; Battaglia, A; Bauss, B; Beauchemin, P; Beck, H P; Bee, C; Begel, M; Behera, P K; Bell, P; Bell, W H; Bellagamba, L; Bellomo, M; Ben Ami, S; Bendel, M; Benhammou, Y; Benslama, K; Berge, D; Bernius, C; Berry, T; Bianco, M; Biglietti, M; Blair, R E; Bogaerts, A; Bohm, C; Boisvert, V; Bold, T; Bondioli, M; Borer, C; Boscherini, D; Bosman, M; Bossini, E; Boveia, A; Bracinik, J; Brandt, A G; Brawn, I P; Brelier, B; Brenner, R; Bressler, S; Brock, R; Brooks, W K; Brown, G; Brunet, S; Bruni, A; Bruni, G; Bucci, F; Buda, S; Burckhart-Chromek, D; Buscher, V; Buttinger, W; Calvet, S; Camarri, P; Campanelli, M; Canale, V; Canelli, F; Capasso, L; Caprini, M; Caracinha, D; Caramarcu, C; Cardarelli, R; Carlino, G; Casadei, D; Casado, M P; Cattani, G; Cerri, A; Cerrito, L; Chapleau, B; Childers, J T; Chiodini, G; Christidi, I; Ciapetti, G; Cimino, D; Ciobotaru, M; Coccaro, A; Cogan, J; Collins, N J; Conde Muino, P; Conidi, C; Conventi, F; Corradi, M; Corso-Radu, A; Coura Torres, R; Cranmer, K; Crescioli, F; Crone, G; Crupi, R; Cuenca Almenar, C; Cummings, J T; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Dao, V; Darlea, G L; Davis, A O; De Asmundis, R; De Pedis, D; De Santo, A; de Seixas, J M; Degenhardt, J; Della Pietra, M; Della Volpe, D; Demers, S; Demirkoz, B; Di Ciaccio, A; Di Mattia, A; Di Nardo, R; Di Simone, A; Diaz, M A; Dietzsch, T A; Dionisi, C; Dobson, E; Dobson, M; dos Anjos, A; Dotti, A; Dova, M T; Drake, G; Dufour, M-A; Dumitru, I; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, K V; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Ermoline, Y; Ernst, J; Etzion, E; Falciano, S; Farrington, S; Farthouat, P; Faulkner , P J W; Fedorko, W; Fellmann, D; Feng, E; Ferrag, S; Ferrari, R; Ferrer, M L; Fiorini, L; Fischer, G; Flowerdew, M J; Fonseca Martin, T; Francis, D; Fratina, S; French, S T; Front, D; Fukunaga, C; Gadomski, S; Garelli, N; Garitaonandia Elejabarrieta, H; Gaudio, G; Gee, C N P; George, S; Giagu, S; Giannetti, P; Gillman, A R; Giorgi, M; Giunta, M; Giusti, P; Goebel, M; Gonçalo, R; Gonzalez Silva, L; Göringer, C; Gorini, B; Gorini, E; Grabowska-Bold, I; Green, B; Groll, M; Guida, A; Guler, H; Haas, S; Hadavand, H; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hansen, J R; Hasegawa, S; Hasegawa, Y; Hauser, R; Hayakawa, T; Hayden, D; Head, S; Heim, S; Hellman, S; Henke, M; Hershenhorn, A; Hidvégi, A; Hillert, S; Hillier, S J; Hirayama, S; Hod, N; Hoffmann, D; Hong, T M; Hryn'ova, T; Huston, J; Iacobucci, G; Igonkina, O; Ikeno, M; Ilchenko, Y; Ishikawa, A; Ishino, M; Iwasaki, H; Izzo, V; Jez, P; Jimenez Otero, S; Johansen, M; Johns, K; Jones, G; Joos, M; Kadlecik, P; Kajomovitz, E; Kanaya, N; Kanega, F; Kanno, T; Kapliy, A; Kaushik, V; Kawagoe, K; Kawamoto, T; Kazarov, A; Kehoe, R; Kessoku, K; Khomich, A; Khoriauli, G; Kieft, G; Kirk, J; Klemetti, M; Klofver, P; Klous, S; Kluge, E-E; Kobayashi, T; Koeneke, K; Koletsou, I; Koll, J D; Kolos, S; Kono, T; Konoplich, R; Konstantinidis, N; Korcyl, K; Kordas, K; Kotov, V; Kowalewski, R V; Krasznahorkay, A; Kraus, J; Kreisel, A; Kubota, T; Kugel, A; Kunkle, J; Kurashige, H; Kuze, M; Kwee, R; Laforge, B; Landon, M; Lane, J; Lankford, A J; Laranjeira Lima, S M; Larner, A; Leahu, L; Lehmann Miotto, G; Lei, X; Lellouch, D; Levinson, L; Li, S; Liberti, B; Lilley, J N; Linnemann, J T; Lipeles, E; Lohse, T; Losada, M; Lowe, A; Luci, C; Luminari, L; Lundberg, J; Lupu, N; Machado Miguéns, J; Mackeprang, R; Maettig, S; Magnoni, L; Maiani, C; Maltrana, D; Mangeard, P-S; Männer, R; Mapelli, L; Marchese, F; Marino, C; Martin, B; Martin, B T; Martin, T; Martyniuk, A; Marzano, F; Masik, J; Mastrandrea, P; Matsushita, T; McCarn, A; Mechnich, J; Medinnis, M; Meier, K; Melachrinos, C; Mendoza Nava, L M; Merola, L; Messina, A; Meyer, C P; Middleton, R P; Mikenberg, G; Mills, C M; Mincer, A; Mineev, M; Misiejuk, A; Moa, T; Moenig, K; Monk, J; Monticelli, F; Mora Herrera, C; Morettini, P; Morris, J D; Müller, F; Munwes, Y; Murillo Garcia, R; Nagano, K; Nagasaka, Y; Navarro, G A; Negri, A; Nelson, S; Nemethy, P; Neubauer, M S; Neusiedl, A; Newman, P; Nisati, A; Nomoto, H; Nozaki, M; Nozicka, M; Nurse, E; Ochando, C; Ochi, A; Oda, S; Oh, A; Ohm, C; Okumura, Y; Olivito, D; Omachi, C; Osculati, B; Oshita, H; Ospanov, R; Owen, M A; Özcan, V E; Ozone, K; Padilla, C; Panes, B; Panikashvili, N; Paramonov, A; Parodi, F; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Perera, V J O; Perez, E; Petcu, M; Petersen, B A; Petersen, J; Petrolo, E; Phan, A; Piegaia, R; Pilkington, A; Pinder, A; Poddar, S; Polini, A; Pope, B G; Potter, C T; Primavera, M; Prokoshin, F; Ptacek, E; Qian, W; Quinonez, F; Rajagopalan, S; Ramos Dos Santos Neves, R; Reinherz-Aronis, E; Reinsch, A; Renkel, P; Rescigno, M; Rieke, S; Riu, I; Robertson, S H; Robinson, M; Rodriguez, D; Roich, A; Romeo, G; Romero, R; Roos, L; Ruiz Martinez, A; Ryabov, Y; Ryan, P; Saavedra, A; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saland, J; Salnikov, A; Salvatore, F; Sankey, D P C; Santamarina, C; Santonico, R; Sarkisyan-Grinbaum, E; Sasaki, O; Savu, D; Scannicchio, D A; Schäfer, U; Scharf, V L; Scheirich, D; Schiavi, C; Schlereth, J; Schmitt, K; Schroder, C; Schroer, N; Schultz-Coulon, H-C; Schwienhorst, R; Sekhniaidze, G; Sfyrla, A; Shamim, M; Sherman, D; Shimojima, M; Shochet, M; Shooltz, D; Sidoti, A; Silbert, O; Silverstein, S; Sinev, N; Siragusa, G; Sivoklokov, S; Sjoen, R; Sjölin, J; Slagle, K; Sloper, J E; Smith, B C; Soffer, A; Soloviev, I; Spagnolo, S; Spiwoks, R; Staley, R J; Stamen, R; Stancu, S; Steinberg, P; Stelzer, J; Stockton, M C; Straessner, A; Strauss, E A; Strom, D; Su, D; Sugaya, Y; Sugimoto, T; Sushkov, S; Sutton, M R; Suzuki, Y; Taffard, A; Taiblum, N; Takahashi, Y; Takeda, H; Takeshita, T; Tamsett, M; Tan, C L A; Tanaka, S; Tapprogge, S; Tarem, S; Tarem, Z; Taylor, C; Teixeira-Dias, P; Thomas, J P; Thompson, P D; Thomson, M A; Tokushuku, K; Tollefson, K; Tomoto, M; Topfel, C; Torrence, E; Touchard, F; Traynor, D; Tremblet, L; Tricoli, A; Tripiana, M; Triplett, N; True, P; Tsiakiris, M; Tsuno, S; Tuggle, J; Ünel, G; Urquijo, P; Urrejola, P; Usai, G; Vachon, B; Vallecorsa, S; Valsan, L; Vandelli, W; Vari, R; Vaz Gil Lopes, L; Veneziano, S; Ventura, A; Venturi, N; Vercesi, V; Vermeulen, J C; Volpi, G; Vorwerk, V; Wagner, P; Wang, M; Warburton, A; Watkins, P M; Watson, A T; Watson, M; Weber, P; Weidberg, A R; Wengler, T; Werner, P; Werth, M; Wessels, M; White, M; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Winklmeier, F; Woods, K S; Wu, S-L; Wu, X; Xaplanteris Karampatsos, L; Xella, S; Yakovlev, A; Yamazaki, Y; Yang, U; Yasu, Y; Yuan, L; Zaitsev, A; Zanello, L; Zhang, H; Zhang, J; Zhao, L; Zobernig, H; zur Nedden, M

    2010-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. The information from TileCal's last segmentation layer can assist in muon tagging and it is being considered for a near future upgrade of the level-one trigger, mainly for rejecting triggers due to cavern background at the barrel region. A muon receiver for the TileCal muon signals is being designed in order to interface with the ATLAS level-one trigger. This paper addresses the preliminary studies concerning the muon discrimination capability for the muon receiver. Monte Carlo simulations for single muons from the interaction point were used to study the effectiveness of hadronic calorimeter information on muon detection.

  16. Testing model energy spectra of charged particles produced in hadron interactions on the basis of atmospheric muons

    International Nuclear Information System (INIS)

    Dedenko, L. G.; Roganova, T. M.; Fedorova, G. F.

    2015-01-01

    An original method for calculating the spectrum of atmospheric muons with the aid of the CORSIKA 7.4 code package and numerical integration is proposed. The first step consists in calculating the energy distribution of muons for various fixed energies of primary-cosmic-ray particles and within several chosen hadron-interaction models included in the CORSIKA 7.4 code package. After that, the spectrum of atmospheric muons is calculated via integrating the resulting distribution densities with the chosen spectrum of primary-cosmic-ray particles. The atmospheric-muon fluxes that were calculated on the basis of the SIBYLL 2.1, QGSJET01, and QGSJET II-04 models exceed the predictions of the wellknown Gaisser approximation of this spectrum by a factor of 1.5 to 1.8 in the range of muon energies between about 10 3 and 10 4 GeV.Under the assumption that, in the region of extremely highmuon energies, a dominant contribution to the muon flux comes from one to two generations of charged π ± and K ± mesons, the production rate calculated for these mesons is overestimated by a factor of 1.3 to 1.5. This conclusion is confirmed by the results of the LHCf and TOTEM experiments

  17. Muon shielding for PEP

    International Nuclear Information System (INIS)

    Jenkins, T.M.; Thomas, R.H.

    1974-01-01

    The first stage of construction of PEP will consist of electron and positron storage rings. At a later date a 200 GeV proton storage ring may be added. It is judicious therefore, to ensure that the first and second phases of construction are compatible with each other. One of several factors determining the elevation at which the storage rings will be constructed is the necessity to provide adequate radiation shielding. The overhead shielding of PEP is determined by the reproduction of neutrons in the hadron cascade generated by primary protons lost from the storage ring. The minimum overburden planned for PEP is 5.5 meters of earth (1100 gm cm/sup /minus/2/). To obtain a rough estimate of the magnitude of the muon radiation problem this note presents some preliminary calculations. Their purpose is intended merely to show that the presently proposed design for PEP will present no major shielding problems should the protons storage ring be installed. More detailed calculations will be made using muon yield computer codes developed at CERN and NAL and muon transport codes developed at SLAC, when details of the proton storage ring become settled. 9 refs., 4 figs

  18. Properties of prompt muons produced by 28 GeV proton interactions

    International Nuclear Information System (INIS)

    Morse, W.M.; Lai, K.W.; Larsen, R.C.

    1978-01-01

    Prompt dimuon production from the interactions of 28.5 GeV protons with nuclear targets. The dimuon differential cross section dsigma/dx and the prompt muon to pion ratio are equal within errors to that found at an incident proton beam energy of 400 GeV. The atomic number dependence is found to be the same as that of the total proton nucleon cross section. The dimuon invariant mass distribution is presented. 13 references

  19. Dipole-dipole dispersion interactions between neutrons

    OpenAIRE

    Babb, James F.; Higa, Renato; Hussein, Mahir S.

    2016-01-01

    We investigate the long-range interactions between two neutrons utilizing recent data on the neutron static and dynamic electric and magnetic dipole polarizabilities. The resulting long-range potentials are used to make quantitative comparisons between the collisions of a neutron with a neutron and a neutron with a proton. We also assess the importance of the first pion production threshold and first excited state of the nucleon, the $\\Delta$-resonance ($J^{\\pi}$ = + 3/2, I = 3/2). We found b...

  20. Muon scattering into 1 to 5 muon final states

    International Nuclear Information System (INIS)

    Clark, A.R.; Johnson, K.J.; Kerth, L.T.

    1979-09-01

    Interactions of 209- and 90-GeV muons within a magnetized-steel calorimeter have produced final states containing one, two, three, four, and five muons. Redundant systems of proportional and drift chambers, fully sensitive in the forward direction, maintained 9% dimuon-mass resolution and high acceptance for multimuon final states. The first data are presented on F 2 (x, Q 2 ) from charged lepton-nucleon scattering spanning a range in ln (ln, Q 2 ) comparable to that measured in high energy neutrino scattering. The muon data confirm the decrease of F 2 with rising Q 2 in the region 0.2 80% of the world sample of fully-reconstructed 3μ final states containing the J/psi(3100), the first determination of the psi polarization yields sigma/sub L//sigma/sub T/ = xi 2 Q 2 /m/sub psi/ 2 with xi 2 = 4.0/sub -2.1/ +5 4 , 2.6 standard deviations above the vector-dominance expectation. A sample of 35539 two-muon final states contains a small excess of high p/sub perpendicular to/ high-Q 2 same-sign pairs and sets limits on neutral heavy lepton production by right-handed currents. Two five-muon final states are observed, of which only one is the likely result of a pure QED process. A single event with four muons in the final state is interpreted as diffractive b anti b production with anti b → psiX → μ + μ - X and b → μ - anti ν/sub μ/X. 42 references

  1. Additive versus multiplicative muon conservation

    International Nuclear Information System (INIS)

    Nemethy, P.

    1981-01-01

    Experimental elucidation of the question of muon conservation is reviewed. It is shown that neutral-current experiments have not yet yielded information about muonium-antimuonium conversion at the weak-interaction level and that all the charged-current experiments agree that there is no evidence for a multiplicative law. The best limits, from the muon-decay neutrino experiment at LAMPF and from the inverse muon-decay experiment in the CERN neutrino beam, definitely exclude multiplicative law schemes with a branching ratio R approximately 1/2. It is concluded that unless the dynamics conspire to make a multiplicative law with very small R it would appear that muon conservation obeys conserved additive lepton flavor law. (U.K.)

  2. Study on the muon spectra at the depth of 570 m.w.e. underground with 100t scintillation detector

    International Nuclear Information System (INIS)

    Enikeev, R.I.; Zatsepin, G.T.; Korol'kova, E.V.; Kudryavtsev, V.A.; Mal'gin, A.S.; Ryazhskaya, O.G.; Khal'chugov, F.F.

    1988-01-01

    The experiment was carried out with 100-ton scintillation detector placed in the salt mine at the depth of 570 m.w.e. Detector measured the spectrum of energy release of electromagnetic cascades generated by muons underground. Electromagnetic and nuclear cascades were separated by the number of neutrons contained in the cascades. The measured spectrum of energy releases agrees with π- and K-meson spectrum with γ π,K =1.75±0.08 for muon energies at sea level E μ 0 > 0.7 TeV. The experimental data transformed to the vertical muon spectrum at sea level are in good agreement with the results of other works. The primary cosmic ray spectrum and the characteristics of pA-interactions up to energies of ∼ 100 TeV have not a changes which would lead to the increase of the γ π,K value higher than 1.85

  3. Polarized muon beams for muon collider

    Energy Technology Data Exchange (ETDEWEB)

    Skrinsky, A.N. [Rossijskaya Akademiya Nauk, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki

    1996-11-01

    An option for the production of intense and highly polarized muon beams, suitable for a high-luminosity muon collider, is described briefly. It is based on a multi-channel pion-collection system, narrow-band pion-to-muon decay channels, proper muon spin gymnastics, and ionization cooling to combine all of the muon beams into a single bunch of ultimately low emittance. (orig.).

  4. Simulation of neutron background for DINO experiment

    International Nuclear Information System (INIS)

    Meghna, K.K.; Bhattacharjee, Pijushpani; Bhattacharya, Satyaki

    2017-01-01

    Various cosmological observations such as rotation curve of galaxies, gravitational lensing etc. establish the existence of a non-luminous matter known as Dark Matter which constitutes about 27% of the matter content of the universe. Despite the evidence for the existence of dark matter, its constituents are still unknown. In underground laboratories, neutrons can be generated mainly by spontaneous fission of U and radiogenic processes, such as by U / Th (α;n) reactions on the rock materials and by cosmogenic processes, such as interaction of cosmic ray muons with rock and shielding materials. We have estimated the flux of both the cosmogenic and the radiogenic neutrons for Jaduguda laboratory facility

  5. Observation of neutrino-like interactions without muon or electron in the Gargamelle neutrino experiment

    CERN Document Server

    Hasert, F J; Krenz, W; Conta, C; Von Krogh, J; Lanske, D; Morfín, J G; Schultze, K; Weerts, H; Bertrand-Coremans, G H; Sacton, J; Van Doninck, W K; Vilain, P; Camerini, U; Cundy, Donald C; Baldi, R; Danilchenko, I A; Fry, W F; Haidt, Dieter; Natali, S; Musset, P; Osculati, B; Palmer, R; Pattison, John Bryan M; Perkins, Donald Hill; Pullia, Antonio; Rousset, A; Venus, W A; Wachsmuth, H W; Brisson, V; Degrange, B; Haguenauer, Maurice; Kluberg, L; Nguyen-Khac, U; Petiau, P; Belotti, E; Bonetti, S; Cavalli, D; Fiorini, Ettore; Rollier, M; Aubert, Bernard; Blum, D; Chounet, L M; Heusse, P; Lagarrigue, A; Lutz, A M; Orkin-Lecourtois, A; Vialle, J P; Bullock, F W; Esten, M J; Jones, T W; McKenzie, J; Michette, A G; Myatt, Gerald; Scott, W G

    1974-01-01

    Events induced by neutral particles and producing only hadrons, but no muon or electron, have been observed in the heavy liquid bubble chamber Gargamelle exposed to neutrino ( nu ) and antineutrino ( nu ) beams at CERN. A study of the various sources which could give rise to such events reveals that less than 20% could be attributed to neutrons or K/sub L/ degrees . The events behave as expected if they arise from neutral current processes induced by neutrinos and antineutrinos. The ratio of the number of these events to the number of corresponding events with charged lepton is 0.22+or-0.04 for nu and 0.43+or-0.12 for nu . (8 refs).

  6. On the Muon Decay Parameters

    CERN Document Server

    Chizhov, M V

    1996-01-01

    Predictions for the muon decay spectrum are usually derived from the derivative-free Hamiltonian. However, it is not the most general form of the possible interactions. Additional simple terms with derivatives can be introduced. In this work the distortion of the standard energy and angular distribution of the electrons in polarized muon decay caused by these terms is presented.

  7. Simulation studies of muon-produced background events deep underground and consequences for double beta decay experiments

    Science.gov (United States)

    Massarczyk, Ralph; Majorana Collaboration

    2015-10-01

    Cosmic radiation creates a significant background for low count rate experiments. The Majorana demonstrator experiment is located at the Sanford Underground Research Facility at a depth of 4850ft below the surface but it can still be penetrated by cosmic muons with initial energies above the TeV range. The interaction of muons with the rock, the shielding material in the lab and the detector itself can produce showers of secondary particles, like fast neutrons, which are able to travel through shielding material and can produce high-energy γ-rays via capture or inelastic scattering. The energy deposition of these γ rays in the detector can overlap with energy region of interest for the neutrino-less double beta decay. Recent studies for cosmic muons penetrating the Majorana demonstrator are made with the Geant4 code. The results of these simulations will be presented in this talk and an overview of the interaction of the shower particles with the detector, shielding and veto system will be given. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. Supported by U.S. Department of Energy through the LANL/LDRD Program.

  8. Using Muons to Image the Subsurface.

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, Nedra [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cashion, Avery Ted [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cieslewski, Grzegorz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dorsey, Daniel J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foris, Adam [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Timothy J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Su, Jiann-Cherng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dreesen, Wendi [NSTec, Livermore, CA (United States); Green, J. Andrew [NSTec, Livermore, CA (United States); Schwellenbach, David [NSTec, Livermore, CA (United States)

    2016-11-01

    Muons are subatomic particles that can penetrate the earth 's crust several kilometers and may be useful for subsurface characterization . The absorption rate of muons depends on the density of the materials through which they pass. Muons are more sensitive to density variation than other phenomena, including gravity, making them beneficial for subsurface investigation . Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale. This work consists of three parts to address the use of muons for subsurface characterization : 1) assess the use of muon scattering for estimating density differences of common rock types, 2 ) using muon flux to detect a void in rock, 3) measure muon direction by designing a new detector. Results from this project lay the groundwork for future directions in this field. Low-density objects can be detected by muons even when enclosed in high-density material like lead, and even small changes in density (e.g. changes due to fracturing of material) can be detected. Rock density has a linear relationship with muon scattering density per rock volume when this ratio is greater than 0.10 . Limitations on using muon scattering to assess density changes among common rock types have been identified. However, other analysis methods may show improved results for these relatively low density materials. Simulations show that muons can be used to image void space (e.g. tunnels) within rock but experimental results have been ambiguous. Improvements are suggested to improve imaging voids such as tunnels through rocks. Finally, a muon detector has been designed and tested to measure muon direction, which will improve signal-to-noise ratio and help address fundamental questions about the source of upgoing muons .

  9. Cosmogenic neutron production at Daya Bay

    Science.gov (United States)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Chan, Y. L.; Chang, J. F.; Chang, Y.; Chen, H. S.; Chen, S. M.; Chen, Y.; Chen, Y. X.; Cheng, J.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guo, L.; Guo, X. H.; Guo, Y. H.; Guo, Z.; Hackenburg, R. W.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Huang, H. X.; Huang, X. T.; Huang, Y. B.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jen, K. L.; Ji, X. L.; Ji, X. P.; Jiao, J. B.; Johnson, R. A.; Jones, D.; Kang, L.; Kettell, S. H.; Khan, A.; Koerner, L. W.; Kohn, S.; Kramer, M.; Kwok, M. W.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, J. C.; Liu, J. L.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Ma, X. B.; Ma, X. Y.; Ma, Y. Q.; Malyshkin, Y.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Qiu, R. M.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Steiner, H.; Sun, J. L.; Tang, W.; Taychenachev, D.; Treskov, K.; Tsang, K. V.; Tse, W.-H.; Tull, C. E.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. L.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Yang, Y. Z.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, C. C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, R.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Z. J.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, J.; Zhou, L.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration

    2018-03-01

    Neutrons produced by cosmic ray muons are an important background for underground experiments studying neutrino oscillations, neutrinoless double beta decay, dark matter, and other rare-event signals. A measurement of the neutron yield in the three different experimental halls of the Daya Bay Reactor Neutrino Experiment at varying depth is reported. The neutron yield in Daya Bay's liquid scintillator is measured to be Yn=(10.26 ±0.86 )×10-5 , (10.22 ±0.87 )×10-5 , and (17.03 ±1.22 )×10-5 μ-1 g-1 cm2 at depths of 250, 265, and 860 meters-water-equivalent. These results are compared to other measurements and the simulated neutron yield in Fluka and Geant4. A global fit including the Daya Bay measurements yields a power law coefficient of 0.77 ±0.03 for the dependence of the neutron yield on muon energy.

  10. Dipole-dipole dispersion interactions between neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Babb, James F. [Harvard-Smithsonian Center for Astrophysics, ITAMP, Cambridge, MA (United States); Higa, Renato [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo (Brazil); Hussein, Mahir S. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo (Brazil); Universidade de Sao Paulo, Instituto de Estudos Avancados, Sao Paulo (Brazil); Departamento de Fisica, Instituto Tecnologico de Aeronautica, CTA, Sao Jose dos Campos (Brazil)

    2017-06-15

    We investigate the long-range interactions between two neutrons utilizing recent data on the neutron static and dynamic electric and magnetic dipole polarizabilities. The resulting long-range potentials are used to make quantitative comparisons between the collisions of a neutron with a neutron and a neutron with a proton. We also assess the importance of the first pion production threshold and first excited state of the nucleon, the Δ-resonance (J{sup π} = +3/2, I = 3/2). We found both dynamical effects to be quite relevant for distances r between ∝ 50 fm up to ∝ 10{sup 3} fm in the nn system, the neutron-wall system and in the wall-neutron-wall system, reaching the expected asymptotic limit beyond that. Relevance of our findings to the confinement of ultra cold neutrons inside bottles is discussed. (orig.)

  11. Experimentally guided Monte Carlo calculations of the atmospheric muon flux for interdisciplinary applications

    International Nuclear Information System (INIS)

    Mitrica, B.; Brancus, I.M.; Toma, G.; Bercuci, A.; Aiftimiei, C.; Wentz, J.; Rebel, H.

    2004-01-01

    Atmospheric muons are produced in the interactions of primary cosmic rays particle with Earth's atmosphere, mainly by the decay of pions and kaons generated in hadronic interactions. They decay further in electrons and positrons and electron and muon neutrinos. Being the penetrating cosmic rays component, the muons manage to pass entirely through the atmosphere and can pass even larger absorbers before they interact with the material at the Earth's surface, and due to cosmogenic production of isotopes by atmospheric muons, information of astrophysical, environmental and material research interest can be obtained. Up to now, mainly semi-analytical approximations have been used to calculate the muon flux for estimating the cosmogenic isotope production, necessary for different applications. Our estimation of the atmospheric muon flux is based on a Monte-Carlo simulation program CORSIKA, in which we simulate the development in the atmosphere of the extensive air showers, using different models for the description of the hadronic interaction. Atmospheric muons are produced in the interactions of primary cosmic rays particle with Earth's atmosphere, mainly by the decay of pions and kaons generated in hadronic interactions. They decay further in electrons and positrons and electron and muon neutrinos. Being the penetrating cosmic rays component, the muons manage to pass entirely through the atmosphere and can pass even larger absorbers before they interact with the material at the Earth's surface, and due to cosmogenic production of isotopes by atmospheric muons, information of astrophysical, environmental and material research interest can be obtained. Up to now, mainly semi-analytical approximations have been used to calculate the muon flux for estimating the cosmogenic isotope production, necessary for different applications. Our estimation of the atmospheric muon flux is based on a Monte-Carlo simulation program CORSIKA, in which we simulates the development in the

  12. Interaction of neutrons with nanoparticles

    International Nuclear Information System (INIS)

    Nesvizhevsky, V.V.

    2002-01-01

    Two hypotheses concerning the interaction of neutrons with nanoparticles and having applications in the physics of ultracold neutrons (UCN) are considered. In 1997, it was found that, upon reflection from the sample surface or spectrometer walls, UCN change their energy by about 10 -7 eV with a probability of 10 -7 -10 -5 per collision. The nature of this phenomenon is not clear at present. Probably, it is due to the inelastic coherent scattering of UCN on nanoparticles or nanostructures weakly attached at the surface, in a state of Brownian thermal motion. An analysis of experimental data on the basis of this model allows one to estimate the mass of such nanoparticles and nanostructures at 10 7 a.u. The proposed hypothesis indicates a method for studying the dynamics of nanoparticles and nanostructures and, accordingly, their interactions with the surface or with one another, this method being selective in their sizes. In all experiments with UCN, the trap-wall temperature was much higher than a temperature of about 1 mK, which corresponds to the UCN energy. Therefore, UCN increased their energy. The surface density of weakly attached nanoparticles was low. If, however, the nanoparticle temperature is lower than the neutron temperature and if the nanoparticle density is high, the problem of interaction of neutrons with nanoparticles is inverted. In this case, the neutrons of initial velocity below 10 2 m/s can cool down, under certain conditions, owing to their scattering on ultracold heavy-water, deuterium, and oxygen nanoparticles to their temperature of about 1 mK, with the result that the UCN density increases by many orders of magnitude

  13. Muon problem in UHECR investigations

    International Nuclear Information System (INIS)

    Petrukhin, A A; Bogdanov, A G; Kokoulin, R P

    2013-01-01

    In many UHECR experiments, some excess of muons is observed, which cannot be explained in frame of the existing theoretical models of hadron interaction. Attempts of its explanation through a heavy mass composition of PCR contradict the results of X max measurements. Really, the excess of muons appears already at lower energies (10 16 − 10 17 eV), but in this domain it may be explained by the trend to a heavier mass composition, which is in a qualitative agreement with the galactic model of CR origin. The absence of heavy nuclei at energies of the order of 10 18 eV requires to consider other possibilities of the appearance of muon excess, including changes of hadron interaction model. The actuality of the considered problem is connected with plans of future experiments in UHECR physics, in which the necessity of its solution must be taken into account.

  14. Proceedings of the workshop on fundamental muon physics: atoms, nuclei, and particles

    International Nuclear Information System (INIS)

    Hoffman, C.M.; Hughes, V.W.; Leon, M.

    1986-05-01

    This report contains the proceedings of a workshop held at Los Alamos, January 20-22, 1986, to discuss present and future experiments with muons in particle, nuclear, and atomic physics. Special attention was paid to new developments in muon beams and detection devices. The workshop sessions were Muon Decay, Muon Capture, QED and Electroweak Interactions, Laser Spectroscopy of Muonic Atoms, High-Energy Muon-Nucleon and Muon-Nucleus Scattering, Muon Beams - New Developments, and Muon Catalysis

  15. Limits on Self-Interacting Dark Matter from Neutron Stars

    DEFF Research Database (Denmark)

    Kouvaris, C.

    2012-01-01

    We impose new severe constraints on the self-interactions of fermionic asymmetric dark matter based on observations of nearby old neutron stars. Weakly interacting massive particle (WIMP) self-interactions mediated by Yukawa-type interactions can lower significantly the number of WIMPs necessary...... for gravitational collapse of the WIMP population accumulated in a neutron star. Even nearby neutron stars located at regions of low dark matter density can accrete a sufficient number of WIMPs that can potentially collapse, form a mini black hole, and destroy the host star. Based on this, we derive constraints...

  16. Muon muon collider: Feasibility study

    International Nuclear Information System (INIS)

    1996-01-01

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10 35 cm -2 s -1 . The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design

  17. Constraints on a parity-even/time-reversal-odd interaction

    International Nuclear Information System (INIS)

    Oers, Willem T.H. van

    2000-01-01

    Time-Reversal-Invariance non-conservation has for the first time been unequivocally demonstrated in a direct measurement, one of the results of the CPLEAR experiment. What is the situation then with regard to time-reversal-invariance non-conservation in systems other than the neutral kaon system? Two classes of tests of time-reversal-invariance need to be distinguished: the first one deals with parity violating (P-odd)/time-reversal-invariance non-conserving (T-odd) interactions, while the second one deals with P-even/T-odd interactions (assuming CPT conservation this implies C-conjugation non-conservation). Limits on a P-odd/T-odd interaction follow from measurements of the electric dipole moment of the neutron. This in turn provides a limit on a P-odd/T-odd pion-nucleon coupling constant which is 10 -4 times the weak interaction strength. Limits on a P-even/T-odd interaction are much less stringent. The better constraint stems also from the measurement of the electric dipole moment of the neutron. Of all the other tests, measurements of charge-symmetry breaking in neutron-proton elastic scattering provide the next better constraint. The latter experiments were performed at TRIUMF (at 477 and 347 MeV) and at IUCF (at 183 MeV). Weak decay experiments (the transverse polarization of the muon in K + →π 0 μ + ν μ and the transverse polarization of the positrons in polarized muon decay) have the potential to provide comparable or possibly better constraints

  18. Interaction of cosmic ray muons with spent nuclear fuel dry casks and determination of lower detection limit

    Energy Technology Data Exchange (ETDEWEB)

    Chatzidakis, S., E-mail: schatzid@purdue.edu; Choi, C.K.; Tsoukalas, L.H.

    2016-08-21

    The potential non-proliferation monitoring of spent nuclear fuel sealed in dry casks interacting continuously with the naturally generated cosmic ray muons is investigated. Treatments on the muon RMS scattering angle by Moliere, Rossi-Greisen, Highland and, Lynch-Dahl were analyzed and compared with simplified Monte Carlo simulations. The Lynch-Dahl expression has the lowest error and appears to be appropriate when performing conceptual calculations for high-Z, thick targets such as dry casks. The GEANT4 Monte Carlo code was used to simulate dry casks with various fuel loadings and scattering variance estimates for each case were obtained. The scattering variance estimation was shown to be unbiased and using Chebyshev's inequality, it was found that 10{sup 6} muons will provide estimates of the scattering variances that are within 1% of the true value at a 99% confidence level. These estimates were used as reference values to calculate scattering distributions and evaluate the asymptotic behavior for small variations on fuel loading. It is shown that the scattering distributions between a fully loaded dry cask and one with a fuel assembly missing initially overlap significantly but their distance eventually increases with increasing number of muons. One missing fuel assembly can be distinguished from a fully loaded cask with a small overlapping between the distributions which is the case of 100,000 muons. This indicates that the removal of a standard fuel assembly can be identified using muons providing that enough muons are collected. A Bayesian algorithm was developed to classify dry casks and provide a decision rule that minimizes the risk of making an incorrect decision. The algorithm performance was evaluated and the lower detection limit was determined.

  19. Dependence of Xmax and multiplicity of electron and muon on different high energy interaction models

    Directory of Open Access Journals (Sweden)

    G Rastegarzadeh

    2010-06-01

    Full Text Available Different high energy interaction models are the applied in CORSIKA code to simulate Extensive Air Showers (EAS generated by Cosmic Rays (CR. In this work the effects of QGSJET01, QGSJETII, DPMJET, SIBYLL models on Xmax and multiplicity of secondary electrons and muons at observation level are studied.

  20. An improved muon reconstruction algorithm for INO-ICAL experiment

    International Nuclear Information System (INIS)

    Bhattacharya, Kolahal; MandaI, Naba K.

    2013-01-01

    The charge current interaction of neutrino in INO-ICAL detector will be identified with a muon (μ ± ) in the detector whose kinematics is related with the kinematics of the neutrino. So, muon reconstruction is a very important step in achieving INO physics goals. The existing muon reconstruction package for INO-ICAL has poor performance in specific regimes of experimental interest: (a) for larger zenith angle (θ > 50°), (b) for lower energies (E < 1 GeV); mainly due to poor error propagation scheme insensitive to energy E, angle (θ, φ) and inhomogeneous magnetic field along the muon track. Since, a significant fraction of muons from atmospheric neutrino interactions will have initial energy < 1 GeV and almost uniform distribution in cosθ a robust package for muon reconstruction is essential. We have implemented higher order correction terms in the propagation of the state and error covariance matrices of the Kalman Iter. The algorithm ensures track element merging in most cases and also increases reconstruction efficiency. The performance of this package will be presented in comparison with the previous one. (author)

  1. Investigation into the feasibility of a soft muon experiment

    International Nuclear Information System (INIS)

    Tincknell, M.L.

    1990-06-01

    Issues relevant in a soft ( -4 ). Absorber penetration is the only means available to identify high energy muons among a large number of hadrons. Three important sources of background are sail-through hadrons that fail to interact in the absorber, the decays of pions and kaons to muons in the absorber, and leakage of hadronic shower products through the absorber. An absorber thick enough to limit the ratio of combinatorical background pairs to pions to ο (10 -4 ) imposes a significant muon kinetic energy threshold due to muon range in the absorber. Absorbers with low atomic number Z are preferred to keep this threshold low, and to avoid loss of invariant mass resolution due to energy loss straggling and multiple coulomb scattering. Long-lived meson to muon decays can be directly suppressed only by picking an absorber with short interaction length, which implies a high density, high Z material. With sufficiently high statistics, a subtraction of the spectra of like-sign pairs from the spectrum of opposite-sign pairs should recover the direct muon pair spectrum. 9 refs., 9 figs., 2 tabs

  2. Investigation into the feasibility of a soft muon experiment

    International Nuclear Information System (INIS)

    Tincknell, M.L.

    1990-01-01

    Issues relevant in a soft ( -4 ). Absorber penetration is the only means available to identify high energy muons among a large number of hadrons. Three important sources of background are sail-through hadrons that fail to interact in the absorber, the decays of pions and kaons to muons in the absorber, and leakage of hadronic shower products through the absorber. An absorber thick enough to limit the ratio of combinatorial background pairs to pions to Ο(10 -4 ) imposes a significant muon kinetic energy threshold due to muon range in the absorber. Absorbers with low atomic number Z are preferred to keep this threshold low, and to avoid loss of invariant mass resolution due to energy loss straggling and multiple coulomb scattering. Long-lived meson to muon decays can be directly suppressed only by picking an absorber with short interaction length, which implies a high density, high Z material. With sufficiently high statistics, a subtraction of the spectra of like-sign pairs from the spectrum of opposite-sign pairs should recover the direct muon pair spectrum

  3. Exploring the dynamics about the glass transition by muon spin relaxation and muon spin rotation

    International Nuclear Information System (INIS)

    Bermejo, F J; Bustinduy, I; Cox, S F J; Lord, J S; Cabrillo, C; Gonzalez, M A

    2006-01-01

    The capability of muon spin rotation and muon spin relaxation to explore dynamics in the vicinity of the glass transition is illustrated by results pertaining to three materials exhibiting two different glass-forming abilities. Measurements under transverse magnetic fields enable us to monitor the dynamics of muonium-labelled closed-shell molecules within the microsecond range. The results display the onset of stochastic molecular motions taking place upon crossing from below the glass-transition temperature. In turn, the molecular dynamics of radicals formed by addition of atomic muonium to unsaturated organic molecules can also be explored up to far shorter times by means of relaxation measurements under longitudinal fields. The technique is then shown to be capable of singling out stochastic reorientational motions from others, which usually are strongly coupled to them and usually dominate the material response when measured using higher-frequency probes such as neutron and light scattering

  4. Muon Telescope (MuTe): A first study using Geant4

    Science.gov (United States)

    Asorey, H.; Balaguera-Rojas, A.; Calderon-Ardila, R.; Núñez, L. A.; Sanabria-Gómez, J. D.; Súarez-Durán, M.; Tapia, A.

    2017-07-01

    Muon tomography is based on recording the difference of absorption of muons by matter, as ordinary radiography does for using X-rays. The interaction of cosmic rays with the atmosphere produces extensive air showers which provides an abundant source for atmospheric muons, benefiting various applications of muon tomography, particularly the study of the inner structure of volcanoes. The MuTe (for Muon Telescope) is a hybrid detector composed of scintillation bars and a water Cherenkov detector designed to measure cosmic muon flux crossing volcanic edifices. This detector consists of two scintillator plates (1.44 m2 with 30 x 30 pixels), with a maximum distance of 2.0m of separation. In this work we report the first simulation of the MuTe using GEANT4 -set of simulation tools, based in C++ - that provides information about the interaction between radiation and matter. This computational tool allows us to know the energy deposited by the muons and modeling the response of the scintillators and the water cherenkov detector to the passage of radiation which is crucial to compare to our data analysis.

  5. Muon muon collider: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-18

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup {minus}2} s{sup {minus}1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design.

  6. Final muon cooling for a muon collider

    Science.gov (United States)

    Acosta Castillo, John Gabriel

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 mus and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough beta* region to cool the beam to the required limit with available low Z absorbers.

  7. Magnets for Muon 6D Cooling Channels

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc.; Flanagan, Gene [Muons, Inc.

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  8. a Search for Nucleon Decay with Multiple Muon Decays

    Science.gov (United States)

    Phillips, Thomas James

    A search was made for nucleon decays which result in multiple delayed muon decays using the HPW (Harvard -Purdue-Wisconsin) water Cerenkov detector. The HPW detector consists of 680 metric tons of purified water instrumented with 704 five-inch photomultiplier tubes. The phototubes are situated on a volume array with a lattice spacing of approximately one meter, and the inside walls of the detector are lined with mirrors. This combination of mirrors and a volume array of phototubes gives the HPW detector a low trigger energy threshold and a high muon decay detection efficiency. The detector is surrounded by wire chambers to provide an active shield, and is located at a depth of 1500 meters-of-water-equivalent in the Silver King Mine in Park City, Utah. The entire HPW data set, consisting of 17.2 million events collec- ted during 282 live days between May 1983 and October 1984, was analyzed. No contained events with multiple muon decays were found in a 180 ton fiducial volume. This is consistent with the background rate from neutrino interactions, which is expected to be 0.7 (+OR-) 0.2 events. The calculated lower lifetime limit for the decay mode p (--->) (mu)('+)(mu)('+)(mu)('-) is: (tau)/B.R. = 1 x 10('31) years (90% C.L.). Limits are calculated for ten other proton decay modes and five bound neutron decay modes, most of which are around 4 x 10('30) years (90% C.L.). No previous studies have reported results from direct searches for eight of these modes.

  9. Muon sources

    International Nuclear Information System (INIS)

    Parsa, Z.

    2001-01-01

    A full high energy muon collider may take considerable time to realize. However, intermediate steps in its direction are possible and could help facilitate the process. Employing an intense muon source to carry out forefront low energy research, such as the search for muon-number non-conservation, represents one interesting possibility. For example, the MECO proposal at BNL aims for 2 x 10 -17 sensitivity in their search for coherent muon-electron conversion in the field of a nucleus. To reach that goal requires the production, capture and stopping of muons at an unprecedented 10 11 μ/sec. If successful, such an effort would significantly advance the state of muon technology. More ambitious ideas for utilizing high intensity muon sources are also being explored. Building a muon storage ring for the purpose of providing intense high energy neutrino beams is particularly exciting.We present an overview of muon sources and example of a muon storage ring based Neutrino Factory at BNL with various detector location possibilities

  10. Muons reveal the interior of volcanoes

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    The MU-RAY project has the very challenging aim of providing a “muon X-ray” of the Vesuvius volcano (Italy) using a detector that records the muons hitting it after traversing the rock structures of the volcano. This technique was used for the first time in 1971 by the Nobel Prize-winner Louis Alvarez, who was searching for unknown burial chambers in the Chephren pyramid.   The location of the muon detector on the slopes of the Vesuvius volcano. Like X-ray scans of the human body, muon radiography allows researchers to obtain an image of the internal structures of the upper levels of volcanoes. Although such an image cannot help to predict ‘when’ an eruption might occur, it can, if combined with other observations, help to foresee ‘how’ it could develop and serves as a powerful tool for the study of geological structures. Muons come from the interaction of cosmic rays with the Earth's atmosphere. They are able to traverse layers of ro...

  11. Global analysis of muon decay measurements

    International Nuclear Information System (INIS)

    Gagliardi, C.A.; Tribble, R.E.; Williams, N.J.

    2005-01-01

    We have performed a global analysis of muon decay measurements to establish model-independent limits on the space-time structure of the muon decay matrix element. We find limits on the scalar, vector, and tensor coupling of right- and left-handed muons to right- and left-handed electrons. The limits on those terms that involve the decay of right-handed muons to left-handed electrons are more restrictive than in previous global analyses, while the limits on the other nonstandard model interactions are comparable. The value of the Michel parameter η found in the global analysis is -0.0036±0.0069, slightly more precise than the value found in a more restrictive analysis of a recent measurement. This has implications for the Fermi coupling constant G F

  12. Local spin structure of the α -RuCl3 honeycomb-lattice magnet observed via muon spin rotation/relaxation

    Science.gov (United States)

    Yamauchi, Ichihiro; Hiraishi, Masatoshi; Okabe, Hirotaka; Takeshita, Soshi; Koda, Akihiro; Kojima, Kenji M.; Kadono, Ryosuke; Tanaka, Hidekazu

    2018-04-01

    We report a muon spin rotation/relaxation (μ SR ) study of single-crystalline samples of the α -RuCl3 honeycomb magnet, which is presumed to be a model compound for the Kitaev-Heisenberg interaction. It is inferred from magnetic susceptibility and specific-heat measurements that the present samples exhibit successive magnetic transitions at different critical temperatures TN with decreasing temperature, eventually falling into the TN=7 K antiferromagnetic (7 K) phase that has been observed in only single-crystalline specimens with the least stacking fault. Via μ SR measurements conducted under a zero external field, we show that such behavior originates from a phase separation induced by the honeycomb plane stacking fault, yielding multiple domains with different TN's. We also perform μ SR measurements under a transverse field in the paramagnetic phase to identify the muon site from the muon-Ru hyperfine parameters. Based on a comparison of the experimental and calculated internal fields at the muon site for the two possible spin structures inferred from neutron diffraction data, we suggest a modulated zigzag spin structure for the 7 K phase, with the amplitude of the ordered magnetic moment being significantly reduced from that expected for the orbital quenched spin-1/2 state.

  13. Muon SR Newsletter, No. 29, April 5, 1984

    International Nuclear Information System (INIS)

    Crowe, K.M.; Portis, A.M.; Yamazaki, T.

    1984-01-01

    Muon SR stands for Muon Spin Relaxation, Rotation, Resonance, Research, or what have you. The intention of the mnemonic acronym is to draw attention to the analogy with NMR and ESR, the range of whose applications is well known. Any study of the interactions of the muon spin by virtue of the asymmetric decay is considered μSR, but this definition is not intended to exclude any peripherally related phenomena, especially if relevant to the use of the muon's mganetic moment as a delicate probe of matter. Abstracts of individual items from this issue were prepared separately for the data base

  14. The 〈 ln A 〉 study with the Muon tracking detector in the KASCADE-Grande experiment – comparison of hadronic interaction models

    Directory of Open Access Journals (Sweden)

    Łuczak P.

    2015-01-01

    Full Text Available With the KASCADE-Grande Muon Tracking Detector it was possible to measure with high accuracy directions of EAS muons with energy above 0.8 GeV and up to 700 m distance from the shower centre. Reconstructed muon tracks allow investigation of muon pseudorapidity (η distributions. These distributions are nearly identical to the pseudorapidity distributions of their parent mesons produced in hadronic interactions. Comparison of the η distributions from measured and simulated showers can be used to test the quality of the high energy hadronic interaction models. The pseudorapidity distributions reflect the longitudinal development of EAS and, as such, are sensitive to the mass of the cosmic ray primary particles. With various parameters of the η distribution, obtained from the Muon Tracking Detector data, it is possible to calculate the average logarithm of mass of the primary cosmic ray particles. The results of the 〈 ln A 〉 analysis in the primary energy range 1016 eV–1017 eV with the 1st quartile and the mean value of the distributions will be presented for the QGSJet-II-2, QGSJet-II-4, EPOS 1.99 and EPOS LHC models in combination with the FLUKA model.

  15. Imaging the Subsurface with Upgoing Muons

    Science.gov (United States)

    Bonal, N.; Preston, L. A.; Schwellenbach, D.; Dreesen, W.; Green, A.

    2014-12-01

    We assess the feasibility of imaging the subsurface using upgoing muons. Traditional muon imaging focuses on more-prevalent downgoing muons. Muons are subatomic particles capable of penetrating the earth's crust several kilometers. Downgoing muons have been used to image the Pyramid of Khafre of Giza, various volcanoes, and smaller targets like cargo. Unfortunately, utilizing downgoing muons requires below-target detectors. For aboveground objects like a volcano, the detector is placed at the volcano's base and the top portion of the volcano is imaged. For underground targets like tunnels, the detector would have to be placed below the tunnel in a deeper tunnel or adjacent borehole, which can be costly and impractical for some locations. Additionally, detecting and characterizing subsurface features like voids from tunnels can be difficult. Typical characterization methods like sonar, seismic, and ground penetrating radar have shown mixed success. Voids have a marked density contrast with surrounding materials, so using methods sensitive to density variations would be ideal. High-energy cosmic ray muons are more sensitive to density variation than other phenomena, including gravity. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and detector, much like a CAT scan. Currently, tomography using downgoing muons can resolve features to the sub-meter scale. We present results of exploratory work, which demonstrates that upgoing muon fluxes appear sufficient to achieve target detection within a few months. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Precise muon drift tube detectors for high background rate conditions

    CERN Document Server

    Engl, Albert; Dünnweber, Wolfgang

    The muon spectrometer of the ATLAS-experiment at the Large H adron Collider consists of drift tube chambers, which provide the precise m easurement of trajec- tories of traversing muons. In order to determine the moment um of the muons with high precision, the measurement of the position of the m uon in a single tube has to be more accurate than σ ≤ 100 m. The large cross section of proton-proton-collisions and th e high luminosity of the accelerator cause relevant background of neutrons and γ s in the muon spectrome- ter. During the next decade a luminosity upgrade [1] to 5 10 34 cm − 2 s − 1 is planned, which will increase the background counting rates consider ably. In this context this work deals with the further development of the existing drift chamber tech- nology to provide the required accuracy of the position meas urement under high background conditions. Two approaches of improving the dri ft tube chambers are described: • In regions of moderate background rates a faster and more lin ear ...

  17. Measurement of the atmospheric muon charge ratio with the OPERA detector

    OpenAIRE

    Mauri, Nicoletta

    2011-01-01

    The atmospheric muon charge ratio, defined as the number of positive over negative charged muons, is an interesting quantity for the study of high energy hadronic interactions in atmosphere and the nature of the primary cosmic rays. The measurement of the charge ratio in the TeV muon energy range allows to study the hadronic interactions in kinematic regions not yet explored at accelerators. The OPERA experiment is a hybrid electronic detector/emulsion apparatus, located in the undergroun...

  18. Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND

    Energy Technology Data Exchange (ETDEWEB)

    KamLAND Collaboration; Abe, S.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.; Yonezawa, E.; Yoshida, S.; Kozlov, A.; Murayama, H.; Busenitz, J.; Classen, T.; Grant, C.; Keefer, G.; Leonard, D. S.; McKee, D.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Gray, F.; Guardincerri, E.; Hsu, L.; Ichimura, K.; Kadel, R.; Lendvai, C.; Luk, K.-B.; O' Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; Jillings, C.; Mauger, C.; McKeown, R. D.; Vogel, P.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Piquemal, F.; Ricol, J.-S.; Decowski, M. P.

    2009-06-30

    Radioactive isotopes produced through cosmic muon spallation are a background for rare event detection in {nu} detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillator, and for checking estimates from current simulations based upon MUSIC, FLUKA, and Geant4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be (2.8 {+-} 0.3) x 10{sup -4} n/({mu} {center_dot} (g/cm{sup 2})). For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  19. Reconstruction of cosmic and beam-halo muons with the CMS detector

    CERN Document Server

    Liu, Chang; Amapane, Nicola; Fernandez Bedoya, Cristina; Bellan, Riccardo; Biallass, Philipp; Bolognesi, Sara; Cerminara, Gianluca; Fouz Iglesias, Mary-Cruz; Giunta, Marina; Guiducci, Luigi; Hoepfner, Kerstin; Lacaprara, Stefano; Masetti, Gianni; Meneguzzo, Anna; Paolucci, Pierluigi; Puerta Pelayo, Jesus; Travaglini, Riccardo; Zanetti, Marco; Villanueva, Carlos

    2008-01-01

    The powerful muon and tracker systems of the CMS detector together with dedicated reconstruction software allow precise and efficient measurement of muon tracks originating from proton-proton collisions. The standard muon reconstruction algorithms, however, are inadequate to deal with muons that do not originate from collisions. This note discusses the design, implementation, and performance results of a dedicated cosmic muon track reconstruction algorithm, which features pattern recognition optimized for muons that are not coming from the interaction point, i.e., cosmic muons and beam-halo muons. To evaluate the performance of the new algorithm, data taken during Cosmic Challenge phases I and II were studied and compared with simulated cosmic data. In addition, a variety of more general topologies of cosmic muons and beam-halo muons were studied using simulated data to demonstrate some key features of the new algorithm.

  20. Temperature Effect in Secondary Cosmic Rays (MUONS) Observed at the Ground: Analysis of the Global MUON Detector Network Data

    Science.gov (United States)

    de Mendonça, R. R. S.; Braga, C. R.; Echer, E.; Dal Lago, A.; Munakata, K.; Kuwabara, T.; Kozai, M.; Kato, C.; Rockenbach, M.; Schuch, N. J.; Jassar, H. K. Al; Sharma, M. M.; Tokumaru, M.; Duldig, M. L.; Humble, J. E.; Evenson, P.; Sabbah, I.

    2016-10-01

    The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticed that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.

  1. The first muon spin rotation experiment

    CERN Document Server

    Garwin, Richard L

    2003-01-01

    The February 15, 1957 issue of Physical Review Letters shows the first muon precession curve resulting from the stopping of `85 MeV' muons in graphite, and the resulting counting rate in a gate of fixed delay, duration, and orientation, as a function of an applied vertical magnetic field. The purpose of the four-day experiment was to test the conservation of parity in the weak interactions. It involved the sudden recognition that existing muon beams would be polarized if parity were not conserved, together with the appreciation that the angular distribution of decay electrons from the population of stopped muons could be observed (much more reliably and sensitively) by the variation with time or current of the detections in a fixed counter telescope than by the measurement of the decay asymmetry of nominally fixed muon spins. This retrospective paper explains the context, the state of the art at the time, and what we expected as a consequence of this experiment. We went on to study more accurately the magneti...

  2. Constraints on CP violating four-fermion interactions

    International Nuclear Information System (INIS)

    He, X.G.; McKellar, B.

    1996-04-01

    It has been shown that CP violating electron-nucleon and nucleon-nucleon interactions can induce atomic electric dipole moments and are therefore constrained from experimental data. We show that using the experimental upper bounds on neutron and electron electric dipole moments, one can also obtain constraints, in some cases better ones, on these interactions. In addition stringent constraints can also be obtained for muon-quark and tauon-quark four-fermion CP violating interactions, which cannot be constrained from atomic electric dipole moment experiments. 12 refs., 2 tabs., 1 fig

  3. PHENIX Muon Arms

    International Nuclear Information System (INIS)

    Akikawa, H.; Al-Jamel, A.; Archuleta, J.B.; Archuleta, J.R.; Armendariz, R.; Armijo, V.; Awes, T.C.; Baldisseri, A.; Barker, A.B.; Barnes, P.D.; Bassalleck, B.; Batsouli, S.; Behrendt, J.; Bellaiche, F.G.; Bland, A.W.; Bobrek, M.; Boissevain, J.G.; Borel, H.; Brooks, M.L.; Brown, A.W.; Brown, D.S.; Bruner, N.; Cafferty, M.M.; Carey, T.A.; Chai, J.-S.; Chavez, L.L.; Chollet, S.; Choudhury, R.K.; Chung, M.S.; Cianciolo, V.; Clark, D.J.; Cobigo, Y.; Dabrowski, C.M.; Debraine, A.; DeMoss, J.; Dinesh, B.V.; Drachenberg, J.L.; Drapier, O.; Echave, M.A.; Efremenko, Y.V.; En'yo, H.; Fields, D.E.; Fleuret, F.; Fried, J.; Fujisawa, E.; Funahashi, H.; Gadrat, S.; Gastaldi, F.; Gee, T.F.; Glenn, A.; Gogiberidze, G.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Hance, R.H.; Hart, G.W.; Hayashi, N.; Held, S.; Hicks, J.S.; Hill, J.C.; Hoade, R.; Hong, B.; Hoover, A.; Horaguchi, T.; Hunter, C.T.; Hurst, D.E.; Ichihara, T.; Imai, K.; Isenhower, L.D.L. Davis; Isenhower, L.D.L. Donald; Ishihara, M.; Jang, W.Y.; Johnson, J.; Jouan, D.; Kamihara, N.; Kamyshkov, Y.; Kang, J.H.; Kapoor, S.S.; Kim, D.J.; Kim, D.-W.; Kim, G.-B.; Kinnison, W.W.; Klinksiek, S.; Kluberg, L.; Kobayashi, H.; Koehler, D.; Kotchenda, L.; Kuberg, C.H.; Kurita, K.; Kweon, M.J.; Kwon, Y.; Kyle, G.S.; LaBounty, J.J.; Lajoie, J.G.; Lee, D.M.; Lee, S.; Leitch, M.J.; Li, Z.; Liu, M.X.; Liu, X.; Liu, Y.; Lockner, E.; Lopez, J.D.; Mao, Y.; Martinez, X.B.; McCain, M.C.; McGaughey, P.L.; Mioduszewski, S.; Mischke, R.E.; Mohanty, A.K.; Montoya, B.C.; Moss, J.M.; Murata, J.; Murray, M.M.; Nagle, J.L.; Nakada, Y.; Newby, J.; Obenshain, F.; Palounek, A.P.T.; Papavassiliou, V.; Pate, S.F.; Plasil, F.; Pope, K.; Qualls, J.M.; Rao, G.; Read, K.F.; Robinson, S.H.; Roche, G.; Romana, A.; Rosnet, P.; Roth, R.; Saito, N.; Sakuma, T.; Sandhoff, W.F.; Sanfratello, L.; Sato, H.D.; Savino, R.; Sekimoto, M.; Shaw, M.R.; Shibata, T.-A.; Sim, K.S.; Skank, H.D.; Smith, D.E.; Smith, G.D.; Sondheim, W.E.; Sorensen, S.; Staley, F.; Stankus, P.W.; Steffens, S.; Stein, E.M.; Stepanov, M.; Stokes, W.; Sugioka, M.; Sun, Z.; Taketani, A.; Taniguchi, E.; Tepe, J.D.; Thornton, G.W.; Tian, W.; Tojo, J.; Torii, H.; Towell, R.S.; Tradeski, J.; Vassent, M.; Velissaris, C.; Villatte, L.; Wan, Y.; Watanabe, Y.; Watkins, L.C.; Whitus, B.R.; Williams, C.; Willis, P.S.; Wong-Swanson, B.G.; Yang, Y.; Yoneyama, S.; Young, G.R.; Zhou, S.

    2003-01-01

    The PHENIX Muon Arms detect muons at rapidities of |y|=(1.2-2.4) with full azimuthal acceptance. Each muon arm must track and identify muons and provide good rejection of pions and kaons (∼10 -3 ). In order to accomplish this we employ a radial field magnetic spectrometer with precision tracking (Muon Tracker) followed by a stack of absorber/low resolution tracking layers (Muon Identifier). The design, construction, testing and expected run parameters of both the muon tracker and the muon identifier are described

  4. PHENIX Muon Arms

    Energy Technology Data Exchange (ETDEWEB)

    Akikawa, H.; Al-Jamel, A.; Archuleta, J.B.; Archuleta, J.R.; Armendariz, R.; Armijo, V.; Awes, T.C.; Baldisseri, A.; Barker, A.B.; Barnes, P.D.; Bassalleck, B.; Batsouli, S.; Behrendt, J.; Bellaiche, F.G.; Bland, A.W.; Bobrek, M.; Boissevain, J.G.; Borel, H.; Brooks, M.L.; Brown, A.W.; Brown, D.S.; Bruner, N.; Cafferty, M.M.; Carey, T.A.; Chai, J.-S.; Chavez, L.L.; Chollet, S.; Choudhury, R.K.; Chung, M.S.; Cianciolo, V.; Clark, D.J.; Cobigo, Y.; Dabrowski, C.M.; Debraine, A.; DeMoss, J.; Dinesh, B.V.; Drachenberg, J.L.; Drapier, O.; Echave, M.A.; Efremenko, Y.V.; En' yo, H.; Fields, D.E.; Fleuret, F.; Fried, J.; Fujisawa, E.; Funahashi, H.; Gadrat, S.; Gastaldi, F.; Gee, T.F.; Glenn, A.; Gogiberidze, G.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Hance, R.H.; Hart, G.W.; Hayashi, N.; Held, S.; Hicks, J.S.; Hill, J.C.; Hoade, R.; Hong, B.; Hoover, A.; Horaguchi, T.; Hunter, C.T.; Hurst, D.E.; Ichihara, T.; Imai, K.; Isenhower, L.D.L. Davis; Isenhower, L.D.L. Donald; Ishihara, M.; Jang, W.Y.; Johnson, J.; Jouan, D.; Kamihara, N.; Kamyshkov, Y.; Kang, J.H.; Kapoor, S.S.; Kim, D.J.; Kim, D.-W.; Kim, G.-B.; Kinnison, W.W.; Klinksiek, S.; Kluberg, L.; Kobayashi, H.; Koehler, D.; Kotchenda, L.; Kuberg, C.H.; Kurita, K.; Kweon, M.J.; Kwon, Y.; Kyle, G.S.; LaBounty, J.J.; Lajoie, J.G.; Lee, D.M.; Lee, S.; Leitch, M.J.; Li, Z.; Liu, M.X.; Liu, X.; Liu, Y.; Lockner, E.; Lopez, J.D.; Mao, Y.; Martinez, X.B.; McCain, M.C.; McGaughey, P.L.; Mioduszewski, S.; Mischke, R.E.; Mohanty, A.K.; Montoya, B.C.; Moss, J.M.; Murata, J.; Murray, M.M.; Nagle, J.L.; Nakada, Y.; Newby, J.; Obenshain, F.; Palounek, A.P.T.; Papavassiliou, V.; Pate, S.F.; Plasil, F.; Pope, K.; Qualls, J.M.; Rao, G.; Read, K.F. E-mail: readkf@ornl.gov; Robinson, S.H.; Roche, G.; Romana, A.; Rosnet, P.; Roth, R.; Saito, N.; Sakuma, T.; Sandhoff, W.F.; Sanfratello, L.; Sato, H.D.; Savino, R.; Sekimoto, M.; Shaw, M.R.; Shibata, T.-A.; Sim, K.S.; Skank, H.D.; Smith, D.E.; Smith, G.D. [and others

    2003-03-01

    The PHENIX Muon Arms detect muons at rapidities of |y|=(1.2-2.4) with full azimuthal acceptance. Each muon arm must track and identify muons and provide good rejection of pions and kaons ({approx}10{sup -3}). In order to accomplish this we employ a radial field magnetic spectrometer with precision tracking (Muon Tracker) followed by a stack of absorber/low resolution tracking layers (Muon Identifier). The design, construction, testing and expected run parameters of both the muon tracker and the muon identifier are described.

  5. A research plan based on high intensity proton accelerator Neutron Science Research Center

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1997-01-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  6. A research plan based on high intensity proton accelerator Neutron Science Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Motoharu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  7. Neutron stars with spin polarized self-interacting dark matter

    OpenAIRE

    Rezaei, Zeinab

    2018-01-01

    Dark matter, one of the important portion of the universe, could affect the visible matter in neutron stars. An important physical feature of dark matter is due to the spin of dark matter particles. Here, applying the piecewise polytropic equation of state for the neutron star matter and the equation of state of spin polarized self-interacting dark matter, we investigate the structure of neutron stars which are influenced by the spin polarized self-interacting dark matter. The behavior of the...

  8. Muon spin rotation and other microscopic probes of spin-glass dynamics

    International Nuclear Information System (INIS)

    MacLaughlin, D.E.

    1980-01-01

    A number of different microscopic probe techniques have been employed to investigate the onset of the spin-glass state in dilute magnetic alloys. Among these are Moessbauer-effect spectroscopy, neutron scattering, ESR of the impurity spins, host NMR and, most recently, muon spin rotation and depolarization. Spin probes yield information on the microscopic static and dynamic behavior of the impurity spins, and give insight into both the spin freezing process and the nature of low-lying excitations in the ordered state. Microscopic probe experiments in spin glasses are surveyed, and the unique advantages of muon studies are emphasized

  9. Spallation neutrons pulsed sources

    International Nuclear Information System (INIS)

    Carpenter, J.

    1996-01-01

    This article describes the range of scientific applications which can use these pulsed neutrons sources: Studies on super fluids, measures to verify the crawling model for the polymers diffusion; these sources are also useful to study the neutron disintegration, the ultra cold neutrons. In certain applications which were not accessible by neutrons diffusion, for example, radiations damages, radionuclides production and activation analysis, the spallation sources find their use and their improvement will bring new possibilities. Among others contributions, one must notice the place at disposal of pulsed muons sources and neutrinos sources. (N.C.). 3 figs

  10. Neutron irradiation of RPCs for the CMS experiment

    CERN Document Server

    Abbrescia, M; Belli, G; Bruno, G; Colaleo, A; Guida, R; Iaselli, G; Loddo, F; Maggi, M; Marangelli, B; Natali, S; Nuzzo, S; Pugliese, G; Ranieri, A; Romano, F

    2003-01-01

    All the CMS muon stations will be equipped with Resistive Plate Chambers (RPCs). They will be exposed to high neutron background environment during the LHC running. In order to verify the safe operation of these detectors, an irradiation test has been carried out with two RPCs at high neutron flux (about 10**8 n cm**-**2 s**- **1), integrating values of dose and fluence equivalent to 10 LHC- years. Before and after the irradiation, the performance of the detectors was studied with cosmic muons, showing no relevant aging effects. Moreover, no indication of damage or chemical changes were observed on the electrode surfaces.

  11. Interaction of neutrons with the matter in the laser field

    International Nuclear Information System (INIS)

    Zaretskij, D.F.; Lomonosov, V.V.

    1980-01-01

    The interactions of neutrons with the molecules, atoms and nuclei in the presence of the coherent electromagnetic radiation are considered. There are two effects which are discussed in detail: 1) the ''acceleration'' of thermal neutrons passed through the excited by the resonance laser wave molecular gas; 2) the induced by the laser field the slow neutron capture accompanied by the compound nucleus level excitation. The given effects, if they are experimentally detected, give the possibility to control the neutron flux (spectrum change, polarization, spatial modulation and etc.) and change the interaction cross sections of thermal and resonance neutrons with nuclei due to excitation of p levels of the compound nucleus [ru

  12. Extended Lipkin-type models with residual proton-neutron interaction

    International Nuclear Information System (INIS)

    Stoica, S.

    1999-01-01

    Extended Lipkin-Meshkov-Glick (LMG) models for testing the Random Phase Approximation (RPA) and proton-neutron Random Phase Approximation (pnRPA) methods are developed taking into account explicitly the proton and neutron degrees of freedom. First, an extended LMG model for testing RPA is developed. The proton and neutron Hamiltonians are taken to be of the LMG form and, in addition, a residual proton-neutron interaction is included. Exact solutions in a SU(2) x SU(2) basis as well as the RPA solutions for the energy spectrum of the model Hamiltonian are obtained. Then, the behaviour of the first collective excited state is studied as a function of the interaction parameters of the model using the exact and RPA methods. Secondly, an extended LMG model for testing pnRPA method is developed. Besides the proton and neutron single particle terms two types of residual proton-neutron interactions, one simulating a particle-particle and the other a particle-hole interaction, are included in the model Hamiltonian, so that the model is exactly solvable in an isospin SU(2) x SU(2) basis. The exact and pnRPA spectra of the model Hamiltonian are calculated as a function of the model parameters and compared to each other. Furthermore, charge-changing operators simulating a nuclear beta decay and their action on eigenfunctions of the model Hamiltonian are defined, and transition amplitude of them are calculated using exact and pnRPA wave functions. The best agreement between the exact RPA-type calculations for spectra and transitions, was obtained when the correlated RPA ground state, instead of the uncorrelated HF ground state was employed and when both kinds of residual interactions (i.e. like- and unlike-particle two-body interactions) are included in the model Hamiltonians. (author)

  13. THE TEMPERATURE EFFECT IN SECONDARY COSMIC RAYS (MUONS) OBSERVED AT THE GROUND: ANALYSIS OF THE GLOBAL MUON DETECTOR NETWORK DATA

    Energy Technology Data Exchange (ETDEWEB)

    De Mendonça, R. R. S.; Braga, C. R.; Echer, E.; Dal Lago, A.; Rockenbach, M.; Schuch, N. J. [Space Geophysics Division, National Institute for Space Research, São José dos Campos, SP, 12227-010 (Brazil); Munakata, K.; Kato, C. [Physics Department, Shinshu University, Matsumoto, Nagano, 390-8621 (Japan); Kuwabara, T. [Graduate School of Science, Chiba University, Chiba City, Chiba 263-8522 (Japan); Kozai, M. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Al Jassar, H. K.; Sharma, M. M. [Physics Department, Kuwait University, Kuwait City, 13060 (Kuwait); Tokumaru, M. [Solar Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi, 464-8601 (Japan); Duldig, M. L.; Humble, J. E. [School of Physical Sciences, University of Tasmania, Hobart, Tasmania, 7001 (Australia); Evenson, P. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Sabbah, I. [Department of Natural Sciences, College of Health Sciences, Public Authority for Applied Education and Training, Kuwait City, 72853 (Kuwait)

    2016-10-20

    The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticed that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.

  14. THE TEMPERATURE EFFECT IN SECONDARY COSMIC RAYS (MUONS) OBSERVED AT THE GROUND: ANALYSIS OF THE GLOBAL MUON DETECTOR NETWORK DATA

    International Nuclear Information System (INIS)

    De Mendonça, R. R. S.; Braga, C. R.; Echer, E.; Dal Lago, A.; Rockenbach, M.; Schuch, N. J.; Munakata, K.; Kato, C.; Kuwabara, T.; Kozai, M.; Al Jassar, H. K.; Sharma, M. M.; Tokumaru, M.; Duldig, M. L.; Humble, J. E.; Evenson, P.; Sabbah, I.

    2016-01-01

    The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticed that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.

  15. Simulation of the charge ratio of cosmic ray muons in extensive air showers using CORSIKA

    Energy Technology Data Exchange (ETDEWEB)

    Ochilo, Livingstone [University of Siegen (Germany); Kenyatta University, Nairobi (Kenya); Hashim, Nadir; Okumu, John [Kenyatta University, Nairobi (Kenya)

    2013-07-01

    The interaction of primary cosmic rays in the atmosphere produces, among other particles, pions and kaons. They decay to muons, which form an important component of extensive air showers. The ratio of positively to negatively charged muons, called the muon charge ratio, provides important information about the cosmic ray interactions in the atmosphere. In this study, the theoretical hadronic interaction models in the cosmic ray simulation code CORSIKA have been used to study the charge ratio of cosmic ray muons simulated in extensive air showers. An East - West effect on the charge ratio of simulated cosmic ray muons is observed. It is more pronounced for inclined and low-energy muons (momentum less than 100 GeV/c and zenith angle greater than 80 ). Experimental data from ''MINOS Near'' experiment gives similar results.

  16. Experimental study of time-reversal invariance in neutron-nucleus interactions

    International Nuclear Information System (INIS)

    Shaparov, E.I.; Shimizu, H.M.

    1996-01-01

    Experimental approaches for the test of time-reversal invariance in neutron-nucleus interactions are reviewed. Possible transmission experiments with polarized neutron beams and polarized or aligned targets are discussed as well as neutron capture experiments with unpolarized resonance neutrons. 102 refs., 13 figs., 3 tabs

  17. The muon spin response to intermittent hyperfine interaction: modelling the high-temperature electrical activity of hydrogen in silicon

    International Nuclear Information System (INIS)

    Lord, J S; Cox, S F J; Charlton, M; Werf, D P Van der; Lichti, R L; Amato, A

    2004-01-01

    At temperatures above 600 K in silicon, unlike at lower temperatures, the partitioning of muonium between its neutral paramagnetic states and its charged or electronically diamagnetic states corresponds closely to thermodynamic equilibrium. The individual charge states are short lived, with many cycles of carrier capture and release occurring within the muon lifetime. The resultant intermittent hyperfine interaction depolarizes the muons strongly, with longitudinal and transverse relaxation rates remaining distinct up to about 700 K but becoming equal at still higher temperatures. Data up to 900 K are presented and interpreted. The muon spin rotation spectrum in transverse magnetic fields, although collapsed to a single broad line in this charge exchange regime, is shifted substantially from the muon Larmor frequency, the shift being non-linear in field and only in small part due to electron polarization. A new density matrix treatment shows how all three observables can be accounted for with a consistent set of transition rates. These in turn may be interpreted in terms of effective donor and acceptor energy levels appropriate to this high-temperature regime, confirming negative-U behaviour and providing the first estimate, for muonium, of this elusive parameter. At temperatures where passivation complexes are dissociated, these findings provide a guide to, and microscopic models for, the electrical activity of hydrogen

  18. Magnetic-field dependence of impurity-induced muon depolarization in noble metals

    International Nuclear Information System (INIS)

    Schillaci, M.E.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Cooke, D.W.; Dodds, S.A.; Richards, P.M.; MacLaughlin, D.E.; Boekema, C.

    1983-01-01

    We have measured the magnetic-field dependence of the muon depolarization rate up to 5 kOe in AuGd (350 ppM), AgGd (340 ppM) and AgEr (300 ppM). A simple model which includes both dipolar and nearest-neighbor contact interactions between the muon and the magnetic impurity does not fit the data. An axial crystal-field interaction, arising from the electric-field gradient induced by the muon at the site of the impurity, is found to dominate the Hamiltonian, and may have a large effect on the field dependence

  19. Magnetic field dependence of impurity-induced muon depolarization in noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Schillaci, M.E.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Cooke, D.W.; Yaouanc, A. (Los Alamos National Lab., NM (USA)); Dodds, S.A. (Rice Univ., Houston, TX (USA). Dept. of Physics); Richards, P.M. (Sandia National Labs., Albuquerque, NM (USA)); MacLaughlin, D.E. (California Univ., Riverside (USA)); Boekema, C. (Texas Tech Univ., Lubbock (USA))

    1984-01-01

    The authors have measured the magnetic field dependence of the muon depolarization rate up to 5 kOe in AuGd (350 ppm), AgGd (340 ppm) and AgEr (300 ppm). A simple model which includes both dipolar and nearest-neighbor contact interactions between the muon and the magnetic impurity does not fit the data. An axial crystal-field interaction, arising from the electric field gradient induced by the muon at the site of the impurity, is found to dominate the Hamiltonian, and may have a large effect on the field dependence.

  20. Study of the muon spectrum at a depth 570 m.w.e. underground by means of the 100-ton scintillation detector

    International Nuclear Information System (INIS)

    Enikeev, R.I.; Zatsepin, G.T.; Korol'kova, E.V.; Kudryavtsev, V.A.; Mal'gin, A.S.; Ryazhskaya, O.G.; Khal'chukov, F.F.

    1988-01-01

    The experiment was carried out using the 100-ton apparatus at the Artemovsk Scientific Station of the Institute of Nuclear Research, USSR Academy of Sciences, located in a salt mine at a depth 570 m.w.e. underground. The spectrum of the energy release in the electromagnetic cascades which are generated by muons underground was measured. The electromagnetic and nuclear cascades were separated on the basis of the number of neutrons in these cascades. The spectrum of the energy release obtained is consistent with a spectrum of π and K mesons with γ/sub π//sub ,//sub K/ = 1.75 +- 0.08 for muon energies at sea level E 0 /sub μ/ >0.7 TeV. The experimental data recalculated to the vertical spectrum of muons at sea level agree with the results of other studies. Up to energies of about 100 TeV neither the spectrum of the primary cosmic rays nor the characteristics of the pA interaction undergo changes which could lead to an increase of γ/sub π//sub ,//sub K/ to a value exceeding 1.85

  1. Target and collection optimization for muon colliders

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Noble, R.J.; Van Ginneken, A.

    1996-01-01

    To achieve adequate luminosity in a muon collider it is necessary to produce and collect large numbers of muons. The basic method used in this paper follows closely a proposed scheme which starts with a proton beam impinging on a thick target (∼ one interaction length) followed by a long solenoid which collects muons resulting mainly from pion decay. Production and collection of pions and their decay muons must be optimized while keeping in mind limitations of target integrity and of the technology of magnets and cavities. Results of extensive simulations for 8 GeV protons on various targets and with various collection schemes are reported. Besides muon yields results include-energy deposition in target and solenoid to address cooling requirements for these systems. Target composition, diameter, and length are varied in this study as well as the configuration and field strengths of the solenoid channel. A curved solenoid field is introduced to separate positive and negative pions within a few meters of the target. This permits each to be placed in separate RF buckets for acceleration which effectively doubles the number of muons per bunch available for collisions and increases the luminosity fourfold

  2. Muons in UA1

    International Nuclear Information System (INIS)

    Dijk, A.L. van.

    1991-01-01

    In the years 1987-1989 the experiment ('UA1'), which is described in this thesis, has focused on measurements with muons. These particles can be considered as a part of the 'fingerprint' of interesting reactions. In the practice of 'UA1', recognizing this 'fingerprint' represents a puzzle because many (often more than hundred particles are produced in a collision between a proton and an anti-proton. In the experiment the properties (charge, energy, direction) of these particles are measured and subsequently the events are reconstructed. This results in several event samples corresponding to specific production mechanisms. The first part (ch. 1-5) of this thesis deals with the muon trigger of the UA1 experiment. This is a computer system that, directly after a measurement, reconstructs an event and checks for the presence of muons. If no muon is found the event is not considered anymore. In the other cases, the event is kept and written to magnetic tape. These tapes are for further analysis. The necessity of a trigger follows from the fact that per second more than 250.000 interactions occur and only about 10 can be saved on tape. For this reason a trigger system is of critical importance: all events not written to tape are lost. In ch. 2 the experiment and in ch. 4 the ideas and constraints of the trigger are explained. Ch. 4 discusses the construction and functioning of the muon trigger and ch. 5 presents the performance. The second part of this thesis (ch.'s 6 and 7) contain the physics analysis results from data collected with muon trigger. These results are explicitly obtained from events containing two muons. The theory is briefly reviewed and a discussion is given of the data and the way the selections are done. Finally the J/Ψ and Γ samples and the cross sections of b-quark production are given. (author). 57 refs.; 60 figs.; 8 tabs

  3. A new neutron interferometry approach in the determination of the neutron-electron interaction amplitude

    CERN Document Server

    Ioffe, A

    2002-01-01

    A new experimental approach in the determination of the neutron-electron interaction amplitude is proposed. The main idea of this approach is to use a perfect-crystal neutron interferometer as both a sample and a device for the measurement of the extra phase shift caused by the neutron interaction with atoms of Si. Indeed, such a sample (an interferometer blade) has a well-known atomic density and is a priori perfectly aligned with respect to the crystal lattice of the interferometer crystal. This results in the minimization of systematic errors caused by sample alignment and increases the overall experimental accuracy. Some theoretic estimations and details of an experimental setup are discussed. (orig.)

  4. A method for detection of muon induced electromagnetic showers with the ANTARES detector

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [IFIC-Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC-Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Al Samarai, I. [CPPM-Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Albert, A. [GRPHE-Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568-68008 Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, 08800 Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere-Institut de recherche sur les lois fondamentales de l' Univers-Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Ardid, M. [Institut d' Investigacio per a la Gestio Integrada de Zones Costaneres (IGIC)-Universitat Politecnica de Valencia. C/ Paranimf 1, 46730 Gandia (Spain); Assis Jesus, A.C.; Astraatmadja, T. [Nikhef, Science Park, Amsterdam (Netherlands); and others

    2012-05-21

    The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.

  5. Muon physics possibilities at a muon-neutrino factory

    NARCIS (Netherlands)

    Jungmann, KP

    2001-01-01

    New intense proton accelerators with above GeV energies and MW beam power, such as they are discussed in connection with neutrino factories, appear to be excellently suited for feeding bright muon sources for low-energy muon science. Muon rates with several orders of magnitude increased flux

  6. Diffractive corrections to the muon Bremsstrahlung

    International Nuclear Information System (INIS)

    Kel'ner, S.R.; Fedotov, A.M.

    1999-01-01

    The corrections to the muon Bremsstrahlung cross section due to diffraction of hard photons on nuclei are obtained. In this process the momentum is transmitted to a nucleus not by a charged particle but by the photon the interaction of which with the nucleus can be considered as diffraction on weakly absorbing ball. The amplitude of the process interferes with the usual Bremsstrahlung amplitude, therefore in the cross section together with the diffraction correction the interference term also appears, possessing different sings for μ + and μ - . The photon emission cross section also depends on the sing of muon charge and for muon energy about 10 TeV the difference between the cross section may reach 10%. The corrections to the radiation energy loss are also calculated [ru

  7. Electron and muon physics sessions: Summary

    International Nuclear Information System (INIS)

    Montgomery, H.E.

    1988-06-01

    The electromagnetic interaction needs no introduction as a probe of the structure of systems on many scales. The continued use of this technique dominated the sessions on Electron and Muon Physics at the Samoset Meeting. The experimental results continue to stimulate large numbers of theorists and the results on polarized deep inelastic muon scattering and their various interpretations permeated beyond these sessions. The breadth of physics attacked with electrons and muons makes a summary such as this rather peculiar. As one of my nuclear physics friends (I think) commented after my summary, ''it was interesting to see Nuclear Physics from a long distance with the telescope inverted.'' The comment may well be applied to this written version of the summary talk. 21 refs

  8. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2011-01-01

    The Muon Alignment work now focuses on producing a new track-based alignment with higher track statistics, making systematic studies between the results of the hardware and track-based alignment methods and aligning the barrel using standalone muon tracks. Currently, the muon track reconstruction software uses a hardware-based alignment in the barrel (DT) and a track-based alignment in the endcaps (CSC). An important task is to assess the muon momentum resolution that can be achieved using the current muon alignment, especially for highly energetic muons. For this purpose, cosmic ray muons are used, since the rate of high-energy muons from collisions is very low and the event statistics are still limited. Cosmics have the advantage of higher statistics in the pT region above 100 GeV/c, but they have the disadvantage of having a mostly vertical topology, resulting in a very few global endcap muons. Only the barrel alignment has therefore been tested so far. Cosmic muons traversing CMS from top to bottom are s...

  9. Muon Pair Production in ep Collisions at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Asmone, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, C.; Berger, N.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boenig, M.O.; Boudry, V.; Bracinik, J.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Chekelian, V.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dodonov, V.; Dowell, J.D.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Grabski, V.; Grassler, H.; Greenshaw, T.; Gregori, M.; Grindhammer, Guenter; Haidt, D.; Hajduk, L.; Haller, J.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Heremans, R.; Herrera, G.; Herynek, I.; Heuer, R.D.; Hildebrandt, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, C.; Johnson, D.P.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Katzy, J.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Knutsson, A.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Koutouev, R.; Kropivnitskaya, A.; Kroseberg, J.; Kuckens, J.; Kuhr, T.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lueders, H.; Luders, S.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martisikova, M.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milcewicz, I.; Milstead, D.; Moreau, F.; Morozov, A.; Morozov, I.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Newman, Paul R.; Niebuhr, C.; Nikitin, D.; Nowak, G.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Ossoskov, G.; Ozerov, D.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Poschl, R.; Portheault, B.; Povh, B.; Raicevic, N.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Uraev, A.; Urban, Marcel; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Trevino, A.Vargas; Vassiliev, S.; Vazdik, Y.; Veelken, C.; Vest, A.; Vichnevski, A.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Wagner, J.; Waugh, B.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Winde, M.; Winter, G.G.; Wissing, C.; Woehrling, E.E.; Wunsch, E.; Yan, W.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zohrabyan, H.; Zomer, F.

    2003-01-01

    Cross sections for the production of two isolated muons up to high di-muon masses are measured in ep collisions at HERA with the H1 detector in a data sample corresponding to an integrated luminosity of 71 pb^-1 at a centre of mass energy of sqrt{s} = 319 GeV. The results are in good agreement with Standard Model predictions, the dominant process being photon-photon interactions. Additional muons or electrons are searched for in events with two high transverse momentum muons using the full data sample corresponding to 114 pb^-1, where data at sqrt{s} = 301 GeV and sqrt{s} = 319 GeV are combined. Both the di-lepton sample and the tri-lepton sample agree well with the predictions.

  10. Characterizing Neutron Diagnostics on the nTOF Line at SUNY Geneseo

    Science.gov (United States)

    Harrison, Hannah; Seppala, Hannah; Visca, Hannah; Wakwella, Praveen; Fletcher, Kurt; Padalino, Stephen; Forrest, Chad; Regan, Sean; Sangster, Craig

    2016-10-01

    Charged particle beams from SUNY Geneseo's 1.7 MV Tandem Pelletron Accelerator induce nuclear reactions that emit neutrons ranging from 0.5 to 17.9 MeV via 2H(d,n)3He and 11B(d,n)12C. This adjustable neutron source can be used to calibrate ICF and HEDP neutron scintillators for ICF diagnostics. However, gamma rays and muons, which are often present during an accelerator-based calibration, are difficult to differentiate from neutron signals in scintillators. To mitigate this problem, a new neutron time-of-flight (nTOF) line has been constructed. The nTOF timing is measured using the associated particle technique. A charged particle produced by the nuclear reaction serves as a start signal, while its associated neutron is the stop signal. Each reaction is analyzed event-by-event to determine whether the scintillator signal was generated by a neutron, gamma or muon. Using this nTOF technique, the neutron response for different scintillation detectors can be determined. Funded in part by a LLE contract through the DOE.

  11. INTERACTION OF A 24 GeV PROTON BEAM WITH A MUON COLLIDER MERCURY JET TARGET EXPERIMENTAL RESULTS AND THERMODYNAMIC ASSESSMENT

    International Nuclear Information System (INIS)

    SIMOS, N.; KIRK, H.; FINFROCK, C.; GREENE, G.; LUDEWIG, H.; MCDONALD, K.; MOKHOV, N.

    2001-01-01

    A muon collider or a neutrino factory based on a muon storage ring require intense beams of muons that can be generated by a 1-4 MW proton beam incident on a moving target inside a 20-T solenoid magnet, with a mercury jet as a preferred example. This paper addresses the thermodynamic interaction of the intense proton beam with the proposed mercury jet target, and the consequences of the generated pressure waves on the target integrity. Specifically, a 24 GeV proton beam with approximately 16 TP (1 TP = 10 12 protons) per pulse and a pulse length of 2 ns will interact with a 1 cm diameter mercury jet within the 20-Tesla magnetic field. In one option, a train of six such proton pulses is to be delivered on target within 2 micros, in which case the state of the mercury jet following the interaction with each pulse is critical. Using the equation of state for mercury from the SESAME library, in combination with the energy deposition rates calculated the by the hadron interaction code MARS, the induced 3-D pressure field in the target is estimated. The consequent pressure wave propagation and attenuation in the mercury jet is calculated using a transient analysis based on finite element modeling, and the state of the mercury jet at the time of arrival of the subsequent pulse is assessed. Issues associated with the use of a liquid metal jet as a target candidate are addressed. Lastly, some experimental results from the BNL E951 experiment are presented and discussed

  12. Neutron irradiation of RPCs for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G. E-mail: gabriella.pugliese@ba.infn.it; Ranieri, A.; Romano, F.; Altieri, S.; Belli, G.; Bruno, G.; Guida, R.; Ratti, S.P.; Riccardi, C.; Torre, P.; Vitulo, P

    2003-08-01

    All the CMS muon stations will be equipped with Resistive Plate Chambers (RPCs). They will be exposed to high neutron background environment during the LHC running. In order to verify the safe operation of these detectors, an irradiation test has been carried out with two RPCs at high neutron flux (about 10{sup 8} n cm{sup -2} s{sup -1}), integrating values of dose and fluence equivalent to 10 LHC-years. Before and after the irradiation, the performance of the detectors was studied with cosmic muons, showing no relevant aging effects. Moreover, no indication of damage or chemical changes were observed on the electrode surfaces.

  13. Study of Muon Pairs and Vector Mesons Produced in High Energy Pb-Pb Interactions

    CERN Multimedia

    Karavicheva, T; Atayan, M; Bordalo, P; Constans, N P; Gulkanyan, H; Kluberg, L

    2002-01-01

    %NA50 %title\\\\ \\\\The experiment studies dimuons produced in Pb-Pb and p-A collisions, at nucleon-nucleon c.m. energies of $ \\sqrt{s} $ = 18 and 30 GeV respectively. The setup accepts dimuons in a kinematical range roughly defined as $0.1$ $1 GeV/c$, and stands maximal luminosity (5~10$^{7}$~Pb ions and 10$^7$ interactions per burst). The physics includes signals which probe QGP (Quark-Gluon Plasma), namely the $\\phi$, J/$\\psi$ and $\\psi^\\prime$ vector mesons and thermal dimuons, and reference signals, namely the (unseparated) $\\rho$ and $\\omega$ mesons, and Drell-Yan dimuons. The experiment is a continuation, with improved means, of NA38, and expands its study of {\\it charmonium suppression} and {\\it strangeness enhancement}.\\\\ \\\\The muons are measured in the former NA10 spectrometer, which is shielded from the hot target region by a beam stopper and absorber wall. The muons traverse 5~m of BeO and C. The impact parameter is determined by a Zero Degree Calorimeter (Ta with silica fibres). Energy dissipation ...

  14. Discriminating cosmic muons and X-rays based on rise time using a GEM detector

    Science.gov (United States)

    Wu, Hui-Yin; Zhao, Sheng-Ying; Wang, Xiao-Dong; Zhang, Xian-Ming; Qi, Hui-Rong; Zhang, Wei; Wu, Ke-Yan; Hu, Bi-Tao; Zhang, Yi

    2016-08-01

    Gas electron multiplier (GEM) detectors have been used in cosmic muon scattering tomography and neutron imaging over the last decade. In this work, a triple GEM device with an effective readout area of 10 cm × 10 cm is developed, and a method of discriminating between cosmic muons and X-rays based on rise time is tested. The energy resolution of the GEM detector is tested by 55Fe ray source to prove the GEM detector has a good performance. Analysis of the complete signal-cycles allows us to get the rise time and pulse heights. The experiment result indicates that cosmic muons and X-rays can be discriminated with an appropriate rise time threshold. Supported by National Natural Science Foundation of China (11135002, 11275235, 11405077, 11575073)

  15. Energy and zenith angle dependence of atmospheric muons

    CERN Document Server

    Maeda, K

    1973-01-01

    The recently proposed new process for energetic-muon production in the atmosphere should be tested at Mt. Chacaltaya. Rigorous calculations of zenith-angle distribution of atmospheric muons have been made for the altitude of 5200 m above sea level with energy range from 100 GeV to 100 TeV and for zenith angles from 0 degrees to 92.3 degrees . Calculations are based on the extension of the Chapman function to the case of a non-isothermal atmosphere, taking into account (i) energy- dependent nuclear-interaction mean free path of cosmic-ray hadrons in air, (ii) different magnitudes of photonuclear cross-section in the energy-loss process of muons in the atmosphere, (iii) contributions of atmospheric muons arriving below the horizontal directions, and (iv) atmospheric structure and geomagnetic deflection. Results are compared with those corresponding to sea level. Range straggling, particularly its effect on horizontally incident muons, is investigated by Monte Carlo calculation, indicating that its effects and t...

  16. Theory of trapping of muon and muonium and associated hyperfine interactions in the organic ferromagnet p-NPNN (β-phase)

    International Nuclear Information System (INIS)

    Jeong, J.; Briere, T.M.; Ohira, S.; Sahoo, N.; Nishiyama, K.; Nagamine, K.; Das, T.P.

    2003-01-01

    The ab initio unrestricted Hartree-Fock procedure has been applied to determine the trapping sites for the positive muon and muonium in β-phase ferromagnetic para-nitrophenyl nitronyl nitroxide and to calculate the associated electronic wave functions from which the corresponding contact and dipolar terms in the spin Hamiltonians have been obtained. For muonium, trapping sites were found near the oxygens of the two NO groups, resulting in a singlet electronic state for the overall molecular system, and also near the two oxygens of the NO 2 group, resulting in a triplet state for the overall system. For the muon a total of four trapping sites was found, corresponding to the oxygen and nitrogen atoms of the two NO groups. Using the easy axis along the b-axis of the orthorhombic sublattice, as found from muon spin rotation (μSR) measurements, and the calculated magnetic hyperfine interaction parameters, the observed 2.1 MHz zero-field μSR signal is assigned to the singlet state corresponding to muonium trapping near the oxygen of one of the NO groups. The large hyperfine constant of about 400 MHz inferred from longitudinal field repolarization measurements is assigned to a positive muon trapped near the nitrogen atom of one of the NO groups

  17. Energy loss of muons in the energy range 1-10000 GeV

    International Nuclear Information System (INIS)

    Lohmann, W.; Kopp, R.; Voss, R.

    1985-01-01

    A summary is given of the most recent formulae for the cross-sections contributing to the energy loss of muons in matter, notably due to electro-magnetic interactions (ionization, bremsstrahlung and electron-pair production) and nuclear interactions. Computed energy losses dE/dx are tabulated for muons with energy between 1 GeV and 10,000 GeV in a number of materials commonly used in high-energy physics experiments. In comparison with earlier tables, these show deviations that grow with energy and amount to several per cent at 200 GeV muon energy. (orig.)

  18. Relevance of the hadronic interaction model in the interpretation of multiple muon data as detected with the MACRO experiment

    International Nuclear Information System (INIS)

    Ambrosio, M.; Antolini, R.; Aramo, C.; Auriemma, G.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bower, C.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Castellano, M.; Cecchini, S.; Cei, F.; Chiarella, V.; Coutu, S.; De Benedictis, L.; De Cataldo, G.; Dekhissi, H.; De Marzo, C.; De Mitri, I.; De Vincenzi, M.; Di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Grassi, M.; Gray, L.; Grillo, A.; Guarino, F.; Guarnaccia, P.; Gustavino, C.; Habig, A.; Hanson, K.; Hawthorne, A.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Kearns, E.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Manzoor, S.; Neri, A. Margiotta; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Mazzotta, C.; Michael, D. G.; Mikheyev, S.; Miller, L.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolo, D.; Nolty, R.; Okada, C.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Petrera, S.; Pistilli, P.; Popa, V.; Raino, A.; Rastelli, A.; Reynoldson, J.; Ronga, F.; Rubizzo, U.; Sanzgiri, A.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra-Lugaresi, P.; Severi, M.; Sioli, M.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarle, G.; Togo, V.; Walter, C. W.; Webb, R.

    1999-01-01

    With the aim of discussing the effect of the possible sources of systematic uncertainties in simulation models, the analysis of multiple muon events from the MACRO experiment at Gran Sasso is reviewed. In particular, the predictions from different currently available hadronic interaction models are compared

  19. A measurement of muon neutrino disappearance with the MINOS detectors and NuMI beam

    Energy Technology Data Exchange (ETDEWEB)

    Ospanov, Rustem [Texas U.

    2008-08-01

    MINOS is a long-baseline two-detector neutrino oscillation experiment that uses a high intensity muon neutrino beam to investigate the phenomena of neutrino oscillations. The neutrino beam is produced by the NuMI facility at Fermilab, Batavia, Illinois, and is observed at near and far detectors placed 734 km apart. The neutrino interactions in the near detector are used to measure the initial muon neutrino fl The vast majority of neutrinos travel through the near detector and Earth matter without interactions. A fraction of muon neutrinos oscillate into other fl vors resulting in the disappearance of muon neutrinos at the far detector. This thesis presents a measurement of the muon neutrino oscillation parameters in the framework of the two-neutrino oscillation hypothesis.

  20. J-PARC and the prospective neutron sciences

    Indian Academy of Sciences (India)

    J-PARC is an interdisciplinary facility with high power proton accelerator complex to be completed by 2008 (figure 1). Materials-Life Science Facility (MLF) will be a very intensive pulsed neutron and muon facility at 1 MW of the accelerated proton power. The neutron peak flux will be as high as several hundred times of ...

  1. Electron-Muon Ranger: performance in the MICE Muon Beam

    CERN Document Server

    Adams, D.; Vankova-Kirilova, G.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Kuno, Y.; Sakamoto, H.; Ishimoto, S.; Filthaut, F.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Bene, P.; Blondel, A.; Cadoux, F.; Debieux, S.; Drielsma, F.; Graulich, J.S.; Husi, C.; Karadzhov, Y.; Masciocchi, F.; Nicola, L.; Messomo, E.Noah; Rothenfusser, K.; Sandstrom, R.; Wisting, H.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Bayes, R.; Nugent, J.C.; Soler, F.J.P.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Lagrange, J-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Santos, E.; Savidge, T.; Uchida, M.A.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Booth, C.N.; Hodgson, P.; Langlands, J.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Dick, A.; Ronald, K.; Speirs, D.; Whyte, C.G.; Young, A.; Boyd, S.; Franchini, P.; Greis, J.; Pidcott, C.; Taylor, I.; Gardener, R.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Roberts, T.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Zisman, M.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Cline, D.; Yang, X.; Coney, L.; Hanson, G.G.; Heidt, C.

    2015-12-16

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100-280 MeV/$c$.

  2. Electron-muon ranger: performance in the MICE muon beam

    International Nuclear Information System (INIS)

    Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Alekou, A.; Apollonio, M.; Barber, G.; Asfandiyarov, R.; Bene, P.; Blondel, A.; De Bari, A.; Bayes, R.; Bertoni, R.; Bonesini, M.; Blackmore, V.J.; Blot, S.; Bogomilov, M.; Booth, C.N.; Bowring, D.; Boyd, S.

    2015-01-01

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100–280 MeV/c

  3. Composition from high pT muons in IceCube

    Directory of Open Access Journals (Sweden)

    Soldin Dennis

    2015-01-01

    Full Text Available Cosmic rays with energies up to 1011 GeV enter the atmosphere and produce showers of secondary particles. Inside these showers muons with high transverse momentum (pT ≳ 2 GeV are produced from the decay of heavy hadrons, or from high pT pions and kaons very early in the shower development. These isolated muons can have large transverse separations from the shower core up to several hundred meters, together with the muon bundle forming a double or triple track signature in IceCube. The separation from the core is a measure of the transverse momentum of the muon's parent particle. Assuming the validity of perturbative quantum chromodynamics (pQCD the muon lateral distribution depends on the composition of the incident nuclei, thus the composition of high energy cosmic rays can be determined from muon separation measurements. Vice versa these muons can help to understand uncertainties due to phenomenological models as well as test pQCD predictions of high energy interactions involving heavy nuclei. After introducing the physics scenario of high pT muons in kilometer-scale neutrino telescopes we will review results from IceCube in its 59-string configuration as a starting point and discuss recent studies on composition using laterally separated muons in the final detector configuration.

  4. Sticking in muon catalyzed D-T fusion

    International Nuclear Information System (INIS)

    Petitjean, C.; Sherman, R.H.; Bossy, H.; Daniel, H.; Hartmann, F.J.; Neumann, W.; Schmidt, G.; Egidy, T. von

    1986-10-01

    The issue of μα sticking after muon catalyzed DT fusion is controversial, since a number of theoretical and experimental results came out recently with sticking values ω s varying over a large range. After a review of this situation, our measurements at SIN and methods of sticking analysis from neutron time structures are presented in detail. The important point is the correct understanding of the experimentally observed time distributions. At high density (liquid DT) we find, after correction for other fusion channels, for DT sticking ω s (0.45 +- 0.05)%, not dependent on tritium concentration c t and in accordance with our X-ray observations. At low density (DT gas, φ 3% - 8%) our preliminary result is 0.50 +- 0.10%, giving a ratio 1.1 +- 0.2 in agreement with conventional theories, but strongly disagreeing with the LAMPF experiment of S.E. Jones et al. Our result sets the maximum fusion output per muon to less than 220 +- 20. (author)

  5. A Prototype Large Area Detector Module for Muon Scattering Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Steer, C.A.; Boakes, J.; Burns, J.; Snow, S.; Stapleton, M.; Thompson, L.F.; Quillin, S. [AWE Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom)

    2015-07-01

    Abstract-Shielded special nuclear materials (SNM) are of concern as some fissile isotopes have low gamma and neutron emission rates. These materials are also easily shielded to the point where their passive emissions are comparable to background. Consequently, shielded SNM is very challenging for passive radiation detection portals which scan cargo containers. One potential solution for this is to utilise the natural cosmic ray muon background and examine how these muons scatter from materials inside the container volume, terms; the muon scattering tomography (MST) technique measures the three-dimensional localised scattering at all points within a cargo container, providing a degree of material discrimination. There is the additional benefit that the MST signal increases with the presence of more high density shielding materials, in contrast to passive radiation detection. Simulations and calculations suggest that the effectiveness of the technique is sensitive to the tracking accuracy amongst other parameters, motivating the need to develop practical detector systems that are capable of tracking cosmic ray muons. To this end, we have constructed and tested a 2 m by 2 m demonstration module based on gaseous drift chambers and triggered by a large area scintillator-based detector, which is readout by wavelength shifting fibres. We discuss its design, construction, characterisation and operational challenges. (authors)

  6. Muon Identification performance: hadron mis-Id measurements and RPC Muon selections

    CERN Document Server

    CMS Collaboration

    2014-01-01

    Pion, kaon, proton mis-identification probabilities as muons have been measured for different Muon ID algorithms. Results from two independent analyses are presented. The performance of a new muon ID algorithm based on matching of inner tracks with hits in muon RPC chambers is also presented.

  7. Muon colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Sessler, A.; Skrinsky, A.

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity micro + micro - colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed

  8. Neutrino physics at the spallation neutron source. Pt. 2

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Lillie, R.A.; Bishop, B.L.; Wilczynski, J.; Zeitnitz, B.

    1981-06-01

    The shielding and detector analysis associated with a contemplated low energy (approx. equal to10 to 50 MeV) neutrino experiment at a spallation neutron source are presented and discussed. This analysis includes neutrino production and interaction rates, time dependence of the neutrino pulse, shielding considerations for neutrons coming directly from the spallation source and those which are scattered from other experimental areas, shielding considerations for galactic sources especially muons and finally detector responses to neutrino and background radiations. In general for a 1 mA (200 ns/pulse, 100 Hz), 1.1 GeV proton beam incident on a lead target surrounded by a moderator system, approximately 8 m of iron are required to reduce the background so that the event rate in the detector systems is approx. [de

  9. ISINN-5. 5. International seminar on interaction of neutrons with nuclei. Neutron spectroscopy, nuclear structure, related topics

    International Nuclear Information System (INIS)

    1997-01-01

    The materials submitted at the fifth in a series of annual international seminar on interaction of neutrons with nuclei Neutron Spectroscopy, Nuclear Structure, Related Topics (ISINN-5) are given. The Seminar is organized by the Frank Laboratory of Neutron Physics of the Joint Institute for Nuclear Research and took place in Dubna on May 14-17, 1997. About 130 specialists from Belgium, China, Germany, France, Japan, Korea, Latvia, Netherlands, Ukraine, 7 Russian research institutes and a number of JINR laboratories took part in the Seminar. The scope of the problems discussed is traditionally wide. It includes the problems of violation of fundamental symmetries in the interaction of neutrons with nuclei, the properties of the neutron as the fundamental particle, nonstatistical aspects of the radiation capture of neutrons by nuclei, topical problems of the theory of nucleus, and the fission mechanism of heavy nuclei. The latest results obtained with ultracold neutrons (UCN), in particular, different approaches to understanding of the cause of UCN anomalous leakage through the walls of the trap are considered as well. The wide spectrum of methodological aspects of neutron-aided experiments is also discussed in details

  10. Theoretical aspects and experimental of neutronic interaction of multiplying media; Aspects theoriques et experimentaux de l'interaction neutronique entre milieux multiplicateurs de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Mougniot, J C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    A theoretical study of neutronic interaction of multiplying media is presented. The use of the surface multiplication constant and of the effective multiplication constant is considered. Three classical methods of interaction calculations are studied in parallel and the application of the Keff method to problems of nuclear safety is discussed. (authors) [French] Une etude theorique de l'interaction neutronique entre milieux multiplicateurs de neutrons est presentee. L'utilisation du coefficient de multiplication de surface et du coefficient de multiplication effectif est envisagee. Trois methodes classiques de calcul d'interaction sont etudiees parallelement et l'adaptation de la methode du Keff, aux problemes de securite nucleaire est ensuite discutee. (auteurs)

  11. Detection of atmospheric muons with ALICE detectors

    International Nuclear Information System (INIS)

    Alessandro, B.; Cortes Maldonado, I.; Cuautle, E.; Fernandez Tellez, A.; Gomez Jimenez, R.; Gonzalez Santos, H.; Herrera Corral, G.; Leon, I.; Martinez, M.I.; Munoz Mata, J.L.; Podesta, P.; Ramirez Reyes, A.; Rodriguez Cahuantzi, M.; Sitta, M.; Subieta, M.; Tejeda Munoz, G.; Vargas, A.; Vergara, S.

    2010-01-01

    The calibration, alignment and commissioning of most of the ALICE (A Large Ion Collider Experiment at the CERN LHC) detectors have required a large amount of cosmic events during 2008. In particular two types of cosmic triggers have been implemented to record the atmospheric muons passing through ALICE. The first trigger, called ACORDE trigger, is performed by 60 scintillators located on the top of three sides of the large L3 magnet surrounding the central detectors, and selects atmospheric muons. The Silicon Pixel Detector (SPD) installed on the first two layers of the Inner Tracking System (ITS) gives the second trigger, called SPD trigger. This trigger selects mainly events with a single atmospheric muon crossing the SPD. Some particular events, in which the atmospheric muon interacts with the iron of the L3 magnet and creates a shower of particles crossing the SPD, are also selected. In this work the reconstruction of events with these two triggers will be presented. In particular, the performance of the ACORDE detector will be discussed by the analysis of multi-muon events. Some physical distributions are also shown.

  12. Muon beams, used for studying the solid state

    International Nuclear Information System (INIS)

    Cox, S.F.J.; Stoneham, A.M.

    1992-01-01

    The positive muon provides a remarkable spectroscopic probe of the solid state. Implanted in virtually any material, its spin polarisation may be monitored to define the sites it occupies in lattices or molecules and to report on local structure and dynamics. Wide ranging applications in solid state science are illustrated in this article by examples in magnetics, chemistry and quantum diffusion. Primarily, the muon is a sensitive microscopic magnetometer: this elementary particle has spin 1/2 and a magnetic moment about three times that of the proton. The frequencies of its resonance or precession signals provide a direct and accurate measurement of local magnetic or hyperfine fields. Its relaxation functions characterise the distribution in space or the fluctuation in time of these fields. The muon is rarely a passive probe, however, since it represents a defect carrying unit positive charge. In fact its interactions with the local environment are commonly the main focus of interest; studies of this most fundamental of defects have eliminated complacency in several areas. The interactions, chemical and elastic, are essentially identical with those of the proton, so that their study is invaluable in situations where hydrogen cannot be detected by conventional spectroscopies. Alternatively, when muon and proton behaviour may be compared, the comparison reveals a variety of kinetic and dynamic isotope effects: the muon has about one ninth the proton mass. This order of magnitude ratio greatly facilitates identification of specifically quantum effects, ie those including zero point energy or tunnelling. (author)

  13. Atmospheric muons reconstruction with Antares; Reconstruction de muons atmospheriques avec ANTARES

    Energy Technology Data Exchange (ETDEWEB)

    Melissas, M

    2007-09-15

    The ANTARES collaboration is building a neutrino telescope in the Mediterranean Sea. This detector contains 900 photomultiplier tubes, dispatched on 12 lines, in order to detect Cerenkov light from muon induced by neutrino interactions in the the vicinity of the detector. Currently the first 5 lines have been deployed. A first task consists in studying the stability of the detector calibration, which is a necessary step to understand the detector response. Then we studied optical properties of water, for this we developed a reconstruction method dedicated to LED Beacon. The extracted parameters are compatible with earlier measurements. A quality criteria to reject badly reconstructed track has been developed based on the likelihood of the tracks fit versus point fit. This has been applied to real data and a preliminary analysis of atmospheric muons with a 5-lines detector is performed. (author)

  14. CMS (Compact Muon Solenoid)

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The milestone workshops on LHC experiments in Aachen in 1990 and at Evian in 1992 provided the first sketches of how LHC detectors might look. The concept of a compact general-purpose LHC experiment based on a solenoid to provide the magnetic field was first discussed at Aachen, and the formal Expression of Interest was aired at Evian. It was here that the Compact Muon Solenoid (CMS) name first became public. Optimizing first the muon detection system is a natural starting point for a high luminosity (interaction rate) proton-proton collider experiment. The compact CMS design called for a strong magnetic field, of some 4 Tesla, using a superconducting solenoid, originally about 14 metres long and 6 metres bore. (By LHC standards, this warrants the adjective 'compact'.) The main design goals of CMS are: 1 - a very good muon system providing many possibilities for momentum measurement (physicists call this a 'highly redundant' system); 2 - the best possible electromagnetic calorimeter consistent with the above; 3 - high quality central tracking to achieve both the above; and 4 - an affordable detector. Overall, CMS aims to detect cleanly the diverse signatures of new physics by identifying and precisely measuring muons, electrons and photons over a large energy range at very high collision rates, while also exploiting the lower luminosity initial running. As well as proton-proton collisions, CMS will also be able to look at the muons emerging from LHC heavy ion beam collisions. The Evian CMS conceptual design foresaw the full calorimetry inside the solenoid, with emphasis on precision electromagnetic calorimetry for picking up photons. (A light Higgs particle will probably be seen via its decay into photon pairs.) The muon system now foresaw four stations. Inner tracking would use silicon microstrips and microstrip gas chambers, with over 10 7 channels offering high track finding efficiency. In the central CMS barrel, the tracking elements are

  15. Development of a 3D muon disappearance algorithm for muon scattering tomography

    Science.gov (United States)

    Blackwell, T. B.; Kudryavtsev, V. A.

    2015-05-01

    Upon passing through a material, muons lose energy, scatter off nuclei and atomic electrons, and can stop in the material. Muons will more readily lose energy in higher density materials. Therefore multiple muon disappearances within a localized volume may signal the presence of high-density materials. We have developed a new technique that improves the sensitivity of standard muon scattering tomography. This technique exploits these muon disappearances to perform non-destructive assay of an inspected volume. Muons that disappear have their track evaluated using a 3D line extrapolation algorithm, which is in turn used to construct a 3D tomographic image of the inspected volume. Results of Monte Carlo simulations that measure muon disappearance in different types of target materials are presented. The ability to differentiate between different density materials using the 3D line extrapolation algorithm is established. Finally the capability of this new muon disappearance technique to enhance muon scattering tomography techniques in detecting shielded HEU in cargo containers has been demonstrated.

  16. Potential of the neutron lloyd's mirror interferometer for the search for new interactions

    Energy Technology Data Exchange (ETDEWEB)

    Pokotilovski, Yu. N., E-mail: pokot@nf.jinr.ru [Joint Institute for Nuclear Research (Russian Federation)

    2013-04-15

    We discuss the potential of the neutron Lloyd's mirror interferometer in a search for new interactions at small scales. We consider three hypothetical interactions that may be tested using the interferometer. The chameleon scalar field proposed to solve the enigma of accelerating expansion of the Universe produces interaction between particles and matter. The axion-like spin-dependent coupling between a neutron and nuclei or/and electrons may result in a P- and T-noninvariant interaction with matter. Hypothetical non-Newtonian gravitational interactions mediates an additional short-range potential between neutrons and bulk matter. These interactions between the neutron and the mirror of a Lloyd-type neutron interferometer cause a phase shift of neutron waves. We estimate the sensitivity and systematic effects of possible experiments.

  17. Relevance of the hadronic interaction model in the interpretation of multiple muon data as detected with the MACRO experiment

    CERN Document Server

    Ambrosio, M; Aramo, C; Auriemma, G; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bisi, V; Bloise, C; Bower, C; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Carboni, M; Castellano, M G; Cecchini, S; Cei, F; Chiarella, V; Coutu, S; De Benedictis, L; De Cataldo, G; Dekhissi, H; De Marzo, C; De Mitri, I; De Vincenzi, M; Di Credico, A; Erriquez, O; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Grassi, M; Gray, L; Grillo, A; Guarino, F; Guarnaccia, P; Gustavino, C; Habig, A; Hanson, K; Hawthorne, A; Heinz, R; Iarocci, Enzo; Katsavounidis, E; Kearns, E T; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longley, N P; Longo, M J; Maaroufi, F; Mancarella, G; Mandrioli, G; Manzoor, S; Margiotta-Neri, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Mazzotta, C; Michael, D G; Mikheyev, S P; Miller, L; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S L; Musser, J; Nicolò, D; Nolty, R; Okada, C; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Petrera, S; Pistilli, P; Popa, V; Rainó, A; Rastelli, A; Reynoldson, J; Ronga, F; Rubizzo, U; Sanzgiri, A; Satriano, C; Satta, L; Scapparone, E; Scholberg, K; Sciubba, A; Serra-Lugaresi, P; Severi, M; Sioli, M; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, Lawrence R; Surdo, A; Tarle, G; Togo, V; Walter, C W; Webb, R

    1999-01-01

    With the aim of discussing the effect of the possible sources of systematic uncertainties in simulation models, the analysis of multiple muon events from the MACRO experiment at Gran Sasso is reviewed. In particular, the predictions $9 from different currently available hadronic interaction models are compared. (9 refs).

  18. Muon Identification in Hadron Calorimeter at DELPHI and Muons as P robes of Particle Interactions

    CERN Document Server

    Ridky, Jan

    2007-01-01

    The presented dissertation consists of the papers [A.1, A.2, A.3, A.4, A.5, A.6, A.7] on DELPHI hadron calorimeter (HAC) [B.1]. These papers deal with signal simulations, performance and major upgrade of HAC after the period LEP1 (production of Z 0 around the resonance peak). This upgrade resulted from extensive tests of streamer tube1 prop- erties and studies of possible utilisation of tube signals for data analysis. The aim was to improve the capabilities of HAC for the second period of the LEP collider operation, so called LEP200 program when the energy of e+ and e− beams has been gradually increased up to the energy 104 GeV per beam. The above mentioned studies led to the conclusion, that with the constraints imposed by HAC construction, the upgrade can improve signif- icantly the muon identification of DELPHI [A.7] and on this ground the upgrade project has been defended and realized in the years 1994-1996. The muon identification has been used in standard analyses (part 3.1). However, it turned out th...

  19. Studies of neutron emission from relativistic nuclear interactions

    CERN Document Server

    Guo, S L; Wang, Y L; Guo, H Y; Sá Ben-Hao; Zheng, Y M; Brandt, R; Vater, P; Wan, J S; Ochs, M; Kulakov, B A; Sosnin, A N; Krivopustov, M I; Butsev, V S; Bradnova, V

    1999-01-01

    Studies were carried out on the yields and spatial distributions of secondary neutrons produced in the relativistic nuclear interactions of 1.5 GeV to 14.4 GeV projectiles p, d and alpha-particles with targets Pb and U/Pb. CR-39 track detectors were used to measure the neutrons. It shows that: (1) Secondary neutrons are produced in the whole length of Pb or U targets having a thickness of 20 cm. The neutron intensities produced by proton bombardments are reduced along the proton beam direction in the targets. The higher the energy of protons, the lower the reduction rate of the neutrons. The reduction rate of neutrons in U target is higher than in Pb target for the same energy of protons. (2) The radial intensities of neutrons decrease as the distance increases from the target central line. (3) The neutron yield in U target by proton bombardments is approx 55% higher than in Pb target. (4) The ratio of neutron yield by 14.4 GeV alpha to 7.3 GeV d bombardment in Pb target is 1.74+-0.20.

  20. Lambda-nuclear interactions and hyperon puzzle in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Haidenbauer, J. [Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Meissner, U.G. [Universitaet Bonn, Helmholtz Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Kaiser, N.; Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany)

    2017-06-15

    Brueckner theory is used to investigate the in-medium properties of a Λ-hyperon in nuclear and neutron matter, based on hyperon-nucleon interactions derived within SU(3) chiral effective field theory (EFT). It is shown that the resulting Λ single-particle potential U{sub Λ}(p{sub Λ} = 0, ρ) becomes strongly repulsive for densities ρ of two-to-three times that of normal nuclear matter. Adding a density-dependent effective ΛN-interaction constructed from chiral ΛNN three-body forces increases the repulsion further. Consequences of these findings for neutron stars are discussed. It is argued that for hyperon-nuclear interactions with properties such as those deduced from the SU(3) EFT potentials, the onset for hyperon formation in the core of neutron stars could be shifted to much higher density which, in turn, could pave the way for resolving the so-called hyperon puzzle. (orig.)

  1. Phenomenology of muon number violation in spontaneously broken gauge theories

    International Nuclear Information System (INIS)

    Shanker, O.U.

    1980-01-01

    The phenomenology of muon number violation in gauge theories of weak and electromagnetic interactions is studied. In the first chapter a brief introduction to the concept of muon number and to spontaneously broken gauge theories is given. A review of the phenomenology and experimental situation regarding different muon number violating processes is made in the second chapter. A detailed phenomenological study of the μe conversion process μ - + (A,Z) → e - + (A,Z) is given in the third chapter. In the fourth chapter some specific gauge theories incorporating spontaneously broken horizontal gauge symmetries between different fermion generations are discussed with special reference to muon number violation in the theories. The μe conversion process seems to be a good process to search for muon number violation if it occurs. The K/sub L/-K/sub S/ mass difference is likely to constrain muon number violating rates to lie far below present experimental limits unless strangeness changing neutral currents changing strangeness by two units are suppressed

  2. Design and characterization of a small muon tomography system

    Science.gov (United States)

    Jo, Woo Jin; An, Su Jung; Kim, Hyun-Il; Lee, Chae Young; Chung, Heejun; Chung, Yong Hyun

    2015-02-01

    Muon tomography is a useful method for monitoring special nuclear materials (SNMs) because it can provide effective information on the presence of high-Z materials, has a high enough energy to deeply penetrate large amounts of shielding, and does not lead to any health risks and danger above background. We developed a 2-D muon detector and designed a muon tomography system employing four detector modules. Two top and two bottom detectors are, respectively, employed to record the incident and the scattered muon trajectories. The detector module for the muon tomography system consists of a plastic scintillator, wavelength-shifting (WLS) fiber arrays placed orthogonally on the top and the bottom of the scintillator, and a position-sensitive photomultiplier (PSPMT). The WLS fiber arrays absorb light photons emitted by the plastic scintillator and re-emit green lights guided to the PSPMT. The light distribution among the WLS fiber arrays determines the position of the muon interaction; consequently, 3-D tomographic images can be obtained by extracting the crossing points of the individual muon trajectories by using a point-of-closest-approach algorithm. The goal of this study is to optimize the design parameters of a muon tomography system by using the Geant4 code and to experimentally evaluate the performance of the prototype detector. Images obtained by the prototype detector with a 420-nm laser light source showed good agreement with the simulation results. This indicates that the proposed detector is feasible for use in a muon tomography system and can be used to verify the Z-discrimination capability of the muon tomography system.

  3. NEUTRINO FACTORY BASED ON MUON-STORAGE-RINGS TO MUON COLLIDERS: PHYSICS AND FACILITIES

    International Nuclear Information System (INIS)

    PARSA, Z.

    2001-01-01

    Intense muon sources for the purpose of providing intense high energy neutrino beams (ν factory) represents very interesting possibilities. If successful, such efforts would significantly advance the state of muon technology and provides intermediate steps in technologies required for a future high energy muon collider complex. High intensity muon: production, capture, cooling, acceleration and multi-turn muon storage rings are some of the key technology issues that needs more studies and developments, and will briefly be discussed here. A muon collider requires basically the same number of muons as for the muon storage ring neutrino factory, but would require more cooling, and simultaneous capture of both ± μ. We present some physics possibilities, muon storage ring based neutrino facility concept, site specific examples including collaboration feasibility studies, and upgrades to a full collider

  4. NEUTRINO FACTORY BASED ON MUON-STORAGE-RINGS TO MUON COLLIDERS: PHYSICS AND FACILITIES.

    Energy Technology Data Exchange (ETDEWEB)

    PARSA,Z.

    2001-06-18

    Intense muon sources for the purpose of providing intense high energy neutrino beams ({nu} factory) represents very interesting possibilities. If successful, such efforts would significantly advance the state of muon technology and provides intermediate steps in technologies required for a future high energy muon collider complex. High intensity muon: production, capture, cooling, acceleration and multi-turn muon storage rings are some of the key technology issues that needs more studies and developments, and will briefly be discussed here. A muon collider requires basically the same number of muons as for the muon storage ring neutrino factory, but would require more cooling, and simultaneous capture of both {+-} {mu}. We present some physics possibilities, muon storage ring based neutrino facility concept, site specific examples including collaboration feasibility studies, and upgrades to a full collider.

  5. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    M. Dallavalle

    2013-01-01

    A new Muon misalignment scenario for 2011 (7 TeV) Monte Carlo re-processing was re-leased. The scenario is based on running of standard track-based reference-target algorithm (exactly as in data) using single-muon simulated sample (with the transverse-momentum spectrum matching data). It used statistics similar to what was used for alignment with 2011 data, starting from an initially misaligned Muon geometry from uncertainties of hardware measurements and using the latest Tracker misalignment geometry. Validation of the scenario (with muons from Z decay and high-pT simulated muons) shows that it describes data well. The study of systematic uncertainties (dominant by now due to huge amount of data collected by CMS and used for muon alignment) is finalised. Realistic alignment position errors are being obtained from the estimated uncertainties and are expected to improve the muon reconstruction performance. Concerning the Hardware Alignment System, the upgrade of the Barrel Alignment is in progress. By now, d...

  6. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez and Y. Pakhotin

    2012-01-01

      A new track-based alignment for the DT chambers is ready for deployment: an offline tag has already been produced which will become part of the 52X Global Tag. This alignment was validated within the muon alignment group both at low and high momentum using a W/Z skim sample. It shows an improved mass resolution for pairs of stand-alone muons, improved curvature resolution at high momentum, and improved DT segment extrapolation residuals. The validation workflow for high-momentum muons used to depend solely on the “split cosmics” method, looking at the curvature difference between muon tracks reconstructed in the upper or lower half of CMS. The validation has now been extended to include energetic muons decaying from heavily boosted Zs: the di-muon invariant mass for global and stand-alone muons is reconstructed, and the invariant mass resolution is compared for different alignments. The main areas of development over the next few months will be preparing a new track-based C...

  7. New target solution for a muon collider or a muon-decay neutrino beam facility: The granular waterfall target

    Directory of Open Access Journals (Sweden)

    Han-Jie Cai

    2017-02-01

    Full Text Available A new target solution, the granular waterfall target, is proposed here for a muon collider or a muon-decay neutrino beam facility, especially for the moment which adopts a 15 MW continuous-wave (cw superconducting linac. Compared to the mercury jet target, the granular waterfall target works by a much simpler mechanism which can operate with a much more powerful beam, which are indicated by the detailed investigations into the heat depositions and the evaluations of the temperature increases for different target concepts. By varying proton beam kinetic energy and the geometrical parameters of the waterfall target, an overall understanding of the figure of merit concerning muon production for this target concept as the target solutions of the long-baseline neutrino factory and the medium-baseline moment is obtained. With 8 GeV beam energy and the optimal geometrical parameters, the influence on muon yield by adopting different beam-target interaction parameters is explored. Studies and discussions of the design details concerning beam dumping are also presented.

  8. A Monte Carlo study of atmospheric muon-neutrinos in Amanda

    Energy Technology Data Exchange (ETDEWEB)

    Dalberg, E.

    1998-01-01

    The response of AMANDA detector to atmospheric muon-neutrinos has been simulated. The neutrino flux, which has its origin from cosmic ray interactions with the atmosphere, induce muons in the vicinity of the detector. These muons will be relativistic and emit Cerenkov photons which can be detected by the optical modules buried in the deep South Pole glacier ice. The aim of the simulations is to predict the trigger rates in the existing detector, as well as in future extensions. The efficiency to detect muons with different angles and energies is also studied. Some of the simulated events have been analysed and it is discussed how the quality of this analysis can be judged. 35 refs, 30 figs.

  9. CNGS Muon Monitors

    CERN Document Server

    Marsili, A; Ferioli, G; Gschwendtner, E; Holzer, E B; Kramer, Daniel; CERN. Geneva. AB Department

    2008-01-01

    The CERN Neutrinos to Gran Sasso (CNGS) beam facility uses two muon detector stations as on-line feed back for the quality control of the neutrino beam. The muon detector stations are assembled in a cross-shaped array to provide the muon intensity and the vertical and horizontal muon profiles. Each station is equipped with 42 ionisation chambers, which are originally designed as Beam Loss Monitors (BLMs) for the Large Hadron Collider(LHC). The response of the muon detectors during the CNGS run 2007 and possible reasons for a non-linear behaviour with respect to the beam intensity are discussed. Results of the CNGS run 2008 are shown: The modifications done during the shutdown 2007/08 were successful and resulted in the expected linear behaviour of the muon detector response.

  10. First trial of the muon acceleration for J-PARC muon g-2/EDM experiment

    Science.gov (United States)

    Kitamura, R.; Otani, M.; Fukao, Y.; Kawamura, N.; Mibe, T.; Miyake, Y.; Shimomura, K.; Kondo, Y.; Hasegawa, K.; Bae, S.; Kim, B.; Razuvaev, G.; Iinuma, H.; Ishida, K.; Saito, N.

    2017-07-01

    Muon acceleration is an important technique in exploring the new frontier of physics. A new measurement of the muon dipole moments is planned in J-PARC using the muon linear accelerator. The low-energy (LE) muon source using the thin metal foil target and beam diagnostic system were developed for the world’s first muon acceleration. Negative muonium ions from the thin metal foil target as the LE muon source was successfully observed. Also the beam profile of the LE positive muon was measured by the LE-dedicated beam profile monitor. The muon acceleration test using a Radio-Frequency Quadrupole linac (RFQ) is being prepared as the first step of the muon accelerator development. In this paper, the latest status of the first muon acceleration test is described.

  11. Unparticles and muon decay

    International Nuclear Information System (INIS)

    Choudhury, Debajyoti; Ghosh, Dilip Kumar; Mamta

    2008-01-01

    Recently Georgi has discussed the possible existence of 'Unparticles' describable by operators having non-integral scaling dimensions. With the interaction of these with the Standard Model particles being constrained only by gauge and Lorentz symmetries, it affords a new source for lepton flavour violation. Current and future muon decay experiments are shown to be very sensitive to such scenarios

  12. New measurements and analysis of high-energy muons in cosmic ray extensive air showers

    International Nuclear Information System (INIS)

    Sarkar, S.K.; Ghose, B.; Murkherjee, N.; Sanyal, S.; Chaudhuri, N.; Chhetri, R.; Basak, D.K.

    1991-01-01

    Cosmic ray air shower structure measurements and measurement of density and energy of air shower muons of a wide energy range simultaneously in individual air showers by two magnet spectrographs are presented. The measured muon densities have been used to compare with some of the previous measurements on muon densities in air showers of nearly the same size. The measured muon densities have also been applied for distinguishing between various interaction models and between light and heavier air shower primaries. In the air shower size range 10 4 -10 6 particles the present measurements do not provide evidence for iron primaries and the different interaction models seem not to be distinguishable by air shower observations. (Author)

  13. Charge exchange of muons in gases

    International Nuclear Information System (INIS)

    Turner, R.E.; Senba, M.

    1983-06-01

    The effects of the charge exchange process on muon spin dynamics have been investigated using a density operator formalism with special interest placed upon the diamagnetic muon and paramagnetic muonium signals observed after thermalization. In the charge exchange region the dynamics of the spin density operator is assumed to be determined by the muonium hyperfine interaction and by electron capture and loss processes for muons. Analytical expressions are obtained for the amplitudes and phases of the diamagnetic muon and paramagnetic muonium signals as a function of the duration of the charge exchange region, tsub(c), which is inversely proportional to the number density of the moderating gas. The theoretical signals exhibit three features which have, as yet, to be experimentally observed, namely: i) that the amplitudes associated with the muonium Larmor frequency and with the hyperfine frequency are not, in general, equal, ii) that all the amplitudes are, in general, damped oscillatory functions of tsub(c) (temperature/pressure) and iii) that phase jumps occur when an amplitude decreases to zero and then increases with falling pressure. Fits to the experimental argon data are discussed in light of the above points

  14. A Highly intense DC muon source, MuSIC and muon CLFV search

    International Nuclear Information System (INIS)

    Hino, Y.; Kuno, Y.; Sato, A.; Sakamoto, H.; Matsumoto, Y.; Tran, N.H.; Hashim, I.H.; Fukuda, M.; Hayashida, Y.; Ogitsu, T.; Yamamoto, A.; Yoshida, M.

    2014-01-01

    MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 10 8 muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion

  15. Measurement of the muon content in air showers at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Veberič Darko

    2016-01-01

    Full Text Available The muon content of extensive air showers produced by ultra-high energy cosmic rays is an observable sensitive to the composition of primary particles and to the properties of hadronic interactions governing the evolution of air-shower cascades. We present different methods for estimation of the number of muons at the ground and the muon production depth. These methods use measurements of the longitudinal, lateral, and temporal distribution of particles in air showers recorded by the detectors of the Pierre Auger Observatory. The results, obtained at about 140 TeV center-of-mass energy for proton primaries, are compared to the predictions of LHC-tuned hadronic-interaction models used in simulations with different primary masses. The models exhibit a deficitin the predicted muon content. The combination of these results with other independent mass composition analyses, such as those involving the depth of shower maximum observablemax, provide additional constraints on hadronic-interaction models for energies beyond the reach of the LHC.

  16. Construction and Test of Muon Drift Tube Chambers for High Counting Rates

    CERN Document Server

    Schwegler, Philipp; Dubbert, Jörg

    2010-01-01

    Since the start of operation of the Large Hadron Collider (LHC) at CERN on 20 November 2009, the instantaneous luminosity is steadily increasing. The muon spectrometer of the ATLAS detector at the LHC is instrumented with trigger and precision tracking chambers in a toroidal magnetic field. Monitored Drift-Tube (MDT) chambers are employed as precision tracking chambers, complemented by Cathode Strip Chambers (CSC) in the very forward region where the background counting rate due to neutrons and γ's produced in shielding material and detector components is too high for the MDT chambers. After several upgrades of the CERN accelerator system over the coming decade, the instantaneous luminosity is expected to be raised to about five times the LHC design luminosity. This necessitates replacement of the muon chambers in the regions with the highest background radiation rates in the so-called Small Wheels, which constitute the innermost layers of the muon spectrometer end-caps, by new detectors with higher rate cap...

  17. 20 years of cosmic muons research performed in IFIN-HH

    Energy Technology Data Exchange (ETDEWEB)

    Mitrica, Bogdan [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest, P.O.B.MG-6 (Romania)

    2012-11-20

    During the last two decades a modern direction in particle physics research has been developed in IFIN-HH Bucharest, Romania. The history started with the WILLI detector built in IFIN-HH Bucharest in collaboration with KIT Karlsruhe (formerly Forschungszentrum Karlsruhe). The detector was designed for measurements of the low energy muon charge ratio (< 1GeV) based on a delayed coincidence method, measuring the decay time of the muons stopped in the detector: the positive muons decay freely, but the negative muons are captured in the atom thus creating muonic atoms and decay depending on the nature of the host atom. In a first configuration, the WILLI detector was placed in a fixed position for measuring vertical muons. Further WILLI has been transformed in a rotatable device which allows directional measurements of muon charge ratio and muon flux. The results exhibit a pronounced azimuthal asymmetry (East-West effect) due to the different in fluence of the geomagnetic field on the trajectories of positive and negative muons in air. In parallel, flux measurement, taking into account muon events with nergies > 0.4GeV, show a diurnal modulation of the muon flux. The analysis of the muon events for energies < 0.6GeV reveals an aperiodic variation of the muon flux. A new detection system performing coincidence measurements between the WILLI calorimeter and a small array of 12 scintillators plates has been installed in IFIN-HH starting from the autumn of 2010. The aim of the system is to investigate muon charge ratio from individual EAS by using the mini-array as trigger for the WILLI calorimeter. Such experimental studies could provide detailed information on hadronic interaction models and primary cosmic ray composition at energies around 10{sup 15}eV. Simulation studies and preliminary experimental tests, regarding the performances of the mini-array, have been performed using H and Fe primaries, with energies in a range 10{sup 13}eV - 10{sup 15}eV. The results show

  18. J-PARC and the prospective neutron sciences

    International Nuclear Information System (INIS)

    Masatoshi Arai

    2009-01-01

    Full text: J-PARC is an interdisciplinary facility with high power proton accelerator complex containing particle physics, nuclear physics, muon science and neutron science facilities. After 8 years construction, she is almost ready to open for users. Materials-Life Science Facility (MLF) of J-PARC is composed from very intensive pulsed neutron and muon facilities at 1 MW of the accelerated proton power. The neutron peak flux will be as high as several hundred times of existing high flux reactors. Therefore, it is highly expected that new sciences will be explored by J-PARC, MLF. The first neutrons was already produced in the last May. The MLF facility has 23 neutron beam ports. About 12 instruments are under commissioning or construction. Out of four instruments are already opened for users since December, 2008.. In the commissioning High Resolution Powder Diffractometer showed the world highest resolution d/d=0.04% as was designed. Other instruments, high intensity powder diffractometer, protein crystal diffractometer, residual stress analysis diffractometer, high intensity chopper spectrometer, confirmed expected intensity and spectrum from neutron beam line. By the end of March, a cold neutron chopper spectrometer will also come on line. Those instruments are taking advantages with optical devices for neutron transport to realize very high flux at sample position. By taking high performances of neutron moderators of MLF, the instruments will realize the world class resolution and high intensity. Ranging from Bio-science, material science, engineering, industrial use of neutrons to fundamental physics, we are exciting to see cutting-edge sciences with great anticipation to be produced from J-PARC, MLF. (author)

  19. Fermilab Muon g-2 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gorringe, Tim [Kentucky U.

    2017-12-22

    The Fermilab muon g-2 experiment will measure the muon anomalous magnetic moment $a_{\\mu}$ to 140 ppb – a four-fold improvement over the earlier Brookhaven experiment. The measurement of $a_{\\mu}$ is well known as a unique test of the standard model with broad sensitivity to new interactions, particles and phenomena. The goal of 140 ppb is commensurate with ongoing improvements in the SM prediction of the anomalous moment and addresses the longstanding 3.5$\\sigma$ discrepancy between the BNL result and the SM prediction. In this article I discuss the physics motivation and experimental technique for measuring $a_{\\mu}$, and the current status and the future work for the project.

  20. Fermilab muon g-2 experiment

    Science.gov (United States)

    Gorringe, Tim

    2018-05-01

    The Fermilab muon g-2 experiment will measure the muon anomalous magnetic moment aμ to 140 ppb - a four-fold improvement over the earlier Brookhaven experiment. The measurement of aμ is well known as a unique test of the standard model with broad sensitivity to new interactions, particles and phenomena. The goal of 140 ppb is commensurate with ongoing improvements in the SM prediction of the anomalous moment and addresses the longstanding 3.5σ discrepancy between the BNL result and the SM prediction. In this article I discuss the physics motivation and experimental technique for measuring aμ, and the current status and the future work for the project.

  1. A Highly intense DC muon source, MuSIC and muon CLFV search

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Y.; Kuno, Y.; Sato, A. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Sakamoto, H. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Research Center of Nuclear Physics, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Matsumoto, Y.; Tran, N.H.; Hashim, I.H. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Fukuda, M.; Hayashida, Y. [Research Center of Nuclear Physics, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Ogitsu, T.; Yamamoto, A.; Yoshida, M. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-08-15

    MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 10{sup 8} muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion.

  2. ATLAS muon detector

    CERN Multimedia

    Muon detectors from the outer layer of the ATLAS experiment at the Large Hadron Collider. Over a million individual detectors combine to make up the outer layer of ATLAS. All of this is exclusively to track the muons, the only detectable particles to make it out so far from the collision point. How the muon’s path curves in the magnetic field depends on how fast it is travelling. A fast muon curves only a very little, a slower one curves a lot. Together with the calorimeters, the muon detectors play an essential role in deciding which collisions to store and which to ignore. Certain signals from muons are a sure sign of exciting discoveries. To make sure the data from these collisions is not lost, some of the muon detectors react very quickly and trigger the electronics to record. The other detectors take a little longer, but are much more precise. Their job is to measure exactly where the muons have passed, calculating the curvature of their tracks in the magnetic field to the nearest five hundredths of a ...

  3. Muon Intensity Increase by Wedge Absorbers for Low-E Muon Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. V. [Fermilab; Stratakis, D. [Fermilab; Bradley, J. [Fermilab

    2017-09-01

    Low energy muon experiments such as mu2e and g-2 have a limited energy spread acceptance. Following techniques developed in muon cooling studies and the MICE experiment, the number of muons within the desired energy spread can be increased by the matched use of wedge absorbers. More generally, the phase space of muon beams can be manipulated by absorbers in beam transport lines. Applications with simulation results are presented.

  4. Time distribution of muon pairs detected at 40 m. w. e

    Energy Technology Data Exchange (ETDEWEB)

    Badino, G [CNR, Istituto di Cosmo-geofisica, Turin, Italy; Fulgione, W [CNR, Istituto di Cosmo-geofisica, Turin; Cagliari, Universita, Cagliari, Italy); Periale, L [CNR, Istituto di Cosmo-geofisica; Torino, Universita, Turin, Italy)

    1982-08-21

    Experimental results are reported on the distribution of arrival time intervals between pairs of atmospheric muons detected at 40 m.w.e. underground and generated in interactions of primary nuclei with average energy about 600 GeV. A total number of 72,220 single muons was recorded with a total frequency of 7.1 muons per second, in good agreement with previous measurements at the same depth 2 x 10 to the -6th random coincidences per second were obtained, a negligible value. The temporal analysis showed very good agreement between data and stochastic predictions. It is concluded that the overabundance of short-delayed cosmic ray particles, if real at higher energies, is not present either at the lower energies of single muons or at the intermediate energies of muon pairs detected in the experiment.

  5. Studies on muon showers underground

    Energy Technology Data Exchange (ETDEWEB)

    Bergamasco, L; Castagnoli, C; Dardo, M; D' Ettorre Piazzoli, B; Mannocchi, G [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Picchi, P; Visentin, R [Comitato Nazionale per l' Energia Nucleare, Frascati (Italy). Laboratori Nazionali di Frascati; Sitte, K [Freiburg Univ. (Germany, F.R.). Fakultaet fuer Physik

    1976-08-21

    The 4 m/sup 2/ spark chamber telescope array of the Mt. Cappuccini Laboratory, Torino, At 40 m w.e. underground was operated for about 830 h recording muon showers. The data were analysed with respect to the multiplicity distribution of the shower particles, and to local interactions initiated in the chamber absorbers. Regarding the multiplicity analysis a semi-empirical expression for the likely shower size dependence of a structure function of the analytical form proposed by Vernov et al., was derived and applied with systematically varied parameters. The comparison of the observed rates of multiples with those calculated with a variety of parameters showed that a satisfactory agreement can be attained only if one admits a variation with the shower size of the parameters, and an enhanced muon/electron ratio at the lower primary energies, possibly indicative of an increased abundance of primary heavy nuclei. This would conform with the idea of a two-component primary composition in which a pulsar-produced fraction, enriched in heavy nuclei, dominated only at medium energies. The records on multiplicative interactions, and on large-angle scattering, were analysed by comparing their rates observed for shower particles with those found in single-muon check runs. The results are consistent with the assumption that all shower particle interactions are electromagnetic in nature, and that nonconventional components like mandelas are absent. Only making extreme allowances for statistical fluctuations the data can be made compatible with a mandela flux as large as that suggested by Baruch et al., provided that the mandela attenuation length is less than 1 500g/cm/sup 2/ of rock.

  6. Studies on muon showers underground

    International Nuclear Information System (INIS)

    Bergamasco, L.; Castagnoli, C.; Dardo, M.; D'Ettorre Piazzoli, B.; Mannocchi, G.; Picchi, P.; Visentin, R.; Sitte, K.

    1976-01-01

    The 4 m 2 spark chamber telescope array of the Mt. Cappuccini Laboratory, Torino, At 40 m w.e. underground was operated for about 830 h recording muon showers. The data were analysed with respect to the multiplicity distribution of the shower particles, adn to local interactions initiated in the chamber absorbers. Regarding the multiplicity analysis a semi-empirical expression for the likely shower size dependence of a structure function of the analytical form proposed by Vernov et al., was derived and applied with systematically varied parameters. The comparison of the observed rates of multiples with those calculated with a variety of parameters showed that a satisfactory agreement can be attained only if one admits a variation with the shower size of the parameters, and an enhanced muon/electron ratio at the lower primary energies, possibly indicative of an increased abundance of primary heavy nuclei. This would conform with the idea of a two-component primary composition in which a pulsar-produced fraction, enriched in heavy nuclei, dominated only at medium energies. The records on multiplicative interactions, and on large-angle scattering, were analysed by comparing their rates observed for shower particles with those found in single-muon check runs. The results are consistent with the assumption that all shower particle interactions are electromagnetic in nature, and that nonconventional components like mandelas are absent. Only making extreme allowances for statistical fluctuations the data can be made compatible with a mandela flux as large as that suggested by Baruch et al., provided that the mandela attenuation length is less than 1 500g/cm 2 of rock

  7. Recent LAMPF [Los Alamos Meson Physics Facility] research using muons

    International Nuclear Information System (INIS)

    Bradbury, J.N.

    1987-01-01

    In addition to the core programs in nuclear and particle physics, diverse experiments have been carried out that address interdisciplinary and applied topics at the Los Alamos Meson Physics Facility (LAMPF). These include muon-spin-relaxation experiments to study magnetic dynamics in spin glasses and electronic structure in heavy-fermion superconductors; muon channeling experiments to provide information on pion stopping sites in crystals; tomographic density reconstruction studies using proton energy loss; and radiation-effects experiments to explore microstructure evolution and to characterize materials for fusion devices and high-intensity accelerators. Finally, the catalysis of the d-t fusion reaction using negative muons has been extensively investigated with some surprising results including a stronger than linear dependence of the mesomolecular formation rate on target density and the observation of 150 fusions per muon under certain conditions. Recent results in those programs involving pions and muons interacting with matter are discussed

  8. Muon number nonconservation in gauge theories

    International Nuclear Information System (INIS)

    Cheng, T.P.; Li, L.F.

    1977-01-01

    The question of separate conservation of muon and electron number is considered in the context of unified gauge theories of weak and electromagnetic interactions. Theories with heavy neutral leptons, Higgs scalars, and doubly charged heavy leptons are discussed. 28 references

  9. Theoretical models for the muon spectrum at sea level

    International Nuclear Information System (INIS)

    Abdel-Monem, M.S.; Benbrook, J.R.; Osborne, A.R.; Sheldon, W.R.

    1975-01-01

    The absolute vertical cosmic ray muon spectrum is investigated theoretically. Models of high energy interactions (namely, Maeda-Cantrell (MC), Constant Energy (CE), Cocconi-Koester-Perkins (CKP) and Scaling Models) are used to calculate the spectrum of cosmic ray muons at sea level. A comparison is made between the measured spectrum and that predicted from each of the four theoretical models. It is concluded that the recently available measured muon differential intensities agree with the scaling model for energies less than 100 GeV and with the CKP model for energies greater than 200 GeV. The measured differential intensities (Abdel-Monem et al.) agree with scaling. (orig.) [de

  10. Unparticles and muon decay

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Debajyoti [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Ghosh, Dilip Kumar [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India)], E-mail: dkghosh@physics.du.ac.in; Mamta [Department of Physics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110 007 (India)

    2008-01-03

    Recently Georgi has discussed the possible existence of 'Unparticles' describable by operators having non-integral scaling dimensions. With the interaction of these with the Standard Model particles being constrained only by gauge and Lorentz symmetries, it affords a new source for lepton flavour violation. Current and future muon decay experiments are shown to be very sensitive to such scenarios.

  11. The Atomic Mass Dependence of Massive Muon Pair Production in 225 GeV/c $\\pi$ - Nucleus Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, Morris L. [Chicago U.

    1984-03-01

    The production of massive muon pairs in 225 GeV/c $\\pi^-$-nucleus interactions has been studied for four nuclear targets. The dependence of the integrated cross section on atomic mass A was measured by comparing the relative cross sections for the targets. If one assumes that the cross section is proportional to $A^{\\alpha}$, a value of a= 1.00±0.06 for muon pair masses between 4.0 GeV/$c^2$ and 8.5 GeV/$c^2$ was obtained. The Drell-Yan model predicts an additional dependence of the cross section on the proton fraction Z/A. If one parametizes the integrated cross I section as a(Z/A)$A^{\\alpha}$ where $\\sigma$(Z/A) is a function of the proton fraction that includes the effects of the Drell-Yan model, Fermi Motion, and secondary pion production, a value of $\\alpha$ = 0.97±0.06 was obtained. The dependence of the muon pair transverse momentum distribution on nuclear size was also investigated. The second moment of the distribution <$P^2_T$> was found to be consistent with being independent of nuclear size. If the dependence of <$P^2_T$> on nuclear size is parametized as <$P^2_T$> = a + b $A^{1/3}$ the coefficient b was found to be less than 0.015 $GeV^2$/$c^2$ with 90% confidence.

  12. Study by polarized muon

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu

    1977-01-01

    Experiments by using polarized muon beam are reported. The experiments were performed at Berkeley, U.S.A., and at Vancouver, Canada. The muon spin rotation is a useful method for the study of the spin polarization of conductive electrons in paramagnetic Pd metal. The muon Larmor frequency and the relaxation time can be obtained by measuring the time distribution of decay electrons of muon-electron process. The anomalous depolarization of negative muon spin rotation in the transitional metal was seen. The circular polarization of the negative muon X-ray was measured to make clear this phenomena. The experimental results show that the anomalous depolarization is caused at the 1-S-1/2 state. For the purpose to obtain the strong polarization of negative muon, a method of artificial polarization is proposed, and the test experiments are in progress. The study of the hyperfine structure of mu-mesic atoms is proposed. The muon capture rate was studied systematically. (Kato, T.)

  13. The pion (muon) energy production cost in muon catalyzed fusion

    International Nuclear Information System (INIS)

    Fadeev, N.G.; Solov'ev, M.I.

    1995-01-01

    The article presents the main steps in the history of the study on the muon catalysis of nuclear fusion. The practical application of the muon catalysis phenomenon to obtain the energy gain is briefly discussed. The details of the problem to produce pion (muon) yield with minimal energy expenses have been considered. 31 refs., 4 tabs

  14. A generalized muon trajectory estimation algorithm with energy loss for application to muon tomography

    Science.gov (United States)

    Chatzidakis, Stylianos; Liu, Zhengzhi; Hayward, Jason P.; Scaglione, John M.

    2018-03-01

    This work presents a generalized muon trajectory estimation algorithm to estimate the path of a muon in either uniform or nonuniform media. The use of cosmic ray muons in nuclear nonproliferation and safeguard verification applications has recently gained attention due to the non-intrusive and passive nature of the inspection, penetrating capabilities, as well as recent advances in detectors that measure position and direction of the individual muons before and after traversing the imaged object. However, muon image reconstruction techniques are limited in resolution due to low muon flux and the effects of multiple Coulomb scattering (MCS). Current reconstruction algorithms, e.g., point of closest approach (PoCA) or straight-line path (SLP), rely on overly simple assumptions for muon path estimation through the imaged object. For robust muon tomography, efficient and flexible physics-based algorithms are needed to model the MCS process and accurately estimate the most probable trajectory of a muon as it traverses an object. In the present work, the use of a Bayesian framework and a Gaussian approximation of MCS is explored for estimation of the most likely path of a cosmic ray muon traversing uniform or nonuniform media and undergoing MCS. The algorithm's precision is compared to Monte Carlo simulated muon trajectories. It was found that the algorithm is expected to be able to predict muon tracks to less than 1.5 mm root mean square (RMS) for 0.5 GeV muons and 0.25 mm RMS for 3 GeV muons, a 50% improvement compared to SLP and 15% improvement when compared to PoCA. Further, a 30% increase in useful muon flux was observed relative to PoCA. Muon track prediction improved for higher muon energies or smaller penetration depth where energy loss is not significant. The effect of energy loss due to ionization is investigated, and a linear energy loss relation that is easy to use is proposed.

  15. SSC muon detector group report

    International Nuclear Information System (INIS)

    Carlsmith, D.; Groom, D.; Hedin, D.; Kirk, T.; Ohsugi, T.; Reeder, D.; Rosner, J.; Wojcicki, S.

    1986-01-01

    We report here on results from the Muon Detector Group which met to discuss aspects of muon detection for the reference 4π detector models put forward for evaluation at the Snowmass 1986 Summer Study. We report on: suitable overall detector geometry; muon energy loss mechanisms; muon orbit determination; muon momentum and angle measurement resolution; raw muon rates and trigger concepts; plus we identify SSC physics for which muon detection will play a significant role. We conclude that muon detection at SSC energies and luminosities is feasible and will play an important role in the evolution of physics at the SSC

  16. SSC muon detector group report

    Energy Technology Data Exchange (ETDEWEB)

    Carlsmith, D.; Groom, D.; Hedin, D.; Kirk, T.; Ohsugi, T.; Reeder, D.; Rosner, J.; Wojcicki, S.

    1986-01-01

    We report here on results from the Muon Detector Group which met to discuss aspects of muon detection for the reference 4..pi.. detector models put forward for evaluation at the Snowmass 1986 Summer Study. We report on: suitable overall detector geometry; muon energy loss mechanisms; muon orbit determination; muon momentum and angle measurement resolution; raw muon rates and trigger concepts; plus we identify SSC physics for which muon detection will play a significant role. We conclude that muon detection at SSC energies and luminosities is feasible and will play an important role in the evolution of physics at the SSC.

  17. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2011-01-01

    A new set of muon alignment constants was approved in August. The relative position between muon chambers is essentially unchanged, indicating good detector stability. The main changes concern the global positioning of the barrel and of the endcap rings to match the new Tracker geometry. Detailed studies of the differences between track-based and optical alignment of DTs have proven to be a valuable tool for constraining Tracker alignment weak modes, and this information is now being used as part of the alignment procedure. In addition to the “split-cosmic” analysis used to investigate the muon momentum resolution at high momentum, a new procedure based on reconstructing the invariant mass of di-muons from boosted Zs is under development. Both procedures show an improvement in the momentum precision of Global Muons with respect to Tracker-only Muons. Recent developments in track-based alignment include a better treatment of the tails of residual distributions and accounting for correla...

  18. A plastic scintillator-based muon tomography system with an integrated muon spectrometer

    International Nuclear Information System (INIS)

    Anghel, V.; Armitage, J.; Baig, F.; Boniface, K.; Boudjemline, K.; Bueno, J.; Charles, E.; Drouin, P-L.; Erlandson, A.; Gallant, G.; Gazit, R.; Godin, D.; Golovko, V.V.; Howard, C.; Hydomako, R.

    2015-01-01

    A muon scattering tomography system which uses extruded plastic scintillator bars for muon tracking and a dedicated muon spectrometer that measures scattering through steel slabs has been constructed and successfully tested. The atmospheric muon detection efficiency is measured to be 97% per plane on average and the average intrinsic hit resolution is 2.5 mm. In addition to creating a variety of three-dimensional images of objects of interest, a quantitative study has been carried out to investigate the impact of including muon momentum measurements when attempting to detect high-density, high-Z material. As expected, the addition of momentum information improves the performance of the system. For a fixed data-taking time of 60 s and a fixed false positive fraction, the probability to detect a target increases when momentum information is used. This is the first demonstration of the use of muon momentum information from dedicated spectrometer measurements in muon scattering tomography

  19. A plastic scintillator-based muon tomography system with an integrated muon spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Anghel, V. [Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Armitage, J. [Department of Physics, Room 3302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6 (Canada); Baig, F.; Boniface, K. [Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Boudjemline, K. [Department of Physics, Room 3302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6 (Canada); Bueno, J. [Advanced Applied Physics Solutions Inc., 4004 Wesbrook Mall, Vancouver, Canada V6T 2A3 (Canada); Charles, E. [Canada Border Services Agency, 79 Bentley Avenue, Ottawa, Canada K1A 0L8 (Canada); Drouin, P-L. [Defence Research and Development Canada, 3701 Carling Avenue, Ottawa, Canada K1A 0Z4 (Canada); Erlandson, A., E-mail: Andrew.Erlandson@cnl.ca [Department of Physics, Room 3302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6 (Canada); Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Gallant, G. [Canada Border Services Agency, 79 Bentley Avenue, Ottawa, Canada K1A 0L8 (Canada); Gazit, R. [Advanced Applied Physics Solutions Inc., 4004 Wesbrook Mall, Vancouver, Canada V6T 2A3 (Canada); Godin, D.; Golovko, V.V. [Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Howard, C. [Defence Research and Development Canada, 3701 Carling Avenue, Ottawa, Canada K1A 0Z4 (Canada); Hydomako, R. [Advanced Applied Physics Solutions Inc., 4004 Wesbrook Mall, Vancouver, Canada V6T 2A3 (Canada); Defence Research and Development Canada, 3701 Carling Avenue, Ottawa, Canada K1A 0Z4 (Canada); and others

    2015-10-21

    A muon scattering tomography system which uses extruded plastic scintillator bars for muon tracking and a dedicated muon spectrometer that measures scattering through steel slabs has been constructed and successfully tested. The atmospheric muon detection efficiency is measured to be 97% per plane on average and the average intrinsic hit resolution is 2.5 mm. In addition to creating a variety of three-dimensional images of objects of interest, a quantitative study has been carried out to investigate the impact of including muon momentum measurements when attempting to detect high-density, high-Z material. As expected, the addition of momentum information improves the performance of the system. For a fixed data-taking time of 60 s and a fixed false positive fraction, the probability to detect a target increases when momentum information is used. This is the first demonstration of the use of muon momentum information from dedicated spectrometer measurements in muon scattering tomography.

  20. A plastic scintillator-based muon tomography system with an integrated muon spectrometer

    Science.gov (United States)

    Anghel, V.; Armitage, J.; Baig, F.; Boniface, K.; Boudjemline, K.; Bueno, J.; Charles, E.; Drouin, P.-L.; Erlandson, A.; Gallant, G.; Gazit, R.; Godin, D.; Golovko, V. V.; Howard, C.; Hydomako, R.; Jewett, C.; Jonkmans, G.; Liu, Z.; Robichaud, A.; Stocki, T. J.; Thompson, M.; Waller, D.

    2015-10-01

    A muon scattering tomography system which uses extruded plastic scintillator bars for muon tracking and a dedicated muon spectrometer that measures scattering through steel slabs has been constructed and successfully tested. The atmospheric muon detection efficiency is measured to be 97% per plane on average and the average intrinsic hit resolution is 2.5 mm. In addition to creating a variety of three-dimensional images of objects of interest, a quantitative study has been carried out to investigate the impact of including muon momentum measurements when attempting to detect high-density, high-Z material. As expected, the addition of momentum information improves the performance of the system. For a fixed data-taking time of 60 s and a fixed false positive fraction, the probability to detect a target increases when momentum information is used. This is the first demonstration of the use of muon momentum information from dedicated spectrometer measurements in muon scattering tomography.

  1. Neutron interactions with biological tissue. Final report

    International Nuclear Information System (INIS)

    1998-01-01

    This program was aimed at creating a quantitative physical description, at the micrometer and nanometer levels, of the physical interactions of neutrons with tissue through the ejected secondary charged particles. The authors used theoretical calculations whose input includes neutron cross section data; range, stopping power, ion yield, and straggling information; and geometrical properties. Outputs are initial and slowing-down spectra of charged particles, kerma factors, average values of quality factors, microdosimetric spectra, and integral microdosimetric parameters such as bar y F , bar y D , y * . Since it has become apparent that nanometer site sizes are also relevant to radiobiological effects, the calculations of event size spectra and their parameters were extended to these smaller diameters. This information is basic to radiological physics, radiation biology, radiation protection of workers, and standards for neutron dose measurement

  2. Measurement of low mass muon pairs in sulphur-nucleus collisions with an optimized HELIOS muon spectrometer

    CERN Multimedia

    2002-01-01

    Dileptons provide a unique and specific tool to detect collective behaviour and to probe for signs of quark gluon plasma formation in nucleus-nucleus interactions. In particular, in the low transverse mass region, below the rho meson, dimuons probe the thermal nature of the interaction while their multiplicity dependence can indicate nuclear volume effects. \\\\\\\\This experiment uses the (almost) unchanged HELIOS muon spectrometer and a combination of a new carefully designed light absorber, at an optimized distance from the target, and multiplicity measurements provided by new Silicon ring detectors, covering more than the muon rapidity acceptance. It intends to improve in quality and quantity on the low mass, low $p_{T}$ dimuon signal already observed in the NA34/2 experiment. The wide range of rapidity from 3.5 to 6.0 will enable us to explore the rapidity dependence of the signal from high energy density at nearly central rapidity up to very forward rapidities. \\\\\\\\The commissioning of the new apparatus (...

  3. Quasi-isochronous muon collection channels

    Energy Technology Data Exchange (ETDEWEB)

    Ankenbrandt, Charles M. [Muons, Inc., Batavia, IL (United States); Neuffer, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Johnson, Rolland P. [Muons, Inc., Batavia, IL (United States)

    2015-04-26

    Intense muon beams have many potential commercial and scientific applications, ranging from low-energy investigations of the basic properties of matter using spin resonance to large energy-frontier muon colliders. However, muons originate from a tertiary process that produces a diffuse swarm. To make useful beams, the swarm must be rapidly captured and cooled before the muons decay. In this STTR project a promising new concept for the collection and cooling of muon beams to increase their intensity and reduce their emittances was investigated, namely, the use of a nearly isochronous helical cooling channel (HCC) to facilitate capture of the muons into RF bunches. The muon beam can then be cooled quickly and coalesced efficiently to optimize the luminosity of a muon collider, or could provide compressed muon beams for other applications. Optimal ways to integrate such a subsystem into the rest of a muon collection and cooling system, for collider and other applications, were developed by analysis and simulation. The application of quasi-isochronous helical cooling channels (QIHCC) for RF capture of muon beams was developed. Innovative design concepts for a channel incorporating straight solenoids, a matching section, and an HCC, including RF and absorber, were developed, and its subsystems were simulated. Additionally, a procedure that uses an HCC to combine bunches for a muon collider was invented and simulated. Difficult design aspects such as matching sections between subsystems and intensity-dependent effects were addressed. The bunch recombination procedure was developed into a complete design with 3-D simulations. Bright muon beams are needed for many commercial and scientific reasons. Potential commercial applications include low-dose radiography, muon catalyzed fusion, and the use of muon beams to screen cargo containers for homeland security. Scientific uses include low energy beams for rare process searches, muon spin resonance applications, muon beams for

  4. Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data

    International Nuclear Information System (INIS)

    Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.; Sanuki, T.

    2007-01-01

    Using the 'modified DPMJET-III' model explained in the previous paper [T. Sanuki et al., preceding Article, Phys. Rev. D 75, 043005 (2007).], we calculate the atmospheric neutrino flux. The calculation scheme is almost the same as HKKM04 [M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 70, 043008 (2004).], but the usage of the 'virtual detector' is improved to reduce the error due to it. Then we study the uncertainty of the calculated atmospheric neutrino flux summarizing the uncertainties of individual components of the simulation. The uncertainty of K-production in the interaction model is estimated using other interaction models: FLUKA'97 and FRITIOF 7.02, and modifying them so that they also reproduce the atmospheric muon flux data correctly. The uncertainties of the flux ratio and zenith angle dependence of the atmospheric neutrino flux are also studied

  5. Muon identification with Muon Telescope Detector at the STAR experiment

    Science.gov (United States)

    Huang, T. C.; Ma, R.; Huang, B.; Huang, X.; Ruan, L.; Todoroki, T.; Xu, Z.; Yang, C.; Yang, S.; Yang, Q.; Yang, Y.; Zha, W.

    2016-10-01

    The Muon Telescope Detector (MTD) is a newly installed detector in the STAR experiment. It provides an excellent opportunity to study heavy quarkonium physics using the dimuon channel in heavy ion collisions. In this paper, we report the muon identification performance for the MTD using proton-proton collisions at √{ s }=500 GeV with various methods. The result using the Likelihood Ratio method shows that the muon identification efficiency can reach up to ∼90% for muons with transverse momenta greater than 3 GeV/c and the significance of the J / ψ signal is improved by a factor of 2 compared to using the basic selection.

  6. Strong dynamics at the muon collider: Working group report

    International Nuclear Information System (INIS)

    Bhat, P.C.; Eichten, E.

    1998-03-01

    New strong dynamics at the energy scale ∼ 1 TeV is an attractive and elegant theoretical ansatz for the origin of electroweak symmetry breaking. We review here, the theoretical models for strong dynamics, particularly, technicolor theories and their low energy signatures. We emphasize that the fantastic beam energy resolution (σ E /E ∼ 10 -4 ) expected at the first muon collider (√s=100-500 GeV) allows the possibility of resolving some extraordinarily narrow technihadron resonances and, Higgs-like techniscalars produced in the s-channel. Investigating indirect probes for strong dynamics such as search for muon compositeness, we find that the muon colliders provide unparalleled reaches. A big muon collider (√s=3-4 TeV) would be a remarkable facility to study heavy technicolor particles such as the topcolor Z', to probe the dynamics underlying fermion masses and mixings and to fully explore the strongly interacting electroweak sector

  7. Vertical muon intensity measured with MACRO at the Gran Sasso laboratory

    International Nuclear Information System (INIS)

    Ambrosio, M.; Antolini, R.; Auriemma, G.; Baker, R.; Baldini, A.; Barbarino, G.C.; Barish, B.C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bower, C.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Castellano, M.; Cecchini, S.; Cei, F.; Celio, P.; Chiarella, V.; Corona, A.; Coutu, S.; De Cataldo, G.; Dekhissi, H.; De Marzo, C.; De Mitri, I.; De Vincenzi, M.; Di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Grassi, M.; Grillo, A.; Guarino, F.; Guarnaccia, P.; Gustavino, C.; Habig, A.; Hanson, K.; Hawthorne, A.; Heinz, R.; Hong, J.T.; Iarocci, E.; Katsavounidis, E.; Kearns, E.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D.S.; Lipari, P.; Liu, R.; Longley, N.P.; Longo, M.J.; Lu, Y.; Ludlam, G.; Mancarella, G.; Mandrioli, G.; Margiotta-Neri, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M.N.; Michael, D.G.; Mikheyev, S.; Miller, L.; Mittelbrunn, M.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolo, D.; Nolty, R.; Okada, C.; Orth, C.; Osteria, G.; Palamara, O.; Parlati, S.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C.W.; Petrera, S.; Pignatano, N.D.; Pistilli, P.; Popa, V.; Raino, A.; Reynoldson, J.; Ronga, F.; Sanzgiri, A.; Sartogo, F.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra-Lugaresi, P.; Severi, M.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J.L.; Sulak, L.R.; Surdo, A.; Tarle, G.; Tassoni, F.; Togo, V.; Valente, V.; Walter, C.W.; Webb, R.

    1995-01-01

    The vertical underground muon intensity has been measured in the slant depth range 3200--7000 hg cm -2 (standard rock) with the completed lower part of the MACRO detector at the Gran Sasso laboratory, using a large sample of data. These observations are used to compute the surface muon flux and the primary ''all-nucleon'' spectrum. An analysis of systematic uncertainties introduced by the interaction models in the atmosphere and the underground propagation of muons is presented. A comparison of our results with published data is also presented

  8. Development of Muon Drift-Tube Detectors for High-Luminosity Upgrades of the Large Hadron Collider

    CERN Document Server

    Bittner, B; Kortner, O.; Kroha, H.; Legger, F.; Richter, R.; Biebel, O.; Engl, A.; Hertenberger, R.; Rauscher, F.

    2016-01-01

    The muon detectors of the experiments at the Large Hadron Collider (LHC) have to cope with unprecedentedly high neutron and gamma ray background rates. In the forward regions of the muon spectrometer of the ATLAS detector, for instance, counting rates of 1.7 kHz/square cm are reached at the LHC design luminosity. For high-luminosity upgrades of the LHC, up to 10 times higher background rates are expected which require replacement of the muon chambers in the critical detector regions. Tests at the CERN Gamma Irradiation Facility showed that drift-tube detectors with 15 mm diameter aluminum tubes operated with Ar:CO2 (93:7) gas at 3 bar and a maximum drift time of about 200 ns provide e?cient and high-resolution muon tracking up to the highest expected rates. For 15 mm tube diameter, space charge e?ects deteriorating the spatial resolution at high rates are strongly suppressed. The sense wires have to be positioned in the chamber with an accuracy of better than 50 ?micons in order to achieve the desired spatial...

  9. He-4 fast neutron detectors in nuclear security applications

    International Nuclear Information System (INIS)

    Murer, D. E.

    2014-01-01

    This work presents studies of "4He fast neutron detectors for nuclear security applications. Such devices are high pressure gas scintillation detectors, sensitive to neutrons in the energy range of fission sources. First, an introduction to the scope of the intended application is given. This is followed by a description of all components relevant to the operation of the detector. The next chapter presents studies of various characteristics of the neutron detector, among them properties of its scintillation response, differences between neutron and gamma interactions and effects of the light collection process. The results of the detector characterization are used to develop neutron gamma discrimination methods. These methods are put to the test using measurements with a high gamma flux, and the results are compared to performance requirements of Radiation Portal Monitors. Background neutron measurements are presented next. Measured neutron rates are compared to values published in scientific literature. The fluctuation of the background count rate was studied, and the contribution of muons evaluated. Two applications of the detectors in the field of nuclear security are discussed in the last two chapters. The first one is a novel method to measure the plutonium mass in a container filled with Mixed Oxide Fuel. The last chapter presents the development of a Radiation Portal Monitor which, in addition to neutron and gamma counting, exploits time correlation to detect threats such as plutonium and "6"0Co. (author)

  10. He-4 fast neutron detectors in nuclear security applications

    Energy Technology Data Exchange (ETDEWEB)

    Murer, D. E.

    2014-07-01

    This work presents studies of {sup 4}He fast neutron detectors for nuclear security applications. Such devices are high pressure gas scintillation detectors, sensitive to neutrons in the energy range of fission sources. First, an introduction to the scope of the intended application is given. This is followed by a description of all components relevant to the operation of the detector. The next chapter presents studies of various characteristics of the neutron detector, among them properties of its scintillation response, differences between neutron and gamma interactions and effects of the light collection process. The results of the detector characterization are used to develop neutron gamma discrimination methods. These methods are put to the test using measurements with a high gamma flux, and the results are compared to performance requirements of Radiation Portal Monitors. Background neutron measurements are presented next. Measured neutron rates are compared to values published in scientific literature. The fluctuation of the background count rate was studied, and the contribution of muons evaluated. Two applications of the detectors in the field of nuclear security are discussed in the last two chapters. The first one is a novel method to measure the plutonium mass in a container filled with Mixed Oxide Fuel. The last chapter presents the development of a Radiation Portal Monitor which, in addition to neutron and gamma counting, exploits time correlation to detect threats such as plutonium and {sup 60}Co. (author)

  11. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Gervasio Gomez

    2012-01-01

      The new alignment for the DT chambers has been successfully used in physics analysis starting with the 52X Global Tag. The remaining main areas of development over the next few months will be preparing a new track-based CSC alignment and producing realistic APEs (alignment position errors) and MC misalignment scenarios to match the latest muon alignment constants. Work on these items has been delayed from the intended timeline, mostly due to a large involvement of the muon alignment man-power in physics analyses over the first half of this year. As CMS keeps probing higher and higher energies, special attention must be paid to the reconstruction of very-high-energy muons. Recent muon POG reports from mid-June show a φ-dependence in curvature bias in Monte Carlo samples. This bias is observed already at the tracker level, where it is constant with muon pT, while it grows with pT as muon chamber information is added to the tracks. Similar studies show a much smaller effect in data, at le...

  12. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2012-01-01

      A new muon alignment has been produced for 2012 A+B data reconstruction. It uses the latest Tracker alignment and single-muon data samples to align both DTs and CSCs. Physics validation has been performed and shows a modest improvement in stand-alone muon momentum resolution in the barrel, where the alignment is essentially unchanged from the previous version. The reference-target track-based algorithm using only collision muons is employed for the first time to align the CSCs, and a substantial improvement in resolution is observed in the endcap and overlap regions for stand-alone muons. This new alignment is undergoing the approval process and is expected to be deployed as part of a new global tag in the beginning of December. The pT dependence of the φ-bias in curvature observed in Monte Carlo was traced to a relative vertical misalignment between the Tracker and barrel muon systems. Moving the barrel as a whole to match the Tracker cures this pT dependence, leaving only the &phi...

  13. Simulation of Resistive Plate Chamber sensitivity to neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Altieri, S. E-mail: saverio.altieri@pv.infn.it; Belli, G.; Bruno, G.; Merlo, M.; Ratti, S.P.; Riccardi, C.; Torre, P.; Vitulo, P.; Abbrescia, M.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F

    2001-04-01

    The Resistive Plate Chambers (RPCs) sensitivity to neutrons has been simulated using GEANT code with MICAP and FLUKA interfaces. The calculations have been performed as a function of the neutrons energy in the range 0.02 eV-1 GeV. To evaluate the response of the detector in the LHC background environment, the neutron energy spectrum expected in the CMS muon barrel has been taken into account; a hit rate due to neutrons of about 0.6 Hz cm{sup -2} has been estimated for a 250x250 cm{sup 2} RPC in the RB1 station.

  14. Ship Effect Neutron Measurements And Impacts On Low-Background Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Siciliano, Edward R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-10-01

    The primary particles entering the upper atmosphere as cosmic rays create showers in the atmosphere that include a broad spectrum of secondary neutrons, muons and protons. These cosmic-ray secondaries interact with materials at the surface of the Earth, yielding prompt backgrounds in radiation detection systems, as well as inducing long-lived activities through spallation events, dominated by the higher-energy neutron secondaries. For historical reasons, the multiple neutrons produced in spallation cascade events are referred to as “ship effect” neutrons. Quantifying the background from cosmic ray induced activities is important to low-background experiments, such as neutrino-less double beta decay. Since direct measurements of the effects of shielding on the cosmic-ray neutron spectrum are not available, Monte Carlo modeling is used to compute such effects. However, there are large uncertainties (orders of magnitude) in the possible cross-section libraries and the cosmic-ray neutron spectrum for the energy range needed in such calculations. The measurements reported here were initiated to validate results from Monte Carlo models through experimental measurements in order to provide some confidence in the model results. The results indicate that the models provide the correct trends of neutron production with increasing density, but there is substantial disagreement between the model and experimental results for the lower-density materials of Al, Fe and Cu.

  15. Cosmic Ray Interactions in Shielding Materials

    International Nuclear Information System (INIS)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-01-01

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth's surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth's surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  16. Reduction of weak interaction rates in neutron stars by nucleon spin fluctuations: Degenerate case

    International Nuclear Information System (INIS)

    Raffelt, G.; Strobel, T.

    1997-01-01

    Nucleon spin fluctuations in a dense medium reduce the open-quotes naiveclose quotes values of weak interaction rates (neutrino opacities, neutrino emissivities). We extend previous studies of this effect to the degenerate case which is appropriate for neutron stars a few ten seconds after formation. If neutron-neutron interactions by a one-pion exchange potential are the dominant cause of neutron spin fluctuations, a perturbative calculation of weak interaction rates is justified for T approx-lt 3m/(4πα π 2 )∼1MeV, where m is the neutron mass and α π ∼15 the pion fine-structure constant. At higher temperatures, the application of Landau close-quote s theory of Fermi liquids is no longer justified; i.e., the neutrons cannot be viewed as simple quasiparticles in any obvious sense. copyright 1997 The American Physical Society

  17. Level-1 trigger rate from beam halo muons in the end-cap

    CERN Document Server

    Robins, S

    1998-01-01

    Previous detectors at $p$-$\\bar{p}$ machines have experienced problems with high muon trigger rates in the forward region due to muons produced in interactions between the beam and the machine. The se `beam halo' muons typically have a very small angle to the beam direction, and are dominated by muons of several GeV energy and at low radius relative to the beam line. The response of the ATLA S end-cap muon trigger to them has been investigated using a complete simulation of both the LHC machine components and the ATLAS detector and trigger. It is seen that the total flux of such muon s in the end-cap trigger counters is $\\sim$ 60 kHz, in high luminosity LHC running, and the acceptance of the Level-1 end-cap muon trigger to these particles is $\\sim$1\\%. The overall Level-1 trig ger rate from such muons will be small compared to rates from the products of the $p$-$p$ collision. The total rates from low- and high-\\pt triggers at 6 and 20 GeV are 250 and 16 Hz respectively. Whilst these rates are negligible in co...

  18. Monte Carlo prediction of neutron interactions in sonofusion experiment

    International Nuclear Information System (INIS)

    Walter, J.; Gert, G.; Bougaev, A.; Bertodano, B.; Tsoukalas, I.H.; Jevremovic, T. . E-mail address of corresponding author: tatjanaj@ecn.purdue.edu

    2005-01-01

    Evidence of neutron induced sonofusion has been reported by Taleyarkhan, et. al, (Science, 8 March 2002). This involves the creation and collapse of cavities with acoustic waves and neutrons in deuterated acetone. The collapse of these bubbles creates conditions sufficient for D-D fusion to occur. As part of a bigger effort to reproduce these results, the neutral condition (without the acoustic waves) case was considered. This limits the neutron interactions to scattering and attenuation. MCNP5 was used to simulate the experiment for this neutral case. The set-up consisted of a cylindrical glass vessel that contained 500 mL of 99.9% D-acetone that was exposed to a 9.70 Ci Americium Beryllium neutron source. MCNP5 gave a production rate of 4.99E-11 (Relative Error: +/- 0.0005) tritons per source neutron for neutron absorption in deuterium. The resulting simulation's tritium activity was corrected for decay and detector efficiency, then compared to the actual experimental results. (author)

  19. Developing a cosmic ray muon sampling capability for muon tomography and monitoring applications

    International Nuclear Information System (INIS)

    Chatzidakis, S.; Chrysikopoulou, S.; Tsoukalas, L.H.

    2015-01-01

    In this study, a cosmic ray muon sampling capability using a phenomenological model that captures the main characteristics of the experimentally measured spectrum coupled with a set of statistical algorithms is developed. The “muon generator” produces muons with zenith angles in the range 0–90° and energies in the range 1–100 GeV and is suitable for Monte Carlo simulations with emphasis on muon tomographic and monitoring applications. The muon energy distribution is described by the Smith and Duller (1959) [35] phenomenological model. Statistical algorithms are then employed for generating random samples. The inverse transform provides a means to generate samples from the muon angular distribution, whereas the Acceptance–Rejection and Metropolis–Hastings algorithms are employed to provide the energy component. The predictions for muon energies 1–60 GeV and zenith angles 0–90° are validated with a series of actual spectrum measurements and with estimates from the software library CRY. The results confirm the validity of the phenomenological model and the applicability of the statistical algorithms to generate polyenergetic–polydirectional muons. The response of the algorithms and the impact of critical parameters on computation time and computed results were investigated. Final output from the proposed “muon generator” is a look-up table that contains the sampled muon angles and energies and can be easily integrated into Monte Carlo particle simulation codes such as Geant4 and MCNP.

  20. Developing a cosmic ray muon sampling capability for muon tomography and monitoring applications

    Science.gov (United States)

    Chatzidakis, S.; Chrysikopoulou, S.; Tsoukalas, L. H.

    2015-12-01

    In this study, a cosmic ray muon sampling capability using a phenomenological model that captures the main characteristics of the experimentally measured spectrum coupled with a set of statistical algorithms is developed. The "muon generator" produces muons with zenith angles in the range 0-90° and energies in the range 1-100 GeV and is suitable for Monte Carlo simulations with emphasis on muon tomographic and monitoring applications. The muon energy distribution is described by the Smith and Duller (1959) [35] phenomenological model. Statistical algorithms are then employed for generating random samples. The inverse transform provides a means to generate samples from the muon angular distribution, whereas the Acceptance-Rejection and Metropolis-Hastings algorithms are employed to provide the energy component. The predictions for muon energies 1-60 GeV and zenith angles 0-90° are validated with a series of actual spectrum measurements and with estimates from the software library CRY. The results confirm the validity of the phenomenological model and the applicability of the statistical algorithms to generate polyenergetic-polydirectional muons. The response of the algorithms and the impact of critical parameters on computation time and computed results were investigated. Final output from the proposed "muon generator" is a look-up table that contains the sampled muon angles and energies and can be easily integrated into Monte Carlo particle simulation codes such as Geant4 and MCNP.

  1. Developing a cosmic ray muon sampling capability for muon tomography and monitoring applications

    Energy Technology Data Exchange (ETDEWEB)

    Chatzidakis, S., E-mail: schatzid@purdue.edu; Chrysikopoulou, S.; Tsoukalas, L.H.

    2015-12-21

    In this study, a cosmic ray muon sampling capability using a phenomenological model that captures the main characteristics of the experimentally measured spectrum coupled with a set of statistical algorithms is developed. The “muon generator” produces muons with zenith angles in the range 0–90° and energies in the range 1–100 GeV and is suitable for Monte Carlo simulations with emphasis on muon tomographic and monitoring applications. The muon energy distribution is described by the Smith and Duller (1959) [35] phenomenological model. Statistical algorithms are then employed for generating random samples. The inverse transform provides a means to generate samples from the muon angular distribution, whereas the Acceptance–Rejection and Metropolis–Hastings algorithms are employed to provide the energy component. The predictions for muon energies 1–60 GeV and zenith angles 0–90° are validated with a series of actual spectrum measurements and with estimates from the software library CRY. The results confirm the validity of the phenomenological model and the applicability of the statistical algorithms to generate polyenergetic–polydirectional muons. The response of the algorithms and the impact of critical parameters on computation time and computed results were investigated. Final output from the proposed “muon generator” is a look-up table that contains the sampled muon angles and energies and can be easily integrated into Monte Carlo particle simulation codes such as Geant4 and MCNP.

  2. The muon veto of the Dortmund low-background facility

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, Marcel; Goessling, Claus; Kroeninger, Kevin; Nitsch, Christian [TU Dortmund, Physik EIV, D-44221 Dortmund (Germany)

    2016-07-01

    The Dortmund Low Background Facility (DLB) is a low-background gamma-ray spectrometry system with an artificial overburden built at ground level. It uses a high-purity germanium detector with a relative efficiency of 60 %, which is set up inside a massive shielding. The outer shielding consists of barite concrete and cast iron, corresponding to ten meters of water equivalent (mw.e.), and houses a multi-layer lead castle as an inner shielding, that features borated polyethylene as a neutron absorber. Additionally an active muon veto is installed to reduce cosmic-induced contributions to the spectrum. The remarkably lowered background of the DLB compared to an unshielded spectrometer, allows radio-purity screening measurements for material preselection with sensitivities better than 1 Bq/kg. This talk focusses on the muon veto of the DLB. Its basic concept and its benefits for low-background operation are described. Also its current status of development and future upgrade plans are presented.

  3. Review of muon tomography

    International Nuclear Information System (INIS)

    Feng Hanliang; Jiao Xiaojing

    2010-01-01

    As a new detection technology, Muon tomography has some potential benefits, such as being able to form a three- dimensional image, without radiation, low cost, fast detecting etc. Especially, muon tomography will play an important role in detecting nuclear materials. It introduces the theory of Muon tomography, its advantages and the Muon tomography system developed by decision sciences corporation and Los Alamos national laboratory. (authors)

  4. Search for the neutrinoless muon decay μ+ → e+γ

    International Nuclear Information System (INIS)

    Wilson, S.L.

    1985-07-01

    Separate muon, electron, and tau numbers are conserved in the minimal standard model of electroweak interactions with massless neutrinos. However, in many extensions to the standard model, separate lepton numbers are not expected to be conserved quantities. A new search for muon number non-conserving processes has been undertaken at the Los Alamos Meson Physics Facility (LAMPF), specifically to look for three neutrinoless decay modes of the muon. The search for the decay of a muon to an electron and a photon is discussed here. A new detector facility, located in the LAMPF stopped muon channel, was developed for this experiment. This Crystal Box detector consists of a cylindrical drift chamber surrounded by a plastic scintillator hodoscope and a large solid angle, modularized, NaI(Tl) calorimeter. The apparatus measures the trajectories, relative timing, and energies of charged particles and photons from the decays of positive muons stopped in a central target. The assembly and calibration of the detector are described, and the procedure for taking data is discussed. The sample of 1.3 million candidate events, from the first data run of the Crystal Box, was analyzed using a maximum-likelihood method. The upper limit on the branching ratio, relative to normal muon decay, for a muon decaying to an electron and a photon is found to be consistent with previous measurements. With 90% confidence, the branching ratio for this neutrinoless decay is observed to be less than 2.8 x 10 10

  5. An implementation of the LHCb level 0 muon trigger using the 3D-Flow ASIC; TOPICAL

    International Nuclear Information System (INIS)

    Corti, G.; Cox, B.; Crosetto, D.; Nelson, K.

    1998-01-01

    We have investigated the possibility of implementing the L0 trigger using 3D-Flow asics currently under development. Several nice features of the 3D-Flow technique lend themselves to the L0 muon trigger. Among these features are: (1) the ability to gather information (in the case of the muon detector, binary hit information from pads) from a relatively large volume of the detector in an organized way, routing quickly to one cpu all the necessary information to identify a muon and to calculate its(theta)(sub x),(theta)(sub y), x intercept at the position of(micro)1 stations and y intercept at the interaction region in less than 3.2(micro)s; and (2) the ability to naturally buffer events so as to allow the requisite time for individual events to be calculated, respecting the limit that the average time per event must be and lt;3.2(micro)s. The LHCb Muon Detector components necessary for the LHCb L0 muon trigger are schematically shown in Fig. 1. The parameters of the LHCb Muon detector are given elsewhere in more detail. Briefly, the muon detector consists of a shield whose components include the EM and hadron calorimeters and four layers of steel representing a dE/dx of(approx) 6 GeV and 20 interaction lengths and five muon stations for measurement of the muon trajectory

  6. Skyrme interaction and the properties of cold and hot neutron matter

    International Nuclear Information System (INIS)

    Mansour, H.M.M.; Hassan, M.Y.M.; Ramadan, S.

    1986-08-01

    The binding energy per particle, effective mass, magnetic susceptibility, etc for neutron matter are calculated using the Skyrme interaction SKII. Relativistic corrections to the non-relativistic Skyrme effective interaction to order 1/C 2 are also used to calculate the corrections for the binding energy of neutron matter. The correction is very small for small values of k h and increases as k n is increased. The thermal properties of neutron matter are calculated also using SKII force. The temperature dependences of the volume and spin pressure are determined. The results obtained show a similar trend as previous theoretical estimates by different methods of calculation. (author)

  7. Kerma factors in interaction of neutrons with boron carbide

    International Nuclear Information System (INIS)

    Bondarenko, I.M.

    1979-01-01

    Heat generation in neutron interactions with boron carbide B 10 ; B 11 and 12 C is calculated. Kerma-factors (kerma-kinetic energy released in materials) were calculated for neutron energies between 10 -4 eV and 15 MeV. No major simplifying assumptions are introduced, and the accuracy of the calculated kerma-factors depends only on availability and accuracy of the basic nuclear data. The ENDF/B-4 data and recent experimental information are used for the calculation of kerma-factors. Plots of these kerma-factors are presented in units of eVxb/atom and wtxsec/(cmxn) as a function of neutron energy

  8. Muon-muon and other high energy colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The first section looks at the high energy physics advantages, disadvantages and luminosity requirements of hadron, of lepton and photon-photon colliders for comparison. The second section discusses the physics considerations for the muon collider. The third section covers muon collider components. The fourth section is about the intersection region and detectors. In the fifth section, the authors discuss modifications to enhance the muon polarization's operating parameters with very small momentum spreads, operations at energies other than the maximum for which the machine is designed, and designs of machines for different maximum energies. The final section discusses a Research and Development plan aimed at the operation of a 0.5 TeV demonstration machine by the year 2010, and of the 4 TeV machine by the year 2020

  9. Difficulties with interpretation of underground muons from Cygnus X-3

    International Nuclear Information System (INIS)

    Berezinskij, V.S.; Ioffe, B.L.

    1986-01-01

    A possibility are analysed to explain the underground muon flux detected from Cygnus X-3, using new particles (cygnets). The following constraints on the cygnet properties are obtained: on the life-time τ>1.3x10 6 (Γ/10 6 )s where Γ is the cygnet Lorentz factor, on the mass, m 7 e and on the mean scattering angle (due to an arbitrary process) on the way from Cygnus X-3 to the Sun Θ -3 grad. It is shown that the NUSEX data (the angular spread of muons within 10 0 x10 0 box of observation and the dependence of the Cygnus X-3 exposition time on the depth of the matter along the observation line) contradict muon generation in the atmosphere and require muon generation in the ground. These data determine narrow boundaries for the cygnet-nucleon interaction cross section 2μb 10(E c /1TeV) 1.1 μb where E c is the energy of cygnets responsible for the muon flux observed by NUSEX

  10. The impact of the tensor interaction on the β-delayed neutron emission of the neutron-rich Ni isotopes

    Directory of Open Access Journals (Sweden)

    Sushenok E.O.

    2018-01-01

    Full Text Available The neutron emission of the β-decay of 74;76;78;80Ni are studied within the quasiparticle random phase approximation with the Skyrme interaction. The coupling between one- and two-phonon terms in the wave functions of the low-energy 1+ states of the daughter nuclei is taken into account. It is shown that the strength decrease of the neutronproton tensor interaction leads to the increase of the half-life and the neutron-emission probability.

  11. ATLAS MDT neutron sensitivity measurement and modeling

    International Nuclear Information System (INIS)

    Ahlen, S.; Hu, G.; Osborne, D.; Schulz, A.; Shank, J.; Xu, Q.; Zhou, B.

    2003-01-01

    The sensitivity of the ATLAS precision muon detector element, the Monitored Drift Tube (MDT), to fast neutrons has been measured using a 5.5 MeV Van de Graaff accelerator. The major mechanism of neutron-induced signals in the drift tubes is the elastic collisions between the neutrons and the gas nuclei. The recoil nuclei lose kinetic energy in the gas and produce the signals. By measuring the ATLAS drift tube neutron-induced signal rate and the total neutron flux, the MDT neutron signal sensitivities were determined for different drift gas mixtures and for different neutron beam energies. We also developed a sophisticated simulation model to calculate the neutron-induced signal rate and signal spectrum for ATLAS MDT operation configurations. The calculations agree with the measurements very well. This model can be used to calculate the neutron sensitivities for different gaseous detectors and for neutron energies above those available to this experiment

  12. A proposal of neutron science research program

    International Nuclear Information System (INIS)

    Suzuki, Y.; Yasuda, H.; Tone, T.; Mizumoto, M.

    1996-01-01

    A conception of Neutron Science Research Program (NSRP) has been proposed in Japan Atomic Energy Research Institute (JAERI) since 1994 as a future big project. The NSRP aims at exploring new basic science and nuclear energy science by a high-intensity proton accelerator. It is a complex composed of a proton linac and seven research facilities with each different target system. The proton linac is required to supply the high-intensity proton beam with energy up to 1.5 GeV and current 10 mA on average. The scientific research facilities proposed, are as follows: Thermal/Cold Neutron Facility for the neutron scattering experiments, Neutron Irradiation Facility for materials science, Neutron Physics Facility for nuclear data measurement, OMEGA/Nuclear Energy Facility for nuclear waste transmutation and fuel breeding, Spallation RI Beam Facility for nuclear physics, Meson/Muon Facility for meson and muon physics and their applications and Medium Energy Beam Facility for accelerator technology development, medical use, etc. Research and development have been carried out for the components of the injector system of the proton linac; an ion source, an RFQ linac and a part of DTL linac. The conceptual design work and research and development activities for NSRP have been started in the fiscal year, 1996. Construction term will be divided into two phases; the completion of the first phase is expected in 2003, when the proton linac will produce 1.5 GeV, 1 mA beam by reflecting the successful technology developments. (author)

  13. Muon spin relaxation and nonmagnetic Kondo state in PrInAg2

    International Nuclear Information System (INIS)

    MacLaughlin, D. E.; Heffner, R. H.; Nieuwenhuys, G. J.; Canfield, P. C.; Amato, A.; Baines, C.; Schenck, A.; Luke, G. M.; Fudamoto, Y.; Uemura, Y. J.

    2000-01-01

    Muon spin relaxation experiments have been carried out in the Kondo compound PrInAg 2 . The zero-field muon relaxation rate is found to be independent of temperature between 0.1 and 10 K, which rules out a magnetic origin (spin freezing or a conventional Kondo effect) for the previously observed specific-heat anomaly at ∼0.5 K. At low temperatures the muon relaxation can be quantitatively understood in terms of the muon's interaction with nuclear magnetism, including hyperfine enhancement of the 141 Pr nuclear moment at low temperatures. This argues against a Pr 3+ ground-state electronic magnetic moment, and is strong evidence for the doublet Γ 3 crystalline-electric-field-split ground state required for a nonmagnetic route to heavy-electron behavior. The data imply the existence of an exchange interaction between neighboring Pr 3+ ions of the order of 0.2 K in temperature units, which should be taken into account in a complete theory of a nonmagnetic Kondo effect in PrInAg 2 . (c) 2000 The American Physical Society

  14. Tracking and Level-1 triggering in the forward region of the ATLAS Muon Spectrometer at sLHC

    International Nuclear Information System (INIS)

    Bittner, B; Dubbert, J; Kroha, H; Richter, R; Schwegler, P

    2012-01-01

    In the endcap region of the ATLAS Muon Spectrometer (η > 1) precision tracking and Level-1 triggering are performed by different types of chambers. Monitored Drift Tube chambers (MDT) and Cathode Strip Chambers (CSC) are used for precision tracking, while Thin Gap Chambers (TGC) form the Level-1 muon trigger, selecting muons with high transverse momentum (p T ). When by 2018 the LHC peak luminosity of 10 34 cm −2 s −1 will be increased by a factor of ∼ 2 and by another factor of ∼ 2–2.5 in about a decade from now (''SLHC''), an improvement of both systems, precision tracking and Level-1 triggering, will become mandatory in order to cope with the high rate of uncorrelated background hits (''cavern background'') and to stay below the maximum trigger rate for the muon system, which is in the range of 10–20 % of the 100 kHz rate, allowed for ATLAS. For the Level-1 trigger of the ATLAS Muon Spectrometer this means a stronger suppression of sub-threshold muons in the high-p T trigger as well as a better rejection of tracks not coming from the primary interaction point. Both requirements, however, can only be fulfilled if spatial resolution and angular pointing accuracy of the trigger chambers, in particular of those in the Inner Station of the endcap, are improved by a large factor. This calls for a complete replacement of the currrently used TGC chambers by a new type of trigger chambers with better performance. In parallel, the precision tracking chambers must be replaced by chambers with higher rate capability to be able to cope with the intense cavern background. In this article we present concepts to decisively improve the Level-1 trigger with newly developed trigger chambers, being characterized by excellent spatial resolution, good time resolution and sufficiently short latency. We also present new types of precision chambers, designed to maintain excellent tracking efficiency and spatial resolution in the presence of high levels of uncorrelated

  15. Multinucleon effects in muon capture on 3He at high energy transfer

    International Nuclear Information System (INIS)

    Kuhn, S.E.; Cummings, W.J.; Dodge, G.E.; Hanna, S.S.; King, B.H.; Shin, Y.M.; Congleton, J.G.; Helmer, R.; Schubank, R.B.; Stevenson, N.R.; Wienands, U.; Lee, Y.K.; Mason, G.R.; King, B.E.; Chung, K.S.; Lee, J.M.; Rosenzweig, D.P.

    1994-01-01

    Energy spectra of both protons and deuterons emitted following the capture of negative muons by 3 He nuclei have been measured for energies above 15 MeV. A limited number of proton-neutron pairs emitted in coincidence were also observed. A simple plane wave impulse approximation (PWIA) model calculation yields fair agreement with the measured proton energy spectra, but underpredicts the measured rate of deuteron production above our energy threshold by a large factor. A more sophisticated PWIA calculation for the two-body breakup channel, based on a realistic three-body wave function for the initial state, is closer to the deuteron data at moderate energies, but still is significantly lower near the kinematic end point. The proton-neutron coincidence data also point to the presence of significant strength involving more than one nucleon in the capture process at high energy transfer. These results indicate that additional terms in the capture matrix element beyond the impulse approximation contribution may be required to explain the experimental data. Specifically, the inclusion of nucleon-nucleon correlations in the initial or final state and meson exchange current contributions could bring calculations into better agreement with our data. A fully microscopic calculation would thus open the possibility for a quantitative test of multinucleon effects in the weak interaction

  16. Measurement of the Muon Neutrino Inclusive Charged Current Cross Section on Iron using the MINOS Detector

    Energy Technology Data Exchange (ETDEWEB)

    Loiacono, Laura Jean [Univ. of Texas, Austin, TX (United States)

    2010-05-01

    The Neutrinos at the Main Injector (NuMI) facility at Fermi National Accelerator Laboratory (FNAL) produces an intense muon neutrino beam used by the Main Injector Neutrino Oscillation Search (MINOS), a neutrino oscillation experiment, and the Main INjector ExpeRiment v-A, (MINERv A), a neutrino interaction experiment. Absolute neutrino cross sections are determined via σv = N vv , where the numerator is the measured number of neutrino interactions in the MINOS Detector and the denominator is the flux of incident neutrinos. Many past neutrino experiments have measured relative cross sections due to a lack of precise measurements of the incident neutrino flux, normalizing to better established reaction processes, such as quasielastic neutrino-nucleon scattering. But recent measurements of neutrino interactions on nuclear targets have brought to light questions about our understanding of nuclear effects in neutrino interactions. In this thesis the vμ inclusive charged current cross section on iron is measured using the MINOS Detector. The MINOS detector consists of alternating planes of steel and scintillator. The MINOS detector is optimized to measure muons produced in charged current vμ interactions. Along with muons, these interactions produce hadronic showers. The neutrino energy is measured from the total energy the particles deposit in the detector. The incident neutrino flux is measured using the muons produced alongside the neutrinos in meson decay. Three ionization chamber monitors located in the downstream portion of the NuMI beamline are used to measure the muon flux and thereby infer the neutrino flux by relation to the underlying pion and kaon meson flux. This thesis describes the muon flux instrumentation in the NuMI beam, its operation over the two year duration of this measurement, and the techniques used to derive the neutrino flux.

  17. Atmospheric fluxes and energy spectra of positive and negative muons from Monte-Carlo simulations

    International Nuclear Information System (INIS)

    Vulpescu, B.; Brancus, I.M.; Badea, A.F.; Duma, M.; Bozdog, H.; Petru, M.; Rebel, H.; Weintz, J.; Mathes, H.J.; Haungs, A.; Roth, M.

    1999-01-01

    Cosmic ray muons observed with detectors placed at the ground level originate from the decay of mesons produced by interactions of high energy cosmic ray primaries with air nuclei, mainly due to the decay of charged pions and kaons, processes which lead also to the production of atmospheric neutrinos. Prompted by recent accurate measurements of the charge ratio of atmospheric muons, the flux and energy spectra of positive and negative muons have been studied on the basis of Monte-Carlo simulations (CORSIKA) of the EAS development, using the GHEISHA and VENUS model as generators. The results have been analysed and compared with data under the aspect of their sensitivity to details of the hadronic interaction, in particular in the 3 GeV/n - 20 TeV/n region. The muon charge ratio proves to be a sensitive test quantity for the production model and propagation and it exhibits peculiar features at low energies (< 1 GeV). Results are shown, from magnetic spectrometer experiments in the difficult region of low momenta as well as the precise values obtained with the WILLI detector by observing the lifetime of negative muons stopped in material. The CORSIKA predictions on the charge ratio show a drop below 1 for very low muon momentum and needs further experimental investigations. The EAST-WEST effect is characteristic for low muon momenta and is well reproduced by simulations. The WILLI detector is planned to be developed in a new configuration, being able to investigate with high accuracy the muon charge ratio at different zenithal and azimuthal directions. (authors)

  18. Production of selected cosmogenic radionuclides by muons; 1, Fast muons

    CERN Document Server

    Heisinger, B; Jull, A J T; Kubik, P W; Ivy-Ochs, S; Neumaier, S; Knie, K; Lazarev, V A; Nolte, E

    2002-01-01

    To investigate muon-induced nuclear reactions leading to the production of radionuclides, targets made of C/sub 9/H/sub 12/, SiO /sub 2/, Al/sub 2/O/sub 3/, Al, S, CaCO/sub 3/, Fe, Ni, Cu, Gd, Yb and Tl were irradiated with 100 and 190 GeV muons in the NA54 experimental setup at CERN. The radionuclide concentrations were measured with accelerator mass spectrometry and gamma -spectroscopy. Results are presented for the corresponding partial formation cross- sections. Several of the long-lived and short-lived radionuclides studied are also produced by fast cosmic ray muons in the atmosphere and at depths underground. Because of their importance to Earth sciences investigations, calculations of the depth dependence of production rates by fast cosmic ray muons have been made. (48 refs).

  19. Muon Collider Progress: Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  20. Neutron production by cosmic-ray muons in various materials

    Science.gov (United States)

    Manukovsky, K. V.; Ryazhskaya, O. G.; Sobolevsky, N. M.; Yudin, A. V.

    2016-07-01

    The results obtained by studying the background of neutrons produced by cosmic-raymuons in underground experimental facilities intended for rare-event searches and in surrounding rock are presented. The types of this rock may include granite, sedimentary rock, gypsum, and rock salt. Neutron production and transfer were simulated using the Geant4 and SHIELD transport codes. These codes were tuned via a comparison of the results of calculations with experimental data—in particular, with data of the Artemovsk research station of the Institute for Nuclear Research (INR, Moscow, Russia)—as well as via an intercomparison of results of calculations with the Geant4 and SHIELD codes. It turns out that the atomic-number dependence of the production and yield of neutrons has an irregular character and does not allow a description in terms of a universal function of the atomic number. The parameters of this dependence are different for two groups of nuclei—nuclei consisting of alpha particles and all of the remaining nuclei. Moreover, there are manifest exceptions from a power-law dependence—for example, argon. This may entail important consequences both for the existing underground experimental facilities and for those under construction. Investigation of cosmic-ray-induced neutron production in various materials is of paramount importance for the interpretation of experiments conducted at large depths under the Earth's surface.

  1. γ ray astronomy with muons

    International Nuclear Information System (INIS)

    Halzen, F.; Stanev, T.; Yodh, G.B.

    1997-01-01

    Although γ ray showers are muon poor, they still produce a number of muons sufficient to make the sources observed by GeV and TeV telescopes observable also in muons. For sources with hard γ ray spectra there is a relative open-quotes enhancementclose quotes of muons from γ ray primaries as compared to that from nucleon primaries. All shower γ rays above the photoproduction threshold contribute to the number of muons N μ , which is thus proportional to the primary γ ray energy. With γ ray energy 50 times higher than the muon energy and a probability of muon production by the γ close-quote s of about 1%, muon detectors can match the detection efficiency of a GeV satellite detector if their effective area is larger by 10 4 . The muons must have enough energy for sufficiently accurate reconstruction of their direction for doing astronomy. These conditions are satisfied by relatively shallow neutrino detectors such as AMANDA and Lake Baikal, and by γ ray detectors such as MILAGRO. TeV muons from γ ray primaries, on the other hand, are rare because they are only produced by higher energy γ rays whose flux is suppressed by the decreasing flux at the source and by absorption on interstellar light. We show that there is a window of opportunity for muon astronomy with the AMANDA, Lake Baikal, and MILAGRO detectors. copyright 1997 The American Physical Society

  2. Two-neutron “halo” from the low-energy limit of neutron–neutron interaction: Applications to drip-line nuclei 22C and 24O

    Directory of Open Access Journals (Sweden)

    Toshio Suzuki

    2016-02-01

    Full Text Available The formation of two-neutron “halo”, a low-density far-extended surface of weakly-bound two neutrons, is described using the neutron–neutron (nn interaction fixed at the low-energy nn scattering limit. This method is tested for loosely-bound two neutrons in 24O, where a good agreement with experimental data is found. It is applied to halo neutrons in 22C in two ways: with the 20C core being closed or correlated (due to excitations from the closed core. This nn interaction is shown to be strong enough to produce a two-neutron halo in both cases, locating 22C on the drip line, while 21C remains unbound. A unique relation between the two neutron separation energy, S2n, and the radius of neutron halo is presented. New predictions for S2n and the radius of neutron halo are given for 22C. The appearance of Efimov states is also discussed.

  3. Muon Reconstruction and Physics Commissioning of the CMS Experiment with Cosmic Muons

    CERN Document Server

    Liu, Chang

    In this thesis, the first physics measurements using the Compact Muon Solenoid (CMS) at the Large Hadron Collider (LHC) are presented. These physics measurements were performed using cosmic ray muons traversing the CMS detector. The CMS detector is optimized for the detection of muons and the results presented here also have a purpose of helping in the commissioning of the detector for the LHC collisions. Two analyses were conducted; the first is a measurement of the charge ratio of positive to negative muons, and the second is a measurement of the differential and absolute flux of incident cosmic rays. The charge ratio measurement was made using both the muon and tracking detectors and is highlighted by its data-driven method. The charge ratio over the momentum range starting from 10 GeV were measured at the detector center and then transferred to the earth's surface. The flux measurement was performed using the muon system only. The flux was measured over the momentum range from 15 GeV to over 1 TeV at the...

  4. Atmospheric muons reconstruction with Antares

    International Nuclear Information System (INIS)

    Melissas, M.

    2007-09-01

    The ANTARES collaboration is building a neutrino telescope in the Mediterranean Sea. This detector contains 900 photomultiplier tubes, dispatched on 12 lines, in order to detect Cerenkov light from muon induced by neutrino interactions in the the vicinity of the detector. Currently the first 5 lines have been deployed. A first task consists in studying the stability of the detector calibration, which is a necessary step to understand the detector response. Then we studied optical properties of water, for this we developed a reconstruction method dedicated to LED Beacon. The extracted parameters are compatible with earlier measurements. A quality criteria to reject badly reconstructed track has been developed based on the likelihood of the tracks fit versus point fit. This has been applied to real data and a preliminary analysis of atmospheric muons with a 5-lines detector is performed. (author)

  5. Kerma factors in interaction of neutrons with boron carbide

    International Nuclear Information System (INIS)

    Bondarenko, I.M.

    1986-03-01

    Heat generation in neutron interactions with boron carbide B 10 ; B 11 and 12 C is calculated. Kerma-factors (kerma-kinetic energy released in materials) were calculated for neutron energies between 10 -4 eV and 15 MeV. No major simplifying assumptions are introduced, and the accuracy of the calculated kerma-factors depends only on availability and accuracy of the basic nuclear data. The ENDF/B-4 data and recent experimental information are used for the calculation of kerma-factors. Plots of these kerma-factors are presented in units of eVxb/atom and wtxsec/(cmxn) as a function of neutron energy [fr

  6. Characterization of the atmospheric muon flux in IceCube

    Science.gov (United States)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Argüelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fuchs, T.; Glagla, M.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vanheule, S.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yáñez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.

    2016-05-01

    Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric lepton fluxes from prompt decays of short-lived hadrons. In this paper, techniques for the extraction of physical measurements from atmospheric muon events are described and first results are presented. The multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in the energy range from the knee to the ankle is derived and found to be consistent with recent results from surface detectors. The single muon energy spectrum is determined up to PeV energies and shows a clear indication for the emergence of a distinct spectral component from prompt decays of short-lived hadrons. The magnitude of the prompt flux, which should include a substantial contribution from light vector meson di-muon decays, is consistent with current theoretical predictions. The variety of measurements and high event statistics can also be exploited for the evaluation of systematic effects. In the course of this study, internal inconsistencies in the zenith angle distribution of events were found which indicate the presence of an unexplained effect outside the currently applied range of detector systematics. The underlying cause could be related to the hadronic interaction models used to describe muon production in air showers.

  7. Towards a Muon Collider

    International Nuclear Information System (INIS)

    Eichten, E.

    2011-01-01

    A multi TeV Muon Collider is required for the full coverage of Terascale physics. The physics potential for a Muon Collider at ∼3 TeV and integrated luminosity of 1 ab -1 is outstanding. Particularly strong cases can be made if the new physics is SUSY or new strong dynamics. Furthermore, a staged Muon Collider can provide a Neutrino Factory to fully disentangle neutrino physics. If a narrow s-channel resonance state exists in the multi-TeV region, the physics program at a Muon Collider could begin with less than 10 31 cm -2 s -1 luminosity. Detailed studies of the physics case for a 1.5-4 TeV Muon Collider are just beginning. The goals of such studies are to: (1) identify benchmark physics processes; (2) study the physics dependence on beam parameters; (3) estimate detector backgrounds; and (4) compare the physics potential of a Muon Collider with those of the ILC, CLIC and upgrades to the LHC.

  8. Design Concepts for Muon-Based Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, R. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirk, H. G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stratkis, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Alexahin, Y. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bross, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gollwitzer, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mokhov, N. V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palmer, M. A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yonehara, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Snopok, P. [IIT, Chicago, IL (United States); Bogacz, A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roberts, T. J. [Muons Inc., Batavia, IL (United States); Delahaye, J. -P. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-05-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced, thus enabling high-quality physics results. Thanks to these and other advances in design & simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider. This paper summarizes the current status of design concepts for muon-based accelerators for neutrino factories and a muon collider.

  9. Model of superdense matter and its application to neutron stars

    International Nuclear Information System (INIS)

    Pedico, R.D.

    1976-01-01

    A phenomenological model of superdense baryonic matter at zero temperature is developed and the resulting equation of state is employed in the calculation of neutron star masses and moments of inertia. The strong interactions between the baryons are described by couplings to one scalar and one vector field. These fields are not identified with observed mesons. Only a particular class of diagrams, constructed from tadpole terms, is retained in this investigation. It is argued that these terms contain the leading order density dependence of any set of diagrams that can be built up from fundamental two baryon-one meson vertices. The two parameters in the model, the coupling strengths, are fixed by the requirement that the accepted binding energy of infinite nuclear matter be reproduced at nuclear density. These couplings are used to calculate a forward proton-neutron cross section, which is found to agree with experimental data over a limited energy range. A pressure-energy density equation of state is generated for an electrically neutral system of electrons, muons, and the lowest mass baryon octet. The constituents are held in chemical equilibrium by the weak interactions. The equation of state exhibits a broad phase transition encompassing nuclear density, which leads to neutron stars containing a nearly incompressible core surrounded by a significantly less dense shell. The masses and moments of inertia of these model neutron stars are in good agreement with observational data for pulsars

  10. SUPERCONDUCTING SOLENOIDS FOR THE MUON COLLIDER

    Energy Technology Data Exchange (ETDEWEB)

    GREEN,M.A.; EYSSA,Y.; KENNY,S.; MILLER,J.R.; PRESTEMON,S.; WEGGEL,R.J.

    2000-06-12

    The muon collider is a new idea for lepton colliders. The ultimate energy of an electron ring is limited by synchrotron radiation. Muons, which have a rest mass that is 200 times that of an electron can be stored at much higher energies before synchrotron radiation limits ring performance. The problem with muons is their short life time (2.1 {micro}s at rest). In order to operate a muon storage ring large numbers of muon must be collected, cooled and accelerated before they decay to an electron and two neutrinos. As the authors see it now, high field superconducting solenoids are an integral part of a muon collider muon production and cooling systems. This report describes the design parameters for superconducting and hybrid solenoids that are used for pion production and collection, RF phase rotations of the pions as they decay into muons and the muon cooling (reduction of the muon emittance) before acceleration.

  11. Exclusive Muon-Neutrino Charged Current Muon Plus Any Number of Protons Topologies In ArgoNeuT

    Energy Technology Data Exchange (ETDEWEB)

    Partyka, Kinga Anna [Yale Univ., New Haven, CT (United States)

    2013-01-01

    Neutrinos remain among the least understood fundamental particles even after decades of study. As we enter the precision era o f neutrino measurements bigger and more sophisticated detectors have emerged. The leading candidate among them is a Liquid Argon Time Projection Chamber (LArTPC ) detector technology due to its bubble-like chamber imaging, superb background rejection and scalability. I t is a perfect candidate that w ill aim to answer the remaining questions of the nature o f neutrino and perhaps our existence. Studying neutrinos with a detector that employs detection via beautiful images o f neutrino interactions can be both illuminating and surprising. The analysis presented here takes the full advantage of the LArTPC power by exploiting the first topological analysis of charged current muon neutrino p + N p , muon and any number of protons, interactions with the ArgoNeuT LArTPC experiment on an argon target. The results presented here are the first that address the proton multiplicity at the vertex and the proton kinematics. This study also addresses the importance o f nuclear effects in neutrino interactions. Furthermore, the developed here reconstruction techniques present a significant step forward for this technology and can be employed in the future LArTPC detectors.

  12. Atmospheric Muon Lifetime, Standard Model of Particles and the Lead Stopping Power for Muons

    Science.gov (United States)

    Gutarra-Leon, Angel; Barazandeh, Cioli; Majewski, Walerian

    2017-01-01

    The muon is a fundamental particles of matter. It decays into three other leptons through an exchange of the weak vector bosons W +/W-. Muons are present in the atmosphere from cosmic ray showers. By detecting the time delay between arrival of the muon and an appearance of the decay electron in our detector, we'll measure muon's lifetime at rest. From the lifetime we should be able to find the ratio gw /MW of the weak coupling constant gw (a weak analog of the electric charge) to the mass of the W-boson MW. Vacuum expectation value v of the Higg's field, which determines the masses of all particles of the Standard Model (SM), could be then calculated from our muon experiment as v =2MWc2/gw =(τ m μc2/6 π3ĥ)1/4m μc2 in terms of muon mass mµand muon lifetime τ only. Using known experimental value for MWc2 = 80.4 GeV we'll find the weak coupling constant gw. Using the SM relation e =gwsin θ√ hc ɛ0 with the experimental value of the Z0-photon weak mixing angle θ = 29o we could find from our muon lifetime the value of the elementary electric charge e. We'll determine the sea-level fluxes of low-energy and high-energy cosmic muons, then we'll shield the detector with varying thicknesses of lead plates and find the energy-dependent muon stopping power in lead.

  13. Muon g−2 in anomaly mediated SUSY breaking

    International Nuclear Information System (INIS)

    Chowdhury, Debtosh; Yokozaki, Norimi

    2015-01-01

    Motivated by two experimental facts, the muon g−2 anomaly and the observed Higgs boson mass around 125 GeV, we propose a simple model of anomaly mediation, which can be seen as a generalization of mixed modulus-anomaly mediation. In our model, the discrepancy of the muon g−2 and the Higgs boson mass around 125 GeV are easily accommodated. The required mass splitting between the strongly and weakly interacting SUSY particles are naturally achieved by the contribution from anomaly mediation. This model is easily consistent with SU(5) or SO(10) grand unified theory.

  14. Muon g−2 in anomaly mediated SUSY breaking

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debtosh; Yokozaki, Norimi [Istituto Nazionale di Fisica Nucleare, Sezione di Roma,Piazzale Aldo Moro 2, I-00185 Rome (Italy)

    2015-08-24

    Motivated by two experimental facts, the muon g−2 anomaly and the observed Higgs boson mass around 125 GeV, we propose a simple model of anomaly mediation, which can be seen as a generalization of mixed modulus-anomaly mediation. In our model, the discrepancy of the muon g−2 and the Higgs boson mass around 125 GeV are easily accommodated. The required mass splitting between the strongly and weakly interacting SUSY particles are naturally achieved by the contribution from anomaly mediation. This model is easily consistent with SU(5) or SO(10) grand unified theory.

  15. Superconducting muon channel at J-PARC

    International Nuclear Information System (INIS)

    Shimomura, K.; Koda, A.; Strasser, P.; Kawamura, N.; Fujimori, H.; Makimura, S.; Higemoto, W.; Nakahara, K.; Ishida, K.; Nishiyama, K.; Nagamine, K.; Miyake, Y.

    2009-01-01

    The Muon Science Laboratory at the Materials and Life Science Facility is now under construction in Japan Proton Accelerator Research Complex (J-PARC), where four types of muon channels are planned to be installed. A conventional superconducting muon channel will be installed at the first stage, which can extract surface (positive) muons and decay positive/negative muons up to 120 MeV/c, and the expected muon yield is a few 10 6 /s at 60 MeV/c (for both positive and negative). This channel will be used for various kinds of experiments like muon catalyzed fusion, μSR and nondestructive elements analysis. The present status of the superconducting muon channel is briefly reported.

  16. Studies of high energy phenomena using muons. Final report

    International Nuclear Information System (INIS)

    1995-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract DE-FG02-91ER40641.A000 during the period from 1992 to 1995, and is the final report for this award. The group had three main efforts. The first was the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789. Finally, the authors were members of the SDC collaboration at the SSC. The group consisted of four faculty members, three research associates, and undergraduate and graduate students. The D0 experiment at Fermilab is one of two (the other is CDF) general purpose experiments operating at the Tevatron proton-antiproton collider. Starting in the Fall of 1992, the first data collection occurred at D0. Physics publications are tabulated in the Appendix, with the discovery of the top quark in 1995 being the most prominent. Members of the NIU group worked on a variety of physics topics: Hedin on B-physics and the top-quark search, Fortner on Drell-Yan and other QCD topics, Green on di-Boson production, and Markeloff on excited-quark states. Hedin was also co-coordinator of the B-physics group during this period. The primary emphasis of the NIU D0 group was the muon system. NIU had particular responsibilities for data acquisition; chamber calibration; the Level-2 trigger; and the reconstruction. Hedin also was coordinator of muon software and had the responsibility for muon identification. Work on these items is summarized in a series of D0 Notes listed in the Appendix. Willis, Sirotenko, Hedin and Fortener were also members of the SDC collaboration at the SSC. NIU was a key participant in the calculation of low-energy neutron and photon backgrounds in the SDC experiment, and in designing shielding for the proposed muon system

  17. Performance of the ATLAS Muon Spectrometer and of Muon Identification at the LHC

    CERN Document Server

    Woudstra, MJ; The ATLAS collaboration

    2010-01-01

    The large cosmic data samples collected in fall 2009 by the ATLAS experiment have been used to study the performance of the Muon Spectrometer. Detailed studies of the basic Muon spectrometer performance in terms of sagitta resolution, tracking efficiency and momentum resolution are presented and provide an update with respect to the results recently published. The results are also compared with a cosmic data simulation recently improved with a more realistic drift chamber response. The recent collision data collected at a CM of 7 TeV have also been analyzed to determine basic Muon Spectrometer performance. The performance of the ATLAS muon identification was studied with 1 inverse nanobarn of LHC proton-proton collision data at a centre of mass energy of 7 TeV. Measured detector efficiencies, hit multiplicities, and residual distributions of reconstructed muon tracks are well reproduced by the Monte Carlo simulation. Exploiting the redundancy in the muon identification at detector and reconstruction level the...

  18. Positive muon studies of magnetic materials

    International Nuclear Information System (INIS)

    Patterson, B.D.

    1975-01-01

    Polarized positive muons (μ + ) are stopped in magnetic materials, and the μ + precession is observed via the muons's asymmetric decay to a positron. The precession frequency is a measure of the local magnetic field at the μ + . Relaxation of the μ + spin is caused by spatially or time-varying local fields. The local field at a stopped μ + in ferromagnetic nickel is measured. From this measurement, the hyperfine field seen by an interstitial μ + due to its contact interaction with polarized screening electrons is inferred to be -0.66kG. A discussion of this value in terms of a simple model for the screening configuration is presented. Critical spin fluctuations in Ni at temperatures just above the Curie point rapidly relax the μ + spin. The temperature and external magnetic field dependence of the relaxation rate is determined experimentally. A theory for the relaxation rate is presented which demonstrates the importance of the hyperfine and dipolar interactions of the μ + with its Ni host. Preliminary results on μ + studies in ferromagnetic iron and cobalt are also discussed. (U.S.)

  19. Muon colliders

    International Nuclear Information System (INIS)

    Cline, David

    1995-01-01

    The increasing interest in the possibility of positive-negative muon colliders was reflected in the second workshop on the Physics Potential and Development of Muon Colliders, held in Sausalito, California, from 16-19 November, with some 60 attendees. It began with an overview of the particle physics goals, detector constraints, the muon collider and mu cooling, and source issues. The major issue confronting muon development is the possible luminosity achievable. Two collider energies were considered: 200 + 200 GeV and 2 + 2 TeV. The major particle physics goals are the detection of the higgs boson(s) for the lower energy collider, together with WW scattering and supersymmetric particle discovery. At the first such workshop, held in Napa, California, in 1992, it was estimated that a luminosity of some 10 30 and 3 x 10 32 cm -2 s -1 for the low and high energy collider might be achieved (papers from this meeting were published in the October issue of NIM). This was considered a somewhat conservative estimate at the time. At the Sausalito workshop the goal was to see if a luminosity of 10 32 to 10 34 for the two colliders might be achievable and usable by a detector. There were five working groups - physics, 200 + 200 GeV collider, 2 + 2 TeV collider, detector design and backgrounds, and muon cooling and production methods. Considerable progress was made in all these areas at the workshop.

  20. Neutron production in the interaction of electrons with a dispersing lamella

    International Nuclear Information System (INIS)

    Soto B, T. G.; Baltazar R, A.; Medina C, D.; Vega C, H. R.

    2017-10-01

    When a Linac for radiotherapy operates with acceleration voltages greater than 8 MV, neutrons are produced as secondary radiation. They deposit an undesirable and not negligible dose in the patient. Depending on the type of tumor, its location in the body and the characteristics of the patient, cancer treatment with a Linac is done with photon or electron beams, which produce neutrons through reactions (γ, n) and e, e n) respectively. Because the effective section of the reaction (n, γ) is 137 times greater than the reaction (e, e n), most studies have focused on photo neutrons. When a Linac operates with electron beams, the beam that leaves the magnetic baffle is incised in the dispersion foil in order to cause quasi-elastic interactions and expand the spatial distribution of the electrons; in their interaction with the lamella the electrons produce photons and these in turn produce neutrons. Due to the radiobiological efficiency of neutrons and the ways in which they interact with matter, is important to determine the neutrons production in Linacs operating in electron mode. The objective of this work is to determine the characteristics of photons and neutrons that occur when a beam of mono-energetic electrons of 2 mm in diameter (pencil beam) is made to impinge on a tungsten lamella of 1 cm in diameter and 0.5 mm thick located in the center of a 10 cm thick tungsten shell, used to represent the accelerator head. The study was carried out using the Monte Carlo method with the MCNP6 code for electron beams of 12 and 18 MeV. The spectra of photons and neutrons were estimated in 6 point detectors, four were placed in different points equidistant from the center of the lamella and the other two were located at 50 cm and 1 m from the electron beam, simulating the totally closed head. In this work it was found that when a Linac operates with an electron beam of 12 or 18 MeV there is neutron production mainly in the head and in the direction of the beam. (Author)

  1. Transport coefficients in superfluid neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Tolos, Laura [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Frankfurt Institute for Advances Studies. Johann Wolfgang Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Manuel, Cristina [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Sarkar, Sreemoyee [Tata Institute of Fundamental Research, Homi Bhaba Road, Mumbai-400005 (India); Tarrus, Jaume [Physik Department, Technische Universität München, D-85748 Garching (Germany)

    2016-01-22

    We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.

  2. Further results on muon-antineutrino-electron scattering

    International Nuclear Information System (INIS)

    Hasert, F.J.

    1975-01-01

    In a further study of the neutral current interactions muon-antineutrino e - →muon-antineutrino e - , the Gargamelle collaboration analyzed 70% of the photographic film from the Freon neutrino (antineutrino) experiment. Three non-ambiguous events were found, that correspond within a 90% confidence to an upper limit for the cross section below 0.17x10 -41 cm 2 /e - . A 0.46 event background was calculated, and the probability for the three events to be background is lower than 1%. Signal loss corrections were effected in terms of the Salam-Ward-Weinberg model, and an upper limit (sin 2 theta(W) 2 theta(W) are concluded to be 0.1 2 thate(W) [fr

  3. Muon catalyzed fusion - fission reactor driven by a recirculating beam

    International Nuclear Information System (INIS)

    Eliezer, S.; Tajima, T.; Rosenbluth, M.N.

    1986-01-01

    The recent experimentally inferred value of multiplicity of fusion of deuterium and tritium catalyzed by muons has rekindled interest in its application to reactors. Since the main energy expended is in pion (and consequent muon) productions, we try to minimize the pion loss by magnetically confining pions where they are created. Although it appears at this moment not possible to achieve energy gain by pure fusion, it is possible to gain energy by combining catalyzed fusion with fission blankets. We present two new ideas that improve the muon fusion reactor concept. The first idea is to combine the target, the converter of pions into muons, and the synthesizer into one (the synergetic concept). This is accomplished by injecting a tritium or deuterium beam of 1 GeV/nucleon into DT fuel contained in a magnetic mirror. The confined pions slow down and decay into muons, which are confined in the fuel causing little muon loss. The necessary quantity of tritium to keep the reactor viable has been derived. The second idea is that the beam passing through the target is collected for reuse and recirculated, while the strongly interacted portion of the beam is directed to electronuclear blankets. The present concepts are based on known technologies and on known physical processes and data. 29 refs., 6 figs., 4 tabs

  4. Muon catalyzed fusion under compressive conditions

    International Nuclear Information System (INIS)

    Cripps, G.; Goel, B.; Harms, A.A.

    1991-01-01

    The viability of a symbiotic combination of Muon Catalyzed Fusion (μCF) and high density generation processes has been investigated. The muon catalyzed fusion reaction rates are formulated in the temperature and density range found under moderate compressive conditions. Simplified energy gain and power balance calculations indicate that significant energy gain occurs only if standard type deuterium-tritium (dt) fusion is ignited. A computer simulation of the hydrodynamics and fusion kinetics of a spherical deuterium-tritium pellet implosion including muons is performed. Using the muon catalyzed fusion reaction rates formulated and under ideal conditions, the pellet ignites (and thus has a significant energy gain) only if the initial muon concentration is approximately 10 17 cm -3 . The muons need to be delivered to the pellet within a very short-time (≅ 1 ns). The muon pulse required in order to make the high density and temperature muon catalyzed fusion scheme viable is beyond the present technology for muon production. (orig.) [de

  5. Rare muon processes: Experiment

    International Nuclear Information System (INIS)

    Walter, H.K.

    1998-01-01

    The decay properties of muons, especially their rare decays, can be used to study very accurately deviations from the Standard Model. Muons with extremely low energies and good spatial definition are preferred for the majority of such studies. With the upgrade of the 590-MeV ring accelerator, PSI possesses the most powerful cyclotron in the world. This makes it possible to operate high-intensity beams of secondary pions and muons. A short review on rare muon processes is presented, concerning μ-e conversion and muonium-antimuonium oscillations. A possible new search for μ→eγ is also mentioned

  6. Dependence of negative muon depolarization on molecular weight and temperature in organic compounds

    International Nuclear Information System (INIS)

    Djuraev, A.A.; Evseev, V.S.; Obukhov, Yu.V.; Roganov, V.S.

    2009-01-01

    An atomic capture of negative muons in the aliphatic spirit series, the dependence of muon rest polarization on the molecular weight of spirit have been studied. The temperature dependence of depolarization in benzole and styrene has been obtained. The results on depolarization are being interpreted basing on notions about chemical interactions of mesic atoms in organic compounds. (author)

  7. Muon Simulation at the Daya Bay SIte

    International Nuclear Information System (INIS)

    Mengyun, Guan; Jun, Cao; Changgen, Yang; Yaxuan, Sun; Luk, Kam-Biu

    2006-01-01

    With a pretty good-resolution mountain profile, we simulated the underground muon background at the Daya Bay site. To get the sea-level muon flux parameterization, a modification to the standard Gaisser's formula was introduced according to the world muon data. MUSIC code was used to transport muon through the mountain rock. To deploy the simulation, first we generate a statistic sample of sea-level muon events according to the sea-level muon flux distribution formula; then calculate the slant depth of muon passing through the mountain using an interpolation method based on the digitized data of the mountain; finally transport muons through rock to get underground muon sample, from which we can get results of muon flux, mean energy, energy distribution and angular distribution.

  8. Validation Tools for ATLAS Muon Spectrometer Commissioning

    International Nuclear Information System (INIS)

    Benekos, N.Chr.; Dedes, G.; Laporte, J.F.; Nicolaidou, R.; Ouraou, A.

    2008-01-01

    The ATLAS Muon Spectrometer (MS), currently being installed at CERN, is designed to measure final state muons of 14 TeV proton-proton interactions at the Large Hadron Collider (LHC) with a good momentum resolution of 2-3% at 10-100 GeV/c and 10% at 1 TeV, taking into account the high level background enviroment, the inhomogeneous magnetic field, and the large size of the apparatus (24 m diameter by 44 m length). The MS layout of the ATLAS detector is made of a large toroidal magnet, arrays of high-pressure drift tubes for precise tracking and dedicated fast detectors for the first-level trigger, and is organized in eight Large and eight Small sectors. All the detectors of the barrel toroid have been installed and the commissioning has started with cosmic rays. In order to validate the MS performance using cosmic events, a Muon Commissioning Validation package has been developed and its results are presented in this paper. Integration with the rest of the ATLAS sub-detectors is now being done in the ATLAS cavern

  9. Effect of Neutron Irradiation on Beam-Column Interaction of Reinforced Concrete

    International Nuclear Information System (INIS)

    Kwon, Tae-Hyun; Park, Jiho; Kim, Jun Yeon; Kim, HyungTae; Park, Kyoungsoo; Kim, Sang-Ho

    2015-01-01

    Age-related effects on such RC structures have been extensively studied in detail. However, the effect of neutron irradiation requires further studies from its limited database. Most of RC structures have been regarded as sound as the neutron fluence below 1.0x10 19 n/cm 2 . The reduction of strength is not considered in a periodic inspection program at aging NPPs. However, RC structures, such as biological shields and supports for a reactor vessel, could be exposed to see the critical level of neutron fluence at years of operation. In this regard, beam-column interaction of a typical RC member is numerically investigated as a result of neutron irradiation. The effect of neutron irradiation on beam-column interaction is evaluated. ACI318 requires the strength reduction factor, ϕ=0.70, for the compression controlled area and the higher up to 0.9 as the tensile strain in steel reinforcement goes higher. This concept works well with this example. However, this does not take into account the energy dissipation capacity of the member but it only expresses the ultimate strength. Therefore, the current strength evaluation concept may be misleading when the material behavior of steel reinforcement becomes brittle due to the neutron irradiation. In such case, even for the transient and tension controlled area, the strength reduction factor needs to be modified to account for the potential ductility loss

  10. Study of multi-muon bundles in cosmic ray showers detected with the DELPHI detector at LEP

    International Nuclear Information System (INIS)

    Abdallah, J.; Abreu, P.; Adam, W.; Besancon, M.; Besson, N.; Boonekamp, M.; Jarry, P.; Lutz, P.; Nicolaidou, R.; Ouraou, A.; Pierre, F.; Ruhlmann-Kleider, V.; Turluer, M.L.; Vilanova, D.

    2007-01-01

    The DELPHI detector at LEP has been used to measure multi-muon bundles originating from cosmic ray interactions with air. The cosmic events were recorded in 'parasitic mode' between individual e + e - interactions and the total live time of this data taking is equivalent to 1.6 * 10 6 s. The DELPHI apparatus is located about 100 m underground and the 84 metres rock overburden imposes a cutoff of about 52 GeV/c on muon momenta. The data from the large volume Hadron Calorimeter allowed the muon multiplicity of 54,201 events to be reconstructed. The resulting muon multiplicity distribution is compared with the prediction of the Monte Carlo simulation based on CORSIKA/QGSJETOI. The model fails to describe the abundance of high multiplicity events. The impact of QGSJET internal parameters on the results is also studied. (authors)

  11. Precise muon drift tube detectors for high background rate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Albert

    2011-08-04

    The muon spectrometer of the ATLAS-experiment at the Large Hadron Collider consists of drift tube chambers, which provide the precise measurement of trajectories of traversing muons. In order to determine the momentum of the muons with high precision, the measurement of the position of the muon in a single tube has to be more accurate than {sigma}{<=}100 {mu}m. The large cross section of proton-proton-collisions and the high luminosity of the accelerator cause relevant background of neutrons and {gamma}s in the muon spectrometer. During the next decade a luminosity upgrade to 5.10{sup 34} cm{sup -2}s{sup -1} is planned, which will increase the background counting rates considerably. In this context this work deals with the further development of the existing drift chamber technology to provide the required accuracy of the position measurement under high background conditions. Two approaches of improving the drift tube chambers are described: - In regions of moderate background rates a faster and more linear drift gas can provide precise position measurement without changing the existing hardware. - At very high background rates drift tube chambers consisting of tubes with a diameter of 15 mm are a valuable candidate to substitute the CSC muon chambers. The single tube resolution of the gas mixture Ar:CO{sub 2}:N{sub 2} in the ratio of 96:3:1 Vol %, which is more linear and faster as the currently used drift gas Ar:CO{sub 2} in the ratio of 97:3 Vol %, was determined at the Cosmic Ray Measurement Facility at Garching and at high {gamma}-background counting rates at the Gamma Irradiation Facility at CERN. The alternative gas mixture shows similar resolution without background. At high background counting rates it shows better resolution as the standard gas. To analyse the data the various parts of the setup have to be aligned precisely to each other. The change to an alternative gas mixture allows the use of the existing hardware. The second approach are drift tubes

  12. Calculation of contribution of multiple interactions and efficiency of neutron detectors

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Kazakov, L.E.; Kononov, V.N.; Poletaev, E.D.

    1986-01-01

    Results of calculation of multiple neutron interactions contribution to efficiency of detectors with 6 Li glass and 10 B plate in the energy range of 0.01-1 MeV are given. The calculation was performed by the Monte-Carlo method using BRAND program complex. It is shown that a correction value for multiple neutron interaction in 6 Li glass of 1 mm thickness constitutes 4.5 % at energy of up to 100 keV and at higher energies has a complex energy dependence reaching 25 % at 440 keV

  13. RF Accelerating Structure for the Muon Cooling Experiment

    International Nuclear Information System (INIS)

    Corlett, J.; Green, M.; Li, D.; Holtkamp, N.; Moretti, A.; Kirk, H. G.; Palmer, R. B.; Zhao, Y.; Summers, D.

    1999-01-01

    The ionization cooling of muons requires longitudinal acceleration of the muons after scattering in a hydrogen target. In order to maximize the accelerating voltage, they propose using linear accelerating structures with cells bounded by thin beryllium metal foils. this produces an on-axis field equivalent to the maximum surface field, whereas with beam-pipes the accelerating field is approximately half that of the peak surface field in the cavity. The muons interact only weakly with the thin foils. A π/2 interleaved cavity structure has been chosen, with alternate cells coupled together externally, and the two groups of cells fed in quadrature. At present they are considering an operating temperature of 77K to gain a factor of at least two in Q-value over room temperature. They will describe the design of the π/2 interleaved cavity structure, design of an alternative π-mode open structure, preliminary experimental results from a low-power test cavity, and plans for high-power testing

  14. Conception and validation software tools for the level 0 muon trigger of LHCb

    International Nuclear Information System (INIS)

    Aslanides, E.; Cachemiche, J. P.; Cogan, J.; Duval, P. Y.; Le Gac, R.; Hachon, F.; Leroy, O.; Liotard, P. L.; Marin, F.; Tsaregorodtsev, A.

    2009-01-01

    The Level-0 muon trigger processor of the LHCb experiment looks for straight particles crossing muon detector and measures their transverse momentum. It processes 40*10 6 proton-proton collisions per second. The tracking uses a road algorithm relying on the projectivity of the muon detector (the logical layout in the 5 muon station is projective in y to the interaction point and it is also projective in x when the bending in the horizontal direction introduced by the magnetic field is ignored). The architecture of the Level-0 muon trigger is complex with a dense network of data interconnections. The design and validation of such an intricate system has only been possible with intense use of software tools for the detector simulation, the modelling of the hardware components behaviour and the validation. A database describing the data-flow is the corner stone between the software and hardware components. (authors)

  15. A Measurement of the muon neutrino charged current quasielastic interaction and a test of Lorentz violation with the MiniBooNE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Katori, Teppei [Indiana Univ., Bloomington, IN (United States)

    2008-12-01

    The Mini-Booster neutrino experiment (MiniBooNE) at Fermi National Accelerator Laboratory (Fermilab) is designed to search for vμ → ve appearance neutrino oscillations. Muon neutrino charged-current quasi-elastic (CCQE) interactions (vμ + n → μ + p) make up roughly 40% of our data sample, and it is used to constrain the background and cross sections for the oscillation analysis. Using high-statistics MiniBooNE CCQE data, the muon-neutrino CCQE cross section is measured. The nuclear model is tuned precisely using the MiniBooNE data. The measured total cross section is σ = (1.058 ± 0.003 (stat) ± 0.111 (syst)) x 10-38 cm2 at the MiniBooNE muon neutrino beam energy (700-800 MeV). ve appearance candidate data is also used to search for Lorentz violation. Lorentz symmetry is one of the most fundamental symmetries in modern physics. Neutrino oscillations offer a new method to test it. We found that the MiniBooNE result is not well-described using Lorentz violation, however further investigation is required for a more conclusive result.

  16. Stochastic cooling in muon colliders

    International Nuclear Information System (INIS)

    Barletta, W.A.; Sessler, A.M.

    1993-09-01

    Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10 30 cm -2 s -1 as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to ∼10 3 for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW

  17. PANDA Muon System Prototype

    Science.gov (United States)

    Abazov, Victor; Alexeev, Gennady; Alexeev, Maxim; Frolov, Vladimir; Golovanov, Georgy; Kutuzov, Sergey; Piskun, Alexei; Samartsev, Alexander; Tokmenin, Valeri; Verkheev, Alexander; Vertogradov, Leonid; Zhuravlev, Nikolai

    2018-04-01

    The PANDA Experiment will be one of the key experiments at the Facility for Antiproton and Ion Research (FAIR) which is under construction now in the territory of the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. PANDA is aimed to study hadron spectroscopy and various topics of the weak and strong forces. Muon System is chosen as the most suitable technology for detecting the muons. The Prototype of the PANDA Muon System is installed on the test beam line T9 at the Proton Synchrotron (PS) at CERN. Status of the PANDA Muon System prototype is presented with few preliminary results.

  18. PANDA Muon System Prototype

    Directory of Open Access Journals (Sweden)

    Abazov Victor

    2018-01-01

    Full Text Available The PANDA Experiment will be one of the key experiments at the Facility for Antiproton and Ion Research (FAIR which is under construction now in the territory of the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. PANDA is aimed to study hadron spectroscopy and various topics of the weak and strong forces. Muon System is chosen as the most suitable technology for detecting the muons. The Prototype of the PANDA Muon System is installed on the test beam line T9 at the Proton Synchrotron (PS at CERN. Status of the PANDA Muon System prototype is presented with few preliminary results.

  19. Triggering and measuring bent cosmic muon tracks with the Muon Spectrometer barrel for the first time

    CERN Multimedia

    Fabio Cerutti

    During the ATLAS barrel toroid stability test, bent cosmic muon tracks were seen for the first time in the ATLAS cavern by means of the ATLAS muon spectrometer. The barrel toroid has been powered at its nominal current (20.5 thousand Amperes) and kept in steady state for more than one day during the weekend of 18-19 November (see a report on this test in the Magnet section). During this test one large sector and part of a small sector of the barrel muon spectrometer were readout and used to detect the cosmic muons tracks bent by the toroidal magnetic field. Thirteen muon stations in the feet sectors (sectors 13 and 14) have been used in this test. The muon stations are formed of Resistive Plate Chambers (RPC) that were providing the muon trigger, and Monitored Drift Tubes that were used to measure with high accuracy the muon curvature hence their momentum. The Level-1 Barrel trigger chain was based on the Barrel Middle Large chambers equipped with final production modules on both the on-detector and the o...

  20. Extraction of the neutron-neutron scattering length ann from kinematically complete neutron-deuteron breakup experiments

    International Nuclear Information System (INIS)

    Witala, H.; Hueber, D.; Gloeckle, W.; Tornow, W.; Gonzalez Trotter, D.E.

    1996-01-01

    Data for the neutron-neutron final-state-interaction cross section obtained recently in a kinematically complete neutron-deuteron breakup experiment have been reanalyzed using rigorous solutions of the three-nucleon Faddeev equations with realistic nucleon-nucleon interactions. A discrepancy was found with respect to a recent analysis based on the W-matrix approximation to the Paris potential. We also estimate theoretical uncertainties in extracting the neutron-neutron scattering length resulting from the use of different nucleon-nucleon interactions and the possible action of the two pion-exchange three-nucleon force. We find that there exists a certain production angle for the interacting neutron-neutron pair where the uncertainties become minimal. (author)

  1. Search for right-handed currents in muon decay

    International Nuclear Information System (INIS)

    Balke, B.; Carr, J.; Gidal, G.

    1984-07-01

    The parameter xi, which characterizes the anisotropy of the emitted electrons relative to the spin direction of the muon, is a sensitive indicator of possible V+A admixtures to the dominant V-A weak interaction responsible for muon decay. We report here new results relating to the measurement of xi based on an experiment performed with a highly polarized surface muon beam at the TRIUMF cyclotron. The muons were stopped in thin metal foils in order to minimize depolarization effects. A spectrometer consisting of magnets and position sensitive detectors was tuned to accept electrons near the end point of the decay spectrum. Two largely independent methods were used to determine xi. In the first we measured the rate of positrons emitted in a direction opposite to the muon's spin as a function of their momentum when the stopping target was immersed in a 1.1 T longitudinal magnetic field. In the second method the stopping muons were subjected to a weak transverse magnetic field and the amplitude of their spin precession oscillation was used to determine xi. Based on the results from both methods lower limits on the mass of an intermediate vector boson which couples to right-handed weak currents are 400 GeV/c 2 when no constraints are placed on W/sub L/ - W/sub R/ mixing and 470 GeV/c 2 if mixing is assumed to be absent. These limits represent about an order of magnitude improvement over those obtained from previous measurements of xi. We have used the same apparatus to measure the anisotropic shape parameter delta. Preliminary results are consistent with the expected value of 3/4 with errors that are a factor of two smaller than previous measurements

  2. Alignment of the CMS Muon System with Cosmic-Ray and Beam-Halo Muons

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G.; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The CMS muon system has been aligned using cosmic-ray muons collected in 2008 and beam-halo muons from the 2008 LHC circulating beam tests. After alignment, the resolution of the most sensitive coordinate is 80 microns for the relative positions of superlayers in the same barrel chamber and 270 microns for the relative positions ofendcap chambers in the same ring structure. The resolution on the position of the central barrel chambers relative to the tracker is comprised between two extreme estimates, 200 and 700 microns, provided by two complementary studies. With minor modifications, the alignment procedures can be applied using muons from LHC collisions, leading to additional significant improvements.

  3. Charm production by muons and its role in scale-noninvariance

    International Nuclear Information System (INIS)

    Gollin, G.D.

    1981-01-01

    Interactions of 209 GeV muons in the Multimuon Spectrometer at Fermilab have yielded more than 8 x 10 4 events with two muons in the final state. After reconstruction and cuts, the data contain 20,072 events with (81 +- 10)% attributed to the diffractive production of charmed states decaying to muons. The cross section for diffractive charm muoproduction is 6.9(+1.9,-1.4) nb where the error includes systematic uncertainties. Extrapolated to Q 2 = 0 with sigma(Q 2 ) = sigma(0)(1 + Q 2 /Λ 2 ) -2 , the effective cross section for 178 (100) GeV photons is 750(+180,-130) (560(+200,-120)) nb and the parameter Λ is 3.3 +- 0.2 (2.9 +- 0.2) GeV/c. The ν dependence of the cross section is similar to that of the photon-gluon-fusion model. A first determination of the structure function for diffractive charm production indicates that charm accounts for approximately 1/3 of the scale-noninvariance observed in inclusive muon-nucleon scattering at low Bjorken x. Okubo-Zweig-Iizuka selection rules and unitarity allow the muon data to set a 90%-confidence lower limit on the psi N total cross section of 0.9 mb

  4. ICOOL: A Simulation Code for Ionization Cooling of Muon Beams

    International Nuclear Information System (INIS)

    Fernow, R. C.

    1999-01-01

    Current ideas [1,2] for designing a high luminosity muon collider require significant cooling of the phase space of the muon beams. The only known method that can cool the beams in a time comparable to the muon lifetime is ionization cooling [3,4]. This method requires directing the particles in the beam at a large angle through a low Z absorber material in a strong focusing magnetic channel and then restoring the longitudinal momentum with an rf cavity. We have developed a new 3-D tracking code ICOOL for examining possible configurations for muon cooling. A cooling system is described in terms of a series of longitudinal regions with associated material and field properties. The tracking takes place in a coordinate system that follows a reference orbit through the system. The code takes into account decays and interactions of ∼50-500 MeV/c muons in matter. Material geometry regions include cylinders and wedges. A number of analytic models are provided for describing the field configurations. Simple diagnostics are built into the code, including calculation of emittances and correlations, longitudinal traces, histograms and scatter plots. A number of auxiliary files can be generated for post-processing analysis by the user

  5. Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope

    CERN Document Server

    Adrián-Martínez, S.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Flaminio, V.; Folger, F.; Fusco, L.A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Gómez-González, J.P.; Graf, K.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernández-Rey, J.J.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C.W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J.A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Neff, M.; Nezri, E.; Păvălaş, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D.F.E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Turpin, D.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    The ANTARES experiment consists of an array of photomultipliers distributed along 12 lines and located deep underwater in the Mediterranean Sea. It searches for astrophysical neutrinos collecting the Cherenkov light induced by the charged particles, mainly muons, produced in neutrino interactions around the detector. Since at energies of $\\sim$10 TeV the muon and the incident neutrino are almost collinear, it is possible to use the ANTARES detector as a neutrino telescope and identify a source of neutrinos in the sky starting from a precise reconstruction of the muon trajectory. To get this result, the arrival times of the Cherenkov photons must be accurately measured. A to perform time calibrations with the precision required to have optimal performances of the instrument is described. The reconstructed tracks of the atmospheric muons in the ANTARES detector are used to determine the relative time offsets between photomultipliers. Currently, this method is used to obtain the time calibration constants for ph...

  6. Explanation od sudden temperature dependence of muon catalysis in solid deuterium

    CERN Document Server

    Gershtejn, S S

    2001-01-01

    It is indicated, that the elastic scattering of the d mu-meson atoms in the solid deuterium at sufficiently low temperatures (as well as of slow neutrons) occurs on the whole crystalline lattice practically without energy loss, and the inelastic collision with the phonon excitation is low.Therefore, the resonance formation of the dd mu-molecules in the solid deuterium takes place before the d mu mesoatoms thermalization and it explains practically observed independence of the dd mu-molecules formation rate and muon catalysis of the temperatures

  7. R and D Toward Neutrino Factories and Muon Colliders

    International Nuclear Information System (INIS)

    Zisman, Michael S.

    2003-01-01

    R and D aimed at the production, acceleration, and storage of intense muon beams is under way in the U.S., in Europe, and in Japan. Considerable progress has been made in the past few years toward the design of a ''Neutrino Factory'' in which a beam of 20-50 GeV mu- or mu+ is stored. Decay neutrinos from the beam illuminate a detector located roughly 3000 km from the ring. Here, we briefly describe the ingredients of a Neutrino Factory and then discuss the current R and D program and its results. A key concept in the design is ''ionization cooling,'' a process whereby the muon emittance is reduced by repeated interactions with an absorber material followed by reacceleration with high-gradient rf cavities. Plans to test this concept in the Muon Ionization Cooling Experiment (MICE) are well along and are described briefly

  8. System of data collection of muon super-telescope and neutron monitor

    International Nuclear Information System (INIS)

    Klepach, E.; Yanke, V.; Kryakunova, O.; Sarlanis, K.; Souvatsoglou, Zh.; Mavromichalaki, E.

    2005-01-01

    The system of collection of information, integrated with system of selection on concurrences which is easily modified and for collection of the neutron data for the multi directed telescopes and godoscopes is offered. The system of data collection completely is solved at program level on the basis of the super fast processor. Coincidences and decoding of directions of arrival of particles are executed at a program level, and also counters of impulses for necessary number of channels are organized. The system of data collection is executed as the universal external device. Depending on the loaded managing program, this device can be used as: 1) system of telescope data collection, combined with system of selection of double coincidences; or 2) 32-channel system of data collection, for example the neutron monitor; or 3) as the register of the multiple neutrons, generated in the neutron monitor. (author)

  9. The low energy muon beam profile monitor for the muon g-2/EDM experiment at J-PARC

    Science.gov (United States)

    Razuvaev, G. P.; Bae, S.; Choi, H.; Choi, S.; Ko, H. S.; Kim, B.; Kitamura, R.; Mibe, T.; Otani, M.

    2017-09-01

    The muon g-2/EDM experiment at J-PARC aims to measure the muon anomalous magnetic moment and electric dipole moment with high precision by utilising an ultracold muon beam. The current muon g-2 discrepancy between the Standard Model prediction and the experimental value is about 3.5 standard deviations. This experiment requires a development of the muon LINAC to accelerate thermal muons to the 300 MeV/c momentum. Detectors for beam diagnostics play a key role in such an experiment. The beam profile monitoring system has been designed to measure the profile of the low energy muon beam. It was tested during two beam tests in 2016 at the MLF D2 line at J-PARC. The detector was used with positive muons, Mu-(μ+ e- e-), p and H-, e- and UV light. The system overview and preliminary results are given. Special attention is paid to the spatial resolution of the beam profile monitor and online monitor software used during data taking.

  10. Muon acceleration in cosmic-ray sources

    International Nuclear Information System (INIS)

    Klein, Spencer R.; Mikkelsen, Rune E.; Becker Tjus, Julia

    2013-01-01

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10 13 keV cm –1 . At gradients above 1.6 keV cm –1 , muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  11. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    International Nuclear Information System (INIS)

    Artem’ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.

    2016-01-01

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2–5 nm and for neutron energies 3 × 10 -7 –10 -3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder

  12. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    Science.gov (United States)

    Artem'ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.

    2016-01-01

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2-5 nm and for neutron energies 3 × 10-7-10-3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.

  13. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    Energy Technology Data Exchange (ETDEWEB)

    Artem’ev, V. A., E-mail: niitm@inbox.ru [Research Institute of Materials Technology (Russian Federation); Nezvanov, A. Yu. [Moscow State Industrial University (Russian Federation); Nesvizhevsky, V. V. [Institut Max von Laue—Paul Langevin (France)

    2016-01-15

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2–5 nm and for neutron energies 3 × 10{sup -7}–10{sup -3} eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.

  14. OPAL Muon Chamber

    CERN Multimedia

    OPAL was one of the 4 experiments installed at the LEP particle accelerator from 1989 to 2000. This is a slice of the outermost layer of OPAL : the muon chambers. This outside layer detects particles which are not stopped by the previous layers. These are mostly muons.

  15. Muon triggers in search for charm and beauty in hybrid emulsion experiments

    International Nuclear Information System (INIS)

    Romano, G.

    1984-01-01

    This chapter presents calculations which are mainly based on the results obtained with the dump used in the experiment NA19 at CERN. The easiest way to trigger on muons (even on-line) is to place a dump behind the target. Background triggers are due to muons produced in the primary interaction (mainly Drell-Yan) or resulting from short lived particles (charm decays are a source of background in a search for beauty) or from long lived particle decays. Among the possible on-line and/or off-line triggers, those based on the presence of one or more muons seem particularly promising due to the sizeable branching ratio of the new flavors into leptons and to the good selection power against background. Charmed and beauty particles produce, on average, muons with much higher transverse momenta than background, and thus a trigger requiring a low number of muons (1 or 2) could be equally or even more selective than a multimuon trigger, while keeping a larger fraction of the signal

  16. Determination of the atmospheric muon flux with the neutrino telescope ANTARES

    International Nuclear Information System (INIS)

    Picq, C.

    2009-06-01

    The neutrino telescope ANTARES is a deep-sea detector located in the Mediterranean Sea. The universe is transparent to neutrinos, so their study provides a unique means of improving our knowledge of the nature of cosmic rays, their origins and their emission from the most powerful astrophysical sources in the cosmos. Neutrinos also offer the possibility of opening a new energy window (>TeV) for observation of the universe. This thesis is dedicated to the study of the main background noise of the detector, due to the passage of atmospheric muons produced by high energy cosmic rays interacting with atmospheric nuclei. The first part of this thesis focuses on the study of the detector. The different characteristics and the calibration of the detector as well as the techniques of monitoring the electronic are described. The second part of this thesis reports the various results obtained on the atmospheric muons with the five line detector. A detailed presentation of the simulations used is presented. The first difficulty of detecting atmospheric muons is due to the geometry of the detector. The second is due to the fact that the atmospheric muons often arrive in bundles and that the number of muons in these bundles is unknown at a depth of 2500 m. A first study based on simulations makes it possible to discriminate between the muons alone and the bundles of muons. A second study is dedicated to the measurement of the muon flux depending on the slant depth. The measurement is compatible with the results of other instruments when the systematic uncertainties are taken into account. (author)

  17. Ship Effect Measurements With Fiber Optic Neutron Detector

    International Nuclear Information System (INIS)

    King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad; Kouzes, Richard T.; Woodring, Mitchell L.

    2010-01-01

    The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize the muon contribution.

  18. Characterisation of the Muon Beams for the Muon Ionisation Cooling Experiment

    CERN Document Server

    Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Back, J.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; Blackmore, V.J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.; Booth, C.N.; Bowring, D.; Boyd, S.; Bradshaw, T.W.; Bravar, U.; Bross, A.D.; Capponi, M.; Carlisle, T.; Cecchet, G.; Charnley, G.; Cobb, J.H.; Colling, D.; Collomb, N.; Coney, L.; Cooke, P.; Courthold, M.; Cremaldi, L.M.; DeMello, A.; Dick, A.; Dobbs, A.; Dornan, P.; Fayer, S.; Filthaut, F.; Fish, A.; Fitzpatrick, T.; Fletcher, R.; Forrest, D.; Francis, V.; Freemire, B.; Fry, L.; Gallagher, A.; Gamet, R.; Gourlay, S.; Grant, A.; Graulich, J.S.; Griffiths, S.; Hanlet, P.; Hansen, O.M.; Hanson, G.G.; Harrison, P.; Hart, T.L.; Hartnett, T.; Hayler, T.; Heidt, C.; Hills, M.; Hodgson, P.; Iaciofano, A.; Ishimoto, S.; Kafka, G.; Kaplan, D.M.; Karadzhov, Y.; Kim, Y.K.; Kolev, D.; Kuno, Y.; Kyberd, P.; Lau, W.; Leaver, J.; Leonova, M.; Li, D.; Lintern, A.; Littlefield, M.; Long, K.; Lucchini, G.; Luo, T.; Macwaters, C.; Martlew, B.; Martyniak, J.; Middleton, S.; Moretti, A.; Moss, A.; Muir, A.; Mullacrane, I.; Nebrensky, J.J.; Neuffer, D.; Nichols, A.; Nicholson, R.; Nugent, J.C.; Onel, Y.; Orestano, D.; Overton, E.; Owens, P.; Palladino, V.; Palmer, R.B.; Pasternak, J.; Pastore, F.; Pidcott, C.; Popovic, M.; Preece, R.; Prestemon, S.; Rajaram, D.; Ramberger, S.; Rayner, M.A.; Ricciardi, S.; Richards, A.; Roberts, T.J.; Robinson, M.; Rogers, C.; Ronald, K.; Rubinov, P.; Rucinski, R.; Rusinov, I.; Sakamoto, H.; Sanders, D.A.; Santos, E.; Savidge, T.; Smith, P.J.; Snopok, P.; Soler, F.J.P.; Stanley, T.; Summers, D.J.; Takahashi, M.; Tarrant, J.; Taylor, I.; Tortora, L.; Torun, Y.; Tsenov, R.; Tunnell, C.D.; Vankova, G.; Verguilov, V.; Virostek, S.; Vretenar, M.; Walaron, K.; Watson, S.; White, C.; Whyte, C.G.; Wilson, A.; Wisting, H.; Zisman, M.

    2013-01-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  19. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.; et al.,

    2013-10-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  20. Neutron-to-proton ratios in pA and π+-A interactions

    International Nuclear Information System (INIS)

    Bayukov, Yu.D.; Degtyarenko, P.V.; Druzhinin, B.L.

    1983-01-01

    Measurements of neutron and proton yields at 120 deg have been carried out in 7.5 GeV/c pA and in 1.4 GeV/c and 5.0 GeV/c π +- A interactions. The ratios of secondary neutrons to protons are considered in detail. The ratios depend on kinetic energy of secondary nucleons and this dependence is more pronounced for heavy nuclei. Dependence of this ratios on the incident particle charge and the asymmetry resulting from a different number of protons and neutrons in the nucleus are discussed

  1. Physics with a millimole of muons

    International Nuclear Information System (INIS)

    Quigg, C.

    1998-03-01

    The eventual prospect of muon colliders reaching several TeV encourages us to consider the experimental opportunities presented by very copious stores of muons, approaching 10 21 per year. I summarize and comment upon some highlights of the Fermilab Workshop on Physics at the First Muon Collider and at the Front End of a Muon Collider. Topics include various varieties of μμ colliders, μp colliders, and applications of the intense neutrino beams that can be generated in muon storage rings

  2. Proton-neutron interaction and nuclear structure

    International Nuclear Information System (INIS)

    Casten, R.F.

    1986-01-01

    The pervasive role of the proton-neutron interaction in nuclear structure is discussed. Particular emphasis is given to its influence on the onset of collectivity and deformation, on intruder states, and on the evolution of subshell structure. The N/sub p/N/sub n/ scheme is outlined and some applications of it to collective model calculations and to nuclei far off stability are described. The concept of N/sub p/N/sub n/ multiplets is introduced. 32 refs., 20 figs

  3. Peculiarities of neutron interaction with boron containing semiconductors

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; ); Hofman, A.; Institute of Atomic Energy, Otwock/Swierk; Vlasukova, L.A.

    2009-01-01

    The results of point defect creation calculation in B 4 C, BN and BP semiconductor single crystals irradiated in the fast neutron reactor IBR-2 are presented. It has been shown that during the thermal neutron interaction with light isotope boron atoms ( 10 B) the damage creation by means of fission nuclear reaction fragments (alpha particles and 7 Li recoil nuclei) exceeds the damage created by fast neutrons (E n > 0.1 MeV) by more than two orders of value. It has been concluded that such irradiation can create a well developed radiation defect structure in boron-containing crystals with nearly homogeneous vacancy depth distribution. This may be used in technological applications for more effective diffusion of impurities implanted at low energies or deposited onto the semiconductor surface. The developed homogeneous vacancy structure is very suitable for the radiation enhanced diffusion of electrically charged or neutral impurities from the surface into the technological depth of semiconductor devices under post irradiation treatment. (authors)

  4. The ATLAS Muon and Tau Trigger

    CERN Document Server

    Dell'Asta, L; The ATLAS collaboration

    2013-01-01

    [Muon] The ATLAS experiment at CERN's Large Hadron Collider (LHC) deploys a three-levels processing scheme for the trigger system. The level-1 muon trigger system gets its input from fast muon trigger detectors. Fast sector logic boards select muon candidates, which are passed via an interface board to the central trigger processor and then to the High Level Trigger (HLT). The muon HLT is purely software based and encompasses a level-2 (L2) trigger followed by an event filter (EF) for a staged trigger approach. It has access to the data of the precision muon detectors and other detector elements to refine the muon hypothesis. Trigger-specific algorithms were developed and are used for the L2 to increase processing speed for instance by making use of look-up tables and simpler algorithms, while the EF muon triggers mostly benefit from offline reconstruction software to obtain most precise determination of the track parameters. There are two algorithms with different approaches, namely inside-out and outside-in...

  5. Colliding muons

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Is a muon-muon collider really practical? That is the question being asked by Bob Palmer. Well known in particle physics, Palmer, with Nick Samios and Ralph Shutt, recently won the American Physical Society's Panofsky Prize for their 1964 discovery of the omega minus. As well as contributing to other major experiments, both at CERN and in the US, he has contributed ideas to stochastic cooling and novel acceleration schemes

  6. Activation measurements for fast neutrons. Part D. Evaluation of cosmic-ray-induced 63Ni background in copper

    International Nuclear Information System (INIS)

    Ruehm, Werner; Rugel, Georg; Faestermann, Thomas

    2005-01-01

    As a result of a joint collaboration between the University of Utah, LLNL, the Technical University Munich and the Ludwig Maximilians University Munich, it became possible to determine A-bomb induced 63 Ni in pure copper samples from Hiroshima beyond a ground range of 1,000 m (see Chapter 9, Part B). The low 63 Ni activities induced in copper samples due to neutrons from the A-bomb explosion at large distance require, however, a careful discussion of the fraction of 63 Ni produced in these samples due to cosmic radiation. In this section, an analysis of the production of 63 Ni in copper samples due to cosmic radiation is performed. Production due to neutrons, protons, stopped muons, and photonuclear reactions is discussed. It is obvious from Figure 1 (Pfennig et al. 1995) that a variety of reactions induced by neutrons, protons, muons and photons can contribute to the production of 63 Ni in copper. The most important of these processes will be discussed here. Since the cross-sections for the production of 63 Ni in copper samples due to fast and stopped muons were not known, they were determined experimentally. (J.P.N.)

  7. A Level-2 trigger algorithm for the identification of muons in the ATLAS Muon Spectrometer

    CERN Document Server

    Di Mattia, A; Dos Anjos, A; Baines, J T M; Bee, C P; Biglietti, M; Bogaerts, J A C; Boisvert, V; Bosman, M; Caron, B; Casado, M P; Cataldi, G; Cavalli, D; Cervetto, M; Comune, G; Conde-Muíño, P; De Santo, A; Díaz-Gómez, M; Dosil, M; Ellis, Nick; Emeliyanov, D; Epp, B; Falciano, S; Farilla, A; George, S; Ghete, V M; González, S; Grothe, M; Kabana, S; Khomich, A; Kilvington, G; Konstantinidis, N P; Kootz, A; Lowe, A; Luminari, L; Maeno, T; Masik, J; Meessen, C; Mello, A G; Merino, G; Moore, R; Morettini, P; Negri, A; Nikitin, N V; Nisati, A; Padilla, C; Panikashvili, N; Parodi, F; Pasqualucci, E; Pérez-Réale, V; Pinfold, J L; Pinto, P; Qian, Z; Resconi, S; Rosati, S; Sánchez, C; Santamarina-Rios, C; Scannicchio, D A; Schiavi, C; Segura, E; De Seixas, J M; Sivoklokov, S Yu; Soluk, R A; Stefanidis, E; Sushkov, S S; Sutton, M; Tapprogge, Stefan; Thomas, E; Touchard, F; Venda-Pinto, B; Vercesi, V; Werner, P; Wheeler, S; Wickens, F J; Wiedenmann, W; Wielers, M; Zobernig, G; Computing In High Energy Physics

    2005-01-01

    The ATLAS Level-2 trigger provides a software-based event selection after the initial Level-1 hardware trigger. For the muon events, the selection is decomposed in a number of broad steps: first, the Muon Spectrometer data are processed to give physics quantities associated to the muon track (standalone feature extraction) then, other detector data are used to refine the extracted features. The “µFast” algorithm performs the standalone feature extraction, providing a first reduction of the muon event rate from Level-1. It confirms muon track candidates with a precise measurement of the muon momentum. The algorithm is designed to be both conceptually simple and fast so as to be readily implemented in the demanding online environment in which the Level-2 selection code will run. Never-the-less its physics performance approaches, in some cases, that of the offline reconstruction algorithms. This paper describes the implemented algorithm together with the software techniques employed to increase its timing p...

  8. Two-quasineutron states in 98248Cf and 98250Cf and the neutron-neutron residual interactions

    International Nuclear Information System (INIS)

    Katori, K.; Ahmad, I.; Friedman, A. M.

    2008-01-01

    Two-quasineutron states in 248 Cf and 250 Cf were investigated by single-neutron transfer reactions, 249 Cf(d,t) 248 Cf and 249 Cf(d,p) 250 Cf. The majority of levels observed were assigned to 12 bands in 248 Cf and six bands in 250 Cf, constructed from the single-particle states in neighboring Cf nuclei. The effective two-body interactions between two odd neutrons coupled outside a deformed core were deduced from the differences in the energies of the bandheads formed by the parallel and antiparallel coupling of the intrinsic spins of the two single-particle states

  9. Effective interaction: From nuclear reactions to neutron stars

    Indian Academy of Sciences (India)

    pact stars. The nuclear EoS for β-equilibrated neutron star (NS) matter obtained using density-dependent effective nucleon–nucleon interaction satisfies the constraints from the observed flow data from heavy-ion collisions. The energy density of quark matter is lower than that of the nuclear EoS at higher densities implying ...

  10. Nonadiabatic calculations for tdμ relevant for muon catalyzed fusion

    International Nuclear Information System (INIS)

    Szalewicz, K.; Jeziorski, B.

    1991-01-01

    Due to the mass effect, muonic molecular ions are about 200 times smaller than their electronic counterparts. The proximity of the nuclei in the tdμ ion results in fusion taking place within a picosecond. The properties of this ion are central to understanding the phenomenon of muon catalysis. The authors developed a computational method of solving the nonadiabatic Schroedinger equation for the bound and resonance states of tdμ and its isotopic analogues. The method takes into account both the Coulomb interactions and the strong nuclear forces responsible for the fusion reaction. The wave functions obtained from this method were used to predict very accurately branching ratios and transition rates relevant for various stages of the muon catalytic cycle. Knowledge of these quantities will guide the experiments and help to answer the question of feasibility of net energy production via muon catalysis

  11. Investigation of hydrogen isotopes interaction processes with lithium under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zaurbekova, Zhanna, E-mail: zaurbekova@nnc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Skakov, Mazhyn; Ponkratov, Yuriy; Kulsartov, Timur; Gordienko, Yuriy; Tazhibayeva, Irina; Baklanov, Viktor; Barsukov, Nikolay [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Chikhray, Yevgen [Institute of Experimental and Theoretical Physics of Kazakh National University, Almaty (Kazakhstan)

    2016-11-01

    Highlights: • The experiments on study of helium and tritium generation and release processes under neutron irradiation from lithium saturated with deuterium are described in paper. ​ • The values of relative tritium and helium yield from lithium sample at different levels of neutron irradiation is calculated. • It was concluded that the main affecting process on tritium release from lithium is its interaction with lithium atoms with formation of lithium tritide. - Abstract: The paper describes the experiments on study of helium and tritium generation and release processes from lithium saturated with deuterium under neutron irradiation (in temperature range from 473 to 773 K). The diagrams of two reactor experiments show the time dependences of helium, DT, T{sub 2}, and tritium water partial pressures changes in experimental chamber with investigated lithium sample. According to experimental results, the values of relative tritium and helium yield from lithium sample at different levels of neutron irradiation were calculated. The time dependences of relative tritium and helium yield from lithium sample were plotted. It was concluded that the main affecting process on tritium release from lithium is its interaction with lithium atoms with formation of lithium tritide.

  12. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    International Nuclear Information System (INIS)

    BIGI, I.; BOLTON, T.; FORMAGGIO, J.; HARRIS, D.; MORFIN, J.; SPENTZOURIS, P.; YU, J.; KAYSER, B.; KING, B.J.; MCFARLAND, K.; PETROV, A.; SCHELLMAN, H.; VELASCO, M.; SHROCK, R.

    2000-01-01

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters

  13. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    Energy Technology Data Exchange (ETDEWEB)

    BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

    2000-05-11

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

  14. Directional muon jet chamber for a muon collider (Groovy Chamber)

    International Nuclear Information System (INIS)

    Atac, M.

    1996-10-01

    A directional jet drift chamber with PAD readout is proposed here which can select vertex originated muons within a given time window and eliminate those muons which primarily originate upstream, using only a PAD readout. Drift time provides the Z-coordinate, and the center of gravity of charge distribution provides the r-ψ coordinates. Directionality at the trigger level is obtained by the timing measurement from the PAD hits within a given time window. Because of the long drift time between the bunch crossings, a muon collider enables one to choose a drift distance in the drift chamber as long as 50 cm. This is an important factor in reducing cost of drift chambers which have to cover relatively large areas

  15. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A. [Harwell Oxford, STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); Adey, D.; Back, J.; Boyd, S.; Harrison, P.; Pidcott, C.; Taylor, I. [University of Warwick, Department of Physics, Coventry (United Kingdom); Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Fayer, S.; Fish, A.; Hunt, C.; Leaver, J.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Richards, A.; Santos, E.; Savidge, T.; Takahashi, M. [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Asfandiyarov, R.; Blondel, A.; Graulich, J.S.; Karadzhov, Y.; Verguilov, V.; Wisting, H. [Universite de Geneve, DPNC, Section de Physique, Geneva (Switzerland); De Bari, A.; Cecchet, G. [Sezione INFN Pavia (Italy); Dipartimento di Fisica Nucleare e Teorica, Pavia (Italy); Bayes, R.; Forrest, D.; Nugent, J.C.; Soler, F.J.P.; Walaron, K. [The University of Glasgow, School of Physics and Astronomy, Glasgow (United Kingdom); Bertoni, R.; Bonesini, M.; Lucchini, G. [Sezione INFN Milano Bicocca (Italy); Dipartimento di Fisica G. Occhialini, Milano (Italy); Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D. [University of Oxford, Department of Physics, Oxford (United Kingdom); Blot, S.; Kim, Y.K. [University of Chicago, Enrico Fermi Institute, Chicago, IL (United States); Bogomilov, M.; Kolev, D.; Rusinov, I.; Tsenov, R.; Vankova, G. [St. Kliment Ohridski University of Sofia, Department of Atomic Physics, Sofia (Bulgaria); Booth, C.N.; Hodgson, P.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J. [University of Sheffield, Department of Physics and Astronomy, Sheffield (United Kingdom); Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.P.; Zisman, M.S. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Bravar, U. [University of New Hampshire, Durham, NH (United States); Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R. [Fermilab, Batavia, IL (United States); Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L. [Sezione INFN Roma Tre e Dipartimento di Fisica, Roma (Italy); Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Owens, P.; White, C. [STFC Daresbury Laboratory, Cheshire (United Kingdom); Coney, L.; Fletcher, R.; Hanson, G.G.; Heidt, C. [University of California, Riverside, CA (United States); Cooke, P.; Gamet, R. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J. [University of Mississippi, Oxford, MS (United States); Dick, A.J.; Ronald, K.; Whyte, C.G. [University of Strathclyde, Department of Physics, Glasgow (United Kingdom); Filthaut, F. [NIKHEF, Amsterdam (Netherlands); Freemire, B.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y. [Illinois Institute of Technology, Chicago, IL (United States); Hansen, O.M.; Ramberger, S.; Vretenar, M. [CERN, Geneva (Switzerland); Ishimoto, S. [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Kuno, Y.; Sakamoto, H. [Osaka University, Graduate School of Science, Department of Physics, Toyonaka, Osaka (Japan); Kyberd, P.; Littlefield, M.; Nebrensky, J.J. [Brunel University, Uxbridge (United Kingdom); Onel, Y. [University of Iowa, Department of Physics and Astronomy, Iowa City, IA (United States); Palladino, V. [Universita Federico II, Sezione INFN Napoli (Italy); Dipartimento di Fisica, Napoli (Italy); Palmer, R.B. [Brookhaven National Laboratory, Upton, NY (US); Roberts, T.J. [Muons, Inc., Batavia, IL (US); Collaboration: The MICE Collaboration

    2013-10-15

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2-2.3 {pi} mm-rad horizontally and 0.6-1.0 {pi} mm-rad vertically, a horizontal dispersion of 90-190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE. (orig.)

  16. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    International Nuclear Information System (INIS)

    Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Adey, D.; Back, J.; Boyd, S.; Harrison, P.; Pidcott, C.; Taylor, I.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Fayer, S.; Fish, A.; Hunt, C.; Leaver, J.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Richards, A.; Santos, E.; Savidge, T.; Takahashi, M.; Asfandiyarov, R.; Blondel, A.; Graulich, J.S.; Karadzhov, Y.; Verguilov, V.; Wisting, H.; De Bari, A.; Cecchet, G.; Bayes, R.; Forrest, D.; Nugent, J.C.; Soler, F.J.P.; Walaron, K.; Bertoni, R.; Bonesini, M.; Lucchini, G.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Blot, S.; Kim, Y.K.; Bogomilov, M.; Kolev, D.; Rusinov, I.; Tsenov, R.; Vankova, G.; Booth, C.N.; Hodgson, P.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.P.; Zisman, M.S.; Bravar, U.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Owens, P.; White, C.; Coney, L.; Fletcher, R.; Hanson, G.G.; Heidt, C.; Cooke, P.; Gamet, R.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Dick, A.J.; Ronald, K.; Whyte, C.G.; Filthaut, F.; Freemire, B.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Ishimoto, S.; Kuno, Y.; Sakamoto, H.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Onel, Y.; Palladino, V.; Palmer, R.B.; Roberts, T.J.

    2013-01-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2-2.3 π mm-rad horizontally and 0.6-1.0 π mm-rad vertically, a horizontal dispersion of 90-190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE. (orig.)

  17. Recent progress in neutrino factory and muon collider research within the Muon Collaboration

    Directory of Open Access Journals (Sweden)

    Mohammad M. Alsharo’a

    2003-08-01

    Full Text Available We describe the status of our effort to realize a first neutrino factory and the progress made in understanding the problems associated with the collection and cooling of muons towards that end. We summarize the physics that can be done with neutrino factories as well as with intense cold beams of muons. The physics potential of muon colliders is reviewed, both as Higgs factories and compact high-energy lepton colliders. The status and time scale of our research and development effort is reviewed as well as the latest designs in cooling channels including the promise of ring coolers in achieving longitudinal and transverse cooling simultaneously. We detail the efforts being made to mount an international cooling experiment to demonstrate the ionization cooling of muons.

  18. Recent progress in neutrino factory and muon collider research within the muon collaboration

    International Nuclear Information System (INIS)

    Alsharo'a, Mohammad M.; Ankenbrandt, Charles M.; Atac, Muzaffer; Autin, Bruno R.; Balbekov, Valeri I.; Barger, Vernon D.; Benary, Odette; Bennett, J. Roger J.; Berger, Michael S.; Berg, J. Scott; Berz, Martin; Black, Edgar L.; Blondel, Alain; Bogacz, S. Alex; Bonesini, M.; Bracker, Stephen B.; Bross, Alan D.; Bruno, Luca; Buckley-Geer, Elizabeth J.; Caldwell, Allen C.; Companelli, Mario; Cassel, Kevin W.; Catanesi, M. Gabriela; Chattopadhyay, Swapan; Chou, Weiren; Cline, David B.; Coney, Linda R.; Conrad, Janet M.; Corlett, John N.; Cremaldi, Lucien; Cummings, Mary Anne; Darve, Christine; DeJongh, Fritz; Drozhdin, Alexandr; Drumm, Paul; Elvira, V. Daniel; Errede, Deborah; Fabich, Adrian; Fawley, William M.; Fernow, Richard C.; Ferrario, Massimo; Finley, David A.; Fisch, Nathaniel J.; Fukui, Yasuo; Furman, Miguel A.; Gabriel, Tony A.; Galea, Raphael; Gallardo, Juan C.; Garoby, Roland; Garren, Alper A.; Geer, Stephen H.; Gilardoni, Simone; Van Ginneken, Andreas J.; Ginzburg, Ilya F.; Godang, Romulus; Goodman, Maury; Gosz, Michael R.; Green, Michael A.; Gruber, Peter; Gunion, John F.; Gupta, Ramesh; Haines, John R.; Hanke, Klaus; Hanson, Gail G.; Han, Tao; Haney, Michael; Hartill, Don; Hartline, Robert E.; Haseroth, Helmut D.; Hassanein, Ahmed; Hoffman, Kara; Holtkamp, Norbert; Holzer, E. Barbara; Johnson, Colin; Johnson, Rolland P.; Johnstone, Carol; Jungmann, Klaus; Kahn, Stephen A.; Kaplan, Daniel M.; Keil, Eberhard K.; Kim, Eun-San; Kim, Kwang-Je; King, Bruce J.; Kirk, Harold G.; Kuno, Yoshitaka; Ladran, Tony S.; Lau, Wing W.; Learned, John G.; Lebedev, Valeri; Lebrun, Paul; Lee, Kevin; Lettry, Jacques A.; Lavender, Marco; Li, Derun; Lombardi, Alessandra; Lu, Changguo; Makino, Kyoko; Malkin, Vladimir; Marfatia, D.; McDonald, Kirk T.; Mezzetto, Mauro; Miller, John R.; Mills, Frederick E.; Mocioiu, I.; Mokhov, Nikolai V.; Monroe, Jocelyn; Moretti, Aldred; Mori, Yoshiharu; Neuffer, David V.; Ng, King-Yuen; Norem, James H.

    2003-01-01

    We describe the status of our effort to realize a first neutrino factory and the progress made in understanding the problems associated with the collection and cooling of muons towards that end. We summarize the physics that can be done with neutrino factories as well as with intense cold beams of muons. The physics potential of muon colliders is reviewed, both as Higgs Factories and compact high energy lepton colliders. The status and timescale of our research and development effort is reviewed as well as the latest designs in cooling channels including the promise of ring coolers in achieving longitudinal and transverse cooling simultaneously. We detail the efforts being made to mount an international cooling experiment to demonstrate the ionization cooling of muons

  19. LHCb: LHCb Muon System Performance at High Luminosity

    CERN Multimedia

    Pinci, D

    2013-01-01

    The LHCb detector was conceived to operate with an average Luminosity of $2 \\times 10^{32}$ cm$^{-2}$ s$^{-1}$. During the last year of LHC run, the whole apparatus has shown to be able to perfectly acquire and manage data produced at a Luminosity as high as $4 \\times 10^{32}$ cm$^{-2}$ s$^{-1}$. In these conditions, all sub-detectors operated at average particle rates higher than the design ones and in particular the Multi-Wire Proportional Chambers equipping the Muon System had to sustain a particle rate as high as 250 kHz/cm$^{2}$. In order to study the possibility of increasing the Luminosity of operation of the whole experiment several tests were performed. The effective beam Luminosity at the interaction point of LHCb was increased in several steps up to $10^{33}$ cm$^{-2}$ s$^{-1}$ and in each step the behavior of all the detectors in the Muon System was recorded. The data analysis has allowed to study the performance of the Muon System as a function of the LHC Luminosity and the results are r...

  20. Final Cooling for a Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Castillo, John Gabriel [Univ. of Mississippi, Oxford, MS (United States)

    2017-05-01

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative, if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 $\\mathrm{\\mu s}$ and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough $\\beta^{\\star} $ region to cool the beam to the required limit with available low Z absorbers.

  1. Search for muon to electron neutrino oscillations

    International Nuclear Information System (INIS)

    Vilain, P.; Wilquet, G.; Beyer, R.; Flegel, W.; Mouthuy, T.; Oeveraas, H.; Panman, J.; Rozanov, A.; Winter, K.; Zacek, G.; Zacek, V.; Buesser, F.W.; Foos, C.; Gerland, L.; Layda, T.; Niebergall, F.; Raedel, G.; Staehelin, P.; Voss, T.; Favart, D.; Gregoire, G.; Knoops, E.; Lemaitre, V.; Gorbunov, P.; Grigoriev, E.; Khovansky, V.; Maslennikov, A.; Lippich, W.; Nathaniel, A.; Staude, A.; Vogt, J.; Cocco, A.G.; Ereditato, A.; Fiorillo, G.; Marchetti-Stasi, F.; Palladino, V.; Strolin, P.; Capone, A.; De Pedis, D.; Dore, U.; Frenkel-Rambaldi, A.; Loverre, P.F.; Macina, D.; Piredda, G.; Santacesaria, R.; Di Capua, E.; Ricciardi, S.; Saitta, B.; Akkus, B.; Arik, E.; Serin-Zeyrek, M.; Sever, R.; Tolun, P.; Zeyrek, M.T.; Hiller, K.; Nahnhauer, R.; Roloff, H.E.

    1994-01-01

    A search for ν μ → ν e and anti ν μ → anti ν e oscillations has been carried out with the CHARM II detector exposed to the CERN wide band neutrino beam. The data were collected over five years, alternating beams mainly composed of muon-neutrinos and muon-antineutrinos. The number of interactions of ν e and anti ν e observed is comparable with the number of events expected from flux calculations. For large squared mass differences the upper limits obtained on the mixing angle are sin 2 2θ -3 for ν μ oscillating to ν e and sin 2 2θ -3 for anti ν μ to anti ν e , at the 90% confidence level. Combining neutrino and antineutrino data the upper limit is 5.6 . 10 -3 . (orig.)

  2. High-energy neutron yields in interactions of carbon ions with 114Sn and 124Sn nuclei

    International Nuclear Information System (INIS)

    Blinov, M.B.; Gavrilov, B.P.; Kovalenko, S.S.; Kozulin, Eh.M.; Mozhaev, A.N.; Oganesyan, Yu.Ts.; Penionzhkevich, Yu.Eh.

    1984-01-01

    The measurements of the yields of neutrons (energy more than 5 MeV) emitted in the interactions of carbon-12 ions (9 MeV/nucl.) with nuclei of two tin isotopes are conducted. The results obtained prove the effect of nucleon composition of a nucleus on the process of formation of high-energy neutrons. To clarify the concrete interaction mechanism it is necessary to perform systematic research for a number of isotopes differing in the relation of the number of neutrons and protons and binding energies of the last neutron

  3. 20 years of cosmic muons research performed in IFIN-HH

    International Nuclear Information System (INIS)

    Mitrica, Bogdan

    2012-01-01

    During the last two decades a modern direction in particle physics research has been developed in IFIN-HH Bucharest, Romania. The history started with the WILLI detector built in IFIN-HH Bucharest in collaboration with KIT Karlsruhe (formerly Forschungszentrum Karlsruhe). The detector was designed for measurements of the low energy muon charge ratio ( 0.4GeV, show a diurnal modulation of the muon flux. The analysis of the muon events for energies 15 eV. Simulation studies and preliminary experimental tests, regarding the performances of the mini-array, have been performed using H and Fe primaries, with energies in a range 10 13 eV - 10 15 eV. The results show detailed effects of the direction of EAS incidence relative to the geomagnetic field, depending, in particular, of the primary mass. Based on the results, we can say that WILLI-EAS experiment could be used for testing the hadronic interaction models. Measurements of the high energy muon flux in underground of the salt mine from Slanic Prahova, Romania was performed using a new mobile detector developed in IFIN-HH, Bucharest. Consisting of 2 scintillator plates measuring in coincidence, the detector is installed on a van which facilitates measurements on different positions at surface or in underground. The detector was used to measure muon fluxes in different locations at surface or in underground. The detector was used to measure muon fluxes at different sites of Romania and in the underground of the salt mines from Slanic Prahova, Romania where IFIN-HH has a modern underground laboratory. New methods for the detection of cosmic ray muons are investigated in our institute based on scintillator techniques using optical fiber and MPPC photodyodes.

  4. Experimental study of the interaction of 14-MeV neutrons with 238U

    International Nuclear Information System (INIS)

    Voignier, J.

    1968-01-01

    A study has been made of the interaction of fast neutrons with natural uranium from the experimental point of view over a wide energy range. The scattering energy spectra have been obtained by the time-of-flight method developed during previous work. The cross-section σ t , the elastic cross-section σ e , and the inelastic neutron emission cross-section σ ne have been measured at 14 MeV. The average number, η, of neutrons produced by interaction is deduced from this last measurement. The experimental results are analyzed in the second part of the report. The fission spectrum and the evaporation spectrum have been deduced from the energy spectrum of the secondary neutrons. The energy spectrum of the inelastic neutrons is represented by a relationship of the type:N (E) = A E exp (-E/T e ) + B √ E exp (-E/T f )/. The parameter A, B, T e and T f have been evaluated. Finally the values obtained for the various cross sections are compared with previous results. (author) [fr

  5. A compact muon tracking system for didactic and outreach activities

    Energy Technology Data Exchange (ETDEWEB)

    Antolini, R.; Candela, A.; Conicella, V.; De Deo, M.; D' Incecco, M.; Sablone, D. [INFN Gran Sasso National Laboratory – Assergi (AQ) (Italy); Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A. [New York University Abu Dhabi - Abu Dhabi (United Arab Emirates); Pazos Clemens, L., E-mail: luis.pazclem@nyu.edu [New York University Abu Dhabi - Abu Dhabi (United Arab Emirates); Franchi, G.; D' Inzeo, M. [Age Scientific srl – Capezzano Pianore (Italy)

    2016-07-11

    We present a cosmic ray telescope based on the use of plastic scintillator bars coupled to ASD-RGB1S-M Advansid Silicon Photomultipliers (SiPM) through wavelength shifter fibers. The system is comprised of 200 electronic channels organized into 10 couples of orthogonal planes allowing the 3D reconstruction of crossing muons. Two monolithic PCB boards have been designed to bias, readout all the SiPMs enclosed in the system, to monitor the working parameters and to remotely connect the detector. To make easier the display of muon tracks to non-expert users, two LED matrices, triggered by particle interactions, have been implemented. To improve the usability of the muon telescope, a controller board unit permits to select different levels of trigger and allows data acquisition for refined analyses for the more proficient user. A first prototype, funded by INFN and deployed in collaboration with NYUAD, is operating at the Toledo Metro station of Naples, while two further detectors will be developed and installed in Abu Dhabi in the next few months. - Highlights: • A compact system for real time displaying of muon tracks is presented. • The system is based on scintillating plates composed of doped polystyrene bars. • By using SiPMs and corresponding LEDs the muon paths can be visualized. • The purpose of this system is to introduce the public to sub-nuclear particles.

  6. A compact muon tracking system for didactic and outreach activities

    International Nuclear Information System (INIS)

    Antolini, R.; Candela, A.; Conicella, V.; De Deo, M.; D' Incecco, M.; Sablone, D.; Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A.; Pazos Clemens, L.; Franchi, G.; D'Inzeo, M.

    2016-01-01

    We present a cosmic ray telescope based on the use of plastic scintillator bars coupled to ASD-RGB1S-M Advansid Silicon Photomultipliers (SiPM) through wavelength shifter fibers. The system is comprised of 200 electronic channels organized into 10 couples of orthogonal planes allowing the 3D reconstruction of crossing muons. Two monolithic PCB boards have been designed to bias, readout all the SiPMs enclosed in the system, to monitor the working parameters and to remotely connect the detector. To make easier the display of muon tracks to non-expert users, two LED matrices, triggered by particle interactions, have been implemented. To improve the usability of the muon telescope, a controller board unit permits to select different levels of trigger and allows data acquisition for refined analyses for the more proficient user. A first prototype, funded by INFN and deployed in collaboration with NYUAD, is operating at the Toledo Metro station of Naples, while two further detectors will be developed and installed in Abu Dhabi in the next few months. - Highlights: • A compact system for real time displaying of muon tracks is presented. • The system is based on scintillating plates composed of doped polystyrene bars. • By using SiPMs and corresponding LEDs the muon paths can be visualized. • The purpose of this system is to introduce the public to sub-nuclear particles.

  7. A drift chamber tracking system for muon scattering tomography applications

    Science.gov (United States)

    Burns, J.; Quillin, S.; Stapleton, M.; Steer, C.; Snow, S.

    2015-10-01

    Muon scattering tomography (MST) allows the identification of shielded high atomic number (high-Z) materials by measuring the scattering angle of cosmic ray muons passing through an inspection region. Cosmic ray muons scatter to a greater degree due to multiple Coulomb scattering in high-Z materials than low-Z materials, which can be measured as the angular difference between the incoming and outgoing trajectories of each muon. Measurements of trajectory are achieved by placing position sensitive particle tracking detectors above and below the inspection volume. By localising scattering information, the point at which a series of muons scatter can be used to reconstruct an image, differentiating high, medium and low density objects. MST is particularly useful for differentiating between materials of varying density in volumes that are difficult to inspect visually or by other means. This paper will outline the experimental work undertaken to develop a prototype MST system based on drift chamber technology. The planar drift chambers used in this prototype measure the longitudinal interaction position of an ionising particle from the time taken for elections, liberated in the argon (92.5%), carbon dioxide (5%), methane (2.5%) gas mixture, to reach a central anode wire. Such a system could be used to enhance the detection of shielded radiological material hidden within regular shipping cargo.

  8. Characterization of the Interior Density Structure of Near Earth Objects with Muons

    Science.gov (United States)

    Prettyman, T. H.; Sykes, M. V.; Miller, R. S.; Pinsky, L. S.; Empl, A.; Nolan, M. C.; Koontz, S. L.; Lawrence, D. J.; Mittlefehldt, D. W.; Reddell, B. D.

    2015-12-01

    Near Earth Objects (NEOs) are a diverse population of short-lived asteroids originating from the main belt and Jupiter family comets. Some have orbits that are easy to access from Earth, making them attractive as targets for science and exploration as well as a potential resource. Some pose a potential impact threat. NEOs have undergone extensive collisional processing, fragmenting and re-accreting to form rubble piles, which may be compositionally heterogeneous (e.g., like 2008 TC3, the precursor to Almahata Sitta). At present, little is known about their interior structure or how these objects are held together. The wide range of inferred NEO macroporosities hint at complex interiors. Information about their density structure would aid in understanding their formation and collisional histories, the risks they pose to human interactions with their surfaces, the constraints on industrial processing of NEO resources, and the selection of hazard mitigation strategies (e.g., kinetic impactor vs nuclear burst). Several methods have been proposed to characterize asteroid interiors, including radar imaging, seismic tomography, and muon imaging (muon radiography and tomography). Of these, only muon imaging has the potential to determine interior density structure, including the relative density of constituent fragments. Muons are produced by galactic cosmic ray showers within the top meter of asteroid surfaces. High-energy muons can traverse large distances through rock with little deflection. Muons transmitted through an Itokawa-sized asteroid can be imaged using a compact hodoscope placed on or near the surface. Challenges include background rejection and correction for variations in muon production with surface density. The former is being addressed by hodoscope design. Surface density variations can be determined via radar or muon limb imaging. The performance of muon imaging is evaluated for prospective NEO interior-mapping missions.

  9. Implanted muon study of superlattice ordering in palladium hydride PdH/sub 0. 64/

    Energy Technology Data Exchange (ETDEWEB)

    Cox, S F.J.; Ross, D K; Witchell, D; Hartmann, O; Hempelmann, R; Richter, D; Stoneham, A M

    1986-12-01

    The superlattice ordering transition in PdH/sub 0.64/ is detected by implanted muon spectroscopy. The temperature dependence around 50 K of the static ..mu..SR depolarisation rate, measured in low transverse magnetic field in a polycrystalline sample, indicates appropriate changes in the average number of nearest neighbour protons. These measurements establish the similarity of the proton-proton and muon-proton interactions within the interstitial lattice. The implanted muons reveal the onset of short range order as the transition is approached and, to the extent that vacancy sites are available, participate in the predicted structure below the critical temperature.

  10. Influence of hadronic interaction models and the cosmic ray spectrum on the high energy atmospheric muon and neutrino flux

    OpenAIRE

    Fedynitch, Anatoli; Tjus, Julia Becker; Desiati, Paolo

    2012-01-01

    The recent observations of muon charge ratio up to about 10 TeV and of atmospheric neutrinos up to energies of about 400 TeV has triggered a renewed interest into the high-energy interaction models and cosmic ray primary composition. A reviewed calculation of lepton spectra produced in cosmic ray induced extensive air showers is carried out with a primary cosmic ray spectrum that fits the latest direct measurements below the knee. In order to achieve this, we used a full Monte Carlo method to...

  11. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    CERN Document Server

    Bogomilov, M.; Kolev, D.; Russinov, I.; Tsenov, R.; Vankova-Kirilova, G.; Wang, L.; Xu, F.Y.; Zheng, S.X.; Bertoni, R.; Bonesini, M.; Ferri, F.; Lucchini, G.; Mazza, R.; Paleari, F.; Strati, F.; Palladino, V.; Cecchet, G.; de Bari, A.; Capponi, M.; Cirillo, A.; Iaciofano, A.; Manfredini, A.; Parisi, M.; Orestano, D.; Pastore, F.; Tonazzo, A.; Tortora, L.; Mori, Y.; Kuno, Y.; Sakamoto, H.; Sato, A.; Yano, T.; Yoshida, M.; Ishimoto, S.; Suzuki, S.; Yoshimura, K.; Filthaut, F.; Garoby, R.; Gilardoni, S.; Gruber, P.; Hanke, K.; Haseroth, H.; Janot, P.; Lombardi, A.; Ramberger, S.; Vretenar, M.; Bene, P.; Blondel, A.; Cadoux, F.; Graulich, J.S.; Grichine, V.; Gschwendtner, E.; Masciocchi, F.; Sandstrom, R.; Verguilov, V.; Wisting, H.; Petitjean, C.; Seviour, R.; Alexander, J.; Charnley, G.; Collomb, N.; Griffiths, S.; Martlew, B.; Moss, A.; Mullacrane, I.; Oates, A.; Owens, P.; White, C.; York, S.; Adams, D.; Apsimon, R.; Barclay, P.; Baynham, D.E.; Bradshaw, T.W.; Courthold, M.; Drumm, P.; Edgecock, R.; Hayler, T.; Hills, M.; Ivaniouchenkov, Y.; Jones, A.; Lintern, A.; MacWaters, C.; Nelson, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rochford, J.H.; Rogers, C.; Spensley, W.; Tarrant, J.; Tilley, K.; Watson, S.; Wilson, A.; Forrest, D.; Soler, F.J.P.; Walaron, K.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Clark, D.; Clark, I.; Dobbs, A.; Dornan, P.; Fish, A.; Hare, R.; Greenwood, S.; Jamdagni, A.; Kasey, V.; Khaleeq, M.; Leaver, J.; Long, K.; McKigney, E.; Matsushita, T.; Pasternak, J.; Sashalmi, T.; Savidge, T.; Takahashi, M.; Blackmore, V.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.; Tunnell, C.D.; Witte, H.; Yang, S.; Booth, C.N.; Hodgson, P.; Howlett, L.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.; Adey, D.; Back, J.; Boyd, S.; Harrison, P.; Ellis, M.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Geer, S.; Neuffer, D.; Moretti, A.; Popovic, M.; Cummings, M.A.C.; Roberts, T.J.; DeMello, A.; Green, M.A.; Li, D.; Virostek, S.; Zisman, M.S.; Freemire, B.; Hanlet, P.; Huang, D.; Kafka, G.; Kaplan, D.M.; Snopok, P.; Torun, Y.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cline, D.; Fukui, Y.; Lee, K.; Yang, X.; Rimmer, R.A.; Cremaldi, L.M.; Gregoire, G.; Hart, T.L.; Sanders, D.A.; Summers, D.J.; Coney, L.; Fletcher, R.; Hanson, G.G.; Heidt, C.; Gallardo, J.; Kahn, S.; Kirk, H.; Palmer, R.B.

    2012-01-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz muon rate, with a neglible pion contamination in the beam.

  12. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bogomilov, M. [University of Sofia (Bulgaria); et al.

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  13. A muon storage ring for neutrino beams

    International Nuclear Information System (INIS)

    Lee, W.; Neuffer, D.

    1988-01-01

    A muon storage ring can provide electron and muon neutrino beams of precisely knowable flux. Constraints on muon collection and storage-ring design are discussed. Sample muon storage rings are presented and muon and neutrino intensities are estimated. Experimental use of the ν-beams, detector properties, and possible variations are described. Future directions for conceptual designs are outlined. 11 refs., 4 figs., 3 tabs

  14. Experimental search for a time-modulated muon flux from the direction of Cygnus X-3

    International Nuclear Information System (INIS)

    Worstell, W.A.

    1986-01-01

    Two underground experiments have recently reported detection of an anomalously large muon flux from the direction of the binary X-ray source cygnus X-3, with the 4.8-hour period characteristic of this source. A muon flux of the claimed magnitude, combined with constraints from surface observations, is inconsistent with the production of these muons by photons from Cygnus X-3 in normal air showers. This flux would require either unexpected photon interactions at very high energy (>5 TeV)( or a new type of neutral particle in the flux from Cygnus X-3. This thesis documents measurements with the HPW (Harvard-Purdue-Wisconsin) large underground water Cerenkov detector which do not confirm the claimed muon flux. The author places an upper limit on the flux of time-modulated muons from the direction of Cygnus X-3 of 5 x 10 -11 muons-cm -2 sec -1 at a vertical depth of 1450 MWE meters of water equivalent, with 90% confidence. This upper limit may be compared with the flux of 7 x 10 -11 muons-cm 2 sec -1 at a vertical depth of 1800 MWE which was claimed by another experiment. The HPW measurements are consistent with no anomalous muon flux from Cygnus X-3

  15. Particle physics seminar: Muon radiography of volcanoes and the MU-RAY project

    CERN Multimedia

    Université de Genève

    2011-01-01

    UNIVERSITE DE GENEVE Ecole de physique Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 Tél: (022) 379 62 73 Fax: (022) 379 69 92   Wednesday 25  May 2011 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium Muon radiography of volcanoes and the MU-RAY project Par Prof. Paolo Strolin, Università Federico II and INFN, Napoli Thanks to their penetration power, high energy muons generated in the interactions of cosmic rays with the Earth’s atmosphere offer the possibility to perform “muon radiographies” of geological structures and in particular volcanoes. The principle is similar to that of the imaging of the interior of human body through the observation of the absorption of X rays. Muon radiography has been first applied in 1970 to the search of unknown burial chambers in the Chefren’s pyramid. In the years 2000, the technique has been ...

  16. The ATLAS Muon Trigger Performance in Run I and Initial Run II Performance

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00437899; The ATLAS collaboration

    2016-01-01

    Events with muons in the final state are an important signature for many physics topics at the Large Hadron Collider. An efficient trigger on muons and a detailed understanding of its performance are required. In 2012, the last year of Run I, the instantaneous luminosity reached $7.7\\times10^{33}$ cm$^{-2}$s$^{-1}$ and the average number of interactions that occur in the same bunch crossing was 25. The ATLAS muon trigger has successfully adapted to this challenging environment by making use of isolation requirements, combined trigger signatures with electron and jet trigger objects, and by using so-called full-scan triggers, which make use of the full event information to search for di-lepton signatures, seeded by single lepton objects. A stable and highly efficient muon trigger was vital in the discovery of the Higgs boson in 2012 and for many searches for new physics. The performance of muon triggers during the Large Hadron Collider Run I data-taking campaigns is presented, together with an overview and pre...

  17. Delivering the world’s most intense muon beam

    Directory of Open Access Journals (Sweden)

    S. Cook

    2017-03-01

    Full Text Available A new muon beam line, the muon science innovative channel, was set up at the Research Center for Nuclear Physics, Osaka University, in Osaka, Japan, using the 392 MeV proton beam impinging on a target. The production of an intense muon beam relies on the efficient capture of pions, which subsequently decay to muons, using a novel superconducting solenoid magnet system. After the pion-capture solenoid, the first 36° of the curved muon transport line was commissioned and the muon flux was measured. In order to detect muons, a target of either copper or magnesium was placed to stop muons at the end of the muon beam line. Two stations of plastic scintillators located upstream and downstream from the muon target were used to reconstruct the decay spectrum of muons. In a complementary method to detect negatively charged muons, the x-ray spectrum yielded by muonic atoms in the target was measured in a germanium detector. Measurements, at a proton beam current of 6 pA, yielded (10.4±2.7×10^{5}  muons per watt of proton beam power (μ^{+} and μ^{-}, far in excess of other facilities. At full beam power (400 W, this implies a rate of muons of (4.2±1.1×10^{8}  muons s^{−1}, among the highest in the world. The number of μ^{-} measured was about a factor of 10 lower, again by far the most efficient muon beam produced. The setup is a prototype for future experiments requiring a high-intensity muon beam, such as a muon collider or neutrino factory, or the search for rare muon decays which would be a signature for phenomena beyond the Standard Model of particle physics. Such a muon beam can also be used in other branches of physics, nuclear and condensed matter, as well as other areas of scientific research.

  18. Derivation of muon range spectrum under rock from the recent primary spectrum

    International Nuclear Information System (INIS)

    Pal, P.; Bhattacharyya, D.P.

    1985-01-01

    The muon range spectra under Mont Blanc Tunnel and Kolar Gold Field rocks have been calculated from the recently measured primary cosmic ray spectrum. The scaling hypothesis of Feynman has been used for the calculation of pion and kaon spectra in the atmosphere. The meson atmospheric diffusion equation has been solved by following the method of Bugaev et al. The derived muon energy spectrum has been found to be in good agreement with the measured data of the Kiel, Durham, DEIS, and Moscow University groups. The calculated muon energy spectra at large polar angles have been compared with the different experimental results. The integral muon spectrum up to 20 TeV supports the MARS burst data favourably. Using the procedure of Kobayakawa, the muon energy loss in rock due to ionization, pair production, and bremsstrahlung and nuclear interactions from Bezrukov and Bugaev, we have constructed the range-energy relation in Mont Blanc and Kolar Gold Field rocks. The estimated range spectra have been corrected for range fluctuations and have been compared with the Mont Blanc Tunnel data of Castagnoli et al., Bergamasco et al., and Sheldon et al. and the Kolar Gold Field data compilation by Krishnaswamy et al

  19. Alignment of the ATLAS central muon spectrometer

    CERN Document Server

    Chevallier, F

    2008-01-01

    The muon spectrometer of the ATLAS experiment is one of the largest detectors ever built. At the LHC, new physics signs could appear through high momenta muons (1 TeV). Identification and precise momentum measurement of such muons are two of the main challenges of the ATLAS muon spectrometer. In order to get a good resolution for high energy muons (i.e. 10% at 1 TeV), the accuracy on the alignment of precision chambers must be of the order of 50 microns. Several procedures have been developed to reach such a precision. This document describes complementary techniques used to align the muon sub-detectors, and their results : the optical system, the muon cosmic rays and the straight tracks coming from collisions.

  20. Multi-TeV muon colliders

    International Nuclear Information System (INIS)

    Neuffer, D.

    1986-01-01

    The possibility that muons may be used in a future generation of high-energy high-luminosity μ + μ - and μ - p colliders is presented. The problem of collecting and cooling high-intensity muon bunches is discussed and ionization cooling is described. High-energy collider scenarios are outlined; muon colliders may become superior to electron colliders in the multi-TeV energy range

  1. On the Pressure of a Neutron Gas Interacting with the Non-Uniform Magnetic Field of a Neutron Star

    Science.gov (United States)

    Skobelev, V. V.

    2018-04-01

    On the basis of simple arguments, practically not going beyond the scope of an undergraduate course in general physics, we estimate the additional pressure (at zero temperature) of degenerate neutron matter due to its interaction with the non-uniform magnetic field of a neutron star. This work has methodological and possibly scientific value as an intuitive application of the content of such a course to a solution of topical problems of astrophysics.

  2. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern

  3. Intense fusion neutron sources

    International Nuclear Information System (INIS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-01-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10 15 -10 21 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10 20 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  4. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  5. Study of Muon Triggers and Momentum Reconstruction in a Strong Magnetic Field for a Muon Detector at LHC

    CERN Multimedia

    2002-01-01

    % RD-5 \\\\ \\\\ A small fraction of a muon detector for possible use in an LHC experiment is installed in the SPS H2 beam. It consists of a 3T superconducting solenoid enclosing a 10$\\lambda$ deep calorimeter made of stainless steel plates interleaved with Honeycomb strip chambers. Behind this magnet are located 3 muon stations for triggering and momentum measurement. These stations, consisting of UA1 muon chambers backed up with Resistive Plate Chambers (RPC), are inserted in a 1.5~T absorber magnet of 20$\\lambda$ total thickness, station 2 being located after 10$\\lambda$. \\\\ \\\\During the data taking period (1991-1994) 10$^{7}$ muon and hadron events were recorded. Beams of negative muons and pions and of positive muons and hadrons $ (\\pi^+, K ^+ $ and protons) were used with a momentum ranging from 10~to~300~GeV/c. \\\\ \\\\The RD-5 program has covered several topics related to muon detection at LHC: \\\\ \\\\\\begin{description} \\item[(i)]~~study of the behaviour of muons from hadron punchthrough and decays, and also ...

  6. Integrated system for production of neutronics and photonics calculational constants. Neutron-induced interactions: index of experimental data

    International Nuclear Information System (INIS)

    MacGregor, M.H.; Cullen, D.E.; Howerton, R.J.; Perkins, S.T.

    1976-01-01

    Indexes to the neutron-induced interaction data in the Experimental Cross Section Information Library (ECSIL) as of July 4, 1976 are tabulated. The tabulation has two arrangements: isotope (ZA) order and reaction-number order

  7. Integrated system for production of neutronics and photonics calculational constants. Neutron-induced interactions: index of experimental data

    Energy Technology Data Exchange (ETDEWEB)

    MacGregor, M.H.; Cullen, D.E.; Howerton, R.J.; Perkins, S.T.

    1976-07-04

    Indexes to the neutron-induced interaction data in the Experimental Cross Section Information Library (ECSIL) as of July 4, 1976 are tabulated. The tabulation has two arrangements: isotope (ZA) order and reaction-number order.

  8. Effect of μe universality violation in muon pair production on colliding electron-positron beams

    International Nuclear Information System (INIS)

    Guliev, N.A.; Dzhafarov, I.G.; Mekhtiev, B.I.

    1981-01-01

    The muonic pair production in colliding electron-positron beams is treated assuming the electron and muon weak interaction constants to be different. General formulae for the differential and total cross sections applicable at arbitrary energies of the colliding beams are obtained taking simultaneously into account arbitrary polarizations of the incident particles and longitudinal polarization of the muon (μ - ). It is shown that study of some polarization characteristics of a given reaction allows to distinguish possible weak interaction μe universality breaking effects. The revealing effects are analysed in the framework of unified gauge SU(2)xU(1) models, of weak and electromagnetic interactions [ru

  9. Correlation of high energy muons with primary composition in extensive air shower

    Science.gov (United States)

    Chou, C.; Higashi, S.; Hiraoka, N.; Ozaki, S.; Sato, T.; Suwada, T.; Takahasi, T.; Umeda, H.

    1985-01-01

    An experimental investigation of high energy muons above 200 GeV in extensive air showers has been made for studying high energy interaction and primary composition of cosmic rays of energies in the range 10 to the 14th power approx. 10 to the 15th power eV. The muon energies are estimated from the burst sizes initiated by the muons in the rock, which are measured by four layers of proportional counters, each of area 5 x 2.6 sq m, placed at 30 m.w.e. deep, Funasaka tunnel vertically below the air shower array. These results are compared with Monte Carlo simulations based on the scaling model and the fireball model for two primary compositions, all proton and mixed.

  10. Di-muon measurements in Pb+Pb and p+p collisions with CMS

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre, Catherine, E-mail: catherine.silvestre@cern.ch [Los Alamos National Laboratory, PO Box 1663, Los Alamos 87545 (United States)

    2011-01-01

    Di-muons are especially relevant to study the properties of the strongly interacting QCD matter created in Pb+Pb collisions at the LHC, since they are produced at early times and propagate through the medium, mapping its evolution. Simulations of CMS di-muon measurements in such an environment are presented in this paper. In particular, we show that CMS has very good detection conditions for the studies of J/{psi} and {Upsilon} production, with an excellent di-muon mass resolution and a rather good acceptance. CMS will also be able to measure Z{sup 0} production in heavy ion collisions for the first time. Early corresponding p+p measurements are reviewed as they will serve as the baseline for the heavy ion measurements.

  11. Di-muon measurements in Pb+Pb and p+p collisions with CMS

    International Nuclear Information System (INIS)

    Silvestre, Catherine

    2011-01-01

    Di-muons are especially relevant to study the properties of the strongly interacting QCD matter created in Pb+Pb collisions at the LHC, since they are produced at early times and propagate through the medium, mapping its evolution. Simulations of CMS di-muon measurements in such an environment are presented in this paper. In particular, we show that CMS has very good detection conditions for the studies of J/ψ and Υ production, with an excellent di-muon mass resolution and a rather good acceptance. CMS will also be able to measure Z 0 production in heavy ion collisions for the first time. Early corresponding p+p measurements are reviewed as they will serve as the baseline for the heavy ion measurements.

  12. Measurement of the charge ratio of atmospheric muons with the CMS detector

    Energy Technology Data Exchange (ETDEWEB)

    Khachatryan, Vardan [Yerevan Physics Inst. (Armenia); et al.

    2010-08-01

    We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/c to 1 TeV/c. The surface flux ratio is measured to be 1.2766 \\pm 0.0032(stat.) \\pm 0.0032 (syst.), independent of the muon momentum, below 100 GeV/c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments.

  13. Search for scalar muons

    International Nuclear Information System (INIS)

    Bartel, W.; Becker, L.; Bowdery, C.; Cords, D.; Felst, R.; Haidt, D.; Knies, G.; Krehbiel, H.; Meinke, R.; Naroska, B.; Olsson, J.; Steffen, P.; Junge, H.; Schmidt, D.; Laurikainen, P.; Dietrich, G.; Hagemann, J.; Heinzelmann, G.; Kado, H.; Kleinwort, C.; Kuhlen, M.; Meier, K.; Petersen, A.; Ramcke, R.; Schneekloth, U.; Weber, G.; Allison, J.; Baines, J.; Ball, A.H.; Barlow, R.J.; Chrin, J.; Duerdoth, I.P.; Greenshaw, T.; Hill, P.; Loebinger, F.K.; Macbeth, A.A.; McCann, H.; Mills, H.E.; Murphy, P.G.; Stephens, K.; Warming, P.; Glasser, R.G.; Sechi-Zorn, B.; Skard, J.A.J.; Wagner, S.R.; Zorn, G.T.; Cartwright, S.L.; Clarke, D.; Marshall, R.; Middleton, R.P.; Whittaker, J.B.; Kawamoto, T.; Kobayashi, T.; Mashimo, T.; Minowa, M.; Takeda, H.; Takeshita, T.; Yamada, S.

    1984-12-01

    The supersymmetric partner of the muon was searched for in a systematic way. No candidate was found and 95% CL limits on its mass were given for different cases. If it is stable, the limit is 20.9 GeV/c 2 . If it decays into a muon and an invisible low mass particle, the limit is 20.3 GeV/c 2 . If it decays into a muon and an unstable neutral particle which decays further into a photon and an invisible massless particles, the limit is 19.2 GeV/c 2 . (orig.)

  14. Muon front end for the neutrino factory

    CERN Document Server

    Rogers, C T; Prior, G; Gilardoni, S; Neuffer, D; Snopok, P; Alekou, A; Pasternak, J

    2013-01-01

    In the neutrino factory, muons are produced by firing high-energy protons onto a target to produce pions. The pions decay to muons and pass through a capture channel known as the muon front end, before acceleration to 12.6 GeV. The muon front end comprises a variable frequency rf system for longitudinal capture and an ionization cooling channel. In this paper we detail recent improvements in the design of the muon front end.

  15. Irradiations of human melanoma cells by 14 MeV neutrons; survival curves interpretation; physical simulation of neutrons interactions in the cellular medium

    International Nuclear Information System (INIS)

    Bodez, Veronique

    2000-01-01

    14 MeV neutrons are used to irradiate human melanoma cells in order to study survival curves at low dose and low dose rate. We have simulated with the MCNP code, transport of neutrons through the experimental setup to evaluate the contamination of the primary beam by gamma and electrons, for the feasibility of our experiments. We have shown a rapid decrease of the survival curve in the first cGy followed by a plateau for doses up to 30 cGy; after we observed an exponential decrease. This results are observed for the first time, for neutrons at low dose rate (5 cGy/h). In parallel with this experimental point, we have developed a simulation code which permitted the study of neutrons interactions with the cellular medium for individual cells defined as in our experimental conditions. We show that most of the energy is deposited by protons from neutron interactions with external medium, and by heavy ions for interactions into the cell. On the other hand the code gives a good order of magnitude of the dose rate, compared to the experimental values given by silicon diodes. The first results show that we can, using a theory based on induced repair of cells, give an interpretation of the observed experimental plateau. We can give an estimation of the radial distribution of dose for the tracks of charged ions, we show the possibility of calculate interaction cross sections with cellular organelles. Such a work gives interesting perspectives for the future in radiobiology, radiotherapy or radioprotection. (author) [fr

  16. The Gran Sasso muon puzzle

    CERN Document Server

    Fernandez-Martinez, Enrique

    2012-01-01

    We carry out a time-series analysis of the combined data from three experiments measuring the cosmic muon flux at the Gran Sasso laboratory, at a depth of 3800 m.w.e. These data, taken by the MACRO, LVD and Borexino experiments, span a period of over 20 years, and correspond to muons with a threshold energy, at sea level, of around 1.3 TeV. We compare the best-fit period and phase of the full muon data set with the combined DAMA/NaI and DAMA/LIBRA data, which spans the same time period, as a test of the hypothesis that the cosmic ray muon flux is responsible for the annual modulation detected by DAMA. We find in the muon data a large-amplitude fluctuation with a period of around one year, and a phase that is incompatible with that of the DAMA modulation at 5.2 sigmas. Aside from this annual variation, the muon data also contains a further significant modulation with a period between 10 and 11 years and a power well above the 99.9% C.L threshold for noise, whose phase corresponds well with the solar cycle: a s...

  17. PSI: Very slow polarized muons

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    At the 'pion factory' of the Swiss Paul Scherrer Institute, a collaboration of PSI, Heidelberg and Zurich (ETH) has recently produced intense beams of positive muons which have kinetic energies as low as 10 eV and with complete polarization (spin orientation). The new results were achieved at a surface muon channel, transporting positive muons from the decay of positive pions stopped at the surface of a pion production target. Surface muons with 4 MeV kinetic energy were transported by a conventional secondary beam channel and partially stopped in a moderator consisting of a layer of solidified noble gas deposited on a cold metallic substrate

  18. Telecommunication using muon beams

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location

  19. A prediction of the neutron and charged particle backgrounds in the L detector

    International Nuclear Information System (INIS)

    Lee, D.M.; Kinnison, W.W.; Wilson, W.B.

    1990-01-01

    Monte Carlo calculations have been made of the neutron flux and activation in the forward and barrel calorimeters in the L* detector and of the neutron flux in the central detector volume. In addition estimates of the charged particle and neutron background rates in the vicinity of the muon chambers has been determined. The Los Alamos National Laboratory code system LAHET and CINDER, 90 along with ISAJET and GEANT were used in these studies. The results indicate that neutron fluences as low as 2 x 10 12 per SSC year can be achieved in the central volume. 6 refs., 3 figs., 2 tabs

  20. Production of wrong-sign muons in neutrino-nucleon and antineutrino-nucleon collisions

    International Nuclear Information System (INIS)

    Onipchuk, A.B.; Choban, E.A.

    1988-01-01

    We consider the contribution of the quasiparton mechanism to the production of wrong-sign muons in ν/sub μ/(nu-bar/sub μ/)N collisions. We obtain the ratios of the production cross sections of muons in the processes ν/sub μ/(nu-bar/sub μ/)N→μ + (μ - )+... and the inclusive cross sections, and compare them with experiment in the case of neutrino-nucleon interactions. We find the x and y distributions and the average kinematical characteristics of the scattered neutrino

  1. Effective proton-neutron interaction near the drip line from unbound states in 25,26 F

    OpenAIRE

    Vandebrouck, M.; Lepailleur, A.; Sorlin, O; Aumann, T.; Caesar, C.; Holl, M.; Panin, V.; Wamers, F.; Stroberg, S. R.; Holt, J. D.; De Oliveira Santos, F.; Alvarez-Pol, H.; Atar, L.; Avdeichikov, V.; Beceiro-Novo, S.

    2017-01-01

    Background: Odd-odd nuclei, around doubly closed shells, have been extensively used to study proton-neutron interactions. However, the evolution of these interactions as a function of the binding energy, ultimately when nuclei become unbound, is poorly known. The F26 nucleus, composed of a deeply bound π0d5/2 proton and an unbound ν0d3/2 neutron on top of an O24 core, is particularly adapted for this purpose. The coupling of this proton and neutron results in a Jπ=11+-41+ multiplet, whose ene...

  2. Interactive and automated systems for nuclear track measurements with applications to fast neutron dosimetry

    International Nuclear Information System (INIS)

    Roberts, J.H.; Gold, R.; McNeece, J.P.; Preston, C.C.; Ruddy, F.H.

    1983-12-01

    Interactive and automatic track measuring systems have been developed primarily for fast neutron dosimetry in and around reactors. The interactive system is used for proton recoil measurements in nuclear research emulsions and the automatic systems for counting fission fragment tracks in Muscovite mica. The status of these systems, along with illustrative applications, are presented, particularly with regard to their relationship to neutron personnel dosimetry. 16 references, 12 figures

  3. Muon front end for the neutrino factory

    Directory of Open Access Journals (Sweden)

    C. T. Rogers

    2013-04-01

    Full Text Available In the neutrino factory, muons are produced by firing high-energy protons onto a target to produce pions. The pions decay to muons and pass through a capture channel known as the muon front end, before acceleration to 12.6 GeV. The muon front end comprises a variable frequency rf system for longitudinal capture and an ionization cooling channel. In this paper we detail recent improvements in the design of the muon front end.

  4. Precise measurement of muon momenta at LEP using the L3 detector

    International Nuclear Information System (INIS)

    Gonzalez Romero, E.M.

    1990-01-01

    In this PhD report the author presents the studies and methods developed to achieve the optimization of the resolution in the momentum measurement of the L3 moun detector. Chapters 1 and 2 show the motivations to build a precision muon detector for the LEP e + e - collider. Special emphasis is applied to the study of the Higgs scalar boson search and identification and the guiding principles used to design the L3 muon detector are outlined. Chapter 3 is devoted to the description of the drift chambers. They are located in three concentric octagonal cylinders inside one solenoidal magnet, around the interaction point and coaxial with the beams. These chambers are the measuring elements of the detector. The chapter includes the description or the different tests applied to the chambers to obtain their resolution and calibration. In chapter 4 the alignment system of this chambers is described. This system is a key element to the precision of the detector, that being 12 meters long and of 12 meters of diameter has to measure the particles trajectories with precisions of just a few micrometers. Chapter 5 describes the third key piece for the detector precision, the monitoring and control system. It allows to know continually the precise values of the critical parameters of the detector. Finally in chapter 6 the author presents the results of the many test applied to the detector using cosmic rays, UV lasers and even the actual muons produced in the e + e - interactions. These tests prove that the L3 muon detector is the most precise measuring system for muon momenta installed at present in one e + e - collider ring. (Author)

  5. The electron-spin--nuclear-spin interaction studied by polarized neutron scattering.

    Science.gov (United States)

    Stuhrmann, Heinrich B

    2007-11-01

    Dynamic nuclear spin polarization (DNP) is mediated by the dipolar interaction of paramagnetic centres with nuclear spins. This process is most likely to occur near paramagnetic centres at an angle close to 45 degrees with respect to the direction of the external magnetic field. The resulting distribution of polarized nuclear spins leads to an anisotropy of the polarized neutron scattering pattern, even with randomly oriented radical molecules. The corresponding cross section of polarized coherent neutron scattering in terms of a multipole expansion is derived for radical molecules in solution. An application using data of time-resolved polarized neutron scattering from an organic chromium(V) molecule is tested.

  6. Information extraction from muon radiography data

    International Nuclear Information System (INIS)

    Borozdin, K.N.; Asaki, T.J.; Chartrand, R.; Hengartner, N.W.; Hogan, G.E.; Morris, C.L.; Priedhorsky, W.C.; Schirato, R.C.; Schultz, L.J.; Sottile, M.J.; Vixie, K.R.; Wohlberg, B.E.; Blanpied, G.

    2004-01-01

    Scattering muon radiography was proposed recently as a technique of detection and 3-d imaging for dense high-Z objects. High-energy cosmic ray muons are deflected in matter in the process of multiple Coulomb scattering. By measuring the deflection angles we are able to reconstruct the configuration of high-Z material in the object. We discuss the methods for information extraction from muon radiography data. Tomographic methods widely used in medical images have been applied to a specific muon radiography information source. Alternative simple technique based on the counting of high-scattered muons in the voxels seems to be efficient in many simulated scenes. SVM-based classifiers and clustering algorithms may allow detection of compact high-Z object without full image reconstruction. The efficiency of muon radiography can be increased using additional informational sources, such as momentum estimation, stopping power measurement, and detection of muonic atom emission.

  7. Performance of the ATLAS Precision Muon Chambers under LHC Operating Conditions

    CERN Document Server

    Deile, M.; Dubbert, J; Horvat, S; Kortner, O; Kroha, H; Manz, A; Mohrdieck, S; Rauscher, F; Richter, Robert; Staude, A

    2004-01-01

    For the muon spectrometer of the ATLAS detector at the large hadron collider (LHC), large drift chambers consisting of 6 to 8 layers of pressurized drift tubes are used for precision tracking covering an active area of 5000 m2 in the toroidal ?eld of superconducting air core magnets. The chambers have to provide a spatial resolution of 41 microns with Ar:CO2 (93:7) gas mixture at an absolute pressure of 3 bar and gas gain of 2?104. The environment in which the chambers will be operated is characterized by high neutron and background with counting rates of up to 100 per square cm and second. The resolution and efficiency of a chamber from the serial production for ATLAS has been investigated in a 100 GeV muon beam at photon irradiation rates as expected during LHC operation. A silicon strip detector telescope was used as external reference in the beam. The spatial resolution of a chamber is degraded by 4 ?m at the highest background rate. The detection e?ciency of the drift tubes is unchanged under irradiation...

  8. Implanted muon studies in condensed matter science

    International Nuclear Information System (INIS)

    Cox, S.F.J.

    1986-12-01

    The paper reviews the broad range of applications of implanted muons in condensed matter. Muon spin rotation is discussed, along with the studies in magnetism, muonion, metals and organic radicals. A description of muon spin relaxation is also given, as well as techniques and applications appropriate to pulsed muon sources. (UK)

  9. Production of low energy gamma rays by neutron interactions with fluorine for incident neutron energies between 0.1 and 20 MeV

    International Nuclear Information System (INIS)

    Morgan, G.L.; Dickens, J.K.

    1975-06-01

    Differential cross sections for the production of low-energy gamma rays (less than 240 keV) by neutron interactions in fluorine have been measured for neutron energies between 0.1 and 20 MeV. The Oak Ridge Electron Linear Accelerator was used as the neutron source. Gamma rays were detected at 92 0 using an intrinsic germanium detector. Incident neutron energies were determined by time-of-flight techniques. Tables are presented for the production cross sections of three gamma rays having energies of 96, 110, and 197 keV. (14 figures, 3 tables) (U.S.)

  10. A Measurement of Neutrino Charged Current Interactions and a Search for Muon Neutrino Disappearance with the Fermilab Booster Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Yasuhiro [Kyoto Univ. (Japan)

    2011-01-01

    In this thesis, we report on a measurement of muon neutrino inclusive charged current interactions on carbon in the few GeV region, using the Fermilab Booster Neutrino Beam. The all neutrino mode data collected in the SciBooNE experiment is used for this analysis. We collected high-statistics CC interaction sample at SciBooNE, and extracted energy dependent inclusive charged current interaction rates and cross sections for a wide energy range from 0.25 GeV to ~3 GeV. We measure the interaction rates with 6-15% precision, and the cross sections with 10-30% precision. We also made an energy integrated measurements, with the precisions of 3% for the rate, and 8% for the cross section measurements. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. This inclusive interaction measurement is nearly free from effects of hadron re-interactions in the nucleus. Hence, it is complementary to other exclusive cross section measurements, and essential to understand the neutrino interaction cross sections in the few GeV region, which is relevant to ongoing and future neutrino oscillation experiments. This analysis also provides the normalization for SciBooNE's previous cross section ratio measurements for charged current coherent pion production and neutral current neutral pion production. Then, a precise comparison between our previous measurements and the model predictions becomes possible. The result of the interaction rate measurement is used to constrain the product of the neutrino flux and the cross section at the other experiment on the Fermilab Booster Neutrino Beam: Mini-BooNE. We conducted a search for short-baseline muon neutrino disappearance using data both from SciBooNE and MiniBooNE, to test a possible neutrino oscillation with sterile neutrinos which is suggested by the LSND experiment. With this constraint by SciBooNE, we significantly reduced the flux and the cross section uncertainties at MiniBooNE, and achieved the

  11. Few-Nucleon Research at TUNL: Probing Two- and Three-Nucleon Interactions with Neutrons

    Science.gov (United States)

    Howell, C. R.; Tornow, W.; Witała, H.

    2016-03-01

    The central goal of few-nucleon research at the Triangle Universities Nuclear Laboratory (TUNL) is to perform measurements that contribute to advancing ab-initio calculations of nuclear structure and reactions. The program aims include evaluating theoretical treatments of few-nucleon reaction dynamics through strategically comparing theory predictions to data, determining properties of the neutron-neutron interaction that are not accessible in two-nucleon reactions, and searching for evidence of longrange features of three-nucleon interactions, e.g., spin and isospin dependence. This paper will review studies of three- and four-nucleon systems at TUNL conducted using unpolarized and polarized neutron beams. Measurements of neutron-induced reactions performed by groups at TUNL over the last six years are described in comparison with theory predictions. The results are discussed in the context of the program goals stated above. Measurements of vector analyzing powers for elastic scattering in A=3 and A=4 systems, differential cross sections for neutron-deuteron elastic scattering and neutrondeuteron breakup in several final-state configurations are described. The findings from these studies and plans for the coming three years are presented in the context of worldwide activities in this front, in particular, research presented in this session.

  12. Muon colliders and neutrino factories

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  13. Mighty Murines: Neutrino Physics at very high Energy Muon Colliders

    International Nuclear Information System (INIS)

    King, B.J.

    2000-01-01

    An overview is given of the potential for neutrino physics studies through parasitic use of the intense high energy neutrino beams that would be produced at future many-TeV muon colliders. Neutrino experiments clearly cannot compete with the collider physics. Except at the very highest energy muon colliders, the main thrust of the neutrino physics program would be to improve on the measurements from preceding neutrino experiments at lower energy muon colliders, particularly in the fields of B physics, quark mixing and CP violation. Muon colliders at the 10 TeV energy scale might already produce of order 10 8 B hadrons per year in a favorable and unique enough experimental environment to have some analytical capabilities beyond any of the currently operating or proposed B factories. The most important of the quark mixing measurements at these energies might well be the improved measurements of the important CKM matrix elements |V ub | and |V cb | and, possibly, the first measurements of |V td | in the process of flavor changing neutral current interactions involving a top quark loop. Muon colliders at the highest center-of-mass energies that have been conjectured, 100--1,000 TeV, would produce neutrino beams for neutrino-nucleon interaction experiments with maximum center-of-mass energies from 300--1,000 GeV. Such energies are close to, or beyond, the discovery reach of all colliders before the turn-on of the LHC. In particular, they are comparable to the 314 GeV center-of-mass energy for electron-proton scattering at the currently operating HERA collider and so HERA provides a convenient benchmark for the physics potential. It is shown that these ultimate terrestrial neutrino experiments, should they eventually come to pass, would have several orders of magnitude more luminosity than HERA. This would potentially open up the possibility for high statistics studies of any exotic particles, such as leptoquarks, that might have been previously discovered at these

  14. Proton and neutron structure functions

    International Nuclear Information System (INIS)

    Rock, S.

    1991-01-01

    New result on charged lepton scattering from hydrogen and deuterium targets by the BCDMS, NMC and SLAC collaborations have greatly increased our knowledge of the structure functions of protons and neutrons. The disagreement between the high energy muon scattering cross sections obtained by the EMC and BCDMS collaborations have been almost completely resolved by comparison with a global analysis of old and new SLAC data and a reanalysis of EMC data. We now have a consistent set of structure functions which covers an approximate range 1 ≤ Q 2 ≤ 200 (GeV/c) 2 and 0.07 ≤ x ≤ 0.7. The ratio of neutron to proton structure functions decreases with increasing Q 2 for values of x ≥ 0.1. The difference between proton and neutron structure functions approaches zero as x decreases, consistent with the expected √x behavior. (orig.)

  15. The CDF muon system

    International Nuclear Information System (INIS)

    LeCompte, T.J.; Papadimitriou, V.

    1993-01-01

    The authors describe the characteristics of the CDF muon system and their experience with it. They explain how the trigger works and how they identify muons offline. They also describe the future upgrades of the system and their trigger plans for Run IB and beyond

  16. Observation of high-energy cosmic rays by very inclined muon bundles in the NEVOD-DECOR experiment

    Directory of Open Access Journals (Sweden)

    Saavedra O.

    2017-01-01

    Full Text Available The Russian-Italian NEVOD-DECOR experiment on measurements of the local muon density spectra at various zenith angles gave the possibility to obtain important information on the primary cosmic ray flux and interaction characteristics in a wide energy range from 1015 to more than 1018 eV. At large zenith angles and high muon densities, a considerable excess of muon bundles has been found in comparison with expectation. In this paper, an update of these investigations is presented and some new results obtained by the collaboration are discussed.

  17. The Active Muon Shield

    CERN Document Server

    Bezshyiko, Iaroslava

    2016-01-01

    In the SHiP beam-dump of the order of 1011 muons will be produced per second. An active muon-shield is used to magnetically deflect these muons out of the acceptance of the spectrom- eter. This note describes how this shield is modelled and optimized. The SHiP spectrometer is being re-optimized using a conical decay-vessel, and utilizing the possibility to magnetize part of the beam-dump shielding iron. A shield adapted to these new conditions is presented which is significantly shorter and lighter than the shield used in the Technical Proposal (TP), while showing a similar performance.

  18. Muon Detection Based on a Hadronic Calorimeter

    CERN Document Server

    Ciodaro, Thiago; Abreu, R; Achenbach, R; Adragna, P; Aharrouche, M; Aielli, G; Al-Shabibi, A; Aleksandrov, I; Alexandrov, E; Aloisio, A; Alviggi, M G; Amorim, A; Amram, N; Andrei, V; Anduaga, X; Angelaszek, D; Anjos, N; Annovi, A; Antonelli, S; Anulli, F; Apolle, R; Aracena, I; Ask, S; Åsman, B; Avolio, G; Baak, M; Backes, M; Backlund, S; Badescu, E; Baines, J; Ballestrero, S; Banerjee, S; Bansil, H S; Barnett, B M; Bartoldus, R; Bartsch, V; Batraneanu, S; Battaglia, A; Bauss, B; Beauchemin, P; Beck, H P; Bee, C; Begel, M; Behera, P K; Bell, P; Bell, W H; Bellagamba, L; Bellomo, M; Ben Ami, S; Bendel, M; Benhammou, Y; Benslama, K; Berge, D; Bernius, C; Berry, T; Bianco, M; Biglietti, M; Blair, R E; Bogaerts, A; Bohm, C; Boisvert, V; Bold, T; Bondioli, M; Borer, C; Boscherini, D; Bosman, M; Bossini, E; Boveia, A; Bracinik, J; Brandt, A G; Brawn, I P; Brelier, B; Brenner, R; Bressler, S; Brock, R; Brooks, W K; Brown, G; Brunet, S; Bruni, A; Bruni, G; Bucci, F; Buda, S; Burckhart-Chromek, D; Buscher, V; Buttinger, W; Calvet, S; Camarri, P; Campanelli, M; Canale, V; Canelli, F; Capasso, L; Caprini, M; Caracinha, D; Caramarcu, C; Cardarelli, R; Carlino, G; Casadei, D; Casado, M P; Cattani, G; Cerri, A; Cerrito, L; Chapleau, B; Childers, J T; Chiodini, G; Christidi, I; Ciapetti, G; Cimino, D; Ciobotaru, M; Coccaro, A; Cogan, J; Collins, N J; Conde Muino, P; Conidi, C; Conventi, F; Corradi, M; Corso-Radu, A; Coura Torres, R; Cranmer, K; Crescioli, F; Crone, G; Crupi, R; Cuenca Almenar, C; Cummings, J T; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Dao, V; Darlea, G L; Davis, A O; De Asmundis, R; De Pedis, D; De Santo, A; de Seixas, J M; Degenhardt, J; Della Pietra, M; Della Volpe, D; Demers, S; Demirkoz, B; Di Ciaccio, A; Di Mattia, A; Di Nardo, R; Di Simone, A; Diaz, M A; Dietzsch, T A; Dionisi, C; Dobson, E; Dobson, M; dos Anjos, A; Dotti, A; Dova, M T; Drake, G; Dufour, M-A; Dumitru, I; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, K V; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Ermoline, Y; Ernst, J; Etzion, E; Falciano, S; Farrington, S; Farthouat, P; Faulkner, P J W; Fedorko, W; Fellmann, D; Feng, E; Ferrag, S; Ferrari, R; Ferrer, M L; Fiorini, L; Fischer, G; Flowerdew, M J; Fonseca Martin, T; Francis, D; Fratina, S; French, S T; Front, D; Fukunaga, C; Gadomski, S; Garelli, N; Garitaonandia Elejabarrieta, H; Gaudio, G; Gee, C N P; George, S; Giagu, S; Giannetti, P; Gillman, A R; Giorgi, M; Giunta, M; Giusti, P; Goebel, M; Gonçalo, R; Gonzalez Silva, L; Göringer, C; Gorini, B; Gorini, E; Grabowska-Bold, I; Green, B; Groll, M; Guida, A; Guler, H; Haas, S; Hadavand, H; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hansen, J R; Hasegawa, S; Hasegawa, Y; Hauser, R; Hayakawa, T; Hayden, D; Head, S; Heim, S; Hellman, S; Henke, M; Hershenhorn, A; Hidvégi, A; Hillert, S; Hillier, S J; Hirayama, S; Hod, N; Hoffmann, D; Hong, T M; Hryn'ova, T; Huston, J; Iacobucci, G; Igonkina, O; Ikeno, M; Ilchenko, Y; Ishikawa, A; Ishino, M; Iwasaki, H; Izzo, V; Jez, P; Jimenez Otero, S; Johansen, M; Johns, K; Jones, G; Joos, M; Kadlecik, P; Kajomovitz, E; Kanaya, N; Kanega, F; Kanno, T; Kapliy, A; Kaushik, V; Kawagoe, K; Kawamoto, T; Kazarov, A; Kehoe, R; Kessoku, K; Khomich, A; Khoriauli, G; Kieft, G; Kirk, J; Klemetti, M; Klofver, P; Klous, S; Kluge, E-E; Kobayashi, T; Koeneke, K; Koletsou, I; Koll, J D; Kolos, S; Kono, T; Konoplich, R; Konstantinidis, N; Korcyl, K; Kordas, K; Kotov, V; Kowalewski, R V; Krasznahorkay, A; Kraus, J; Kreisel, A; Kubota, T; Kugel, A; Kunkle, J; Kurashige, H; Kuze, M; Kwee, R; Laforge, B; Landon, M; Lane, J; Lankford, A J; Laranjeira Lima, S M; Larner, A; Leahu, L; Lehmann Miotto, G; Lei, X; Lellouch, D; Levinson, L; Li, S; Liberti, B; Lilley, J N; Linnemann, J T; Lipeles, E; Lohse, T; Losada, M; Lowe, A; Luci, C; Luminari, L; Lundberg, J; Lupu, N; Machado Miguéns, J; Mackeprang, R; Maettig, S; Magnoni, L; Maiani, C; Maltrana, D; Mangeard, P-S; Männer, R; Mapelli, L; Marchese, F; Marino, C; Martin, B; Martin, B T; Martin, T; Martyniuk, A; Marzano, F; Masik, J; Mastrandrea, P; Matsushita, T; McCarn, A; Mechnich, J; Medinnis, M; Meier, K; Melachrinos, C; Mendoza Nava, L M; Merola, L; Messina, A; Meyer, C P; Middleton, R P; Mikenberg, G; Mills, C M; Mincer, A; Mineev, M; Misiejuk, A; Moa, T; Moenig, K; Monk, J; Monticelli, F; Mora Herrera, C; Morettini, P; Morris, J D; Müller, F; Munwes, Y; Murillo Garcia, R; Nagano, K; Nagasaka, Y; Navarro, G A; Negri, A; Nelson, S; Nemethy, P; Neubauer, M S; Neusiedl, A; Newman, P; Nisati, A; Nomoto, H; Nozaki, M; Nozicka, M; Nurse, E; Ochando, C; Ochi, A; Oda, S; Oh, A; Ohm, C; Okumura, Y; Olivito, D; Omachi, C; Osculati, B; Oshita, H; Ospanov, R; Owen, M A; Özcan, V E; Ozone, K; Padilla, C; Panes, B; Panikashvili, N; Paramonov, A; Parodi, F; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Perera, V J O; Perez, E; Petcu, M; Petersen, B A; Petersen, J; Petrolo, E; Phan, A; Piegaia, R; Pilkington, A; Pinder, A; Poddar, S; Polini, A; Pope, B G; Potter, C T; Primavera, M; Prokoshin, F; Ptacek, E; Qian, W; Quinonez, F; Rajagopalan, S; Ramos Dos Santos Neves, R; Reinherz-Aronis, E; Reinsch, A; Renkel, P; Rescigno, M; Rieke, S; Riu, I; Robertson, S H; Robinson, M; Rodriguez, D; Roich, A; Romeo, G; Romero, R; Roos, L; Ruiz Martinez, A; Ryabov, Y; Ryan, P; Saavedra, A; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saland, J; Salnikov, A; Salvatore, F; Sankey, D P C; Santamarina, C; Santonico, R; Sarkisyan-Grinbaum, E; Sasaki, O; Savu, D; Scannicchio, D A; Schäfer, U; Scharf, V L; Scheirich, D; Schiavi, C; Schlereth, J; Schmitt, K; Schroder, C; Schroer, N; Schultz-Coulon, H-C; Schwienhorst, R; Sekhniaidze, G; Sfyrla, A; Shamim, M; Sherman, D; Shimojima, M; Shochet, M; Shooltz, D; Sidoti, A; Silbert, O; Silverstein, S; Sinev, N; Siragusa, G; Sivoklokov, S; Sjoen, R; Sjölin, J; Slagle, K; Sloper, J E; Smith, B C; Soffer, A; Soloviev, I; Spagnolo, S; Spiwoks, R; Staley, R J; Stamen, R; Stancu, S; Steinberg, P; Stelzer, J; Stockton, M C; Straessner, A; Strauss, E A; Strom, D; Su, D; Sugaya, Y; Sugimoto, T; Sushkov, S; Sutton, M R; Suzuki, Y; Taffard, A; Taiblum, N; Takahashi, Y; Takeda, H; Takeshita, T; Tamsett, M; Tan, C L A; Tanaka, S; Tapprogge, S; Tarem, S; Tarem, Z; Taylor, C; Teixeira-Dias, P; Thomas, J P; Thompson, P D; Thomson, M A; Tokushuku, K; Tollefson, K; Tomoto, M; Topfel, C; Torrence, E; Touchard, F; Traynor, D; Tremblet, L; Tricoli, A; Tripiana, M; Triplett, N; True, P; Tsiakiris, M; Tsuno, S; Tuggle, J; Ünel, G; Urquijo, P; Urrejola, P; Usai, G; Vachon, B; Vallecorsa, S; Valsan, L; Vandelli, W; Vari, R; Vaz Gil Lopes, L; Veneziano, S; Ventura, A; Venturi, N; Vercesi, V; Vermeulen, J C; Volpi, G; Vorwerk, V; Wagner, P; Wang, M; Warburton, A; Watkins, P M; Watson, A T; Watson, M; Weber, P; Weidberg, A R; Wengler, T; Werner, P; Werth, M; Wessels, M; White, M; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Winklmeier, F; Woods, K S; Wu, S-L; Wu, X; Xaplanteris Karampatsos, L; Xella, S; Yakovlev, A; Yamazaki, Y; Yang, U; Yasu, Y; Yuan, L; Zaitsev, A; Zanello, L; Zhang, H; Zhang, J; Zhao, L; Zobernig, H; zur Nedden, M

    2010-01-01

    The TileCal hadronic calorimeter provides a muon signal which can be used to assist in muon tagging at the ATLAS level-one trigger. Originally, the muon signal was conceived to be combined with the RPC trigger in order to reduce unforeseen high trigger rates due to cavern background. Nevertheless, the combined trigger cannot significantly deteriorate the muon detection performance at the barrel region. This paper presents preliminary studies concerning the impact in muon identification at the ATLAS level-one trigger, through the use of Monte Carlo simulations with single muons with 40 GeV/c momentum. Further, different trigger scenarios were proposed, together with an approach for matching both TileCal and RPC geometries.

  19. Particle production and survival in muon acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Noble, R.J.

    1992-06-01

    Because of the relative immunity of muons to synchrotron radiation, the idea of using them instead of electrons as probes in high-energy physics experiments has existed for some time, but applications were limited by the short muon lifetime. The production and survival of an adequate supply of low-emittance muons will determine the available luminosity in a high-energy physics collider. In this paper the production of pions by protons, their decay to muons and the survival of muons during acceleration are studied. Based on a combination of the various efficiencies, the number of protons needed at the pion source for every muon required in the final high-energy collider is estimated.

  20. Experiments on neutron-proton and neutron-electron interaction

    International Nuclear Information System (INIS)

    Koester, L.

    1975-01-01

    The paper reports on zero-energy experiments with neutrons, protons and electrons with a wavelength that is considerably longer than the particle expansion. Scattering amplitudes are measured for the reactions n + p and n + e. A neutron gravity refractometer is used. (WL/AK) [de

  1. A search for an excited muon decaying to a muon and two jets in $pp$ collisions at $\\sqrt{s}$ = 8 TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Grohs, Johannes Philipp; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Ryzhov, Andrey; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turgeman, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2016-07-12

    A new search signature for excited leptons is explored. Excited muons are sought in the channel $pp \\to \\mu\\mu^* \\to \\mu \\mu\\textrm{ jet jet}$, assuming both the production and decay occur via a contact interaction. The analysis is based on 20.3 fb$^{-1}$ of $pp$ collision data at a centre-of-mass energy of $\\sqrt{s}$ = 8 TeV taken with the ATLAS detector at the Large Hadron Collider. No evidence of excited muons is found, and limits are set at the 95% confidence level on the cross section times branching ratio as a function of the excited-muon mass $m_{\\mu^*}$. For $m_{\\mu^*}$ between 1.3 TeV and 3.0 TeV, the upper limit on $\\sigma B(\\mu^* \\to \\mu q \\bar{q}$) is between 0.6 and 1 fb. Limits on $\\sigma B$ are converted to lower bounds on the compositeness scale $\\Lambda$. In the limiting case $\\Lambda = m_{\\mu^*}$, excited muons with a mass below 2.8 TeV are excluded. With the same model assumptions, these limits at larger $\\mu^*$ masses improve upon previous limits from traditional searches based on the gaug...

  2. Muon shield requirements for ISABELLE at 400 GeV/c

    International Nuclear Information System (INIS)

    Ludlam, T.; Thorndike, A.M.

    1977-01-01

    A goodly portion of the ISABELLE ring lies above the existing contours of the land, and so a substantial earth berm is required to shield against penetrating muons which result from proton interactions within the ring. The size and shape of this shield is determined not only by the magnitude of expected proton losses from the circulating beams, but also by the geometry and magnetic structure of the machine, and the proximity of potential muon sources to the site boundary. The cost of constructing this berm is sufficiently great as to warrant detailed attention to the required shield thickness at each point around the ring. The report given updates previous discussions of the subject by incorporating the six-fold geometry and higher energy of the 400 GeV ISABELLE design, and taking advantage of a more refined study of the effects of magnetic deflection on the trajectories of muons produced within the lattice structure of the machine

  3. Studies of Muons in Extensive Air Showers from Ultra-High Energy Cosmic Rays Observed with the Telescope Array Surface Detector

    Science.gov (United States)

    Takeishi, R.; Sagawa, H.; Fukushima, M.; Takeda, M.; Nonaka, T.; Kawata, K.; Kido, E.; Sakurai, N.; Okuda, T.; Ogio, S.; Matthews, J. N.; Stokes, B.

    The number of muons in the air shower induced by ultra-high energy cosmic rays (UHECRs) has been measured with surface detector (SD) arrays of various experiments. Monte Carlo (MC) prediction of the number of muons in air showers depends on hadronic interaction models and the primary cosmic ray composition. By comparing the measured number of muons with the MC prediction, hadronic interaction models can be tested. The Pierre Auger Observatory reported that the number of muons measured by water Cherenkov type SD is about 1.8 times larger than the MC prediction for proton with QGSJET II-03 model. The number of muons in the Auger data is also larger than the MC prediction for iron. The Telescope Array experiment adopts plastic scintillator type SD, which is sensitive to the electromagnetic component that is the major part of secondary particles in the air shower. To search for the high muon purity condition in air showers observed by the TA, we divided air shower events into subsets by the zenith angle θ, the azimuth angle ϕ relative to the shower arrival direction projected onto the ground, and the distance R from shower axis. As a result, we found subsets with the high muon purity 65%, and compared the charge density between observed data and MC. The typical ratios of the charge density of the data to that of the MC are 1.71 ± 0.10 at 1870 m muon purity. These results imply that the excess of the charge density in the data is partly explained by the muon excess.

  4. Incident energy and target dependence of interaction cross sections and density distribution of neutron drip-line nuclei

    International Nuclear Information System (INIS)

    Shimoura, S.

    1992-01-01

    The relation between nuclear density distribution and interaction cross section is discussed in terms of Glauber model. Based on the model, density distribution of neutron drip-line nucleus 11 Be and 11 Li is determined experimentally from incident energy dependence of interaction cross sections of 11 Be and 11 Li on light targets. The obtained distributions have long tails corresponding to neutron halos of loosely bound neutrons. (Author)

  5. Muon ionization cooling experiment

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    A neutrino factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly leptonic CP violation. It is also the first step towards muon colliders. The performance of this new and promising line of accelerators relies heavily on the concept of ionisation cooling of minimum ionising muons, for which much R&D is required. The concept of a muon ionisation cooling experiment has been extensively studied and first steps are now being taken towards its realisation by a joint international team of accelerator and particle physicists. The aim of the workshop is to to explore at least two versions of an experiment based on existing cooling channel designs. If such an experiment is feasible, one shall then select, on the basis of effectiveness, simplicity, availability of components and overall cost, a design for the proposed experiment, and assemble the elements necessary to the presentation of a proposal. Please see workshop website.

  6. Transition processes in the novel method of the muon catalysis investigation

    International Nuclear Information System (INIS)

    Filchenkov, V.V.

    1997-01-01

    The problem of modifying the interpretation of the results to be obtained with the novel method of muon catalysis investigation to take the fast transition processes into account is first considered. The results of exploring the process kinetics are compared with the ones found from the analysis of the appropriate Monte Carlo distributions. The calculation programs simulate both the kinetics and the registration system of the experiment which is now performed in the frame of the large international project TRITON. The main conclusion is that the multiplicity distribution of the fusion neutrons is 'invariant' under any assumptions of the fast transition stage

  7. Neutron-Antineutron oscillation as a test of a New Interaction

    International Nuclear Information System (INIS)

    Addazi, A.

    2015-01-01

    We propose to search Neutron-Antineutron transitions, in condition of strong magnetic field rather than suppressed one. It is commonly accepted that such an oscillation has to be searched in no magnetic field conditions (for instance, the experiment have to be shielded by the Earth’s magnetic field). But, Neutron (and Antineutron) could be coupled to a 5. force spin-independent background Φ generated by the Earth, as eV Φ¯nγ 0 n. The background condensate simulates a difference in neutron and antineutron masses, in other words a CPT violation. Compatible with Equivalence Principle (EP) limits for a neutron inside nuclei, the 5. force background could be as high as Φ ∼ 10 −11 ÷ 10 −10 eV. As consequence, the transition probability is amplified rather than suppressed with a magnetic field of B ∼ 1–10 Gauss, if we consider neutrons immersed in a background saturating the EP limit. There are intriguing connections among: the existence of a Majorana neutron, Baryon violations Beyond the Standard Model, the Matter-Antimatter asymmetry in our Universe (Baryogenesis and Leptogenesis), the possibility of a new fifth force interaction, the possible apparent violation of the Equivalence Principle and the CPT. These strongly motivate an improvement of our current best limits in n-¯n physics.

  8. Search for right-handed currents in muon decay

    International Nuclear Information System (INIS)

    Gobbi, B.

    1983-01-01

    We report preliminary results of an experiment designed to measure the mass of the right-handed intermediate vector boson. The presence of such a particle in electroweak interactions is predicted by left-right symmetric gauge theories. The experiment measures the momentum spectrum of the positrons from the decay at rest of (1) longitudinally polarized muons produced in the decay at rest of π + → μ + nu (polarization P/sub μ/) and (2) unpolarized muons. The endpoints of these two spectra are used to determine the quantity xi P/sub μ/ where xi is a Michel parameter. This product is related to the ratio of the mass of left and right handed W and to the phase between the two helicity states. We measure, at the 90% CL, 1 - delta/rho 380 GeV/c 2

  9. Pion contamination in the MICE muon beam

    International Nuclear Information System (INIS)

    Adams, D.; Barclay, P.; Bayliss, V.; Brashaw, T.W.; Alekou, A.; Apollonio, M.; Barber, G.; Asfandiyarov, R.; Blondel, A.; De Bari, A.; Bayes, R.; Bertoni, R.; Bonesini, M.; Blackmore, V.J.; Blot, S.; Bogomilov, M.; Booth, C.N.; Bowring, D.; Boyd, S.; Bravar, U.

    2016-01-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240 MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than ∼1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is f π  < 1.4% at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling

  10. Pion contamination in the MICE muon beam

    CERN Document Server

    Bogomilov, M.; Vankova-Kirilova, G.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Kuno, Y.; Sakamoto, H.; Ishimoto, S.; Japan, Ibaraki; Filthaut, F.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Blondel, A.; Drielsma, F.; Karadzhov, Y.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Bayes, R.; Nugent, J.C.; Soler, F.J.P.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Lagrange, J-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Santos, E.; Savidge, T.; Uchida, M.A.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Booth, C.N.; Hodgson, P.; Langlands, J.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Dick, A.; Ronald, K.; Speirs, D.; Whyte, C.G.; Young, A.; Boyd, S.; Franchini, P.; Greis, J.R.; Pidcott, C.; Taylor, I.; Gardener, R.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Roberts, T.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Zisman, M.; Drews, M.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Winter, M.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Cline, D.; Yang, X.; Coney, L.; Hanson, G.G.; Heidt, C.

    2016-01-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than $\\sim$1\\% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $f_\\pi < 1.4\\%$ at 90\\% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.

  11. Muon Energy Reconstruction Through the Multiple Scattering Method in the NO$\\mathrm{\

    Energy Technology Data Exchange (ETDEWEB)

    Psihas Olmedo, Silvia Fernanda [Univ. of Minnesota, Duluth, MN (United States)

    2013-06-01

    Neutrino energy measurements are a crucial component in the experimental study of neutrino oscillations. These measurements are done through the reconstruction of neutrino interactions and energy measurements of their products. This thesis presents the development of a technique to reconstruct the energy of muons from neutrino interactions in the NO$\\mathrm{\

  12. Muon Energy Reconstruction Through the Multiple Scattering Method in the NO$\\mathrm{\

    Energy Technology Data Exchange (ETDEWEB)

    Psihas Olmedo, Silvia Fernanda [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-01-01

    Neutrino energy measurements are a crucial component in the experimental study of neutrino oscillations. These measurements are done through the reconstruction of neutrino interactions and energy measurements of their products. This thesis presents the development of a technique to reconstruct the energy of muons from neutrino interactions in the NO$\\mathrm{\

  13. Muon substituted free radicals

    International Nuclear Information System (INIS)

    Burkhard, P.; Fischer, H.; Roduner, E.; Strub, W.; Gygax, F.N.; Brinkman, G.A.; Louwrier, P.W.F.; McKenna, D.; Ramos, M.; Webster, B.C.

    1984-01-01

    Spin polarized energetic positive muons are injected as magnetic probes into unsaturated organic liquids. They are implemented via fast chemical processes ( -10 s) in various molecules. Of particular interest among these are muonium substituted free radicals. The technique allows determination of accurate rate coefficients for fast chemical reactions of radicals. Furthermore, radiochemical processes occuring in picoseconds after injection of the muon are studied. Of fundamental interest are also the structural and dynamical implications of substituting a proton by a muon, or in other terms, a hydrogen atom by a muonium atom. Selected examples for each of these three types of experiments are given. (Auth.)

  14. Simulation code for the interaction of 14 MeV neutrons on cells

    Energy Technology Data Exchange (ETDEWEB)

    Nenot, M.L.; Alard, J.P.; Dionet, C.; Arnold, J.; Tchirkov, A.; Meunier, H.; Bodez, V.; Rapp, M.; Verrelle, P

    2002-07-01

    The structure of the survival curve of melanoma cells irradiated by 14 MeV neutrons displays unusual features at very low dose rate where a marked increase in cell killings at 0.05 Gy is followed by a plateau for survival from 0.1 to 0.32 Gy. In parallel a simulation code was constructed for the interaction of 14 MeV neutrons with cellular cultures. The code describes the interaction of the neutrons with the atomic nuclei of the cellular medium and of the external medium (flask culture and culture medium), and is used to compute the deposited energy into the cell volume. It was found that the large energy transfer events associated with heavy charged recoil can occur and that a large part of the energy deposition events are due to recoil protons emitted from the external medium. It is suggested that such events could partially explain the experimental results. (author)

  15. Inclusive deep-inelastic muon scattering

    CERN Multimedia

    This experiment aims at measuring deep-inelastic inclusive muon scattering to the highest energy and Q$^{2}$ made available by the high intensity muon beam M$^{2}$ and at investigating events in which several muons are simultaneously produced. The momentum of the incident beam is measured with momentum hodoscopes, its time and space coordinates at several positions along the target with additional hodoscopes. The beam halo is detected by an array of anticounters. The target has a length of 40 m of either graphite or liquid hydrogen or liquid deuterium and is surrounded by a magnetized torus which acts as a spectrometer for scattered muons. \\\\ \\\\This magnet has a diameter of 2.75 m and is divided into 10 separate supermodules, 8 of which are presently in use. Each supermodule consists of 8 modules (each module contains 0.44 m of steel), 8 planes of (3m x 3m) MWPC, and 2 planes of circular trigger counters subdivided in rings. The first 6 supermodules are equipped each with a 5 m long target. Muons scattered i...

  16. Setup of a drift tube muon tracker and calibration of muon tracking in Borexino

    International Nuclear Information System (INIS)

    Bick, Daniel

    2011-04-01

    In this work the setup and commissioning of a drift tube based 3D muon tracking detector are described and its use for the solar neutrino experiment Borexino is presented. After a brief introduction to neutrino physics, the general layout of the detector is presented. It is followed by the description of the reconstruction and calibration algorithms. The performance of the muon tracker is presented and results from the commissioning in Hamburg are shown. The detector is currently operated in the LNGS underground laboratory in Italy at the Borexino experiment. After an introduction to Borexino, the modifications of the muon tracker for its setup at LNGS are described. The setup is used as a reference system to determine the resolution of the Borexino muon tracking which is essential for the tagging of cosmogenic induced 11 C background. Finally, first results are presented. (orig.)

  17. A wide-range direction neutron spectrometer

    International Nuclear Information System (INIS)

    Luszik-Bhadra, M.; D'Errico, F.; Hecker, O.; Matzke, M.

    2002-01-01

    A new device is presented which has been developed for measuring the energy and direction of distribution of neutron fluence in fields of broad energy spectra (thermal to 100 MeV) and with a high background of photon, electron and muon radiation. The device was tested in reference fields with different energy and direction distributions of neutron fluence. The direction-integrated fluence spectra agree fairly well with reference spectra. In all cases, the ambient and personal dose equivalent values calculated from measured direction-differential spectra are within 35% of the reference values. Independent measurements of the directional dose equivalent were performed with a directional dose equivalent monitor based on superheated drop detectors

  18. Measuring fast neutrons with large liquid scintillation detector for ultra-low background experiments

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C. [Department of Physics, The University of South Dakota, Vermillion, SD 57069 (United States); College of Sciences, China Three Gorges University, Yichang 443002 (China); Mei, D.-M., E-mail: dongming.mei@usd.edu [Department of Physics, The University of South Dakota, Vermillion, SD 57069 (United States); Davis, P.; Woltman, B. [Department of Physics, The University of South Dakota, Vermillion, SD 57069 (United States); Gray, F. [Department of Physics and Computational Science, Regis University, Denver, CO 80221 (United States)

    2013-11-21

    We developed a 12-liter volume neutron detector filled with the liquid scintillator EJ301 that measures neutrons in an underground laboratory where dark matter and neutrino experiments are located. The detector target is a cylindrical volume coated on the inside with reflective paint (95% reflectivity) that significantly increases the detector's light collection. We demonstrate several calibration techniques using point sources and cosmic-ray muons for energies up to 20 MeV for this large liquid scintillation detector. Neutron–gamma separation using pulse shape discrimination with a few MeV neutrons to hundreds of MeV neutrons is shown for the first time using a large liquid scintillator.

  19. Few-Nucleon Research at TUNL: Probing Two- and Three-Nucleon Interactions with Neutrons

    Directory of Open Access Journals (Sweden)

    Howell C.R.

    2016-01-01

    Full Text Available The central goal of few-nucleon research at the Triangle Universities Nuclear Laboratory (TUNL is to perform measurements that contribute to advancing ab-initio calculations of nuclear structure and reactions. The program aims include evaluating theoretical treatments of few-nucleon reaction dynamics through strategically comparing theory predictions to data, determining properties of the neutron-neutron interaction that are not accessible in two-nucleon reactions, and searching for evidence of longrange features of three-nucleon interactions, e.g., spin and isospin dependence. This paper will review studies of three- and four-nucleon systems at TUNL conducted using unpolarized and polarized neutron beams. Measurements of neutron-induced reactions performed by groups at TUNL over the last six years are described in comparison with theory predictions. The results are discussed in the context of the program goals stated above. Measurements of vector analyzing powers for elastic scattering in A=3 and A=4 systems, differential cross sections for neutron-deuteron elastic scattering and neutrondeuteron breakup in several final-state configurations are described. The findings from these studies and plans for the coming three years are presented in the context of worldwide activities in this front, in particular, research presented in this session.

  20. High energy muon induced radioactive nuclides in nickel plate and its use for 2-D muon-beam image profile

    International Nuclear Information System (INIS)

    Kurebayashi, Y.; Sakurai, H.; Takahashi, Y.; Doshita, N.; Kikuchi, S.; Tokanai, F.; Horiuchi, K.; Tajima, Y.; Oe, T.; Sato, T.; Gunji, S.; Inui, E.; Kondo, K.; Iwata, N.; Sasaki, N.; Matsuzaki, H.; Kunieda, S.

    2015-01-01

    Target materials were exposed to a muon beam with an energy of 160 GeV/c at the COMPASS experiment line in CERN-SPS to measure the production cross-sections for muon-induced radionuclides. A muon imager containing four nickel plates, each measuring 100 mm×100 mm, exposed to the IP plate successfully detected the muon beam image during an irradiation period of 33 days. The contrasting density rate of the nickel plate was (5.2±0.7)×10 –9 PSL/muon per one-day exposure to IP. The image measured 122 mm and 174 mm in horizontal and vertical lengths, respectively, in relation to the surface of the base, indicating that 50±6% of the muon beam flux is confined to an area of 18% of the whole muon beam. The number of muons estimated from the PSL value in the total beam image area (0.81±0.1)×10 13 was comparable to the total muon counts of the ion-chamber at the M2 beam line in the CERN-SPS. The production cross-sections of Cr-51, Mn-54, Co-56, Co-57, and Co-58 in nickel were 0.19±0.08, 0.34±0.06, 0.5±0.05, 3.44±0.07, 0.4±0.03 in the unit of mb, respectively, reducing muon associated particles effects. They are approximately 10 times smaller than that a proceeding study by Heisinger et al

  1. Muon Sources for Particle Physics - Accomplishments of the Muon Accelerator Program

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Stratakis, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palmer, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Delahaye, J.-P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Summers, D. [Univ. of Mississippi, Oxford, MS (United States); Ryne, R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cummings, M. A. [Muons, Inc., Batavia, IL(United States)

    2017-05-01

    The Muon Accelerator Program (MAP) completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of lepton colliders from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using a μ storage ring (MSR) for neutrinos, and establishing that MSRs could provide factory-level intensities of νe (ν$\\bar{e}$) and ν$\\bar{μ}$) (νμ) beams. The key components of the collider and neutrino factory systems were identified. Feasible designs and detailed simulations of all of these components were obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and clearly associated physics goals become apparent

  2. Simultaneous production of two muons by high energy neutrinos and antineutrinos

    International Nuclear Information System (INIS)

    Benvenuti, A.; Cline, D.; Ford, W.T.; Imlay, R.; Ling, T.Y.; Mann, A.K.; Messing, F.; Orr, R.; Reeder, D.D.; Rubbia, C.; Stefanski, R.; Sulak, L.; Wanderer, P.

    1975-01-01

    Neutrino interaction investigation reveals approximately 1% events with two muons. An analysis of the background due to π and K meson in-flight decays allows a lepton production from a new source to be deduced (heavy lepton, new particle)

  3. VARIATIONS OF THE MUON FLUX AT SEA LEVEL ASSOCIATED WITH INTERPLANETARY ICMEs AND COROTATING INTERACTION REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Augusto, C. R. A.; Kopenkin, V.; Navia, C. E.; Tsui, K. H.; Shigueoka, H. [Instituto de Fisica, Universidade Federal Fluminense, 24210-346, Niteroi, RJ (Brazil); Fauth, A. C.; Kemp, E.; Manganote, E. J. T. [Instituto de Fisica Gleb Wathagin, Universidade Estadual de Campinas, Campinas, SP (Brazil); Leigui de Oliveira, M. A. [Centro de Ciencias Naturais e Humanas da Universidade Federal do ABC, Santo Andre, SP (Brazil); Miranda, P.; Ticona, R.; Velarde, A. [Instituto de Investigaciones Fisicas, UMSA, La Paz Bolivia (United States)

    2012-11-10

    We present the results of an ongoing survey on the association between the muon flux variation at ground level (3 m above sea level) registered by the Tupi telescopes (Niteri-Brazil, 22.{sup 0}9S, 43.{sup 0}2W, 3 m) and the Earth-directed transient disturbances in the interplanetary medium propagating from the Sun (such as coronal mass ejections (CME), and corotating interaction regions (CIRs)). Their location inside the South Atlantic Anomaly region enables the muon telescopes to achieve a low rigidity of response to primary and secondary charged particles. The present study is primarily based on experimental events obtained by the Tupi telescopes in the period from 2010 August to 2011 December. This time period corresponds to the rising phase of solar cycle 24. The Tupi events are studied in correlation with data obtained by space-borne detectors (SOHO, ACE, GOES). Identification of interplanetary structures and associated solar activity was based on the nomenclature and definitions given by the satellite observations, including an incomplete list of possible interplanetary shocks observed by the CELIAS/MTOF Proton Monitor on the Solar and Heliospheric Observatory (SOHO) spacecraft. Among 29 experimental events reported in the present analysis, there are 15 possibly associated with the CMEs and sheaths, and 3 events with the CIRs (forward or reverse shocks); the origin of the remaining 11 events has not been determined by the satellite detectors. We compare the observed time (delayed or anticipated) of the muon excess (positive or negative) signal on Earth (the Tupi telescopes) with the trigger time of the interplanetary disturbances registered by the satellites located at Lagrange point L1 (SOHO and ACE). The temporal correlation of the observed ground-based events with solar transient events detected by spacecraft suggests a real physical connection between them. We found that the majority of observed events detected by the Tupi experiment were delayed in

  4. Alternative Muon Cooling Options based on Particle-Matter-Interaction for a Neutrino Factory

    CERN Document Server

    Stratakis, D; Alekou, A; Pasternak, J

    2013-01-01

    An ionization cooling channel is a tightly spaced lattice containing absorbers for reducing the momentum of the muon beam, rf cavities for restoring the momentum and strong solenoids for focusing the beam. Such a lattice is an essential feature of most designs for Neutrino Factories and Muon Colliders. Here, we explore three different approaches for designing ionization cooling channels based on periodic solenoidal focusing. Key parameters such as the engineering constraints arising from the length and separation between the solenoidal coils are systematically examined. In addition, we propose novel approaches for reducing the peak magnetic field inside the rf cavities, for example, by using bucked coils for focusing. Our lattice designs are numerically examined against two independent codes: The ICOOL and G4BL code. The performance of our proposed cooling channels is examined by implementing those to the front-end of a Neutrino Factory.

  5. Discovery of the neutron (to the fiftieth anniversary of neutron discovery)

    International Nuclear Information System (INIS)

    Pasechnik, M.V.

    1984-01-01

    Development of neutron physics in the USSR for the recent 50 years from the moment of neutron discovery is considered. History of neutron discovery is presented in brief. Neutron properties and fundamental problems of physics: electric dipole neutron moment, neutron β-decay, neutron interaction with nuclei and potential of nucleon interaction not conserving spatial parity are discussed. Main aspects of neutron physics application in power engineering, nuclear technology and other branches of science and technique are set forth

  6. The JADE muon detector

    International Nuclear Information System (INIS)

    Allison, J.; Armitage, J.C.M.; Baines, J.T.M.; Ball, A.H.; Bamford, G.; Barlow, R.J.; Bowdery, C.K.; Chrin, J.T.M.; Duerdoth, I.P.; Glendinning, I.; Greenshaw, T.; Hassard, J.F.; Hill, P.; King, B.T.; Loebinger, F.K.; Macbeth, A.A.; McCann, H.; Mercer, D.; Mills, H.E.; Murphy, P.G.; Prosper, H.B.; Rowe, P.; Stephens, K.

    1985-01-01

    The JADE muon detector consists of 618 planar drift chambers interspersed between layers of hadron absorber. This paper gives a detailed description of the construction and operation of the detector as a whole and discusses the properties of the drift chambers. The muon detector has been operating successfully at PETRA for five years. (orig.)

  7. FFAGS for muon acceleration

    International Nuclear Information System (INIS)

    Berg, J. Scott; Kahn, Stephen; Palmer, Robert; Trbojevic, Dejan; Johnstone, Carol; Keil, Eberhard; Aiba, Masamitsu; Machida, Shinji; Mori, Yoshiharu; Ogitsu, Toru; Ohmori, Chihiro; Sessler, Andrew; Koscielniak, Shane

    2003-01-01

    Due to their finite lifetime, muons must be accelerated very rapidly. It is challenging to make the magnets ramp fast enough to accelerate in a synchrotron, and accelerating in a linac is very expensive. One can use a recirculating accelerator (like CEBAF), but one needs a different arc for each turn, and this limits the number of turns one can use to accelerate, and therefore requires significant amounts of RF to achieve the desired energy gain. An alternative method for muon acceleration is using a fixed field alternating gradient (FFAG) accelerator. Such an accelerator has a very large energy acceptance (a factor of two or three), allowing one to use the same arc with a magnetic field that is constant over time. Thus, one can in principle make as many turns as one can tolerate due to muon decay, therefore reducing the RF cost without increasing the arc cost. This paper reviews the current status of research into the design of FFAGs for muon acceleration. Several current designs are described and compared. General design considerations are also discussed

  8. Bridging nations through muons

    CERN Multimedia

    2006-01-01

    From America to Israel and Japan, a team of international technicians and scientists are working together to build the ATLAS endcap muon chambers. The Israeli and Pakistani teams stand in front of part of the ATLAS endcap muon spectrometer. They are working on the project along with...... a team from American universities and research institutions. It's a small world; at least you might think so after a visit to Building 180. Inside, about 30 engineers and physicists weld, measure and hammer away, many of whom are miles from their homes and families. They hail from Pakistan, Israel, Japan, China, Russia and the United States. Coordinated by a group of CERN engineers, the team represents an international collaboration in every sense. Whether they've been here for years or months, CERN is their temporary home as they work toward one common goal: the completion of the ATLAS muon chamber endcaps. When finished, the ATLAS muon spectrometer will include four moving 'big wheel'structures on each end of the detecto...

  9. Setup of a drift tube muon tracker and calibration of muon tracking in Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Bick, Daniel

    2011-04-15

    In this work the setup and commissioning of a drift tube based 3D muon tracking detector are described and its use for the solar neutrino experiment Borexino is presented. After a brief introduction to neutrino physics, the general layout of the detector is presented. It is followed by the description of the reconstruction and calibration algorithms. The performance of the muon tracker is presented and results from the commissioning in Hamburg are shown. The detector is currently operated in the LNGS underground laboratory in Italy at the Borexino experiment. After an introduction to Borexino, the modifications of the muon tracker for its setup at LNGS are described. The setup is used as a reference system to determine the resolution of the Borexino muon tracking which is essential for the tagging of cosmogenic induced {sup 11}C background. Finally, first results are presented. (orig.)

  10. The new Global Muon Trigger of the CMS experiment

    CERN Document Server

    Fulcher, Jonathan Richard; Rabady, Dinyar Sebastian; Reis, Thomas; Sakulin, Hannes

    2016-01-01

    For the 2016 physics data runs the L1 trigger system of the Compact Muon Solenoid (CMS) experiment underwent a major upgrade to cope with the increasing instantaneous luminosity of the CERN LHC whilst maintaining a high event selection efficiency for the CMS physics program. Most subsystem specific trigger processor boards were replaced with powerful general purpose processor boards, conforming to the MicroTCA standard, whose tasks are performed by firmware on an FPGA of the Xilinx Virtex 7 family. Furthermore, the muon trigger system moved from a subsystem centered approach, where each of the three muon detector systems provides muon candidates to the Global Muon Trigger (GMT), to a region based system, where muon track finders (TFs) combine information from the subsystems to generate muon candidates in three detector regions, that are then sent to the upgraded GMT. The upgraded GMT receives up to 108 muons from the processors of the muon TFs in the barrel, overlap, and endcap detector regions. The muons are...

  11. The magnetic diffusion of neutrons; La diffusion magnetique des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, W C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The purpose of this report is to examine briefly the diffusion of neutrons by substances, particularly by crystals containing permanent atomic or ionic magnetic moments. In other words we shall deal with ferromagnetic, antiferromagnetic, ferrimagnetic or paramagnetic crystals, but first it is necessary to touch on nuclear diffusion of neutrons. We shall start with the interaction of the neutron with a single diffusion centre; the results will then be applied to the magnetic interactions of the neutron with the satellite electrons of the atom; finally we shall discuss the diffusion of neutrons by crystals. (author) [French] Le but de ce rapport est d'examiner, brievement, la diffusion des neutrons par les substances, et surtout, par des cristaux qui contiennent des moments magnetiques atomiques ou ioniques permanents. C'est-a-dire que nous nous interesserons aux cristaux ferromagnetiques, antiferromagnetiques, ferrimagnetiques ou paramagnetiques; il nous faut cependant rappeler d'abord la diffusion nucleaire des neutrons. Nous commencerons par l'interaction du neutron avec un seul centre diffuseur; puis les resultats seront appliques aux interactions magnetiques du neutron avec les electrons satellites de l'atome; enfin nous discuterons la diffusion des neutrons par les cristaux. (auteur)

  12. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  13. Muon colliders, frictional cooling and universal extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Greenwald, Daniel E.

    2011-07-20

    A muon collider combines the advantages of proton-proton and electron-positron colliders, sidestepping many of their disadvantages, and has the potential to make discoveries and precision measurements at high energies. However, muons bring their own technical challenges, largely relating to their instability. We present a summary of the motivations and R and D efforts for a muon collider. We detail a scheme for preparing high-luminosity muon beams on timescales shorter than the muon lifetime, and an experiment to demonstrate aspects of this scheme at the Max Planck Institute for Physics. We also investigate the potentials to discover physics beyond the standard model at a muon collider. (orig.)

  14. Muon colliders, frictional cooling and universal extra dimensions

    International Nuclear Information System (INIS)

    Greenwald, Daniel E.

    2011-01-01

    A muon collider combines the advantages of proton-proton and electron-positron colliders, sidestepping many of their disadvantages, and has the potential to make discoveries and precision measurements at high energies. However, muons bring their own technical challenges, largely relating to their instability. We present a summary of the motivations and R and D efforts for a muon collider. We detail a scheme for preparing high-luminosity muon beams on timescales shorter than the muon lifetime, and an experiment to demonstrate aspects of this scheme at the Max Planck Institute for Physics. We also investigate the potentials to discover physics beyond the standard model at a muon collider. (orig.)

  15. Possible Experiment for the Demonstration of Neutron Waves Interaction with Spatially Oscillating Potential

    Directory of Open Access Journals (Sweden)

    Miloi Mădălina Mihaela

    2018-01-01

    Full Text Available A wide range of problems in neutron optics is well described by a theory based on application of the effective potential model. It was assumed that the concept of the effective potential in neutron optics have a limited region of validity and ceases to be correct in the case of the giant acceleration of a matter. To test this hypothesis a new Ultra Cold neutron experiment for the observation neutron interaction with potential structure oscillating in space was proposed. The report is focused on the model calculations of the topography of sample surface that oscillate in space. These calculations are necessary to find an optimal parameters and geometry of the planned experiment.

  16. Cosmic Muon Detection for Geophysical Applications

    Directory of Open Access Journals (Sweden)

    László Oláh

    2013-01-01

    Full Text Available A portable cosmic muon detector has been developed for environmental, geophysical, or industrial applications. The device is a tracking detector based on the Close Cathode Chamber, an MWPC-like technology, allowing operation in natural underground caves or artificial tunnels, far from laboratory conditions. The compact, low power consumption system with sensitive surface of 0.1 m2 measures the angular distribution of cosmic muons with a resolution of 10 mrad, allowing for a detailed mapping of the rock thickness above the muon detector. Demonstration of applicability of the muon telescope (REGARD Muontomograph for civil engineering and measurements in artificial underground tunnels or caverns are presented.

  17. Neutron production in the interaction of electrons with a dispersing lamella; Produccion de neutrones en la interaccion de electrones con una laminilla dispersora

    Energy Technology Data Exchange (ETDEWEB)

    Soto B, T. G.; Baltazar R, A.; Medina C, D.; Vega C, H. R., E-mail: tzinnia.soto@gmail.com [Universidad Autonoma de Zacatecas, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico)

    2017-10-15

    When a Linac for radiotherapy operates with acceleration voltages greater than 8 MV, neutrons are produced as secondary radiation. They deposit an undesirable and not negligible dose in the patient. Depending on the type of tumor, its location in the body and the characteristics of the patient, cancer treatment with a Linac is done with photon or electron beams, which produce neutrons through reactions (γ, n) and e, e n) respectively. Because the effective section of the reaction (n, γ) is 137 times greater than the reaction (e, e n), most studies have focused on photo neutrons. When a Linac operates with electron beams, the beam that leaves the magnetic baffle is incised in the dispersion foil in order to cause quasi-elastic interactions and expand the spatial distribution of the electrons; in their interaction with the lamella the electrons produce photons and these in turn produce neutrons. Due to the radiobiological efficiency of neutrons and the ways in which they interact with matter, is important to determine the neutrons production in Linacs operating in electron mode. The objective of this work is to determine the characteristics of photons and neutrons that occur when a beam of mono-energetic electrons of 2 mm in diameter (pencil beam) is made to impinge on a tungsten lamella of 1 cm in diameter and 0.5 mm thick located in the center of a 10 cm thick tungsten shell, used to represent the accelerator head. The study was carried out using the Monte Carlo method with the MCNP6 code for electron beams of 12 and 18 MeV. The spectra of photons and neutrons were estimated in 6 point detectors, four were placed in different points equidistant from the center of the lamella and the other two were located at 50 cm and 1 m from the electron beam, simulating the totally closed head. In this work it was found that when a Linac operates with an electron beam of 12 or 18 MeV there is neutron production mainly in the head and in the direction of the beam. (Author)

  18. Muon detector for the COSINE-100 experiment

    Science.gov (United States)

    Prihtiadi, H.; Adhikari, G.; Adhikari, P.; Barbosa de Souza, E.; Carlin, N.; Choi, S.; Choi, W. Q.; Djamal, M.; Ezeribe, A. C.; Ha, C.; Hahn, I. S.; Hubbard, A. J. F.; Jeon, E. J.; Jo, J. H.; Joo, H. W.; Kang, W.; Kang, W. G.; Kauer, M.; Kim, B. H.; Kim, H.; Kim, H. J.; Kim, K. W.; Kim, N. Y.; Kim, S. K.; Kim, Y. D.; Kim, Y. H.; Kudryavtsev, V. A.; Lee, H. S.; Lee, J.; Lee, J. Y.; Lee, M. H.; Leonard, D. S.; Lim, K. E.; Lynch, W. A.; Maruyama, R. H.; Mouton, F.; Olsen, S. L.; Park, H. K.; Park, H. S.; Park, J. S.; Park, K. S.; Pettus, W.; Pierpoint, Z. P.; Ra, S.; Rogers, F. R.; Rott, C.; Scarff, A.; Spooner, N. J. C.; Thompson, W. G.; Yang, L.; Yong, S. H.

    2018-02-01

    The COSINE-100 dark matter search experiment has started taking physics data with the goal of performing an independent measurement of the annual modulation signal observed by DAMA/LIBRA. A muon detector was constructed by using plastic scintillator panels in the outermost layer of the shield surrounding the COSINE-100 detector. It detects cosmic ray muons in order to understand the impact of the muon annual modulation on dark matter analysis. Assembly and initial performance tests of each module have been performed at a ground laboratory. The installation of the detector in the Yangyang Underground Laboratory (Y2L) was completed in the summer of 2016. Using three months of data, the muon underground flux was measured to be 328 ± 1(stat.)± 10(syst.) muons/m2/day. In this report, the assembly of the muon detector and the results from the analysis are presented.

  19. Muon contact hyperfine field in metals: A DFT calculation

    Science.gov (United States)

    Onuorah, Ifeanyi John; Bonfà, Pietro; De Renzi, Roberto

    2018-05-01

    In positive muon spin rotation and relaxation spectroscopy it is becoming customary to take advantage of density functional theory (DFT) based computational methods to aid the experimental data analysis. DFT-aided muon site determination is especially useful for measurements performed in magnetic materials, where large contact hyperfine interactions may arise. Here we present a systematic analysis of the accuracy of the ab initio estimation of muon's hyperfine contact field on elemental transition metals, performing state-of-the-art spin-polarized plane-wave DFT and using the projector-augmented pseudopotential approach, which allows one to include the core state effects due to the spin ordering. We further validate this method in not-so-simple, noncentrosymmetric metallic compounds, presently of topical interest for their spiral magnetic structure giving rise to skyrmion phases, such as MnSi and MnGe. The calculated hyperfine fields agree with experimental values in all cases, provided the spontaneous spin magnetization of the metal is well reproduced within the approach. To overcome the known limits of the conventional mean-field approximation of DFT on itinerant magnets, we adopt the so-called reduced Stoner theory [L. Ortenzi et al., Phys. Rev. B 86, 064437 (2012), 10.1103/PhysRevB.86.064437]. We establish the accuracy of the estimated muon contact field in metallic compounds with DFT and our results show improved agreement with experiments compared to those of earlier publications.

  20. Muon Colliders and Neutrino Factories

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel M. [IIT, Chicago

    2015-05-29

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  1. Measurement of the Muon Content of Air Showers with IceTop

    Science.gov (United States)

    Gonzalez, JG; IceCube Collaboration

    2016-05-01

    IceTop, the surface component of the IceCube detector, has measured the energy spectrum of cosmic ray primaries in the range between 1.6 PeV and 1.3 EeV. IceTop can also be used to measure the average density of GeV muons in the shower front at large radial distances (> 300 m) from the shower axis. Wei present the measurement of the muon lateral distribution function for primary cosmic rays with energies between 1.6 PeV and about 0.1 EeV, and compare it to proton and iron simulations. We also discuss how this information can be exploited in the reconstruction of single air shower events. By combining the information on the muon component with that of the electromagnetic component of the air shower, we expect to reduce systematic uncertainties in the inferred mass composition of cosmic rays arising from theoretical uncertainties in hadronic interaction models.

  2. Neutrino and muon physics in the collider mode of future accelerators

    International Nuclear Information System (INIS)

    Rujula, A. de; Rueckl, R.

    1984-01-01

    Extracted beams and fixed target facilities at future colliders (the SSC and the LHC) may be (respectively) impaired by economic and 'ecological' considerations. Neutrino and muon physics in the multi-TeV range would appear not to be an option for these machines. We partially reverse this conclusion by estimating the characteristics of the 'prompt' νsub(μ), νsub(e), νsub(tau) and μ beams necessarily produced (for free) at the pp or anti pp intersections. The neutrino beams from a high luminosity (pp) collider are not much less intense than the neutrino beam from the collider's dump, but require no muon shielding. The muon beams from the same intersections are intense and energetic enough to study μp and μN interactions with considerable statistics and a Q 2 -coverage well beyond the presently available one. The physics program allowed by these lepton beams is a strong advocate of machines with the highest possible luminosity: pp (not anti pp) colliders. (orig.)

  3. Combined Neutron Center for European Research and Technology

    International Nuclear Information System (INIS)

    Lagniel, Jean-Michel

    2002-01-01

    High-power proton linacs are needed as driver for several applications, namely transmutation of nuclear waste using Accelerator Driven Systems (ADS), spallation neutron sources (ESS in Europe) and other fields of basic and applied research (next generation of radioactive ion beam facilities, neutrino factories, muon colliders, irradiation facilities for material testing...). The possible synergies among these projects will be pointed out and the feasibility study of high-power proton linac used as driver of a multi-user facility (CONCERT) will be presented. There was excellent scientific, technical and economic reasons to study a Combined Neutron Center for European Research and Technology (CONCERT) based on a high-power proton accelerator. Such an installation would serve condensed matter studies by spallation neutron scattering, a technological irradiation tool and R and D facility for an hybrid reactor demonstrator, a radioactive ion beam facility for nuclear physics, R and D developments for a muon/neutrino facility. The installation could therefore constitute a European center of excellence in the field of neutronics where a large number of scientific and technical executives could be trained. The CONCERT Project Team has performed the feasibility study of such a multi-user facility with: - a review of the beam needs for the different applications, - an analyze of their compatibility, - the definition of the scope of a site-independent project, - a selection of the most appropriate options regarding scientific, technical, financial, organizational and administrative aspects, - an estimation of the costs for construction, operation and the needs in manpower. The conceptual design report [17] is sufficiently detailed to minimize contingencies on those parts of the project having a large potential impact in terms of performances, costs or delays. (author)

  4. Neutron fragmentation and inclusive charge exchange in pd and π+d interactions at 195 GeV/c

    International Nuclear Information System (INIS)

    Eisenberg, Y.; Haber, B.; Hochman, D.; Koller, E.; Ronat, E.E.; Shapira, A.; Yaari, R.; Yekutieli, G.; Braun, H.; Etienne, F.; Fridman, A.; Gerber, J.P.; Jegham, E.; Juillot, P.; Maurer, G.; Voltolini, C.

    1976-01-01

    An excess of negative particles and depletion of positives in the cms backward hemisphere is observed in π + and p interactions on neutron target. dΣ - /dy is compared with pp interactions and the difference is related to the slow proton spectrum produced in the pn interactions. A neutron fragmentation component is observed and the inclusive charge exchange probability at the nucleon vertex is found to be about 0.4. (author)

  5. Forward scattering effects on muon imaging

    Science.gov (United States)

    Gómez, H.; Gibert, D.; Goy, C.; Jourde, K.; Karyotakis, Y.; Katsanevas, S.; Marteau, J.; Rosas-Carbajal, M.; Tonazzo, A.

    2017-12-01

    Muon imaging is one of the most promising non-invasive techniques for density structure scanning, specially for large objects reaching the kilometre scale. It has already interesting applications in different fields like geophysics or nuclear safety and has been proposed for some others like engineering or archaeology. One of the approaches of this technique is based on the well-known radiography principle, by reconstructing the incident di