WorldWideScience

Sample records for muon spectrometer simulation

  1. Simulation of the High Performance Time to Digital Converter for the ATLAS Muon Spectrometer trigger upgrade

    International Nuclear Information System (INIS)

    Meng, X.T.; Levin, D.S.; Chapman, J.W.; Zhou, B.

    2016-01-01

    The ATLAS Muon Spectrometer endcap thin-Resistive Plate Chamber trigger project compliments the New Small Wheel endcap Phase-1 upgrade for higher luminosity LHC operation. These new trigger chambers, located in a high rate region of ATLAS, will improve overall trigger acceptance and reduce the fake muon trigger incidence. These chambers must generate a low level muon trigger to be delivered to a remote high level processor within a stringent latency requirement of 43 bunch crossings (1075 ns). To help meet this requirement the High Performance Time to Digital Converter (HPTDC), a multi-channel ASIC designed by CERN Microelectronics group, has been proposed for the digitization of the fast front end detector signals. This paper investigates the HPTDC performance in the context of the overall muon trigger latency, employing detailed behavioral Verilog simulations in which the latency in triggerless mode is measured for a range of configurations and under realistic hit rate conditions. The simulation results show that various HPTDC operational configurations, including leading edge and pair measurement modes can provide high efficiency (>98%) to capture and digitize hits within a time interval satisfying the Phase-1 latency tolerance.

  2. Design and Simulation of a Spin Rotator for Longitudinal Field Measurements in the Low Energy Muons Spectrometer

    Science.gov (United States)

    Salman, Z.; Prokscha, T.; Keller, P.; Morenzoni, E.; Saadaoui, H.; Sedlak, K.; Shiroka, T.; Sidorov, S.; Suter, A.; Vrankovic, V.; Weber, H.-P.

    We usedGeant4 to accurately model the low energy muons (LEM) beam line, including scattering due to the 10-nm thin carbon foil in the trigger detector. Simulations of the beam line transmission give excellent agreement with experimental results for beam energies higher than ∼ 12keV.We use these simulations to design and model the operation of a spin rotator for the LEM spectrometer, which will enable longitudinal field measurements in the near future.

  3. Performance of the ATLAS Muon Spectrometer and of Muon Identification at the LHC

    CERN Document Server

    Woudstra, MJ; The ATLAS collaboration

    2010-01-01

    The large cosmic data samples collected in fall 2009 by the ATLAS experiment have been used to study the performance of the Muon Spectrometer. Detailed studies of the basic Muon spectrometer performance in terms of sagitta resolution, tracking efficiency and momentum resolution are presented and provide an update with respect to the results recently published. The results are also compared with a cosmic data simulation recently improved with a more realistic drift chamber response. The recent collision data collected at a CM of 7 TeV have also been analyzed to determine basic Muon Spectrometer performance. The performance of the ATLAS muon identification was studied with 1 inverse nanobarn of LHC proton-proton collision data at a centre of mass energy of 7 TeV. Measured detector efficiencies, hit multiplicities, and residual distributions of reconstructed muon tracks are well reproduced by the Monte Carlo simulation. Exploiting the redundancy in the muon identification at detector and reconstruction level the...

  4. Alignment of the ATLAS central muon spectrometer

    CERN Document Server

    Chevallier, F

    2008-01-01

    The muon spectrometer of the ATLAS experiment is one of the largest detectors ever built. At the LHC, new physics signs could appear through high momenta muons (1 TeV). Identification and precise momentum measurement of such muons are two of the main challenges of the ATLAS muon spectrometer. In order to get a good resolution for high energy muons (i.e. 10% at 1 TeV), the accuracy on the alignment of precision chambers must be of the order of 50 microns. Several procedures have been developed to reach such a precision. This document describes complementary techniques used to align the muon sub-detectors, and their results : the optical system, the muon cosmic rays and the straight tracks coming from collisions.

  5. Standalone vertex finding in the ATLAS muon spectrometer

    DEFF Research Database (Denmark)

    Aad, A.; Abajyan, T.; Abbott, B.

    2014-01-01

    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The perf......A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths....... The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011....

  6. Performance of the ATLAS muon spectrometer

    International Nuclear Information System (INIS)

    Aleksa, M.

    1999-09-01

    ATLAS is a general-purpose experiment for the future large hadron collider (LHC) at CERN. Its Muon Spectrometer will require ∼5500 m 2 of precision tracking chambers to measure the muon tracks along a spectrometer arm of 5 m to 15 m length, embedded in a magnetic field of ∼0.5 T. The precision tracking devices in the Muon System will be high pressure drift tubes (MDTs). Approximately 370,000 MDTs will be assembled into ∼1200 drift chambers. The LHC physics discovery range indicates the need for a momentum resolution of ∼10 % for muons with a transverse momentum of p T =1 TeV/c. Following a detailed engineering optimisation of the magnetic-field strength versus the chamber resolution, the ATLAS collaboration opted for a drift-chamber system with very high spatial resolution, σ 2 93/7). Measurements performed in a high-background environment - similar to the ATLAS operational environment - gave us a complete understanding of the individual effects which deteriorate the spatial resolution at high rates. Four effects responsible for a resolution deterioration have been identified: two electronics effects which depend on the count rate of a tube (baseline shift and baseline fluctuations), and two space-charge effects that depend on the local count rate (gain drop and field fluctuations). The understanding of these effects had a major impact on the choice of the drift gas and the front-end electronics. The strong dependence of the drift velocity on the drift field is one major disadvantage of the baseline gas. In this work the full set of effects which lead to systematic errors to the track-position measurement in one tube (e.g. variations of the background rate) was investigated and quantified for realistic LHC operating conditions. For the biggest effects analytical corrections are presented. Finally, the muon-system performance was investigated and a calibration method for the absolute mass scale developed. By means of simulation it was shown that the energy

  7. Monte Carlo simulation of muon-induced background of an anti-Compton gamma-ray spectrometer placed in a surface and underground laboratory

    CERN Document Server

    Vojtyla, P

    2005-01-01

    Simulations of cosmic ray muon induced background of an HPGe detector placed inside an anti-Compton shield on the surface and in shallow underground is described. Investigation of several model set-ups revealed some trends useful for design of low-level gamma-ray spectrometers. It has been found that background spectrum of an HPGe detector can be scaled down with the shielding depth. No important difference is observed when the same set-up of the anti-Compton spectrometer is positioned horizontally or vertically. A cosmic-muon rejection factor of at least 40 (at around 1 MeV) can be reached when the anti-Compton suppression is operational. The cosmicmuon background can be reduced to such a level that other background components prevail, like those from the residual contamination of the detector and shield materials and/or from radon, especially for the underground facilities.

  8. Local tracking in the ATLAS muon spectrometer

    CERN Document Server

    Primor, David; Mikenberg, Giora

    2007-01-01

    The LHC, the largest hadron collider accelerator ever built, presents new challenges for scientists and engineers. With the anticipated luminosity of the LHC, it is expected to have as many as one billion total collisions per second, of which at most 10 to 100 per second might be of potential scientific interest. One of the two major, general-purpose experiments at LHC is called ATLAS. Since muons are one of the important signs of new physics, the need of their detection has lead to the construction of a stand- alone Muon Spectrometer. This system is located in a high radiation background environment (mostly neutrons and photons) which makes the muon tracking a very challenging task. The Muon Spectrometer consists of two types of precision chambers, the Monitor Drift Tube (MDT) chambers, and the Cathode Strip Chambers (CSC). In order to detect the muon and estimate its track parameters, it is very important to detect and precisely estimate its local tracks within the CSC and MDT chambers. Using advanced signa...

  9. The H1 forward muon spectrometer

    International Nuclear Information System (INIS)

    Kenyon, I.R.; Phillips, H.; Cronstroem, H.I.; Hedberg, V.; Jacobsson, C.; Joensson, L.; Lohmander, H.; Nyberg, M.; Biddulph, P.; Finnegan, P.; Foster, J.; Gilbert, S.; Hilton, C.; Ibbotson, M.; Mehta, A.; Sutton, P.; Stephens, K.; Thompson, R.

    1993-02-01

    The H1 detector started taking data at the electron- proton collider HERA in the beginning of 1992. In HERA 30 GeV electrons collide with 820 GeV protons giving a strong boost of the centre-of-mass system in the direction of the proton, also called the forward region. For the detection of high momentum muons in this region a muon spectrometer has been constructed, consisting of six drift chamber planes, three either side of a toroidal magnet. A first brief description of the system and its main parameters as well as the principles for track reconstruction and Τ 0 determination is given. (orig.)

  10. Performance Validation of the ATLAS Muon Spectrometer

    CERN Document Server

    Mair, Katharina

    ATLAS (A Toroidal LHC ApparatuS) is a general-purpose experiment for the future Large Hadron Collider (LHC) at CERN, which is scheduled to begin operation in the year 2007, providing experiments with proton-proton collisions. The center-of-mass energy of 14TeV and the design luminosity of 1034 cm−2s−1 will allow to explore many new aspects of fundamental physics. The ATLAS Muon Spectrometer aims at a momentum resolution better than 10% for transverse momentum values ranging from pT = 6 GeV to pT = 1TeV. Precision tracking will be performed by Ar-CO2-gas filled Monitored Drift Tube chambers (MDTs), with a single wire resolution of < 100 μm. In total, about 1 200 chambers, arranged in a large structure, will allow muon track measurements over distances up to 15m in a magnetic field of 0.5 T. Given the large size of the spectrometer it is impossible to keep the shape of the muon chambers and their positions stable within the requested tracking accuracy of 50 μm. Therefore the concept of an optical alig...

  11. Commissioning of the magnetic field in the ATLAS muon spectrometer

    International Nuclear Information System (INIS)

    Arnaud, M.; Bardoux, J.; Bergsma, F.; Bobbink, G.; Bruni, A.; Chevalier, L.; Ennes, P.; Fleischmann, P.; Fontaine, M.; Formica, A.; Gautard, V.; Groenstege, H.; Guyot, C.; Hart, R.; Kozanecki, W.; Iengo, P.; Legendre, M.; Nikitina, T.; Perepelkin, E.; Ponsot, P.

    2008-01-01

    ATLAS is a general-purpose detector at the 14 TeV proton-proton Large Hadron Collider at CERN. The muon spectrometer will operate in the magnetic field provided by a large, eight-coil barrel toroid magnet bracketed by two smaller toroidal end-caps. The toroidal field is non-uniform, with an average value of about 0.5 T in the barrel region, and is monitored using three-dimensional Hall sensors which must be accurate to ∼1 mT. The barrel coils were installed in the cavern from 2004 to 2006, and recently powered up to their nominal current. The Hall-sensor measurements are compared with calculations to validate the magnetic models, and used to reconstruct the position and shape of the coil windings. Field perturbations by the magnetic materials surrounding the muon spectrometer are found in reasonable agreement with finite-element magnetic-field simulations

  12. Commissioning of the magnetic field in the ATLAS muon spectrometer

    CERN Document Server

    Arnaud, M; Bergsma, F; Bobbink, G; Bruni, A; Chevalier, L; Ennes, P; Fleischmann, P; Fontaine, M; Formica, A; Gautard, V; Groenstege, H; Guyot, C; Hart, R; Kozanecki, W; Iengo, P; Legendre, M; Nikitina, T; Perepelkin, E; Ponsot, P; Richardson, A; Vorozhtsov, A; Vorozthsov, S

    2008-01-01

    ATLAS is a general-purpose detector at the 14 TeV proton-proton Large Hadron Collider at CERN. The muon spectrometer will operate in the magnetic field provided by a large, eight-coil barrel toroid magnet bracketed by two smaller toroidal end-caps. The toroidal field is non-uniform, with an average value of about 0.5 T in the barrel region, and is monitored using three-dimensional Hall sensors which must be accurate to 1 mT. The barrel coils were installed in the cavern from 2004 to 2006, and recently powered up to their nominal current. The Hall-sensor measurements are compared with calculations to validate the magnetic models, and used to reconstruct the position and shape of the coil windings. Field perturbations by the magnetic materials surrounding the muon spectrometer are found in reasonable agreement with finite-element magnetic-field simulations.

  13. Validation Tools for ATLAS Muon Spectrometer Commissioning

    International Nuclear Information System (INIS)

    Benekos, N.Chr.; Dedes, G.; Laporte, J.F.; Nicolaidou, R.; Ouraou, A.

    2008-01-01

    The ATLAS Muon Spectrometer (MS), currently being installed at CERN, is designed to measure final state muons of 14 TeV proton-proton interactions at the Large Hadron Collider (LHC) with a good momentum resolution of 2-3% at 10-100 GeV/c and 10% at 1 TeV, taking into account the high level background enviroment, the inhomogeneous magnetic field, and the large size of the apparatus (24 m diameter by 44 m length). The MS layout of the ATLAS detector is made of a large toroidal magnet, arrays of high-pressure drift tubes for precise tracking and dedicated fast detectors for the first-level trigger, and is organized in eight Large and eight Small sectors. All the detectors of the barrel toroid have been installed and the commissioning has started with cosmic rays. In order to validate the MS performance using cosmic events, a Muon Commissioning Validation package has been developed and its results are presented in this paper. Integration with the rest of the ATLAS sub-detectors is now being done in the ATLAS cavern

  14. A plastic scintillator-based muon tomography system with an integrated muon spectrometer

    International Nuclear Information System (INIS)

    Anghel, V.; Armitage, J.; Baig, F.; Boniface, K.; Boudjemline, K.; Bueno, J.; Charles, E.; Drouin, P-L.; Erlandson, A.; Gallant, G.; Gazit, R.; Godin, D.; Golovko, V.V.; Howard, C.; Hydomako, R.

    2015-01-01

    A muon scattering tomography system which uses extruded plastic scintillator bars for muon tracking and a dedicated muon spectrometer that measures scattering through steel slabs has been constructed and successfully tested. The atmospheric muon detection efficiency is measured to be 97% per plane on average and the average intrinsic hit resolution is 2.5 mm. In addition to creating a variety of three-dimensional images of objects of interest, a quantitative study has been carried out to investigate the impact of including muon momentum measurements when attempting to detect high-density, high-Z material. As expected, the addition of momentum information improves the performance of the system. For a fixed data-taking time of 60 s and a fixed false positive fraction, the probability to detect a target increases when momentum information is used. This is the first demonstration of the use of muon momentum information from dedicated spectrometer measurements in muon scattering tomography

  15. A plastic scintillator-based muon tomography system with an integrated muon spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Anghel, V. [Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Armitage, J. [Department of Physics, Room 3302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6 (Canada); Baig, F.; Boniface, K. [Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Boudjemline, K. [Department of Physics, Room 3302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6 (Canada); Bueno, J. [Advanced Applied Physics Solutions Inc., 4004 Wesbrook Mall, Vancouver, Canada V6T 2A3 (Canada); Charles, E. [Canada Border Services Agency, 79 Bentley Avenue, Ottawa, Canada K1A 0L8 (Canada); Drouin, P-L. [Defence Research and Development Canada, 3701 Carling Avenue, Ottawa, Canada K1A 0Z4 (Canada); Erlandson, A., E-mail: Andrew.Erlandson@cnl.ca [Department of Physics, Room 3302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6 (Canada); Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Gallant, G. [Canada Border Services Agency, 79 Bentley Avenue, Ottawa, Canada K1A 0L8 (Canada); Gazit, R. [Advanced Applied Physics Solutions Inc., 4004 Wesbrook Mall, Vancouver, Canada V6T 2A3 (Canada); Godin, D.; Golovko, V.V. [Canadian Nuclear Laboratories Ltd (former Atomic Energy of Canada Ltd), Chalk River Laboratories, Chalk River, Canada K0J 1P0 (Canada); Howard, C. [Defence Research and Development Canada, 3701 Carling Avenue, Ottawa, Canada K1A 0Z4 (Canada); Hydomako, R. [Advanced Applied Physics Solutions Inc., 4004 Wesbrook Mall, Vancouver, Canada V6T 2A3 (Canada); Defence Research and Development Canada, 3701 Carling Avenue, Ottawa, Canada K1A 0Z4 (Canada); and others

    2015-10-21

    A muon scattering tomography system which uses extruded plastic scintillator bars for muon tracking and a dedicated muon spectrometer that measures scattering through steel slabs has been constructed and successfully tested. The atmospheric muon detection efficiency is measured to be 97% per plane on average and the average intrinsic hit resolution is 2.5 mm. In addition to creating a variety of three-dimensional images of objects of interest, a quantitative study has been carried out to investigate the impact of including muon momentum measurements when attempting to detect high-density, high-Z material. As expected, the addition of momentum information improves the performance of the system. For a fixed data-taking time of 60 s and a fixed false positive fraction, the probability to detect a target increases when momentum information is used. This is the first demonstration of the use of muon momentum information from dedicated spectrometer measurements in muon scattering tomography.

  16. A plastic scintillator-based muon tomography system with an integrated muon spectrometer

    Science.gov (United States)

    Anghel, V.; Armitage, J.; Baig, F.; Boniface, K.; Boudjemline, K.; Bueno, J.; Charles, E.; Drouin, P.-L.; Erlandson, A.; Gallant, G.; Gazit, R.; Godin, D.; Golovko, V. V.; Howard, C.; Hydomako, R.; Jewett, C.; Jonkmans, G.; Liu, Z.; Robichaud, A.; Stocki, T. J.; Thompson, M.; Waller, D.

    2015-10-01

    A muon scattering tomography system which uses extruded plastic scintillator bars for muon tracking and a dedicated muon spectrometer that measures scattering through steel slabs has been constructed and successfully tested. The atmospheric muon detection efficiency is measured to be 97% per plane on average and the average intrinsic hit resolution is 2.5 mm. In addition to creating a variety of three-dimensional images of objects of interest, a quantitative study has been carried out to investigate the impact of including muon momentum measurements when attempting to detect high-density, high-Z material. As expected, the addition of momentum information improves the performance of the system. For a fixed data-taking time of 60 s and a fixed false positive fraction, the probability to detect a target increases when momentum information is used. This is the first demonstration of the use of muon momentum information from dedicated spectrometer measurements in muon scattering tomography.

  17. The muon spectrometer of the L3 detector at LEP

    International Nuclear Information System (INIS)

    Peng, Y.

    1988-01-01

    In this thesis the construction of the muon spectrometer of the L3 detector is described, one of the four detectors presently being prepared for experimentation at LEP. This accelerator is built at CERN, Geneva, and is due to start operation in July 1989. One of the unique features of the L3 experiment is the measurement of the momentum of the muons produced in the e + e - collisions iwht an independent muon spectrometer. This makes it possible to study final states involving muons, with high accuracy (δP/P = 2% at 45 GeV). The muon spectrometer consists of 80 large drift chambers, arranged in 16 modules or 'octants', that fill a cylindrical volume of 12 m in length, 5 m inner diameter and 12 m outer diameter. The design of the drift chambers, the construction, the alignment procedure and the test results for the complete octants are described. 51 refs.; 57 figs.; 16 tabs

  18. Commissioning of the ATLAS Muon Spectrometer with Cosmic Rays

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Argyropoulos, T.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Bach, A.M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimaraes da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M.I.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodet, E.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Buscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urban, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G.D.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Castaneda Hernandez, A.M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, V.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Clark, P.J.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muino, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crepe-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Via, C; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawson, I.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P.E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De Mora, L.; De Oliveira Branco, M.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; De Zorzi, G.; Dean, S.; Dedovich, D.V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M.A.B.; Do Valle Wemans, A.; Doan, T.K.O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Duhrssen, M.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Duren, M.; Ebenstein, W.L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcia, C.; Garcia Navarro, J.E.; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gautard, V.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giorgi, F.M.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Gomez Fajardo, L.S.; Goncalo, R.; Gonella, L.; Gong, C.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafstrom, P.; Grahn, K-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Hartel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.M.; Harrison, K; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henss, T.; Hernandez Jimenez, Y.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Higon-Rodriguez, E.; Hill, J.C.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E.W.; Hughes, G.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.K.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jezequel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.J.; Jorge, P.M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Koneke, K.; Konig, A.C.; Koenig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Kruger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kwee, R.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Le Vine, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R.; Lester, C.G.; Leung Fook Cheong, A.; Leveque, J.; Levin, D.; Levinson, L.J.; Leyton, M.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J.N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S.C.; Linnemann, J.T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R.E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.A.; Lowe, A.J.; Lu, F.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Macana Goia, J.A.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magalhaes Martins, P.J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C.P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martyniuk, A.C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mc Donald, J.; Mc Kee, S.P.; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McMahon, S.J.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B.R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Metcalfe, J.; Mete, A.S.; Meyer, J-P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikestikova, M.; Mikuz, M.; Miller, D.W.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Milstein, D.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjornmark, J.U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohr, W.; Mohrdieck-Mock, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llacer, M.; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Muller, T.A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.M.; Nevski, P.; Newcomer, F.M.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Ottersbach, J.P; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th.D.; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pasztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M.I.; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Perez Garcia-Estan, M.T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommes, K.; Ponsot, P.; Pontecorvo, L.; Pope, B.G.; Popeneciu, G.A.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G.E.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, JEM; Robinson, M.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosselet, L.; Rossetti, V.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruhr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.S.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.C.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siegert, F; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spano, F.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R.D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.A.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Stroynowski, R.; Strube, J.; Stugu, B.; Soh, D.A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.H.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sanchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Tipton, P.; Tique Aires Viegas, F.J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torrence, E.; Torro Pastor, E.; Toth, J.; Touchard, F.; Tovey, D.R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Tuggle, J.M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J.A.; Van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S.M.; Warburton, A.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M.J.; White, S.; Whitehead, S.R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Wynne, B.M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Z.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zivkovic, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zutshi, V.

    2010-01-01

    The ATLAS detector at the Large Hadron Collider has collected several hundred million cosmic ray events during 2008 and 2009. These data were used to commission the Muon Spectrometer and to study the performance of the trigger and tracking chambers, their alignment, the detector control system, the data acquisition and the analysis programs. We present the performance in the relevant parameters that determine the quality of the muon measurement. We discuss the single element efficiency, resolution and noise rates, the calibration method of the detector response and of the alignment system, the track reconstruction efficiency and the momentum measurement. The results show that the detector is close to the design performance and that the Muon Spectrometer is ready to detect muons produced in high energy proton-proton collisions.

  19. Triggering and measuring bent cosmic muon tracks with the Muon Spectrometer barrel for the first time

    CERN Multimedia

    Fabio Cerutti

    During the ATLAS barrel toroid stability test, bent cosmic muon tracks were seen for the first time in the ATLAS cavern by means of the ATLAS muon spectrometer. The barrel toroid has been powered at its nominal current (20.5 thousand Amperes) and kept in steady state for more than one day during the weekend of 18-19 November (see a report on this test in the Magnet section). During this test one large sector and part of a small sector of the barrel muon spectrometer were readout and used to detect the cosmic muons tracks bent by the toroidal magnetic field. Thirteen muon stations in the feet sectors (sectors 13 and 14) have been used in this test. The muon stations are formed of Resistive Plate Chambers (RPC) that were providing the muon trigger, and Monitored Drift Tubes that were used to measure with high accuracy the muon curvature hence their momentum. The Level-1 Barrel trigger chain was based on the Barrel Middle Large chambers equipped with final production modules on both the on-detector and the o...

  20. Standalone vertex finding in the ATLAS muon spectrometer

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abajyan, T.; Abbott, B.; Böhm, Jan; Chudoba, Jiří; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Dos Santos, D.R.; Růžička, P.; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Tic, Tomáš; Vrba, Václav

    2014-01-01

    Roč. 9, Feb (2014), s. 1-22 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : muon spectrometers * performance of high energy physics * detectors * ATLAS * CERN LHC Coll Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.399, year: 2014

  1. Muon Simulation at the Daya Bay SIte

    International Nuclear Information System (INIS)

    Mengyun, Guan; Jun, Cao; Changgen, Yang; Yaxuan, Sun; Luk, Kam-Biu

    2006-01-01

    With a pretty good-resolution mountain profile, we simulated the underground muon background at the Daya Bay site. To get the sea-level muon flux parameterization, a modification to the standard Gaisser's formula was introduced according to the world muon data. MUSIC code was used to transport muon through the mountain rock. To deploy the simulation, first we generate a statistic sample of sea-level muon events according to the sea-level muon flux distribution formula; then calculate the slant depth of muon passing through the mountain using an interpolation method based on the digitized data of the mountain; finally transport muons through rock to get underground muon sample, from which we can get results of muon flux, mean energy, energy distribution and angular distribution.

  2. Streamlined Calibration of the ATLAS Muon Spectrometer Precision Chambers

    CERN Document Server

    Levin, DS; The ATLAS collaboration; Dai, T; Diehl, EB; Ferretti, C; Hindes, JM; Zhou, B

    2009-01-01

    The ATLAS Muon Spectrometer is comprised of nearly 1200 optically Monitored Drifttube Chambers (MDTs) containing 354,000 aluminum drift tubes. The chambers are configured in barrel and endcap regions. The momentum resolution required for the LHC physics reach (dp/p = 3% and 10% at 100 GeV and 1 TeV) demands rigorous MDT drift tube calibration with frequent updates. These calibrations (RT functions) convert the measured drift times to drift radii and are a critical component to the spectrometer performance. They are sensitive to the MDT gas composition: Ar 93%, CO2 7% at 3 bar, flowing through the detector at arate of 100,000 l hr−1. We report on the generation and application of Universal RT calibrations derived from an inline gas system monitor chamber. Results from ATLAS cosmic ray commissioning data are included. These Universal RTs are intended for muon track reconstuction in LHC startup phase.

  3. A Level-2 trigger algorithm for the identification of muons in the ATLAS Muon Spectrometer

    CERN Document Server

    Di Mattia, A; Dos Anjos, A; Baines, J T M; Bee, C P; Biglietti, M; Bogaerts, J A C; Boisvert, V; Bosman, M; Caron, B; Casado, M P; Cataldi, G; Cavalli, D; Cervetto, M; Comune, G; Conde-Muíño, P; De Santo, A; Díaz-Gómez, M; Dosil, M; Ellis, Nick; Emeliyanov, D; Epp, B; Falciano, S; Farilla, A; George, S; Ghete, V M; González, S; Grothe, M; Kabana, S; Khomich, A; Kilvington, G; Konstantinidis, N P; Kootz, A; Lowe, A; Luminari, L; Maeno, T; Masik, J; Meessen, C; Mello, A G; Merino, G; Moore, R; Morettini, P; Negri, A; Nikitin, N V; Nisati, A; Padilla, C; Panikashvili, N; Parodi, F; Pasqualucci, E; Pérez-Réale, V; Pinfold, J L; Pinto, P; Qian, Z; Resconi, S; Rosati, S; Sánchez, C; Santamarina-Rios, C; Scannicchio, D A; Schiavi, C; Segura, E; De Seixas, J M; Sivoklokov, S Yu; Soluk, R A; Stefanidis, E; Sushkov, S S; Sutton, M; Tapprogge, Stefan; Thomas, E; Touchard, F; Venda-Pinto, B; Vercesi, V; Werner, P; Wheeler, S; Wickens, F J; Wiedenmann, W; Wielers, M; Zobernig, G; Computing In High Energy Physics

    2005-01-01

    The ATLAS Level-2 trigger provides a software-based event selection after the initial Level-1 hardware trigger. For the muon events, the selection is decomposed in a number of broad steps: first, the Muon Spectrometer data are processed to give physics quantities associated to the muon track (standalone feature extraction) then, other detector data are used to refine the extracted features. The “µFast” algorithm performs the standalone feature extraction, providing a first reduction of the muon event rate from Level-1. It confirms muon track candidates with a precise measurement of the muon momentum. The algorithm is designed to be both conceptually simple and fast so as to be readily implemented in the demanding online environment in which the Level-2 selection code will run. Never-the-less its physics performance approaches, in some cases, that of the offline reconstruction algorithms. This paper describes the implemented algorithm together with the software techniques employed to increase its timing p...

  4. Magnetic field calculation of the Na-4 muon spectrometer

    International Nuclear Information System (INIS)

    Cvach, J.; Il'yushchenko, V.I.; Savin, I.A.; Vorozhtsov, S.B.

    1980-01-01

    A NA-4 muon spectrometer is described. Preliminary results of calculating a magnetic field in a toroidal magnetic detector are given. The spectrometer includes 10 similar supermodules each of which consists of 32 iron discs with 275 cm outer diameter magnetized up to saturation. Each module is an independent detector. The POISSON program is used for calculating magnetic field distribution in a toroidal spectrometer magnet. The results obtained show that a magnetic field of iron is a toroidal one and drops approximately according to the logarithmic law from 21.1 kGs on an inner magnet rig to 17.7 kGs on an outer. Magnet support gives approximately 2 % error

  5. ATLAS Muon Spectrometer Upgrades for the High Luminosity LHC

    CERN Document Server

    Valderanis, Chrysostomos; The ATLAS collaboration

    2015-01-01

    ATLAS Muon Spectrometer Upgrades for the High Luminosity LHC The luminosity of the LHC will increase up to 2x10^34 cm-2s-1 after the long shutdown in 2019 (phase-1 upgrade) and up to 7x10^34 cm-2s-1 after the long shutdown in 2025 (phase-2 upgrade). In order to cope with the increased particle fluxes, upgrades are envisioned for the ATLAS muon spectrometer. At phase-1, the current innermost stations of the ATLAS muon endcap tracking system (the Small Wheels) will be upgraded with 2x4-layer modules of Micromega detectors, sandwiched by two 4 layer modules of small strip Thin Gap Chambers on either side. Each 4-layer module of the so-called New Small Wheels covers a surface area of approximately 2 to 3 m2 for a total active area of 1200 m2 each for the two technologies. On such large area detectors, the mechanical precision (30 \\mu m along the precision coordinate and 80 \\mu m along the beam) is a key point and must be controlled and monitored along the process of construction and integration. The design and re...

  6. Surface Assembly of the End Cap Muon Spectrometer

    CERN Multimedia

    S. Palestini

    Before the final installation in the ATLAS detector, the chambers of the inner and middle forward stations of the Muon spectrometer are integrated and assembled on large support structures. Work on the sectors of the Thin Gap Chamber (TGC) Big Wheels (trigger chambers) and of the Muon Drift Tube (MDT) Big Wheels (precision tracking chambers) started early this year, and has recently expanded to all the foreseen working areas, covering most the surface of building 180. Several operations are performed, often in parallel, by different teams: final integration of the detectors, assembly of the support structures, installation and test of services, installation of chambers, and final tests. Control of the geometry is performed frequently both on assembly tooling and on complete sectors. The final tests verify the response of the detectors and of the electronics, including read-out and trigger electronics, the alignment system, and the detector control. The sectors are designed as a unit that can be fully commis...

  7. Spectrometer magnet for experiment NA4 (deep inelastic muon scattering)

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    This is one section of the toroidal-field spectrometer magnet of experiment NA4 (deep inelastic muon scattering), shown here during the installation period and later located in the North Area of the SPS. To see all 4 sections, select 7709201. Igor Savin from Dubna looks at what his lab had provided: the huge iron disks were machined at and provided by Dubna. Multi-Wire Proportional Chambers were installed in the gaps between the packs of 4 disks. When the beam from the SPS struck the target (to the right in this picture), the iron would quickly stop the hadronic shower, whilst the muons would go on, performing oscillations in the toroidal field. NA4 was a CERN-Dubna-Munich-Saclay (later also Bologna) collaboration, spokesman: Carlo Rubbia.

  8. Simulation of Underground Muon Flux with Application to Muon Tomography

    Science.gov (United States)

    Yamaoka, J. A. K.; Bonneville, A.; Flygare, J.; Lintereur, A.; Kouzes, R.

    2015-12-01

    Muon tomography uses highly energetic muons, produced by cosmic rays interacting within the upper atmosphere, to image dense materials. Like x-rays, an image can be constructed from the negative of the absorbed (or scattered) muons. Unlike x-rays, these muons can penetrate thousands of meters of earth. Muon tomography has been shown to be useful across a wide range of applications (such as imaging of the interior of volcanoes and cargo containers). This work estimates the sensitivity of muon tomography for various underground applications. We use simulations to estimate the change in flux as well as the spatial resolution when imaging static objects, such as mine shafts, and dynamic objects, such as a CO2 reservoir filling over time. We present a framework where we import ground density data from other sources, such as wells, gravity and seismic data, to generate an expected muon flux distribution at specified underground locations. This information can further be fed into a detector simulation to estimate a final experimental sensitivity. There are many applications of this method. We explore its use to image underground nuclear test sites, both the deformation from the explosion as well as the supporting infrastructure (access tunnels and shafts). We also made estimates for imaging a CO2 sequestration site similar to Futuregen 2.0 in Illinois and for imaging magma chambers beneath the Cascade Range volcanoes. This work may also be useful to basic science, such as underground dark matter experiments, where increasing experimental sensitivity requires, amongst other factors, a precise knowledge of the muon background.

  9. Operation and Performance of the ATLAS Muon Spectrometer Databases during 2011-12 Data Taking

    CERN Document Server

    Verducci, Monica

    2014-01-01

    The size and complexity of the ATLAS experiment at the Large Hadron Collider, including its Muon Spectrometer, raise unprecedented challenges in terms of operation, software model and data management. One of the challenging tasks is the storage of non-event data produced by the calibration and alignment stream processes and by online and offline monitoring frameworks, which can unveil problems in the detector hardware and in the data processing chain. During 2011 and 2012 data taking, the software model and data processing enabled high quality track resolution as a better understanding of the detector performance was developed using the most reliable detector simulation and reconstruction. This work summarises the various aspects of the Muon Spectrometer Databases, with particular emphasis given to the Conditions Databases and their usage in the data analysis.

  10. The RPC LVL1 trigger system of the muon spectrometer of the ATLAS experiment at LHC

    CERN Document Server

    Aielli, G; Alviggi, M G; Biglietti, M; Bocci, V; Brambilla, Elena; Camarri, P; Canale, V; Caprio, M A; Cardarelli, R; Carlino, G; Cataldi, G; Chiodini, G; Conventi, F; De Asmundis, R; Della Pietra, M; Della Volpe, D; Di Ciaccio, A; Di Mattia, A; Di Simone, A; Falciano, S; Gorini, E; Grancagnolo, F; Iengo, P; Liberti, B; Luminari, L; Nisati, A; Pastore, F; Patricelli, S; Perrino, R; Petrolo, E; Primavera, M; Sekhniaidze, G; Spagnolo, S; Salamon, A; Santonico, R; Vari, R; Veneziano, Stefano

    2004-01-01

    The ATLAS Trigger System has been designed to reduce the LHC interaction rate of about 1 GHz to the foreseen storage rate of about 100 Hz. Three trigger levels are applied in order to fulfill such a requirement. A detailed simulation of the ATLAS experiment including the hardware components and the logic of the Level-1 Muon trigger in the barrel of the muon spectrometer has been performed. This simulation has been used not only to evaluate the performances of the system but also to optimize the trigger logic design. In the barrel of the muon spectrometer the trigger will be given by means of resistive plate chambers (RPCs) working in avalanche mode. Before being mounted on the experiment, accurate quality tests with cosmic rays are carried out on each RPC chamber using the test station facility of the INFN and University laboratory of Napoli. All working parameters are measured and the uniformity of the efficiency on the whole RPC surface is required. A summary of the Napoli cosmic rays tests, together with a...

  11. Simulation of the SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.M.; Herzberg, R.D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Konki, J.; Greenlees, P.T.; Pakarinen, J.; Papadakis, P.; Rahkila, P.; Sandzelius, M.; Sorri, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Hauschild, K. [Universite Paris-Sud, CSNSM-IN2P3-CNRS, Orsay (France)

    2015-06-15

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations. (orig.)

  12. Simulation of the SAGE spectrometer

    International Nuclear Information System (INIS)

    Cox, D.M.; Herzberg, R.D.; Konki, J.; Greenlees, P.T.; Pakarinen, J.; Papadakis, P.; Rahkila, P.; Sandzelius, M.; Sorri, J.; Hauschild, K.

    2015-01-01

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations. (orig.)

  13. Precision tracking at high background rates with the ATLAS muon spectrometer

    CERN Document Server

    Hertenberger, Ralf; The ATLAS collaboration

    2012-01-01

    Since start of data taking the ATLAS muon spectrometer performs according to specification. End of this decade after the luminosity upgrade of LHC by a factor of ten the proportionally increasing background rates require the replacement of the detectors in the most forward part of the muon spectrometer to ensure high quality muon triggering and tracking at background hit rates of up to 15,kHz/cm$^2$. Square meter sized micromegas detectors together with improved thin gap trigger detectors are suggested as replacement. Micromegas detectors are intrinsically high rate capable. A single hit spatial resolution below 40,$mu$m has been shown for 250,$mu$m anode strip pitch and perpendicular incidence of high energy muons or pions. The ongoing development of large micromegas structures and their investigation under non-perpendicular incidence or in high background environments requires precise and reliable monitoring of muon tracks. A muon telescope consisting of six small micromegas works reliably and is presently ...

  14. Drift chambers for a large-area, high-precision muon spectrometer

    International Nuclear Information System (INIS)

    Alberini, C.; Bari, G.; Cara Romeo, G.; Cifarelli, L.; Del Papa, C.; Iacobucci, G.; Laurenti, G.; Maccarrone, G.; Massam, T.; Motta, F.; Nania, R.; Perotto, E.; Prisco, G.; Willutsky, M.; Basile, M.; Contin, A.; Palmonari, F.; Sartorelli, G.

    1987-01-01

    We have tested two prototypes of high-precision drift chamber for a magnetic muon spectrometer. Results of the tests are presented, with special emphasis on their efficiency and spatial resolution as a function of particle rate. (orig.)

  15. Milestone reached for the Big Wheels of the Muon Spectrometer

    CERN Multimedia

    Sandro Palestini

    The assembly and integration of the Big Wheels sectors of the Muon Spectrometer is reaching its conclusion, with only a few sectors of Wheel TGC-A-3 remaining on the assembly stations in building 180. The six trigger chambers (TGCs) wheels and two precision chambers wheels (MDTs) contain in total 104 sectors, which were assembled, equipped with detectors and fully tested over a period of two years. The few remaining Big Wheel sectors still stored in building 180 Most of the sectors left building 180 over the last twelve months, and form the six Wheels currently installed in the ATLAS detector. The remaining two will be installed before the end of the summer. The commitment of the personnel from the many teams who contributed to different parts of the project was essential to its success. In particular, teams coming from countries of different traditions and languages, such as China, Israel, Japan, Pakistan, Russia and USA contributed and collaborated very effectively to the timely completion of the p...

  16. An optical sensor for the alignment of the Atlas Muon Spectrometer

    International Nuclear Information System (INIS)

    Barriere, J.-Ch.; Cloue, O.; Duboue, B.; Gautard, V.; Graffin, P.; Guyot, C.; Perrin, P.; Ponsot, P.; Reinert, Y.; Schuller, J.-P.; Schune, Ph.

    2003-01-01

    In the Atlas muon spectrometer (ATLAS Technical Proposal, CERN/LHCC/94-43, 15 December 1994, ATLAS Muon Spectrometer Technical Design Report, CERN/LHCC/97-22, 31 May 1997 and http://atlasinfo.cern.ch:80/Atlas/Welcome.html) the alignment system should control the spatial position of the muon chambers with an accuracy of 30 μm and 200 μrad for a range of ±5 mm and ±10 mrad. The alignment device described in this paper, called Praxial, fulfills these requirements

  17. The alignment system of the ATLAS muon end-cap spectrometer

    International Nuclear Information System (INIS)

    Schricker, A.

    2002-08-01

    The Large Hadron Collider at CERN will offer an unparalleled opportunity to probe fundamental physics at an energy scale well beyond that reached by current experiments. The ATLAS detector is being designed to fully exploit the potential of the LHC for revealing new aspects of the fundamental structure of nature. The muon spectrometer itself must measure with a momentum resolution of s10 % for muons with a transverse momentum of p T =1TeV, to fully exploit the advantages offered by the open superconducting air core muon toroid magnet system. At this level of momentum resolution the muon spectrometer relies heavily on the ability to master the alignment of the large muon chambers spaced far apart. The overall contribution of the alignment to the total sagitta error must be less than 30 μm r.m.s. In order to meet the stringent alignment requirements the positions of the muon chambers are constantly monitored with optical alignment technologies. The end-caps of this spectrometer are therefore embedded in an alignment grid that must allow for an absolute position measurement of the chambers. This alignment grid employs up to 9.6m long precision rulers (alignment bars) which have to provide the position and orientation of all alignment sensors permeating the end-caps. Simulation studies have shown that the shape of these bars must be known to 30 μm r.m.s. and the length must be known to 20 μm r.m.s. The principles of alignment and survey techniques used to do this are introduced and the current activities concerning the alignment strategy for the ATLAS muon end-cap spectrometer are presented. After consideration of the motivation and requirements, the measurement strategy and the design of the alignment bars is given. An optical and thermal in-bar instrumentation is used to provide shape information of discrete points on the bar. The strategy to calibrate the in-bar instrumentation and to measure an initial bar shape with a large coordinate measuring machine, leads

  18. The vertex and large angle detectors of a spectrometer system for high energy muon physics

    International Nuclear Information System (INIS)

    Davis, A.; Dobinson, R.W.; Dosselli, U.; Edwards, A.; Gabathuler, E.; Kellner, G.; Montgomery, H.E.; Mueller, H.; Osborne, A.M.; Scaramelli, A.; Watson, E.; Brasse, F.W.; Falley, G.; Flauger, W.; Gayler, J.; Goessling, C.; Koll, J.; Korbel, V.; Nassalski, J.; Singer, G.; Thiele, K.; Zank, P.; Figiel, J.; Janata, F.; Rondio, E.; Studt, M.; Torre, A. de la; Bernaudin, B.; Blum, D.; Heusse, P.; Jaffre, M.; Noppe, J.M.; Pascaud, C.; Bertsch, Y.; Bouard, X. de; Broll, C.; Coignet, G.; Favier, J.; Jansco, G.; Lebeau, M.; Maire, M.; Minssieux, H.; Montanet, F.; Moynot, M.; Nagy, E.; Payre, P.; Perrot, G.; Pessard, H.; Ribarics, P.; Schneegans, M.; Thenard, J.M.; Botterill, D.; Carr, J.; Clifft, R.; Edwards, M.; Norton, P.R.; Rousseau, M.D.; Sproston, M.; Thompson, J.C.; Albanese, J.P.; Allkofer, O.C.; Arneodo, M.; Aubert, J.J.; Becks, K.H.; Bee, C.; Benchouk, C.; Bianchi, F.; Bibby, J.; Bird, I.; Boehm, E.; Braun, H.; Brown, S.; Brueck, H.; Callebaut, D.; Cobb, J.H.; Combley, F.; Cornelssen, M.; Costa, F.; Coughlan, J.; Court, G.R.; D'Agostini, G.; Dau, W.D.; Davies, J.K.; Dengler, F.; Derado, I.; Drees, J.; Dumont, J.J.; Eckardt, V.; Ferrero, M.I.; Gamet, R.; Gebauer, H.J.; Haas, J.; Hasert, F.J.; Hayman, P.; Johnson, A.S.; Kabuss, E.M.; Kahl, T.; Krueger, J.; Landgraf, U.; Lanske, D.; Loken, J.; Manz, A.; Mermet-Guyennet, M.; Mohr, W.; Moser, K.; Mount, R.P.; Paul, L.; Peroni, C.; Pettingale, J.; Poetsch, M.; Preissner, H.; Renton, P.; Rith, K.; Roehner, F.; Schlagboehmer, A.; Schmitz, N.; Schultze, K.; Shiers, J.; Sloan, T.; Smith, R.; Stier, H.E.; Stockhausen, W.; Wahlen, H.; Wallucks, W.; Whalley, M.; Williams, D.A.; Williams, W.S.C.; Wimpenny, S.; Windmolders, R.; Winkmueller, G.; Wolf, G.

    1983-01-01

    A description is given of the detector system which forms the large angle spectrometer and vertex detector of the EMC spectrometer. The apparatus is used in the NA9 experiment which studies the complete hadronic final state from the interaction of high energy muons. (orig.)

  19. Search for high mass resonances in the dimuon channel using the muon spectrometer of the atlas experiment at CERN

    International Nuclear Information System (INIS)

    Helsens, C.

    2009-06-01

    This thesis covers the search of new neutral gauge bosons decaying into a pair of muons in the ATLAS detector. The Large Hadron Collider (LHC) at CERN will produce parton collisions with very high center of mass energy and may produce Z' predicted by many theories beyond the standard model. Such a resonance should be detected by the ATLAS experiment. For the direct search of Z' decaying into two muons, a small number of events is enough for its discovery, which is possible with the first data. We shall study in particular the effects of the muon spectrometer alignment on high p T tracks and on the Z' discovery potential in the ATLAS experiment. The discovery potentials computed with this method have been officially approved by the ATLAS collaboration and published. At the start of the LHC operation, the muon spectrometer alignment will not have reached the nominal performances. This analysis aims at optimizing the discovery potential of ATLAS for a Z' boson in this degraded initial conditions. The impact on track reconstruction of a degraded alignment is estimated with simulated high p T tracks. Results are given in terms of reconstruction efficiency, momentum and invariant mass resolutions, charge identification and sensitivity to discovery or exclusion. With the first data, an analysis using only the muon spectrometer in stand alone mode will be very useful. Finally, a study on how to determine the initial geometry of the spectrometer (needed for its absolute alignment) is performed. This study uses straight tracks without a magnetic field and also calculates the beam time necessary for reaching a given accuracy of the alignment system. (author)

  20. Optimization and Calibration of the Drift-Tube Chambers for the ATLAS Muon Spectrometer

    CERN Document Server

    AUTHOR|(CDS)2067746

    2000-01-01

    The final phase of preparations for the ATLAS experiment at the future Large Hadron Collider (LHC) has begun. In the last decade the collaboration has carried out various test-beam experiments to study and optimize prototypes of all subdetectors under more and more realistic conditions. To enhance the detector-physical understanding, these hardware activities were complemented by detailed simulations. In parallel the development of reconstruction software has made important progress. The present work focusses on some advanced aspects of optimizing the Monitored Drift Tube Chambers (MDT) for operation as precision chambers in the Muon Spectrometer. It will be shown how this system has been tuned for maximum performance in order to meet the ambitious goals defined by the objectives of LHC particle physics. After defining the basic detector parameters, the tubes' capability of running in ATLAS's high-rate gamma radiation background was verified. Both tasks necessitated several years of gathering experience in mu...

  1. The Alignment System of the ATLAS Muon End-Cap Spectrometer

    CERN Document Server

    Schricker, Alexander

    2002-01-01

    The Large Hadron Collider at CERN will offer an unparalleled opportunity to probe fundamental physics at an energy scale well beyond that reached by current experiments. The ATLAS detector is being designed to fully exploit the potential of the LHC for revealing new aspects of the fundamental structure of nature. The muon spectrometer itself must measure with a momentum resolution of s10% for muons with a transverse momentum of pT =1TeV, to fully exploit the advantages offered by the open superconducting air core muon toroid magnet system. At this level of momentum resolution the muon spectrometer relies heavily on the ability to master the alignment of the large muon chambers spaced far apart. The overall contribution of the alignment to the total sagitta error must be less than 30 μm r.m.s. In order to meet the stringent alignment requirements the positions of the muon chambers are constantly monitored with optical alignment technologies. The end-caps of this spectrometer are therefore embedded in an align...

  2. Installation of the first of the big wheels of the ATLAS muon spectrometer, a thin gap chamber (TGC) wheel

    CERN Multimedia

    Claudia Marcelloni

    2006-01-01

    The muon spectrometer will include four big moving wheels at each end, each measuring 25 metres in diameter. Of the eight wheels in total, six will be composed of thin gap chambers for the muon trigger system and the other two will consist of monitored drift tubes (MDTs) to measure the position of the muons

  3. Large-Scale Production of Monitored Drift Tube Chambers for the ATLAS Muon Spectrometer

    CERN Document Server

    Bauer, F.; Kortner, O; Kroha, H; Manz, A; Mohrdieck, S; Richter, R; Zhuravlov, V

    2016-01-01

    Precision drift tube chambers with a sense wire positioning accuracy of better than 20 microns are under construction for the ATLAS muon spectrometer. 70% of the 88 large chambers for the outermost layer of the central part of the spectrometer have been assembled. Measurements during chamber construction of the positions of the sense wires and of the sensors for the optical alignment monitoring system demonstrate that the requirements for the mechanical precision of the chambers are fulfilled.

  4. The ATLAS conditions database architecture for the Muon spectrometer

    International Nuclear Information System (INIS)

    Verducci, Monica

    2010-01-01

    The Muon System, facing the challenge requirement of the conditions data storage, has extensively started to use the conditions database project 'COOL' as the basis for all its conditions data storage both at CERN and throughout the worldwide collaboration as decided by the ATLAS Collaboration. The management of the Muon COOL conditions database will be one of the most challenging applications for Muon System, both in terms of data volumes and rates, but also in terms of the variety of data stored. The Muon conditions database is responsible for almost all of the 'non event' data and detector quality flags storage needed for debugging of the detector operations and for performing reconstruction and analysis. The COOL database allows database applications to be written independently of the underlying database technology and ensures long term compatibility with the entire ATLAS Software. COOL implements an interval of validity database, i.e. objects stored or referenced in COOL have an associated start and end time between which they are valid, the data is stored in folders, which are themselves arranged in a hierarchical structure of folder sets. The structure is simple and mainly optimized to store and retrieve object(s) associated with a particular time. In this work, an overview of the entire Muon conditions database architecture is given, including the different sources of the data and the storage model used. In addiction the software interfaces used to access to the conditions data are described, more emphasis is given to the Offline Reconstruction framework ATHENA and the services developed to provide the conditions data to the reconstruction.

  5. The ATLAS conditions database architecture for the Muon spectrometer

    Science.gov (United States)

    Verducci, Monica; ATLAS Muon Collaboration

    2010-04-01

    The Muon System, facing the challenge requirement of the conditions data storage, has extensively started to use the conditions database project 'COOL' as the basis for all its conditions data storage both at CERN and throughout the worldwide collaboration as decided by the ATLAS Collaboration. The management of the Muon COOL conditions database will be one of the most challenging applications for Muon System, both in terms of data volumes and rates, but also in terms of the variety of data stored. The Muon conditions database is responsible for almost all of the 'non event' data and detector quality flags storage needed for debugging of the detector operations and for performing reconstruction and analysis. The COOL database allows database applications to be written independently of the underlying database technology and ensures long term compatibility with the entire ATLAS Software. COOL implements an interval of validity database, i.e. objects stored or referenced in COOL have an associated start and end time between which they are valid, the data is stored in folders, which are themselves arranged in a hierarchical structure of folder sets. The structure is simple and mainly optimized to store and retrieve object(s) associated with a particular time. In this work, an overview of the entire Muon conditions database architecture is given, including the different sources of the data and the storage model used. In addiction the software interfaces used to access to the conditions data are described, more emphasis is given to the Offline Reconstruction framework ATHENA and the services developed to provide the conditions data to the reconstruction.

  6. The ATLAS conditions database architecture for the Muon spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Verducci, Monica, E-mail: monica.verducci@cern.c [University of Wuerzburg Am Hubland, 97074, Wuerzburg (Germany)

    2010-04-01

    The Muon System, facing the challenge requirement of the conditions data storage, has extensively started to use the conditions database project 'COOL' as the basis for all its conditions data storage both at CERN and throughout the worldwide collaboration as decided by the ATLAS Collaboration. The management of the Muon COOL conditions database will be one of the most challenging applications for Muon System, both in terms of data volumes and rates, but also in terms of the variety of data stored. The Muon conditions database is responsible for almost all of the 'non event' data and detector quality flags storage needed for debugging of the detector operations and for performing reconstruction and analysis. The COOL database allows database applications to be written independently of the underlying database technology and ensures long term compatibility with the entire ATLAS Software. COOL implements an interval of validity database, i.e. objects stored or referenced in COOL have an associated start and end time between which they are valid, the data is stored in folders, which are themselves arranged in a hierarchical structure of folder sets. The structure is simple and mainly optimized to store and retrieve object(s) associated with a particular time. In this work, an overview of the entire Muon conditions database architecture is given, including the different sources of the data and the storage model used. In addiction the software interfaces used to access to the conditions data are described, more emphasis is given to the Offline Reconstruction framework ATHENA and the services developed to provide the conditions data to the reconstruction.

  7. Construction of monitored drift tube chambers for ATLAS end-cap muon spectrometer at IHEP (Protvino)

    CERN Document Server

    Bensinger, J; Borisov, A; Fakhrutdinov, R M; Goryatchev, S; Goryachev, V N; Gushchin, V; Hashemi, K S; Kojine, A; Kononov, A I; Larionov, A; Paramoshkina, E; Pilaev, A; Skvorodnev, N; Tchougouev, A; Wellenstein, H

    2002-01-01

    Trapezoidal-shaped Monitored Drift Tube (MDT) chambers will be used in end-caps of ATLAS muon spectrometer. Design and construction technology of such chambers in IHEP (Protvino) is presented. X-ray tomography results confirm desirable 20 mum precision of wire location in the chamber.

  8. Study of the performance of the Micromegas chambers for the ATLAS Muon Spectrometer upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237763; The ATLAS Muon collaboration

    2017-01-01

    Micromegas (MICRO MEsh GAseous Structure) chambers are Micro-Pattern Gaseous Detectors designed to provide a high spatial resolution in highly irradiated environments. In 2007 an ambitious long-term R&D activity was started in the context of the ATLAS experiment, at CERN: the Muon ATLAS Micromegas Activity (MAMMA). After years of tests on prototypes and technology breakthroughs, Micromegas chambers were chosen as tracking detectors for an upgrade of the ATLAS Muon Spectrometer. These novel detectors will be installed in 2018 and 2019 during the second long shutdown of the Large Hadron Collider, and will serve as precision detectors in the innermost part of the ATLAS Muon Spectrometer. Eight layers of Micromegas modules of unprecedented size, up to 3 $\\rm{{m^2}}$, will cover a surface of 150 $\\rm{{m^2}}$ for a total active area of about 1200 $\\rm{{m^2}}$. This upgrade will be crucial to ensure high quality performance for the ATLAS Muon Spectrometer in view of the third run of the Large Hadron Collider and...

  9. Design and Construction of Large Size Micromegas Chambers for the ATLAS Upgrade of the Muon Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    Large area Micromegas detectors will be employed for the first time in high-energy physics experiments. A total surface of about 150 m{sup 2} of the forward regions of the Muon Spectrometer of the ATLAS detector at LHC will be equipped with 8-layer Micromegas modules. Each module extends over a surface from 2 to 3 m{sup 2} for a total active area of 1200 m{sup 2}. Together with the small strip Thin Gap Chambers they will compose the two New Small Wheels, which will replace the innermost stations of the ATLAS end-cap muon tracking system in the 2018/19 shutdown. In order to achieve a 15% transverse momentum resolution for 1 TeV muons, in addition to an excellent intrinsic resolution, the mechanical precision of each plane of the assembled module must be as good as 30 μm along the precision coordinate and 80 μm perpendicular to the chamber. In the prototyping towards the final configuration two similar quadruplets with dimensions 1.2 x 0.5 m{sup 2} have been built with the same structure as foreseen for the NSW upgrade. It represents the first example of a Micromegas quadruplet ever built, realized using the resistive-strip technology and decoupling the amplification mesh from the readout structure. All readout planes are segmented into strips with a pitch of 400 μm for a total of 4096 strips. In two of the four planes the strips are inclined by 1.5 deg. and provide a measurement of the second coordinate. The design and construction procedure of the Micromegas modules will be presented, as well as the design for the assembly of modules onto the New Small Wheel. Emphasis will be given on the methods developed to achieve the challenging mechanical precision. Measurements of deformation on chamber prototypes as a function of thermal gradients, gas over-pressure and internal stress (mesh tension and module fixation on supports) will be also shown in comparison to simulation. These tests were essential in the development of the final design in order to minimize the

  10. Micromegas Detectors for the Muon Spectrometer Upgrade of the ATLAS Experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00211509

    2016-01-01

    Large area Micromegas (MM) detectors will be employed for the Muon Spectrometer upgrade of the ATLAS experiment at the LHC. A total surface of about $150m^2$ of the forward regions of the Muon Spectrometer will be equipped with 8 layers of MM modules. Each module covers a surface area of approximately 2 to $3 m^2$ for a total active area of $1200 m^2$. Together with the small- strips Thin Gap Chambers, they will compose the two New Small Wheels, which will replace the innermost stations of the ATLAS Endcap Muon tracking system in the planned 2018/19 shutdown. This upgrade will mantain a low pt threshold for single muons and provides excellent tracking capabilities for the HL-LHC phase. The NSW project requires fully efficient MM chambers with spatial resolution down to $100 \\mu m$, at rate capability up to about $15kHz/cm^2$ and operation in a moderate (highly inhomogeneous) magnetic field up to B=0.3 T. The required tracking capability is provided by the intrinsic spatial resolution combined with a challengi...

  11. Micromegas Detectors for the Muon Spectrometer Upgrade of the ATLAS Experiment

    CERN Document Server

    Bianco, Michele; The ATLAS collaboration

    2015-01-01

    Large area Micromegas (MM) detectors will be employed for the Muon Spectrometer upgrade of the ATLAS experiment at the LHC. A total surface of about 150 m2 of the forward regions of the Muon Spectrometer will be equipped with 8 layers of MM modules. Each module covers a surface area of approximately 2 to 3 m$^{2}$ for a total active area of 1200 m$^{2}$. Together with the small-strips Thin Gap Chambers, they will compose the two New Small Wheels, which will replace the innermost stations of the ATLAS Endcap Muon tracking system in the planned 2018/19 shutdown. This upgrade will maintain a low pt threshold for single muons and provides excellent tracking capabilities for the HL- LHC phase. The NSW project requires fully efficient MM chambers with spatial resolution down to 100 $ \\mu m$, a rate capability up to about 15 kHz/cm$^{2}$ and operation in a moderate (highly inhomogeneous) magnetic field up to B=0.3 T. The required tracking capability is provided by the intrinsic spatial resolution combined with a cha...

  12. Certification and commissioning of barrel stations for the ATLAS muon spectrometer

    CERN Document Server

    Zimmermann, S

    2006-01-01

    The muon spectrometer of the ATLAS experiment, which is scheduled to commence data taking at the Large Hadron Collider, LHC at CERN in 2007, comprises more than a thousand muon stations, which have the double purpose of triggering on high-p/sub t/ muon tracks as well as providing precise trajectory reconstruction. While monitored drift tube chambers are used for track reconstruction in all of the muon spectrometer except for a region close to the beam pipe in forward direction, two different technologies are used for triggering, resistive plate chambers in the barrel region and thin gap chambers in the end-caps. Both have in common that the ATLAS geometry allows only limited accessibility after chambers are installed in the detector. A thorough testing and certification prior to installation is therefore crucial. This paper reviews the test procedure at CERN for barrel chambers of type BO and BM, i.e. of stations for which a drift chamber is coupled with one or two resistive plate chambers. The final certific...

  13. Construction and test of new precision drift-tube chambers for the ATLAS muon spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kroha, H., E-mail: kroha@mpp.mpg.de; Kortner, O.; Schmidt-Sommerfeld, K.; Takasugi, E.

    2017-02-11

    ATLAS muon detector upgrades aim for increased acceptance for muon triggering and precision tracking and for improved rate capability of the muon chambers in the high-background regions of the detector with increasing LHC luminosity. The small-diameter Muon Drift Tube (sMDT) chambers have been developed for these purposes. With half of the drift-tube diameter of the MDT chambers and otherwise unchanged operating parameters, sMDT chambers share the advantages of the MDTs, but have an order of magnitude higher rate capability and can be installed in detector regions where MDT chambers do not fit in. The chamber assembly methods have been optimized for mass production, minimizing construction time and personnel. Sense wire positioning accuracies of 5 μm have been achieved in serial production for large-size chambers comprising several hundred drift tubes. The construction of new sMDT chambers for installation in the 2016/17 winter shutdown of the LHC and the design of sMDT chambers in combination with new RPC trigger chambers for replacement of the inner layer of the barrel muon spectrometer are in progress.

  14. Construction and test of new precision drift-tube chambers for the ATLAS muon spectrometer

    Science.gov (United States)

    Kroha, H.; Kortner, O.; Schmidt-Sommerfeld, K.; Takasugi, E.

    2017-02-01

    ATLAS muon detector upgrades aim for increased acceptance for muon triggering and precision tracking and for improved rate capability of the muon chambers in the high-background regions of the detector with increasing LHC luminosity. The small-diameter Muon Drift Tube (sMDT) chambers have been developed for these purposes. With half of the drift-tube diameter of the MDT chambers and otherwise unchanged operating parameters, sMDT chambers share the advantages of the MDTs, but have an order of magnitude higher rate capability and can be installed in detector regions where MDT chambers do not fit in. The chamber assembly methods have been optimized for mass production, minimizing construction time and personnel. Sense wire positioning accuracies of 5 μm have been achieved in serial production for large-size chambers comprising several hundred drift tubes. The construction of new sMDT chambers for installation in the 2016/17 winter shutdown of the LHC and the design of sMDT chambers in combination with new RPC trigger chambers for replacement of the inner layer of the barrel muon spectrometer are in progress.

  15. Upgrades Of The ATLAS Muon Spectrometer With sMDT Chambers

    CERN Document Server

    Ferretti, Claudio; The ATLAS collaboration

    2015-01-01

    The Monitored Drift Tube (MDT) chambers of the ATLAS muon spectrometer demonstrated that they provide very precise and robust tracking over large areas. Goals of ATLAS muon detector upgrades are to increase the acceptance for precision muon momentum measurement and triggering and to improve the rate capability of the muon chambers in the high-background regions when the LHC luminosity increases. Small-diameter Muon Drift Tube (sMDT) chambers have been developed for these purposes. With half the drift-tube diameter of the MDT chambers and otherwise unchanged operating parameters, sMDT chambers share the advantages with the MDTs, but have more than ten times higher rate capability and can be installed in detector regions where MDT chambers do not fit in. The chamber assembly methods have been optimized for mass production, reducing cost and construction time considerably and improving the sense wire positioning accuracy to better than ten microns. Two sMDT chambers have been installed in 2014 to improve the mom...

  16. Simulated Measurements of Cooling in Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mohayai, Tanaz [IIT, Chicago; Rogers, Chris [Rutherford; Snopok, Pavel [Fermilab

    2016-06-01

    Cooled muon beams set the basis for the exploration of physics of flavour at a Neutrino Factory and for multi-TeV collisions at a Muon Collider. The international Muon Ionization Cooling Experiment (MICE) measures beam emittance before and after an ionization cooling cell and aims to demonstrate emittance reduction in muon beams. In the current MICE Step IV configuration, the MICE muon beam passes through low-Z absorber material for reducing its transverse emittance through ionization energy loss. Two scintillating fiber tracking detectors, housed in spectrometer solenoid modules upstream and downstream of the absorber are used for reconstructing position and momentum of individual muons for calculating transverse emittance reduction. However, due to existence of non-linear effects in beam optics, transverse emittance growth can be observed. Therefore, it is crucial to develop algorithms that are insensitive to this apparent emittance growth. We describe a different figure of merit for measuring muon cooling which is the direct measurement of the phase space density.

  17. Measurement of low mass muon pairs in sulphur-nucleus collisions with an optimized HELIOS muon spectrometer

    CERN Multimedia

    2002-01-01

    Dileptons provide a unique and specific tool to detect collective behaviour and to probe for signs of quark gluon plasma formation in nucleus-nucleus interactions. In particular, in the low transverse mass region, below the rho meson, dimuons probe the thermal nature of the interaction while their multiplicity dependence can indicate nuclear volume effects. \\\\\\\\This experiment uses the (almost) unchanged HELIOS muon spectrometer and a combination of a new carefully designed light absorber, at an optimized distance from the target, and multiplicity measurements provided by new Silicon ring detectors, covering more than the muon rapidity acceptance. It intends to improve in quality and quantity on the low mass, low $p_{T}$ dimuon signal already observed in the NA34/2 experiment. The wide range of rapidity from 3.5 to 6.0 will enable us to explore the rapidity dependence of the signal from high energy density at nearly central rapidity up to very forward rapidities. \\\\\\\\The commissioning of the new apparatus (...

  18. Simulations of Muon Flux in Slanic Salt Mine

    Directory of Open Access Journals (Sweden)

    Mehmet Bektasoglu

    2012-01-01

    Full Text Available Geant4 simulation package was used to simulate muon fluxes at different locations, the floor of UNIREA mine and two levels of CANTACUZINO mine, of Slanic Prahova site in Romania. This site is specially important since it is one of the seven sites in Europe that are under consideration of housing large detector components of Large Apparatus studying Grand Unification and Neutrino Astrophysics (LAGUNA project. Simulations were performed for vertical muons and for muons with a zenith angle θ≤60°. Primary muon flux and energies at ground level were obtained from previous measurements. Results of the simulations are in general agreement with previous simulations made using MUSIC simulation program and with the measurements made using a mobile detector.

  19. Short description of BMS/BMF MDT chamber production for the muon spectrometer of the ATLAS experiment

    International Nuclear Information System (INIS)

    Barashkov, A.V.; Glonti, G.L.; Gongadze, A.L.; Gongadze, I.B.; Gostkin, M.I.; Gus'kov, A.V.; Dedovich, D.V.; Demichev, M.A.; Evtukhovich, P.G.; Elagin, A.L.; Zhemchugov, A.S.; Il'yushenko, E.N.; Kotov, S.A.; Kotova, T.I.; Korolevich, Ya.V.; Kruchonok, V.G.; Krumshtejn, Z.V.; Kuznetsov, N.K.; Lomidze, D.D.; Nikolaev, K.V.; Potrap, I.N.; Rudenko, T.O.; Kharchenko, D.V.; Tskhadadze, Eh.G.; Chepurnov, V.F.; Shelkov, G.A.; Shiyakova, M.M.; Shcherbakov, A.A.; Podkladkin, S.Yu.

    2005-01-01

    The method of assembly of the MDT chambers for the muon spectrometer of the ATLAS experiment is described. During 2000-2004 ∼ 25000 drift tubes were produced at the DLNP, JINR. The tubes were assembled into 84 muon chambers of BMS/BMF type, one of the six main types for the barrel part of the ATLAS muon spectrometer. Particle momenta must be measured in the ATLAS spectrometer with very high precision (2% at 100 GeV/c and 10% at 1000 GeV/c), which required to produce the coordinate detectors with very high (∼80 μm) precision. We describe the method of assembly of large-scale 5-10 m 2 muon chambers with the signal wire mean deviation from the nominal position less than 20 μm

  20. Atmospheric fluxes and energy spectra of positive and negative muons from Monte-Carlo simulations

    International Nuclear Information System (INIS)

    Vulpescu, B.; Brancus, I.M.; Badea, A.F.; Duma, M.; Bozdog, H.; Petru, M.; Rebel, H.; Weintz, J.; Mathes, H.J.; Haungs, A.; Roth, M.

    1999-01-01

    Cosmic ray muons observed with detectors placed at the ground level originate from the decay of mesons produced by interactions of high energy cosmic ray primaries with air nuclei, mainly due to the decay of charged pions and kaons, processes which lead also to the production of atmospheric neutrinos. Prompted by recent accurate measurements of the charge ratio of atmospheric muons, the flux and energy spectra of positive and negative muons have been studied on the basis of Monte-Carlo simulations (CORSIKA) of the EAS development, using the GHEISHA and VENUS model as generators. The results have been analysed and compared with data under the aspect of their sensitivity to details of the hadronic interaction, in particular in the 3 GeV/n - 20 TeV/n region. The muon charge ratio proves to be a sensitive test quantity for the production model and propagation and it exhibits peculiar features at low energies (< 1 GeV). Results are shown, from magnetic spectrometer experiments in the difficult region of low momenta as well as the precise values obtained with the WILLI detector by observing the lifetime of negative muons stopped in material. The CORSIKA predictions on the charge ratio show a drop below 1 for very low muon momentum and needs further experimental investigations. The EAST-WEST effect is characteristic for low muon momenta and is well reproduced by simulations. The WILLI detector is planned to be developed in a new configuration, being able to investigate with high accuracy the muon charge ratio at different zenithal and azimuthal directions. (authors)

  1. Micromegas Detectors for the Muon Spectrometer Upgrade of the ATLAS Experiment

    CERN Document Server

    Iodice, Mauro; The ATLAS collaboration

    2015-01-01

    The Micromegas (MICRO MEsh GAseous Structure) have been proven along the years to be reliable detectors with excellent space resolution and high rate capability. Large area Micromegas will be employed for the first time in high-energy physics for the Muon Spectrometer upgrade of the ATLAS experiment at CERN LHC. A total surface of about 150 m$^2$ of the forward regions of the Muon Spectrometer will be equipped with 8 layers of Micromegas modules. Each module covers a surface from 2 to 3 m$^2$ for a total active area of 1200 m$^2$. Together with the small-strips Thin Gap Chambers, they will compose the two New Small Wheels, which will replace the innermost stations of the ATLAS Endcap Muon tracking system in the 2018/19 shutdown. The breakthroughs and developments of this type of Micro Pattern Gas Detector will be reviewed, along with the path towards the construction of the modules, which will take place in several production sites starting in 2015. An overview of the detector performances obtained in the rec...

  2. Micromegas Detectors for the Muon Spectrometer Upgrade of the ATLAS Experiment

    CERN Document Server

    Iodice, M; The ATLAS collaboration

    2014-01-01

    The Micromegas (MICRO MEsh GAseous Structure) chambers have been proven along the years to be reliable detectors with excellent space resolution and high rate capability. Large area Micromegas will be employed for the first time in high-energy physics for the Muon Spectrometer upgrade of the ATLAS experiment at CERN LHC. A total surface of about 150 m2 of the forward regions of the Muon Spectrometer will be equipped with 8 layers of Micromegas modules. Each module covers a surface from 2 to 3 m2 for a total active area of 1200 m2. Together with the small-strips Thin Gap Chambers, they will compose the two New Small Wheels, which will replace the innermost stations of the ATLAS Endcap Muon tracking system in the 2018/19 shutdown. The principles of operation and recent developments of this type of Micro Pattern Gas Detector will be reviewed, along with our plans towards the construction of the modules, which will take place in several production sites. An overview of the detector performances obtained in the re...

  3. The ALICE muon spectrometer: trigger detectors and quarkonia detection in p-p collisions

    CERN Document Server

    Gagliardi, Martino

    This work was carried out in the context of the optimisation of the performances of the muon spectrometer of the forthcoming ALICE experiment at the Large Hadron Collider (LHC, CERN). The aim of ALICE is the study of nuclear matter at the highest energy densities ever accessed experimentally. More in detail, the focus is on the expected phase transition to a deconfined phase of matter where the degrees of freedom are those of quarks and gluons: the Quark-Gluon Plasma. The conditions for QGP formation are expected to be achieved in highly relativistic heavy ion collisions. The energy in the centre of mass of Pb-Pb collisions at the LHC will be 5.5 TeV per nucleon pair. The ALICE physics program also includes data-taking in p-p collisions at the centre-of-mass-energy of 14 TeV. The ALICE muon spectrometer has been designed for the detection of heavy quarkonia through their muon decay: both theoretical predictions and experimental data obtained at SPS and RHIC indicate that the production of these resonances sho...

  4. Simulation of the heat transfer around the ATLAS muon chambers

    CERN Multimedia

    2005-01-01

    This 2D simulation recently carried out on the ATLAS muon chambers by a small team of CERN engineers specialises in the numerical computation of fluid dynamics, in other words the flow of fluids and heat.

  5. The Dipole Magnet Design for the ALICE DiMuon Arm Spectrometer

    CERN Document Server

    Akishin, P G; Blinov, N; Boguslavsky, I V; Cacaut, D E; Danilov, V; Datskov, V I; Golubitsky, O M; Kalimov, A; Kochournikov, E; Lyubimtsev, A; Makarov, A; Mikhailov, K; Olex, I; Popov, V; Semashko, S; Shabunov, A; Shishov, Yu A; Shurygin, A; Shurygina, M; Sissakian, A N; Swoboda, Detlef; Vodopyanov, A S

    2002-01-01

    An essential part of the DiMuon Arm Spectrometer of the ALICE experiment is a conventional Dipole Magnet of about 890 tons which provides the bending power to measure the momenta of muons. The JINR engineering design of the Dipole Magnet, technical characteristics and description of the proposed manufacturing procedure are presented. The proposed Coil fabrication technique is based on winding of flat pancakes, which are subsequently bent on cylindrical mandrels. The pancakes are then stacked and cured with prepreg insulation. The method is demonstrated on hand of the prototype II, which consists of a pancake made with full-size aluminium conductor. Some details of electromagnetic and mechanical calculations are described. The results of measuring of mechanical and electrical characteristics of materials related to the coil composite structure are discussed.

  6. The monitoring system of the ATLAS muon spectrometer read out driver

    CERN Document Server

    Capasso, Luciano

    My PhD work focuses upon the Read Out Driver (ROD) of the ATLAS Muon Spectrometer. The ROD is a VME64x board, designed around two Xilinx Virtex-II FPGAs and an ARM7 microcontroller and it is located off-detector, in a counting room of the ATLAS cavern at the CERN. The readout data of the ATLAS’ RPC Muon spectrometer are collected by the front-end electronics and transferred via optical fibres to the ROD boards in the counting room. The ROD arranges all the data fragments of a sector of the spectrometer in a unique event. This is made by the Event Builder Logic, a cluster of Finite State Machines that parses the fragments, checks their syntax and builds an event containing all the sector data. In the presentation I will describe the Builder Monitor, developed by me in order to analyze the Event Builder timing performance. It is designed around a 32-bit soft-core microprocessor, embedded in the same FPGA hosting the Builder logic. This approach makes it possible to track the algorithm execution in the field. ...

  7. The DEIS high energy muon spectrometer. II. The data acquisition system

    International Nuclear Information System (INIS)

    Allkofer, O.C.; Dau, W.D.; Faehnders, E.; Jokisch, H.; Kaleschke, G.P.; Klemke, G.; Sauerland, K.; Schmidtke, G.; Uhr, R.C.; Bella, G.; Oren, Y.; Virni, U.; Seidman, A.

    1977-01-01

    The whole spectrometer is read out and controlled on-line via a CAMAC-system by a minicomputer. The magnetostrictive read out signals of 66 magnetostrictive read out wands of the wire spark chambers are digitized by 20-MHz-scalers which can store up to 8 sparks per chamber. The time-of-flight of the muon, the pulse heights of the scintillation counters, the time of event are also recorded. The on-line-computer makes reliability checks of the data and stores them together with monitor data about magnetic field, gas and high voltage system, etc. on magnetic tape for off-line analysis. (author)

  8. Construction and test of sMDT chambers for the ATLAS muon spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Takasugi, Eric; Schmidt-Sommerfeld, Korbinian; Kortner, Oliver; Kroha, Hubert [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2016-07-01

    In the ATLAS muon spectrometer, Monitored Drift Tube chambers (MDTs) are used for precise tracking measurements. In order to increase the geometric acceptance and rate capability, new chambers have been designed and are under construction to be installed in ATLAS during the winter shutdown of 2016/17 of the LHC. The new chambers have a drift tube diameter of 15 mm (compared to 30 mm of the other MDTs) and are therefore called sMDT chambers. This presentation reports on the progress of chamber construction and on the results of quality assurance tests.

  9. Construction and test of a full-scale prototype of an ATLAS muon spectrometer tracking chamber

    International Nuclear Information System (INIS)

    Biscossa, A.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Fraternali, M.; Freddi, A.; Iuvino, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rimoldi, A.; Vercellati, F.; Vercesi, V.; Bagnaia, P.; Bini, C.; Capradossi, G.; Ciapetti, G.; Creti, P.; De Zorzi, G.; Iannone, M.; Lacava, F.; Mattei, A.; Nisati, L.; Oberson, P.; Pontecorvo, L.; Rosati, S.; Veneziano, S.; Zullo, A.; Daly, C.H.; Davisson, R.; Guldenmann, H.; Lubatti, H.J.; Zhao, T.

    1999-01-01

    We have built a full scale prototype of the precision tracking chambers (Monitored Drift Tubes, MDT) for the muon spectrometer of the Atlas Experiment at the LHC collider. This article describes in detail the procedures used in constructing the drift tubes and in assembling the chamber. It presents data showing that the required mechanical precision has been achieved as well as test beam results displaying the over all chamber performance. The article presents data demonstrating the derivation of the space-time relation of the drift tubes by the autocalibration procedure using real data from the tracks crossing the chamber. Autocalibration is the procedure which must be used during run time

  10. Study of the muon production from open heavy flavours predicted by the Color Glass Condensate model in proton-proton and proton-lead collision with the Alice muon spectrometer at LHC

    International Nuclear Information System (INIS)

    Charpy, A.

    2007-10-01

    It will be possible to test the latest developments of the Quantum Chromodynamics (QCD) in the new LHC (large hadron collider) machine. One of these, the Colour Glass Condensate (CGC), describes the parton distributions of the nucleus in the saturation region, i.e. at small x. This theoretical description of the initial conditions of the heavy ion collisions is necessary to predict the heavy quark cross section production which evolves in a possible deconfined matter: the Quark-Gluon Plasma (PQG). Alice is the LHC experiment mainly dedicated to the study of the PQG produced in ultra-relativistic heavy ion collisions. The measurement of J/Psi and Upsilon resonance suppression is a signature of this deconfined medium which is studied with the Alice muon spectrometer. Its acceptance at large rapidity is well adapted for studying the prediction of CGC at small-x. The first part of this report presents the results of beam test experiment at CERN. It was the first time that the muon spectrometer tracking chambers were tested equipped with the final version of the front end electronics and the data acquisition system Crocus. The relevant calibration parameters of the front end electronics were introduced in the analysis in order to improve the quality of the track reconstruction. In the second part, these parameters were used in the simulations. The last part proposes a study of the CGC with the Alice muon spectrometer, involving the measurements of open charm and open beauty. (author)

  11. Resistive Micromegas for the Muon Spectrometer Upgrade of the ATLAS Experiment

    CERN Document Server

    Iodice, Mauro; The ATLAS collaboration

    2016-01-01

    Large size resistive Micromegas detectors will be employed for the first time in high-energy physics experiments for the Muon Spectrometer upgrade of the ATLAS experiment at CERN. The current innermost stations of the muon endcap system, the Small Wheel, will be upgraded in 2019 to retain the good precision tracking and trigger capabilities in the high background environment expected with the upcoming luminosity increase of the LHC. Along with the small-strip Thin Gap Chambers (sTGC) the “New Small Wheel” will be equipped with eight layers of Micromegas (MM) detectors arranged in multilayers of two quadruplets, for a total of about 1200 m$^2$ detection planes. All quadruplets have trapezoidal shapes with surface areas between 2 and 3 m$^2$. The Micromegas system will provide both trigger and tracking capabilities. In order to achieve a 15% transverse momentum resolution for 1 TeV muons, a challenging mechanical precision is required in the construction for each plane of the assembled modules, with an alig...

  12. Resistive Micromegas for the Muon Spectrometer Upgrade of the ATLAS Experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00215987; The ATLAS collaboration

    2016-01-01

    Large size resistive micromegas detectors (MM) will be employed for the first time in high-energy physics experiments for the Muon Spectrometer upgrade of the ATLAS experiment at CERN. The current innermost stations of the muon endcap system, the Small Wheel, will be upgraded in 2019 to retain the good precision tracking and trigger capabilities in the high background environment expected with the upcoming luminosity increase of the LHC. Along with the small-strip Thin Gap Chambers (sTGC) the ``New Small Wheel'' will be equipped with eight layers of MM detectors arranged in multilayers of two quadruplets, for a total of about 1200 m$^2$ detection planes. All quadruplets have trapezoidal shapes with surface areas between 2 and 3 m$^2$. The MM system will provide both trigger and tracking capabilities. In order to achieve a 15% transverse momentum resolution for 1 TeV muons, a challenging mechanical precision is required in the construction for each plane of the assembled modules, with an alignment of the reado...

  13. Design and Construction of Large Size Micromegas Chambers for the ATLAS Upgrade of the Muon Spectrometer

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00380308; The ATLAS collaboration

    2016-01-01

    Large area Micromegas detectors will be employed for the first time in high-energy physics experiments. A total surface area of about 150 m$^2$ of the forward regions (pseudo-rapidity coverage -- 1.3 $\\boldsymbol{< |\\eta| <}$ 2.7) of the Muon Spectrometer of the ATLAS detector at LHC will be equipped with 8-layer Micromegas modules. Each module extends over a surface from 2 to 3 m$^2$ for a total active area of 1200 m$^2$. Together with the small strip Thin Gap Chambers they will compose the two New Small Wheels (NSW), which will replace the innermost stations of the ATLAS endcap muon tracking system in the 2018/19 shutdown. In order to achieve a 15\\% transverse momentum resolution for 1 TeV muons, in addition to an excellent intrinsic position resolution, the mechanical precision of each plane of the assembled module must be $\\boldsymbol{30{\\mu}m}$ along the precision coordinate and $\\boldsymbol{80{\\mu}m}$ perpendicular to the chamber. All readout planes are segmented into strips with a pitch of $\\bold...

  14. Design and Construction of Large Size Micromegas Chambers for the ATLAS Upgrade of the Muon Spectrometer

    CERN Document Server

    Jeanneau, Fabien; The ATLAS collaboration

    2015-01-01

    Large area Micromegas detectors will be employed for the first time in high-energy physics experiments. A total surface of about 150 m2 of the forward regions of the Muon Spectrometer of the ATLAS detector at LHC will be equipped with 8-layer Micromegas modules. Each module extends over a surface from 2 to 3 m2 for a total active area of 1200 m2. Together with the small strip Thin Gap Chambers they will compose the two New Small Wheels, which will replace the innermost stations of the ATLAS endcap muon tracking system in the 2018/19 shutdown. In order to achieve a 15% transverse momentum resolution for 1 TeV muons, in addition to an excellent intrinsic resolution, the mechanical precision of each plane of the assembled module must be as good as 30 μm along the precision coordinate and 80 μm perpendicular to the chamber. In the prototyping towards the final configuration two similar quadruplets with dimensions 1.2×0.5 m2 have been built with the same structure as foreseen for the NSW upgrade. It represents ...

  15. Design and Construction of Large Size Micromegas Chambers for the ATLAS Upgrade of the Muon Spectrometer

    CERN Document Server

    Jeanneau, Fabien; The ATLAS collaboration

    2015-01-01

    Large area Micromegas detectors will be employed for the first time in high-energy physics experiments. A total surface of about 150 m2 of the forward regions of the Muon Spectrometer of the ATLAS detector at LHC will be equipped with 8-layer Micromegas modules. Each module extends over a surface from 2 to 3 m2 for a total active area of 1200 m2. Together with the small strip Thin Gap Chambers they will compose the two New Small Wheels, which will replace the innermost stations of the ATLAS endcap muon tracking system in the 2018/19 shutdown. In order to achieve a 15% transverse momentum resolution for 1 TeV muons, in addition to an excellent intrinsic resolution, the mechanical precision of each plane of the assembled module must be as good as 30 μm along the precision coordinate and 80 μm perpendicular to the chamber. All readout planes are segmented into strips with a pitch of 400 μm for a total of 4096 strips. In two of the four planes the strips are inclined by 1.5 ◦ and provide a measurement of the...

  16. Design and Construction of Large Size Micromegas Chambers for the Upgrade of the ATLAS Muon Spectrometer

    CERN Document Server

    Lösel, Philipp; Müller, Ralph

    2015-01-01

    Large area Micromegas detectors will be employed for the first time in high-energy physics experiments. A total surface of about $\\mathbf{150~m^2}$ of the forward regions of the Muon Spectrometer of the ATLAS detector at LHC will be equipped with 8-layer Micromegas modules. Each layer covers more than $\\mathbf{2~m^2}$ for a total active area of $\\mathbf{1200~m^2}$. Together with the small strip Thin Gap Chambers they will compose the two New Small Wheels, which will replace the innermost stations of the ATLAS endcap muon tracking system in the 2018/19 shutdown. In order to achieve a 15$\\mathbf{\\%}$ transverse momentum resolution for $\\mathbf{1~TeV}$ muons, in addition to an excellent intrinsic resolution, the mechanical precision of each plane of the assembled module must be as good as $\\mathbf{30~\\mu m}$ along the precision coordinate and $\\mathbf{80~\\mu m}$ perpendicular to the chamber. The design and construction procedure of the Micromegas modules will be presented, as well as the design for the assembly ...

  17. Design and Construction of Large Size Micromegas Chambers for the ATLAS Upgrade of the Muon Spectrometer

    CERN Document Server

    Losel, Philipp Jonathan; The ATLAS collaboration

    2014-01-01

    Large area Micromegas detectors will be employed fo r the first time in high-energy physics experiments. A total surface of about 150 m$^2$ of the forward regions of the Muon Spectrometer of the ATLAS detector at LHC will be equipped with 8-layer Micromegas modules. Each module extends over a surface from 2 to 3 m$^2$ for a total active area of 1200 m$^2$. Together with the small strip Thin Gap Chambers they will compose the two New Small Wheels, which will replace the innermost stations of the ATLAS endcap muon tracking system in the 2018/19 shutdown. In order to achieve a 15% transverse momentum resol ution for 1 TeV muons, in addition to an excellent intrinsic resolution, the mechanical prec ision of each plane of the assembled module must be as good as 30 $\\mu$m along the precision coordi nate and 80 $\\mu$m perpendicular to the chamber. The design and construction procedure of the microm egas modules will be presented, as well as the design for the assembly of modules onto the New Small Wheel. Emphasis wi...

  18. The barrel muon spectrometer of the ATLAS detector has acquired its first cosmic event in a magnetic field produced by the barrel toroid magnet.

    CERN Multimedia

    2006-01-01

    A 3-D event display of a cosmic muon event, showing the path of a muon travelling through three layers of the barrel muon spectrometer. Three of the eight coils of the barrel toroid magnet can be seen in the top half of the drawing.

  19. Upgrades of the ATLAS Muon Spectrometer with sMDT Chambers

    CERN Document Server

    Ferretti, Claudio; The ATLAS collaboration

    2015-01-01

    With half the drift-tube diameter of the Monitored Drift Tube (MDT) chambers of the ATLAS muon spectrometer and otherwise unchanged operating parameters, small-diameter Muon Drift Tube (sMDT) chambers provide an order of magnitude higher rate capability and can be installed in detector regions where MDT chambers do not fit. The chamber assembly time has been reduced by a factor of seven to one working day and the sense wire positioning accuracy improved by a factor of two to better than ten microns. Two sMDT chambers have been installed in ATLAS in 2014 to improve the momentum resolution in the barrel part of the spectrometer. The construction of additional twelve chambers covering the feet regions of the ATLAS detector has started. It will be followed by the replacement of the MDT chambers at the ends of the barrel inner layer by sMDTs improving the Performance at the high expected background rates and providing space for additional RPC trigger chambers.

  20. Upgrades of the ATLAS Muon Spectrometer with sMDT Chambers

    CERN Document Server

    Ferretti, C

    2016-01-01

    With half the drift-tube diameter of the Monitored Drift Tube (MDT) chambers of the ATLAS muon spectrometer and otherwise unchanged operating parameters, small-diameter Muon Drift Tube (sMDT) chambers provide an order of magnitude higher rate capability and can be installed in detector regions where MDT chambers do not fit. The chamber assembly time has been reduced by a factor of seven to one working day and the sense wire positioning accuracy improved by a factor of two to better than ten microns. Two sMDT chambers have been installed in ATLAS in 2014 to improve the momentum resolution in the barrel part of the spectrometer. The construction of an additional twelve chambers covering the feet regions of the ATLAS detector has started. It will be followed by the replacement of the MDT chambers at the ends of the barrel inner layer by sMDTs improving the Performance at the high expected background rates and providing space for additional RPC trigger chambers.

  1. Analysis of Υ production in pp collisions at 7 TeV with the ALICE muon spectrometer

    International Nuclear Information System (INIS)

    Ahn, S.U.

    2011-12-01

    The ALICE experiment is a general-purpose detector designed to study the Quark-Gluon Plasma (QGP) in heavy-ion collisions at CERN LHC. One of powerful probe to the QGP is the heavy quarkonium production in heavy-ion collisions compared to the pp collisions. The interests of the heavy quarkonium production is not limited in heavy-ion physics since its production mechanism in pp collisions is still ambiguous. The aim of this thesis work is to estimate the production cross section of Υ(nS) in pp collisions at √(s)= 7 TeV in their muon decay channel with the ALICE muon spectrometer. The ALICE muon spectrometer is located at the forward rapidity region -4 + μ - ] = [0.62±0.38(stat.)+0.12-0.21(syst.)] nb per rapidity unit. (author)

  2. Detector tests in a high magnetic field and muon spectrometer triggering studies on a small prototype for an LHC experiment

    CERN Document Server

    Ambrosi, G; Basile, M; Battiston, R; Bergsma, F; Castro, H; Cifarelli, Luisa; Cindolo, F; Contin, A; De Pasquale, S; Gálvez, J; Gentile, S; Giusti, P; Laurent, G; Levi, G; Lin, Q; Maccarrone, G D; Mattern, D; Nania, R; Rivera, F; Schioppa, M; Sharma, A; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    The "Large Area Devices" group of the LAA project is working on R&D for muon detection at a future super-collider. New detectors are under development and the design of a muon spectrometer for an LHC experiment is under study. Our present choice is for a compact, high field, air-core toroidal muon spectrometer. Good momentum resolution is achievable in this compact solution, with at least one plane of detection elements inside the high field region. A new detector, the Blade Chamber, making use of blades instead of wires, has been developed for the forward and backward regions of the spectrometer, where polar coordinate readings are desirable.The assembling of a CERN high energy beam line, equipped with high resolution drift chambers and a strong field magnet could give us the opportunity to test our chambers in a high magnetic field and to study the muon trigger capabilities of a spectrometer, like the one proposed, on a small prototype.

  3. On analog simulation of ionization cooling of muons

    International Nuclear Information System (INIS)

    Xie, Ming

    2001-01-01

    Analog simulation, proposed here as an alternative approach for the study of ionization cooling of muons, is a scaled cooling experiment, using protons instead of muons as simulation particles. It is intended to be an effective and flexible, quick and inexpensive experiment for the understanding and validation of unprecedentedly complicated cooling physics, for the demonstration and optimization of various elaborated techniques for beam manipulation in 6D phase space. It can be done and perhaps should be done before the costly and time-consuming development of extremely challenging, muon-specific cooling technology. In a nutshell, the idea here is to build a toy machine in a playground of ideas, before staking the Imperial Guard of Napoleon into the bloody battlefield of Waterloo

  4. Performance Studies of Resistive Micromegas Detectors for the Upgrade of the ATLAS Muon Spectrometer

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00387450

    2017-01-01

    With the high luminosity upgrade of the LHC the ATLAS Muon spectrometer will face increased particle rates, requiring an upgrade of the innermost end-cap detectors with a high-rate capable technology. Micromegas have been chosen as main tracking technology for this New Small Wheel upgrade. In an intense R$\\&$D and prototype phase the technology has proven to meet the stringent performance requirements of highly efficient particle detection with better than 100$\\rm{\\mu m}$ spatial resolution, independent of the track incidence angle up to 32$^\\circ$, in a magnetic field B $\\leq$ 0.3 T and at background hit rate of up to 15kHz/cm$^2$.

  5. Drift tubes for the SAMUS muon spectrometer of the DO detector

    International Nuclear Information System (INIS)

    Antipov, Yu.M.; Bezzubov, V.A.; Denisov, D.S.; Evdokimov, V.N.; Pishal'nikov, Yu.M.; Stoyanova, D.A.

    1989-01-01

    The construction and manufacturing procedure of 6000 drift tubes for the SAMUS muon spectrometer of the DO detector are described in detail. The diameter of the stainless steel tubes is 30mm, their length varies within the range from 0.2 to 3.8 m. A testing procedure of the main parameters of the tubes is proposed and the results of testing all the tubes after manufacturing are given. With the pure methane filling the maximum drift time for electrons is 0.16 μs, the plateau of effective detection of minimum ionizing particles is equal to 1.0 kV and the coordinate resolution is 0.3 mm. 12 refs.; 9 figs.; 4 tabs

  6. Design and construction of Micromegas detectors for the ATLAS Muon Spectrometer Upgrade

    CERN Document Server

    Sessa, Marco

    2016-01-01

    Thanks to significant technological improvements, developed during a intensive R&D; activity carried out in the last years, large-area Micromegas (MM) will be employed, for the first time, in the High Energy Physics field. Starting from 2019, they will cover a large surface of about 150m2 in the forward regions of the Muon Spectrometer. In this paper, the performances of MM chambers and, in particular, the spatial resolution and the efficiency, obtained using data from different test beam campaigns, will be described. Moreover, it will be shown the present status of the Micromegas chambers construction from the Italian INFN groups, focusing, especially, on the construction procedures and the methodologies developed to obtain the challenging required mechanical precision.

  7. Design of a Trigger Data Serializer ASIC for the Upgrade of the ATLAS Forward Muon Spectrometer

    Science.gov (United States)

    Wang, Jinhong; Guan, Liang; Chapman, J. W.; Zhou, Bing; Zhu, Junjie

    2017-12-01

    The small-strip Thin Gap Chamber (sTGC) will be used for both triggering and precision tracking purposes in the upgrade of the ATLAS forward muon spectrometer. Both sTGC pad and strip detectors are readout by a Trigger Data Serializer (TDS) ASIC in the trigger path. This ASIC has two operation modes to prepare trigger data from pad and strip detectors respectively. The pad mode (pad-TDS) collects the firing status for up to 104 pads from one detector layer and transmits the data at 4.8 Gbps to the pad trigger extractor every 25 ns. The pad trigger extractor collects pad-TDS data from eight detector layers and defines a region of interest along the path of a muon candidate. In the strip mode (strip-TDS), the deposited charges from up to 128 strips are buffered, time-stamped, and a trigger matching procedure is performed to read out strips underneath the region of interest. The strip-TDS output is also transmitted at 4.8 Gbps to the following FPGA processing circuits. Details about the ASIC design and test results are presented in this paper.

  8. Performance of Large Area Micromegas Detectors for the ATLAS Muon Spectrometer Upgrade Project

    CERN Document Server

    AUTHOR|(SzGeCERN)743338; The ATLAS collaboration

    2016-01-01

    Four German institutes are building 32 high-rate capable SM2 Micromegas quadruplets, for the upgrade of the Small Wheels of the ATLAS muon spectrometer. The cathodes and strip-anodes of the 2 m$^2$ quadruplets consist of stable honeycomb sandwiches with a requested planarity better than 80 $\\mu$m. The qualification of full-size SM2 quadruplets will be performed in the Munich Cosmic Ray Measurement Facility (CRMF). Two fully working 4 m $\\times$ 2.2 m ATLAS drift-tube chambers provide muon tracking, a RD51 SRS based data acquisition system provides readout of all 12288 electronic channels using 96 APV25 front-end boards. The goal is to measure the homogeneity of pulse-height and efficiency and to determine the planarity of the sandwich planes and the positions of the readout-strips. This has been pioneered by studying a 102 $\\times$ 92 cm$^2$ Micromegas chamber with similar readout pitch in the CRMF using the TPC-like analysis method. At trigger rates above 100 Hz data taking takes only a few days for sufficie...

  9. Performance of Large Area Micromegas Detectors for the ATLAS Muon Spectrometer Upgrade Project

    CERN Document Server

    Losel, Philipp Jonathan; The ATLAS collaboration; Hertenberger, Ralf; Mueller, Ralph Soeren Peter; Bortfeldt, Jonathan; Flierl, Bernhard Matthias; Zibell, Andre

    2016-01-01

    Four German institutes are building the 32 high-rate capable SM2 Micromegas quadruplets, for the upgrade of the Small Wheels of the ATLAS muon spectrometer. The cathodes and strip-anodes of the m$^2$ in size quadruplets consist of stable honeycomb sandwiches with a requested planarity better than 80 $\\mu$m. The qualification of a full-size SM2 quadruplet, foreseen by ATLAS time schedule for August 2015, will be performed in the Munich Cosmic Ray Measurement Facility (CRMF). Two fully working 4 m$\\times$ 2.2 m ATLAS drift-tube chambers provide muon tracking, a RD51 SRS based data acquisition system provides readout of all 12288 electronic channels using 96 APV25 frontend boards. We report on homogeneity of pulse-height and efficiency and will present measurements of the planarity of the sandwich planes and the positions of the readout-strips. This has been pioneered by studying a $102 \\times 92$ cm$^2$ Micromegas chamber with similar readout pitch in the CRMF using the TPC-like analysis method. At trigger rate...

  10. Simulation of muon transport through the aragats spark chamber calorimeter

    International Nuclear Information System (INIS)

    Asatiani, T.L.; Ter-Antonyan, S.V.

    1981-01-01

    The algorithm is presented of the program on simulation of muon transport through Aragats spark calorimeter. Statistic test method with account of fluctuations and angular distributions of cascade showers is used. The program is worked out on the Fortran algorithm language for EVM BESM-6 and is calibrated by experimental data of Aragats complex installation [ru

  11. Design and Commissioning of the ATLAS Muon Spectrometer RPC Read Out Driver

    CERN Document Server

    Aloisio, A; Cevenini, F; Della Pietra; Della Volpe; Izzo, V

    2008-01-01

    The RPC subsystem of the ATLAS muon spectrometer provides the Level-1 trigger in the barrel and it is read out by a specific DAQ system. On-detector electronics pack the RPC data in frames, tagged with an event number assigned by the trigger logic, and transmit them to the counting room on optical fibre. Data from each sector are then routed together to a Read-Out Driver (ROD) board. This is a custom processor that parses the frames, checks their coherence and builds a data structure for all the RPCs of one of the 32 sectors of the spectrometer. Each ROD sends the event fragments to a Read-Out subsystem for further event building and analysis. The ROD is a VME64x board, designed around two Xilinx Virtex-II FPGAs and an ARM7 microcontroller. In this paper we describe the board architecture and the event binding algorithm. The boards have been installed in the ATLAS USA15 control room and have been successfully used in the ATLAS commissioning runs.

  12. Observation of a VHE Cosmic-Ray Flare-Signal with the L3+C Muon Spectrometer

    CERN Document Server

    Adriani, O; Aziz, T; Bähr, J; Banerjee, S; Becattini, F; Bellucci, L; Betev, B L; Blaising, J J; Bobbink, G J; Bottai, S; Bourilkov, D; Cartacci, A; Chemarin, M; Chen, G; Chen, G M; Chen, H S; Chiarusi, T; Coignet, G; Ding, L K; Duran, I; Eline, A; El Mamouni, H; Faber, G; Fay, J; Filthaut, F; Ganguli, S N; Gong, Z F; Grabosch, H J; Groenstege, H; Guo, Y N; Gupta, S; Gurtu, A; Haller, Ch; Hayashi, Y; He, Z X; Hebbeker, T; Herve, A; Hofer, H; Hoferjun, H; Huo, A X; Ito, N; Jing, C L; Jones, L W; Kantserov, V; Kawakami, S; Kittel, W; König, A C; Kok, E; Kuang, H H; Kuijpers, J; Ladron de Guevara, P; Le Coultre, P; Lei, Y; Leich, H; Leiste, R; Li, L; Li, Z C; Liu, Z A; Lohmann, W; Lu, Y S; Ma, W G; Ma, X H; Ma, Y Q; Mele, S; Meng, X W; Meschini, M; Metzger, W J; van Mil, A; Milcent, H; Mohanty, G B; Monteleoni, B; Nahnhauer, R; Naumov, V A; Nowak, H; Parriaud, J -F; Pauss, F; Petersen, B; Pieri, M; Pohl, M; Pojidaev, V; Qing, C R; Ramelli, R; Ranieri, R; Ravindran, K C; Rewiersma, P; Riemann, S; Rojkov, A; Romero, L; Schmitt, V; Schoeneich, B; Schotanus, D J; Shen, C Q; Spillantini, P; Sulanke, H; Tang, X W; Timmermans, C; Tonwar, S C; Trowitzsch, G; Unger, M; Verkooijen, H; Van de Walle, R T; Vogt, H; Wang, R G; Wang, Q; Wang, X L; Wang, X W; Wang, Z M; Wijk, R van; Wijnen, T A M; Wilkens, H; Xu, Y P; Xu, J S; Xu, Z Z; Yang, C G; Yang, X F; Yao, Z G; Yu, Z Q; Zhang, C; Zhang, F; Zhang, J; Zhang, S; Zhou, S J; Zhu, G Y; Zhu, Q Q; Zhuang, H L; Zwart, A N M

    2010-01-01

    The data collected by the L3+C muon spectrometer at the CERN Large Electron-Positron collider, LEP, have been used to search for short duration signals emitted by cosmic point sources. A sky survey performed from July to November 1999 and from April to November 2000 has revealed one single flux enhancement (chance probability = 2.6X10^{-3}) between the 17th and 20th of August 2000 from a direction with a galactic longitude of (265.02+-0.42)^° and latitude of (55.58+-0.24)^°. The energy of the detected muons was above 15 GeV.

  13. A prototype of one of the eight sections that will form one of the big-wheels of the ATLAS muon spectrometer has been installed in building 887 at Prévessin . Over 40 institutes in 11 countries are involved in the construction of the ATLAS muon spectrometer.

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    A prototype of one of the eight sections that will form one of the big-wheels of the ATLAS muon spectrometer has been installed in building 887 at Prévessin . Over 40 institutes in 11 countries are involved in the construction of the ATLAS muon spectrometer.

  14. Study of the muon production from open heavy flavours predicted by the Color Glass Condensate model in proton-proton and proton-lead collision with the Alice muon spectrometer at LHC

    International Nuclear Information System (INIS)

    Charpy, A.

    2007-10-01

    The whole particle physics community is waiting for the Large Hadron Collider (LHC) commissioning at CERN. Indeed, the potential of discovery is very large in lots of themes. In particular, it will be possible to test the developments of the Quantum Chromodynamics (QCD) achieved during last years. One of these, the Colour Glass Condensate, describes the parton distributions of the nucleus in the saturation region, i.e. at small x. This theoretical description of the initial conditions of the heavy ion collisions is necessary to predict the heavy quark cross section production which evolves in a possible deconfined matter: the Quark-Gluon Plasma (PQG). ALICE is the LHC experiment mainly dedicated to the study of the PQG produced in ultra-relativistic heavy ion collisions. The measurement of J /Ψ and Υ resonance suppression is a signature of this deconfined medium which is studied with the ALICE muon spectrometer. Its acceptance at large rapidity is well adapted for studying the prediction of CGC at small-x. The first part of this report presents the results of beam test experiment at CERN. It was the first time that the muon spectrometer tracking chambers were tested equipped with the final version of the front end electronics and the data acquisition system CROCUS. The relevant calibration parameters of the front end electronics were introduced in the analysis in order to improve the quality of the track reconstruction. In the second part. these parameters were used in the simulations. The last part proposes a study of the CGC with the ALICE muon spectrometer. involving the measurements of open charm and open beauty. (author)

  15. Performance of the Alice muon spectrometer. Weak boson production and measurement in heavy-ion collisions at LHC

    International Nuclear Information System (INIS)

    Conesa del valle, Z.

    2007-07-01

    Lattice QCD predicts a transition from a hadronic phase to a Quark Gluon Plasma phase, QGP, for temperatures above 10 13 K. Heavy-ion collisions are proposed to recreate it in laboratory. With such a purpose, the LHC (Large Hadron Collider) will provide Pb-Pb collisions at 5.5 TeV/u, and the ALICE experiment will permit to explore them. In particular, the ALICE muon spectrometer will permit to investigate the muon related probes (quarkonia, open beauty,...). The expected apparatus performances to measure muons and dimuons are discussed. A factorization technique is employed to unravel the different contributions to the global efficiency. Results indicate that the detector should be able to measure muons up to pT ∼ 100 GeV/c with a resolution of about 10 per cent. We show that weak bosons production could be measured for the first time in heavy-ion collisions. Single muon p T and dimuons invariant mass distributions will probe W and Z production. As mainly muons from b- and c-quarks decays will populate the intermediate-p T of 5 - 25 GeV/c, heavy quark in-medium energy loss calculations indicate that the single muon spectra would be suppressed by a factor 2-4 in the most central 0 - 10% Pb-Pb collisions at 5.5 TeV. However, for p T > 35 GeV/c the weak boson decays are predominant, and no suppression is expected. Estimations indicate that the b- and W-muons crossing point shifts down in transverse momenta by 5 to 7 GeV/c in the most central 0 - 10% Pb-Pb collisions at 5.5 TeV. (author)

  16. Development of the DAQ System of Triple-GEM Detectors for the CMS Muon Spectrometer Upgrade at LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00387583

    The Gas Electron Multiplier (GEM) upgrade project aims at improving the performance of the muon spectrometer of the Compact Muon Solenoid (CMS) experiment which will suffer from the increase in luminosity of the Large Hadron Collider (LHC). After a long technical stop in 2019-2020, the LHC will restart and run at a luminosity of 2 × 1034 cm−2 s−1, twice its nominal value. This will in turn increase the rate of particles to which detectors in CMS will be exposed and affect their performance. The muon spectrometer in particular will suffer from a degraded detection efficiency due to the lack of redundancy in its most forward region. To solve this issue, the GEM collaboration proposes to instrument the first muon station with Triple-GEM detectors, a technology which has proven to be resistant to high fluxes of particles. Within the GEM collaboration, the Data Acquisition (DAQ) subgroup is in charge of the development of the electronics and software of the DAQ system of the detectors. This thesis presents th...

  17. Hybrid Methods for Muon Accelerator Simulations with Ionization Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Josiah [Anderson U.; Snopok, Pavel [Fermilab; Berz, Martin [Michigan State U.; Makino, Kyoko [Michigan State U.

    2018-03-28

    Muon ionization cooling involves passing particles through solid or liquid absorbers. Careful simulations are required to design muon cooling channels. New features have been developed for inclusion in the transfer map code COSY Infinity to follow the distribution of charged particles through matter. To study the passage of muons through material, the transfer map approach alone is not sufficient. The interplay of beam optics and atomic processes must be studied by a hybrid transfer map--Monte-Carlo approach in which transfer map methods describe the deterministic behavior of the particles, and Monte-Carlo methods are used to provide corrections accounting for the stochastic nature of scattering and straggling of particles. The advantage of the new approach is that the vast majority of the dynamics are represented by fast application of the high-order transfer map of an entire element and accumulated stochastic effects. The gains in speed are expected to simplify the optimization of cooling channels which is usually computationally demanding. Progress on the development of the required algorithms and their application to modeling muon ionization cooling channels is reported.

  18. Technical Design Report for the Phase-II Upgrade of the ATLAS Muon Spectrometer

    CERN Document Server

    Collaboration, ATLAS

    2017-01-01

    The muon spectrometer of the ATLAS detector will be significantly upgraded during the Phase-II upgrade in LS3 in order to cope with the operational conditions at the HL-LHC in Run 4 and beyond. A large fraction of the frontend and on- and off-detector readout and trigger electronics for the Resistive Plate Chambers (RPC), Thin Gap Chambers (TGC), and Monitored Drift Tube (MDT) chambers will be replaced to make them compatible with the higher trigger rates and longer latencies necessary for the new level-0 trigger. The MDT chambers will be integrated into the level-0 trigger in order to sharpen the momentum threshold. Additional RPC chambers will be installed in the inner barrel layer to increase the acceptance and robustness of the trigger, and some chambers in high-rate regions will be refurbished. Some of the MDT chambers in the inner barrel layer will be replaced with new small-diameter MDTs. New TGC triplet chambers in the barrel-endcap transition region will replace the current TGC doublets to suppress t...

  19. Characterizations of Cathode pad chamber as tracking detector for MUON Spectrometer of ALICE

    CERN Document Server

    Pal, Sanjoy

    The present thesis gives an overview of A Large Ion Collider Experiment (ALICE) at the Large Hadron Collider at CERN with particular emphasis on the contribution of the Indian Collaboration to the Muon Spectrometer. The two major activities of the Indian Collaboration namely, the 2$^{nd}$ Tracking Station and MANAS chip, have been covered in detail. A full scale prototype chamber (0$^{th}$ chamber) for the 2$^{nd}$ station was tested at CERN with beams from PS and SPS. Detail analysis of his data was carried out by me to validate the design and fabrication procedure for these large area Cathode Pad Chambers. This analysis also determined the production specifications of the MANAS chip. The thesis present every step which led to timely production of the ten chambers (two spare) of the 2$^{nd}$ station. At every stage strict quality control measures were adopted and various tests were carried out to validate every production step. I have been closely associated with the chamber production and all the validation...

  20. Online precision gas evaluation of the ATLAS Muon Spectrometer during LHC RUN1

    CERN Document Server

    The ATLAS collaboration

    2014-01-01

    The ATLAS Muon Spectrometer, a six story structure embedded in a toroidal magnetic field, is constructed of nearly 1200 Monitored Drift Tube chambers (MDTs) containing 354,000 aluminum drift tubes. The operating gas is 93% Ar + 7% CO2 with a small amount of water vapor at a pressure of 3 bar. The momentum resolution required for the LHC physics (dp/p = 2% at 100 GeV) demands that MDT gas gas quality and the associated gas dependent calibrations be determined with a rapid feedback cycle. During the LHC Run 1 more than 2 billion liters of gas flowed through the detector at a rate 100,000 l/hr. Online evauation of MDT gas in real time and the associated contribution to the determination of the time-to-space functions was conducted by the dedicated Gas Monitor Chamber. We report on the operation and results of the GMC over the first three years of LHC running. During this period, the GMC has operated with a nearly 100% duty cycle, providing hourly measurements of the MDT drift times with 1 ns precision, correspon...

  1. Online precision gas evaluation of the ATLAS Muon Spectrometer during LHC Run1

    CERN Document Server

    AUTHOR|(CDS)2092735; The ATLAS collaboration

    2016-01-01

    The ATLAS Muon Spectrometer, a six story structure embedded in a toroidal magnetic field, is constructed of nearly 1200 Monitored Drift Tube chambers (MDTs) containing 354,000 aluminum drift tubes. The operating gas is 93% Ar + 7% CO${_2}$ with a small amount of water vapor at a pressure of 3 bar. The momentum resolution required for ATLAS physics demands that MDT gas quality and the associated gas dependent calibrations be determined with a rapid feedback cycle. During the LHC Run1, more than 2 billion liters of gas flowed through the detector at a rate 100,000 l/hr. Online evaluation of MDT gas in real time and the associated contribution to the determination of the time-to-space functions was conducted by the dedicated Gas Monitor Chamber (GMC). We report on the operation and results of the GMC over the first three years of LHC running. During this period, the GMC has operated with a nearly 100% duty cycle, providing hourly measurements of the MDT drift times with 1 ns precision, corresponding to minute ch...

  2. On-chamber readout system for the ATLAS MDT Muon Spectrometer

    CERN Document Server

    Chapman, J; Ball, R; Brandenburg, G; Hazen, E; Oliver, J; Posch, C

    2004-01-01

    The ATLAS MDT Muon Spectrometer is a system of approximately 380,000 pressurized cylindrical drift tubes of 3 cm diameter and up to 6 meters in length. These Monitored Drift Tubes (MDTs) are precision- glued to form super-layers, which in turn are assembled into precision chambers of up to 432 tubes each. Each chamber is equipped with a set of mezzanine cards containing analog and digital readout circuitry sufficient to read out 24 MDTs per card. Up to 18 of these cards are connected to an on-chamber DAQ element referred to as a Chamber Service Module, or CSM. The CSM multiplexes data from the mezzanine cards and outputs this data on an optical fiber which is received by the off-chamber DAQ system. Thus, the chamber forms a highly self-contained unit with DC power in and a single optical fiber out. The Monitored Drift Tubes, due to their length, require a terminating resistor at their far end to prevent reflections. The readout system has been designed so that thermal noise from this resistor remains the domi...

  3. Simulations of muon-induced neutron flux at large depths underground

    International Nuclear Information System (INIS)

    Kudryavtsev, V.A.; Spooner, N.J.C.; McMillan, J.E.

    2003-01-01

    The production of neutrons by cosmic-ray muons at large depths underground is discussed. The most recent versions of the muon propagation code MUSIC, and particle transport code FLUKA are used to evaluate muon and neutron fluxes. The results of simulations are compared with experimental data

  4. Measurement of the production cross-section of heavy hadrons with the muon spectrometer of the ALICE detector at LHC

    International Nuclear Information System (INIS)

    Manceau, L.

    2010-10-01

    Lattice quantum chromodynamics calculations predict a transition from the phase of hadronic matter to quark and gluon plasma for a temperature T ∼ 173 MeV and a vanishing baryonic potential. Ultra-relativistic heavy ion collisions allow to highlight this phase transition. Heavy flavours can be used to probe the first instants of the collisions where the temperature is the highest. The LHC will provide proton-proton and lead-lead collisions at unprecedented large energy (√(s) = 14 TeV and √(s NN ) 5.5 TeV respectively). The ALICE detector is dedicated to heavy ion collisions but it can also measure proton-proton collisions. The detector includes a muon spectrometer. The spectrometer has been designed to measure heavy flavours. This work presents the performance of the spectrometer to measure beauty hadrons (B) and charmed hadrons (D) inclusive production cross-section in proton-proton collisions. The first step of the measurement consists in extracting heavy hadron decayed muon distributions. The next step consists in extrapolating these distributions to heavy hadrons inclusive production cross-section. This work also presents a preliminary study of the performance of the spectrometer for the measurement of the nuclear modification factor and the associated observable named R B/D in 0-10% central heavy ions collisions. Uncertainties and transverse impulsion range of extraction of the observables have been investigated. (author)

  5. Progress on Beam-Plasma Effect Simulations in Muon Ionization Cooling Lattices

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James [IIT, Chicago; Snopok, Pavel [Fermilab

    2017-05-01

    New computational tools are essential for accurate modeling and simulation of the next generation of muon-based accelerators. One of the crucial physics processes specific to muon accelerators that has not yet been simulated in detail is beam-induced plasma effect in liquid, solid, and gaseous absorbers. We report here on the progress of developing the required simulation tools and applying them to study the properties of plasma and its effects on the beam in muon ionization cooling channels.

  6. Simplified monte carlo simulation for Beijing spectrometer

    International Nuclear Information System (INIS)

    Wang Taijie; Wang Shuqin; Yan Wuguang; Huang Yinzhi; Huang Deqiang; Lang Pengfei

    1986-01-01

    The Monte Carlo method based on the functionization of the performance of detectors and the transformation of values of kinematical variables into ''measured'' ones by means of smearing has been used to program the Monte Carlo simulation of the performance of the Beijing Spectrometer (BES) in FORTRAN language named BESMC. It can be used to investigate the multiplicity, the particle type, and the distribution of four-momentum of the final states of electron-positron collision, and also the response of the BES to these final states. Thus, it provides a measure to examine whether the overall design of the BES is reasonable and to decide the physical topics of the BES

  7. Tracking and Level-1 triggering in the forward region of the ATLAS Muon Spectrometer at sLHC

    International Nuclear Information System (INIS)

    Bittner, B; Dubbert, J; Kroha, H; Richter, R; Schwegler, P

    2012-01-01

    In the endcap region of the ATLAS Muon Spectrometer (η > 1) precision tracking and Level-1 triggering are performed by different types of chambers. Monitored Drift Tube chambers (MDT) and Cathode Strip Chambers (CSC) are used for precision tracking, while Thin Gap Chambers (TGC) form the Level-1 muon trigger, selecting muons with high transverse momentum (p T ). When by 2018 the LHC peak luminosity of 10 34 cm −2 s −1 will be increased by a factor of ∼ 2 and by another factor of ∼ 2–2.5 in about a decade from now (''SLHC''), an improvement of both systems, precision tracking and Level-1 triggering, will become mandatory in order to cope with the high rate of uncorrelated background hits (''cavern background'') and to stay below the maximum trigger rate for the muon system, which is in the range of 10–20 % of the 100 kHz rate, allowed for ATLAS. For the Level-1 trigger of the ATLAS Muon Spectrometer this means a stronger suppression of sub-threshold muons in the high-p T trigger as well as a better rejection of tracks not coming from the primary interaction point. Both requirements, however, can only be fulfilled if spatial resolution and angular pointing accuracy of the trigger chambers, in particular of those in the Inner Station of the endcap, are improved by a large factor. This calls for a complete replacement of the currrently used TGC chambers by a new type of trigger chambers with better performance. In parallel, the precision tracking chambers must be replaced by chambers with higher rate capability to be able to cope with the intense cavern background. In this article we present concepts to decisively improve the Level-1 trigger with newly developed trigger chambers, being characterized by excellent spatial resolution, good time resolution and sufficiently short latency. We also present new types of precision chambers, designed to maintain excellent tracking efficiency and spatial resolution in the presence of high levels of uncorrelated

  8. First results of the cosmic rays test of the RPC of the ATLAS muon spectrometer at LHC

    CERN Document Server

    Alviggi, M G; Caprio, M A; Carlino, G; De Asmundis, R; Della Pietra, M; Della Volpe, D; Iengo, P; Patricelli, S; Sekhniaidze, G

    2004-01-01

    The trigger for the Barrel Muon Spectrometer of the ATLAS experiment at LHC will be given by means of Resistive Plate Chambers working in avalanche mode. Before being mounted on the experimental apparatus each RPC chamber will undergo detailed quality control tests. A dedicated cosmic rays test station with good tracking resolution is operational in Naples University and INFN laboratory. All working parameters of RPCs are monitored and measured. Moreover, the uniformity of the efficiency on the whole surface is measured. A brief description of the test station and results for the first 148 Units will be presented.

  9. Simulation of the charge ratio of cosmic ray muons in extensive air showers using CORSIKA

    Energy Technology Data Exchange (ETDEWEB)

    Ochilo, Livingstone [University of Siegen (Germany); Kenyatta University, Nairobi (Kenya); Hashim, Nadir; Okumu, John [Kenyatta University, Nairobi (Kenya)

    2013-07-01

    The interaction of primary cosmic rays in the atmosphere produces, among other particles, pions and kaons. They decay to muons, which form an important component of extensive air showers. The ratio of positively to negatively charged muons, called the muon charge ratio, provides important information about the cosmic ray interactions in the atmosphere. In this study, the theoretical hadronic interaction models in the cosmic ray simulation code CORSIKA have been used to study the charge ratio of cosmic ray muons simulated in extensive air showers. An East - West effect on the charge ratio of simulated cosmic ray muons is observed. It is more pronounced for inclined and low-energy muons (momentum less than 100 GeV/c and zenith angle greater than 80 ). Experimental data from ''MINOS Near'' experiment gives similar results.

  10. Performance characterization of the Micromegas detector for the New Small Wheel upgrade and Development and improvement of the Muon Spectrometer Detector Control System in the ATLAS experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00349891

    The ATLAS, an abbreviation for A Toroidal LHC ApparatuS, detector is one of the two general purpose high luminosity experiments (along with CMS) that have been built for probing p-p and Pb-Pb or p-Pb collisions in the LHC. The muon spectrometer encircles the rest of the ATLAS detector subsystems defining the ATLAS overall dimensions. Its principle of operation is based on the magnetic deflection of muon tracks by a system of superconducting air-core toroid magnets providing high resolution muon momentum measurement. The upgrade of the ATLAS muon spectrometer is primarily motivated by the high background radiation expected during Run-3 (2021) and ultimately at $\\mathcal{L}=7\\times 10^{34}\\,\\mathrm{cm^{-2}s^{-1}}$ in HL-LHC (2026). Owing to this the detectors that occupy the innermost muon station called Small Wheel (SW), MDT, CSC \\& TGC, will go beyond their design luminosity limit. In addition, the muon trigger rate will exceed the available bandwidth because of the fake endcap muon triggers ($90\\%$ is c...

  11. Search for anomalies in the neutrino sector with muon spectrometers and large LArTPC imaging detectors at CERN

    CERN Document Server

    Antonello, A.; Baibussinov, B.; Bilokon, H.; Boffelli, F.; Bonesini, M.; Calligarich, E.; Canci, N.; Centro, S.; Cesana, A.; Cieslik, K.; Cline, D.B.; Cocco, A.G.; Dequal, D.; Dermenev, A.; Dolfini, R.; De Gerone, M.; Dussoni, S.; Farnese, C.; Fava, A.; Ferrari, A.; Fiorillo, G.; Garvey, G.T.; Gatti, F.; Gibin, D.; Gninenko, S.; Guber, F.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Ivashkin, A.; Kirsanov, M.; Kisiel, J.; Kochanek, I.; Kurepin, A.; Lagoda, J.; Lucchini, G.; Louis, W.C.; Mania, S.; Mannocchi, G.; Marchini, S.; Matveev, V.; Menegolli, A.; Meng, G.; Mills, G.B.; Montanari, C.; Nicoletto, M.; Otwinowski, S.; Palczewki, T.J.; Passardi, G.; Perfetto, F.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Sala, P.; Scaramelli, A.; Segreto, E.; Stefan, D.; Stepaniak, J.; Sulej, R.; Suvorova, O.; Terrani, M.; Tlisov, D.; Van de Water, R.G.; Trinchero, G.; Turcato, M.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H.G.; Yang, X.; Zani, A.; Zaremba, K; Benettoni, M.; Bernardini, P.; Bertolin, A.; Brugnera, R.; Calabrese, M.; Cecchetti, A.; Cecchini, S.; Collazuol, G.; Creti, P.; Corso, F.Dal; Del Prete, A.; De Mitri, I.; De Robertis, G.; De Serio, M.; Esposti, L.Degli; Di Ferdinando, D.; Dore, U.; Dusini, S.; Fabbricatore, P.; Fanin, C.; Fini, R.A.; Fiore, G.; Garfagnini, A.; Giacomelli, G.; Giacomelli, R.; Guandalini, C.; Guerzoni, M.; Kose, U.; Laurenti, G.; Laveder, M.; Lippi, I.; Loddo, F.; Longhin, A.; Loverre, P.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marsella, G.; Mauri, N.; Medinaceli, E.; Mengucci, A.; Mezzetto, M.; Michinelli, R.; Muciaccia, M.T.; Orecchini, D.; Paoloni, A.; Papadia, G.; Pastore, A.; Patrizii, L.; Pozzato, M.; Rosa, G.; Sahnounm, Z.; Simone, S.; Sioli, M.; Sirri, G.; Spurio, M.; Stanco, L.; Surdo, A.; Tenti, M.; Togo, V.; Ventura, M.; Zago, M.

    2012-01-01

    A new experiment with an intense ~2 GeV neutrino beam at CERN SPS is proposed in order to definitely clarify the possible existence of additional neutrino states, as pointed out by neutrino calibration source experiments, reactor and accelerator experiments and measure the corresponding oscillation parameters. The experiment is based on two identical LAr-TPCs complemented by magnetized spectrometers detecting electron and muon neutrino events at Far and Near positions, 1600 m and 300 m from the proton target, respectively. The ICARUS T600 detector, the largest LAr-TPC ever built with a size of about 600 ton of imaging mass, now running in the LNGS underground laboratory, will be moved at the CERN Far position. An additional 1/4 of the T600 detector (T150) will be constructed and located in the Near position. Two large area spectrometers will be placed downstream of the two LAr-TPC detectors to perform charge identification and muon momentum measurements from sub-GeV to several GeV energy range, greatly comple...

  12. The TRIUMF radiative muon capture facility

    International Nuclear Information System (INIS)

    Wright, D.H.; Macdonald, J.A.; Poutissou, J.M.; Poutissou, R.; Ahmad, S.; Chen, C.Q.; Gorringe, T.P.; Hasinoff, M.D.; Sample, D.G.; Zhang, N.S.; Armstrong, D.S.; Blecher, M.; Serna-Angel, A.; Azuelos, G.; Bertl, W.; Henderson, R.S.; Robertson, B.C.; Taylor, G.

    1992-01-01

    Radiative muon capture (RMC) on hydrogen produces photons with a yield of ≅ 10 -8 per stopped muon. To measure RMC at TRIUMF we have constructed a lage-solid-angle photon pair-spectrometer which surrounds the liquid hydrogen target. The spectrometer consists of a cylindrical photon converter and a larget-volume cylindrical drift chamber to track the e + e - pairs. It is enclosed in a spectrometer magnet which produces a highly uniform axial magnetic field. The detector subsystems, the hardware trigger and the data acquisition system are described, chamber calibration and tracking techniques are presented, and the spectrometer performance and its Monte Carlo simulation are discussed. (orig.)

  13. Physics validation studies for muon collider detector background simulations

    International Nuclear Information System (INIS)

    Morris, Aaron Owen

    2011-01-01

    Within the broad discipline of physics, the study of the fundamental forces of nature and the most basic constituents of the universe belongs to the field of particle physics. While frequently referred to as 'high-energy physics,' or by the acronym 'HEP,' particle physics is not driven just by the quest for ever-greater energies in particle accelerators. Rather, particle physics is seen as having three distinct areas of focus: the cosmic, intensity, and energy frontiers. These three frontiers all provide different, but complementary, views of the basic building blocks of the universe. Currently, the energy frontier is the realm of hadron colliders like the Tevatron at Fermi National Accelerator Laboratory (Fermilab) or the Large Hadron Collider (LHC) at CERN. While the LHC is expected to be adequate for explorations up to 14 TeV for the next decade, the long development lead time for modern colliders necessitates research and development efforts in the present for the next generation of colliders. This paper focuses on one such next-generation machine: a muon collider. Specifically, this paper focuses on Monte Carlo simulations of beam-induced backgrounds vis-a-vis detector region contamination. Initial validation studies of a few muon collider physics background processes using G4beamline have been undertaken and results presented. While these investigations have revealed a number of hurdles to getting G4beamline up to the level of more established simulation suites, such as MARS, the close communication between us, as users, and the G4beamline developer, Tom Roberts, has allowed for rapid implementation of user-desired features. The main example of user-desired feature implementation, as it applies to this project, is Bethe-Heitler muon production. Regarding the neutron interaction issues, we continue to study the specifics of how GEANT4 implements nuclear interactions. The GEANT4 collaboration has been contacted regarding the minor discrepancies in the neutron

  14. Simulations of the muon flux sensitivity to rock perturbation associated to hydrogeological processes

    Directory of Open Access Journals (Sweden)

    Hivert Fanny

    2014-01-01

    Full Text Available Muon tomography is a method to investigate the in-situ rock density. It is based on the absorption of cosmic-ray muons according to the quantity of matter (thickness and density. Numerical simulations are performed in order to estimate the expected muon flux in LSBB Underground Research Laboratory (URL (Rustrel, France. The aim of the muon measurements in the underground galleries of this laboratory is to characterize the spatial and temporal density variations caused by water transfer in the unsaturated zone of the Fontaine-de-Vaucluse karstic aquifer.

  15. Study of the muon production from open heavy flavours predicted by the Color Glass Condensate model in proton-proton and proton-lead collision with the Alice muon spectrometer at LHC; Etude de la production de muons issus des saveurs lourdes predite par le modele de Color Glass Condensate dans les collisions proton-proton et proton-plomb dans l'acceptance du spectrometre a muons de l'experience Alice du LHC

    Energy Technology Data Exchange (ETDEWEB)

    Charpy, A

    2007-10-15

    The whole particle physics community is waiting for the Large Hadron Collider (LHC) commissioning at CERN. Indeed, the potential of discovery is very large in lots of themes. In particular, it will be possible to test the developments of the Quantum Chromodynamics (QCD) achieved during last years. One of these, the Colour Glass Condensate, describes the parton distributions of the nucleus in the saturation region, i.e. at small x. This theoretical description of the initial conditions of the heavy ion collisions is necessary to predict the heavy quark cross section production which evolves in a possible deconfined matter: the Quark-Gluon Plasma (PQG). ALICE is the LHC experiment mainly dedicated to the study of the PQG produced in ultra-relativistic heavy ion collisions. The measurement of J /{psi} and {upsilon} resonance suppression is a signature of this deconfined medium which is studied with the ALICE muon spectrometer. Its acceptance at large rapidity is well adapted for studying the prediction of CGC at small-x. The first part of this report presents the results of beam test experiment at CERN. It was the first time that the muon spectrometer tracking chambers were tested equipped with the final version of the front end electronics and the data acquisition system CROCUS. The relevant calibration parameters of the front end electronics were introduced in the analysis in order to improve the quality of the track reconstruction. In the second part. these parameters were used in the simulations. The last part proposes a study of the CGC with the ALICE muon spectrometer. involving the measurements of open charm and open beauty. (author)

  16. Construction and Test of New Precision Drift-Tube Chambers for the ATLAS Muon Spectrometer

    CERN Document Server

    INSPIRE-00218480

    2017-02-11

    ATLAS muon detector upgrades aim for increased acceptance for muon triggering and precision tracking and for improved rate capability of the muon chambers in the high-background regions of the detector with increasing LHC luminosity. The small-diameter Muon Drift Tube (sMDT) chambers have been developed for these purposes. With half of the drift-tube diameter of the MDT chambers and otherwise unchanged operating parameters, sMDT chambers share the advantages of the MDTs, but have an order of magnitude higher rate capability and can be installed in detector regions where MDT chambers do not fit in. The chamber assembly methods have been optimized for mass production, minimizing construction time and personnel. Sense wire positioning accuracies of 5 ?micons have been achieved in serial production for large-size chambers comprising several hundred drift tubes. The construction of new sMDT chambers for installation in the 2016/17 winter shutdown of the LHC and the design of sMDT chambers in combination with new R...

  17. A Geant4 simulation package for the SAGE spectrometer

    International Nuclear Information System (INIS)

    Papadakis, P; Cox, D M; Butler, P A; Herzberg, R-D; Pakarinen, J; Konki, J; Greenlees, P T; Hauschild, K; Rahkila, P; Sandzelius, M; Sorri, J

    2012-01-01

    A comprehensive Geant4 simulation was built for the SAGE spectrometer. The simulation package includes the silicon and germanium detectors, the mechanical structure and the electromagnetic fields present in SAGE. This simulation can be used for making predictions through simulating experiments and for comparing simulated and experimental data to better understand the underlying physics.

  18. End-to-End Beam Simulations for the New Muon G-2 Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Korostelev, Maxim [Cockcroft Inst. Accel. Sci. Tech.; Bailey, Ian [Lancaster U.; Herrod, Alexander [Liverpool U.; Morgan, James [Fermilab; Morse, William [RIKEN BNL; Stratakis, Diktys [RIKEN BNL; Tishchenko, Vladimir [RIKEN BNL; Wolski, Andrzej [Cockcroft Inst. Accel. Sci. Tech.

    2016-06-01

    The aim of the new muon g-2 experiment at Fermilab is to measure the anomalous magnetic moment of the muon with an unprecedented uncertainty of 140 ppb. A beam of positive muons required for the experiment is created by pion decay. Detailed studies of the beam dynamics and spin polarization of the muons are important to predict systematic uncertainties in the experiment. In this paper, we present the results of beam simulations and spin tracking from the pion production target to the muon storage ring. The end-to-end beam simulations are developed in Bmad and include the processes of particle decay, collimation (with accurate representation of all apertures) and spin tracking.

  19. Study of ZZ to four leptons events in ATLAS at the LHC and upgrade of the ATLAS Muon Spectrometer

    CERN Multimedia

    Kouskoura, V

    2014-01-01

    The study of the ZZ and ZZ* production in proton-proton collisions at the Large Hadron Collider (LHC) at CERN is presented. The data analyzed in this study were recorded by the ATLAS experiment at a centre-of-mass energy of 7 TeV and of 8 TeV. The selected events are consistent with fully leptonic ZZ decays, in particular to electrons and muons. The total ZZ production cross section is measured and is found to be in agreement with the Standard Model (SM) prediction. The ZZ production allows the study of the anomalous neutral Triple Gauge Couplings. No deviation from the SM prediction is found that could indicate the presence of New Physics. In view of the forthcoming increase of the instantaneous luminosity of the LHC, the ATLAS Collaboration foresees upgrades of the detector. An upgrade of the Muon Spectrometer is presented. The integration of the new detection elements in the ATLAS Geometry is illustrated, as well as the increase in the total Barrel acceptance.

  20. Construction and test of high precision drift-tube (sMDT) chambers for the ATLAS muon spectrometer

    CERN Document Server

    Nowak, Sebastian; Kroha, Hubert; Schwegler, Philipp; Sforza, Federico

    2014-01-01

    For the upgrade of the ATLAS muon spectrometer in March 2014 new muon tracking chambers (sMDT) with drift-tubes of 15 mm diameter, half of the value of the standard ATLAS Monitored Drift-Tubes (MDT) chambers, and 10~$\\mu$m positioning accuracy of the sense wires have been constructed. The new chambers are designed to be fully compatible with the present ATLAS services but, with respect to the previously installed ATLAS MDT chambers, they are assembled in a more compact geometry and they deploy two additional tube layers that provide redundant rack information. The chambers are composed of 8 layers of in total 624 aluminium drift-tubes. The assembly of a chamber is completed within a week. A semi-automatized production line is used for the assembly of the drift-tubes prior to the chamber assembly. The production procedures and the quality control tests of the single components and of the complete chambers will be discussed. The wire position in the completed chambers have been measured by using a coordinate me...

  1. Trigger and readout electronics for the Phase-I upgrade of the ATLAS forward muon spectrometer

    CERN Document Server

    Moschovakos, Paris; The ATLAS collaboration

    2017-01-01

    The upgrades of the LHC accelerator and the experiments in 2019/20 and 2023/24 will increase the instantaneous and integrated luminosity, but also will drastically increase the data and trigger rates. To cope with the huge data flow while maintaining high muon detection efficiency and reducing fake muons found at Level-1, the present ATLAS small wheel muon detector will be replaced with a New Small Wheel (NSW) detector for high luminosity LHC runs. The NSW will feature two new detector technologies: resistive micromegas and small strip Thin Gap Chambers conforming a system of ~2.4 million readout channels. Both detector technologies will provide trigger and tracking primitives. A common readout path and a separate trigger path are developed for each detector technology. The electronics design of such a system will be implemented in about 8000 front-end boards, including the design of a number of custom radiation tolerant Application Specific Integrated Circuits (ASICs), capable of driving trigger and tracking...

  2. Trigger and Readout Electronics for the Phase-I Upgrade of the ATLAS Forward Muon Spectrometer

    CERN Document Server

    Moschovakos, Paris; The ATLAS collaboration

    2017-01-01

    The upgrades of the LHC accelerator and the experiments in 2019/20 and 2023/24 will increase the instantaneous and integrated luminosity, but also will drastically increase the data and trigger rates. To cope with the huge data flow while maintaining high muon detection efficiency and reducing fake muons found at Level-1, the present ATLAS small wheel muon detector will be replaced with a New Small Wheel (NSW) detector for high luminosity LHC runs. The NSW will feature two new detector technologies: resistive micromegas (MM) and small strip Thin Gap Chambers (sTGC) conforming a system of ~2.4 million readout channels. Both detector technologies will provide trigger and tracking primitives. A common readout path and a separate trigger path are developed for each detector technology. The electronics design of such a system will be implemented in about 8000 front-end boards, including the design of a number of custom radiation tolerant Application Specific Integrated Circuits (ASICs), capable of driving trigger ...

  3. A combined cosmic ray muon spectrometer and high energy air shower array

    International Nuclear Information System (INIS)

    Cherry, M.L.; Ayres, D.S.; Halzen, F.

    1986-01-01

    Cosmic rays have been detected at energies in excess of 10 20 eV, and individual sources have been conclusively identified as intense emitters of gamma rays at energies up to 10 16 eV. There is clearly a great deal of exciting astrophysics to be learned from such studies, but it has been suggested that there may be particle physics to be learned from the cosmic beam as well. Based in particular on the reports of surprisingly high fluxes of underground muons from the direction of Cygnus X-3 modulated by the known orbital period, there have been several suggestions recently invoking stable supersymmetric particles produced at Cygnus X-3, enhanced muon production from high energy photons, quark matter, and ''cygnets.'' Although the underground muon results have been questioned, it may still be worthwhile to consider the possibility of new physics beyond the standard model with energy scale (G/sub F/)/sup -1/2/ ≥ 0.25 TeV. For example, there have been recent discussions on the experimental signatures to be observed from new high energy photon couplings to matter, exchanges between constituent quarks and leptons, and stable gluinos and photinos mixed in with the cosmic gamma ray flux. We describe here a possible detector to search for such effects. We utilize the possibility that point sources like Cygnus X-3 can be used to provide a directional time-modulated ''tagged'' high energy photon beam

  4. PHENIX Muon Arms

    International Nuclear Information System (INIS)

    Akikawa, H.; Al-Jamel, A.; Archuleta, J.B.; Archuleta, J.R.; Armendariz, R.; Armijo, V.; Awes, T.C.; Baldisseri, A.; Barker, A.B.; Barnes, P.D.; Bassalleck, B.; Batsouli, S.; Behrendt, J.; Bellaiche, F.G.; Bland, A.W.; Bobrek, M.; Boissevain, J.G.; Borel, H.; Brooks, M.L.; Brown, A.W.; Brown, D.S.; Bruner, N.; Cafferty, M.M.; Carey, T.A.; Chai, J.-S.; Chavez, L.L.; Chollet, S.; Choudhury, R.K.; Chung, M.S.; Cianciolo, V.; Clark, D.J.; Cobigo, Y.; Dabrowski, C.M.; Debraine, A.; DeMoss, J.; Dinesh, B.V.; Drachenberg, J.L.; Drapier, O.; Echave, M.A.; Efremenko, Y.V.; En'yo, H.; Fields, D.E.; Fleuret, F.; Fried, J.; Fujisawa, E.; Funahashi, H.; Gadrat, S.; Gastaldi, F.; Gee, T.F.; Glenn, A.; Gogiberidze, G.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Hance, R.H.; Hart, G.W.; Hayashi, N.; Held, S.; Hicks, J.S.; Hill, J.C.; Hoade, R.; Hong, B.; Hoover, A.; Horaguchi, T.; Hunter, C.T.; Hurst, D.E.; Ichihara, T.; Imai, K.; Isenhower, L.D.L. Davis; Isenhower, L.D.L. Donald; Ishihara, M.; Jang, W.Y.; Johnson, J.; Jouan, D.; Kamihara, N.; Kamyshkov, Y.; Kang, J.H.; Kapoor, S.S.; Kim, D.J.; Kim, D.-W.; Kim, G.-B.; Kinnison, W.W.; Klinksiek, S.; Kluberg, L.; Kobayashi, H.; Koehler, D.; Kotchenda, L.; Kuberg, C.H.; Kurita, K.; Kweon, M.J.; Kwon, Y.; Kyle, G.S.; LaBounty, J.J.; Lajoie, J.G.; Lee, D.M.; Lee, S.; Leitch, M.J.; Li, Z.; Liu, M.X.; Liu, X.; Liu, Y.; Lockner, E.; Lopez, J.D.; Mao, Y.; Martinez, X.B.; McCain, M.C.; McGaughey, P.L.; Mioduszewski, S.; Mischke, R.E.; Mohanty, A.K.; Montoya, B.C.; Moss, J.M.; Murata, J.; Murray, M.M.; Nagle, J.L.; Nakada, Y.; Newby, J.; Obenshain, F.; Palounek, A.P.T.; Papavassiliou, V.; Pate, S.F.; Plasil, F.; Pope, K.; Qualls, J.M.; Rao, G.; Read, K.F.; Robinson, S.H.; Roche, G.; Romana, A.; Rosnet, P.; Roth, R.; Saito, N.; Sakuma, T.; Sandhoff, W.F.; Sanfratello, L.; Sato, H.D.; Savino, R.; Sekimoto, M.; Shaw, M.R.; Shibata, T.-A.; Sim, K.S.; Skank, H.D.; Smith, D.E.; Smith, G.D.; Sondheim, W.E.; Sorensen, S.; Staley, F.; Stankus, P.W.; Steffens, S.; Stein, E.M.; Stepanov, M.; Stokes, W.; Sugioka, M.; Sun, Z.; Taketani, A.; Taniguchi, E.; Tepe, J.D.; Thornton, G.W.; Tian, W.; Tojo, J.; Torii, H.; Towell, R.S.; Tradeski, J.; Vassent, M.; Velissaris, C.; Villatte, L.; Wan, Y.; Watanabe, Y.; Watkins, L.C.; Whitus, B.R.; Williams, C.; Willis, P.S.; Wong-Swanson, B.G.; Yang, Y.; Yoneyama, S.; Young, G.R.; Zhou, S.

    2003-01-01

    The PHENIX Muon Arms detect muons at rapidities of |y|=(1.2-2.4) with full azimuthal acceptance. Each muon arm must track and identify muons and provide good rejection of pions and kaons (∼10 -3 ). In order to accomplish this we employ a radial field magnetic spectrometer with precision tracking (Muon Tracker) followed by a stack of absorber/low resolution tracking layers (Muon Identifier). The design, construction, testing and expected run parameters of both the muon tracker and the muon identifier are described

  5. PHENIX Muon Arms

    Energy Technology Data Exchange (ETDEWEB)

    Akikawa, H.; Al-Jamel, A.; Archuleta, J.B.; Archuleta, J.R.; Armendariz, R.; Armijo, V.; Awes, T.C.; Baldisseri, A.; Barker, A.B.; Barnes, P.D.; Bassalleck, B.; Batsouli, S.; Behrendt, J.; Bellaiche, F.G.; Bland, A.W.; Bobrek, M.; Boissevain, J.G.; Borel, H.; Brooks, M.L.; Brown, A.W.; Brown, D.S.; Bruner, N.; Cafferty, M.M.; Carey, T.A.; Chai, J.-S.; Chavez, L.L.; Chollet, S.; Choudhury, R.K.; Chung, M.S.; Cianciolo, V.; Clark, D.J.; Cobigo, Y.; Dabrowski, C.M.; Debraine, A.; DeMoss, J.; Dinesh, B.V.; Drachenberg, J.L.; Drapier, O.; Echave, M.A.; Efremenko, Y.V.; En' yo, H.; Fields, D.E.; Fleuret, F.; Fried, J.; Fujisawa, E.; Funahashi, H.; Gadrat, S.; Gastaldi, F.; Gee, T.F.; Glenn, A.; Gogiberidze, G.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Hance, R.H.; Hart, G.W.; Hayashi, N.; Held, S.; Hicks, J.S.; Hill, J.C.; Hoade, R.; Hong, B.; Hoover, A.; Horaguchi, T.; Hunter, C.T.; Hurst, D.E.; Ichihara, T.; Imai, K.; Isenhower, L.D.L. Davis; Isenhower, L.D.L. Donald; Ishihara, M.; Jang, W.Y.; Johnson, J.; Jouan, D.; Kamihara, N.; Kamyshkov, Y.; Kang, J.H.; Kapoor, S.S.; Kim, D.J.; Kim, D.-W.; Kim, G.-B.; Kinnison, W.W.; Klinksiek, S.; Kluberg, L.; Kobayashi, H.; Koehler, D.; Kotchenda, L.; Kuberg, C.H.; Kurita, K.; Kweon, M.J.; Kwon, Y.; Kyle, G.S.; LaBounty, J.J.; Lajoie, J.G.; Lee, D.M.; Lee, S.; Leitch, M.J.; Li, Z.; Liu, M.X.; Liu, X.; Liu, Y.; Lockner, E.; Lopez, J.D.; Mao, Y.; Martinez, X.B.; McCain, M.C.; McGaughey, P.L.; Mioduszewski, S.; Mischke, R.E.; Mohanty, A.K.; Montoya, B.C.; Moss, J.M.; Murata, J.; Murray, M.M.; Nagle, J.L.; Nakada, Y.; Newby, J.; Obenshain, F.; Palounek, A.P.T.; Papavassiliou, V.; Pate, S.F.; Plasil, F.; Pope, K.; Qualls, J.M.; Rao, G.; Read, K.F. E-mail: readkf@ornl.gov; Robinson, S.H.; Roche, G.; Romana, A.; Rosnet, P.; Roth, R.; Saito, N.; Sakuma, T.; Sandhoff, W.F.; Sanfratello, L.; Sato, H.D.; Savino, R.; Sekimoto, M.; Shaw, M.R.; Shibata, T.-A.; Sim, K.S.; Skank, H.D.; Smith, D.E.; Smith, G.D. [and others

    2003-03-01

    The PHENIX Muon Arms detect muons at rapidities of |y|=(1.2-2.4) with full azimuthal acceptance. Each muon arm must track and identify muons and provide good rejection of pions and kaons ({approx}10{sup -3}). In order to accomplish this we employ a radial field magnetic spectrometer with precision tracking (Muon Tracker) followed by a stack of absorber/low resolution tracking layers (Muon Identifier). The design, construction, testing and expected run parameters of both the muon tracker and the muon identifier are described.

  6. GEANT Monte Carlo simulations for the GREAT spectrometer

    International Nuclear Information System (INIS)

    Andreyev, A.N.; Butler, P.A.; Page, R.D.; Appelbe, D.E.; Jones, G.D.; Joss, D.T.; Herzberg, R.-D.; Regan, P.H.; Simpson, J.; Wadsworth, R.

    2004-01-01

    GEANT Monte Carlo simulations for the recently developed GREAT spectrometer are presented. Some novel applications of the spectrometer for γ-ray, conversion-electron and β-decay spectroscopy are discussed. The conversion-electron spectroscopy of heavy nuclei with strongly converted transitions and the extension of the recoil decay tagging method to β-decaying nuclei are considered in detail

  7. Small-Strip Thin Gap Chambers for the Muon Spectrometer Upgrade of the ATLAS Experiment

    CERN Document Server

    Perez Codina, Estel; The ATLAS collaboration

    2015-01-01

    For the forthcoming Phase-I upgrade to the LHC (2018/19), the first station of the ATLAS muon end-cap system, Small Wheel, needs to be replaced. The New Small Wheel (NSW) will have to operate in a high background radiation region while reconstructing muon tracks with high precision and providing information for the Level-1 trigger. In particular, the precision reconstruction of tracks requires a spatial resolution of about 100 μm, and the Level-1 trigger track segments have to be reconstructed with an angular resolution of approximately 1 mrad. The NSWs consist of eight layers each of Micromegas and small-strip Thin Gap Chambers (sTGC), both providing trigger and tracking capabilities. The single sTGC planes of a quadruplet consists of an anode layer of 50μm gold plated tungsten wire sandwiched between two resistive cathode layers. Behind one of the resistive cathode layers, a PCB with precise machined strips (thus the name sTGC) spaced every 3.2mm allows to achieve a position resolution that ranges from 70...

  8. Optimisation of the muon spectrometer from the detector ALICE used for the study of the quark and gluon plasma at LHC

    International Nuclear Information System (INIS)

    Guernane, R.

    2001-01-01

    The ALICE experiment performed at the LHC will establish and study the phase transition from hadronic matter to a matter to a state of deconfined partons called Quark Gluon Plasma (QGP). The suppression of heavy flavour resonances (Jφ,γ) is the most promising probe for diagnosing the formation and early stages of the QGP in ultrarelativistic heavy ion collisions. The complete spectrum of heavy quarkonia resonances, i.e. J/φ, φ', γ, γ' and φ' will be measured via their muonic decay in a forward spectrometer with a mass resolution sufficient to separate all states. It is composed of five tracking stations, each consisting of two Cathode Pad Chambers (CPC). In this work, we developed a prototype of CPC having the original feature of parallel charge read out from one segmented cathode. The geometry and operating parameters have been optimized for station 3. The expected multi-hit rate and multi-hit deconvolution have been evaluated with a complete detailed simulation and an efficient method to disentangle close hits has been proposed. The magnetic field effect on the intrinsic spatial resolution of the chambers has also been estimated. The simulated performance of the CPC's is confirmed by beam-test results obtained at CERN with prototypes. The measurement of dimuons is expected to be contaminated by beam-related background. The rate of beam-gas interactions is several orders of magnitude larger than the signal rate for p-p collisions which is the reference for further studies of p-A and A-A collisions. The ALICE Collaboration decided to equip the muon spectrometer with a level 0 trigger counter (V0) in order to validate the dimuon trigger signal in p-p mode. The various steps involved in designing the V0 scintillator hodoscope are presented in this thesis. (author)

  9. Small-Strip Thin Gap Chambers for the Muon Spectrometer Upgrade of the ATLAS Experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00221766; The ATLAS collaboration

    2016-01-01

    The ATLAS muon system upgrade to be installed during the LHC long shutdown in 2018/19, the so called New Small Wheel (NSW), is designed to cope with the increased instantaneous luminosity in LHC Run 3. The small-strip Thin Gap Chambers (sTGC) will provide the NSW with fast trigger and high precision tracking. The construction protocol has been validated by test beam experiments on a full-size prototype sTGC detector, showing the performance requirements are met. The intrinsic spatial resolution for a single layer has been found to be about 50$\\mu$m at perpendicular incident angle, and the pads transition region has been measured to be about 4mm.

  10. ICOOL: A Simulation Code for Ionization Cooling of Muon Beams

    International Nuclear Information System (INIS)

    Fernow, R. C.

    1999-01-01

    Current ideas [1,2] for designing a high luminosity muon collider require significant cooling of the phase space of the muon beams. The only known method that can cool the beams in a time comparable to the muon lifetime is ionization cooling [3,4]. This method requires directing the particles in the beam at a large angle through a low Z absorber material in a strong focusing magnetic channel and then restoring the longitudinal momentum with an rf cavity. We have developed a new 3-D tracking code ICOOL for examining possible configurations for muon cooling. A cooling system is described in terms of a series of longitudinal regions with associated material and field properties. The tracking takes place in a coordinate system that follows a reference orbit through the system. The code takes into account decays and interactions of ∼50-500 MeV/c muons in matter. Material geometry regions include cylinders and wedges. A number of analytic models are provided for describing the field configurations. Simple diagnostics are built into the code, including calculation of emittances and correlations, longitudinal traces, histograms and scatter plots. A number of auxiliary files can be generated for post-processing analysis by the user

  11. Methods and Simulations of Muon Tomography and Reconstruction

    Science.gov (United States)

    Schreiner, Henry Fredrick, III

    This dissertation investigates imaging with cosmic ray muons using scintillator-based portable particle detectors, and covers a variety of the elements required for the detectors to operate and take data, from the detector internal communications and software algorithms to a measurement to allow accurate predictions of the attenuation of physical targets. A discussion of the tracking process for the three layer helical design developed at UT Austin is presented, with details of the data acquisition system, and the highly efficient data format. Upgrades to this system provide a stable system for taking images in harsh or inaccessible environments, such as in a remote jungle in Belize. A Geant4 Monte Carlo simulation was used to develop our understanding of the efficiency of the system, as well as to make predictions for a variety of different targets. The projection process is discussed, with a high-speed algorithm for sweeping a plane through data in near real time, to be used in applications requiring a search through space for target discovery. Several other projections and a foundation of high fidelity 3D reconstructions are covered. A variable binning scheme for rapidly varying statistics over portions of an image plane is also presented and used. A discrepancy in our predictions and the observed attenuation through smaller targets is shown, and it is resolved with a new measurement of low energy spectrum, using a specially designed enclosure to make a series of measurements underwater. This provides a better basis for understanding the images of small amounts of materials, such as for thin cover materials.

  12. The upgrade of the forward Muon Spectrometer of the ATLAS Experiment: the New Small Wheel project

    CERN Document Server

    Iengo, Paolo; The ATLAS collaboration

    2017-01-01

    The current innermost stations of the ATLAS endcap muon tracking system (the Small Wheel) will be upgraded in 2019 and 2020 to retain the good precision tracking and trigger capabilities in the high background environment expected with the upcoming luminosity increase of the LHC. The upgraded detector will consist of eight layers each of Resistive Micromegas (MM) and small-strip Thin Gap Chambers (sTGC) together forming the ATLAS New Small Wheels. Large area sTGC's up to 2 m2 in size and totaling an active area each of 1200 m2 will be employed for fast and precise triggering. The required spatial resolution of about 100 μm will allow the Level-1 trigger track segments to be reconstructed with an angular resolution of approximately 1mrad. The precision cathode plane has strips with a 3.2mm pitch for precision readout and the cathode plane on the other side has pads to produce a 3-out-of-4 coincidence to identify passage of a track in an sTGC quadruplet, selecting which strips to read-out. The eight layers of ...

  13. Performance studies of resistive Micromegas detectors for the upgrade of the ATLAS Muon Spectrometer

    CERN Document Server

    Ntekas, Konstantinos; The ATLAS collaboration

    2015-01-01

    Resistive Micromegas (Micro MEsh Gaseous Structure) detectors have proven along the years to be a reliable high rate capable detector technology characterised by an excellent spatial resolution. The ATLAS collaboration at LHC has chosen the resistive Micromegas technology (mainly for tracking), along with the small-strip Thin Gap Chambers (sTGC, mainly for triggering), for the high luminosity upgrade of the inner muon station in the high-rapidity region, the so called New Small Wheel (NSW) upgrade project. The NSW requires fully efficient Micromegas chambers with spatial resolution better than $100\\,\\mu\\mathrm{m}$ independent of the track incidence angle and the magnetic field ($B<0.3\\,\\mathrm{T}$), with a rate capability up to $\\sim10\\,\\mathrm{kHz/cm^2}$. Moreover, together with the precise tracking capability the Micromegas chambers should be able to provide a trigger signal, complementary to the sTGC, thus a decent timing resolution is required. Several tests have been performed on small ($10\\times10\\,\\...

  14. Performance studies of resistive Micromegas detectors for the upgrade of the ATLAS Muon Spectrometer

    CERN Document Server

    ATLAS Collaboration; The ATLAS collaboration

    2016-01-01

    Resistive Micromegas (Micro MEsh Gaseous Structure) detectors have proven along the years to be a reliable high rate capable detector techno- logy characterised by an excellent spatial resolution. The ATLAS colla- boration at LHC has chosen the resistive Micromegas technology (mainly for tracking), along with the small-strip Thin Gap Chambers (sTGC, mainly for triggering), for the high luminosity upgrade of the inner muon station in the high-rapidity region, the so called New Small Wheel (NSW) upgrade project. The NSW requires fully efficient Micromegas chambers with spatial resolution better than 100μm independent of the track inci- dence angle and the magnetic field (B < 0.3 T), with a rate capability up to ∼ 10kHz/cm2. Along with the precise tracking the Micromegas chambers should be able to provide a trigger signal, complementary to the sTGC, thus a decent timing resolution is required. Several tests have been performed on small (10×10cm2) and medium size (1×0.5m2) resistive Micromegas chambers (b...

  15. ICARUS+NESSiE: A proposal for short baseline neutrino anomalies with innovative LAr imaging detectors coupled with large muon spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Gibin, D., E-mail: daniele.gibin@pd.infn.it

    2013-04-15

    The proposal for an experimental search for sterile neutrinos beyond the Standard Model with a new CERN-SPS neutrino beam is presented. The experiment is based on two identical LAr-TPC's followed by magnetized spectrometers, observing the electron and muon neutrino events at 1600 and 300 m from the proton target. This project will exploit the ICARUS T600, moved from LNGS to the CERN “Far” position. An additional 1/4 of the T600 detector will be constructed and located in the “Near” position. Two spectrometers will be placed downstream of the two LAr-TPC detectors to greatly complement the physics capabilities. Comparing the two detectors, in absence of oscillations, all cross sections and experimental biases cancel out. Any difference of the event distributions at the locations of the two detectors might be attributed to the possible existence of ν-oscillations, presumably due to additional neutrinos with a mixing angle sin{sup 2}(2θ{sub new}) and a larger mass difference Δm{sub new}{sup 2}. The superior quality of the LAr imaging TPC, in particular its unique electron-π{sub 0} discrimination allows full rejection of backgrounds and offers a lossless ν{sub e} detection capability. The determination of the muon charge with the spectrometers allows the full separation of ν{sub μ} from anti-ν{sub μ} and therefore controlling systematics from muon mis-identification largely at high momenta.

  16. ICARUS+NESSiE: A proposal for short baseline neutrino anomalies with innovative LAr imaging detectors coupled with large muon spectrometers

    Science.gov (United States)

    Gibin, D.

    2013-04-01

    The proposal for an experimental search for sterile neutrinos beyond the Standard Model with a new CERN-SPS neutrino beam is presented. The experiment is based on two identical LAr-TPC's followed by magnetized spectrometers, observing the electron and muon neutrino events at 1600 and 300 m from the proton target. This project will exploit the ICARUS T600, moved from LNGS to the CERN "Far" position. An additional 1/4 of the T600 detector will be constructed and located in the "Near" position. Two spectrometers will be placed downstream of the two LAr-TPC detectors to greatly complement the physics capabilities. Comparing the two detectors, in absence of oscillations, all cross sections and experimental biases cancel out. Any difference of the event distributions at the locations of the two detectors might be attributed to the possible existence of ν-oscillations, presumably due to additional neutrinos with a mixing angle sin2(2θ) and a larger mass difference Δmnew2. The superior quality of the LAr imaging TPC, in particular its unique electron-π0 discrimination allows full rejection of backgrounds and offers a lossless νe detection capability. The determination of the muon charge with the spectrometers allows the full separation of νμ from anti-νμ and therefore controlling systematics from muon mis-identification largely at high momenta.

  17. Monte Carlo simulation of muon radiation environment in China Jinping Underground Laboratory

    International Nuclear Information System (INIS)

    Su Jian; Zeng Zhi; Liu Yue; Yue Qian; Ma Hao; Cheng Jianping

    2012-01-01

    Muon radiation background of China Jinping Underground Laboratory (CJPL) was simulated by Monte Carlo method. According to the Gaisser formula and the MUSIC soft, the model of cosmic ray muons was established. Then the yield and the average energy of muon-induced photons and muon-induced neutrons were simulated by FLUKA. With the single-energy approximation, the contribution to the radiation background of shielding structure by secondary photons and neutrons was evaluated. The estimation results show that the average energy of residual muons is 369 GeV and the flux is 3.17 × 10 -6 m -2 · s -1 . The fluence rate of secondary photons is about 1.57 × 10 -4 m -2 · s -1 , and the fluence rate of secondary neutrons is about 8.37 × 10 -7 m -2 · s -1 . The muon radiation background of CJPL is lower than those of most other underground laboratories in the world. (authors)

  18. Monte Carlo simulation study of the muon-induced neutron flux at LNGS

    International Nuclear Information System (INIS)

    Persiani, R.; Garbini, M.; Massoli, F.; Sartorelli, G; Selvi, M.

    2011-01-01

    Muon-induced neutrons are ultimate background for all the experiments searching for rare events in underground laboratories. Several measurements and simulations were performed concerning the neutron production and propagation but there are disagreements between experimental data and simulations. In this work we present our Monte-Carlo simulation study, based on Geant4, to estimate the muon-induced neutron flux at LNGS. The obtained integral flux of neutrons above 1 MeV is 2.31 x 10 -10 n/cm 2 /s.

  19. Performance studies of resistive Micromegas chambers for the upgrade of the ATLAS Muon Spectrometer

    Science.gov (United States)

    Ntekas, Konstantinos

    2018-02-01

    The ATLAS collaboration at LHC has endorsed the resistive Micromegas technology (MM), along with the small-strip Thin Gap Chambers (sTGC), for the high luminosity upgrade of the first muon station in the high-rapidity region, the so called New Small Wheel (NSW) project. The NSW requires fully efficient MM chambers, up to a particle rate of ˜ 15 kHz/cm2, with spatial resolution better than 100 μm independent of the track incidence angle and the magnetic field (B ≤ 0.3 T). Along with the precise tracking the MM should be able to provide a trigger signal, complementary to the sTGC, thus a decent timing resolution is required. Several tests have been performed on small (10 × 10 cm2) MM chambers using medium (10 GeV/c) and high (150 GeV/c) momentum hadron beams at CERN. Results on the efficiency and position resolution measured during these tests are presented demonstrating the excellent characteristics of the MM that fulfil the NSW requirements. Exploiting the ability of the MM to work as a Time Projection Chamber a novel method, called the μTPC, has been developed for the case of inclined tracks, allowing for a precise segment reconstruction using a single detection plane. A detailed description of the method along with thorough studies towards refining the method's performance are shown. Finally, during 2014 the first MM quadruplet (MMSW) following the NSW design scheme, comprising four detection planes in a stereo readout configuration, has been realised at CERN. Test-beam results of this prototype are discussed and compared to theoretical expectations.

  20. Simulation of a small muon tomography station system based on RPCs

    Science.gov (United States)

    Chen, S.; Li, Q.; Ma, J.; Kong, H.; Ye, Y.; Gao, J.; Jiang, Y.

    2014-10-01

    In this work, Monte Carlo simulations were used to study the performance of a small muon Tomography Station based on four glass resistive plate chambers(RPCs) with a spatial resolution of approximately 1.0mm (FWHM). We developed a simulation code to generate cosmic ray muons with the appropriate distribution of energies and angles. PoCA and EM algorithm were used to rebuild the objects for comparison. We compared Z discrimination time with and without muon momentum measurement. The relation between Z discrimination time and spatial resolution was also studied. Simulation results suggest that mean scattering angle is a better Z indicator and upgrading to larger RPCs will improve reconstruction image quality.

  1. Air shower simulation for background estimation in muon tomography of volcanoes

    Directory of Open Access Journals (Sweden)

    S. Béné

    2013-01-01

    Full Text Available One of the main sources of background for the radiography of volcanoes using atmospheric muons comes from the accidental coincidences produced in the muon telescopes by charged particles belonging to the air shower generated by the primary cosmic ray. In order to quantify this background effect, Monte Carlo simulations of the showers and of the detector are developed by the TOMUVOL collaboration. As a first step, the atmospheric showers were simulated and investigated using two Monte Carlo packages, CORSIKA and GEANT4. We compared the results provided by the two programs for the muonic component of vertical proton-induced showers at three energies: 1, 10 and 100 TeV. We found that the spatial distribution and energy spectrum of the muons were in good agreement for the two codes.

  2. Development of the optical components of an alignment system for the muon spectrometer of the ATLAS detector

    International Nuclear Information System (INIS)

    Widmann, P.

    1994-09-01

    In the framework of the development of an electro-optical alignment system for the muon spectrometer of the ATLAS detector different types of optical sensors as well as components of a glass fiber network for the light distribution were studied for their suitability for a possible application. For the sensors a resolution of 10-20 μm in one and about 100 μm in the other coordinate is required. Especially for the application in the ATLAS detector developed silicon strip detectors permit in their current state of development a position resolution of 5-7 μm in the strip coordinate and 30 μm in the ohter coordinate (with current division on the strip). In the combination of several sensors in a beam the beam deviation by light refraction has been proved as additional error source. as much promising alternative strip sensors of amorphous silicon have been proved. These sensors allow in both directions an equally high position resolution. With a not transparent prototype resolutions of 1.8 μm in one and 2.3 μm in the second coordinate were reached without corrections. Additionally it is possible to fabricate these sensors in transparent form on glass substrates with optical quality, which may permit a complet abandonment on corrections of the beam deviation. The transmission of these sensors amounts at a wavelength of 690 nm currently to about 60%. By optimization of the layer thicknesses however transmission rates of up to 80% should be reachable. The studied components for the light distribution via glass fibers corresponded to their specifications. The application of one-mode fibers guarantees thereby the Gaussian profile of the laser beams collimated with objectives desirable for the position measurement with strip detectors

  3. Study of the performance of the ATLAS muon spectrometer at LHC, from cosmic origin to collisions. Measurement of the WZ production cross-section

    International Nuclear Information System (INIS)

    Le Menedeu, E.

    2011-09-01

    ATLAS is one of the four experiments at the Large Hadron Collider (LHC), located at CERN, Geneva. As the LHC only delivered its first collisions in December 2009, at an energy of 7 TeV in the centre-of-mass, ATLAS recorded millions of cosmic events in 2008 and 2009 in order to better understand the detector. The first part of this PhD thesis deals with these cosmic events in order to estimate the muon spectrometer performances, particularly its efficiency and resolution. Next, using 7 TeV collisions, the efficiency is determined using a 'Tag and Probe' method on Z events decaying into muons. In addition, the missing transverse energy is studied and a clear improvement of its resolution is achieved through a better treatment of the muons. Finally, muons, missing transverse energy, but also electrons, are used to estimate the production cross-section of WZ di-bosons. Event selection, backgrounds estimation and systematics errors are provided. A computation of the WZ cross-section using 1.02 fb -1 of data is proposed: (21.1+3.1-2.8(sta)+1.2-1.2(syst)+0.9-0.8(lumi)) pb. A first estimation of the limits on anomalous triple gauge couplings have been deduced from the value of the cross-section: -0.21 l Z Z < 1.2 and -0.18 < λ < 0.18

  4. Common support and integration of the BMS/BMF type MDT/RPC chambers of the muon spectrometer of the ATLAS experiment

    International Nuclear Information System (INIS)

    Barashkov, A.V.; Glonti, G.L.; Gongadze, A.L.; Gostkin, M.I.; Gus'kov, A.V.; Dedovich, D.V.; Demichev, M.A.; Zhemchugov, A.S.; Il'yushenko, E.N.; Kotov, S.A.; Korolevich, Ya.V.; Kruchonok, V.G.; Krumshtejn, Z.V.; Kuznetsov, N.K.; Lomidze, D.D.; Potrap, I.N.; Kharchenko, D.V.; Tskhadadze, Eh.G.; Chepurnov, V.F.; Shelkov, G.A.; Podkladkin, S.Yu.; Sekhniaidze, G.G.

    2005-01-01

    The common support system for muon BMS/BMF drift chambers with trigger RPC chambers for the muon spectrometer of the ATLAS experiment is described. The support systems are intended for the chambers integration into combined modules and for the subsequent installation in the experimental set-up. The technology of chambers integration is described. The sagging of the drift chambers was tested by tilting the modules at different angles. The measurements were performed by means of the RASNIK optical system. The normal operation of kinematic supports was confirmed. We also present the method of the sag regulation for the BMS/BMF chambers lying in the horizontal plane which provides the minimum difference between signal wire and detector tube body sags when the modules are later installed in their working positions

  5. High resolution muon computed tomography at neutrino beam facilities

    International Nuclear Information System (INIS)

    Suerfu, B.; Tully, C.G.

    2016-01-01

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pion decay pipe at a neutrino beam facility and what can be achieved for momentum resolution in a muon spectrometer. Such an imaging system can be applied in archaeology, art history, engineering, material identification and whenever there is a need to image inside a transportable object constructed of dense materials

  6. Monte Carlo simulation for background study of geophysical inspection with cosmic-ray muons

    Science.gov (United States)

    Nishiyama, Ryuichi; Taketa, Akimichi; Miyamoto, Seigo; Kasahara, Katsuaki

    2016-08-01

    Several attempts have been made to obtain a radiographic image inside volcanoes using cosmic-ray muons (muography). Muography is expected to resolve highly heterogeneous density profiles near the surface of volcanoes. However, several prior works have failed to make clear observations due to contamination by background noise. The background contamination leads to an overestimation of the muon flux and consequently a significant underestimation of the density in the target mountains. To investigate the origin of the background noise, we performed a Monte Carlo simulation. The main components of the background noise in muography are found to be low-energy protons, electrons and muons in case of detectors without particle identification and with energy thresholds below 1 GeV. This result was confirmed by comparisons with actual observations of nuclear emulsions. This result will be useful for detector design in future works, and in addition some previous works of muography should be reviewed from the view point of background contamination.

  7. A search for flaring Very-High-Energy cosmic-ray sources with the L3+C muon spectrometer

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Van den Akker, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Bähr, J; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, G J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, M; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiarusi, T; Chiefari, G; Cifarelli, L; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; De Asmundis, R; Dglon, P; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Ding, L K; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Durán, I; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Faber, G; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, K; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, H; Grabosch, G; Grimm, O; Groenstege, H; Grünewald, M W; Guida, M; Guo, Y N; Gupta, S K; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Haller, C; Hatzifotiadou, D; Hayashi, Y; He, Z X; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Huo, A X; Ito, N; Jin, B N; Jindal, P; Jing, C L; Jones, L W; de Jong, P; Josa-Mutuberría, M I; Kantserov, V A; Kaur, i; Kawakami, S; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, W; Klimentov, A; König, A C; Kok, E; Korn, A; Kopal, M; Koutsenko, V F; Kräber, M; Kuang, H H; Krämer, R W; Krüger, A; Kuijpers, J; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Lei, Y; Leich, H; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Li, L; Li, Z C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma, W G; Ma, X H; Ma, Y Q; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Meng, X W; Merola, L; Meschini, M; Metzger, W J; Mihul, A; van Mil, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Monteleoni, B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Nahnhauer, R; Naumov, V A; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Parriaud, J F; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, F; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Qing, C R; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Ravindran, K C; Razis, P; Ren, D; Rescigno, M; Reucroft, S; Rewiersma, P A M; Riemann, S; Riles, K; Roe, B P; Rojkov, A; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Rykaczewski, H; Saidi, R; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schmitt, V; Schöneich, B; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shen, C Q; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sulanke, H; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, L; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Trowitzsch, G; Tully, C; Tung, K L; Ulbricht, J; Unger, M; Valente, E; Verkooijen, H; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, G; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, R G; Wang, Q; Wang, X L; Wang, X W; Wang, Z M; Weber, M; Van Wijk, R F; Wijnen, T A M; Wilkens, H; Wynhoff, S; Xia, L; Xu, Y P; Xu, J S; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J

    2006-01-01

    The L3+C muon detector at the Cern electron-position collider, LEP, is used for the detection of very-high-energy cosmic \\gamma-ray sources through the observation of muons of energies above 20, 30, 50 and 100 GeV. Daily or monthly excesses in the rate of single-muon events pointing to some particular direction in the sky are searched for. The periods from mid July to November 1999, and April to November 2000 are considered. Special attention is also given to a selection of known \\gamma-ray sources. No statistically significant excess is observed for any direction or any particular source.

  8. Preparation of the study of the quark-gluon plasma in ALICE: the V0 detector and the low masses resonances in the muon spectrometer

    International Nuclear Information System (INIS)

    Nendaz, F.

    2009-09-01

    The ALICE (A Large Ion Collider Experiment) experiment at LHC will study from 2010 the quark-gluon plasma (QGP), phase of the matter in which quarks and gluons are deconfined. The work presented here was done within the ALICE collaboration, for preparing the analysis of the incoming experimental data. Besides a theoretical approach of the QGP and of the chiral symmetry, we develop three experimental aspects: the V0 sub-detector, the study of the low mass mesons and the deconvolution. First, we detail the measures of luminosity and multiplicity that can be done with the V0. We then develop the study of the dimuons in the muon spectrometer. We concentrate on the low masses mesons: the rho, the omega and the phi. Finally, we present a method for improving the spectrometer data: the Richardson-Lucy deconvolution. (author)

  9. Fast track segment finding in the Monitored Drift Tubes (MDT) of the ATLAS Muon Spectrometer using a Legendre transform algorithm

    CERN Document Server

    Ntekas, Konstantinos; The ATLAS collaboration

    2018-01-01

    Many of the physics goals of ATLAS in the High Luminosity LHC era, including precision studies of the Higgs boson, require an unprescaled single muon trigger with a 20 GeV threshold. The selectivity of the current ATLAS first-level muon trigger is limited by the moderate spatial resolution of the muon trigger chambers. By incorporating the precise tracking of the MDT, the muon transverse momentum can be measured with an accuracy close to that of the offline reconstruction at the trigger level, sharpening the trigger turn-on curves and reducing the single muon trigger rate. A novel algorithm is proposed which reconstructs segments from MDT hits in an FPGA and find tracks within the tight latency constraints of the ATLAS first-level muon trigger. The algorithm represents MDT drift circles as curves in the Legendre space and returns one or more segment lines tangent to the maximum possible number of drift circles.  This algorithm is implemented without the need of resource and time consuming hit position calcul...

  10. ALICE Muon Spectrometer

    CERN Multimedia

    Baldisseri, A

    2013-01-01

    Hard, penetrating probes, such as heavy quarkonium states, provide an essential tool to study the early and hot stage of heavy-ions collisions. In particular they are expected to be sensitive to Quark-Gluon Plasma formation. In the presence of a deconfined medium (i.e. QGP) with high enough energy density, quarkonium states are dissociated because of colour screening. This leads to a suppression of their production rates.

  11. A micro-TCA based data acquisition system for the Triple-GEM detectors for the upgrade of the CMS forward muon spectrometer

    Science.gov (United States)

    Lenzi, T.

    2017-01-01

    The Gas Electron Multiplier (GEM) upgrade project aims at improving the performance of the muon spectrometer of the Compact Muon Solenoid (CMS) experiment which will suffer from the increase in luminosity of the Large Hadron Collider (LHC). The GEM collaboration proposes to instrument the first muon station with Triple-GEM detectors, a technology which has proven to be resistant to high fluxes of particles. The architecture of the readout system is based on the use of the microTCA standard hosting FPGA-based Advanced Mezzanine Card (AMC) and of the Versatile Link with the GBT chipset to link the on-detector electronics to the micro-TCA boards. For the front-end electronics a new ASIC, called VFAT3, is being developed. On the detector, a Xilinx Virtex-6 FPGA mezzanine board, called the OptoHybrid, has to collect the data from 24 VFAT3s and to transmit the data optically to the off-detector micro-TCA electronics, as well as to transmit the trigger data at 40 MHz to the CMS Cathode Strip Chamber (CSC) trigger. The microTCA electronics provides the interfaces from the detector (and front-end electronics) to the CMS DAQ, TTC (Timing, Trigger and Control) and Trigger systems. In this paper, we will describe the DAQ system of the Triple-GEM project and provide results from the latest test beam campaigns done at CERN.

  12. A micro-TCA based data acquisition system for the Triple-GEM detectors for the upgrade of the CMS forward muon spectrometer

    CERN Document Server

    Lenzi, Thomas

    2016-01-01

    We will present the electronic and DAQ system being developed for TripleGEM detectors which will be installed in the CMS muon spectrometer. The microTCA system uses an Advanced Mezzanine Card equipped with an FPGA and the Versatile Link with the GBT chipset to link the front and back-end. On the detector an FPGA mezzanine board, the OptoHybrid, has to collect the data from the detector readout chips to transmit them optically to the microTCA boards using the GBT protocol. We will describe the hardware architecture, report on the status of the developments, and present results obtained with the system.In this contribution we will report on the progress of the design of the electronic readout and data acquisition (DAQ) system being developed for Triple-GEM detectors which will be installed in the forward region (1.5 < eta < 2.2) of the CMS muon spectrometer during the 2nd long shutdown of the LHC, planed for the period 2018-2019. The architecture of the Triple-GEM readout system is based on the use of the...

  13. Results from a complete simulation study of the RPC based muon trigger system for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Altieri, S.; Belli, G.; Bruno, G. E-mail: giacomo.bruno@pv.infn.it; Guida, R.; Merlo, M.; Ratti, S.P.; Riccardi, C.; Torre, P.; Vitulo, P.; Abbrescia, M.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F

    2001-04-01

    The performance of the Resistive Plate Chambers-based muon trigger of the CMS detector has been studied by means of a full simulation of the system under realistic operating conditions. Requirements on the performance of the chambers are deduced.

  14. Fast track segment finding in the Monitored Drift Tubes of the ATLAS Muon Spectrometer using a Legendre transform algorithm

    CERN Document Server

    Ntekas, Konstantinos; The ATLAS collaboration

    2018-01-01

    The upgrade of the ATLAS first-level muon trigger for High- Luminosity LHC foresees incorporating the precise tracking of the Monitored Drift Tubes in the current system based on Resistive Plate Chambers and Thin Gap Chambers to improve the accuracy in the transverse momentum measurement and control the single muon trigger rate by suppressing low quality fake triggers. The core of the MDT trigger algorithm is the segment identification and reconstruction which is performed per MDT chamber. The reconstructed segment positions and directions are then combined to extract the muon candidate’s transverse momentum. A fast pattern recognition segment finding algorithm, called the Legendre transform, is proposed to be used for the MDT trigger, implemented in a FPGA housed on a ATCA blade.

  15. A laser particulate spectrometer for a space simulation facility

    Science.gov (United States)

    Schmitt, R. J.; Boyd, B. A.; Linford, R. M. F.; Richmond, R. G.

    1975-01-01

    A laser particulate spectrometer (LPS) system was developed to measure the size and speed distributions of particulate contaminants. Detection of the particulates is achieved by means of light scattering and extinction effects using a single laser beam to cover a size range of 0.8 to 275 microns diameter and a speed range of 0.2 to 20 meters/second. The LPS system was designed to operate in the high-vacuum environment of a space simulation chamber with cold shroud temperatures ranging from 77 to 300 K.

  16. The (di)muon physics in the ALICE experiment at the LHC: light vector meson analysis (ρ, ω, φ) in pp collisions [√(s)=7 TeV], Pb-Pb collisions [√(sNN)=2.76 TeV] and study of a new silicon tracker in the muon spectrometer acceptance

    International Nuclear Information System (INIS)

    Massacrier, L.

    2011-01-01

    ALICE experiment at LHC studies the Quark Gluon Plasma (QGP), a particular state of matter where quarks and gluons are deconfined. A probe to explore this state is the study of several resonances (ρ, ω, φ, J/ψ and Υ) through their dimuon decay channel, with a muon spectrometer covering pseudo-rapidity -4 NN )=2.76 TeV. Light vector mesons are powerful tools to probe the QGP due to their short lifetime and their dimuon decay channel. Indeed, leptons have negligible final state interactions. Production rates and spectral functions of those mesons are modified by the hot hadronic and QGP medium. Chiral symmetry restoration study is done thanks to the study of ρ spectral function. Strangeness enhancement is accessed via the ratio of φ over ρ + ω yields as a function of the centrality of the collision. In pp analysis, the emphasis is on background understanding and on first physics results such as φ yield over ρ + ω yield as a function of p T , and p T distributions of φ and ρ + ω. Cross sections and p T -differential cross sections of light mesons will also be shown. The Pb-Pb analysis and its prospects will be presented. The second part of the thesis concerns ALICE upgrade plans of year 2017. A feasibility study for a Muon Forward Tracker (MFT) in Silicon pixels located upstream of the hadronic absorber in the spectrometer acceptance was performed. This upgrade is mainly motivated by the improvement of the dimuon invariant mass resolution and secondary vertex measurement. This gives access to open charm and beauty direct study in single muon channel. Prompt J/ψ can also be distinguished from B feed-down J/ψ, allowing a better study of a QGP signature: the 'J/ψ suppression' in ultra-relativistic heavy ion collisions. MFT performances on those different topics were established in simulations. The track matching algorithm to match MFT tracks with spectrometer tracks (a crucial step for the feasibility of the project) and its results are presented

  17. Hermeticity control system for the BMS/BMF-MDT chambers of the muon spectrometer of ATLAS experiment

    International Nuclear Information System (INIS)

    Barashkov, A.V.; Glonti, G.L.; Gongadze, A.L.; Dedovich, D.V.; Demichev, M.A.; Zhemchugov, A.S.; Il'yushenko, E.N.; Korolevich, Ya.V.; Kruchonok, V.G.; Lomidze, D.D.; Nikolaev, K.V.; Kharchenko, D.V.; Tskhadadze, Eh.G.; Chepurnov, V.F.; Shelkov, G.A.; Shcherbakov, A.A.

    2005-01-01

    Description of hermeticity certification of the JINR made muon chambers for the ATLAS experiment is presented. A high precision stand was installed in the production area of the DLNP, JINR. The description of the stand and results of the measurements and the description and results of the second testing of the drift chambers carried out after transportation to CERN are presented

  18. Simulations for a compact electron-positron spectrometer

    International Nuclear Information System (INIS)

    Filep, T.; Krasznahorkay, A.; Csatlos, M.; Gulyas, J.

    2011-01-01

    Complete text of publication follows. In the frame of the ENSAR (FP7) project, we are constructing a Compact Positron- Electron spectrometer (COPE) using toroidal magnetic field. It will be used for studying the internal pair creation process in nuclear transitions. It will look like a miniaturized model of the ATLAS spectrometer at CERN at a scale of 1:100. The mean design parameters are high efficiency, good energy resolution and precise angle reconstruction. By our plans the size of this spectrometer would be limited to a diameter of about 30 cm and length about 20 cm, having 1 % energy- and 2deg angular resolutions. The solid angle of the planned spectrometer will be 2π. It is necessary to develop a geometry in which the inhomogeneity of the field can be easily handled. Prior to the construction it was necessary to perform computer simulations in order to avoid rough construction mistakes. The better approach of the reality with simulations is very important. The problem what we have to solve is very complicated. We need to simulate the magnetic field and trajectory of the particle moving in that field. We started our simulations using the PerMag software package. >From the result we learned the followings: 1) It has no meaning to cover the magnets with iron coat because it complicates the magnetic field. 2) It is not a good idea to form the magnetic one-segment from a big magnet and 12 smaller magnets. The fringing field of the small magnets significantly modifies the magnetic field distribution around the segment. On the other hand the construction of one segment from pieces is very difficult in reality. 3) The best shape for a segment which can easily be constructed is simple box. The PerMag package could simulate the magnetic field only in 2D, but we wanted to do more precise simulation in 3D. The free package developed by the European Synchrotron Radiation Facility (ESRF) was used for the simulation of the magnetic field applying the finite element method

  19. spectrometer

    Directory of Open Access Journals (Sweden)

    J. K. Hedelius

    2016-08-01

    Full Text Available Bruker™ EM27/SUN instruments are commercial mobile solar-viewing near-IR spectrometers. They show promise for expanding the global density of atmospheric column measurements of greenhouse gases and are being marketed for such applications. They have been shown to measure the same variations of atmospheric gases within a day as the high-resolution spectrometers of the Total Carbon Column Observing Network (TCCON. However, there is little known about the long-term precision and uncertainty budgets of EM27/SUN measurements. In this study, which includes a comparison of 186 measurement days spanning 11 months, we note that atmospheric variations of Xgas within a single day are well captured by these low-resolution instruments, but over several months, the measurements drift noticeably. We present comparisons between EM27/SUN instruments and the TCCON using GGG as the retrieval algorithm. In addition, we perform several tests to evaluate the robustness of the performance and determine the largest sources of errors from these spectrometers. We include comparisons of XCO2, XCH4, XCO, and XN2O. Specifically we note EM27/SUN biases for January 2015 of 0.03, 0.75, –0.12, and 2.43 % for XCO2, XCH4, XCO, and XN2O respectively, with 1σ running precisions of 0.08 and 0.06 % for XCO2 and XCH4 from measurements in Pasadena. We also identify significant error caused by nonlinear sensitivity when using an extended spectral range detector used to measure CO and N2O.

  20. Analysis of the physical simulation on Fourier transform infrared spectrometer

    Science.gov (United States)

    Yue, Peng-yuan; Wan, Yu-xi; Zhao, Zhen

    2017-10-01

    A kind of oscillating arm type Fourier Transform Infrared Spectrometer (FTS) which based on the corner cube retroreflector is presented, and its principle and properties are studied. It consists of a pair of corner cube retroreflector, beam splitter and compensator. The optical path difference(OPD) is created by oscillating reciprocating motion of the moving corner cube pair, and the OPD value is four times the physical shift value of the moving corner cube pair. Due to the basic property of corner cube retroreflector, the oscillating arm type FTS has no tilt problems. It is almost ideal for very high resolution infrared spectrometer. However, there are some factors to reduce the FTS capability. First, wavefront aberration due to the figures of these surfaces will reduce modulation of FTS system; second, corner cube retroreflector consist of three plane mirror, and orthogonal to each other. When there is a deviation from right angle, it will reduced the modulation of system; third, the apexes of corner cube retroreflector are symmetric about the surface of beam splitter, if one or both of the corner cube retroreflector is displaced laterally from its nominal position, phase of off-axis rays returning from the two arms were difference, this also contributes to loss of modulation of system. In order to solve these problems, this paper sets up a non-sequential interference model, and a small amount of oscillating arm rotation is set to realize the dynamic simulation process, the dynamic interference energy data were acquired at different times, and calculated the modulation of the FTS system. In the simulation, the influence of wedge error of beam splitter, compensator or between them were discussed; effects of oscillating arm shaft deviation from the coplanar of beam splitter was analyzed; and compensation effect of corner cube retroreflector alignment on beam splitter, oscillating arm rotary shaft alignment error is analyzed. In addition, the adjustment procedure

  1. Comparison of Muon Arrival Time Distributions measured in KASCADE Experiment with Monte Carlo Simulations

    International Nuclear Information System (INIS)

    Badea, A.F.; Brancus, I.M.; Haeusler, R.; Rebel, H.

    2000-01-01

    The muon arrival time distributions of Extensive Air Showers (EAS) have been studied in KASCADE experiment by data collected in the period October 1997 - April 1999 with more than 3.4 millions of reconstructed showers. The radial distance of the shower center from the central detector has been selected smaller than 110 m. The experimental muon arrival time distributions are compared with simulations of the air shower development, calculated with the Monte Carlo air shower simulation program CORSIKA. The actual calculations are based on the QGSJET model and cover an energy range of 5·10 14 - 3.06·10 16 eV (divided in 7 overlapping energy bins) and a zenith angle range of 0 angle - 40 angle. They are performed for three mass groups: H = light group, O = CNO group, Fe = heavy group) with an energy distribution of a spectral index of -2.7. The simulations comprise a set of ≅ 2000$ showers for each case, except for the bins of the highest energies (6.51·10 15 - 1.82·10 16 eV with ≅1000$ simulated showers and 1.09·10 16 - 3.06·10 16 eV with ≅ 500 simulated showers). The response of the KASCADE detector system and the timing qualities have been simulated using the CRES program, dedicatedly developed by the KASCADE group on the basis of the GEANT code. The particles of the simulated EAS are tracked through the detector setup and the timing response of the detectors are recorded for various core distances from the central detector facilities. Particularly, it should be noted that the timing depends on the energy deposit in the scintillation detectors and on the multiplicities of the muon samples spanning the arrival time distributions of the single EAS. Such effects slightly distorts the measured time distributions and have been corrected by introducing a corresponding correction procedure. The dependence of the experimental and simulated median time values on the N μ tr range, as being proportional to the primary energy, is presented. The good agreement of the

  2. Studies of ageing effects of Small-Strip Thin Gap Chambers for the Muon Spectrometer Upgrade of the ATLAS Experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00425540; The ATLAS collaboration

    2016-01-01

    The instantaneous luminosity of the Large Hadron Collider at CERN will be increased by up to seven times its design value by undergoing an extensive upgrade program over the coming decade. The largest upgrade project for the ATLAS Muon System is the replacement of the present first station in the forward regions with the so-called New Small Wheels (NSWs), to be installed during the LHC long shutdown in 2019-2020. Small-Strip Thin Gap Chambers (sTGC) detectors are one chosen technology to provide fast trigger and high precision muon tracking under the high luminosity LHC conditions. The basic sTGC structure consists of a grid of gold-plated tungsten wires sandwiched between two resistive cathode planes at a small distance from the wire plane. We study ageing effects of sTGC detectors with a gas mixture of 55\\% of CO$_{2}$ and 45\\% of n-pentane. A sTGC detector was irradiated with beta-rays from a 10~mCi~$^{90}$Sr source. Three different gas flow rates were tested. We observed no deterioration on pulse height o...

  3. Studies of ageing effects of Small-Strip Thin Gap Chambers for the Muon Spectrometer Upgrade of the ATLAS Experiment

    CERN Document Server

    Gignac, Matthew; The ATLAS collaboration

    2016-01-01

    The instantaneous luminosity of the Large Hadron Collider at CERN will be increased up to a factor of five with respect to the design value by undergoing an extensive upgrade program over the coming decade. The largest upgrade project for the ATLAS Muon System is the replacement of the present first station in the forward regions with the so-called New Small Wheels (NSWs), to be installed during the LHC long shutdown in 2019/20. Small-Strip Thin Gap Chambers (sTGC) detectors are one chosen technology to provide fast trigger and high precision muon tracking under the high luminosity LHC conditions. The basic sTGC structure consists of a grid of gold-plated tungsten wires sandwiched between two resistive cathode planes at a small distance from the wire plane. We study ageing effects of sTGC detectors with a gas mixture of 55% of CO_2 and 45% of n-pentane. A sTGC detector was irradiated with beta-rays from a Sr-90 source. Three different gas flow rates were tested. We observed no deterioration on pulse height of...

  4. Construction and Quality Assurance of Large Area Resistive Strip Micromegas for the Upgrade of the ATLAS Muon Spectrometer

    CERN Document Server

    Losel, Philipp Jonathan; The ATLAS collaboration

    2017-01-01

    To cope with the increased background induced hit rate of up to ~15 kHz/cm$^2$ in the innermost stations of the muon endcap system of the ATLAS experiment after the high-luminosity upgrade of the LHC, the currently used precision detectors will be replaced by resistive strip Micromegas in 2019. In the "New Small Wheel" the Micromegas will be arranged in two times four detection layers built of trapezoidally shaped quadruplets of four different sizes.The Micromegas quadruplets will consist of 5 panels, 3 drift panels and 2 readout panels, made of aluminum honeycomb core sandwiched by printed circuit boards (PCBs). To achieve 15% transverse momentum resolution for 1 TeV muons and thus a spatial resolution in a single plane of about 100 $\\mu$m, each active plane has to have an accuracy of 80 $\\mu$m perpendicular to the plane and the alignment of the readout strips on the individual PCBs and particularly the alignment within a quadruplet must fulfill a challenging precision of 30 $\\mu$m. The required mechanical p...

  5. The high-precision x-ray tomograph for quality control of the ATLAS MDT muon spectrometer

    CERN Document Server

    Drakoulakos, D G; Maugain, J M; Rohrbach, F; Sedykh, Yu

    1997-01-01

    For the Large Hadron Collider (LHC) of the next millennium, a large general-purpose high-energy physics experiment, the ATLAS project, is being designed by a world-wide collaboration. One of its detectors, the ATLAS muon tracking detector, the MDT project, is on the scale of a very large industrial project: the design, the construction and assembly of twelve hundred large muon drift chambers are aimed at producing an exceptional quality in terms of accuracy, material reliability, assembly, and monitoring. This detector, based on the concept of very high mechanical precision required by the physics goals, will use tomography as a quality control platform. An X-ray tomograph prototype, monitored by a set of interferometers, has been developed at CERN to provide high-quality control of the MDT chambers which will be built in the collaborating institutes of the ATLAS project. First results have been obtained on MDT prototypes showing the validity of the X-ray tomograph approach for mechanical control of the detec...

  6. Performance simulation of the X-ray spectrometer in Chang'E-1 satellite payload

    International Nuclear Information System (INIS)

    Cao Xuelei; Wang Huanyu; Zhang Chengmo; Chen Yong; Yang Jiawei; Wang JInzhou; Liang Xiaohua; Gao Min; Zhang Jiayu; Ma Guofeng

    2007-01-01

    We discuss the performance simulation of the X-ray Spectrometer in Chang'E-1 satellite based on Geant4 system. It is divided in three parts, the efficiency simulation, the energy spectrum response and direction response. It provides the guidance on making the spectrometer. (authors)

  7. Simulations of the muon-induced neutron background of the EDELWEISS-II experiment for Dark Matter search

    International Nuclear Information System (INIS)

    Horn, O.M.

    2007-01-01

    In modern astroparticle physics and cosmology, the nature of Dark Matter is one of the central problems. Particle Dark Matter in form of WIMPs is favoured among many proposed candidates. The EDELWEISS direct Dark Matter search uses Germanium bolometers to detect these particles by nuclear recoils. Here, the use of two signal channels on an event-by-event basis, namely the heat and ionisation signal, enables the detectors to discriminate between electron and nuclear recoils. This technique leaves neutrons in the underground laboratory as the main background for the experiment. Besides (α,n) reactions of natural radioactivity, neutrons are produced in electromagnetic and hadronic showers induced by cosmic ray muons in the surrounding rock and shielding material of the Germanium crystals. To reach high sensitivities, the EDELWEISS-II experiment, as well as other direct Dark Matter searches, has to efficiently suppress this neutron background. The present work is devoted to study the muon-induced neutron flux in the underground laboratory LSM and the interaction rate within the Germanium crystals by using the Monte Carlo simulation toolkit Geant4. To ensure reliable results, the implemented physics in the toolkit regarding neutron production is tested in a benchmark geometry and results are compared to experimental data and other simulation codes. Also, the specific energy and angular distribution of the muon flux in the underground laboratory as a consequence of the asymmetric mountain overburden is implemented. A good agreement of the simulated muon flux is shown in a comparison to preliminary experimental data obtained with the EDELWEISS-II muon veto system. Furthermore, within a detailed geometry of the experimental setup, the muon-induced background rate of nuclear recoils in the bolometers is simulated. Coincidences of recoil events in the Germanium with an energy deposit of the muoninduced shower in the plastic scintillators of the veto system are studied to

  8. Simulations of the muon-induced neutron background of the EDELWEISS-II experiment for Dark Matter search

    Energy Technology Data Exchange (ETDEWEB)

    Horn, O M

    2007-12-21

    In modern astroparticle physics and cosmology, the nature of Dark Matter is one of the central problems. Particle Dark Matter in form of WIMPs is favoured among many proposed candidates. The EDELWEISS direct Dark Matter search uses Germanium bolometers to detect these particles by nuclear recoils. Here, the use of two signal channels on an event-by-event basis, namely the heat and ionisation signal, enables the detectors to discriminate between electron and nuclear recoils. This technique leaves neutrons in the underground laboratory as the main background for the experiment. Besides ({alpha},n) reactions of natural radioactivity, neutrons are produced in electromagnetic and hadronic showers induced by cosmic ray muons in the surrounding rock and shielding material of the Germanium crystals. To reach high sensitivities, the EDELWEISS-II experiment, as well as other direct Dark Matter searches, has to efficiently suppress this neutron background. The present work is devoted to study the muon-induced neutron flux in the underground laboratory LSM and the interaction rate within the Germanium crystals by using the Monte Carlo simulation toolkit Geant4. To ensure reliable results, the implemented physics in the toolkit regarding neutron production is tested in a benchmark geometry and results are compared to experimental data and other simulation codes. Also, the specific energy and angular distribution of the muon flux in the underground laboratory as a consequence of the asymmetric mountain overburden is implemented. A good agreement of the simulated muon flux is shown in a comparison to preliminary experimental data obtained with the EDELWEISS-II muon veto system. Furthermore, within a detailed geometry of the experimental setup, the muon-induced background rate of nuclear recoils in the bolometers is simulated. Coincidences of recoil events in the Germanium with an energy deposit of the muoninduced shower in the plastic scintillators of the veto system are studied

  9. ATLAS Muon Drift Tube Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Y [KEK, High Energy Accelerator Research Organisation, Tsukuba (Japan); Ball, B; Chapman, J W; Dai, T; Ferretti, C; Gregory, J [University of Michigan, Department of Physics, Ann Arbor, MI (United States); Beretta, M [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Boterenbrood, H; Jansweijer, P P M [Nikhef National Institute for Subatomic Physics, Amsterdam (Netherlands); Brandenburg, G W; Fries, T; Costa, J Guimaraes da; Harder, S; Huth, J [Harvard University, Laboratory for Particle Physics and Cosmology, Cambridge, MA (United States); Ceradini, F [INFN Roma Tre and Universita Roma Tre, Dipartimento di Fisica, Roma (Italy); Hazen, E [Boston University, Physics Department, Boston, MA (United States); Kirsch, L E [Brandeis University, Department of Physics, Waltham, MA (United States); Koenig, A C [Radboud University Nijmegen/Nikhef, Dept. of Exp. High Energy Physics, Nijmegen (Netherlands); Lanza, A [INFN Pavia, Pavia (Italy); Mikenberg, G [Weizmann Institute of Science, Department of Particle Physics, Rehovot (Israel)], E-mail: brandenburg@physics.harvard.edu (and others)

    2008-09-15

    This paper describes the electronics used for the ATLAS monitored drift tube (MDT) chambers. These chambers are the main component of the precision tracking system in the ATLAS muon spectrometer. The MDT detector system consists of 1,150 chambers containing a total of 354,000 drift tubes. It is capable of measuring the sagitta of muon tracks to an accuracy of 60 {mu}m, which corresponds to a momentum accuracy of about 10% at p{sub T}= 1 TeV. The design and performance of the MDT readout electronics as well as the electronics for controlling, monitoring and powering the detector will be discussed. These electronics have been extensively tested under simulated running conditions and have undergone radiation testing certifying them for more than 10 years of LHC operation. They are now installed on the ATLAS detector and are operating during cosmic ray commissioning runs.

  10. ATLAS Muon Drift Tube Electronics

    CERN Document Server

    Arai, Y; Beretta, M; Boterenbrood, H; Brandenburg, G W; Ceradini, F; Chapman, J W; Dai, T; Ferretti, C; Fries, T; Gregory, J; Guimarães da Costa, J; Harder, S; Hazen, E; Huth, J; Jansweijer, P P M; Kirsch, L E; König, A C; Lanza, A; Mikenberg, G; Oliver, J; Posch, C; Richter, R; Riegler, W; Spiriti, E; Taylor, F E; Vermeulen, J; Wadsworth, B; Wijnen, T A M

    2008-01-01

    This paper describes the electronics used for the ATLAS monitored drift tube (MDT) chambers. These chambers are the main component of the precision tracking system in the ATLAS muon spectrometer. The MDT detector system consists of 1,150 chambers containing a total of 354,000 drift tubes. It is capable of measuring the sagitta of muon tracks to an accuracy of 60 microns, which corresponds to a momentum accuracy of about 10% at pT = 1 TeV. The design and performance of the MDT readout electronics as well as the electronics for controlling, monitoring and powering the detector will be discussed. These electronics have been extensively tested under simulated running conditions and have undergone radiation testing certifying them for more than 10 years of LHC operation. They are now installed on the ATLAS detector and are operating during cosmic ray commissioning runs.

  11. Design, simulation and construction of the GERDA-muon veto; Design, Simulation und Aufbau des GERDA-Myonvetos

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Markus Alexander

    2009-10-09

    The GERmanium Detector Array (Gerda) is a experiment searching for the neutrinoless double beta decay of {sup 76}Ge. This very rare weakly interacting process is predicted to occur if the neutrino exhibits a mass and is a Majorana particle; i.e. it is its own antiparticle. Although the double beta decay with emission of two neutrinos has been found in several nuclei, there is at this moment only a part of the Heidelberg-Moscow Collaboration claiming to have observed the neutrinoless double beta decay. The best limit for the half life currently is T{sub 1/2} > 1.2.10{sup 25} y. Gerda will expose about 15 kg.y of enriched germanium detectors from the Heidelberg-Moscow and IGEX crystals in phase I. In this phase, it will be able to test the claim within one year, due to reduced background by a factor 10. In phase II about 100 kg.y of data will be accumulated, leading to T{sub 1/2} > 2.10{sup 26} y due to an additional reduction of the background by a factor of 10. For a high sensitivity at these half lives, it is necessary to detect the corresponding rare events. Therefore background reduction to a rate of 10{sup -3} (counts)/(keV.kg.year) is of utmost importance. Therefore different background identification methods, like pulseshape analysis or a muon veto will be used. In this work, the development of the Cherenkov muon veto detectors is presented. First design studies will be shown, including extensive Monte-Carlo simulations. These simulations were also used to optimize the trigger conditions of the data acquisition, to detect all muons, that cause an energy deposition in the germanium detectors. Finally the on site construction at the Laboratori Nazionali del Gran Sasso in Italy will be described. (orig.)

  12. Performance of the Alice muon spectrometer. Weak boson production and measurement in heavy-ion collisions at LHC; Performance du spectrometre a muons d'ALICE. Production et mesure des bosons faibles dans des collisions d'ions lourds aupres du LHC

    Energy Technology Data Exchange (ETDEWEB)

    Conesa del valle, Z

    2007-07-15

    Lattice QCD predicts a transition from a hadronic phase to a Quark Gluon Plasma phase, QGP, for temperatures above 10{sup 13} K. Heavy-ion collisions are proposed to recreate it in laboratory. With such a purpose, the LHC (Large Hadron Collider) will provide Pb-Pb collisions at 5.5 TeV/u, and the ALICE experiment will permit to explore them. In particular, the ALICE muon spectrometer will permit to investigate the muon related probes (quarkonia, open beauty,...). The expected apparatus performances to measure muons and dimuons are discussed. A factorization technique is employed to unravel the different contributions to the global efficiency. Results indicate that the detector should be able to measure muons up to pT {approx} 100 GeV/c with a resolution of about 10 per cent. We show that weak bosons production could be measured for the first time in heavy-ion collisions. Single muon p{sub T} and dimuons invariant mass distributions will probe W and Z production. As mainly muons from b- and c-quarks decays will populate the intermediate-p{sub T} of 5 - 25 GeV/c, heavy quark in-medium energy loss calculations indicate that the single muon spectra would be suppressed by a factor 2-4 in the most central 0 - 10% Pb-Pb collisions at 5.5 TeV. However, for p{sub T} > 35 GeV/c the weak boson decays are predominant, and no suppression is expected. Estimations indicate that the b- and W-muons crossing point shifts down in transverse momenta by 5 to 7 GeV/c in the most central 0 - 10% Pb-Pb collisions at 5.5 TeV. (author)

  13. Optimisation of the muon spectrometer from the detector ALICE used for the study of the quark and gluon plasma at LHC; Optimisation du spectrometre a muons du detecteur ALICE pour l'etude du plasma de quarks et de gluons au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Guernane, R

    2001-01-01

    The ALICE experiment performed at the LHC will establish and study the phase transition from hadronic matter to a matter to a state of deconfined partons called Quark Gluon Plasma (QGP). The suppression of heavy flavour resonances (J{phi},{gamma}) is the most promising probe for diagnosing the formation and early stages of the QGP in ultrarelativistic heavy ion collisions. The complete spectrum of heavy quarkonia resonances, i.e. J/{phi}, {phi}', {gamma}, {gamma}' and {phi}' will be measured via their muonic decay in a forward spectrometer with a mass resolution sufficient to separate all states. It is composed of five tracking stations, each consisting of two Cathode Pad Chambers (CPC). In this work, we developed a prototype of CPC having the original feature of parallel charge read out from one segmented cathode. The geometry and operating parameters have been optimized for station 3. The expected multi-hit rate and multi-hit deconvolution have been evaluated with a complete detailed simulation and an efficient method to disentangle close hits has been proposed. The magnetic field effect on the intrinsic spatial resolution of the chambers has also been estimated. The simulated performance of the CPC's is confirmed by beam-test results obtained at CERN with prototypes. The measurement of dimuons is expected to be contaminated by beam-related background. The rate of beam-gas interactions is several orders of magnitude larger than the signal rate for p-p collisions which is the reference for further studies of p-A and A-A collisions. The ALICE Collaboration decided to equip the muon spectrometer with a level 0 trigger counter (V0) in order to validate the dimuon trigger signal in p-p mode. The various steps involved in designing the V0 scintillator hodoscope are presented in this thesis. (author)

  14. Simulation of the peak efficiency for a stacked NaI(Tl) spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, H; Murohka, H; Anami, K; Nohtomi, A; Uozumi, Y; Sakae, T; Matoba, M [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering; Koori, N; Maki, T

    1996-07-01

    A stacked NaI(Tl) spectrometer has been developed to measure proton spectra in wide energy range. In the measurement of charged particles with intermediate energy, the detecting efficiency of the spectrometer decreases considerably due to nuclear reactions or out-scattering in the detector material. A Monte Carlo simulation code has been developed to estimate the peak efficiency (peak-to-total ratio) of the spectrometer. The calculated efficiency for intermediate energy is in good agreement with the experimental one. (author)

  15. Design and performance simulation of a segmented-absorber based muon detection system for high energy heavy ion collision experiments

    International Nuclear Information System (INIS)

    Ahmad, S.; Bhaduri, P.P.; Jahan, H.; Senger, A.; Adak, R.; Samanta, S.; Prakash, A.; Dey, K.; Lebedev, A.; Kryshen, E.; Chattopadhyay, S.; Senger, P.; Bhattacharjee, B.; Ghosh, S.K.; Raha, S.; Irfan, M.; Ahmad, N.; Farooq, M.; Singh, B.

    2015-01-01

    A muon detection system (MUCH) based on a novel concept using a segmented and instrumented absorber has been designed for high-energy heavy-ion collision experiments. The system consists of 6 hadron absorber blocks and 6 tracking detector triplets. Behind each absorber block a detector triplet is located which measures the tracks of charged particles traversing the absorber. The performance of such a system has been simulated for the CBM experiment at FAIR (Germany) that is scheduled to start taking data in heavy ion collisions in the beam energy range of 6–45 A GeV from 2019. The muon detection system is mounted downstream to a Silicon Tracking System (STS) that is located in a large aperture dipole magnet which provides momentum information of the charged particle tracks. The reconstructed tracks from the STS are to be matched to the hits measured by the muon detector triplets behind the absorber segments. This method allows the identification of muon tracks over a broad range of momenta including tracks of soft muons which do not pass through all the absorber layers. Pairs of oppositely charged muons identified by MUCH could therefore be combined to measure the invariant masses in a wide range starting from low mass vector mesons (LMVM) up to charmonia. The properties of the absorber (material, thickness, position) and of the tracking chambers (granularity, geometry) have been varied in simulations of heavy-ion collision events generated with the UrQMD generator and propagated through the setup using the GEANT3, the particle transport code. The tracks are reconstructed by a Cellular Automaton algorithm followed by a Kalman Filter. The simulations demonstrate that low mass vector mesons and charmonia can be clearly identified in central Au+Au collisions at beam energies provided by the international Facility for Antiproton and Ion Research (FAIR)

  16. Results from a complete simulation study of the RPC based muon trigger system for the CMS experiment

    CERN Document Server

    Altieri, S; Bruno, G; Guida, R; Merlo, M; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P; Abbrescia, M; Colaleo, A; Iaselli, Giuseppe; Loddo, F; Maggi, M; Marangelli, B; Natali, S; Nuzzo, S; Pugliese, G; Ranieri, A; Romano, F

    2001-01-01

    The performance of the Resistive Plate Chambers-based muon trigger of the CMS detector has been studied by means of a full simulation of the system under realistic operating conditions. Requirements on the performance of the chambers are deduced. (6 refs).

  17. Software for simulation of a computed tomography imaging spectrometer using optical design software

    Science.gov (United States)

    Spuhler, Peter T.; Willer, Mark R.; Volin, Curtis E.; Descour, Michael R.; Dereniak, Eustace L.

    2000-11-01

    Our Imaging Spectrometer Simulation Software known under the name Eikon should improve and speed up the design of a Computed Tomography Imaging Spectrometer (CTIS). Eikon uses existing raytracing software to simulate a virtual instrument. Eikon enables designers to virtually run through the design, calibration and data acquisition, saving significant cost and time when designing an instrument. We anticipate that Eikon simulations will improve future designs of CTIS by allowing engineers to explore more instrument options.

  18. Quality control of a 2 m{sup 2} Micromegas detector for the ATLAS muon spectrometer upgrade project using contact CCDs

    Energy Technology Data Exchange (ETDEWEB)

    Biebel, Otmar; Hertenberger, Ralf; Wagner-Kuhr, Jeannine [LMU, Munich (Germany); Wellenstein, Hermann [Brandeis University, Waltham (United States)

    2016-07-01

    The inner endcap region of the ATLAS muon spectrometer, the Small Wheel, will be upgraded in 2019 using Micromegas detectors to retain the tracking performance after the LHC luminosity upgrade. In the new Small Wheel Micromegas detectors will be arranged in trapezoidal quadruplets of four active layers each and 2-3 m{sup 2} in size. Guaranteeing the design spatial resolution of 100 μm poses a huge challenge for the mechanical precision of each readout plane and the alignment between the 4 planes. We report about a novel optical alignment tool based on Contact CCDs and coded masks which will be used for the quality control during the construction of the Micromegas detectors. Using pictures of an arbitrary cutout of a coded mask on a readout board taken by a Contact CCD the relative position of the mask with respect to the center of the Contact-CCD can be determined on sub μm accuracy. Together with a calibrated reference device the position of masks within a single plane but also within a quadruplet can be measured with high precision allowing to monitor the relative position of the 3 PowerCircuitBoards within a single plane and the relative alignment between the different planes in a quadruplet. In this presentation the ideas of this new optical alignment tool are shown as well as first quality control studies using a Contact-CCD.

  19. Construction and QA/QC of the Micromegas Pavia Readout Panels for the Muon Spectrometer Upgrade of the ATLAS New Small Wheel

    CERN Document Server

    Kourkoumeli-Charalampidi, Athina; The ATLAS collaboration

    2016-01-01

    In order to cope with the required precision tracking and trigger capabilities from Run III onwards in the ATLAS experiment, the innermost layer of the Muon Spectrometer endcap (Small Wheels) will be upgraded. The New Small Wheel (NSW) will be equipped with eight layers of MicroMegas (MM) detectors and eight layers of small-strip Thin Gap Chambers (sTGC), both arranged in two quadruplets. MM detectors of large size (up to 3 m$^2$) will be employed for the first time in HEP experiments. Four different types of MM quadruplets modules (SM1, SM2, LM1, LM2), built by different Institutes, will compose the NSW. The Italian INFN is responsible for the construction of the SM1 modules. The construction is shared among different INFN sites, Pavia being responsible for the readout panel construction. Due to the challenging mechanical specifications (with precisions of tens microns over meters), the construction procedure has been optimized to obtain the required strip alignment precision in the panel. A number of data q...

  20. Construction and QA/QC of the MicroMegas Pavia Readout Panels for the Muon Spectrometer Upgrade of the ATLAS Experiment

    CERN Document Server

    Kourkoumeli-Charalampidi, Athina; The ATLAS collaboration

    2016-01-01

    In order to cope with the required precision tracking and trigger capabilities during Run III in ATLAS experiment, the innermost layer of the Muon Spectrometer endcap (Small Wheels) will be upgraded. The New Small Wheel (NSW) will be equipped with eight layers of MicroMegas (MM) detectors and eight layers of small-strip Thin Gap Chambers (sTGC), both arranged in two quadruplets. MM detectors of large size (up to 2 $m^{2}$) will be employed for the first time in HEP experiments. Four different types of MM quadruplets modules (SM1, SM2, LM1, LM2), built by different Institutes, will compose the NSW. Italian INFN is responsible for the construction of the SM1 modules. The construction is shared among different INFN sites. In particular, readout panels are built in Pavia. Due to the challenging mechanical specifications (with precisions of tens microns over meters), the construction procedure has been optimized to obtain the required strip alignment precision in the panel. A number of data quality checks on both ...

  1. The first Module0 MicroMegas Chamber for the New Small Wheel Upgrade of the ATLAS Muon Spectrometer: Features and Performances

    CERN Document Server

    Palazzo, Serena; The ATLAS collaboration

    2017-01-01

    After the second long shutdown (LS2) in 2019-2020, the LHC luminosity will be increased up to 2-3$\\cdot$10$^{34}$ cm$^{-2}$ s$^{-1}$ in Phase$-$1 and eventually to 7$\\cdot$10$^{34}$ cm$^{-2}$ s$^{-1}$ in the High Luminosity LHC era. While high luminosity will provide more data, it is essential that the ATLAS detectors are still able to operate in the higher background environment maintaining their performances as good as that at lower luminosities. To obtain this, some of the detectors that are located nearest to the beam pipe have to be replaced. For the upgrade of the ATLAS Muon Spectrometer the present Small Wheel equipped with CSC, MDT and TGC chambers will be replaced the New Small Wheel. This will contain two new detector types: the MicroMegas (MM) and the small-strip TGC (sTGC). The first Module-0 of Micromegas quadruplet has been built by a consortium of several INFN groups in Italy and tested with high energy particles at the H8 SPS Test Beam experimental area at CERN in June 2016. The construction o...

  2. Muon reconstruction efficiency, momentum scale and resolution in pp collisions at 8TeV with ATLAS

    CERN Document Server

    Dimitrievska, A; The ATLAS collaboration

    2014-01-01

    The ATLAS experiment identifies and reconstructs muons with two high precision tracking systems, the Inner Detector and the Muon Spectrometer, which provide independent measurements of the muon momentum. This poster summarizes the performance of the combined muon reconstruction in terms of reconstruction efficiency, momentum scale and resolution. Data-driven techniques are used to derive corrections to be applied to simulation in order to reproduce the reconstruction efficiency, momentum scale and resolution as observed in experimental data, and to asses systematic uncertainties on these quantities. The analysed dataset corresponds to an integrated luminosity of 20.4 fb−1 from 8 TeV pp collisions recorded in 2012.

  3. Simulation studies of the information content of muon arrival time observations of high energy extensive air showers

    International Nuclear Information System (INIS)

    Brancus, I.; Duma, M.; Badea, A. F.; Aiftimiei, C.; Rebel, M. H.; Oehlschlaeger, J.

    2001-01-01

    By extensive Monte Carlo calculations, using the air shower simulation code CORSIKA, EAS muon arrival time distributions and EAS time profiles up to 320 m distances from the shower centre have been generated, for proton, oxygen and iron induced showers using different hadronic interaction models as Monte Carlo generators. The model dependence and mass discriminating features have been scrutinized for three energy ranges, (1-1.7783) 10 15 eV, (1.-1.78) 10 16 eV and (1.78-3.16) 10 16 eV, by use of non-parametric statistical inference method applied to multidimensional distributions, correlating the EAS time quantities with different other EAS observables. The correlations of local muon arrival times with the local muon density and the shower age indicate a good mass separation quality at larger shower distances. The best discrimination was obtained by adding the correlation with N μ tr quantity. The comparison between 'local times', with reference to the first registered muon and 'global times' with reference to the arrival time of the shower core, indicates a slightly better mass discrimination in the case of muon 'global' time distributions. (authors)

  4. The Active Muon Shield

    CERN Document Server

    Bezshyiko, Iaroslava

    2016-01-01

    In the SHiP beam-dump of the order of 1011 muons will be produced per second. An active muon-shield is used to magnetically deflect these muons out of the acceptance of the spectrom- eter. This note describes how this shield is modelled and optimized. The SHiP spectrometer is being re-optimized using a conical decay-vessel, and utilizing the possibility to magnetize part of the beam-dump shielding iron. A shield adapted to these new conditions is presented which is significantly shorter and lighter than the shield used in the Technical Proposal (TP), while showing a similar performance.

  5. Electromagnetic Interactions of Muons

    CERN Multimedia

    2002-01-01

    This experiment was the first in a programme of physics experiments with high-energy muons using a large spectrometer facility. The aim of this experiment is to study the inelastic scattering of muons with various targets to try to understand better the physics of virtual photon interactions over a wide range of four-momentum transfer (q$^{2}$).\\\\ \\\\ The spectrometer includes a large aperture dipole magnet (2m x 1m) of bending power $\\simeq$5 T.m and a magnetized iron filter to distinguish the scattered muons from hadrons. Drift chambers and MWPC are used before and after the magnet to detect charged products of the interaction and to allow a momentum determination of the scattered muon to an accuracy of $\\simeq$at 100 GeV/c, and an angular definition of $\\pm$ 0.1 mrad. The triggering on scattered muons relies on three planes of scintillation counter hodoscopes before and after the magnetized iron, whose magnetic field serves to eliminate triggers from low momentum muons which are produced copiously by pion d...

  6. Search for “anomalies” from neutrino and anti-neutrino oscillations at $\\Delta_m^{2} ≈ 1eV^{2}$ with muon spectrometers and large LAr–TPC imaging detectors

    CERN Document Server

    Antonello, M; Baibussinov, B; Bilokon, H; Boffelli, F; Bonesini, M; Calligarich, E; Canci, N; Centro, S; Cesana, A; Cieslik, K; Cline, D B; Cocco, A G; Dequal, D; Dermenev, A; Dolfini, R; De Gerone, M; Dussoni, S; Farnese, C; Fava, A; Ferrari, A; Fiorillo, G; Garvey, G T; Gatti, F; Gibin, D; Gninenko, S; Guber, F; Guglielmi, A; Haranczyk, M; Holeczek, J; Ivashkin, A; Kirsanov, M; Kisiel, J; Kochanek, I; Kurepin, A; Łagoda, J; Lucchini, G; Louis, W C; Mania, S; Mannocchi, G; Marchini, S; Matveev, V; Menegolli, A; Meng, G; Mills, G B; Montanari, C; Nicoletto, M; Otwinowski, S; Palczewski, T J; Passardi, G; Perfetto, F; Picchi, P; Pietropaolo, F; Płonski, P; Rappoldi, A; Raselli, G L; Rossella, M; Rubbia, C; Sala, P; Scaramelli, A; Segreto, E; Stefan, D; Stepaniak, J; Sulej, R; Suvorova, O; Terrani, M; Tlisov, D; Van de Water, R G; Trinchero, G; Turcato, M; Varanini, F; Ventura, S; Vignoli, C; Wang, H G; Yang, X; Zani, A; Zaremba, K; Benettoni, M; Bernardini, P; Bertolin, A; Bozza, C; Brugnera, R; Cecchetti, A; Cecchini, S; Collazuol, G; Creti, P; Dal Corso, F; De Mitri, I; De Robertis, G; De Serio, M; Degli Esposti, L; Di Ferdinando, D; Dore, U; Dusini, S; Fabbricatore, P; Fanin, C; Fini, R A; Fiore, G; Garfagnini, A; Giacomelli, G; Giacomelli, R; Grella, G; Guandalini, C; Guerzoni, M; Kose, U; Laurenti, G; Laveder, M; Lippi, I; Loddo, F; Longhin, A; Loverre, P; Mancarella, G; Mandrioli, G; Margiotta, A; Marsella, G; Mauri, N; Medinaceli, E; Mengucci, A; Mezzetto, M; Michinelli, R; Muciaccia, M T; Orecchini, D; Paoloni, A; Pastore, A; Patrizii, L; Pozzato, M; Rescigno, R; Rosa, G; Simone, S; Sioli, M; Sirri, G; Spurio, M; Stanco, L; Stellacci, S; Surdo, A; Tenti, M; Togo, V; Ventura, M; Zago, M

    2012-01-01

    This proposal describes an experimental search for sterile neutrinos beyond the Standard Model with a new CERN-SPS neutrino beam. The experiment is based on two identical LAr-TPC's followed by magnetized spectrometers, observing the electron and muon neutrino events at 1600 and 300 m from the proton target. This project will exploit the ICARUS T600, moved from LNGS to the CERN "Far" position. An additional 1/4 of the T600 detector will be constructed and located in the "Near" position. Two spectrometers will be placed downstream of the two LAr-TPC detectors to greatly complement the physics capabilities. Spectrometers will exploit a classical dipole magnetic field with iron slabs, and a new concept air-magnet, to perform charge identification and muon momentum measurements in a wide energy range over a large transverse area. In the two positions, the radial and energy spectra of the nu_e beam are practically identical. Comparing the two detectors, in absence of oscillations, all cross sections and experimenta...

  7. Conceptual design and the simulation of final cooling section for a muon collider

    International Nuclear Information System (INIS)

    Skrinsky, A.N.; Zolkin, T.V.

    2009-01-01

    The scheme of final cooling for muon beams, based on using current-carrying liquid-lithium rods, is discussed. The dynamics of particles in the course of cooling taking into account the non-paraxial motion has been studied with the help of computer simulation. It is suggested to minimize the effective increase of the longitudinal emittance caused by fluctuations of ionization losses and large angular spread, by the rotation of the longitudinal phase-space portrait for arranging self-action. We have considered the non-dissipative multiple successive full emittance redistribution from the longitudinal dimension to transverse one, necessary for cooling of all degrees of freedom. This redistribution is based on special rotations of the particle six-dimensional phase space by the beam division in several streams and their consequent merging with the minimum increment of full emittance and minimal beam losses taking into account their local phase-space density. Some of the basic technical parameters of the cooling system elements have been estimated.

  8. Modeling and simulation of critical parameters of the first chamber of the dimuon arm spectrometer of the Alice experiment

    International Nuclear Information System (INIS)

    Guez, D.

    2003-10-01

    The Alice experiment that is dedicated to the study of ultra-relativistic heavy ion collisions, will take place in the future large hadron collider (LHC) at CERN. The dimuon arm spectrometer of the Alice experiment is devoted to the search of a new signature of the existence of the quark gluon plasma (QGP). The first chapter is dedicated to the physics notions linked to the study of QGP, a few signatures are proposed for the detection of QGP, particularly the signature concerning the production rate of quarkonium. The second chapter deals with particle detection involved in Alice experiment, the dimuon arm spectrometer is a detector dedicated to the track reconstruction of muons issued from the decay of heavy mesons from J/Ψ and Υ families. The third and the fourth chapters present the studies made to integrate a reliable model of the dimuon arm in the global simulation code of Alice (Aliroot). The fifth chapter presents the software TB 2 that has been developed within the framework of this thesis in order to check and control the output data when the detector is tested with a real particle beam. The sixth chapter presents the results of the tests that have been performed with a 7 GeV/c pion beam. These tests have shown that the electronic noise is coherent with the specifications of Alice experiment. A factor 1,8 between the highest and the weakest values of the gain has been measured in the chamber. The detection efficiency of the chamber has been estimated to 99% in the different cases studied. (A.C.)

  9. RPCs as trigger detector for the ATLAS experiment performances, simulation and application to the level-1 di-muon trigger

    CERN Document Server

    Di Simone, A; Di Ciaccio, A

    2005-01-01

    In the muon spectrometer different detectors are used to provide trigger functionality and precision momentum measurements. In the pseudorapidity range |eta|<1 the first level muon trigger is based on Resistive Plate Chambers, gas ionization detectors which are characterized by a fast response and an excellent time resolution (<1.5ns). The working principles of the Resistive Plate Chambers will be illustrated in chapter 3. Given the long time of operation expected for the ATLAS experiment (~10 years), ageing phenomena have been carefully studied, in order to ensure stable long-term operation of all the subdetectors. Concerning Resistive Plate Chambers, a very extensive ageing test has been performed at CERN's Gamma Irradiation Facility on three production chambers. The results of this test are presented in chapter 4. One of the most commonly used gases in RPCs operation is C2H2F4, which during the gas discharge can produce fluorine ions. Being F one of the most aggressive elements in nature, the presenc...

  10. The ALICE forward muon spectrometer

    Indian Academy of Sciences (India)

    The LHC energy is ideal for a spectroscopy of the whole set of reso- nances. ... The obtained resolution without any background (background level 0) of. ~92 MeV is ... luminosity of 5¡1026 cm 2 s 1 and a running time of 106 s. S and B are ...

  11. Simulation studies of muon-produced background events deep underground and consequences for double beta decay experiments

    Science.gov (United States)

    Massarczyk, Ralph; Majorana Collaboration

    2015-10-01

    Cosmic radiation creates a significant background for low count rate experiments. The Majorana demonstrator experiment is located at the Sanford Underground Research Facility at a depth of 4850ft below the surface but it can still be penetrated by cosmic muons with initial energies above the TeV range. The interaction of muons with the rock, the shielding material in the lab and the detector itself can produce showers of secondary particles, like fast neutrons, which are able to travel through shielding material and can produce high-energy γ-rays via capture or inelastic scattering. The energy deposition of these γ rays in the detector can overlap with energy region of interest for the neutrino-less double beta decay. Recent studies for cosmic muons penetrating the Majorana demonstrator are made with the Geant4 code. The results of these simulations will be presented in this talk and an overview of the interaction of the shower particles with the detector, shielding and veto system will be given. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. Supported by U.S. Department of Energy through the LANL/LDRD Program.

  12. Simulated performance of the in-beam conversion-electron spectrometer, SPICE

    Energy Technology Data Exchange (ETDEWEB)

    Ketelhut, S., E-mail: ketelhut@triumf.ca [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Evitts, L.J.; Garnsworthy, A.B.; Bolton, C.; Ball, G.C.; Churchman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Dunlop, R. [Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Hackman, G.; Henderson, R.; Moukaddam, M. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Rand, E.T.; Svensson, C.E. [Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Witmer, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada)

    2014-07-01

    The SPICE spectrometer is a new in-beam electron spectrometer designed to operate in conjunction with the TIGRESS HPGe Clover array at TRIUMF-ISAC. The spectrometer consists of a large area, annular, segmented lithium-drifted silicon electron detector shielded from the target by a photon shield. A permanent magnetic lens directs electrons around the photon shield to the detector. Experiments will be performed utilising Coulomb excitation, inelastic-scattering, transfer and fusion–evaporation reactions using stable and radioactive ion beams with suitable heavy-ion detection. Good detection efficiency can be achieved in a large energy range up to 3500 keV electron energy using several magnetic lens designs which are quickly interchangeable. COMSOL and Geant4 simulations have been used to maximise the detection efficiency. In addition, the simulations have guided the design of components to minimise the contributions from various sources of backgrounds.

  13. Part 1, Angular distribution measurement of beam-foil muonium, Part 2, Muon injection simulation for a new muon g-2 experiment

    International Nuclear Information System (INIS)

    Ahn, H.E.

    1992-10-01

    The angular and energy distributions of positive muons μ + and muonium M produced by the beam-foil method have been measured for the first time. A 7 MeV/c subsurface μ + beam was delivered to our apparatus from the Stopped Muon Channel at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF). The μ + formed M by electron capture in a thin Al target foil. A low pressure multi-wire proportional chamber upstream of the target foil was used both as a moderator and as a muon counter. To observe muonium, muons sere swept away by a bending magnet which was placed downstream of the target foil. This magnet was turned off while measuring the μ + distribution. Beyond the magnetic field, particles were collimated and then stopped by a microchannel plate detector located at various angles to the incident muon beam axis. Two pairs of scintillators mounted above (St) and below (Sb) the MC-P were used to detect the decay positrons to verify from the lifetime spectrum that the particles detected by the MCP are muons. The intensities of μ + and M emerging from the Al foil at different angles were obtained from both a time-of-flight spectrum and a lifetime spectrum

  14. Measurement of inclusive muon pair production by 225-GeV/c π+, π-, and proton beams with a large acceptance spectrometers

    International Nuclear Information System (INIS)

    Brason, J.G.

    1977-05-01

    Inclusive muon pair production by 225 GeV/c π + , π - and proton beams incident upon carbon and tin targets was measured over a large range of kinematic variables (2m/sub μ/ 2 , 0 4 sigma/dmdx/sub f/dp 2 /sub perpendicular to/ is presented as a function of these variables. The vector mesons rho, ω, phi, J and psi' appear in the data along with apparently nonresonant μ-pairs. By looking for additional muons accompanying J → μ + μ - events, a 1.0% upper limit on production of pairs of charmed particles in association with the J is obtained. Aspects of the continuum muon pair data are compared to Drell-Yan model calculations. The ratio of μ-pairs produced by π + beam particles to μ-pairs produced by π - beam particles supports electromagnetic production at high mass

  15. Muon reconstruction and the search for leptoquarks at LHC

    CERN Document Server

    Ruckert, B

    2006-01-01

    This diploma thesis focuses on the reconstruction of high-energetic muons. This simulation study was performed within the ATLAS experiment at the Large Hadron Collider (LHC) which is a pp-collider with a centre-of-mass energy p s = 14 TeV. The purpose of this study was to identify muons with strongly overestimated transverse momentum using Monte Carlo simulated data which has been generated using Pythia and run through a full detector simulation. These muons can lead to a faked leptoquark signal, as leptoquark-decays can include high-energetic muons. If leptoquarks exist, only a small number of such events is expected which makes the safe momentum measurement a crucial point. To achieve an optimal reconstruction, selection criteria have been developed which compare the track’s 2, the particle’s -direction and the reconstructed pT s from the different reconstruction algorithms, namely the inner detector standalone reconstruction, the muon spectrometer standalone reconstruction and a combination of both. Th...

  16. Simulations of chopper jitter at the LET neutron spectrometer at the ISIS TS2

    DEFF Research Database (Denmark)

    Klenø, Kaspar Hewitt; Lefmann, Kim; Willendrup, Peter Kjær

    2014-01-01

    The effect of uncertainty in chopper phasing (jitter) has been investigated for the high-resolution time-of-flight spectrometer LET at the ISIS second target station. The investigation is carried out using virtual experiments, with the neutron simulation package McStas, where the chopper jitter i...

  17. The simulation of pulsed heater for a sampling system for the ion mobility spectrometer

    International Nuclear Information System (INIS)

    Malkin, Evgeniy

    2011-01-01

    The development of the sampling device with pulsed heating of the intermediate carrier for ion mobility spectrometer is described in this article. Numerical simulation of a pulse heater structure of is presented. The design of the sampling device using a pulsed heating of the intermediate carrier is developed. Experimental results of approval of the sampling device are presented.

  18. Construction and Test of New Precision Drift-Tube Chambers for Upgrades of the ATLAS Muon Spectrometer in 2016/17

    CERN Document Server

    INSPIRE-00218480; Kortner, O.; Müller, F.; Nowak, S.; Schmidt-Sommerfeld, K.

    2016-01-01

    Small-diameter Muon Drift Tube (sMDT) chambers have been developed for the ATLAS muon detector upgrade. They possess an improved rate capability and a more compact design with respect to the existing chambers, which allows to equip detector regions uninstrument at present. The chamber assembly methods have been optimized for mass production, while the sense wire positioning accuracy is improved to below ten microns. The chambers will be ready for installation in the winter shutdown 2016/17 of the Large Hadron Collider. The design and construction of the new sMDT chambers for ATLAS will be discussed as well as measurements of their precision and performance.

  19. ATLAS Detector Operation 2011 
Muon System

    CERN Document Server

    Iakovidis, G; The ATLAS collaboration

    2012-01-01

    During the 2011 LHC Data taking period the ATLAS Detector recorded 5.22 fb-1 which is 96.5% of the delivered data from proton-proton collisions. The Muon Spectrometer was improved to 100% operational fraction at the Level 1 trigger and more than 98.7% operational fraction of trigger and precision chambers. The recorded data with Muon Spectrometer was at a level of more than 99% good for physics analysis. This illustrates an excellent performance. This poster presents performance of the Muon Spectrometer trigger chambers as well as precision chambers. In addition a combined Muon Spectrometer performance is presented.

  20. Particle transport simulation for spaceborne, NaI gamma-ray spectrometers

    International Nuclear Information System (INIS)

    Dyer, C.S.; Truscott, P.R.; Sims, A.J.; Comber, C.; Hammond, N.D.A.

    1988-11-01

    Radioactivity induced in detectors by protons and secondary neutrons limits the sensitivity of spaceborne gamma-ray spectrometers. Three dimensional Monte Carlo transport codes have been employed to simulate particle transport of cosmic rays and inner-belt protons in various representations of the Gamma Ray Observatory Spacecraft and the Oriented Scintillation Spectrometer Experiment. Results are used to accurately quantify the contributions to the radioactive background, assess shielding options and examine the effect of detector and space-craft orientation in anisotropic trapped proton fluxes. (author)

  1. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    M. Dallavalle

    2013-01-01

    A new Muon misalignment scenario for 2011 (7 TeV) Monte Carlo re-processing was re-leased. The scenario is based on running of standard track-based reference-target algorithm (exactly as in data) using single-muon simulated sample (with the transverse-momentum spectrum matching data). It used statistics similar to what was used for alignment with 2011 data, starting from an initially misaligned Muon geometry from uncertainties of hardware measurements and using the latest Tracker misalignment geometry. Validation of the scenario (with muons from Z decay and high-pT simulated muons) shows that it describes data well. The study of systematic uncertainties (dominant by now due to huge amount of data collected by CMS and used for muon alignment) is finalised. Realistic alignment position errors are being obtained from the estimated uncertainties and are expected to improve the muon reconstruction performance. Concerning the Hardware Alignment System, the upgrade of the Barrel Alignment is in progress. By now, d...

  2. Simulation report for neutron guide and spectrometer layout at HANARO

    International Nuclear Information System (INIS)

    Cho, S. J.; Cho, Y. G.; Ryu, J. S.; Seong, B. S.; Lee, C. H.; Shin, J. W.

    2006-01-01

    A project called 'infrastructure construction for cold neutron research and utilization technique development' was launched in KAERI in July 2003, in order to raise a domestic basic science with an international level and elevate a international competitiveness for the bio-, nano- and informatics technology area. At the end of this project, 3 new instruments and 3 instruments to be moved will be installed in the guide hall. In order to accomplish this project until 2008, guide simulation should be performed for an effective use of expensive neutron to meet the requirements such as wavelengths and type of instruments, experimental space, interferences with other instruments

  3. Simulations and imaging algorithm development for a cosmic ray muon tomography system for the detection of special nuclear material in transport containers

    International Nuclear Information System (INIS)

    Jewett, C.; Anghel, V.N.P.; Armitage, J.; Boudjemline, K.; Botte, J.; Bryman, D.; Bueno, J.; Charles, E.; Cousins, T.; Didsbury, R.; Erhardt, L.; Erlandson, A.; Gallant, G.; Jason, A.; Jonkmans, G.; Liu, Z.; McCall, M.; Noel, S.; Oakham, F.G.; Ong, D.; Stocki, T.; Thompson, M.; Waller, D.

    2011-01-01

    The Cosmic Ray Inspection and Passive Tomography (CRIPT) collaboration is developing a cosmic ray muon tomography system to identify Special Nuclear Materials (SNM) in cargo containers. In order to gauge the viability of the technique, and to determine the best detector type, GEANT4 was used to simulate the passage of cosmic ray muons through a cargo container. The scattering density estimation (SDE) algorithm was developed and tested with data from these simulations to determine how well it could reconstruct the interior of a container. The simulation results revealed the ability of cosmic ray muon tomography techniques to image spheres of lead-shielded Special Nuclear Materials (SNM), such as uranium or plutonium, in a cargo container, containing a cargo of granite slabs. (author)

  4. Simulations and imaging algorithm development for a cosmic ray muon tomography system for the detection of special nuclear material in transport containers

    Energy Technology Data Exchange (ETDEWEB)

    Jewett, C.; Anghel, V.N.P. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Armitage, J.; Boudjemline, K.; Botte, J. [Carleton Univ., Dept. of Physics, Ottawa, Ontario (Canada); Bryman, D. [Advanced Applied Physics Solutions, Vancouver, British Columbia (Canada); Univ. of British Columbia, Vancouver, British Columbia (Canada); Bueno, J. [Advanced Applied Physics Solutions, Vancouver, British Columbia (Canada); Charles, E. [Canada Border Services Agency, Ottawa, Ontario (Canada); Cousins, T. [International Safety Research, Ottawa, Ontario (Canada); Didsbury, R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Erhardt, L. [Defence Research and Development Canada, Ottawa, Ontario (Canada); Erlandson, A. [Carleton Univ., Dept. of Physics, Ottawa, Ontario (Canada); Gallant, G. [Canada Border Services Agency, Ottawa, Ontario (Canada); Jason, A. [Los Alamos National Laboratory, Los Alamos (United States); Jonkmans, G. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Liu, Z. [Advanced Applied Physics Solutions, Vancouver, British Columbia (Canada); Univ. of British Columbia, Vancouver, British Columbia (Canada); McCall, M.; Noel, S. [International Safety Research, Ottawa, Ontario (Canada); Oakham, F.G. [Carleton Univ., Dept. of Physics, Ottawa, Ontario (Canada); TRIUMF, Vancouver, British Columbia, (Canada); Ong, D.; Stocki, T. [Health Canada, Ottawa, Ontario (Canada); Thompson, M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Waller, D. [Defence Research and Development Canada, Ottawa, Ontario (Canada)

    2011-07-01

    The Cosmic Ray Inspection and Passive Tomography (CRIPT) collaboration is developing a cosmic ray muon tomography system to identify Special Nuclear Materials (SNM) in cargo containers. In order to gauge the viability of the technique, and to determine the best detector type, GEANT4 was used to simulate the passage of cosmic ray muons through a cargo container. The scattering density estimation (SDE) algorithm was developed and tested with data from these simulations to determine how well it could reconstruct the interior of a container. The simulation results revealed the ability of cosmic ray muon tomography techniques to image spheres of lead-shielded Special Nuclear Materials (SNM), such as uranium or plutonium, in a cargo container, containing a cargo of granite slabs. (author)

  5. Simulations of nuclear reactions for a future HIE-ISOLDE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Tveten, Gry [University of Oslo (Norway); CERN (Switzerland); Cederkall, Joakim [Lund University (Sweden); CERN (Switzerland); Blumenfeld, Yorick [CERN (Switzerland)

    2009-07-01

    The planned High Intensity and Energy (HIE) upgrade of the radioactive beam facility ISOLDE will enable post-acceleration of radioactive beams up to an energy of about 10 MeV/u, thus opening the door to nuclear reaction studies. In the case of transfer reactions in inverse kinematics a recoil separator is often well suited or even needed to tell recoils and beam apart and to select the exit channel or to do spectroscopic studies. Two different types of spectrometer designs are being considered for HIE-ISOLDE, namely a recoil mass separator or a ray-tracing type of spectrometer. A set of nuclear transfer reactions in inverse kinematics have been simulated using realistic parameters for HIE-ISOLDE. The performance of the two types of spectrometer designs is compared and their scientific possibilities and limitations discussed based on the simulation results. To evaluate the validity of the simulations a data set from PRISMA at LNL is also compared with simulation results and a comparison between simulations and these data will be presented.

  6. Bridging nations through muons

    CERN Multimedia

    2006-01-01

    From America to Israel and Japan, a team of international technicians and scientists are working together to build the ATLAS endcap muon chambers. The Israeli and Pakistani teams stand in front of part of the ATLAS endcap muon spectrometer. They are working on the project along with...... a team from American universities and research institutions. It's a small world; at least you might think so after a visit to Building 180. Inside, about 30 engineers and physicists weld, measure and hammer away, many of whom are miles from their homes and families. They hail from Pakistan, Israel, Japan, China, Russia and the United States. Coordinated by a group of CERN engineers, the team represents an international collaboration in every sense. Whether they've been here for years or months, CERN is their temporary home as they work toward one common goal: the completion of the ATLAS muon chamber endcaps. When finished, the ATLAS muon spectrometer will include four moving 'big wheel'structures on each end of the detecto...

  7. The Big-Wheel TGC-1 being moved against the Barrel Muon Spectrometer. The 216 trigger chambers are supported by a thin structure of 22 m diameter and 0.4 m thickness, weighting 44 tons and supported on two rails.

    CERN Multimedia

    Claudia Marcelloni

    2006-01-01

    The Big-Wheel TGC-1 being moved against the Barrel Muon Spectrometer. The 216 trigger chambers are supported by a thin structure of 22 m diameter and 0.4 m thickness, weighting 44 tons and supported on two rails.

  8. Muon sources

    International Nuclear Information System (INIS)

    Parsa, Z.

    2001-01-01

    A full high energy muon collider may take considerable time to realize. However, intermediate steps in its direction are possible and could help facilitate the process. Employing an intense muon source to carry out forefront low energy research, such as the search for muon-number non-conservation, represents one interesting possibility. For example, the MECO proposal at BNL aims for 2 x 10 -17 sensitivity in their search for coherent muon-electron conversion in the field of a nucleus. To reach that goal requires the production, capture and stopping of muons at an unprecedented 10 11 μ/sec. If successful, such an effort would significantly advance the state of muon technology. More ambitious ideas for utilizing high intensity muon sources are also being explored. Building a muon storage ring for the purpose of providing intense high energy neutrino beams is particularly exciting.We present an overview of muon sources and example of a muon storage ring based Neutrino Factory at BNL with various detector location possibilities

  9. Construction and Quality Assurance of Large Area Resistive Strip Micromegas for the Upgrade of the ATLAS Muon Spectrometer at LHC/CERN

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00389527; The ATLAS collaboration

    2017-01-01

    Large area Micromegas detectors will be employed for the first time in high-energy physics experiments. To cope with increasing background rates, associated with the steadily increasing luminosity of LHC to 10 times design luminosity, the present detector technology in the current innermost stations of the muon endcap system of the ATLAS experiment (the Small Wheel), will be replaced in 2019 by resistive strip Micromegas and small strip TGC detectors. Both technologies will provide tracking and trigger information. In the ``New Small Wheel'' the Micromegas will be arranged in eight detection layers built of trapezoidally shaped quadruplets of four different sizes covering in total about 1200\\,m$^2$ of detection plane. In order to achieve 15\\,\\% transverse momentum resolution for 1 TeV muons, a challenging mechanical precision is required in the construction of each active plane, with an alignment of the readout strips at the level of 30\\,\\textmu m along the precision coordinate and 80\\,\\textmu m perpendicular...

  10. Muon Beam Studies in the H4 beam line and the Gamma Irradiation Facility (GIF++)

    CERN Document Server

    Margraf, Rachel; CERN. Geneva. EN Department

    2017-01-01

    In this report, I summarize my work of detailed study and optimization of the muon beam configuration of H4 beam line in SPS North Area. Using Monte-Carlo simulations, I studied the properties and behavior of the muon beam in combination with the field of the large, spectrometer “ GOLIATH” magnet at -1.5, -1.0, 0, 1.0 and 1.5 Tesla, which is shown to affect the central x position of the muon beam that is delivered to the Gamma Irradiation Facility (GIF++). I also studied the muon beam for different configurations of the two XTDV beam dumps upstream of GIF++ in the H4 beam line. I will also discuss my role in mapping the magnetic field of the GOLIATH magnet in the H4 beam line.

  11. Quasi-isochronous muon collection channels

    Energy Technology Data Exchange (ETDEWEB)

    Ankenbrandt, Charles M. [Muons, Inc., Batavia, IL (United States); Neuffer, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Johnson, Rolland P. [Muons, Inc., Batavia, IL (United States)

    2015-04-26

    Intense muon beams have many potential commercial and scientific applications, ranging from low-energy investigations of the basic properties of matter using spin resonance to large energy-frontier muon colliders. However, muons originate from a tertiary process that produces a diffuse swarm. To make useful beams, the swarm must be rapidly captured and cooled before the muons decay. In this STTR project a promising new concept for the collection and cooling of muon beams to increase their intensity and reduce their emittances was investigated, namely, the use of a nearly isochronous helical cooling channel (HCC) to facilitate capture of the muons into RF bunches. The muon beam can then be cooled quickly and coalesced efficiently to optimize the luminosity of a muon collider, or could provide compressed muon beams for other applications. Optimal ways to integrate such a subsystem into the rest of a muon collection and cooling system, for collider and other applications, were developed by analysis and simulation. The application of quasi-isochronous helical cooling channels (QIHCC) for RF capture of muon beams was developed. Innovative design concepts for a channel incorporating straight solenoids, a matching section, and an HCC, including RF and absorber, were developed, and its subsystems were simulated. Additionally, a procedure that uses an HCC to combine bunches for a muon collider was invented and simulated. Difficult design aspects such as matching sections between subsystems and intensity-dependent effects were addressed. The bunch recombination procedure was developed into a complete design with 3-D simulations. Bright muon beams are needed for many commercial and scientific reasons. Potential commercial applications include low-dose radiography, muon catalyzed fusion, and the use of muon beams to screen cargo containers for homeland security. Scientific uses include low energy beams for rare process searches, muon spin resonance applications, muon beams for

  12. Measurement and simulation of the inelastic resolution function of a time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Roth, S.V.; Zirkel, A.; Neuhaus, J.; Petry, W.; Bossy, J.; Peters, J.; Schober, H.

    2002-01-01

    The deconvolution of inelastic neutron scattering data requires the knowledge of the inelastic resolution function. The inelastic resolution function of the time-of-flight spectrometer IN5/ILL has been measured by exploiting the sharp resonances of the roton and maxon excitations in superfluid 4 He for the two respective (q,ω) values. The calculated inelastic resolution function for three different instrumental setups is compared to the experimentally determined resolution function. The agreement between simulation and experimental data is excellent, allowing us in principle to extrapolate the simulations and thus to determine the resolution function in the whole accessible dynamic range of IN5 or any other time-of-flight spectrometer. (orig.)

  13. Measurement and simulation of the inelastic resolution function of a time-of-flight spectrometer

    CERN Document Server

    Roth, S V; Neuhaus, J; Petry, W; Bossy, J; Peters, J; Schober, H

    2002-01-01

    The deconvolution of inelastic neutron scattering data requires the knowledge of the inelastic resolution function. The inelastic resolution function of the time-of-flight spectrometer IN5/ILL has been measured by exploiting the sharp resonances of the roton and maxon excitations in superfluid sup 4 He for the two respective (q,omega) values. The calculated inelastic resolution function for three different instrumental setups is compared to the experimentally determined resolution function. The agreement between simulation and experimental data is excellent, allowing us in principle to extrapolate the simulations and thus to determine the resolution function in the whole accessible dynamic range of IN5 or any other time-of-flight spectrometer. (orig.)

  14. ATLAS detector records its first curved muon

    CERN Multimedia

    2007-01-01

    The barrel muon spectrometer of the ATLAS detector has acquired its first cosmic event in a magnetic field produced by the barrel toroid magnet. This was an important test of the chambers in their final configurations, and marked the first triggering and measurement of curved cosmic ray muons in ATLAS.

  15. Performance of the ATLAS Muon Drift-Tube Chambers at High Background Rates and in Magnetic Fields

    CERN Document Server

    INSPIRE-00213689; Horvat, S.; Legger, F.; Kortner, O.; Kroha, H.; Richter, R.; Valderanis, Ch.; Rauscher, F.; Staude, A.

    2016-01-01

    The ATLAS muon spectrometer uses drift-tube chambers for precision tracking. The performance of these chambers in the presence of magnetic field and high radiation fluxes is studied in this article using test-beam data recorded in the Gamma Irradiation Facility at CERN. The measurements are compared to detailed predictions provided by the Garfield drift-chamber simulation programme.

  16. Monte Carlo simulation of high-flux 14 MeV neutron source based on muon catalyzed fusion using a high-power 50 MW deuteron beam

    Energy Technology Data Exchange (ETDEWEB)

    Vecchi, M [ENEA, Bologna (Italy); Karmanov, F I [Inst. of Nuclear Power Engineering, Obninsk (Russian Federation); Latysheva, L N; Pshenichnov, I A [Russian Academy of Sciences, Moscow (Russian Federation). Inst. for Nuclear Research

    1997-12-31

    The results Monte Carlo simulations of an intense neutron source based on muon catalyzed fusion process are presented. A deuteron beam is directed onto a cylindrical carbon target, located in vacuum converter chamber with a strong solenoidal magnetic field. The produced pions and muons which originate from pion decay are guided along magnetic field to a DT-synthesizer. Pion production in the primary target is simulated by means of Intranuclear and Internuclear cascade codes developed in INR, Moscow, while pion and muon transport process is studied by using a Monte Carlo code originated at CERN. The main purpose of the work is to calculate the pion and muon utilization efficiency taking into account the pion absorption in the primary target as well as all other losses of pions and muons in the converter and DT-cell walls. Preliminary estimations demonstrate the possibility to reach the level of 1014 n/s/cm{sup 2} for the neutron flux. (J.U.). 3 tabs., 4 figs., 8 refs.

  17. Muon colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Sessler, A.; Skrinsky, A.

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity micro + micro - colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed

  18. Monte-Carlo simulation of a high-resolution inverse geometry spectrometer on the SNS. Long Wavelength Target Station

    International Nuclear Information System (INIS)

    Bordallo, H.N.; Herwig, K.W.

    2001-01-01

    Using the Monte-Carlo simulation program McStas, we present the design principles of the proposed high-resolution inverse geometry spectrometer on the SNS-Long Wavelength Target Station (LWTS). The LWTS will provide the high flux of long wavelength neutrons at the requisite pulse rate required by the spectrometer design. The resolution of this spectrometer lies between that routinely achieved by spin echo techniques and the design goal of the high power target station backscattering spectrometer. Covering this niche in energy resolution will allow systematic studies over the large dynamic range required by many disciplines, such as protein dynamics. (author)

  19. Smoke, Clouds and Radiation Brazil NASA ER-2 Moderate Resolution Imaging Spectrometer (MODIS) Airborne Simulator (MAS) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — SCARB_ER2_MAS data are Smoke, Clouds and Radiation Brazil (SCARB) NASA ER2 Moderate Resolution Imaging Spectrometer (MODIS) Airborne Simulator (MAS)...

  20. Simulation of GRIS spectrometer response to the solar gamma-ray flare of 23 July 2002

    International Nuclear Information System (INIS)

    Trofimov, Yu A; Kotov, Yu D; Yurov, V N; Lupar, E E; Faradzhaev, R M; Glyanenko, A S

    2017-01-01

    GRIS is a prospective experiment designed to measure hard X-rays and γ-rays of solar flares in the energy range from 50 keV to 200 MeV as well as solar neutrons > 30 MeV. This study considers results of GEANT 4 simulation of GRIS detectors response to cosmic background radiation and to the solar flare SOL2002-07-23 (X4.8). It is shown that the GRIS spectrometers have enough sensitivity and energy resolution to measure redshifts of some narrow γ-rays in flare spectra, that the low energy thresholds of the detectors can be lowered considerably without a risk of counting rate saturation during high magnitude flares and that at a choice between LaBr 3 (Ce) and CeBr 3 the second one is a preferable scintillator for a hard X-ray and γ-ray spectrometer of solar flares. (paper)

  1. Simulation and Analysis of Spectral Response Function and Bandwidth of Spectrometer

    Directory of Open Access Journals (Sweden)

    Zhenyu Gao

    2016-01-01

    Full Text Available A simulation method for acquiring spectrometer’s Spectral Response Function (SRF based on Huygens Point Spread Function (PSF is suggested. Taking into account the effects of optical aberrations and diffraction, the method can obtain the fine SRF curve and corresponding spectral bandwidth at any nominal wavelength as early as in the design phase. A prism monochromator is proposed for illustrating the simulation procedure. For comparison, a geometrical ray-tracing method is also provided, with bandwidth deviations varying from 5% at 250 nm to 25% at 2400 nm. Further comparison with reported experiments shows that the areas of the SRF profiles agree to about 1%. However, the weak scattered background light on the level of 10−4 to 10−5 observed by experiment could not be covered by this simulation. This simulation method is a useful tool for forecasting the performance of an underdesigned spectrometer.

  2. ATLAS Level-1 Muon Barrel Trigger robustness study at X5 test facility

    CERN Document Server

    Di Mattia, A; Nisati, A; Pastore, F C; Vari, R; Veneziano, Stefano; Aielli, G; Camarri, P; Cardarelli, R; Di Ciaccio, A; Di Simone, A; Liberti, B; Santonico, R

    2004-01-01

    The present paper describes the Level-1 Barrel Muon Trigger performance as expected with the current configuration of the RPC detectors, as designed for the Barrel Muon Spectrometer of ATLAS. Results of a beam test performed at the X5-GIF facility at CERN are presented in order to show the trigger efficiency with different conditions of RPC detection efficiency and several background rates. Small RPC chambers with part of the final trigger electronics are used, while the trigger coincidence logic is applied off-line using a detailed simulation model. copy 2003 Published by Esevier B.V. 3 Refs.

  3. Construction and quality assurance of large area resistive strip Micromegas for the upgrade of the ATLAS Muon Spectrometer at LHC/CERN

    Science.gov (United States)

    Lösel, P.

    2017-06-01

    Large area Micromegas detectors will be employed for the first time in high-energy physics experiments. To cope with increasing background rates, associated with the steadily increasing luminosity of LHC to 10 times design luminosity, the present detector technology in the current innermost stations of the muon endcap system of the ATLAS experiment (the Small Wheel), will be replaced in 2019/2020 by resistive strip Micromegas and small strip TGC detectors. Both technologies will provide tracking and trigger information. In the "New Small Wheel" the Micromegas will be arranged in eight detection layers built of trapezoidally shaped quadruplets of four different sizes covering in total about 1200 m2 of detection plane. In order to achieve 15 % transverse momentum resolution for 1 TeV muons, a challenging mechanical precision is required in the construction of each active plane, with an alignment of the readout strips at the level of 30 μm RMS along the precision coordinate and 80 μm RMS perpendicular to the plane. Each individual Micromegas plane must achieve a spatial resolution better than 100 μm at background rates up to 15 kHz/cm2 while being operated in an inhomogeneous magnetic field (B <= 0.3 T). The required mechanical precision for the production of the components and their assembly, on such large area detectors, is a key point and must be controlled during construction and integration. Particularly the alignment of the readout strips within a quadruplet appears to be demanding. The readout strips are etched on PCB boards using photolithographic processes. Depending on the type of the module, 3 or 5 PCB boards need to be joined and precisely aligned to form a full readout plane. The precision in the alignment is reached either by use of precision mechanical holes or by optical masks, both referenced to the strip patterns. Assembly procedures have been developed to build the single panels with the required mechanical precision and to assemble them in a

  4. Identification of b-jets with a low pΤ muon using ATLAS Tile Calorimeter simulation data and artificial neural networks technique

    International Nuclear Information System (INIS)

    Astvatsaturov, A.; Budagov, Yu.; Shigaev, V.; Nessi, M.; Pantea, D.

    1996-01-01

    The possibility to enhance the capability of ATLAS Tile Calorimeter to identify low p Τ muons (2 Τ Τ =20 and 40 GeV/c in the central region 0 b g is 4-10 times higher in NND case compared to LTD. The results obtained are based on 2000 jets simulated with the use of ATLAS simulation programs. 8 refs., 13 figs., 2 tabs

  5. arXiv A Programmable Delay Design for the sTGC Detector at the Upgraded New Small Wheel of the ATLAS Muon Spectrometer

    CERN Document Server

    INSPIRE-00225390; Guan, Liang; Chapman, John W; Zhou, Bing; Zhu, Junjie

    2017-11-01

    We present a programmable time alignment scheme used in an ASIC for the ATLAS forward muon trigger development. The scheme utilizes regenerated clocks with programmable phases to compensate for the timing offsets introduced by different detector trace lengths. Each ASIC used in the design has 104 input channels with delay compensation circuitry providing steps of ∼ 3 ns and a full range of 25 ns for each channel. Detailed implementation of the scheme including majority logic to suppress single-event effects is presented. The scheme is flexible and fully synthesizable. The approach is adaptable to other applications with similar phase shifting requirements. In addition, the design is resource efficient and is suitable for cost-effective digital implementation with a large number of channels.

  6. Simulation of path delay multiplexing-based Fourier transform spectrometer for fiber Bragg grating interrogation.

    Science.gov (United States)

    Chelliah, Pandian; Sahoo, Trilochan; Singh, Sheela; Sujatha, Annie

    2015-10-20

    A Fourier transform spectrometer (FTS) used for interrogating a fiber Bragg grating (FBG) consists of a scanning-type interferometer. The FTS has a broad wavelength range of operation and good multiplexing capability. However, it has poor wavelength resolution and interrogation speed. We propose a modification to the FTS using path delay multiplexing to improve the same. Using this method, spatial resolution and interrogation time can be improved by n times by using n path delays. In this paper, simulation results for n=2, 5 are shown.

  7. Muon muon collider: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-18

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup {minus}2} s{sup {minus}1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design.

  8. Muon muon collider: Feasibility study

    International Nuclear Information System (INIS)

    1996-01-01

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10 35 cm -2 s -1 . The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design

  9. Colliding muons

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Is a muon-muon collider really practical? That is the question being asked by Bob Palmer. Well known in particle physics, Palmer, with Nick Samios and Ralph Shutt, recently won the American Physical Society's Panofsky Prize for their 1964 discovery of the omega minus. As well as contributing to other major experiments, both at CERN and in the US, he has contributed ideas to stochastic cooling and novel acceleration schemes

  10. Monte Carlo simulation of the resolution volume for the SEQUOIA spectrometer

    Directory of Open Access Journals (Sweden)

    Granroth G.E.

    2015-01-01

    Full Text Available Monte Carlo ray tracing simulations, of direct geometry spectrometers, have been particularly useful in instrument design and characterization. However, these tools can also be useful for experiment planning and analysis. To this end, the McStas Monte Carlo ray tracing model of SEQUOIA, the fine resolution fermi chopper spectrometer at the Spallation Neutron Source (SNS of Oak Ridge National Laboratory (ORNL, has been modified to include the time of flight resolution sample and detector components. With these components, the resolution ellipsoid can be calculated for any detector pixel and energy bin of the instrument. The simulation is split in two pieces. First, the incident beamline up to the sample is simulated for 1 × 1011 neutron packets (4 days on 30 cores. This provides a virtual source for the backend that includes the resolution sample and monitor components. Next, a series of detector and energy pixels are computed in parallel. It takes on the order of 30 s to calculate a single resolution ellipsoid on a single core. Python scripts have been written to transform the ellipsoid into the space of an oriented single crystal, and to characterize the ellipsoid in various ways. Though this tool is under development as a planning tool, we have successfully used it to provide the resolution function for convolution with theoretical models. Specifically, theoretical calculations of the spin waves in YFeO3 were compared to measurements taken on SEQUOIA. Though the overall features of the spectra can be explained while neglecting resolution effects, the variation in intensity of the modes is well described once the resolution is included. As this was a single sharp mode, the simulated half intensity value of the resolution ellipsoid was used to provide the resolution width. A description of the simulation, its use, and paths forward for this technique will be discussed.

  11. Muon reconstruction efficiency, momentum scale and resolution in pp collisions at 8TeV with ATLAS

    CERN Document Server

    Dimitrievska, A; The ATLAS collaboration; Sforza, F

    2014-01-01

    The ATLAS experiment identifies and reconstructs muons with two high precision tracking systems, the inner detector and the muon spectrometer, which provide independent measurements of the muon momentum. This poster summarizes the performance of the combined muon reconstruction in terms of reconstruction efficiency, momentum scale and resolution. Data-driven techniques are used to derive corrections to be applied to simulation in order to reproduce the reconstruction efficiency, momentum scale and resolution as observed in experimental data, and to asses systematic uncertainties on these quantities. The analysed dataset corresponds to an integrated luminosity of 20.4 fb−1 from pp collisions at center of mass enegy of 8 TeV recorded in 2012.

  12. Using Muons to Image the Subsurface.

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, Nedra [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cashion, Avery Ted [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cieslewski, Grzegorz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dorsey, Daniel J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foris, Adam [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Timothy J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Su, Jiann-Cherng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dreesen, Wendi [NSTec, Livermore, CA (United States); Green, J. Andrew [NSTec, Livermore, CA (United States); Schwellenbach, David [NSTec, Livermore, CA (United States)

    2016-11-01

    Muons are subatomic particles that can penetrate the earth 's crust several kilometers and may be useful for subsurface characterization . The absorption rate of muons depends on the density of the materials through which they pass. Muons are more sensitive to density variation than other phenomena, including gravity, making them beneficial for subsurface investigation . Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale. This work consists of three parts to address the use of muons for subsurface characterization : 1) assess the use of muon scattering for estimating density differences of common rock types, 2 ) using muon flux to detect a void in rock, 3) measure muon direction by designing a new detector. Results from this project lay the groundwork for future directions in this field. Low-density objects can be detected by muons even when enclosed in high-density material like lead, and even small changes in density (e.g. changes due to fracturing of material) can be detected. Rock density has a linear relationship with muon scattering density per rock volume when this ratio is greater than 0.10 . Limitations on using muon scattering to assess density changes among common rock types have been identified. However, other analysis methods may show improved results for these relatively low density materials. Simulations show that muons can be used to image void space (e.g. tunnels) within rock but experimental results have been ambiguous. Improvements are suggested to improve imaging voids such as tunnels through rocks. Finally, a muon detector has been designed and tested to measure muon direction, which will improve signal-to-noise ratio and help address fundamental questions about the source of upgoing muons .

  13. GEANT4 simulation diagram showing the architecture of the ATLAS test line: the detectors are positioned to receive the beam from the SPS. A muon particle which enters the magnet and crosses all detectors is shown (blue line).

    CERN Multimedia

    2004-01-01

    GEANT4 simulation diagram showing the architecture of the ATLAS test line: the detectors are positioned to receive the beam from the SPS. A muon particle which enters the magnet and crosses all detectors is shown (blue line).

  14. Study of inclusive J/psi production in Pb-Pb collisions at √(sNN)=2.76 TeV with the ALICE muon spectrometer at the LHC

    International Nuclear Information System (INIS)

    Lardeux, A.

    2014-01-01

    The quantum chromodynamics theory predicts the existence of a deconfined state of matter called Quark Gluon Plasma (PQG). Experimentally, the formation of a PQG is expected under the extreme conditions of temperature and density reached in ultra-relativistic heavy-ion collisions. Many observables were proposed to observe and characterize indirectly such a state of matter. In particular, the phenomena of suppression and (re)combination of the J/ψ meson in the PQG are extensively studied. This thesis presents the analysis of the inclusive production of J/psi in Pb-Pb collisions, at a center of mass energy √(s NN ) = 2.76 TeV, detected with the ALICE muon spectrometer at the LHC. From the high statistics of events collected during 2011 data taking, the J/ψ nuclear modification factor was measured as a function of transverse momentum, rapidity and collision centrality. The J/ψ means transverse momentum was also measured as a function of centrality. The predictions of theoretical models, all including a (re)combination contribution, are in good agreement with data. Finally, an excess of J/ψ yield at very low transverse momentum (<300 MeV/c) with respect to the expected hadronic production was observed for the first time. (author)

  15. Muon colliders

    International Nuclear Information System (INIS)

    Cline, David

    1995-01-01

    The increasing interest in the possibility of positive-negative muon colliders was reflected in the second workshop on the Physics Potential and Development of Muon Colliders, held in Sausalito, California, from 16-19 November, with some 60 attendees. It began with an overview of the particle physics goals, detector constraints, the muon collider and mu cooling, and source issues. The major issue confronting muon development is the possible luminosity achievable. Two collider energies were considered: 200 + 200 GeV and 2 + 2 TeV. The major particle physics goals are the detection of the higgs boson(s) for the lower energy collider, together with WW scattering and supersymmetric particle discovery. At the first such workshop, held in Napa, California, in 1992, it was estimated that a luminosity of some 10 30 and 3 x 10 32 cm -2 s -1 for the low and high energy collider might be achieved (papers from this meeting were published in the October issue of NIM). This was considered a somewhat conservative estimate at the time. At the Sausalito workshop the goal was to see if a luminosity of 10 32 to 10 34 for the two colliders might be achievable and usable by a detector. There were five working groups - physics, 200 + 200 GeV collider, 2 + 2 TeV collider, detector design and backgrounds, and muon cooling and production methods. Considerable progress was made in all these areas at the workshop.

  16. J/ψ production in proton-proton collisions at √ s = 2.76 and 7 TeV in the ALICE forward muon spectrometer at LHC

    International Nuclear Information System (INIS)

    Geuna, C.

    2012-01-01

    Quarkonia are meson states whose constituents are a charm or bottom quark and its corresponding antiquark (Q-Q-bar). The study of the production of such bound states in high-energy hadron collisions represents an important test for the Quantum Chromo-Dynamics. Despite the fact that the quarkonium saga has already a 40-year history, the quarkonium production mechanism is still an open issue. Therefore, measurements at the new CERN Large Hadron Collider (LHC) energy regimes are extremely interesting. In this thesis, the study of inclusive J/Ψ production in proton-proton (pp) collisions at √ = 2.76 and 7 TeV, obtained with the ALICE experiment, is presented. J/Ψ mesons are measured at forward rapidity (2.5 ≤ y ≤ 4), down to zero pT, via their decay into muon pairs (μ + μ - ). Quarkonium resonances also play an important role in probing the properties of the strongly interacting hadronic matter created, at high energy densities, in heavy-ion collisions. Under such extreme conditions, the created system, according to QCD, undergoes a phase transition from ordinary hadronic matter to a new state of deconfined quarks and gluons, called Quark Gluon Plasma (QGP). The ALICE experiment at CERN LHC has been specifically designed to study this state of matter. Quarkonia, among other probes, represents one of the most promising tools to prove the QGP formation. In order to correctly interpret the measurements of quarkonium production in heavy-ion collisions, a solid baseline is provided by the analogous results obtained in pp collisions. Hence, the work discussed in this thesis, concerning the inclusive J/Ψ production in pp collisions, also provides the necessary reference for the corresponding measurements performed in Pb-Pb collisions which were collected, by the ALICE experiment, at the very same center-of-mass energy per nucleon pair (√ = 2.76 TeV). (author) [fr

  17. Muon Muon Collider: Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  18. Muon Intensity Increase by Wedge Absorbers for Low-E Muon Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. V. [Fermilab; Stratakis, D. [Fermilab; Bradley, J. [Fermilab

    2017-09-01

    Low energy muon experiments such as mu2e and g-2 have a limited energy spread acceptance. Following techniques developed in muon cooling studies and the MICE experiment, the number of muons within the desired energy spread can be increased by the matched use of wedge absorbers. More generally, the phase space of muon beams can be manipulated by absorbers in beam transport lines. Applications with simulation results are presented.

  19. Constraining the Origin of Phobos with the Elpasolite Planetary Ice and Composition Spectrometer (EPICS) - Simulated Performance

    Science.gov (United States)

    Nowicki, S. F.; Mesick, K.; Coupland, D. D. S.; Dallmann, N. A.; Feldman, W. C.; Stonehill, L. C.; Hardgrove, C.; Dibb, S.; Gabriel, T. S. J.; West, S.

    2017-12-01

    Elpasolites are a promising new family of inorganic scintillators that can detect both gamma rays and neutrons within a single detector volume, reducing the instrument size, weight, and power (SWaP), all of which are critical for planetary science missions. The ability to distinguish between neutron and gamma events is done through pulse shape discrimination (PSD). The Elpasolite Planetary Ice and Composition Spectrometer (EPICS) utilizes elpasolites in a next-generation, highly capable, low-SWaP gamma-ray and neutron spectrometer. We present simulated capabilities of EPICS sensitivities to neutron and gamma-rays, and demonstrate how EPICS can constrain the origin of Phobos between the following three main hypotheses: 1) accretion after a giant impact with Mars, 2) co-accretion with Mars, and 3) capture of an external body. The MCNP6 code was used to calculate the neutron and gamma-ray flux that escape the surface of Phobos, and GEANT4 to model the response of the EPICS instrument on orbit around Phobos.

  20. Performance of the ATLAS Muon Trigger in Run 2

    CERN Document Server

    Morgenstern, Marcus; The ATLAS collaboration

    2018-01-01

    Events containing muons in the final state are an important signature for many analyses being carried out at the Large Hadron Collider (LHC), including both standard model measurements and searches for new physics. To be able to study such events, it is required to have an efficient and well-understood muon trigger. The ATLAS muon trigger consists of a hardware based system (Level 1), as well as a software based reconstruction (High Level Trigger). Due to high luminosity and pile up conditions in Run 2, several improvements have been implemented to keep the trigger rate low while still maintaining a high efficiency. Some examples of recent improvements include requiring coincidence hits between different layers of the muon spectrometer, improvements for handling overlapping muons, and optimised muon isolation. We will present an overview of how we trigger on muons, recent improvements, and the performance of the muon trigger in Run 2 data.

  1. Muon Detection Based on a Hadronic Calorimeter

    CERN Document Server

    Ciodaro, T; Abreu, R; Achenbach, R; Adragna, P; Aharrouche, M; Aielli, G; Al-Shabibi, A; Aleksandrov, I; Alexandrov, E; Aloisio, A; Alviggi, M G; Amorim, A; Amram, N; Andrei, V; Anduaga, X; Angelaszek, D; Anjos, N; Annovi, A; Antonelli, S; Anulli, F; Apolle, R; Aracena, I; Ask, S; Åsman, B; Avolio, G; Baak, M; Backes, M; Backlund, S; Badescu, E; Baines, J; Ballestrero, S; Banerjee, S; Bansil, H S; Barnett, B M; Bartoldus, R; Bartsch, V; Batraneanu, S; Battaglia, A; Bauss, B; Beauchemin, P; Beck, H P; Bee, C; Begel, M; Behera, P K; Bell, P; Bell, W H; Bellagamba, L; Bellomo, M; Ben Ami, S; Bendel, M; Benhammou, Y; Benslama, K; Berge, D; Bernius, C; Berry, T; Bianco, M; Biglietti, M; Blair, R E; Bogaerts, A; Bohm, C; Boisvert, V; Bold, T; Bondioli, M; Borer, C; Boscherini, D; Bosman, M; Bossini, E; Boveia, A; Bracinik, J; Brandt, A G; Brawn, I P; Brelier, B; Brenner, R; Bressler, S; Brock, R; Brooks, W K; Brown, G; Brunet, S; Bruni, A; Bruni, G; Bucci, F; Buda, S; Burckhart-Chromek, D; Buscher, V; Buttinger, W; Calvet, S; Camarri, P; Campanelli, M; Canale, V; Canelli, F; Capasso, L; Caprini, M; Caracinha, D; Caramarcu, C; Cardarelli, R; Carlino, G; Casadei, D; Casado, M P; Cattani, G; Cerri, A; Cerrito, L; Chapleau, B; Childers, J T; Chiodini, G; Christidi, I; Ciapetti, G; Cimino, D; Ciobotaru, M; Coccaro, A; Cogan, J; Collins, N J; Conde Muino, P; Conidi, C; Conventi, F; Corradi, M; Corso-Radu, A; Coura Torres, R; Cranmer, K; Crescioli, F; Crone, G; Crupi, R; Cuenca Almenar, C; Cummings, J T; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Dao, V; Darlea, G L; Davis, A O; De Asmundis, R; De Pedis, D; De Santo, A; de Seixas, J M; Degenhardt, J; Della Pietra, M; Della Volpe, D; Demers, S; Demirkoz, B; Di Ciaccio, A; Di Mattia, A; Di Nardo, R; Di Simone, A; Diaz, M A; Dietzsch, T A; Dionisi, C; Dobson, E; Dobson, M; dos Anjos, A; Dotti, A; Dova, M T; Drake, G; Dufour, M-A; Dumitru, I; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, K V; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Ermoline, Y; Ernst, J; Etzion, E; Falciano, S; Farrington, S; Farthouat, P; Faulkner , P J W; Fedorko, W; Fellmann, D; Feng, E; Ferrag, S; Ferrari, R; Ferrer, M L; Fiorini, L; Fischer, G; Flowerdew, M J; Fonseca Martin, T; Francis, D; Fratina, S; French, S T; Front, D; Fukunaga, C; Gadomski, S; Garelli, N; Garitaonandia Elejabarrieta, H; Gaudio, G; Gee, C N P; George, S; Giagu, S; Giannetti, P; Gillman, A R; Giorgi, M; Giunta, M; Giusti, P; Goebel, M; Gonçalo, R; Gonzalez Silva, L; Göringer, C; Gorini, B; Gorini, E; Grabowska-Bold, I; Green, B; Groll, M; Guida, A; Guler, H; Haas, S; Hadavand, H; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hansen, J R; Hasegawa, S; Hasegawa, Y; Hauser, R; Hayakawa, T; Hayden, D; Head, S; Heim, S; Hellman, S; Henke, M; Hershenhorn, A; Hidvégi, A; Hillert, S; Hillier, S J; Hirayama, S; Hod, N; Hoffmann, D; Hong, T M; Hryn'ova, T; Huston, J; Iacobucci, G; Igonkina, O; Ikeno, M; Ilchenko, Y; Ishikawa, A; Ishino, M; Iwasaki, H; Izzo, V; Jez, P; Jimenez Otero, S; Johansen, M; Johns, K; Jones, G; Joos, M; Kadlecik, P; Kajomovitz, E; Kanaya, N; Kanega, F; Kanno, T; Kapliy, A; Kaushik, V; Kawagoe, K; Kawamoto, T; Kazarov, A; Kehoe, R; Kessoku, K; Khomich, A; Khoriauli, G; Kieft, G; Kirk, J; Klemetti, M; Klofver, P; Klous, S; Kluge, E-E; Kobayashi, T; Koeneke, K; Koletsou, I; Koll, J D; Kolos, S; Kono, T; Konoplich, R; Konstantinidis, N; Korcyl, K; Kordas, K; Kotov, V; Kowalewski, R V; Krasznahorkay, A; Kraus, J; Kreisel, A; Kubota, T; Kugel, A; Kunkle, J; Kurashige, H; Kuze, M; Kwee, R; Laforge, B; Landon, M; Lane, J; Lankford, A J; Laranjeira Lima, S M; Larner, A; Leahu, L; Lehmann Miotto, G; Lei, X; Lellouch, D; Levinson, L; Li, S; Liberti, B; Lilley, J N; Linnemann, J T; Lipeles, E; Lohse, T; Losada, M; Lowe, A; Luci, C; Luminari, L; Lundberg, J; Lupu, N; Machado Miguéns, J; Mackeprang, R; Maettig, S; Magnoni, L; Maiani, C; Maltrana, D; Mangeard, P-S; Männer, R; Mapelli, L; Marchese, F; Marino, C; Martin, B; Martin, B T; Martin, T; Martyniuk, A; Marzano, F; Masik, J; Mastrandrea, P; Matsushita, T; McCarn, A; Mechnich, J; Medinnis, M; Meier, K; Melachrinos, C; Mendoza Nava, L M; Merola, L; Messina, A; Meyer, C P; Middleton, R P; Mikenberg, G; Mills, C M; Mincer, A; Mineev, M; Misiejuk, A; Moa, T; Moenig, K; Monk, J; Monticelli, F; Mora Herrera, C; Morettini, P; Morris, J D; Müller, F; Munwes, Y; Murillo Garcia, R; Nagano, K; Nagasaka, Y; Navarro, G A; Negri, A; Nelson, S; Nemethy, P; Neubauer, M S; Neusiedl, A; Newman, P; Nisati, A; Nomoto, H; Nozaki, M; Nozicka, M; Nurse, E; Ochando, C; Ochi, A; Oda, S; Oh, A; Ohm, C; Okumura, Y; Olivito, D; Omachi, C; Osculati, B; Oshita, H; Ospanov, R; Owen, M A; Özcan, V E; Ozone, K; Padilla, C; Panes, B; Panikashvili, N; Paramonov, A; Parodi, F; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Perera, V J O; Perez, E; Petcu, M; Petersen, B A; Petersen, J; Petrolo, E; Phan, A; Piegaia, R; Pilkington, A; Pinder, A; Poddar, S; Polini, A; Pope, B G; Potter, C T; Primavera, M; Prokoshin, F; Ptacek, E; Qian, W; Quinonez, F; Rajagopalan, S; Ramos Dos Santos Neves, R; Reinherz-Aronis, E; Reinsch, A; Renkel, P; Rescigno, M; Rieke, S; Riu, I; Robertson, S H; Robinson, M; Rodriguez, D; Roich, A; Romeo, G; Romero, R; Roos, L; Ruiz Martinez, A; Ryabov, Y; Ryan, P; Saavedra, A; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saland, J; Salnikov, A; Salvatore, F; Sankey, D P C; Santamarina, C; Santonico, R; Sarkisyan-Grinbaum, E; Sasaki, O; Savu, D; Scannicchio, D A; Schäfer, U; Scharf, V L; Scheirich, D; Schiavi, C; Schlereth, J; Schmitt, K; Schroder, C; Schroer, N; Schultz-Coulon, H-C; Schwienhorst, R; Sekhniaidze, G; Sfyrla, A; Shamim, M; Sherman, D; Shimojima, M; Shochet, M; Shooltz, D; Sidoti, A; Silbert, O; Silverstein, S; Sinev, N; Siragusa, G; Sivoklokov, S; Sjoen, R; Sjölin, J; Slagle, K; Sloper, J E; Smith, B C; Soffer, A; Soloviev, I; Spagnolo, S; Spiwoks, R; Staley, R J; Stamen, R; Stancu, S; Steinberg, P; Stelzer, J; Stockton, M C; Straessner, A; Strauss, E A; Strom, D; Su, D; Sugaya, Y; Sugimoto, T; Sushkov, S; Sutton, M R; Suzuki, Y; Taffard, A; Taiblum, N; Takahashi, Y; Takeda, H; Takeshita, T; Tamsett, M; Tan, C L A; Tanaka, S; Tapprogge, S; Tarem, S; Tarem, Z; Taylor, C; Teixeira-Dias, P; Thomas, J P; Thompson, P D; Thomson, M A; Tokushuku, K; Tollefson, K; Tomoto, M; Topfel, C; Torrence, E; Touchard, F; Traynor, D; Tremblet, L; Tricoli, A; Tripiana, M; Triplett, N; True, P; Tsiakiris, M; Tsuno, S; Tuggle, J; Ünel, G; Urquijo, P; Urrejola, P; Usai, G; Vachon, B; Vallecorsa, S; Valsan, L; Vandelli, W; Vari, R; Vaz Gil Lopes, L; Veneziano, S; Ventura, A; Venturi, N; Vercesi, V; Vermeulen, J C; Volpi, G; Vorwerk, V; Wagner, P; Wang, M; Warburton, A; Watkins, P M; Watson, A T; Watson, M; Weber, P; Weidberg, A R; Wengler, T; Werner, P; Werth, M; Wessels, M; White, M; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Winklmeier, F; Woods, K S; Wu, S-L; Wu, X; Xaplanteris Karampatsos, L; Xella, S; Yakovlev, A; Yamazaki, Y; Yang, U; Yasu, Y; Yuan, L; Zaitsev, A; Zanello, L; Zhang, H; Zhang, J; Zhao, L; Zobernig, H; zur Nedden, M

    2010-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. The information from TileCal's last segmentation layer can assist in muon tagging and it is being considered for a near future upgrade of the level-one trigger, mainly for rejecting triggers due to cavern background at the barrel region. A muon receiver for the TileCal muon signals is being designed in order to interface with the ATLAS level-one trigger. This paper addresses the preliminary studies concerning the muon discrimination capability for the muon receiver. Monte Carlo simulations for single muons from the interaction point were used to study the effectiveness of hadronic calorimeter information on muon detection.

  2. MacMS: A Mass Spectrometer Simulator: Abstract of Issue 9906M

    Science.gov (United States)

    Bigger, Stephen W.; Craig, Robert A.

    1999-10-01

    MacMS is a program for Mac-OS compatible computers that simulates a magnetic sector mass spectrometer (1-4) designed to operate in the mass-to-charge (m/z) ratio range of 1-200 amu. MacMS has two operational modules. The first module (see Figure 1) is called the "Path" module and enables the user to quantitatively examine the trajectory of an ion of given m/z ratio in the electric and magnetic fields of the simulated "instrument". By systematically measuring a series of trajectories of different ions under different electric and magnetic field conditions, the user can determine how the resolution of the "instrument" is affected by these experimentally variable parameters. The user can thus choose suitable instrumental conditions for scanning a given m/z ratio range with good separation between the peaks. The second module (see Figure 2) is called as the "Spectrometer" module and enables the user to record, under any chosen instrumental conditions, the mass spectrum of (i) the instrumental background, (ii) neon, (iii) methane, or (iv) the parent ion of carbon tetrachloride. Both voltage scanning and magnetic scanning are possible (5). A hard copy of any mass spectrum that has been recorded can also be obtained. MacMS can read ASCII data files containing mass spectral information of compounds other than those that are "built-in" to the simulator. The appropriate format for creating such data files is described in the program documentation. There are a number of instructional exercises that can be conducted using the mass spectral information contained within the simulator. These are included in the program documentation. For example, the intensities of the 20Ne+, 21Ne+, and 22Ne+ species can be determined from hard copies of mass spectra of neon that are obtained under different instrumental sensitivities. The relative abundances of the three isotopes of neon can thus be calculated and compared with the literature values (6). The simulator also includes adjustable

  3. A generalized muon trajectory estimation algorithm with energy loss for application to muon tomography

    Science.gov (United States)

    Chatzidakis, Stylianos; Liu, Zhengzhi; Hayward, Jason P.; Scaglione, John M.

    2018-03-01

    This work presents a generalized muon trajectory estimation algorithm to estimate the path of a muon in either uniform or nonuniform media. The use of cosmic ray muons in nuclear nonproliferation and safeguard verification applications has recently gained attention due to the non-intrusive and passive nature of the inspection, penetrating capabilities, as well as recent advances in detectors that measure position and direction of the individual muons before and after traversing the imaged object. However, muon image reconstruction techniques are limited in resolution due to low muon flux and the effects of multiple Coulomb scattering (MCS). Current reconstruction algorithms, e.g., point of closest approach (PoCA) or straight-line path (SLP), rely on overly simple assumptions for muon path estimation through the imaged object. For robust muon tomography, efficient and flexible physics-based algorithms are needed to model the MCS process and accurately estimate the most probable trajectory of a muon as it traverses an object. In the present work, the use of a Bayesian framework and a Gaussian approximation of MCS is explored for estimation of the most likely path of a cosmic ray muon traversing uniform or nonuniform media and undergoing MCS. The algorithm's precision is compared to Monte Carlo simulated muon trajectories. It was found that the algorithm is expected to be able to predict muon tracks to less than 1.5 mm root mean square (RMS) for 0.5 GeV muons and 0.25 mm RMS for 3 GeV muons, a 50% improvement compared to SLP and 15% improvement when compared to PoCA. Further, a 30% increase in useful muon flux was observed relative to PoCA. Muon track prediction improved for higher muon energies or smaller penetration depth where energy loss is not significant. The effect of energy loss due to ionization is investigated, and a linear energy loss relation that is easy to use is proposed.

  4. Borehole Muon Detector Development

    Science.gov (United States)

    Bonneville, A.; Flygare, J.; Kouzes, R.; Lintereur, A.; Yamaoka, J. A. K.; Varner, G. S.

    2015-12-01

    Increasing atmospheric CO2 concentrations have spurred investigation into carbon sequestration methods. One of the possibilities being considered, storing super-critical CO2 in underground reservoirs, has drawn more attention and pilot projects are being supported worldwide. Monitoring of the post-injection fate of CO2 is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We propose here to develop a 4-D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Muon detection is a relatively mature field of particle physics and there are many muon detector designs, though most are quite large and not designed for subsurface measurements. The primary technical challenge preventing deployment of this technology in the subsurface is the lack of miniaturized muon-tracking detectors capable of fitting in standard boreholes and that will resist the harsh underground conditions. A detector with these capabilities is being developed by a collaboration supported by the U.S. Department of Energy. Current simulations based on a Monte Carlo modeling code predict that the incoming muon angle can be resolved with an error of approximately two degrees, using either underground or sea level spectra. The robustness of the design comes primarily from the use of scintillating rods as opposed to drift tubes. The rods are arrayed in alternating layers to provide a coordinate scheme. Preliminary testing and measurements are currently being performed to test and enhance the performance of the scintillating rods, in both a laboratory and a shallow underground facility. The simulation predictions and data from the experiments will be presented.

  5. Polarized muon beams for muon collider

    Energy Technology Data Exchange (ETDEWEB)

    Skrinsky, A.N. [Rossijskaya Akademiya Nauk, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki

    1996-11-01

    An option for the production of intense and highly polarized muon beams, suitable for a high-luminosity muon collider, is described briefly. It is based on a multi-channel pion-collection system, narrow-band pion-to-muon decay channels, proper muon spin gymnastics, and ionization cooling to combine all of the muon beams into a single bunch of ultimately low emittance. (orig.).

  6. Cosmological observations with a wide field telescope in space: Pixel simulations of EUCLID spectrometer

    International Nuclear Information System (INIS)

    Zoubian, Julien

    2012-01-01

    The observations of the supernovae, the cosmic microwave background, and more recently the measurement of baryon acoustic oscillations and the weak lensing effects, converge to a Lambda CDM model, with an accelerating expansion of the today Universe. This model need two dark components to fit the observations, the dark matter and the dark energy. Two approaches seem particularly promising to measure both geometry of the Universe and growth of dark matter structures, the analysis of the weak distortions of distant galaxies by gravitational lensing and the study of the baryon acoustic oscillations. Both methods required a very large sky surveys of several thousand square degrees. In the context of the spectroscopic survey of the space mission EUCLID, dedicated to the study of the dark side of the universe, I developed a pixel simulation tool for analyzing instrumental performances. The proposed method can be summarized in three steps. The first step is to simulate the observables, i.e. mainly the sources of the sky. I work up a new method, adapted for spectroscopic simulations, which allows to mock an existing survey of galaxies in ensuring that the distribution of the spectral properties of galaxies are representative of current observations, in particular the distribution of the emission lines. The second step is to simulate the instrument and produce images which are equivalent to the expected real images. Based on the pixel simulator of the HST, I developed a new tool to compute the images of the spectroscopic channel of EUCLID. The new simulator have the particularity to be able to simulate PSF with various energy distributions and detectors which have different pixels. The last step is the estimation of the performances of the instrument. Based on existing tools, I set up a pipeline of image processing and performances measurement. My main results were: 1) to validate the method by simulating an existing survey of galaxies, the WISP survey, 2) to determine the

  7. Design Concepts for Muon-Based Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, R. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirk, H. G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stratkis, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Alexahin, Y. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bross, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gollwitzer, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mokhov, N. V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palmer, M. A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yonehara, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Snopok, P. [IIT, Chicago, IL (United States); Bogacz, A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roberts, T. J. [Muons Inc., Batavia, IL (United States); Delahaye, J. -P. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-05-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced, thus enabling high-quality physics results. Thanks to these and other advances in design & simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider. This paper summarizes the current status of design concepts for muon-based accelerators for neutrino factories and a muon collider.

  8. Synthetic neutron camera and spectrometer in JET based on AFSI-ASCOT simulations

    Science.gov (United States)

    Sirén, P.; Varje, J.; Weisen, H.; Koskela, T.; contributors, JET

    2017-09-01

    The ASCOT Fusion Source Integrator (AFSI) has been used to calculate neutron production rates and spectra corresponding to the JET 19-channel neutron camera (KN3) and the time-of-flight spectrometer (TOFOR) as ideal diagnostics, without detector-related effects. AFSI calculates fusion product distributions in 4D, based on Monte Carlo integration from arbitrary reactant distribution functions. The distribution functions were calculated by the ASCOT Monte Carlo particle orbit following code for thermal, NBI and ICRH particle reactions. Fusion cross-sections were defined based on the Bosch-Hale model and both DD and DT reactions have been included. Neutrons generated by AFSI-ASCOT simulations have already been applied as a neutron source of the Serpent neutron transport code in ITER studies. Additionally, AFSI has been selected to be a main tool as the fusion product generator in the complete analysis calculation chain: ASCOT - AFSI - SERPENT (neutron and gamma transport Monte Carlo code) - APROS (system and power plant modelling code), which encompasses the plasma as an energy source, heat deposition in plant structures as well as cooling and balance-of-plant in DEMO applications and other reactor relevant analyses. This conference paper presents the first results and validation of the AFSI DD fusion model for different auxiliary heating scenarios (NBI, ICRH) with very different fast particle distribution functions. Both calculated quantities (production rates and spectra) have been compared with experimental data from KN3 and synthetic spectrometer data from ControlRoom code. No unexplained differences have been observed. In future work, AFSI will be extended for synthetic gamma diagnostics and additionally, AFSI will be used as part of the neutron transport calculation chain to model real diagnostics instead of ideal synthetic diagnostics for quantitative benchmarking.

  9. GEANT4 simulation of a scintillating-fibre tracker for the cosmic-ray muon tomography of legacy nuclear waste containers

    Energy Technology Data Exchange (ETDEWEB)

    Clarkson, A.; Hamilton, D.J.; Hoek, M.; Ireland, D.G. [SUPA, School of Physics and Astronomy, University of Glasgow, Kelvin Building, University Avenue, Glasgow G12 8QQ, Scotland (United Kingdom); Johnstone, J.R. [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, Cumbria CA20 1PG, England (United Kingdom); Kaiser, R.; Keri, T.; Lumsden, S. [SUPA, School of Physics and Astronomy, University of Glasgow, Kelvin Building, University Avenue, Glasgow G12 8QQ, Scotland (United Kingdom); Mahon, D.F., E-mail: David.Mahon@Glasgow.ac.uk [SUPA, School of Physics and Astronomy, University of Glasgow, Kelvin Building, University Avenue, Glasgow G12 8QQ, Scotland (United Kingdom); McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S. [SUPA, School of Physics and Astronomy, University of Glasgow, Kelvin Building, University Avenue, Glasgow G12 8QQ, Scotland (United Kingdom); Shearer, C.; Staines, C. [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, Cumbria CA20 1PG, England (United Kingdom); Yang, G. [SUPA, School of Physics and Astronomy, University of Glasgow, Kelvin Building, University Avenue, Glasgow G12 8QQ, Scotland (United Kingdom); Zimmerman, C. [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, Cumbria CA20 1PG, England (United Kingdom)

    2014-05-11

    Cosmic-ray muons are highly penetrative charged particles that are observed at the sea level with a flux of approximately one per square centimetre per minute. They interact with matter primarily through Coulomb scattering, which is exploited in the field of muon tomography to image shielded objects in a wide range of applications. In this paper, simulation studies are presented that assess the feasibility of a scintillating-fibre tracker system for use in the identification and characterisation of nuclear materials stored within industrial legacy waste containers. A system consisting of a pair of tracking modules above and a pair below the volume to be assayed is simulated within the GEANT4 framework using a range of potential fibre pitches and module separations. Each module comprises two orthogonal planes of fibres that allow the reconstruction of the initial and Coulomb-scattered muon trajectories. A likelihood-based image reconstruction algorithm has been developed that allows the container content to be determined with respect to the scattering density λ, a parameter which is related to the atomic number Z of the scattering material. Images reconstructed from this simulation are presented for a range of anticipated scenarios that highlight the expected image resolution and the potential of this system for the identification of high-Z materials within a shielded, concrete-filled container. First results from a constructed prototype system are presented in comparison with those from a detailed simulation. Excellent agreement between experimental data and simulation is observed showing clear discrimination between the different materials assayed throughout.

  10. GEANT4 simulation of a scintillating-fibre tracker for the cosmic-ray muon tomography of legacy nuclear waste containers

    Science.gov (United States)

    Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D. G.; Johnstone, J. R.; Kaiser, R.; Keri, T.; Lumsden, S.; Mahon, D. F.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Staines, C.; Yang, G.; Zimmerman, C.

    2014-05-01

    Cosmic-ray muons are highly penetrative charged particles that are observed at the sea level with a flux of approximately one per square centimetre per minute. They interact with matter primarily through Coulomb scattering, which is exploited in the field of muon tomography to image shielded objects in a wide range of applications. In this paper, simulation studies are presented that assess the feasibility of a scintillating-fibre tracker system for use in the identification and characterisation of nuclear materials stored within industrial legacy waste containers. A system consisting of a pair of tracking modules above and a pair below the volume to be assayed is simulated within the GEANT4 framework using a range of potential fibre pitches and module separations. Each module comprises two orthogonal planes of fibres that allow the reconstruction of the initial and Coulomb-scattered muon trajectories. A likelihood-based image reconstruction algorithm has been developed that allows the container content to be determined with respect to the scattering density λ, a parameter which is related to the atomic number Z of the scattering material. Images reconstructed from this simulation are presented for a range of anticipated scenarios that highlight the expected image resolution and the potential of this system for the identification of high-Z materials within a shielded, concrete-filled container. First results from a constructed prototype system are presented in comparison with those from a detailed simulation. Excellent agreement between experimental data and simulation is observed showing clear discrimination between the different materials assayed throughout.

  11. Generation of low-energy muons with laser resonant ionization

    International Nuclear Information System (INIS)

    Matsuda, Y.; Bakule, P.; Iwasaki, M.; Matsuzaki, T.; Miyake, Y.; Ikedo, Y.; Strasser, P.; Shimomura, K.; Makimura, S.; Nagamine, K.

    2006-01-01

    We have constructed a low-energy muSR spectrometer at RIKEN-RAL muon facility in ISIS, the UK. With low-background of pulsed muon beam, and short pulse width from laser resonant ionization method, it is hoped this instrument will open new possibilities for studies of material sciences with muon beam. It is enphasized that this method is well suited to the facility where intense pulsed proton beam is available

  12. Modeling and simulation of critical parameters of the first chamber of the dimuon arm spectrometer of the Alice experiment; Modelisation et simulation de parametres critiques de la premiere station du spectrometre dimuons d'ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Guez, D

    2003-10-01

    The Alice experiment that is dedicated to the study of ultra-relativistic heavy ion collisions, will take place in the future large hadron collider (LHC) at CERN. The dimuon arm spectrometer of the Alice experiment is devoted to the search of a new signature of the existence of the quark gluon plasma (QGP). The first chapter is dedicated to the physics notions linked to the study of QGP, a few signatures are proposed for the detection of QGP, particularly the signature concerning the production rate of quarkonium. The second chapter deals with particle detection involved in Alice experiment, the dimuon arm spectrometer is a detector dedicated to the track reconstruction of muons issued from the decay of heavy mesons from J/{psi} and {upsilon} families. The third and the fourth chapters present the studies made to integrate a reliable model of the dimuon arm in the global simulation code of Alice (Aliroot). The fifth chapter presents the software TB{sup 2} that has been developed within the framework of this thesis in order to check and control the output data when the detector is tested with a real particle beam. The sixth chapter presents the results of the tests that have been performed with a 7 GeV/c pion beam. These tests have shown that the electronic noise is coherent with the specifications of Alice experiment. A factor 1,8 between the highest and the weakest values of the gain has been measured in the chamber. The detection efficiency of the chamber has been estimated to 99% in the different cases studied. (A.C.)

  13. Development of the data acquisition system for the Triple-GEM detectors for the upgrade of the CMS forward muon spectrometer

    CERN Document Server

    Abbaneo, D; Akl, M A; Ahmed, W; Armaingaud, C; Aspell, P; Assran, Y; Bally, S; Ban, Y; Banerjee, S; Barria, P; Benussi, L; Bhopatkar, V; Bianco, S; Bos, J; Bouhali, O; Cai, J; Calabria, C; Castaneda, A; Cauwenbergh, S; Celik, A; Christiansen, J; Colafranceschi, S; Colaleo, A; Conde Garcia, A; Dabrowski, M; De Lentdecker, G; De Oliveira, R; De Robertis, G; Dildick, S; Ferry, S; Flanagan, W; Gilmore, J; Guilloux, F; Gutierrez, A; Hoepfner, K; Hohlmann, M; Kamon, T; Karchin, P E; Khotilovich, V; Korntheuer, M; Krutelyov, S; Lenzi, T; Loddo, F; Maerschalk, T; Magazzu, G; Maggi, M; Maghrbi, Y; Marchioro, A; Marinov, A; Mazumdar, N; Merlin, J A; Mukhopadhyay, S; Nuzzo, S; Oliveri, E; Philipps, B; Piccolo, D; Postema, H; Radi, A; Radogna, R; Raffone, G; Ranieri, A; Rodrigues, A; Ropelewski, L; Safonov, A; Sakharov, A; Salva, S; Saviano, G; Sharma, A; Talvitie, J; Tatarinov, A; Teng, H; Turini, N; Tuuva, T; Twigger, J; Tytgat, M; van Stenis, M.; Verhagen, E; Yang, Y; Zaganidis, N; Zenoni, F

    2014-01-01

    In this contribution we will report on the progress of thedesign of the readout and data acquisition system being developedfor triple-GEM detectors which will be installed in the forwardregion (1.5 < |η| < 2.2) of the CMS muonspectrometer during the 2nd long shutdown of the LHC, expectedin the period 2017–2018. The system will be designed to take fulladvantage of current generic developments introduced for the LHCupgrades. The current design is based on the use of CERN GLIB boardshosted in micro-TCA crates for the off-detector electronics and theVersatile Link with the GBT chipset to link the front-endelectronics to the GLIB boards. In this contribution we willdescribe the physics goals, the hardware architectures and report onthe expected performance of the CMS GEM readout system, includingpreliminary timing resolution simulations.

  14. Muon collider progress

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert J. FNAL

    1998-08-01

    Recent progress in the study of muon colliders is presented. An international collaboration consisting of over 100 individuals is involved in calculations and experiments to demonstrate the feasibility of this new type of lepton collider. Theoretical efforts are now concentrated on low-energy colliders in the 100 to 500 GeV center-of-mass energy range. Credible machine designs are emerging for much of a hypothetical complex from proton source to the final collider. Ionization cooling has been the most difficult part of the concept, and more powerful simulation tools are now in place to develop workable schemes. A collaboration proposal for a muon cooling experiment has been presented to the Fermilab Physics Advisory Committee, and a proposal for a targetry and pion collection channel experiment at Brookhaven National Laboratory is in preparation. Initial proton bunching and space-charge compensation experiments at existing hadron facilities have occurred to demonstrate proton driver feasibility.

  15. Muon bundles in underground detectors

    International Nuclear Information System (INIS)

    Gaisser, T.K.; Stanev, T.

    1985-01-01

    We give a simple set of parametrizations that can be used for Monte Carlo simulations of multiple, coincident cosmic ray muons as detected with deep, sub-surface detectors such as those designed to search for nucleon decay, monopoles, etc. The simulations are relevant to design studies, systematic intercomparison of different experiments and preliminary data analysis. (orig.)

  16. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    Since December, the muon alignment community has focused on analyzing the data recorded so far in order to produce new DT and CSC Alignment Records for the second reprocessing of CRAFT data. Two independent algorithms were developed which align the DT chambers using global tracks, thus providing, for the first time, a relative alignment of the barrel with respect to the tracker. These results are an important ingredient for the second CRAFT reprocessing and allow, for example, a more detailed study of any possible mis-modelling of the magnetic field in the muon spectrometer. Both algorithms are constructed in such a way that the resulting alignment constants are not affected, to first order, by any such mis-modelling. The CSC chambers have not yet been included in this global track-based alignment due to a lack of statistics, since only a few cosmics go through the tracker and the CSCs. A strategy exists to align the CSCs using the barrel as a reference until collision tracks become available. Aligning the ...

  17. Information extraction from muon radiography data

    International Nuclear Information System (INIS)

    Borozdin, K.N.; Asaki, T.J.; Chartrand, R.; Hengartner, N.W.; Hogan, G.E.; Morris, C.L.; Priedhorsky, W.C.; Schirato, R.C.; Schultz, L.J.; Sottile, M.J.; Vixie, K.R.; Wohlberg, B.E.; Blanpied, G.

    2004-01-01

    Scattering muon radiography was proposed recently as a technique of detection and 3-d imaging for dense high-Z objects. High-energy cosmic ray muons are deflected in matter in the process of multiple Coulomb scattering. By measuring the deflection angles we are able to reconstruct the configuration of high-Z material in the object. We discuss the methods for information extraction from muon radiography data. Tomographic methods widely used in medical images have been applied to a specific muon radiography information source. Alternative simple technique based on the counting of high-scattered muons in the voxels seems to be efficient in many simulated scenes. SVM-based classifiers and clustering algorithms may allow detection of compact high-Z object without full image reconstruction. The efficiency of muon radiography can be increased using additional informational sources, such as momentum estimation, stopping power measurement, and detection of muonic atom emission.

  18. Muon Detection Based on a Hadronic Calorimeter

    CERN Document Server

    Ciodaro, Thiago; Abreu, R; Achenbach, R; Adragna, P; Aharrouche, M; Aielli, G; Al-Shabibi, A; Aleksandrov, I; Alexandrov, E; Aloisio, A; Alviggi, M G; Amorim, A; Amram, N; Andrei, V; Anduaga, X; Angelaszek, D; Anjos, N; Annovi, A; Antonelli, S; Anulli, F; Apolle, R; Aracena, I; Ask, S; Åsman, B; Avolio, G; Baak, M; Backes, M; Backlund, S; Badescu, E; Baines, J; Ballestrero, S; Banerjee, S; Bansil, H S; Barnett, B M; Bartoldus, R; Bartsch, V; Batraneanu, S; Battaglia, A; Bauss, B; Beauchemin, P; Beck, H P; Bee, C; Begel, M; Behera, P K; Bell, P; Bell, W H; Bellagamba, L; Bellomo, M; Ben Ami, S; Bendel, M; Benhammou, Y; Benslama, K; Berge, D; Bernius, C; Berry, T; Bianco, M; Biglietti, M; Blair, R E; Bogaerts, A; Bohm, C; Boisvert, V; Bold, T; Bondioli, M; Borer, C; Boscherini, D; Bosman, M; Bossini, E; Boveia, A; Bracinik, J; Brandt, A G; Brawn, I P; Brelier, B; Brenner, R; Bressler, S; Brock, R; Brooks, W K; Brown, G; Brunet, S; Bruni, A; Bruni, G; Bucci, F; Buda, S; Burckhart-Chromek, D; Buscher, V; Buttinger, W; Calvet, S; Camarri, P; Campanelli, M; Canale, V; Canelli, F; Capasso, L; Caprini, M; Caracinha, D; Caramarcu, C; Cardarelli, R; Carlino, G; Casadei, D; Casado, M P; Cattani, G; Cerri, A; Cerrito, L; Chapleau, B; Childers, J T; Chiodini, G; Christidi, I; Ciapetti, G; Cimino, D; Ciobotaru, M; Coccaro, A; Cogan, J; Collins, N J; Conde Muino, P; Conidi, C; Conventi, F; Corradi, M; Corso-Radu, A; Coura Torres, R; Cranmer, K; Crescioli, F; Crone, G; Crupi, R; Cuenca Almenar, C; Cummings, J T; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Dao, V; Darlea, G L; Davis, A O; De Asmundis, R; De Pedis, D; De Santo, A; de Seixas, J M; Degenhardt, J; Della Pietra, M; Della Volpe, D; Demers, S; Demirkoz, B; Di Ciaccio, A; Di Mattia, A; Di Nardo, R; Di Simone, A; Diaz, M A; Dietzsch, T A; Dionisi, C; Dobson, E; Dobson, M; dos Anjos, A; Dotti, A; Dova, M T; Drake, G; Dufour, M-A; Dumitru, I; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, K V; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Ermoline, Y; Ernst, J; Etzion, E; Falciano, S; Farrington, S; Farthouat, P; Faulkner, P J W; Fedorko, W; Fellmann, D; Feng, E; Ferrag, S; Ferrari, R; Ferrer, M L; Fiorini, L; Fischer, G; Flowerdew, M J; Fonseca Martin, T; Francis, D; Fratina, S; French, S T; Front, D; Fukunaga, C; Gadomski, S; Garelli, N; Garitaonandia Elejabarrieta, H; Gaudio, G; Gee, C N P; George, S; Giagu, S; Giannetti, P; Gillman, A R; Giorgi, M; Giunta, M; Giusti, P; Goebel, M; Gonçalo, R; Gonzalez Silva, L; Göringer, C; Gorini, B; Gorini, E; Grabowska-Bold, I; Green, B; Groll, M; Guida, A; Guler, H; Haas, S; Hadavand, H; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hansen, J R; Hasegawa, S; Hasegawa, Y; Hauser, R; Hayakawa, T; Hayden, D; Head, S; Heim, S; Hellman, S; Henke, M; Hershenhorn, A; Hidvégi, A; Hillert, S; Hillier, S J; Hirayama, S; Hod, N; Hoffmann, D; Hong, T M; Hryn'ova, T; Huston, J; Iacobucci, G; Igonkina, O; Ikeno, M; Ilchenko, Y; Ishikawa, A; Ishino, M; Iwasaki, H; Izzo, V; Jez, P; Jimenez Otero, S; Johansen, M; Johns, K; Jones, G; Joos, M; Kadlecik, P; Kajomovitz, E; Kanaya, N; Kanega, F; Kanno, T; Kapliy, A; Kaushik, V; Kawagoe, K; Kawamoto, T; Kazarov, A; Kehoe, R; Kessoku, K; Khomich, A; Khoriauli, G; Kieft, G; Kirk, J; Klemetti, M; Klofver, P; Klous, S; Kluge, E-E; Kobayashi, T; Koeneke, K; Koletsou, I; Koll, J D; Kolos, S; Kono, T; Konoplich, R; Konstantinidis, N; Korcyl, K; Kordas, K; Kotov, V; Kowalewski, R V; Krasznahorkay, A; Kraus, J; Kreisel, A; Kubota, T; Kugel, A; Kunkle, J; Kurashige, H; Kuze, M; Kwee, R; Laforge, B; Landon, M; Lane, J; Lankford, A J; Laranjeira Lima, S M; Larner, A; Leahu, L; Lehmann Miotto, G; Lei, X; Lellouch, D; Levinson, L; Li, S; Liberti, B; Lilley, J N; Linnemann, J T; Lipeles, E; Lohse, T; Losada, M; Lowe, A; Luci, C; Luminari, L; Lundberg, J; Lupu, N; Machado Miguéns, J; Mackeprang, R; Maettig, S; Magnoni, L; Maiani, C; Maltrana, D; Mangeard, P-S; Männer, R; Mapelli, L; Marchese, F; Marino, C; Martin, B; Martin, B T; Martin, T; Martyniuk, A; Marzano, F; Masik, J; Mastrandrea, P; Matsushita, T; McCarn, A; Mechnich, J; Medinnis, M; Meier, K; Melachrinos, C; Mendoza Nava, L M; Merola, L; Messina, A; Meyer, C P; Middleton, R P; Mikenberg, G; Mills, C M; Mincer, A; Mineev, M; Misiejuk, A; Moa, T; Moenig, K; Monk, J; Monticelli, F; Mora Herrera, C; Morettini, P; Morris, J D; Müller, F; Munwes, Y; Murillo Garcia, R; Nagano, K; Nagasaka, Y; Navarro, G A; Negri, A; Nelson, S; Nemethy, P; Neubauer, M S; Neusiedl, A; Newman, P; Nisati, A; Nomoto, H; Nozaki, M; Nozicka, M; Nurse, E; Ochando, C; Ochi, A; Oda, S; Oh, A; Ohm, C; Okumura, Y; Olivito, D; Omachi, C; Osculati, B; Oshita, H; Ospanov, R; Owen, M A; Özcan, V E; Ozone, K; Padilla, C; Panes, B; Panikashvili, N; Paramonov, A; Parodi, F; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Perera, V J O; Perez, E; Petcu, M; Petersen, B A; Petersen, J; Petrolo, E; Phan, A; Piegaia, R; Pilkington, A; Pinder, A; Poddar, S; Polini, A; Pope, B G; Potter, C T; Primavera, M; Prokoshin, F; Ptacek, E; Qian, W; Quinonez, F; Rajagopalan, S; Ramos Dos Santos Neves, R; Reinherz-Aronis, E; Reinsch, A; Renkel, P; Rescigno, M; Rieke, S; Riu, I; Robertson, S H; Robinson, M; Rodriguez, D; Roich, A; Romeo, G; Romero, R; Roos, L; Ruiz Martinez, A; Ryabov, Y; Ryan, P; Saavedra, A; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saland, J; Salnikov, A; Salvatore, F; Sankey, D P C; Santamarina, C; Santonico, R; Sarkisyan-Grinbaum, E; Sasaki, O; Savu, D; Scannicchio, D A; Schäfer, U; Scharf, V L; Scheirich, D; Schiavi, C; Schlereth, J; Schmitt, K; Schroder, C; Schroer, N; Schultz-Coulon, H-C; Schwienhorst, R; Sekhniaidze, G; Sfyrla, A; Shamim, M; Sherman, D; Shimojima, M; Shochet, M; Shooltz, D; Sidoti, A; Silbert, O; Silverstein, S; Sinev, N; Siragusa, G; Sivoklokov, S; Sjoen, R; Sjölin, J; Slagle, K; Sloper, J E; Smith, B C; Soffer, A; Soloviev, I; Spagnolo, S; Spiwoks, R; Staley, R J; Stamen, R; Stancu, S; Steinberg, P; Stelzer, J; Stockton, M C; Straessner, A; Strauss, E A; Strom, D; Su, D; Sugaya, Y; Sugimoto, T; Sushkov, S; Sutton, M R; Suzuki, Y; Taffard, A; Taiblum, N; Takahashi, Y; Takeda, H; Takeshita, T; Tamsett, M; Tan, C L A; Tanaka, S; Tapprogge, S; Tarem, S; Tarem, Z; Taylor, C; Teixeira-Dias, P; Thomas, J P; Thompson, P D; Thomson, M A; Tokushuku, K; Tollefson, K; Tomoto, M; Topfel, C; Torrence, E; Touchard, F; Traynor, D; Tremblet, L; Tricoli, A; Tripiana, M; Triplett, N; True, P; Tsiakiris, M; Tsuno, S; Tuggle, J; Ünel, G; Urquijo, P; Urrejola, P; Usai, G; Vachon, B; Vallecorsa, S; Valsan, L; Vandelli, W; Vari, R; Vaz Gil Lopes, L; Veneziano, S; Ventura, A; Venturi, N; Vercesi, V; Vermeulen, J C; Volpi, G; Vorwerk, V; Wagner, P; Wang, M; Warburton, A; Watkins, P M; Watson, A T; Watson, M; Weber, P; Weidberg, A R; Wengler, T; Werner, P; Werth, M; Wessels, M; White, M; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Winklmeier, F; Woods, K S; Wu, S-L; Wu, X; Xaplanteris Karampatsos, L; Xella, S; Yakovlev, A; Yamazaki, Y; Yang, U; Yasu, Y; Yuan, L; Zaitsev, A; Zanello, L; Zhang, H; Zhang, J; Zhao, L; Zobernig, H; zur Nedden, M

    2010-01-01

    The TileCal hadronic calorimeter provides a muon signal which can be used to assist in muon tagging at the ATLAS level-one trigger. Originally, the muon signal was conceived to be combined with the RPC trigger in order to reduce unforeseen high trigger rates due to cavern background. Nevertheless, the combined trigger cannot significantly deteriorate the muon detection performance at the barrel region. This paper presents preliminary studies concerning the impact in muon identification at the ATLAS level-one trigger, through the use of Monte Carlo simulations with single muons with 40 GeV/c momentum. Further, different trigger scenarios were proposed, together with an approach for matching both TileCal and RPC geometries.

  19. Development and simulation of a Ge/Si multi-detector spectrometer for fission products traces detection in the environment

    International Nuclear Information System (INIS)

    Cagniant, Antoine

    2015-01-01

    For the verification of the Comprehensive nuclear Test Ban Treaty (CTBT), the measurement of fission products trace levels in the environment is fundamental. Such measurement is a key indicator of a nuclear explosion. For constant amelioration of these measurements, the CEA/DAM-Ile de France has developed and installed a new dedicated surface spectrometer. Named GAMMA3, it is equipped with three germanium detectors, two silicon detectors (integrated in a dedicated gas cell, the PIPSBox) and includes an optimized shielding.This shielding reduces greatly the interference of environmental photons, muons and neutrons with the detectors. The residual radiological background measured inside the shielding is the community's lowest for a surface laboratory. This set of high energy resolution detectors allows the operator to optimize a measurement according to the sample geometry, activity or nature. More precisely, a radioactive noble gas can be measured by photon/electron coincidence, an active sample can be measured by photon/photon coincidence, and a low-active sample can be measured in a high-efficiency configuration. Combining optimized shielding and optimized measurement, Minimum Detectable Activities required for CTBT certification are obtained quickly. Specifically, MDA is reached in 5 hours for 140-Ba (24 mBq), in 6h30 hours for 131m/133m-Xe (5 mBq) and in 7h15 for 133-Xe (5 mBq), when CTBT requirement is in 6 days. (author) [fr

  20. Aligning the CMS Muon Chambers with the Muon Alignment System during an Extended Cosmic Ray Run

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The alignment system for the muon spectrometer of the CMS detector comprises three independent subsystems of optical and analog position sensors. It aligns muon chambers with respect to each other and to the central silicon tracker. System commissioning at full magnetic field began in 2008 during an extended cosmic ray run. The system succeeded in tracking muon detector movements of up to 18 mm and rotations of several milliradians under magnetic forces. Depending on coordinate and subsystem, the system achieved chamber alignment precisions of 140-350 microns and 30-200 microradians. Systematic errors on displacements are estimated to be 340-590 microns based on comparisons with independent photogrammetry measurements.

  1. Muon Tomography for Geological Repositories.

    Science.gov (United States)

    Woodward, D.; Kudryavtsev, V.; Gluyas, J.; Clark, S. J.; Thompson, L. F.; Klinger, J.; Spooner, N. J.; Blackwell, T. B.; Pal, S.; Lincoln, D. L.; Paling, S. M.; Mitchell, C. N.; Benton, C.; Coleman, M. L.; Telfer, S.; Cole, A.; Nolan, S.; Chadwick, P.

    2015-12-01

    Cosmic-ray muons are subatomic particles produced in the upper atmosphere in collisions of primary cosmic rays with atoms in air. Due to their high penetrating power these muons can be used to image the content (primarily density) of matter they pass through. They have already been used to image the structure of pyramids, volcanoes and other objects. Their applications can be extended to investigating the structure of, and monitoring changes in geological formations and repositories, in particular deep subsurface sites with stored CO2. Current methods of monitoring subsurface CO2, such as repeat seismic surveys, are episodic and require highly skilled personnel to operate. Our simulations based on simplified models have previously shown that muon tomography could be used to continuously monitor CO2 injection and migration and complement existing technologies. Here we present a simulation of the monitoring of CO2 plume evolution in a geological reservoir using muon tomography. The stratigraphy in the vicinity of the reservoir is modelled using geological data, and a numerical fluid flow model is used to describe the time evolution of the CO2 plume. A planar detection region with a surface area of 1000 m2 is considered, at a vertical depth of 776 m below the seabed. We find that one year of constant CO2 injection leads to changes in the column density of about 1%, and that the CO2 plume is already resolvable with an exposure time of less than 50 days. The attached figure show a map of CO2 plume in angular coordinates as reconstructed from observed muons. In parallel with simulation efforts, a small prototype muon detector has been designed, built and tested in a deep subsurface laboratory. Initial calibrations of the detector have shown that it can reach the required angular resolution for muon detection. Stable operation in a small borehole within a few months has been demonstrated.

  2. Neutron Production by Muon Spallation I: Theory

    International Nuclear Information System (INIS)

    Luu, T; Hagmann, C

    2006-01-01

    We describe the physics and codes developed in the Muon Physics Package. This package is a self-contained Fortran90 module that is intended to be used with the Monte Carlo package MCNPX. We calculate simulated energy spectra, multiplicities, and angular distributions of direct neutrons and pions from muon spallation

  3. Measurement of the atmospheric muon spectrum from 20 to 2000 GeV

    CERN Document Server

    Unger, Michael

    2003-01-01

    The atmospheric muon spectrum between 20 and 2000 GeV was measured with the L3 magnetic muon spectrometer for zenith angles ranging from 0 to 58 degrees. Due to the large data set and the good detector resolution, a precision of 2.6% at 100 GeV was achieved for the absolute normalization of the vertical muon flux. The momentum dependence of the ratio of positive to negative muons was obtained between 20 and 630 GeV.

  4. The magnetic shield design and simulation of an X-ray spectrometer for Chang'E mission

    International Nuclear Information System (INIS)

    Zhang Jiayu; Wang Huanyu; Zhang Chengmo; Yang Jiawei; Liang Xiaohua; Wang Jinzhou; Cao Xuelei; Gao Min; Cui Xingzhu; Peng Wenxi

    2008-01-01

    Basic design methods about the magnetic shield of an X-ray spectrometer for Chang'E Mission were introduced in this paper. The real magnetic field distribution was obtained through the measure experiment, and according to the measure results, the simulation to evaluate the magnetic shield effect was carded on. The results showed that the collimator can play a good role in magnetic shield to the electron. (authors)

  5. Particle Production in Deep Inelastic Muon Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, John James [MIT

    1991-01-01

    The E665 spectrometer at Fermila.b measured Deep-Inelastic Scattering of 490 GeV /c muons off several targets: Hydrogen, Deuterium, and Xenon. Events were selected from the Xenon and Deuterium targets, with a range of energy exchange, $\

  6. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    Barrel Muons The last CMS week was dominated by the lowering of YB0. The date of lowering was fixed in January for February 28th. RPC and DT cabling of YB0 had to be done on the surface to allow a complete check of the status of the chambers before lowering. When the decision of the date was taken, the wheel cabling, planned to start at end of December, was not yet started for several “muon independent” reasons. Cabling and DT /RPC test started on Jan 22nd and ended on Feb 19th. Several teams worked on the surface of the wheel in parallel on the three different items, finishing just in time for lowering. This was a real challenge and a significant result. So by the end of the CMS Week, all the positive part of CMS plus YB0 were in the cavern. YB+2 had been lowered in January 19th, and YB+1 on February 1st. The vertical chambers of sectors 1 and 7 (8 DT/RPC packs), whose space was taken by the lowering machinery, had to be installed after lowering. This was done from Jan 24 to Jan 26 for...

  7. Exploring the Physics Limitations of Compact High Gradient Accelerating Structures Simulations of the Electron Current Spectrometer Setup in Geant4

    CERN Document Server

    Van Vliet, Philine Julia

    2017-01-01

    The high field gradient of 100 MV/m that will be applied to the accelerator cavities of the Compact Linear Collider (CLIC), gives rise to the problem of RF breakdowns. The field collapses and a plasma of electrons and ions is being formed in the cavity, preventing the RF field from penetrating the cavity. Electrons in the plasma are being accelerated and ejected out, resulting in a breakdown current up to a few Amp`eres, measured outside the cavities. These breakdowns lead to luminosity loss, so reducing their amount is of great importance. For this, a better understanding of the physics behind RF breakdowns is needed. To study these breakdowns, the XBox 2 test facility has a spectrometer setup installed after the RF cavity that is being conditioned. For this report, a simulation of this spectrometer setup has been made using Geant4. Once a detailed simulation of the RF field and cavity has been made, it can be connected to this simulation of the spectrometer setup and used to recreate the data that has b...

  8. The atlas muon spectrometer : commissioning and tracking

    NARCIS (Netherlands)

    Snuverink, J.

    2009-01-01

    The Standard Model is a well established theory for elementary particle physics that describes all known elementary particles and their interactions. Except for gravity all known forces are included: the electromagnetic, weak and strong nuclear force. ATLAS is one of the two general-purpose

  9. Precision of the ATLAS muon spectrometer

    CERN Document Server

    Woudstra, M J

    2002-01-01

    The 'Standard Model' of elementary particles has been a very successful theory for the last few decades and has met every experimental test. It incorporates the Glashow-Weinberg-Salam theory of electroweak interactions and the quantum chromodynamics theory of the strong interactions, and thereby includes all known forces between elementary particles except gravity. The Standard Model includes the 'Higgs' mechanism to endow the particles with mass. This mechanism, however, requires the existence of the 'Higgs boson'. This is the only particle of the Standard Model that has escaped experimental observation, despite many efforts of the last four decades. Current indirect measurements from the experiments at the LEP accelerator at CERN indicate that the mass of the Standard Model Higgs particle falls in the range 114 - 196 GeV / c2 with a probability of 90%. The LEP accelerator and its detectors are currently being dismantled to be replaced by the more powerful LHC accelerator and its four new experiments (called...

  10. L3-forward-backward muon spectrometer

    International Nuclear Information System (INIS)

    Deiters, K.

    1995-01-01

    The performance of the distance sensors could be successfully tested in the L3 detector. One sensor of each type got installed together with a precision sensor. This sensor is based on a glass rod with optical marks which are scanned by a system of light diodes. It has a measurement accuracy of 1 μm. We proved, that the desired accuracy of 10 μm was reached and that the sensors work in the environment of the L3 detector. (author) 11 figs., 5 refs

  11. Developing a cosmic ray muon sampling capability for muon tomography and monitoring applications

    International Nuclear Information System (INIS)

    Chatzidakis, S.; Chrysikopoulou, S.; Tsoukalas, L.H.

    2015-01-01

    In this study, a cosmic ray muon sampling capability using a phenomenological model that captures the main characteristics of the experimentally measured spectrum coupled with a set of statistical algorithms is developed. The “muon generator” produces muons with zenith angles in the range 0–90° and energies in the range 1–100 GeV and is suitable for Monte Carlo simulations with emphasis on muon tomographic and monitoring applications. The muon energy distribution is described by the Smith and Duller (1959) [35] phenomenological model. Statistical algorithms are then employed for generating random samples. The inverse transform provides a means to generate samples from the muon angular distribution, whereas the Acceptance–Rejection and Metropolis–Hastings algorithms are employed to provide the energy component. The predictions for muon energies 1–60 GeV and zenith angles 0–90° are validated with a series of actual spectrum measurements and with estimates from the software library CRY. The results confirm the validity of the phenomenological model and the applicability of the statistical algorithms to generate polyenergetic–polydirectional muons. The response of the algorithms and the impact of critical parameters on computation time and computed results were investigated. Final output from the proposed “muon generator” is a look-up table that contains the sampled muon angles and energies and can be easily integrated into Monte Carlo particle simulation codes such as Geant4 and MCNP.

  12. Developing a cosmic ray muon sampling capability for muon tomography and monitoring applications

    Science.gov (United States)

    Chatzidakis, S.; Chrysikopoulou, S.; Tsoukalas, L. H.

    2015-12-01

    In this study, a cosmic ray muon sampling capability using a phenomenological model that captures the main characteristics of the experimentally measured spectrum coupled with a set of statistical algorithms is developed. The "muon generator" produces muons with zenith angles in the range 0-90° and energies in the range 1-100 GeV and is suitable for Monte Carlo simulations with emphasis on muon tomographic and monitoring applications. The muon energy distribution is described by the Smith and Duller (1959) [35] phenomenological model. Statistical algorithms are then employed for generating random samples. The inverse transform provides a means to generate samples from the muon angular distribution, whereas the Acceptance-Rejection and Metropolis-Hastings algorithms are employed to provide the energy component. The predictions for muon energies 1-60 GeV and zenith angles 0-90° are validated with a series of actual spectrum measurements and with estimates from the software library CRY. The results confirm the validity of the phenomenological model and the applicability of the statistical algorithms to generate polyenergetic-polydirectional muons. The response of the algorithms and the impact of critical parameters on computation time and computed results were investigated. Final output from the proposed "muon generator" is a look-up table that contains the sampled muon angles and energies and can be easily integrated into Monte Carlo particle simulation codes such as Geant4 and MCNP.

  13. Developing a cosmic ray muon sampling capability for muon tomography and monitoring applications

    Energy Technology Data Exchange (ETDEWEB)

    Chatzidakis, S., E-mail: schatzid@purdue.edu; Chrysikopoulou, S.; Tsoukalas, L.H.

    2015-12-21

    In this study, a cosmic ray muon sampling capability using a phenomenological model that captures the main characteristics of the experimentally measured spectrum coupled with a set of statistical algorithms is developed. The “muon generator” produces muons with zenith angles in the range 0–90° and energies in the range 1–100 GeV and is suitable for Monte Carlo simulations with emphasis on muon tomographic and monitoring applications. The muon energy distribution is described by the Smith and Duller (1959) [35] phenomenological model. Statistical algorithms are then employed for generating random samples. The inverse transform provides a means to generate samples from the muon angular distribution, whereas the Acceptance–Rejection and Metropolis–Hastings algorithms are employed to provide the energy component. The predictions for muon energies 1–60 GeV and zenith angles 0–90° are validated with a series of actual spectrum measurements and with estimates from the software library CRY. The results confirm the validity of the phenomenological model and the applicability of the statistical algorithms to generate polyenergetic–polydirectional muons. The response of the algorithms and the impact of critical parameters on computation time and computed results were investigated. Final output from the proposed “muon generator” is a look-up table that contains the sampled muon angles and energies and can be easily integrated into Monte Carlo particle simulation codes such as Geant4 and MCNP.

  14. Final muon cooling for a muon collider

    Science.gov (United States)

    Acosta Castillo, John Gabriel

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 mus and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough beta* region to cool the beam to the required limit with available low Z absorbers.

  15. Magnets for Muon 6D Cooling Channels

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc.; Flanagan, Gene [Muons, Inc.

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  16. Muon catalyzed fusion under compressive conditions

    International Nuclear Information System (INIS)

    Cripps, G.; Goel, B.; Harms, A.A.

    1991-01-01

    The viability of a symbiotic combination of Muon Catalyzed Fusion (μCF) and high density generation processes has been investigated. The muon catalyzed fusion reaction rates are formulated in the temperature and density range found under moderate compressive conditions. Simplified energy gain and power balance calculations indicate that significant energy gain occurs only if standard type deuterium-tritium (dt) fusion is ignited. A computer simulation of the hydrodynamics and fusion kinetics of a spherical deuterium-tritium pellet implosion including muons is performed. Using the muon catalyzed fusion reaction rates formulated and under ideal conditions, the pellet ignites (and thus has a significant energy gain) only if the initial muon concentration is approximately 10 17 cm -3 . The muons need to be delivered to the pellet within a very short-time (≅ 1 ns). The muon pulse required in order to make the high density and temperature muon catalyzed fusion scheme viable is beyond the present technology for muon production. (orig.) [de

  17. Muon probe and connected instrumentation for the study of quark-gluon plasma in ALICE experiment; Sonde muonique et instrumentation associee pour l'etude du plasma de quarks et de gluons dans l'experience ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Guerin, Fabien [Ecole Doctorale des Sciences Fondamentales, Universite Blaise Pascal, U.F.R de Recherches Scientifiques et Techniques, 34, avenue Carnot - BP 185, 63006 Clermont-Ferrand Cedex (France)

    2006-11-15

    ALICE (A Large Ion Collider Experiment) is the LHC detector dedicated to the study of ultra-relativistic heavy ion collisions. The main goal of ALICE is the study of a new phase of the nuclear matter predicted by the Quantum Chromodynamics theory (QCD): the Quark-Gluon Plasma (QGP). One of the possible signatures is a suppression of quarkonia yields by color screening in the heavy ion collisions, in which the formation of the QGP is expected. The muon spectrometer will allow measuring of the quarkonia yields (J/{psi}, {upsilon}) in heavy ion collisions via their dimuon decay. A fast trigger, associated to muon spectrometer, has to select events with at least one muon or one dimuon by using a track search algorithm. The study of muon trigger performance will be presented with emphasis on the trigger efficiency and rates in Ar-Ar and Pb-Pb collisions. We will also present the reconstruction of unlike-sign dimuon mass spectrum with the ALICE muon spectrometer. The expected yields of Upsilon states will be extracted from a simulation based on a fit of this spectrum for one month running for Pb-Pb collisions and for different collision centralities. (author)

  18. Simulation and optimization of a new focusing polarizing bender for the diffuse neutrons scattering spectrometer DNS at MLZ

    International Nuclear Information System (INIS)

    Nemkovski, K; Ioffe, A; Su, Y; Babcock, E; Schweika, W; Brückel, Th

    2017-01-01

    We present the concept and the results of the simulations of a new polarizer for the diffuse neutron scattering spectrometer DNS at MLZ. The concept of the polarizer is based on the idea of a bender made from the stack of the silicon wafers with a double-side supermirror polarizing coating and absorbing spacers in between. Owing to its compact design, such a system provides more free space for the arrangement of other instrument components. To reduce activation of the polarizer in the high intensity neutron beam of the DNS spectrometer we plan to use the Fe/Si supermirrors instead of currently used FeCoV/Ti:N ones. Using the VITESS simulation package we have performed simulations for horizontally focusing polarizing benders with different geometries in the combination with the double-focusing crystal monochromator of DNS. Neutron transmission and polarization efficiency as well as the effects of the focusing for convergent conventional C-benders and S-benders have been analyzed both for wedge-like and plane-parallel convergent geometries of the channels. The results of these simulations and the advantages/disadvantages of the various configurations are discussed. (paper)

  19. Simulation and optimization of a new focusing polarizing bender for the diffuse neutrons scattering spectrometer DNS at MLZ

    Science.gov (United States)

    Nemkovski, K.; Ioffe, A.; Su, Y.; Babcock, E.; Schweika, W.; Brückel, Th

    2017-06-01

    We present the concept and the results of the simulations of a new polarizer for the diffuse neutron scattering spectrometer DNS at MLZ. The concept of the polarizer is based on the idea of a bender made from the stack of the silicon wafers with a double-side supermirror polarizing coating and absorbing spacers in between. Owing to its compact design, such a system provides more free space for the arrangement of other instrument components. To reduce activation of the polarizer in the high intensity neutron beam of the DNS spectrometer we plan to use the Fe/Si supermirrors instead of currently used FeCoV/Ti:N ones. Using the VITESS simulation package we have performed simulations for horizontally focusing polarizing benders with different geometries in the combination with the double-focusing crystal monochromator of DNS. Neutron transmission and polarization efficiency as well as the effects of the focusing for convergent conventional C-benders and S-benders have been analyzed both for wedge-like and plane-parallel convergent geometries of the channels. The results of these simulations and the advantages/disadvantages of the various configurations are discussed.

  20. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    DT Commissioning of the two negative wheels was done on the surface to gain time; YB-1 was completed in June and that of YB-2 on October 3. A new test is ongoing following their lowering into the experiment cavern (UX). In the UX cavern, YB0 and YB+1 testing was completed by the end of August, and the two last sectors of YB+2 will be finished by the end of November. The two negative wheels were lowered at the beginning of October and the installation of the chambers in the vertical sectors was done immediately. Three important events took place at the end of October: the last of the 250 DT +RPC packs was installed in Sector 7 of YB-2; full power was switched on for the first time in a full wheel (on YB0, albeit with temporary power distribution) and 50,000 events of cosmic muons, including many spectacular showers crossing the fully active YB0 (50 chambers), were recorded in about 15 minutes. Other crucial tests were achieved, in difficult conditions, to prove the performance of the DT DAQ. The DAQ ha...

  1. Investigation of background processes in the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Axel [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik (IKP) (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    The KArlsruhe TRItium Neutrino experiment aims to probe the mass of the electron antineutrino in a model-independent way with an unsurpassed sensitivity of m{sub ν}=200 meV/c{sup 2} (90% C.L.). In order to determine the neutrino mass, the energy spectrum of electrons from the tritium β-decay is analyzed by a high-resolution electrostatic spectrometer which is based on the MAC-E filter principle. To keep the influence of the spectrometer background on the neutrino mass sensitivity small, KATRIN aims for a background level of 0.01 cps. For the investigation of different background components such as cosmic muons, external gamma radiation and the radioactive decay of isotopes in the volume of the spectrometer or on its surface, a series of dedicated measurements were performed with a combined system of main spectrometer and detector. This talk presents the results of measurements focusing on the secondary electron production at the inner surface of the spectrometer and compare them with electro-magnetic electron tracking simulations performed with the KATRIN developed simulation software KASSIOPEIA.

  2. Toward Monte Carlo simulation of general cases of static muon spin relaxation in disordered magnetic materials: long-range magnetic order in alloys

    International Nuclear Information System (INIS)

    Noakes, D.R.

    2001-01-01

    Monte Carlo simulations of zero-field (ZF) muon spin relaxation (μSR) functions generated by long-range-ordered states with disorder are presented, for the completely static limit. Understanding of this is necessary before Monte Carlo simulation of the effect of short-range magnetic ordering on μSR in spin glasses can begin. Alloy disorder, controlled by the magnetic ion concentration parameter f m , and partial ordering of each moment, controlled by the order parameter f o , are considered. Qualitatively different behavior is seen depending on whether the dense moment, perfect-order limit ( f m =1, f o =1) field at the muon site is non-zero, or cancels (as can happen in high-symmetry materials). Around the edges of the two-dimensional ( f m ,f o ) parameter space, four limit cases with qualitatively different behavior are identified: (A) f o →0, the random frozen spin glass for arbitrary magnetic ion concentration; (B) f o →1, nearly perfect magnetic ordering in a alloy of arbitrary magnetic ion concentration; (C) f m →0, magnetic order developing (as f o increases) in a dilute magnetic alloy; (D) f m →1, magnetic order developing (as f o increases) in a dense magnetic material. Case A was discussed in a previous publication. The results for case D answer the question of how the Gaussian Kubo-Toyabe relaxation function for perfect disorder develops into an oscillating function as magnetic order develops in a material. Case C indicates that the effects of magnetic ordering in the dilute moment limit produce only subtle effects in ZF-μSR spectra that would be difficult to unambiguously identify as due to ordering in a real-world experiment. Case B generates complicated multi-frequency behavior

  3. Reconstruction of cosmic and beam-halo muons with the CMS detector

    CERN Document Server

    Liu, Chang; Amapane, Nicola; Fernandez Bedoya, Cristina; Bellan, Riccardo; Biallass, Philipp; Bolognesi, Sara; Cerminara, Gianluca; Fouz Iglesias, Mary-Cruz; Giunta, Marina; Guiducci, Luigi; Hoepfner, Kerstin; Lacaprara, Stefano; Masetti, Gianni; Meneguzzo, Anna; Paolucci, Pierluigi; Puerta Pelayo, Jesus; Travaglini, Riccardo; Zanetti, Marco; Villanueva, Carlos

    2008-01-01

    The powerful muon and tracker systems of the CMS detector together with dedicated reconstruction software allow precise and efficient measurement of muon tracks originating from proton-proton collisions. The standard muon reconstruction algorithms, however, are inadequate to deal with muons that do not originate from collisions. This note discusses the design, implementation, and performance results of a dedicated cosmic muon track reconstruction algorithm, which features pattern recognition optimized for muons that are not coming from the interaction point, i.e., cosmic muons and beam-halo muons. To evaluate the performance of the new algorithm, data taken during Cosmic Challenge phases I and II were studied and compared with simulated cosmic data. In addition, a variety of more general topologies of cosmic muons and beam-halo muons were studied using simulated data to demonstrate some key features of the new algorithm.

  4. A Muon Collider scheme based on Frictional Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv University, Tel Aviv (Israel); Caldwell, A. [Max-Planck-Institut fuer Physik, Munich (Germany); Galea, R. [Nevis Laboratories, Columbia University, Irvington, NY (United States)]. E-mail: galea@nevis.columbia.edu; Schlenstedt, S. [DESY, Zeuthen (Germany)

    2005-07-11

    Muon Colliders would usher in a new era of scientific investigation in the field of high-energy particle physics. The cooling of muon beams is proving to be the greatest obstacle in the realization of a Muon Collider. Monte Carlo simulations of a muon cooling scheme based on Frictional Cooling were performed. Critical issues, which require further study, relating to the technical feasibility of such a scheme are identified. Frictional Cooling, as outlined in this paper, provides sufficient six-dimensional emittance to make luminous collisions possible. It holds exciting potential in solving the problem of Muon Cooling.

  5. A Muon Collider scheme based on Frictional Cooling

    International Nuclear Information System (INIS)

    Abramowicz, H.; Caldwell, A.; Galea, R.; Schlenstedt, S.

    2005-01-01

    Muon Colliders would usher in a new era of scientific investigation in the field of high-energy particle physics. The cooling of muon beams is proving to be the greatest obstacle in the realization of a Muon Collider. Monte Carlo simulations of a muon cooling scheme based on Frictional Cooling were performed. Critical issues, which require further study, relating to the technical feasibility of such a scheme are identified. Frictional Cooling, as outlined in this paper, provides sufficient six-dimensional emittance to make luminous collisions possible. It holds exciting potential in solving the problem of Muon Cooling

  6. Integration Tests of the Muon System

    CERN Multimedia

    Cerutti, F; Palestini, S

    A complex large-size prototype of the Muon system is installed in the test area H8B in Prévessin; the set-up includes chambers belonging to the three layers of the Barrel Spectrometer (on the right in Figure 1), and chambers belonging to one octant of the End Cap Spectrometer (center and left side of Figure 1). Figure 1: Set-up of the Muon spectrometer integration test. The installation accurately reproduces the geometry of regions of the ATLAS Muon Spectrometer, with the H8 beam-line crossing the detectors at positions/angles corresponding to particles with polar angle of 75 ± 4 and 15 ± 4 degrees, respectively for the Barrel and the End Cap. A comprehensive test program is being carried out with this set-up, ranging from tests of support frames (octant of the MDT BigWheel and of the SmallWheel) and of handling/installation of tracking chambers, to real-size tests of the alignment systems, together with accurate studies of performance and calibration of the precision chambers, and with develo...

  7. Review of muon tomography

    International Nuclear Information System (INIS)

    Feng Hanliang; Jiao Xiaojing

    2010-01-01

    As a new detection technology, Muon tomography has some potential benefits, such as being able to form a three- dimensional image, without radiation, low cost, fast detecting etc. Especially, muon tomography will play an important role in detecting nuclear materials. It introduces the theory of Muon tomography, its advantages and the Muon tomography system developed by decision sciences corporation and Los Alamos national laboratory. (authors)

  8. A method for detection of muon induced electromagnetic showers with the ANTARES detector

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [IFIC-Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC-Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Al Samarai, I. [CPPM-Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Albert, A. [GRPHE-Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568-68008 Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, 08800 Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere-Institut de recherche sur les lois fondamentales de l' Univers-Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Ardid, M. [Institut d' Investigacio per a la Gestio Integrada de Zones Costaneres (IGIC)-Universitat Politecnica de Valencia. C/ Paranimf 1, 46730 Gandia (Spain); Assis Jesus, A.C.; Astraatmadja, T. [Nikhef, Science Park, Amsterdam (Netherlands); and others

    2012-05-21

    The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.

  9. Development of a 3D muon disappearance algorithm for muon scattering tomography

    Science.gov (United States)

    Blackwell, T. B.; Kudryavtsev, V. A.

    2015-05-01

    Upon passing through a material, muons lose energy, scatter off nuclei and atomic electrons, and can stop in the material. Muons will more readily lose energy in higher density materials. Therefore multiple muon disappearances within a localized volume may signal the presence of high-density materials. We have developed a new technique that improves the sensitivity of standard muon scattering tomography. This technique exploits these muon disappearances to perform non-destructive assay of an inspected volume. Muons that disappear have their track evaluated using a 3D line extrapolation algorithm, which is in turn used to construct a 3D tomographic image of the inspected volume. Results of Monte Carlo simulations that measure muon disappearance in different types of target materials are presented. The ability to differentiate between different density materials using the 3D line extrapolation algorithm is established. Finally the capability of this new muon disappearance technique to enhance muon scattering tomography techniques in detecting shielded HEU in cargo containers has been demonstrated.

  10. Forward scattering effects on muon imaging

    Science.gov (United States)

    Gómez, H.; Gibert, D.; Goy, C.; Jourde, K.; Karyotakis, Y.; Katsanevas, S.; Marteau, J.; Rosas-Carbajal, M.; Tonazzo, A.

    2017-12-01

    Muon imaging is one of the most promising non-invasive techniques for density structure scanning, specially for large objects reaching the kilometre scale. It has already interesting applications in different fields like geophysics or nuclear safety and has been proposed for some others like engineering or archaeology. One of the approaches of this technique is based on the well-known radiography principle, by reconstructing the incident direction of the detected muons after crossing the studied objects. In this case, muons detected after a previous forward scattering on the object surface represent an irreducible background noise, leading to a bias on the measurement and consequently on the reconstruction of the object mean density. Therefore, a prior characterization of this effect represents valuable information to conveniently correct the obtained results. Although the muon scattering process has been already theoretically described, a general study of this process has been carried out based on Monte Carlo simulations, resulting in a versatile tool to evaluate this effect for different object geometries and compositions. As an example, these simulations have been used to evaluate the impact of forward scattered muons on two different applications of muon imaging: archaeology and volcanology, revealing a significant impact on the latter case. The general way in which all the tools used have been developed can allow to make equivalent studies in the future for other muon imaging applications following the same procedure.

  11. Simulation for developing new pulse neutron spectrometers I. Creation of new McStas components of moderators of JSNS

    CERN Document Server

    Tamura, I; Arai, M; Harada, M; Maekawa, F; Shibata, K; Soyama, K

    2003-01-01

    Moderators components of the McStas code have been created for the design of JSNS instruments. Three cryogenic moderators are adopted in JSNS, one is coupled H sub 2 moderators for high intensity experiments and other two are decoupled H sub 2 with poisoned or unpoisoned for high resolution moderators. Since the characteristics of neutron beams generated from moderators make influence on the performance of pulse neutron spectrometers, it is important to perform the Monte Carlo simulation with neutron source component written precisely. The neutron spectrum and time structure were calculated using NMTC/JAERI97 and MCNP4a codes. The simulation parameters, which describe the pulse shape over entire spectrum as a function of time, are optimized. In this paper, the creation of neutron source components for port No.16 viewed to coupled H sub 2 moderator and for port No.11 viewed to decoupled H sub 2 moderator of JSNS are reported.

  12. A Muon Identification and Combined Reconstruction Procedure for the ATLAS Detector at the LHC at CERN

    CERN Document Server

    Lagouri, T; Assamagan, Ketevi A; Biglietti, M; Carlino, G; Cataldi, G; Conventi, F; Farilla, A; Fisyak, Yu; Goldfarb, S; Gorini, E; Mair, K; Merola, L; Nairz, A; Poppleton, A; Primavera, M; Rosati, S; Shank, S; Spagnolo, S; Spogli, S; Stavropoulos, G D; Verducci, M; Wenaus, T; IEEE-NSS-MIC-2003

    2004-01-01

    Muon identification and high momentum measurement accuracy is crucial to fully exploit the physics potential that will be accessible with ATLAS experiment at the LHC. The muon energy of physics interest ranges in a large interval from few GeV, where the b-physics studies dominate the physics program, up to the highest values that could indicate the presence of new physics. The muon detection system of the ATLAS detector is characterized by two high precision tracking systems, namely the Inner Detector and the Muon Spectrometer plus a thick calorimeter that ensures a safe hadron absorption filtering with high purity muons with energy above 3 GeV. In order to combine the muon tracks reconstructed in the Inner Detector and the Muon Spectrometer the Muon Identification (MUID) Object-Oriented software package has been developed. The purpose of the MUID procedure is to associate tracks found in the Muon Spectrometer with the corresponding Inner Detector track and calorimeter information in order to identify muons a...

  13. Study of heavy flavours from muons measured with the ALICE detector in proton-proton and heavy-ion collisions at the CERN-LHC

    International Nuclear Information System (INIS)

    Zhang, X.

    2012-01-01

    ALICE (A Large Ion Collider Experiment) is the experiment dedicated to the study of heavy-ion collisions at the LHC. ALICE also takes part in the LHC proton- proton program which is of great interest for testing perturbative QCD calculations at unprecedented low Bjorken-x values and for providing the necessary baseline for nucleus-nucleus and proton-nucleus collisions. ALICE will also collect, in the beginning of 2013, p-Pb/Pb-p collisions in order to investigate cold nuclear matter effects. ALICE measures quarkonia and open heavy flavours with (di)-electrons, (di)-muons and through the hadronic channels. This thesis work is devoted to the study of open heavy flavours in proton-proton and Pb-Pb collisions via single muons with the ALICE forward muon spectrometer. The document is organized as follows. The first chapter consists in a general introduction on heavy-ion collisions and QCD phase transitions. Chapter 2 summarizes the motivations for the study of open heavy flavours in nucleon-nucleon, nucleon-nucleus and nucleus-nucleus collisions. Chapter 3 gives an overview of the ALICE experiment with a detailed description of the forward muon spectrometer. Chapter 4 gives a short summary of the ALICE online and offline systems. Then the analysis framework (for data and simulations) and in particular the software developed for the study of open heavy flavours is detailed. Chapter 5 summarizes the performance of the ALICE muon spectrometer for the study of the production of open heavy flavours in pp collisions via single muons and dimuons. Chapters 6 to 9 are dedicated to data analysis. Chapter 6 deals with the analysis of first pp collisions at 900 GeV. The main aim was the understanding of the response of the apparatus. Chapter 7 presents the measurement of the production of heavy flavour decay muons in pp collisions at √(s) = 7 TeV. The analysis strategy is described: event and track selection, background subtraction (mainly the contribution of muons from primary

  14. Imaging Fukushima Daiichi reactors with muons

    Directory of Open Access Journals (Sweden)

    Haruo Miyadera

    2013-05-01

    Full Text Available A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  15. Precision Muon Tracking Detectors for High-Energy Hadron Colliders

    CERN Document Server

    Gadow, Philipp; Kroha, Hubert; Richter, Robert

    2016-01-01

    Small-diameter muon drift tube (sMDT) chambers with 15 mm tube diameter are a cost-effective technology for high-precision muon tracking over large areas at high background rates as expected at future high-energy hadron colliders including HL-LHC. The chamber design and construction procedures have been optimized for mass production and provide sense wire positioning accuracy of better than 10 ?m. The rate capability of the sMDT chambers has been extensively tested at the CERN Gamma Irradiation Facility. It exceeds the one of the ATLAS muon drift tube (MDT) chambers, which are operated at unprecedentedly high background rates of neutrons and gamma-rays, by an order of magnitude, which is sufficient for almost the whole muon detector acceptance at FCC-hh at maximum luminosity. sMDT operational and construction experience exists from ATLAS muon spectrometer upgrades which are in progress or under preparation for LHC Phase 1 and 2.

  16. Studies on muon tomography for archaeological internal structures scanning

    Science.gov (United States)

    Gómez, H.; Carloganu, C.; Gibert, D.; Jacquemier, J.; Karyotakis, Y.; Marteau, J.; Niess, V.; Katsanevas, S.; Tonazzo, A.

    2016-05-01

    Muon tomography is a potential non-invasive technique for internal structure scanning. It has already interesting applications in geophysics and can be used for archaeological purposes. Muon tomography is based on the measurement of the muon flux after crossing the structure studied. Differences on the mean density of these structures imply differences on the detected muon rate for a given direction. Based on this principle, Monte Carlo simulations represent a useful tool to provide a model of the expected muon rate and angular distribution depending on the composition of the studied object, being useful to estimate the expected detected muons and to better understand the experimental results. These simulations are mainly dependent on the geometry and composition of the studied object and on the modelling of the initial muon flux at surface. In this work, the potential of muon tomography in archaeology is presented and evaluated with Monte Carlo simulations by estimating the differences on the muon rate due to the presence of internal structures and its composition. The influence of the chosen muon model at surface in terms of energy and angular distributions in the final result has been also studied.

  17. Physics of multiple muons in underground detectors

    International Nuclear Information System (INIS)

    Gaisser, T.K.; Stanev, T.

    1982-01-01

    We summarize results of Monte Carlo simulations of underground muons with a set of parametrizations for number and lateral distribution of muons at various detector depths. We also describe the size distributions of accompanying showers at the surface. We give some illustrations of the use of these results to study the surface-underground correlation and to interpret preliminary results of the Soudan-I detector presented at this conference

  18. Inclusive deep-inelastic muon scattering

    CERN Multimedia

    This experiment aims at measuring deep-inelastic inclusive muon scattering to the highest energy and Q$^{2}$ made available by the high intensity muon beam M$^{2}$ and at investigating events in which several muons are simultaneously produced. The momentum of the incident beam is measured with momentum hodoscopes, its time and space coordinates at several positions along the target with additional hodoscopes. The beam halo is detected by an array of anticounters. The target has a length of 40 m of either graphite or liquid hydrogen or liquid deuterium and is surrounded by a magnetized torus which acts as a spectrometer for scattered muons. \\\\ \\\\This magnet has a diameter of 2.75 m and is divided into 10 separate supermodules, 8 of which are presently in use. Each supermodule consists of 8 modules (each module contains 0.44 m of steel), 8 planes of (3m x 3m) MWPC, and 2 planes of circular trigger counters subdivided in rings. The first 6 supermodules are equipped each with a 5 m long target. Muons scattered i...

  19. Muon Studies with the First CMS Data at the LHC

    International Nuclear Information System (INIS)

    Santiago, C.; Garcia-Abia, P.; Hernandez, J. M.

    2011-01-01

    In this work an analysis of the first data recorded with the CMS detector at the LHC collider is presented. The properties of the detected muons are analyzed and compared with simulated data. The J/Psi ,Psi(2S) and Upsilon(nS) mesons as well as the Z boson have been reconstructed in the muon-anti muon decay channel. These analyses have allowed us to improve the understanding of the CMS detector in terms of muon detection efficiency, resolution and accuracy in the measurement of the momentum and the description of the detector in the simulation. (Author) 17 refs.

  20. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2011-01-01

    The Muon Alignment work now focuses on producing a new track-based alignment with higher track statistics, making systematic studies between the results of the hardware and track-based alignment methods and aligning the barrel using standalone muon tracks. Currently, the muon track reconstruction software uses a hardware-based alignment in the barrel (DT) and a track-based alignment in the endcaps (CSC). An important task is to assess the muon momentum resolution that can be achieved using the current muon alignment, especially for highly energetic muons. For this purpose, cosmic ray muons are used, since the rate of high-energy muons from collisions is very low and the event statistics are still limited. Cosmics have the advantage of higher statistics in the pT region above 100 GeV/c, but they have the disadvantage of having a mostly vertical topology, resulting in a very few global endcap muons. Only the barrel alignment has therefore been tested so far. Cosmic muons traversing CMS from top to bottom are s...

  1. Construction and simulation of a multi-reflection time-of-flight mass spectrometer at the University of Notre Dame

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, B.E., E-mail: bschult4@nd.edu; Kelly, J.M.; Nicoloff, C.; Long, J.; Ryan, S.; Brodeur, M.

    2016-06-01

    One of the most significant problems in the production of rare isotopes is the simultaneous production of contaminants, often time isobaric. Thus, a high-resolution beam purification method is required which needs to be compatible with both the low yield and short half-life of the desired radionuclide. A multi-reflection time-of-flight mass spectrometer meets all these criteria, in addition to boasting a smaller footprint relative to traditional separator dipole magnets. Such a device is currently under construction at the University of Notre Dame and is intended to be coupled to the IG-ISOL source of the planned cyclotron facility. The motivation and conceptual design are presented, as well as the status of simulations to determine the feasibility of using a Bradbury–Nielsen gate for bunching ion beams during initial system testing.

  2. Upper limit of the muon-neutrino mass and charged-pion mass from the momentum analysis of a surface muon beam

    Energy Technology Data Exchange (ETDEWEB)

    Kettle, P R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    Using a surface muon beam and a magnetic spectrometer equipped with a position-sensitive detector, we have measured the muon momentum from pion decay at rest {pi}{sup +}{yields}{mu}{sup +}{nu}{sub {mu}}, to be p{sub {mu}{sup +}}=(29.79200{+-}0.00011)MeV/c. This value together with the muon mass and the favoured pion mass leads to an upper limit of 0.17 MeV (90%CL) for the muon-neutrino mass. (author) 4 figs., 5 refs.

  3. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2011-01-01

    A new set of muon alignment constants was approved in August. The relative position between muon chambers is essentially unchanged, indicating good detector stability. The main changes concern the global positioning of the barrel and of the endcap rings to match the new Tracker geometry. Detailed studies of the differences between track-based and optical alignment of DTs have proven to be a valuable tool for constraining Tracker alignment weak modes, and this information is now being used as part of the alignment procedure. In addition to the “split-cosmic” analysis used to investigate the muon momentum resolution at high momentum, a new procedure based on reconstructing the invariant mass of di-muons from boosted Zs is under development. Both procedures show an improvement in the momentum precision of Global Muons with respect to Tracker-only Muons. Recent developments in track-based alignment include a better treatment of the tails of residual distributions and accounting for correla...

  4. CNGS Muon Monitors

    CERN Document Server

    Marsili, A; Ferioli, G; Gschwendtner, E; Holzer, E B; Kramer, Daniel; CERN. Geneva. AB Department

    2008-01-01

    The CERN Neutrinos to Gran Sasso (CNGS) beam facility uses two muon detector stations as on-line feed back for the quality control of the neutrino beam. The muon detector stations are assembled in a cross-shaped array to provide the muon intensity and the vertical and horizontal muon profiles. Each station is equipped with 42 ionisation chambers, which are originally designed as Beam Loss Monitors (BLMs) for the Large Hadron Collider(LHC). The response of the muon detectors during the CNGS run 2007 and possible reasons for a non-linear behaviour with respect to the beam intensity are discussed. Results of the CNGS run 2008 are shown: The modifications done during the shutdown 2007/08 were successful and resulted in the expected linear behaviour of the muon detector response.

  5. High-rate performance of muon drift tube detectors

    International Nuclear Information System (INIS)

    Schwegler, Philipp

    2014-01-01

    The Large Hadron Collider (LHC) at the European Centre for Particle Physics, CERN, collides protons with an unprecedentedly high centre-of-mass energy and luminosity. The collision products are recorded and analysed by four big experiments, one of which is the ATLAS detector. In parallel with the first LHC run from 2009 to 2012, which culminated in the discovery of the last missing particle of the Standard Model of particle physics, the Higgs boson, planning of upgrades of the LHC for higher instantaneous luminosities (HL-LHC) is already progressing. The high instantaneous luminosity of the LHC puts high demands on the detectors with respect to radiation hardness and rate capability which are further increased with the luminosity upgrade. In this thesis, the limitations of the Muon Drift Tube (MDT) chambers of the ATLAS Muon Spectrometer at the high background counting rates at the LHC and performance of new small diameter muon drift tube (sMDT) detectors at the even higher background rates at HL-LHC are studied. The resolution and efficiency of sMDT chambers at high γ-ray and proton irradiation rates well beyond the ones expected at HL-LHC have been measured and the irradiation effects understood using detailed simulations. The sMDT chambers offer an about an order of magnitude better rate capability and are an ideal replacement for the MDT chambers because of compatibility of services and read-out. The limitations of the sMDT chambers are now in the read-out electronics, taken from the MDT chambers, to which improvements for even higher rate capability are proposed.

  6. Statistical reconstruction for cosmic ray muon tomography.

    Science.gov (United States)

    Schultz, Larry J; Blanpied, Gary S; Borozdin, Konstantin N; Fraser, Andrew M; Hengartner, Nicolas W; Klimenko, Alexei V; Morris, Christopher L; Orum, Chris; Sossong, Michael J

    2007-08-01

    Highly penetrating cosmic ray muons constantly shower the earth at a rate of about 1 muon per cm2 per minute. We have developed a technique which exploits the multiple Coulomb scattering of these particles to perform nondestructive inspection without the use of artificial radiation. In prior work [1]-[3], we have described heuristic methods for processing muon data to create reconstructed images. In this paper, we present a maximum likelihood/expectation maximization tomographic reconstruction algorithm designed for the technique. This algorithm borrows much from techniques used in medical imaging, particularly emission tomography, but the statistics of muon scattering dictates differences. We describe the statistical model for multiple scattering, derive the reconstruction algorithm, and present simulated examples. We also propose methods to improve the robustness of the algorithm to experimental errors and events departing from the statistical model.

  7. Construction and simulation of the KAOS spectrometer for coincidence measurements in the associated kaon production; Aufbau und Simulation des KAOS-Spektrometers fuer Koinzidenzmessungen in der assoziierten Kaonproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Nungesser, Lars

    2009-05-27

    With the extension of the Mainz microtron MAMI at the Institut fuer Kernphysik with a third stage it is now possible to produce particles with open strangeness. For their detection the spectrometer facility of the A1 collaboration has been expanded with the KAOS-spectrometer which has been inherited from GSI in Darmstadt. We are studying the p(e,e'K{sup +}){lambda}/Sigma{sup 0} reaction where the outgoing electron and kaon have to be detected. If we use a different target than hydrogen there is the possibility of a hypernuceus being formed. Spectroscopy of these gives the opportunity to study the hyperon potential within the atomic nucleus and the hyperon-nucleon interaction. Due to the good quality of the electron beam mass resolutions of a few hundred keV/c{sup 2} can be achieved. The detectors and the optical properties of the spectrometer have been simulated with GEANT4. Hit pattern in the detectors have been generated to aid the programming of the FPGA-based trigger. A first mapping of the detector coordinates to the target coordinates has been generated. For the experiments with hypernuclei KAOS has to be placed at 0 forward angle and the primary electron beam has to go via a magnetic chicane through the dipole. The simulation shows only a slight increase of the radiation for this case, especially around the beam-dump. Thus it is possible to operate KAOS as double sided spectrometer at MAMI. Within the scope of this thesis the readout and control electronics for all detectors had to be integrated into the existing A1 data acquisition and into the control system. During two beamtimes in autumn 2008 kaons where detected in the angular range between 20 and 40 and the momentum range between 400 MeV/c and 600 MeV/c. A time resolution of 1ns FWHM could be achieved which allows particle identification. The angular and momentum resolution was sufficient to identify {lambda} and {sigma}{sup 0} hyperons in the missing mass spectrum. (orig.)

  8. PANDA Muon System Prototype

    Science.gov (United States)

    Abazov, Victor; Alexeev, Gennady; Alexeev, Maxim; Frolov, Vladimir; Golovanov, Georgy; Kutuzov, Sergey; Piskun, Alexei; Samartsev, Alexander; Tokmenin, Valeri; Verkheev, Alexander; Vertogradov, Leonid; Zhuravlev, Nikolai

    2018-04-01

    The PANDA Experiment will be one of the key experiments at the Facility for Antiproton and Ion Research (FAIR) which is under construction now in the territory of the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. PANDA is aimed to study hadron spectroscopy and various topics of the weak and strong forces. Muon System is chosen as the most suitable technology for detecting the muons. The Prototype of the PANDA Muon System is installed on the test beam line T9 at the Proton Synchrotron (PS) at CERN. Status of the PANDA Muon System prototype is presented with few preliminary results.

  9. CONFERENCE: Muon spin rotation

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Erik

    1986-11-15

    An international physics conference centred on muons without a word about leptons, weak interactions, EMC effects, exotic decay modes or any other standard high energy physics jargon. Could such a thing even have been imagined ten years ago? Yet about 120 physicists and chemists from 16 nations gathered at the end of June in Uppsala (Sweden) for their fourth meeting on Muon Spin Rotation, Relaxation and Resonance, without worrying about the muon as an elementary particle. This reflects how the experimental techniques based on the muon spin interactions have reached maturity and are widely recognized by condensed matter physicists and specialized chemists as useful tools.

  10. PANDA Muon System Prototype

    Directory of Open Access Journals (Sweden)

    Abazov Victor

    2018-01-01

    Full Text Available The PANDA Experiment will be one of the key experiments at the Facility for Antiproton and Ion Research (FAIR which is under construction now in the territory of the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. PANDA is aimed to study hadron spectroscopy and various topics of the weak and strong forces. Muon System is chosen as the most suitable technology for detecting the muons. The Prototype of the PANDA Muon System is installed on the test beam line T9 at the Proton Synchrotron (PS at CERN. Status of the PANDA Muon System prototype is presented with few preliminary results.

  11. Rare muon processes: Experiment

    International Nuclear Information System (INIS)

    Walter, H.K.

    1998-01-01

    The decay properties of muons, especially their rare decays, can be used to study very accurately deviations from the Standard Model. Muons with extremely low energies and good spatial definition are preferred for the majority of such studies. With the upgrade of the 590-MeV ring accelerator, PSI possesses the most powerful cyclotron in the world. This makes it possible to operate high-intensity beams of secondary pions and muons. A short review on rare muon processes is presented, concerning μ-e conversion and muonium-antimuonium oscillations. A possible new search for μ→eγ is also mentioned

  12. Nuclear muon capture

    CERN Document Server

    Mukhopadhyay, N C

    1977-01-01

    Our present knowledge of the nuclear muon capture reactions is surveyed. Starting from the formation of the muonic atom, various phenomena, having a bearing on the nuclear capture, are reviewed. The nuclear reactions are then studied from two angles-to learn about the basic muon+nucleon weak interaction process, and to obtain new insights on the nuclear dynamics. Future experimental prospects with the newer generation muon 'factories' are critically examined. Possible modification of the muon+nucleon weak interaction in complex nuclei remains the most important open problem in this field. (380 refs).

  13. A simulation study of Linsley's approach to infer elongation rate and fluctuations of the EAS maximum depth from muon arrival time distributions

    International Nuclear Information System (INIS)

    Badea, A.F.; Brancus, I.M.; Rebel, H.; Haungs, A.; Oehlschlaeger, J.; Zazyan, M.

    1999-01-01

    The average depth of the maximum X m of the EAS (Extensive Air Shower) development depends on the energy E 0 and the mass of the primary particle, and its dependence from the energy is traditionally expressed by the so-called elongation rate D e defined as change in the average depth of the maximum per decade of E 0 i.e. D e = dX m /dlog 10 E 0 . Invoking the superposition model approximation i.e. assuming that a heavy primary (A) has the same shower elongation rate like a proton, but scaled with energies E 0 /A, one can write X m = X init + D e log 10 (E 0 /A). In 1977 an indirect approach studying D e has been suggested by Linsley. This approach can be applied to shower parameters which do not depend explicitly on the energy of the primary particle, but do depend on the depth of observation X and on the depth X m of shower maximum. The distribution of the EAS muon arrival times, measured at a certain observation level relatively to the arrival time of the shower core reflect the pathlength distribution of the muon travel from locus of production (near the axis) to the observation locus. The basic a priori assumption is that we can associate the mean value or median T of the time distribution to the height of the EAS maximum X m , and that we can express T = f(X,X m ). In order to derive from the energy variation of the arrival time quantities information about elongation rate, some knowledge is required about F i.e. F = - ∂ T/∂X m ) X /∂(T/∂X) X m , in addition to the variations with the depth of observation and the zenith-angle (θ) dependence, respectively. Thus ∂T/∂log 10 E 0 | X = - F·D e ·1/X v ·∂T/∂secθ| E 0 . In a similar way the fluctuations σ(X m ) of X m may be related to the fluctuations σ(T) of T i.e. σ(T) = - σ(X m )· F σ ·1/X v ·∂T/∂secθ| E 0 , with F σ being the corresponding scaling factor for the fluctuation of F. By simulations of the EAS development using the Monte Carlo code CORSIKA the energy and angle

  14. Study and outlook of Dimuon spectrometer of ALICE experiment at LHC

    International Nuclear Information System (INIS)

    1997-01-01

    The Dimuon spectrometer and its functional integration in the ALICE experiment, planned to work by the Large Hadron Collider at CERN, is briefly presented. The detection assembly consists of a hadron absorber placed near the interaction location, followed by a large dipole superconducting magnet of 4 m aperture and 3 T.m field integral for muon analysis in the rapidity range 2 to 4. The muon tracking is ensured by 5 detection stations bunching 1 million electronic paths on a total detection area of about 100 m 2 . The muon trigger system consists of 4 detection levels ensuring a 10 3 rejection of the incident hadrons. SUBATECH is implied in the tracking and trigger domains of the project. The tracking parameters, relating to spatial resolution, chamber efficiency, magnetic field integral, homogeneity, absorber composition, etc., were optimized in the laboratory. This technical effort was followed by further development of tracking chambers of the spectrometer, based on the MICROMEGAS (MICRO-MEsh-GAseous Structure) detector, conceived by G.Charpak, characterized by its fast response (200 ns) and high position resolution (σ = 100 μm). Larger detectors, with areas of the order of 1 m 2 , as well as, the optimization of readout electronics and associated data acquisition systems are the current preoccupations of a group of 3 physicists and 4 engineers and technicians. A second level muon trigger system was designed to obtain the invariant mass reconstruction for all the muons pairs that cross the first level Pt threshold. After a number of preparing simulations of the trigger system the design of the second level trigger electronics is now to be realized. This work is carried out by two assistant researchers, a post-doctoral researcher and an engineer

  15. SSC muon detector group report

    International Nuclear Information System (INIS)

    Carlsmith, D.; Groom, D.; Hedin, D.; Kirk, T.; Ohsugi, T.; Reeder, D.; Rosner, J.; Wojcicki, S.

    1986-01-01

    We report here on results from the Muon Detector Group which met to discuss aspects of muon detection for the reference 4π detector models put forward for evaluation at the Snowmass 1986 Summer Study. We report on: suitable overall detector geometry; muon energy loss mechanisms; muon orbit determination; muon momentum and angle measurement resolution; raw muon rates and trigger concepts; plus we identify SSC physics for which muon detection will play a significant role. We conclude that muon detection at SSC energies and luminosities is feasible and will play an important role in the evolution of physics at the SSC

  16. SSC muon detector group report

    Energy Technology Data Exchange (ETDEWEB)

    Carlsmith, D.; Groom, D.; Hedin, D.; Kirk, T.; Ohsugi, T.; Reeder, D.; Rosner, J.; Wojcicki, S.

    1986-01-01

    We report here on results from the Muon Detector Group which met to discuss aspects of muon detection for the reference 4..pi.. detector models put forward for evaluation at the Snowmass 1986 Summer Study. We report on: suitable overall detector geometry; muon energy loss mechanisms; muon orbit determination; muon momentum and angle measurement resolution; raw muon rates and trigger concepts; plus we identify SSC physics for which muon detection will play a significant role. We conclude that muon detection at SSC energies and luminosities is feasible and will play an important role in the evolution of physics at the SSC.

  17. The BTeV main spectrometer

    International Nuclear Information System (INIS)

    Sheldon, P.D.

    2001-01-01

    BTeV is a second generation B-factory experiment that will use a double-arm, forward spectrometer in the C0 experimental hall at the Fermilab Tevatron. I will describe the motivation and design of the 'main spectrometer', consisting of a ring-imaging Cherenkov system for charged particle identification, an electromagnetic calorimeter of lead-tungstate crystals, a proportional tube muon system with magnetized filtering steel, and a straw-tube and silicon strip charged particle tracking system

  18. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A. [Harwell Oxford, STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); Adey, D.; Back, J.; Boyd, S.; Harrison, P.; Pidcott, C.; Taylor, I. [University of Warwick, Department of Physics, Coventry (United Kingdom); Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Fayer, S.; Fish, A.; Hunt, C.; Leaver, J.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Richards, A.; Santos, E.; Savidge, T.; Takahashi, M. [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Asfandiyarov, R.; Blondel, A.; Graulich, J.S.; Karadzhov, Y.; Verguilov, V.; Wisting, H. [Universite de Geneve, DPNC, Section de Physique, Geneva (Switzerland); De Bari, A.; Cecchet, G. [Sezione INFN Pavia (Italy); Dipartimento di Fisica Nucleare e Teorica, Pavia (Italy); Bayes, R.; Forrest, D.; Nugent, J.C.; Soler, F.J.P.; Walaron, K. [The University of Glasgow, School of Physics and Astronomy, Glasgow (United Kingdom); Bertoni, R.; Bonesini, M.; Lucchini, G. [Sezione INFN Milano Bicocca (Italy); Dipartimento di Fisica G. Occhialini, Milano (Italy); Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D. [University of Oxford, Department of Physics, Oxford (United Kingdom); Blot, S.; Kim, Y.K. [University of Chicago, Enrico Fermi Institute, Chicago, IL (United States); Bogomilov, M.; Kolev, D.; Rusinov, I.; Tsenov, R.; Vankova, G. [St. Kliment Ohridski University of Sofia, Department of Atomic Physics, Sofia (Bulgaria); Booth, C.N.; Hodgson, P.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J. [University of Sheffield, Department of Physics and Astronomy, Sheffield (United Kingdom); Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.P.; Zisman, M.S. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Bravar, U. [University of New Hampshire, Durham, NH (United States); Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R. [Fermilab, Batavia, IL (United States); Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L. [Sezione INFN Roma Tre e Dipartimento di Fisica, Roma (Italy); Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Owens, P.; White, C. [STFC Daresbury Laboratory, Cheshire (United Kingdom); Coney, L.; Fletcher, R.; Hanson, G.G.; Heidt, C. [University of California, Riverside, CA (United States); Cooke, P.; Gamet, R. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J. [University of Mississippi, Oxford, MS (United States); Dick, A.J.; Ronald, K.; Whyte, C.G. [University of Strathclyde, Department of Physics, Glasgow (United Kingdom); Filthaut, F. [NIKHEF, Amsterdam (Netherlands); Freemire, B.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y. [Illinois Institute of Technology, Chicago, IL (United States); Hansen, O.M.; Ramberger, S.; Vretenar, M. [CERN, Geneva (Switzerland); Ishimoto, S. [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Kuno, Y.; Sakamoto, H. [Osaka University, Graduate School of Science, Department of Physics, Toyonaka, Osaka (Japan); Kyberd, P.; Littlefield, M.; Nebrensky, J.J. [Brunel University, Uxbridge (United Kingdom); Onel, Y. [University of Iowa, Department of Physics and Astronomy, Iowa City, IA (United States); Palladino, V. [Universita Federico II, Sezione INFN Napoli (Italy); Dipartimento di Fisica, Napoli (Italy); Palmer, R.B. [Brookhaven National Laboratory, Upton, NY (US); Roberts, T.J. [Muons, Inc., Batavia, IL (US); Collaboration: The MICE Collaboration

    2013-10-15

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2-2.3 {pi} mm-rad horizontally and 0.6-1.0 {pi} mm-rad vertically, a horizontal dispersion of 90-190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE. (orig.)

  19. Characterisation of the Muon Beams for the Muon Ionisation Cooling Experiment

    CERN Document Server

    Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Back, J.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; Blackmore, V.J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.; Booth, C.N.; Bowring, D.; Boyd, S.; Bradshaw, T.W.; Bravar, U.; Bross, A.D.; Capponi, M.; Carlisle, T.; Cecchet, G.; Charnley, G.; Cobb, J.H.; Colling, D.; Collomb, N.; Coney, L.; Cooke, P.; Courthold, M.; Cremaldi, L.M.; DeMello, A.; Dick, A.; Dobbs, A.; Dornan, P.; Fayer, S.; Filthaut, F.; Fish, A.; Fitzpatrick, T.; Fletcher, R.; Forrest, D.; Francis, V.; Freemire, B.; Fry, L.; Gallagher, A.; Gamet, R.; Gourlay, S.; Grant, A.; Graulich, J.S.; Griffiths, S.; Hanlet, P.; Hansen, O.M.; Hanson, G.G.; Harrison, P.; Hart, T.L.; Hartnett, T.; Hayler, T.; Heidt, C.; Hills, M.; Hodgson, P.; Iaciofano, A.; Ishimoto, S.; Kafka, G.; Kaplan, D.M.; Karadzhov, Y.; Kim, Y.K.; Kolev, D.; Kuno, Y.; Kyberd, P.; Lau, W.; Leaver, J.; Leonova, M.; Li, D.; Lintern, A.; Littlefield, M.; Long, K.; Lucchini, G.; Luo, T.; Macwaters, C.; Martlew, B.; Martyniak, J.; Middleton, S.; Moretti, A.; Moss, A.; Muir, A.; Mullacrane, I.; Nebrensky, J.J.; Neuffer, D.; Nichols, A.; Nicholson, R.; Nugent, J.C.; Onel, Y.; Orestano, D.; Overton, E.; Owens, P.; Palladino, V.; Palmer, R.B.; Pasternak, J.; Pastore, F.; Pidcott, C.; Popovic, M.; Preece, R.; Prestemon, S.; Rajaram, D.; Ramberger, S.; Rayner, M.A.; Ricciardi, S.; Richards, A.; Roberts, T.J.; Robinson, M.; Rogers, C.; Ronald, K.; Rubinov, P.; Rucinski, R.; Rusinov, I.; Sakamoto, H.; Sanders, D.A.; Santos, E.; Savidge, T.; Smith, P.J.; Snopok, P.; Soler, F.J.P.; Stanley, T.; Summers, D.J.; Takahashi, M.; Tarrant, J.; Taylor, I.; Tortora, L.; Torun, Y.; Tsenov, R.; Tunnell, C.D.; Vankova, G.; Verguilov, V.; Virostek, S.; Vretenar, M.; Walaron, K.; Watson, S.; White, C.; Whyte, C.G.; Wilson, A.; Wisting, H.; Zisman, M.

    2013-01-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  20. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    International Nuclear Information System (INIS)

    Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Adey, D.; Back, J.; Boyd, S.; Harrison, P.; Pidcott, C.; Taylor, I.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Fayer, S.; Fish, A.; Hunt, C.; Leaver, J.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Richards, A.; Santos, E.; Savidge, T.; Takahashi, M.; Asfandiyarov, R.; Blondel, A.; Graulich, J.S.; Karadzhov, Y.; Verguilov, V.; Wisting, H.; De Bari, A.; Cecchet, G.; Bayes, R.; Forrest, D.; Nugent, J.C.; Soler, F.J.P.; Walaron, K.; Bertoni, R.; Bonesini, M.; Lucchini, G.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Blot, S.; Kim, Y.K.; Bogomilov, M.; Kolev, D.; Rusinov, I.; Tsenov, R.; Vankova, G.; Booth, C.N.; Hodgson, P.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.P.; Zisman, M.S.; Bravar, U.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Owens, P.; White, C.; Coney, L.; Fletcher, R.; Hanson, G.G.; Heidt, C.; Cooke, P.; Gamet, R.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Dick, A.J.; Ronald, K.; Whyte, C.G.; Filthaut, F.; Freemire, B.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Ishimoto, S.; Kuno, Y.; Sakamoto, H.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Onel, Y.; Palladino, V.; Palmer, R.B.; Roberts, T.J.

    2013-01-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2-2.3 π mm-rad horizontally and 0.6-1.0 π mm-rad vertically, a horizontal dispersion of 90-190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE. (orig.)

  1. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.; et al.,

    2013-10-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  2. Monolithic spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Rajic, Slobodan (Knoxville, TN); Egert, Charles M. (Oak Ridge, TN); Kahl, William K. (Knoxville, TN); Snyder, Jr., William B. (Knoxville, TN); Evans, III, Boyd M. (Oak Ridge, TN); Marlar, Troy A. (Knoxville, TN); Cunningham, Joseph P. (Oak Ridge, TN)

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  3. Study by polarized muon

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu

    1977-01-01

    Experiments by using polarized muon beam are reported. The experiments were performed at Berkeley, U.S.A., and at Vancouver, Canada. The muon spin rotation is a useful method for the study of the spin polarization of conductive electrons in paramagnetic Pd metal. The muon Larmor frequency and the relaxation time can be obtained by measuring the time distribution of decay electrons of muon-electron process. The anomalous depolarization of negative muon spin rotation in the transitional metal was seen. The circular polarization of the negative muon X-ray was measured to make clear this phenomena. The experimental results show that the anomalous depolarization is caused at the 1-S-1/2 state. For the purpose to obtain the strong polarization of negative muon, a method of artificial polarization is proposed, and the test experiments are in progress. The study of the hyperfine structure of mu-mesic atoms is proposed. The muon capture rate was studied systematically. (Kato, T.)

  4. OPAL Muon Chamber

    CERN Multimedia

    OPAL was one of the 4 experiments installed at the LEP particle accelerator from 1989 to 2000. This is a slice of the outermost layer of OPAL : the muon chambers. This outside layer detects particles which are not stopped by the previous layers. These are mostly muons.

  5. The CDF muon system

    International Nuclear Information System (INIS)

    LeCompte, T.J.; Papadimitriou, V.

    1993-01-01

    The authors describe the characteristics of the CDF muon system and their experience with it. They explain how the trigger works and how they identify muons offline. They also describe the future upgrades of the system and their trigger plans for Run IB and beyond

  6. The JADE muon detector

    International Nuclear Information System (INIS)

    Allison, J.; Armitage, J.C.M.; Baines, J.T.M.; Ball, A.H.; Bamford, G.; Barlow, R.J.; Bowdery, C.K.; Chrin, J.T.M.; Duerdoth, I.P.; Glendinning, I.; Greenshaw, T.; Hassard, J.F.; Hill, P.; King, B.T.; Loebinger, F.K.; Macbeth, A.A.; McCann, H.; Mercer, D.; Mills, H.E.; Murphy, P.G.; Prosper, H.B.; Rowe, P.; Stephens, K.

    1985-01-01

    The JADE muon detector consists of 618 planar drift chambers interspersed between layers of hadron absorber. This paper gives a detailed description of the construction and operation of the detector as a whole and discusses the properties of the drift chambers. The muon detector has been operating successfully at PETRA for five years. (orig.)

  7. Telecommunication using muon beams

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location

  8. Target and collection optimization for muon colliders

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Noble, R.J.; Van Ginneken, A.

    1996-01-01

    To achieve adequate luminosity in a muon collider it is necessary to produce and collect large numbers of muons. The basic method used in this paper follows closely a proposed scheme which starts with a proton beam impinging on a thick target (∼ one interaction length) followed by a long solenoid which collects muons resulting mainly from pion decay. Production and collection of pions and their decay muons must be optimized while keeping in mind limitations of target integrity and of the technology of magnets and cavities. Results of extensive simulations for 8 GeV protons on various targets and with various collection schemes are reported. Besides muon yields results include-energy deposition in target and solenoid to address cooling requirements for these systems. Target composition, diameter, and length are varied in this study as well as the configuration and field strengths of the solenoid channel. A curved solenoid field is introduced to separate positive and negative pions within a few meters of the target. This permits each to be placed in separate RF buckets for acceleration which effectively doubles the number of muons per bunch available for collisions and increases the luminosity fourfold

  9. Streamlined calibrations of the ATLAS precision muon chambers for initial LHC running

    Energy Technology Data Exchange (ETDEWEB)

    Amram, N. [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, 69978 Tel Aviv (Israel); Ball, R. [Department of Physics, The University of Michigan, Ann Arbor, MI 48109-1120 (United States); Benhammou, Y.; Ben Moshe, M. [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, 69978 Tel Aviv (Israel); Dai, T.; Diehl, E.B. [Department of Physics, The University of Michigan, Ann Arbor, MI 48109-1120 (United States); Dubbert, J. [Max-Planck-Institut fuer Physik, Werner-Heisenberg-Institut, Muenchen (Germany); Etzion, E., E-mail: erez@cern.ch [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, 69978 Tel Aviv (Israel); Ferretti, C.; Gregory, J. [Department of Physics, The University of Michigan, Ann Arbor, MI 48109-1120 (United States); Haider, S. [CERN, CH-1211 Geneva 23 (Switzerland); Hindes, J.; Levin, D.S.; Manilow, E.; Thun, R.; Wilson, A.; Weaverdyck, C.; Wu, Y.; Yang, H.; Zhou, B. [Department of Physics, The University of Michigan, Ann Arbor, MI 48109-1120 (United States); and others

    2012-04-11

    The ATLAS Muon Spectrometer is designed to measure the momentum of muons with a resolution of dp/p=3% at 100 GeV and 10% at 1 TeV. For this task, the spectrometer employs 355,000 Monitored Drift Tubes (MDTs) arrayed in 1200 chambers. Calibration (RT) functions convert drift time measurements into tube-centered impact parameters for track segment reconstruction. RT functions depend on MDT environmental parameters and so must be appropriately calibrated for local chamber conditions. We report on the creation and application of a gas monitor system based calibration program for muon track reconstruction in the LHC startup phase.

  10. Streamlined Calibrations of the ATLAS Precision Muon Chambers for Initial LHC Running

    CERN Document Server

    Amram, N; Benhammou, Y; Moshe, M Ben; Dai, T; Diehl, E B; Dubbert, J; Etzion, E; Ferretti, C; Gregory, J; Haider, S; Hindes, J; Levin, D S; Thun, R; Wilson, A; Weaverdyck, C; Wu, Y; Yang, H; Zhou, B; Zimmermann, S

    2012-01-01

    The ATLAS Muon Spectrometer is designed to measure the momentum of muons with a resolution of dp/p = 3% and 10% at 100 GeV and 1 TeV momentum respectively. For this task, the spectrometer employs 355,000 Monitored Drift Tubes (MDTs) arrayed in 1200 Chambers. Calibration (RT) functions convert drift time measurements into tube-centered impact parameters for track segment reconstruction. RT functions depend on MDT environmental parameters and so must be appropriately calibrated for local chamber conditions. We report on the creation and application of a gas monitor system based calibration program for muon track reconstruction in the LHC startup phase.

  11. Simulations of the response function of a plasma ion beam spectrometer for the Cassini mission to Saturn

    International Nuclear Information System (INIS)

    Vilppola, J.H.; Tanskanen, P.J.; Huomo, H.; Barraclough, B.L.

    1996-01-01

    To obtain very high (∼1%) energy resolution with spherical-section electrostatic analyzers requires high precision in both fabrication and in the alignment process. In order to aid in the calibration of the instrument and to help minimize fabrication costs, we have applied simulation models to the ion beam spectrometer for the NASA/ESA Cassini mission to Saturn. Previously we studied the effects of misalignment and simple irregularities of the hemispherical surfaces on the performance of an electrostatic analyzer. We have considered a hemispherical electrostatic analyzer equipped with an aperture plate to collimate the stray electric field at the entrance apertures. The influence of a curved entrance aperture has also been added to the simulation model, and its effects have been studied in detail. A cylindrical three-dimensional simultaneous overrelaxation algorithm has been introduced to solve for the stray electric field. The maximum loss of transmitted particles with respect to the transmission of an ideal instrument has been set at 10%. We demonstrate that the deviation in the distributions of the energies is less than 0.2% and that the deviation in the distributions of entrance angles of transmitted particles is less than 0.1 degree. It has been found that the energy resolution of an electrostatic analyzer can be improved from ΔE/E=(1.6±0.2)% to ΔE/E=(1.3±0.2)% by the introduction of front aperture plates. Through the introduction of curved entrance slits, the azimuthal angle resolution has changed from β=(1.4±0.1)degree for the simplified geometry simulation results of our previous article to β=(2.3±0.1)degree. We have confirmed that an accuracy of 25 μm in the alignment of the two hemispherical surfaces is sufficient to give the instrument the desired resolutions. copyright 1996 American Institute of Physics

  12. Observing System Simulation Experiment (OSSE) for the HyspIRI Spectrometer Mission

    Science.gov (United States)

    Turmon, Michael J.; Block, Gary L.; Green, Robert O.; Hua, Hook; Jacob, Joseph C.; Sobel, Harold R.; Springer, Paul L.; Zhang, Qingyuan

    2010-01-01

    The OSSE software provides an integrated end-to-end environment to simulate an Earth observing system by iteratively running a distributed modeling workflow based on the HyspIRI Mission, including atmospheric radiative transfer, surface albedo effects, detection, and retrieval for agile exploration of the mission design space. The software enables an Observing System Simulation Experiment (OSSE) and can be used for design trade space exploration of science return for proposed instruments by modeling the whole ground truth, sensing, and retrieval chain and to assess retrieval accuracy for a particular instrument and algorithm design. The OSSE in fra struc ture is extensible to future National Research Council (NRC) Decadal Survey concept missions where integrated modeling can improve the fidelity of coupled science and engineering analyses for systematic analysis and science return studies. This software has a distributed architecture that gives it a distinct advantage over other similar efforts. The workflow modeling components are typically legacy computer programs implemented in a variety of programming languages, including MATLAB, Excel, and FORTRAN. Integration of these diverse components is difficult and time-consuming. In order to hide this complexity, each modeling component is wrapped as a Web Service, and each component is able to pass analysis parameterizations, such as reflectance or radiance spectra, on to the next component downstream in the service workflow chain. In this way, the interface to each modeling component becomes uniform and the entire end-to-end workflow can be run using any existing or custom workflow processing engine. The architecture lets users extend workflows as new modeling components become available, chain together the components using any existing or custom workflow processing engine, and distribute them across any Internet-accessible Web Service endpoints. The workflow components can be hosted on any Internet-accessible machine

  13. Quality control of ATLAS muon chambers

    CERN Document Server

    Fabich, Adrian

    ATLAS is a general-purpose experiment for the future Large Hadron Collider (LHC) at CERN. Its Muon Spectrometer will require ∼ 5500m2 of precision tracking chambers to measure the muon tracks along a spectrometer arm of 5m to 15m length, embedded in a magnetic field of ∼ 0.5T. The precision tracking devices in the Muon System will be high pressure drift tubes (MDTs). Approximately 370,000 MDTs will be assembled into ∼ 1200 drift chambers. The performance of the MDT chambers is very much dependent on the mechanical quality of the chambers. The uniformity and stability of the performance can only be assured providing very high quality control during production. Gas tightness, high-voltage behaviour and dark currents are global parameters which are common to gas detectors. For all chambers, they will be tested immediately after the chamber assembly at every production site. Functional tests, for example radioactive source scans and cosmic-ray runs, will be performed in order to establish detailed performan...

  14. Performance of muon reconstruction including Alignment Position Errors for 2016 Collision Data

    CERN Document Server

    CMS Collaboration

    2016-01-01

    From 2016 Run muon reconstruction is using non-zero Alignment Position Errors to account for the residual uncertainties of muon chambers' positions. Significant improvements are obtained in particular for the startup phase after opening/closing the muon detector. Performance results are presented for real data and MC simulations, related to both the offline reconstruction and the High-Level Trigger.

  15. Measurement and simulation of the pressure ratio between the two traps of double Penning trap mass spectrometers

    International Nuclear Information System (INIS)

    Neidherr, D.; Blaum, K.; Block, M.; Ferrer, R.; Herfurth, F.; Ketelaer, J.; Nagy, Sz.; Weber, C.

    2008-01-01

    Penning traps are ideal tools to perform high-precision mass measurements. For this purpose the cyclotron frequency of the stored charged particles is measured. In case of on-line mass measurements of short-lived nuclides produced at radioactive beam facilities the ions get in general first prepared and cooled by buffer-gas collisions in a preparation trap to reduce their motional amplitudes and are then transported to a precision trap for the cyclotron frequency determination. In modern Penning trap mass spectrometers both traps are placed in the homogeneous region of one superconducting magnet to optimize the transport efficiency. Because the gas pressure inside the precision trap has to be very low in order to minimize the damping of the ion motion caused by collisions with rest gas molecules during the frequency determination, a pumping barrier is installed between both traps. To predict the pressure difference between the two traps in the region of molecular gas flow the motion of each particle can be simulated without consideration of the other particles. Thus, it is possible to calculate the transit probability through a tube of a given geometry. The results are compared with experimentally obtained pressure differences.

  16. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez and Y. Pakhotin

    2012-01-01

      A new track-based alignment for the DT chambers is ready for deployment: an offline tag has already been produced which will become part of the 52X Global Tag. This alignment was validated within the muon alignment group both at low and high momentum using a W/Z skim sample. It shows an improved mass resolution for pairs of stand-alone muons, improved curvature resolution at high momentum, and improved DT segment extrapolation residuals. The validation workflow for high-momentum muons used to depend solely on the “split cosmics” method, looking at the curvature difference between muon tracks reconstructed in the upper or lower half of CMS. The validation has now been extended to include energetic muons decaying from heavily boosted Zs: the di-muon invariant mass for global and stand-alone muons is reconstructed, and the invariant mass resolution is compared for different alignments. The main areas of development over the next few months will be preparing a new track-based C...

  17. ATLAS muon detector

    CERN Multimedia

    Muon detectors from the outer layer of the ATLAS experiment at the Large Hadron Collider. Over a million individual detectors combine to make up the outer layer of ATLAS. All of this is exclusively to track the muons, the only detectable particles to make it out so far from the collision point. How the muon’s path curves in the magnetic field depends on how fast it is travelling. A fast muon curves only a very little, a slower one curves a lot. Together with the calorimeters, the muon detectors play an essential role in deciding which collisions to store and which to ignore. Certain signals from muons are a sure sign of exciting discoveries. To make sure the data from these collisions is not lost, some of the muon detectors react very quickly and trigger the electronics to record. The other detectors take a little longer, but are much more precise. Their job is to measure exactly where the muons have passed, calculating the curvature of their tracks in the magnetic field to the nearest five hundredths of a ...

  18. Muon Collider Progress: Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  19. Search for scalar muons

    International Nuclear Information System (INIS)

    Bartel, W.; Becker, L.; Bowdery, C.; Cords, D.; Felst, R.; Haidt, D.; Knies, G.; Krehbiel, H.; Meinke, R.; Naroska, B.; Olsson, J.; Steffen, P.; Junge, H.; Schmidt, D.; Laurikainen, P.; Dietrich, G.; Hagemann, J.; Heinzelmann, G.; Kado, H.; Kleinwort, C.; Kuhlen, M.; Meier, K.; Petersen, A.; Ramcke, R.; Schneekloth, U.; Weber, G.; Allison, J.; Baines, J.; Ball, A.H.; Barlow, R.J.; Chrin, J.; Duerdoth, I.P.; Greenshaw, T.; Hill, P.; Loebinger, F.K.; Macbeth, A.A.; McCann, H.; Mills, H.E.; Murphy, P.G.; Stephens, K.; Warming, P.; Glasser, R.G.; Sechi-Zorn, B.; Skard, J.A.J.; Wagner, S.R.; Zorn, G.T.; Cartwright, S.L.; Clarke, D.; Marshall, R.; Middleton, R.P.; Whittaker, J.B.; Kawamoto, T.; Kobayashi, T.; Mashimo, T.; Minowa, M.; Takeda, H.; Takeshita, T.; Yamada, S.

    1984-12-01

    The supersymmetric partner of the muon was searched for in a systematic way. No candidate was found and 95% CL limits on its mass were given for different cases. If it is stable, the limit is 20.9 GeV/c 2 . If it decays into a muon and an invisible low mass particle, the limit is 20.3 GeV/c 2 . If it decays into a muon and an unstable neutral particle which decays further into a photon and an invisible massless particles, the limit is 19.2 GeV/c 2 . (orig.)

  20. Muon substituted free radicals

    International Nuclear Information System (INIS)

    Burkhard, P.; Fischer, H.; Roduner, E.; Strub, W.; Gygax, F.N.; Brinkman, G.A.; Louwrier, P.W.F.; McKenna, D.; Ramos, M.; Webster, B.C.

    1984-01-01

    Spin polarized energetic positive muons are injected as magnetic probes into unsaturated organic liquids. They are implemented via fast chemical processes ( -10 s) in various molecules. Of particular interest among these are muonium substituted free radicals. The technique allows determination of accurate rate coefficients for fast chemical reactions of radicals. Furthermore, radiochemical processes occuring in picoseconds after injection of the muon are studied. Of fundamental interest are also the structural and dynamical implications of substituting a proton by a muon, or in other terms, a hydrogen atom by a muonium atom. Selected examples for each of these three types of experiments are given. (Auth.)

  1. Design and construction of a hadron calorimeter for the European hybrid spectrometer

    International Nuclear Information System (INIS)

    Schmiedmayer, H.J.

    1983-01-01

    The Intermedia Neutral Particle Calorimeter is an iron (5 cm)-scintillator (0.8 cm) sampling calorimeter. The read-out is done in three groups comprising 4 scintillators separated by 5 cm of iron. The signal can also be used for triggering. The device has been tested for linearity and long-time stability muon-calibrated and inserted into the spectrometer EHS. Finally a simulation model for hadron showers was developed which fits data from the literature in the 20-200 GeV range. (G.Q.)

  2. MUON DETECTORS: CSC

    CERN Multimedia

    J. Hauser

    2012-01-01

      The CSC muon system has run well and very stably during the 2012 run. Problems with the delivery of low voltage to 10–15% of the ME1/1 chambers were mitigated in the trigger by triggering modes that make use of coincidences between stations 2, 3, and 4. Attention now focuses on the ambitious upgrade program in LS1. Simulation and reconstruction code has been prepared for the post-LS1 era, for which the CSC system will have a full set of 72 ME4/2 chambers installed, and the 3:1 ganging of strips in the inner section of ME1/1 (pseudorapidity 2.1–2.4) will be replaced by flash digitisation of each strip. Several improvements were made to the CSC system during the course of the year. Zero-suppression of the anode readout reduced 15% from the CSC data volume. The response to single-event upsets (SEUs) that cause downstream FED readout problems was improved in two ways: first, the FED monitoring software now detects FEDs that are stuck in a warning state and resets within about 4 ...

  3. MUON DETECTORS: DT

    CERN Multimedia

    Marco Dallavalle

    2012-01-01

      Although the year 2012 is the third year without access to the chambers and the Front-End electronics, the fraction of good channels is still very high at 99.1% thanks also to the constant care provided by the on-site operation team. The downtime caused to CMS as a consequence of DT failures is to-date <2%. The intervention on the LV power supplies, which required a large number of CAEN modules (137 A3050, 13 A3100, and 3 MAO) to be removed from the detector, reworked and tested during this Year-End Technical Stop, can now, after a few months of stable operation of the LV, be declared to have solved once-and-for-all the persistent problem with the overheating LV Anderson connectors. Another piece of very good news is that measurements of the noise from single-hit rate outside the drift-time box as a function of the LHC luminosity show that the noise rate and distribution are consistent with expectations of the simulations in the Muon TDR, which have guided the detector design and constru...

  4. Rotating double arm spectrometer to study hard scattering interactions at Serpukhov accelerator

    International Nuclear Information System (INIS)

    Abramov, V.V.; Baldin, B.Yu.; Buzulutskov, A.F.

    1991-01-01

    The double arm magnetic spectrometer designed to study high P T particle production with intense proton and pion beams is described. Particle trajectories are measured by the drift and proportional chambers. Particles are identified by Cherenkov ring spectrometer and muon identifier. The spectrometer can be rotated around the target up to 160 mrad. 2 tabs.; 13 figs

  5. Evidence for proton-tagged, central semi-exclusive production of high-mass muon pairs at 13 TeV with the CMS-TOTEM Precision Proton Spectrometer

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The process $pp \\rightarrow p \\mu^+\\mu^- p^{(*)}$ has been observed at the LHC for dimuon masses larger than $110~\\mathrm{GeV}$ in $pp$ collisions at $\\sqrt{s}=13~\\mathrm{TeV}$. Here $p^{(*)}$ indicates that the second proton is undetected, and either remains intact or dissociates into a low-mass state $p^{*}$. The scattered proton has been measured in the CMS-TOTEM Precision Proton Spectrometer (CT-PPS), which operated for the first time in 2016. The measurement is based on an integrated luminosity of approximately $10~\\mathrm{fb}^{-1}$ collected in regular, high-luminosity fills. A total of 12 candidates with $m(\\mu\\mu) > 110~\\mathrm{GeV}$, and matching forward proton kinematics, is observed. This corresponds to an excess of more than four standard deviations over the background. The spectrometer and its operation are described, along with the data and background estimation. The present results constitute the first evidence of this process at such masses. They also demonstrate that CT-PPS performs as expect...

  6. Correlation spectrometer

    Science.gov (United States)

    Sinclair, Michael B [Albuquerque, NM; Pfeifer, Kent B [Los Lunas, NM; Flemming, Jeb H [Albuquerque, NM; Jones, Gary D [Tijeras, NM; Tigges, Chris P [Albuquerque, NM

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  7. Muon ionization cooling experiment

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    A neutrino factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly leptonic CP violation. It is also the first step towards muon colliders. The performance of this new and promising line of accelerators relies heavily on the concept of ionisation cooling of minimum ionising muons, for which much R&D is required. The concept of a muon ionisation cooling experiment has been extensively studied and first steps are now being taken towards its realisation by a joint international team of accelerator and particle physicists. The aim of the workshop is to to explore at least two versions of an experiment based on existing cooling channel designs. If such an experiment is feasible, one shall then select, on the basis of effectiveness, simplicity, availability of components and overall cost, a design for the proposed experiment, and assemble the elements necessary to the presentation of a proposal. Please see workshop website.

  8. Muon identification in JADE

    International Nuclear Information System (INIS)

    Allison, J.; Armitage, J.C.M.; Baines, J.T.M.; Ball, A.H.; Bamford, G.; Barlow, R.J.; Bowdery, C.K.; Chrin, J.T.M.; Duerdoth, I.P.; Glendinning, I.; Greenshaw, T.; Hassard, J.F.; Hill, P.; King, B.T.; Loebinger, F.K.; Macbeth, A.A.; McCann, H.; Mercer, D.; Mills, H.E.; Murphy, P.G.; Prosper, H.B.; Rowe, P.; Stephens, K.

    1985-01-01

    The method of identification of high energy muons in the JADE detector is described in detail. The performance of the procedure is discussed in detail for the case of prompt identification in multihadronic final states. (orig.)

  9. Weak interactions: muon decay

    International Nuclear Information System (INIS)

    Sachs, A.M.; Sirlin, A.

    1975-01-01

    The traditional theory of the dominant mode of muon decay is presented, a survey of the experiments which have measured the observable features of the decay is given, and those things which can be learned about the parameters and nature of the theory from the experimental results are indicated. The following aspects of the theory of muon decay are presented first: general four-fermion theory, two-component theory of the neutrino, V--A theory, two-component and V--A theories vs general four-fermion theory, intermediate-boson hypothesis, radiative corrections, radiative corrections in the intermediate-boson theory, and endpoint singularities and corrections of order α 2 . Experiments on muon lifetime, isotropic electron spectrum, total asymmetry and energy dependence of asymmetry of electrons from polarized muons, and electron polarization are described, and a summary of experimental results is given. 7 figures, 2 tables, 109 references

  10. Following the Ions through a Mass Spectrometer with Atmospheric Pressure Interface: Simulation of Complete Ion Trajectories from Ion Source to Mass Analyzer.

    Science.gov (United States)

    Zhou, Xiaoyu; Ouyang, Zheng

    2016-07-19

    Ion trajectory simulation is an important and useful tool in instrumentation development for mass spectrometry. Accurate simulation of the ion motion through the mass spectrometer with atmospheric pressure ionization source has been extremely challenging, due to the complexity in gas hydrodynamic flow field across a wide pressure range as well as the computational burden. In this study, we developed a method of generating the gas flow field for an entire mass spectrometer with an atmospheric pressure interface. In combination with the electric force, for the first time simulation of ion trajectories from an atmospheric pressure ion source to a mass analyzer in vacuum has been enabled. A stage-by-stage ion repopulation method has also been implemented for the simulation, which helped to avoid an intolerable computational burden for simulations at high pressure regions while it allowed statistically meaningful results obtained for the mass analyzer. It has been demonstrated to be suitable to identify a joint point for combining the high and low pressure fields solved individually. Experimental characterization has also been done to validate the new method for simulation. Good agreement was obtained between simulated and experimental results for ion transfer though an atmospheric pressure interface with a curtain gas.

  11. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Gervasio Gomez

    2012-01-01

      The new alignment for the DT chambers has been successfully used in physics analysis starting with the 52X Global Tag. The remaining main areas of development over the next few months will be preparing a new track-based CSC alignment and producing realistic APEs (alignment position errors) and MC misalignment scenarios to match the latest muon alignment constants. Work on these items has been delayed from the intended timeline, mostly due to a large involvement of the muon alignment man-power in physics analyses over the first half of this year. As CMS keeps probing higher and higher energies, special attention must be paid to the reconstruction of very-high-energy muons. Recent muon POG reports from mid-June show a φ-dependence in curvature bias in Monte Carlo samples. This bias is observed already at the tracker level, where it is constant with muon pT, while it grows with pT as muon chamber information is added to the tracks. Similar studies show a much smaller effect in data, at le...

  12. Towards a Muon Collider

    International Nuclear Information System (INIS)

    Eichten, E.

    2011-01-01

    A multi TeV Muon Collider is required for the full coverage of Terascale physics. The physics potential for a Muon Collider at ∼3 TeV and integrated luminosity of 1 ab -1 is outstanding. Particularly strong cases can be made if the new physics is SUSY or new strong dynamics. Furthermore, a staged Muon Collider can provide a Neutrino Factory to fully disentangle neutrino physics. If a narrow s-channel resonance state exists in the multi-TeV region, the physics program at a Muon Collider could begin with less than 10 31 cm -2 s -1 luminosity. Detailed studies of the physics case for a 1.5-4 TeV Muon Collider are just beginning. The goals of such studies are to: (1) identify benchmark physics processes; (2) study the physics dependence on beam parameters; (3) estimate detector backgrounds; and (4) compare the physics potential of a Muon Collider with those of the ILC, CLIC and upgrades to the LHC.

  13. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2012-01-01

      A new muon alignment has been produced for 2012 A+B data reconstruction. It uses the latest Tracker alignment and single-muon data samples to align both DTs and CSCs. Physics validation has been performed and shows a modest improvement in stand-alone muon momentum resolution in the barrel, where the alignment is essentially unchanged from the previous version. The reference-target track-based algorithm using only collision muons is employed for the first time to align the CSCs, and a substantial improvement in resolution is observed in the endcap and overlap regions for stand-alone muons. This new alignment is undergoing the approval process and is expected to be deployed as part of a new global tag in the beginning of December. The pT dependence of the φ-bias in curvature observed in Monte Carlo was traced to a relative vertical misalignment between the Tracker and barrel muon systems. Moving the barrel as a whole to match the Tracker cures this pT dependence, leaving only the &phi...

  14. Inclusive single muon production in D0

    International Nuclear Information System (INIS)

    Maciel, A.K.A.

    1993-12-01

    Preliminary cross section measurements from the D0 experiment at Fermilab for the inclusive production of single muons in proton- antiproton collisions at √s = 1.8 TeV are presented. It is found that the experimental results are consistent with those obtained from a Monte Carlo simulation using N.L.O. calculations from ISAJET

  15. The Muon Ionization Cooling Experiment User Software

    Science.gov (United States)

    Dobbs, A.; Rajaram, D.; MICE Collaboration

    2017-10-01

    The Muon Ionization Cooling Experiment (MICE) is a proof-of-principle experiment designed to demonstrate muon ionization cooling for the first time. MICE is currently on Step IV of its data taking programme, where transverse emittance reduction will be demonstrated. The MICE Analysis User Software (MAUS) is the reconstruction, simulation and analysis framework for the MICE experiment. MAUS is used for both offline data analysis and fast online data reconstruction and visualization to serve MICE data taking. This paper provides an introduction to MAUS, describing the central Python and C++ based framework, the data structure and and the code management and testing procedures.

  16. Multidimensional spectrometer

    Science.gov (United States)

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  17. Pion and muon physics, ch. 2

    International Nuclear Information System (INIS)

    Dantzig, R. van; Goudsmit, P.F.A.; Konijn, J.

    1976-01-01

    A series of experiments in pion and muon physics has been planned for execution on the new IKO 500 MeV linac among which mesic X-rays PIμ capture gamma, PI-scattering and knock-out reactions are included. Progress in the construction of the PIμ facility and the development of instrumentation containing among other things drift chambers and an anti-Compton spectrometer has been reported. Also a few planned experiments in cooperation with CERN (along with others in the framework of the large magnetic analysis and detection system (OMICRON) developments) are described

  18. The Forward Muon Detector of L3

    CERN Document Server

    Adam, A; Alarcon, J; Alberdi, J; Alexandrov, V S; Aloisio, A; Alviggi, M G; Anderhub, H; Ariza, M; Azemoon, T; Aziz, T; Bakker, F; Banerjee, S; Banicz, K; Barcala, J M; Becker, U; Berdugo, J; Berges, P; Betev, B L; Biland, A; Bobbink, Gerjan J; Böck, R K; Böhm, A; Borisov, V S; Bosseler, K; Bouvier, P; Brambilla, Elena; Burger, J D; Burgos, C; Buskens, J; Carlier, J C; Carlino, G; Causaus, J; Cavallo, N; Cerjak, I; Cerrada-Canales, M; Chang, Y H; Chen, H S; Chendvankar, S R; Chvatchkine, V B; Daniel, M; De Asmundis, R; Decreuse, G; Deiters, K; Djambazov, L; Duraffourg, P; Erné, F C; Esser, H; Ezekiev, S; Faber, G; Fabre, M; Fernández, G; Freudenreich, Klaus; Fritschi, M; García-Abia, P; González, A; Gurtu, A; Gutay, L J; Haller, C; Herold, W D; Herrmann, J M; Hervé, A; Hofer, H; Höfer, M; Hofer, T; Homma, J; Horisberger, Urs; Horváth, I L; Ingenito, P; Innocente, Vincenzo; Ioudine, I; Jaspers, M; de Jong, P; Kästli, W; Kaspar, H; Kitov, V; König, A C; Koutsenko, V F; Lanzano, S; Lapoint, C; Lebedev, A; Lecomte, P; Lista, L; Lübelsmeyer, K; Lustermann, W; Ma, J M; Milesi, M; Molinero, A; Montero, A; Moore, R; Nahn, S; Navarrete, J J; Okle, M; Orlinov, I; Ostojic, R; Pandoulas, D; Paolucci, P; Parascandolo, P; Passeggio, G; Patricelli, S; Peach, D; Piccolo, D; Pigni, L; Postema, H; Puras, C; Ren, D; Rewiersma, P A M; Rietmeyer, A; Riles, K; Risco, J; Robohm, A; Rodin, J; Röser, U; Romero, L; Van Rossum, W; Rykaczewski, H; Sarakinos, M E; Sassowsky, M; Shchegelskii, V; Scholz, N; Schultze, K; Schuylenburg, H; Sciacca, C; Seiler, P G; Siedenburg, T; Siedling, R; Smith, B; Soulimov, V; Sadhakar, K; Syben, O; Tonutti, M; Udovcic, A; Ulbricht, J; Veillet, L; Vergain, M; Viertel, Gert M; Von Gunten, H P; Vorobyov, A A; Vrankovic, V; De Waard, A; Waldmeier-Wicki, S; Wallraff, W; Walter, H C; Wang, J C; Wei, Z L; Wetter, R; Willmott, C; Wittgenstein, F; Wu, R J; Yang, K S; Zhou, L; Zhou, Y; Zuang, H L

    1996-01-01

    The Forward-Backward muon detector of the L3 experiment is presented. Intended to be used for LEP 200 physics, it consists of 96 self-calibrating drift chambers of a new design enclosing the magnet pole pieces of the L3 solenoid. The pole pieces are toroidally magnetized to form two independent analyzing spectrometers. A novel trigger is provided by resistive plate counters attached to the drift chambers. Details about the design, construction and performance of the whole system are given together with results obtained during the 1995 running at LEP.

  19. Using the computer simulation methods for the PHOS gamma spectrometer in the ALICE design. Pt. 1. Simulation of the base module response on a high-energy gamma quantum

    International Nuclear Information System (INIS)

    Antonenko, V.G.; Blau, D.S.

    2006-01-01

    After all lead tungstate crystals have been fabricated and transferred for assembling of the gamma-spectrometer PHOS in frame of ALICE experiment on the Large Hadron Collider a simulation was performed of the light collection in single scintillation module taking into account realistic properties of entire crystal party [ru

  20. A novel spectrometer for neutrino experiments

    CERN Document Server

    Pasqualini, Laura

    2015-01-01

    The WA104-NESSiE program developed in the context of the CERN Neutrino Platform, includes an innovative spectrometer to measure the charge and the momentum of muons in 0.5-5 GeV/c range. A tracking apparatus with a spatial resolution of 1 mm was designed, to be placed in a magnetized air volume in order to achieve a charge resolution and mis-identification of better than 1% at 1 GeV/c. Preliminary results obtained by detecting cosmic ray muons are reported.

  1. Radiative muon capture on hydrogen

    International Nuclear Information System (INIS)

    Wright, D.H.; Ahmad, S.; Gorringe, T.P.; Hasinoff, M.D.; Larabee, A.J.; Waltham, C.E.; Armstrong, D.S.; Blecher, M.; Serna-Angel, A.; Azuelos, G.; Macdonald, J.A.; Poutissou, J.M.; Bertl, W.; Chen, C.Q.; Ding, Z.H.; Zhang, N.S.; Henderson, R.; McDonald, S.; Taylor, G.N.; Robertson, B.C.

    1989-01-01

    In the Standard Model, the weak interaction is purely V-A in character. However in semileptonic reactions the strong force induces additional couplings. One of these, the induced pseudoscalar coupling g p , is still very poorly determined experimentally. Using PCAC and the Goldberger-Treiman relation, one can obtain the estimate g p /g a = 6.8 for the nucleon. At present, the world average of 5 measurements of the rate of ordinary muon capture (each with an error in excess of 40%) yields g p /g a = 6.9 ± 1.5. Radiative Muon Capture (RMC) is considerably more sensitive to the pseudoscalar coupling. Due to the extremely small branching ratio (∼ 6 x 10 -8 ), the elementary reaction μ - p→ μnγ has never been measured. Effort to date has concentrated on nuclear RMC where the branching ratio is much larger, but the interpretation of these results is hindered by nuclear structure uncertainties. A measurement is being carried out at TRIUMF to determine the rate of RMC on hydrogen to a precision of 8% leading to a determination of g p with an error of 10%. The detection system is based on a large-volume drift chamber acting as a pair spectrometer. The drift chamber covers a solid angle of about 2π. At a magnetic field of 2.4 kG the acceptance for 70 MeV photons is about 0.9% using a 1.2 mm thick Pb photon converter. The expected photon energy resolution is about 10% FWHM. A detailed discussion of the systematic errors expected in the experiment and the preliminary results on the performance of the detector will be presented

  2. Muons in UA1

    International Nuclear Information System (INIS)

    Dijk, A.L. van.

    1991-01-01

    In the years 1987-1989 the experiment ('UA1'), which is described in this thesis, has focused on measurements with muons. These particles can be considered as a part of the 'fingerprint' of interesting reactions. In the practice of 'UA1', recognizing this 'fingerprint' represents a puzzle because many (often more than hundred particles are produced in a collision between a proton and an anti-proton. In the experiment the properties (charge, energy, direction) of these particles are measured and subsequently the events are reconstructed. This results in several event samples corresponding to specific production mechanisms. The first part (ch. 1-5) of this thesis deals with the muon trigger of the UA1 experiment. This is a computer system that, directly after a measurement, reconstructs an event and checks for the presence of muons. If no muon is found the event is not considered anymore. In the other cases, the event is kept and written to magnetic tape. These tapes are for further analysis. The necessity of a trigger follows from the fact that per second more than 250.000 interactions occur and only about 10 can be saved on tape. For this reason a trigger system is of critical importance: all events not written to tape are lost. In ch. 2 the experiment and in ch. 4 the ideas and constraints of the trigger are explained. Ch. 4 discusses the construction and functioning of the muon trigger and ch. 5 presents the performance. The second part of this thesis (ch.'s 6 and 7) contain the physics analysis results from data collected with muon trigger. These results are explicitly obtained from events containing two muons. The theory is briefly reviewed and a discussion is given of the data and the way the selections are done. Finally the J/Ψ and Γ samples and the cross sections of b-quark production are given. (author). 57 refs.; 60 figs.; 8 tabs

  3. Digital positron annihilation spectrometer

    International Nuclear Information System (INIS)

    Cheng Bin; Weng Huimin; Han Rongdian; Ye Bangjiao

    2010-01-01

    With the high speed development of digital signal process, the technique of the digitization and processing of signals was applied in the domain of a broad class of nuclear technique. The development of digital positron lifetime spectrometer (DPLS) is more promising than the conventional positron lifetime spectrometer equipped with nuclear instrument modules. And digital lifetime spectrometer has many advantages, such as low noise, long term stability, flexible online or offline digital processing, simple setup, low expense, easy to setting, and more physical information. Digital constant fraction discrimination is for timing. And a new method of optimizing energy windows setting for digital positron lifetime spectrometer is also developed employing the simulated annealing for the convenient use. The time resolution is 220ps and the count rate is 200cps. (authors)

  4. Testing flight software on the ground: Introducing the hardware-in-the-loop simulation method to the Alpha Magnetic Spectrometer on the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenhao, E-mail: wenhao_sun@126.com [Southeast University, Nanjing 210096 (China); Cai, Xudong [Massachusetts Institute of Technology, MA 02139-4307 (United States); Meng, Qiao [Southeast University, Nanjing 210096 (China)

    2016-04-11

    Complex automatic protection functions are being added to the onboard software of the Alpha Magnetic Spectrometer. A hardware-in-the-loop simulation method has been introduced to overcome the difficulties of ground testing that are brought by hardware and environmental limitations. We invented a time-saving approach by reusing the flight data as the data source of the simulation system instead of mathematical models. This is easy to implement and it works efficiently. This paper presents the system framework, implementation details and some application examples.

  5. Performance of CMS Muon Reconstruction in Cosmic-Ray Events

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G.; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The performance of muon reconstruction in CMS is evaluated using a large data sample of cosmic-ray muons recorded in 2008. Efficiencies of various high-level trigger, identification, and reconstruction algorithms have been measured for a broad range of muon momenta, and were found to be in good agreement with expectations from Monte Carlo simulation. The relative momentum resolution for muons crossing the barrel part of the detector is better than 1% at 10 GeV/c and is about 8% at 500 GeV/c, the latter being only a factor of two worse than expected with ideal alignment conditions. Muon charge misassignment ranges from less than 0.01% at 10 GeV/c to about 1% at 500 GeV/c.

  6. Concepts for a Muon Accelerator Front-End

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys [Fermilab; Berg, Scott [Brookhaven; Neuffer, David [Fermilab

    2017-03-16

    We present a muon capture front-end scheme for muon based applications. In this Front-End design, a proton bunch strikes a target and creates secondary pions that drift into a capture channel, decaying into muons. A series of rf cavities forms the resulting muon beams into a series of bunches of differerent energies, aligns the bunches to equal central energies, and initiates ionization cooling. We also discuss the design of a chicane system for the removal of unwanted secondary particles from the muon capture region and thus reduce activation of the machine. With the aid of numerical simulations we evaluate the performance of this Front-End scheme as well as study its sensitivity against key parameters such as the type of target, the number of rf cavities and the gas pressure of the channel.

  7. Generating Low Beta Regions with Quadrupoles for Final Muon Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, J. G. [Mississippi U.; Cremaldi, L. M. [Mississippi U.; Hart, T. L. [Mississippi U.; Oliveros, S. J. [Mississippi U.; Summers, D. J. [Mississippi U.; Neuffer, D. V. [Fermilab

    2017-05-01

    Muon beams and colliders are rich sources of new physics, if muons can be cooled. A normalized rms transverse muon emittance of 280 microns has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL, G4beamline, and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to approach a normalized transverse emittance of 100 microns and finish 6D muon cooling. The low beta regions produced by the quadrupoles are occupied by dense, low Z absorbers, such as lithium hydride or beryllium, that cool the beam. Equilibrium transverse emittance is linearly proportional to the beta function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 microns at the expense of longitudinal emittance for a high energy lepton collider. Work remains to be done on chromaticity correction.

  8. Bayesian image reconstruction for improving detection performance of muon tomography.

    Science.gov (United States)

    Wang, Guobao; Schultz, Larry J; Qi, Jinyi

    2009-05-01

    Muon tomography is a novel technology that is being developed for detecting high-Z materials in vehicles or cargo containers. Maximum likelihood methods have been developed for reconstructing the scattering density image from muon measurements. However, the instability of maximum likelihood estimation often results in noisy images and low detectability of high-Z targets. In this paper, we propose using regularization to improve the image quality of muon tomography. We formulate the muon reconstruction problem in a Bayesian framework by introducing a prior distribution on scattering density images. An iterative shrinkage algorithm is derived to maximize the log posterior distribution. At each iteration, the algorithm obtains the maximum a posteriori update by shrinking an unregularized maximum likelihood update. Inverse quadratic shrinkage functions are derived for generalized Laplacian priors and inverse cubic shrinkage functions are derived for generalized Gaussian priors. Receiver operating characteristic studies using simulated data demonstrate that the Bayesian reconstruction can greatly improve the detection performance of muon tomography.

  9. Muon Event Filter Software for the ATLAS Experiment at LHC

    CERN Document Server

    Biglietti, M; Assamagan, Ketevi A; Baines, J T M; Bee, C P; Bellomo, M; Bogaerts, J A C; Boisvert, V; Bosman, M; Caron, B; Casado, M P; Cataldi, G; Cavalli, D; Cervetto, M; Comune, G; Conde, P; Conde-Muíño, P; De Santo, A; De Seixas, J M; Di Mattia, A; Dos Anjos, A; Dosil, M; Díaz-Gómez, M; Ellis, Nick; Emeliyanov, D; Epp, B; Falciano, S; Farilla, A; George, S; Ghete, V M; González, S; Grothe, M; Kabana, S; Khomich, A; Kilvington, G; Konstantinidis, N P; Kootz, A; Lowe, A; Luminari, L; Maeno, T; Masik, J; Meessen, C; Mello, A G; Merino, G; Moore, R; Morettini, P; Negri, A; Nikitin, N V; Nisati, A; Padilla, C; Panikashvili, N; Parodi, F; Pinfold, J L; Pinto, P; Primavera, M; Pérez-Réale, V; Qian, Z; Resconi, S; Rosati, S; Santamarina-Rios, C; Scannicchio, D A; Schiavi, C; Segura, E; Sivoklokov, S Yu; Soluk, R A; Stefanidis, E; Sushkov, S; Sutton, M; Sánchez, C; Tapprogge, Stefan; Thomas, E; Touchard, F; Venda-Pinto, B; Ventura, A; Vercesi, V; Werner, P; Wheeler, S; Wickens, F J; Wiedenmann, W; Wielers, M; Zobernig, G; Computing In High Energy Physics

    2005-01-01

    At LHC the 40 MHz bunch crossing rate dictates a high selectivity of the ATLAS Trigger system, which has to keep the full physics potential of the experiment in spite of a limited storage capability. The level-1 trigger, implemented in a custom hardware, will reduce the initial rate to 75 kHz and is followed by the software based level-2 and Event Filter, usually referred as High Level Triggers (HLT), which further reduce the rate to about 100 Hz. In this paper an overview of the implementation of the offline muon recostruction algortihms MOORE (Muon Object Oriented REconstruction) and MuId (Muon Identification) as Event Filter in the ATLAS online framework is given. The MOORE algorithm performs the reconstruction inside the Muon Spectrometer providing a precise measurement of the muon track parameters outside the calorimeters; MuId combines the measurements of all ATLAS sub-detectors in order to identify muons and provides the best estimate of their momentum at the production vertex. In the HLT implementatio...

  10. GEANT4 simulation and evaluation of a time-of-flight spectrometer for nuclear cross section measurements in particle therapy

    International Nuclear Information System (INIS)

    Gruenwald, Oxana

    2011-01-01

    , and the range of the fragments within the scintillator material are investigated. The results are presented along with indications for improvement, whenever possible. The simulation results show that the target fragments reach the Stop scintillators and are available for detection. Provided a vacuum of 0.1 mbar and a target thickness of no more than a few micrometers relatively accurate mass spectra can be reconstructed. However, the energy resolution of the setup is strongly compromised by the small range of the fragments within the scintillator material. Along with saturation effects of common plastic scintillators an adequate reconstruction of measured data cannot be achieved. Currently, alternative hardware and experimental setups are under investigation. For one, pure Caesium Iodide (CsI) is being tested under laboratory conditions for its scintillating properties with a special focus on quenching effects. In addition, development has started for a new spectrometer setup which will make use of inverse kinematics and, rather than aiming to identify target fragments, will detect projectile fragments, e.g. from reactions induced by a carbon beam in a hydrogen target. (orig.)

  11. GEANT4 simulation and evaluation of a time-of-flight spectrometer for nuclear cross section measurements in particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gruenwald, Oxana

    2011-06-08

    , and the range of the fragments within the scintillator material are investigated. The results are presented along with indications for improvement, whenever possible. The simulation results show that the target fragments reach the Stop scintillators and are available for detection. Provided a vacuum of 0.1 mbar and a target thickness of no more than a few micrometers relatively accurate mass spectra can be reconstructed. However, the energy resolution of the setup is strongly compromised by the small range of the fragments within the scintillator material. Along with saturation effects of common plastic scintillators an adequate reconstruction of measured data cannot be achieved. Currently, alternative hardware and experimental setups are under investigation. For one, pure Caesium Iodide (CsI) is being tested under laboratory conditions for its scintillating properties with a special focus on quenching effects. In addition, development has started for a new spectrometer setup which will make use of inverse kinematics and, rather than aiming to identify target fragments, will detect projectile fragments, e.g. from reactions induced by a carbon beam in a hydrogen target. (orig.)

  12. Design of a muon tomography system with a plastic scintillator and wavelength-shifting fiber arrays

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Woo Jin; Kim, Hyun-Il; An, Su Jung; Lee, Chae Young [Department of Radiological Science, College of Health Science, Yonsei University, Wonju 220-710 (Korea, Republic of); Baek, Cheol-Ha [Department of Radiological Science, Dongseo University, Busan 617-716 (Korea, Republic of); Chung, Yong Hyun, E-mail: ychung@yonsei.ac.kr [Department of Radiological Science, College of Health Science, Yonsei University, Wonju 220-710 (Korea, Republic of)

    2013-12-21

    Recently, monitoring nuclear materials to avoid nuclear terrorism has become an important area of national security. It can be difficult to detect gamma rays from nuclear material because they are easily shielded by shielding material. Muon tomography using multiple -Coulomb scattering derived from muons can be utilized to detect special nuclear materials (SNMs) such as uranium-235 and plutonium-239. We designed a muon tomography system composed of four detector modules. The incident and scattered muon tracks can be calculated by two top and two bottom detectors, respectively. 3D tomographic images are obtained by extracting the crossing points of muon tracks with a point-of-closest-approach algorithm. The purpose of this study was to optimize the muon tomography system using Monte Carlo simulation code. The effects of the geometric parameters of the muon tomography system on material Z-discrimination capability were simulated and evaluated.

  13. Muon physics possibilities at a muon-neutrino factory

    NARCIS (Netherlands)

    Jungmann, KP

    2001-01-01

    New intense proton accelerators with above GeV energies and MW beam power, such as they are discussed in connection with neutrino factories, appear to be excellently suited for feeding bright muon sources for low-energy muon science. Muon rates with several orders of magnitude increased flux

  14. The pion (muon) energy production cost in muon catalyzed fusion

    International Nuclear Information System (INIS)

    Fadeev, N.G.; Solov'ev, M.I.

    1995-01-01

    The article presents the main steps in the history of the study on the muon catalysis of nuclear fusion. The practical application of the muon catalysis phenomenon to obtain the energy gain is briefly discussed. The details of the problem to produce pion (muon) yield with minimal energy expenses have been considered. 31 refs., 4 tabs

  15. Muon background studies for shallow depth Double - Chooz near detector

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, H. [Laboratoire Astroparticule et Cosmologie (APC) - Université Paris 7. Paris (France)

    2015-08-17

    Muon events are one of the main concerns regarding background in neutrino experiments. The placement of experimental set-ups in deep underground facilities reduce considerably their impact on the research of the expected signals. But in the cases where the detector is installed on surface or at shallow depth, muon flux remains high, being necessary their precise identification for further rejection. Total flux, mean energy or angular distributions are some of the parameters that can help to characterize the muons. Empirically, the muon rate can be measured in an experiment by a number of methods. Nevertheless, the capability to determine the muons angular distribution strongly depends on the detector features, while the measurement of the muon energy is quite difficult. Also considering that on-site measurements can not be extrapolated to other sites due to the difference on the overburden and its profile, it is necessary to find an adequate solution to perform the muon characterization. The method described in this work to obtain the main features of the muons reaching the experimental set-up, is based on the muon transport simulation by the MUSIC software, combined with a dedicated sampling algorithm for shallow depth installations based on a modified Gaisser parametrization. This method provides all the required information about the muons for any shallow depth installation if the corresponding overburden profile is implemented. In this work, the method has been applied for the recently commissioned Double - Chooz near detector, which will allow the cross-check between the simulation and the experimental data, as it has been done for the far detector.

  16. Muon background studies for shallow depth Double - Chooz near detector

    International Nuclear Information System (INIS)

    Gómez, H.

    2015-01-01

    Muon events are one of the main concerns regarding background in neutrino experiments. The placement of experimental set-ups in deep underground facilities reduce considerably their impact on the research of the expected signals. But in the cases where the detector is installed on surface or at shallow depth, muon flux remains high, being necessary their precise identification for further rejection. Total flux, mean energy or angular distributions are some of the parameters that can help to characterize the muons. Empirically, the muon rate can be measured in an experiment by a number of methods. Nevertheless, the capability to determine the muons angular distribution strongly depends on the detector features, while the measurement of the muon energy is quite difficult. Also considering that on-site measurements can not be extrapolated to other sites due to the difference on the overburden and its profile, it is necessary to find an adequate solution to perform the muon characterization. The method described in this work to obtain the main features of the muons reaching the experimental set-up, is based on the muon transport simulation by the MUSIC software, combined with a dedicated sampling algorithm for shallow depth installations based on a modified Gaisser parametrization. This method provides all the required information about the muons for any shallow depth installation if the corresponding overburden profile is implemented. In this work, the method has been applied for the recently commissioned Double - Chooz near detector, which will allow the cross-check between the simulation and the experimental data, as it has been done for the far detector

  17. Precision muon physics

    Science.gov (United States)

    Gorringe, T. P.; Hertzog, D. W.

    2015-09-01

    The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating processes. Measurements of the muon's anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio μμ /μp, lepton mass ratio mμ /me, and proton charge radius rp. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiments. Another focus is the uncommonly broad and topical range of questions in atomic, nuclear and particle physics that such experiments explore.

  18. Search for hidden high-Z materials inside containers with the Muon Portal Project

    International Nuclear Information System (INIS)

    Rocca, P La; Bandieramonte, M; Blancato, A A; Bonanno, D; Indelicato, V; Presti, D Lo; Petta, C; Antonuccio, V; Becciani, U; Belluso, M; Billotta, S; Bonanno, G; Costa, A; Garozzo, S; Massimino, P; Belluomo, F; Fallica, G; Leonora, E; Longhitano, F; Longo, S

    2014-01-01

    The Muon Portal is a recently born project that plans to build a large area muon detector for a noninvasive inspection of shipping containers in the ports, searching for the presence of potential fissile (U, Pu) threats. The technique employed by the project is the well-known muon tomography, based on cosmic muon scattering from high-Z materials. The design and operational parameters of the muon portal under construction will be described in this paper, together with preliminary simulation and test results

  19. Search for hidden high-Z materials inside containers with the Muon Portal Project

    Science.gov (United States)

    La Rocca, P.; Antonuccio, V.; Bandieramonte, M.; Becciani, U.; Belluomo, F.; Belluso, M.; Billotta, S.; Blancato, A. A.; Bonanno, D.; Bonanno, G.; Costa, A.; Fallica, G.; Garozzo, S.; Indelicato, V.; Leonora, E.; Longhitano, F.; Longo, S.; Lo Presti, D.; Massimino, P.; Petta, C.; Pistagna, C.; Pugliatti, C.; Puglisi, M.; Randazzo, N.; Riggi, F.; Riggi, S.; Romeo, G.; Russo, G. V.; Santagati, G.; Valvo, G.; Vitello, F.; Zaia, A.; Zappalà, G.

    2014-01-01

    The Muon Portal is a recently born project that plans to build a large area muon detector for a noninvasive inspection of shipping containers in the ports, searching for the presence of potential fissile (U, Pu) threats. The technique employed by the project is the well-known muon tomography, based on cosmic muon scattering from high-Z materials. The design and operational parameters of the muon portal under construction will be described in this paper, together with preliminary simulation and test results.

  20. Muon Studies with the First CMS Data at the LHC; Estudios de Muones con los Primeros Datos de CMS en el LHC

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, C.; Garcia-Abia, P.; Hernandez, J. M.

    2011-05-13

    In this work an analysis of the first data recorded with the CMS detector at the LHC collider is presented. The properties of the detected muons are analyzed and compared with simulated data. The J/Psi ,Psi(2S) and Upsilon(nS) mesons as well as the Z boson have been reconstructed in the muon-anti muon decay channel. These analyses have allowed us to improve the understanding of the CMS detector in terms of muon detection efficiency, resolution and accuracy in the measurement of the momentum and the description of the detector in the simulation. (Author) 17 refs.

  1. CMS (Compact Muon Solenoid)

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The milestone workshops on LHC experiments in Aachen in 1990 and at Evian in 1992 provided the first sketches of how LHC detectors might look. The concept of a compact general-purpose LHC experiment based on a solenoid to provide the magnetic field was first discussed at Aachen, and the formal Expression of Interest was aired at Evian. It was here that the Compact Muon Solenoid (CMS) name first became public. Optimizing first the muon detection system is a natural starting point for a high luminosity (interaction rate) proton-proton collider experiment. The compact CMS design called for a strong magnetic field, of some 4 Tesla, using a superconducting solenoid, originally about 14 metres long and 6 metres bore. (By LHC standards, this warrants the adjective 'compact'.) The main design goals of CMS are: 1 - a very good muon system providing many possibilities for momentum measurement (physicists call this a 'highly redundant' system); 2 - the best possible electromagnetic calorimeter consistent with the above; 3 - high quality central tracking to achieve both the above; and 4 - an affordable detector. Overall, CMS aims to detect cleanly the diverse signatures of new physics by identifying and precisely measuring muons, electrons and photons over a large energy range at very high collision rates, while also exploiting the lower luminosity initial running. As well as proton-proton collisions, CMS will also be able to look at the muons emerging from LHC heavy ion beam collisions. The Evian CMS conceptual design foresaw the full calorimetry inside the solenoid, with emphasis on precision electromagnetic calorimetry for picking up photons. (A light Higgs particle will probably be seen via its decay into photon pairs.) The muon system now foresaw four stations. Inner tracking would use silicon microstrips and microstrip gas chambers, with over 10 7 channels offering high track finding efficiency. In the central CMS barrel, the tracking elements are

  2. Exclusive vector meson production in muon-nucleus scattering

    International Nuclear Information System (INIS)

    Fang, G.Y.

    1994-02-01

    Preliminary results on the cross section ratios of exclusive incoherent ρ 0 and φ meson production off deuterium, carbon, calcium, and lead to that off hydrogen and coherent ρ 0 and φ meson production off calcium and lead to that off carbon in deep-inelastic muon-nucleon and muon-nucleus scattering are reported. The data were taken with the E665 spectrometer using the Fermilab Tevatron muon beam. The mean beam energy was 470 GeV. Increases in the cross section ratios are seen in both the elastic and quasi-elastic production as the four-momentum squared of the virtual photon increases. The results support the idea of color transparency

  3. Design and characterization of a small muon tomography system

    Science.gov (United States)

    Jo, Woo Jin; An, Su Jung; Kim, Hyun-Il; Lee, Chae Young; Chung, Heejun; Chung, Yong Hyun

    2015-02-01

    Muon tomography is a useful method for monitoring special nuclear materials (SNMs) because it can provide effective information on the presence of high-Z materials, has a high enough energy to deeply penetrate large amounts of shielding, and does not lead to any health risks and danger above background. We developed a 2-D muon detector and designed a muon tomography system employing four detector modules. Two top and two bottom detectors are, respectively, employed to record the incident and the scattered muon trajectories. The detector module for the muon tomography system consists of a plastic scintillator, wavelength-shifting (WLS) fiber arrays placed orthogonally on the top and the bottom of the scintillator, and a position-sensitive photomultiplier (PSPMT). The WLS fiber arrays absorb light photons emitted by the plastic scintillator and re-emit green lights guided to the PSPMT. The light distribution among the WLS fiber arrays determines the position of the muon interaction; consequently, 3-D tomographic images can be obtained by extracting the crossing points of the individual muon trajectories by using a point-of-closest-approach algorithm. The goal of this study is to optimize the design parameters of a muon tomography system by using the Geant4 code and to experimentally evaluate the performance of the prototype detector. Images obtained by the prototype detector with a 420-nm laser light source showed good agreement with the simulation results. This indicates that the proposed detector is feasible for use in a muon tomography system and can be used to verify the Z-discrimination capability of the muon tomography system.

  4. Muon radiography technology for detecting high-Z materials

    International Nuclear Information System (INIS)

    Ma Lingling; Wang Wenxin; Zhou Jianrong; Sun Shaohua; Liu Zuoye; Li Lu; Du Hongchuan; Zhang Xiaodong; Hu Bitao

    2010-01-01

    This paper studies the possibility of using the scattering of cosmic muons to identify threatening high-Z materials. Various scenarios of threat material detection are simulated with the Geant4 toolkit. PoCA (Point of Closest Approach) algorithm reconstructing muon track gives 3D radiography images of the target material. Z-discrimination capability, effects of the placement of high-Z materials, shielding materials inside the cargo, and spatial resolution of position sensitive detector for muon radiography are carefully studied. Our results show that a detector position resolution of 50 μm is good enough for shielded materials detection. (authors)

  5. Muon System Design Studies for Detectors at CLIC

    CERN Document Server

    van der Kraaij, E

    2011-01-01

    The two concepts for CLIC detectors inherited their design of the muon systems from the ILC community. In this note the outcome of a reevaluation of the design for the CLIC environment is presented. Based on a full detector simulation, the muon identification performance is analysed for different detector layouts and different cellsizes. As a result, nine layers are suggested for the muon systems of the CLIC ILD and CLIC SiD detectors, which are arranged in three groups of three layers. The cellsizes have been kept at 30×30 mm2. These layouts are used for the performance studies of the CLIC Conceptual Design Report (CDR).

  6. Online Learning for Muon Science

    Science.gov (United States)

    Baker, Peter J.; Loe, Tom; Telling, Mark; Cottrell, Stephen P.; Hillier, Adrian D.

    As part of the EU-funded project SINE2020 we are developing an online learning environment to introduce people to muon spectroscopy and how it can be applied in a variety of science areas. Currently there are short interactive courses using cosmic ray muons to teach what muons are and how their decays are measured and a guide to analyzing muon data using the Mantid software package, as well as videos from the lectures at the ISIS Muon Spectroscopy Training School 2016. Here we describe the courses that have been developed and how they have already been used.

  7. Calibrating the SHiP muon-flux using NA61/SHINE

    CERN Document Server

    Van Herwijnen, Eric; Korzenev, Alexander; Mermod, Philippe

    2016-01-01

    A major concern for the design of the SHiP experiment is the lack of a precise knowledge of the muon flux. This is a proposal to measure the expected muon flux in the SHiP experiment by installing a replica of the SHiP target in a 400 GeV proton beam in front of the NA61/SHINE spectrometer. We propose to do a first measurement in 2017.

  8. Development and characterisation of new high-rate muon drift tube detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, Bernhard

    2012-07-25

    With the increase of the LHC luminosity above the design value and the higher background counting rates, detectors in the ATLAS muon spectrometer have to be replaced because the limits of the radiation tolerance will be exceeded. Therefore drift tube chambers with 15 mm tube diameter were developed. The required construction accuracy was verified and the limits of the resolution and efficiency were determined in a muon beam and under gamma irradiation and compared to model expectations.

  9. Unparticles and muon decay

    International Nuclear Information System (INIS)

    Choudhury, Debajyoti; Ghosh, Dilip Kumar; Mamta

    2008-01-01

    Recently Georgi has discussed the possible existence of 'Unparticles' describable by operators having non-integral scaling dimensions. With the interaction of these with the Standard Model particles being constrained only by gauge and Lorentz symmetries, it affords a new source for lepton flavour violation. Current and future muon decay experiments are shown to be very sensitive to such scenarios

  10. Unparticles and muon decay

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Debajyoti [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Ghosh, Dilip Kumar [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India)], E-mail: dkghosh@physics.du.ac.in; Mamta [Department of Physics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110 007 (India)

    2008-01-03

    Recently Georgi has discussed the possible existence of 'Unparticles' describable by operators having non-integral scaling dimensions. With the interaction of these with the Standard Model particles being constrained only by gauge and Lorentz symmetries, it affords a new source for lepton flavour violation. Current and future muon decay experiments are shown to be very sensitive to such scenarios.

  11. Muon-induced fission

    International Nuclear Information System (INIS)

    Polikanov, S.

    1980-01-01

    A review of recent experimental results on negative-muon-induced fission, both of 238 U and 232 Th, is given. Some conclusions drawn by the author are concerned with muonic atoms of fission fragments and muonic atoms of the shape isomer of 238 U. (author)

  12. Muons, neutrons and superconductivity

    International Nuclear Information System (INIS)

    Aeppli, G.; Risoe National Lab., Roskilde

    1988-01-01

    The principles of the neutron scattering and muon spin relaxation (μSR) techniques and their applications to studies of superconductors are described briefly. μSR and neutron scattering work on magnetic correlations in superconductors and materials directly related to superconductors are reviewed. (orig.)

  13. Atmospheric muons in Hanoi

    International Nuclear Information System (INIS)

    Pham Ngoc Diep; Pham thi Tuyet Nhung; Pierre Darriulat; Nguyen Thi Thao; Dang Quang Thieu; Vo Van Thuan

    2006-01-01

    Recent measurements of the atmospheric muon flux in Hanoi were reviewed. As the measurements were carried out in a region of maximal geomagnetic rigidity cutoff, they provided a sensitive test of air shower models used in the interpretation of neutrino oscillation experiments. The measured data were found to be in a very good agreement with the prediction from the model of M. Honda. (author)

  14. Muon capture in deuterium

    Czech Academy of Sciences Publication Activity Database

    Ricci, P.; Truhlík, Emil; Mosconi, B.; Smejkal, J.

    2010-01-01

    Roč. 837, - (2010), s. 110-144 ISSN 0375-9474 Institutional research plan: CEZ:AV0Z10480505 Keywords : Negative muon capture * Deuteron * Potential models Subject RIV: BE - Theoretical Physics Impact factor: 1.986, year: 2010

  15. FFAGS for muon acceleration

    International Nuclear Information System (INIS)

    Berg, J. Scott; Kahn, Stephen; Palmer, Robert; Trbojevic, Dejan; Johnstone, Carol; Keil, Eberhard; Aiba, Masamitsu; Machida, Shinji; Mori, Yoshiharu; Ogitsu, Toru; Ohmori, Chihiro; Sessler, Andrew; Koscielniak, Shane

    2003-01-01

    Due to their finite lifetime, muons must be accelerated very rapidly. It is challenging to make the magnets ramp fast enough to accelerate in a synchrotron, and accelerating in a linac is very expensive. One can use a recirculating accelerator (like CEBAF), but one needs a different arc for each turn, and this limits the number of turns one can use to accelerate, and therefore requires significant amounts of RF to achieve the desired energy gain. An alternative method for muon acceleration is using a fixed field alternating gradient (FFAG) accelerator. Such an accelerator has a very large energy acceptance (a factor of two or three), allowing one to use the same arc with a magnetic field that is constant over time. Thus, one can in principle make as many turns as one can tolerate due to muon decay, therefore reducing the RF cost without increasing the arc cost. This paper reviews the current status of research into the design of FFAGs for muon acceleration. Several current designs are described and compared. General design considerations are also discussed

  16. γ ray astronomy with muons

    International Nuclear Information System (INIS)

    Halzen, F.; Stanev, T.; Yodh, G.B.

    1997-01-01

    Although γ ray showers are muon poor, they still produce a number of muons sufficient to make the sources observed by GeV and TeV telescopes observable also in muons. For sources with hard γ ray spectra there is a relative open-quotes enhancementclose quotes of muons from γ ray primaries as compared to that from nucleon primaries. All shower γ rays above the photoproduction threshold contribute to the number of muons N μ , which is thus proportional to the primary γ ray energy. With γ ray energy 50 times higher than the muon energy and a probability of muon production by the γ close-quote s of about 1%, muon detectors can match the detection efficiency of a GeV satellite detector if their effective area is larger by 10 4 . The muons must have enough energy for sufficiently accurate reconstruction of their direction for doing astronomy. These conditions are satisfied by relatively shallow neutrino detectors such as AMANDA and Lake Baikal, and by γ ray detectors such as MILAGRO. TeV muons from γ ray primaries, on the other hand, are rare because they are only produced by higher energy γ rays whose flux is suppressed by the decreasing flux at the source and by absorption on interstellar light. We show that there is a window of opportunity for muon astronomy with the AMANDA, Lake Baikal, and MILAGRO detectors. copyright 1997 The American Physical Society

  17. Muon-flux measurements for SHiP at H4

    CERN Document Server

    van Herwijnen, E

    2017-01-01

    A major concern for the design of the SHiP experiment is the lack of a precise knowledge of the muon flux. This is a proposal to measure the expected muon flux in the SHiP experiment by installing a replica of the SHiP target in a 400 GeV/c proton beam at H4. We intend building a spectrometer using the drift tube prototypes that were constructed for OPERA. A muon tagger will be built using RPCs, which will also serve as a module-0 for SHiP. We propose to do this measurement in early 2018. Accumulating $\\sim 10^{11}$ 400 GeV/c POT will enable us to make a more realistic design of the muon shield. With some modifications, this setup can also be used to measure the charm cross section (including the cascade production). We intend to test this setup after the measurement of the muon flux.

  18. Measurement of the Atmospheric Muon Spectrum from 20 to 3000 GeV

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Van den Ancker, M E; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Bähr, J; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, G J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chiarusi, T; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Ding, L K; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Durán, I; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Faber, G; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grabosch, H J; Grenier, G; Grimm, O; Groenstege, H L; Grünewald, M W; Guida, M; Guo, Y N; Gupta, S; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Haller, C; Hatzifotiadou, D; Hayashi, Y; He, Z X; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hoferjun, H; Hohlmann, M; Holzner, G; Hou, S R; Huo, A X; Hu, Y; Ito, N; Jin, B N; Jing, C L; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kantserov, V A; Kaur, M; Kawakami, S; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kok, E; Korn, A J; Kopal, M; Koutsenko, V F; Kräber, M H; Kuang Hao Huai; Krämer, R W; Krüger, A; Kuijpers, J; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Lei, Y; Leich, H; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Li, L; Li, Z C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Ma, X H; Ma, Y Q; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Meng, X W; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Van Mil, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Monteleoni, B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Nahnhauer, R; Naumov, V A; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Parriaud, J F; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Qing, C R; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Ravindran, K C; Razis, P; Ren, D; Rescigno, M; Reucroft, S; Rewiersma, P A M; Riemann, S; Riles, K; Roe, B P; Rojkov, A; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Rykaczewski, H; Saidi, R; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schmitt, V; Schöneich, B; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shen, C Q; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sulanke, H; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, L; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Trowitzsch, G; Tully, C; Tung, K L; Ulbricht, J; Unger, M; Valente, E; Verkooijen, H; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, R G; Wang, Q; Wang, X L; Wang, X W; Wang, Z M; Weber, M; Van Wijk, R F; Wijnen, T A M; Wilkens, H; Wynhoff, S; Xia, L; Xu, Y P; Xu, J S; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yang, X F; Yao, Z G; Yeh, S C; Yu, Z Q; Zalite, A; Zalite, Yu; Zhang, C; Zhang, F; Zhang, J; Zhang, S; Zhang, Z P; Zhao, J; Zhou, S J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zhu, Q Q; Zichichi, A; Zimmermann, B; Zöller, M; Zwart, A N M

    2004-01-01

    The absolute muon flux between 20 GeV and 300 GeV is measured with the L3 magnetic muon spectrometer for zenith angles ranging from 0 degree to 58 degrees. Due to the large exposure of about 150 m2 sr d, and the excellent momentum resolution of the L3 muon chambers, a precision of 2.3% at 150 GeV in the vertical direction is achieved. The ratio of positive to negative muons is studied between 20 GeV and 500 GeV, and the average vertical muon charge ratio is found to be 1.285 +- 0.003 (stat.)+- 0.019 (syst.).

  19. The SeaQuest Spectrometer at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Aidala, C.A.; et al.

    2017-06-29

    The SeaQuest spectrometer at Fermilab was designed to detect oppositely-charged pairs of muons (dimuons) produced by interactions between a 120 GeV proton beam and liquid hydrogen, liquid deuterium and solid nuclear targets. The primary physics program uses the Drell-Yan process to probe antiquark distributions in the target nucleon. The spectrometer consists of a target system, two dipole magnets and four detector stations. The upstream magnet is a closed-aperture solid iron magnet which also serves as the beam dump, while the second magnet is an open aperture magnet. Each of the detector stations consists of scintillator hodoscopes and a high-resolution tracking device. The FPGA-based trigger compares the hodoscope signals to a set of pre-programmed roads to determine if the event contains oppositely-signed, high-mass muon pairs.

  20. The muon trigger of the SAPHIR shower detector

    International Nuclear Information System (INIS)

    Rufeger-Hurek, H.

    1989-12-01

    The muon trigger system of the SAPHIR shower counter consists of 4 scintillation counters. The total trigger rate of cosmic muons is about 55 Hz which is reduced to about 45 Hz by the selecting algorithms. This rate of clean muon events allows a simultaneous monitoring of the whole electronics system and the calibration of the gas sandwich detector by measuring the gas gain. The dependences of the signals on the geometry have been simulated with the help of a Monte Carlo program. The comparison of simulated and measured pulse heights shows that faults in the electronics as well as defects in the detector hardware, e.g., the HV system, or temperature effects, can be recognized at the level of a few percent. In addition the muon signals are used to determine the calibration factor for each cathode channel individually. (orig.) [de

  1. Calibration of the calorimeter of the ATLAS muon cosmic

    International Nuclear Information System (INIS)

    Federic, P.

    2006-01-01

    This summer is for the ATLAS experiment at CERN scheduled calibration with cosmic muons ECC. It is one of the standard methods of calibrating calorimeters. Before these measurements it is necessary to perform precise Monte Carlo simulation, which is essential to a detailed understanding of the physics of the processes. Based on the known data on the spectra of cosmic muons, such as the frequency (flux) or the energy spectrum can be achieved highly accurate results. So far were simulated 3 samples for max. muon angle of incidence 45, 60 and 75 degrees, each containing 1 M events. Based on this we found the first necessary data and in particular, they allow us to determine the best angle for the ratio of the number of muons generated a number of events in the calorimetric system. (author)

  2. Muon tomography imaging algorithms for nuclear threat detection inside large volume containers with the Muon Portal detector

    Science.gov (United States)

    Riggi, S.; Antonuccio-Delogu, V.; Bandieramonte, M.; Becciani, U.; Costa, A.; La Rocca, P.; Massimino, P.; Petta, C.; Pistagna, C.; Riggi, F.; Sciacca, E.; Vitello, F.

    2013-11-01

    Muon tomographic visualization techniques try to reconstruct a 3D image as close as possible to the real localization of the objects being probed. Statistical algorithms under test for the reconstruction of muon tomographic images in the Muon Portal Project are discussed here. Autocorrelation analysis and clustering algorithms have been employed within the context of methods based on the Point Of Closest Approach (POCA) reconstruction tool. An iterative method based on the log-likelihood approach was also implemented. Relative merits of all such methods are discussed, with reference to full GEANT4 simulations of different scenarios, incorporating medium and high-Z objects inside a container.

  3. Muon tomography imaging algorithms for nuclear threat detection inside large volume containers with the Muon Portal detector

    Energy Technology Data Exchange (ETDEWEB)

    Riggi, S., E-mail: simone.riggi@ct.infn.it [INAF—Osservatorio Astrofisico di Catania (Italy); Antonuccio-Delogu, V.; Bandieramonte, M.; Becciani, U.; Costa, A. [INAF—Osservatorio Astrofisico di Catania (Italy); La Rocca, P. [Dip. di Fisica e Astronomia, Università di Catania (Italy); INFN Section of Catania (Italy); Massimino, P. [INAF—Osservatorio Astrofisico di Catania (Italy); Petta, C. [Dip. di Fisica e Astronomia, Università di Catania (Italy); INFN Section of Catania (Italy); Pistagna, C. [INAF—Osservatorio Astrofisico di Catania (Italy); Riggi, F. [Dip. di Fisica e Astronomia, Università di Catania (Italy); INFN Section of Catania (Italy); Sciacca, E.; Vitello, F. [INAF—Osservatorio Astrofisico di Catania (Italy)

    2013-11-11

    Muon tomographic visualization techniques try to reconstruct a 3D image as close as possible to the real localization of the objects being probed. Statistical algorithms under test for the reconstruction of muon tomographic images in the Muon Portal Project are discussed here. Autocorrelation analysis and clustering algorithms have been employed within the context of methods based on the Point Of Closest Approach (POCA) reconstruction tool. An iterative method based on the log-likelihood approach was also implemented. Relative merits of all such methods are discussed, with reference to full GEANT4 simulations of different scenarios, incorporating medium and high-Z objects inside a container.

  4. SU-F-T-84: Measurement and Monte-Carlo Simulation of Electron Phase Spaces Using a Wide Angle Magnetic Electron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Englbrecht, F; Lindner, F; Bin, J; Wislsperger, A; Reiner, M; Kamp, F; Belka, C; Dedes, G; Schreiber, J; Parodi, K [LMU Munich, Munich, Bavaria (Germany)

    2016-06-15

    Purpose: To measure and simulate well-defined electron spectra using a linear accelerator and a permanent-magnetic wide-angle spectrometer to test the performance of a novel reconstruction algorithm for retrieval of unknown electron-sources, in view of application to diagnostics of laser-driven particle acceleration. Methods: Six electron energies (6, 9, 12, 15, 18 and 21 MeV, 40cm × 40cm field-size) delivered by a Siemens Oncor linear accelerator were recorded using a permanent-magnetic wide-angle electron spectrometer (150mT) with a one dimensional slit (0.2mm × 5cm). Two dimensional maps representing beam-energy and entrance-position along the slit were measured using different scintillating screens, read by an online CMOS detector of high resolution (0.048mm × 0.048mm pixels) and large field of view (5cm × 10cm). Measured energy-slit position maps were compared to forward FLUKA simulations of electron transport through the spectrometer, starting from IAEA phase-spaces of the accelerator. The latter ones were validated against measured depth-dose and lateral profiles in water. Agreement of forward simulation and measurement was quantified in terms of position and shape of the signal distribution on the detector. Results: Measured depth-dose distributions and lateral profiles in the water phantom showed good agreement with forward simulations of IAEA phase-spaces, thus supporting usage of this simulation source in the study. Measured energy-slit position maps and those obtained by forward Monte-Carlo simulations showed satisfactory agreement in shape and position. Conclusion: Well-defined electron beams of known energy and shape will provide an ideal scenario to study the performance of a novel reconstruction algorithm using measured and simulated signal. Future work will increase the stability and convergence of the reconstruction-algorithm for unknown electron sources, towards final application to the electrons which drive the interaction of TW-class laser

  5. Measurement of the nucleon structure function using high energy muons

    International Nuclear Information System (INIS)

    Meyers, P.D.

    1983-12-01

    We have measured the inclusive deep inelastic scattering of muons on nucleons in iron using beams of 93 and 215 GeV muons. To perform this measurement, we have built and operated the Multimuon Spectrometer (MMS) in the muon beam at Fermilab. The MMS is a magnetized iron target/spectrometer/calorimeter which provides 5.61 kg/cm 2 of target, 9% momentum resolution on scattered muons, and a direct measure of total hadronic energy with resolution sigma/sub nu/ = 1.4√nu(GeV). In the distributed target, the average beam energies at the interaction are 88.0 and 209 GeV. Using the known form of the radiatively-corrected electromagnetic cross section, we extract the structure function F 2 (x,Q 2 ) with a typical precision of 2% over the range 5 2 2 /c 2 . We compare our measurements to the predictions of lowest order quantum chromodynamics (QCD) and find a best fit value of the QCD scale parameter Λ/sub LO/ = 230 +- 40/sup stat/ +- 80/sup syst/ MeV/c, assuming R = 0 and without applying Fermi motion corrections. Comparing the cross sections at the two beam energies, we measure R = -0.06 +- 0.06/sup stat/ +- 0.11/sup syst/. Our measurements show qualitative agreement with QCD, but quantitative comparison is hampered by phenomenological uncertainties. The experimental situation is quite good, with substantial agreement between our measurements and those of others. 86 references

  6. Status of the international Muon ionization cooling experiment

    International Nuclear Information System (INIS)

    Palladino, V.; Bonesini, M.

    2009-01-01

    Muon ionization cooling provides the only practical solution to prepare high brilliance beams necessary for a neutrino factory or muon colliders. The muon ionization cooling experiment (MICE) is under development at the Rutherford Appleton Laboratory (UK). It comprises a dedicated beam line to generate a range of input emittance and momentum, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. A first measurement of emittance is performed in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in liquid hydrogen and RF acceleration. A second spectrometer identical to the first one and a particle identification system provide a measurement of the outgoing emittance. By July 2009 it is expected that the beam and first set of detectors will have been commissioned and a first measurement of input beam emittance may be reported. Along with the steps in the measurement of emittance reduction (cooling) that will follow later and in 2010. (authors)

  7. A tracking rangefinder for muons from kaon decay

    International Nuclear Information System (INIS)

    Frank, J.; Hart, G.W.; Kinnison, W.W.

    1988-01-01

    A muon rangefinder with tracking capabilities has been constructed as part of a search for the rare decay K/degree//sub L/ → μe in experiment 791 at the Brookhaven National Laboratory Alternating Gradient Synchrotron. The rangefinder consisted of two identical arms, symmetric about the beamline, and was the final detector element in a spectrometer system. Each side of the rangefinder was comprised of 75 slabs of marble and 25 slabs of aluminum, each 7.62 cm thick, covering an acceptance area 225 cm wide by 301 cm high, with a total mass of 160 tons (145,454 kg). There were 13 pairs of x- and y-measuring proportional tube planes providing a nominal +-10% accuracy measurement of muon momentum. Altogether, there were 11,648 sense wires, operating at 2650 V, with equal parts argon (49.2%) and ethane (49.2%) gas, and a small amount (1.6% of the total gas) of ethyl alcohol flowing in the proportional tubes. During 850 hours of data collection, efficiency averaged 94% with 160-ns drift time at 1.5 μA threshold. For well-identified muon tracks, rangefinder muon identification was 99% efficient when penetration to at least 60% of the depth expected from spectrometer-derived momentum was required. 6 refs., 6 figs

  8. Volcanoes muon imaging using Cherenkov telescopes

    International Nuclear Information System (INIS)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M.C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  9. Volcanoes muon imaging using Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Del Santo, M., E-mail: melania@ifc.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T.; Cusumano, G.; Maccarone, M.C. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Pareschi, G. [INAF Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy)

    2016-01-21

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  10. Single spectrometer station for neutrino-tagging

    International Nuclear Information System (INIS)

    Nedyalkov, I.P.

    1984-01-01

    A neutrino tagging station built with respect to the following scheme is proposed. A beam of muons and kaons passes through a magnetic spectrometer, where the energy of each particle is measured. There are coordinate detectors behind the spectrometer in several planes, where the direction of the trajectory of a given particle is determined. Thus, mesons enter the decay point wth the known 4-momentum. Behind the decay point the direction of μ-meson generated by the decay of parent mesons is measured. It is shown that information is sufficient for determining the kind of parent particle (pion or kaon), the energy and the direction of trajectory of the neutrino

  11. MICE: the Muon Ionization Cooling Experiment. Step I: First Measurement of Emittance with Particle Physics Detectors

    CERN Document Server

    Bravar, U; Karadzhov, Y; Kolev, D; Russinov, I; Tsenov, R; Wang, L; Xu, F Y; Zheng, S X; Bertoni, R; Bonesini, M; Mazza, R; Palladino, V; Cecchet, G; de Bari, A; Capponi, M; Iaciofano, A; Orestano, D; Pastore, F; Tortora, L; Ishimoto, S; Suzuki, S; Yoshimura, K; Mori, Y; Kuno, Y; Sakamoto, H; Sato, A; Yano, T; Yoshida, M; Filthaut, F; Vretenar, M; Ramberger, S; Blondel, A; Cadoux, F; Masciocchi, F; Graulich, J S; Verguilov, V; Wisting, H; Petitjean, C; Seviour, R; Ellis, M; Kyberd, P; Littlefield, M; Nebrensky, J J; Forrest, D; Soler, F J P; Walaron, K; Cooke, P; Gamet, R; Alecou, A; Apollonio, M; Barber, G; Dobbs, A; Dornan, P; Fish, A; Hare, R; Jamdagni, A; Kasey, V; Khaleeq, M; Long, K; Pasternak, J; Sakamoto, H; Sashalmi, T; Blackmore, V; Cobb, J; Lau, W; Rayner, M; Tunnell, C D; Witte, H; Yang, S; Alexander, J; Charnley, G; Griffiths, S; Martlew, B; Moss, A; Mullacrane, I; Oats, A; York, S; Apsimon, R; Alexander, R J; Barclay, P; Baynham, D E; Bradshaw, T W; Courthold, M; Hayler, R Edgecock T; Hills, M; Jones, T; McNubbin, N; Murray, W J; Nelson, C; Nicholls, A; Norton, P R; Prior, C; Rochford, J H; Rogers, C; Spensley, W; Tilley, K; Booth, C N; Hodgson, P; Nicholson, R; Overton, E; Robinson, M; Smith, P; Adey, D; Back, J; Boyd, S; Harrison, P; Norem, J; Bross, A D; Geer, S; Moretti, A; Neuffer, D; Popovic, M; Qian, Z; Raja, R; Stefanski, R; Cummings, M A C; Roberts, T J; DeMello, A; Green, M A; Li, D; Sessler, A M; Virostek, S; Zisman, M S; Freemire, B; Hanlet, P; Huang, D; Kafka, G; Kaplan, D M; Snopok, P; Torun, Y; Onel, Y; Cline, D; Lee, K; Fukui, Y; Yang, X; Rimmer, R A; Cremaldi, L M; Hart, T L; Summers, D J; Coney, L; Fletcher, R; Hanson, G G; Heidt, C; Gallardo, J; Kahn, S; Kirk, H; Palmer, R B; C11-08-09

    2011-01-01

    The Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) de...

  12. Muon Sources for Particle Physics - Accomplishments of the Muon Accelerator Program

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Stratakis, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palmer, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Delahaye, J.-P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Summers, D. [Univ. of Mississippi, Oxford, MS (United States); Ryne, R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cummings, M. A. [Muons, Inc., Batavia, IL(United States)

    2017-05-01

    The Muon Accelerator Program (MAP) completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of lepton colliders from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using a μ storage ring (MSR) for neutrinos, and establishing that MSRs could provide factory-level intensities of νe (ν$\\bar{e}$) and ν$\\bar{μ}$) (νμ) beams. The key components of the collider and neutrino factory systems were identified. Feasible designs and detailed simulations of all of these components were obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and clearly associated physics goals become apparent

  13. Image characterization metrics for muon tomography

    Science.gov (United States)

    Luo, Weidong; Lehovich, Andre; Anashkin, Edward; Bai, Chuanyong; Kindem, Joel; Sossong, Michael; Steiger, Matt

    2014-05-01

    Muon tomography uses naturally occurring cosmic rays to detect nuclear threats in containers. Currently there are no systematic image characterization metrics for muon tomography. We propose a set of image characterization methods to quantify the imaging performance of muon tomography. These methods include tests of spatial resolution, uniformity, contrast, signal to noise ratio (SNR) and vertical smearing. Simulated phantom data and analysis methods were developed to evaluate metric applicability. Spatial resolution was determined as the FWHM of the point spread functions in X, Y and Z axis for 2.5cm tungsten cubes. Uniformity was measured by drawing a volume of interest (VOI) within a large water phantom and defined as the standard deviation of voxel values divided by the mean voxel value. Contrast was defined as the peak signals of a set of tungsten cubes divided by the mean voxel value of the water background. SNR was defined as the peak signals of cubes divided by the standard deviation (noise) of the water background. Vertical smearing, i.e. vertical thickness blurring along the zenith axis for a set of 2 cm thick tungsten plates, was defined as the FWHM of vertical spread function for the plate. These image metrics provided a useful tool to quantify the basic imaging properties for muon tomography.

  14. Cosmic ray muons for spent nuclear fuel monitoring

    Science.gov (United States)

    Chatzidakis, Stylianos

    There is a steady increase in the volume of spent nuclear fuel stored on-site (at reactor) as currently there is no permanent disposal option. No alternative disposal path is available and storage of spent nuclear fuel in dry storage containers is anticipated for the near future. In this dissertation, a capability to monitor spent nuclear fuel stored within dry casks using cosmic ray muons is developed. The motivation stems from the need to investigate whether the stored content agrees with facility declarations to allow proliferation detection and international treaty verification. Cosmic ray muons are charged particles generated naturally in the atmosphere from high energy cosmic rays. Using muons for proliferation detection and international treaty verification of spent nuclear fuel is a novel approach to nuclear security that presents significant advantages. Among others, muons have the ability to penetrate high density materials, are freely available, no radiological sources are required and consequently there is a total absence of any artificial radiological dose. A methodology is developed to demonstrate the applicability of muons for nuclear nonproliferation monitoring of spent nuclear fuel dry casks. Purpose is to use muons to differentiate between spent nuclear fuel dry casks with different amount of loading, not feasible with any other technique. Muon scattering and transmission are used to perform monitoring and imaging of the stored contents of dry casks loaded with spent nuclear fuel. It is shown that one missing fuel assembly can be distinguished from a fully loaded cask with a small overlapping between the scattering distributions with 300,000 muons or more. A Bayesian monitoring algorithm was derived to allow differentiation of a fully loaded dry cask from one with a fuel assembly missing in the order of minutes and negligible error rate. Muon scattering and transmission simulations are used to reconstruct the stored contents of sealed dry casks

  15. HISS spectrometer

    International Nuclear Information System (INIS)

    Greiner, D.E.

    1984-11-01

    This talk describes the Heavy Ion Spectrometer System (HISS) facility at the Lawrence Berkeley Laboratory's Bevalac. Three completed experiments and their results are illustrated. The second half of the talk is a detailed discussion of the response of drift chambers to heavy ions. The limitations of trajectory measurement over a large range in incident particle charge are presented

  16. Spectrometer gun

    Science.gov (United States)

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  17. Simulation of 200-400 MeV/u "1"2C + "1"2C elastic scattering on SHARAQ spectrometer

    International Nuclear Information System (INIS)

    Yu Lei; Zhang Gaolong; Terashima, S.; Le Xiaoyun; Tanihata, I.

    2015-01-01

    In order to further obtain the information of three-body force (TBF) from 200-400 MeV/u "1"2C + "1"2C elastic scattering, we plan to perform this experiment on a SHARAQ spectrometer. Based on the experimental condition of the Radioactive Ion Beam Factory (RIBF)-SHARAQ facility, a simulation is given to find a compromise between the better energy and angular resolutions, and higher yield by optimizing the target thickness, beam transport mode, beam intensity and angular step. From the simulation, we found that the beam quality mainly limits the improvements of energy and angular resolutions. A beam tracking system as well as a lateral and angular dispersion-matching technique are adopted to reduce the influence of beam quality. According to the two angular settings of SHARAQ as well as the expected cross sections on the basis of the theoretical model, the energy and angular resolutions, and statistical accuracy are estimated. (authors)

  18. Muon identification with Muon Telescope Detector at the STAR experiment

    Science.gov (United States)

    Huang, T. C.; Ma, R.; Huang, B.; Huang, X.; Ruan, L.; Todoroki, T.; Xu, Z.; Yang, C.; Yang, S.; Yang, Q.; Yang, Y.; Zha, W.

    2016-10-01

    The Muon Telescope Detector (MTD) is a newly installed detector in the STAR experiment. It provides an excellent opportunity to study heavy quarkonium physics using the dimuon channel in heavy ion collisions. In this paper, we report the muon identification performance for the MTD using proton-proton collisions at √{ s }=500 GeV with various methods. The result using the Likelihood Ratio method shows that the muon identification efficiency can reach up to ∼90% for muons with transverse momenta greater than 3 GeV/c and the significance of the J / ψ signal is improved by a factor of 2 compared to using the basic selection.

  19. Do muons oscillate?

    International Nuclear Information System (INIS)

    Dolgov, A.D.; Morozov, A.Yu.; Okun, L.B.; Schepkin, M.G.

    1997-01-01

    We develop a theory of the EPR-like effects due to neutrino oscillations in the π→μν decays. Its experimental implications are space-time correlations of the neutrino and muon when they are both detected, while the pion decay point is not fixed. However, the more radical possibility of μ-oscillations in experiments where only muons are detected (as suggested in hep-ph/9509261), is ruled out. We start by discussing decays of monochromatic pions, and point out a few ''paradoxes''. Then we consider pion wave packets, solve the ''paradoxes'', and show that the formulas for μν correlations can be transformed into the usual expressions, describing neutrino oscillations, as soon as the pion decay point is fixed. (orig.)

  20. The LHCb Muon Upgrade

    CERN Multimedia

    Cardini, A

    2013-01-01

    The LHCb collaboration is currently working on the upgrade of the experiment to allow, after 2018, an efficient data collection while running at an instantaneous luminosity of 2x10$^{33}$/cm$^{-2}$s$^{-1}$. The upgrade will allow 40 MHz detector readout, and events will be selected by means of a very flexible software-based trigger. The muon system will be upgraded in two phases. In the first phase, the off-detector readout electronics will be redesigned to allow complete event readout at 40 MHz. Also, part of the channel logical-ORs, used to reduce the total readout channel count, will be removed to reduce dead-time in critical regions. In a second phase, higher-granularity detectors will replace the ones installed in highly irradiated regions, to guarantee efficient muon system performances in the upgrade data taking conditions.

  1. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Z. Szillasi and G. Gomez.

    2013-01-01

    When CMS is opened up, major components of the Link and Barrel Alignment systems will be removed. This operation, besides allowing for maintenance of the detector underneath, is needed for making interventions that will reinforce the alignment measurements and make the operation of the alignment system more reliable. For that purpose and also for their general maintenance and recalibration, the alignment components will be transferred to the Alignment Lab situated in the ISR area. For the track-based alignment, attention is focused on the determination of systematic uncertainties, which have become dominant, since now there is a large statistics of muon tracks. This will allow for an improved Monte Carlo misalignment scenario and updated alignment position errors, crucial for high-momentum muon analysis such as Z′ searches.

  2. Ion transfer from an atmospheric pressure ion funnel into a mass spectrometer with different interface options: Simulation-based optimization of ion transmission efficiency.

    Science.gov (United States)

    Mayer, Thomas; Borsdorf, Helko

    2016-02-15

    We optimized an atmospheric pressure ion funnel (APIF) including different interface options (pinhole, capillary, and nozzle) regarding a maximal ion transmission. Previous computer simulations consider the ion funnel itself and do not include the geometry of the following components which can considerably influence the ion transmission into the vacuum stage. Initially, a three-dimensional computer-aided design (CAD) model of our setup was created using Autodesk Inventor. This model was imported to the Autodesk Simulation CFD program where the computational fluid dynamics (CFD) were calculated. The flow field was transferred to SIMION 8.1. Investigations of ion trajectories were carried out using the SDS (statistical diffusion simulation) tool of SIMION, which allowed us to evaluate the flow regime, pressure, and temperature values that we obtained. The simulation-based optimization of different interfaces between an atmospheric pressure ion funnel and the first vacuum stage of a mass spectrometer require the consideration of fluid dynamics. The use of a Venturi nozzle ensures the highest level of transmission efficiency in comparison to capillaries or pinholes. However, the application of radiofrequency (RF) voltage and an appropriate direct current (DC) field leads to process optimization and maximum ion transfer. The nozzle does not hinder the transfer of small ions. Our high-resolution SIMION model (0.01 mm grid unit(-1) ) under consideration of fluid dynamics is generally suitable for predicting the ion transmission through an atmospheric-vacuum system for mass spectrometry and enables the optimization of operational parameters. A Venturi nozzle inserted between the ion funnel and the mass spectrometer permits maximal ion transmission. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. The reconstruction of tracks with the drift tubes in the muon spektrometers of the neutrino experiment OPERA

    International Nuclear Information System (INIS)

    Wonsak, B.S.

    2007-11-01

    In this thesis the reconstruction of tracks within the OPERA muon spectrometer is described as well as parts of the simulation software concerning the drift tubes. A method minimising the χ 2 of the tracks is used for the fit, which is supported by liklyhood considerations during the pattern recognition. An analytical description of the time to distance relation for the OPERA drift tubes is introduced to be used in the fit. For simulated events of cosmics a resolution of 410±4 μm and an efficiency of more that 93% has been acquired. For real cosmic data from the OPERA detector a resolution o 374±3 μm and an efficiency of up to 84% has been reached. The acquired angular resolution of 1,2 mrad is sufficient to achieve a momentum resolution of 25% up to momentums of 25 GeV. (orig.)

  4. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez.

    Since June of 2009, the muon alignment group has focused on providing new alignment constants and on finalizing the hardware alignment reconstruction. Alignment constants for DTs and CSCs were provided for CRAFT09 data reprocessing. For DT chambers, the track-based alignment was repeated using CRAFT09 cosmic ray muons and validated using segment extrapolation and split cosmic tools. One difference with respect to the previous alignment is that only five degrees of freedom were aligned, leaving the rotation around the local x-axis to be better determined by the hardware system. Similarly, DT chambers poorly aligned by tracks (due to limited statistics) were aligned by a combination of photogrammetry and hardware-based alignment. For the CSC chambers, the hardware system provided alignment in global z and rotations about local x. Entire muon endcap rings were further corrected in the transverse plane (global x and y) by the track-based alignment. Single chamber track-based alignment suffers from poor statistic...

  5. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2010-01-01

    The main developments in muon alignment since March 2010 have been the production, approval and deployment of alignment constants for the ICHEP data reprocessing. In the barrel, a new geometry, combining information from both hardware and track-based alignment systems, has been developed for the first time. The hardware alignment provides an initial DT geometry, which is then anchored as a rigid solid, using the link alignment system, to a reference frame common to the tracker. The “GlobalPositionRecords” for both the Tracker and Muon systems are being used for the first time, and the initial tracker-muon relative positioning, based on the link alignment, yields good results within the photogrammetry uncertainties of the Tracker and alignment ring positions. For the first time, the optical and track-based alignments show good agreement between them; the optical alignment being refined by the track-based alignment. The resulting geometry is the most complete to date, aligning all 250 DTs, ...

  6. Muon shielding for PEP

    International Nuclear Information System (INIS)

    Jenkins, T.M.; Thomas, R.H.

    1974-01-01

    The first stage of construction of PEP will consist of electron and positron storage rings. At a later date a 200 GeV proton storage ring may be added. It is judicious therefore, to ensure that the first and second phases of construction are compatible with each other. One of several factors determining the elevation at which the storage rings will be constructed is the necessity to provide adequate radiation shielding. The overhead shielding of PEP is determined by the reproduction of neutrons in the hadron cascade generated by primary protons lost from the storage ring. The minimum overburden planned for PEP is 5.5 meters of earth (1100 gm cm/sup /minus/2/). To obtain a rough estimate of the magnitude of the muon radiation problem this note presents some preliminary calculations. Their purpose is intended merely to show that the presently proposed design for PEP will present no major shielding problems should the protons storage ring be installed. More detailed calculations will be made using muon yield computer codes developed at CERN and NAL and muon transport codes developed at SLAC, when details of the proton storage ring become settled. 9 refs., 4 figs

  7. Further studies on a DTBX prototype for the CMS muon detector at LHC

    International Nuclear Information System (INIS)

    Barichello, G.; Benvenuti, A.; Cavanna, F.; Cuffiani, M.; Fanin, C.; De Giorgi, M.; Gasparini, F.; Giantin, R.; Martinelli, R.; Piano Mortari, G.; Pitacco, G.; Rossi, A.; Sartori, P.; Verdecchia, M.; Wulz, C.E.; Zanchettin, F.; Zumerle, G.

    1995-01-01

    The performance of a small prototype chamber of the baseline project for the muon barrel detector for CMS has been studied in a muon beam. Its efficiency with different gases and wire diameters, the trigger possibilities and the response in presence of a large number of electromagnetic secondaries associated to the muon are evaluated. The results are compared with a full Monte Carlo simulation. (orig.)

  8. The acceptance of surface detector arrays for high energy cosmological muon neutrinos

    International Nuclear Information System (INIS)

    Vo Van Thuan; Hoang Van Khanh

    2011-01-01

    In order to search for ultra-high energy cosmological earth-skimming muon neutrinos by the surface detector array (SD) similar to one of the Pierre Auger Observatory (PAO), we propose to use the transition electromagnetic radiation at the medium interface induced by earth-skimming muons for triggering a few of aligned neighboring Cherenkov SD stations. Simulations of the acceptance of a modeling SD array have been done to estimate the detection probability of earth-skimming muon neutrinos.

  9. Muon colliders and neutrino factories

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  10. A new Soft Muon Tagger for ATLAS Run 2

    CERN Document Server

    Sciandra, Andrea; The ATLAS collaboration

    2017-01-01

    b-tagging plays a fundamental role at LHC, as it helps in the identification of heavy particles that decay to bottom quarks, such as the top quark, Higgs boson or heavy exotic particles. The Soft Muon Tagger (SMT) allows jets from b-quarks to be identified, taking advantage of the presence of a muon coming from semileptonic decays of b-hadrons. The development of this new b-tagger in ATLAS will be described, showing that, despite the low efficiency of the jet-muon association (based on the angular distance), the discriminating power of the associated muon variables is sufficient to reject light jets. An enhanced performance has been reached for all light jet rejection working points by adding the SMT output to the best performing multivariate b-tagger in ATLAS (MV2). A good modeling of input and output variables is shown, comparing simulation with Run 2 data.

  11. Large vessel imaging using cosmic-ray muons

    International Nuclear Information System (INIS)

    Jenneson, P.M.

    2004-01-01

    Cosmic-ray muons are assessed for their practical use in the tomographic imaging of the internal composition of large vessels over 2 m in diameter. The technique is based on the attenuation and scattering of cosmic-ray muons passing through a vessel and has advantages over photon-based methods of tomography that it is extendable to object containing high-density materials over many tens of metres. The main disadvantage is the length of time required to produce images of sufficient resolution and hence cosmic ray muon tomography will be most suited to the imaging of large structures whose internal composition is effectively static for the duration of the imaging period. Simulation and theoretical results are presented here which demonstrate the feasibility of cosmic ray muon tomography

  12. A novel muon detector for borehole density tomography

    Science.gov (United States)

    Bonneville, Alain; Kouzes, Richard T.; Yamaoka, Jared; Rowe, Charlotte; Guardincerri, Elena; Durham, J. Matthew; Morris, Christopher L.; Poulson, Daniel C.; Plaud-Ramos, Kenie; Morley, Deborah J.; Bacon, Jeffrey D.; Bynes, James; Cercillieux, Julien; Ketter, Chris; Le, Khanh; Mostafanezhad, Isar; Varner, Gary; Flygare, Joshua; Lintereur, Azaree T.

    2017-04-01

    Muons can be used to image the density of materials through which they pass, including geological structures. Subsurface applications of the technology include tracking fluid migration during injection or production, with increasing concern regarding such timely issues as induced seismicity or chemical leakage into aquifers. Current density monitoring options include gravimetric data collection and active or passive seismic surveys. One alternative, or complement, to these methods is the development of a muon detector that is sufficiently compact and robust for deployment in a borehole. Such a muon detector can enable imaging of density structure to monitor small changes in density - a proxy for fluid migration - at depths up to 1500 m. Such a detector has been developed, and Monte Carlo modeling methods applied to simulate the anticipated detector response. Testing and measurements using a prototype detector in the laboratory and shallow underground laboratory demonstrated robust response. A satisfactory comparison with a large drift tube-based muon detector is also presented.

  13. A method of detector correction for cosmic ray muon radiography

    International Nuclear Information System (INIS)

    Liu Yuanyuan; Zhao Ziran; Chen Zhiqiang; Zhang Li; Wang Zhentian

    2008-01-01

    Cosmic ray muon radiography which has good penetrability and sensitivity to high-Z materials is an effective way for detecting shielded nuclear materials. The problem of data correction is one of the key points of muon radiography technique. Because of the influence of environmental background, environmental yawp and error of detectors, the raw data can not be used directly. If we used the raw data as the usable data to reconstruct without any corrections, it would turn up terrible artifacts. Based on the characteristics of the muon radiography system, aimed at the error of detectors, this paper proposes a method of detector correction. The simulation experiments demonstrate that this method can effectively correct the error produced by detectors. Therefore, we can say that it does a further step to let the technique of cosmic muon radiography into out real life. (authors)

  14. PSI: Very slow polarized muons

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    At the 'pion factory' of the Swiss Paul Scherrer Institute, a collaboration of PSI, Heidelberg and Zurich (ETH) has recently produced intense beams of positive muons which have kinetic energies as low as 10 eV and with complete polarization (spin orientation). The new results were achieved at a surface muon channel, transporting positive muons from the decay of positive pions stopped at the surface of a pion production target. Surface muons with 4 MeV kinetic energy were transported by a conventional secondary beam channel and partially stopped in a moderator consisting of a layer of solidified noble gas deposited on a cold metallic substrate

  15. The Spectrometer

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2012-01-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating), and I began to realize that inside was some familiar old…

  16. View of the Axial Field Spectrometer (R807)

    CERN Multimedia

    1980-01-01

    In this view of the Axial Field Spectrometer at I8, the vertical uranium/scintillator hadron calorimeter (just left of centre) is retracted to give access to the cylindrical central drift chamber. The yellow iron structure served as a filter to identify muons, with MWPCs and the array of Cherenkov counters to the right.

  17. The Muon Portal Project: Development of an Innovative Scanning Portal Based on Muon Tomography

    International Nuclear Information System (INIS)

    Bonanno, D.-L.; Indelicato, V.; Rocca, P.-La; Leonora, E.; Longhitano, F.; Presti, D.Lo; Petta, C.; Pugliatti, C.; Randazzo, N.; Riggi, F.; Russo, G.V.; Zappala, G.; Santagati, G.; Bonanno, G.; Antonuccio, V.; Bandieramonte, M.; Becciani, U.; Belluso, M.; Billotta, S.; Costa, A.; Massimino, P.; Pistagna, C.; Riggi, S.; Carbone, B.; Fallica, G.; Mazzillo, M.; Piana, A.; Sanfilippo, D.; Valvo, G.; Zaia, A.; Belluomo, F.; Puglisi, M.

    2013-06-01

    The Muon Portal is a recent Project [1] which aims at the construction of a 18 m 2 tracking detector for cosmic muons. This apparatus has been designed as a real-size prototype to inspect containers using the muon tomography technique, i.e. by measuring the deflection of muons when traversing high-Z materials. The detection setup is based on eight position-sensitive X-Y planes, four placed below and four above the volume to be inspected, with good tracking capabilities for charged particles. The detection planes are segmented into strips of extruded plastic scintillators with WLS fibres to transport the light produced in the scintillator material to the photo-sensors (SiPMs) at one of the fibre ends. Detailed GEANT4 simulations have been carried out under different scenarios to investigate the response of the apparatus. The tomographic images are reconstructed by tracking algorithms and suitable imaging software tools. Simulations have demonstrated the possibility to reconstruct a 3D image of the volume to be inspected in a reasonable amount of time, compatible with the requirement of a fast inspection technique. The first two of the 48 detection modules are presently under construction. (authors)

  18. Electron-Muon Ranger: performance in the MICE Muon Beam

    CERN Document Server

    Adams, D.; Vankova-Kirilova, G.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Kuno, Y.; Sakamoto, H.; Ishimoto, S.; Filthaut, F.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Bene, P.; Blondel, A.; Cadoux, F.; Debieux, S.; Drielsma, F.; Graulich, J.S.; Husi, C.; Karadzhov, Y.; Masciocchi, F.; Nicola, L.; Messomo, E.Noah; Rothenfusser, K.; Sandstrom, R.; Wisting, H.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Bayes, R.; Nugent, J.C.; Soler, F.J.P.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Lagrange, J-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Santos, E.; Savidge, T.; Uchida, M.A.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Booth, C.N.; Hodgson, P.; Langlands, J.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Dick, A.; Ronald, K.; Speirs, D.; Whyte, C.G.; Young, A.; Boyd, S.; Franchini, P.; Greis, J.; Pidcott, C.; Taylor, I.; Gardener, R.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Roberts, T.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Zisman, M.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Cline, D.; Yang, X.; Coney, L.; Hanson, G.G.; Heidt, C.

    2015-12-16

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100-280 MeV/$c$.

  19. Electron-muon ranger: performance in the MICE muon beam

    International Nuclear Information System (INIS)

    Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Alekou, A.; Apollonio, M.; Barber, G.; Asfandiyarov, R.; Bene, P.; Blondel, A.; De Bari, A.; Bayes, R.; Bertoni, R.; Bonesini, M.; Blackmore, V.J.; Blot, S.; Bogomilov, M.; Booth, C.N.; Bowring, D.; Boyd, S.

    2015-01-01

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100–280 MeV/c

  20. Muon identification algorithms in ATLAS Poster for EPS-HEP 2009

    CERN Document Server

    Resende, B; The ATLAS collaboration

    2009-01-01

    In the midst of the intense activity that will arise from the proton-proton collisions at the LHC, muons will be very useful to spot rare events of interest. The good resolution expected for their momentum measurement shall also make them powerful tools in event reconstruction. Muon identification will thus be a crucial issue in the ATLAS experiment at the LHC. Their charged tracks can be reconstructed in the external spectrometer only, but the combination of such "stand-alone" tracks with tracks from the inner detector shall increase the precision and reliablilty of the reconstructed muon. This is particularly true in the lower part of the pT spectrum, where the inner detector is more performant. We will present here the various strategies for combined muon identification in the ATLAS experiment. The main algorithms, called Staco and Muid, perform the combination of existing tracks in the inner detector and in the muon spectrometer, allowing the best identification of muon tracks. Their efficiency is complet...

  1. Commissioning and Performance of the CMS Silicon Strip Tracker with Cosmic Ray Muons

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G.; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    During autumn 2008, the Silicon Strip Tracker was operated with the full CMS experiment in a comprehensive test, in the presence of the 3.8 T magnetic field produced by the CMS superconducting solenoid. Cosmic ray muons were detected in the muon chambers and used to trigger the readout of all CMS sub-detectors. About 15 million events with a muon in the tracker were collected. The efficiency of hit and track reconstruction were measured to be higher than 99% and consistent with expectations from Monte Carlo simulation. This article details the commissioning and performance of the Silicon Strip Tracker with cosmic ray muons.

  2. Low pT muons in b-jets in ATLAS TILECAL

    International Nuclear Information System (INIS)

    Bosman, M.; Budagov, Yu.A.; Pantea, D.

    1995-01-01

    ATLAS Tile Calorimeter possibilities to identify b-jets that contain low p T muons are investigated. This is made in order to extend the capability of b-tagging through muon b-quark semileptonic decays beyond the muon detector limits of efficient registration. Results obtained by Monte Carlo simulation of single isolated jets in ATLAS detector indicate that for b-jets that contain low p T muons in the range 2 T < 5 GeV, one can separate them from light quark or gluon jets. 3 refs., 11 figs

  3. On the Muon Decay Parameters

    CERN Document Server

    Chizhov, M V

    1996-01-01

    Predictions for the muon decay spectrum are usually derived from the derivative-free Hamiltonian. However, it is not the most general form of the possible interactions. Additional simple terms with derivatives can be introduced. In this work the distortion of the standard energy and angular distribution of the electrons in polarized muon decay caused by these terms is presented.

  4. Muon-catalyzed fusion revisited

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-12-15

    A negative muon can induce nuclear fusion in the reaction of deuteron and triton nuclei giving a helium nucleus, a neutron and an emerging negative muon. The muon forms a tightlybound deuteron-triton-muon molecule and fusion follows in about 10{sup -12}s. Then the muon is free again to induce further reactions. Thus the muon can serve as a catalyst for nuclear fusion, which can proceed without the need for the high temperatures which are needed in the confinement and inertial fusion schemes. At room temperature, up to 80 fusions per muon have recently been observed at the LAMPF machine at Los Alamos, and it is clear that this number can be exceeded. These and other results were presented at a summer Workshop on Muon-Catalyzed Fusion held in Jackson, Wyoming. Approximately fifty scientists attended from Austria, Canada, India, Italy, Japan, South Africa, West Germany, and the United States. The Workshop itself is symbolic of the revival of interest in this subject.

  5. Search for right-handed currents in muon decay

    International Nuclear Information System (INIS)

    Balke, B.; Carr, J.; Gidal, G.

    1984-07-01

    The parameter xi, which characterizes the anisotropy of the emitted electrons relative to the spin direction of the muon, is a sensitive indicator of possible V+A admixtures to the dominant V-A weak interaction responsible for muon decay. We report here new results relating to the measurement of xi based on an experiment performed with a highly polarized surface muon beam at the TRIUMF cyclotron. The muons were stopped in thin metal foils in order to minimize depolarization effects. A spectrometer consisting of magnets and position sensitive detectors was tuned to accept electrons near the end point of the decay spectrum. Two largely independent methods were used to determine xi. In the first we measured the rate of positrons emitted in a direction opposite to the muon's spin as a function of their momentum when the stopping target was immersed in a 1.1 T longitudinal magnetic field. In the second method the stopping muons were subjected to a weak transverse magnetic field and the amplitude of their spin precession oscillation was used to determine xi. Based on the results from both methods lower limits on the mass of an intermediate vector boson which couples to right-handed weak currents are 400 GeV/c 2 when no constraints are placed on W/sub L/ - W/sub R/ mixing and 470 GeV/c 2 if mixing is assumed to be absent. These limits represent about an order of magnitude improvement over those obtained from previous measurements of xi. We have used the same apparatus to measure the anisotropic shape parameter delta. Preliminary results are consistent with the expected value of 3/4 with errors that are a factor of two smaller than previous measurements

  6. The performance of the Muon Veto of the Gerda experiment

    Energy Technology Data Exchange (ETDEWEB)

    Freund, K.; Falkenstein, R.; Grabmayr, P.; Hegai, A.; Jochum, J.; Knapp, M.; Ritter, F.; Schmitt, C.; Schuetz, A.K. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Lubsandorzhiev, B. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Jitnikov, I.; Shevchik, E.; Shirchenko, M.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2016-05-15

    Low background experiments need a suppression of cosmogenically induced events. The Gerda experiment located at Lngs is searching for the 0νββ decay of {sup 76}Ge. It is equipped with an active muon veto the main part of which is a water Cherenkov veto with 66 PMTs in the water tank surrounding the Gerda cryostat. With this system 806 live days have been recorded, 491 days were combined muon-germanium data. A muon detection efficiency of ε{sub μd} = (99.935 ± 0.015)% was found in a Monte Carlo simulation for the muons depositing energy in the germanium detectors. By examining coincident muon-germanium events a rejection efficiency of ε{sub μr} = (99.2{sub -0.4}{sup +0.3})% was found. Without veto condition the muons by themselves would cause a background index of BI{sub μ} = (3.16 ± 0.85) x 10{sup -3} cts/(keV . kg . year) at Q{sub ββ}. (orig.)

  7. Precise muon drift tube detectors for high background rate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Albert

    2011-08-04

    The muon spectrometer of the ATLAS-experiment at the Large Hadron Collider consists of drift tube chambers, which provide the precise measurement of trajectories of traversing muons. In order to determine the momentum of the muons with high precision, the measurement of the position of the muon in a single tube has to be more accurate than {sigma}{<=}100 {mu}m. The large cross section of proton-proton-collisions and the high luminosity of the accelerator cause relevant background of neutrons and {gamma}s in the muon spectrometer. During the next decade a luminosity upgrade to 5.10{sup 34} cm{sup -2}s{sup -1} is planned, which will increase the background counting rates considerably. In this context this work deals with the further development of the existing drift chamber technology to provide the required accuracy of the position measurement under high background conditions. Two approaches of improving the drift tube chambers are described: - In regions of moderate background rates a faster and more linear drift gas can provide precise position measurement without changing the existing hardware. - At very high background rates drift tube chambers consisting of tubes with a diameter of 15 mm are a valuable candidate to substitute the CSC muon chambers. The single tube resolution of the gas mixture Ar:CO{sub 2}:N{sub 2} in the ratio of 96:3:1 Vol %, which is more linear and faster as the currently used drift gas Ar:CO{sub 2} in the ratio of 97:3 Vol %, was determined at the Cosmic Ray Measurement Facility at Garching and at high {gamma}-background counting rates at the Gamma Irradiation Facility at CERN. The alternative gas mixture shows similar resolution without background. At high background counting rates it shows better resolution as the standard gas. To analyse the data the various parts of the setup have to be aligned precisely to each other. The change to an alternative gas mixture allows the use of the existing hardware. The second approach are drift tubes

  8. Muon reconstruction in the Daya Bay water pools

    International Nuclear Information System (INIS)

    Hackenburg, R. W.

    2017-01-01

    Muon reconstruction in the Daya Bay water pools would serve to verify the simulated muon fluxes and offer the possibility of studying cosmic muons in general. This reconstruction is, however, complicated by many optical obstacles and the small coverage of photomultiplier tubes (PMTs) as compared to other large water Cherenkov detectors. The PMTs’ timing information is useful only in the case of direct, unreflected Cherenkov light. This requires PMTs to be added and removed as an hypothesized muon trajectory is iteratively improved, to account for the changing effects of obstacles and direction of light. Therefore, muon reconstruction in the Daya Bay water pools does not lend itself to a general fitting procedure employing smoothly varying functions with continuous derivatives. Here, we describe an algorithm which overcomes these complications. It employs the method of Least Mean Squares to determine an hypothesized trajectory from the PMTs’ charge-weighted positions. This initially hypothesized trajectory is then iteratively refined using the PMTs’ timing information. Reconstructions with simulated data reproduce the simulated trajectory to within about 5° in direction and about 45 cm in position at the pool surface, with a bias that tends to pull tracks away from the vertical by about 3°.

  9. The automatic test system for the L3 muon drift chamber amplifiers

    International Nuclear Information System (INIS)

    Bove, A.; Caiazzo, L.; Lanzano, S.; Manna, F.; Manto, G.; Parascandolo, L.; Parascandolo, P.; Parmentola, A.; Paternoster, G.

    1987-01-01

    We describe the system we developed to test the linearity of wire chambers amplifiers of the muon spectrometer presently in construction for the L3 experiment at LEP. The system, controlled by an Apple II computer, is capable of localizing both defective components and faults in the printed board. It will be used to perform the large scale quality control of the amplifier cards

  10. Zenith-angle distributions of atmospheric muons above 20 GeV

    International Nuclear Information System (INIS)

    Decoster, R.J.; Stevenson, M.L.; Breakstone, A.; Flatte, S.M.

    1975-01-01

    The results of a magnetic-spectrometer experiment at ground level with optical spark chambers, scintillator hodoscope trigger and an air-gap magnet, are reported to given an evaluation of the zenith-angle distribution of the atmospheric muons above 20 GeV. An automatic flying spot digitizer, the Hummingbird, was used

  11. MUON DETECTORS: CSC

    CERN Multimedia

    Jay Hauser

    2013-01-01

    Great progress has been made on the CSC improvement projects during LS1, the construction of the new ME4/2 muon station, and the refurbishing of the electronics in the high-rate inner ME1/1 muon station. CSC participated successfully in the Global Run in November (GRiN) cosmic ray test, but with just stations +2 and +3, due to the large amount of work going on. The test suite used for commissioning chambers is more comprehensive than the previous tests, and should lead to smoother running in the future. The chamber factory at Prevessin’s building 904 has just finished assembling all the new ME4/2 chambers, which number 67 to be installed plus five spares, and is now finishing up the long-term HV training and testing of the last chambers. At Point 5, installation of the new chambers on the positive endcap went well, and they are now all working well. Gas leak rates are very low. Services are in good shape, except for the HV system, which will be installed during the coming month. We will then be w...

  12. CMS tracker observes muons

    CERN Multimedia

    2006-01-01

    A computer image of a cosmic ray traversing the many layers of the TEC+ silicon sensors. The first cosmic muon tracks have been observed in one of the CMS tracker endcaps. On 14 March, a sector on one of the two large tracker endcaps underwent a cosmic muon run. Since then, thousands of tracks have been recorded. These data will be used not only to study the tracking, but also to exercise various track alignment algorithms The endcap tested, called the TEC+, is under construction at RWTH Aachen in Germany. The endcaps have a modular design, with silicon strip modules mounted onto wedge-shaped carbon fibre support plates, so-called petals. Up to 28 modules are arranged in radial rings on both sides of these plates. One eighth of an endcap is populated with 18 petals and called a sector. The next major step is a test of the first sector at CMS operating conditions, with the silicon modules at a temperature below -10°C. Afterwards, the remaining seven sectors have to be integrated. In autumn 2006, TEC+ wil...

  13. MUON DETECTORS: CSC

    CERN Multimedia

    R. Breedon

    During the ongoing period before beam operation resumes, the Endcap Muon system is dedicated to bringing all components of the system up to the best possible performance condition. As CMS was opened, starting with the +Endcap side, electronic boards, cables, and connectors of the Cathode Strip Chamber (CSC) system were replaced or repaired as necessary as access became possible. Due to scheduling constraints, on the –Endcap side this effort has been delayed until the muon stations are each briefly accessible as the experiment is closed again. The CSC gas mixture includes 10% CF4 (carbon tetrafluoride) to reduce aging of the chambers when subjected to high levels of charged particle fluxes during LHC running. CF4, however, is the most expensive component of the gas mixture, and since it is not necessary to protect against aging during chamber commissioning with cosmic rays, the amount of CF4 was temporarily reduced by half to realize a substantial cost saving. Additional filters have been added to ...

  14. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2011-01-01

    During data-taking in 2010 the RPC system behaviour was very satisfactory for both the detector and trigger performances. Most of the data analyses are now completed and many results and plots have been approved in order to be published in the muon detector paper. A very detailed analysis of the detector efficiency has been performed using 60 million muon events taken with the dedicated RPC monitor stream. The results have shown that the 96.3% of the system was working properly with an average efficiency of 95.4% at 9.35 kV in the Barrel region and 94.9% at 9.55 kV in the Endcap. Cluster size goes from 1.6 to 2.2 showing a clear and well-known correlation with the strip pitch. Average noise in the Barrel is less than 0.4 Hz/cm2 and about 98% of full system has averaged noise less then 1 Hz/cm2. A linear dependence of the noise versus the luminosity has been preliminary observed and is now under study. Detailed chamber efficiency maps have shown a few percent of chambers with a non-uniform efficiency distribu...

  15. Precision Muon Tracking at Future Hadron Colliders with sMDT Chambers

    CERN Document Server

    Kortner, Oliver; Müller, Felix; Nowak, Sebastian; Richter, Robert

    2016-01-01

    Small-diameter muon drift tube (sMDT) chambers are a cost-effective technology for high-precision muon tracking. The rate capability of the sMDT chambers has been extensively tested at the Gamma Irradiation Facility at CERN in view of expected rates at future high-energy hadron colliders. Results show that it fulfills the requirements over most of the acceptance of muon detectors. The optimization of the read-out electronics to further increase the rate capability of the detectors is discussed. Chambers of this type are under construction for upgrades of the muon spectrometer of the ATLAS detector at high LHC luminosities. Design and construction procedures have been optimized for mass production while providing a precision of better than 10 micrometers in the sense wire positions and the mechanical stability required to cover large areas.

  16. Precise muon drift tube detectors for high background rate conditions

    CERN Document Server

    Engl, Albert; Dünnweber, Wolfgang

    The muon spectrometer of the ATLAS-experiment at t